
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Silvia Väli IVCM153489

ANALYSIS OF ELECTRON-BASED
APPLICATIONS TO IDENTIFY XSS FLAWS

ESCALATING TO CODE EXECUTION IN
OPEN-SOURCE APPLICATIONS

Master's thesis

Supervisor: Olaf Maennel

Ph.D. (Dr.rer.nat.)

Professor

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Silvia Väli

30th of December 2017

Abstract

JavaScript which has conquered the worlds of client-side and server-side programming

has encouraged the creation and popularity of cross-platform frameworks like Electron.

This has introduced a way to create native applications suitable for multiple platforms

by only using web technologies which web developers are familiar with. Unfortunately,

the transmission of web technologies, like JavaScript from sandboxed browsers to the

desktop environment has introduced vulnerabilities common in web applications to a

whole new environment.

Web vulnerabilities have been extensively studied long over a decade, so it could be

assumed that developers are aware of the consequences of security issues and the

respective preventative measures. However, cross-site scripting has nevertheless

remained to be a common phenomenon in web applications.

By default, Electron-based applications are executed in an unsandboxed environment,

where cross-site scripting on a single page application can pose risks more severe than

they ever would in a web application. This has encouraged research on framework

specific security issues in order to bring awareness on the matter with appropriate

prevention methods.

The contribution made in this thesis aims to validate the hypothesis that many of the

open-source Electron-based applications, currently available in Github, are vulnerable

to cross-site scripting that has the capability to evolve into code execution. In achieving

that, an analysis method in two stages was followed to firstly gather statistical

information and secondly to conduct manual analysis on observed applications. From

manual analysis, ~37% of the applications were identified as vulnerable by following a

three step process.

This thesis is written in English and is 77 pages long, including 8 chapters, 54 figures

and 9 tables.

3

Abstrakt

Analüüs Electron’i põhistest rakendustest tuvastamaks XSS turvavea

eskaleerumist koodikäivituseks

JavaScript, algselt loodud kui kliendipoolne programmeerimiskeel, on tänaseks sujuvalt

kasutusel ka serveri poolel. Selline areng on toetanud mitmeplatvormiliste rakenduse

raamistike nagu Electron loomist ning populariseerimist. Tänu sellistele raamistikele on

võimalik luua desktop rakendusi põhinedes vaid veebitehnoloogiatel, millega

veebirakenduste arendajat juba tuttavad on. Veebitehnoloogiate, nagu näiteks

JavaScript’i üleminek turvakaalutlustel isoleeritud (sandboxed) brauseri keskkonnast

desktopi rakenduste keskkonda on toonud kaasa olukorra kus algselt vaid brauseri

keskkonnas esinevad turvahaavatavused esinevad ka mujal.

Veebihaavatavusi on uuritud põhjalikult üle kümnendi, seega võiks oletada, et arendajad

on teadlikud haavatavustega seotud tagajärgedest ning õigetest kaitsemeetoditest.

Sellest hoolimata on jäänud veebis esinevad turvahaavatavused nagu Cross-Site

Scripting (XSS), tihti esinevaks nähtuseks.

Electron’i rakendused käivitatakse originaalis vaikeväärtusega, millest tulenevalt

brauserile tavapärast keskkonna isoleeritust (sandbox) ei rakendata. See on toonud

kaasa olukorra, kus haavatavuse, nagu XSS, esinemisel on riski võimalik tagajärg palju

tõsisem, kui selle esinemisel brauseris. Sellest tulenevalt on hoogustunud ka Electron’i

raamistikupõhiste turvahaavatavuste ning võimalike kaitsemeetodite uurimine.

Antud lõputöös panustatakse avatud lähtekoodiga Electroni-põhiste rakenduste

uurimisega valideerimaks järgnevat hüpoteesi: paljud Github’is olevad Electroni-

põhised rakenduse on haavatavad XSS-tüüpi rünnetele, millest tulenevalt on võimalik

ohvri masinas koodi käivitada. Selle saavutamiseks, kasutati kahest etapist koosnevat

meetodit, kogumaks statistilisi andmeid analüüsitavate rakenduste kohta ning teostades

rakendustel manuaalse testimise valideerimaks hüpoteesi. Manuaalse testimise

tulemusena tuvastati haavatavus 37% analüüsitud rakendustest.

4

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 77 leheküljel, 8 peatükki, 54

joonist, 9 tabelit.

5

List of abbreviations and terms

OWASP The Open Web Application Security Project

CVE Common Vulnerabilities and Exposures

HTTP Hypertext Transfer Protocol

HTTPS HyperText transfer Protocol Secure

AST Abstract Syntax Tree

US United States

CSS Cascading Style Sheets

HTML HyperText Markup Language

CPU Central Processing Unit

API Application Programming Interface

NW Node-Webkit

JIT Just in Time

IPC Interprocess communication

GUI Graphical user Interface

XML Extensible Markup Language

DOM Document Object Model

XSS Cross-site scripting

URL Uniform resource locator

NOSQL Non-relational Structured Query Language

SSJI Server-side JavaScript Injection

JSON JavaScript Object Notation

SQL Structured Query Language

GPU Graphics Processing Unit

npm Node package manager

6

Table of Contents

1 Introduction..12

1.1 Motivation..13

1.2 Problem Statement and the contribution..14

1.3 The scope...16

1.4 Related research...16

2 Electron framework..18

2.1 Electron components..18

2.1.1 Chromium..18

2.1.2 Node.js...20

2.1.3 V8..22

2.2 Processes..22

2.2.1 Main process..22

2.2.2 Renderer process..23

3 Application security..26

3.1 OWASP Top 10..26

3.2 Cross-site scripting..29

3.2.1 Client-side and server-side XSS...30

3.2.2 Reflected cross-site scripting...30

3.2.3 Stored cross-site scripting..32

3.2.4 DOM based cross-site scripting..32

3.3 Server-side JavaScript...34

4 Electron Security..37

4.1 Security checklist...37

4.1.1 Node integration...38

4.1.2 Sandbox..39

4.1.3 Preload scripts..40

4.1.4 Websecurity...40

4.1.5 Insecure HTTP connections...41

7

4.1.6 Navigation to untrusted origins...41

4.1.7 Popups in webview..42

4.1.8 Shell.OpenExternal..42

5 Methodology in collecting statistical data from Electron-based applications.............43

5.1 Analysis method..43

5.1.1 Subject 1 – Modules...45

5.1.2 Subject 2 - WebPreference options...46

5.1.3 Subject 3 - Remote content...47

 BrowserWindow...47

 BrowserView..50

 Webview tag...51

 Window.open()...52

5.1.4 Subject 4 - Vulnerability to cross-site scripting attacks to evolve into code

execution..53

6 Analysis and results..57

6.1 Dataset...57

6.2 Modules...59

6.3 WebPreference options..61

6.4 Remote content..62

6.5 Applications vulnerable to cross-site scripting evolving into code execution.......63

6.5.1 Overview of the vulnerable applications..64

6.5.2 Attack vectors...65

6.5.3 Step one to step three validation and results...66

6.5.4 XSS to code execution – showcase on a vulnerable markdown editor..........68

6.5.5 Risk...69

6.6 Suggestions..70

7 Conclusion and future work...72

8 References..74

8

List of Figures

Figure 1. Processes created when Electron app is launched..19

Figure 2. Command used for the GPU process...19

Figure 3. Command used for the renderer process..20

Figure 4. Main and Renderer processes [25]...23

Figure 5. Creating a new window instance with contants displayed from index.html....24

Figure 6. OWASP TOP 10 published in 2017 [30]..27

Figure 7. Client-side and server-side XSS [34]...30

Figure 8. Example – Code snippet - Reflected cross-site scripting.................................31

Figure 9. Reflected cross-site scripting...31

Figure 10. Stored cross-site scripting..32

Figure 11. Example: Code snippet - Stored cross-site scripting......................................32

Figure 12. chooseTab function to select between various tabs in the application...........33

Figure 13. Payload to trigger an alert..34

Figure 14. DOM based cross-site scripting...34

Figure 15. Payload displayed in the DOM..34

Figure 16. SSJI vulnerability from handling user input as a parameter for eval.............35

Figure 17. Example – code snippet of a JSON message...35

Figure 18. Example – code snippet of a JSON message passed into eval()....................36

Figure 19. Example – code snippet of a JSON message...36

Figure 20. Example – code snippet which can cause a DOS attack................................36

Figure 21. Example – code snippet to read the contents of a file....................................36

Figure 22. Example – code snippet to execute binary files...36

Figure 23. Creating a new browser window instance with node integration enabled.....38

Figure 24. Creating a new browserView instance with node integration disabled..........38

Figure 25. Remote content displayed via webview with node integration enabled........39

Figure 26. Opening a new window displaying remote content.......................................39

Figure 27. Opening a new window displaying remote content while node integration is

disabled..39

9

Figure 28. Creating a new BrowserView instance with sandbox feature enabled...........40

Figure 29. Creating a new BrowserWindow instance with websecurity feature enabled

...41

Figure 30. Disablewebsecurity flag in webview element..41

Figure 31. ‘Will-navigate’ event to detect if navigation occurs to unspecified location. 42

Figure 32. Stage 1 – collection of statistical data..43

Figure 33. Stage 1 and 2 – collection of statistical data and manual analysis.................45

Figure 34. Search strings to collect required modules...46

Figure 35. Possible results gathered from search strings...46

Figure 36. WebPreferences set for a BrowserWindow instance......................................47

Figure 37. Versioning information for Node, npm and Electron.....................................48

Figure 38. Application structure for the application project..48

Figure 39. Remote content displayed in the browser window with enabled node

integration..48

Figure 40. Contents of the remote content served from /index.html...............................49

Figure 41. Remote content displaying hostname and home directory............................49

Figure 42. Node integration disabled – Uncaught ReferenceError.................................49

Figure 43. Index.js file – displaying remote content from BrowserView instance with

enabled node integration..50

Figure 44. Displaying remote content via webview element..51

Figure 45. Displaying remote content in a new window with node integration disabled

...53

Figure 46. Application structure..54

Figure 47. For to submit name and e-mail...55

Figure 48. Dialog with user input displayed in the output document as bolded.............55

Figure 49. Payload used to open a calculator via shell.openExternal method................56

Figure 50. Shell.OpenExternal method used for opening calculator via payload...........56

Figure 51. Test string to determine the presence of XSS...66

Figure 52. Test string to determine the state of node integration....................................66

Figure 53. Attack payload for sending the contents of ‘/etc/passwd’ file to the attacker 68

Figure 54. Command to listen on the port and receive the contents into passwd.txt file 68

10

List of Tables

Table 1. Node integration - BrowserWindow and BrowserView WebPreferences.........50

Table 2. Node integration - BrowserWindow and WebView...51

Table 3. Node integration - BrowserWindow, BrowserView and Webview....................51

Table 4. Main and renderer processes modules required in applications........................58

Table 5. WebPreferences set for browser window instances...59

Table 6. Remote content included via http/https...61

Table 7. External links, served over http/https by using shell.openExternal...................61

Table 8. Number of applications corresponding to attack vectors no. 1-3......................64

Table 9. Results of the second phase for steps one to three for applications no. 1-19....65

11

1 Introduction

As data theft, fraud and breaches are an everyday phenomenon in the news, application

security has gotten more attention with every coming year. Why those types of news

make the headlines is all dependent on the impact of the vulnerability, as the same type

of vulnerabilities can present themselves differently in every application. Any existing

vulnerabilities in the software we use, can expose personal information to third parties

with criminal intentions.

“Common Vulnerabilities and Exposures” - CVE details, which keeps track of known

vulnerabilities, also provides some interesting yearly statistics on “Top 50 Products By

Total Number of ‘Distinct’ vulnerabilities” [1] . Examining the first top 20 products

from that list, one may see that it contains all four widely used browsers Chrome,

Firefox, Safari and Internet Explorer. By the W3Counter statistics, in 2017 September,

these four browsers make up of 90% of the browser market share [2] . This makes it

highly likely that a targeted user is using at least one or more of those four browsers,

therefore might be using a vulnerable application.

To access many of the other resources served over the World Wide Web, confidential

data such as banking information, private documents and more is trusted to be hosted by

a third party. According to the report, published in 2017 by the Verizon, 571

databreaches out of 1935 that they investigated were web application attacks [3] .

Another yearly report published by the Trustwave, claims to have observed 13% of the

web attacks to be related to cross-site scripting vulnerabilities and with 99.7% of the

applications in present of at least one vulnerability [4] . Cross-Site scripting is not a new

phenomenon in the scene of web application vulnerabilities and continues to occur

despite being thoroughly researched more over than a decade.

