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Introduction

This work mainly focuses on inverse source problems for subdiffusion equations.
Let us firstly describe what the subdiffusion process is and what is the difference be-
tween the usual diffusion and subdiffusion processes:

e Usual diffusion is described by Random Walk model (RW): the elementary steps
taken on a microlevel are independent from each other and happen with the SAME
time pace.

e Subdiffusion is described by Continuous Time Random Walk model (CTRW) and
stands for the models with the VARIABLE waiting time.

A common way to describe CTRW is the time-fractional diffusion equation. The deriva-
tion of this equation and the generalized subdiffusion equation will be described in the
next Chapter. In order to write it down we need the definitions of Riemann-Liouville and
Caputo fractional derivatives of the order § € (0, 1) [70]:

t (¢ — 1) B t(+— 1) B
(Rng)(t):% / (lf(li)ﬁ)v(r)dr, (€DPv)(1) = / (lf(li)ﬁ)v’(r)dr.

The Riemann-Liouville fractional integral of the order 8 € (0,1) is defined as

SRRy
(IPv)(1) = / (’F(Tﬁ))v(r)dr.

Then the time-fractional diffusion equation in self-similar medium is:
w=2D PLu+0 (1.1)

with 0 < B < 1, L = »A, where A is the Laplace operator, 5 is a positive constant and Q is
a source term. The time-factional diffusion equation (1.1) is used to describe subdiffusion
(slow diffusion) processes [5, 13, 18, 67]. These are diffusion in fractal and porous media
such as propagation of underground pollution, dynamics of protein in cells, heat flow in
media with memory. Fractional diffusion equation (1.1) is also used in describing Hamilto-
nian chaos, transport in dielectrics and semiconductors, application of optical tweezers,
etc. [12, 13, 18, 73, 87].
In order to incorporate linear reaction in the model we replace L = <A by

L= xA+r(x)l,

where [ is the unity operator. The addend r(x)! is also referred to as a potential term [98].

By applying the operator Iéfﬁ to (1.1) we obtain the equivalent equation in the Caputo
form

Dhu=rtu+r (F=1,"0). (1.2)

Unlike (1.1), this equation is not overdifferentiated from the mathematical point of view,
thus mathematicians generally prefer to work with this model.

In case the medium is not self-similar, the power function has to be replaced by some
other kernel under the derivative. We utilize the generalized fractional derivatives in
Riemann-Liouville *D{*} and Caputo sense cplkt,

rt

(D) (1) = % /[k(t—r)v(r)dr, o) = [ ka- o (@yar,

Ja
t > a, kis a locally integrable function.



The generalized subdiffusion equation is [13, 18, 82]
w =RDM Lu+ 0 (1.3)

where M is an arbitrary locally integrable kernel. In case there exists a kernel k such that
kM = 1 then (1.3) can be transformed to the Caputo form

pMu=Lu+F  (F=kxQ) (1.4)

where x is the time convolution:
t
Visva(t) = / it = T)va(7)dx.
0

The generalized subdiffusion (the medium is not self-similar) equation (1.3) describes
the cases, when the medium is not self-similar. These include multiterm and distributed
diffusion models [12, 48, 66, 82, 87], tempered subdiffusion [10, 19, 82, 84, 95], some
models with bounded kernels [27].

Let us explain what an inverse problem is. In the classical theory of PDEs developed by
Laplace and Hadamard the goal is to solve the direct problem. This means to reconstruct
the process, given the nature law (the PDE itself), the measurements (the boundary data)
and its characteristics (the coefficients of the equation) .

In practice, however, the coefficients and the source term of the equation are often
unknown. Thus, in order to apply the model created before, additional measurements
that allow to reconstruct the unknown coefficient are required. This type of problem is
called an inverse problem [28, 30, 32, 58, 76].

For example, the inverse problem in case of the diffusion equation can be to deter-
mine space-dependent components of source terms and space-dependent coefficients
by means of final overdetermination data

u(T,x)=y(x), xeQ, (1.5)

where T > 0 and Q is the space domain where a process is going on. Inverse source
problems for diffusion equations have important applications in location of groundwater
and atmospheric pollution sources [43, 89] . The problem to determine u where final
overdetermination condition of type (1.5) replaces the initial condition is called a backward
problem. This type of problem has many applications, including the reconstruction of
geothermal history of Earth [30].

Theoretical solvability of problems in PDEs addresses the issue of the well-posedness.
In sense of Hadamard the problem is well-posed if [30]:

1. the solution is unique;
2. the solution exists;

3. the solution is stable, i.e., it continuously depends on data.

Let the operator A map a metric space X to a metric space Y. Then the definition of
well-posedness is equivalent to:
The equation Ax =y, x € X, y € Y represents a well-posed problem in sense of Hadamard
if the operator A has a continuous inverse from Y to X.

If one of the conditions 1-3 is violated the problem is called ill-posed. There are many
examples of inverse problems that are ill-posed [41]. That is because the forward operator
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A is usually smoothing and, therefore, an inverse of A from Y to X is not continuous.
However, a proper redefinition of spaces may lead to a well-posed problem. Thus, one of
the goals of theoretical analysis of the ill-posed problem is to choose a setting of function
spaces where A~! is continuous.

lll-posed problems are classified as mildly, moderately and severely ill-posed. The def-
inition of degree of ill-posedness depends on the formulation of the problem. For exam-
ple, in case of linear operators the degree of ill-posedness of the operator is defined via
its singular values. For the moderately ill-posed problems the degree of ill-posedness can
be defined as the highest order of the derivative that must be included in the stability es-
timate of the solution. If derivatives of all orders are involved in the reconstruction then
the problem is said to be severely ill-posed.

It is worth to point out that in practice one may not be able to compute the derivatives
necessary for the stability estimate, which makes the problem ill-posed problem in its
essence, not a well-posed. Knowing the degree of ill-posedness is important, since it helps
to choose an appropriate regularization technique to reconstruct the solution in practice.

Let us give general remarks on problems with final overdetermination.

Theoretical issues of a problem to reconstruct a space-dependent factor f(x) of the
source term

F([,X) = f(x)g(tvx) (1.6)

and a problem to identify a space-dependent reaction (potential) coefficient r(x) in para-
bolic equation by means of the final data (1.5) were studied in [29]. There the problem
for f was reduced to a fixed-point equation with a compact operator and uniqueness was
proved by means of maximum principles. Existence and continuous dependence of f on
data y follow from the uniqueness.

This approach was further developed in [6, 34, 59, 60]. More precisely, in [34, 59],
inverse problems for parabolic equations including a lower-order integral term were stud-
ied.

If the known factor of the source term g depends only on ¢ then the source function
F has separated variables and the problem to recover f from final measurements y can
be handled by means of the Fourier method: the original inverse problem is reduced to a
family of inverse problems for Fourier coefficients of f that are explicitly solved [39].

The uniqueness of solution of a backward in time problem for parabolic equation equa-
tion was shown in [91].

Inverse problems for the fractional equation have often been studied by the same
methods as in non-fractional case. For example, positivity principle, the Fourier method,
the method of Laplace transform have been successfully extended to the fractional case.

Existence, uniqueness and continuous dependence on data of solution of a problem
to determine the factor f(x) of a source function included in the time fractional diffusion
equation (1.2) from final data (1.5) in the particular case g = g() were established by
means of the Fourier method [69, 78, 93, 94].

The method enables to handle problems with non-classical boundary conditions and
different non-local space operators, too (see [1, 46, 47]). The paper [86] treated a more
general case when a space operator L contains coefficients depending both on x and ¢ but
g is still independent of x. Uniqueness of reconstruction of f from final data was proved
by means of monotonicity arguments.

If g = g(¢) and the unknown f(x) is a priori smoother than an intial state then the
final data y contain enough information to recover simultaneously f and the order of
derivative 3 in (1.2) [37].
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An inverse problem to reconstruct factor f(x) of a source function of (1.2) from final
data in the general case g = g(#, x) was considered in [79, 90]. The existence, uniqueness
and continuous dependence of a solution on data were proved except for a finite set of
values of s. This study uses analyticity arguments and is a generalization of an analogous
result obtained for usual parabolic problem [15].

An equation (1.2) with the semilinear term F = F(¢,x,u) = f(x)g(¢,x,u) was consid-
ered in [36]. Uniqueness of the reconstruction of f from final data was proved by means
of a positivity principle provided in the same paper. That falls into category of maximum
principle results [34, 54, 61].

Estimates for r(x) in a subdomain of Q in terms of the final data y(x), x € Q, were
deduced by means of Carleman estimates in [96]. However, this method assumes essen-
tial restrictions on the equation (only the one-dimensional equation (1.2) in case of half
derivative was considered). Similar results for a problem to determine a diffusion coeffi-
cient depending on spatial variables were obtained in [75].

There is a number of papers that are concerned with inverse problems for (1.2) that
use overdetermination conditions that are different from (1.5).

The reconstruction of the source factor f(x) in case g = g(¢) from the weighted integral
overdetermination of the form [ 1o (¢)u(t,x)dt = w(x) was considered in [55]. Existence
and uniqueness of a distributional solution were proved.

Several works have been concerned with inverse problems with local, boundary or
integrated overdetermination along time. For example, in [31, 56, 57, 78, 85] existence
and uniqueness of reconstruction of time-dependent factors of sources and boundary
conditions were proved.

The paper [44] was concerned with the reconstruction of the source function F that
depends on time and part of spatial variables from boundary measurements over the
time. Estimates for the solution in terms of the data were deduced.

The inverse problem to determine the factor f(x) in the usual parabolic equation or
in the fractional diffusion equation (1.2) from final data is moderately ill-posed. But unlike
the backward in time problem for the parabolic equation, that is a classical example of a
severely ill-posed problem [30], such a problem for the fractional equation (1.2) is moder-
ately ill-posed [39, 78]. This difference in the regularity of these problems is caused by a
difference in behavior of Fourier coefficients of the state function u for large eigenvalues.
They have an exponential decay in the usual parabolic case but a power-type decay in the
fractional case.

The asymptotics of Fourier coefficients of # was used to prove moderate ill-posedness
of a problem to identify the coefficient r(x) in (1.2) from final data (1.5) under the assump-
tion that T is sufficiently large [98].

Inverse problems for the generalized time fractional diffusion equations (1.3), (1.4)
have found less attention in the literature.

A couple of papers was concerned with inverse problems for (1.4) in case the kernel
k is a sum of power functions, i.e. the equation involves a sum of Caputo derivatives of
different orders. In such a case the corresponding ODE in Fourier domain can be handled
by means of multinomal Mittag-Leffler functions [53]. More precisely, in [38] uniqueness
of determination of the source factor f(x) from measurements in a subdomain of (0,7) x
Q in the case g = g(¢) was proved. The paper [53] dealt with a reconstruction of orders
of derivatives of such an equation.

Another group of papers deals with identification of kernels M and k in (1.3) and (1.4)
by means of measurements along the time axis. Reconstruction of weight functions of dis-
tributed Caputo derivatives in (1.4) was considered in [77] and determination of a kernel
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M of a perturbed Riemann-Liouville derivative was studied in [33]. Most general result
in this direction was obtained in [35] where the existence, uniqueness and continuous
dependence on data for a problem to identify M satisfying certain monotonicity and con-
vexity conditions were proved.

Inverse problems to determine x-dependent source terms and coefficients in equation
(1.3) from final data as well as backward problems for (1.3) had not been studied before.
Such problems will be one investigation object of the thesis.

In another problem under investigation in this thesis the aim is to reconstruct the un-
known source term f which depends on both space and time variables. In order to do
that we formulate an inverse problem in a different way. Instead of a pointwise final-time
overdetermination condition (1.5) we consider an overdetemination condition on a final
time subinterval:

Ul (1, 7)x02 = P 1.7)

where t5 € (0,T).

The inverse source problem for the generalized fractional diffusion equation (1.3) with
the overdetermination condition (1.7) has not yet been considered even in the usual frac-
tional case (1.2).

Before solving this inverse problem, however, we first consider a different problem
that serves as a good starting point for the further applications. This is the problem to
recover a history of a function u at 0 < ¢ < T by means of measurements of u(r) and its
generalized fractional derivative in a left neighborhood of T
given ¢,g : (t,T) — R, find u : (0,7) — R such that

u|(’07T) =9 and Dék}u‘(t(),T) =8, (18)

where D({)k} is either Riemann-Liouville or Caputo generalized fractional derivative.

Such a problem makes sense only in case of fractional or generalized fractional deriva-
tive due to the unlocal nature of it. In case of a usual derivative it would have been im-
possible to reconstruct the function backward in time based on the measurements of
derivative on a final time subinterval. The problem is new and in this situation the tech-
niques working successfully in a usual parabolic case cannot be simply extended to the
fractional case.

The objectives of the thesis include theoretical study that focuses on establishing the
conditions of uniqueness, existence and stability for the problems related to integrated
versions of the generalized subdiffusion equation (1.3):

e inverse problems to reconstruct the space-dependent part of the source term f(x)
from the data (1.5);

¢ abackward in time problem;
e a problem to identify the unknown reaction term r(x) from the data (1.5);
the objectives also include

o theoretical analysis of a problem to recover a history of function u given its value
and the value of its generalized fractional derivative on a final-time subinterval;

e theoretical study of a problem to reconstruct an unknown source f(x,#) in (1.3) from
the overdetermination data on a stripe (7, T).

13



The scientific novelty of the thesis is justified by the following results

e inverse problems with final overdetermination for generalized subdiffusion equa-
tions have been studied first time;

e these problems describe much wider range of processes than problems posed for
the usual fractional diffusion equation (1.1);

e the problem of recovery of a history of function u given its value and the value of
its generalized fractional derivative on a final-time subinterval has been addressed
for the first time;

e inverse source problems with observations on final time subintervals have been
investigated for the first time.

Let us provide a content overview and short summary of methodology.

In the next Chapter we discuss the motivation to consider such a type of problems
and address their history. Next we describe basic mathematical concepts, including the
setting of functional spaces, the Sonine kernels and Mittag-Leffler functions. We provide
the examples of kernels M and k used in the thesis. We also show different approaches to
derive the model from a physical perspective and discuss the processes that such a model
elaborates.

In the Chapter 2 we consider two inverse problems for a generalized diffusion equation
(1.3) that use final observation data. We prove our results under certain monotonicity and
convexity assumptions on M and k. The first problem is to identify a space-dependent
factor f of a source term g(¢,x) f(x) and the second one is to reconstruct a coefficient r(x)
of a linear reaction term. We prove the uniqueness of the solution to the inverse source
problem by applying a modified version of the positivity principle from [36]. Next we prove
the existence and stability of the solution to the inverse source problem by means of the
Fredholm alternative. The uniqueness of reconstruction of the reaction term follows from
the results for the inverse source problem. Finally, we prove local existence and stability
of the solution to the problem of reconstruction a reaction coefficient by means of the
contraction argument.

In Chapter 3 firstly an inverse problem for an equation (1.3) with M = % + m* %
is considered, that is equivalent to a fractional diffusion equation (1.2) with an additional
perturbation term m* Lu. The objective here is to reconstruct a space-dependent compo-
nent f(x) of the source term f(x)g(¢), given the final overdetermination condition (1.5).
Since the variables in the source term are separated, the Fourier method is used to re-
duce the original inverse problem to the family of inverse problems for the Fourier coeffi-
cients of f. Then a family of fractional ODEs for the Fourier coefficients of u is solved using
Mittag-Leffler functions. By composing this back into series the closed solution formula
for f is obtained. Next we use norms with the exponential weights to obtain the solution
estimates in the setting of L, spaces and based on that formulate uniqueness, existence
and stability theorems.

