
Tallinn 2019

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Rait Kurg 178187

AUTOMATED FACE MANAGEMENT
SYSTEM ON THE EXAMPLE OF SMART

ELEVATOR

Master’s thesis

Supervisor: Mairo Leier

 Ph.D

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Rait Kurg 178187

AUTOMAATNE NÄGUDE
HALDUSSÜSTEEM TARGA LIFTI NÄITEL

Magistritöö

Juhendaja: Mairo Leier

 Ph.D

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Rait Kurg

27.04.2019

4

Abstract

In this paper, an automated face management system algorithm is proposed for the Tallinn

University of Technology Smart Elevator project, that is developed together with KONE

Incorporate, one of the leading elevator construction companies in North Europe. The

outcomes of this work is as a mechanism that can be used for memorizing and predicting

destination floors for visiting people of ICT building elevator.

It’s main core relies on the efficient use of convolutional neural networks, clustering and

classification techniques, that is integrated into a traditional face recognition pipeline

achieving 98.2% identification accuracy based on the especially recorded validation set.

The designed system also includes modern user interface and integration options, which

are designed and development specially respecting the individual properties of the system

itself and its working environment.

This thesis is written in English and is 55 pages long, including 7 chapters, 27 figures and

5 tables.

5

Annotatsioon

Automaatne nägude haldussüsteem targa lifti näitel

Käesolevas magistritöös on loodud automaatne nägude haldussüsteem Tallinna

Tehnikaülikooli Targa Lifti projekti jaoks, mis arendati koostöös AS KONE-ga, Põhja-

Euroopa ühe suurima liftide ja eskalaatorite tootjaga. Tehtud töö tulemusena valmis

lahendus, mida saab kasutada ICT maja lifti külastatavate inimeste tundma õppimiseks ja

sellele tuginedes soovitud sihtkorruste ennustamiseks.

Algoritmi tuumik põhineb konvolutsiooniliste närvivõrkude, klasterdamistehnikate ja

klassifitseerimisalgoritmide efektiivsele koostööle, mis on integreeritud traditsioonilisse

näotuvastuskonveieri mudelisse. Loodud süsteem saavutas ennustustäpsuse 98.2%, mille

treening- ja valideerimisandmed pärinesid salvestatud videokaadritest liftis. Lisaks on

süsteemile loodud veebipõhine kasutajaliides ning liidestusmoodulid, mille arendamisel

on arvestatud süsteemi olemust ja selle töökeskkonda.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 55 leheküljel, 7 peatükki, 27

joonist, 5 tabelit.

6

List of abbreviations and terms

RGB Red, Green, Blue color system

USB
REST
API
ROS
SDK
MVP
ID
AFIS
ICT
GDPR
IO
GPU
CUDA
NN
RSA
POC
Dlib
UI
LWF
DBSCAN
CNN
SVM
CPU
RFID
HTTP
HTTPS
TalTech
RFC
GigE

Universal Serial Port
Representational State Transfer
Application Programming Interface
Robot Operating System
Software Development Kit
Minimum Viable Product
Identifier
Automated Fingerprint Identification System
IT building of Tallinn University of Technology
General Data Protection Regulation
Input/Output
Graphics Processing Unit
GPU programming platform made by NVIDIA
Neural network
Rivest–Shamir–Adleman, public key cryptosystem
Proof of Concept
Software toolkit composed by David King
User Interface
Labeled Faces In Wild dataset
Density-Based Spatial Clustering of Applications with Noise
Convolutional Neural Network
Support Vector Machine
Central Processing Unit
Radio-Frequency Identification
Hypertext Transfer Protocol
Hyper Text Transfer Protocol Secure
Short version of Tallinn University of Technology
Request for Comment
Gigabyte Ethernet

7

Table of contents

1 Introduction ... 11

1.1 Motivation .. 11

1.2 Objectives ... 12

1.3 Thesis Organization .. 13

2 Background .. 15

2.1 Smart Elevator Project .. 15

2.2 Commercial products .. 16

2.3 Image processing .. 17

2.3.1 RGB frame ... 17

2.3.2 Neural networks ... 18

2.3.3 Convolutional neural networks .. 19

2.3.4 Training ... 22

3 System Design ... 23

3.1 Hardware selection ... 23

3.1.1 Camera positioning .. 24

3.2 Software selection ... 25

3.2.1 Face representation .. 26

3.2.2 Clustering .. 29

3.2.3 Performance comparison of clustering algorithms .. 31

3.2.4 Prediction ... 33

4 Automated face management system .. 35

4.1 Proposed algorithm ... 35

4.2 System overview ... 36

4.3 Experimental results ... 38

5 Integration and Interfaces .. 40

5.1 Communication with other system components ... 40

5.1.1 ROS ... 40

5.1.2 Interactions .. 41

5.2 User interface .. 43

8

5.2.1 Front end .. 43

5.2.2 Back end .. 46

6 Future development and suggested improvements .. 50

7 Conclusions ... 51

References .. 52

Appendix 1 – Software repository .. 55

9

List of figures

Figure 1. Traditional vs self-managed face recognition system. 12

Figure 2. Biometric verification methods market share in 2017 [3]. 15

Figure 3. RGB image representation [9]. ... 17

Figure 4. Neuron and artificial neuron [10]. ... 18

Figure 5. Classical multilayer neural network [10]. ... 19

Figure 6. Convolutional layer filter work principle [10]. ... 20

Figure 7. ReLU and Leaky ReLU/PReLU [10]. ... 21

Figure 8. Max pooling [10]. .. 21

Figure 9. Face recognition pipeline [17]. ... 26

Figure 10. Code block describing the Chinese Whispers clustering algorithm [28]. 29

Figure 11. Code block describing the DBSCAN algorithm [29]. 30

Figure 12. Code block describing the Mean-Shift clustering algorithms [31]. 30

Figure 13. Code block for comparing different feature extractions with clustering

algorithms. .. 31

Figure 14. Clustering accuracy change over the dataset size. .. 32

Figure 15. Computing power required over dataset size .. 32

Figure 16. Radius Neighbor classifier accuracy change over number of training images

and radius. ... 33

Figure 17. SVM accuracy over the number of training images. 34

Figure 18. Saved clusters from elevator cycles. ... 35

Figure 19. Illustration of valid clusters. .. 36

Figure 20. System layout with flows. ... 38

Figure 21. Test and training dataset for prediction. .. 39

Figure 22. ROS. .. 41

Figure 23. Sequence diagram describing interactions between system components. 43

Figure 24. UI - face database .. 44

Figure 25. UI - timeline .. 45

Figure 26. UI - live overview of RGB camera and depth camera results 46

Figure 27. API architecture .. 47

10

List of tables

Table 1. Comparison of commercial facial recognition products [5] – [7]. 16

Table 2. Comparison of different cameras [14] – [16]. .. 23

Table 3. Comparison of considered camera positions. ... 24

Table 4. General overview of pretrained face recognition models [19] – [21]. 28

Table 5. REST interface general overview ... 48

11

1 Introduction

One of the earliest facial recognition methods was proposed by Woodrow Bledsoe in

1966, which tried to compare the distances between unique landmarks on face. He also

stated that the reason, that the problem is so difficult to solve due the great variability in

head rotation and tilt, lightning intensity, different angles, facial expression and aging.

After that, next several decades introduced several new improved methods of facial

recognition, which tried to overcome the past results. One of the reasons that these

methods did not made to wide usage was due to limitations of computer processing power.

Finally, in early 2000s, the technology started to catch up with the proposed techniques

and so the first major test was conducted by law enforcements during the 2002 Super

Bowl. Although, reportable, there were many criminals detected by the software, the

overall results were considered relatively bad, as the number of false positives was too

high. During the following years, the sudden rise of social media made people to upload

more photos of themselves to the Internet than ever and therefore made it is easy for the

major providers like Facebook and Google to gather and sell enormous amount of data.

