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Abstract 

Due to the increasing prevalence of cancer in our societies, several researches are being 

carried out to provide enhanced computer assisted diagnostics to be used by the 

radiologist. The Insight Toolkit is an open source cross-platform application toolkit 

widely used by researchers in the field of medical image processing. Despite ITK’s 

widespread usage by experienced researches, early stage and inexperienced researchers 

find it quite challenging to get up and running with all the necessary tools for medical 

image processing.  As such, in this thesis a bundled virtual environment (Ubuntu Linux 

virtual machine image) containing the newest versions of ITK integrated together with 

Visualization Toolkit (VTK) and Qt framework was prepared. Moreover, detailed 

literature survey relating to 3D lung segmentation was also carried out which resulted in 

developing a semi-automated region growing-based lung segmentation method 

implemented and tested using the CT scan datasets from LIDC-IDRI database.  The first 

chapter begins with introduction and motivation, followed by thesis task specification. 

Second chapter dives into the current literature and state of the art techniques for lung 

segmentation. Chapter three gives an overview of medical imaging and modalities while 

concluding with a brief discussion regarding the Digital Imaging and Communication in 

Medicine (DICOM) standard. Chapter four gives details regarding the bundled 

environment and setup of ITK, VTK and Qt. Chapter 5 contains the implementation of 

3D lung segmentation and visualization. The last chapter includes conclusion, summary 

and future work. 

This thesis is written in English and is 65 pages long, including 6 chapters, 37 figures and 

2 tables. 
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Annotatsioon 

Suureneva vähi levimuse tõttu ühiskonnas viiakse läbi uuringuid, et pakkuda 

radioloogidele diagnostikakssuuremat arvuti abi. Insight Toolkit (ITK) on avatud 

lähtekoodiga platvorm ja rakenduste tööriistakomplekt ning kasutatakse laialdaselt 

meditsiini pilditöötluses uurijate poolt. Vaatamata ITK laiale levikule kogenud uurijate 

seas, varajases staadiumis ja kogenematute teadlaste arvates on üsna keeruline seada ja 

töötada läbi kõik vajalikud vahendid meditsiiniliseks pilditöötluseks. Käesoleva töös on 

valmis ja kokku kompileeritud virtuaalne keskkond (Ubuntu Linux virtuaalse masina 

failide kujutis), mis sisaldab uusimaid versioone ITK-st, integreerituna koos 

visualiseerimine Toolkit'i (VTK) ja Qt raamistikuga. Enamgi veel, on esitatud 

üksikasjalik kirjanduse ülevaade 3D kopsu segmenteerimine meetoditest ning selle põhjal 

on arendatud poolautomaatne pildi-piirkonnas kasvatamisel põhinev kopsu 

segmenteerimise meetod, mida rakendati ja kontrolliti, kasutades kompuutertomograafia 

andmekogumit LIDC-IDRI andmebaasist. Esimene peatükk algab sissejuhatuse ja 

motivatsiooniosaga, millele järgneb lõputöö ülesande spetsifikatsioon. Teine peatükk 

sukeldub kirjanduse ja tehnikataseme üksikasjalikku ülevaatesse, ka kopsu kujutise 

segmenteerimise osas. Kolmas peatükk annab ülevaate meditsiinirakendustest ja 

modaalsustest ning lõpeb DICOM standardi ülevaatega. Neljas peatükk kirjeldab  

üksikasjades tarkvara  keskkonna kompileerimist ja seadistust ITK, VTK ja Qt osades. 

Viies peatükk kirjeldab 3D kopsu segmenteerimist ja visualiseerimist. Viimane peatükk 

sisaldab järeldusi, kokkuvõtet ja tulevast tööd. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 65 leheküljel, 6 peatükki, 37 

joonist, 2 tabelit. 
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1 Introduction 

Lung cancer is one of the leading causes of cancer related death worldwide and more so 

in developed countries [1]. As such giving rise to the continuous need for enhanced and 

more accurate automated lung segmentation and detection methods which is an important 

part of computer aided diagnosis (CAD) to be used by the radiologist.  

A lung or pulmonary nodule (which sometimes also referred to as “spot on the lung”, 

“shadow”) is usually some specific round-like area that is more solid than the usual 

surrounding lung tissues. They are commonly found in CT scans of the chest although 

most lung nodules are benign (non-cancerous). A lung nodule varies according to its 

location, size, shape and appearance. More specifically, a nodule refers to a spot on the 

lungs with diameter of around 3 centimetres and anything above that could be referred to 

as a mass. With benign pulmonary nodules, there is slight change in their size over time 

which contrasts with cancerous nodules’ ability to grow quickly (doubling in about 4 

months or sometimes even much less). A cancerous pulmonary nodule is some sort of 

lesion that engulfs (overtime) the structures of the lung and thus leading to patient 

experiencing pains and other difficulties such as shortness of breath. Early detection of 

cancerous pulmonary lung nodules tend to be very challenging as normally there seems 

to be no clear symptoms from the beginning stages. Cancerous nodules can also be 

distinguished from benign nodules through its calcification. Calcification refers to the 

nodules’ development based on its surface and shape. Cancerous nodules tend to have 

irregular shape and rough surface while benign nodules are more likely to be regular in 

shape with even colour. 

In this MSc research project, the author focussed on providing readymade and easily 

accessible/extensible application framework to be used in lung segmentation (the process 

of nodule detection). This constitutes setting up some sort of virtual open source-based 

medical image processing research environment bundled into a Linux virtual machine 

image which is easily distributable. Moreover, a segmentation algorithm was 

implemented and tested using the provided framework/environment. With the inherent 
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difficulty for early stage researchers to get up to speed in integrating the necessary tools 

for efficient medical image research, a lot of time is spent in learning the tools and 

appropriate setup/environment. In particular, setting up/integrating the full Insight 

Toolkit (ITK), Visualization Toolkit (VTK) and Qt complexity leave early stage 

researchers with no option than using the SimpleITK with limited functionality as the full 

setup of ITK/VTK/Qt bundle requires enormous amount of effort to set the environment 

up (configuration, custom build from source) leading to endless hours and days of trial 

and error which could have been spent doing main research activity.  

In order to test the bundled environment through implementing specific lung 

segmentation from the literature, the author used CT scans freely available from LIDC-

IDRI database. The LIDC-IDRI database consists of marked-up annotated lesions of 

thoracic CT scans including diagnostic and lung cancer screening. It was an initial effort 

by NIC which was further advanced by FNIH and accompanied by FDA. The dataset 

contains about 1018 cases thanks to the collaboration between academic centres and 

medical imaging companies [2]. 

1.1 Thesis task specification 

The main tasks include: 

• Perform literature survey relating to lung segmentation methods particularly 3D  

• Provide readily accessible environment enabling 3D medical image analysis of 

the lungs using full featured ITK/VTK/Qt bundled into an easily distributable 

Linux virtual machine image. This involves custom configuration and building 

from source including wrappers for interfacing C++ base with higher level 

languages such as Python 

• Implement and test effective lung segmentation from literature with the bundled 

environment ready from the previous step using sample thoracic CT scans from 

LIDC-IDRI database. This involves processing and visualization of segmented 

lungs in 3D 
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2 Literature Review 

Several researches and detailed surveys have been carried out in the literature related to 

lung nodule segmentation and CAD for thorasic CT scan images [3], [4], [5].  

The survey in [3] reviewed thoroughly the literature specifically relating to automated 3D 

detection of pulmonary nodules in CT images. As the authors pointed out, the accuracy 

in being able to determine precisely the nodule size is critical because it is directly related 

to the nodule’s malignancy. The appearance of lung nodules differs based on its type, 

malignancy (or benign), size, internal structure and its location. As such pulmonary 

nodule detection and segmentation appears to be quite challenging task which most of the 

time involves the use of various methodologies (diverse levels of complexity) with each 

particular methodology able to handle only a particular aspect of the entire problem as 

whole. 

In order for any computer aided diagnostic system to be of useful to the practicing 

radiologist in lung nodule segmentation and detection, it is expected that such a system 

meets certain requirements as specified in [6]. One of the key requirements is to be able 

to maintain high sensitivity and thereby improving the overall efficiency of the 

evaluation. High sensitivity means higher true positive rate (TP). The sensitivity is 

defined as the ratio between the true positive rate to the sum of true positive rate and false 

negative rate(FN). Basically, TP implies the ability of the CAD system to detect positive 

outcome from a sample CT scan containing malignant nodule while TF implies the 

inability of the system to detect the presence of malignant nodules in a CT scan which 

does contain tumours. Another requirement for such systems to be useful to the practicing 

radiologist is the having low false positive rate. False positive refers to the situation 

whereby the CAD system signals to presence of malignant nodule when the particular 

sample contain non or benign nodules and a such leading to errors in diagnosis and 

detection by radiologist. Other requirements include: fast processing time; high-level of 

automation avoiding the need for manual intervention; low cost, maintenance and support 

requirement including training; ability to shapes, sizes and types including juxta-pleural 

and juxta-vascular nodules.  
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Generally speaking, CAD systems for lung nodules detection composes of five major 

stages: data acquisition phase, pre-processing, lung segmentation stage, followed lung 

nodule detection and subsequently the reduction of false positives rate. The main stages 

are described in Table 1. 

