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Abstract 

This thesis explores the optimal level of cybersecurity investment for risk-neutral firms 

operating in an interconnected environment. Building on the foundational Gordon-Loeb model, 

the study extends the framework to include interdependence between two firms through 

additive and multiplicative interdependences. It introduces a game-theoretic approach under 

perfect and imperfect information conditions, incorporating learning dynamics to reflect real-

world decision-making processes where firms update their expectations over time. 

The results highlight that in additive interdependence settings, firms tend to underinvest due to 

strategic substitution and free-riding incentives. Introducing learning slows convergence 

toward equilibrium but does not eliminate the underinvestment problem. By contrast, when 

cybersecurity outcomes depend multiplicatively on both firms' efforts, investment decisions 

become strategic complements – eliminating free-riding and encouraging joint protection 

across the supply chain. 

The thesis concludes that effective cybersecurity investment in interconnected systems requires 

institutional coordination, contractual enforcement, or policy interventions. These findings 

contribute to the theoretical development of cybersecurity economics and offer practical 

implications for designing regulatory and incentive frameworks that enhance collective 

cybersecurity resilience. 

The thesis is written in English and is 55 pages long, including 4 chapters, 4 figures and 1 table. 
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Annotatsioon 

Optimaalsed küberkaitse investeeringud ühendatud riskineutraalses 

ettevõttes 

Käesolev magistritöö käsitleb riskineutraalsete ettevõtete küberkaitseinvesteeringute 

otsustusprotsessi olukorras, kus ettevõtete infosüsteemid on omavahel ühendatud ning nad 

tegutsevad ebakindlates tingimustes. Analüüsi aluseks on Gordon-Loebi mudel. Seda mudelit 

töös laiendatakse lisades tarneahela sidususe, ebatäieliku informatsiooni ja õppimisdünaamika. 

Töös käsitletud mudel hõlmab kahte ettevõtet ning keskendutakse nende ettevõtete vahelisele 

strateegilise käitumise modelleerimisele kasutades mänguteoorias tuntud Cournot oligopoli 

mudelit. Kui varasemad uurimused käsitlevad mängu osapooltena pigem kaitsjat ja ründajat, 

siis siinses töös vaadeldakse mängu kahe tarneahelas oleva ettevõtte vahel. Ka on varasemad 

uuringud lisanud seotuse mudelisse, kuid pigem tõenäosuste näol ründe tõenäosuse 

funktsioonis, siis selles töös omavaheline seotus lisatud kui partnerettevõtte investeeringud 

koos seotuse koefitsiendiga. 

Esimene mudel, mida analüüsitakse, käsitleb aditiivset seotust ehk ühe ettevõtte 

investeeringutele lisandub teise oma korrutatuna seotuse koefitsiendiga. Optimaalsed 

investeeringuid ettevõttes mõjutab seega ettevõtte turbeparameetritele lisaks ka 

partnerettevõtte investeeringud. Selle mudeli peamine tulemus viitab sellele, et ettevõtted 

püüavad küberkaitseinvesteeringu kulu jätta teisele ettevõttele ehk nö jänest-sõitja probleem 

(free rider probleem, inglise keeles). Lisades mudelisse ebatäieliku informatsiooni ja õppimise, 

s.o ettevõtte arvab partneri investeeringu suurust ühel perioodil ja teisel perioodil korrigeerib 

arvamust olemasoleva informatsiooni põhjal, näitavad tulemused, et ettevõtted kipuvad 

investeerima vähem kui on optimaalne. Selline mudeli püstitus ei eelda lepingute olemasolu 

ega seadustest tulenevat kohustust küberkaitsesse investeerida ning nende puudumine 

kahandab kasumlikkust maksimeeriva ettevõtte motivatsiooni ise investeerida. Selle puuduse 

eemaldamiseks loodi multiplikatiivse seotusega mudel: selles mudelis sõltub küberturvalisus 

mõlema ettevõtte panusest. Ehk kui üks ettevõte otsustab mitte investeerida, siis teise ettevõte 

panus ei ole turbe seisukoht tähtis – tarneahela küberkaitse on siiski ebapiisav. Sellega võetakse 

arvesse ka seda, et ühe ettevõtte turvanõrkust ära kasutades, võib lekkida ka teise ettevõtte info. 

Teiste sõnadega, kogu tarneahela küberturvalisus sõltub mõlema ettevõtte panusest ning ühe 

osapoole panus võib kasvatada teise motivatsiooni küberturbesse panustada. 



5 

 

Töö tulemused on sarnased varasemalt avaldatud uurimuste tulemustele ning need toetavad 

vajadust koordineerida küberturbet tarneahelas. Selline koostöö sisaldab lepingulisi kohustusi, 

minimaalsete investeeringute määra määramist ja info jagamist tarneahela ettevõtete vahel. 

Töö tulemusi saab edaspidi kasutada uurimaks laiendatud mudelit, mis hõlmab rohkemat kui 

kahte ettevõtet, lisades võrgutopoloogia või küberkaitsekindlustuse. Ka otsustusprotsessi 

uurimine käitumusteaduslikust aspektist võib anda olulise panuse teemasse. Üheks olulisemaks 

tuleviku-uuringuks on mudelite empiiriline analüüs kasutamaks tegelike ettevõtete andmeid: 

nagu ka mitmed eelneva teoreetilised tööd, vajab selles magistritöös välja toodud mudel 

testimist tegelike andmete peal. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 55 leheküljel, 4 peatükki, 4 joonist, 1 

tabelit. 
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1. Introduction 

Cybersecurity has become increasingly significant in firms’ decision-making processes due to 

the rising number of cyber threats, which has sparked discussions on how to avoid disruptions 

in business operations. At the same time, real-world events – such as the COVID-19 pandemic, 

elections, the Olympic Games, and wars – have influenced the cyber landscape, as adversaries 

exploit such events to target vulnerable entities. This dynamic environment has prompted a 

substantial body of research focused on technical defences and solutions. However, the 

economic dimensions of cybersecurity remain underdeveloped. As noted by Kianpour et al. 

(2021), the economics of cybersecurity is still in its early stages, despite four decades of 

scholarly attention. They trace the origins of this field to 1982, when J. H. Courtney asserted 

that “security control should not be implemented if it costs more than tolerating the problem” 

([19], p. 1). 

According to Kianpour et al. (2021, p. 4), the most widely accepted definition of cybersecurity 

economics is “a field of study that is concerned with providing maximum protection of assets 

at the minimum cost.” They further note that this discipline addresses decision-making within 

organizations – particularly concerning the valuation of assets and the allocation of scarce 

resources – under conditions of uncertainty. Economic theories are applied to cybersecurity 

issues, ranging from resource allocation and utility theory to strategic planning through game-

theoretic models. In essence, cybersecurity economics seeks to explain and guide how 

organisations evaluate assets and allocate limited resources while adapting economic theories 

to uncertain, real-world environments [19]. 

Even though cybersecurity economics is a relatively nascent field, and while the body of 

literature applying economic models to cybersecurity problems remains limited, it is growing. 

The existing literature reflects diverse approaches. For instance, Huang et al. (2013) identify 

two main streams in the economics of information security investments. The first focuses on 

investment decisions using game theory, analysing how firms respond to and anticipate the 

actions of potential attackers aiming to access or damage information assets. The second stream 

is grounded in decision and expected utility theory, emphasising the risk and return analysis of 

cybersecurity investments. 

However, as Moore (2010) observes, although cybersecurity often involves asymmetric 

information, this does not necessarily imply underinvestment in security. Instead, it may 
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indicate a misallocation of resources, where investments are not directed toward the most 

effective defences. Moreover, the increasing interconnectedness of service providers, 

individuals, and public sector organizations means that an attack on one entity can result in 

broader societal losses (ibid., p. 107). This interconnectedness can lead to a free-rider problem, 

in which firms underinvest in cybersecurity upon realizing others are also unlikely to invest, 

leaving the system collectively vulnerable [35]. In other words, if one firm in the shared IT 

system invests but others do not, the whole system is still vulnerable. Kianpour et al. (2021) 

similarly argue that when cybersecurity is treated as a public good, the classic “tragedy of the 

commons” problem emerges [19]. 

The main research question of this thesis is: What is the optimal level of cybersecurity 

investment for an interconnected, risk-neutral firm under uncertainty? To address this question, 

the thesis is structured as follows. Chapter 1 introduces the economic concepts underpinning 

cybersecurity economics, outlining the relevant theories used to model cybersecurity problems. 

It also reviews selected economic models concerning optimal cybersecurity investments. 

In Chapter 2, the Gordon-Loeb model is extended by incorporating interconnectedness between 

firms. This model considers two firms that are interlinked and make decisions about their 

optimal cybersecurity investments. Initially, the model assumes perfect information – i.e., each 

firm knows the other’s level of investment. Subsequently, imperfect information is introduced 

to better reflect real-world conditions, where firms typically do not know how much others are 

investing in cybersecurity. This leads to a framework similar to a Cournot oligopoly game, 

where firms make investment decisions simultaneously. 

A response function is introduced to model this behaviour. Similar to a reaction function in a 

static model, this function assumes that firm i forms expectations about the investment level of 

firm j instead of knowing it precisely. The model is then extended to include dynamic elements, 

allowing for an analysis of the equilibrium outcome under uncertainty. To reflect real-world 

behaviour, a learning coefficient is incorporated into the function. This coefficient represents 

a firm's ability to learn and adapt over time, enabling the investment dynamics to evolve 

gradually. The key finding supports the free-riding problem discussed by Varian (2004): Firm 

1 initially invests a small amount and gradually decreases its investment as it learns about Firm 

2’s investment levels.  
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Next the multiplicative interconnectedness is introduced where the economic meaning behind 

it is the means to enforce cybersecurity investments within supply chain. These can manifest 

in the form of legal contracts, regulatory instruments. Enforcing firms to invest into 

cybersecurity will benefit both of them – the substitution effect seen in previous model is 

eliminated and the level of cybersecurity is seen as join effort. 

This thesis is written using available resources provided by University of Tartu and Tallinn 

Technical University. The text readability was improved by using Grammarly application. 

1.1. Research questions 

The primary objective of this thesis is to develop a model that describes the optimal level of 

cybersecurity investment for a risk-neutral, interconnected firm. This model serves as a tool to 

analyse the underlying mechanics of cybersecurity investment decisions and to explore how 

various external mechanisms – such as norms, regulations, or institutional settings—can 

enhance incentives for contributing to joint cybersecurity. To achieve this aim, we have posed 

the following research questions:  

RQ1: What are the economic schools of thought that underpin theories related to 

cybersecurity? 

This thesis addresses the intersection of cybersecurity and economics. The initial research 

question is designed to establish a foundational understanding by reviewing the literature on 

cybersecurity economics. The aim is to identify the most appropriate theoretical frameworks 

for analysing investment decisions in cybersecurity and to provide a comprehensive overview 

of existing studies that reflect diverse economic perspectives.  

