

Department of Mechatronics

Chair of Mechatronics Systems

MHK70LT

Islam Bzhikhatlov

158877MAHM

BIPEDAL ROBOT WITH SIMULATION MODEL

FOR TEACHING ROBOTICS

Master’s Thesis

The author applies for

the academic degree

Master of Science in Engineering

Tallinn

2016

2

Mehhatroonikainstituut

Mehhatroonikasüsteemide õppetool

MHK70LT

Islam Bzhikhatlov

158877MAHM

KAHEJALGNE SIMULATSIOONIMUDELIGA

ROBOT ROBOOTIKA ÕPETAMISEKS

MSc Lõputöö

Autor taotleb

tehnikateaduste magistri

akadeemilist kraadi

Tallinn

2016

3

(The reverse of the title page)

AUTHOR'S DECLARATION

I hereby declare that this thesis is the result of my independent work.

On the basis of materials not previously applied for an academic degree.

All materials used in the work of other authors are provided with corresponding references.

The work was completed .. guidance

“.......”....................201….a.

The author

.............................. signature

The work meets the requirements for a master's work.

 “.......”....................201….a.

Supervisor

 signature

Permit to defense

................................. curriculum defense superior

“.......”....................201… a.

............................. signature

4

TUT Department of Mechatronics
Chair of Mechatronics Systems

MASTER’S THESIS SHEET OF TASK’S

Year 2016... semester …2……
Student: Islam Bzhikhatlov 158877 MAHM
Curricula: Mechanics
Spetsiality: Mechatronics
Supervisor: Research Scientist, Maido Hiiemaa

MASTER’S THESIS TOPIC:
(in English) BIPEDAL ROBOT WITH SIMULATION MODEL FOR TEACHING
ROBOTICS
(in Estonian) KAHEJALGNE SIMULATSIOONIMUDELIGA ROBOT ROBOOTIKA
ÕPETAMISEKS

Thesis tasks to be completed and the timetable:

Nr Description of tasks Timetable

1.

Development of the physical bipedal robot 10.12.2015

2.

Creating 3D model of the robot 20.12.2015

3.

Creating behavioral model of the robot (physical behavior +
simplified servo models)

20.02.2016

4.

Creating interface(s) between a PC and the robot 25.03.2016

5.

Testing (comparison of the virtual and the physical robot) 25.04.2016

Solved engineering and economic problems:

Development of a bipedal robot with visualization to be used as a teaching tool in robotics.

The robot must use low-cost R/C servos and 3D printable parts instead of industry-grade
components to bring the cost down and to emphasize the imperfections, which must be
modeled and analyzed by students.

Additional comments and requirements: ….…………………………….............................

Language: English

Application is filed not later than 16.05.2016
Deadline for submitting the theses 20.05.2016

Student Islam Bzhikhatlov /signature/ ………......... date ………
Supervisor Maido Hiiemaa /signature/ ……….......... date………

Confidentiality requirements and other conditions of the company are formulated as a company
official signed letter

5

CONTENTS

Introduction ... 7

1. REQIREMENTS AND GOALS .. 9

2. DEVELOPMENT OF THE PHYSICAL BIPED ROBOT ... 11

2.1 Principles of locomotion ... 11

2.2 Kinematics .. 13

2.3 Leg joints location ... 14

2.4 Leg dimension ... 14

2.5 Weight and center of gravity .. 15

2.6 Approximately calculation of servos ... 16

3. CREATING 3D MODEL OF THE BIPED ROBOT ... 18

3.1 Modeling software ... 18

3.2 Modelling of biped robot using CAD software ... 19

3.3 Simulation software ... 22

4. CREATING BEHAVIORAL MODEL OF THE ROBOR .. 24

4.1 Importing data of model to V-REP and creating of scene 24

4.2 Setting options and properties of shapes and joints .. 27

4.3 Graphs in V-REP ... 29

4.4 Sensors in V-REP ... 31

4.5 Simulation features ... 31

5. CREATING INTERFACE(S) BETWEEN A PC AND THE ROBOT 34

5.1 Data communication ... 34

5.2 Servo controller and control scheme .. 35

5.3 Modifying of electronic components ... 37

6. TESTING (COMPARISON OF THE VIRTUAL AND THE PHYSICAL ROBOT) 38

6.1 «Pre targeting» mode ... 38

6.2 «Real targeting» mode ... 41

7. CONCLUSION ... 44

6

7.1 Collisions and problems ... 44

7.2 Future work .. 45

REFERENCES ... 48

APPENDIX A .. 50

APPENDIX B .. 57

APPENDIX С .. 66

	

7

Introduction

Two legged robot locomotion mechanisms are very popular and complex field of science.

Engineers can’t make robot legs so as it exists in biological systems, which are very

successful and don’t have any problems to walk, jump and run [1]. However, there are a large

number of two-legged robots that work on simpler principles than human legs. These

simplified principles [2] are still hard to study for engineering students. Problems in the study

of biped robots have existed for a long time and solution to this problem is complicated due to

high price of existing biped robots. The high cost of such robots rarely allows universities to

provide all students with the necessary equipment, which is necessary for completely

understanding principles of creating and improving of them. Even if the organization has

enough money to buy this robot, during the study there might be cases, when robot is

breaking. It’s not very good for university and teachers sets limitation of using robots in

learning process for students and disallows to experimentalise, and even, in some cases

disallow to touch. This situation does not promote making studying the difficult biped robots

more easy. Sometimes, students can be allowed study robots so as they need, but here there is

another problem. Most parts of biped robots have protected case, which hidden the

components, joints and very important points.

In most cases students don't get knowledge about simulations and visualizations of robotics

systems or face with the complexity of simulation and visualization of robots in the process of

studying. Another problem is developing of algorithms and programs [3] for biped robots and

testing. In developing process of algorithms it is very important to have visualization, which

saves a lot of time and gives most useful information about errors.

Price of advanced biped robots is quite high. Cheap biped robots are available, but they

cannot be improved, modified, simulated and tested.

Possibility of simulation allows students programming devices so as like him, studying

results, positives and negatives of changing approximately even before uploading the program

to device.

In our days, it is difficult to imagine a robotic system without the system of simulation and

visualization. For example, large companies such as ABB Robotics and KUKA robotics use

their own simulation systems. However, designing such systems manually for educational

robots is not possible due to their complexity. There are different virtualization systems robots

8

that have the ability to connect to any of the robots, but you need to create a 3D model,

scenario simulations, programm it and provide it with correct exchange of data.

Important point of developing of biped robots is existence of some ready platform, which

gives the base information about main points and can be used as a base of future robot.

9

1. REQIREMENTS AND GOALS

Requirements and goals are determined by the needs of simplified and useful solution for

teaching capabilities of simulation and visualization. There are many biped robots which can

be used as a studying platform. Features of specifications don’t allow modifying and

improving those robots, or complexity disallows studying main principles that also makes

impossible to modify it by yourself.

For studying platform there were determined the next main requirements: low-cost,

replaceable parts and ability to change basic parameters. Rapid prototyping technology allows

making the parts so as we want and allow decreasing cost of components to the maximum.

Even for cases when some parts are broken, we can replace it easily, without limitation for

studying process and quite fast.

Another positive factor for studying process is getting experience to rapid prototyping on

practice. As mentioned, there are a lot of ready biped platforms, some of them for low cost.

But all of them which are not printable can't be modified and improved, therefore it is a bad

option for studying.

A lot of attention is paid to the accuracy of manufacture parts in industrial robots. For

studying tools it is not required since it all are stuffing in other subjects or unimportant for

beginners.

There are several projects, which can be used as a teaching platform, but the majority of them

is quite complex and can cause some misunderstanding for students. For example, "Poppy"

robot [4] (figure 1.1 at left) was made in France as open source project. This solution has

printed parts and more or less accessible electronic components. Unfortunately this solution is

too difficult for students, which have not experience in robotics and mechatronics due to

using of theoretical aspects too much more.

There are other biped robots with printed parts, which were created by enthusiasts and have

not mathematical base and software. The most interesting of them, in my opinion, is “HaRo”

robot [5] (figure 1.1 at right) which has 10 DOF (Degree of freedom).

10

Figure 1.1 – “Poppy” robot (at left) and “HaRo” robot (at right)

Usage of the low-cost R/C servos also can allow making biped robot simpler and cheaper, but

some problems with current positions of servos appear. The low-cost servos do not allow

receiving current position since the logics were realized inside of servo. Current position is

very important for control algorithm. There is another problem concerning reliability and

stability of construction. Typical problems of two legged robots can be solved in difference

degree that dives some freedom for development. In some cases it depends on the complexity

of task for biped robot.

Problems with simulation and visualization are also quite important. Some software exists in

this field but it takes too much time for studying and simple manuals for biped robots are not

available. Also that software has to be tested.

After analysis the next main requirements were formulated: the robot must use low-cost R/C

servos and 3D printable parts instead of industry-grade components. Also robot must have

imperfections (which must be modeled and analyzed by students) and simulation.

I tried to solve all these questions in my work using available tools and ready solutions. Also

in my work I tried to stick to the accepted rules and laws of creation and control of bipedal

robots. My work is not going to be the best solution for bipedal platform; this platform is

going to allow modifying, improving and developing the bipedal robots for studying robotics.

11

2. DEVELOPMENT OF THE PHYSICAL BIPED ROBOT

Development of biped robot was started from locomotion since it is the main function of

biped robot and features of biped robot based on principles of locomotion.

2.1 Principles of locomotion

For start all main approaches and principles of creating biped robots were found. Unlike biped

robots, wheeled locomotion is very popular in our day. Walking principle is like to wheeled

locomotion if the step size decrease [6].

For each locomotion principle (it doesn’t matter if it is wheeled, legged or another) there are

three basic issues: stability, the characteristics of ground contact and the type of environment,

as described in [7].

The main principle, which holds most of the modern biped robots, is minimization of

fluctuations in position of the robot gravity center. Linear motion position of the gravity

center with a constant speed or slowly changing speed ensures the successful robot

locomotion.