By 2017 JavaScript, originally built to be the client side programming language, has

conquered both worlds and being actively used also for the server-side development.

This has encouraged the creation of frameworks like Electron and Nw.js, which enable

web developers to develop multiplatform desktop applications by only using web

12

technologies. This unfortunately has introduced client-side vulnerabilities also to the

server-side code which due to their potentially elevated impact has created emerging

interest for understanding these types of vulnerabilities.

1.1 Motivation

The Open Web Application Security Project (OWASP), has made it a priority to

advocate the overall web application security scene, by producing community dedicated

material including Web Application Security Top 10.

OWASP Top 10 brings an overview of the main web application security issues based

on the collected data, surveys and personal experience of the OWASP team. They have

emphasized the changes within the past four years (the previous OWASP Top 10 was

published in 2013) in application’s architecture which accelerated the release of the top

10 published in 2017. As the result of their research they have concluded that [5] :

 JavaScript has become one of the most popular languages in web development;

 older enterprise applications are replaced by microservices written in Node.js

and Spring boot;

 there has been a rise of the single page applications written in JavaScript

frameworks such as Angular or React;

 wider usage of modern web frameworks like Bootstrap, Angular, React and

Electron has resulted in formerly backend source code to be running in the client

side, in the untrusted browsers.

These notable changes have presented a quick and comfortable way to create

multiplatform desktop applications, such as Electron. Electron is an open source project,

previously known by the name of Atom shell [6] , developed and maintained by Github.

It has been adopted and actively used in the development of desktop versions for

applications such as Wire, Skype, Wordpress, Shopify, Github, GitKraken, Tidal, Trello

and many others [7] .

13

Presenting web applications in a desktop like environment using the components of

Electron - Chromium, Node.js and V8 - has presented web application vulnerabilities to

a new environment. Exploitation of those vulnerabilities can have unforeseen impact in

the desktop environment that web developers might not be aware of as presented by the

application security company Doyensec [8] . Therefore, it is important to have a good

understanding of the characteristics of those vulnerabilities and their impact in desktop

environment in order to improve the security of Electron based applications.

1.2 Problem Statement and the contribution

In 2017 Black Hat US, security checklist for Electron-based applications [9] was

presented by Luca Carettoni from Doyensec. Quoting from the report:

“Many companies have started providing native desktop software built using the same

technologies as their web counterparts. In this trend, Github's Electron has become a

popular framework to build cross-platform desktop apps with JavaScript, HTML, and

CSS. While it seems to be easy, embedding a web application in a self-contained web

environment (Chromium, Node.Js) leads to new security challenges. ”

As part of their research, they introduced a security checklist which involved the

overview of misconfigurations and vulnerabilities that can occur in Electron-based

applications. They had also implemented a tool to check for the presented security

issues called Electronegativity, which on this day is not publicly available anymore for

unknown reasons. The cohesive set of vulnerabilities they presented were in majority

connected with the settings of web page’s features called as WebPreferences object. A

noteworthy section of the report was discussing the combination of rendering untrusted

content on a page where JavaScript is allowed to access operating system primitives.

This means untrusted content has access to taking advantage of native desktop

mechanisms like reading and writing files which refers to wider attack surface.

14

As Electron is a relatively new framework, used by the web developers who are familiar

with web technologies, the following hypothesis is posed:

Many of the open source Electron-based applications are vulnerable to cross-site

scripting, which due to misconfigurations or missing configurations in WebPreference

options escalates to code execution.

In order to validate or disproof the hypothesis, following novel contributions are

presented within two stages of analysis conduted in this study.

First stage focuses on analying open-source Electron-based applications in order to

collect statistical information on three subjects of interest for finding common features.

The subjects analysed are:

• the most common Electron specific modules required through out the

applications;

• webPreference options which are the options that control specific features of the

application page displayed to the user;

• remote content included to the application via loadURL in BrowserWindow and

BrowserView, which are the classes in Electron framework to create and manage

browser windows; remote content included via window.open() method or a

webview tag used to display external web content.

As first stage focuses on gathering statistical data, the second stage approaches directly

the validation or disproof of the hypothesis. This incorporates a method with three

subsequent steps to be followed in the analysis of each application from the dataset. For

the observed application to be identified as vulnerable, following attempts must result in

success:

◦ first step attempts to identify the presence of a cross-site scripting

vulnerability from the observed application;

15

◦ second step attempts to determine whether the browser window with

identified cross-site scripting vulnerability has granted access to using node

modules which represent a set of functions that can be required in the

application;

◦ third, and the final step of the second stage involves producing a payload to

showcase the seriousness of the issue with a realistic attack vector for the

vulnerable application.

Based on the results gathered from second stage:

• as a conclusive outcome, findings on vulnerable applications and the statistical

data gathered from analysed Electron-based applications is presented in chapter

6.

1.3 The scope

The scope of this thesis is focused on Electron-based applications in Github that are

available for code review and are successfully executable in the desktop environment.

The statistical data is based purely on the source code examination. The detection of

cross-site scripting vulnerabilities follows the similar actions taken to detect cross-site

scripting vulnerabilities in web applications, which we assume the reader to be familiar

with.

1.4 Related research

This subsection of “Related research” will not present any substantial amount of related

research papers as no academic papers were found to directly approach or tackle

Electron related research questions relevant to the hypothesis to be proven in this thesis.

As Electron framework uses web technologies, hence the exposure to cross-site

scripting vulnerability, any research on XSS could be counted as related work, however

16

indirectly. Therefore XSS was introduced in this thesis in section 3 via examples of

client- and server-side JavaScript.

Performing searches in popular search engines with relevant search terms to Electron

did not present any academically acceptable research papers, while this thesis

contributes to achieving exactly that.

17

2 Electron framework

Electron is an open source framework for developing cross-platform desktop

applications by using JavaScript, HTML and CSS as defined by the official Electron

documentation [10] . Developed and maintained by Github, it has come a long way

from 2015 when what was originally developed and called as Atom Shell, was then

named Electron. At the present day, the popularity of Electron is thriving and the

number of downloads has reached up to 1.2 million [11] .

When talking about the Electron framework, it really means talking about the three core

components on which it is based on: Node.js, Chromium and V8 - the JavaScript

engine. Following sections will discuss the Electron framework, its core components

and structure, in order to give more complete understanding of the studied framework

and what it provides to the applications.

2.1 Electron components

Electron framework has been implemented based on the three core components:

Node.js, Chromium and V8 JavaScript engine. A single instance of the V8 engine is

used both by Node.js and Chromium.

2.1.1 Chromium

Chromium is an open source browser project, developed and maintained by the

Chromium Project and is the basis to the Google Chrome browser. Electron only uses

the rendering library from Chromium in order to maintain and limit the scope of the

framework.

The content module used by the Electron is consumed from the Chromium’s repository

[12] , where it is packaged and in Electron repository known as the libchromiumcontent

18

[13] . This module holds every piece of code needed to render a page in a multiprocess

sandboxed browser [14] . Content module, however, does not include the Chrome

features such as autofills, spelling, extensions and others, but implements the APIs on

which these features can be built upon.

Electron follows the concept of multi-process architecture [15] implemented in

Chromium, where one or multiple renderer processes are launched from the main

process. Each of the renderer processes can hold one or many renderview objects. This

is analogous to the Chrome browser and how different tabs within the browser window

are managed. Each renderer process has access to communication with its parent

process, while being in isolation with the other renderer processes. An example of a

process creation can be shown by launching the Electron “Quick Start” [16] application

and observing the created processes via Process Monitor as shown in Figure 1.

A simple application such as “Quick Start”, displaying the text and the versions of

Node.js, Chromium and Electron, will create the following processes:

Figure 1. Processes created when Electron app is launched

Electron.exe (5884) is where the application is eventually launched. From there on

electron.exe (5124) on figure 2 and electron.exe (5288) on figure 3 show the commands

for launching the GPU and the renderer processes.

electron.exe (5124) – GPU process

"C:\Users\user\electron-quick
start\node_modules\electron\dist\electron.exe" --type=gpu-process
--no-sandbox ”

Figure 2. Command used for the GPU process

19

electron.exe (5288) – renderer process

"C:\Users\user\electron-quick-

start\node_modules\electron\dist\electron.exe" --type=renderer –no-

sandbox ... --lang=en-US --app-path="C:\Users\user\electron-quick-

start" --node-integration=true --webview-tag=true --no-sandbox

--enable-pinch --device-scale-factor=1“

Figure 3. Command used for the renderer process

Security is one of the most important goals for Chromium [17] , but by following the

executed commands it is evident that by default Electron is launched in the Chromium

wrapper without the sandbox feature turned on. It also has enabled node integration and

webview tag usage, which respectively enable access to the Node APIs and to

embedding third party content. Therefore, the content displayed in the applicvationhas

access to the operating system and its native APIs to perform operations such as reading

and writing files.

Electron, using web technologies, is challenged by the same security issues as any web

application running inside the Chrome browser [18] , but the impact of an attack can

reach much further. In a sandboxed environment having a vulnerability such as cross-

site scripting is somewhat contained, but yet has extensive impact. It can enable the

attacker to perform session hijacking by stealing user’s session cookie, performing

malicious redirections, access confidential data and even perform actions on victim’s

behalf. Without having the sandboxed environment the consequences can reach much

further. This will be discussed within the upcoming sections about Electron security.

2.1.2 Node.js

With the popularity of JavaScript, its stable establishment to the software world has

been inevitable. Breaking the boundaries of only running JavaScript on the client side

has paved the way for server-side applications, as well as mobile and desktop

application frameworks.

Node.js is an open source JavaScript runtime which uses the V8 engine to parse,

compile and run JavaScript. As Node.js is asynchronous, it allows to handle many

operations concurrently. It comes with its own package manager npm, which holds the

20

largest number of open source libraries in the world. In December of 2015, the number

of modules was slightly passing over 200 000 [19] . Currently, approximately 540 478

modules, with average of 569 new modules added per day [20] has proven its growing

popularity and adoption by the community.

The launch of Node.js in 2009 enabled JavaScript to go beyond the barrier of web

applications and contribute to the development of server-side software. Traditionally,

server-side software has always been built with platform specific methods. However,

JavaScript-based platforms, NW.js and Electron skyrocketed the development of cross-

platform desktop applications. NW.js having over 206,439 downloads [21] in 2017 and

Electron over 4,368,327 [22] downloads based on the statistics provided by npm-stat

module. JavaScript has made it possible for the web developers to be building desktop

applications by using web technologies.

Electron is highly dependent on Node and the possibilities it provides for the

development. It provides the application with integrated node access to require node

modules which then can be used within the application. This includes requiring modules

such as file system - to read/write files, os - to use operating system-related methods, for

example to ask information about the CPU, home directory location, user’s machine’s

hostname, amount of the free memory on the system, to acquire IP-s and network

interfaces etc., path - to work with file and directory paths, and many other modules.

While the number of available packages provided by Node is humongous, it is advisable

for security reasons to choose the third party packages responsibly. In the Node

Interactive North America conference, presentation on Node security was made by a

company called Snyk. Snyk is a company which builds tools to secure the dependencies

used in open source projects, to monitor Node.js npm and Ruby packages. They brought

a good perspective on a typical application using Node packages, where the actual code

contribution written by the developer is rather small comparing to the actual size of the

application what comes from the code in npm. This in turn means that most of the

vulnerabilities come from the npm and as they announced in the December of 2016,

14% of those packages were known to be vulnerable at that time [23] .

21

2.1.3 V8

V8 is the open source JavaScript runtime engine used in Chrome browser and in

Node.js. What it does is that it takes JavaScript code, parses it, creates an abstract

syntax tree (AST) and eventually ends up generating the bytecode that will be

processed. V8 is embedded inside the Node.js, which similarly is written in C++. As

Node.js hooks to the V8 engine, it extends its capabilities by adding additional features

such as reading and writing files. In Electron framework, Chromium and Node.js share

a single V8 instance.

The main advantage of using V8 is the JIT (Just in Time) compiler, which enables fast

JavaScript execution and optimized code, based on observations made at runtime. As

mentioned by the Electron team, the V8 version updates rely on the V8 version used for

Chromium, which is then patched for it to work in Node, but this might presumably

change according to the news published by the Node.js foundation [24] . Quoting from

that release:

“The V8 team, a group in charge of Google’s open source high-performance JavaScript

engine, now prioritizes Node.js alongside Chromium ensuring V8 cannot be upgraded if

it crashes Node.js, which means less strain on the Node.js maintainer community, added

stability and earlier adoption of ESNext features.”.