RQ2: What models have been developed to study optimal cybersecurity investment 

decisions? 

The development of this thesis is based on prior research, providing a critical review of existing 

models. This inquiry identifies and synthesizes theoretical models that address optimal 

cybersecurity investment, establishing a foundation for further model development. 

RQ3: Can existing models be adapted or extended to a setting involving two risk-neutral, 

interconnected firms? 
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Building on the literature review, this research question investigates whether and how existing 

models can be modified to accommodate a setting where two firms are both risk-neutral and 

interconnected. The thesis proposes extending the theoretical framework using a Cournot-type 

oligopoly game to capture the interdependent nature of cybersecurity investments in this 

context.  

Answering those questions to reach the thesis's goal helps deepen the understanding of 

cybersecurity economics and provides insights into relevant policy measures or regulatory 

frameworks. 

1.2. Scope and goal 

In this thesis, we develop a theoretical model that captures the decision-making process behind 

optimal cybersecurity investments by risk-neutral firms operating in an interconnected 

environment. In today’s digital economy, firms do not operate in isolation; their cybersecurity 

postures are interdependent due to shared infrastructures, supply chains, and data flows. 

Therefore, individual investment decisions may have externalities – positive or negative – on 

other firms. This thesis aims to model for such interdependencies to analyse dynamics behind 

investment decisions and provide insights to improve joint cybersecurity in supply chain. 

The research focuses on the intersection of cybersecurity and economic theory, specifically 

utilizing concepts from cybersecurity economics and non-cooperative game theory. We 

employ a Cournot-type oligopoly framework to model the strategic interactions between two 

interconnected firms, which are assumed, in sake of simplicity, to be risk-neutral. Within this 

framework, the thesis explores how firms make cybersecurity investment decisions, 

considering that their actions influence and are influenced by the investment behaviours of the 

others. 

The scope of the thesis includes a literature review of relevant economic theories related to 

cybersecurity, a survey of existing models that address optimal investment under risk 

neutrality, and the development of an extended model that incorporates interconnectedness. In 

this thesis, we do not seek or provide empirical validation but highlight the theoretical 

modelling and conceptual insights. Those can support future empirical studies and policy-

making efforts aimed at enhancing collective cybersecurity outcomes.  
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1.3. Novelty 

This thesis introduces a novel approach by extending the classical Gordon-Loeb model of 

optimal cybersecurity investment into a more realistic and strategically complex context 

involving two risk-neutral, interconnected firms. While the original Gordon-Loeb framework 

assumes a single, isolated decision-maker operating in a static risk environment, this thesis 

diverges from that model by explicitly incorporating inter-firm interconnectedness, which is 

increasingly relevant in today's digitally interdependent economies. 

One of the contributions of this work is the introduction of strategic interactions among firms 

into the investment decision-making process. By framing the situation as a noncooperative 

game, the thesis foregrounds how the investment in one firm's cybersecurity impacts and 

is impacted by the other firm's investment decisions. This structure captures the externalities 

and interdependence in real-world cybersecurity environments, where one firm’s weakness can 

propagate to another through connected systems or networks. 

In addition, the thesis introduces yet another level of novelty by including incomplete 

information and learning mechanisms, we assume that firms do not have complete knowledge 

of their counterpart’s behaviour or strategy and need to form and update beliefs over time. The 

dynamic component gives a more realistic representation of decision-making under uncertainty 

and allows the model to account for expectations formation and adaptive learning. 

The findings of this thesis contribute to the theoretical development and may initiate changes 

in regulatory environments and increase incentives to promote collective cybersecurity 

resilience. 
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2. Literature review 

In this chapter, we review a range of research papers that analyse economic models related to 

cybersecurity investment. The terms “cybersecurity economics,” “information security 

economics,” “economics of cybersecurity,” and “economics of information security” are often 

used interchangeably in the literature, despite subtle differences in meaning. To avoid missing 

relevant studies due to terminology, both “cybersecurity” and “information security” were used 

as search keywords. While these concepts are frequently combined, they are not identical. 

Cybersecurity has a broader scope, encompassing the protection of not just information assets 

but also human and cyber-physical systems [19].  According to ISO/IEC 27032:2012, 

cybersecurity includes information security, network security, internet security, and the 

protection of critical information infrastructure [16]. 

The articles included in the review were identified through a systematic search process using 

specific keywords. Terms such as “cybersecurity economics,” “economics of cybersecurity,” 

“economics of information security,” “information security economics,” and “cybernomics” 

were entered into the Google Scholar and ScienceDirect databases. This search produced a 

significant number of results. To reduce redundancy and enhance specificity, Boolean 

operators AND and OR were utilized. For instance, the search string “economics of 

cybersecurity” OR “economics of information security” generated approximately 151 results 

in Google Scholar and 180 papers in ScienceDirect. 

To refine the search, the term “optimal investment” was added, which reduced the results to 

147 in Google Scholar and 139 in ScienceDirect. Adding the term “literature review” further 

narrowed the results to 55 and 7 papers, respectively. These filtered papers formed the initial 

corpus for this literature review. Additionally, the snowball method – identifying further 

relevant studies from the references and citations of the initial articles – was employed to ensure 

comprehensive coverage of the field. 

The remainder of this chapter is structured as follows. First, we examine how cybersecurity is 

conceptualised within various schools of economic thought. Then, we analyse selected 

economic models that determine optimal cybersecurity investment levels. 
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2.1. Economics of cybersecurity 

One of the focus areas of cybersecurity economics is whether organisations are investing 

sufficiently in securing their assets and whether the resources allocated to cybersecurity are 

appropriately invested. When discussing cybersecurity investments, one should take into 

account the specific characteristics of these investments. For example, a typical investment into 

improving business processes may include building a new factory to increase revenues. 

However, cybersecurity investments are made to prevent or reduce possible losses caused by 

cybersecurity breaches. This feature complicates modelling the optimal investment figure as 

an organisation's resources are always scarce. The organisation should clearly understand the 

assets it wants to protect and the risks that may occur in a security breach. Kianpour et al. 

(2021) define cybersecurity economics as a study that claims to solve problems such as the 

following ([19], p 5): 

1. What is the adequate level of cybersecurity, and how much should we spend on it? 

2. How to provide cybersecurity? For whom? 

3. Who needs to pay for interdependent risks? 

However, the economic theory behind these questions includes assumptions about the 

environment where those questions are answered. Among others, there are assumptions about 

unlimited resources, complete information, rational choices, and operating in closed IT systems 

(not connected to others). However, these assumptions are frequently criticised for being 

unrealistic or overly simplistic. For example, unlimited resources are highly unrealistic - 

organisations face a scarcity of available funds, labour and time daily. This scarcity necessitates 

trade-offs: allocating resources to one objective may undermine the achievement of another. 

Consequently, limited resources emphasise the importance of making effective and 

strategically informed decisions. 
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Figure 1. Cybersecurity economics in economic schools (source: Kianpour et al. (2013)) 

Figure 1 illustrates various schools of economic thought as they relate to cybersecurity. 

Neoclassical economic theory, one of the dominant paradigms in modern economics, focuses 

on allocating limited resources, efficiency, and maximising utility. Of particular relevance is 

the principle of achieving maximum utility from the use of scarce resources. Cybersecurity 

economics is a relatively new subfield that contributes to the broader economic discourse 

through both decision-theoretic and game-theoretic approaches. The former relies on 

traditional risk assessment models, while the latter conceptualises cybersecurity investment as 

a strategic interaction between attackers and defenders [19]. 

According to Huang et al. (2013), the game-theoretic approach is particularly well-suited for 

modelling the effectiveness of specific security technologies in finite action settings with a 

limited number of players – typically a defender (an organization) and an adversary. However, 

as Huang et al. (2013) note, this method foresees that one estimates the attacker’s utility 

parameters, which may be complex and difficult task. Consequently, the game-theoretic 

approach has not been widely adopted for analysing cybersecurity investment decisions. 
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The decision-theoretic approach, by contrast, employs more conventional risk-return analysis 

and is better suited for determining the optimal level of cybersecurity investment across a range 

of security threats [15]. This branch's most widely cited model is the Gordon-Loeb model, 

which examines how an organization should determine its optimal cybersecurity investment 

level. This level is a function of the probability of a successful cyberattack without protective 

measures and the expected loss in the event of such an attack [19]. Subsequent chapters will 

discuss the model and its extensions in detail. 

In both approaches, the main aim is to maximise utility. However, as Kayworth & Whitten 

(2012) argue, cybersecurity decision-making involves multiple objectives, including mitigating 

cyber risks, balancing business needs with security requirements, maintaining regulatory 

compliance, and ensuring alignment with organisational culture [18]. Moreover, the costs and 

benefits of cybersecurity investments are extremely difficult to quantify, as the benefits 

primarily stem from avoiding potential incidents and minimizing losses when breaches do 

occur [8]. 

While neoclassical economic theory provides a valuable foundation, it is not always well-suited 

to capture the complexity of cybersecurity investment decisions. Alternative schools of 

thought, such as behavioural economics, address some limitations by focusing on how 

decisions are made (see Figure 1). Behavioural economics integrates insights from economics, 

psychology, neuroscience, and cognitive science and demonstrates that individuals often 

deviate from the rational decision-making assumed in neoclassical models. Kianpour et al. 

(2021) identify three primary areas of deviation: (1) nonstandard preferences, including 

variations in time, risk, and social preferences; (2) nonstandard beliefs, like projection bias, 

overconfidence, and the law of small numbers; and (3) nonstandard decision-making 

behaviours, including framing effects, limited attention, menu costs, persuasion, social 

pressure, and emotional influences [19]. 

These behavioural factors can significantly affect cybersecurity investment decisions, given 

that individuals ultimately make such decisions. For example, Weishäupl et al. (2018) 

identified several external factors influencing information security decisions based on 

interviews with decision-makers in twelve organizations. These consist of national 

characteristics, laws, legal frameworks, and regulatory standards that impact organizations' 

motivation to invest in cybersecurity [36]. Similarly, industry practices and requirements by 

business partners also play a tremendous role. Their study also found that the majority of 
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organizations fail to accord adequate importance to information security, and they act only 

when forced by law. Notably, minimum levels of investment mandated by law are often unable 

to achieve the level of protection needed. [36] 

In addition to behavioural economics, evolutionary economics offers an alternative to the 

neoclassical framework by addressing its key shortcomings. Evolutionary economics deals 

with complex systems, examining how and why economic structures change over time. It 

explicitly incorporates uncertainty and emphasizes the optimal use of scarce resources. In 

contrast to neoclassical theory – which often assumes systems gravitate toward equilibrium – 

evolutionary economics views systems as dynamic and path-dependent [31]. As Kianpour et 

al. (2021) point out, this perspective allows cybersecurity to be seen not merely as a constraint 

on change but as a potential enabler of business transformation. 

Shiozawa et al. (2016) identify seven evolving, non-exclusive economic concepts central to 

this approach: economic behaviour, knowledge, organizations, commodities, systems, 

technology, and institutions. While individual behaviour may change through personal 

decision-making, institutional change generally requires broader societal consensus [31]. 