The dynamic and static stability is the main task, which has to be solved at the beginning.

Static stability means that in any time biped robot have to be stable and don’t have to fall. For

bipedal robot it can be supposed that it is not possible because the robot has only two legs and

one leg is not allow solving this task during the motion. Due to described above reasons the

problem of stability is solving at another level.

The majority of walking robots has a big foot for solving this issue and has a large contact

surface. Next is necessary new term which can be determine as support polygon, as describe

in [6] only robots with four or more legs can be static stable. In some cases, support polygon

is not equal to contact surface. Increasing the support polygon and decreasing the contact

surface into needed limitation doing the biped robot more stable. It doesn’t mean that

bipedal robot is completely static stable, but it means that biped robot can be more stable

based on principles similar to static stable.

Next important think is dynamic stability. General algorithm to solve the problem of dynamic

stability for bipedal robots still does not exist. For the most of biped robots approaches based

12

on the zero moment point (ZMP) [8] are used. ZMP specifies the point with relation to which

dynamic reaction force at the contact of the foot with ground doesn't produce moments in the

horizontal direction [9]. Zero moment is necessary for biped walking, because various factor

such as join moving or the constant changing of the Center of Mass [10] can unstable the

robot. It is only one of reasons to calculate the trajectory of the Center of Mass before making

new step, because it depends on ZMP. The position of ZMP is affected by mass and inertia of

the robot’s hull, since its motion usually requires large ankle torques to maintain a satisfactory

dynamical postural stability. Decreasing the torque in ankle can solve this problem.

When the robot's foot contacts the ground it is influenced by a reaction from the ground called

the floor reaction force. An ideal walking pattern is created by the computer and the robot's

joints are moved accordingly. The total inertial force of the ideal walking pattern is called the

target total inertial force, and the ZMP of the ideal walking pattern is the target ZMP.

The ZMP is the point where the robot has to base on to keep its balance. When the robot

should move forward it has first to compute the ZMP and after that it has to step the

appropriate leg exactly to the computed position. The Zero Moment Point1 (ZMP) is often

described in robotics as the point on the ground where all momentums are equal to zero. The

ZMP can be computed with equation (1) and (2) (as described in [11]):

x୫୮ ൌ
∑ m୧ሺz gሻx୧ െ ∑ m୧xz୧ െ୧ ∑ I୧୷θ୧୷୧୧

∑ m୧ሺz gሻ୧

y୫୮ ൌ
∑ m୧ሺz gሻy୧ െ ∑ m୧yz୧ െ୧ ∑ I୧୶θ୧୶୧୧

∑ m୧ሺz gሻ୧

Where (ݔ௭, ,௭ݕ 0) are the ZMP coordinates in the Cartesian coordinate system, (xi, yi, zi)

is the mass center of the link i, is the mass of the link I, and g is the gravitational acceleration.

Ix and Iy are the inertia moment components, θix and θiy are the angular velocity around the

axes x and y (toke as a point from the mass center of the link i).

One more problem of biped robots is Foot-Rotation Indicator (FRI) Point, i.e. foot rotation in

biped robots during the single-support phase. The foot-rotation indicator (FRI) point is a point

on the foot/ground-contact surface where the net ground-reaction force would have to act to

keep the foot stationary as described in [12].

13

Thus, for achieving stable walking as described in [13] is necessary to

 Target ZMP Control

 Floor Reaction Control

 Foot Planting Location Control

 [14] presents quite interesting research about aspects of redundant actuation when the robot

is a closed kinematic chain. As were described, process of walking is quite complex and can‘t

be provided in fully. Described principles must be taken into account for next developing of

biped robot.

2.2 Kinematics

The number of freedom’s degrees was one of difficult and important aspects of developing

the robots. Biped robot with minimum DOF with quite big functionality was described in [15]

[15]. Each leg has five DOF. During the choice the next issues were taken into account: how

much more complicated the robot when you add more DOF and how strong the restriction is

in reducing the number of DOF. Five DOF is optimal for studying platform because it allows

saving the most of functionality and remove insignificant for studying at the beginning.

The total DOF of the mechanism was calculated as described in [16]. Results were presented

belong: ܨܱܦ ൌ 6 ∙ ݊ െ 5 ∙ ହܲ െ 4 ∙ ସܲ ൌ 6 ∙ 6 െ 5 ∙ 2 െ 4 ∙ 4 ൌ 10

Figure 2.2 – Simplified kinematic scheme

14

Contact surface was taken as a flat surface with big hole. It allowed making robot more

statically stable. The center of mass was located depending on servos location, since servos

are more heavy compared to the other parts.

2.3 Leg joints location

So as our robot is biped and considered as more or less like to humanoid robot, the lower part

of human skeleton was used for reference when locating the leg joints. Range of joint

movement during walking was based on the capabilities of the servo.

For first experimentation approach of maximum simplifying biped robot locomotion was

taken, but this concept acts contrary to the main principles, which described above. That

concept had eight DOF. Designing from easily to more difficult is the only one reason for

creating simplified concept but for this case 8 DOF concept was not able to be like a

humanoid even as simplified to the maximum.

New concept was created depending on theoretical part. New concept has 10 joints (DOF).

The most important of them was modifying of foots. It was very important to decrease the

foot contact surface and increase support polygon [6], it made the robot more sustainable.

2.4 Leg dimension

The ability to change the size of one important robot elements without additional changes to

other parts was incorporated in principle of developed model. It ensures the modularity of

biped robot. In process of learning this possibility allows the students to make robots of

different parameters and to study their behavior, characteristics, and influence on behavior,

which depends on size parameters.

Universal mounts also allows you to change not only their length, but also width and length.

In addition, it is possible to change design features, to make holes for attaching additional

devices. However, there are limitations, when you increase the size of some parts by more

than 20%, it is also recommended to recalculate parameters.

Leg dimension is most of important point in biped robots. As were described in principle of

locomotion, it is important for static stability of robot. Also, foot prints (contact surface) are

very important for static stability walking. Statically stable walking keeps the projection of

the center of mass inside the support area (polygon). (More details were determined in [17]).

15

For better understanding and possible comparison, the following is table of Human Proportion

Data (Table 2.1). Data were taken for the 50th percentage of United States males aged from

18 to 70 [18] and can be used for correlation. As can be seen from table 2.1 all dimensions are

approximately to the same extent reduced except the foot breadth.

There are several reasons for this. Firstly, it allows making sustainability of biped much more.

Secondary, it lets increase the radius of movement of the center of gravity in the horizontal

plane. Also the needed breadth was can be calculated approximately with a large margin.

Dimension Value for human (mm) value for biped robot (mm)

Foot length 245 95

Foot breadth 95 80

Popliteal height 440 95

Knee height 545 155

Hip height 920 260

Hip breadth 360 125

Table 2.1 – Human Proportion Data vs. biped robot proportion

The width of the hip was relatively increased to make possible the implementation of different

configuration principles of the thigh. One of interesting principles of hip designing presented

in [19 pp. 9-11]. The size and proportions of the biped robot have a strong dependence on the

method of construction and design, placement of joints and motors. Therefore, at the stage of

designing, it is recommended conducting additional calculations in the software packages of

finite-element modeling. This will allow finding the weak points in the design.

2.5 Weight and center of gravity

One of the unique features of the printed materials is the low weight. Usually for printing

acrylonitrile butadiene styrene plastic (ABS) or Polylactic acid (PLA) are used. Those

materials have a rather low weight while remaining fairly durable material. PLA has a feature

shrinkage (reduced in size a little bit).

A biped robot has to maintain control over its center of mass (CM) and possible force

disturbances during walk. Used approach does not take into account the weight of printed

16

parts, because the using material is synthetic polymer. But it is not about servos, each servo

have a weight equal 50 grams.

Center of gravity is calculated using Solid Works Motion software for all important positions.

It allows determining the limitations in horizontal directions for movement. Here only

allowable movement of robot parts that determined the position of CM was calculated.

Possible dynamic parameters that can influence the position of CM were not taken into

account, because it assumes that the joints of robot will move quite slowly.

2.6 Approximately calculation of servos

Any movement mechanism is requiring using force source. Usually biped robot use

pneumatics, electric motors or both of them together. We have to consider the approximately

calculation of minimal required parameters for biped robot. For our case the most appropriate

option is servos since it depends on dimensions of robot and available power supply.

To determine the required minimum torque of the servo we take the case where the shaft

operates the servo maximum torque – it is bottom servos. Concerning to the left lower servo

will conduct the calculations.

Figure 2.2 – Illustration of methods of calculating the servo

Simplified maximum load can be calculated as:

ܯ ൌ ଵܯ ܯଶ ܯଷ ܯସ ܯହ ൌ ଵܨ ∙ ݈ଵ ଶܨ ∙ ݈ଶ ଷܨ ∙ ݈ଷ ସܨ ∙ ݈ସ ହܨ ∙ ݈ହ ൌ ݉ଵ ∙ ݃ ∙

݈ଵ ݉ଶ ∙ ݃ ∙ ݈ଶ ݉ଷ ∙ ݃ ∙ ݈ଷ ݉ସ ∙ ݃ ∙ ݈ସ ݉ହ ∙ ݃ ∙ ݈ହ

17

There g=9.81 m/s2 - Gravitational acceleration. ݉ െ mass of each servo (for our case it was taken

around 50 grams), ݈ െ	distance to servo (“shoulder”).

ܯ ൎ 0,05 ∙ 9.81 ∙ 0.105 0,05 ∙ 9.81 ∙ 0.159 0,05 ∙ 9.81 ∙ 0.248 0,05 ∙ 9.81 ∙ 0.225
 0,05 ∙ 9.81 ∙ 0.12 ൎ 0.42	ሺܰ ∙ ݉ሻ

 is the most simplified load value on shaft of servo and in some cases load can be moreܯ

than this value. But we can say that the load can’t be more then 2 ൈ this value we willܯ

take as a required torque for our servo.