This was a game changing opportunity, as previously those huge datasets of tagged photos

had limited accessibility e.g. for government use only. After that, the doors started to open

up for other new players in the market and even for the open source communities [1], [2].

1.1 Motivation

This thesis proposes a solution for the Smart Elevator project, providing the means how

elevator could learn people through facial recognition. It introduces totally different

approach from the traditional facial recognition systems, whose try to match known

people from video feed. This means that known people database that is usually managed

by administrator user will be replaced by totally automated face management system that

overtime expands itself (Figure 1).

12

Figure 1. Traditional vs self-managed face recognition system.

1.2 Objectives

The Smart Elevator project was divided into two phases. For the first phase, main goal

was to implement the proof of concept. During the second phase, the potential

improvements for the system would be made. In order to validate the PoC (proof of

concept) for the automated face management system, following goals were set:

§ Develop system hardware and software architecture

§ Select optimal hardware, open source software and algorithms

§ Define methods, how software components are connected with each other

§ System should be able to learn at least 100 people only from the videos recorded

inside the elevator

§ User interface developments to see the results (face database) and historical events

In order to demonstrate the results of the first phase, special demonstration flow was

recorded and partly simulated as the all of the system components were not fully

completed. The requirements for the demonstration were set by the project management

13

and covered the main principles needed for the stakeholders, proving the satisfaction

criteria for the minimum viable product (MVP). The results of the tests were later placed

on the user interface as mock of the live dashboard. This step helped to promote the

system outside of the testing environment without worrying about the setup, connection

issues and hidden bugs. Some parts of the validation use case like the elevator

manipulation, people tracking and voice detection were not part of the author’s work and

are described just to give better overview of the system behavior.

The scenario starts with an empty elevator, which gets call to fifth floor. When the

elevator has served the call and opens the doors, four people start to walk in one by one

so that only one person is seen by the RGB (red, green, blue) camera. This limitation was

set to avoid corner cases, which were meant to be solved during the next phase. The facial

recognition software should be able to identify three persons that are predefined by the

automated face management system and draw face boxes with their unique ID on the

video stream. One person, that elevator has not “seen” before, meaning that this person

has been not added to the face database earlier, should be considered as an unknown

person. Aforementioned unknown person should have that referenced also on the video

screen. During that time, the elevator waits for the voice commands and button pushes,

which in this scenario will be request for third floor over the voice and request for second

floor using the physical button. After the commands are received, the user interface

should display elevator direction and first destination floor. Two random people are then

stepping out and the elevator should start moving towards new direction. It is important

that the user interface should decrease the value of the number of the people inside the

elevator. Finally, when the elevator has reached its final destination and everyone is

outside, the elevator will go to the idle state and save the results.

1.3 Thesis Organization

This thesis is composed from seven main chapters and includes one appendix. It starts

with a introductive background information about the biometric verification technologies,

the project itself and main principles of image processing techniques using convolutional

neural networks. Then, the system design is introduced, which breaks down, compares

and evaluates the software and hardware components used for the development and their

role in the face recognition pipeline. After that, the solution for automated face learning

14

system is proposed together with its layout and how it can be installed together with

other components with an overview of its performance based on the conducted

experiments. Finally, the integration methods and technologies for external services are

presented together with developed user interface and its main functionalities.

15

2 Background

Nowadays, different technologies of human face recognition with computer programs

have shown more than just great success. Although the method itself is considered to have

less accuracy than other biometric verification methods, the market is still expected to

reach over 7.7 billion dollars by the 2022. This is because over the last years it has become

more and more accurate and it can provide huge value to wide range of different

applications from government street monitoring systems to consumer level robots for

personal interaction purposes. Their main advantage over other biometric verification

methods is an existing infrastructure. Main streets, office room and even some elevators

are almost always equipped with security cameras, which can be easily integrated with

facial recognition software. In 2017, it was one of the popular biometric verification

methods used in Europe together with fingerprint identification methods (AFIS and Non-

AFIS). Detailed illustrations of biometric verification methods used by market share

during that time can be found on the following pie chart (Figure 2) [3], [4].

Figure 2. Biometric verification methods market share in 2017 [3].

2.1 Smart Elevator Project

The Smart Elevator project is part of the Tallinn University of Technology smart campus

concept. It will be an elevator, which over time learn, which floors people visit and

eventually will start to propose these floors to them. It will interact humans over voice

commands and therefore will make elevator rides more comfortable than ever. The project

itself is co-funded together with KONE Corporation, who is interested in making the

elevators more intelligent and bringing people more emotions just by using their

16

elevators. The development team had 11 active members, including people from

department of software science and system engineering.

2.2 Commercial products

Currently, there exist no such products on the market that could solve directly this

concrete problem regarding the Smart Elevator, although, it is possible to implement the

core features by combining different facial recognition APIs. Amazon, Microsoft and

Kairos are only some of the companies that have the tools necessary to build such system.

Although they all are in general really good products, the major downside of using them

is that it leaves system depending on external service provider or network quality.

Another limitation is that that there is no way to improve or customize the system.

Following table (Table 1) brings out the features and the differences of these products [5]

– [7].

Table 1. Comparison of commercial facial recognition products [5] – [7].

Kairos Amazon Microsoft

Self-Hosting Yes No No

Face Detection Yes Yes Yes

Face Identification Yes Yes Yes

Face Grouping Yes Yes Yes

Video Input No Yes No

Price per 1000
transactions (EUR)

2.1 0.80 0.76

Despite that all of these service provides have large feature sets, the Smart Elevator

project would only require face detection, identification and grouping. The grouping

feature is the most crucial as it forms groups out of pictures that are representing the same

person. The input data for that could be the detected faces from the live feed saved after

some period of time like a day or week. The formed groups can be used as training data

for the identification. After that, the system could start making an identification API calls

by querying “is the entered person part of any these groups” [5] – [7].

17

Above APIs rely on the face being on the regular RGB images. But the main setback for

this approach is the presentation of the face does guarantee detecting whether it is a person

or images of person (on the provided image) as the traditional photo does not provide

depth information (3D parameters of the face). Apple Inc has overcome this issue by

detecting face using Infrared cameras. They are reflecting 30 000 dots over the human

face and then try to match these dots pattern wise and claim the change of error is 1 in 1

000 000. Although their results are outstanding, the applied techniques for the recognition

is a company’s secret [8].

2.3 Image processing

Navigation through the image information is one of the crucial steps in machine learning.

Following sub-paragraphs start with a description of RGB image representation inside

computer followed by fundamental theory about the neural networks that process images.

2.3.1 RGB frame

Computers represent colored pictures as multidimensional matrix n * m * 3 where n and

m are representing the height and the width of the picture in pixels and the 3 is number of

colors represented in the RGB color model (Figure 3). This model is used due the physics

of modern screens, where colors of light are additive for human eye and therefore light

sources for spectrum are red, green and blue [9].

 Figure 3. RGB image representation [9].

So in general, for each picture we have a structure, which is representing the impact of

each color for each pixel. Finding out if two images contain the same object – an identified

18

person – would mean finding out if these structures of each image contain some kind of

similar patterns. For face recognition, this would mean trying to carefully describe a

pattern for each person and later check if the same pattern exists in another image. For

example, providing a metrics of how eyes are most likely represented in the three color

channels. It turns out, that in practice, this approach is not very efficient and would

eventually require programmer to make far too many conditions and definitions for it to

actually work. Moreover, even a different lighting conditions could mean totally different

descriptions [9], [10].