Table 1. Processing stages generally used in literature [3] 

Authors 
Acquisition 

of data 
Pre-

processing 

Lung 

Segmentation 
Nodule 

detection 

FP 

reduction 

Choi and Choi [7] Yes No Yes Yes Yes 

Santos et al. [8] Yes No Yes Yes Yes 

Badura and Pietka [9] Yes No Yes Yes Yes 

El-Baz et al. [10] Yes No Yes Yes Yes 

Wang et al. [11] Yes No Yes Yes Yes 

Cascio et al. [12] Yes Yes Yes Yes Yes 

Chen et al. [13] Yes Yes Yes Yes Yes 

Soltaninejad et al. [14] Yes Yes Yes Yes Yes 

Suiyuan and Junfeng [15] Yes Yes Yes Yes Yes 

Riccardi et al. [16] Yes No Yes Yes Yes 

Liu et al. [17] Yes No Yes Yes Yes 

Taghavi et al. [18] Yes Yes Yes Yes Yes 

Matsumoto et al. [19] Yes Yes Yes Yes Yes 

Ozekes and Osman [20] Yes No No Yes Yes 

Ozekes et al. [21] Yes No Yes Yes Yes 

Yang et al. [22] Yes No No Yes Yes 

Ge et al. [23] Yes No Yes Yes Yes 

Matsumoto et al. [24] Yes No Yes Yes Yes 

Hara et al. [25] Yes No Yes Yes Yes 

Mekada et al. [26] Yes Yes Yes Yes Yes 

Dehmeshki et al. [27] Yes No No Yes No 

Armato III et al. [28] Yes No Yes Yes Yes 

 

The data acquisition step mainly involves the process of retrieving the input images to be 

processed by the system. In the ideal scenario, such data acquisition could be done by 

integrating picture archiving and communication system (PACS), electronic health record 

(EHR) or electronic medical record (EMR) and a computer aided diagnostic system. With 

this, images can be processed before analysis by the radiologist. On the other hand, for 

the purpose of research development and design, there are some publicly available 

database containing cases with lung nodules such as the Lung Image Database 

Consortium (LIDC) [29].  
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In order to achieve best possible segmentation results, it is necessary to pre-process the 

input image (CT scan) prior to the lung segmentation. There are several types of 

processing techniques that can be applied such as: median filtering [13], [14]; linear 

interpolation [12], [15], [24]; morphological operation [14]; Gaussian filtering [18], [27]; 

weighted-sum filtering [26]; contrast limited adaptive histogram equalization [30]; 

enhancement filter [31], [32]; wiener filter [33]; auto-enhancement [33]; Fast Fourier 

Transform (FFT) [34]; wavelet transform [34]; anti-geometric diffusion [34]; erosion 

filter [35]; noise correction [36] and smoothing filters [36]. 

After the pre-processing stage comes the next crucial step which is lung segmentation. 

This step contributes significantly to the detection of malignant nodules. It is complicated 

by the fact that the lung region does not seem to be heterogenous. Moreover, it is also 

affected by the existence of structures such as veins, arteries, bronchi/bronchioles all with 

similar densities [3]. There several kinds of techniques used in lung segmentation can be 

broadly classified as: thresholding based approach, shape based approach, deformable 

models approach and edge based [10].   

After carving out the region of interest which corresponds to segmenting the lungs from 

the entire thoracic CT scan comes the nodule detection step. The nodule detection step 

constitutes the systematic process of identifying the presence of candidate lung nodules 

from the carved-out region of interest (ROI). The process of detecting nodules is quite 

challenging and the main difficulty lies in the separating real nodules from vessels and 

other structures within the lungs.   Some of the techniques used in the literature for nodule 

detection are: genetic algorithm template matching [10], [37]; Hessian matrix-based [7]; 

[8], [13], [38]: 3D mass-spring models [12]; thresholding [15]; sieve filter [39]; variable 

n-quoit filter [40]; adaptive weighted k-means clustering [23]; connected component [26]; 

multiple gray-level thresholding [11], [41]; and 3D labelling method [42].  

Following nodule detection stage is the false positive reduction step. Presence of false 

positive in the output of nodule detection affects the accuracy in interpreting medical 

diagnostics and examination. The challenge here lies in reducing false positive rate and 

at the same time maintaining high sensitivity. It is necessary to further analyse the 

candidate nodules’ features after detection to determine the existence of false positive or 

not. The features of interest mainly include texture, morphology and pixel intensity values 

around the candidate nodules. Machine learning algorithms and techniques are used in 
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analysing the features and possibly detecting non-nodules from true nodules. This poses 

another challenge in terms of number of samples to be used depending on nodules’ 

location, type and shape. Some of the machine learning techniques used in literature 

includes: support vector machines (SVM) [7], [8], [11], artificial neural network (ANN) 

[12], Bayesian supervised [10], k-nearest neighbours (k-NN) [14], feed forward neural 

networks (FFNN) [20], and linear discriminant analysis (LDA) [41]. 

The authors in [43] used iterative thresholding method as segmentation algorithm 

together with freeman chain code algorithm in order to repair the boundary of lung 

regions that are separated. For the node detection step, they used region growing method 

to extract the candidate lung nodules from the segmented region of interest. Furthermore, 

in [44], a new variational level set approach for nodule detection and segmentation was 

proposed. The authors also proposed the use of implicit spaces (signed distant function) 

to model the shape of long nodule. The model is fused together with the statistical 

information from the image intensity using variational segmentation frame. The model of 

the nodule is then mapped to image domain by some form of transformations (scaling, 

rotation, translation). Gradient descent optimization was employed to handle the shape 

model alignment and subsequently marking the nodules out. The technique is independent 

of the location and type of nodule which makes it more efficient in different scenarios. 

Similarly, in [45] the authors presented an automated method for lung segmentation from 

CT scan images. Thresholding method was used at first in separating the lungs region 

from the CT scan. Series of morphological operations were applied to fully separate the 

left and right lungs. Prior to lung segmentation, Gaussian filter was used to smooth the 

input image in order to reduce noise. The threshold value was found by first defining an 

interval between -950 to 0 Hounsfield units which covers all the range of intensities of 

the lungs. It was then followed by a search for local minimum from the image histogram 

and creating a binary image from that. Further processing was carried out to remove the 

trachea and separate the two lungs. 

Another method for segmenting lung parenchyma was described in [46]. The first step 

involved converting the CT image into binary image after thresholding. Adaptive 

thresholding [48] was used to obtain optimal threshold using the following iterative 

process and formula: 
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𝑇𝑖+1 =
1

2
(𝜇𝑏 + 𝜇𝑛)  

Where μb is the average gray-level of the body voxels, μn be the average gray-level of the 

non-body voxels at the output of segmentation step having the threshold Ti. The new 

threshold Ti+1 is then calculated in the next i+1. Thus this iterative process is repeated 

until no more changes in the threshold. Meaning, the threshold Ti+1 ≈ Ti. This is followed 

by applying 3D connected component labelling to eliminate the background from the 

binary image. Further processing was necessary to remove the trachea and subsequently 

smoothing followed by applying the binary mask to the original CT image to extract the 

lungs region. 

The authors in [47] presented an algorithm for extracting region of interest (which is the 

long tissue) from the CT image in the context of content-based retrieval. As the authors 

pointed out that for content-based retrieval, image quality is less critical as compared to 

missing any other important part of the lungs. The algorithm is able to handle both JPEG 

and DICOM file types. The algorithm consists of five main steps as follows: 

1) Adaptive thresholding technique is applied to determine optimal threshold value [48]. 

This allows for the separation of high and low density tissues 

2) The removal of surrounding air (background) using the technique in [48], [49] 

3) Performing cleaning so as to remove airways and reduce noise 

4) The use of a rolling-ball operator in rebuilding the lung borders which basically 

constitutes the use of some morphological operation followed by hole filling 

5) The last step involves separating the left and right lungs 

More recently, the authors in [50] proposed methods for segmenting lung tissue and 

detection of lung nodules in the initial stage. The lung tissue segmentation method is 

based on combination of binary masks, flood fill algorithm, together with some 

morphological closing operation. The lung nodule detection step consists of multi-level 

thresholding process followed by applying some various forms of feature extraction 

techniques. 
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3 Medical Imaging 

When it comes to medical imaging of the human body, it basically requires energy in 

certain form to begin with. For the use in radiology, the techniques mostly used in medical 

imaging must be such that the energy is able to penetrate the human body and tissues. As 

the case with frequencies of light in the visible spectrum, it has some limited capacity in 

penetrating human body and tissues and therefore not of much use in radiology 

applications. Although light in the visible spectrum has its own uses in the case of skin 

photography, endoscopy, light microscopy and many other fields. For the purpose of 

medical imaging in radiology, the spectrum of electromagnetic radiation outside of the 

visible light range is more suitable. As such, x-rays are used in computed tomography 

(CT) imaging and mammography. Likewise, for magnetic resonance imaging (MRI), 

radiofrequency (RF) range of the spectrum is used while in the case of nuclear medicine 

gamma rays are often used. On the other hand, ultrasound imaging uses mechanical 

energy from high frequency sound waves. 

Apart from the case of nuclear medicine, virtually other medical imaging techniques 

necessarily need to have the energy generated and transmitted from the source to penetrate 

the human body and tissues while interacting with them. For if the energy only passes 

through the tissues without any form of interaction such scattering or absorption, then on 

the receiver side the detected signal from the energy might not constitute much 

information with regards to internal looks and anatomy of the body tissue. With such little 

information, it would not be possible to reconstruct the internal anatomy of the issue. 

Radioactive substances have to be introduced into the human body in the case of nuclear 

medicine to aid the physiological interactions and hence more information produced on 

the images. 

When it comes to medical imaging, both the conditions under which the image is acquired 

and its technical quality are of critical importance. As such it is necessary to be able to 

technically (and precise) assess and evaluate the image quality and conditions under 

which it is acquired. The quality of images acquired in medical imaging devices requires 

some form of compromise. For example, better images from x-ray could be obtained by 

simply increasing the radiation dose which could be very harmful to the patient. 
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3.1 Medical imaging modalities 

There are diverse ways and acquisition techniques in which medical images of the body 

or tissues can be captured through the use of different kinds of energies be it 

electromagnetic radiation (x-rays, gamma rays etc), high frequency sound waves in the 

case of ultrasound, or perhaps nuclear medicine requiring ingestion of radioactive 

substances. These different methods and modes by which medical imaging can be done 

are generally referred to as imaging modalities. Different modalities are more suited for 

varying applications. The discussion below provides details regarding some of the 

common imaging modalities. The discussions in this are mostly according to [51] - [54]. 

3.1.1 Radiography 

Radiography happens to be the first kind of medical imaging modality which was possible 

due to the discovery of x-rays by Wilhelm Roentgen in 1895. Roentgen was able to make 

early radiographic image of human body as shown in Figure 1 his wife’s hand. 

Radiography is also referred to as roentgenography. Radiography gave rise to the field of 

radiology which in turn lead to having radiologist as physicians specializing solely in 

interpreting medical images. In order to take radiographic images, there needs to a source 

of x-ray on particular side of a patient and an x-ray detector usually situate on the other 

side. A pulse with short duration of around half of a second is emitted from the x-ray 

source tube causing some part of the x-ray to interact with human (patient’s) body while 

some eventually passing through the body and reaching the x-ray detector on the other 

side where an image of the body is formed. Before the x-rays interact with the human 

body, it has some sort of homogenous distribution and that will be modified due to the 

interaction through absorption or scattering and thus experiencing some form of 

attenuation. Different constituents of the body such as bones tissue or air causes 

attenuation in a different way and thus resulting in a heterogenous distribution of the x-

rays on the side of the detector. The detector used in x-ray could be photographic film or 

digitally based electronic system.  