௫ܯ ൌ 2 ൈܯ ൌ 2 ∙ 0.42 ൎ 0.84	ሺܰ ∙ ݉ሻ

Also for our case one more requirement exists - Gear Material mast metal. From catalog of

servos [20] was found low-cost RC servo Tower Pro MG-995 (shown on figure 2.3).

Servo MG-995 [21] has next specifications:

 Weight: 55 g

 Dimension: 40.7 x 19.7 x 42.9 mm approx.

 Stall torque: 8.5 kgf·cm (4.8 V), 10 kgf·cm (6 V)

 Operating speed: 0.2 s/60º (4.8 V), 0.16 s/60º (6 V)

 Operating voltage: 4.8 V a 7.2 V

 Dead band width: 5 µs

 Stable and shock proof double ball bearing design

 Temperature range: 0 ºC – 55 ºC

So as 10	kgf cm	 ൎ 0.98	N ∙ m this servo is suitable for our case.

Figure 2.3 – Servo Tower Pro MG995

18

3. CREATING 3D MODEL OF THE BIPED ROBOT

3D model of biped robot is created depending on previous parts of work. In this stage of

development is primarily determining joint lengths, their design features, possibility of

installation of electronic component and their interaction. So as will be used electronic

components which were determined before and which has to be visible, should be it all taken

into account. Also, should be calculated strength (minimum and maximum stability). In

addition, the design should be resistant on two supports or on one.

To determine the all parameters, requirements for biped robot should be taken into account.

Despite the fact that basis of robot kinematics was took from human skeleton, the ratio of the

lengths of the links need to be modified due to the difference in the location of servo motors

and differences in the operation principle of biped robot. Following parameters is depends on

joints length: target ZMP, Floor reaction, the time required for one step and all parameters

required for his calculation, center of mass, and all other physical parameters of robot.

3.1 Modeling software

There are various simulation programs, which are well suited for tasks of modelling. Such

parameters as accessibility in universities and the prevalence of the use (presence of

knowledge and skills to use) were considered as a most important. All files must be saved in

the STL format for 3D printing and usually this format also used to importing data into

another software. Therefore only software with described option can be considered. But such

programs are a huge number and this feature is supported even in programs that are not

designed to work in mechanical engineering.

After software analysis, highlighted three software’s, each of them is maximum suitable for

the described task and strongly recommended to use only these software’s. Following

programs: Solid Edge, Solid Works, and Inventor are pretty popular for mechanical

engineering. Mentioned software’s are very user friendly. Usually, this software (or one of

them) is studied in higher educational institutions at the beginning of studying. But another

CAD (Computer-aided design) or CAE (Computer-aided engineering) systems like mentioned

software’s also can be used.

19

SolidWorks was determined as modeling software for this type of tasks: user friendly so as

project is going to be oriented to more beginners.

3.2 Modelling of biped robot using CAD software

Problem with fastening of servo was revealed at the beginning of modelling. Connection of

servo shaft with other parts was not determined also. It was decided to fixate the servos

through another small element so that the axes of servos were perpendicular (figure 2.1). This

allowed securely fasten the servos with each other, also provided with the necessary holes for

fixing another elements of biped robot.

Figure 2.1 – Fasten the servos was modeled in SolidWorks software

This method of fastening allows establishing the upper and lower servo using the same

elements. However, one of the binding around the body is not enough for accurate fastening.

For this reason were used the additional elements for each servo as shown on figure 2.1 (right

side). Those additional elements for fastening are same to the upper and lower, left and right

side.

Much attention was given to the knee joint during the process of modeling. An important

condition that ensures the correct functioning of this connection is a method of fixation and

the location of servo. As most suitable approach was determine fixation on bottom part of leg

as shown on figure 2.2 (left side). Fixation was provided by installing a servo in a groove,

which is perfectly suited to the dimensions of the front (shown on figure 2.2).

20

Figure 2.2 – bottom part of legs

Also the servos are mounted to the one part of leg by four screws so that they are securely

fastened. The second part of dogs is connected to the shaft of the servo. The second part of

dogs is connected to the shaft of servo by special "hat", which is content of servo kit (shown

on figure 2.3 at right). This item attaches directly to the servo shaft by one screw. Also 'hat' is

fasten to second part of leg by two screws.

Figure 2.3 – Fastening element between the servo and the upper part of leg

As mentioned above, the fastening element was attaching to the second part of leg by two

screws and also special slot was made for this element (shown on figure 2.4) since connection

has to be attached straight and constantly ensure rigid connection.

Figure 2.4 – 3D model of leg second part

21

“Ankle” is another important element in the design. This part is one of the most complex and

the studied parts of biped robot. Many scientists conduct research and identify features of

their development. For our case we consider a simple concept with flat contact surface.

The first model, which was modeled, is presented in figure 2.5. This approach had one

connection points with servo shaft and was not unsought for providing the functionality.

Figure 2.5 – 3D models of ankles as a first approach

This model was improved by creation addition connection point like a bearing, which

provided needed loads and freely rotation. As shown on figure 2.6 (right side), this approach

allows using the additional fastener by making only one hole for shaft.

Figure 2.6 – 3D models of ankles as a final design

Also contact surface was modified so that the area of contact surfaces was decreased and

support of foot was increased. Design features of the contact surfaces are very complex and

knowledge intensive task, so in this work it was not given much attention. However, the data

presented is sufficient for forming a view on the basic criteria of its development.

22

3D models were assembled also in Solidworks software. It is necessary to be made correctly

for next importing into simulation software. Collision of 3D models is main field for attention

during the assembling. The problem is that SolidWorks allows to collect parts so that their

surfaces can intersect; however, in simulation it is not permissible. This important aspect has

to be taken into account.

Figure 2.5 – Biped robot was modeled as assembled using Solidwoks software

3.3 Simulation software

The choice of software for the simulation differs significantly from the software selection for

modelling. A well-designed simulator makes it possible to rapidly test algorithms, design

robots, and perform regression testing using realistic scenarios. There are software packets for

modeling not so much as for simulation due to of its complexity. The problem of analysis of

existing solutions and their capabilities also is a difficult task.

Basic requirements: accessibility (free), friendly user interface and wide opportunities. After a

detailed analysis two software solutions were selected. They have convenient programmatic

and graphical interfaces: Virtual Robotics Experimentation Platform (V-REP) [22] and

Gazebo [23]. Both of them are free accessible. Gazebo is open source project and free for

using. V-REP has free educational license. So as developing biped robot for studying process,

education license is enough for our case. As mentioned on official web site, Gazebo is

23

powerful tool for robotic simulation, but V-REV has almost same functionality and friendlier

user interface, which making communication more easy and effective.

The main advantage of V-REP is the flexibility and expandability, integration and

communication with other software solutions.

The V-REP was chosen for simulation. V-REP is virtual simulation platform made by

Coppelia Robotics. Mentioned software is integrated development environment, is based on

distributed control architecture: each object/model can be individually controlled via an

embedded script, a plugin, a ROS node, a remote API client, or a custom solution. This makes

V-REP very versatile and ideal for multi-robot applications. Controllers can be written in

C/C++, Python, Java, Lua, Matlab, Octave or Urbi.

V-REP is using for fast algorithm development, factory automation simulations, fast

prototyping and verification, robotics related education, remote monitoring, safety double-

checking, etc.

24

4. CREATING BEHAVIORAL MODEL OF THE ROBOR

Creating of behavioral model is important part of simulation which allows to make simulation

more realistic. Behavioral model of a robot depends on the control algorithm and its

capabilities, which were laid out in the design of biped robot.

4.1 Importing data of model to V-REP and creating of scene

V-REP allows importing of models in STL (STereoLithography) format. Since initially

models were created in Solid Works software, all elements were saved in STL format, after

that were imported into V-REP. Since initially models were created in Solid Works software,

all elements were saved in STL format, after that were imported into V-REP. After importing

of components the model hierarchy of scene contents new positions with standard names (i.e.

all objects is used in scene). Structure of used elements is presented as a hierarchy tree and all

elements should be located correctly relatively to each other for correct simulation. Scene

objects have to be built in an appropriately hierarchy (was shown on figure 4.1 at left). Each

element with default name has to be renamed for more complete understanding of contents.

Double-clicking on name allows editing it.

Figure 4.1 – Default scene hierarchy (left) and Structured scene hierarchy (right)

Objects in the scene hierarchy should drag and drop into another object, in order to create a

parent-child relationship. A model was defined by attaching all objects that logically belong

25

to the model as a base object. At the result were got correct scene hierarchy as shown in figure

4.1 (at right).

All joints were defined as appropriate connection type. For this case all joints is "Revolute".

Joints also have to be located appropriately in scene hierarchy. In addition joints have to be

positioned correctly in scene and have appropriately coordinates (set correctly coordinates in

scenario).

Position of joints in V-REP requires some additional actions. For correct results the

positioning of joints should be select relation to shaft, i.e. shaft of servos for this case. For this

task was creating new scenario, selected and copied all servos to new scenario. Next actions

have to be done only in new scenario. Here "convex decompression" shapes should be added.

A “convex decompression” is a convex mesh which optimized for dynamics collision

response calculation. "Convex decompression of selection" was added to scenario on next

step by selecting the servo, clicking right button of mouse and choosing "add". All default

parameters in modal window are correct except "Maximum Concavity" which has to be equal

20 mm. After this operation in the scene hierarchy will appears new element. The visibility of

this element should be shifted to another layer and switched to the layer with convex element

by using command "Tools" and "layers". In new small window layers can be switched. On

figure 4.2 was shown how the convex shape looks. Facing to problems with visibility layers,

should be taken into account that V-REP has Help file.

Figure 4.2 – Convex element in V-REP

26

Convex shape has to be divided by using menu “Edit”, “Grouping/Merging” and “Divide

selected shapes”. After that we have several simple shapes, among them the shaft, which we

have to use. For applying position of shaft to joint hold down the button "SHIFT" and click on

joint and shaft (sequence is important, firstly joint and lastly shaft). After that click

“Object/Item Position” icon and in new modal window click “Apply to selection”. The result

is shown on figure 4.3.