2.2 Processes

Similarly to Chromium, Electron uses the multi-process architecture, in which each of

the processes runs concurrently and in isolation with eachother. It also implements the

hierarchy where the main process can launch one or multiple renderer processes in

which the web content is displayed. Within the next two subsections “Main process”

and “Renderer process”, a simple overview will be given of each.

2.2.1 Main process

In Electron, the main process is the process that creates and manages browser windows.

The main process is launched when the file, marked as the entry point in the

22

dependency file is executed. Having control over creating and managing browser

windows, the main process is entitled to create multiple renderer processes as shown in

figure 4.

Figure 4. Main and Renderer processes [25]

In addition to managing browser windows, the main process also has access to all the

main process Electron APIs [26] that enable to create menus, define keyboard

shortcuts, launch frameless windows, control file downloads and access Node.js

modules.

For communication with the renderer process, the IPCmain [27] module is used. This

module is able to handle asynchronous and synchronous messages sent and received

from the renderer.

2.2.2 Renderer process

Each page in Electron runs in its own separate process, which is called the renderer

process. Multiple renderer processes can be associated with the main process. The main

23

process is what starts and stops the application and the dependency file is what holds the

line “main”: “main.js” marking the entry point to the application. Figure 5 illustrates the

creation of a browser window in main.js where index.html is loaded via a specified path

once the application is ready. When the instance of webContents is loaded into the

browser window, a new renderer process is created.

const {app, BrowserWindow} = require('electron')
const url = require('url')
const path = require('path')

let win

function createWindow() {
win = new BrowserWindow({width: 800, height: 600})
win.loadURL(url.format ({

pathname: path.join(__dirname, 'index.html'),
protocol: 'file:',
slashes: true

}))
}

app.on('ready', createWindow)

Figure 5. Creating a new window instance with contants displayed from index.html

Another interesting notation is that one browser window can host one or multiple

webContent instances, therefore multiple renderer processes can be created from the

same window. That situation can occur for example when webviews are used to display

the remote content.

The same way the main process has a module to send messages to the renderer process,

there is a module called ipcRenderer. This can be used by the renderer process to send

and receive messages from the main process [28] . As an example, this allows the

renderer process to write into the console, which would not be possible otherwise.

While ipcMain and ipcRenderer are used to send messages between the processes, there

is a module for the renderer process which allows to evoke methods only available in

the main process. By using the remote module [29] , renderer process is able to access

GUI-related operations. This includes access to browser window creation. In order to do

so, the renderer process creates an instance of a browser window by using the

browserWindow module available in the main process. It is important to note that while

24

the renderer process is the one to create the instance, the instance itself belongs to the

main process.

25

3 Application security

Github managed to build a framework for creating desktop applications by only using

web technologies. To make it feel and look more like the classic desktop experience,

access to the operating system’s native primitives was enabled by default. This way,

merging the two worlds Electron-based applications became challenged by the client-

side and server-side vulnerabilities. Within the following section an overview of the top

10 web application vulnerabilities will be given with further insight to cross-site

scripting on the client and the server side.

3.1 OWASP Top 10

OWASP Top 10 is a document that presents the ten most critical web application

security flaws based on the data gathered from over 114,000 applications and 550

community members [30] . OWASP Top 10, release of 2017, is the updated version of

the document published in 2013. Modified methodology and working with the

community has brought some significant changes, which will be discussed based on the

OWASP published document. The conclusive results of the OWASP top 10 survey were

discussed as the motivation behind the topic of choice for this thesis, and a short insight

to top 10 will be given subsequently.

26

Figure 6. OWASP TOP 10 published in 2017 [30]

All 10 categories on figure 6 present a potential path for the attacker to cause harm.

Within four years, injection flaws with the combination of severity, impact and

likelihood pose the biggest risk. Having an injection flaw can result in loss of

confidentiality, integrity and availability.

The prevalence of authentication issues is considered widespread and as lists of

usernames and passwords have leaked over the years, attackers have gained information

assisting them to conduct brute force attacks more efficiently in order to gain access to

user’s accounts. Authentication weaknesses or mismanaged sessions can only facilitate

that.

European Union General Data Protection Regulation, among other regulations dealing

with data protection, have got significantly more attention due to the occurred data

breaches broadcasted in the news about the healthcare system [31] . The most common

problem is considered to be storing sensitive data unencrypted and to reflect the

27

importance of data confidentiality acquired for the customer’s data, sensitive data

exposure has been ranked as third from the top.

XML External Entity is included in the top 10 for the first time, which itself indicates a

shift of priorities in terms of vulnerabilities discovered from applications. Taking into

account XML-based web services which parse XML received from remote resources or

from user input, this flaw is considered to be with average exploitability but can have a

severe impact.

Broken access control flaws are common as there is lack of functional testing by the

developers or testers within the development project. The impact of the flaw can change

from low to severe quickly, depending on the data confidentiality, as attackers are able

to access the data or perform actions on behalf of the users.

With easy exploitability and detectability, security misconfigurations are considered

very widespread in all levels of the application stack and can elevate any of the

previously introduced security flaws.

In previous editions of the OWASP Top 10, cross-site scripting has always been ranked

highly, but as for the version of 2017, it has been been ranked as seventh from the top.

Cross-site scripting flaws come from the problem of displaying untrusted input without

proper encoding for the output document. It is still considered to be easily exploitable,

detectable and very widespread but the impact evaluated as moderate for reflected and

DOM-based XSS and severe for stored XSS with remote code execution in the victim’s

browser.

Using components with known vulnerabilities is as widespread as before, since there is

often no overview of the component’s versions used in the application and whether they

contain any known vulnerabilities. This can be challenging for applications built on

modern platforms like Node.js which require their packages through npm.

Building applications in Electron framework means using web technologies such as

HTML, CSS and JavaScript. Therefore, these applications have the potential to be

vulnerable to what is known as cross-site scripting attacks which occur due to improper

encoding of untrusted input for the output document. The definition to cross-site

scripting and its significant types will be briefly discussed in the coming subsections to

clarify the context.

28

3.2 Cross-site scripting

OWASP defines cross-site scripting (XSS) as “type of injection, in which malicious

scripts are injected into otherwise benign and trusted web sites. XSS attacks occur when

an attacker uses a web application to send malicious code, generally in the form of a

browser side script, to a different end user. Flaws that allow these attacks to succeed are

quite widespread and occur anywhere a web application uses input from a user within

the output it generates without validating or encoding it.” [32] .

From the definition brought by the the OWASP, it is visible that the definition is aimed

at web applications as XSS is considered to be the web browser based attack. However,

applications built with Electron framework are considered as desktop applications,

which use the web technologies as do the web applications. Similarly, they can

potentially suffer from cross-site scripting vulnerabilities. Possibly more proper

definition to XSS in Electron-based applications can be referenced from o’reilly archive

as: ”Cross-site scripting is a security hazard that allows crackers to interfere with your

program’s logic by inserting their own logic into your HTML.” [33] .

OWASP also introduces a document about types of cross-site scripting, which present

three types – reflected, stored and DOM based XSS, which in turn overlap and can be

introduced as the client-side and the server-side XSS [34] as shown on the figure 7.

29

Figure 7. Client-side and server-side XSS [34]

The definition of XSS that does not include the relation to the context of HTML,

JavaScript or CSS where XSS can occur and the relation to XSS types – reflected,

stored, DOM-based XSS, but uses more broad classification can be derived from [35]

with a small modification for this thesis.

Def. XSS is a class of vulnerabilities which allow injection of code into client- and

server-side of the application.

Within the following sections simple overview of client-side and server-side code

injections along with the three types - reflected, stored and DOM-based XSS – is given.

As this thesis focuses on identifying the presence of cross-site scripting later in the

analysis and not its specific classification, the overview given in 3.2.1 – 3.2.4 will not

cover all the contexts in which XSS can occur but introduce the essential.

3.2.1 Client-side and server-side XSS

Examination of the literature on XSS refers to client-side XSS mostly as DOM-based

cross-site scripting vulnerability [34] [36] [37] . “Web applications often make use of

JavaScript code that is embedded into web pages to support dynamic client-side

behavior.” [36]. Also cited from the OWASP document, “client side XSS occurs when

untrusted user supplied data is used to update the DOM...” [34] .

Server-side XSS differs from the client-side code injection as the untrusted data is

included to the response that is generated by the server.

In both of the cases with client-side or server-side code injection, the untrusted input

could be also sourced from the request made to the server or from a stored location

which will be discussed in the subsections 3.2.2-3.2.4.

3.2.2 Reflected cross-site scripting

Reflected XSS is a non-persistent code injection attack where the injected script is

reflected back to the user within the scope of the web application. Therefore, the

attacker does not need the malicious script to be stored on the target server.

30

A typical example of reflected XSS shown on figure 8 and 9 can be described with a

simple scenario. Attacker has discovered an XSS vulnerability on a website where the

value of the parameter ‘name’ in the URL is displayed back to the user without

encoding. So the attacker then crafts a following URL:

http://example.com/sample?name=<script>alert(‘XSS’)</script>

Figure 8. Example – Code snippet - Reflected cross-site scripting

Figure 9. Reflected cross-site scripting

There are many ways, how an attacker could entice the victim to click on that link. The

link could be delivered to the user for example via an e-mail that looks legitimate but

raises the victim’s interest enough to click on it out of curiosity. When the victim has

clicked on the link, an alert box will be displayed with a message ‘XSS’ written on it.

This script was not part of the original source code of this application, which means the

attacker managed to successfully inject malicious code to the application which then

executed within the victim’s browser.

Injecting a script that displays a message proves that the page is vulnerable, but does not

serve any malicious purpose from the attacker’s perspective. Taking it one step further,

the consequences of an XSS depend on the application and the possible attack vectors.

It could result in session hijacking, stealing user credentials, malicious redirects, forcing

user’s browser to download malware and so much more. The criticality of an XSS will

depend case by case. From a user’s perspective, an XSS on a banking application that

31

results in session hijacking can be much more critical than session hijacking on a web

application where no personal data is kept.

3.2.3 Stored cross-site scripting

Stored XSS is a persistent code injection attack where the injected script is stored on the

server of the application. The malicious script is served to the user whenever stored

information is requested. To successfully execute the payload of a stored XSS, the first

step is to locate where user input is stored and displayed back to the user. A typical

scenario would be of an attacker discovering the possibility to inject scripts to the

comment section of the web application by submitting the title and the message as on

figure 10.

Figure 10. Stored cross-site scripting

After submitting the comment, the title is displayed back to the user without proper

encoding for the output document:

<p>Title: <script>alert(1);</script></p>

Figure 11. Example: Code snippet - Stored cross-site scripting

This would result in code execution whenever a user is loading the page which contains

the attacker injected malicious code.

3.2.4 DOM based cross-site scripting

Document Object Model (DOM) based XSS is a client side injection attack in which the

32

malicious script never reaches the server as opposed to the previously described

reflected and stored XSS vulnerabilities. Therefore, it is never included in the HTTP

response sent from the server and it does not become part of the source code of the

served page. The injected code is processed by a vulnerable client-side script which

modifies the DOM in an unexpected way.

With DOM based injections, the payload could originate both from the parameter of a

URL as shown in the example of reflected XSS or from an element in the output

document as shown in the example of a stored XSS.

A typical example of a DOM based XSS would be of an application where the user can

choose between the multiple tabs. After the page has already finished loading all of its

contents, user can select between the tabs without any request made to the server. The

content will be displayed to the user, depending on which tab the user has selected [38] .

So when a user visits a page https://xss-game.appspot.com/level3/frame# and selects a

tab, JavaScript function chooseTab() will be executed, which will display an image back

to the user based on user’s choice.

ChooseTab function:

<script>

function chooseTab(num) {

var html = "Image " + parseInt(name) + "
";

html += "";

$(‘#tabContent’).html(html);

window.location.hash = num;

. . .

</script>

Figure 12. chooseTab function to select between various tabs in the application

So if a user selects the tab ‘Image1’ the number of the selected tab will be displayed in

the URL after the #-sign https://xss-game.appspot.com/level3/frame#1 and the image

/static/demos/cloud1.jpg will be served back to the user. So to take advantage of that,

the attacker could insert a payload after the #-sign, asking for an image1.jpg, and trigger

alert(1) every time user is moving the mouse over the displayed image.