Shiozawa et al. (2016) illustrate this with the example of the Internet. Although it emerged as 

a new system, it quickly evolved in a decentralized manner, beyond the control of any single 

actor. Nonetheless, it remains a human-designed institution. 

Beyond the aforementioned schools of thought, cybersecurity has also been examined through 

institutional economics, international economics, and international relations theory [19]. 

Kuerbis & Badiei (2017), for example, found that ex-post efforts such as botnet mitigation, 

route monitoring and other information-sharing initiatives can be effectively implemented 

under various combinations of governance structures [22]. Lindsay (2017) integrates 

international relations theory and institutional economics to conceptualize cyberspace as a 

global institution shaped by varying contractual frameworks in software and human behaviour. 

He argues that hackers often exploit vulnerabilities that stem from market failures, regulatory 

gaps, or incomplete contracts, thereby increasing the likelihood and severity of cyberattacks. 

According to Lindsay (2017), cyber conflict is less a chaotic struggle and more a form of 

strategic exploitation within a loosely regulated environment [26]. 
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2.2. Economic models describing optimal cybersecurity investments 

Cybersecurity investment decisions are made under significant uncertainty. As discussed in the 

previous subsection, various schools of economic thought have been employed to explain the 

complexities of cybersecurity-related decision-making. Numerous variables influence these 

decisions, and most researchers agree that they must be made in environments characterized 

by high uncertainty – where the nature, motivation, and timing of potential attacks are largely 

unknown. 

In this subsection, we provide a more detailed examination of the models developed over the 

past two decades to address this issue. One useful categorization of existing models is proposed 

by Fedele & Roner (2022), who classify optimal cybersecurity investment frameworks into 

four main categories:  

1. single-firm models,  

2. multi-firm models, where firms do not compete in the product market but share a network,  

3. multi-firm models, where firms are competitors but do not share a network,  

4. multi-firm models, where competing firms operate within a shared network environment. 

In this thesis, we look at single-firm models, multiple interconnected firms models, and models 

describing interconnected firms with asymmetric networks and the possibility of contagion. 

This division stems from the thesis goal of developing the optimal cybersecurity investment 

model for interconnected firms, and therefore, the Fedele & Roner (2022) proposed categories 

are used moderately. 

2.2.1. Single firm, single period models 

The Gordon-Loeb model (hereafter referred to as GL) is one of the most widely cited models 

in the study of optimal cybersecurity investment and falls under the first category in the 

classification proposed by Fedele & Roner (2022). The GL model provides a structured 

approach to managing risk by modelling reduced probability of a security breach as investment 

in cybersecurity increases. It employs an economic utility maximisation framework to analyse 

how firms allocate resources when facing two types of breach probability functions. The model 

is built on the assumption of scarce resources and assumes that the organization seeks to 

maximize economic benefit by allocating resources efficiently. 
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Gordon and Loeb (2002) incorporate game theory to examine interactions between attackers 

and defenders with limited resources. They ultimately estimate the optimal level of 

cybersecurity investment needed to minimise expected losses. A notable result of the model is 

that optimal cybersecurity investment does not exceed 36.8% of the expected loss. 

Additionally, they demonstrate that protecting moderately vulnerable information assets is the 

most efficient rather than the most or least vulnerable. 

While the GL model is grounded in simplifying assumptions regarding attacker-defender 

behaviour and resource allocation, it remains a foundational framework for understanding 

trade-offs in cybersecurity investment and risk management. Over time, various scholars have 

extended the model to account for more realistic dynamics and scenarios. 

For example, Hausken (2006) extends the GL model by introducing alternative breach 

probability functions characterized by diminishing returns. In his model, cybersecurity 

investment increases convexly with vulnerability until it reaches a threshold, after which the 

most vulnerable assets receive the greatest protection. Hausken (2007) demonstrates that for 

low-impact vulnerabilities, the optimal investment is zero; however, as vulnerabilities reach 

intermediate levels, investment increases, eventually growing concavely in absolute terms 

while decreasing convexly in terms of expected loss1 [13]. This implies that, under specific 

breach scenarios, the optimal level of investment may exceed the 36.8% threshold proposed by 

the original GL model. 

Huang et al. (2008) incorporate risk aversion into the GL model, distinguishing between two 

types of attacks: distributed (opportunistic) and targeted. Their model uses expected utility 

theory to assess investment decisions under varying risk preferences. They identify a minimum 

potential loss threshold, below which firms may not find it rational to invest in cybersecurity. 

Furthermore, Huang & Behara (2013) later show that increasing risk aversion among decision-

makers does not necessarily lead to increased cybersecurity investment. 

Willemson (2010) contributes by challenging the GL model’s third assumption – that it is 

impossible to diminish the probability of a successful attack to zero, regardless of investment 

                                                 
1 Here, the assumption of decreasing returns is set aside, and the assumption of logistically decreasing assumption 

for the security breach probability function is formed (𝑆(𝑧, 𝑣) is logistically decreasing in z). The explanation is 

as follows: as investment increases from zero,  the first impact is negligible. With increasing investment, the 

protection increases considerably. The impact eventually slows down as a firm has installed the best available 

system at some point. 
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level. Willemson (2010) argues that this assumption can be misleading, as some threats can 

indeed be eliminated through sufficient investment. He further contends that the 36.8% cap on 

optimal investment is not universally valid and may rise to 100% of the expected loss, 

depending on the vulnerability function selected [38]. 

In another extension, Huang & Behara (2013) incorporate budget constraints and network 

exposure into the GL framework. They find that network exposure significantly influences how 

firms allocate their cybersecurity budgets between mitigating targeted and opportunistic 

attacks. Under low exposure, it is more beneficial to focus on distributed threats, while high 

exposure environments warrant greater investment in protection against targeted attacks. 

Krutilla et al. (2021) add a dynamics to the GL model by introducing both a capital discount 

and depreciation rates [20]. These parameters reflect the opportunity cost and lifespan of 

cybersecurity investments. They argue that the original GL model tends to underestimate 

optimal investment levels by assuming both rates are equal to one, thus inflating the user cost 

of cybersecurity assets. In their dynamic framework, where the rates are lower, user costs are 

reduced, making additional investment more economically viable and leading to higher optimal 

investment levels. 

An emerging strand of literature also integrates cybersecurity insurance into the GL framework. 

Skeoch (2022) incorporates cyber insurance into the model to show how firms maximise utility 

under combined investment and insurance decisions. He shows that extending the GL model 

with cyber insurance can maximise expected utility, and insurance spending remains within the 

model’s recommended threshold. According to this study, the balance between cybersecurity 

investments and cyber-insurance is shaped by several factors, including insurance premium 

rate, type of security breach function, firm’s vulnerability level, and assumed utility function. 

In particular, lower premiums and higher risk aversion may lead to higher insurance coverage. 

At the same time, tighter cash constraints and more complex breach dynamics may lead the 

optimum toward direct investment. The study shows that full insurance coverage is optimal at 

reasonable premium rates and demonstrates that cyber insurance can complement traditional 

security investments cost-effectively [32]. 

Ebel & Mitra (2024) extend the GL model by introducing a two-sided Stackelberg game, in 

which the defender is modelled as the leader and the attacker as the follower [5]. Their results 
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show that the GL model underestimates optimal cybersecurity investment, particularly when 

the strategic behaviour of attackers is explicitly accounted for. 

Table 1 below summarizes the key models of optimal cybersecurity investment developed by 

different authors. Most of these models build upon the foundational GL framework and 

contribute to the literature by relaxing assumptions, incorporating new variables, or adapting 

the model to dynamic or strategic settings. Nevertheless, as noted by several authors – 

including Skeoch (2022), Huang et al. (2013), and Hausken (2006) – the debate over the 

optimal level of cybersecurity investment is ongoing. Many existing models still overlook real-

world complexities, such as supply chain interconnectedness and network topology, which are 

challenging to integrate into a single framework. 

Table 1. Models on optimal cybersecurity investments. 

Author(s) Base theory Risk Findings 

Gordon & Loeb 

(2002) 

Economic 

benefit 

maximisation 

Risk neutral Propose that optimal cybersecurity 

investment should not exceed 36.8% of 

the expected loss without investment. 

Most efficient protection is allocated to 

moderately vulnerable assets. 

Hausken (2006) Economic 

benefit 

maximisation 

Risk neutral Extends GL model using alternative 

breach probability functions. Shows that 

with diminishing marginal returns, the 

optimal investment may exceed 36.8% for 

intermediate vulnerabilities; investment is 

zero for low vulnerabilities and constant 

for high vulnerabilities. 

Willemson 

(2006) 

Expected utility 

theory 

Risk neutral It uses linear probability functions to show 

that optimal investment may reach up to 

100% of the expected loss, challenging the 

36.8% upper bound. 

Huang et al. 

(2008) 

Expected utility 

theory 

Risk averse Extends GL model by incorporating risk 

aversion and attack types (targeted vs. 

distributed). Finds that optimal investment 

does not always increase with 

effectiveness or risk aversion. Identifying 

the primary threat is essential.2 

                                                 
2 They distinguish two types of risks in decision-making: risk of loss from security breach and risk of over-

investing, security risk and investment risk, respectively. From certain level of investments, the investment risk 

might eventually outweigh the security risk leading to a result that when the risk aversion coefficient 𝛼 is very 

small or very high, the optimal investment into cybersecurity are small, i.e. the relationship between risk aversion 

and investments is concave. There exists a value for 𝛼 at which the optimal investment is the highest. 
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Author(s) Base theory Risk Findings 

Willemson 

(2010) 

Expected benefit 

maximisation 

Risk neutral It highlights inconsistencies in GL 

assumptions and proposes that the 

vulnerability function should be strictly 

increasing to reflect realistic investment 

behaviour. 

Baryshnikov 

(2012) 

Expected utility 

function 

Risk neutral Generalizes the GL model. Shows that for 

optimal investment, the probability 

function must be non-increasing and log-

convex, confirming the 37% bound under 

specific conditions. 

Huang & Behara 

(2013) 

Expected utility 

theory 

Risk averse It considers budget constraints and 

network exposure. If resources are limited, 

it recommends allocating a budget to one 

attack type; in highly connected systems, 

greater investment should target the 

prevention of targeted attacks. 

Gordon et al. 

(2014) 

Economic 

benefit 

maximisation 

Risk neutral Extends GL model to account for security 

investment externalities (spillover effects) 

between interconnected firms. 

Wu et al. (2015) Economic 

benefit 

maximisation 

Risk neutral Develops a game-theoretic model, 

including attack types and network 

interdependence. Finds diminishing 

returns on investment and proposes 

incentive frameworks for inter-

organisational settings. 

Krutilla et al. 

(2021) 

Economic 

benefit 

maximisation 

Risk neutral Adds a dynamic component to the GL 

model by including discount and 

depreciation rates. Finds that static GL 

underestimates optimal investment due to 

inflated user cost assumptions. 