Figure 4.3 – Positioned shaft.

Repeat same sequence of action for all another servos. All joints should be selected and

copied to main scenario after correct positioning. In scene hierarchy all joint has to be located

appropriately as described above and shown on figure 4.1 (at right). Links in any cases has to

be between shapes i.e. can’t be connected to each other.

Different parts of scenario are necessary for simulation of physics and visualization in V-

REP. All simple (graphical) shapes have to be duplicated as convex shapes. For creating

convex shape based on simple shape, choose the simple shape and use menu “Add”, “Convex

decompression of selection”, correct parameters in new modal window and click “OK”. Also

convex shapes have to be located in hierarchy appropriately (as shown on figure 4.1 at right).

Each convex shape has to be defined as a base for simple shape (which was imported at the

beginning). All visible elements were linked with convex shapes (physics) so as the visible

shapes is following to physics elements.

27

4.2 Setting options and properties of shapes and joints

“Scene object properties” is mostly using option in V-REP menu. For each type of item, this

menu has two tabs: its own properties (settings) and common setting. For example, convex

shape object properties were shown on figure 4.4. Whole menu options are described in V-

REP user manual [24].

Figure 4.4 - Convex shape object properties

In the beginning it is necessary to make all convex shapes as a dynamics and “respondable”

using menu scene object properties. In Dynamic properties dialog enable checkbox of “Body

is respondable” and “Body is dynamic”. Also by clicking onto “Compute mass and inertia

properties for selected convex shape” and enter the body density, which for this case equal 1,

after that click “OK”. The joints is also has to be corrected. Select joint and open scene object

properties and check mode, it has to be "Torque/Force mode". Also here a visual properties

"length" and "Diameter" can be changed as it suitable for us.

V-REP contains programming part, without it functionality of software would not be

complete. As mentioned above, V-REP use Lua scripts as a default. In V-REP environment

there are two types of scripts: threated and non-threated (the difference can be checked in).

Non-threaded script was used for this case. For adding have to be used menu "Add", but

28

before select base element in scene hierarchy. Use menu "Add", "Associated child script" and

"Non-threaded". All the programming part has to be in this this script for our case. If more

exactly, then in script we have four parts and all parts of program have to be written inside of

them. The program blocks were shown below with comments.

if (sim_call_type==sim_childscriptcall_initialization) then

 -- Some initialization code here

end

if (sim_call_type==sim_childscriptcall_actuation) then

 -- Main ACTUATION code here

end

if (sim_call_type==sim_childscriptcall_sensing) then

 -- Main SENSING code here

end

if (sim_call_type==sim_childscriptcall_cleanup) then

 -- Some restoration code here

end

All parts of script with tips for each part were shown above. All joints has to be initialized in

first part for our case. Snippet is shown belong. It was shown since can be difficult to

understated due to specific determining (in scene hierarchy were used special names to make

initialization in loop and use arrays).

for i=1,10,1 do

 jointsname[i]='joint_'..i

 jointshandle[i]=simGetObjectHandle(jointsname[i])

 simSetJointTargetPosition(jointshandle[i],jointscurrentpos[i])

end

All variables were necessary for manage the joints in scene (for more details check source

code to check the appendix A).

29

4.3 Graphs in V-REP

V-REP allows to use data of simulation and to get information from sensors fixed on movable

parts of robot or another object in scenario. Graphs are a convenient tool for data

representation.

Graphs are objects that can be used to record, visualize or export data from a simulation. They

are very powerful and flexible. The user can select from a multitude of data types applied to

specific objects to record. Data is recorded as a data stream (sequential list of data values) that

can be visualized in three different ways: time graphs, X/Y graphs, 3D curves. For this case

time graph was used.

Graphs can be added in user interface with commands “Add” and “Graph”. To output data on

the created graph, it has to be configured appropriately. Select current graph and open “scene

object properties”, click “add new data stream to record” and select type of data stream and

Object/item to record.

For this case is necessary to add two data streams: firs should be “Force sensor: force along Z

axis”, object – appropriately force sensor; second: “Object: absolute Alfa Orientation”, select

object “link_1” and press “OK”. After that, click “Edit X/Y graphs” and will be visible a new

popup menu as shown on figure 4.6.

Figure 4.5 - Convex shape object properties

30

Click “add new curve”, select Data streams and click “OK”, after that add one more cure with

appropriately values. When both curves were available, popup menu has to be closed by

clicking button “Close”. A result, which has to be after that, was shown on figure 4.7.

The use of graphics is possible in static (when the graph is displayed after completion of the

program of simulation), and in the plotting mode during the simulation.

Figure 4.6 – Graph object properties

Graph was configured. For showing the graph has to be associated with “Floating view”. By

right clicking on mouse with pointer somewhere of main 3D window, has to be selected

“Add” and “Floating view”. After that select graph in scene hierarchy, hover over on floating

view, click right button of mouse and in popup menu click “View”, “Associate view with

selected graph”. If all procedure were completely finish, then data from source will be outline

on graph in floating view.

 In addition data stream can be imported from another device or program. For this use next

code in main loop:

31

simSetGraphUserData(graphHandle,'Data',difference)

Where “graphHandle” is handle of graph, “Data” is name of stream and “difference” is

difference between previous and next value.

4.4 Sensors in V-REP

In V-REP available three types of sensors: Proximity sensors, Vision sensors and Force

sensors. The most commonly used and popular is a force sensor. Force sensors are initially

rigid links between two shapes that are able to measure transmitted forces and torques. The

rigidity of force sensors is conditional, in the sense that force sensors can be broken if a

certain condition arises (e.g. if a force or torque threshold was exceeded).

As mentioned, force sensors are initially rigid links between two shapes, that means that force

sensor has to be between two dynamically shapes anyway. Force sensor can be added using

menu “Add”, “Force sensor”. Same command for another type of sensors. In our case only

position sensors was used for getting of servos position (revolute connections). For this

appropriate “joint handles” has to be added in non-threated script and using next command we

can get data about current positions.

out=simGetJointPosition(jointsHandle)

The unit of getting data is radians that should be taken into account every time.

4.5 Simulation features

Real characteristics of servo are not too simple as we like to get and anyway significant

simplification will exist.

Simulation process the behavior of servo requires a lot of attention, but no reasons to expect

particularly good results from this is not required. V-REP allows using PID controller

(proportional integral derivative controller) in simulation and with appropriate parameters

may be quite effective. But for our case it is not possible since we are using low-cost servos

with very cheap electronic components.

There is another approach for simulation of servo behavior. This approach based on the

characteristic dependence of the rate of rotation of the shaft of the servo from time to time

(shown on figure 4.7). This characteristics was taken as shown on [24] by quite popular

32

manufacturer of servo motors in USA. From next formulas we can determine all requirements

for approximately simulation of servo behavior.

Figure 4.7 – Trapezoid Operating Pattern

v ൌ
ଡ଼బ

୲బି୲ఽ
 – maximum speed, t ൌ

୲బିଡ଼బ
୴బ

 – acceleration/deceleration time, t ൌ t െ 2 ∙ t –

constant-velocity travel time, X ൌ vሺt െ tሻ - total travel distance, X ൌ
୴బ∙୲ఽ
ଶ

 –

acceleration/deceleration travel distance, X ൌ v െ t – constant-velocity travel time.

Special algorithm was developed in V-REP for simulation of servo movements considering

the above described specifics of servo (block diagram was shown on figure 4.8).

33

Figure 4.8 – Block diagram of algorithm for servo simulation

As shown on block diagram, the acceleration and deceleration time depends on maximum

speed and time of movement also depends to maximum speed. This algorithm does not take

into account the moments of forces acting on the shaft of the servo. This algorithm was

developed considering that the servos are running at low speeds.

34

5. CREATING INTERFACE(S) BETWEEN A PC AND THE ROBOT

Interfacing between PC and developed robot is delivered using Virtual Robot

Experimentation Platform (V-REP) through the serial connection, i.e. connection to Universal

Serial Bus (USB). Special algorithm was created for providing control of robot and simulation

of robot movement in same time. For transmit data from the microcontroller to computer were

developed codes in both side. In V-REP code was written in the functional part that connects

to the port and reads the data. On microcontroller also the algorithm was appropriately

realized to communicate by serial port.

5.1 Data communication

As mentioned, data communication was realized by serial communication, which is quite

slow for data transmitting but which is simple and commonly used method. Probably students

already had experience of using this type of communication and there are not needed to

explain the principles of operation. Serial communication has own features which has to be

taken into account during the whole time of using. First of them is unavailability controlling

continuity of data. Some data can be missed and it is not controlled by interface of data

transmission.

For correct data exchange the algorithm of data transfer was developed (block diagram was

shown on figure 5.1), which provides transfer of data in a strict sequence. So as all values has

to be sent at same time, has to be used some separator for arrays of data. The comma was

used as a separator. Next fragment of program shows the organization of setting commands

from microcontroller.

 Serial.print(r3); // add value at end of string

 Serial.print(",");//data separator

 Serial.print(l3); // add value at end of string

 Serial.print(",");//data separator

As shown above, for all parameters except the last one. When writing the last parameter, use

the write command with a newline. When executing the command "end of line" in the series

connection is sent special character symbol that we use as the token-separator between the

data streams.

35

Serial.println(l2); // add value at end of string and make new line (i.e. transmit end of

line character).

Quite difficult processing algorithm has to be realized on V-REP side unlike microcontroller

side. Next processing algorithm provides all that needed for getting data correctly on V-REP

side.

Figure 5.1 –Block diagram of data reading algorithm

5.2 Servo controller and control scheme

Arduino Uno was used as a controller. Arduino is most popular device for controlling of

servos and familiar even to beginners in robotics. Also Arduino is quite simple device and

don’t require many times for studying, for cases when students don’t have skills.