Imaging could be transmission or projection based. Transmission based imaging refers to 

situation where by the source of energy is outside the patient’s body and after interaction 

which the body it is detected on the other side. Projection based imaging techniques 

constitutes a situation where by each point on the detector forming the image corresponds 

to information in straight trajectory along the patient’s body. Radiography is both 
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transmission and projection based. Figure shows a simplified setup of planar radiography 

including anti-scatter grid. 

Figure 1. Radiographic image of Roentgen's wife's hand, 1895 [51] 

 

 

Figure 2. Simplified view of planar radiography (a), showing anti-scatter grid (b) and sample image of the 

chest (c)  [52] 
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3.1.2 Fluoroscopy 

Fluoroscopy constitutes the process of continuously acquiring some series of x-ray 

images over some time interval which essentially gives to real-time movie of the patient’s 

body. It is both transmission and projection based imaging modality and can be viewed 

as real-time radiography. This kind of imaging systems make use of an x-ray detectors 

with the possibility to capture fast temporal sequence of images. Fluoroscopy is well 

suited for application like invasive procedures (therapeutics) and also in making movies 

of motion of the heart or other organs. 

3.1.3 Mammography 

Mammography refers to taking the radiographic images of the breast. As such, it is both 

transmission and projection based imaging modality. Very low x-ray energies are used in 

mammography and so requires some specially designed x-ray detectors suitable for the 

breast imaging. Screening mammography involves screening women with possible breast 

cancer while diagnostic mammography involves diagnosing women with presence of 

lump in the breast. More recently, some of the mammographic systems are able to 

produce breast images using tomosynthesis. Figure 3 shows an image of the breast 

produced through mammography and the low energy x-ray spectrum. 

Figure 3. Spectrum of low energy x-ray used in mammography (left) and high resolution mammogram 

(right) [52] 
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3.1.4 Computed Tomography 

The computed tomography (CT) happens to be first medical imaging modality to be used 

by the computer. It became available for clinical use in early 1970s. Computed 

tomography produces images of body parts by passing x-rays at several angles through 

rotation of the x-ray tube around the patient’s body. A detector is placed in the opposite 

direction with respect to the source to receive the data. Numerous data are collected and 

passed to the computer for synthesis which results into tomographic images of patient’s 

body.  Tomography constitutes numerous slices of pictures. Unlike radiography, 

computed tomography has the advantage of being able to produce three-dimensional (3D) 

slices of patient’s anatomy of interest. With the advent of CT, there was less need for 

conventional exploratory surgery anymore. CT scanners are able to acquire within few 

seconds tomographic images of up to 0.5mm in thickness. With 50cm patient’s length 

corresponding to about 800 image slices. Images from CT are able to reveal many 

pathologies including cancer tumours. Figure 4 shows a helical CT scanner. 

 

Figure 4. Helical CT scan, x-ray source/detector and 3D surface rendering of human heart [52] 

 

 

 

 

 



25 

In addition to axial images, it is also possible to produce sagittal and coronal images from 

CT scanners due to the fact that the volumetric data of CT is isotropic. CT scanner could 

operate in various modes such as: organ perfusion, dual-energy and gated cardiac CT. 

Figure 5 shows both coronal and sagittal views from an abdomen-pelvis CT scan. 

 

Figure 5. CT scan for human abdomen and head showing sagittal (A, D), coronal (B, E) and axial (C) 

views together with a 3D coloured surface (F) [51] 

 

3.1.5 Magnetic Resonance Imaging 

In the case of magnetic resonance imaging (MRI), very strong magnetic fields which are 

thousands of times that of the earth’s are normally used. Majority of MRI scanners use 

some sort of nuclear magnetic properties of proton (hydrogen atom’s nucleus which is 

abundant in human body tissues).  When the proton is placed in a magnetic field, it 

wobbles on its axis and thus selectively absorbing some specific electromagnetic wave 

energy (radio) of around 64 megahertz (MHz). MRI requires the patient to be placed 

inside a magnetic field and a radio wave pulses are generated by the antenna coil located 

near the patient. The patient body interact with the generated waves (absorption) and 

afterwards the waves are re-emitted within some amount of time depending on the 
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magnetic properties of that specific tissue. Antennas surrounding the patient detects the 

re-emitted waves from the protons in the patient’s body. Through slightly changing the 

magnetic field strength with position, the resonance frequency of the proton will also 

change with the position. In order to estimate the position of each signal coming from the 

patient’s body, the frequency and phase information from the re-emitted waves are used. 

One of the widely used operating modes for MRI is spin echo imaging.  

Just like in CT, MR also tomographic image slices of the patient whereby every point 

inside the image is determined by the magnetic properties of that particular tissue at the 

specified point. Medical images produced by MRI have better sensitivity to variations 

and higher contrast because various kinds of tissues in the human body (white/gray 

matter, cancer tumour, fat, etc) are having distinct magnetic properties. MRI are used 

predominantly in neurological imagine of the spine/head and musculoskeletal imaging 

such as knee injury as shown in Figure 6. 

Figure 6. High contrast MRI images of the brain (A, B), knee (C, D), MRA (E) and abdomen (F) [51] 
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MRI technology basically serves as a strong competitor for the CT in several clinical 

applications. In contrast to CT scan which requires few seconds to complete, MRI 

generally tend to require much longer time (several minutes) to complete. This makes 

MRI not suitable for paediatrics or scenarios where motion tend to be difficult to be 

controlled. In such cases CT is normally used in place of MRI. Moreover, due to the 

strong magnetic field involved in MRI only certain kind of monitoring equipment are 

used during scanning of patients. On the other hand despite the drawbacks of MRI, 

nowadays faster acquisition time for images is possible due to the usage of enhanced 

coils. MRI is able to detect motion which makes it suitable taking images of arteries 

(blood flow) and brain (fMR). Magnetic resonance is also used in analysing tissue 

metabolism (MRS).  

3.1.6 Ultrasound Imaging 

Sound waves are a form of mechanical energy produced due to disturbances causing 

pressure to develop and propagate through air which can then be heard a point farther 

away from the wave source. This form of high frequency waves generated by sound are 

being used in forming images of human body by generating short sound pulses. The 

pulses are generated by an ultrasound transducer which is directly in contact with the 

body part or tissue of which image is being produced. The generated waves from the 

ultrasound transducer are reflected upon hitting the internal tissue structures of the body 

and thus resulting in echoed signal. The transducer is then able to receive the reflected 

sound wave signal which is an operating mode called pulse echo imaging. Beam of sound 

waves are being send in slices over the patient in straight lines using some form of 

transducer arrays or other advanced technique such as phased array transducer. The 

amplitudes of the resulting echoed waves (line by line) are then taken and used to 

calculate the brightness and subsequently converted into grayscale tomographic images 

slices of the body tissues. Ultrasound finds application in obstetrics for taking pictures of 

foetus because it is less harmful than ionising radiation. Ultrasound is not suitable for 

interfaces with high echoes (due to tissue-air filled interface) such as the lungs and the 

thorax.  With specialized techniques, tomographic slices from ultrasound can also be 

converted into 3D volume representation. 
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3.1.7 Nuclear Medicine Imaging 

Nuclear medicine imaging (NMI) basically involves giving some sort of radioactive 

chemical substance to patient through the process of inhaling, injection or even orally. 

Upon the distribution of the radioactive chemical substance inside the patient’s body, then 

radiation detector will be making image projections using the gamma rays or x-rays as a 

result of the radioactive decay of the chemical substances’ isotope. Nuclear medicine 

imaging is emission-based because of the radiation emitted from the chemical isotopes 

inside the patient’s body. With nuclear medicine imagine, not only does it provide details 

regarding the patient’s anatomical issue of interest, but it also provides details regarding 

the physiological situation inside of the patient. One of the chemical substances used in 

nuclear medicine is iodine which makes it possible to produce images of the thyroid due 

to its strong affinity for iodine or its equivalent. Nuclear medicine finds its usage in 

functional imaging (imaging physiological processes). 

3.1.8 Single Photon Emission Computed Tomography 

Single photon emission computed tomography (SPECT) can be viewed as the 

tomographic equivalent of nuclear medicine imaging (planar).  Cameras are situated in 

several angles in order to capture the gamma or x-rays emitted from the patient’s body 

and such data is them used in reconstruction tomographic image slices of the anatomical 

tissue of interest. As such, just like in conventional nuclear medicine imaging, it also 

possible to produce functional images using SPECT and more so with the tomographic 

advantages giving medical radiologist the ability to see clearly the functional situations 

of tissues and organs of interest inside the body. NMI and SPECT both use similar 

radioactive substances. 

3.1.9 Positron Emission Tomography 

In positron emission tomography (PET), isotopes of some radioactive substances emit 

positrons (positively charge electrons) and these chemical substances are combined with 

others to form suitable compounds such as 18F-fluorodeoxyglucose (18FDG) having the 

ability to localize inside the human body. Positrons are emitted which then interact with 

the electrons in the body tissues in the process called annihilation resulting into pure 

energy (radiation). The photons generated due to annihilation are 180 degrees apart which 

requires ring of detectors to be situated around the patient to capture the proton pair. From 

that tomographic images are constructed representing the internal tissues.   
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3.2 Image reconstruction techniques 

In the case of CT, SPECT and PET imaging techniques, it is necessary to reconstruct a 

form of two-dimensional image from the acquired series of one-dimensional projections 

(say {p1, p2,.., pn} ).  Many projections are required from all distinct detector angles in 

order to be able to effectively reconstruct the image representation as shown in Figure 7. 

Figure 7. Projections of Image f(x,y), with projection p(r,φ) [52] 

 

Reconstruction is dependent on the modality type. CT images values are represented in 

the Hounsfield units (HU) which is relates to the attenuation coefficient of the x-ray due 

to interaction with the body tissues as it passes though. The value of interest in the case 

of SPECT and PET is the distribution of chemical substance (radioactive) inside the 

patient’s body.  

Once all the necessary projections of the object of interest has been taken, the image will 

then be reconstructed using the method of backprojection or filtered back projection 

(FBP). Several other reconstruction techniques are used which are all inspired in away by 

the Radon transform and the Fourier slice theorem. 
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Figure 8 shows a very simple object backprojected with different number of projections 

taken. As it can be clearly seen, the higher the number of projections the better 

reconstruction of the original objects. 

Figure 8. Backprojection reconstruction using different number of projections [52] 

 

Values in CT Images are displayed in terms of the CT number (CTo) expressed in  

Hounsfield unit (HU) which is related to attenuation coefficient as follows: 

𝐶𝑇𝑜 = 1000 × 
𝜇𝑜 − 𝜇𝐻2𝑜

𝜇𝐻2𝑜
 

Where 𝜇𝑜 and 𝜇𝐻2𝑜 represents the linear attenuation coefficient for the tissue and water 

respectively. 