Skeoch (2022) Economic 

benefit 

maximisation 

Risk neutral Integrates cyber insurance premiums into 

the GL model. Suggests that insurance can 

lead to underinvestment by altering 

perceived expected loss. 

Ebel & Mitra 

(2024) 

Max-min 

problem 

Risk neutral Introduces attacker side into GL model. 

The defender minimizes expected loss, 

and the attacker maximizes net gain. Finds 

that GL underestimates optimal 

investment in strategic settings. 
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The reviewed models on optimal cybersecurity investments build primarily on the GL model. 

Most studies assume risk-neutral firms and apply either economic benefit maximisation or 

expected utility theory. Gordon & Loeb (2002) originally proposed that optimal cybersecurity 

investments should not exceed 36.8% of expected loss without protection. Subsequent studies 

such as Hausken (2006) and Willemson (2006) challenged this bound by introducing 

alternative breach probability functions, showing that under certain conditions – like 

diminishing returns or linear vulnerabilities – optimal investment levels may be higher ([13], 

[37]). Other contributions incorporate risk aversion ([14], [15]), budget constraints, and 

network exposure, showing that optimal investment level does not necessarily increase with 

threat severity or risk preferences. Further extensions add externalities in interconnected firms 

[9], network interdependence and attack typologies [35], dynamic cost structures [20], and 

insurance premiums [32]. Ebel & Mitra (2024) introduce a strategic attacker into a two-sided 

game and show that the traditional model may underestimate the level of optimal cybersecurity 

investments [5]. In sum, these studies underscore the complexity of identifying the optimal 

level of cybersecurity investments in real-world environments where factors like spillovers, 

imperfect information, interdependence, and strategic interactions may cause substantial 

deviations from socially optimal levels of those investments. 

2.2.2. Multiple interconnected firms models 

The second category in Fedele & Roner (2022) introduces an additional layer to cybersecurity 

investment optimization models: interconnectedness and multiple firms. This category 

represents real-world conditions, as few firms operate in isolation. Fedele & Roner (2022) 

distinguish between various types of interconnectedness in their modelling framework: 1) firms 

that share a network but are not competitors, 2) firms that are competitors but do not share a 

network, and 3) firms that are both competitors and share the same network. In addition to 

modelling firm-level decision-making, they also explore welfare-oriented models that seek to 

identify socially optimal investment levels and compare them to privately optimal firm-level 

decisions. These themes align with Kunreuther & Heal (2003), who demonstrate that firms tend 

to underinvest in cybersecurity in interconnected IT systems due to positive externalities unless 

coordination mechanisms or policy interventions are introduced [23]. 

Roner (2022) focuses on a subcategory where firms share a computer network but are not 

product-market competitors. A real-world example of this type is illustrated by the 2014 Target 

data breach, which involved Target Corp., a major retail chain, and Fazio Mechanical Services 
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Inc., a heating, ventilation and air conditioning service provider. Though not competitors, the 

two companies were digitally interconnected – Fazio used Target’s internal network for service 

provision. A spear-phishing attack on Fazio led to a system compromise, granting attackers 

access to Target’s network and sensitive data [33]. 

Gordon et al. (2015) extend the original GL model by incorporating the external costs of 

cybersecurity breaches – namely, spillover effects on other firms. Their findings suggest that 

accounting for these externalities raises the optimal level of cybersecurity investment. This 

highlights a critical limitation of firm-level models that ignore interconnectedness: they may 

significantly underestimate the true social cost of cyberattacks. 

Similarly, Wu et al. (2015) developed a game-theoretic model to analyse cybersecurity 

investments in interconnected firms, considering targeted and opportunistic/distributed attacks. 

They show that joint decision-making can reduce total expected losses in the case of distributed 

attacks, internalise network vulnerability externalities, and enhance overall security. For 

targeted attacks, firms should increase investment proportionally to intrinsic vulnerability and 

reconfigure their information systems if the vulnerability is moderate. 

The foundational literature on technical spillovers in cybersecurity investment began with 

Kunreuther & Heal (2003), who proposed a game-theoretic model. They found that the 

incentive to invest in cybersecurity diminishes as the number of interconnected firms increases. 

In the limit, as the number of firms (N) approaches infinity, the incentive to invest tends toward 

zero. This effect, often called the free-rider problem, emerges because each firm relies on others 

to invest in protection, reducing their incentive to do so. 

By contrast, economic studies on R&D investment in supply chains show that spillovers can 

have a positive effect. For instance, research by Li & Bosworth (2020) and Parast (2020) finds 

that a firm’s R&D investment positively affects the productivity and innovation potential of 

other firms in the supply chain. These studies treat R&D as a value creation and capability 

development tool, especially in dynamic or uncertain environments. While cybersecurity 

investments differ in that they aim to prevent losses rather than create value, they, too, can 

generate positive spillover effects by enhancing network security for all members – reducing 

the probability of contagion. 

As Fedele & Roner (2022) note, there is a growing body of literature building upon Kunreuther 

& Heal’s (2003) foundational work. For example, Böhme (2012) models interconnected firms 
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exposed to both direct (own breach) and indirect (contagion) risks [3]. He demonstrates that 

the Nash equilibrium leads to underinvestment. Varian (2004) also discusses free-riding 

behaviour under three security scenarios: total effort, weakest link, and best shot3. In the total 

effort and best shot settings, a single agent with the best cost-benefit ratio provides most or all 

investment, while others free-ride [35]. However, these models often assume perfect 

information about other agents’ behaviour – an assumption that may not hold in reality. Under 

imperfect information, free-riding may decrease, and leadership becomes more important in 

coordinating security decisions. 

Grossklags & Christin (2008) expand this line of inquiry by distinguishing between self-

insurance (e.g., data backups) and self-protection (e.g., firewalls) [12]. Their model assumes 

simultaneous decisions made by a single agent per firm. They find that self-insurance 

investments are always made at the socially efficient level, while self-protection investments 

may be suboptimal from a welfare perspective. This is because only self-protection measures 

produce positive externalities (technical spillovers), whereas self-insurance measures benefit 

only the individual firm. 

In summary, applying cybersecurity investment models to account for inter-firm inter-

connectedness reveals critical dynamics absent in single-firm analyses. Spillover effects, free-

riding behaviour, and strategic interdependence are key in shaping investment incentives, 

particularly when firms are connected through networks or face common threats. While some 

investments generate positive externalities that enhance network security, others remain 

privately optimal but socially suboptimal.  

These insights are the foundation in analysing the more advanced systems – specifically, 

asymmetric networks and contagion processes – in which firms differ in size, exposure, and 

connectivity and where the impact of one firm’s failure can spread randomly throughout the 

system. 

2.2.3. Asymmetric networks and contagion 

Thus far, most studies discussed have assumed symmetric networks, where all agents interact 

with one another and occupy equivalent positions within the network. However, as Acemoglu 

                                                 
3 In the weakest link scenario, the system reliability stems from the firm with the lowest benefit-cost ratio. Best-

shot describes the scenario where the firm with the highest benefit-cost ratio contributes all the effort. Moreover, 

the total effort of the system reliability is determined by the firm with the highest benefit-cost ratio. [35] 
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et al. (2016) argue, this assumption is highly unrealistic. Their research emphasizes the 

importance of network structure in shaping cybersecurity investment decisions and introduces 

models based on asymmetric networks. They demonstrate that in such networks (e.g., star or 

hub topologies), strategic attackers may redirect their focus in response to overinvestment by 

specific nodes. When one agent increases its cybersecurity investment, it may inadvertently 

shift the attacker’s attention to less-protected nodes. As a result, equilibrium investment levels 

may exceed the socially optimal level [1]. 

A related study by Dziubinski & Goyal (2017), building on a similar framework, shows that 

firms may be incentivized to invest in cybersecurity only when others do the same. This 

interdependence can result in coordination failure: although the socially efficient outcome 

would involve complete protection of the network, an equilibrium exists in which firms 

collectively underinvest [30]. 

Most of the literature thus converges on two core findings: first, in equilibrium, firms tend to 

underinvest in cybersecurity due to positive externalities and coordination failures; second, 

network structure plays a significant role, though it is often assumed to be exogenously given. 

However, in Dziubinski & Goyal (2013), network topology becomes a decision variable (as 

sited in [11]). Their model features a two-stage game in which the defender selects the network 

structure to maximize the total payoff across all firms, followed by a strategic interaction with 

the attacker. In this model, contagion between nodes is not permitted. 

By contrast, contagion is explicitly modelled in the work of Goyal & Vigier (2014), who 

analyse a sequential game between a network designer and an adversary. They find that, in 

equilibrium, the network topology tends to converge to a star network or a multi-hub 

configuration, depending on the network value function, the technology of conflict, and the 

relative allocation of attack and defence resources. Their result shows that star networks, where 

all the defence resources are concentrated at the hub, can maximise expected value under high 

contagion risk and convex network value functions. In addition, they found that under 

alternative conditions like low conflict intensity or a flatter network value function, multi-hub 

configuration may be optimal. The work highlights the critical role of contagion dynamics and 

resource asymmetries that are important in shaping network architecture and cybersecurity 

investment strategies (see [11]). 
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The remaining two categories of models identified by Fedele & Roner (2022) fall outside the 

scope of this thesis and will not be discussed in detail. The third category addresses multi-firm 

models in which firms are competitors in the product market but do not share network 

infrastructure. This stream originates with Garcia & Horowitz (2002) (as cited in [30]). A 

relevant example is the e-commerce sector, where firms like Amazon and eBay compete but 

operate independent IT systems. The fourth category comprises firms that share network 

infrastructure and compete in the same market. Roner (2022) suggests that the banking sector 

is an example of this category, where institutions such as banks are in direct competition yet 

remain closely interconnected (e.g., via the Society for Worldwide Interbank Financial 

Telecommunication, SWIFT, network). 

In terms of supply chain cybersecurity models, the literature remains relatively limited. While 

many studies have examined strategic interactions between attackers and defenders, few have 

explored game-theoretic dynamics between firms within supply chains. One notable exception 

is Nagurney et al. (2016), who developed a game-theoretic model in which firms – specifically 

retailers – compete noncooperatively to maximize profit, subject to nonlinear budget 

constraints that include cybersecurity investment. In their model, the probability of a successful 

cyber breach depends on the individual firm’s cybersecurity level and the collective 

cybersecurity posture of the supply chain. One might suggest that the level of cybersecurity in 

the supply chain might be the case of coordination: coordination in supply chain cybersecurity 

can benefit from insights drawn from supply chain coordination, particularly in the context of 

foreign direct investment. Supply chain coordination mechanisms – contracts, information 

sharing, and joint investment – enhance firm resilience and performance [4]. When foreign 

firms invest in host countries, their security postures affect and are affected by local partners, 

making coordinated cybersecurity critical. Analogous to the bullwhip effect4 in supply chains, 

a lack of coordination in cybersecurity may amplify risks across interconnected firms [24]. 