Special Arduino library [25] for servos was used in project for controlling of servos with

different speed. The “VarSpeedServo.h” Arduino library allows the use of up to 8 servos

moving asynchronously (because it uses interrupts). In addition, you can set the speed of a

move, optionally wait (block) until the servo move is complete, and create sequences of

moves that run asynchronously.

Empty board of Arduino UNO was used as a base for creation of servo connection circuit.

36

It is very easy and available method, because it provides a reliable connection to Arduino all

the ports with minimal effort and low cost. To create the connection diagrams on the basis of

such fees requires minimal skills with a soldering iron and a little time.

Figure 5.3 – Empty board of Arduino UNO (left) and ready board for biped robot which was
used (right).

This type of work can be done by students as a one part of work for getting experience in

modifying and creation of circuits.

PSB (printed circuit Board) was developed for cases, when need a many circuits. Also, this

work could be done by students since it is not quite big deal and all needed information about

it and tools are available, but it takes much more times.

On figure 5.4 was shown scheme of PCB which was prepared in Sprint Layout software. This

software has quite friendly user interface.

Figure 5.4 – PSB can be used instead empty Arduino board

37

5.3 Modifying of electronic components (sensors)

The lack of control at the ground surface contact makes a walking robot under actuated.

Therefore, a bipedal robot may fall due to an external disturbance, or due to an incorrect

action of the robot itself. For described reason above, the biped robot has to have four

pressure sensors on each contact surface, it allows make balancing dynamically. But also the

biped robot can operate without them for some cases and work without dynamically

balancing. Signals from these sensors allow preventing biped robot from falling. In this case

were not used the sensors on biped robot, but the mentioned sensors were simulated.

For each servo was realized feedback, which allow to get real servo position for every time.

Feedback was realized using standard potentiometers of each servos, the signal was processed

after setting position with high precision.

Servos were disassembled in order to implement the feedback. Using multimeter was

determined which of the three contacts is the servo position signal. After that gray wire was

connected to this contact (on figure 5.3), in the hull of servo was made a hole through which

the wire was brought out.

Figure 5.3 – Feedback from servo

On this wire we are getting the analog signal (voltage), which value is changing

depending to the position of servo from some minimum value to maximum value. For

each servo this minimum and maximum was different and it should be taken into

account in the future. After all the operations we have feedback and can use it after

assembly of the hull of servo.

38

6. TESTING (COMPARISON OF THE VIRTUAL AND THE PHYSICAL
ROBOT)

Testing results are one of the most important steps which aim to evaluate the results and

determine errors. Compare the virtual and physical robot was included in the aims as a most

interesting and important indicator. Also were analyzed changes of parameters where is not

possible to conduct a comparative analysis because this work had a limitations.

6.1 «Pre targeting» mode

As mentioned above the «pre targeting» mode means that the controller sending target

positions to real servos and virtual servos at same time. The advantage of this mode is the

ability to testing of algorithms written without using the real robot. This is a very important

aspect when writing the control algorithms for the inexperienced students who can make

critical mistakes and to break the robot often. Using of 3D printable parts making the process

quite cheap but it is not too fast and should be one mode, when we can make pre testing and

find main critical mistakes.

On figure 6.1 was shown simplified block illustration of communication for pre targeting

mode.

Figure 6.1 – «Pre targeting» algorithm illustration of communication

39

On Controller side was realized setting of positions (and speeds also) for real servos and

sending of same data to serial communication at same time. The approach described above

doesn’t reflect the real situation with physical robot, but allow testing of controller

algorithms.

Testing for this mode is very challenging due to the complexity of the mapping data

simulations and data from physical model, therefore testing was conducted 10 times. For

testing was written a simple algorithm sitting down and getting up the robot. For testing was

written a simple algorithm sitting down and getting up the robot. When performing the

specified algorithm, at the same time includes 4 servo mode out-of-sync. Data were obtained

in the V-REP software from simulation and using the built-in servo potentiometers (as

described above, we connected the wires to them and connected to the microcontroller).

Figure 6.2 – Graph of real servo positions and simulated servo positions was made in V-REP.

Also on figure 6.2 was shown how changing the angles value for Servo1. The synchronization

of the simulation and the real servo has not been verified during testing so as it doesn't meter

in this mode (reasons mentioned above). On figure 6.2 the changing of values for the real

servo was shifted in phase by
గ

ଶ
 because the data was sent from the controller with a delay.

The crux in the fact that having one serial connection, we cannot send the data at different

times, so the data taken during the rotation of servo and this data were sent together with the

parameters of servo for next iteration.

The volts were translated to degrees by the formula:

ܲ௨ ൌ ሺݔ െ ୫ܸ୧୬ሻ ∙ ܭ ܲ

40

Pmin – value of angle at the minimum position, Vmin – value of voltages at same position Pmin,

 current value of voltages, K - to change the voltage on 1 unit, it is necessary to change the -ݔ

position on this (K) angle, K was calculated as ܭ ൌ ௫ି

௫ି
; The reason for this approach

was that the Vmin and Vmax can be different for each case, but there can increase or decrease on

same value.

The formula of translate radians to degrees (since in V-REP simulation has angle values in

radians) was used for obtaining of values shown in figure 6.2.

ܽ ൌ
ݔ ∙ 180
ߨ

Where ݔ – value of angle in radians, ߨ - mathematical constant, the ratio of a circle's

circumference to its diameter.

As we can see in figure 6.2 the servos taking some times between commands (between

standing up and sitting down). The reason for this is a necessity of some time for sending data

to serial connection. This problem is not important for our case, since this factor was

considered in simulation algorithm.

On figure 6.2.2 was shown recalculated data for simulation. Also this curve was shifted little

bit down for much more visibility. Special macros by VBA (Visual Basic Application) in

EXCEL [26]software also was created for using exported data from V-REP.

Figure 6.2.2 – Comparatively graph of robot and simulation without shifting was made in

EXCEL software.

‐60

‐40

‐20

0

20

40

60

80

100

120

7
,4

7
,6
5

7
,9

8
,4

8
,6
5

9
,1
5

9
,4

9
,8
5

1
0
,1

1
0
,3
5

1
0
,8
5

1
1
,1

1
1
,5
5

1
1
,8

1
2
,0
5

1
2
,5
5

1
2
,8

1
3
,2
5

1
3
,5 1
4

1
4
,2
5

1
4
,5

1
4
,9
5

1
5
,2

1
5
,6
5

1
5
,9

A
n
gl
e
s,
 d

eg

Time, sec

Robot

Simulation

rec. Sim

41

6.2 «Real targeting» mode

«Real targeting» mode is simpler mode than pre targeting, which has next main idea –

simulation in real time. It means that the simulation is supporting only on data about current

position of servos. For this mode was the scenario of simulation same to the pre targeting

mode, but algorithm was developed different to the mentioned mode.

Figure 6.3 – Real time algorithm illustration of communication between simulation and robot

On figure 6.3 was shown illustration of communication algorithm between V-REP and

controller. As can be detected the simulation will be static for cases when voltages is constant.

The formulas were used same as in the previous algorithm to convert data into order to

display data on graph. Formulas also were used for translation of voltages to angles. Also was

used special translating operation of voltages for two servos due to there was located

differently and were inverted to each other (check in appendix B).

42

Figure 6.4 – Real time algorithm illustration of communication between simulation and robot

On figure 6.4 was shown the graph of data from simulation and form real robot. There is time

difference between simulation and real robot which can be determined from graph 6.4 but it

has small value.

Figure 6.4 shows the value of angles in degree units from one joint of simulation and same

joint from real robot. As we can see, features of this graph are fluctuating signal we get from

the servo. The value of them was quite high and has to be taken into account, but in

simulation this fluctuations were lowed. The fluctuation leads to crash of simulation

sometimes even it was lowed. Therefor to determine the reasons of this fluctuation was

determine next possible hypotheses. The errors may be in: V-REP calculations, data

communication, controller calculations (Arduino code) or inside servo. Fluctuations are of

random nature as can be detected from graph.

For beginning the data of plotting was imported from V-REP and checked. Missing of some

data was revealed – this is another problem. Spatial condition was added in algorithm for

cases, when data were missed. In cases when were skipped more than 4 data sets successively

then simulation fails. A message is displayed. This happens very rarely, but such a condition

is necessary.

After that, was made V-REP code for outputting data as a voltage value without calculation

and transformation. On figure 6.5 was shown the results. Problem is not in recalculation of

voltages to angles.

43

Figure 6.5 – Voltage data in V-REP after getting from serial connection

Outputting of data after reading was next step. Interruption of data stream was revealed for

some cases and continuing in next iteration. This interruption are mixing variables and getting

not correct data. Result from debugging mode was shown on figure 6.6.

Figure 6.6 – Result from debugging mode (V-REP)

So as we are reading data through the serial connection we know how much variables we
have to get. For this reason condition was added in algorithm of reading. This condition not
allows applying read data for using variables for cases when data stream has some
interruption and in fact interrupted data are miss. It is allow since we are using quite small
step of simulation. On figure 6.7 was shown result from V-REP after correction of algorithm.

Figure 6.7 – Results of finally algorithm in V-REP

44

7. CONCLUSION

Features of bipedal robots development were determined. Simplified biped robot was

developed based on determined features. This robot is quite simple and saves main principles

of biped robots in order to be used as a teaching tool in robotics. The robot used low-cost R/C

servos and 3D printable parts instead of industry-grade components. This platform is

cheapened to the maximum and emphasizes the imperfections, which must be modeled and

analyzed by students in studying process. This platform was developed inaccurately since it is

not required for the assigned tasks.

Available options for simulation of robotic systems were revealed and simulation tool for

studying platform was determined. Two main algorithms of simulation were developed. Each

mode has application tasks. “Pre targeting” mode is quite useful for algorithms’ testing on

first stage of biped robot development. “Real time” mode is helpful in getting current

information from real robot and analysis.

Testing was conducted to evaluate the accuracy of the simulation. Testing showed that the

results of simulation is close to the present robot’ output data in more than 94% situations for

real time simulation mode and more than 96% for pre targeting mode. It is quite good result

for teaching tool. The simulation can be improved by entering adjustments if necessary since

the obtained errors are mostly constant. Any improvement could bring at most 2% in accuracy

and require significant labor effort that is why optimization was not conducted.