Next in Chapter 3 given a final overdetermination condition we solve the same equa-
tion backward in time and again we derive the closed solution formula by means of Fourier
method.

In Chapter 4 we consider the inverse problem of a backward reconstruction of a history
of u from (1.8). By means of the Laplace transform we prove the uniqueness for a general
class of kernels k and reduce backward continuation problem to an integral equation that
is further used to derive the solution formulas. Then the solution formulas are derived in
some particular cases of k based on the expansion with the Legendre polynomials.

14



Further we apply the results obtained for backward continuation problem to an in-
verse problem of reconstruction of a history of a source in a general PDE from the mea-
surements in a left neighborhood of final time T. Straightforwardly from the results for
backward continuation problem we obtain the uniqueness of solution for source recon-
struction problem. Finally we deduce explicit solution formulas for some particular cases.
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Basic mathematical concepts

1.1 Functional spaces and integral transforms

The symbol .Z(X,Y) denotes the set of all bounded linear operators from Banach space
X to another Banach space Y. If X =Y we use an abbreviated notation .Z(X).

Let X be a Banach space and G C R". The space C(G;X) denotes the space of all
continuous functions w : G — X. If G is compact then C(G;X) is a Banach space with a
norm:

Iwllcex) = suplw()lix-
yeG

We denote by C"(G, X ) the the space of all functions w : G — X which admit continu-
ous derivatives of order = (o1, ...,0), 0 >0,i=1,...,nand |a| =0y +...+ o, <m.
If G is compact then it is a Banach space with a norm:

olal

w m == S0 aom W
Wlen@ex)y = )X Y. oy

lot|<m

C(G:X)

We also define
C*(G:X) = [ C"(G:X).
m>0
For open G we denote by L,(G;X), p € [1,4) the Lebesgue spaces. The space
L,(G;X) contains the equivalence classes of all Bochner-measurable functionsw: G — X,
such that [|w(y)||% is integrable. This is a Banach space with a norm

e AL ||xdy)

In case if G is unbounded

Lp10c(G:X) = {w :w|g €L,(G';X) VG C G, suchthat G'is bounded}.

The space L..(G;X) contains the equivalence classes of all Bochner-measurable func-
tions w : G — X, such that ||w(y)||y is essentially bounded. This is a Banach space with a
norm:

IWll.cx) = esssuplw(y)lx-
yeG
We denote by W} (G;X), p € [1,+e0),n € N the Sobolev space, i.e. the space of all func-
tions w : G — X having distributional derivatives of order o = (a1, ..., @,) in L,(G;X) for
o; >0,i=1,...,nand |a| < m. The norm in this Banach space is:
1
gl b !

W m . == — . -~
” HWP (G;X) Z aytlx. ayocn

ja<m

Ly (G:X)

For the exponentially bounded f € L j,c(R4;X) (i.e. [y" e ®|| f(t)||xdt < o= for some
o € R) we will denote the Laplace transform [74]

F(5) = (L) (5) = /0 " ()i, Res> .
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Fourier transform for the function f € L (R;X) is defined as [74]:

71 - [

R
Fourier transform of the distribution f is defined by formula:

< Ff,9>=<f,Z@> YoecC(R),suchthat |x*¢(x)] — 0 Vk>0.

[x[ e

e S £(x)dx.

Then for f € L,(R;X) we have that < f,¢ >= [p. f(x)@(x)dx is absolutely convergent
and Fourier transform is defined in a distributional sense

<yf,<p>=/Rnf(§)%p(g—)d§, Vo € C*(R), such that [X*@(x)] — 0 Vk > 0.

s
We introduce the spaces
H5((0,T);X) = {wlior) : we HF (R;X)}, p € (1,e0),5 >0,
where
H,(R;X) = {w € L,(R:X) : FEPFwe L, (R;X)}.
Moreover, we define
OHIS,((O,T);X) = {w|(07T) Twe H;,(]R;X)7 suppw C [0,00)}, p € (1,00),5 >0,

where the support of w, i.e. suppw is the complement in R of the largest open set on
which w = 0 almost everywhere.

By default we drop the symbol of value space for X = R or X = C, but we show it if
necessary.

A useful sentence is the Young’s theorem for convolutions which states that for m €
Ly(0,T) and w € L,((0,T);X) with p,q € [1,e0], the convolution m * w belongs to the
space m*w € Lg((0,T);X) where 1 + % = % + é and the inequality

[[m* w2 (0.1)x) < Imllz,0,0) Wz, (0.7):x) (1.9)

is valid.!

1.2 Holder spaces
Let us denote
Co([0,T];X) ={ueC(]0,T];X) : u(0) =0}.

Next for 0 < a < 1 we introduce the abstract Holder spaces with corresponding norms

G310.11:3) = {071 ¢ Iulegorg = sup e <o),
C*([0,T];X) =C§([0,T];X) +X

={u:ult)=u(t)+uz,t€0,T],uy €C{([0,T];X),ur € X},

[ullcapo.rx) = llu = u(0)llce(jo.71x) + (0 [1x,

Co ([0, T];X) = {u : u, u € C§([0,T]; X))},

H“||c(g+a([o7r];x) = ||“Hcg([o7r];x) + |\M/Hcg([o7r];x)-

"Here % = 0 & s = +oo. The same relation works for p and ¢ in place of s.
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1.3 Sonine kernels and completely monotonic functions

The function M € L; ;,.(0,0) is called Sonine kernel if the equation
Mxk(t)=1, t>0, (1.10)

has a solution k € Lj j,.(0,2) [80]. The solution k if it exists is unique (Theorem 5.2, p.158
in [22]) and is referred to as associate to M. Since the convolution is commutative, k is
also a Sonine kernel and M is its associate.

The Sonine kernel is unbounded at r = 0, since kxM(¢) 4 Oast — 0.

The Laplace transform can be useful to derive the associate kernel to a given Sonine
kernel. For this purpose we present the analogue of relation (1.10) in the Laplace domain

o~ 1
M(s)k(s) = —. (1.1)

s
The kernel of a usual fractional derivative is a Sonine kernel. Indeed, in this case
M(t) = % € Ly 10c(0,00) and its associate is k(r) = 1“(t1_7—ﬁﬁ) € Li 1oc(0,00). Let us check

it by computing the corresponding Laplace transforms: A7l(s) = %ﬁ and %(s) = v%ﬁ’ thus
the relation (1.11) holds. Further examples of Sonine kernels are presented in the Section
1.7.

Let M be Sonine kernel and k its associate, then we have

d d
RD({)k}(M*v) = Ek*M*V: El xv=v, WWwelL((0,T);X). (112)

Therefore, the operator M is a one-to-one mapping from L;((0,7);X) to
Mx+Li((0,T);X)={M=xv:veL(0,T);X)}
and RD({)k} is the inverse of Mx. The reversed relation to (1.12) is
M (RD({)k}v) —v, WweM*Li((0,T):X).
This justifies the transformation of (1.3) to (1.4) by applying the operator k * .

We provide the Lemma that follows from Theorems 1and 2 in [21]:

Lemma 1.1. Let 7 € Ly j,(0,00) (N C'(0,00), 2> 0, 7 <0, lim z(r) = co. Then z is Sonine
' t—0

kernel.

Next we present the definition of completely monotonic functions. The function z €
C>(0,0) is called completely monotonic if

(—1)iz (1) >0,1>0,i=0,1,2...
We denote by ¢’ .# a subclass of completely monotonic functions:

G M = {2 € Li 10(0,00)()C(0,00) : lim z(t) =0, (~1)'2) >0,i=0,1,...}.

t—0t
According to Lemma 1.1 and [21], Theorem 3:

Lemma 1.2. The class €.# consists of Sonine kernels. Moreover, M € € ./ if and only if
its associate kernel k € € ./ .
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1.4 C- and Holder spaces related to the Sonine kernels

Let M be a Sonine kernel and k its associate. Based on the relation (1.12), we introduce the
functional space

P ([0, T):X) := M«C((0,T]:X) = {Mxv : ve C([0,T]:X)}.
It is a Banach space with the norm
k
Il o 71y = 108 ellctoon
Since Mx € Z(C([0,T];X),Co([0,T]; X)), the continuous embedding holds
ciP ([0, 77:X) = Co([0,T):X).
We also define
(0, 7):x) := g ([0,71:X) + X, (113)
lellerws o770y = lle = (O ot gy T 14OVl
ciH(0,7);:X) = M*CL([0,T); X), (114)
k
ol g gy = 1726 ulleg 0.7
ct®h2([0,7);:X) = M+ C*([0,T):X) + X, (1.15)
k
il .o 7720 = XD (1 = u(0)) o770y + 14(0) -

Let us establish some connections between the space C{*}, C{%}:@ and the usual C, C!-
and Haélder spaces. For Ct*} ([0, 7; X) the continuous embeddings

([0, T];X) — ¥ ([0,7];X) — C([0,T];X) (116)
are valid. The right embedding follows from Mx € Z(C(]0,T];X)). To prove the left
embedding, we choose some u € C'([0,7];X). Then

k
el o 7700 = e =4Ol gy 10Ol = I*DG (4 = (@) oo
Hu(0)llx = llk*u'lleqo,r1x) + u(0)Ix
and since kx € Z(C([0,T]; X)), the left relation in (1.16) follows.
Analogous relations for the space Cé"}”‘([o, T};X) are
CHe([0,7):x) < (0, T]:X) — €&([0, T]: X). (1.17)

The right embedding in (1.17) is a consequence of the fact that Mx € .Z(C§([0,T];X))
(see Lemma 4.2 in [35]) and the left embedding in (1.17) can be proved similarly to the left
embedding in (1.16).

The embeddings (1.16) and (1.17) are strict. Let us show it for the right embedding in
(1.17). For arbitrary v € Cgk}’a([O, T];X) =M=xC§([0,T];X) we have

t
()| < / M(1)dT0(%) = o(t%) as 1 — 0"
0
Thus, 1%x € C§([0,T]; X) \cé"}’“([o, T];X), x € X, x # 0. The strictness of other men-
tioned embeddings can be shown in a similar manner.

Under additional assumptions on M it is possible to show that the operator Mx* in-
creases the order of Holder continuity of a function.
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Lemma1.3. LetM(1) =ctP~,¢>0,0 < < a < 1. ThenM+CE P ([0.7];X) = C&([0, T]; X).

Lemma 1.4. If [M(t)| < CitB=1 |M'(t)] < CotP=2,t € (0,T) for some Cy,C, € Ry,
0< B <a<lthenMxc 2(CEP(0,T):X),c2([0,T]:X)).

The proof of Lemma 1.3 can be found in [36] and the proof of Lemma 1.4 is in the
Appendix of Publication II.
Under conditions of Lemma 1.4, Cék}’a_ﬁ ([0,T];X) — C§([0,T]; X). Under conditions of
Lemma 1.3we have thatk(¢) = %fﬁ and we obtainan equalityCék}"afﬁ([O, T);X) =
G ([0, T]:X).

1.5 Mittag-Leffler functions and their main properties

An important tool in the analysis of fractional differential equations is the family of Mittag-
Leffler functions

too n +oo n
Ea(Z) = ,Eo m, Ea_’y(Z) == ngo m, S C. (1.18)

The function E, y is entire in case o > 0, Y > 0[20]. The formulas (1.18) immediately imply
Ea‘rl == Ea and

Eq(0)=1, Eqq(0)= @)’ E, = éEa,a. (119)

Let us point out some useful properties of Eg(—z) and Eg g(—z) in case § € (0, 1).
The restrictions of functions Eg(—z) and Eg g(—z) to the interval (0,) are completely
monotonic and satisfy the asymptotic relations (see [20])

1

I(1-B)
1

I(=B)

Eg(—z) = +0(z7') as z— oo, (1.20)

ZzEﬁﬁ(_Z):_ +0(Z71) as 7 —» oo, (1.21)
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Physical background

1.6 Derivation of subdiffusion equation

CTRW was first introduced in [68] to describe the carriage of the charge in the amorphous
semiconductors. Later on CTRW has become a popular framework to describe anomalous
and Brownian diffusion in complex systems. It describes the diffusion in porous media, in-
cluding gels and geological formations. The experiments have justified the choice of wait-
ing time pdf proportional to t~'~% in anomalous transport applications. The parameter
a is constant if the medium is self-similar.

This particular choice of the waiting time pdf leads us to Riemann-Liouville and Ca-
puto fractional derivatives. In the CTRW model the pdf ¥(x,7) is often decoupled as
Y(x,t) = w(t)p(x), where @(x) is the jump length and y/(¢) is the waiting time pdf. Dif-
ferent choices of the pdf yield different types of CTRW.

We would like to present three different ways to derive the subdiffusion equation that
can be found in the literature:

1. Firstly, we consider the approach that was initially presented by Scher and Lax [83],
it is also considered in [18]. This is a general approach that allows to obtain the CTRW
model, when it is not possible to derive it from the RW analogue straightforwardly.

We begin by deriving the equation that determines the pdf p(x,#|xo,0) that the walker
is situated at x at time ¢ via the probability density 1 (x,#|xo,0) the walker arrives at point
x at time ¢, given that he started at point xg and time 7y = 0. Let us firstly write the condi-
tional n—step probability density 17, (x,#|xo,0) that the walker arrives at point x at time ¢
within n steps:

n(x,1|x0,0) Z/ W(x—x',t — 1)1 (x',1 |x0,0)dt’.

Then the conditional probability density of arriving at x at time ¢ irrespective of number
of steps is

N (x,]x0,0) Znnxt|x0, 0)=06(x—xp)0 +Z/‘Px X t—t")

xZnnxt\xo, 0)dt' = 8(x—x0)d +Z/‘Px Kt =) (1 |x0,0)dt’, (1.22)

ne=l
where §(x —x()0(t) is the initial condition, that is the conditional probability of being at
point x at time ¢ if the particle did not perform any step.
Let us denote by ®(t) = 1 — [; w(¢')dt’ that is a probability of a particle not taking a
step during the period [0,7]. Thus, the probability density p(x,z|xo,0) is:
p(x,1|x0,0) / N (x,t'|x0,0)D(t —t')dt'.
Thus, after convolving (1.22) with @ we obtain the Generalized Master Equation (GME)
for the probability p(x,#|xo,0):
t
p(x,t]x0,0) = 8 (x —x0)D () + / Zp(x/,t/|xo,0)‘1’(x —xt—t")at'. (1.23)
JO X
Next after applying the Fourier and Laplace transforms to the GME, some algebra to
the obtained equation and inverting the transforms we obtain that
dp(x,t]x0,0) Jd [ / / / ’or /
TG = 5 | M=) | pd .0+ Dol X pd o 0
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Time-dependent kernel in the equation pointsAout the non-Markovian nature of the pro-
cess. Here the kernel M is such that M(s) = 11’1%).