The range of values in HU of some common tissue types is shown in Table 2. 

 

Table 2. Hounsfield values of some tissues [53] 

Tissue Type Hounsfield Value Interval 

Air -1000 

Lung tissue -900 to -170 

Fat tissues -220 to -30 

Water 0 

Pancreas 10 to 40 

Liver 20 to 60 

Heart 20 to 50 

Kidney 30 to 50 

Bones 45 to 3000 
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3.3 The DICOM standard 

DICOM is an acronym for Digital Imaging and Communications in Medicine. DICOM 

can be viewed as the outcome of several years of effort in creating a universal and 

interoperable standard in all aspects of digital medical imaging initially lead by American 

College of Radiology (ACR) and National Electrical Manufacturers Association (NEMA) 

joint committee starting in 1983.  It constitutes virtually all the important tools need for 

representing and processing accurately of medical imaging data. DICOM is more than 

just file format or image format but rather comprises the means of transferring medical 

data, how to store such data, display and other functional necessities of modern day 

medicine. Simply put, DICOM could be viewed as a set of all-encompassing standards.  

Picture Archiving and Communication Systems (PACS) are related to DICOM in the 

sense that they are driven by the DICOM standards. Main components of PACS are 

shown in Figure 9. 

Figure 9. Main components of PACS [54] 
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All DICOM-driven PACS software and hardware devices comes with its own set of 

DICOM conformance statement. The conformance statement specifies to what extent a 

particular device supports and is compliant with the DICOM standard. The current 

DICOM standard consist of 20 volumes or parts usually written as PS3.1 to PS3.20 with 

PS3.9 and PS3.13 retired. 

3.3.1 DICOM Information Model 

DICOM models real world data such as devices, patients and studies based on the DICOM 

information model. The real-world data are represented as objects having attributes (or 

properties). Object together with their attributes are standardized by DICOM Information 

Object Definitions (IODs). Figure 10 shows a patient IOD which is consists of name, ID, 

date of birth, etc capturing all the necessary clinical information.  The DICOM standards 

contains list of standard attributes for objects in order to be consistent in terms of 

formatting, processing and naming. The list of standard attributes is referred to as DICOM 

Data Dictionary. The attributes can have about 27 formats referred to as Value 

Representation (VR). VR types includes names, dates, times, etc.  

Figure 10. DICOM Information Object Definition (IOD) of a patient [54] 
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DICOM uses the service rendering model in order to exchange data between entities. 

Some DICOM terminologies relating to the service rendering model are as follows: 

• Application Entities (AE): Application entities refers to all the DICOM driven 

devices and software exchange. AEs are able to provide services to each other 

• Service-Object Pairs (SOPs): SOPs represents particular association of IODs with 

some service types which results in SOP classes 

• Service Class Users (SCUs): These are entities requesting services from other 

DICOM-driven entities 

• Service Class Providers (SCPs): SCPs receives and responds to requests from 

SCUs 

Figure 11. Overview of DICOM information model [54] 

 

 



34 

4 Integration of ITK/VTK/Qt 

This section introduces the Insight Toolkit (ITK), the Visualization Toolkit (VTK) and 

the Qt framework. Moreover, it provides detailed instruction regarding the bundled 

environment (Ubuntu Linux virtual machine image) and its setup/configuration process 

in order to effectively integrate ITK/VTK/Qt together and perform 3D medical image 

segmentation and visualization. 

4.1 The Insight Toolkit 

The Insight Toolkit (ITK) is a comprehensive open-source software framework and 

toolkit for performing segmentation and registration. Segmentation can be viewed as the 

process for a digitally sampled representation of data undergoes identification and 

classification. The sampled data could be an image acquired from some medical 

equipment such as the CT scanners.  Registration involves the process of making 

correspondences between data. ITK is cross-platform and uses the robust build 

environment known as CMake so as to manage all the platform specific intricacies during 

generation of project files and compilation process to allow for platform independence.  

ITK is developed using C++ and uses advanced generic (templated) programming 

paradigm. The use of templates makes the code highly efficient and most of ITK’s 

algorithm can easily be applied to higher spatial dimension and different pixel types. ITK 

comes with a wrapping system that enables generation of interface between C++ and 

higher level languages such as Python. 

4.2 The Visualization Toolkit 

The visualization Toolkit (VTK) is an object-oriented based open-source software for 

computer graphics, image processing and visualization. Just like ITK, VTK also uses 

CMake as build tool. It compiles and runs on several platforms and operating systems 

(OS). CMake takes in independent a file named “CMakeLists.txt” from a specified source 

directory which describes the build process and all its possible dependencies. Basically, 

for the case of ITK and VTK, CMake is able to produce native build files that matches 

the operating system and compiler it is running on. 
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4.3 Qt Framework 

Qt is a widely used cross-platform application framework for developing software which 

is intended to work on various combinations of software/hardware computing platforms 

with relative ease. Although Qt is mainly used in developing applications requiring 

graphical user interface (GUI), it can also be used in making console applications. Qt 

extends the standard C++ by introducing concepts such as signals and slots which makes 

it easier and more efficient to handle events in the case of GUIs or server applications. Qt 

supports several compilers such as the popular the GNU Compiler Collection for C++ 

(GCC C++) compiler and the Microsoft Visual Studio suite. 

4.4 Configuration and installation process 

The following outlines the steps necessary configure, build and install ITK/VTK and 

integrate with Qt for an Ubuntu Linux virtual machine running inside Oracle VM 

VirtualBox. The process was a combination of information from [55] - [72] and several 

individual changes/tweaking/trials until everything worked as expected. 

1. In order to setup the environment, the following are required: 

a. Ubuntu ISO image (Ubuntu 16.04.2 LTS) [57] 

b. Oracle VM Virtual box binary (VirtualBox-5.1.16-113841-Win) [58] and 

install Ubuntu in it 

c. CMake binary (cmake-3.7.2-Linux-x86_64.sh) [59] 

d. Qt binary (qt-opensource-linux-x64-5.8.0.run) [60] 

e. VTK source code (VTK 7.1.0) [61] 

f. ITK source code (ITK 4.11.0) [62] 

 

 

2. Steps to install Qt on Ubuntu (offline installer, Qt 5.8.0): 

 

a. From terminal run the following 

i. sudo apt-get install build-essential libgl1-mesa-dev libfontconfig1  

ii. sudo apt-get install libglu1-mesa-dev -y 

iii. sudo apt-get install libxt-dev 

 

b. Allow executing Qt installer qt-opensource-linux-x64-5.8.0.run and then 

install Qt 

i. chmod +x qt-opensource-linux-x64-5.8.0.run 

ii. ./qt-opensource-linux-x64-5.8.0.run 

iii. Note the Qt install directory: /home/user/Qt5.8.0 
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3. Install CMake. CMake installation directory /home/user/cmake-3.7.2-Linux-x86_64 

 

a. nano /home/user/.bashrc and add line at the end of the .bashrc file: 

i. export PATH="/home/$USER/cmake-3.7.2-Linux-

x86_64/bin:$PATH" 

 

 

4.4.1 VTK setup 

 

1. Launch CMake GUI from the terminal by typing cmake-gui and hitting return. The 

GUI should pop up as shown in Figure 12. 

 

 

 

 

 

 

 

 

 

Figure 12. CMake GUI window 
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2. Source codes directory was chosen to have the following structure by separating 

source and build directories: 

 

Figure 13. Source code directory structure 

 

3. From CMake GUI, set the source and binary folders for VTK. Click configure and 

choose “Unix Makefiles” as generator for the project. Once configuration done, 

select appropriate options  

 

Figure 14. CMake initial configuration options for VTK 
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4. Click advanced button option. Necessary CMake configuration options for VTK are 

as follows: 

 

a. Check VTK_Group_Qt 

b. Check BUILD_SHARED_LIBS 

c. Uncheck BUILD_TESTING  

d. Uncheck BUILD_EXAMPLES 

e. Change CMAKE_BUILD_TYPE to Release 

f. Check VTK_ALL_NEW_OBJECT_FACTORY 

g. Check VTK_Group_Imaging 

h. Check VTK_MAKE_INSTANTIATORS 

i. Press Configure button again. There will be error with Qt version 4 and 

qmake path 

j. Change VTK_QT_VERSION to 5 

k. Set QT_QMAKE_EXECUTABLE to 

/home/user/Qt5.8.0/5.8/gcc_64/bin/qmake 

l. Press Configure button again. There will be error relating to Qt5 director or 

CMake prefix path 

m. Set QT5_DIR to /home/user/Qt5.8.0/5.8/gcc_64/lib/cmake/Qt5 

n. Add a variable CMAKE_PREFIX_PATH of type PATH with value 

/home/user/Qt5.8.0/5.8/gcc_64/lib/cmake 

o. Click Configure button again. It will highlight in red Qt/VTK options again 

but no error this time. Click Configure button on more time. This time there 

should be no more highlighted options/error. 

p. Now click the Generate button 

 

 

Figure 15. CMake GUI, final VTK configuration done 
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5. Once generating done, go to terminal and change path to 

/home/user/ItkVtkQt/VTK/VTK-7.1.0/VTK-7.1.0-build. Type make -j<# of 

processor cores> and return 

 

 

Figure 16. VTK build in progress after make -j2 

 

 

6. After done building. Type sudo make install and enter password 

a. Note VTK install directory will be CMAKE_INSTALL_PREFIX which is 

/usr/local (files will be copied to bin, include and lib) 

 

7.  To be able to see QVTKWidget in Qt Creator/Designer, copy the file 

/home/user/ItkVtkQt/VTK/VTK-7.1.0/VTK-7.1.0-

build/lib/libQVTKWidgetPlugin.so to 

/home/user/Qt5.8.0/Tools/QtCreator/lib/Qt/plugins/designer 

 

 

4.4.2 ITK setup 

 

1. To build and install ITK, launch CMake GUI again from terminal. Set ITK source 

and build directory, click configure and choose “Unix Makefiles” as generator for 

the project. Apply the following configuration options: 

a. Uncheck BUILD_EXAMPLES 

b. Check Module_ITKVtkGlue 

c. Uncheck BUILD_TESTING 

d. Check BUILD_SHARED_LIBS 

e. Set CMAKE_BUILD_TYPE as Release 

f. Note: by default, CMAKE_INSTALL_PREFIX is /usr/local 
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g. Set ITK_COMPUTER_MEMORY_SIZE as appropriate (RAM in GB). 