2.3.2 Neural networks

Over the last decades, scientist have started to solve this task more efficiently with another

method called artificial neural networks. This approach tries to mimic the reactions

happening inside the human brain. Although, the full working principle of the brain is

still unknown, some parts of it are discovered. For example, studies have found that the

most basic elements of the brain, neurons, does not regenerate. It is assumed that they

provide us with our abilities to remember, think, and apply previous experiences to our

every action. Each neuron can be connected up to 200 000 other neurons and each human

is expected to have around 100 billion total of them. Despite the fact, that there exists so

many of them, each of the neurons is known to have four components - dendrites, soma

(cell body), axon, and synapses. The components can be used to derive an abstract

artificial neuron. In fact the very first model of an artificial neuron is introduced by

Warren McCulloch and Walter Pitts in 1943. The representation of the mathematical

model with derived properties from the real neuron can be found on the following picture

(Figure 4) [11], [12].

Figure 4. Neuron and artificial neuron [10].

19

Dendrites are accepting the input data, which can be represented as vector X (x0..xn).

Then the vector will meet the cell individual properties - defined by weights W (w0.. wn)

and bias b. This process simulates the signal processing inside the real neuron cell body.

For resembling the impulses along the axon, a normalization of the value is used through

activation function. It also enables us to mimic the synapse at the end of axon terminal as

this function describes, how the signal should pass through. What is more, this also helps

to keep track on growing speed of the output values over the layers. It is worth mentioning

that these descriptions are just abstractions and the actual relations and the processes

could be far more complicated as there are still a lot of research happening in both fields

[11], [12].

In artificial neural networks, the neurons are most commonly organized inside layers,

where the output of the other layer will be used as input of another layer so that each

neuron will be connected to each input of the next layer (Figure 5).

Figure 5. Classical multilayer neural network [10].

The first layer of the neural networks is called the input layer, last layer is the output layer

and the ones between them are typically known as hidden layers. The number of neurons

inside one layer is not determined by any rule and is usually chosen based on the need.

Although, there are several methods available based on the task that the neural network

has to solve [10] – [12].

2.3.3 Convolutional neural networks

Traditional multilayer neural networks filled with neurons do not work well with images.

Suppose we have RGB images of faces in the size of 150x150 px. Therefore, a single

fully connected neuron would have 150*150*3 = 67 500 weights. Taking into the

20

consideration, that normally solving a task that difficult would require several hidden

layers, we would be spending enormous amounts of computing power. That has lead

scientists to come up with a convolutional neural network architecture, which tries to

process image as a 3D volume rather than turning it to one long 1D array. A typical CNN

(convolutional neural network) consists of three types of layers – convolutional layer,

activation layer and pooling layer [10], [13].

Convolutional layer processes the input matrix through filter. Filters are typically small

(much smaller than the input) matrices, that produce dot product as they are sliding

through the input. The length of the sliding window is called stride. When the size of the

filter and the length of the stride makes it impossible to slide over the input without going

outside of the input volume, padding is applied as it does not require changing the image

dimensions. Commonly, zero padding is used, which means the that the input volume is

extended by zero filled edges. The parameters inside the filter can be referred as weights,

that are calculated during the training process. Figure 6 describes, how filter (K) is slided

through (I) over the input matrix result a dot product as an output (I * K) [10].

Figure 6. Convolutional layer filter work principle [10].

The purpose of the activation is to introduce non-linearity to the network because most

of the real life problems are not linear. Activation functions are applied elementwise and

followed by convolutional layer. Therefore, this layer is often mentioned in the literature

as part of the convolutional layer. Most popular activation functions are Sigmoid, Tanh,

ReLU and leaky ReLU. Although, most commonly in convolutional neural networks

ReLU and leaky ReLU (Figure 7) are used as they tend to perform relatively better in

training process [10].

21

Figure 7. ReLU and Leaky ReLU/PReLU [10].

ReLU activation function basically removes the negative values from the network. Leaky

ReLU performs essentially the similar means, except it allows a small slope (usually

around 0.01) of negativity to be passed. They both saturate on the line between the

linearity and nonlinearity [10].

Pooling layers are used to scale down the amount of computations happening the network.

As a side effect, they also help to generalize the network for handling different data

(prevent overfitting). It is dividing the input into smaller windows and producing some

kind of down sampling calculation over that window. Following picture (Figure 8)

describes max pooling, which passes the maximum element over the different windows

to output layer [10].

Figure 8. Max pooling [10].

Another pooling operation used very commonly inside convolutional neural networks is

average pooling, which passes the average of the elements inside the windows to output

layer. These layers are usually applied after every few convolutional layer [10].

22

2.3.4 Training

By training, people usually mean solving a problem, how each neuron (or part of the

network) should configure itself to produce valuable effect, since only the definition of

the neural network structure does not give it its computational properties. In order to give

neural network some kind of behavior there are two general ways to teach it through -

supervised and unsupervised learning. Both of these methods assume existence or

gathering the correct training data. Exact amount of data needed depends highly of the

solvable task [10], [13].

In supervised learning we give network many sets of samples how the output layer

(vector) should look like, when having a specific input, considered that the input and the

output vector are related. Without this, the network is unable to configure itself. During

that period, the loss function, which calculates how much the desired output resembles to

the current output, will adjust the weights for the next training sessions. Over the time the

amount of weights needed to be changed will approach to zero and that can mean that the

training process can be considered finished. Unlike for the supervised learning the

unsupervised learning does not require the specification of correct values. Instead the goal

of this training method is found out which output class should the input go. After several

training samples, the core description of each output class becomes more clearer as the

number of predicted values for these classes increases This method can be used for

clustering applications, where the number of different classes and the exact description

of each class is not known before the training process [10].

23

3 System Design

The properties of the individual elements define the properties and the abilities of the

system. System design consists of hardware and software selection. The first part of the

chapter describes, what type of camera should be used and where is the optimal position

for face identification followed the by experiments with different software components.

3.1 Hardware selection

Author has compared three different cameras – Axis M1011W, Intel RealSense D435 and

Basler ACE1440-73gm. They were selected mainly because these cameras were already

available in the department and all of them were from the different price range, providing

an overview (Table 2), what features various price ranges are offering.

Table 2. Comparison of different cameras [14] – [16].

Axis M1001 Intel RealSense D435 Basler ACE1440

Resolution 640 x 480 1920 x 1080 1440 x 1080

Interface USB 2.0 USB 3.0 GigE

Frame quality Average Good Excellent

Suitable
environment

No Yes Yes

Configuration
options

Bad Good Good

Price (EUR) 168 215 425

Finally a Basler ACE1440 was chosen, which provided more value than others. It is

especially designed for industrial environment, is easily integrable and has a built in

ability to capture focused and sharp frames even when recorded objects are moving. The

camera itself also came with the special SDK (Software Development Kit), which enables

programmers to configure the camera parameters inside the program and access raw

frames directly using officially supported drivers.

24

To capture whole elevator into one frame, an optimal lenses for the optics were needed.

Author did borrow many different lenses from ISEAUTO project hardware depository to

find out the best one suited for the elevator. First strategy was to use fisheye lenses, which

can capture very wide area in small rooms and therefore are often found in small corridors

on security cameras. Unfortunately the fisheye effect changed the quality of the people

faces way too much and thus, made the prediction results very inaccurate. Therefore the

only solution for the lenses was to find right balance between the view angle and image

transform, which eventually turned out using focal length of 8 mm.