We switch to the continuous description of the evolution of p(x,t), since it allows to
solve the problems with different types of boundaries and sources. The transition is done

by letting the jump rate to infinity and the spacmg of the underlying lattice to zero. With

the Gaussian jump-length pdf ¢ (x) = se 262 [18], p. 46 we obtain

1
V2no

ap(x,t) _ Jd [ o NN
P _E/OM(I )Ap(x,t')dt’,

or equivalently

p= RD{M}AP
Fixation of a power-law waiting-time pdf y/(¢) < ~!~* with 0 < o < 1 this leads us to the
time-fractional diffusion equation [9, 67]:

ap(x,1)
ot
Usual RW model can be obtained as the limit case of such a CTRW, then the waiting-
time pdf becomes Poisson and the jump-length pdf remains Gaussian.
It is possible to reformulate (1.23) in terms of particle concentration C instead of the

= KaD} *Ap(x,t), where K is a constant coefficient.

probabilities p by using the formula p(x,#|x0,0) = % and multiplying (1.23) by
C(x0,0]x0,0):
C(x,1]x0,0) = C(x0,0[%0,0) +/ ZC 1[50, 0) P (x — ¥, 1 —1')dr.

2. Next approach to derive a subdiffusion equation works well to describe the particle
flow in some chemical reactions [13, 18]. For this purpose we consider the mass balance
at the lattice site i:

8Ci(t)

28— 0 -0+ )

where C; is the number of particles at the site i, jl.+ is the gain flux , j; is the loss flux
and f; is the source term, that provides the number of particles that enter the site at time
t > 0. Particles depart equally to the left and right. Therefore,

} 1 1.
ji@) = ifi—l(t)Jrin-l(t)

and we get

IC(t) 1. . .
at(t) = 5 Jima (O + 5 i (0) = Ji () + fi(0). (1.24)

Particles located at the site at initial time or arriving there at later times "wait" before
leaving. This is be expressed by

70 = WOGO)+ [ W= )0+ )

where y is the waiting time density (here j;" (') + f;(#') is the total gain from the flux and
the source at time ¢). Therefore

i) = +/ y(t—1) ( az(/ )+jf(t'))dt'~
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This is a Volterra equation of 2nd kind for j;". Solving it we have

Ji ()= %/OIM(I—/)Ci(t/)dt’

where the Laplace transforms of y and M are related by the formula 1\7I(s) = Plug-

1-y(s)
ging this into (1 24) we have
1
a2 / Mt =1)[5C1() + 5Cit () = Coa())de' + i(e).
Taking the continuous limit we obtain
aC
g;”) — 5 FDMIAC(x 1) + f(x,1) (1.25)

where 3¢ > 0 is some constant.

In order to obtain the reaction-subdiffusion equation the elliptic operator is comple-
mented by the reaction term under the fractional derivative, in other words we replace
Lu by Lu+ R, where R is the reaction term [18, 26, 50, 52].

For example, L takes the form Lu = s»cAu -+ ru in case of a linear reaction, R = ru, where
r is a reaction rate independent of u [26].

3. Finally, we consider a convenient way to derive a subdiffusion equation for a heat
flow presented by Povstenko [72], p.300. Firstly, time-nonlocal constitutive equation for
the heat flux g is considered:

g
ale,n) =~k /0 alt — D)V T (x, 7)dx, (1.26)

where T is the temperature, k is a thermal conductivity of a solid and a is a thermal diffu-
sivity coefficient. After combining it with the conservation law

oT
CE +divg =0, (1.27)
here Q is source function and c is a constant, we obtain heat conduction equation
oT
cor (x,t) = kRD({)”}AT(x,t) +0(x,1).

In case of “long-tale” power time-nonlocal kernel in a constitutive equation it trans-
forms into

gx,1) = F(koc)jt /Ot(t — ) VT (x, 1)dT
or in other words
q(x,t) = =KD}V T (x,1), 0<a<1,
that in combination with (1.27) yields time-fractional heat conduction equation

a—T = kD)~ AT + Q.
“or

The choice of power law waiting time pdfs in CTRW or the power-type kernel in a sub-
diffusion equation is not the only reasonable possibility. In fact, the other choice of the
memory kernel can work better to describe certain subdiffusion processes. Therefore, in
this work we prefer to use a generalized fractional derivative that opens new opportuni-
ties for the applications of CTRW model.
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1.7 Examples of kernels M and k

In this thesis we are solving problems with a generalized fractional derivative. This concept
has been used in [35, 48, 63].

We use the Sonine kernels as the kernels for the generalized fractional derivative since
they allow to switch between the equations of Riemann-Liouville (1.3) and Caputo (1.4)
type. We separate the description of the kernels M and k, because play a different role in
the models (1.3) and (1.4) respectively.

We provide the examples of kernels with their Laplace transforms that are used further.

B
T(B)

1

(M1) M(¢) = 5y is the basic case. It has the Laplace transform M(s) = 5

(k1) k(z) = F(tl%ﬁﬁ) B € (0,1) with the Laplace transform k(s) = ﬁ

It was shown in Section 1.3 that (M1) and (k1) are Sonine kernels and they are associate
to each other, i.e. M xk = 1. They are used in the celebrated time fractional diffusion
equation (1.1) or (1.2) [13, 45, 54, 57, 69], where RDék} and CD({)k} become Riemann-Liouville
and Caputo fractional derivatives of order f3.

Often a memory is not of power-type. A direct generalization of (M1) and (k1) leads to
multiterm and distributed order fractional derivatives [49, 66, 87]. The equations (1.3)
and (1.4) with multiterm derivatives contain the following kernels:

Bi
(M2) M(r) = ZJV 1‘11r(/3 0 < Bj <Bjs1 <1, q; >0 with M(s) = Z, 14j B , corre-
sponding to the retarded diffusion [14, 66, 87];

(k2) k(t) = ZJ 1‘]/1"1 ﬁ yO0< B <Bi<1,q; >0W'thk( )= Z] 14 17
sponding to the accelerated diffusion [14, 66, 87].

, corre-

The equations (1.3), (1.4) with the distributed order fractional derivative contain re-
spectively the kernels (M3) and (k3) described below.

(M3) M(r) = fol q(ﬁ){_ﬁ(—;)dﬁ where g € L;(0,1), ¢ > 0 is nonvanishing (cf. [12, 66, 87]).

Then M(s) = [ q(,[i)viﬁdﬁ.This type of kernel stands for the distributed order frac-
tional derivative that is used in physical literature for modeling diffusion with a log-
arithmic growth of the mean square displacement [48].

(k3) k(1) = [y q(B) dB where ¢ € Li(0,1),g > 0 is nonvanishing.

Then k( )= fo q( ) T-pdPB- A proper choice of ¢ in (k3) allows modelling ultraslow
diffusion [66]. ‘

The kernels (M2), (k2), (M3), (k3) are Sonine kernels since they satisfy the conditions
of Lemma 1.1. We would like to point out, however, that the kernels (M2) and (k2), (M3)
and (k3) are not associate to each other. Thus, in case of multiterm and distributed order
derivatives the equations (1.3) and (1.4) represent different models.

Actually, the cases (M2) and (M3) (k2) and (k3) can be unified to a form of Lebesgue-

Stiltjes integral as M(¢) = fl ’ﬁ du(B), k(1) = J, F(’l%ﬁmdu(ﬁ) .

Tempered fractional derlvatlves are used to describe slow transition of anomalous
diffusion to a normal one. There are three models of this type in the literature that differ
in their mathematical derivations.

The kernels corresponding to the tempered fractional diffusion and their associate ker-
nels are described below.
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(M4) M(t) = gy P!+ Jgs foe 7 eP~1dT, 2 > 0,0 < B < 1,19, 84, 95]. Then

M(s) = (s+2)!-F
s e

The relation (1.11) implies k(s) = W. By taking the inverse Laplace transform
we obtain

(k4) k(r) = ﬁe*’l’fﬁ which is associate to (M4).

(M5) M(t) = ﬁe*’l’tﬁ”,o < B < 1,A > 0, [82] with the Laplace transform
ey 1
M(s) = zm

. . -~ B
Again, from the relation (1.11) we calculate k(s) = (HSM

Laplace transform obtain the associate kernel to (M5)

and after taking the inverse

(K5) k() = gy Mo P+ gy Joe M Par.

1B INgl
(M6) M(t) = e MtP1Eg 3(AP1P), 0 < B < 1, 2 > 0, [19, 95]. According to [95]
M(s) = m and we get %(s) = M Then the inverse Laplace trans-

form implies the associate of (Mé)

(k6) k(1) = 1_(11713>e*’1’1"/3 + ﬁ foe **tBdr — AP,

The models with the kernels (M4), (k4) and (M5), (k5) look similar, but we describe them
separately, since they represent different physical models.

Models with generalized fractional derivatives that contain bounded kernels highlight
memory effects better [4]. In this thesis we consider the following bounded kernels:

__B_
(k7) k(z) = ﬁe B0 < B < 1is the kernel of Caputo-Fabrizio derivative [4, 11] and

has a Laplace transform k(s) = (lfﬁl)s+ﬁ;

(k8) k(r) = ﬁEﬁ (—%),O < B < lis akernel of Atangana-Baleanu fractional deriva-
sh-1

tive [3, 23]. It follows from [20] that E(s) = TpFip

Since the kernels (k7), (k8) are bounded, they are not Sonine kernels.
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2 Inverse problems for a generalized time fractional diffusion
equation in C- and Holder spaces

This Chapter contains results of Publication Il with some modifications and additions.
Throughout the Chapter we work in the complex-valued scalar functional spaces by de-
fault, we additionally specify if the space is real-valued.

2.1 Formulation of direct and inverse problems

Let us consider a subdiffusion process that is supplemented by linear reaction and is going
on in an open bounded domain € R” with the boundary dQ. We will denote a state
function satisfying nonhomogeneous boundary conditions by U. The lowercase letter u
will stand for the translated state function that satisfies the corresponding homogeneous
boundary conditions.

The process is governed by the generalized subdiffusion equation

Uy(t,x) = "D LU (1,%) + 0(t,x), x€ Q1€ (0,T), (2.1)

where Q is a source term, L = »A+ rl and r = r(x) is a reaction coefficient.
For the sake of mathematical generality, we replace L = A + rI by the more general
operator L = L(x) defined by
92 L 0
L i(x)=— 2.2
(x) = Ly (x) +r(x)1, Zalj ox iaxj'i'i;laj(x)axja (2.2)

i,j=1

where g;;, a; are given coefficients.
We assume that the kernel M is Sonine and its associate is k. Thus, by applying the
operator kx to (2.1) we obtain the equivalent equation in Caputo form:

CD({)k}U(t,x) =LU(t,x)+H(t,x), x€Q,te(0,T), (2.3)

where H = k* Q. Let us transform the Caputo derivative CD({)k}U(t,x) as follows:

pU(1,x) = /kt—T)UT T,%)d /kH T,%) —U(0,x))dt
=RpM (U (t,x) - U(0,x)).

Since the term RD({)k}(U(t,x) —U(0,x)) does not contain the first order derivative of U,

for the sake of generality we use it instead of CD({)k}U(t,x).
Now we formulate a direct problem for the function U':

RD({)k}(U —®)(t,x) =LU(t,x)+H(t,x), x€Q,te(0,T),
U(0,x) =®(x), xe€Q, (2.4)
BU —b)(t,x) =0, xe€dQ,te(0,T).

Here ® and b are given functions and 44 is a boundary operator such that
PBv(x) =v(x) or Bv(x)=ow(x) Vv(x),

where @ is a vector function such that @ (x) - 9 (x) > 0, ¥(x) = (% (x),..., Ox(x)) denoting
the outer normal of dQ atx € Q.
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Let us proceed to inverse problems. To this end we introduce the condition
U(T,x)=¥(x), xeQ, (2.5)

with a given observation function V.
Firstly, we formulate of an inverse source problem. Let

H(t,x) = g(t,x)f(x)+ ho(t,x) (2.6)

where the components g f and /g may correspond to different sources or sinks. The factor
f is unknown and to be reconstructed by means of the data (2.5).

IPInh. Determine a pair of functions (f,U) that satisfies (2.4), (2.5) and (2.6).
Next we aim to identify the reaction coefficient r(x).

IP2nh. Find a pair (r,U) that satisfies (2.4) and (2.5).
We can handle the case of zero initial condition @ = 0 in IP2nh.

Methods to be used in this Chapter require homogeneous boundary conditions. There-
fore, let us perform the change of variable u = U — b in the formulated problems. The
direct the problem (2.4) is transformed to the form

D (1~ @) (1,x) = Lu(t,x) + F(1,x), x€Q,1€(0,T),
u(0,x) = ¢(x), xeQ, (2.7)
Bu(t,x) =0, x€dQ,te(0,7),

where
o(x) =d(x) — b(0,x), (2.8)
F(t,x) = Lb(t,x) — "D (b — b(0,)) (1, x) + H (1, ). (2.9)

The overdetermination condition is changed in the following way:

u(T,x) =y(x), xeQ, (2.10)

where
y(x) =¥(x) —b(T,x). (2.1)

Plugging (2.6) into (2.9) we obtain

F(t,x) = g(t,x) f(x) + h(t,x), (2.12)

where h(t,x) = ho(t,x) + Lb(t,x) — RD{ (b — b(0,)) (£, x).
The reformulated first inverse problem is
IP1. Find the pair of functions (f,«) that satisfies (2.7), (2.10) and (2.12).

Let us reformulate the second inverse problem, too. From the relations (2.4), (2.5) with
® = 0 by means of the change of variable u = U — b, we obtain the following problem for
the pair (r,u):

R u(t,x) = Lyu(t,x) + r(x)(u+b)(t,x) + Fi (t,x) x€ Q1€ (0,T),
u(0,x)=0, xeQ, Pu(t,x) =0, x€dQ,1re(0,T), (213)
u(T,x) =y(x), xe€Q,
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where we assume that b(0,x) = 0, x € Q, the function y is expressed by y(x) = ¥(x) —
b(T,x) and Fi (t,x) = H(t,x) + Lib(t,x) — KD b (1, x).
Thus, the reformulated second inverse problem is

IP2. Find the pair of functions (r,u) that satisfies (2.13).

If b is sufficiently regular then the problems IP1nh and IP2nh are equivalent to IP1 and
IP2 respectively. The problem IP1 has a solution in some Banach space .# x % if and only
if IPInh has a solution in .% x (% +b) . Similarly, IP2 has a solution in a space #Z x % if
and only if IP2nh has a solution in Z x (% +b) . Thus, we will focus on the problems IP1
and IP2 in this chapter.

2.2 Basic assumptions

In this section we collect basic conditions on the domain, operator L and kernels k and M
that will be assumed throughout the Chapter.

We assume that dQ is uniformly of class C*. Moreover, we assume that a;;,a;,r €
C(Q;R) and the principal part of L is uniformly elliptic, i.e.

n
Y aij(x)&&; > clE]* VEER", x€Q, for some the ¢ > 0.
i1

In addition, we assume that the vector function ® € (C!'(dQ;R))".

Concerning the function k, we assume that
1. kis Sonine kernel with associate M such that

MeCH((0.0):R), lmM(t)=e, M>0, M <0,
0 (2.14)
—M'is nonincreasing and convex;

2. k has the following properties:

ke C((0,0);R), limk(r) =00, k>0, kis nonincreasing and
=07 (2.15)
3ty > 0 : k(¢) is strictly decreasing in (0, ).

The assumptions (2.14) ensure the existence of a sufficiently regular solution of the
direct problem (see Lemma 2.2 and its proof) and the assumptions (2.15) are needed for
the application of a positivity principle to this solution.

We mention that it is possible to reduce all assumptions concerning the pair (k, M) to
the assumptions on M simply. The assumption M € L; ;,.((0,T);R) and (2.14) imply that
M is Sonine kernel by Lemma 1.1. All properties (2.15) follow from conditions that are a bit
more restrictive than (2.14). It is shown in the following lemma. Proof is in Appendix of
Publication II.