Default is 1 

h. Check ITK_USE_64BITS_IDS 

i. Uncheck ITK_DOXYGEN_HTML 

j. Click Configure again. Some populated Qt options will be highlighted in red. 

Click configure once again. This time there should no highlighted options 

k. Click Generate 

l. Once generating done, go to terminal and change path to 

/home/user/ItkVtkQt/ITK/ITK-4.11.0/ITK-4.11.0-build. Type make -j<# of 

processor cores> and return 

m. After done building. Type sudo make install and enter password 

 

4.4.3 Generating project files and building applications using CMake and Qt 

The sample application is in /home/user/ItkVtkQt/Examples/MyItkVtkQt/src. A CMake 

file is included “CMakeLists.txt” which is necessary to generate the project 

files/dependencies. The example source directory contains the following files: 

• CMakeLists.txt 

• CTDicomLungs3DVis.cxx 

• CTDicomLungs3DVis.h 

• CTDicomLungs3DVisMain.cxx 

• CTDicomLungs3DVisUI.ui 

 

The following steps are necessary in order to create native project files in CMake: 

1. Open Ubuntu virtual machine and launch CMake GUI from the terminal by typing 

cmake-gui 

2. Specify the source (/home/user/ItkVtkQt/Examples/MyItkVtkQt/src) and build 

directory for the project   

a. Click Configure and select “Unix Makefiles” as generator. CMake will 

populate some entries and highlight them in red. Set the option 

CMAKE_BUILD_TYPE to Release 

b. Click Configure again and there will be no more highlighted options in red 

c. Click Generate 

 

 



41 

 

 

 

 

 

  

 

Figure 17. CMake project configuration options, setting CMAKE_BUILD_TYPE to Release 

 

Figure 18. CMake configuration done, no more options highlighted in red 
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After successfully generating the project files, project can now be imported into Qt 

Creator. The following steps are necessary to import the project into Qt Creator: 

1. Open Qt creator from Ubuntu Linux virtual machine 

2. Go to menu and click “Open File or Project” 

3. Select the file /home/user/ItkVtkQt/Examples/MyItkVtkQt/src/CMakeLists.txt 

and open it 

 

 

Figure 19. Application project files successfully generated 
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Figure 20. Opening project in Qt Creator IDE 

 

 

4. After opening the “CMakeLists.txt”, Qt Creator displays its own project 

configuration page 

 

a. Click on “Details” to expand. Unselect the kits Default, Debug, Release 

with Debug Inforation and Minimum Size Release 

b. Only the kit Release should be selected. Click Browse to change the 

directory to /home/user/ItkVtkQt/Examples/MyItkVtkQt/bin 

c. Click Configure Project 

d. Qt Creator will show a prompt with changes, click “Apply” 

e. Project is ready and you can select “Build All” from the “Build” menu 

f. Click “Run” from the “Build” menu 
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Figure 21. Qt creator configuration, selecting only the "Release" kit 

 

Figure 22. Qt project successfully configured and ready for build/run 
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Figure 23. Project compilation/build output 

 

Figure 24. Sample application output 



46 

4.4.4 Python wrapping of C++ interface for ITK/VTK and PyQt setup 

Ubuntu 16.04LTS comes with Python installed. In addition, the following setup is 

necessary to enable Python to work with ITK/VTK/Qt: 

 

1. Install pip by typing sudo apt install python3-pip from terminal 

a. Upgrade to newer version by typing pip install --upgrade pip 

 

2. Install SciPy stack 

a. From terminal, type pip3 install --user numpy scipy matplotlib ipython jupyter 

pandas sympy nose 

 

3. Install PyQt by entering sudo pip3 install pyqt5 from terminal 

 

4. For VTK, the following options necessary from CMake GUI 

 

a. Check VTK_WRAP_PYTHON 

b. Change VTK_PYTHON_VERSION to 3    

c. Run the command from terminal (pointing to /home/user/ItkVtkQt/VTK/VTK-

7.1.0/VTK-7.1.0-build) make -j<# CPU cores> and afterwards sudo make install 

d. Run sample python vtk hello word application 

e. To .bashrc add the following paths: 

a.  export PYTHONPATH=/usr/local/lib/python3.5/site-

packages:/usr/local/lib/python3/dist-packages:$PYTHONPATH 

b. export 

LD_LIBRARY_PATH=/home/user/Qt5.8.0/5.8/gcc_64/lib:$LD_LIBRARY

_PATH 

 

f. Sample Helloworld VTK application using Python wrapping [73] shown in 

Figure 25 

 

5. For ITK, the following options necessary from CMake GUI 

 

a. Check ITK_WRAP_PYTHON 

b. Change PYTHON_EXECUTABLE to 3 

c. Wrapping requires to disable legacy code, check ITK_LEGACY_SILENT 

d. Press Configure, and then from highlighted options in red choose appropriate 

image types and dimensions to be wrapped e.g. ITK_WRAP_DOUBLE 

e. Press Configure again and there should be no more options highlighted in red 

f. Press Generate 

g. Run the command from terminal (/home/user/ItkVtkQt/ITK/ITK-4.11.0/ITK-

4.11.0-build) make -j<# CPU cores> and afterwards sudo make install 
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Figure 25. VTK sample helloworld application using Python wrapping 
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5 Implementation of 3D lung segmentation and visualization 

The implemented lung segmentation starts by reading the DICOM file (“.dcm”) using 

ITK and then applying smoothing filter as a pre-processing step. The output of the 

smoothing filter is passed to the connected threshold filter for segmentation of the lungs. 

The effective Hounsfield value range for lungs seems to be between -250 to -980 which 

is not far from the range of -500 to -950 reported by the authors in [74]. The output from 

the connected threshold filter is binary. So in order to have image values in Hounsfield 

scale it is necessary to mask the output of connected threshold to the original input image. 

Mask image filter was used to achieve that. The output of the mask filter is passed on to 

rescale intensity filter to convert the image in to the range 1 to 255 for easier isosurface 

generation using the marching cube algorithm.   

After finishing image processing using the ITK, it was necessary to pass the image to 

VTK for visualization. But internal image formats used by ITK and VTK are different 

and so the need for conversion. Pixel type is casted from float to unsigned short using the 

cast image filter before passing it to the ITK to VTK image filter. The output of the ITK 

to VTK image converter is used in generating VTK image volume data which is required 

for 3D surface extraction through marching cubes algorithm. Necessary isosurface value 

needs to be set as input to the marching cubes before passing the generated surface to 

VTK mapper. Output from the VTK mapper is then passed to VTK actor for setting 

opacity and colour for the generated 3D surface before passing it to the renderer. With 

the renderer ready, it can then be passed to Qt through the Qvtkwidget’s renderer window 

and hence displayed on the screen. The entire source code can be found in Appendix. The 

following provides some key details regarding the implementation. C++ was used 

together with Qt Creator IDE for the main program code. The code in this thesis was 

inspired by the numerous examples from the ITK, VTK and Qt documentations and 

guides [55], [56], [75]. 

The algorithmic flow used for reading the DICOM series (CT scan input image), pre-

processing the image, segmenting the lungs out of the whole image and visualizing it is 

shown in Figure 26. 
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Figure 26. Algorithmic flow 

 

ITK to VTK image conversion 
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5.1 Data Acquisition 

As explained in chapter 2, CAD systems used for lung nodules detection composes of 

mainly the stages: data acquisition, pre-processing, lung segmentation, lung nodule 

detection and finally false positive reduction stage. The data acquisition step involves 

retrieving input images which could be through PACS. In this thesis, the data used come 

from the LIDC-IDRI database. For the generation of images in this chapter, the DICOM 

files “LIDC-IDRI-0029” from the database was used. 

5.2 DICOM series reader 

Reading the input CT scan DICOM files in ITK is handled by the Grassroots DICOM 

library (GDCM) library. GDCM is an open-source implementation of the DICOM 

standard mostly used by researchers to access clinical data. In order to read the DICOM 

series, GDCM IO object is passed to ITK series reader together with file name. Necessary 

header files are required to be included for using all relevant ITK, VTK and Qt classes. 

As such at the beginning of the implementation class “CTDicomLungs3DVis”, all 

necessary headers were included as shown in the Figure 27 below: 

#include "CTDicomLungs3DVis.h" 

#include "vtkPolyDataMapper.h" 

#include "vtkRenderer.h" 

#include "vtkRenderWindow.h" 

#include "vtkRenderWindowInteractor.h" 

#include "vtkSmartPointer.h" 

#include "vtkMarchingCubes.h" 

#include "vtkActor.h" 

#include "vtkProperty.h" 

#include "itkImage.h" 

#include "itkImageToVTKImageFilter.h" 

#include "itkGDCMImageIO.h" 

#include "itkGDCMSeriesFileNames.h" 

#include "itkImageSeriesReader.h" 

#include "gdcmUIDGenerator.h" 

#include "itkConnectedThresholdImageFilter.h" 

#include "itkCastImageFilter.h" 

#include "itkCurvatureFlowImageFilter.h" 

#include "itkMaskImageFilter.h" 

#include "itkRescaleIntensityImageFilter.h" 

#include "itkMaskImageFilter.h" 

Figure 27. Header files included for used classes 
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The applicable headers for reading the DICOM series are "itkImageSeriesReader.h", 

"itkGDCMImageIO.h". "itkGDCMSeriesFileNames.h" and "gdcmUIDGenerator.h". As 

ITK uses templates, it is necessary to define object template types before instantiation 

and assigning to relevant smart pointers. ITK and VTK uses smart pointers to avoid the 

need for keeping track of memory that needs to be released when pointers are no longer 

referenced or in used anywhere in the program. Figure 28 shows the type definitions for 

the input DICOM file. 

int ctrlSwitch = 4; 

typedef   float           InPixelType; 

typedef signed short    OutPixelType; 

const unsigned int      Dimension = 3; 

typedef itk::Image< InPixelType, Dimension >         InputImageType; 

typedef itk::Image< OutPixelType, Dimension >         OutputImageType; 

typedef itk::ImageSeriesReader< InputImageType > 

        ReaderType; 

ReaderType::Pointer reader = ReaderType::New(); 

typedef itk::GDCMImageIO 

        ImageIOType; 

ImageIOType::Pointer gdcmIO = ImageIOType::New(); 

typedef itk::GDCMSeriesFileNames 

        InputNamesGeneratorType; 

InputNamesGeneratorType::Pointer inputNames = InputNamesGeneratorType::New(); 

Figure 28. Type definitions for reading input DICOM series 

The variable ctrlSwitch controls the behaviour of the program by taking values 1 to 4. As 

shown in Figure 27, The input pixel type is defined as float and output pixel defined as 

signed short which is the input as required by ITK to VTK image filter. For 3D image 

processing/segmentation and visualization, dimension of the input image is set to 3. Once 

the dimension and pixel type are ready, the ITK image types are created as  

InputImageType and OutputImageType. The ImageSeriesReader type is also defined as 

ReaderType using the input image type (passed to smart pointer reader). This is followed 

by the required ImageIOType, InputNamesGeneratorType and finally the inputNames  as 

the smart pointer for reference the instantiated type. The input names will hold the files 

contained in the DICOM series which will be used by the ITK image series reader. The 

idea in ITK/VTK is that you create a class and pass the reference to a smart pointer which 

does the rest for you such as reference counting and deletion when out of scope. 