3.1.1 Camera positioning

Author created a model to test different positions for the camera in order to find out,

which position and angle favored face detection the most. In total there were three strong

potential candidates. After the deep analysis of the different positions, it was clear that

the camera will go to position number 3 (see following table) for ICT elevator. It’s main

advantage was that this position enabled us to install the camera right to the corner behind

the special corner pad, which could make it easier to hide all the cables and make it look

more like a product, rather than a ugly prototype. Vertical position of the camera should

be at 155 cm enabling the system to detect person between 140 - 210 cm tall. The

overview of all the position candidates with their strengths and weaknesses that came to

attention during the test recordings are described on the following table (Table 3):

Table 3. Comparison of considered camera positions.

Position Strengths Weaknesses Model

Position 1.
Camera is
attached to
the center
directly
towards
doors

We can see
people before
they walk in
Very good angle
for detecting faces
Camera draws
attention, because
it is centered

Difficulties with
children and short
adults
Cannot see people
when they are
very close to the
camera
People tend to
look at button
console

25

Cannot see people
when they are
behind each other

Position 2.
Camera is
attached to
ceiling with
a vertical
angle of 30
degrees
between the
ceiling and
the camera

Better to capture
entering people,
when elevator is
almost full
Does not get so
much attention

Harder to identify
people from
above view,
especially shorter
persons
People look
toward button
console when
entering
People look down
when entering

Position 3.
Camera is
attached in
the corner
with a
horizontal
angle of 12
degrees
between the
sidewall
and the
camera

People tend to
look towards
button console or
guide board,
therefore higher
chance to capture
face
Good installation
options

Other side will
have large blind
spot
Works better if
people directly
look there
When elevator is
smart, then people
should not have
reason to look
buttons

3.2 Software selection

Despite the variety of different technologies the key steps for facial recognition are the

same (Figure 9). First, the face detection from the input. It means finding and deciding

whether the input, which can be a photo or video feed contains the human face. Secondly,

the face signature features extraction, which gathers and forms a comparable pattern of

the unique landmarks from the human face, like the size of the forehead, distance between

the eyebrows, shape of nose and so on. And finally, the result comparison with other face

signatures [17].

26

Figure 9. Face recognition pipeline [17].

3.2.1 Face representation

To compare, cluster or process face in the image in any way, we need to transform the

face to specific representation form, which will maintain the distinguishable landmarks

of the human face. This can be done by using convolutional neural networks and the

process itself is often referred as feature extracting. It has one good advantage - there is

no need to retrain the network with new faces. Instead we train the neural network to see

the similarities between two persons, which is done by mapping each face to some kind

of embedding space where the distances between these faces are comparable so that

pictures of the same person will be closer than the the pictures with different persons [18].

Author has used pretrained feature extractor convolutional neural network mainly for

three reasons. First, the goal of this thesis was to create automated face management

system rather than propose convolutional neural network for face identification. Second,

the training of the state of the art model can take up 500 hours, what is more, the

parameters of the training are very crucial. Meaning that there is no guaranteed result of

creating a better model than already available ones. And finally, this project had very

strict time limits, therefore the proof of concept had to be delivered very fast, which meant

that there was not enough time to study and develop our own convolutional neural

network [18].

There are many good pretrained models available in the Internet. Although, their

publishers usually provide very popular LFW (labeled faces in wild) benchmark result,

author wanted to try some of them (Table 4) out to realize, how well do they perform in

different environment and dataset. All the feature extraction algorithm were benchmarked

based on their ability to create distinguishable vectors for clustering algorithms since the

plain LFW benchmark is just an verification benchmark and does not provide overview

27

how well similar and non-similar faces can be grouped together. What is more, author

used the face detection and alignment methods on which these different feature extractors

were initially trained and benchmarked on to maximize their performance. This was of

high importance since the David Sandberg's FaceNet implementation expected to have a

background margin around the face, but the Dlib and the OpenFace expected only the

face area [18] – [22].

D. Sandberg hosts one of the most successful FaceNet implementation around the open

source community. FaceNet is a system proposed by engineers in Google, Inc. Their

method proposes a deep convolutional network that extracts and directly optimizes the

face features itself down to only 128-bytes per face, while providing accuracy of 99.63%

on the the facto LFW benchmark. Author of the repository has implemented the whole

FaceNet project using popular machine learning library Tensorflow, which enables to

developer to train, test and use their models on many different platforms. The open source

package in GitHub contains two different face recognition models (referred as version 1

and version 2 respectively), which are based on the Inception Resnet V1 architecture

proposed by Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi in the

paper “Inception-v4, Inception-ResNet and the Impact of Residual Connections on

Learning” [23]. The reason, why they both were included to tests is that, they are trained

with different training data, use different distance metric and produce different size of

embeddings - 128 bytes and 512 bytes [22], [24].

Another very popular open source implementation of FaceNet is provided by Brandon

Amos, Bartosz Ludwiczuk, and Mahadev Satyanarayanan. This project was supported by

the US National Science Foundation and had assistance from many great technology

companies including Intel, Vodafone and NVIDIA. Containing toolset is crafted using

PyTorch, which is a Python machine learning library developed by Facebook Research

Team. It is also referred in many other open source face recognitions implementations as

seed of architectural inspiration. Their most accurate model (nn4.small2.v1) is trained on

the FaceScrub and CASIA-WebFace and the output feature vector representation size is

128 of bytes from a face on the 98x98px image. Although the claimed LFW accuracy is

a little bit smaller than others, their main advantage over other models is that they have

managed to cut down the processing time by cutting some parts of the original model.

Their model is NN4, which is described in the FaceNet paper with 4b, 4c, and 4d layers

removed and smaller 5 layers [21], [25].

28

Dlib itself is a modern C++ toolkit containing machine learning algorithms and tools to

solve real world problems. Moreover, it is also possible to apply its tools from Python

applications using special API, which makes it more easier for people, who do not have

strong programming background. The library itself is also equipped with the NVIDIA

CUDA support, which means that many parallel computations are executed on the GPU

rather than a CPU. The face recognition model provided in the toolkit is a variation of the

ResNet-34 deep convolutional neural network, which was proposed by the He, Zhang,

Ren, and Sun in paper “Deep Residual Learning for Image Recognition” with some

custom modifications. More precisely, toolkit author has remove some of the layers are

completely all and cut the number of filters used per layer. These modification helped

enable to create more faster network than the original one. The model was trained on a

dataset of about 3 million faces composed from Face scrub and VGG datasets and an

amount of faces from the Internet [20].

 Table 4. General overview of pretrained face recognition models [19] – [22].

Name Network LFW
accuracy

Training dataset Speed
on
Nvidia
Xavier

FaceNet by David
Sandberg v1

Inception-ResNet-v1 0.9905
CASIA-WebFace

~0.16s

FaceNet by David
Sandberg v2

Inception-ResNet-v1 0.9965
VGGFace2

~0.16s

Dlib Resnet-34 with few layers
removed and number of
filters per layer reduces by
half

0.9938

FaceScrub,
VGGFace, hand-
picked images
from the Internet

~0.13s

OpenFace FaceNet's NN4 network
with 4b, 4c, and 4d layers
removed and smaller 5
layers

0.9292

FaceScrub and
CASIA-WebFace ~0.09s

29

3.2.2 Clustering

The final product should be able to create clusters based on the face embeddings from

video feed. Idea behind clustering is to organize unlabeled data into similarity groups

called clusters. This makes desired clustering algorithm to solve two main tasks - decide,

how many different clusters we have and put similar samples together. Author has

compared three algorithms - Mean-Shift, DBSCAN (density-based spatial clustering of

applications with noise) and Chinese Whispers. These algorithms are suggested in

multiples sources in both published papers and guidelines from the Internet [20], [26],

[27].

