
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Mikk Raba 179955

OPEN SOURCE LIBRARY FOR
COLLECTION OF USER INTERACTION

DATA ON WEB APPLICATIONS

Bachelor’s thesis

Supervisor: Andres Käver

 BSc

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Mikk Raba 179955

AVATUD LÄHTEKOODIGA TEEK
KASUTAJA TEGEVUSINFO KOGUMISEKS

VEEBIRAKENDUSTEL

bakalaureusetöö

Juhendaja: Andres Käver

 BSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Mikk Raba

18.05.2020

4

Abstract

Standard realisation of modern web analytics tools is usage of JavaScript libraries on

client side. Implementation of tracking is done by utilising global functions provided by

those libraries. These functions initiate data sending to collection servers once they are

called on user chosen events and provided with input data. This process is called

“tagging” and the snippets of code added to website’s source “tags”. Changes of

configuration or requirements to set tags may change daily according to platform

development. Management of configuration and tags are responsibilities of IT

development teams.

Common solution to minimise the dependency on IT development teams is opting to use

tag manager systems. Tag manager systems provide a graphical user interface (GUI) that

allows the user to configure on which events and conditions behavioural data is collected.

These systems generate necessary code according to user set settings. The generated script

is then loaded by a small tag manager’s script asynchronously on page load from third

party servers and the tags are “injected” into website. This process makes tag managers

inherently a security risk because they inject code into website from another resource. In

addition, business stakeholders are usually provided with access to these systems in order

for them to manage tags by themselves. In this way, because tag managers generated code

for user, they place code related responsibility on business side which is a conflict of

interests and responsibilities.

Furthermore, companies can have more than one analytics tool that needs separate

tagging. Configuration and maintenance in essence, no matter if tagging directly in code

or using a tag manager system, is a manual process that is time consuming. At the same

time, these tools have similar data requirements as they are similarly designed to provide

information about user behaviour on the web.

This thesis aims to solve this problem by providing a library that collects visitor web

interaction data once in a structured manner and allows to forward this data to one or

multiple tools.

5

Annotatsioon
Avatud lähtekoodiga teek kasutaja tegevusinfo kogumiseks

veebirakendustel

Tänapäeval turul olevad veebianalüütika tööriistad on tavapraktikas rakendatud kliendi

brauseris JavaScript teekidena. Andmete kogumine on realiseeritud nende teekide

serveeritud globaalsete funktsioonide väljakutsumisega õigetel sündmustel ja sisendiga

veebilehe koodis. Seda protsessi nimetatakse tagging’uks ning selle tulemusel lisatud

koodilõike tag’ideks. Nõuded nendele tag’idele võivad muutuda igapäevaselt vastavalt

rakenduses tehtud muudatustele ja haldusvastutus langeb IT arendusmeeskondadele.

Levinud lahendusena on IT arendusressurssist sõltuvuse vähendamiseks kasutusel tag’ide

haldussüsteemid (inglise keeles tag-manager systems). Need haldussüsteemid on

graafilise kasutajaliidesega tööriistad, mille abil saab kasutaja seadistada, millistel

sündmustel, sisendinfoga ja tingimustel peab tööriist andmeid veebilehelt koguma. Need

süsteemid genereerivad seadistuse alusel koodi, mis laetakse lehe laadimisel

asünkroonselt ühe kontrollskripti poolt kolmanda osapoole serverist. Seda protsessi

nimetatakse ka koodi süstimiseks veebilehele. Haldussüsteemide üks eesmärk on

langetada tehnilist barjääri tag’ide seadistamisel ning praktikas langeb nende

süsteemidega töö äriliste üksuste valdusesse. Selle tulemusel tekib vastutuse konflikt, sest

IT lahendused, mis tegelevad platvormi funktsionaalsusega koodi tasemel ei tohiks olla

äriliste üksuste vastutus. Teisalt toovad haldussüsteemid endaga kaasa turvariske, sest

koodi laadimisel kolmanda osapoole serverist puudub ka kontroll selle koodi üle.

Ettevõtetel võib esineda mitu analüütika tööriista ja mitu veebilehte. Nende seadistamine

andmete kogumiseks, kas otse koodis või läbi haldussüsteemi, on manuaalne töö. Sellest

tingituna ei kasutata tihti tööriistade maksimaalset potentsiaalil. Teisalt on

analüütikatööriistade eesmärk sarnane, see tähendab koguda andmeid kasutaja tegevuste

kohta ning tihti vajavad need tööriistad sisendina sarnaseid või identseid andmeid.

6

Käesolev töö püüab lahendada andmete kogumise duplitseerimist ja tööriistade

seadistamist. Selleks pakutakse välja lahendus andmete ühekordseks kogumiseks

struktureeritud kujul, mis võimaldaks saata neid andmeid edasi mitmele tööriistale ning

mis vähendaks vajadust tag’ide lisamiseks

Töö annab ülevaate ajaloost, tänastest praktikatest ja lahendustest turul. Seejärel

analüüsitakse turul olevate analüütikatööriistade toimimismehhanisme, nende erinevusi,

puudujääke ning ettevõtete vajadusi. Analüüsi tulemusena pakutakse välja lahendus

JavaScript teegi kujul ning realiseeritakse antud lahendus.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 71 leheküljel, kuute peatükki, 27

joonist ja ühte tabelit.

7

List of abbreviations and terms

AaaS
AJAX
CSS
DOM
ES
GUI
HTML
JS
PWA
SaaS
SDK
SPA
UI
URL
UX
WWW

Analytics as a Service
Asynchronous JavaScript and XML
Cascading Style Sheets
Document Object Model
EcmaScript
Graphical User Interface
Hypertext Markup Language
JavaScript
Progressive Web Application
Software as a Service
Software Development Kit
Single Page Application
User Interface
Uniform Resource Locator
User Experience
World Wide Web

8

Table of contents

Introduction .. 13

1 Objectives and scope ... 15

2 Background .. 16

2.1 History .. 16

2.2 Current situation ... 17

2.2.1 The influence of growing regulation ... 18

2.3 Analytics tools on the market ... 19

2.3.1 Technical realisation and standard implementation 20

2.3.2 Implementation using tag manager systems .. 22

2.3.3 Server-side solutions ... 23

2.3.4 Alternatives .. 24

3 Analysis ... 26

3.1 Technical similarities and differences of tools available 26

3.2 Drawbacks of current analytics tools implementation methods 28

3.2.1 Business perspective .. 28

3.2.2 IT perspective .. 30

3.2.3 Web analytics perspective ... 33

3.3 Requirements .. 37

3.4 Proposed solution ... 39

3.4.1 Existing similar solutions .. 39

3.4.2 Technical challenges ... 40

4 Development of proposed library .. 43

4.1 Planning .. 43

4.1.1 Frameworks, libraries and components used during development 43

4.1.2 Logic, structure and principles .. 44

4.2 Implementation ... 45

4.2.1 User options and configuration ... 45

4.2.2 Interaction data collection ... 48

4.2.3 Forwarding data ... 51

9

5 Result ... 53

6 Future developments .. 55

Summary ... 56

Kokkuvõte .. 57

References .. 59

Appendix 1 – Request made to analytics collection server on Swedbank’s website on

pageview ... 66

Appendix 2 – Requests made to analytics collection server on Swedbank’s website on

click .. 67

Appendix 3 – Requests made to analytics collection server on Pipedrive’s website

pageview ... 68

Appendix 4 – Request made to analytics collection server on Pipedrive’s website on

click .. 69

Appendix 5 – Request made to analytics collection server on Samsung’s website on

click .. 70

Appendix 6 – Request made to analytics collection server on article view on The New

York Times website .. 71

10

List of figures

Figure 1. Google Analytics analytics.js implementation tag. ... 20

Figure 2. Sample of passing additional information to global analytics functions. In this

example, the user has opted to send parameter "page" with value "/home". 21

Figure 3. Example of passing additional page information with pageview event with

Adobe Analytics. .. 21

Figure 4. Example of a minimalistic data layer in common analytics implementation. 22

Figure 5. Google Tag Manger's implementation tag. ... 23

Figure 6. Demonstration of click event tracking with different analytics tools. 27

Figure 7. Demonstration of global Google Analytics method overwritten resulting an

error in later method call. ... 31

Figure 8. Demonstration of script snippet encapsulated by an immediately self-invoking

function allowing resulting in successful call later to global Google Analytics function

with a same name. .. 32

Figure 9. Screen capture from Google Chrome developer tools while visiting Swedbank

Estonia’s website. Image shows a request made to Adobe Analytics collection server on

page load. .. 34

Figure 10. Screen capture from Google Chrome developer tools while visiting

Swedbank Estonia’s website. Image shows a request made to Adobe Analytics

collection server on a banner call to action button click on front page. 35

Figure 11. Screen capture from Google Chrome developer tools while visiting

Pipedrive’s website pipedrive.com. Image presents selection of parameters send to

Google Analytics collection server on page load. .. 35

Figure 12. Screen capture from Google Chrome developer tools while visiting

Pipedrive’s website pipedrive.com. Image presents selection of parameters send to

Google Analytics collection server on click event. .. 36

Figure 13. Screen capture from Google Chrome’s developer tools while visiting

Samsung’s website samsung.com/us. Image presents selection of parameters send to

analytics collection server on front page banner button click. 37

11

Figure 14. Minimalistic example of library registration. The user has defined the usage

of "bootstrap4" template and provided one consumer. ... 46

Figure 15. Kollektor registration with a simple custom template. The user has provided

two targets on "link" and "button". The user has also set debug and privacy settings on.

 .. 47

Figure 16. Example of choosing debounced events and tracked scroll distances on

configuration. .. 48

Figure 17. Tracker object properties available for forwarding. 50

Figure 18. Demonstration of a consumer map object that defines requirements of

needed. In this example, a simple map for Google Analytics is presented. 51

Figure 19. Function that provides an object with necessary values according to

consumer provided map. ... 52

Figure 20. Example of collected data. Screen capture from Adobe Analytics. 54

Figure 21. Example of collected data using pre-defined Bootstrap4 template. 54

Figure 22. Screen capture from Google Chrome developer tools. On image is presented

a request made to analytics collection server on Swedbank.ee website on page load. .. 66

Figure 23. Screen capture from Google Chrome developer tools. On image is presented

a request made to analytics collection server on Swedbank.ee website when a banner

button is clicked. ... 67

Figure 24. Screen capture from Google Chrome developer tools. On image is presented

a request made to analytics collection server on Pipedrive.com website when page is

loaded. ... 68

Figure 25. Screen capture from Google Chrome developer tools. On image is presented

a request made to analytics collection server on Pipedrive.com website when a banner

button is clicked. ... 69

Figure 26. Screen capture from Google Chrome developer tools. On image is presented

a request made to analytics collection server on Samsung.com website when a banner

button is clicked. ... 70

Figure 27. Screen capture from Google Chrome developer tools. On image is presented

a request made to analytics collection server on The New York Times website when an

article is viewed. ... 71

12

List of tables

Table 1. Basic requirements to analytics implementation from business perspective, IT

perspective and shared in common. .. 38

13

Introduction

Digital analytics and web interaction data collection has become a priority for many

companies in the recent years. With exponentially accelerating digitalisation and physical

presence losing its relevance companies are in a race to provide services on digital

channels. Simultaneously, customers have adapted and are expecting services to be

available in digital channels. This brings a shift in the environment companies are set as

there are no borders or distance in the internet and location does not necessarily bring any

advantage. Instead, companies are forced to compete in providing best user experience

on digital channel.