Once types are defined, the input DICOM series is read as shown in Figure 29 below: 
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const ReaderType::FileNamesContainer & filenames = 

            inputNames->GetInputFileNames(); 

reader->SetImageIO( gdcmIO ); 

reader->SetFileNames( filenames ); 

reader->Update(); 

Figure 29. Reading the DICOM series 

The image series reader requires image IO type to be set through the method SetImageIO 

and the file names set through SetFileNames. Finally update method is called on the 

reader for actual execution. With this, the reader has the input image and can be read 

through its output port. 

5.3 Pre-processing step 

Once the input image is read, it necessary to apply some smoothing for noise reduction 

and making it more effective for the segmentation step. Fragment of code necessary for 

pre-processing the image is shown in Figure 30. 

typedef itk::CurvatureFlowImageFilter< InputImageType, InputImageType > 

            CurvatureFlowImageFilterType; 

CurvatureFlowImageFilterType::Pointer smoothing = 

            CurvatureFlowImageFilterType::New(); 

smoothing->SetInput( reader->GetOutput() ); 

smoothing->SetNumberOfIterations( 5); 

smoothing->SetTimeStep( 0.01 ); 

Figure 30. Image pre-processing 

 

For smoothing and denoising the image, curvature flow filter was used. The curvature 

flow image filter type is defined as having image type same as the input image type which 

is the output of the reader from section 5.1. This filter implements a curvature-driven 

denoising algorithm which is edge-preserving making it suitable prior to segmentation 

step.   The smoothing filter requires two inputs which are the number of iterations and 

time step. The time step had to be finetuned and a value of 0.01 seems to give reasonable 

output.  The input to the filter is set using SetInput and passing the output from the reader 

by calling reader->GetOutput(). 

5.4 Region-growing segmentation 

The ITK’s connected threshold image filter is a region growing-based segmentation filter 

and uses the flood-fill iterator. It requires visiting neighbouring pixels of the image. A 
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criterion is specified as to whether a particular pixel will be in a region or not. This filter 

requires to be set the lower/upper threshold, replace value and the seed. The output from 

the connected threshold filter is a binary image and as such original image’s Hounsfield 

values are lost which requires masking to get them back. The implementation code for 

the connected threshold filter is shown in Figure 31. 

typedef itk::ConnectedThresholdImageFilter< InputImageType, 

        InputImageType > ConnectedFilterType; 

ConnectedFilterType::Pointer connectedThreshold1 =       
ConnectedFilterType::New(); 

const InPixelType lowerThreshold1 = -990; 

const InPixelType upperThreshold1 = -250; 

InputImageType::IndexType  index; 

index[0] = 152; 

index[1] = 277; 

index[2] = 152; 

connectedThreshold1->SetInput( smoothing->GetOutput() ); 

connectedThreshold1->SetLower(  lowerThreshold1  ); 

connectedThreshold1->SetUpper(  upperThreshold1 ); 

connectedThreshold1->SetReplaceValue( 255 ); 

connectedThreshold1->SetSeed( index ); 

connectedThreshold1->Update(); 

Figure 31. Connected threshold filter 

 

As with most classes in ITK, the filter type needs to be specified. Filter type was defined 

as ConnectedFilterType having two inputs both of type InputImageType. The second 

input servers as the filter’s output type. The filter type is then passed to a smart pointer 

named connectedThreshold1. This filter requires and upper lower threshold limit to be set 

which should corresponds to the limits containing the lungs Hounsfield value. The lower 

limit was set to -990 and upper limit to -250. These values for the limits were arrived at 

after several adjustments and testing to find the range giving the best 3D segmentation 

output. It is necessary to have a seed value corresponding to a location in any of the lungs 

(left or right would suffice). Although additional seeds could be added but did not seem 

to make much difference after trying with many seeds for this particular connected 

threshold filter. The output from the curvature flow filter smoothing->GetOutput() is used 

as the input to connected threshold filter through the method SetInput. Similar, 

lower/upper threshold, replace value, and seed where set respectively using the methods 

SetLower, SetUpper, SetReplaceValue and SetSeed. 
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5.5 Masking and rescaling 

ITK mask image filter uses the output of the connected threshold as mask in order to get 

the Hounsfield value of the segmented lungs from the original input CT image. By the 

used of rescale intensity filter, intensities are scaled to the range 0 to 255 to allow for 

better and faster 3D surface generation. The rescale intensity image filter takes three 

inputs including output from mask filter, output minimum and output maximum value. 

Figure 32 shows the portion of the code for masking and rescaling filters. 

 

typedef itk::MaskImageFilter< InputImageType, InputImageType > 
MaskFilterType1; 

MaskFilterType1::Pointer maskFilter1 = MaskFilterType1::New(); 

typedef itk::RescaleIntensityImageFilter< InputImageType, InputImageType > 
RescaleFilterType1; 

RescaleFilterType1::Pointer rescaleFilter1 = RescaleFilterType1::New(); 

maskFilter1->SetInput(reader->GetOutput()); 

maskFilter1->SetMaskImage(connectedThreshold1->GetOutput()); 

maskFilter1->Update(); 

    switch (ctrlSwitch) { 

    case 1: 

        rescaleFilter1->SetInput(reader->GetOutput());  // 1 ==> Full CT 
input image 

        break; 

    case 2: 

        rescaleFilter1->SetInput(reader->GetOutput());  // 2 ==> Full CT 
input image without cover 

        break; 

    case 3: 

        rescaleFilter1->SetInput(maskFilter1->GetOutput()); // 3  ==> 
segmented lungs (opaque) 

        break; 

    case 4: 

        rescaleFilter1->SetInput(maskFilter1->GetOutput()); // 4  ==> 
segmented lungs (transparent) 

        break; 

    default: 

        break; 

    } 

rescaleFilter1->SetOutputMinimum(0); 

rescaleFilter1->SetOutputMaximum(255); 

rescaleFilter1->Update(); 

 

Figure 32. Masking and rescaling filters 
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Both the type for masking filter MaskFilterType1 and rescale intensity filter 

RescaleFilterType1 takes two input of image types InputImageType. Subsequently passed 

to smart pointers maskFilter1 and rescIaleFilter1. The mask filter takes its input from the 

DICOM series reader and the mask input image from connected threshold filter since 

output of the segmentation is binary. The behaviour of the rescale intensity filter (and the 

program as a whole) is determined by the value of the control switch variable ctrlSwitch 

which takes values ranging from 1 to 4. The value “1” is used in displaying the original 

input image and the rescale intensity filter in this case takes its input image from the 

output of the DICOM series reader. The value “2” is used in displaying modified version 

of the input image in which the cover is removed to show the body of the patient in the 

CT scan image and rescale intensity filter in this case also takes input from the output of 

the DICOM series reader. When the value of the variable ctrlSwitch is set to “3”, the 

result from the lung segmentation is displayed with opacity 1 and rescale intensity filter 

takes it input from the mask filter. Similarly, the value “3” displays the result from lung 

segmentation but having an opacity of 0.2 and rescale intensity filter takes input from 

mask filter. 

5.6 ITK to VTK conversion and 3D visualization via Qt 

With the image processing and segmentation part done in ITK, the image is passed using 

ITK to VTK image filter as bridge because the formats for volume data representation in 

VTK and ITK are different. For 3D visualization, VTK image data is generated from the 

output of ITK to VTK image filter which is required by the marching cubes for isosurface 

generation. The marching cubes requires VTK volume data with an isovalue(s). Isovalues 

could be automatically generated (evenly spaced). The code fragment for ITK to VTK 

conversion and 3D surface extraction (marching cubes) is shown in Figure 33. The cast 

image filter is used in casting float image type to short as the ITK to VTK image filter 

requires short. Therefore, the cast filter takes two inputs of type InputImageType and 

OutputImageType. The input from the cast filter comes from rescale intensity filter and 

its output goes to ITK to VTK filter. The ITK to VTK image filter takes the output image 

from cast filter and converts the image type into VTK compatible image thus enabling 

the generation of VTK image data volume1. The VTK marching cubes takes the volume 

data together with appropriate isovalues and extract the surface which is finally displayed. 
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typedef itk::CastImageFilter< InputImageType, OutputImageType >  
CastingFilterType; 

CastingFilterType::Pointer caster1 = CastingFilterType::New(); 

typedef itk::ImageToVTKImageFilter<OutputImageType>       ConnectorType; 

ConnectorType::Pointer connector1 = ConnectorType::New(); 

vtkSmartPointer<vtkImageData> volume1 = vtkSmartPointer<vtkImageData>::New(); 

vtkSmartPointer<vtkMarchingCubes> surface1 = 
vtkSmartPointer<vtkMarchingCubes>::New(); 

caster1->SetInput( rescaleFilter1->GetOutput() );   

connector1->SetInput(caster1->GetOutput()); 

connector1->Update(); 

volume1->DeepCopy(connector1->GetOutput()); 

surface1->SetInputData(volume1); 

surface1->ComputeNormalsOn(); 

surface1->SetValue(0,180); 

Figure 33. ITK to VTK bridge and marching cubes 

5.7 Segmentation Output 

This sections shows sample screenshots from the output of the application. Before 

segmenting the lungs from the rest of the image, the CT input image looks as shown in 

Figure 34 and 35. Figure 36 and 37 shows the segmented lungs from the rest of the body 

(CT scan). 

 

Figure 34. Input CT image before pre-processing 
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Figure 35. Input CT image after removing the covering 

 

 

 

 

Figure 36. Segmented lungs from input CT with opacity 1 
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Figure 37. Segmented lungs from input CT with opacity 0.2 (transparent) 

 

 

5.8 Challenges and lessons learnt 

Certainly, medical image processing and analysis is a vast field. Moreover, due to the 

inter-disciplinary nature of the field, it requires bits and pieces of knowledge from other 

fields such as physics, digital signal processing, software programming and engineering, 

some part of medicine such as anatomy, perhaps advanced mathematics and so on. This 

makes it quite challenging to undertake any considerable research if coming from a 

background without strong foundation (as the case with the author) especially in 

biomedical engineering and image analysis. So many new concepts had to learnt through 

self-study and within very short period of time. As such, this thesis serves only as a 

stepping stone or beginning which is more or less like initial exploration and map 

construction with much details to be further explored later on.  