Thus,  collective cyber resilience could benefit from fostering joint standards, shared threat 

intelligence, and investment incentives among firms.  

Whereas the models described above give helpful insights into suitable levels of cybersecurity 

expenditure, they are limited in terms of empirical testing. Although the general opinion is that 

                                                 
4 The bullwhip effect describes the phenomenon in supply chains where small fluctuations in consumer demand 

at the retail level lead to larger variations in orders and inventory levels. The effect is primarily driven by delays 

in information sharing, demand forecasting errors, order patching, and lack of coordination among supply chain 

partners [24] 
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firms do underinvest, these models cannot always give precise, individual firm-specific levels 

of expenditure. To address this gap, Brho et al. (2025) propose the Alpha Model, which 

estimates an upper bound for private-sector cybersecurity investments that reverses the optimal 

financing structure [2]. Their framework distinguishes investment and operational spending 

and links cost-benefit analysis with expected market value loss in a cyber breach. Although 

their primary focus is on large firms (e.g., Amazon, Walmart), the model's integration of 

financial metrics into cybersecurity investment decisions is a valuable contribution. 

Moreover, they find that direct losses from cyberattacks represent only a tiny fraction of total 

loss – approximately 4% – with indirect losses, such as market valuation loss, constituting the 

remainder. This result is consistent with Kamiya et al. (2017), who estimate that for every 

dollar in direct losses, firms experience, on average, a market value loss is approximately 115 

dollars. Based on a dataset of 307 cyberattacks between 2005 and 2017, their research 

emphasizes the severe economic effects beyond direct operational costs [17]. Similarly, in a 

systemic literature review reviewing the impact of cyberattacks on stock prices, Spanos & 

Angelis (2016) recorded that nearly ¾ of the studies reviewed identify a significant negative 

impact on firm value [34]. So, most cybersecurity investment models may underestimate the 

expected loss by focusing solely on direct costs. Gordon et al. (2016) further stress that 

measuring the economic impact of cybersecurity breaches requires considering both tangible 

and intangible costs. The latter consists of, for instance, reputational damage, legal liabilities, 

and the broader financial consequences reflected in market behaviour. These findings show 

that several existing cybersecurity investment models may underestimate expected losses by 

focusing narrowly on direct costs while ignoring the indirect consequences of cyber incidents. 

This chapter considers the evolution of investment models describing cybersecurity 

investments, starting from the single-firm models like the GL model to the richer environments 

with interdependent and networked firms. Whereas earlier models had symmetric interaction 

and risk neutrality, recent studies focus on network structure, externalities, and strategic 

interdependence. Asymmetric networks, coordination failures and contagion risks create 

suboptimal investment levels, pointing out the shortcomings of noncoordinated decision-

making. Theoretical advances aside, empirical testing of these models remains problematic, 

particularly for interdependent systems such as supply chains. This leads us to the next chapter, 

which focuses on the investment behaviour in a supply chain. 
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3. Optimal cybersecurity investments model                                                                          

3.1. The Gordon-Loeb model 

As previously mentioned, Gordon and Loeb introduced the first formal model addressing 

cybersecurity investment decisions in 2002. The model presented in this thesis builds upon and 

extends the original GL framework. Specifically, it introduces additional elements to reflect 

real-world complexity better. 

The original GL model considers a single, risk-neutral firm evaluating whether to increase its 

cybersecurity investment over a single period. The firm holds one information set requiring 

protection – this could represent a customer database, an accounts payable ledger, intellectual 

property, or similar sensitive data. For the sake of simplicity, the model assumes only one type 

of threat to this information set. The key parameters characterizing the information set and the 

decision environment are outlined in the table below. 

Table 2. GL model parameters (Gordon & Loeb, 2002) 

Parameter Description 

𝜆 Loss in case of the breach in monetary terms. 𝜆 is 

assumed to be fixed and smaller than any large 

number M.5  

𝑡 ∈ [0,1] Probability of a cyberattack 

𝑣 ∈ [0,1] Vulnerability of the information set, i.e. 

probability of the breach on the information set if 

there is no additional security introduced. v=0 

when information set is completely secure and 

v=1 when information set is publicly available. 

𝜆 ∙ 𝑡 ∙ 𝑣 Expected loss of a breach on the information set 

in case of no additional investments to 

information security. 

𝐿 = 𝑡 ∙ 𝜆 Expected loss in case of a breach of an 

information set. 

𝑧 > 0 Monetary investment in information security (for 

given information set). Measured in same units 

as L. 

                                                 
5 This model is not suitable evaluating protection of national assets or assets that when breached have catastrophic 

aftermath. 
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Parameter Description 

𝑆(𝑧, 𝑣) Security breach probability function. Denotes the 

probability of a breach of an information set with 

vulnerability v and conditioned with the firm’s 

investments to protect this information set z. 

𝐸𝐵𝐼𝑆(𝑧) = [𝑣 − 𝑆(𝑧, 𝑣)]𝐿 Expected benefits of investments in information 

security.  

𝐸𝑁𝐵𝐼𝑆(𝑧) = [𝑣 − 𝑆(𝑧, 𝑣)]𝐿 − 𝑧 Expected net benefit from investment in 

information security (EBIS less the cost of 

investment). 

 

Every economic model requires a set of assumptions that, while abstracting from reality, help 

ensure the model’s mathematical tractability and consistency. The Gordon & Loeb (2002) 

model is no exception. It includes several assumptions regarding the breach probability 

function S(z,v), which describes the probability of a security breach as a function of the 

investment level z and the inherent vulnerability of the information set v. These assumptions 

are as follows: 

A1.  S(z,0) = 0 for all z. This implies that if the information set is completely invulnerable (i.e., 

has no inherent risk), it will remain secure regardless of the level of investment. 

A2. For all v,  S(0,v) = v. This means that if no resources are invested in security, the probability 

of a breach equals the inherent vulnerability of the information set. 

A3. For all 𝑣 ∈ (0,1) and all 𝑧, 𝑆𝑧(𝑧, 𝑣) < 0 and 𝑆𝑧𝑧(𝑧, 𝑣) > 0, where 𝑆𝑧is a partial derivative 

with respect to z and 𝑆𝑧𝑧 is the second-order partial derivative. This assumption implies that 

increasing investment reduces the breach probability, but at a decreasing marginal rate. 

Additionally, it is assumed that for all v, lim
𝑧→∞

𝑆(𝑧, 𝑣) = 0, which indicates that the probability 

of a successful breach can be made arbitrarily small with sufficiently large investment. 

Gordon & Loeb (2002) propose two functional forms for the breach probability function S(z,v), 

both of which satisfy the above assumptions: 

𝑆𝐼(𝑧, 𝑣) =
𝑣

(𝛼𝑧+1)𝛽 , (𝛼 > 0, 𝛽 ∈ ℝ)      (1) 

𝑆𝐼𝐼(𝑧, 𝑣) =  𝑣𝛼𝑧+1  , (𝛼 > 0)        (2) 
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These functions are selected to reflect decreasing breach probability with increasing investment 

while ensuring that the functional properties (monotonicity, convexity, and limiting behaviour) 

align with theoretical expectations. 

These breach probability functions are then used to determine the optimal level of cybersecurity 

investment, denoted as 𝑧∗(𝑣) by applying the first-order condition to the firm's expected net 

benefit from information security (ENBIS). This optimization identifies the investment level 

that maximizes the net gain from reducing breach probability, given the vulnerability v of the 

information set. That means the first-order condition is set as follows: 

𝜕𝐸𝑁𝐵𝐼𝑆

𝜕𝑧
=

𝜕[(𝑣−𝑆(𝑧,𝑣))𝐿−𝑧]

𝜕𝑧
= 0        (3) 

Assumption A3 implies that S(z,v) is strictly convex in z and therefore ENBIS is strictly 

concave in z. Rearranging (3) for optimal investments, z*, we get: 

−
𝜕𝑆(𝑧∗,𝑣)𝐿

𝜕𝑧
= 1          (4) 

Here, the left-hand side describes the marginal benefits of cybersecurity investments, and the 

right-hand side shows the marginal cost of those investments. This implies that one should 

invest in cybersecurity only up to the point where marginal cost equals marginal benefit (for a 

more detailed explanation, see [8]).  

Using the first order condition (4), optimal cybersecurity investments z*(v) can be calculated 

for both of the security breach functions, equations (1) and (2). As shown in Gordon & Loeb 

(2002), for all the functions that satisfy the conditions A1 to A3, the optimal investment 

satisfies the inequality 𝑧∗ < 𝑣𝐿, where L represents the potential loss in the event of a 

successful breach. More specifically, they show that: 

 𝑧𝐼∗(𝑣) <
1

𝑒
𝑣𝐿 and 𝑧𝐼𝐼∗(𝑣)  <  

1

𝑒
𝑣𝐿, 

where e is the base of the natural logarithm, implying that optimal investment should not 

exceed approximately 36.8% of the expected loss without security measures6. 

                                                 
6 For Type I of breach probability functions we have optimal cybersecurity investments according to equation (4) 

as follows: 
𝑧𝐼∗

𝑣𝐿
=

(𝛽𝛼𝑣𝐿)1/(𝛽+1)−1

𝛼𝑣𝐿
. Letting 𝑥 = 𝛼𝑣𝐿 the optimal cybersecurity investments can be rearranged thus: 

𝑧𝐼∗

𝑣𝐿
=

(𝛽𝑥)1/(𝛽+1)−1

𝑥
. The maximum of this equation is reached when 𝑥 = (𝛽 + 1)𝛽+1𝛽−2−𝛽 and substituting this 

into optimal cybersecurity equation we get 
𝑧∗

𝑣𝐿
= (

𝛽

𝛽+1
)𝛽+1. The right hand side of this equation is increasing in 𝛽 
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It is important to note a critical assumption underlying this result: the firm is assumed to possess 

a basic level of information security infrastructure. This may include access controls, security 

protocols, or personnel – such as an IT officer – dedicating part of their time to security-related 

tasks. This assumption is operationalized through the absence of fixed costs associated with 

initiating entirely new security investments [8]. 

3.2. Extending GL model with interconnectedness 

As discussed earlier, the original GL model is a single-firm, single-period framework. This 

thesis extends the model to incorporate interconnectedness between two firms. There are some 

models using interconnectedness in extending GL model ([28], [39], [23], [3]), but their 

contribution is a bit different from the logic used here. For instance, Wu et al. (2015) and 

Kunreuther & Heal (2003) use probabilities in the breach probability function to add the 

network vulnerability into the model. Nagurney et al. (2016) include the average cybersecurity 

level across the supply chain to the breach probability function and Böhme (2012) uses the 

interdependent risk to analyse the optimal cybersecurity investments. Here we use a different 

approach by adding the partner’s investments into the breach probability function together with 

interconnectedness parameter.  Specifically, we consider two interconnected risk-neutral firms, 

each choosing how much to invest in cybersecurity, denoted by z1 and z2, respectively. 