Good user experience is a result of understanding visitor needs. In order to have this

understanding they need to collect customer interaction data for analysis. Nowadays,

market is filled with hundreds of web analytics tools which aim to help companies make

data driven decisions. Companies are investing large amounts of money into them and

many of such tools are provided according to a software as a service (SaaS) or analytics

as a service (AaaS) model.

Standard implementation of modern web analytics tools is done on the client-side using

JavaScript libraries. These libraries provide global functions which generate requests to

analytics collection endpoints. These functions are called at certain user events that the

site’s owner is interested with contextual input data. Code snippets responsible for this

action are called “tags” and the process of adding tags is called “tagging”.

The implementation of tags and configuration is meant to be maintained by IT

development team. Maintenance of tags can scale quickly in workload and can be left

competing with other developments in the backlog. In order to eliminate or lessen the

dependency on IT development resource, a tag manager solution is often used. A tag

manager system is a graphical user interface (GUI) that allows to configure the model,

conditions and events on which data is collected. After configuration, tag manager system

generates necessary code for tracking. This generated code is downloaded

14

asynchronously on page load by tag manager snippet in the website’s head section. This

process is also called “injection” of code.

Although tag managers shift management of tags to a GUI and lower first barrier of

technical knowledge, they also have downsides. Tag managers are inherently a security

risk because they allow injecting custom HTML and JS snippets and in standard practise

serve generated code from third-party servers over which the user does not have control

over. In addition, tag managers are usually left in full control of business side which raises

a conflict of responsibility. Business units should not be responsible of site’s functionality

especially if it consists of code management.

Many companies have multiple analytics tools on their website. The process of tagging,

no matter if directly in code or using a tag manager, is in essence a manual process.

Companies may also have multiple websites

All this can create a situation where return on investment is negative due to subpar or

lagging tool implementation. At the same time analytics tools all aim to give

understanding of the same user behavioural events and require similar input data gathered

from those events.

15

1 Objectives and scope

The objective of this thesis is to analyse available web analytics tools, their

implementation practises and requirements by business stakeholders and IT, in order to

propose and develop a JavaScript library that would simplify implementation of web

analytics related data collection, particularly user behavioural event tracking, and limit

the need for tagging or extra configuration. The library would aim to allow website

owners to collect information on events in a certain universal base structure with one

script, allow same implementation on multiple websites in a quick manner, manage data

collection with full governance on their own platform and potentially collect more data

with default implementation.

This thesis strictly looks and provides a solution for web analytics. With rapid growth of

mobile applications, sometimes the term “digital analytics” is used instead of “web

analytics” and sometimes they are used interchangeably.

16

2 Background

In this section, in the beginning a brief overview of history is provided. Next, a more in-

depth overview of surrounding environment is provided, covering field expectations,

legal trends, solutions on the market and technical implementation practises. Lastly, short

insight to alternatives is given.

2.1 History

With the spread of internet and progress of companies building online presences, an issue

presented immediately – there was no understanding of who was the visiting customer or

how many customers visited the website. As first remedy for this problem, in the

beginning of World Wide Web (WWW), analysis of server log files that stored web

transaction data were used to obtain some understanding. This approach allowed basic

overview of website views and visits. Visits had also an alternative name “session” [1].

The approach of using log files had its limitations. With arrival of first search engines,

web engine spiders started crawling websites making it difficult to understand the number

of unique visitors. In addition to spiders, internet service providers started implementing

dynamically assigned IP addresses adding to this problem. In order to solve this, a new

technique of data collection called “page tagging” emerged. The new method was often

complimented by a counter on the website presenting the number of visitors. Page tag

was essentially a hidden pixel image element on the website, that once downloaded,

stored the information of visit and additional parameters assigned to query of the image

request. In addition, with the image downloaded, a cookie was also set to user’s browser

which allowed measuring user retention. [1] [2]

While this helped mitigate problems related to visitor uniqueness and was an important

step further, such measurement was still limited because it did not allow to understand

customer behaviour on a deeper level. There was no information on user interactional

events such as user clicks and other mouse events [1]. Page tagging evolved quickly and

17

with JS more information about customer interactions was added to the requests. JS

libraries started emerging that instead of loading an image placed already to the HTML,

generated a request to certain address passing more information and allowing more

customizability.

First modern web analytics tool is considered to be made by a United States company

WebTrends [1]. In 2015, Google started offering their web analytics platform Google

Analytics after acquiring Urchin [3]. Google Analytics holds today a market share of 84

percent according to W3Techs surveys [4].

The original pixel placement and loading is still in use as a fallback in situations where

no scripts are allowed or possible to use. For example, it is used with emails because the

level of functionality of mail clients may differ dramatically [5] [6].

2.2 Current situation

In the past two decades, web and mobile related analytics has gone through extensive

change. In 2016, data and analytics market size was 160 billion US dollars expecting to

reach 220 billion in 2020. [7] Ravi et al. analyse in their review “Analytics in/for cloud-

an interdependence: A review” that cloud computing has lowered the cost of data storage

and computing resources and it is expected for analytics related cloud services to increase

in sales in the forthcoming years. Many companies opt for on-demand Analytics services

and “Analytics as a Service” has become a buzzword [8]. Consequently, almost all

popular web analytics tools on the market today are cloud based. Cloud based solutions

have multiple benefits. They can be easily scaled, allow quicker time to market, need no

infrastructure, level the possibilities of big and small companies and demand less

designated people from the company [9]. On the other hand, it must be pointed out that

cloud solutions have their security challenges. Data breaches, compromised

authentication, system vulnerabilities and Denial-of-Service (DoS) attacks are a few of

many risks that a company may face when using cloud services [10]. On-premise

solutions can offer viable options for companies that are more concerned regarding the

security and location of their sensitive data. There are a few vendors that do offer on-

premise solutions, for example WebTrends and Matomo [11].

18

Many vendors offer their services using freemium pricing model where limited package

is offered for free. Freemium pricing model is also used by most popular Google Analytics

but does include others, for example Amplitude and Mixpanel [12] [13] [14]. Using a

tracking script search extension, for example Ghostery, on any of modern browsers and

moving around the web, it can be seen that while Google Analaytics is almost a de facto

standard, other tools are also often present.

2.2.1 The influence of growing regulation

In the past five years, data collection for analytics and digital marketing has undergone

heavy regulation. Largest impact has been General Data Protection Regulation (GPDR)

that went into effect on the 25th of May 2018 in the European Union. GDPR aims to

regulate personal data usage and give customer more control over their personal data. In

order to do this, GDPR forces companies to write privacy policies in clear and forward

language that state how the data is used and demand for customer consent to use their

data. This consent needs to be clear and silence is not considered an agreement.

Furthermore, companies need to have clearly defined purposes and documentation for

data processing. Most importantly, GPDR gives user rights to move, access, ask a copy

and ask to delete the data. Every popular company has visitors from Europe on their

website and is obligated to comply with the law in the same manner as companies residing

in European Union [15].

Other regions around the world are also following with similar acts. In the United States,

California Consumer Privacy Act (CCPA) took effect in state of California 1st of January

2020 and first part of Stop Hacks and Improve Electronic Data Security Act (SHIELD

Act) has gone into effect in the New York State [16]. According to international law firm

Hogan Lovells’ 2019 “Asia Pacific Data Protection and Cyber Security Guide”, China,

India, Australia and other countries in the Asia-Pacific region already have laws

implemented, are reviewing existing legislation or creating it inspired by the European

GDRP directive [17].

The implementation of GDPR has also raised knowledge of data usage in the society

which forces the businesses to consider reputational aspects in case of not being compliant

in addition to possible fines. According to European Commission info sheet, by May

2019, 67% of Europeans had heard of GDRP and the knowledge of the existence of a

public authority responsible for protecting user rights about personal data had grown 20

19

percentage points since 2015. Fines for not being compliant with GDPR have also been

enacted. Biggest of them has been France fining Google with 50 million euros due to lack

of gathering consent on advertisements [18].

In addition to GDPR, European Commission has proposed an update for ePrivacy

Regulation. If GDPR protects personal data then ePrivacy Regulation aims to give users

rights for privacy and confidentiality in their electronic communication when using their

devices [19] [20].

Considering the ongoing process of ePrivacy Regulation, higher focus on data usage in

the society and to the misuse of data by large international companies, the trend of

regulation and expectations for levels of data security in the society is continuing to grow

rapidly [21].

2.3 Analytics tools on the market

The number of different analytics tools has grown into hundreds [4]. Customer web and

mobile platform interaction data has vast number of applications and this has resulted in

a saturated market where there are many tools that differ in minor aspects. Scott Brinker,

a marketing technologist, brings out in his blog that according to Netskope April 2017

study, marketing teams are using 91 cloud services on average [22]. Applications to data

include but are not limited to, marketing analysis to understand the results of offering

related efforts, user experience analysis, predictive behavioural analysis, personalisation

of content and conversion analysis [1].

According to a research and advisory company Gartner’s review, SAS, Adobe Analytics

and Google Analytics are market leaders in web analytics. These tools are stand-alone

and provide full solution incorporating data collection methods, storage and visualization

features [23]. In addition, there are smaller companies on the market that also offer

behavioural analytics and sometimes include a niche feature. As an example, Mixpanel is

an event-based analytics service where the user must define the events fully by

themselves. It offers extensive behavioural analytics visualization, segmenting, user flow

funnelling and retention analysis but they also include user messaging feature that can be

triggered based on result in the tool. Another tool, KissMetrics, aims to connect every

action on the website or other platforms to single person. This behaviour is called “user

20

profiling” and other tools also do offer similar features. For example, Adobe Analytics

has “Cross-Device Analytics” feature, however they differ from KissMetrics as they do

not place such behaviour as core principle [14] [24] [25].

Furthermore, there are tools that directly address single problems. Such tools address

customer funnelling, heatmapping, screen recording, search engine analysis, A/B testing

and many more.