33

https://xss-game.appspot.com/level3/frame#1

The payload would be executed when the attacker has managed to get the victim to visit

the following link and the attack can be visually presented as shown in figure 14:

https://xss-game.appspot.com/level3/frame#1.jpg'
onmouseover="alert(1);">

Figure 13. Payload to trigger an alert

Figure 14. DOM based cross-site scripting

The output with the attacker’s payload on figure 15 is only displayed in the DOM and

not in the source code of the application:

<div id=”#tabContent”>Image1</div>

“Image1”

Figure 15. Payload displayed in the DOM

3.3 Server-side JavaScript

Based on the survey conducted by Stack Overflow, JavaScript was and still remains to

be the most popular programming language in the current time [39] . Node.js and

AngularJS are the most commonly used technologies [40] and Node.js the most used

server-side JavaScript framework [41] . Nowadays JavaScript has the capability to

produce full stack applications. The vulnerabilities that were introduced in applications

34

due to client-side JavaScript have been extensively studied, but yet are commonly met

vulnerabilities in web applications. While client-side JavaScript is bounded by the

browser, server-side JavaScript can get a lot more dangerous than that if the same

mistakes are made.

Based on the example shown at Black Hat “Server-Side JavaScript Injection, Attacking

and Defending NOSQL and NODE.JS” [42] presentation, eval() function used to

process user input can introduce a server-side JavaScript injection exactly like it would

introduce a JavaScript injection in client-side JavaScript.

Web applications use the eval() function to evaluate expressions or execute statements.

If the data parsed with eval() is without any validation, the application is vulnerable to a

JavaScript injection. An example of server-side javascript injection (SSJI) vulnerability

can be introduced with a snippet of code [43] shown in figure 16, in which user’s data

is handled as a parameter for eval() when a POST request is made. In the following

example, a block of JavaScript code executing on the server side to implement Node.js

webserver parses JSON requests.

var http = require('http');

http.createServer(function (request, response) {

if (request.method === 'POST') {

var data = ''; request.addListener('data', function(chunk) {

data += chunk; });

request.addListener('end', function() {

var stockQuery = eval("(" + data + ")");

getStockPrice(stockQuery.symbol); …

});

Figure 16. SSJI vulnerability from handling user input as a parameter for eval

When the incoming request contains JSON data, it is evaluated in the eval() function. As

the code runs on the server side the effects of a present vulnerability can be much more

severe. If a legitimate JSON message gets sent:

{“symbol” : “AAAA”}

Figure 17. Example – code snippet of a JSON message

Then the same string is evaluated as:

35

eval({“symbol” : “AAAA”})

Figure 18. Example – code snippet of a JSON message passed into eval()

However, if the attacker has a way to send an arbitrary piece of JavaScript, such as

shown below, the server code would execute it and return only the word success in the

response body. This is the first indication that the server executed the arbitrary

JavaScript, and more damage could be done.

response.end(‘success’)

Figure 19. Example – code snippet of a JSON message

Few examples of the possible damage could be a denial-of-service attack which forces

the server to use 100% of the processor time in a loop and the server must be manually

restarted before processing any of the other incoming requests. Another thing the

attacker could do is to require fs module in order to read from/write files to the local

system. The permission to write files on the system allows the attacker to write binary

files which then can be executed, thus serving malicious exploit payloads.

Denial-of-service attack:

while(1);

Figure 20. Example – code snippet which can cause a DOS attack

Requiring file module to read the contents of a file:

response.end(require(‘fs’).readFileSync(filename))

Figure 21. Example – code snippet to read the contents of a file

Execution of binary files:

require('child_process').spawn(filename);

Figure 22. Example – code snippet to execute binary files

The execution of arbitrary code due to improper encoding of untrusted input resembles

more to the SQL injection than cross-site scripting attacks. It allows access to the local

machine where the server-side code is running without any social engineering trying to

trick the user into clicking a link, or visiting a page with stored payload.

36

4 Electron Security

Web security issues can indeed occur in desktop applications, as on the 21th of

Novermber in 2017 remote code execution vulnerability [44] was reported to be found

in a text editor developed by Github – Atom. Atom is written using Electron framework

and the way Github decided to mitigate XSS issues was by using Content-Security-

Policy [45] to forbid all inline JavaScript. The mitigation was bypassed and malicious

payload delivered and executed via embedding local file that contained JavaScript

payload. The actual attack vector in this case came from the community-supplied

packages which can be included to the application with a simple click on the package

name and which in this case triggered the payload to execute.

As there are still a lot of the “unknown waters” or the less-explored areas in terms of

vulnerabilities in desktop applications which use web technologies, the initiative was

taken to produce a security checklist for Electron-based applications. Some of the

contents of that list are presented and discussed in the following subsection 4.1.

4.1 Security checklist

Doyensec, an independent security research company has presented a security checklist

[46] for Electron-based applications at Black Hat 2017 in the US. Security research

company presenting the security issues relevant to Electron-based applications in such

an influential event to the IT security community as is Black Hat, allows to presume the

relevance and the timeliness of the topic. They explain how modern browsers have tried

to enforce various security mechanisms from site isolation to other web security

protections to prevent untrusted remote content from compromising the hosts. Electron,

on the other hand, using Chromium’s content module, which is only a part of the

Chromium browser, is re-introducing some of the vulnerabilities that modern browsers

would normally help to prevent.

37

Within the Electron Security checklist they present 13 bulletpoints to follow in

development of an application. The majority of those are tied to the options offered by

the WebPreferences object as the report focuses on the application-level design and the

implementation flaws.

4.1.1 Node integration

Node integration is an essential feature for giving the native desktop like feeling in

Electron-based applications. By default, Electron renderer processes can use Node.js by

invoking APIs to execute code on the user’s machine as shown in chapter 2.2.1. The risk

in that can occur in the situation when untrusted content is rendered with node

integration enabled. This can possibly lead to full-host compromise.

In Electron framework, one way to control access to the node modules from the

renderer process can be by setting the nodeIntegration option shown in figure 23.

NodeIntegration is a boolean type option available in the WebPreferences of a specific

browserWindow instance.

let win = new BrowserWindow({

"webPreferences": {

"nodeIntegration": true

}

});

Figure 23. Creating a new browser window instance with node integration enabled

Another location in Electron framework to have control over node integration shown in

figure 24 is when BrowserView, currently experimental feature, is used to embed web

content inside the BrowserView.

let view = new BrowserView({
webPreferences: {

nodeIntegration: false
}

})
win.setBrowserView(view)

Figure 24. Creating a new browserView instance with node integration disabled

To embed guest content, such as a web page into the application, Electron supports the

use of webview tags, where the content to be displayed can be specified in the source

38

attribute. Webview creates a separate renderer process and has a nodeIntegration

attribute in order to control access to requiring node modules. While previous two

examples of node integration control flags were set on the main process, then webview

on figure 25 allows to control node integration from the renderer process.

<webview id="foo" src="https://www.github.com/" style="display:inline-
flex; width:640px; height:480px" nodeIntegration></webview>

Figure 25. Remote content displayed via webview with node integration enabled

Launching a new browser window from the renderer process can be accomplished via

window.open(). On figure 26, new instance of BrowserWindow is created, which will

inherit the parent window’s Webpreferences’ options by default. Similarly to webview,

window.open() is used from the renderer process.

window.open(‘https://example.com’);

Figure 26. Opening a new window displaying remote content

While window.open() does not have an option to enable node integration as in the

previous examples, it does have an option to disable it (figure 27).

window.open(‘https://example.com’, ‘’, ‘nodeIntegration=0’);

Figure 27. Opening a new window displaying remote content while node integration is disabled

Depending on the implementation of the application, enabling node integration should

be done with caution, especially if content which is not entirely trusted is included to the

application.

4.1.2 Sandbox

Sandbox is a feature that Chromium uses by default for every renderer process. It is a

key security feature to contain the reach of exploits’ from extending to the user’s

machine. For obvious reasons this defaults to False in Electron-based applications, as

otherwise node integration would turn insignificant and there would be no access to the

39

Node.js JavaScript APIs. When sandbox is enabled, renderer processes can only make

system changing operations by delegating those tasks to the main process via the IPC.

Sandboxing feature can be controlled from webPreferences options of a

browserWindow instance. Depending on the value of sandbox option, node integration

originally defaults to true, but if sandbox is enabled (figure 28), to false.

let view = new BrowserView({
webPreferences: {

sandbox: true
}

})
win.setBrowserView(view)

Figure 28. Creating a new BrowserView instance with sandbox feature enabled

The sandbox option is recommended to be enabled whenever untrusted content is

loaded in the browser window.

4.1.3 Preload scripts

Preload scripts, which can be specified for example within the webview tag, are the

scripts that are instructed to load prior to any other scripts on the guest page. Despite

disabling node integration for the renderer process or enabling the sandbox feature,

preloaded scripts will have access to Node.js modules.

Improper use of preload scripts can result in the remote content bypassing the disabled

node integration and sandbox features. Preload script has somewhat privileged position

due to access to node modules, so it can re-introduce the application object via remote

module and carry on communication via inter-process communication between the

renderer and the main process as shown in the report on page 9.

4.1.4 Websecurity

WebSecurity is a flag used to control among other things, whether the same-origin

policy [47] is enforced or not. In the Doyensec document, they have presented two

possibilities to bypass the enabled same-origin policy restriction, by using

window.location and eval() function.

40

Websecurity can be controlled from various locations, either applied in WebPreferences

for the created BrowserWindow instance (figure 29):

Let win = new BrowserWindow({

"webPreferences": {

"websecurity": true

}

});

Figure 29. Creating a new BrowserWindow instance with websecurity feature enabled

or in a webview tag with disablewebsecurity flag (figure 30).

<webview src="https://www.github.com/" disablewebsecurity></webview>

Figure 30. Disablewebsecurity flag in webview element

4.1.5 Insecure HTTP connections

Serving application over HTTP instead of HTTPS is known to open application to Man-

in-the Middle attacks where the attacker is able to observe and tamper with the user’s

unencrypted traffic.

Including remote content that is served entirely or partially over HTTP could have

potentially elevated outcome when node integration happens to be enabled. Giving the

chance to tamper with unencrypted traffic can result in remote code execution.

To audit applications for this problem, observing the protocols of the included resources

is important. It is also possible to deny serving any included contents over HTTP by

setting the allowRunningInsecureContent for the created browserWindow instance or

for webview content.

4.1.6 Navigation to untrusted origins

Navigation to untrusted origins can occur, when content is added to the browser window

or any other element used to display remote content. Allowing the use to navigate to

other location than the one specifically displayed can lead to severe vulnerabilities.

These vulnerabilities can escalate even more when not displayed in a sandboxed

environment and/or allowed access to node modules.

41

To limit the unforeseen navigation flows, ‘will-navigate’ event in figure 31 can be used

to detect that navigation is about to occur and restrict it if location is not allowed:

win.webContents.on('will-navigate', (event, newURL) => {

if (win.webContents.getURL() !== ‘https://doyensec.com’)

{ event.preventDefault(); }

})

Figure 31. ‘Will-navigate’ event to detect if navigation occurs to unspecified location

The ‘will-navigate’ event will get emitted only when window.location is changing. If the

change occurs due to change in window.location.hash, or it is an in-page navigation

(user is not navigating to another website), the event is not emitted.

4.1.7 Popups in webview

Webview [48] contains numerous useful attributes, among which ‘allowpopups’ is used

to enable guest page to open new windows. It must be set specifically, as by default

webview does not allow this.

In web applications, popup windows are often used for advertising, or to deliver and

execute JavaScript-based attacks. To allow popups from a webview containing

untrusted content, user could be tricked into performing unwanted actions/unwanted

clicks part of a ClickJacking/UI-redressing attack.

4.1.8 Shell.OpenExternal

Electron framework provides a shell module which contains functions related to the

desktop integration. OpenExternal function among those, can be used to open an

external protocol URL in the desktop's default manner [49] .

However, openExternal can pose a security risk which leverages to system compromise

if user-supplied content can be injected without any proper validation in the application.

In presence of an injection vulnerability like XSS, shell.openExternal() can be taken

advantage of to launch local files or applications.

42

5 Methodology in collecting statistical data from Electron-

based applications

Chapter 5 discusses the novel contributions made in this thesis by introducing the

analysis method in subsection 5.1 used for gathering the statistical data and conducting

the manual analysis.

Manual analysis of the applications aims to validate or disproof the hypothesis set in

this thesis about whether there are many open-source Electron-based applications found

to be vulnerable to the combination of XSS with enabled node integration as Electron

being relatively new framework.

The explained method will be carried out on a set of Electron-based applications, to

which the results will be presented in chapter 6 along with the conclusions.

5.1 Analysis method

The analysis of Electron-based applications conducted in this thesis presents itself in

two separate stages shown in figure 32.

Figure 32. Stage 1 – collection of statistical data

The first stage involves examining the source code of the applications in order to

distinguish data related to three subjects of interest:

• Modules – we aim to gather statistical information on the required modules,

which will be presented in three separate categories: main process modules,

43

renderer process modules, and the modules available to both processes. The

occurence of those modules will help to determine their significance for

Electron-based application development and will help to describe the needs of

an application functionality wise.