The investment decisions are made simultaneously, forming a noncooperative game between 

the two firms. These firms are not competitors in the product market; rather, the 

interdependence arises from a service relationship in which one firm provides services to the 

other. Initially, we assume that firms make decisions independently, with no cooperation or 

regulatory requirements imposed by one firm on the other regarding cybersecurity standards. 

Similar to the original GL model, the probability of a security breach for each firm depends on 

its investment level. However, due to interdependence, this probability now also depends on 

the other firm's investment level. The modified breach probability function for firm 𝑖 is given 

by: 

                                                 

and applying L’Hôspital’s rule we get lim
𝛽→∞

(
𝛽

𝛽+1
)

𝛽+1

=
1

𝑒
. And since right hand side of equation 

𝑧∗

𝑣𝐿
= (

𝛽

𝛽+1
)𝛽+1 is 

smaller than 1/e and z* < (1/e)vL. The value of e is approximately 2.71828 and the value of 1/e is therefore 

approximately 0.36788 indicating that the optimal cybersecurity investments should be less than 36.8% of 

expected loss without any security measures. For detailed discussion see [8]. 
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𝑆𝑖(𝑧𝑖 , 𝑧𝑗 , 𝑣𝑖) =  𝑣𝑖 ∙ 𝐻(𝑧𝑖 + 𝛾𝑧𝑗),       (5) 

where 𝑧𝑖 ≠ 𝑧𝑗, 𝐻(𝑧𝑖 , 𝑧𝑗) is some function such that 𝑆𝑖(𝑧𝑖 , 𝑧𝑗 , 𝑣𝑖) satisfies the conditions A1 to 

A37 and 𝛾 ∈  [0,1] denotes the degree of interdependence. A higher 𝛾  implies a greater 

positive externality from the other firm's investment. That is, when firm j increases its 

cybersecurity investment, it reduces the breach probability for firm 𝑖 due to lower contagion 

risk. 

Each firm seeks to maximize its expected net benefit from information security (ENBIS), 

which now incorporates this interdependence: 

𝐸𝑁𝐵𝐼𝑆𝑖(𝑧𝑖 , 𝑧𝑗) = [𝑣𝑖 − 𝑆(𝑧𝑖 , 𝑧𝑗 , 𝑣𝑖)]𝐿𝑖 − 𝑧𝑖 = [𝑣𝑖 − 𝑣𝑖 ∙ 𝐻(𝑧𝑖 + 𝛾𝑧𝑗)] 𝐿𝑖 − 𝑧𝑖 =  

[1 −  𝐻(𝑧𝑖 + 𝛾𝑧𝑗)]𝑣𝑖𝐿𝑖 − 𝑧𝑖        (6) 

where 𝐿𝑖  is the potential loss for firm 𝑖 in case of a successful breach. Each firm maximises its 

expected net benefit, ENBIS. Each firm 𝑖 ∈ {1,2} solves the following maximisation problem: 

max
𝑧𝑖≥0

𝐸𝑁𝐵𝐼𝑆𝑖(𝑧𝑖 , 𝑧𝑗)=[1 −  𝐻(𝑧𝑖 + 𝛾𝑧𝑗)]𝑣𝑖𝐿𝑖 − 𝑧𝑖     (7) 

Assuming the function 𝐻(𝑧𝑖 , 𝑧𝑗) takes the same form as the Type I breach probability function 

in Gordon & Loeb (2002), we write: 

 𝐻(𝑧𝑖 , 𝑧𝑗) =
1

(𝛼(𝑧𝑖+𝛾𝑧𝑗)+1)𝛽        (8) 

Substituting equation (8) into equation (6), the ENBIS function becomes: 

𝐸𝑁𝐵𝐼𝑆(𝑧𝑖 , 𝑧𝑗) = [1 − 
1

(𝛼(𝑧𝑖+𝛾𝑧𝑗)+1)𝛽]𝑣𝑖𝐿𝑖 − 𝑧𝑖     (9) 

Equation (9) indicates that the expected net benefit from information security now depend also 

on the investments of the other firm. To find the optimal amount of cybersecurity investments 

of firm i we take the first-order condition with respect to zi and we obtain: 

𝜕𝐸𝑁𝐵𝐼𝑆(𝑧𝑖 , 𝑧𝑗)

𝜕𝑧𝑖
= 𝛽 ∙ 𝑣𝑖 ∙ 𝐿𝑖 ∙ (𝛼(𝑧𝑖 + 𝛾𝑧𝑗) + 1)

−𝛽−1
− 1 = 0 ⇒ 

                                                 
7 Even though Willemson (2006, 2010) and Hausken (2006) show that different security breach functions will not 

limit optimal cybersecurity investments at the same level as shown in Gordon & Loeb (2002), the functions are 

chosen to be the same as in Gordon & Loeb (2002) for the simplicity of the model presented in this thesis. 
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(𝛼(𝑧𝑖 + 𝛾𝑧𝑗) + 1)
−𝛽−1

=
1

𝛼∙𝛽∙𝑣𝑖∙𝐿𝑖
  ⇒ 

1

(𝛼(𝑧𝑖+𝛾𝑧𝑗)+1)
𝛽+1 =

1

𝛼∙𝛽∙𝑣𝑖∙𝐿𝑖
 

(𝛼(𝑧𝑖 + 𝛾𝑧𝑗) + 1)
𝛽+1

= 𝛼 ∙ 𝛽 ∙ 𝑣𝑖 ∙ 𝐿𝑖  ⇒ 

𝛼(𝑧𝑖 + 𝛾𝑧𝑗) + 1 = (𝛼 ∙ 𝛽 ∙ 𝑣𝑖 ∙ 𝐿𝑖)
1

𝛽+1 

Solving for 𝑧𝑖
∗, the optimal investment for firm i: 

𝑧𝑖
∗ =

(𝛼∙𝛽∙𝑣𝑖∙𝐿𝑖)
1

𝛽+1−1

𝛼
− 𝛾𝑧𝑗       (10) 

Equation (10) illustrates that firm 𝑖’s optimal cybersecurity investment is influenced not only 

by its vulnerability and potential loss but by the investment level of firm 𝑗, moderated by the 

interdependence factor 𝛾. As the degree of interconnectedness increases, firm 𝑖 can reduce its 

investment in anticipation of firm 𝑗 investing more – reflecting a strategic substitution effect 

and giving rise to a potential free-riding problem. This outcome is consistent with the findings 

of earlier studies on interdependent security (see Chapter 2.2.2). The model applies especially 

when companies do not have formal coordination instruments such as contractual agreements 

or regulatory mandates in place. Under a decentralised environment, companies operate 

autonomously, primarily focusing on their cost-benefit analysis and seeking to minimise 

security spending while still using the benefits of others’ security investments.  

This relationship can be visualized through graphs showing how changes in 𝛾 affect optimal 

investment levels. We set vulnerability vi to be 0.6, α is set to 0.0001, 𝛽 to 1, and firm i expected 

loss in case of the breach  Li is 400 000. Next figure shows how the optimal investments change 

in case of different values of 𝛾. 



36 

 

 

Figure 2. Optimal cybersecurity investments of firm i and firm j in case of different interdependence. 

Figure 2 illustrates the problem of strategic substitution in cybersecurity investments. Given 

perfect information, firm i determines its optimal investment based on its vulnerability, 

expected loss, and model parameters – while observing the investment level of firm j. As 

shown, the more firm j invests in cybersecurity, the less firm i find it optimal to invest. This 

inverse relationship reflects a free-riding incentive typical in interdependent security settings. 

A more detailed analysis of this behaviour under the assumption of perfect information is 

provided in the Appendix. 

The model presented in this subsection demonstrates that assuming additive interdependence 

in cybersecurity investments in the supply chain leads to a strategic substitution effect. 

However, the additive formulation might be the simplistic representation of real-world 

cybersecurity interdependence. In practice, if one interconnected firm fails to invest in 

cybersecurity, it can expose the entire supply chain to cyber risk, regardless of how much the 

other invests. Before extending the GL model to reflect the reality better, we take a closer look 

at the current framework by introducing the learning rate – which governs how a firm updates 

its expectations about the other firm’s investment, given that these choices are not directly 

observable. The following chapter considers the current model in the context of a Cournot 

model with learning dynamics.  
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3.3. Imperfect information: A Cournot game with learning dynamics 

In this chapter, we assume a setting of imperfect information, where firms do not observe each 

other’s investment levels directly but instead make a guess about them. This transforms the 

model into a Cournot-style game in which each firm forms expectations about the other’s 

investment. In addition, the model now has a dynamic element – changes take time. 

Suppose firm i does not observe the firm j’s investment directly but instead forms an 

expectation �̂�𝑗. The expectation �̂�𝑗 may be based on heuristics, past investment levels, or noisy 

observations. Then the response function becomes: 

𝑧𝑖
∗ = 𝑚𝑎𝑥 (0,

(𝛼∙𝛽∙𝑣𝑖∙𝐿𝑖)
1

𝛽+1−1

𝛼
− 𝛾�̂�𝑗)       (11) 

Equation (11) reflects real-world conditions in which cybersecurity investments are rarely 

public knowledge, and firms have to expect at least some amount of investments are made by 

another firm.8 

Equation (11) gives the best response of firm i to the firm j´s investment expectations – it 

maximises its investments knowing its vulnerability, expected loss and expecting other firm to 

invest some amount. If a firm i assumes that other firm does not invest, it will choose its best 

response accordingly. Then, the result will be the same as that of the classical GL model 

without interconnectedness. However, suppose a firm believes the other firm will invest a 

considerable amount. In that case, it might decrease its willingness to invest, which means there 

is room for underinvestment due to the perception of other firm’s actions. 

If we add learning to the model, i.e. firms can observe other firm’s actions and adjust their 

belief about other’s investment accordingly, we need to introduce that into the model. Let 

η∈(0,1] represent the learning rate of firm i in guessing the firm j investments, where a low η 

implies conservative adaptation (e.g., due to bureaucratic inertia or uncertainty), and a high η 

reflects rapid adjustment. This learning rate η captures the firm’s ability to adapt the knowledge 

of other firm’s investments and adjust its expectations accordingly. If a firm is uncertain about 

others´ behaviour, it might choose a smaller η to avoid overreacting (more conservative 

approach). 

                                                 
8 Here, we still do not consider the possibility of contracts or legal requirements that might induce both firms to 

invest. 
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The dynamic learning-adjusted response function is9: 

𝑧𝑖
𝑡+1 = 𝑚𝑎𝑥 ((1 − 𝜂) ∙ 𝑧𝑖

𝑡 + 𝜂 ∙ 𝑚𝑎𝑥 (0,
(𝛼∙𝛽∙𝑣𝑖∙𝐿𝑖)

1
𝛽+1−1

𝛼
− 𝛾�̂�𝑗

𝑡))   (12) 

This expression captures the bounded rationality of firms’ actions – firms do not optimize 

immediately but approximate their behaviour over time. In other words, this expression 

captures how firm 𝑖 gradually updates its investment decisions based on evolving beliefs about 

firm 𝑗's behaviour. It also introduces the possibility of persistent underinvestment or strategic 

free-riding, depending on initial beliefs and the value of 𝜂, echoing concerns raised by Varian 

(2004). However, adding learning dynamics to the model does not remove the substitution 

effect, and the result can approach Nash equilibrium as the adjustment happens (gradual 

convergence). 