7.1 Collisions and problems

During the development of biped robot, creation of simulation, testing and other steps

different problems were detected.

One of them was the problem with V-REP. The problem was that there was fail to read data

through serial connection while this connection gave the positive result (i.e. connection was

available, but worked incorrect).

This problem was solved by editing configuration file in V-REP directory. File usrset.txt

located in folder named as “system” in “V-REP” directory. Changing parameter value of

“useAlternateSerialPortRoutines” to “On” in usrset.txt solved this problem.

45

This problem is related to operating system of computer (in this case it was “Windows 7-8-
10).

Hardware – problems with position precision of servo. The used servos were not absolutely

the same and for servos it was necessary to set different values of angle for getting the same

change of rotation (the same positions). It is highly recommended to take a servo of the same

model and same production company.

Arduino Uno has not enough analog ports, also it is recommended taking Arduino Mega for

next times. Adruino Mega has several serial connections unlike Arduino Uno which has only

one serial connection. Arduino mega costs a little bit more, but can solve important problems

with complexity of programming at simultaneous transmission of data for pre targeting mode.

7.2 Future work

This work had many limitations due to complexity of biped robot development. Also there

was limitation of economic factor so as it is very important factor in real life. In the future it is

planned to conduct research using of force and vision sensors and do tests to evaluate

possibility of it’s use.

Also testing of another types (much faster) of communication is quite important and could

bring interesting results.

46

KOKKUVÕTE

Kahejalgsed robotid on väga keerukad mehhatroonilised lahendused, milline asjaolu muudab

nende uurimise küllaltki keerukaks. Omandatud teadmiste rakendamine eeldab praktilist

harjutamist nii ehtsate robotite kui simulaatoritega. Sedalaadi ülesannete täitmiseks leidub

arvukalt sobivaid lahendusi, kuid kõigil on oma varjuküljed. Põhiliseks miinuseks on nende

kõrge hind. Käesoleva uurimistöö eesmärgiks on töötada välja kahejalgne

pildiedastusvõimalusega robot, mida saaks kasutada robootika õppevahendina.

Kahejalgse roboti väljatöötamise iseloom oli kindlaks määratud. Lihtsustatud kahejalgse

roboti väljatöötamisel põhineti selgelt määratletud võimalustel.

Loodud platvorm valmis võimalikult väheste kuludega ja on pisut vigane, mis muudabki selle

platvormi õpilastele sobivaks vahendiks, mida õppe käigus analüüsida ja täiustada.

Kahejalgse roboti kujundamine toimus ebatäpselt, kuna see ei ole ette nähtud määratud

ülesannete täitmiseks.

Toodi välja robootikasüsteemide simuleerimiseks leiduvad valikuvõimalused ja määrati

kindlaks õppeplatvormi jaoks kõige täpsem simuleerimisvahend. Simulatsioonisüsteemi

tingimuseks oli selle tasuta kasutamise võimalus, kuna majanduslikud tegurid olid väga suure

tähtsusega. Me otsustasime tarkvara kasuks, mille nimetus on “Virtual Robotics

Experimentation Platform” (V-REP) (Virtuaalne robootika katsetustegevuse platvorm).

Simulatsiooni kahe põhialgoritmi väljatöötamiseks kasutati eelpoolmainitud tarkvara. Esimest

algoritmi nimetati „eesmärgieelseks“ olekuks (pre targeting mode) ja teist „reaalajas“ olekuks

(real time mode). Mõlemal olekul on oma kindel rakendusülesanne. „Eesmärgieelne“ olek

sobib kasutamiseks algoritmide testimisel kahejalgse roboti väljatöötamise esimeses etapis.

„Reaalajas“ olek aitab saada jooksvat teavet ehtsalt robotilt ja seda analüüsida.

Simulatsiooni täpsuse hindamiseks viidi läbi testimine. Testid näitasid, et stimulatsiooni

tulemused on väga sarnased olemasoleva roboti väljundandmetega rohkem kui 94% kordadest

reaalajas oleku puhul ja rohkem kui 96% kordadest eesmärgieelse oleku puhul. See on

õppevahendi kohta küllaltki hea tulemus. Simulatsiooni saab parandada uute regulatsioonide

sisestamise abil, kuna esinenud vead on enamasti muutumatud. Iga täiendus võib lisada

täpsust vähemalt 2% võrra ning see nõuaks ühtlasi märkimisväärset lisatööd, mistõttu

tulemuste täielik optimeerimine jäi saavutamata. Käesoleva uurimistöö käigus saadud

47

tulemusi võib kasutada mitte ainult ülikoolides, vaid ka robootikakallakuga kesk- ja

kutsekoolides, kuna tegemist näib olevat odava õppevahendiga.

48

REFERENCES

1. Planning Walking Patterns for a Biped Robot. Qiang Huang, Kazuhito Yokoi, Shuuji
Kajita, Kenji Kaneko. 3, s.l. : IEEE TRANSACTIONS ON ROBOTICS AND
AUTOMATION, 2001, Vol. 17.

2. Efficient Bipedal Robots Based on Passive-Dynamic Walkers. Steve Collins, Andy Ruina,
Russ Tedrake, Martijn Wisse. 1082-1085, s.l. : Science, 2005, Vol. 307, pp. 1082-1085.

3. Modeling and Control for a Biped Robot on Uneven Surfaces. Chen, Jian Li and
Weidong. Shanghai : Joint 48th IEEE Conference on Decision and Control and 28th Chinese
Control Conference, 2009.

4. Poppy project. [Online] https://www.poppy-project.org/. [Cited: 04 09, 2016.]
https://www.poppy-project.org/.

5. Denamganaï, Kevin. HaRo: 10 DoF Bipedal Gait. Instructables. [Online] [Cited: 02 24,
2016.] http://www.instructables.com/id/HaRo-10-DoF-Bipedal-Gait/.

6. Böttcher, Sven. Principles of robot locomotion. Seminar ‘Human robot interaction’.

7. S.Roland. Introduction to autonomous mobile robots. 2004. pp. 12-45.

8. Dekker, M.H.P. Zero-moment point method for stable biped walking. Eindhoven : s.n.,
2009.

9. Zero Moment Point – Thirty five years of its life. M. Vukobratovic, B. Borovac. s.l. :
International Journal of Humanoid Robotics, pp. 157–173, 2004, Vol. vol. 1.

10. Zero Moment Point/Inverted Pendulum-Based Walking Algorithm for the NAO Robot.
Iulia M. Motoc, Konstantinos Sirlantzis, Sarah Spurgeon, Peter Lee. [ed.] Fifth
International Conference on Emerging Security Technologies. Washington : IEEE Computer
Society Washington, DC, USA ©2014 , 2014. pp. 63-66. ISBN 978-1-4799-7007-0.

11. E. Cuevas, D. Zaldivar, R. Rojas. Walking trajectory control of a biped robot, Technical
report. Berlin : Freie Universität, 2004.

12. Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point.
Goswami, Ambarish. Pennsylvania : Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, 1999. 19104-6389.

13. ASIMO Tehnical Information. ASIMO Honda. [Online] Honda Motor Co., Ltd., 2007.
[Cited: 03 19, 2016.] http://asimo.honda.com/downloads/pdf/asimo-technical-information.pdf.

14. Contact impact inhibition strategy for biped robot walking based on. Zhipeng Wang, Bin
He, Runjie Shen and Weibin Meng. Zhuha : IEEE Conference Publications, 2015. 978-1-
4673-9675-2/15/.

49

15. Kinematic Analysis and Motion Planning of a Biped Robot with 7-DOF and Double
Spherical Hip Joint. Guangri Li, Qiang Huang, Yanping Tang, Guodong Li and Min Li.
Beijing : Proceedings of the 7th World Congress on Intelligent Control and Automation,
2008.

16. Engineering department, Cambridge University. Mechanics Formulae and Data.
[Online] 2000. [Cited: 01 13, 2016.] http://www-
mdp.eng.cam.ac.uk/web/library/enginfo/cueddatabooks/mechanics.pdf.

17. Luksch, Tobias. Human-like Control of Dynamically Walking Bipedal Robots.
Kaiserslautern : Technischen Universit at Kaiserslautern, Technischen Universit¨ at
Kaiserslautern, 2010.

18. Margaret A. McDowell, Ph.D., M.P.H., R.D., et al., et al. Anthropometric Reference
Data for Children and Adults: United States. s.l. : National Health Statistics Reports, 2003–
2006. Number 10, October 22, 2008.

19. Karl Muecke, Jeff Kanetzky, Raghav Sampath and Patrick Cox. Design of a Bipedal
Walking. Stevens Institute of Technology. [Online] 2006. [Cited: 11 14, 2015.]
https://web.stevens.edu/msrobotics/SMRDC2010/muecke06r.pdf.

20. Servo Database . Servo Database - TowerPro Servos. [Online] [Cited: 01 29, 2016.]
http://www.servodatabase.com/servos/towerpro.

21. MG995 High Speed Metal Gear Dual Ball Bearing Servo. Electronicos Caldas. [Online]
[Cited: 02 09, 2016.] http://www.electronicoscaldas.com/datasheet/MG995_Tower-Pro.pdf.

22. Coppelia Robotics V-REP. [Online] Coppelia Robotics. [Cited: 11 04, 2015.]
http://www.coppeliarobotics.com/.

23. Gazebo. [Online] Open Source Robotics Foundation. [Cited: 01 06, 2016.]
http://gazebosim.org/.

24. Servo Motors and Drives. Anaheim Automation. [Online] [Cited: 02 19, 2016.]
http://www.anaheimautomation.com/manuals/forms/servo-motor-guide.php.

25. VarSpeedServo. GitHub. [Online] [Cited: 01 23, 2016.]
https://github.com/netlabtoolkit/VarSpeedServo.

26. Spreadsheet Software Programs - Excel. Microsoft Office. [Online] [Cited: 03 09, 2016.]
https://products.office.com/en-us/excel.