2.3.1 Technical realisation and standard implementation

Standard implementation of web analytics tools is a JS library that is loaded

asynchronously on page load. A tag is added to the header or footer of the website which

includes a self-invoking function that begins the load process. For demonstration of such

tag, implementation of Google Analytics core library analytics.js is included below

(Figure 1). The ‘UA-XXXX-Y’ on line 12 references unique instance id which is

available in the admin interface of the tool [26] [27] [28] [29].

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

<!-- Google Analytics -->
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r
]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new
Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parent
Node.insertBefore(a,m)
})(window,document,'script','https://www.google-
analytics.com/analytics.js','ga');

ga('create', 'UA-XXXXX-Y', 'auto');
ga('send', 'pageview');
</script>
<!-- End Google Analytics -->

Figure 1. Google Analytics analytics.js implementation tag.

These libraries include certain global functions which are called at pre-defined or user-

defined events and that in turn generate requests to be sent to collection server. An

example of such function can be found in above Google Analytics tag code sample. On

line 13 a global function ga is called with “send” method description and “pageview” hit

type description. This creates a request to collection servers [26] [27] [28] [29].

21

User also has an option to pass additional information to those functions matching a

default or user-defined model. Below is an example of previous pageview hit type with

additional page information.

1.
2.
3.
4.

ga('send', {
 'hitType': 'pageview',
 'page': '/home'
});

Figure 2. Sample of passing additional information to global analytics functions. In this example, the user
has opted to send parameter "page" with value "/home".

Adobe Analytics is using instead of a global function a global variable s that has a method

t for pageviews and tl method for other events. The s object is read directly by those

functions once triggered. “AppMeasurement.js” is Adobe Analytics’ core library which is

downloaded by admin from the user interface.

1.
2.
3.
4.
5.
6.
7.
8.
9.

<!-- Adobe Analytics -->
<!-- AppMeasurement.js configured with report suite id -->
<script src="AppMeasurement.js"></script>
<script>
s.pageName = '/home';
s.eVar1 = "eng";
s.events = "event1";
s.t();
</script>

Figure 3. Example of passing additional page information with pageview event with Adobe Analytics.

Traditional stand-alone full solution analytics tools collect certain data points without

extra configuration. Standard out of the box collected information includes time spent on

the site, URL of the website, browser and operating system information, referring site,

screen size, geographical location of the user and more [26] [28].

To simplify data collection, modern web analytics implementation best practise advises

to use a data layer on the website. Data layer is web analytics field specific semantical

expression for a JS object that is placed usually in the <head> section of the website and

that includes data variables which are collected. Server populates page and customer

related values dynamically on page load. Other events modify data layer according to

changes and customer interactions. For example, when a campaign visual is presented,

the id of a the visual may be stored in the data layer and every consequent request would

22

include this information to the request. Data layer can be also seen as analytical state

management, especially in case of SPAs. It is meant to be as a singular or main source of

information for analytics related methods. Sometimes a method does not expect input

variables but instead is written to look for specific information from the data layer object.

Data layer is often mapped one to one on the tag manager’s preferences for easier system

configuration. A minimalistic data layer example is demonstrated below.

1.
2.
3.
4.
5.
6.
7.
8.
9.
11.
12.
13.
14.
15.

<script>
 var _dataLayer = {
 user: {
 name: "User",
 },
 page: {
 path: "/home",
 section: "main"
 },
 campaign: {
 seen: []
 }
 }
</script>

Figure 4. Example of a minimalistic data layer in common analytics implementation.

2.3.2 Implementation using tag manager systems

Some vendors have additional tag manager systems available to use as middle layer

between analytics tool or other vendor offered services [28] [30] [31]. Most popularly

known is Google Tag Manager and company Tealium offers a Tealium IQ, a popular tag

manager for enterprises. Tag manager is a system with a graphical user interface (GUI)

that allows the user to configure the data model and conditions on which behavioural data

is collected and sent to collection servers. Tag manager systems generate a script which

matches user preferences. This configuration script is loaded asynchronously by a tag

manager initialization tag that is implemented in a similar manner as regular libraries

explained above. For visualization, Google Tag Manager’s tag is hereby demonstrated

on Figure 5. The tag always downloads latest published configuration script.

23

1.
2.
3.
4.
5.
6.
7.
8.
9.
11.

<!-- Google Tag Manager -->
<script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gt
m.start':new Date().getTime(),event:'gtm.js'});var
f=d.getElementsByTagName(s)[0],j=d.createElement(s),dl=l!
='dataLayer'?'&l='+l:'';j.async=true;j.src='https://www.g
oogletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertB
efore(j,f);
 })(window,document,'script','dataLayer','GTM-XXXX');
</script>
<!-- End Google Tag Manager -->

Figure 5. Google Tag Manger's implementation tag.

Among configuration, the tag manager system includes tool’s JS library according to

version necessary. Tag managers differ from regular library usage from the aspect that

they aim to remove dependency of development team and opt out triggering functions

directly in website’s codebase essentially eliminating the need of tagging in the code. The

user sets specific events in the GUI determining when specific data is collected.

In addition to eliminating the dependency on development team, tag managers aim to be

more than a simplification for analytics implementation. There are additional integration

possibilities for other services by the tool’s vendor. For example, Google Tag Manager

allows to integrate similarly to analytics Google Ads conversion tracking. Adobe Launch,

Adobe’s tag manager allows integration of Adobe Target, an A/B testing tool by Adobe.

Integrations can be also made with third-party services whose vendors have made it

available and provided integration modules. Lastly, tag managers allow injection of

custom HTML and JS snippets. From business side, tag managers allow skip potentially

long release cycles and allow quicker change in tags [31] [30].

2.3.3 Server-side solutions

It was stated above that standard implementation of analytics tools is realised on the

client-side. This does not limit the usage of data collection endpoints on the server side

and some vendors provide specific software development kits (SDK) supporting

languages such as PHP, Java and more. In addition, the prominence of package managers

allows third parties to quickly share custom built solutions in case the vendor has not

provided one [32] [27].

Server-side solutions provide an option in case data is only available on the server side.

Another reason for server-side implementation can be data sensitivity. A company may

24

wish to send information to collection servers but not make it visible on the client side.

Furthermore, client-side tracking can be blocked by user thus it may be necessary to send

business critical events server side to ensures the quality of the data.

On the other hand, it has to pointed out that server-side implementation may require more

development resources. Most importantly, server-side implementation does not have

access to behavioural events that are accessible on the client-side. Such events are for

example click, scroll, mouseover, touch and many more. Server-side implementation can

possibly hinder data collection and be a contradicting solution for single page applications

(SPA) which update their content dynamically utilising AJAX and load a single HTML

page. SPA model aims to have less unnecessary interaction with the server and at the

same time support high level interactivity in fluid manner. Server-side implementation

can also be lacking coverage in case of progressive web applications (PWA) that bring

new capabilities such as push notifications, offline mode et cetera [33] [34] [35].

2.3.4 Alternatives

Analytics tool Heap aims to remove the dependency of tagging. The tools core system is

built around “autocapture” functionality. This functionality collects data on every click,

pageview, scroll and other events without manual tagging or tag manager configuration

on the website. Heap allows quick initial installation but does need larger configuration

on the tool’s user interface [36] [37].

There are also simplified solutions on the market. Facebook offers their analytics pixel

for the web and provides some analytical overviews focused on conversion result related

to their platforms. They do include overview of pages visited, device splits et cetera that

designated analytics tools provide [38] [39]. In addition, there are tools that rely on

external databases of website usage and indexing capabilities. Such tools are generally

focused on search engine optimization (SEO) but often provide some input to website

usage. For example, one such tool is SEMRush [40].

On another side, there are data streaming tools which provide capable data collection

functionality however provide no or limited analytics and visualization layer. Data

streaming means sending data continuously in small pieces as the data is being created

instead of large batches. Data streaming tools may often be suitable for large enterprises

with higher level of analytical maturity, who aim to collect big data and have real-time

25

analytics requirements. These tools include additional options in their data processing

pipeline opposed to traditional stand-alone tools like Google Analytics or Adobe

Analytics. These options include but are not limited to full data access, data reprocessing,

data enrichment, raw data and possibility to choose storage location. Examples of such

type of tools are Segment and Snowplow. These tools may be complimented by stream-

processing tools such as Apache Kafka and data visualization tools like Tableau or

QlikSense [41] [42]. Data streaming is very versatile and allows extensive data modelling

however requires high level of competence in the organization. Uthayasankar Sivarajah

et al. discuss in their study “Critical analysis of Big Data challenges and analytical

methods” that processing vast amounts of data remains a challenge. They also point out

that storage of large volumes of data is a challenge itself. Furthermore, complexity of

handling data variety, data inconsistency, velocity of data inflow and variability of

sources cannot be underestimated. Small and medium sized companies do not have the

resource to implement or utilize data at such level nor have the number of platforms at

which making such an investment would be rational. Lastly, data visualization and

modelling require another step of investment while traditional analytics tools offer easy

to use user interface with pre-defined reporting templates and need no special integration

to data warehouse [43].

26

3 Analysis

In this chapter, similarities and differences of analytics tools are viewed in more detail.

Drawbacks of current implementation methods are discussed from business, IT and

analytics perspective. This analysis is used as input for deriving requirements for making

a proposal of a solution. Lastly, technical challenges of proposed solution are discussed,

and an overview of similar existing solutions is given.

Scope of this analysis is limited to analytics tools that provide full user behavioural

tracking coverage and analytical views unless stated otherwise.

3.1 Technical similarities and differences of tools available

Stand-alone analytics tools mainly rely on client-side implementation utilising designated

JS libraries that provide global variables and functions necessary for sending data to

collection servers. The prevalent implementation of analytics tools on the client-side is

due to getting access to user behavioural events only available on the client-side. Tools

opt for usage of plain JS without additional libraries [26] [27] [28] [29].

As best practise, documentation of most analytics tools advises to implement a data layer

object on the page that acts as single source for general platform, user and state related

information [28] [29]. Mixpanel offers a different approach of registering super properties

that are automatically assigned with every consequent “track” method call [27]. As

standard, all parameters related to certain hit must be present in the request. There is no

caching and merging functionalities available on the tools’ side.