Lemma 2.1. Let M € L 1,((0,0);R) satisfy (2.14) and M’ < 0, logM - convex, log(—M")
- convex. Then the solution of M x k = 1 satisfies (2.15).

The assumptions (2.14) and (2.15) imposed on M and k hold for weakly singular com-
pletely monotonic kernels from & .# introduced in Section 1.3.
The Lemma 1.2 impliesthat M € €¥.# ifandonlyif ke €. #.

28



The kernels M and k described in Section 1.7 are of the class € .# , except for (k7) and
(k8). Therefore, they satisfy conditions (2.14) and (2.15). By computing the derivatives it
is easy to check that for the kernels (M1), (k1), (M2), (k2), (M3), (k3). Let us consider the
other kernels from this Section.

In case (M4) we see that M(r) >0and M' (1) = ﬁ (B—1)tP=2e=* < 0. By continuing
the differentiation we obtain (—1)'M® (1) >0, i= O

In case (M5), similarly, we obtain M(¢) > 0, M’( )=
0and (—1)MY (1) >0, i=0,1,....

In case (Mé6) we investigate the corresponding associate kernel k(¢) given by the for-
mula (ké). The derivative of k is K'(1) = —B g5 M’ ﬁ L. Immediately, (=1)ik® > 0,
i=1,2,.... To show that k > 0 let us compute the I|m|t

( “piB- L (B=1)P2)e M <

) M' -B B At 87667[3 5
}Lr?ok( A}L[g/ = )d‘L' AB =2 }erlo A mdc—l

DY I pLU=B) 55 _
<3 [ Zgyto 4 <Ay o

Since k is strictly decreasing, we obtain k > 0. Thus, k € €.# and M € € .# .

2.3 Abstract Cauchy problem

LetA : Z(A) — X be alinear densely defined operator in a complex Banach space X. We
say that A belongs to the class . (n,0) forn € R, 6 € (0, x) if

p(A)DZ(n,G):{/'LE(C A #n,argA—n| <8} and
[(u=A)"gw < < moa n\ Vi € X(n,0) for some constant C > 0.

An operator A € .#(n, 0) is closed. This implies that X4 := 2(A) is a Banach space with
the graph norm
[wllx, = llwllx + [|Aw]|x.

Now let us consider the Cauchy problem
R (u—@)(t) = Au(t) + F(1), t€[0,T], u(0)=g, (2.16)
with given F : [0,7] — X and ¢ € X.

Lemma 2.2. LetA € .¥(n, %) for some 1 € R. Then the following statements are valid.
(i) (uniqueness) Let u € Ct¥([0,T];X) N C([0,T]; X4) solve (2.16) and ¢ = 0, F = 0. Then
u=0.

(i) Let F € C§([0,T];X),0 < ot < 1 and ¢ = 0. Then (2.16) has a solution u in the space

Cék}’a([O, T];X)NC§([0,T];X4). This solution satisfies the estimate

lellegore o g oy S ClIFlegomn- (217)

(iil) Let F € C*([0,T]; X), 0 < ot < 1 and @ € Xy. Then (2.16) has a solution u in the space
¢ ([0,T);X)NC([0,T); X4). This solution satisfies the estimate

||’4Hc{k} ([0,T):X)NC([0,T):Xs) = < C4(||FHC“ ([0,7]:x) T H‘P”XA) (2.18)

The constants C3 and C, depend on M, A and a..
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Proof. The change of variable v = RD({)k}(u — @) & u=M=*v+ @ reduces (2.16) of the
integral equation

v(it) =AM x*v)(t)+F(t)+A, te€][0,T]. (2.19)

Provided F € C([0,T):X), @ € X4, the function u € C1%} ([0, T];X)NC([0,T];X4) solves
(2.16) if and only if

veV:={veC([0,T];X) : Mxv € Cy([0,T];Xa)} solves (2.19).

In the particular case F € C{([0,T];X), ¢ = 0 similar one-to-one correspondence holds
for u € CJ ([0, T):X)NC& ([0, T]; X4) and

veV*:={veC§(0,T];X) : MxveC§([0,T];Xa)}.

Since M satisfies the conditions (2.14) and A € . (7, %), we can apply results of Ch.
3 of [74] to (2.19). Namely, it follows from [74] that there exists a family of operators
S 1 [0,00) = Z(X) (called resolvent of (2.19)) so that a solution v € V (if it exists) is rep-
resented by the formula

d
= — F+A
v d;S*( +Ap)

(see Theorem 3.2, Corollary 1.1 and Proposition 1.2 in [74]).

(i) Since there exists a solution u to (2.16), the equation (2.19) has a solution v € V. Due to
the assumptions F = 0, ¢ = 0 the representation formula implies v = 0. Thus, u = 0.

(i) Theorem 3.3 (i) [74] implies that for F € C§'([0,T];X) there exists a solution v € V¢
of (2.19). This proves the existence of the solution u € cé"}*"‘([o, T1EX)NCS([0,T]; Xy) of
(2.16). The estimate (2.17) follows from the bounded inverse theorem.

(iii) It is sufficient to prove this assertion in case F(¢) = & € X, because the problem with
given pair of data (F, ¢) can be splitted into two problems with the data (F — F(0),0) and
(F(0), @), respectively. For the first problem, the assertion (ii) applies. Having proved (jii)
for the second one, u is expressed as the sum of solutions of these two problems and
satisfies (iii), too.

Thus, let us assume that F(r) = £ € X. Due to Proposition 1.2 (ii) [74], (2.19) has the
solution v = %S*F = S(& +A@) € V. This implies the existence assertion of (iii). Due
to the strong continuity of S(¢) [74], [|S(#)[| #(x) < Cs,t € [0,T], where Cs is a constant.
Thus,

Vlleqo.rx) < Cs (I8 1x + [|Ae]lx)-

Then we continue as follows

HM||c{k}([o,T];x)nc([o,r};xA) = HMHc{k}([o,T];x) + HMHC([O,T];XA)
< ull e o, 712) + 1elleo, 1) + 1Aull o, r1x)-

Using the embedding C1¥}([0,77;X) < C([0,T];X) and the definition of the norm in
¢ ([0,T];X) we have

||”||c{k}([o,r];x)mc([o,r];xA> < C||”||c{k}([o7r];x) + HA”HC([U,T];X)

< (I*D§" (= 9)lcqo ) + I19lx ) + Aulleqorrn
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with some constant C. Since v = RD({)k}(u — @), due to the equation for u (there F = ),
it holds Au = RD({)k}(u — @) — & =v—E&. Therefore,

””HC{k}([oj];x)ﬂc([oj];xA) <C (”V”C([O.,T];X) + H(PHX) +lv— ¢ HC([O,T];X)~

Finally, using the triangle inequality and substituting the estimate of v we deduce

el et om0 o < CollElx +[191x,)

with another constant Cg. This implies (2.18). O

2.4 Statements on direct problem

In order to apply Lemma 2.2 to the direct problem (2.7), we introduce appropriate Banach
spaces of x-dependent functions and define realizations of the operator L in these spaces
so that they belong to .’ (1, 7 ):

1. X, =Ly(Q),1 < p < oo,

Ap: Xa, = Xp with Xy, = {z € W;(Q) : B2y =0} and
Apz =Lz, zeXAp.

C(Q)incase ="V,

Ag 0 Xay — Xo with Xpy = {z € N Wi (Q) : Bzlpa = 0,Lz € X} and
1<p<oo

¥ { {z€C(Q) : z]po =0} incase B =1,
. Xo=

Apz =Lz, ZEEX%O.

Corollary 2.1. Operators A,, p € {0}J(1,%0) and are from .#(n,%). Thus, Lemma 2.2
holds in cases X = X,, A=A, p € {0} U(1,%0) and applies to problem (2.7).

Proof. The fact that A, € .(n, %) in different cases of p and % follows from Theorems
3.1.2, 3.1.3 and Corollaries 3.1.21(ii) and 3.1.24 (ii) in [64]. O

Next let us focus on the real case. Let us define the spaces
X,r ={Rez:z€X,}, pe{0}U(1,0),
Xa, g ={Rez:z€Xy,}, pe{0tU(1,).
The spaces X, g and Xa, R constitute real Banach spaces with the norms

50, = Iy +0illy,. ¥ € Xpme  ¥llxy, s = b+ 0illx,, y € Xapo (220)

The spaces X, g and Xa, R Can also be identified as
Xpr = Ly(QR), Xa 5 = {y € WAQR): Bylpo =0}, 1< p <o,
| {yeC(QR) : ylsg =0} incase B =1,
"7 c(@R)incase B=w -V,

Xaor=1{y€ ) N WPZ(Q;R) : Byloa =0,Ly € Xor}-
<p<oo

Lemma 2.3. Let p € {0} J(1,0). Then the following statements are valid.
(i) (uniqueness) Let u € C¥([0,T]; X, r) NC([0,T]; X4, r) solve (2.7) and ¢ = 0, F = 0.
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Thenu = 0.
(i) Let F € C§([0,T]; X, r) for some 0 < o < 1 and ¢ = 0. Then (2.7) has a solution u in

the space Cék} *([0,T): X, 8) NCE([0,T] ;Xa, r)- This solution satisfies the estimate

el et o rix, g o, ) S CTIF leg 01,5 221

(iii) Let F € C%([0,T]; X, r) for some 0 < o < 1 and ¢ € Xu, g. Then (2.7) has a solution
win the space C¥}([0,T1; X, ) NC([0,T]; Xa ,.R)- This solution satisfies the estimate

leellctes o, 1, 2y o1, ) < C2UIF llcaorx, ) + 19114, 2)- (2.22)

The constants C7 and Cy, depend on M, L, p, o

Proof. Firstly, we prove (i). Since u -+ 0i € Ct*}([0,77;X,) N C([0, T1;Xa,) solves (2.7) with
vanishing data, the assertion follows from Lemma 2.2 (i).

Secondly, we prove (iii). Lemma 2.2 (iii) implies that (2.7) with the data F=F+ 0i,
@ = @+ 0i has a solution & € C**}([0,T];X,) NC([0, T];X4,)- On the other hand, since
the coefficients of L and the kernel k are real, the complex problem for u consists of two
independent real sub~problems for Reu and Imu. These problems have the data Re F =
F,Rep = ¢ and ImF = 0, Im¢@ = 0, respectively. The solution of the first subproblem
u=Ren et ([0,T):X, ) NC([0,T]; Xa, r) is the desired one. The assertion (i) applied
to second subproblem for Imu implies Imu = 0. Therefore, u = u + 0i and the estimate
(2.22) follows from (2.20) and (2.18) applied to u.

The assertion (ii) can be proved in an similar manner. O

Now we prove a positivity principle that can be applied to the direct problem with
either homogeneous or nonhomogeneous boundary conditions. Therefore, we use the
notation that differs from the notation used in formulation of (2.7).

Lemma2.4. LetK € L;((0,T);R)NC'((0,T);R), 1ir(1)n+ K(t) = o0, K > 0, K be nonincreas-
t—
ing and Jtx > 0 : K is strictly decreasing in (0,tx). Moreover, let F € C([0,T];C(Q;R)).

Assume that the function u solves the problem

RDE (u—9)(t,x) = Lu(t,x) + F(t,x), t € (0,T), x € Q,

u(0,x) =9, xeQ
and satisfies the smoothness conditions u € C([0,T];C(Q;R)), u € C((0,T]; WPZ(Q;R))
for some p > n, Lyu € C((0,T];C(Q:R)), RDY (u — 9) € C((0, ] C(Q:R)). Finally, let

1 ¢ _
lim = [ K(t)dT sup |u(f—s,x)—u(t,x)|=0 Vi€ (0,T],xeQ. (2.23)

=0t € Jo 0<s<e

If > 0,F > 0and %u|yq > 0 then the following assertions are valid.
Hu=>0;
(ii) if u(tg,x0) = 0 at some point (19,xp) € (0,T] X Qu, where

Q incase B =1

Oy = { Q incase B=w-V, (2.24)

then u(t,x0) = 0 for any t € [0, 1].
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This lemma is a slight modification of a positivity principle that was proved in [36] for a
semilinear equation in case of more smooth solution u € C((0,T];C?*(Q;R)) and strictly
decreasingin (0,T) kernel K.

To prove Lemma 2.4, we need the following auxiliary result. It is proved in Appendix
of the Publication Il.

Lemma 2.5. Letw € Wg(Q;R) for some p > n, Lyw € C(Q;R) and x* = argminw(x). In
XeQ

case x* € dQ we assume additionally that (- Vw)(x*) > 0. Then Liw(x*) > 0.

Proof of Lemma 2.4. Without a restriction of generality we assume that r < 0. Otherwise

it is possible to define u = e~ °’u as in [36] and to consider the corresponding problem for

u. Such a problem also satisfies the assumptions of Lemma 2.4 and has the coefficient

r=r—o. OT e %*K(s)ds in place of r. Since 1im+K(t) = oo and K is positive and nonin-
t—0

creasing, we have that for ¢ > %

T s 1 s
0'/ e %K(s)ds > 0'/ e %K(s)ds > K(—)O'/ e %%ds
0 0 o 0
1
—K()(1l—¢) e, 0o
c
Therefore, for sufficiently large o, 7 < 0.

Thus, under the assugwption r < 0 let us suppose that (i) does not hold. Then there
exists (71,x1) € (0,T] x Q such that

u(f,x1) <0 and (t1,x1) = argmin u(z,x).
x€Q, 1€[0,T]

It was shown in [36] (formula (37)) that the assumptions RD({)K} (u—¢)eC((0,T];C(Q;R)),
(2.23), K > 0 and K - nonincreasing together with the relations u(z,x;) > u(;,x;) and
u(ty,x1) < 0imply

Rpif) (u— ) (t1,x1) < 0. (2.25)

On the other hand, let us consider the function w = u(z;, ) and its minimum point x* = x;.
It satisfies the regularity conditions of Lemma 2.5. In case of % = I the minimum point
x1 must lie inside the domain Q, since Zu|q > 0and u(t;,x;) < 0. Incase B = w-V the
condition w - Vu(z1,x;) > 0 is satisfied if x; € Q. Thus, by Lemma 2.5 we obtain

Llu(tl,xl) > 0.
Also r(x1)u(f1,x1) > 0and F > 0. Thus, the left-hand side of the equation
RpiY (w =) (1,x1) = [Lu+F(11,x1)

is negative, but the right-hand side is nonnegative. We have reached a contradiction. The
assertion (i) is valid.
Let us prove (ii). Let u(zy, xp) = 0 at (z9,x0) € (0,T] X Qy. Define

fo =inf{t : t <19, u(t,x0) = 0for 7 € [t,10] }.

If (ii) is not valid, then 7y > 0 and u(,xq) > 8,1 € (t2,13) for some & > 0 and (t2,3) C (0,4)
such that ) — tp < tx. Then, similarly to the proof in [36] p.138, from the assumptions
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RD({)K} (u—¢) € C((0,T];C(Q;R)), (2.23), K > 0, K - nonincreasing and relations u > 0,
u(t,xp) > 6 > 0,1 € (t2,t3), we derive

R (u— 9) (fo,x0) < (K (o —12) — K (o — 13)). (2.26)

Since 0 < fy —t3 < fy — 1, < tx and K is strictly decreasing in (0,7x), inequality (2.26)
implies

RpY (u— ) (f,x0) < 0.
On the other hand, from u(fy,xp) =0 and u(,x) > 0, (¢,x) € (0,T] x Q, we conclude that

(f0,x0) = argminu(fy, x).
xeﬁ
By Lemma 2.5, Lju(fp,x9) > 0. Moreover, (ru)(#,x0) = 0 and F > 0. Left-hand side of the
equation
RpiY (w = ) (R, x0) = [Lu+F] (R, x0)
is negative, but right-hand side is nonnegative. Again, we have reached the contradiction.
Thus, (ii) holds. O

To help the reader some details of the proof, such as the derivation of the problem for
u and inequalities (2.25), (2.26) are presented in the Appendix of this Chapter.