• WebPreference options – webPreferences available for the browser window

instance help to determine the features set for the content displayed to the user.

Depending on those options, content is allowed or denied certain behaviour or

functionality. For the interest of the second step taken in the analysis to

determimne vulnerabilities, particular interest in this section is node integration.

• Remote content – analysis determines to gather information on the remote

content included to the application via loadURL method in browserWindow and

browserView instance, via window.open() method and via webview tag. The

particular interest in this section is the permissions given, by either enabling or

disabling node integration, to remote content included to the application. The

data gathered from this section aims to determine how commonly is remote

content included via four described paths and whether or not developers have

decided to enable node integration. This could bring insight to possible attack

vectors through remote content.

The second step of the analysis is conducted on the same applications as examined

during the first stage. As the first stage aims to collect statistical data on the

applications, the second stage focuses on manual analysis (figure 33) of the applications

with two pre-requisites that inevitably might reduce the number of subjects in the final

dataset of applications. The first pre-requisite for the application to remain within the

dataset for stage two is the successful execution on its respective platform. The second

pre-requisite is that the execution of the application has to be successful without any

modifications to the source code in order to modify it for its intended execution

platform.

The aim of stage two is to manually examine successfully executed applications in

desktop environment to validate or disproof in subsequent steps applications

vulnerability to cross-site scripting attacks; to validate or disproof access to requiring

44

Node or Electron specific modules; to validate or disproof whether cross-site scripting

vulnerability is allowed to evolve into code execution.

Figure 33. Stage 1 and 2 – collection of statistical data and manual analysis

The expected result by the end of phase one is a collection of statistical data helping to

describe Electron-based applications in the bounds of three above mentioned subjects.

The expected result by the end of phase two, is to validate or disproof the hypothesis set

in this thesis:

“Many of the open source Electron-based applications are vulnerable to cross-site

scripting, which due to misconfigurations or missing configurations in WebPreference

options escalates to code execution.”.

Within the following three sub-sections we aim to further discuss the subjects part of

this analysis and by which methods the data is gathered.

5.1.1 Subject 1 – Modules

Node uses ‘require’ module, available in the global scope of the application, to manage

module dependencies. The modules required through out the application can mirror the

purpose of the application and its possible functionality. To conduct the analysis in the

scope of Electron framework, only modules listed as main and renderer process

modules in the Electron API documentation were examined.

The approach to collect particular information from the source code was decided upon

prior examination of the applications. It was determined that in order to collect required

modules, the following three search strings would be used:

45

require(‘electron’)

electron.

from ‘electron’

Figure 34. Search strings to collect required modules

Using these three search strings the results would present modules part of the Electron

API documentation. Examples of search results would produce following output:

const electron = require('electron')

import { app, BrowserWindow, Menu, dialog, shell } from 'electron';

const electron = require('electron');

const app = electron.app;

Figure 35. Possible results gathered from search strings

5.1.2 Subject 2 - WebPreference options

WebPreference options give the mechanism to control a variety of features for the

created windows from the main process. For the interest of this thesis, which is directed

towards application security, the webPreferences that deal with applications appearance,

such as CSSvariables, scrollBounce, webaudio and others are not among those being

observed. The preferences that are of the interest to this thesis are nodeIntegration,

JavaScript, webview, sandbox, webSecurity, allowRunningInsecureContent,

experimentalFeatures, preload, contextIsolation, nativeWindowOpen.

The collection of Webpreference options from the source code is done by identifying the

created window instances, to which webPreferences are added directly, or included from

a separate object.

As an example, a collection of webPreferences could be identified from the following

construct on figure 36:

46

const win = new BrowserWindow({

 icon: path.join(__dirname, 'build', 'icon.ico'),

 titleBarStyle: 'hidden-inset',

 ...

 autoHideMenuBar: true,

 webPreferences: {

 preload: jsPath,

 nodeIntegration: false,

 plugins: true

 }

 })

Figure 36. WebPreferences set for a BrowserWindow instance

5.1.3 Subject 3 - Remote content

There are four common ways to include remote content to the Electron-based

application which, if set with specific flags or options can give the remote content

further access to the user’s machine. This could turn out to be a security risk, if the

content included is from an untrusted source or content that might fall under the control

of an untrustworthy third party. Subject three involves examining four specific methods

by which remote content could be included to the application. If remote content is

included, it will be examined whether the content is first of all served over https or http,

and if the content has granted further access via enabled node integration.

The following four sections will discuss including remote content via BrowserWindow

and BrowserView loadURL method, via webview tag and via window.open() method.

Each of the four will include a demonstrative example on content’s permissions with

enabled node integration to distinguish the difference on content’s permissions.

BrowserWindow

BrowserWindow is the main process API used to create and control browser windows.

It carries a variety of options to specify window size, appearance, as well as

webPreferences options, which include nodeIntegration, sandboxing, session handling,

JavaScript support and more [50] . Each of those options can be set for a specific

window instance and loadURL instance method is used to specify the remote URL or

local HTML file to be loaded.

47

As taken from the security checklist, having node integration enabled for a renderer

process, where unrusted remote content is included, can be a harmful combination.

Following versions of npm, node and electron were used in the example for

BrowserWindow as well as BrowserView, webview and window.open():

node --version
v8.6.0

npm --version
5.3.0

electron --version
v1.7.8

Figure 37. Versioning information for Node, npm and Electron

and the application structure for the application project:

/electron-application

--package.json

--index.js

--index.html //index.html file for webview and window.open() examples

Figure 38. Application structure for the application project

Within the index.js file (figure 38), a BrowserWindow instance is created with

nodeIntegration set to True (figure 39) in which remote content is displayed via

loadURL instance method. For the purpose of this and the following examples, remote

content was set up and served from a virtual machine.

const {app, BrowserWindow} = require('electron')

const url = require('url')

const path = require('path')

let win

function createWindow() {

 win = new BrowserWindow({width: 800, height: 600,
'webPreferences': {nodeIntegration:true} })

 win.loadURL('http://192.168.56.1/index.html');

}

app.on('ready', createWindow)

Figure 39. Remote content displayed in the browser window with enabled node integration

48

The file served from remote location contains the following JavaScript code (figure 40),

which needs access to node APIs in order to require the ‘os’ module. The home

directory and the operating system platform used on the user’s machine will be

displayed back to the used as a result.

...

<script>

 var currentLocation = window.location.href;

 document.getElementById('status').innerHTML = 'Current location: '
+ currentLocation;

 var os = require("os");

 var hostname = os.platform();

 var homedir = os.homedir();

 document.getElementById('host').innerHTML = 'Hostname: ' +
hostname + '</br>' + 'Home directory' + homedir + '</br>';

</script>

Figure 40. Contents of the remote content served from /index.html

When the Electron-based application is executed, the following outputis displayed:

Figure 41. Remote content displaying hostname and home directory

If node integration would have been disabled, only the current location would be

displayed since requiring modules would not be available for the remote content.

Figure 42. Node integration disabled – Uncaught ReferenceError

The following scenario, where node integration is enabled, could pose a risk to the

Electron-based application, if content included is either untrusted, or if there is a

49

exploitable content injection vulnerability which then automatically escalates to remote

code execution on the user’s machine.

BrowserView

BrowserView is an Electron specific main process API to embed additional web content

inside the browser window. It was implemented to be the alternative to the webview tag

and at the moment is still considered experimental.

The same combination observed in the previous example can also pose a risk when the

BrowserView element is used to include remote content to the renderer process with

enabled node integration.

For this example, same environment was used as in the previous example, with the only

modifications made to the index.js file on figure 43:

const {app, BrowserView, BrowserWindow} = require('electron')

const url = require('url')

const path = require('path')

function createWindow() {

 let win = new BrowserWindow({width: 800, height: 600,
'webPreferences': {nodeIntegration:true} })

 let view = new BrowserView({

 webPreferences: {

 nodeIntegration: true

 }

 })

 win.setBrowserView(view)

 view.setBounds({ x: 0, y: 0, width: 300, height: 300 })

 view.webContents.loadURL('http://192.168.56.1/index.html')

}

app.on('ready', createWindow)

Figure 43. Index.js file – displaying remote content from BrowserView instance with enabled
node integration

Instead of serving remote content from within the BrowserWindow, it is now served

from the BrowserView loadURL instance method where node integration has been

enabled.

50

When the Electron-based application is executed, the same type of content will be

displayed to the user as before. When including content via BrowserView loadURL,

multiple combinations to enable/disable node integration from BrowserView and

BrowserWindow are available. As visible from the table no. 1 below, the only

combinations that enable node integration for included resource are explicitly those

where it has been set to true in the BrowserView webPreferences.

Table 1. Node integration - BrowserWindow and BrowserView WebPreferences.

BrowserWindow Default = True False False True True

BrowserView Default = True False True False True

Access Access No access Access No access Access

The content included via BrowserView should be trusted when node integration is

enabled, as otherwise untrusted third party has access to user’s machine and a chance to

take advatnage of it. Otherwise, webview is a good way to enable trusted content to

access node APIs while the rest of the content should not have that privilege.

Webview tag

Webview is used to create hybrid mobile and desktop applications. In Electron it is used

to embed guest content to a page in the Electron-based application. It creates a new

separate process, and the permissions can be managed separately from the permissions

of its parent process.

WebView possesses nodeIntegration flag which allows to specifically allow or deny it.

One browser window can contain multiple webviews, therefore multiple new processes

with separate permissions can be created.

In order to enable node integration, webview can be specified on the page in the

following way:

<webview src="http://192.168.56.1/index.html"
nodeintegration></webview>

Figure 44. Displaying remote content via webview element

51

As visible from the table no. 2 below, remote content will have node integration enabled

only if it is enabled for the renderer process in which webview is used and explicitly

allowed for the content served from webview. When browser window is not granted

with node integration, using webview tag is restricted [51] .

Table 2. Node integration - BrowserWindow and WebView

BrowserWindow Default = True False False True True

WebView Default = False False True False True

Access No access No access No access No access Access

If webview is used from within a BrowserView, it can also be verified that content

within webview can use node APIs only if node integration is enabled for the

BrowserView instance and nodeintegration flag set for the webview. That is despite the

disabled node integration for the BrowserWindow.

Table 3. Node integration - BrowserWindow, BrowserView and Webview

Browser
Window

Default =
True

F F F F T T T T

BrowserV
iew

Default=
True

F F T T F F T T

WebView Default =
False

F T F T F T F T

Access No No No No Yes No No No No

When using the webview tag, it must be verified whether the content included is trusted

or untrusted and assured into which context remote content is included.

Window.open()

Window object provides a method open() to load a resource specified by a URL or local

file path [52] . With every call to window.open(), a new instance of BrowserWindow is

created.

52

By Electron documentation, content included via window.open() will inherit the parent

window's webPreferences option values by default. For example, if node integration has

been enabled for the parent window, where content is included via window.open, then

node integration for that resource is enabled.

Similarly to webview tag, window.open() method had access to setting nodeIntegration

flag, but due to reported issue #4026 [53] in github, which allowed to override the

disabled node integration for the browser window, it was removed. This could have

permitted the attackers to re-enable node integration to deliver their payload and access

user’s machine, if content injection vulnerability was found from the application.

Nevertheless, window.open implements the node integration flag shown in figure 45 in

order to deny node integration for the remote content.

<script>

var newW = window.open('http://192.168.56.1/index.html', '',
'nodeIntegration=0');

</script>

Figure 45. Displaying remote content in a new window with node integration disabled

That can prove to be a useful feature to explicitly deny node integration when content is

included.

5.1.4 Subject 4 - Vulnerability to cross-site scripting attacks to evolve into code

execution

The second stage of this analysis is conducted by manual examination of applications.

Manual examination is presented in three steps that will be followed along with every

examined application.

First step is to determine whether the application is vulnerable to cross-site scripting

attacks by including user input to the output document without proper encoding. The

test strings used in order to determine that are identical to the test strings used for

identifying XSS in web applications. If application is identified to be vulnerable to XSS,

the manual analysis is continued in step two.

Step two is to determine the state of node integration option for the browser window

where XSS flaw was determined to be present. This will help to understand whether the

53

XSS flaw has the capability to evolve into code execution by being able to require node

modules. The step two can be completed in two ways. The first includes the review of

collected statistical data on BrowserWindow instance from phase one connected to the

subject analysed. The second includes using payloads that attempt to require node

modules.