Chinese Whispers clustering algorithm was introduced by Chris Biemann from

University of Leipzig for solving natural language processing problems. One of the

strengths of this algorithm are speed (linear in the number of edges) and simplicity. It

aims at finding groups of nodes that broadcast the same message to their neighbors, thus

can be viewed as a simulation of an agent-based social network. The algorithms is

outlined in the following code block (Figure 10) [28]:

forall vi in V: class(vi)=i;
while changes:

forall v in V, randomized order:
class(v)=highest ranked class in neighborhood of v;

Figure 10. Code block describing the Chinese Whispers clustering algorithm [28].

At the beginning, every node is treated as a separate cluster. After that n number of

iterations are applied so that each node will be combined to the closest class in the local

neighborhood. This will be the class whose sum of edge weights (distance in our case) to

the current node is maximal. When multiple such matches happen, random class could be

chosen. Regions of the same class stabilize during the iteration and grow until they reach

the border of a stable region of another class. Only important parameter in this algorithm

is the threshold between similar examples. In current thesis, an implementation of this

algorithm is used from Dlib machine learning library [28].

Another very popular clustering method is density-based spatial clustering of applications

with noise (DBSCAN). It was proposed by Computer Scientist group in University of

Munich. Its main advantages are that it can detect clusters with arbitrary shape and is able

30

to detect data that does not fit to any cluster, so to say noise. This algorithm is outlined in

the following code block (Figure 11) [29]:

Find neighborhoods N that, which have more than MinPts members;
Recursively find the neighborhoods inside found neighborhoods;
Combine results to clusters;
Treat left out point is noise;

Figure 11. Code block describing the DBSCAN algorithm [29].

So, the algorithm arbitrarily chooses a random point, then it starts to discover its

neighbors, which are closer than Eps (similarity threshold). If neighborhood is bigger than

MinPts (minimum samples per one class), cluster is formed, otherwise another point is

chosen. When discovering a cluster, it starts to search neighborhoods in the view of each

point in the found cluster and repeats the process on every newly discovered point. Every

point left out of clusters, will be treated as noise. Therefore, the main parameters

DBSCAN are Eps and MinPts. Analysis in this thesis regarding the DBSCAN used the

implementation found in Python Scikit toolset [29], [30].

Mean-Shift clustering algorithm was proposed in 2007 by Kuo-Lung Wu and Miin-Shen

Yang from Kun Shan University of Technology. It aims to find the mean densities

between data points. Like DBSCAN and Chinese Whispers, it does not require to specify

the shape of the data nor the amount of clusters to be found. Its core algorithm is described

in the following code block (Figure 12) [31]:

For every data point:
 Until no shifting:

Find points inside the bandwidth
 Calculate the mean of these points
 Shift bandwidth to mean

Turn converged points to clusters

Figure 12. Code block describing the Mean-Shift clustering algorithms [31].

As the description of the algorithm reveals, the main setback of this algorithm is the

computing time. Beginning similarly to the previous algorithms, at first, the neighbors

are found inside bandwidth (similarity threshold). Then, the mean point of the

neighborhood calculated and the neighborhood is shifted to that point. This process is

repeated until distance of the shift is zero. After iterating over all the data points, the

31

points that ended up at the same final mean point will form a cluster. Analysis of this

thesis is using the Mean-Shift implementation is used also from the Python Scikit toolset

[31], [32].

3.2.3 Performance comparison of clustering algorithms

For testing, author has mixed the LFW dataset (90%), photos personal collection and

faces gathered while recording (10%) having total of 2000 different persons. Main

purpose of the comparison script was to find out, how well the feature extractors work

with different clustering algorithms under different parameters. Working principle of the

comparison script in metalanguage is described using following code block (Figure 13)

and the actual implementation in Python can be found in software repository

/identifier/utils/benchmark_clustering.py (Appendix 1).

For each dataset size (10, 100, 1000, 2000):
 For every iteration do:
 Select n random classes
 For different threshold value do:
 Apply all clustering algorithms
 Calculate difference from dataset
 Save best threshold value with accomplished accuracy
 Calculate the average accuracy and threshold over all iterations

Figure 13. Code block for comparing different feature extractions with clustering algorithms.

Author repeated the clustering benchmarks for 20 iterations each time with different batch

from the whole dataset to make sure, that the benchmark would meet different inputs. The

parameter searched for the clustering algorithms was the “similarity threshold”, which

was used in different ways depending on the algorithm specific principle. The results

showed on the following graph (Figure 14).

32

Figure 14. Clustering accuracy change over the dataset size.

Experiments showed, that the clustering accuracy is dropping drastically as the number

of people rises. What is more, additional inspection revealed that in most cases the errors

were cause because of the sunglasses, quality of the picture and face alignment for the

camera meaning that faces which looked directly towards the camera had higher chance

to be labeled correctly. During the tests, author also saved the speed of the execution for

each algorithm. It has to mentioned that the speed was captured using the standard Python

time function, meaning that the real computing times may vary. Following graph (Figure

15) illustrates how the time needed for computing rises as the number of people increases:

Figure 15. Computing power required over dataset size

As a result, author selected out Dlib face recognition model together with Chinese

Whispers clustering. Their main advantages were that they produced the highest accuracy,

had smallest computing time and the threshold hyperparameter for clustering algorithm

remained the save over the dataset changes staying stable around 0.475. Having a stable

33

parameter gives great advantages over the dynamic one, which could add additional

complexity to the system.

3.2.4 Prediction

Published papers and guidelines over the internet tend to guide people to use two methods

on top of the face feature extractors - NN (nearest neighbor) algorithms and SVM (support

vector machines) [17], [18], [33], [34].

K-Nearest Neighbor was one the first classifiers used in machine learning. The algorithm

itself is very simple - it finds K nearest matches (neighbors) to input and then checks the

majority of the class members present in that field. The problem is that this approach

makes it impossible to find unknown faces as it always finds nearest ones to given input

[17]. A variation of this algorithm is called Radius Neighbor algorithm, which provides

us to query neighbors within specific radius [32]. To make the prediction even more

accurate, we can define the prediction function only to be accurate, when specific size of

majority presence in achieved in the given radius. Following two graphs (Figure 16)

describe, how does the number of training images and the selected radius affect the

prediction accuracy:

Figure 16. Radius Neighbor classifier accuracy change over number of training images and radius.

SVM is one of popular pattern recognition classifiers. Unfortunately, the main setback of

this algorithm is that it is really difficult to detect unknown people. One way to solve this

problem is to use threshold value on predicted class probability score. Author has used

this functionality implemented inside Python Sklearn library [32].

Following table (Figure 17) describes, how the number of training samples per person

affected accuracy of the results:

34

Figure 17. SVM accuracy over the number of training images.

Although the SVM showed remarkable results in our experiments with calibrated

parameters, the general key finding over the different tests was that the more classes we

have, more training data is needed to differentiate between known and unknown person

as the probability scores were dynamic depending the size of training data and classes.

That said, it would be technically difficult to use SVM classifier in this project as the

training data is generated by the system over time from different elevator sessions to

gather different samples per person, meaning that after some time it would take too long

to save person for recognition.

Software implementation in Python comparing both of these algorithms can be found

under software repository in /identifier/utils/benchmark_classifiers.py (Appendix 1).

35

4 Automated face management system

This chapter introduces proposed algorithm, how the automated face management system

can be implemented for the Smart Elevator project and breaks down its role in the facial

recognition pipeline together with all the other components. It also describes the test

methodology used for evaluating the initial version of the implementation.

4.1 Proposed algorithm

Knowing from the conducted tests that the clustering algorithm can work really well with

small number of different people, it is wise to perform first level grouping in the scope of

elevator cycle. Elevator cycle in this work is considered a period of time, during which

there are people inside the elevator. In the end of each cycle a clustering is performed.