There are two distinct ways to visualize the strategic dynamics of cybersecurity investment: 

one assumes that the firms are identical – with symmetric values of the parameters like 

vulnerability and expected loss – while the other allows for asymmetry between these 

dimensions. The following figure illustrates the optimal cybersecurity investment levels for the 

symmetric case, where both firms in the supply chain share the same risk parameters. These 

investment levels are shown as a function of the degree of interconnectedness 𝛾. The parameter 

A, which defines each firm’s base incentive to invest, is calculated as follows: 

𝐴 =
(𝛼𝛽𝑣𝐿)𝛽+1−1

𝛼
         (13) 

A is found similarly to perfect information case presented in Appendix 1. Here, the outcome 

for both firms is the same (as the parameters are identical). According to the model, the more 

interdependent the firms are, the less they tend to invest in cybersecurity. Following figure 3 

shows the model without learning rate. 

                                                 
9 Here, the maximisation is used to avoid the negative outcomes: inner max ensures that the best response function 

is nonnegative and outer max ensures that the learning update is also nonnegative. 
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Figure 3. Relationship between optimal cybersecurity investments and interdependence, the case of 

identical firms, different risk profiles. 

Adding learning rate (𝜂 = 0.2) to the model we get following results depicted in Figure 4. Here, 

the lines are reaching the equilibrium in time. 

 

Figure 4. Symmetric equilibrium with learning rate (identical firms) 

However, in practice, finding two identical firms within a supply chain is rare. Firms often 

differ in their vulnerability to cyber threats and the expected loss from the breach. To reflect 

this, we now turn to the asymmetric case for what we generate some numbers.  Let vulnerability 
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for Firm 1 be 0.4, and that of Firm 2 be 0.7. Their respective expected losses are set to 300 000 

and 500 000.  Learning rate 𝜂 is assumed to be 0.2, parameters 𝛼 = 0.0001 and 𝛽 = 1. The 

degree of interconnectedness 𝛾 is set at 0.6. Figure 4 captures the investment dynamics under 

these conditions, using the additive interdependence model with learning. 

 

Figure 5. Optimal cybersecurity investments in case of interconnected firms with learning rate. 

Figure 5 captures the strategic substitution effect in case of asymmetric parameters of the model 

– Firm 1, learning about Firm 2 investments, will gradually decrease its own. The lines 

presented on the Figure 5 differ due to the different parameters used – Firm 2 has higher 

vulnerability and expected loss and therefore invests more. However, Firm 1 gradually 

decreases its cybersecurity investments as its prediction of Firm 2’s investment level improves 

over time and relies more and more on Firm 2’ investments. 

In sum, this additive model with learning illustrates how firms gradually adjust their 

cybersecurity investments based on expectations about their interconnected partners. While the 

model highlights the strategic substitution effect – where increased investment by one firm 

reduces the incentive for the other to invest – it also reveals how learning dynamics affect the 

convergence toward equilibrium. The simplicity of the additive framework provides a valuable 

benchmark to help see the decision-making process in the benefit maximisation framework. 

However, it may overlook key vulnerabilities in real-world interdependent systems, mainly 

when firms rely too heavily on their partners. In the next chapter, we explore a more realistic 
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formulation by introducing multiplicative interdependence, where joint investment is essential 

for adequate protection. 

3.4. Cournot game in case of multiplicative interdependence 

Up to this point, interdependence in cybersecurity investment has been modelled using an 

additive approach, where one firm’s investment is directly added to the other, scaled by a 

parameter capturing the degree of interconnection. As the previous chapter shows, this additive 

structure often leads to a free-riding behaviour. When one firm knows its partner is investing 

in cybersecurity, it may be tempted to decrease or eliminate its efforts. This aligns with findings 

from earlier studies (see chapter 2.2.2). Therefore, we now adopt a different assumption: the 

two firms’ investments are treated as complementary – the cybersecurity of the supply chain 

depends on the joint product of their efforts. This more realistic view echoes that coordinated 

protection can be enforced through contracts, legal obligations, or supply chain agreements in 

real life. Accordingly, we define the breach probability function for firm i as: 

𝑆𝑖(𝑧𝑖 , 𝑧𝑗 , 𝑣𝑖) =  𝑣𝑖 ∙ 𝐻(𝑧𝑖 ∙ 𝛾𝑧𝑗),       (14) 

where 𝑧𝑖 ≠ 𝑧𝑗, 𝐻(𝑧𝑖 , 𝑧𝑗) is a strictly decreasing breach probability function, defined such that 

the overall probability of a breach for firm i, 𝑆𝑖(𝑧𝑖 , 𝑧𝑗 , 𝑣𝑖), satisfies the assumptions of GL 

model A1 to A3 outlined in chapter 3.1. The parameter γ ∈ [0,1], again, denotes the degree of 

interdependence – that is, how much the cybersecurity investment of firm j influences the 

security of firm i. High value of γ indicates that when the firm j increases its investment, it 

reduces the breach probability for firm i, due to lower contagion risks and therefore enhancing 

the overall security of the supply chain. 

𝐻(𝑧𝑖 , 𝑧𝑗) is some function such that 𝑆𝑖(𝑧𝑖 , 𝑧𝑗 , 𝑣𝑖) satisfies the conditions A1 to A3 and 𝛾 ∈

 [0,1], again, denotes the degree of interdependence. 𝐻(𝑧𝑖 , 𝑧𝑗) is strictly decreasing breach 

probability function. That is, if 𝛾 is high and when firm j increases its cybersecurity investment, 

it reduces the breach probability for firm 𝑖 due to lower contagion risks. It increases the overall 

security of the supply chain.  

As before, both firms aim to maximize its expected net benefit from information security 

(ENBIS). ENBIS now incorporates the multiplicative interdependence between the firms: 

𝐸𝑁𝐵𝐼𝑆𝑖(𝑧𝑖 , 𝑧𝑗) = [𝑣𝑖 − 𝑆(𝑧𝑖 , 𝑧𝑗 , 𝑣𝑖)]𝐿𝑖 − 𝑧𝑖 = [𝑣𝑖 − 𝑣𝑖 ∙ 𝐻(𝑧𝑖 ∙ 𝛾𝑧𝑗)] 𝐿𝑖 − 𝑧𝑖 =  
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[1 −  𝐻(𝑧𝑖 ∙ 𝛾𝑧𝑗)]𝑣𝑖𝐿𝑖 − 𝑧𝑖        (15) 

Here, 𝐿𝑖  is the potential monetary loss for firm 𝑖 in the event of a successful breach. Each firm 

seeks to maximise its expected net benefit, ENBIS, taking into account the interdependence 

captured by the multiplicative breach probability function. Specifically, for each firm 𝑖 ∈ {1,2}, 

the optimisation problem becomes: 

max
𝑧𝑖≥0

𝐸𝑁𝐵𝐼𝑆𝑖(𝑧𝑖 , 𝑧𝑗)=[1 −  𝐻(𝑧𝑖 ∙ 𝛾𝑧𝑗)]𝑣𝑖𝐿𝑖 − 𝑧𝑖     (16) 

Assuming the function 𝐻(𝑧𝑖 , 𝑧𝑗) follows the same structure as in the previous chapter’s, we 

define it as: 

 𝐻(𝑧𝑖 , 𝑧𝑗) =
1

(𝛼(𝑧𝑖∙𝛾𝑧𝑗)+1)𝛽        (17) 

Substituting equation (17) into the expected net benefit function (equation (15)), we obtain: 

𝐸𝑁𝐵𝐼𝑆(𝑧𝑖 , 𝑧𝑗) = [1 − 
1

(𝛼(𝑧𝑖∙𝛾𝑧𝑗)+1)𝛽]𝑣𝑖𝐿𝑖 − 𝑧𝑖      (18) 

Equation (18) highlights that firm i´s optimal investments depend directly on the firm j´s 

investment. This formulation reinforces that adequate security requires joint effort in an 

interconnected supply chain. If firm i invests, but firm j does not, the overall impact on 

cybersecurity is negligible. However, when both firms invest, the breach probability decreases 

significantly, creating mutually reinforcing incentives and eliminating the free-riding problem 

observed in the additive case. 

Taking the first-order condition with respect to zi, we obtain: 

𝜕𝐸𝑁𝐵𝐼𝑆(𝑧𝑖 , 𝑧𝑗)

𝜕𝑧𝑖
= 𝛽 ∙ 𝑣𝑖 ∙ 𝐿𝑖 ∙ (𝛼(𝑧𝑖 ∙ 𝛾𝑧𝑗) + 1)

−𝛽−1
− 1 = 0 ⇒ 

(𝛼(𝑧𝑖 ∙ 𝛾𝑧𝑗) + 1)
−𝛽−1

=
1

𝛼∙𝛽∙𝛾∙𝑧𝑗∙𝑣𝑖∙𝐿𝑖
  ⇒ 

1

(𝛼(𝑧𝑖∙𝛾𝑧𝑗)+1)
𝛽+1 =

1

𝛼∙𝛽∙𝛾∙𝑧𝑗∙𝑣𝑖∙𝐿𝑖
 

(𝛼(𝑧𝑖 ∙ 𝛾𝑧𝑗) + 1)
𝛽+1

= 𝛼 ∙ 𝛽 ∙ 𝛾 ∙ 𝑧𝑗 ∙ 𝑣𝑖 ∙ 𝐿𝑖  ⇒ 

𝛼(𝑧𝑖 ∙ 𝛾𝑧𝑗) + 1 = (𝛼 ∙ 𝛽 ∙ 𝛾 ∙ 𝑧𝑗 ∙ 𝑣𝑖 ∙ 𝐿𝑖)
1

𝛽+1 

Solving for 𝑧𝑖
∗, the optimal investment for firm i becomes: 
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𝑧𝑖
∗ =

(𝛼∙𝛽∙𝛾∙𝑧𝑗∙𝑣𝑖∙𝐿𝑖)
1

𝛽+1−1

𝛼∙𝛾∙𝑧𝑗
        (19) 

Equation (18) shows that firm i´s investments depend directly on firm j´s investments: the value 

of firm j´s investment, zj,  appears in both the numerator and denominator of the expression, 

indicating that firm j´s investment increases firm i´s incentive to invest, but with diminishing 

returns. In contrast to the additive model discussed in the previous chapter – where investments 

function as strategic substitutes – the multiplicative structure here treats cybersecurity 

investments as strategic complements. If firm j does not invest, the firm i’s investment becomes 

meaningless, as overall breach probability remains high. 

This complementarity eliminates the free-riding incentive observed in the additive case. 