If node integration is determined as enabled for the browser window instance, step three

is attemped by exploiting the vulnerability of XSS evolving into code execution. As the

end result, all payloads used on the vulnerable applications will be presented, along with

their respective attack vectors and impact.

To showcase the “perfect scenario” in following through steps one to three in phase two,

an example vulnerable application where XSS escalates to code execution is presented.

The source for this application is taken from an example presented in Tutorialspoint to

learn file handling in Electron-based applications [54] . The example was determined as

vulnerable.

Following the same application structure as in the tutorial, application contains three

files:

--main.js

--index-html

--view.js

Figure 46. Application structure

The main.js file will be creating a new browser window where the contents of

index.html will be displayed (figure 47). View.js manages the file created at the start of

the application and serves user input back to the user interface.

54

Figure 47. For to submit name and e-mail

When the button “Add to list” is clicked, user input is submitted and stored in the local

file, then loaded and displayed back to the user (figure 48). Already with a simple test

string it is possible to detect that user input is not encoded for the output document and

interpreted as HTML code.

Figure 48. Dialog with user input displayed in the output document as bolded

55

What makes cross-site scripting vulnerability evolve into code execution in this case is

that node integration has not been disabled. To take advantage of that, the following

payload on figure 49 is used to require shell module and open the calculator application

(figure 50) from the user’s machine:

<script>

const {shell} = require('electron');

shell.openExternal('file:usr/bin/gnome-calculator');

</script>

Figure 49. Payload used to open a calculator via shell.openExternal method

Figure 50. Shell.OpenExternal method used for opening calculator via payload.

This example represents the perfect scenario following the three steps to determine the

presence of XSS, to determine the enabled state of node integration option and the

successful attempt to exploit this combination.

56

6 Analysis and results

This chapter presents the analysis results gathered from examining Electron-based

applications. The analysis conducted on each application consisted on following

through the steps presented for stage one and stage two of the method discussed in

chapter 5.

The first stage included gathering the information on the occurence of main and

renderer process modules that were required in the applications. It also included

observing a set of WebPreference options for every new browser window instance

created and a set of four distinct methods for including remote content in the

application. The second stage required manual analysis of the successfully executed

applications in three subsequent steps. Firstly, applications were examined for the

presence of XSS vulnerability. Secondly, if the presence was determined, steps were

taken to identify whether node integration was enabled for the browser window with the

XSS vulnerability. If steps one and two were determined as present, third step was taken

to exploit the XSS vulnerability to demonstrate the escalation to code execution.

Based on the outcome of stage two results, ~37% of the applications were determined to

be vulnerable. The hypothesis raised in this thesis about many of the open source

Electron-based applications being vulnerable to XSS, which evolves into code

execution, was therefore validated to be true. Further results on that will be discussed in

the section of this chapter presenting the results of stage two.

Following subsection will present the selected dataset on which the analysis was carried

out along with statistical data and the conclusions.

6.1 Dataset

The dataset of applications selected for this study consists of publicly available open-

source Electron-based application projects. As a source from where to derive the

57

projects, Github - a web-based platform for hosting open-source software project

repositories was chosen. To narrow down on the Github repositories to serve the interest

along with the aim of this thesis, a search phrase “electron” was provided:

https://github.com/search?utf8=%E2%9C%93&q=electron&type [Search phrase on

github: electron] [55] The search phrase resulted in 24,678 repositories in response.

However, it must be noted that not all of the results were the projects that could be

counted to belong to the final dataset. Projects related to chemistry and physics, which

due to the relatable phrase in these fields, “electron”, was included into the resulting

repositories, do not belong to the scope. Before including the application to the final

dataset, it was assured that the subject is an actual Electron-based application and did

not belong to study of physics nor chemistry. If the application was not identified as

such, it was discarded.

Another criteria contributing to the selection of the final dataset was developed based on

the observation of the projects’ Wiki page or other relevant and descriptive information

on the projects’ repository that would hint the use of the application and its features. A

portion of the Electron-based application projects were clearly developed to teach the

framework itself or to bring samples of a specific usecase. Based on the assumption of

code samples teaching the basic knowledge and therefore commonly discarding the

security aspect, those types of projects were identified to be of no interest to this thesis.

Applications selected to the final dataset, based on the observation and the judgement of

the author of this thesis, were applications with clear functionality developed for a

legitimate userbase.

Overall 30 applications were selected and examined as part of this analysis.

Applications observed were built for Windows, Linux, and Mac OS platforms. Majority

of the applications however were executed on Linux platform. The manual analysis for

the detection of XSS that could evolve into code execution was conducted only on the

applications that were executed successfully on their respective platforms, without any

modifications to their source code. Based on that requirement, 19 applications out of the

30 were analyzed in phase two.

The applications observed could be described by their functionality to belong to the

following categories:

58

https://github.com/search?utf8=%E2%9C%93&q=electron&type

 chatting/communication applications

 note taking/writing applications

 GUI for an existing server data

 host management applications

 desktop music player applications

 text/markdown editors

6.2 Modules

This section presents the results gathered from stage one of collecting information on

the main and the renderer process modules required in each of the examined

applications. Tabel no 4. presents each of the modules identified from 30 applications

based on the number of occurences and how many applications required every particular

module.

Table 4. Main and renderer processes modules required in applications

Main process modules Renderer process modules

Module No. of
occurences

No. of
applications

Module No. of
occurences

No. of
applications

app 102 30 remote 94 21

BrowserWind
ow

73 30 ipcRenderer 65 24

dialog 41 16 webFrame 2 2

Menu 40 23

ipcMain 21 17

tray 12 10

MenuItem 6 5 Both

globalShortcut 8 6 shell 58 21

autoUpdater 6 3 clipboard 11 6

powerSaveBlo
cker

2 2 crashReporter 7 6

59

session 2 2 screen 7 4

systemPrefere
nces

1 1 nativeImage 2 2

The main process modules with the most occurences present the modules that control

the life time of the application - app, and the creation and management of browser

window instances - BrowserWindow. Being essential for every Electron-based

application, this was the expected outcome. From the rest of the main process modules,

it can however be determined that dialog module, to open and save files, as well as

display message windows is a highly used functionality which assumably provides the

desktop like experience that Electron aimed for. More than half of the applications also

used the Menu module to create custom menus reflecting the needs of the application

for saving/opening files, copy/paste functionality, links to remote resources and more.

The last module used by more than half of the examined applications was ipcMain,

representing the importance of carrying out communication from the main process to

the renderer process.

Electron API documentation presents seven available modules for the renderer process,

which are not available for the main process. From the seven, three occurred in the

examined 30 applications: ipcRenderer, remote and webFrames. Remote module

presented with 94 occurencies in 21 applications shows predominantly the importance

of renderer process accessing modules available for the main process. This can allow to

come to assumption that most of the Electron-based applications’ functionality is

implemented in its main process modules.

As for modules available for both, the main and the renderer process, file and URL

management via shell module, for example to open URL via openExternal method, is

used quite often as being present in 21 applications and required 58 times. To keep track

of the occurred crash reports, the reports in most of the applications observed were

saved locally or directed to a remote server by using crashReport module. Crash report

module was counted to have 7 occurencies within 6 applications. One of the particular

locations occuring more than once for crash reporting was connected with a github

project, also Electron-based project, https://electron-crash-reporter.appspot.com/ created

by developer from Google.

60

https://electron-crash-reporter.appspot.com/

6.3 WebPreference options

The second subject of the first stage analysis was about gathering information on the

Webpreferences used in creating new BrowserWindow instances. Table no 5 presents

the WebPreferences set to TRUE, FALSE and to its default value, by not including the

options to the created window instance.

Table 5. WebPreferences set for browser window instances

TRUE FALSE NOT SET (default)

Preload used 6 times by 4 applications out of 30 in total

Node integration 5 6 41 (true)

JavaScript - - 52 (true)

Plugins 3 - 49 (false)

WebSecurity - 1 51 (true)

allowRunningInsecure
Content

1 - 51 (false)

experimentalFeatures 1 - 51 (false)

Sandbox 1 - 51 (false)

AllowDisplayingInsec
ureContent

1 - 51 (false)

It was observed that majority of the applications tends to leave WebPreferences to their

default values. Whether it is done by not being aware of the WebPreference options

Electron framework provides or willingly, was not studied within this research.

However, if to focus on the WebPreference options that were specifically set to either

TRUE or FALSE, it can be observed that node integration which already defaults to

TRUE was set to TRUE manually in five cases. This can hint that developers are not

being aware of the the default values assigned to WebPreferences related to node

integration, as this did not occur with any other WebPreferences.

As other WebPreference options were not used more than once or twice, the conclusions

on them can be left for the future work where dataset holds larger number of subjects.

At the moment, the only conclusion to come to can be that these WebPreferences were

not needed for the observed applications in the dataset, which might limit the outcome

and precision of the data gathered in this section.

61

6.4 Remote content

Third subject of the stage one analysis gathered information on the remote content

included to the application via browserWindow, WebView, window.open() and

BrowserWindow. As it was observed, majority of the applications also used

shell.openExternal method (total of 73 times by 20 applications out of 30) to open

external links with user’s default browser. For the interest of this thesis in remote

content, occurencies of shell.openExternal are also included to this section.

It was observed that remote content was included via loadURL for BrowserWindow

total of 5 times, where 3 out of 5 times the content was served over http (table no. 6).

Remote content served via WebView occurred only once and the content was not

granted the access to node APIs. All the links provided to include remote content were

static, and did not include parameters taking user input.

Table 6. Remote content included via http/https

BrowserWindow WebView Window.open BrowserView

http:// + nodeIntegration: False 2 - - -

https:// + nodeIntegration:
False

2 - - -

http:// + nodeIntegration: True - - - -

https:// + nodeIntegration: True - - - -

http:// + nodeIntegration:
default

1 - - -

https:// + nodeIntegration:
default

- 1 - -

Shell module was required total of 58 times in 21 applications, and in majority of the

times to open external links served over https, by using openExternal method (table no.

7).

Table 7. External links, served over http/https by using shell.openExternal

Number of occurences Number of
applications

shell.openExternal(‘https://*’) 57 17

62

shell.openExternal(‘http://*’) 15 10

shell.openExternal(‘http://*/https://*’) 1 1

The conclusion based on the data of the last subject analysed in stage one is that remote

content is not ofted included via loadURL from BrowserWindow and BrowserView,

neither via window.open method and webview tag. Most of the content displayed to the

user is included from local files. Instead of opening remote content via window.open as

a new browser window, shell.openExternal is preferred as it opens the content within

user’s default browser. As the URLs opened via shell.openExternal are often hidden

behind descriptive titles in the menu bar, this can be an effective way to trick user

visiting a malicious site.

6.5 Applications vulnerable to cross-site scripting evolving into code

execution

This chapter presents the results from the stage two of the analysis in the essence that

was discussed in chapter 5. By the pre-requisites introduced in subsection 5.1 discussing

the dataset for stage two, a subset of the original dataset went through the manual

examination. By the pre-requisites, only the applications that were successfully

executed on their respective platforms without any modifications to their source code to

make them compatible, were selected for manual examination. The original dataset

consisting of 30 applications, due to the pre-requisites mentioned above, was reduced to

19 applications.

Stage two was conducted by following three subsequent steps, from which second and

third step presumed the expected result from the previous step. First step in manual

examination was to determine applications vulnerability to XSS flaws. If application

was identified as vulnerable, step two was proceeded with, else application was

identified as not vulnerable and further step were not taken. Second step attempted to

identify whether node modules were available from the browser window where the XSS

63

flaw was identified. This was either determined by reflecting back to the statistical data

gathered prior to stage two, or by using a modified payload which attempted to require

the node modules. Based on the results, access to node modules was either determined

or proceedings to step three were not subsequently followed any longer. Step three

attempted, based on the identified XSS flaw along with access to node modules, to take

advantage of this vulnerable combination in order to craft an exploit payload and

produce the possible attack vectors and evaluate the impact of the flaw on the

application.

As the result of the three step process, ~37% of the applications were determined to be

vulnerable to the combination of XSS flaw being present in the browser window with

access to node modules, due to which XSS was allowed to evolve into code execution

on the user’s machine. All the owners of vulnerable applications have received reports

on the identified issues in order to produce fixes as quickly as possible.

Further insight of the vulnerable applications identified is given to the extent that allows

to keep the anonymity in order to give the developers the time to fix the issues before

disclosure.

6.5.1 Overview of the vulnerable applications

All vulnerable applications are open-source applications selected from Github. In

Github, popularity of a project is represented with number of stars it has received from

the user’s community. Vulnerable applications were determined to have received stars

from 40 up to 5000 community members, where the higher the count, the higher the

popularity. Applications were observed to have 1-20 contributors and an average of 52.2

open issues reported per application during the time of analysis.