At this point we present sufficient conditions on the input data of the direct problem
(2.7) that together with the basic assumptions on the kernels k and M (2.14), (2.15) imply
the assumptions of Lemma 2.4.

Corollary 2.2. Let F > 0, ¢ = 0 and one of the assumptions (al) — (a3) hold:

(a1) F € c™Mba([0,77; Xy ) for some 0 < & < 1.and F(0,-) = 0;

(a2) F € C¢([0,T); Xor) and M(t) > ¢t 't € (0,T) forsomec e R, 0 < y< o < 1;
(a3) F € CXP([0,T);Xop) and ci17~" < M(t) < cytP =1 |M/(1)] < e3tP2, 1 € (0,T),
for some ci,cr,c3 ERL,0<B<y<a<l.

Then the solution u of the problem (2.7) is a real function and satisfies the assertions of
Lemma 2.4, namely:

@Hu>0;

(i) if u(to,xo) = 0 at some point (t9,xp) € (0,T] x Qu, where Qy is given by (2.24), then
u(t,xp) =0 foranyt € [0,1).

Proof. Lemma 2.3 implies that the solution of (2.7) exists in the space
8 ([0,7]; X0.) NC([0,T]; X4, ®)- The smoothness conditions of Lemma 2.4 yield from
the embeddings Xs):r < W7(Q:R) for p € (1,00) and W7 (Q:R) < C'(Q:R) for p €
(,00).

It remains to show that (2.23) holds.

The case (a1). The relations F € CtMbe([0,T];XoRr), F(0,-) = 0 mean that F = k * F,
where F, € C%([0,T]; Xy r ). Let consider the problem

RDék}uz(t,x) =Lup(t,x)+ P (t,x), x€Q,r€(0,T),
u(0,x) =0, x€Q, (2.27)
PBuy(t,x) =0, x€dQ,re(0,T).

By Lemma 2.3 (iii) the problem (2.27) has a solution u; € Cék} ([0,T]; Xo r). Next we denote
u = k * up. After convolving (2.27) with k it is easy to see that the function u solves (2.7)
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with F = k x F>. Therefore,
ue kxCM ([0, T): Xo) = k* MxC([0,T);Xo ) = 1+C([0,T]: Xor) C C"([0,T): Xo.5)-

Hence, fort € (0,T],x € Q

1 r¢ 1 re
lim — [ k(7)dT su t—s,x)—u(t,x)|= lim — [ k(t)dt-O(¢)=0.
Jim 2 [ k(©)dr sup Jult—s,) —ult.)] = lim 2 [ k()T OCe)

The case (a2). By Lemma 2.3 (i), u € Cék}’m([O7 T];Xor) and by (1.17), u € C§ ([0, T]; Xo.r)-
Then the relation (2.23) follows from the estimate

1 [¢ 1 r€
lim — [ k(7)dt sup |u(t—s,x) —u(t,x)]= lim — [ k(7)dT-O(€%)

=0t € Jo 0<s<e e—=0T € Jo

O(e?) / “M(e—D)k(t)dT = lim O(e* ") =0 Vi€ (0,T], x€Q
~em0t eM(€) Jo 0+ B Y .

The case (a3). According to Lemma 2.3 (ii), F € Cg_ﬁ ([0,T];Xo r) implies that

we P (10, T]: Xop) = M+ CE P (0, T): Xo ).

Lemma 1.4 yields u € C{ ([0, T];Xo r). This enables us finish the proof as in case (a2). [

2.5 Inverse source problem

We will study IP1in context of Holder spaces with respect to z. For the sake of generality,
we will assume different orders of spaces related to g and h: for g we use a; and for &
we use . Firstly, we prove uniqueness theorem and then continue with existence and
stability.

Theorem 2.1. Let one of the following assumptions be valid:

(A) g e Céml ([0,T];C(;R)) for some 0 < oy < 1;

(A2) g € C((0,T);C(%R)) and M(t) > ' ',t € (0,T) for some ¢ € Ry,
O<y<o <1

(A3) g € U ([0, T1;:C(@R)) and cyt?! < M(t) < catP~!, M/ (1) < e3tP2, t €
(0,T), forsomecy,ca,c3 ERL, 0< B <y<a<l.

Ad(ditionally, we assume that g > 0, g1 := RD({)k} & — rmax8 > 0 where 1y, := max r(x) and
xeQ

aexcQ 3, € (0,T]: g(te,x)>0. (2.28)

In case # = I we also assume that for any x € dQ, either g(T,x) > 0or g(-,x) = 0.
Finally, let (f,u) € C(Q) x (Cék}([O,T};C(ﬁ))ﬂCo([O, T],WI,Z(Q))> for some p > 1

solve IP1 for ¢ =0, y =0, h = 0. Then (f,u) = (0,0).

Proof. It is sufficient to prove the assertion of the Theorem in the particular case when f

and u are real functions. That is because the the problem for the complex (f,u) can be

split into two independent subproblems for (Ref, Reu) and (Imf, Imu).

We start the proof by showing that in case 2 = I, for any x € dQ such that g(T,x) > 0,
the equality f(x) = 0 is valid. To show this, we consider the equality

RDék}u(T,x) = f(x)g(T,x), x€Q
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that follows from equation (2.7) in view of y = 0. If x € dQ and % = I then the left-hand
side of this equality equals zero. Thus, f(x)g(T,x) = 0 and provided g(7,x) > 0 we obtain
f(x)=0.

Let us introduce the functions [ = m%f and f~ = % Due to the definition, f* ¢
C(Q:R) and f* > 0. Moreover,

in case & = I, for any x € dQ such that g(T,x) > 0, it holds fi(x) =0. (2.29)

Firstly, we consider the problems

R (1,x) = L (1,%) + g (6,0 fE(x), x€Q,1€(0,T), 230
2.30
ut(0,x) =0, x€Q, BuE(t,x) =0, x€aQ, 1€ (0,T).

By assumptions of the theorem and (2.29), g(t,-) f* € Xo, t € [0,T]. Therefore, in cases

(A1) and (A2) due to (1.17) we have g f* € CéM}’al ([0,T]; Xor) and gf* € C5" ([0, T); XoR),
respectively.  Similarly, in case (A3) due to (1.17) and Lemma 1.4 we obtain
gf* € ' ([0,T);Xor). Moreover, gf* > 0. The assumptions of Corollary 2.2 are sat-
isfied for the functions F = gfi. Hence, the solutions u™ of (2.30) satisfy the assertions
(i) and (ii) of Corollary 2.2.

Secondly, let us consider the problems

RD({)k}vi(t,x) = LvE(t,x) + g1 (t,%) fE(x), x€Q,t€(0,T), .31
2.31
vE0,x) =0, x€Q,  BE(,x)=0, x€dQ,te(0,T).

In case (A1) we have g’ € C;' ([0,T]; C(Q;R)). Thus,
g1 = RDék}g — T8 =k g — Finang € CéM}"a' ([0,T];C(Q;R)).

Fromg(t,-)f* € Xor, t € [0,T] weimmediately get g1 (z,-) f* € Xor, t € [0, T]. Therefore,
M
g1fi S Cg b ([O,T];X()’R).

Using similar reasoning, we deduce g;f* € Cy'([0,7];Xor) in case (A2) and
gift e Cglfﬁ([O,T];XO,R) in case (A3). Moreover, g; f* > 0. Again, the assumptions
of Corollary 2.2 are satisfied for F = g| f*. The solutions v* of (2.31) satisfy the assertions
(i) and (ii) of Corollary 2.2.

The problem for M *v* is equivalent to the problem for u* — rp.M *u™. Thus,

vE = RD({)k}ui — FmaxU . (2.32)

Moreover, since f = fT — f~,wehave u =u" —u~. Thus, y = u(T,-) = 0 implies that
ut(T,") =u(T,-). Let us denote
x* = argmaxu™t (T, x) = argmaxu ™ (T, x).
x€Q xeQ
By definition, either f*(x*) =0 or f~(x*) = 0. Let us assume that f*(x*) = 0 (the
situation when f~(x*) = 0 can be considered in a similar manner).
Let us suppose that either x* € Q or Z = w - V (the case x* € dQ and £ = I will be

considered later separately). Then we can apply Lemma 2.5 to the functionw = —u™ (T, -).
We get Liu™t (T,x*) < 0. Thus, from (2.30), (2.32) and u™ > 0, r < ray it follows:

vI(T,x*) = Liu™ (T, x*) + (r(x") — ryax)u™ (T,x*) <0. (2.33)
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Due to Corollary 2.2 (i),
vi(t,x) >0, (t,x) € (0,T) x Q. (2.34)
Hence, (2.33) and (2.34) imply v (T, x*) = 0. Thus, by Corollary 2.2 (i),
vi(t,x*)=0,1€[0,T].

By formula (2.32) the latter inequality implies RD({)k}uJr (t,x*) — Fpaxu™t (£,x°) = 0,1 € [0,T).
Applying M to to this equality, we obtain the following homogeneous Volterra equation
of the second kind:

u+(t7X*)_rmaxM*u+(t7X*):Oa te [07T]

It has only the trivial solution u™ (z,x*) = 0,7 € [0, T]. Hence, u™ (T,x*) = 0.
Since x* is a maximum point of u™ (T,x) and u™ (T,x) > 0, we also get

ut(T,x) =0, x€Q. (2.35)

Now we consider the case x* € dQ, & = I, too. Then by But|;q = 0, immediately
ut(T,x*) = 0 and again we have (2.35).
Since u =ut —u~ and y = u(T,-) = 0 holds, from (2.35) we get

ut(T,x) =0,x€ Q.
Corollary 2.2 (i) implies u™ (t,x) = 0, (¢,x) € [0,T] x Q. Therefore,
u(t,x) =0, (t,x) € [0,T] x Q.

From the differential equation for u we obtain f(x)g(¢,x) = 0, (¢,x) € [0,T] x Q. Finally,
(2.28) yields f = 0. O

Next we deduce simple sufficient conditions for g and & that imply the assumption
RD({)k}g — rmaxg = 0in Theorem 2.1. For that reason we need the following Lemma.

Lemma 2.6. Let w € C¥}([0,T];R) be nonnegative and nondecreasing. Then
Ry > k(T)w.

Proof. The assertion follows from the estimate

Rk} . l /t+5 /
D} w(t)—ﬁlg&a[o k() w(t+8—1)dt — [ k(T)w(r— r)dr}

:31L13+é[/t[+5k() (48— rdr+/k Ww(t+6—1) — (r-r))dz]

> lim k(T+6)5[/t+6 w(t+8— rdr—i—/ (t+8—7) — (r-r))dr}

d/ (t—1)dt=k(T)w(t), 0<t<T. O

Due to that Lemma 2.6, RD({)k}g — rmaxg > 0 holds provided along with other assump-
tions on g in Theorem 2.1 the following conditions are satisfied:

g is nondecreasing in case 7,4 < 0;
g is nondecreasing and k(T) > ryqy in Case rygy > 0.
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Theorem 2.2. Let g, M satisfy the assumptions of Theorem 2.1 and the inequality
g(T,x)>g0>0,xeQ,

hold. If ¢,y € Xs, and h € C*([0,T];X,), where p € {0}J(1,%), 0 < ap < 1, then
IP1 has a unique solution (f,u) € X, x C'¥}([0,T];X,) NC([0, T];X4,) and the following
estimate holds:

11, + et oy oo, ) < €0 (101, + Wl +llcen o, ) - (2:36

If additionally ¢ = h(0,-) = 0, then u € C{V*((0,T];X,) NCE([0,T);Xa,) where

) in case (A1)
min{oy, 0} incases (A2), (A3)

and the estimate
11, el g 71 i 00 < C10 (1000, Moo 1,) (237

is valid. The constants Cy and C}( depend on the parameters M,L, g, p, Q.

Proof. Firstly, we are going to replace the overdetermination condition (2.10) by a fixed-
point equation with respect to f.

Suppose that (f,u) € X, x %} ([0, T];X,,) NC([0, T1;Xa,) solves IP1. Then, since (2.10)
holds, the equation (2.7) at t = T with F = fg + hyields

(D (= @) —mu) (T2) = (A4 = M) w(x) — h(Tx)

f X)) = 5 (2.38)
) 8(T,x)
where 7 is chosen so that 0 € p(A, — nI).
Let us split u into the sum of two functions: u = u; + u,, such that
RpMuy = Apuy + fg, w1(0,-) =0, (2.39)
R (uy — @) = Apuz +h,  1(0,-) = 9. (2.40)

In the context of IP1, u, is a known function. According to Lemma 2.2, the solution u, to
(2.40) belongs to C{¥} ([0, T); X, ).
Next we consider the functions v; and v,. The function v, is given by the relation

vy :=RD (1 — @) — nuy (2.41)

and since u € C¥}([0, T];X,,) we obtain v, € C([0,T];X,). The function v; is defined as
the solution of the problem:

D = apv + f(D{T g —ng), vi(0,) =0, (2.42)

Due to the assumptions (A1) - (A3) and (1.17), it holds RDék}g € Cg‘([O, T);C(Q)) where

(2.43)

o — a in cases (Al), (A2)
| o —pB incase (A3).
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Thus, f(RD({)k}g —1ng) € C&([0,T];X,). According to Lemma 2.2 (ii) the problem (2.42)
has a solution v in Cé’**“([(), T);X,)NC&([o, T];Xa,)- Itis easy to check that

k
31 :RDé }ul —Nuy.

The notations introduced allow us to rewrite (2.38) in the form

f=7f+9, (2.44)
where & (x) = va(Tx) = (A”ngn))c;’/ (x) —h(T,x) . xeQ, (2.45)
(7)) = M T (2.46)

and v [-] stands for the operator that assigns to f the solution v; of (2.42). Thus, (2.7),
(2.10), (2.12) imply (2.44).

On the other hand, taking into account all the substitutions performed, we can move
back from (2.44) to (2.38). Together with (2.7) atr = T and (2.12) it implies (A, —n)u(T,x) =
(A, —n)y(x). Since (A, —n) is injective, it yields (2.10).

Consequently, IP1 is equivalent to the problem of finding the pair of functions (f,u)
that solves (2.7), (2.12), (2.44) in the space X, x C'*}(0,77:X,) NC([0,T];: X4,).

We point out that (2.44) is an independent equation for the first component f of the
solution of IP1. Let us analyse properties of the operator .% involved in this equation. By
Lemma 2.2, vi[-] € Z(X,,CH([0,T]:Xa,))- Thus, vi[|(T,-) € Z(Xp,Xa,)-

Furthermore, the compact embedding holds X, << X),. In case p € (1,) itis a
direct consequence of Wg(Q) —<— L,(Q). In case p = 0 it follows from the continu-
ous embedding of X, in CL,(Q) := XoNC'(Q) (see Theorems 3.1.19, 3.1.22 in [64]) and
CL(Q) == Xo.