Traditionally analytics tools include „pageview“ as a primary event and allow users to

define additional custom events. Some tools, for example Mixpanel and Amplitude,

require user to define all events. All analytics tools allow passing additional data with

calls to collection server. This data is required to match pre-defined or user-defined data

model. Tools may have some reserved property names, however it is usually possible to

overwrite values of these properties if necessary [28] [32]. For demonstration of passing

27

additional contextual information, “Apply” button click event tracking is implemented

with different tools.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

<script>
// Google Analytics call to server
ga('send', {
 hitType: 'event',
 eventCategory: 'CTA Click',
 eventAction: 'click',
 eventLabel: 'Apply'
});

// Adobe Analytics
s.linkTrackVars = "eVar2, events";
s.eVar2 = "Apply"; // eVar2 defined as "label" dimension
in Adobe Analytics UI
s.events = "event2"; // event2 named to "CTA click" metric
in Adobe Analytics UI
s.tl();

// Mixpanel
mixpanel.track(
 'CTA Click',
 {'label': 'Apply'}
);

// Amplitude
amplitude.getInstance().logEvent('cta_click', {
 'label': 'Apply'
});
</script>

Figure 6. Demonstration of click event tracking with different analytics tools.

Except for tool Heap that tries to collect data using tool’s core auto capture feature and

not use tagging [37], collection of data is implemented by using globally available library

methods and implementing tags on the website. These tags trigger data sending at

appropriate times. One website may have hundreds of such tags and it is website owner’s

responsibility to define needed events and see through the implementation of tags. It is

important to point out that there may exist other solutions that do not need tagging of

which the author is unaware of.

It is also website owner’s responsibility to provide additional contextual info for those

tags. For example, in a case where website’s owner wishes to track video play button and

also include contextual information of video title, play time and other information,

28

website’s owner must implement methods to provide that information and send that as

input according to requirements of particular tool.

Tools also differ in their number of variables collected by default. Traditional stand-alone

tools like Google Analytics and Adobe Analytics have an extensive list of data points that

are collected automatically. Such variables usually include URL, referrer, marketing

query parameters, system and browser information [28] [26] [29].

Some tools, for example Amplitude, allow batching multiple events and provide separate

endpoints for those actions. In this case, Amplitude expects a manual post request where

the payload follows certain structure [29].

Leading web analytics tools support usage of tag manager systems which allow tagging

a web page using a graphical user interface. Most popular tag manager is Google Tag

Manager. Adobe provides their own tag manager named Adobe Launch. A user defines

their variables, triggers and tags in the GUI instead of adding code snippets to websites

source. Tag managers support vendor specific implementation but because they allow

usage of custom HTML and JS snippets, they are often times also used for handling other

tools related tags.

3.2 Drawbacks of current analytics tools implementation methods

In this chapter, an analysis is conducted looking at the requirements and issues related to

solutions and practises used today from the views of business stakeholders, IT

development and analytics.

3.2.1 Business perspective

The number of stakeholders who depend on accurate data collection varies heavily

depending on a company size. Main and primary stakeholders are often marketing and

sales teams who wish to have good understanding regarding offering and sales related

performance. Stakeholders may also include teams responsible of user experience (UX),

design and development. User experience and design responsible teams require

knowledge on which components are effective, well noticed and clicked on the website,

or which device models are most popular. Device model requirements interest also

development teams when making decisions on development frameworks where the

29

understanding of technical stack of website’s userbase is important because decisions

based on it may set course of development for years.

High quality data collection is the basis for making data driven decisions. When waterfall

methodologies in software development were prevalent, business side needed to provide

requirements very long in advance. Analytical questions in their essence cannot be

sometimes foreseen and possibly change quickly in time. In 2001, agile development

framework manifesto was written [44] and according to 13th annual State of Agile Report

by CollabNet, in 2019, 97% of organizations are practising agile development

frameworks [45]. Agile development supports proposing hypothesis, development

according to the hypothesis, measuring and learning from mistakes in a short time span.

This allows to adjust quicker to change of requirements and increase efficiency. From

one side agile development frameworks support learning and analysing results. On the

other hand, agile development focuses on development of features that bring the customer

immediate benefits. This means analytics can often be left competing for development

resource. In addition, while time frame has been shortened, release cycles still exist.

Meaning that no matter how short the release cycle, even when resource is available,

business may need to wait till new tags go into production. This is a problem because

analytics often relies on understanding what is the trend. To be able to provide a trendline,

data must be collected in a longer time period and answers are not available immediately.

It is popular for business side to utilise tag managers to limit the dependency on

development resource. While tag managers are very capable and allow quick changes and

try to eliminate the need for programming skills, they require basic HTML and JS

knowledge as the tag manager’s GUI is just an abstraction for programming. In the

process of configurating the tags, the usage of URL parts as variables and CSS selectors

is standard practise. This however is a conflicting requirement because business side

should not be responsible for any development aspects, especially for code that is

generated by external tool.

Another issue is that business side is not close to regular development cycle. It may cause

situations where development team makes changes that breaks currently active tag.

Business side is forced to keep an overview of all of their set tags. This however can be

a complicated process as there are no guarantees the tags are set most optimal way

considering the business side HTML, JS and general web development knowledge may

30

be limited. From here another logical error rises – does business side want to be

responsible for possible errors created by a broken tag and do they have the competence

to fix the problem.

In addition to HTML and JS, analytics tools setup requires understanding of HTTP

requests and when something is sent because otherwise, for example when platform is a

SPA, can result in information not sent at correct times or being duplicated falsely.

Furthermore, companies may have multiple platforms or multiple tools. Maintenance of

these tools can quickly grow and result in demands for the business side which they have

no resources allocated. Having business side manage analytics implementation can also

scatter the responsibility as it is probable that sales and UX have different needs. That can

lead also to overlap of implemented tags unless there is central governance set up.

Some of the problems stated above could be mitigated by review processes where no tag

can go live without IT review. That would however conflict with the core premise of tag

managers that is making quick changes without the need of IT resource. It cannot be

guaranteed that IT can be immediately ready to take changes into review, especially

considering agile methodologies include teams often work in sprints where the tasks are

pre-selected.

Considering all this, it is in business’ interest to not take responsibility for any services

that generate code on company’s websites and instead rely on IT teams. This however

can cause an inner conflict of priorities when giving input to IT, assuming that products,

marketing and other stakeholders do not want IT to spend too much time on implementing

analytics as it limits IT time spent on new features that the customers are waiting. In order

to mitigate analytics competing with developing features for the customer, a quickly

implemented and managed solution is needed.

3.2.2 IT perspective

One of key aspects that IT needs to ensure is reliable web platform that functions at full

capacity for all users at all times. Thus, IT is interested in having full control over

implementations and system monitoring. As discussed before, to remove the need for

manual tagging, tag managers are often used. Considering reliability and control, tag

managers have multiple negative sides.

31

First, tag managers generate code outside of platform source and inject it from a third-

party server. While tag mangers offer separate staging and development tags, there is

always a possibility that production environment has some differences that creates an

error at runtime. Debugging of such error may be more difficult as the tag manager is a

system outside of normal development framework.

Another potential issue that can rise with using tag manager systems is uncontrolled use

of global variables and functions. Although in regular development process, such

conflicts should present themselves, the IT team can never verify to full extent. For

demonstration, below is shown a simple code example that results in an error. The user

has overwritten Google Analytics global function ga with a custom string but the function

is still called out on line 3 as Google Analytics function.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

<!-- Injected tag -->
<script>
var ga = "another value for ga";
// 'ga' variable used as needed
</script>
<!—- ... page code -->
<script>
// 'ga' called resulting an error
ga('send', 'pageview');
</script>

Figure 7. Demonstration of global Google Analytics method overwritten resulting an error in later method
call.

Simo Ahava, a Google Developer Expert for Google Analytics and Google Tag Manager,

points to best practise to encapsulate all custom scripts injected with tag managers in an

immediately self-invoking function because JavaScript scopes variables to their running

context [46]. Sample below would ensure no errors are present.

1.
2.
3.
5.
6.
7.
8.
9.
10.
11.

<script>
(function() {
 var ga = "another value for ga";
 // 'ga' variable used as needed
})();
</script>
<script>
// ’ga’ called resulting in a successful request
ga('send', 'pageview');
</script>

32

Figure 8. Demonstration of script snippet encapsulated by an immediately self-invoking function allowing
resulting in successful call later to global Google Analytics function with a same name.

It can also happen that core library is updated and contains a non-encapsulated global

variable. In 2017, a released update for Google Tag Manager set a global variable f. This

resulted in broken websites for all users who had defined f globally as something else.

[47] Encapsulation mitigates some of these problems from tag manager’s side, however

developer can still overwrite analytics related global variable by accident.

Another reason why tag manager systems may not be suitable options is security. Because

tag managers allow injecting custom code, they are inherently a security risk. Many areas,

for example financial service providers, may not want to accept this risk.

Furthermore, companies can opt for multiple analytics tools. Often tag manager of one

tool is used to also manage tags of other tools. This results in interacting through a middle

layer which the secondary tool is not prepared for. Mixpanel brings this issue out in their

frequently asked questions section, stating that while it is possible to implement Mixpanel

through Google Tag Manager, it requires interactions through Google Tag Manager’s

data layer that can lead to unexpected behaviour. [48]

Lastly, tag managers exist outside of release cycle unless a certain management process

has been implemented in the company. As discussed during the business side analysis,

this results in hindering the core power of tag manager system which is being out of

release cycle and allowing quick changes. All in all, tag manager systems may not be

viable options for many companies.

Alternative is opting for manual tagging and having a separate library copy available at

company source. Companies may use multiple different tools and have duplicating tags

for different tools on same components quickly creating unnecessary complexity and tags

scattered around the code. To do manual tagging efficiently, IT must provide a custom

framework or provide universal components, a user interface kit, that contains

implementation of analytics triggers built in. The custom solution must easily support

additional tools in the future. Developing such support for user interface kit or a custom

analytics framework on a website can result in a large project. Creating such features for

UI kit does not necessarily solve the problem for all company websites because company

33

can be using different components and frameworks on platforms and the particular UI kit

is not necessarily universal.

3.2.3 Web analytics perspective

Web analytics is a support function to business stakeholders and provide analytical views

answering specific questions. Those questions may differ depending on stakeholder’s

respective subject. Analytical views in core are however based on the same underlying

customer behavioural data. To allow meaningful analysis, event data must also provide

contextual information about the user, device, content presented, and elements involved

in the interaction. An example could be measuring campaign effects on a product page.

Sales and marketing question could be ”how many customers converted out of certain

number of leads clicking on an apply button”. User experience team could ask on the

same page if customers visiting from a mobile device use navigation menu compared to

using the same apply button. To answer these questions certain necessary data points must

be collected. Here are these data points listed on a high level:

• Time of the visit

• Page information

• Visitor information

• Device information

• Behavioural events

o Contextual information

§ Element type (button)

§ Element group (navigation, apply)

§ Element differentiation

• Marketing related events

o Contextual information

§ Lead generating offer

§ Offer type (banner, email)

34

These derived requirements are also common in practise. For demonstration, outtakes of

parameters collected on page load and click event from the website of Swedbank Estonia

(Figure 9, Figure 10), largest bank in Estonia, and from the website of Pipedrive.com

(Figure 11, Figure 12), a popular client relationship management tool service, are

presented below.