50

APPENDIX A

Source code in V-REP

if (sim_call_type==sim_childscriptcall_initialization) then
 base=simGetObjectHandle('robot_dyn')
 graphHandle=simGetObjectHandle("graph1")
 jointsname={}
 jointshandle={}
 jointscurrentpos={}
 jointstargetposition={}
 jointsintervalspeed={} -- contents the Sstart and Sphinish
 jointsdifference={}--difference between target and current
 jointsaction={}--0-decrease,1-increase
 statjointsdifference={}
 steps={}
 k=1
 for i=1,10,1 do
 jointsname[i]='joint_'..i
 jointshandle[i]=simGetObjectHandle(jointsname[i])
 jointscurrentpos[i]=0
 jointstargetposition[i]=0
 jointsdifference[i]=0
 jointsaction[i]=0
 jointsintervalspeed[i]=0
 statjointsdifference[i]=0

simSetJointTargetPosition(jointshandle[i],jointscurrentpos[i])
 steps[i]=0.01
 end
 --- include the COM port and start of SERIAL connection
 portNumber="\\\\.\\COM3"
 --could be defined as followed
 --portNumber=[[\\.\COM12]]
 baudrate=38400
 serial=simSerialOpen(portNumber,baudrate)
 inpos=0
 voltin=1
 cnt=0
 val={}--contains data from data stream
 volts={}--contains data from data stream
 for i=1,30,1 do
 val[i]=0
 end
 for i=1,13,1 do
 volts[i]=0
 end
end
if (sim_call_type==sim_childscriptcall_actuation) then
 --get information from serail connection and separate of

51

them---
 str=simSerialRead(serial,200,false,'\n',200)
 if str ~= nil then
 local token
 cpt=0
 --extracting the values in str separated by a ,
 for token in string.gmatch(str, "[^,]+") do
 cpt=cpt+1
 val[cpt]=token
 end
 for i=1,10,1 do

jointstargetposition[i]=(tonumber(val[i]))*math.pi/180
 if jointstargetposition[i]>jointscurrentpos[i]
then
 jointsaction[i]=1
 jointsdifference[i]=jointstargetposition[i]-
jointscurrentpos[i]

statjointsdifference[i]=jointstargetposition[i]-
jointscurrentpos[i]
 end
 if jointstargetposition[i]<jointscurrentpos[i]
then
 jointsaction[i]=0
 jointsdifference[i]=jointscurrentpos[i]-
jointstargetposition[i]
 statjointsdifference[i]=jointscurrentpos[i]-
jointstargetposition[i]
 end
 end
 for i=11,20,1 do
 jointsintervalspeed[i-10]=tonumber(val[i])/20
 end
 for i=21,32,1 do
 volts[i-20]=tonumber(val[i])
 end
 voltin=1
 for i=1,10,1 do
 steps[i]=0.02
 end
 end
 for i=1,10,1 do
 while true do
 if (jointsdifference[i]<0 or
jointsdifference[i]==0) then
 break
 end
 if (statjointsdifference[i]-
jointsdifference[i]<jointsintervalspeed[i]) then
 steps[i]=steps[i]+0.02

52

 end
 if (jointsdifference[i]<jointsintervalspeed[i])
then
 steps[i]=steps[i]-0.02
 end
 if (jointsaction[i]==0) then
 jointscurrentpos[i]=jointscurrentpos[i]-
steps[i]
 end
 if (jointsaction[i]>0) then

jointscurrentpos[i]=jointscurrentpos[i]+steps[i]
 end
 jointsdifference[i]=jointsdifference[i]-steps[i]

simSetJointTargetPosition(jointshandle[i],jointscurrentpos[i])
 break
 end
 end
 while true do
 if (voltin==13) then
 break
 end
 out=simGetJointPosition(jointshandle[3])
 out2=out*180/math.pi
 simSetGraphUserData(graphHandle,'Simulation',out2)
 out=(volts[voltin]-1.37)*47.62+50
 simSetGraphUserData(graphHandle,'Robot',out)
 voltin=voltin+1
 break
 end
 cnt=cnt+simGetSimulationTimeStep()
 simAddStatusbarMessage('Simulation time: ' ..cnt)
end
if (sim_call_type==sim_childscriptcall_sensing) then
 -- Put your main SENSING code here
end
if (sim_call_type==sim_childscriptcall_cleanup) then
 -- Put some restoration code here
End

Source code in Arduino

#include <VarSpeedServo.h>

int l1=85; // variables for position

int l2=65;

int l3=90;

53

int l4=90;

int l5=90;

int r1=90;

int r2=110;

int r3=100;

int r4=90;

int r5=90;

int simpos[10];// positions for simulation

int simspeed[10];// speeds for each servo

int sensorValue=0;

int i=0;

float myvoltarray[13]; //array for saving voltages from servos

VarSpeedServo SerL1; ///servos obj

VarSpeedServo SerL2;

VarSpeedServo SerL3;

VarSpeedServo SerL4;

VarSpeedServo SerL5;

VarSpeedServo SerR1;

VarSpeedServo SerR2;

VarSpeedServo SerR3;

VarSpeedServo SerR4;

VarSpeedServo SerR5;

void setup()

{

 Serial.begin(38400);//open serial connection

 SerL1.attach(4); //left bottom second (near to floor)

 SerL2.attach(3);// left bottom first

 SerL3.attach(6);//left middle

 SerL4.attach(7);// left top second

 SerL5.attach(5);//left top first

 SerR1.attach(8);// right bottom second (near to floor)

 SerR2.attach(9);/// right bottom first

 SerR3.attach(10);// right middle

 SerR4.attach(12); // right top second

 SerR5.attach(11);//right top first

 SerL1.write(l1, 10);

54

 SerL2.write(l2, 10);

 SerL3.write(l3, 10);

 SerL4.write(l4, 10);

 SerL5.write(l5, 10);

 SerR1.write(r1, 10);

 SerR2.write(r2, 10);

 SerR3.write(r3, 10);

 SerR4.write(r4, 10);

 SerR5.write(r5, 10);

 delay(2000);

 for (i=1; i<14; i++) {

 myvoltarray[i]=0;

 }

 for (i=1; i<11; i++) {

 simspeed[i]=0;

 simpos[i]=0;

 }

}

void loop()

{

 l2=70;

 r2=108;

 l3=100;

 r3=90;

 simspos[3]=0; // values for simulation were set initially to avoid recalculations

 simspos[4]=0;

 simspos[8]=0;

 simspos[9]=0;

 simspeed[3]=6;

 simspeed[4]=5;

 simspeed[8]=6;

 simspeed[9]=5;

 for (i=1; i<11; i++) {

 Serial.print(simspos[i]);

 Serial.print(",");

 }

55

 for (i=1; i<11; i++) {

 Serial.print(simspeed[i]);

 Serial.print(",");

 }

 for (i=1; i<13; i++) {

 Serial.print(myvoltarray[i]);

 Serial.print(",");

 }

 Serial.println(myvoltarray[13]);

 SerL2.write(l2, 6); // position, speed

 SerR2.write(r2, 7);

 SerL3.write(l3, 10);

 SerR3.write(r3, 10);

 sensorValue = analogRead(A4);

 i=1;

 for (i=1; i<14; i++) {

 sensorValue = analogRead(A4);

 myvoltarray[i] = sensorValue * (5.0 / 1023.0);

 delay(200);

 }

 l2=40;

 r2=145;

 l3=50;

 r3=140;

 simspos[3]=‐50

 simspos[4]=30

 simspos[8]=‐50

 simspos[9]=30

 simspeed[3]=5

 simspeed[4]=6

 simspeed[8]=5

 simspeed[9]=6

 for (i=1; i<11; i++) {

 Serial.print(simspos[i]);

 Serial.print(",");

 }

56

 for (i=1; i<11; i++) {

 Serial.print(simspeed[i]);

 Serial.print(",");

 }

 for (i=1; i<13; i++) {

 Serial.print(myvoltarray[i]);

 Serial.print(",");

 }

 Serial.println(myvoltarray[13]);

 SerL2.write(l2, 6);

 SerR2.write(r2, 7);

 SerL3.write(l3, 10);

 SerR3.write(r3, 10);

 for (i=1; i<14; i++) {

 sensorValue = analogRead(A4);

 myvoltarray[i] = sensorValue * (5.0 / 1023.0);

 delay(200);

 }

}

57

APPENDIX B

Source code in V-REP

--DO NOT WRITE CODE OUTSIDE OF THE if-then-end SECTIONS
BELOW!!
--(unless the code is a function definition)
if (sim_call_type==sim_childscriptcall_initialization) then
 base=simGetObjectHandle('robot_dyn')
 graphHandle=simGetObjectHandle("graph1")
 graphHandle2=simGetObjectHandle("graph2")
 --defined all required arrays
 jointsname={} --Names
 jointshandle={} --Handles
 jointsposition={} -- current position
 readyjointsposition={} -- reculculated pos.
 minvolts={} -- array of min volts
 maxvolts={} -- array of max volts
 difference={} -- difference between positions in real
robot
 error1=0
 k=1
 for i=1,10,1 do
 jointsname[i]='joint_'..i
 jointshandle[i]=simGetObjectHandle(jointsname[i])
 jointsposition[i]=0
 readyjointsposition[i]=0

simSetJointTargetPosition(jointshandle[i],jointscurrentpos[i])
 minvolts[i]=0
 maxvolts[i]=0
 difference[i]=0
 end
 --- include the COM port and start of SERIAL connection
 portNumber="\\\\.\\COM3"
 --could be defined as followed
 --portNumber=[[\\.\COM12]]
 baudrate=250000
 serial=simSerialOpen(portNumber,baudrate)
 simAddStatusbarMessage('serial: '..serial)
 inpos=0
 k=1
 cnt=0
 volts={} --contains data from data stream
 for i=1,16,1 do
 volts[i]=0
 end
end
if (sim_call_type==sim_childscriptcall_actuation) then