This will produce small number of clusters with relatively big accuracy. To ensure that

the system gathers different samples of each person, it filters out only random ten faces

from each cluster and throws rest of them away. Illustration of the results after N elevator

cycles can be seen on the following picture (Figure 18):

Figure 18. Saved clusters from elevator cycles.

After these “mini-clusters” in the scope of each cycles are produced, the next task is to

find out, whether exists situation where same person is represented in many different

batches. This is where the higher level clustering comes in. The idea is to combine all the

36

data saved over the cycles and find out if cluster bigger than the size of 50 can be formed.

If such clusters are created, 30 nearest samples from the cluster center are taken out and

marked as a collection of samples for each person and therefore are saved to known

people database. On the following picture (Figure 19), the clusters centers are marked as

a red dot whereas the red background represents the area of closest 30 samples from it.

Figure 19. Illustration of valid clusters.

The main purpose why cluster size > 50 is reduced to closest 30 is to filter out the errors

of the clustering algorithm, leaving it have 40% error margin for edge cases, which in

author’s experiments have shown to be the root cause of faulty cluster predictions. Also,

the 40% margin adds “extra space” for errors considering the clustering accuracy of

Chinese Whisper algorithm with a lot of different people. If a known face is saved to

database, then the rest of the samples left to the cluster are deleted as they are not required

anymore. Since, the higher level clustering can take a lot of time processing all the feature

vectors gathered from the different elevator cycles and also known people database, it

will be run during the night period. To keep the data collection amount reasonable, all the

feature vectors older than two months will be also discarded.

4.2 System overview

During the elevator cycles all the face captured will be recorded and saved together with

the timestamp and the current floor (this information was unavailable in the current

development phase). To detect faces from the video, HOG (histogram of oriented

gradients) feature extractor combined with linear classifier is used, which was included

37

the Dlib toolkit. The detection algorithm had to be chosen so that it would only detect

faces directly aligned to the camera to increase the accuracy of the face predictor and the

clustering algorithm. In the end of each elevator cycle, Chinese Whispers clustering

algorithm is applied. This clustering layer enabled to system to group visited people

together by cycle with relatively high accuracy as the analysis showed, that the less people

is included, the better the results are. Afterwards filtering is applied to save only few

samples of the visited persons to database to prevent it oversizing and to catch the errors

of the face detector, which were typically presented as clusters with one to three samples.

In the end of every day, the results of the currently known people the and groups inside

captured elevator cycles are combined. This processing is assumed to take up to several

hours and therefore is not executed during the day. If the data is older than two months

(this period came directly from the overall system requirements), it will be discarded. It

is mainly because there is no reason for the system to memorize people who visit elevator

temporary, instead this design allows elevator to predict for everyday users.

For combing, another layer of Chinese Whispers algorithm is applied. After that, the goal

is following filtering is to find out whether or not a known people class can be formed. A

detailed description is written in the previous sub-paragraph (4.1). If so, the person will

be added to the known people directory with a generated unique ID and if not the group

will be put back to elevator cycles to wait for another try, which can happen, when enough

samples from the person is gathered over future elevator cycles. When the person is added

to the known people, is used as input data for the Radius Neighbors Classifier and

therefore can be recognized. Also, this person will be seen in the user interface and the

information about the user can be accessed over the API. The overall system layout is

described on the following image (Figure 20) and sequence diagram describing the more

detailed software representation is on Figure 23.

38

Figure 20. System layout with flows.

4.3 Experimental results

In the scope of the first part of the development, author has gathered and concluded the

first results of the described algorithm above. In total, there were recorded hundreds of

different elevator cycles. Following algorithm managed to gather 133 persons out of 190

with a accuracy rate of 99.2%. Some people were not added because the algorithm could

not gather enough samples of each person during the recording sessions as it only saved

limited amount of samples per elevator cycle. Therefore, the ungrouped faces were not

counted as error matches. Also, in these experiments the faces were learned a lot faster

than they would have been in real life, because during the records author asked people to

use elevator more frequently as they would have done normally and duplicated some of

the cycles to simulate recurrent usage of the elevator. The amount of visiting persons and

errors in created clusters were counted manually using the help of Chinese Whispers

algorithm and thus the real performance of the system may be slightly different accuracy

due human error.

39

To get a first overview of the system identification accuracy, author has used the dataset

generated by the system itself. Author admits, that having such small dataset may give

somewhat inaccurate results, but the main goal of these tests was to test out, how well the

system currently behaves and get the first actual overview of the system performance. For

testing the dataset was divided as described on the following picture (Figure 21):

Figure 21. Test and training dataset for prediction.

As the system has to face known and unknown people, 20% of the dataset was marked as

unknown people. The specific percentage was chosen for two reasons - first, it is common

practice the split datasets to 80/20 and second, after some time, expected average number

of unknown people entering to the elevator over time can be around that area [9]. Then,

samples of each person from the known people were be split to training and test set. The

training set simulated the known people gallery in the database and the test set was treated

as the live camera input. This method showed identification accuracy of 98.8%. Software

implementation used for benchmarking can be found under software repository in

/identifier/utils/benchmark_classifiers.py (Appendix 1).

40

5 Integration and Interfaces

This chapter contains descriptions about the communication protocols and methods used

for integration. It also introduces the architecture, capabilities and the features of the

created user interface.

5.1 Communication with other system components

Smart Elevator is a large complicated system containing different pieces of software that

need to transmit information with each other to serve a higher goal. Next paragraphs

introduce the communication middleware shared between all of the components and an

overview, which kind of messages are interacted with the proposed system.

5.1.1 ROS

Smart Elevator consist of many different software components that are not always

running on the same machine (Figure 22). ROS (Robot Operating System) helps to

overcome the problem how to pass information from one software component to another.

It is a middleware, that helps real time systems to publish and subscribe information,

which requires very specific timings and is asynchronous. What is more, it gives

availability to control passed information from one central unit. This means that when

applying new security rules for connections, all the system components will automatically

will start to use it without tweaking each of them individually [35].

41

Figure 22. ROS.

This thesis covers the working principles of three components seen from above picture -

camera feed inside the elevator, face identification and real-time API. The video feed

inside the elevator is transferred to server, where the identification procedures happen.

This is mainly because the server had more computing power for that purpose. This

architecture also enabled subscribing components to keep track on the timestamp of the

identified face in order to prevent processing expired data. Handling expired data is a very

common problem in the real time systems and this usually can happens due the connection

issues between different components [35].

5.1.2 Interactions

Although the face recognition system has its own working principles and flows, it also

provides services for other system components. Generally, it has two main tasks -

answering to the identification request made by person tracking component and writing

recognition results to live video stream. In the end of the current development phase,

some of the interaction are mocked (yellow arrows of Figure 23) and can be simulated

using the keyboard commands.

42

When the person tracking component detects that someone is entering to the floor, it

immediately makes identification request with a unique ID. After that, the face identifier

will immediately search for the first face inside the door boundary box that meets with

the assumed size (the size of the faces at the door area from the camera perspective) and

makes an initial prediction. The result of the prediction will be sent back with the same

ID to querying component. This enables asynchronous communication that can handle

multiple request without receiving an individual response before making another request.

The identifier can also be used to update the prediction result, which can happen, when

the initial prediction that was provided turns out to be false as overtime the identification

system could have more time to process the face over several other frames.

The prediction results have to be also visible to the operating user, who can then validate

how the system reacts in real-time. The input frames from the camera are published for

the identification system by other system component using one ROS topic and after the

frame is processed, the results of are propagated back to ROS on different topic. When a

face is discovered, a green rectangle will be drawn on the frame together with the

prediction result. The new topic is essentially made for the user interface, but the system

architecture supports to use these results in other parts as well.