Figure 9. Screen capture from Google Chrome developer tools while visiting Swedbank Estonia’s website.
Image shows a request made to Adobe Analytics collection server on page load.

35

Figure 10. Screen capture from Google Chrome developer tools while visiting Swedbank Estonia’s website.
Image shows a request made to Adobe Analytics collection server on a banner call to action button click
on front page.

Figure 11. Screen capture from Google Chrome developer tools while visiting Pipedrive’s website
pipedrive.com. Image presents selection of parameters send to Google Analytics collection server on page
load.

36

Figure 12. Screen capture from Google Chrome developer tools while visiting Pipedrive’s website
pipedrive.com. Image presents selection of parameters send to Google Analytics collection server on click
event.

On both of websites, general current location in website’s hierarchy is collected among

other information such as page title, screen resolution, site section et cetera. On Figure 9,

Swedbank also collects loaded campaign advertisement values under variable “l3”.

It can also be seen on Figure 10 and Figure 12 that click event includes additional

contextual information such as that the event target was a button, what was the label of

the particular button and which larger group or component this button was part of. Screen

captures of full-length queries of requests are visible in Appendixes 1, 2, 3, 4 and 5.

Similar examples can be found elsewhere around the web. Appendix 6 has a request

example of a click on a header image button on official website of Samsung and Appendix

7 has a request example of an article view on New York Times website. Outtake of the

request on Samsung’s website is presented here.

37

Figure 13. Screen capture from Google Chrome’s developer tools while visiting Samsung’s website
samsung.com/us. Image presents selection of parameters send to analytics collection server on front page
banner button click.

As discussed before, some tools cover extensive list of page and marketing related data

points in default configuration, however examining the real-world examples of

companies and their implementation, it can be deducted that event tracking is core part of

understanding customer behaviour on a website and to have meaningful understanding,

tracking must also contain additional contextual information about interaction target

elements that allows proper filtering and segmenting during data analysis.

3.3 Requirements

At first look, business side and IT have in many ways conflicting requirements with

business side needing a way of making quick changes and coverage, opposed to IT

needing efficiency, reliability and portability. However, an important aspect is that

business side does not need the possibility to quickly change tags in production as this is

a solution for secondary problem but not addressing the source problem. The source

problem is that business side is missing some tags from the beginning and if all website

components would be tracked on certain level with data quality ensured, this need would

not exist. Considering this aspect, analysis above and real-world examples, certain

38

requirements can be derived. Here is presented a table of high-level requirements from

business perspective, IT perspective and what both sides share in common.

Table 1. Basic requirements to analytics implementation from business perspective, IT perspective and
shared in common.

 Functional Requirements Non-Functional Requirements

Business Solution must send data on all
business defined behavioural
events

Solution must collect all business
defined contextual information

Solution must be able to
differentiate similar components
in different parts of page

Solution must ensure high level data
quality

IT Solution must not cause conflicts
with existing solutions

Solution must eliminate tagging
necessity

Collect event related data
without or minimal configuration

Solution must support
integration with different tools

Solution should be low maintenance

Solution should be easily implemented

Solution must be scalable

Solution should be portable

Solution must be secure

Solution should be customizable

Common Solution must be compliant with
national requirements

Solution should be low cost

Solution should be reliable

To summarise, business side requires wide variety of information gathered from the

website. Information gathered must contain sufficient contextual background to allow

making accurate decision. IT requires a solution that would limit tagging and other

configuration of data collection to minimal while allowing quick implementation,

portability and reliability. Analytics requirements are common with business side with

the exception that the data must be structured to allow easier management.

39

This table of requirements was shared with representatives of prominent business entities

for additional verification. Respective representatives agreed with derived requirements.

The conversations hereby are not disclosed.

3.4 Proposed solution

Taking into account defined requirements and analysis conducted above, it can be

deducted that a solution which could provide structured data about interaction target

elements on all commonly tracked events without additional tagging and minimal

configuration would benefit all sides. Such solution would allow cleaner code, portability,

scalability and would be quick to install while also ensuring necessary coverage.

The realisation is limited to JavaScript and should allow simple integration with analytics

tools without dependencies. In addition, proposed solution should take into consideration

privacy aspects and allow masking capabilities. Masking may also be beneficial for other

than privacy related reasons, for example in aggregating interactions with particular link

or element where related numbers are not particularly important from analytical aspect.

An example of such case could be a link that directs to a file where the link label contains

the date of the last update time of that file, however that date is not important for the user.

3.4.1 Existing similar solutions

Possibly similar solution is offered by company Keen as a tool, including also a

visualization layer. They have published a “keen-tracking” package on Npmjs.com to

support that tool. The library holds, according to documentation, variety of possibilities

and offers auto tracking features based on robust data models. It is a fairly large library

at 1.36 megabytes and is a paid solution that demands identification to be used. [49]

Adobe Analytics provides activity map feature that allows automatic click tracking. It

aims to collect all clicked elements by finding link action and region information from

DOM. The feature allows limited customizability and is Adobe Analytics specific and

with limited functionality [50].

Members of Google Analytics developer platform team have unofficially created an

“autotrack” package which is available at Npmjs.com. The goal of the package is to

provide a set of plugins to Google Analytics that allow automatically track certain

40

behavioural events. For example, plugin “outboundLinkTracker” automatically tracks

links to external domains. Some plugins need additional data attributes to be

implemented. The library is strongly coupled to Google Analytics core analytics.js library,

does not work with other libraries nor Google Tag Manager and has not been maintained

with last update three years ago [51] [52].

There are smaller packages which help or automate some aspects of click tracking with

the help of data attributes or tracking specific elements such as YouTube videos [53] [54].

From integration aspect, David Wells has created a library “analytics”. Analytics is an

abstraction layer for tracking events on website and aims to provide pluggable solution.

The library is very lightweight at 13.2 kilobytes in minimized form and has large list of

plugins already available including Google Analytics, Google Tag Manager and others.

The library also provides number of pre-defined helpful event listeners a user can utilise

to control the flow of data collection [55].

Analytics library does not provide out-of-the box collection of data. The user is

responsible for providing input as is common with regular implementation. Analytics then

sets parameters for other analytics tools using tool provided methods. User needs to

provide mapping in case custom dimensions exist [55].

Analytics library can be potentially used as integration handler. This would allow reusing

existing plugins already available and limit the need of creating new extension modules.

No other solutions that would aim to cover all behavioural tracking in a structured manner

was found.

3.4.2 Technical challenges

Providing automatized data collection in a structured way has some challenges. While

HTML is structured, there is no specific required way or order set for usage of elements

and developers can combine them according to their preference. There are some

exceptions to this, mostly lists and tables related elements, but these are limited [56].

Another challenge is understanding element’s particular usage by its parameters and

surrounding elements. HTML5 does encourage semantic mark-up but it is not a rule and

websites developer can opt for usage of only <div> elements [57]. It is relatively

common to use <header><footer> and <main> elements but it is not guaranteed.

41

In addition to unknown structure of HTML, in some cases, elements are not used as they

are designed but handled by JavaScript on the side in hidden mode. Common example of

this in practise is the creation of custom checkbox elements out of other non <input>

tags. A JavaScript event listener function is assigned to this custom element that delegates

customer’s input to hidden functional <input> element.

These challenges in mind, the library should be open to customization with minimal effort

in order to provider extended capabilities. While this would mean some configuration,

benefits of the functional aspects would still be present, eliminating tagging and making

available universal data structure everywhere on collection. Furthermore, other mitigating

actions could be performed. Templates for popular design and component frameworks

such as Bootstrap4 and Material Design by Google could be included.

In case of auto tracking, DOM tree could be travelled upwards for a better candidate as

interaction element. For example, a hypothetical case can be visualised where a <a>

element is inside a element in navigation menu and the <a> element covers nearly

all of element. The reason for this would be that is used for menu items

placement and have little margin. The user does not make a difference between those

elements and interacts with the and <a> element simultaneously. According to

statista.com, mobile share of worldwide traffic in the fourth quarter of 2019 was 52,6%.

With many companies understanding the importance of mobile, they are also updating UI

to be ready for mobile user. According to UX Movement website, optimal size and

spacing for mobile website buttons is 42 pixels to 72 pixels [58]. The allowed difference

could be set at 10px on all sides. The goal of the process would be to rise the chance of

finding an element with an identifier. Without a universal identifier it may be complicated

to differentiate elements when, for example, there are multiple languages, meaning there

are multiple labels for one button. The conditions could be looped multiple times in case

such coverage exists and none of the identification is available on lower level.

Another question is finding labels. In most cases labels are often easily found as

innerText property of interacted element. For dropdowns the labels are provided

commonly as separate <label> tag and this has to be taken into consideration. Label

value is vital for analytics to provide context thus ensuring the existence of it is essential.

The value itself however is forgiving because the value should be visible for the user on

the website thus it can be always searched in live for better understanding.

42

Lastly, considering performance, the user should have an option to limit the triggering

rate of info. JavaScript events like “resize”, “scroll”, “mousemove” and many more are

fired very often, and it can affect strongly browser performance.

43

4 Development of proposed library

In the first part of this chapter technical planning is done. Second half proceeds with the

realisation of the solution.

4.1 Planning

First part describes in detail general frameworks and components used during

development. Secondly, the main planned logic of library is viewed closer.

4.1.1 Frameworks and components used during development

Considering IT non-functional requirements from section three, to ensure reliability,

library will be written using TypeScript. TypeScript is a superset of JavaScript that is

transpiled (converted) into plain JavaScript. This is necessary because browsers are not

able to interpret TypeScript.

TypeScript enables usage of types, static typing, interfaces, classes and other classical

object-oriented programming paradigm possibilities. Usage of these features ensures

reliability as it limits possible errors in code [59]. Support for TypeScript has grown

quickly over the last years with many modern frameworks such as ReactJs and Angular

supporting or using TypeScript by default [60] [61]. Study by Stackoverflow.com

revealed that TypeScript is third most loved language by developers [62]. This is also

presented in number of related questions on Stackoverflow.com. Share of TypeScript

related questions have grown from 0,10% to ~1,70% in the past years [63].

In addition, TypeScript’s compiler will allow defining specific target JavaScript version

to which source code is transpiled without loss of functionality even when target JS

version does not have all features available that may be used in the source code. To ensure

that developed library supports older browsers, ECMAScript 5 (ES5) is chosen as target

version. According to caniuse.com website, 98,16% of all browsers (tracked with

cookies) have full support for ES5 [64]. In order to mitigate browser differences in ES5

standard implementation, polyfills will be used. Polyfill is a snippet of code that adds a

44

function in case a web browser does not support it by default. They are generally used in

case a feature is a part of established standard and not implemented by particular

browsers’ versions. Polyfills will allow usage of features during development regardless

if a specific browser supports it [65].