58

 --get information from serail connection and separate of
them
 str=simSerialRead(serial,200,false,'\n',200)
 if str ~= nil then
 local token
 cpt=0
 --extracting the values in str separated by a ,
 for token in string.gmatch(str, "[^,]+") do
 cpt=cpt+1
 volts[cpt]=tonumber(token)
 end
 if cpt<15 then
 error=error+1
 if error>4 then
 while true do
 simAddStatusbarMessage('Simulation failed
!')
 end
 end
 end
 if cpt>14 then
 error=0

simSetGraphUserData(graphHandle2,'Voltage',volts[4])
 for i=1,4,1 do
 jointsposition[i]=volts[i]
 minvolts[i]=volts[i+4]
 maxvolts[i]=volts[i+8]
 difference[i]=volts[i+12]
 end
 for i=1,4,1 do
 k=difference[i]/(maxvolts[i]-minvolts[i])
 simAddStatusbarMessage('volts: '..volts[i]..'
maxvolts:'..maxvolts[i]..' difference:'..difference[i])
 readyjointsposition[i]=(jointsposition[i]-
minvolts[i])*k*math.pi/180
 simAddStatusbarMessage('Data:
'..readyjointsposition[i]..'| Grad: '..jointsposition[i]..'|
k= '..k..'| min= '..minvolts[i]..'| max='..maxvolts[i]..'|
dif='..difference[i])
 end
 readyjointsposition[1]=-1*readyjointsposition[1]
 readyjointsposition[2]=-1*readyjointsposition[2]
 readyjointsposition[3]=1*readyjointsposition[3]
 readyjointsposition[4]=1*readyjointsposition[4]
 --set new position for all joints

simSetJointTargetPosition(jointshandle[8],readyjointsposition[
1])

59

simSetJointTargetPosition(jointshandle[3],readyjointsposition[
2])

simSetJointTargetPosition(jointshandle[9],readyjointsposition[
3])

simSetJointTargetPosition(jointshandle[4],readyjointsposition[
4])
 out=simGetJointPosition(jointshandle[3])
 out2=-1*out*180/math.pi
 --output data to graph
 simSetGraphUserData(graphHandle,'Simulation',out2)
 k=difference[2]/(maxvolts[2]-minvolts[2])
 out=(volts[2]-minvolts[2])*k
 simSetGraphUserData(graphHandle,'Robot',out)
 end
 end
 cnt=cnt+simGetSimulationTimeStep()
 simAddStatusbarMessage('Simulation time: ' ..cnt)
end
if (sim_call_type==sim_childscriptcall_sensing) then
 -- Put your main SENSING code here
end
if (sim_call_type==sim_childscriptcall_cleanup) then
 -- Put some restoration code here
end

Source code in Arduino

#include <VarSpeedServo.h>

//data: angles for V‐REP

int l1=85; // bottom sec //k10

int l2=65; // BOTTOM FIRST // DECREASE TO SIT DOWN //////////////k9

int l3=90; // mid//k8

int l4=90;

int l5=90;

int r1=90; //bottom sec//INSREASE TO BE CHANGED CM TO RIGHT//////k5

int r2=110;//k4

int r3=100; //mid // INSREASE TO SIT DOWN////////////////////////k3

int r4=90;

int r5=90;

int k1=0;

60

int k2=0;

int k3=0;

int k4=0;

int ks1=0;

int ks2=0;

int ks3=0;

int ks4=0;

int sensorvalue[5][31]; // for sensor value

int i=0;//for iterations

int j=0; //for iterations

float myvoltarray[5]; //for voltages

float maxvolt[5]; //for max voltages

float minvolt[5];

int iterator=0;

///servos obj

VarSpeedServo SerL1;

VarSpeedServo SerL2;

VarSpeedServo SerL3;

VarSpeedServo SerL4;

VarSpeedServo SerL5;

VarSpeedServo SerR1;

VarSpeedServo SerR2;

VarSpeedServo SerR3;

VarSpeedServo SerR4;

VarSpeedServo SerR5;

void setup()

{

 Serial.begin(250000);//open serial connection

 SerL1.attach(4); //left botom second (near to floor)

 SerL2.attach(3);// left bottom first

 SerL3.attach(6);//left middle

 SerL4.attach(7);// left top second

 SerL5.attach(5);//left top first

 SerR1.attach(8);// right bottom second (near to floor)

 SerR2.attach(9);/// right bottom first

 SerR3.attach(10);// right middle

61

 SerR4.attach(12); // right top second

 SerR5.attach(11);//right top first

 SerL1.write(l1, 10);

 SerL2.write(l2, 10);

 SerL3.write(l3, 10);

 SerL4.write(l4, 10);

 SerL5.write(l5, 10);

 SerR1.write(r1, 10);

 SerR2.write(r2, 10);

 SerR3.write(r3, 10);

 SerR4.write(r4, 10);

 SerR5.write(r5, 10);

 delay(2000);

}

void loop()

{

 if (iterator < 1) {

 sensorvalue[1][1] = analogRead(A5);//right mid

 sensorvalue[2][1] = analogRead(A4);//left mid

 sensorvalue[3][1] = analogRead(A3);//right bottom

 sensorvalue[4][1] = analogRead(A2);//left bottom

 myvoltarray[1]=sensorvalue[1][i] * (5.0 / 1023.0);

 myvoltarray[2]=(1023.0‐sensorvalue[2][i]) * (5.0 / 1023.0);

 myvoltarray[3]=sensorvalue[3][i] * (5.0 / 1023.0);

 myvoltarray[4]=(1023.0‐sensorvalue[4][i]) * (5.0 / 1023.0);

 for (i=1; i<5; i++) {

 //determine some existing value for each servo just in first iteration

 minvolt[i] = sensorvalue[i][1] * (5.0 / 1023.0);

 maxvolt[i] = sensorvalue[i][1] * (5.0 / 1023.0);

 }

 }

 l2=65;

 r2=120;

 l3=100;

 r3=90;

62

 if (iterator < 1) {

 ks1=r3;

 ks2=l3;

 ks3=r2;

 ks4=l2;

 }

 SerL2.write(l2, 7); // position, speed

 SerR2.write(r2, 7);

 SerL3.write(l3, 10);

 SerR3.write(r3, 10);

 for (i=1; i<16; i++) {

 sensorvalue[1][i] = analogRead(A5);//right mid

 sensorvalue[2][i] = analogRead(A4);//right mid

 sensorvalue[3][i] = analogRead(A3);//right mid

 sensorvalue[4][i] = analogRead(A2);//right mid

 myvoltarray[1]=sensorvalue[1][i] * (5.0 / 1023.0);

 myvoltarray[2]=(1023.0‐sensorvalue[2][i]) * (5.0 / 1023.0);

 myvoltarray[3]=sensorvalue[3][i] * (5.0 / 1023.0);

 myvoltarray[4]=(1023.0‐sensorvalue[4][i]) * (5.0 / 1023.0);

 if (iterator < 1) {

 for (j=1; j<5; j++) {

 if (myvoltarray[j] < minvolt[j]){

 minvolt[j]=myvoltarray[j];

 }

 if (myvoltarray[j] > maxvolt[j]){

 maxvolt[j]=myvoltarray[j];

 }

 }

 }

 if (iterator > 0){

 for (j=1; j<5; j++) {

 Serial.print(myvoltarray[j]);

 Serial.print(",");

 }

 for (j=1; j<5; j++) {

 Serial.print(minvolt[j]);

63

 Serial.print(",");

 }

 for (j=1; j<5; j++) {

 Serial.print(maxvolt[j]);

 Serial.print(",");

 }

 Serial.print(k1);

 Serial.print(",");

 Serial.print(k2);

 Serial.print(",");

 Serial.print(k3);

 Serial.print(",");

 Serial.print(k4);

 Serial.print(",");

 Serial.println(k4);

 }

 delay(250);

 }

 //‐‐‐

 l2=45;

 r2=140;

 l3=60;

 r3=130;

 if (iterator < 1) {

 k1=r3‐ks1;

 k2=ks2‐l3;

 k3=r2‐ks3;

 k4=ks4‐l2;

 }

 SerL2.write(l2, 6);

 SerR2.write(r2, 7);

 SerL3.write(l3, 10);

 SerR3.write(r3, 10);

 for (i=1; i<16; i++) {

 sensorvalue[1][i] = analogRead(A5);//right mid

 sensorvalue[2][i] = analogRead(A4);//right mid

64

 sensorvalue[3][i] = analogRead(A3);//right mid

 sensorvalue[4][i] = analogRead(A2);//right mid

 myvoltarray[1]=sensorvalue[1][i] * (5.0 / 1023.0);

 myvoltarray[2]=(1023.0‐sensorvalue[2][i]) * (5.0 / 1023.0);

 myvoltarray[3]=sensorvalue[3][i] * (5.0 / 1023.0);

 myvoltarray[4]=(1023.0‐sensorvalue[4][i]) * (5.0 / 1023.0);

 if (iterator < 1) {

 for (j=1; j<5; j++) {

 if (myvoltarray[j] < minvolt[j]){

 minvolt[j]=myvoltarray[j];

 }

 if (myvoltarray[j] > maxvolt[j]){

 maxvolt[j]=myvoltarray[j];

 }

 }

 }

 if (iterator > 0){

 for (j=1; j<5; j++) {

 Serial.print(myvoltarray[j]);

 Serial.print(",");

 }

 for (j=1; j<5; j++) {

 Serial.print(minvolt[j]);

 Serial.print(",");

 }

 for (j=1; j<5; j++) {

 Serial.print(maxvolt[j]);

 Serial.print(",");

 }

 Serial.print(k1);

 Serial.print(",");

 Serial.print(k2);

 Serial.print(",");

 Serial.print(k3);

 Serial.print(",");

 Serial.print(k4);

65

 Serial.print(",");

 Serial.println(k4);

 }

 delay(250);

 }

 iterator=1;

}

66

APPENDIX С

Full block diagram for “pre targeting” mode