Therefore, v [-|(T,-) : X, — X, is compact. Since ﬁ € C(Q) due to the assumptions
of this theorem, .# : X,, — X, is also compact.

Next, let us show that 1 ¢ o(%).

Firstly, let us consider the case p = 0. Suppose that 1 € o(%). Then the equation
f =% f has a solution f € Xy, f # 0. This means that the problem (2.7), (2.12), (2.44)
with homogeneous data ¢ = 0, w = 0, 2 = 0 has the nontrivial solution (f,u;) in the
space Xy x Cék}([O, T];Xo)NCo([0,T]; X4, ). But due to the Theorem 2.1, IP1 with a homo-
geneous data has only the trivial solution in such a space. We came to a contradiction.
Consequently, 1 ¢ o(.%).

Secondly, let us consider the case p € (1, ). We again suppose that 1 € o(.%), hence
the equation f = .7 f has a nontrivial solution f € X,,. The idea is to show that this solu-
tion actually belongs to Xj;. We can then apply the arguments from the previous case to
show that 1 € 6(.%) leads to a contradiction.

If p> %, thenvi[f](T,-) € Xa, < Xo. Thus, f = F f = ﬁvl[f](T,-) € Xo.

If p < 3, then according to embedding theorems, X4, — X, = L, (), where
p1= nf‘;p > p. Therefore, vi[f|(T,-) € X, and f = F f = g(Tl,x)"l[f](Tv') € X, . After a
finite number of iterations we obtain f € X,,., where p; = > 7 (works fori > % —1).
Next iteration gives f € Xj.

We have shown that the first case of Fredholm alternative is satisfied for the equa-
tion (2.44). Consequently, the solution to (2.44) exists and is unique for any ¢ € X,, and
(I1-7)"'eZ2(X,).

np
n—2ip
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Since F = fg+ h is Holder-continuous with values in X,,, Lemma 2.2 implies that the
problem (2.7), (2.12) has unique solution u € C{*}([0,77;X,) N C([0, T];Xa,). This com-
pletes the proof of the existence and uniqueness assertion of the theorem.

In the rest of the proof, C stands for a generic constant depending on the parameters
M L g, p,0s.

Let us deduce the stability estimate (2.36). We obtain

1 llx, < 110 =F) M, 1Z]x, < 5(Ilh(T7 ix, + nlllwllx, + 1w, +

+vallegorix, ) -

Since v, is given by the relation (2.41) and the function u; solves (2.40) we estimate it by
means of Lemma 2.2.

Ivalleqoriix,) = IFDS (12 — @) = oy, < IFDF (w2 = @) llcorioey )
+nlluzllco,nx,) < lApullcqor:x,) + 1Rllcqorx,) + nlluzlleqo.rn:x,)

< 6(||M2||c{k}<[0.T];x,,)mcqo.,r];xAp) + Hh”C([O,T];X,,)) < C([Illcaa o,ryx,) + 1@llxy)-
Therefore,
1£11x, < ClAllcan o.11x,) + 1 @]1x, + 1 Wlx,)- (2.47)

Further, we note that g € C}([0,T];C(Q)) for any y € (0,1) in case (A1) and for y = ¢ in
cases (A2), (A3). By applying Lemma 2.2 to the problems (2.39) and (2.40) we obtain

leellcws go,rx,) neorix,) = 1+ 1e2llets (or1x,) neqo.rix,)
< E(1 s, Iz ooy + lless o + 1l )

Together with the estimate of f (2.47) it implies (2.36).
In case ¢ = h(0,-) = 0, the solution of (2.7), (2.12) belongs to the space

Cék}’a([o, T];X,) NCG([0,T];Xa,) and can be estimated as

g om0, g t0.714,) = UM I N8l 0,710 Wl cge oy, )

This with (2.47) implies (2.37). O

We point out that in case p = 0 and & = I, the assumptions of Theorem 2.2 allow
to recover f € Xo = {f € C(Q) : flyo = 0} only. In order to fix that in the following
theorem we provide some additional conditions that are sufficient to restore f € C(Q) in
case # = 1. The idea is as follows. We treat the problem in the Lebesgue space X,, p > 5
and show that in case of sufficient regularity of the data the unknown f whose existence

follows from the previous theorem belongs to C(Q) C X),.

Theorem 2.3. Let g,M satisfy the assumptions of Theorem 2.2. If ¢, y, Lo € Xy, for
somep> 5, Ly €C(Q), he ctkh (0, 7];X,) NC([0,T];C(R)), where 0 < o < 1 and
h(0,-) € Xa, then IP1 has a unique solution (f,u) € C(Q) x cl¥ (o, T];X4,). Moreover,

Lu € C([0,T];C(L)) and the estimate
Hf”c(ﬁ)‘i'H“||c{k}([o_yr];xAp)+ 1Lull (0. 71:c@)) < Cll(H‘P||Xp+HL(P||XAP (2.48)
+||WHXP+||LWHC(§)+Hh”c{k}-ﬂz([oyT];Xp)ﬂc([oyr];c(ﬁ))+||h(0a ')HXA,,)
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holds. If additionally ¢ = h(0,-) =®D{ h(0,-) =0 then u e ¢} (0, T]:Xa,) and the
estimate

1fllc@ +||u||C{A}a [O’T];XAP>+||Lu||C0([O,T];C(§))
(2.49)

S (R e —

is valid where o' = min{&; o, } and & is given by (2.43). The constants Cy; and C; depend

OnM7L7g7p7a2'

Proof. Throughout the proof, C denotes a generic constant depending on M, L, g, p,
and RHS stands for the expression in brackets at the right-hand side of (2.48).

By Theorem 2.2, IP1has a unique solution (f,u) € X, x C**} ([0, T]; X,,) NC([0, T];Xa,)-
Let us consider the problem

DS (wa=w2(0,-)) = Apws + "D (h—h(0,-)), w2(0,-) = Lo +h(0,-).  (2.50)

Under the assumptions of this theorem, Lemma 2.2 implies that (2.50) has a unique so-
lution w, € Ct¥([0,71;X,) NC([0,T7]; Xa,)- Moreover, due (2.18) and (1.15)

Iw2lleqorix,,) < CCllbllcman o 7yex, ) + 1700 lx, +ILllx,,)-

It is easy to check that wy = RD{ }(ug — @) and up = M xwy + @ where u, solves (2.40).
Since wy isin C([0,7];X4,) we have u, € c (o, T];X4,) and

sl o1y ) C (Al et o iy 10, Nz + 1L, )+l - (250

Let us consider the function ¢ given by (2.45). (Recall that there v = w, — nuy.) Due
the proved properties of w, and u; and the assumptions of the theorem and the embed-
ding

XAP — C(ﬁ)

it holds & € C(Q) and |4 || ) < CRHS.
Now, let us provide an estimate for ||f\|c(§) using the formulas (2.44) and (2.46). Since
2T )EC( )and vi[|(T,-) € Z(X),Xa,), we have
Iflle@ < 12 fle@ + 19)le@ < CIM AT, lle@ + 1€ llcm)
<Clwi[f)(T, MNxs, 19 @) <CHf||xp+||f4||c

Since (I — %) is invertible in X,,, the estimate holds
1fllx, < 1= 7)) 19 lx, < CllZ lleq
Thus, we obtain || f||¢g) < 6||§¢||C<§> and therefore

£l < CRHS. (2.52)

Finally, let us derive an estimate for u and finish the proof of the first part of the theo-
rem. We have u = u; + up, where u; = M xwy, w; = RD({) }ul and wy solves the problem

RDék}m =Apwi +fRD£{)k}87 wi(0,-) =0. (2.53)
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Since fRDék}g € C¥([0,T);X,), Lemma 2.2 implies w; € Cg‘/([O,T];XAp) and

_ N _ IRpik}
”ulHC({)k}‘al([O,T];XAP) = HW1”C8"([0-,T];XA1,) < CHfHC(Q)” D, gHCg‘/([O,T];Xp)'
Using here (2.52) we have

) ) aRHs_ 2.54
HMIHCék% ((0.7):Xa,) — -

From (2.51) and (2.54) we obtain for u = u; + u; the estimate

el 07, ) < CRHS: (2.55)

It remains to estimate Lu in the space C([0,T];C(Q)). Using (2.55) we deduce

wn

I*D (4= 0)llc 0,70y < CIFDE (=) lcoryx,,) < CRH

From the expression Lu = RDék}(u — @) — fg — h due to the proved estimates for
RD({)k}(u — @) and f we obtain

Summing up, (2.52), (2.55) and (2.56) imply (2.48).

Now let us focus on the second part of this theorem that is concerned with the particu-
lar case ¢ = h(0,-) = RD({)k}h(O, -) = 0. Then RHS reduces to the expression in brackets at
the right-hand side of (2.49). Lemma 2.2 implies that the function w, which solves (2.50)

belongs the space CS"([O, T];Xa4,), the function uy = M *w, belongs to Cé"}’“'([o, T];Xa,)
d v < Cllhl| .

an ||u2||cék}: ([OaT];XAp) = H ||C({)k}'a2([0,T];Xp)

mates (2.52), (2.54) and (2.56) implies (2.49). O

. This relation by u = u; + uy and the esti-

Provided the assumptions of Theorem 2.3 hold and % = I, an explicit expression of the
unknown function f at the boundary can be derived. Namely, settingr = T and x € dQ
in (2.7) and taking the relations F = fg+h and u(T,-) = y into account we obtain

1
flx)= ST [Ly(x)+h(T,x)], x€Q.

Remark 2.1. In case the data h, ¢ and y are real-valued functions, the solution (f,u) of
IP1 is also real. That holds because the coefficients of the operator L and the functions
k and g are real. The complex IP1 consists of two independent real subproblems for
(Re f,Reu) and (Im f,Imu). These problems depend on the data Reh, Re @, Re y and
ImhA, Im @, Im y, respectively. If Imh = 0, Im ¢ = 0, Im y = 0 then by applying Theorem
2.1 to the subproblem for (Im f,Imu) we obtain (Im f,Imu) = (0,0) that means that the
pair (f,u) is a real.

At the end of this section we consider a problem with perturbations. Firstly, let us
replace the kernel M in the equation (2.1) by the sum M + M x m, where M satisfies the
conditions listed in Section 2.2 and m is a small perturbation factor. Then the initial bound-
ary value problem for u = U — b reads

RDék}(u —@)(t,x) = Lu(t,x) +m*Lu(t,x) + F(x,t), x€Q,te(0,T),

(2.57)
u(0,x) =@(x), x€Q, Bu(t,x)=0, x€dQ, 1€ (0,T).
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Secondly, let us replace (2.12) by the formula
F(t,x) = (g(t,x) +y(t,x)) f(x) + h(t,x), (2.58)

where g satisfies the assumptions of Theorem 2.2 and 7 is a small perturbation term.
In the modified IP1 (we call it IP1a), one has to find a pair (f,u) that satisfies (2.57),
(2.58) and (2.10).

Theorem 2.4. (i) Let the assumptions of Theorem 2.2 be satisfied and ¢ = 0, h(0,-) = 0.

We also assume thatm € L;(0,T), v € C§([0,T]; C(€)). Then there exist constants &1, C3
depending on M, L, g, p, o such that if

max{||m|z, 0.r): ?’”cg([o,r];c(ﬁ))} <&

then IP1a has a unique solution (f,u) € X,, x Cék}ﬂ([O, T];X,) NC([0,T];Xa,) and the
following estimate is valid:

11y + g0 i, gy < €2 (W, + Ihlegegoriy ) 259

(ii) Let the assumptions of Theorem 2.3 hold and ¢ = 0, h(0,-) =0, RD({)k}h(O, ) =0.We

also assume thatm € L;(0,T), y € cé"}*“'([o, T];X,)NCo([0,T];C(Q)). Then there exist
constants &, C14 depending on M, L, g, p, & such that if

maxtlmlleyo.n): 1Vl o 1o, ncoo.ryemnt < €2

then IP1a has a unique solution in the space {(f,u) € C(Q) x Cék}"al([o, T];Xa,) : Lu €
Co([0,T];C(Q))} and the following estimate holds:

1 f e + ”ullq{,k}‘“'([o,T];XAp) + [[Lull ey o, 71:c@0))
(2.60)

=cu <”w”X" NV lew + |h”Cé”‘“Q<[0,T1:xp)mco([o,r];am)> '

Proof. Let o be the solution operator of IP1. This means that the solution of IP1 can be
represented as (f,u) = <7 (h, @, y).

(i) According to the definition of .27, IP1a is equivalent to the operator equation
(fu) = o (f,u) + 2 (1,0, ) (2.61)

where 47 is a linear operator defined by .7 (f,u) = o/ (m Lu+vf,0,0). By Theorem 2.2,
o (1,0,y) € X, x ™ ([0.7):X,) NCE(0.]: X, ) and

||‘Q{(h707 W) prXC({)k}u([07T];le)mcg([O,T];XAp) S ClO (H WHXAP + ||hHng([0,T];Xp)> . (262)
On the other hand, Lemma 4.2 in [35] implies

||m*VHCg([0,T];X,,) < 2||mHL1 (0,7) HVHcg([OJ];X,,) e CS‘([QT];X,,).
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Thus, by means of (2.37) we deduce the estimate
17 (o)l e o mx ncgoring,) < Crollm Lt ¥fllegorix,)

< Cro(2lmlle, o 1 uleg o.r1,) + IVlcg o0 111, )

< 2Cyomax{||m||z, 0,7

Mg orie@) U Ol oo 11 neg oz, )

In case max{||m||., o), ||7Hcg([o,r];c(§))} <g = ﬁ, the operator </ is a contraction in

the space X, x Cék}’“([o, T];X,) NCS([0,T]; X4, ). This proves the existence and unique-
ness assertions of (i). From (2.61) by means of ||./|| < 1 and (2.62) we deduce (2.59) with
Cio

the constant Cj3 = =Pk

(i) The proof of this assertion repeats the proof of (i) with appropriate changes of spaces
and norms.
O

2.6 Inverse coefficient problem

In this section we apply results on IP1 to study IP2. In this connection there is a need to
impose conditions similar to (A1) - (A3) on the factor u + b of the unknown coefficient r.
Those conditions depend on the upper bound r,,,, of r. This means that we are faced with
a situation where assumptions of theorem depend on the unknown. Therefore we intro-
duce the following sets of r that have their upper bounds less than some given number p
and use p instead of ry,x in the mentioned assumptions:

Hp={reC(&R) : r(x) <p,x€Q}  wherep eR.
In the next theorem we prove global uniqueness of the solution.

Theorem 2.5. Let p € R, the data of IP2 be real and IP2 have 2 solutions (r,u), (r1,u;),
such that
reC(QR), r €y, wueCl(0,T)LI(QR))(Co([0, T W (Q:R)),
i —u e CH ([0, T];C(Q:R)) () Col[0, T W2(QR))
for some p > 1 and the function; U = u+ b (and M) satisfy one of the following assump-

tions:
(A4) U e Cé“xl ([0,T];C(Q;R)) for some 0 < o < 1;

(A5) U € C({)k}’al([O,T];C(Q;R)) and M(t) > ct?"',t € (0,T) for some ¢ € R,
O<y<o <1

(A6) U € 7P ((0,7);C(Q:R)) and cit7! < M(t) < eatP~), |M/(1)] < catP2, 1 €
(0,T), forsomecy,ca,c3 ERL,0< B <y<oy <.