Furthermore, for additional reliability and portability support, it has been tried to limit

dependencies. Having lower number of dependencies allows quick installation, puts no

additional import requirements on the site owner and lowers the need of regular

maintenance.

For easier code management during development, the code will be separated into several

files. These files are bundled together on production build of the library. This process will

be handled by Webpack. Webpack is an open-source JavaScript module bundler that is

also capable of transforming and packaging [66].

4.1.2 Logic, structure and principles

The logic and structure aim to follow common best practises and principles of software

development. This means, all components of the library are designed with the aim to have

single responsibility, they are kept simple and are open for extension.

The library will provide a singleton on initialisation after a registration function is called

with additional configuration object. This instance will manage data collection related

configuration, listeners and methods. Configuration object contains defined components

and consumer callbacks. Additionally, it will be possible to set debug mode active, use

masking features and manage rate of event triggering.

Components break into two categories - targets and containers. Target component is a

low-level element that user directly interacts with. Examples of suitable element for a

target component are a link, button and checkbox. User can provide selectors to include

higher level element as a target. Every target has a name and selector and event that a

listener is defined for.

A container is a higher-level element in the DOM tree that is also a parent for target

component. One target component can have multiple parents thus a target component can

have multiple containers. These containers will be collected in the same order as their

hierarchy in the DOM tree. Examples of containers include ‘header’, ‘footer’, ’nav’.

45

During initialisation, event listeners are set according to targets set in the configuration.

Once a listener is triggered, a tracker object is created. Tracker object’s methods will read

DOM and populate context info in pre-defined structure. This object is sent as input to a

function that will trigger all suitable callbacks to forward data to consumers.

4.2 Implementation

In this chapter the realisation of planned solution is described. First, the handling of

library instance registration and options are covered. Secondly, how the element is

analysed and thirdly, how the data is forwarded. Library is named “Kollektor” which is

derived from the English word “collection” where letter “c” is replaced with a “k”.

4.2.1 User options and configuration

On library load using a <script> tag, a global object _kollektor will be made

available. User must first call registration method of this object and pass options as input.

The only requirement is to include at least one consumer. Other options are optional and

library will automatically set default values in case an option is not specifically defined.

The only exception to this behaviour is in situations when used template is defined as

“custom”. In such case, library will expect targets and containers among consumers,

however the library can handle and revert to default when they are not present.

Once options are given, the register function immediately controls that at least one

callback or consumer is defined. If this condition is true, Kollektor class instance creation

method is called. Example of minimalistic setup is demonstrated below on Figure 14.

46

1.
2.
3.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

<script>
var bootstrapKollektor = _kollektor.register({
 template: "bootstrap4",
 consumers: [
 {
 name: "tool-1",
 map: {
 param1: 'collectedProperties.label'
 },
 handler: (event, data) => {
 console.log({
 message: "Callback to specific tool",
 payload: data
 })
 },
 events: ["click"]
 }
]
 });
bootstrapKollektor.track();
</script>

Figure 14. Minimalistic example of library registration. The user has defined the usage of "bootstrap4"
template and provided one consumer.

After instance is successfully configurated the track method can be called. On track

method call, event listeners are created according to loaded targets and tracking begins.

User also has an option to use one of pre-defined templates. On Figure 14 above,

bootstrap4 template is chosen. A demonstration of minimal custom template

configuration that listens only clicks on <a> and <button> element is demonstrated

below on Figure 15.

Among using custom template, in the sample below, user has turned on privacy masking

and set certain excluded selectors. Privacy masking will mask all numbers longer than set

number of digits. Default limit is 5 digits.

47

1.
2.
3.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

<script>
var myKollektor = _kollektor.register({
 template: "custom",
 isDebug: true,
 privacy: {
 masking: true,
 limit: 3,
 excludedSelectors: ["input[type='tel']"]
 },
 targets: [
 {
 name: "link",
 selector: "a",
 events: ["click"],
 labelAttribute: "data-label",
 identifierAttribute: "data-uid",
 condition: function(element) {
 return element.hasAttribute("someAttribute");
 }
 },
 {
 name: "button",
 selector: "button",
 events: ["click"]
 }
],
 containers: [],
 consumers: [
 {
 map: {
 param1: 'collectedPropreties.label'
 },
 handler: (event, data) => {
 console.log({
 message: "1st callback",
 payload: data
 })
 },
 events: ["click"]
 }
]
});
myKollektor.track();
</script>

Figure 15. Kollektor registration with a simple custom template. The user has provided two targets on
"link" and "button". The user has also set debug and privacy settings on.

48

User also has the possibility to limit the processing rate of particular events or „debounce”

them for a certain period of time. This behaviour can be set for all events at once or to

specific events separately. Default template debounces „resize“ and „scroll“ events with

a delay of 500 milliseconds. This means that listener’s callback is not called until 500

milliseconds have passed from the last time the listener was triggered (Figure 16).

1.
2.
3.
5.
6.
7.
8.
9.
10.
11.
12.

debounce: [
 {
 event: "resize",
 delay: 500
 },
 {
 event: "scroll",
 delay: 500
 }
],
scrollDistances: [25, 50]

Figure 16. Example of choosing debounced events and tracked scroll distances on configuration.

Lastly, user can populate scrollDistances property with certain percentage

numbers to send scroll distance information (Figure 16).

Options isDebug, privacy, debounce and scrollDistances can also be

overridden when using a non-custom template.

4.2.2 Interaction data collection

Interaction data collection is separated into two different aspects. Interaction tracking or

cases where customer interacts with specific targets and scroll tracking.

In case of tracking interactions where targets are involved, once an event listener has been

triggered, the listened element is passed to analyseInteractionEvent method

that is responsible for pre-analysis. This method controls that a matching target in the

options exits and that the element does not match excluded selectors. If the conditions are

true, method proceeds with tracker object creation. On tracker object instance creation,

constructor calls two main methods – populateNativeProperties and

populateData. The first sets values for InteractionTracker class property

49

nativeProperties. That property gives access to different values collected from the

element without any modification. These are id, CSS classes, attributes, role, type, label,

href, onclick and style.

The second method, populateData proceeds with internal analysis to populate data

in a structured form. One of key actions is determining best candidate for data collection

as it is not always the target itself. When conditional function is provided for the target,

the method uses that as reference. In case there was no condition, method proceeds to

analyse and choose which element would be suitable to provide as interacted element to

tracker object creation.

Considering technical challenges analysis above regards user true interaction target, in

situations where

1) the listener element covers 95% of the parent element

2) and is not smaller than 10 pixels in height or width from its parent

3) and the current element is missing an id property value

the method takes the parent element as interacted element. This check is repeated till

mentioned conditions are not true.

Element’s native properties, surrounding siblings and parents are processed to provide

information under collectedProperties property. collectedProperties

property values include type, label, identifier, action, containers, isLink, isOutBound and

action.

Type matches the type property from matched target component provided in the options

of Kollektor instance. Label matches calculated target element object innerText

property value or dropdown <label> tag value. Identifier aims to be unique on the

website. In default configuration “id” is chosen as source, but the user can provide their

own when using a custom template. Action is a concatenation of event type and matched

target name. Container is all containers found delimited by colon.

For label and identifier attributes, special attributes as source can be set. When not set,

library makes additional check if the element is input. If is input, tries to find <label>

50

tag among siblings. As last resort, native property innerText is used. For universal

identifier, id property is fallback. When id is not available but is outbound link, href

attribute is collected. If no condition was suitable, value is returned as empty string.

The end result tracker object includes

- Set of default properties available under nativeProperties property

- Set of calculated properties available under collectedProperties property

- Additional original event type

- Used element

- Matched target from the loaded options given on registration

- Matched containers from the loaded options given on registration

An example of such object is presented on Figure 17.

Figure 17. Tracker object properties available for forwarding.

The logic of scroll tracking follows the same basic steps as regular interaction tracking.

When an event listener has been triggered, the listened element is passed to

analyseScrollEvent method that is responsible for pre-analysis. This pre-analysis

consists of calculation of scroll distance and control if any of the set scroll distances has

51

been reached and that this scroll distance is not already sent before. If the conditions are

true, scroll specific tracker object is created and sent to consumers. Number of collected

values compared to interaction tracking is small and contains only “action” and “label”

as properties in collectedProperties object. The scroll tracking tracker is open

for future addition of parameters and methods if suggestions are made.

4.2.3 Forwarding data

Once event data has been analysed, the created tracker object is passed to

sendToAllConsumers method. This method will trigger data forwarding to provided

consumer callbacks. Method controls for every consumer that current event is also set in

the events list of the consumer. If so, consumer provided mapping is read to create a

necessary data object according to consumers requirements. Mapping consists of a map

object, where keys are the names of properties consumer needs and values are tracker

object properties in string representation. For demonstration, an example of simple map

is shown for Google Analytics.

1.
2.
3.
5.

const map = {
 'event_category': 'collectedProperties.action',
 'event_label': 'collectedProperties.label'
}

Figure 18. Demonstration of a consumer map object that defines requirements of needed. In this example,
a simple map for Google Analytics is presented.

The map object is sent as input to mapToCallbackObject function that creates a new

object according to consumer needs (Figure 19). Created object is passed to callback

methods, for example Google Analytics consumer. The mapToCallbackObject

function can handle situations when a property is not presented and returns empty string

in such cases. In case value type is String, value is also passed for privacy masking

control.

52

1.
2.
3.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
21.
22.
23.
24.

/**
 * Creates an object with properties according to map
 * property in callback object.
 *
 * @param tracker tracker object with collected info.
 * @param cbObject custom callback map object.
 */
private mapToCallbackObject(tracker: ITracker, cbObject:
Map<string, string>): object {
 this.messenger.log("mapToCallbackObject()");
 const data: {[key: string]: any} = {};
 Object.entries(cbObject).forEach(([k, v]) => {
 const val = v.split('.')
 .reduce((a: object, b: keyof object)
 => a[b], tracker) || "";
 data[k] = typeof(val) == "string"
 ? this.privacyManager
 .maskNumbersLongerThanLimit(val)
 : val;
 });
 return data;
}

Figure 19. Function that provides an object with necessary values according to consumer provided map.

53

5 Result

As a result of this thesis a JavaScript library was developed that allows site owner collect

web interaction target element data in structured manner in a single action and provide

this data as input for all tools used on the site. The library and its source code are published

under MIT licence on Github version control platform and also on Npmjs.com.

Repository name on Github is kollektor.js [67] and package name on Npmjs.com

kollektor-js [68].