Considering that this thesis focused on using open source alternatives such as ITK and 

VTK, it would have been much better starting out with easier environmental setup such 

as MATLAB instead. Despite the indispensable capabilities that using full-fledged ITK 

(C++) brings to the table, it simply does not seem a viable candidate for prototyping due 
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to the compile/build cycle which sometimes even requires starting from project file 

(re)generation using CMake. Prototyping seems much better done using interpreted 

languages such as Python. And once a working prototype is ready, then it can be 

converted into a full and efficient application using the complete ITK/C++ and 

visualization through VTK/Qt.  

5.9 Alternative approach 

As discussed in chapter 1 under literature review, the main steps that are involved in 

medical image segmentation and nodule detection are: data acquisition, pre-processing, 

lung segmentation, nodule detection and false positive reduction. In this thesis, curvature 

flow image filter was used in the pre-processing step in order to denoise the input image 

while preserving edges for better segmentation. As an alternative approach, other 

techniques could be explored such those in [12] - [15] and compared against the one used 

in this thesis. More importantly, semi-automated region growing-based segmentation 

algorithm was used in this thesis for which an automated approach could be a better 

alternative. One of the alternative automated segmentation approach could be to use the 

optimal thresholding technique and create appropriate masks afterwards to extract the 

lungs (and airways also) which could then be followed by some morphological operation 

in case of holes in the resulting segmentation. With the automated segmentation, it could 

be taken a step further in order to detect candidate lung nodules and perhaps look into 

false positive reduction. 
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6 Summary, conclusion and future work 

With the increasing significance of lung cancer leading to many deaths worldwide, the 

need to have an accurate assisted diagnostic tool for used by radiologists cannot be 

underestimated. Lung nodules appearing as spot on the lungs are usually accidently 

encountered during patients’ chest x-ray. As not all nodules are potentially malignant and 

cancerous, several CAD techniques are being developed to address the possibility to 

automatically detect and filter out true nodules from false candidate nodules. The 

difficulty in long nodules segmentation lies in their irregularities in terms of shape, size 

and location. Ground glass density nodule (GGN) could be part solid nodule (PSN) solid 

or non-solid, nodules could appear as fully circumscribed in the lungs, juxtapleural or 

even juxtavascular with possibly varying textures. Assisted diagnostic tools need to have 

high sensitivity with the ability to efficiently detect lung nodules together with high true 

positive rates. Moreover, computer assisted or aided diagnostic tools necessarily need to 

have high speed processing rate coupled with high level of automation requiring minimal 

intervention.  These systems are also required to have low cost, maintenance and training 

requirements.  

With all these challenges on desk, most of the researches published in the literature tend 

to follow similar general strategies and steps which begins with acquiring data coming 

from different modalities. The acquired data undergoes some form of pre-processing in 

order to make the segmentation more effective. Commonly used pre-processing includes 

smoothing and Gaussian filtering, some form of histogram equalization, linear 

interpolation and also some morphological operations. After pre-processing comes the 

lung segmentation steps which employs approaches broadly such as thresholding, shape-

based and edge detection-based. Once the lungs are segmented from the rest of the body, 

further processing methods such as multi-level thresholding, artificial neural network  or 

other enhanced approaches are used in detecting candidate nodules. Sometimes this is 

followed by the even further advanced techniques for false positive reduction. 

One of the open-source framework used by researches for implementing medical image 

processing algorithms for lung nodules segmentation and detection is the Insight Toolkit 

(ITK) which is cross-platform. Although a limited and simplified interface to ITK exists, 

often early researches find it difficult to get up and running with full templated/generic 
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C++ based ITK. In this thesis project, the author having experienced such, and developed 

a bundled virtual environment from ground up and ready to be used right away without 

any additional setup pain. This will allow especially inexperienced early stage researchers 

to focus mainly on spending more time working with real segmentation and detection 

problems rather than the technical aspects regarding building ITK from source. Moreover, 

the environment is integrated with the Visualization Toolkit (VTK) and Qt to make 

visualization (especially 3D) seamlessly and easier. In addition to the bundled 

environment, the author also implemented as a stepping stone into the medical image 

analysis, a program using semi-automated connected threshold image segmentation 

(region-based) to successfully segment CT image from the LIDC-IDRI database.  

Certainly, there are improvements that can be done in the future including much deeper 

review of the literature especially fully automating the segmentation step and also 

implementing the other two steps of nodule detection and false positive reduction. 

Furthermore, experimenting with much larger CT scan datasets and thorough comparison 

with established results from literature could also be done in the future. 
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Appendix 1 – Program header file (class 

CTDicomLungs3DVis ) 

CTDicomLungs3DVis.h 

 

#ifndef CTDicomLungs3DVis_H 

#define CTDicomLungs3DVis_H 

 

#include "ui_CTDicomLungs3DVisUI.h" 

 

#include <QMainWindow> 

 

class CTDicomLungs3DVis : public QMainWindow, private 

Ui::CTDicomLungs3DVisUI 

{ 

    Q_OBJECT 

public: 

 

    CTDicomLungs3DVis(); 

 

public slots: 

 

    virtual void slotExit(); 

 

}; 

 

#endif 
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Appendix 2 – Program main entry point 

CTDicomLungs3DVisMain.cxx 

 

#include <QApplication> 

#include "CTDicomLungs3DVis.h" 

 

int main(int argc, char** argv) 

{ 

 

    QApplication app(argc, argv); 

 

    CTDicomLungs3DVis MyCTDicomLungs3DVis; 

    MyCTDicomLungs3DVis.show(); 

 

 

    return app.exec(); 

} 
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Appendix 3 – Program implementation (class 

CTDicomLungs3DVis) 

CTDicomLungs3DVis.cxx 

 

#include "CTDicomLungs3DVis.h" 

#include "vtkPolyDataMapper.h" 

#include "vtkRenderer.h" 

#include "vtkRenderWindow.h" 

#include "vtkRenderWindowInteractor.h" 

#include "vtkSmartPointer.h" 

#include "vtkMarchingCubes.h" 

#include "vtkActor.h" 

#include "vtkProperty.h" 

#include "itkImage.h" 

#include "itkImageToVTKImageFilter.h" 

#include "itkGDCMImageIO.h" 

#include "itkGDCMSeriesFileNames.h" 

#include "itkImageSeriesReader.h" 

#include "gdcmUIDGenerator.h" 

#include "itkConnectedThresholdImageFilter.h" 

#include "itkCastImageFilter.h" 

#include "itkCurvatureFlowImageFilter.h" 

#include "itkMaskImageFilter.h" 

#include "itkRescaleIntensityImageFilter.h" 

#include "itkMaskImageFilter.h" 

 

 

 

// Constructor, initialises UI. ITK read and processing. VTK display through 
Qt 

CTDicomLungs3DVis::CTDicomLungs3DVis() 

{ 

    this->setupUi(this); 

 

    /* Variable ctrlSwitch controls the programs output: takes values 1 to 4 

 

        1 ==> Displays full CT input image 

        2 ==> Displays full CT input image without cover 

        3 ==> Displays segmented lungs (opaque) 

        4 ==> Displays segmented lungs (transparent) 

 

        Default value is 4 

    */ 

 

    int ctrlSwitch = 4; 

 

 

    // template types definitions 
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    typedef   float           InPixelType; 

    typedef signed short    OutPixelType; 

 

    const unsigned int      Dimension = 3; 

 

    typedef itk::Image< InPixelType, Dimension >         InputImageType; 

    typedef itk::Image< OutPixelType, Dimension >         OutputImageType; 

 

    typedef itk::CastImageFilter< InputImageType, OutputImageType >  
CastingFilterType; 

    CastingFilterType::Pointer caster1 = CastingFilterType::New(); 

 

    typedef itk::CurvatureFlowImageFilter< InputImageType, InputImageType > 

            CurvatureFlowImageFilterType; 

    CurvatureFlowImageFilterType::Pointer smoothing = 

            CurvatureFlowImageFilterType::New(); 

 

    typedef itk::ConnectedThresholdImageFilter< InputImageType, 

            InputImageType > ConnectedFilterType; 

    ConnectedFilterType::Pointer connectedThreshold1 = 
ConnectedFilterType::New(); 

 

    typedef itk::ImageSeriesReader< InputImageType > 

            ReaderType; 

    ReaderType::Pointer reader = ReaderType::New(); 

 

    typedef itk::GDCMImageIO 

            ImageIOType; 

    ImageIOType::Pointer gdcmIO = ImageIOType::New(); 

 

    typedef itk::GDCMSeriesFileNames 

            InputNamesGeneratorType; 

    InputNamesGeneratorType::Pointer inputNames = 
InputNamesGeneratorType::New(); 

 

    typedef itk::MaskImageFilter< InputImageType, InputImageType > 
MaskFilterType1; 

    MaskFilterType1::Pointer maskFilter1 = MaskFilterType1::New(); 

 

    typedef itk::RescaleIntensityImageFilter< InputImageType, InputImageType 
> RescaleFilterType1; 

    RescaleFilterType1::Pointer rescaleFilter1 = RescaleFilterType1::New(); 

 

    //ITK to VTK connector 

    typedef itk::ImageToVTKImageFilter<OutputImageType>       ConnectorType; 

    ConnectorType::Pointer connector1 = ConnectorType::New(); 

 

    //VTK volume data 

    vtkSmartPointer<vtkImageData> volume1 = 

            vtkSmartPointer<vtkImageData>::New(); 
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    //Marching cube surface 

    vtkSmartPointer<vtkMarchingCubes> surface1 = 

            vtkSmartPointer<vtkMarchingCubes>::New(); 

 

    vtkSmartPointer<vtkPolyDataMapper> mapper1 = 

            vtkSmartPointer<vtkPolyDataMapper>::New(); 

 

    vtkSmartPointer<vtkActor> actor1 = 

            vtkSmartPointer<vtkActor>::New(); 

 

    vtkSmartPointer<vtkRenderer> renderer = 
vtkSmartPointer<vtkRenderer>::New(); 

 

    //end of template types definitions 

 

 

 

    //ITK read input dicom image 

    inputNames->SetInputDirectory( "C:\\MyKitware\\Examples\\ITK-VTK-
Qt\\InsightToolkit-4.10.1__AND__VTK-7.1.0_Qt\\MyItkVtkQ_tsz\\dicom-
images\\no-xml" ); 