Complete overview of all the main interactions (including inner ones) is described on the

following sequence diagram (Figure 23). Inner interactions are happening between three

software components – main processing unit, which is responsible for handling all the

service calls made for ROS, Identifier, that is processing the image and makes predictions

and the Automated Face Management System, that takes care of face database based. As

the jobs of the face management system can take a lot of time, they are executed on a

separate thread.

43

Figure 23. Sequence diagram describing interactions between system components.

5.2 User interface

This sub-paragraph describes building blocks and the main features of the developed user

interface. It is dived into two sections - front end, which is everything that the operator

can physically see and the back end, that drives it on server side.

5.2.1 Front end

To make the user interface compatible with different kinds of devices and operating

systems, it was written to be a web application. This approach is a common practice in

modern application development. One of the most famous example of that is Google

Docs, which year after year is taking users away from traditional desktop applications

like MS Word and LibreOffice as it is portable and works the same way on every device.

In order to follow as much standard practices rather building something “on the knee”,

the developed user interface was written in one of the most popular today’s front end

library - ReactJS. This toolset was published by Facebook in 2013 and was built to

overcome the maintenance problems of web applications with complicated business logic

44

an over the last few years it has grown more popular than its main competitors (VueJS

and AngularJS) [36].

Although the main goal of this project was to automate the face management system,

meaning the the faces should be added and deleted automatically from the system, the

user interface provides an option it to do manually. This feature was added in order to use

it in other projects as well, where there is need to control the the face database manually

for example security related fields. One very strict requirement that came from the law

department was that there should be an option to delete the person from the database.

Following picture (Figure 24) illustrates, how author’s implementation of this page.

Figure 24. UI - face database

The green “Verified area” means that the user has been verified by staff card. As the RFID

verification integration was not part of the first phase development, then currently, the

verification status will be set randomly in order just to introduce the feature. The goal of

45

the staff card integration was to add employees ability to replace the random ID generated

by the system (as a requirement of GDPR) with valid name.

All the events happening inside the elevator will be stored to the database. Timeline page

(Figure 25) was created to view these events. User can limit the events by specifying a

date. One problem of this page was that there could be a lot of events happening during

one day, which means that the loading times for rendering all of them could leave operator

with bad user experience. Author has solved this problem by implementing it to be

continuous scroll. This means that only small portion of the events will be loaded initially

and next ones will be only displayed, when user starts to scroll over the page. As the event

management system was not development in this phase of the project, the events in the

user interface are mocked manually.

Figure 25. UI - timeline

46

The function of live page was to user an overview what is happening inside the elevator.

This means the face identification (left side on the Figure 26) and person tracking (right

side on the Figure 26) results with elevator state and detected command. The higher goal

of the page was to give participating developer an overview about the status of the system

and what decision it makes.

Figure 26. UI - live overview of RGB camera and depth camera results

5.2.2 Back end

Created back-end system has five core functionalities - authentication, image serving,

propagation of elevator live status and lets user to request filtered data. Backend

functionalities are served through API. Whole backend is written in NodeJS ver. 8, which

has non-blocking IO, which enables easier integration of asynchronous events happening

in real-time systems. It runs inside Chrome V8 JavaScript engine, which means it can run

on any modern operating system the same way [37]. The general API architecture is

described on the following picture (Figure 27) and the detailed overview is summarized

on the next paragraphs.

47

Figure 27. API architecture

The main reason for building a back-end on top of authentication system was that the

information that the serves has is very sensitive and cannot be accessed by public to

prevent TalTech for violating the data protection rules. Our team has been in close

cooperation with TalTech law department and asked for security advice from other

experts.

All the API calls (except the login request) are protected by ‘Basic authentication’, which

is described in RFC 7617. It’s working principle is very simple - server should only

provide allows access to the data for clients (users) who have provided special token,

which basically is a string containing various symbols. This token is issued only if client

has provided valid credentials and is expiring after certain period of time has passed. One

of the core weaknesses of this method is that server only checks the token rather than

finding out if the client really is who it claims. This means that if attacker manages to

steal the the token, the server will reply to any request [38]. In this project, this risk is can

be mitigated by allowing only HTTPS connections, which means that the token is always

encrypted by RSA algorithm.

Most commonly made API requests inside traditional web browser are done using REST

API, which enables programmers to define sensible queries using HTTP stack. It

generally means a way, how browser can ask something from server. All the API calls

made for this project are described in the following table (Table 5).

48

Table 5. REST interface general overview

Path Method Description Parameters Response

/api/auth

POST Authentication username,
password

token

/api/timeline GET Get events by
day

datetime result,
totalEvents

/api/gallery/known-
people/thumbnails

GET Get 5 from each
random samples
of the person

page,
pageSize,

result,
totalPages,
page
pageSize

/api/gallery/known-people/ GET Get the whole
gallery of the
person

id person_id,
files

/api/gallery/known-people/upload/

POST Upload new
sample to
known person

id
files

msg

/api/gallery/known-people/add

POST Add new people
to database

files msg
generated_id

/api/gallery/known-people/delete POST Delete samples
of person from
database

person_id
images

msg

/api/livestream/basler-stream

GET Get access to
camera stream

- stream

/api/livestream/realsense-stream

GET Get access to
depth camera
streams

- stream

Opposite to the REST API, with WebSockets it is possible for server to send (push)

notifications to user interface. This means that when backend notices data change, it can

immediately notify the client, rather than waiting until client specifically asks for

information update. In Smart Elevator project, the data changes are detected speech,

number of persons detected, current floor of the elevator and elevator moving direction.

49

If a client has subscribed to these data changes, the back-end system automatically creates

the link between client and the ROS topics, where these data changes actually are

propagated. Although WebSocket and REST are totally different communication

methods, author has developed an integration for these technologies to use same

authentication interface.

50

6 Future development and suggested improvements

Smart Elevator project definitely will be developed further as the even the first phase one

the development was not ended by the time of this thesis was written. This paragraph

provides several suggestions, how to improve the proposed system and how to mitigate

the errors for some of the critical parts.

Currently the system uses pretrained feature extraction model from the Dlib toolkit, which

works relatively well. In order to further improve the accuracy of the model or introduce

the elevator lightning condition to the network, some parts of the model should be fine-

tuned. This is a common practice, since training the neural network from scratch can take

a lot of time, without guaranteed result. This can be done by retraining some layers of the

neural network with new dataset, which can be the face database generated by the system

[10].

Providing identification information for people tracker component is relatively simple

task if there is only single person facing toward the camera. Unfortunately, there are

usually more than just one person in the elevator therefore, the identification algorithm

should know, which face has just entered to the elevator and which is already inside. This

can be done by keeping track on the face movements during the whole elevator cycle.

When the boundary box is left door area, then it is possible to assume, that this face should

not be detected as the entering one beside the doors and opposite.

The core of the automated face management system depends highly on the accuracy of

the face detector since it is the only source of input data. Currently, if the face detector

makes a mistake, the only way for capturing it relies on the condition inside first filtering

after elevator cycle, that requires formed cluster size bigger than n (detailed description

in sub-paragraph 4.2). It is definitely worth trying out if these false positive detections

can be spotted using some kind of anomaly detection algorithm.

51

7 Conclusions

The goal of this thesis was to create automated face management system, which over time

would learn to differentiate and recognize people directly from cameras installed inside

the elevator together with an user interface, which enables to interact with the system and

provides an overview of recognition results and real time events.

During the research, author did compare Mean-Shift, DBSCAN and Chinese Whispers

clustering algorithms combined with three different feature extraction convolutional

neural networks. After the experiments the best combination turned out to be Chinese

Whispers together with Dlib face recognition model, considering the performance and

execution time.

Integration with other system components was implemented using real-time operating

system, which enabled asynchronous communication by default. To get an overview of

the composed system in action, a web-based user interface was created, which enables

configuring the face database, shows the events over the history and provides operator

means to monitor the live system.