The library provides a default configuration for quick data collection for common target

elements and events. User can provide their own configuration for higher quality level

data collection or edge cases. The configuration consists of targets, containers and

consumers. In addition, the site owner can turn on privacy masking mode and provide

CSS selectors to mark excluded elements. In case interaction target follows default

configuration or no special conditions are provided by user, the library includes simple

analysis to help collect more contextual information than particular element has, provided

it is possible.

Library was implemented on two different websites for proof of concept. First proof of

concept usage was set up on a website where main web analytics was done using Adobe

Analytics and also Google Analytics. Adobe Analytics was set up via usage of Adobe

Launch, Adobe’s tag manager system. Google Analytics was implemented by using tool’s

core library directly. None of the systems were set to track any event data. The

implementation was done using custom template. Below is shown an example of data

collected after implementing the library.

54

Figure 20. Example of collected data. Screen capture from Adobe Analytics.

Secondly, the library was also set up on a website that was using Bootsrap4. The website

had existing Google Tag Manager set up, however did not track any user interactions

other than pageview. The library was implemented with one consumer and using pre-

defined template for Bootstrap4. Example of collected data is presented below.

Figure 21. Example of collected data using pre-defined Bootstrap4 template.

55

6 Future developments

The target differentiation of social media related links could be done automatically. To

do this, URLs of links could be analysed using regular expressions provided by Karl

Lorey on Github.com repository "Regular expressions for social media profiles” [69].

In addition, device differences could be considered more in automatic collection. For

example, touch devices generally have larger elements. Furthermore, separate plugins

could be developed for quick integrations with common tools.

From reliability aspect, automated testing during build process of library should be added

in the future.

Lastly, in larger view, the automatic collection features could be improved not only by

using relatively easy deductions but instead large-scale analysis. To do this, a large set of

websites could be studied to find additional common trends and practises. Using this

analysis, the library could try to do a pre-analysis of particular website in order to match

the site to mapped similar other entities. This would lessen the need for configuration by

user.

56

Summary

This thesis expanded on development of a JavaScript library that collects web interaction

target element data in structured manner. As result of this thesis a working library was

created and published on Github version control platform and Npmjs.com. The library

allows quick implementation of event tracking and forwarding of data for all analytics

tools used on the site.

The thesis consists of six sections – objective, background, analysis, realisation, result

and future developments. Firstly, objectives of thesis are defined shortly. In the

background section of the thesis, current solutions and practises are covered. In addition,

brief history is given and an overview of surrounding environment, including legal

aspects, is discussed.

In the analysis section, similarities and differences of the tools currently on the market

are presented, the drawbacks of those solutions are viewed from business, IT and analytics

perspective. Based on this analysis simple requirements are defined and compared to in

practise samples. A solution is proposed as a result of the analysis.

In the realisation section, planning and development of the data collection library is

covered. Following with results, collected data using the library is presented on two

websites. Lastly, possible next steps are viewed in the future developments section.

All steps covered in this thesis provided a solution for the problem set in the objective

part of the thesis. As a result of this thesis a library was provided that allows collection

of web interaction data in a structured format with minimal configuration. The solution

is quick to implement, allows full control and comes with default set up that provides data

from first second.

57

Kokkuvõte

Käesoleva diplomitöö raames käsitleti JavaScript teegi loomist veebiaplikatsioonidel

külastajate tegevusinfo kogumiseks. Töö tulemusel loodi lahendus, mis võimaldab

minimaalse konfiguratsiooniga koguda veebilehe komponentide andmeid struktuursel

kujul ning neid edastada samaaegselt mitmetele erinevatele veebianalüütika tööriistadele.

Diplomitöö koosneb kuuest peatükist – eesmärk, taust, analüüs, tehniline realisatsioon,

tulemus ning tulevik. Esimeses peatükis kirjeldatakse lühidalt töö eesmärki. Teises

peatükis antakse ülevaade tänastest turul olevatest lahendustest ning praktikatest. Lisaks

on toodud välja ülevaade ümbritsevast keskkonnast, sealhulgas regulatsioonide suund

maailmas ning lühidalt kaetakse ka veebianalüütika ajalugu.

Töö kolmandas peatükis uuriti esmalt turul olevate analüütikatööriistade

paigaldusmetoodikate sarnasusi ja erinevusi. Seejärel analüüsiti levinud lahenduste

puudusi äriliste üksuste, IT üksuste kui ka analüütikaüksuste vaatest. Analüüsi alusel

tuletati erinevate osapoolte nõudmised andmete kogumise lahendusele ja kõrvutati

nõudmisi reaalselt praktikas kogutavate andmetega tuntud veebilehtedel. Analüüsi

tulemusel pakuti välja JavaScript teek, mis tegeleb komponentide andmete kogumisega

kasutajate tegevustel struktuursel kujul. Lisaks anti ülevaade eksisteerivate sarnaste

lahenduste osas ning analüüsiti pakutud lahenduse arenduslike väljakutseid.

Neljandas peatükis viidi läbi pakutud lahenduse tehniline planeering ja realisatsioon

vastavalt teises osas teostatud analüüsile. Töö viiendas, tulemuste peatükis paigaldati teek

kahele veebilehele. Viimaseks anti kuuendas peatükis lühike sissevaade võimalikele

tuleviku arendustele.

Diplomitöö alguses püstitatud eesmärk leidis töö käigus lahenduse. Valminud teek

publitseeriti Npmjs.com paketihaldus keskkonnas ning lähtekood laeti Github

versioonihaldus keskkonda [67] [68]. Loodud teek võimaldab ettevõtetel ja eraisikutel

kiirelt ja minimaalse seadistusega koguda kasutaja interaktsioonide andmeid ja neid

edastada paljudele tööriistade. Teek on täies mahus lehe omaniku kontrolli all, kaotab

58

vajaduse ärilistel üksustel muretseda tehnilise paigalduse pärast ning võimaldab

potentsiaalselt koguda rohkem andmeid vaikimisi seadistuses.

59

References

[1] J. G Zheng and S. Peltsverger, "Web Analytics Overview," in Encyclopedia of

Information Science and Technology, Third Edition, IGI Global, 2015.

[2] ROI Revolution, “ollecting Web Data: A Look at Web Analytics Methodology,”

ROI Revolution, [Online]. Available:

https://www.roirevolution.com/blog/2006/05/collecting-web-data-a-look-at-web-

analytics-methodology/. [Accessed 18 May 2020].

[3] The New York Times, “Google Acquires Urchin Software,” 29 March 2005.

[Online]. Available: https://www.nytimes.com/2005/03/29/technology/google-

acquires-urchin-software.html. [Accessed April 2020].

[4] W3Techs, “Usage statistics of traffic analysis tools for websites,” W3Techs,

[Online]. Available: https://w3techs.com/technologies/overview/traffic_analysis.

[Accessed 18 April 2020].

[5] Google, “Google Analytics Developer Guides - Measurement Protocol

Overview,” Google, [Online]. Available:

https://developers.google.com/analytics/devguides/collection/protocol/v1.

[Accessed 15 April 2020].

[6] Adobe, “Analytics Implementation Guide - Implementing with hardcoded image

requests,” Adobe, [Online]. Available:

https://docs.adobe.com/content/help/en/analytics/implementation/other/hardcode

d.html. [Accessed 15 April 2020].

[7] S. L. France and S. Ghose, “Marketing analytics: Methods, practice,

implementation, and links to other fields,” Expert Systems with Applications, vol.

119, pp. 456-475, 1 April 2019.

[8] K. Ravi, Y. Khandelwal, R. Vadlamani and B. S. Krishna, “Analytics in/for

cloud-an interdependence: A review,” Journal of Network and Computer

Applications, vol. 102, pp. 17-37, 15 January 2018.

60

[9] M. Sean, Z. Li, S. Bandyopadhyay, J. Zhang and A. Ghalsasi, “Cloud computing

— The business perspective,” Decision Support Systems, vol. 51, no. 1, pp. 176-

189, April 2011.

[10] N. Subramanian and A. Jeyaraj, “Recent security challenges in cloud

computing,” Computers & Electrical Engineering, vol. 71, pp. 28-42, October

2018.

[11] Matomo, “Matomo.org home page,” Matomo, [Online]. Available:

https://matomo.org. [Accessed 19 April 2020].

[12] Google, “Google Analytics: Marketing Platform - Compare,” Google, [Online].

Available: https://marketingplatform.google.com/about/analytics/compare/.

[Accessed 18 April 2020].

[13] Amplitude, “Product analytics for everyone,” Amplitude, [Online]. Available:

https://amplitude.com/pricing?ref=nav. [Accessed 18 April 2020].

[14] Mixpanel, “Pricing,” Mixpanel, [Online]. Available:

https://mixpanel.com/pricing/. [Accessed 18 April 2020].

[15] European Comission, “EU data protection rules,” 23 May 2018. [Online].

Available: https://ec.europa.eu/info/sites/info/files/data-protection-factsheet-

changes_en.pdf. [Accessed 20 April 2020].

[16] State of California Department of Justice, “California Consumer Privacy Act

(CCPA) Fact Sheet,” [Online]. Available:

https://oag.ca.gov/system/files/attachments/press_releases/CCPA%20Fact%20Sh

eet%20%2800000002%29.pdf. [Accessed 20 April 2020].

[17] J. J. Lazzarotti, J. C. Gavejian, S. W. Silver, M. T. Costigan and D. A. Plummer,

“New York SHIELD Act FAQs,” Jackson Lewis P.C, 11 March 2020. [Online].

Available: https://www.workplaceprivacyreport.com/2020/03/articles/new-york-

shield-act/new-york-shield-act-faqs/. [Accessed 20 April 2020].

[18] European Commission, “Infographic - GDRP In Numbers,” 22 May 2019.

[Online]. Available: https://ec.europa.eu/info/sites/info/files/infographic-

gdpr_in_numbers.pdf. [Accessed 20 April 2020].

[19] Eurpean Commission, “ePrivacy factsheet,” Eurpean Commission, 24 August

2018. [Online]. Available:

61

https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=41238. [Accessed 20

April 2020].

[20] European Commission, “Proposal for an ePrivacy Regulation,” European

Commission, 20 March 2020. [Online]. Available: https://ec.europa.eu/digital-

single-market/en/proposal-eprivacy-regulation. [Accessed 20 April 2020].

[21] N. Lomas, “https://techcrunch.com/2020/01/06/facebook-data-misuse-and-voter-

manipulation-back-in-the-frame-with-latest-cambridge-analytica-leaks/,”

TechCrunch, 6 January 2020. [Online]. Available:

https://techcrunch.com/2020/01/06/facebook-data-misuse-and-voter-

manipulation-back-in-the-frame-with-latest-cambridge-analytica-leaks/.