 

    const ReaderType::FileNamesContainer & filenames = 

            inputNames->GetInputFileNames(); 

 

    reader->SetImageIO( gdcmIO ); 

    reader->SetFileNames( filenames ); 

    reader->Update(); 

 

 

    //START smoothing filter + Connected threshold 

    smoothing->SetInput( reader->GetOutput() ); 

    smoothing->SetNumberOfIterations( 5); 

    smoothing->SetTimeStep( 0.01 ); 

 

    const InPixelType lowerThreshold1 = -990; 

    const InPixelType upperThreshold1 = -250; 

 

    InputImageType::IndexType  index; 

    index[0] = 152; 

    index[1] = 277; 

    index[2] = 152; 

 

    connectedThreshold1->SetInput( smoothing->GetOutput() ); 

    connectedThreshold1->SetLower(  lowerThreshold1  ); 

    connectedThreshold1->SetUpper(  upperThreshold1 ); 

    connectedThreshold1->SetReplaceValue( 255 ); 

    connectedThreshold1->SetSeed( index ); 

    connectedThreshold1->Update(); 

 

    //END smoothing filter + Connected threshold 
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    //BEGIN mask filtering 

    maskFilter1->SetInput(reader->GetOutput()); 

    //maskFilter->SetInput(smoothing->GetOutput()); 

    maskFilter1->SetMaskImage(connectedThreshold1->GetOutput()); 

    maskFilter1->Update(); 

 

    //END mask filtering 

 

 

    //BEGIN Rescale intensity filter 

    //begin control switch 

    switch (ctrlSwitch) { 

    case 1: 

        rescaleFilter1->SetInput(reader->GetOutput());  // 1 ==> Full CT 
input image 

        break; 

 

    case 2: 

        rescaleFilter1->SetInput(reader->GetOutput());  // 2 ==> Full CT 
input image without cover 

        break; 

 

    case 3: 

        rescaleFilter1->SetInput(maskFilter1->GetOutput()); // 3  ==> 
segmented lungs (opaque) 

        break; 

 

    case 4: 

        rescaleFilter1->SetInput(maskFilter1->GetOutput()); // 4  ==> 
segmented lungs (transparent) 

        break; 

 

    default: 

 

        break; 

    } 

 

    //end control switch 

 

    //convert input to gray level image - rescale intensity to 0 - 255 

    rescaleFilter1->SetOutputMinimum(0s); 

    rescaleFilter1->SetOutputMaximum(255); 

    rescaleFilter1->Update(); 

 

    //END Rescale intensity filter 

 

 

    //input to VTK switches 

    //caster1->SetInput( connectedThreshold1->GetOutput() ); 
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    //caster1->SetInput( smoothing->GetOutput() ); 

    caster1->SetInput( rescaleFilter1->GetOutput() ); 

 

 

    //ITK to VTK 

    connector1->SetInput(caster1->GetOutput()); 

    connector1->Update(); 

 

 

    //VTK display 

    volume1->DeepCopy(connector1->GetOutput()); 

 

    surface1->SetInputData(volume1); 

    surface1->ComputeNormalsOn(); 

 

 

    switch (ctrlSwitch) { 

    case 1: 

        surface1->GenerateValues(9, 0, 255);  // 1 ==> Full CT input image 

        break; 

 

    case 2: 

        surface1->GenerateValues(5, 100, 255);  // 2 ==> Full CT input image 
without cover 

        break; 

 

    case 3: 

        surface1->SetValue(0,180);   // 3  ==> segmented lungs (opaque) 

        break; 

 

    case 4: 

        surface1->SetValue(0,180);   // 4  ==> segmented lungs (transparent) 

        break; 

 

    default: 

        break; 

    } 

 

 

    mapper1->SetInputConnection(surface1->GetOutputPort()); 

    mapper1->ScalarVisibilityOff(); 

 

 

    //set actor 1 

    actor1->SetMapper(mapper1); 

 

    switch (ctrlSwitch) { 

    case 1: 

        actor1->GetProperty()->SetOpacity(1); // 1 ==> Full CT input image 

        break; 
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    case 2: 

        actor1->GetProperty()->SetOpacity(1); // 2 ==> Full CT input image 
without cover 

        break; 

 

    case 3: 

        actor1->GetProperty()->SetOpacity(1); // 3  ==> segmented lungs 
(opaque) 

        break; 

 

    case 4: 

        actor1->GetProperty()->SetOpacity(.2);  // 4  ==> segmented lungs 
(transparent) 

        break; 

 

    default: 

        break; 

    } 

 

    actor1->GetProperty()->SetColor(1, .91, .0078); 

 

 

    //Add actors to renderer 

    renderer->AddActor(actor1); 

 

 

    // VTK/Qt integration 

    this->qvtkWidget->GetRenderWindow()->AddRenderer(renderer); 

 

    // Set up Qt action signals and slots 

    connect(this->actionExit, SIGNAL(triggered()), this, SLOT(slotExit())); 

 

}; 

 

void CTDicomLungs3DVis::slotExit() 

{ 

    qApp->exit(); 

} 
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Appendix 4 – Qt project generator file (CMake list file) 

CMakeList.txt 

cmake_minimum_required(VERSION 2.8) 

  

if(POLICY CMP0020) 

  cmake_policy(SET CMP0020 NEW) 

endif() 

  

PROJECT(CTDicomLungs3DVis) 

 

find_package(ITK REQUIRED) 

include(${ITK_USE_FILE}) 

 

find_package(VTK REQUIRED) 

include(${VTK_USE_FILE}) 

  

if(${VTK_VERSION} VERSION_GREATER "6" AND VTK_QT_VERSION 

VERSION_GREATER "4") 

  set(CMAKE_AUTOMOC ON) 

  find_package(Qt5Widgets REQUIRED QUIET) 

else() 

  find_package(Qt4 REQUIRED) 

  include(${QT_USE_FILE}) 

endif() 

  

include_directories(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR}) 

  

file(GLOB UI_FILES *.ui) 

file(GLOB QT_WRAP *.h) 

file(GLOB CXX_FILES *.cxx) 

  qt5_wrap_ui(UISrcs ${UI_FILES} ) 

 

  add_executable(CTDicomLungs3DVis MACOSX_BUNDLE 

    ${CXX_FILES} ${UISrcs} ${QT_WRAP}) 

  qt5_use_modules(CTDicomLungs3DVis Core Gui) 

  target_link_libraries(CTDicomLungs3DVis ${VTK_LIBRARIES} ${ITK_LIBRARIES}) 
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Appendix 5 – Qt UI file  

CTDicomLungs3DVisUI.ui, inspired by [73] 

 

<?xml version="1.0" encoding="UTF-8"?> 

<ui version="4.0"> 

 <class>CTDicomLungs3DVisUI</class> 

 <widget class="QMainWindow" name="CTDicomLungs3DVisUI"> 

  <property name="geometry"> 

   <rect> 

    <x>0</x> 

    <y>0</y> 

    <width>541</width> 

    <height>583</height> 

   </rect> 

  </property> 

  <property name="windowTitle"> 

   <string>CTDicomLungs3DVisUI</string> 

  </property> 

  <widget class="QWidget" name="centralwidget"> 

   <layout class="QVBoxLayout" name="verticalLayout"> 

    <item> 

     <widget class="QVTKWidget" name="qvtkWidget" native="true"/> 

    </item> 

   </layout> 

  </widget> 

  <action name="actionOpenFile"> 

   <property name="enabled"> 

    <bool>true</bool> 

   </property> 

   <property name="text"> 

    <string>Open File...</string> 

   </property> 

  </action> 

  <action name="actionExit"> 

   <property name="text"> 

    <string>Exit</string> 

   </property> 

  </action> 

  <action name="actionPrint"> 

   <property name="text"> 

    <string>Print</string> 

   </property> 

  </action> 

  <action name="actionHelp"> 

   <property name="text"> 

    <string>Help</string> 
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   </property> 

  </action> 

  <action name="actionSave"> 

   <property name="text"> 

    <string>Save</string> 

   </property> 

  </action> 

 </widget> 

 <customwidgets> 

  <customwidget> 

   <class>QVTKWidget</class> 

   <extends>QWidget</extends> 

   <header>QVTKWidget.h</header> 

  </customwidget> 

 </customwidgets> 

 <resources/> 

 <connections/> 

</ui> 
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Appendix 6 – Python wrapper sample VTK application  

Python wrapper sample VTK hello world application [75] 

#!/usr/bin/env python 

# This simple example shows how to do basic rendering and pipeline 

# creation.  

import vtk 

# The colors module defines various useful colors. 

from vtk.util.colors import tomato 

  

# This creates a polygonal cylinder model with eight circumferential 

# facets. 

cylinder = vtk.vtkCylinderSource() 

cylinder.SetResolution(8) 

  

# The mapper is responsible for pushing the geometry into the graphics 

# library. It may also do color mapping, if scalars or other 

# attributes are defined. 

cylinderMapper = vtk.vtkPolyDataMapper() 

cylinderMapper.SetInputConnection(cylinder.GetOutputPort()) 

  

# The actor is a grouping mechanism: besides the geometry (mapper), it 

# also has a property, transformation matrix, and/or texture map. 

# Here we set its color and rotate it -22.5 degrees. 

cylinderActor = vtk.vtkActor() 

cylinderActor.SetMapper(cylinderMapper) 

cylinderActor.GetProperty().SetColor(tomato) 

cylinderActor.RotateX(30.0) 

cylinderActor.RotateY(-45.0) 

  

# Create the graphics structure. The renderer renders into the render 

# window. The render window interactor captures mouse events and will 

# perform appropriate camera or actor manipulation depending on the 

# nature of the events. 

ren = vtk.vtkRenderer() 

renWin = vtk.vtkRenderWindow() 

renWin.AddRenderer(ren) 

iren = vtk.vtkRenderWindowInteractor() 

iren.SetRenderWindow(renWin) 

  

# Add the actors to the renderer, set the background and size 

ren.AddActor(cylinderActor) 

ren.SetBackground(0.1, 0.2, 0.4) 

renWin.SetSize(200, 200) 

  

# This allows the interactor to initalize itself. It has to be 

# called before an event loop. 

iren.Initialize() 

  

# We'll zoom in a little by accessing the camera and invoking a "Zoom" 

# method on it. 

ren.ResetCamera() 

ren.GetActiveCamera().Zoom(1.5) 

renWin.Render() 

  

# Start the event loop. 

iren.Start() 