With composed methodologies the produced system managed to gather 133 people with

a clustering accuracy of 99.2% by processing the recorded videos, that were saved and

captured during the research. These results were then passed as a training input data for

the face identification component implemented using the Radius Neighbor classifier,

achieving the identification accuracy of 98.2%. Therefore, all the requirements for the

thesis problem are satisfied.

52

References

[1] A. K. Jain, K. Nandakumarb and A. Ross, "50 years of biometric research:

Accomplishments, challenges, and opportunities," Pattern Recognition Letters, p.
25, 2016.

[2] J. D. WEST, "FaceFirst," FaceFirst, [Online]. Available:
https://www.facefirst.com/blog/brief-history-of-face-recognition-software/.
[Accessed 27 April 2019].

[3] "GrandViewResearch," September 2018. [Online]. Available:
https://www.grandviewresearch.com/industry-analysis/biometrics-industry.
[Accessed 27 April 2019].

[4] L. Siwik and L. Mozgowoj, "Server-Side Encrypting and Digital Signature
Platform with Biometric Authorization," Computer Network and Information
Security, vol. 4, pp. 1-13, 2015.

[5] "Amazon," Amazon, [Online]. Available: https://aws.amazon.com/rekognition/.
[Accessed 27 April 2019].

[6] "Azure," Microsoft, [Online]. Available: https://azure.microsoft.com/en-
us/services/cognitive-services/face/. [Accessed 27 April 2019].

[7] "Kairos," Kairos, [Online]. Available: https://www.kairos.com/features.
[Accessed 27 April 2019].

[8] "Apple," Apple, [Online]. Available: https://www.apple.com/lae/iphone-xs/face-
id/. [Accessed 27 April 2019].

[9] S. Saha, "towardsdatascience," 15 12 2018. [Online]. Available:
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53. [Accessed 27 04 2019].

[10] University of Stanford. [Online]. Available: http://cs231n.github.io/convolutional-
networks/. [Accessed 2019 April 2019].

[11] Univercity of Toronto, "Artificial Neural Networks Technolog," [Online].
Available:
http://www.psych.utoronto.ca/users/reingold/courses/ai/cache/neural2.html.
[Accessed 27 April 2019].

[12] THE UNIVERSITY OF TEXAS AT EL PASO. [Online]. Available:
http://wwwold.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-
html/node12.html. [Accessed 27 April 2019].

[13] S. Albawi, T. . A. Mohammed and S. Al-Zawi, "Understanding of a convolutional
neural network," IEEE, Antalya, 2017.

[14] Axis, "Axis," [Online]. Available:
https://www.axis.com/files/datasheet/ds_a1001_door_controller_t10091714_en_1
901.pdf. [Accessed 30 April 2019].

[15] Edmundoptics, "Edmundoptics," [Online]. Available:
https://www.edmundoptics.com/p/basler-ace-aca1440-73gm-monochrome-gige-
camera/40324/. [Accessed 27 April 2019].

[16] Amazon, "Amazon," [Online]. Available: https://www.amazon.com/Intel-
Realsense-D435-Webcam-FPS/dp/B07BLS5477. [Accessed 27 April 2019].

53

[17] A. Kumar, "appliedmachinelearning," [Online]. Available:
https://appliedmachinelearning.blog/2018/10/30/yet-another-face-recognition-
demonstration-on-images-videos-using-python-and-tensorflow/face-recognition-
pipeline/. [Accessed 27 04 2019].

[18] J. Philbin, D. Kalenichenko and F. Schroff, "FaceNet: A Unified Embedding for
Face Recognition and Clustering," 2015.

[19] E. Learned-Miller, G. B. Huang, A. RoyChowdhury, H. Li and G. Hua, "Labeled
Faces in the Wild: A Survey," In Advances in Face Detection and Facial Image
Analysis, pp. 189-248, 2016.

[20] D. E. King, "Dlib-ml: A Machine Learning Toolkit," Journal of Machine
Learning Research, vol. 10, pp. 1755-1758, 2009.

[21] B. L. M. S. B. Amos, "OpenFace: A general-purpose face recognition library with
mobile applications," CMU-CS-16-118, CMU School of Computer Science,
2016.

[22] D. Sandberg, "Github," [Online]. Available:
https://github.com/davidsandberg/facenet. [Accessed 27 April 2019].

[23] A. Alemi, V. Vanhoucke, S. Ioffe and C. Szegedy, "nception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning," arXiv, San
Francisco, 2016.

[24] "Tensorflow," [Online]. Available: https://www.tensorflow.org. [Accessed 30
April 2019].

[25] "PyTorch," [Online]. Available: https://pytorch.org. [Accessed 30 April 2019].
[26] A. Bijl, "A comparison of clustering algorithms for face clustering," University of

Groningen, Groningen, 2018.
[27] H. Yanagisawa, T. Yamashita and W. Hiroshi, "Manga character clustering with

DBSCAN using fine-tuned CNN model," Society of Photo-Optical
Instrumentation Engineers, 2019.

[28] C. Biemann, "Chinese Whispers - an Efficient Graph Clustering Algorithm and its
Application to Natural Language Processing Problems," University of Leipzig,
Leipzig, 2006.

[29] M. Ester, H.-P. Kriegel, J. Sander and X. Xu, " 226 KDD-96 ADensity-
BasedAlgorithmfor DiscoveringClusters in LargeSpatial Databaseswith Noise,"
University of Munic, München, 1996.

[30] Developers of Scikit-learn, "scikit-learn," [Online]. Available: https://scikit-
learn.org/stable/modules/clustering.html#dbscan. [Accessed 27 April 2019].

[31] K.-L. Wua and M.-S. Yangb, "Mean Shift-Based Clustering," Pattern
Recognition, vol. 40, no. 11, pp. 3035-3052, 2007.

[32] s.-l. developers, "scikit-learn," [Online]. Available: https://scikit-
learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html. [Accessed 27
April 2019].

[33] A. F. M. Agarap, "An Architecture Combining Convolutional Neural Network
(CNN) and Support Vector Machine (SVM) for Image Classification," ArXiv ,
2017.

[34] P. J. Phillips, "Support Vector Machines Applied to Face Recognition," Advances
in neural information processing systems, vol. 2, pp. 803-809 , 1999.

54

[35] Y. Tawil, "allaboutcircuits," 26 05 2017. [Online]. Available:
https://www.allaboutcircuits.com/technical-articles/an-introduction-to-robot-
operating-system-ros/. [Accessed 27 04 2019].

[36] C. Technologies, "Medium," 26 April 2018. [Online]. Available:
https://medium.com/cuelogic-technologies/top-3-best-javascript-frameworks-for-
2019-3e6d21eff3d0. [Accessed 27 April 2019].

[37] N. Foundation, "NodeJS," [Online]. Available: https://nodejs.org/en/about/.
[Accessed 27 April 2019].

[38] J. Reschke, "The 'Basic' HTTP Authentication Scheme," Internet Engineering
Task Force, 2015.

[39] S. Symanovich, "Norton," Norton, [Online]. Available:
https://us.norton.com/internetsecurity-iot-how-facial-recognition-software-
works.html. [Accessed 27 April 2019].

[40] Pyimagesearch., "Pyimagesearch," 09 July 2018. [Online]. Available:
https://www.pyimagesearch.com/2018/07/09/face-clustering-with-python/.
[Accessed 27 April 2019].

55

Appendix 1 – Software repository

The code for the project was stored in https://gitlab.pld.ttu.ee/Rait.Kurg/master-thesis.git.

This repository has internal access level limited only to people with TalTech Uni-ID as it

contains sensitive face database and test data of individuals.