Theoretically, cybersecurity in this framework can be viewed similarly to innovation 

investments: the more one firm in a supply chain contributes, the more others are encouraged 

to do the same (see [25], [29]). Furthermore, the interdependence parameter magnifies these 

incentives. The more interconnected the firms are, the more each firm’s security depends on 

its partner’s investment. In an interconnected environment, no single firm can invest heavily 

and remain secure in isolation – effective protection demands joint effort. 

Compared to the additive model in the previous chapter, the firm i´s investments will turn 

meaningless if firm j is not investing. So, if in the previous additive model, investments can be 

viewed as substitutes, then in this model, those investments are complements, not allowing 

free-riding. This way, captured cybersecurity might be interpretable as innovation investments 

– the more one member of supply chain invests, the more it encourages others to invest. In 

addition, interdependence also appears in the equation, which magnifies the incentive: the more 

interconnected the firms are, the more the protection against cyber threats depends on other 

firm. In an interconnected world, one firm cannot invest heavily in cybersecurity and be 

protected and secure.  

However, if both firms decide not to invest in cybersecurity, it might become another 

suboptimal solution – this model does not prevent this solution (similarly to Prisoners 

Dilemma).  

Let us assume that we have two firms with different risk profiles. Firm 1 has a vulnerability set 

to 0.4; for Firm 2 it is set to 0.7. Expected losses for firms are 300 000 and 500 000, 
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respectively. We assume that firms are interdependent, and the value for 𝛾 is set to 0.6 and 

parameters 𝛼 = 0.0001 and 𝛽 = 1. The best response functions for those firms are given by: 

𝑧1
∗ =

(𝛼∙𝛽∙𝛾∙𝑧2
∗∙𝑣1∙𝐿1)

1
𝛽+1−1

𝛼∙𝛾∙𝑧2
∗         (20) 

𝑧2
∗ =

(𝛼∙𝛽∙𝛾∙𝑧1
∗∙𝑣2∙𝐿2)

1
𝛽+1−1

𝛼∙𝛾∙𝑧1
∗         (21) 

Nash equilibrium satisfies the system of those best response functions. 

 

Figure 6. Best response functions and Nash equilibrium. 

Figure 6 presents the best response functions for two asymmetric firms regarding multiplicative 

interdependence in cybersecurity investment. The blue curve represents the Firm 1’s best 

response to Firm 2’s investment z2, while the orange curve captures the Firm 2’s best response 

function to Firm 1’s investment, z1. The red dot marks the Nash equilibrium, where both firms 

simultaneously choose optimal investment levels given the other’s decision. 

The equilibrium point reflects that neither firm can achieve adequate cybersecurity protection 

unilaterally – the breach probability function is multiplicative. Therefore, each firm’s 

investment is only effective when complemented by the other’s efforts. As such, the 

equilibrium captures the mutual reinforcement of cybersecurity incentives in an interconnected 

world. Firm 2, which faces higher vulnerability and potential loss (v2 = 0.7, L2 = 500 000) 
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invests more than Firm 1, whose risk exposure is lower. Thus, this equilibrium reflects 

complementarity and heterogeneity in risk profiles. 

This visual representation confirms the theoretical insight that cybersecurity investments are 

strategic complements under multiplicative interdependence, and optimal protection requires 

joint commitment across the supply chain. This aligns with the Weishäupl et al. (2018) survey, 

which found that the motivation for cybersecurity investments of interviewed decision-makers 

stems from laws, regulatory standards, and legal frameworks [36]. Our results with 

multiplicative interdependence as a contract between supply chain partners to increase joint 

cybersecurity, supporting this survey’s result. 
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4. Conclusion 

This thesis looks into how firms decide how much to invest in cybersecurity, especially when 

connected to other firms and operating under conditions of uncertainty and risk neutrality. The 

starting point for the analysis is the well-known Gordon-Loeb (GL) model, which serves as a 

baseline for understanding how a single firm should allocate resources to cybersecurity based 

on the potential losses and vulnerabilities of its information assets. 

The GL model continues to give relevant insights into how firms see their appropriate level of 

cybersecurity investments and the best way to allocate those investments between different 

information sets. The most important variable in the model is the value of the information set, 

as it captures the potential loss in case of a cyber breach. As network segmentation to segment 

information sets is significant in cybersecurity, a firm will have more than one information set 

to protect. Another important variable in the model is the vulnerability of an information set, 

indicating that a firm needs to estimate the probability that this information set will be breached 

(for all information sets).  

In this thesis, we extend the GL model in several critical directions to better reflect real-world 

interdependence, strategic behaviour, and imperfect information in cybersecurity. The first 

extension incorporates interconnectedness between two firms, modelling their investment 

decisions as a noncooperative game. Under perfect information, each firm optimally chooses 

its investment while knowing the other’s choice. Results confirm a classic strategic substitution 

effect: the more one firm invests, the more reluctant the other is to do so. This introduces free-

riding risk, particularly in the absence of coordination regulation. 

To make the model more realistic, we introduced the concept of imperfect information and 

modelled the interaction as a Cournot game with learning dynamics. Here, firms form 

expectations about their partner’s investment and adjust their behaviour iteratively using the 

learning coefficient (η). Simulation results indicate that the learning slows the adjustment 

toward equilibrium but does not eliminate the substitution effect. Over time, the learning 

process converges toward a stable outcome, but underinvestment remains a persistent risk, 

especially when initial beliefs or learning rates are misaligned. 

Recognising that the additive interdependence may oversimplify the supply chains in real life, 

we introduced the final extension: a multiplicative interdependence model, where effective 



47 

 

cybersecurity depends on the joint effort of both firms. This setup changes the nature of the 

game: instead of strategic substitutes, investments in this setting are now strategic 

complements. In other words, one firm’s investment increases the other’s incentive to invest. 

Free-riding is no longer viable – if one firm fails to invest, the other’s investment becomes 

negligible. The Nash equilibrium in this setting reflects both complementarity and 

heterogeneity in firm risk profiles, indicating that firms with higher risks optimally invest more. 

The multiplicative interdependence model developed in this thesis offers a more realistic 

representation of the interdependencies commonly observed in supply chains, where firms are 

linked through contractual obligations, legal frameworks, and shared exposure to cyber risks. 

This approach also resonates with principles from innovation economics, where the investment 

of one actor can stimulate responsive action from others, leading to broader collective benefits. 

However, even this model assumes a relatively stable and known network topology that may 

not hold in volatile digital ecosystems. 

Based on this thesis findings, it is evident that inter-firm interdependence in cybersecurity 

necessitates coordinated approaches to investment. The extended models demonstrate that 

firms are prone to free-riding under additive interdependence, especially in the absence of 

formal agreements or regulatory mandates. By contrast, the multiplicative interdependence 

model shows that joint investment mechanisms eliminate the free-riding problem and lead to 

more socially optimal outcomes, where one firm’s investment strengthens the incentive for the 

other to invest. 

To address the challenges described before, companies that share IT systems with partners 

should consider improving the baseline cybersecurity standards within the company and 

promoting contractual obligations within supply chains to enforce mutual investment. Tax 

incentives or subsidies could be useful to encourage firms, especially SMEs, to exceed the 

minimum investment threshold foreseen by law. In addition, a more coordinated approach to 

supply chain cybersecurity might increase the joint investment, as better coordination should 

be accompanied by improved information sharing and transparency. These measures help firms 

and supply chains move towards a strategic approach to mutual cyber resilience. 

Even though this thesis enhances the existing framework of cybersecurity investments 

incorporating interdependence and learning, several possible future research topics remain. 

Extending the model by more than two firms and adding explicit network topology might shed 
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more light on contagion risks within a supply chain. Second, regulatory interventions, such as 

minimum investment requirements, liability rules or tax incentives, could add relevant insights 

to the model results regarding equilibrium outcomes and social welfare. Third, one could 

explore the landscape of cyber insurance and budget constraints within this model to add more 

comprehensive cost-benefit analyses to the model. Fourth, incorporating behavioural 

economics into the model, such as biases in decision-making, overconfidence, or limited 

attention, could help to understand different cybersecurity strategies. Last but not least, 

empirical calibration attempts to increase the practical relevance of the model - it could use the 

firm-level breach data, security investment levels or insurance claims to validate assumptions 

and condition policy recommendations. 
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Appendix 1 – Nash equilibrium, perfect information 

We will discuss the solution when we do have perfect information – firm i and firm j know 

how much other is investing. We have optimal cybersecurity investments equation (10) as 

follows: 

𝑧𝑖
∗ =

(𝛼∙𝛽∙𝑣𝑖∙𝐿𝑖)
1

𝛽+1−1

𝛼
− 𝛾𝑧𝑗        (1a) 

Then we apply this for both firms and get: 

𝑧1 =
(𝛼∙𝛽∙𝑣1∙𝐿1)

1
𝛽+1−1

𝛼
− 𝛾𝑧2        (2a) 

𝑧2 =
(𝛼∙𝛽∙𝑣2∙𝐿2)

1
𝛽+1−1

𝛼
− 𝛾𝑧1        (3a) 

To find Nash equilibrium, we need to solve this system of equations. For this let introduce the 

following parameters: 

𝐴1 =  
(𝛼∙𝛽∙𝑣1∙𝐿1)

1
𝛽+1−1

𝛼
         (4a) 

𝐴2 =  
(𝛼∙𝛽∙𝑣2∙𝐿2)

1
𝛽+1−1

𝛼
         (5a) 

So, we can rewrite the equations (2a) and (3a) as follows: 

𝑧1 + 𝛾𝑧2 = 𝐴1         (6a) 

𝑧2 + 𝛾𝑧1 = 𝐴2         (7a) 

To solve this problem, lets multiply equation (6a) with 𝛾 and get: 

𝛾𝑧1 + 𝛾2𝑧2 = 𝛾𝐴1         (8a) 

To find z2 we need to subtract (8a) from (7a) and get: 

(𝑧2 + 𝛾𝑧1) −( 𝛾𝑧1 + 𝛾2𝑧2) = 𝐴2 − 𝛾𝐴1 

(1 − 𝛾2)𝑧2 = 𝐴2 − 𝛾𝐴1  
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𝑧2
∗ =

𝐴2−𝛾𝐴1

(1−𝛾2)
          (9a) 

Now substitute z2 in equation (6a) we get: 

𝑧1
∗ = 𝐴1 − 𝛾𝑧2

∗ = 𝐴1 − 𝛾 ∙
𝐴2−𝛾𝐴1

(1−𝛾2)
       (10a) 

From equation (10a)  and (9a)we find Nash equilibrium:  

𝑧1
∗ =

𝐴1 − 𝛾𝐴2

(1 − 𝛾2)
 

𝑧2
∗ =

𝐴2 − 𝛾𝐴1

(1 − 𝛾2)
 

This result perfectly indicates the free-riding problem described in Varian (2004): Firm 1 will 

reduce its investments to 0 as Firm 2 starts to invest, relying fully on Firm 2's investments in 

cybersecurity. 
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Appendix 2 – Visualisation of extended GL model with learning 

dynamics 
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