The 7 vulnerable applications created total of 11 BrowserWindow instances. All 11 had

node integration enabled, not due to setting it to a specific value, but leaving it to its

default value (default value: True) by not specifiying webPreference options. Also any

other WebPreferences were not explicitly set to a value either.

64

Via shell.openExternal() method, mixed content served over http:// and https:// was

opened in user’s default browser, and no remote content got included via loadURL from

browserWindow and browserView. Neither of the 7 applications made use of the

webview and the window.open() method.

6.5.2 Attack vectors

The attack vector, path which the attacker can use to gain access to the victim’s

computer, could be categoried into three for the seven vulnerable applications by their

intended functionality.

Attack vector no. 1 – Attacker crafts a file with a specific payload to trigger when user

opens the file in the application. As a result, user’s file contents can be sent to the

remote server hosted by the attacker.

Attack vector no. 2 – Attacker has gained access to the web application which has

implemented an Electron-based desktop application that synchronizes with any edits

made in the web version. Gaining access to the web version of the application could

occur through a vulnerability or if the attacker belongs to the same group of users with

the victim, sharing the data in the application. Attacker can deliver the payload to the

victim through a shared data field in the web application.

Attack vector no. 3 – Two or multiple users are sharing the same source for the data

displayed on the vulnerable GUI built on Electron. Attacker is either one of those user’s

with the access or has managed to gain access to edit the data source through a

vulnerability. Payload is delivered and executed on the victim’s machine due to data

field value being displayed to the user in the output document without proper encoding.

5 applications out of the 7 that were found vulnerable, were found to be corrresponding
to vector no. 1 as shown in table no. 8.

Table 8. Number of applications corresponding to attack vectors no. 1-3

Attack vector no. 1 Attack vector no. 2 Attack vector no. 3

5 1 1

65

6.5.3 Step one to step three validation and results

Applications were identified as vulnerable via three subsequent steps, where each step

required a different payload to prove that certain situation was present in the

application. Payloads needed to prove vulnerability to XSS; they needed to validate the

state of node integration in the browser window with the identified security flaw; and

finally payload needed to be produced that could take advantage of the vulnerable

combination of XSS with enabled node integration by following a realistic attack vector.

The payload that proved to be successful to determine the presence of XSS in all seven

applications was a test string to present user input with bolded formatting in the

document. This allowed fast affirmation based on the applications observed behaviour.

My words in bold

Figure 51. Test string to determine the presence of XSS

If the payload was treated in the application as program code, it was displayed back

without the -tags, in bolded formatting as “My words in bold”. If the payload was

not treated as part of the program code, it would have been partially or completely

displayed as it was submitted.

By the end of first step in phase two, 8 applications were determined interpreting user

input for the output document as program code, therefore identified as vulnerable to

XSS. Second step was proceeded with 8 applications from total of 19.

Second step aimed to identify the state of node integration for the browser window

instance. This required a test string that would attempt to require node modules and

allow to affirm the success of the step two from applications behaviour. Following the

test string from figure 52, requiring the ‘os’ module to display the hostname and the

homedirectory of the user’s machine in the alert box proved to be successful.

<onmouseover="alert(1)"> <s onmouseover="var os = require('os'); var
hostname = os.platform(); var homedir = os.homedir(); alert('Host:' +
hostname + 'directory: ' + homedir);">Hallo</s>

Figure 52. Test string to determine the state of node integration

If node modules were not available to be required, an error would be produced in the

console and/or alert box would not display the expected values. 7 out of the 8

66

applications were identified to have node integration enabled for the browser window

instance with XSS flaw as shown in table no. 9. Based on the results, step three was

pursued with 7 vulnerable applications out of the original 19. All seven were identified

to have a real attack vector from which one is presented in the subsection 6.5.4

Table 9. Results of the second phase for steps one to three for applications no. 1-19

Category Step 1 Step 2 Step 3

Application no. 1 Note keeping application x x x

Application no. 2 Markdown editor x

Application no. 3 Text editor x x x

Application no. 4 GUI for the server x x x

Application no. 5 Markdown editor x x x

Application no. 6 Markdown editor x x x

Application no. 7 Markdown editor x x x

Application no. 8 Note keeping application x x x

Application 9-19 Various - - -

All findings were reported to the lead developers of each project and two out of the 7

reports got an immediate response within hours, where the vulnerability was patched

within the next two days. Only one report has not gotten any response after the

developers were contacted via e-mail and issue created in Github. It can only be

assumed that the developers do not acknowledge the issue in their application as they

took steps to cover it up by closing the issue in Github without a fix. Eventually full

disclosure on the issue will follow, to retain users from using the vulnerable version of

the application.

All reports presented a first-time identification of code execution in all vulnerable

applications and the responses to the reports gathered appreciation from most of the

developers. As code execution had not been identified in those applications before, it

can be asserted that it is an issue which developers are not aware of.

67

6.5.4 XSS to code execution – showcase on a vulnerable markdown editor

This subsection will present a successful exploitation of XSS to code execution on a

markdown editor identified to be vulnerable during the time of the analysis. The

exploitation of the vulnerability followed the attack vector number one, in which the

attacker tricks the victim to open a malicious file in the vulnerable application. The pre-

requisites of conducting the attack involved attacker creating a file that contains the

attack payload and delivering that file to the victim.

The attack payload that took advantage of the attack vector was presented to the victim

as a legitimate README.md file. Payload in that file, shown in figure 53, spawns a

shell on the background and executes the command to make a connection to

192.168.8.100:1337. After the connection is established, the content of ‘/etc/passwd’ is

sent to the specified location.

<s <onmouseover="alert(1)"> <s onmouseover="const exec =

require('child_process').exec;

exec('nc -w 3 192.168.8.100 1337 < /etc/passwd', (e, stdout, stderr)=>
{

if (e instanceof Error) {

console.error(e);

throw e;

}

console.log('stdout ', stdout);

console.log('stderr ', stderr);

});alert('1')">Hallo</s>

Figure 53. Attack payload for sending the contents of ‘/etc/passwd’ file to the attacker

It is evident that from the perspective of traceability, showcased payload reveals the

remote location to which the file is sent to, but to showcase the seriousness of the

vulnerability it is considered to be the right fit.

For the attacker to receive the contents of the file, it is necessary for the attacker to be

listening on the port the malicious payload will try to connect to.

nc -l -p 1337 > passwd.txt

Figure 54. Command to listen on the port and receive the contents into passwd.txt file

68

After these conditions have been met (1. attacker has crafted the payload and delivered

it to the user; 2. attacker is listening on the port the triggered payload will try to connect

to;) comes the period of waiting until the victim opens the malicious file. Once the

victim has opened the file, malicious payload triggers and the content of ‘/etc/passwd’ is

sent to the attacker.

The success of this particular attack, code execution on the victim’s machine, reveals

confidential information. With a modified payload however, the effect on the user’s

machine could be anything from the imagination of the attacker. The risk rating of that

vulnerability is evaluated as high.

6.5.5 Risk

By the OWASP risk rating methodology, in order to estimate the risk, likelihood and

impact should be evaluated.

Estimating likelihood involves evaluation of the skill level needed for the attackers as

well as evaluating the ease of discovery and exploitability. To identify the presence of

the vulnerable combination, only simple steps were followed which allows to state that

the vulnerability is easily discovered and easily exploitable by the actors with little to

some programming skills. To have more harmful effect more advanced programming

skills are required in understanding Node and Electron specific features. One of the

possible effects of that was shown in chapter 6.5.4.

Estimating the impact includes evaluation of data confidentiality and possible losses to

the business and its users. As each vulnerable application identified resulted in system

compromise and code execution, all factors – confidentiality, integrity and availability

were affected.

According to these terms, it can be evaluated to be highly likely that the vulnerability is

discovered by the attackers, as identification is considered very trivial proven by the

three steps taken in phase two of the analysis, which worked in all seven cases. The

business impact can vary depending on the application, but each of them would possibly

suffer from reputation damages, and as the result of an existing attack vector the very

least disclose private information.

69

Therefore, XSS in combination with enabled node integration is estimated to have risk

level of high.

6.6 Suggestions

The identified 37% of vulnerable applications is the evidence of first of all Electron

being relatively new framework, where exploring security issues is still in its baby

shoes. Electron is built as a framework where web developers can apply their

knowledge of web application development on building a desktop application. From

security perspective, this makes an assumption that web developers are aware of the

possibile vulnerabilities in web applications, therefore know how to prevent them in

Electron-based applications. As it appeared from the analysis results, developers

continue to do the same mistakes as those that result in a vulnerability in web

applications. In suggestion of improving the security of Electron applications, the

following could be done:

• to raise overall awareness on web security issues like XSS and the preventative

measures;

• to raise awareness that Electron, much like web applications, is open to web

vulnerabilities, therefore all caution should be taken when handling any

untrusted input;

• derived from the analysis results, where neither of the vulnerable applications set

any webPreferences, the assumption can be made that developers might not be

aware of those options. Therefore following is suggested: with every created

browseWindow and browserView instance, a mandatory value assignment to

each of the boolean webPreference options or a subset of them could be

implemented. This might bring more awareness on the options and their function

in the application;

• as Electron-based applications rely on using node modules for their

functionality, a suggestion is to default the node integration to false. Having

node integration disabled by default is certainly more inconvenient for the

70

developers as they would then need to open the documentation and identify how

to enabled it. But on the other hand, it will encourage the developers to study the

framework and understand the capabilities of that feature;

• and as a final suggestion, Electron applications could make use of being able to

control the required modules via configuration file. In case of an XSS

vulnerability in the application, this would help to prevent the attacker being

able to require new modules which are not defined in the configuration file.

Therefore, suppressing the number of harmful actions due to unavailable

functionality to the attacker.

71

7 Conclusion and future work

In this thesis, the background information related to Electron framework along with the

relevant security issues were discussed in chapters two to four. The research conducted

for the 2017 release of the OWASP top 10 concluded with an acknowledgement towards

a steady shift in wider usage of frameworks based on web technologies like Electron.

Web vulnerabilities in desktop environment present wider attack surface as presented in

the security checklist by Doyensec [9] , therefore even more caution should be applied

to possible security issues as the consequences can be more severe.

Within this thesis, the hypothesis aimed to validate that most open-source Electron-

based applications are vulnerable to a web security issue - XSS, which evolves to code

execution. The hypothesis proved to be true as 37% of the examined applications were

identified to be vulnerable to code execution resulting in full system compromise. All

findings were reported to the respective application owners and total of 7 CVEs were

and will be requested. By the defense of this thesis, 2 of the CVE-s have already been

assigned: CVE-2017-1000491 and CVE-2017-1000492.

The result was achieved by following a method of analysis conducted in two stages.

Within the first stage, statistical data was collected about the required modules, included

remote content and webPreference options. This allowed to gather insight on the

applications being examined. Second stage was a three step process focusing on the

validation or disproof of the hypothesis which produced the number of vulnerable

applications. As a final step of this thesis, each of the vulnerable applications was

exploited via a real attack vector and findings reported to the developers of each

application to be fixed.

The high number of vulnerable applications reflects the need for awareness on Electron-

based application security issues as future work. Evidently, the root cause of XSS to

code execution issue lays in poor knowledge on web security issues, which are then

brought to desktop environment where they elevate.

72

From the perspective of a security researcher, part of the future work should hold

studying Electron framework and its specific vulnerabilities which would help to

provide higher resistance to web vulnerabilities.

73

8 References

[1] "Top 50 products having highest number of cve security vulnerabilities", Cvedetails.com,
2017. [Online]. Available: https://www.cvedetails.com/top-50-products.php. [Accessed:
30- Nov- 2017]

[2] "W3Counter: Global Web Stats", W3counter.com, 2017. [Online]. Available:
https://www.w3counter.com/globalstats.php. [Accessed: 30- Nov- 2017]

[3] Verizon. "2017 Data Breach Investigations Report”, 10th ed. 2017, p. 38

[4] Trustwave Global Security Report. 2017, pp. 33, 79.

[5] OWASP Top 10 2017- The Ten Most Critical Web Application Security Risks. 2017, pp.
5-16.