Additionally, we assume that
U>0, *pMU—pU=>o0, (2.63)
ae.xeQ T e€(0,T]: Ulty,x) >0. (2.64)

In case B = I we also assume that for any x € 99, either U(T,x) > 0or U(-,x) = 0. Then
(r1,u1) = (r,u).
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Proof. Let us denote the difference (#,4) = (r; — r,u; —u). Then
(7.) € C@:R) x ({0, T1:C@R) NCol[0. T WHRR)) )
and solves the problem

R at,x) = (Ly +r)i(t,x) + U6, x)F(x), xeQ 1€ (0,T),
4(0,x) =0, x€eQ, PBi(t,x) =0, x€dQ,te(0,T), (2.65)
a(T,x) =0, xe€Q.

The inequalities (2.63) imply that RD({)k}U — FmaxU > 0 where r,,, := maxry(x) < p. Con-
xeQ

sequently, the assumptions of Theorem 2.1 are satisfied for the problem (2.65) and we
obtain7=0, 4 =0. O

Let us formulate a problem that contains approximate data:

RD({Jk}(ﬁ—(ﬁ)(t,x) = Llﬁ(t,x)+7(x)(17+'l5)(t7x)+}71 (t,x), x€Q,r€(0,T),
u(0,x) =0, xeQ, Pu(t,x) =0, xe€dQ,te(0,T), (2.66)
W(T,x)=y, xeQ.

We are going to prove an existence and approximation theorem for this problem in case

its data vector D = (b, Fy, ) is close to the data vector D = (b, F1, y) of the exact problem
IP2. In general we will work with complex (2.66).

Theorem 2.6. Assume that p € R, IP2 has real data and a real solution
(ru) € Hp x C ([0, T): Ly (R)) N Co ([0, T): WP (4 R))

such that U = u+b (and M) satisfy one of the assumptions (A4) - (A6), the inequalities
(2.63) and U(T,x) > Uy > 0, x € Q. Then the following statements are valid.

(@) Let p € {0}U(5,), az € (0,1). There exist constants 8; > 0 and K; > 0 depending
onM,Ly,r,U,p, oy such that if

D—D e 2 =C*([0,T];C(,)(Q) x Cg2([0,T]: Xp) x Xa,

C(Q) incasep e (5,)

Xo in case p = 0 then problem (2.66)

and ||D—D|| 4, < 8 where C(,)(Q) = {

has a unique solution in the set

{(’F, i) : (F—rii—u) € 27 =X, x (cg"}ﬂ([o, T):X,) & (o, T];XAP)> ,

|(F=rii—u)ll; < KillD=Dlls, }

o in case (A4)

min{a;, 0} in cases (A5), (A6).

(ii) Let p € (5,00), oz € (0,1). There exist constants &, > 0 and K, > 0 depending on
M,Ly,r,U,p, oy such that if

where o0 = {

D-De 7= (i (0,11:x,) N C5E (o, T];c(ﬁ)))2 XY,
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and HIN)—DH@2 < & whereY, ={y : y€X,,,Ly € C(Q)} then the problem (2.66) has
a unique solution in the set

(i) F=ri—u) € 23 1= C@) x Uy, ||(F—r.ii—u)

2, <Ko D-D)|5,}

where %, o = {v € Cék}’a/([O,T};XAp) : Lv € Cop([0,T);C(Q))}, @ = min{é&; 00} and
~ ] oo in cases (A4), (AS)
oy — B incase (A6).

We mention that in this theorem, the operator A, and the space X, , defined on the
basis of L = L + rI depend on the component r of the solution of the exact problem 1P2.

Proof. Let us denote the difference (7#,i) = (F—r, 4 — u). Then the problem for the pair
(7,4) reads

Rpia = (Li+r)a+ #u+b)+ |Fa+F — Fi + (F+r)(b—b)|,
ﬁ(ov) = 07 %ﬁbg = 07 ﬁ(T7) = "T’_ V.

(2.67)

This problem can be treated as IP1with f = 7, g = u+b, h = fi+F — Fy + (7 +r)(b—b).
Therefore, applying the solution operator of IP1.47 to (2.67), it is reduced to the operator
equation

(f’ﬁ):ﬁZ(

P i), (2.68)
where %, (7, i)

= o (Fa+F — F + (F+7)(b—b),0,§ — y).
We are going to show that .%, is a contraction in a ball ||(7,14)|| 2; < € with a suitable

chosen € > 0. Firstly, we have to prove that this ball remains invariant with respect to the
operator .7%,. Let ||(7,i)]| 2; < €. According to (2.37),

12,) .5 < Cro (11— Wlls,, 170+ F—Fub (40 (=0 | 11, ) -
Let c,, be an embedding constant such that [|w||g) < CPHW”XAP‘ Then

78t o1, < 1l Nl o ey < WPl collcg (o, ) < e

Therefore,

A oA ~ 2 ~
“92(’3“)”%1 <Cio <||‘V— V’HXA[, +cp€ + 1F1 _Fchgz([O,T];Xp)

+(e+R1)||Z—b||cgz<[0ﬂ;%(§))) <Cio <cp£2+ (e+1 +R1)||5—D||gl) ,

where Ry = |[r[|x, in case p € (5,%0) and Ry = ||r||;g) in case p = 0. Now let us take
€ = K1||D — D|| , with a constant K;. Then

| Z2(7,8)]|2; < Cuo ((¢pK +K)ID=Dll, +1+ R ) [D= Dl
In case ||5—D||@] < ) we have
| Z2(7,4)|| 27, < Cio ((cpK? +K1)81 +1+Ry) |D—Dl|5,.
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Let us define the constants as follows: K; = C19(2+R)), §; = —1—. Then
cpKi+Ky

172(7,2) |2, < Ki|D— D5,

Consequently, for ||(7,14)|| 2; < € we have || .7, (7,i)|| 2, < €.

Secondly, inside the set ||(7,4)|| 2, < € =K |D— D|| g, let us consider the difference
of % at (71,i2) and (#,12). Assuming ||D — D|| 5, < &, we deduce the estimate

| F2 (71, 01) — Fa(Pa,i2) || 27 < Crol|(F1 — P2)ity + 2 (i — i) + (P — 72)
% (BBl o 11,y < Cro(€rellPr = Pallx, + el = allcgomin, ) + S1llF1 = alx, )
1

< Cro(cpKi 61 +01)||(Fy — o ity — i) || 2, = R

(71— o, ity — i2) || 27 -
It shows that the operator .7, is a contraction in the ball ||(7,4)|| 2; < €. According to the
Banach fixed point theorem there exists a unique solution to the equation (2.68) in that
ball. This proves the assertion (i).

(i) The proof of (ii) repeats the proof of (i) with appropriate changes of spaces and
norms. For .7, the estimate (2.49) is used instead of (2.37). O

Remark 2.2. If the data of the approximate problem (2.66) are real, then the solution (7, )
to the problem (2.66) is also real. This is due to the fact that the operator .o/ (and therefore
,) maps the real functions into real functions and the subspace of real functions in 2]
constitutes a real Banach space with the norm of 27. That enables one to follow the proof
of the Theorem 2.6 and obtain corresponding results for the real functions.

Remark 2.3. Physically, a particular case of the exact solution (0,u) corresponds to the
reaction-free case. Then (2.66) governs a slow reaction process and Theorem 2.6 implies
the identifiability of a small reaction coefficient from final data.

Remark 2.4. Let us construct sufficient conditions on the data that imply the inequalities
(2.63) and U(T,x) > Uy > 0,x € Q in Theorems 2.5, 2.6. For this purpose we consider the
problem (2.4) for U and set there & = H(0,-) = 0. Let us suppose that U is sufficiently
smooth.

Constructing a corresponding problem for RDék}U — FmaxU and assuming

RDYH — FypgeH > 0, (RDI Bb — 1yaxBb)| 90 > 0, Lemma 2.4 (i) implies the inequality
RDI U — 1paxU > 0.

Next, we consider the inequalities U > 0 and U(T,x) > Uy >0, x € Q. Let us assume
that

Ju eC([0,T];R), u >0, u #0, u— nondecreasing :
H(t,x) > u(t), xe Q,t€[0,T], Bb(t,x)>pu(t), xcdQ,tel0,T].

Define V. =U — 81 u with 6 > 0. The function V solves the problem
Rpv =LV +H,, V(0,)=0, BV —(b—51%u))|sq =0,
where HH =H+6(rl —RDék}l *[L).
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Since RD({)k}l * L = k* 1, we get that for sufficiently small &,

- )

H1(1,) 2 (1)1 = S(max ()14 [kl 0.7)] 0. 1€ (0.7, xe Q.
xXe

Let us also show that BV |y > 0 for sufficiently small . We obtain
BV |oq=B(b—81x)|gq > 1—8PB1 L.
e If =1 wehave BV |y > u(t)— 8 [ju(r)dt > u(r)(1—6t) > 0.
e If B=w-V wehave BV |y > u()—02>0.

Thus, Lemma 2.4 (i) yields V > 0. Consequently, we obtain the desired inequalities
U=V+6lxu>0and

T T
U(T,x)=V(T,x)+5/ u(r)drzé/ w(t)dt = Uy >0, x € Q.
0 0

At the end of this Section, we would like to point out that we have applied results on IP1
to analyze IP2. In a similar manner, results on IP1 can be applied to study inverse problems
to determine other coefficients of L, too.

We mention that the restriction g(0, -) = 0 for the function g in IP1as well as the related
zero initial condition U (0,-) = 0 in IP2 result from strong smoothness assumption (2.23)
of a positivity principle. This principle is one of bases of our theory.

Solutions of IP1and IP2 depend continuously on derivatives of the data of finite order.
This means that these problems are moderately ill-posed. In case approximate data are
given with errors, regularization procedures can be effectively applied.

2.7 Inverse problem with an integral overdetermination condition

The results for problems with final overdetermination can be applied to study problems
with integral overdetermination condition of the following form:

/0 " u(t.x)dt = w(), (2.69)

For example let us consider the inverse problem to determine the pair of functions
(f,u) that satisfies (2.7), (2.12), (2.69).

Theorem 2.7. Let g € C%([0,T];C(Q;R)) for some 0 < o < 1 and let one of the follow-
ing assumptions be valid:
(A1) g € C ([0, TIEC(R));
(A2) kg € C'([0,T);C(Q;R)) and M(t) > ct?',t € (0,T) for some ¢ € R,
O<y<o <1
(A3) kg € CP([0,T;C(ER)) and cit7' < M(1) < extP=!, |M'(1)] < e3tP2, 1 €
(0,T), for some cy,cp,c3 ERL,0<B<y<a <l
Additionally, we assume that for g(t,x) := [; g(t,x)dz, (t,x) € [0,T] x Q it holds

§Z 0; RDi{)k}g_ rmax§2 0, Frpax:= max r('x);

xXEQ

8(T,x)>go>0,xeQ.

48



If , W € X4, and h € C*([0,T]; X)), where p € {0} U(1,0), 0 < o < 1, then the inverse
problem (2.7), (2.12), (2.69) has a unique solution

() € Xp x CH((0,71:X,) () C((0,T): Xa, )

and the following estimate holds:

11k, + lleelletss o,1%,) Ao, rx,, ) < €15 (H(PHXA,, +Iwlix,, + ||tha2([0,T];X,,)> . (2.70)
The constant Cy5 depends on the parameters M, L, g, p, .
Proof. Firstly, let us denote h(r,x) = 1xh(t,x) + tLo(x) and consider the IP1for (£, i) :
RDYa(t x) = Lia(e.2) +8(e.0)f(x) +h(t.x), x€Q.1€(0.7),

u0,x)=0, xeQ, (2.71)
Pu(t,x) =0, x€dQ,te(0,T),

with a final condition
Q(T.x) = y(x) - To(x). (272

By applying Theorem 2.2 we obtain the existence of a unique solution
(f,1) € X, x c¥([o, T];X,)NC([0,T];Xa,) to the problem (2.71), (2.72) and the esti-
mation

171, < Co (Il =Tllx,, + Ihlces o 11x,))
< Ci6 (9, + 1Wilxa, + Ihllces o 11, ) (2.73)

where Cjg is a constant.

Next we consider the direct problem (2.7) such that F is given by (2.12) and f is a first
component of a solution to IP1(2.71), (2.72). By Lemma 2.2 (iii) there is a solution to (2.7)
u e Ct([0,T]:X,) NC([0, T];Xa4,) that satisfies the estimate:

||u||C{k}([O,T];Xp)ﬂC([O.T];XAp) < Ca(llgf llceo o.r1:x,) + 1Bl (o.17:x,) + 1911, )- (2.74)

Finally, we integrate the equation and boundary condition (2.7) with respect to time
from O to . Then we perform the substitution

u(x,r) = /Ot(u()c7 T)—@(x))dr, (x,1)€Qx[0,T] (2.75)

in the obtained problem. These transformations result in problem (2.71). The substitu-
tion (2.75) in the condition (2.72) results into (2.69). Therefore, (f,u) solves the inverse
problem for (2.7), (2.12), (2.69) and the estimates (2.73) and (2.74) imply that (2.70) is
valid. O

2.8 Appendix: details of proof of Lemma 2.4

To help the reader, we present the treatment of a problem for u = ¢~ °"u and derivation
of the inequalities (2.25), (2.26) in Lemma 2.4. This repeats the material of the paper [36]
with some little modifications.

49



Substituting u = ¢°’u to the problem for u and performing some transformations we
obtain

RS (@ — ) (1,%) = Lii(r,x) + F)a(r,x) + F(r,x), 1 € (0,T), x € Q,
W(0,x) = 9, ¥EQ,

where

K(t) =e 9K (1) — G/tT e %K(s)ds, F(x)=r(x)— G/OT e PK(s)ds,

T
F(t,x) = e O'F(t,%) + 9 (x)0 / ¢~ PK(5)ds.

t

It is easy to see that u and F satisfy the assumptions of Lemma 2.4. Let us verify that K
meets the conditions of that lemma, as well. Integrating by parts we obtain

K(t) = e TK(T) — / " Ok (5)ds.
t

The monotonicity properties of K imply K’Ng 0, K/Lt) <0a.e.r € (0,tk). Therefore, K>0
andforanyt;,t € (0,T),t; <t,itholds K () — K(t;) = ,’12 e % K'(s)ds < 0. Moreover,
inthe particular caser;,1; € (0,1x), we have K(12) — K(¢1) < 0. Thus, K(¢) is nonincreasing
in (0,7) and strictly decreasing in (0,#x).

Next, we prove (2.25). Let us represent the derivative RDéK}(u — ¢)(t1,x1) by means
of the limit:

RDéK}(u_ 0)(11,x1) = %/(:K(t —0)u(t,x1) — ¢(x1)]dT e sl—i>r(?+ éle,
where
= [ K= ofuen) — o)z [ Kl —e—Dlu(rx) - o(m)lde

0
— /Oflfg[K(tl —7)—K(t —e—1)[u(t,x1) — ¢ (x1)]dT

+ [ K@ —Du(ex) - o(x)ldr.

n—=e
Since u(7,x1) > u(ty,x1), T € (0,71 — €), and K is noninceasing, we have
[K(ti—7)—K(t1 —e—71)|u(t,x1) < [K(th —7) —K(t1 —€—7)Ju(t1,x1), 7€ (0,11 —¢).

Therefore, we can estimate as follows:

L < /0 "Ik - 1) — Kt — & — DT u(t,x) — 6 ()]

+ ttieK(l‘l _T)[U(T,xl) _¢(x1)]dT

— " k@drju(,x) — o)+ /0 " K(D)u(t — 7x1) —ult,x)]dr.