[Accessed 20 April 2020].

[22] S. Brinker, “The average enterprise uses 91 marketing cloud services,” 12 June

2017. [Online]. Available: https://chiefmartec.com/2017/06/average-enterprise-

uses-91-marketing-cloud-services/. [Accessed 21 April 2020].

[23] M. Kihn, A. Sarner, A. Frank, C. Eubanks and L. F. Kune, “Magic Quadrant for

Digital Marketing Analytics,” Gartner, 2016.

[24] KissMetrics, “KissMetrics versus Google Analytics,” KissMetrics, [Online].

Available: https://www.kissmetricshq.com/kissmetrics-vs-google-analytics/.

[Accessed 19 April 2020].

[25] Adobe, “Cross-Device Analytics,” Adobe, [Online]. Available:

https://docs.adobe.com/content/help/en/analytics/components/cda/cda-

home.html. [Accessed 6 May 2020].

[26] Google, “Google Analytics Developer Guides - Add analytics.js to Your Site,”

Google, [Online]. Available:

https://developers.google.com/analytics/devguides/collection/analyticsjs.

[Accessed 19 April 2020].

[27] Mixpanel, “Developer documentation - Implement Mixpanel,” Mixpanel,

[Online]. Available: https://developer.mixpanel.com/docs. [Accessed 19 April

2020].

[28] Adobe, “Analytics Implementation Guide - AppMeasurement for JavaScript,”

Adobbe, [Online]. Available:

62

https://docs.adobe.com/content/help/en/analytics/implementation/js/overview.ht

ml. [Accessed 19 April 2020].

[29] Amplitude, “Amplitude Developer,” Amplitude, [Online]. Available:

https://developers.amplitude.com/. [Accessed 19 April 2020].

[30] Adobe, “Adobe Experience Platform Launch - Adobe Extensions,” Adobe,

[Online]. Available: https://docs.adobelaunch.com/extension-reference/web.

[Accessed 20 April 2020].

[31] Google, “Tag Manager Features,” Google, [Online]. Available:

https://marketingplatform.google.com/about/tag-manager/features/#integrations.

[Accessed 20 April 2020].

[32] Google, “Google Analytics Developer Guides - Working with the Measurement

Protocol,” Google, [Online]. Available:

https://developers.google.com/analytics/devguides/collection/protocol/v1/devgui

de. [Accessed 20 April 2020].

[33] M. Robins, “Server Side Tracking – What’s Old is New Agai,” Poplin Data, 4

November 2019. [Online]. Available: https://poplindata.com/data-

collection/server-side-tracking/. [Accessed 20 April 2020].

[34] A. Mesbah and A. van Deursen, “A component- and push-based architectural

style for ajax applications,” Journal of Systems and Software, vol. 81, no. 12, pp.

2194-2209, December 2008.

[35] C. Love, “Powerful Progressive Web App Features For Crazy App-Like

Results,” Love2Dev, 21 February 2019. [Online]. Available:

https://love2dev.com/blog/progressive-web-app-features/. [Accessed 21 April

2020].

[36] Heap, “Heap's home page,” Heap, [Online]. Available: https://heap.io/.

[Accessed 21 April 2020].

[37] Heap, “Autocapture - Whitepaper,” Heap, [Online]. Available:

https://heap.io/wp-

content/uploads/2020/04/Heap_Autocapture_Whitepaper_V6.pdf. [Accessed 21

April 2020].

63

[38] Facebook, “Facebook for developers - Facebook analytics,” Facebook, [Online].

Available: https://developers.facebook.com/docs/analytics. [Accessed 20 April

2020].

[39] Facebook, “Facebook for developers - Implementing Facebook Analytics,”

[Online]. Available: https://developers.facebook.com/docs/facebook-

pixel/implementation. [Accessed 20 April 2020].

[40] SEMRush, “Features,” SEMRush, [Online]. Available:

https://www.semrush.com/features/. [Accessed 20 April 2020].

[41] Snowplow, “Technology,” Snowplow, [Online]. Available:

https://snowplowanalytics.com/products/technology/. [Accessed 20 April 2020].

[42] Snowplow, “How we compare,” Snowplow, [Online]. Available:

https://snowplowanalytics.com/products/technology/. [Accessed 20 April 2020].

[43] U. Sivarajah, M. M. Kamal, Z. Irani and V. Weerakkody, “Critical analysis of

Big Data challenges and analytical methods,” Journal of Business Research, vol.

70, pp. 263-286, January 2017.

[44] T. Dingsøyr, S. Nerur, V. Balijepally and N. B. Moe, “A decade of agile

methodologies: Towards explaining agile software development,” Journal of

Systems and Software, vol. 85, no. 6, pp. 1213-1221, June 2012.

[45] CollabNet, “13th Annual State of Agile Report,” 2019. [Online]. Available:

https://stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-

report/473508. [Accessed 23 April 2020].

[46] S. Ahava, “#GTMTips: Restrict Custom HTML Tag Scope,” 18 October 2016.

[Online]. Available: https://www.simoahava.com/gtm-tips/restrict-custom-html-

tag-scope/. [Accessed 21 April 2020].

[47] S. Führinger and M. R Silva, “Tag Manager Help,” 20 July 2017. [Online].

Available:

https://support.google.com/tagmanager/forum/AAAAnP_FwdIUraqi_IK65A/?hl

=en. [Accessed 21 April 2020].

[48] Mixpanel, “Implementing Mixpanel with Google Tag Manager,” Mixpanel,

[Online]. Available: https://help.mixpanel.com/hc/en-us/articles/360001355166-

Implementing-Mixpanel-with-Google-Tag-Manager. [Accessed 21 April 2020].

64

[49] A. Pryka and D. Lacheta, “keen-tracking package,” Keen, [Online]. Available:

https://www.npmjs.com/package/keen-tracking. [Accessed 27 April 2020].

[50] Adobe, “Analytics Tools Guide - Link tracking methodology,” Adobe, [Online].

Available: https://docs.adobe.com/content/help/en/analytics/analyze/activity-

map/link-tracking/activitymap-link-tracking-methodology.html. [Accessed 23

April 2020].

[51] P. Walton, “autotrack,” [Online]. Available:

https://www.npmjs.com/package/autotrack. [Accessed 23 April 2020].

[52] P. Walton, “Issues - Generic Actions - #117,” [Online]. Available:

https://github.com/googleanalytics/autotrack/issues/117. [Accessed 23 April

2020].

[53] M. Moroshko, “react-event-tracker package,” [Online]. Available:

https://www.npmjs.com/package/react-event-tracker. [Accessed 27 April 2020].

[54] Z. Martineau, “trakjs package,” [Online]. Available:

https://www.npmjs.com/package/trak.js. [Accessed 27 April 2020].

[55] D. Wells, “Analytics Documentation,” [Online]. Available:

https://getanalytics.io/. [Accessed 22 April 2020].

[56] w3schools.com, “HTML Element Reference,” w3schools.com, [Online].

Available: https://www.w3schools.com/TAGs/. [Accessed 23 April 2020].

[57] Html.com, “Html5,” Html.com, [Online]. Available: https://html.com/html5/.

[Accessed 23 April 2020].

[58] Anthony, “Optimal Size and Spacing for Mobile Buttons,” Uxmovement.com,

[Online]. Available: https://uxmovement.com/mobile/optimal-size-and-spacing-

for-mobile-buttons/. [Accessed 27 April 2020].

[59] Microsoft, “TypeScript's Home page,” Microsoft, [Online]. Available:

https://www.typescriptlang.org/index.html. [Accessed 22 April 2020].

[60] Google, “TypeScript configuration,” Angular, [Online]. Available:

https://angular.io/guide/typescript-configuration. [Accessed 23 April 2020].

[61] Microsoft, “TypeScript's Documentation,” TypeScript, [Online]. Available:

https://www.typescriptlang.org/docs/home.html. [Accessed 23 April 2020].

65

[62] Stack Overflow, “Developer Survey Results 2019,” Stack Overflow, [Online].

Available: https://insights.stackoverflow.com/survey/2019#most-loved-dreaded-

and-wanted. [Accessed 23 April 2020].

[63] Stack Overflow, “Stack Overflow Trends,” Stack Overflow, [Online]. Available:

https://insights.stackoverflow.com/trends?tags=typescript. [Accessed 23 April

2020].

[64] A. Deveria, “ECMAScript 5,” Can I Use, [Online]. Available:

https://caniuse.com/#feat=es5. [Accessed 22 April 2020].

[65] D. A. Rauschmayer, Speaking JavaScript: An In-Depth Guide for Programmers,

O'Reilly, 2014.

[66] Webpack, “Documentation - Concepts,” Webpack, [Online]. Available:

https://webpack.js.org. [Accessed 23 April 2020].

[67] M. Raba, “Repository of kollektor.js,” [Online]. Available:

https://github.com/mikkraba/kollektor.js.

[68] M. Raba, “Package kollektor-js,” [Online]. Available:

https://www.npmjs.com/package/kollektor-js.

[69] K. Lorey, “Regular expressions for social media profiles,” [Online]. Available:

https://github.com/lorey/social-media-profiles-regexs. [Accessed 13 May 2020].

[70] Apple Inc, “UI Design Dos and Don’ts,” Apple Inc, [Online]. Available:

https://developer.apple.com/design/tips/. [Accessed 27 April 2020].

66

Appendix 1 – Request made to analytics collection server on

Swedbank’s website on pageview

Figure 22. Screen capture from Google Chrome developer tools. On image is presented a request made to
analytics collection server on Swedbank.ee website on page load.

67

Appendix 2 – Requests made to analytics collection server on

Swedbank’s website on click

Figure 23. Screen capture from Google Chrome developer tools. On image is presented a request made to
analytics collection server on Swedbank.ee website when a banner button is clicked.

68

Appendix 3 – Requests made to analytics collection server on

Pipedrive’s website pageview

Figure 24. Screen capture from Google Chrome developer tools. On image is presented a request made to
analytics collection server on Pipedrive.com website when page is loaded.

69

Appendix 4 – Request made to analytics collection server on

Pipedrive’s website on click

Figure 25. Screen capture from Google Chrome developer tools. On image is presented a request made to
analytics collection server on Pipedrive.com website when a banner button is clicked.

70

Appendix 5 – Request made to analytics collection server on

Samsung’s website on click

Figure 26. Screen capture from Google Chrome developer tools. On image is presented a request made to
analytics collection server on Samsung.com website when a banner button is clicked.

71

Appendix 6 – Request made to analytics collection server on

article view on The New York Times website

Figure 27. Screen capture from Google Chrome developer tools. On image is presented a request made to
analytics collection server on The New York Times website when an article is viewed.