[6] Electron | Build cross platform desktop apps with JavaScript, HTML, and CSS.",
Electron.atom.io, 2017. [Online]. Available: https://electron.atom.io/. [Accessed: 22- Oct-
2017]

[7] "Electron Apps | Electron", Electron.atom.io, 2017. [Online]. Available:
https://electron.atom.io/apps/. [Accessed: 22- Oct- 2017]

[8] "Modern Alchemy: Turning XSS into RCE · Doyensec's Blog",Blog.doyensec.com, 2017.
[Online]. Available: https://blog.doyensec.com/2017/08/03/electron-framework-
security.html. [Accessed: 22- Oct- 2017]

[9] C.Luca. "Electron Security Checklist: A guide for developers and auditors. 2017, pp. 5-21

[10] "About Electron | Electron", Electron.atom.io, 2017. [Online]. Available:
https://electron.atom.io/docs/tutorial/about/. [Accessed: 30- Oct- 2017]

[11] "Electron 1.0 | Electron Blog", Electron.atom.io, 2016. [Online]. Available:
https://electron.atom.io/blog/2016/05/11/electron-1-0. [Accessed: 30- Oct- 2017]

[12] "Content - chromium/src.git - Git at Google", Chromium.googlesource.com. [Online].
Available: https://chromium.googlesource.com/chromium/src.git/+/master/content/.
[Accessed: 30- Oct- 2017]

[13] "Electron/libchromiumcontent", GitHub, 2017. [Online]. Available:
https://github.com/electron/libchromiumcontent. [Accessed: 03- Nov- 2017]

[14] "Content module - The Chromium Projects", Chromium.org, 2017. [Online]. Available:
https://www.chromium.org/developers/content-module. [Accessed: 12- Nov- 2017]

[15] "Multi-process Architecture - The Chromium Projects", Chromium.org, 2017. [Online].
Available: https://www.chromium.org/developers/design-documents/multi-process-
architecture. [Accessed: 12- Nov- 2017]

[16] "electron/electron-quick-start", GitHub, 2017. [Online]. Available:
https://github.com/electron/electron-quick-start. [Accessed: 15- Nov- 2017]

74

[17] "Sandbox", Chromium.googlesource.com, 2017. [Online]. Available:
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md.
[Accessed: 30- Nov- 2017]

[18] D. Kerr, "As It Stands - Electron Security", Scott Logic, 2016. [Online]. Available:
http://blog.scottlogic.com/2016/03/09/As-It-Stands-Electron-Security.html. [Accessed:
17- Nov- 2017].

[19] Progress "FUTURE OF JAVASCRIPT IN 2017 AND BEYOND. 2017, p. 28

[20] "Modulecounts", Modulecounts.com, 2017. [Online]. Available:
http://www.modulecounts.com/. [Accessed: 20- Nov- 2017]

[21] P. Vorbach, "npm-stat: download statistics for NPM packages", Npm-stat.com, 2017.
[Online]. Available: https://npm-stat.com/charts.html?package=nw&from=2017-01-
01&to=2017-12-31. [Accessed: 31- Dec- 2017].

[22] P. Vorbach, "npm-stat: download statistics for NPM packages", Npm-stat.com, 2017.
[Online]. Available: https://npm-stat.com/charts.html?package=electron&from=2017-01-
01&to=2017-12-31. [Accessed: 31- Dec- 2017]

[23] "Writing Secure Node Code: Understanding and Avoiding the Most Common Node.js
Security Mistakes", YouTube, 2016. [Online]. Available:
https://www.youtube.com/watch?v=QSMbk2nLTBk&feature=youtu.be. [Accessed: 30-
Nov- 2017]

[24] "NEWS: Node.js 8 Moves into Long-Term Support and Node.js 9 Becomes the New
Current Release Line", Medium, 2017. [Online]. Available: https://medium.com/the-
node-js-collection/news-node-js-8-moves-into-long-term-support-and-node-js-9-
becomes-the-new-current-release-line-74cf754a10a0. [Accessed: 30- Nov- 2017].

[25] "comSysto Blog: Building a desktop application with Electron", Comsysto.com, 2015.
[Online]. Available: https://comsysto.com/blog-post/building-a-desktop-application-with-
electron. [Accessed: 24- Nov- 2017]

[26] "API | Electron", Electronjs.org, 2017. [Online]. Available: https://electronjs.org/docs/api.
[Accessed: 11- Nov- 2017].

[27] "electron/electron", GitHub, 2017. [Online]. Available:
https://github.com/electron/electron/blob/master/docs/api/ipc-main.md. [Accessed: 23-
Nov- 2017].

[28] "electron/electron", GitHub, 2017. [Online]. Available:
https://github.com/electron/electron/blob/master/docs/api/ipc-renderer.md. [Accessed: 20-
Nov- 2017]

[29] "electron/electron", GitHub, 2017. [Online]. Available:
https://github.com/electron/electron/blob/master/docs/api/remote.md. [Accessed: 30-
Nov- 2017]

[30] OWASP Top 10 - The Ten Most Critical Web Application Security Risks. 2017

[31] Laura Donnelly, "Security breach fears over 26 million NHS patients", The Telegraph,
2017. [Online]. Available: http://www.telegraph.co.uk/news/2017/03/17/security-breach-
fears-26-million-nhs-patients/. [Accessed: 17- Nov- 2017]

75

[32] "Cross-site Scripting (XSS) - OWASP",Owasp.org, 2016. [Online]. Available:
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS). [Accessed: 04- Nov-
2017]

[33] S. Edd Dumbill, "Glossary: Appendix E - Learning Rails - O'Reilly Media", Oreilly.com,
2008. [Online]. Available: http://oreilly.com/ruby/excerpts/ruby-learning-rails/ruby-
glossary.html. [Accessed: 30- Nov- 2017]

[34] "Types of Cross-Site Scripting – OWASP", Owasp.org, 2017. [Online]. Available:
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting. [Accessed: 06- Nov-
2017]

[35] B. Fabrice "Cross-Site Scripting (XSS)",
http://diuf.unifr.ch/drupal/tns/sites/diuf.unifr.ch.drupal.tns/files/Teaching/2006_2007/Com
puter_Security_Threats_and_Counter_Measures/Bodmer_CrossSiteScripting.pdf, 2006.

[36] "Noxes: A Client-Side Solution for Mitigating Cross-Site Scripting Attacks", Technical
University of Vienna, University of California, Santa Barbara, 2006

[37] Steven Cook "A Web Developer’s Guide to Cross-Site Scripting"", Sans.org, 2003.
[Online]. Available: https://www.sans.org/reading-room/whitepapers/securecode/web-
developers-guide-cross-site-scripting-988. [Accessed: 13- Nov- 2017]

[38] "XSS-game-appspot", Xss-game.appspot.com, 2017. [Online]. Available: https://xss-
game.appspot.com/level3/frame#. [Accessed: 30- Nov- 2017]

[39] "Stack Overflow Developer Survey 2017", Stack Overflow, 2017. [Online]. Available:
https://insights.stackoverflow.com/survey/2017#technology-most-popular-languages-by-
occupation. [Accessed: 05- Nov- 2017]

[40] "Stack Overflow Developer Survey 2017", Stack Overflow, 2017. [Online]. Available:
https://insights.stackoverflow.com/survey/2017#technology-frameworks-libraries-and-
other-technologies. [Accessed: 06- Nov- 2017]

[41] "Stack Overflow Developer Survey 2017", Stack Overflow, 2017. [Online]. Available:
https://insights.stackoverflow.com/survey/2017#technology-most-loved-dreaded-and-
wanted-frameworks-libraries-and-other-technologies. [Accessed: 07- Nov- 2017]

[42] "Writing Secure Node.js Code - Danny Grander | @RisingStack", RisingStack
Community, 2017. [Online]. Available: https://community.risingstack.com/writing-
secure-node-js-code-danny-grander/. [Accessed: 07- Nov- 2017].

[43] S. Bryan. "Server-Side JavaScript Injection". 2011, pp. 2-5. [Online] Available:
https://media.blackhat.com/bh-us-
11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf. [Accessed: 14-Nov-2017]

[44] R. Lukas, "From Markdown to RCE in Atom",Statuscode.ch, 2017. [Online]. Available:
https://statuscode.ch/2017/11/from-markdown-to-rce-in-atom/. [Accessed: 30- Nov-
2017]

[45] "Content Security Policy (CSP)", Mozilla Developer Network, 2017. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP. [Accessed: 01- Nov- 2017]

[46] C. Luca "Modern Alchemy: Turning XSS into RCE · Doyensec's Blog",
Blog.doyensec.com, 2017. [Online]. Available:

76

https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf
https://media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf

https://blog.doyensec.com/2017/08/03/electron-framework-security.html. [Accessed: 30-
Nov- 2017]

[47] "Same-origin policy", Mozilla Developer Network, 2017. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy. [Accessed:
28- Oct- 2017]

[48] "<webview> Tag | Electron", Electronjs.org, 2017. [Online]. Available:
https://electronjs.org/docs/api/webview-tag. [Accessed: 21- Nov- 2017]

[49] "shell | Electron", Electronjs.org, 2017. [Online]. Available:
https://electronjs.org/docs/api/shell. [Accessed: 13- Nov- 2017]

[50] "BrowserWindow | Electron", Electronjs.org, 2017. [Online]. Available:
https://electronjs.org/docs/api/browser-window. [Accessed: 15- Nov- 2017]

[51] "<webview> Tag | Electron", Electronjs.org, 2017. [Online]. Available:
https://electronjs.org/docs/api/webview-tag. [Accessed: 13- Nov- 2017]

[52] "window.open Function | Electron", Electronjs.org, 2017. [Online]. Available:
https://electronjs.org/docs/api/window-open. [Accessed: 14- Nov- 2017]

[53] "Prohibit `nodeIntegration` from being re-enabled with `window.open` · Issue #4026 ·
electron/electron", GitHub, 2016. [Online]. Available:
https://github.com/electron/electron/issues/4026. [Accessed: 11- Nov- 2017]

[54] "Electron File Handling", www.tutorialspoint.com, 2017. [Online]. Available:
https://www.tutorialspoint.com/electron/electron_file_handling.htm. [Accessed: 14- Oct-
2017]

[55] "Build software better, together", GitHub, 2017. [Online]. Available:
https://github.com/search?utf8=%E2%9C%93&q=electron&type=. [Accessed: 09- Nov-
2017]

77

	1 Introduction 12
	1.1 Motivation 13
	1.2 Problem Statement and the contribution 14
	1.3 The scope 16
	1.4 Related research 16

	2 Electron framework 18
	2.1 Electron components 18
	2.2 Processes 22

	3 Application security 26
	3.1 OWASP Top 10 26
	3.2 Cross-site scripting 29
	3.3 Server-side JavaScript 34

	4 Electron Security 37
	4.1 Security checklist 37

	5 Methodology in collecting statistical data from Electron-based applications 43
	5.1 Analysis method 43

	6 Analysis and results 57
	6.1 Dataset 57
	6.2 Modules 59
	6.3 WebPreference options 61
	6.4 Remote content 62
	6.5 Applications vulnerable to cross-site scripting evolving into code execution 63
	6.6 Suggestions 70

	7 Conclusion and future work 72
	8 References 74
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement and the contribution
	1.3 The scope
	1.4 Related research

	2 Electron framework
	2.1 Electron components
	2.1.1 Chromium
	2.1.2 Node.js
	2.1.3 V8

	2.2 Processes
	2.2.1 Main process
	2.2.2 Renderer process

	3 Application security
	3.1 OWASP Top 10
	3.2 Cross-site scripting
	3.2.1 Client-side and server-side XSS
	3.2.2 Reflected cross-site scripting
	3.2.3 Stored cross-site scripting
	3.2.4 DOM based cross-site scripting

	3.3 Server-side JavaScript

	4 Electron Security
	4.1 Security checklist
	4.1.1 Node integration
	4.1.2 Sandbox
	4.1.3 Preload scripts
	4.1.4 Websecurity
	4.1.5 Insecure HTTP connections
	4.1.6 Navigation to untrusted origins
	4.1.7 Popups in webview
	4.1.8 Shell.OpenExternal

	5 Methodology in collecting statistical data from Electron-based applications
	5.1 Analysis method
	5.1.1 Subject 1 – Modules
	5.1.2 Subject 2 - WebPreference options
	5.1.3 Subject 3 - Remote content
	BrowserWindow
	BrowserView
	Webview tag
	Window.open()
	5.1.4 Subject 4 - Vulnerability to cross-site scripting attacks to evolve into code execution

	6 Analysis and results
	6.1 Dataset
	6.2 Modules
	6.3 WebPreference options
	6.4 Remote content
	6.5 Applications vulnerable to cross-site scripting evolving into code execution
	6.5.1 Overview of the vulnerable applications
	6.5.2 Attack vectors
	6.5.3 Step one to step three validation and results
	6.5.4 XSS to code execution – showcase on a vulnerable markdown editor
	6.5.5 Risk

	6.6 Suggestions

	7 Conclusion and future work
	8 References