Hh—€
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Thus

t

Rt (u— ) (t1,%1) < lim br K(t)dt[u(t,x1) — ¢(x1)]

e=0+ € Jy—¢

1 r€
+ lim = [ K(D)[u(t; — 7,x1) —u(r1,x1))d.
e—=0+ € Jo

By (2.23), the second addend at the right-hand side equals zero and due to the continuity
of K, it holds hm = ,l K(7)dt = K(t1). Therefore,

DI (w = 9)(n,x:1) < K(n)[u(n,x) = 9 (1))

Since K > 0 and u(#1,x1) <0 < ¢(x;), we obtain (2.25).
Finally, we prove (2.26). We have

RD({)K}(u—(Z))(fO,xO) = lim lJE,

0t £
where
Je= [ Klip—o)lutex0) ooz~ [ Ko~ fuz.0) - o(xo)ldn
_/f K(fo— 1) — K(f— € — 7)]u(t,x0)d7
+ fHK(to—r) u(7,x0)dt — f:oeK(r)dW(XO)-

Let € < min{fy —13;%, }. Since

u(t,x0) > z(7) := { 0, 7€(0,f0—¢)\(t2,13) ce(0h—e),

0, TE€ (t2,13) ’
and K is nonincreasing we have for 7 € (0,7 — €)
[K(fp— 1) — K(fp — € — 7)]u(t,x0) < [K(fp — ) — K(fp — € — 7)]z(7).
Moreover, K > 0 and ¢(xo) > 0. Consequently,

13 i
Je<8 [ [KGo—1)—K(y—e—1)dt+ [ K(io—1)u(r.x)dt

[5) fo—¢

fo—l‘z fo—tz 8
=90 {/ K(T)dr—/ dﬂc} / K(t —T,x0)dT.
f07[3 fo*l}*g

Due to (2.23) and u(f,xp) = 0 we have liI(I)l 1[5 K(t)u(fo — 7,x0)dT = 0. Therefore
e—0+

fo—tz fo—lz—g
/ K(‘L’)dT—/ K(r)dr}
fo —13 fo*l}*é’

= 8[K (i — 1) — K(io — 13)]-

s=0

RpiK} 4z I
Dy ' (u ¢)(f07x0)<81£(1)1+8{

d fo—tr+s
By s / K(7)dz
dS fo—t3+s

We obtain (2.26).
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3 Inverse problems for a perturbed time fractional diffusion
equation in Lebesgue spaces

This Chapter comprises results of Publication | with some modifications. Asin the previous
Chapter, we consider complex-valued scalar spaces by default, if the space is real-valued
then we additionally specify it.

3.1 Perturbed time fractional diffusion equation

Let us consider the generalized subdiffusion equation (1.3) with the operator

L. 0
L=L(x)= ,,21 > (a, i(x) 8x,~> +r(x)l.
We assume that (see [33])
B-1 B-1
May:f@j+m*f@? 0<t<T, (3.1)

wherem € L;((0,T);R)and 0 < < 1.
Plugging (3.1) into (1.3) we arrive at the equation

U = RD(I)_B (Lu+mx*Lu)+ Q. (3.2)

The kernel M is Sonine and the equation (3.2) can be reduced to the form (1.4), but in this
Chapter we use a different method to integrate (3.2).

Applying the operator of fractional integration 157 (1 ﬁ) * of the order 1 — 3 to
(3.2), we obtain the perturbed time-fractional diffusion equation

CDgu:Lu+m*Lu+F, (3.3)

where F = I(;*ﬁ 0.

The equation (3.3) can also be obtained by means as an extension of the parabolic
integro-differential equation u;, = Lu+m*Lu+ F that describes hereditary heat processes
[2, 42] to the fractional case and is referred to as the fractional diffusion equation with
memory [51].

Let us consider some examples of m based on the kernels from Section 1.7.

Firstly, we consider the case of kernel (M2). Without loss of generality we take g = 1
and redenote the principal term 8 = ;. Based on the formula

¢ fb tu+b+l
Tat1) T(b+1) Tlatbr2)

that can be verified by means of Laplace transform, we deduce that in case (M2) the re-
lation (3.1) is valid with the function

a,b>—1 (3.4)

N BB

= LI p) (43

Next we consider the case (k2). We would like to represent the associate to k kernel
M in the form (3.1). Again we assume that g; = 1 and redenote § = f3;. That allows us to

represent k in the form
B 1B




such that:
N B—Bj-1

LUTGEpy)

We consider the Volterra equation of the second kind with respect to m

0<r<T.

()=

I+1xm+m=0. (3.6)

It has a unique solution in L; (0,7);R) [22]. Since r{;ﬁﬁ) * % = 1 the equation (3.6) is

equivalent to
b P (B AT
<F(1—B)+ *F(I—B)>*<F(B)+m*F(B)> -

This implies the relation k « M = 1 for M of the form (3.1).

Further, if M satisfies the conditions M — ﬁ(ﬁ) ew(0,7), 11%1+ (M(t)— ’rﬁ(—;)) =0then
the formula (3.1) is valid with the function
B B
m(t) = T0—p) * <M(t) - 1"([3)) .
This observation is useful in cases (M4) and (M5). We obtain
m(t) = 1_(2% * [(e’h — 1) F(tgzl)] in case (M4), (3.7)

P Y P2 P
m(t) = m* [(e A _ 1) m—le A 1_(13)] in case (M5). (3.8)

To handle the kernel (Mé) we use the definition of Egp (1.18) and express M as
B-1 N J ) BigBit+B-1 N
L) & TPBj+h)

o A BiBitB-1

27 T(Bj+B)

where J is chosen so that BJ+ B —1 <0and B(J+ 1)+ —1 > 0. Thenw € W/ (0,T),

lirrlr w(t) = 0. The kernel m in (3.1) is a sum of two kernels m = m; + m; where
t—0

M(t) - W(t)v

w(t) = + Pl e —1)Eg g (APIP),

]tﬁﬂ‘ﬁ 1 tﬁ*I [ﬁ*l

J
Z rBj+p) g mw: )= gy rmalt).

The addend m; (¢) can be expressed as in case (M2). We obtain

J ABiBi-1 -B
Zl t and mz(’):ﬁ

The cases (M3) and (k3) are not the particular cases of (3.1), so they are not covered
by this Chapter.

*w'(t).
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But M(¢) in the following special form of the Lebesgue-Stiltjes integral

1 +B-1 B—1 1 s—1
M0 = [ ) = fgy +

is still representable as (3.1) where m(t) = jg a(s) %ds.

3.2 Formulation of direct and inverse problems

B

For the sake of generality, let us transform the Caputo derivative CDO u contained in (3.3)

to the form RDg(u —u(0,x)) that does not contain the first order derivative of u. We
obtain the following equation: RDg (u—u(0,x)) =Lu+m=*Lu+F.

Now we are going to formulate problems to be treated in the present Chapter. Let
Q € R" be an n-dimensional open bounded domain. Firstly, we formulate a direct problem
for the function u:

RDB (u— 9)(1,%) = Lu(t,x) + (m* Lu) (1,x) + F(1,x), x€Q,1€(0,T), (3.9)
u(0,x) = o(x), x€Q, (3.10)
PBu(t,x) =0, x€dQ,re(0,T). (3.11)

Here F and ¢ are given functions and % is a boundary operator:
PBv(x) =v(x) or Bv(x)=0(x) Vv(x)+Ov(x),

where 9 is the conormal vector. i.e.

19L(x) = (1911,1()6)7...,191"”( ) s 19L, Za,l

and ¥ (x) = (% (x),...,%(x)) is the outer normal of Q at x € dQ.

A problem with non-homogeneous boundary conditions can be transformed to the
problem (3.9) - (3.11) by means of a standard change of variables as in Section 2.1.

Next we formulate two inverse problems that use the final overdetermination condi-
tion

u(T,x) =y(x), xeQ, (3.12)

with a given observation function y.
Firstly, we pose an inverse source problem. Let F have the form

F(t,x) = g(t)f(x) +h(t,x), (3.13)
where g and & are given functions. The aim is to reconstruct the factor f.
IP1. Find a pair of functions (f,«) that satisfies (3.9) - (3.13).

Secondly, we formulate a bacward in time problem.

IP2. Find a function u that satisfies (3.9), (3.11) and (3.12).
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3.3 Preliminaries and basic assumptions

Let us introduce basic conditions on the data that will be assumed throughout the Chapter.
Regarding the kernel m we assume that m € L;((0,T);R).
The assumptions on the domain Q and the operator L are as follows:

dQisofclass C?, a;; € C'(;R), reC(R),

aij = aji, Za,j (x)EE; > c|€* VE € R, x € Q for some ¢ > 0
i,j=1
r<0,60>0 andeither3rg>0: —r(x) >rgVx€Qor6 >0.

Let || - || and (-, -) stand for the norm and the inner product in the space L, (Q2), respec-
tively.

We present some important features of the operator L that follow from the listed
basic assumptions. The operator —L with the domain 2(-L) = 2(L) = {z € W}(Q) :
PBz=0in dQ} is a bijection from 2(—L) to L,(Q) and its inverse is compact, self-adjoint
and positive definite (Theorems 3.8 and 3.10 in [16] ). Therefore, its eigenvalues and or-
thonormed in L, (Q) eigenfunctions {A¢, v }ren are suchthat 0 < A <A, <., A4 — oo,
and v, k € N, form a basis in the space L,(Q). Moreover,

iy 1
lell o) = [X Al{zvidl*)2
k=1

is a an equivalent norm in the space 2(—L).
We introduce fractional powers of —L and related domains. The operator (—L)¢, { >

0, can be defined by the relation (—L)¢z =¥, l,g (z,v) v and has the domain

) = (£ €12 Vel gy = [ L 4 ] <o}

inthe space L,(Q) [78]. Evidently, Z((—L)°) = L, (). Moreover, we have the continuous
embedding

2((-1)") = 2((-1)%), &> 6.
We formulate a lemma that follows from Corollary 2.8.1 and discussions in p.29 of [97].

Lemma 3.1. Let X be a complex Hilbert space. Let B € (0,1), p € (1,0). The operator
of fractional integration of the order j3, i.e. Iﬁ = W , is a bijection from L,((0,T);X)
onto oH 5 ((0,T);X), the inverse of Ig is the Riemann-Liouville fractional derivative RDg =
dl-B
a1, " and ;
[wll oHE (0.7)%) = XD WL, ((0.1):x)

is a norm in the space OH,E((O, T);X). Moreover, in case p € (%,oo) it holds
HE ((0,7):X) < C([0,T):X) and w(0) = 0 for w € oHE ((0,T):X).

In treatment of convolutional terms we will apply norms with exponential weights.
Let us define these norms in the spaces of scalar functions L,,(0,T'), p € [1,e0]:

[Wllp:o = lle”wllz,0,r), where o >0.
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If o =0then |- || ;c becomes the usual normin L,(0,7T) and we denote it by || - || ,. The
following equivalence relations are valid:

el wllp < Wil < [wll,- (3.14)

Note that the weight can be easily brought into the convolution, i.e.

—0Ot —ot

e mxw= (e %m)* (e w)

and the Young’s inequality (1.9) extended to the weighted norms:

s wlso < Imllgol o, 14+ =+ (315)
m*wl||s:o < ||mllgollwllpo s —-—=—4-. .
$;0 q;0 pi;o s » g
Finally, in case p < oo, [|W||p.c — 0 as & — co.
Next we provide some extra properties of Mittag-Leffler functions required for this
Chapter.
It follows from the complete monotonicity of Eg(—z) and Eg(0) = 1 that

0< Eﬁ(fz) <1, z=20. (3.16)
Since (1.20) and (3.16) hold, there exist C;7, C1g > 0 such that

C17 Cg _Cig
— < Eg(—z) < —— < — for > 0. 3.17
I+z p(=2) I+z = z ¢ (317)

In addition to the Mittag-Leffler functions, we introduce the a-exponential function

[8]:
e =1 Ey o (A1%),  a>0. (3.18)
The relations (1.19) and (3.18) yield the following useful formula:
)
/0 heg*edT =1 Eg(~AiP). (319)
Moreover, the formula (3.19) in view of the relations (3.16) implies
1Akeg™ [y < 1. (3.20)

Let us prove a technical lemma. It will be applied in proofs of Theorem 3.2 (ii),
Theorem 3.3 and Lemma 3.4.

Lemma 3.2. There exists a constant Ci9 > 0 such that

. Ci3Ct
(/Ie*’“*)’Eﬂ(—ltﬁ)g 829 450, >0, ieN, (3.21)
B A1B
Proof. The convolution formula of Mittag-Leffler functions (see [25], (11.12)) implies
AeM « Eg(—AtP) = LPE2 aby =M g s 3.22
ep" *Ep(=A1) = ATE} g\ (=A17) = =5 Ep p(=A1F). (3:22)

Here EZ:.B is the three-parametric Mittag-Leffler function and we used the formula
E123¢B+1(Z) = %Eﬁﬁ (z) ([25], (11.4)), too. The asymptotic relations (1.20), (1.21) and
[(1-B) = (=B)I(-P) yield

PEpp(—2) = BzEg(—2)+0(z') as zeR,z—eo,
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where BzEg(—z) is the dominating term at the right hand side. Thus, there exists zo > 0
suchthat 5 Eg g(—z) < 2Eg(—z) for 2> z9. On the other hand, since zEg g(—z) € CI0, z0]
and Eg(—z) is positive and decreasing, we obtain %Eﬁﬁ (—2) < CaoEg(—2z)for0<z< 20

max yE —y
o X ¥ 8.,8(—y)

BEg(—20)
Ci9 = max{2;Cy} and from (3.22) we have

where Gy = . Therefore, iEﬁﬁ(—z) < C19Eﬁ(—z) for any z > 0, where

Aegh «Eg(—AiP) < CroEg(—AiP). (3.23)
So we continue the iterations and obtain

(eg™ ) Eg(—AiP) < CloEp(—21P).
Finally, estimating Eg (—2tP) by means of (3.17), we reach (3.21). O

3.4 Direct problem

In the sequel we will search for the solution u of (3.9)-(3.11) from the following space:
Uy p = {u € Ly((0,T): 2(—L)) NC([0,T):Lo(Q)) : u—u(0,-) € oHP ((0,T):Lr(Q))},

HMHOZ/A/} = ||u||LS((0,T);_@(7L)) + ||M||C([O,T];L2(Q)) + ||M— M(O, .)HOHP((O-,T);L2<Q>)’

where s € (1,00).

For s; > s, the embedding holds %, g — %, p-

Let us introduce a notation for the Fourier coefficients of data functions involved in the
direct problem:

Mk(l‘) = (u(t,-),vk), Fk(l‘) = (F(t,~)7vk), O = <(p7vk), keN.

Proposition 3.1. Let F € L,((0,T);L,(€2)) with some p € (1,00) and ¢ € L, (). Then the
following assertions are valid.

(i) Ifuc Uy g with some s € (1,00) is a solution of the direct problem (3.9)-(3.11), then the
Fourier coefficients uy, k € N, belong to

Uop = {w e Cl0,T] : w—w(0) € oHF (0,T)}
and are solutions of the following sequence of problems for k € N:

RDg (ur — @) (1) + A (t) + M (m+wi ) (1) = Fe(¢), t € (0,T), (3.24)
ur(0) = @r. (3.25)

(i) If (3.24), (3.25) have solutions u;, € 02’/713 k € N, with some s € (1,00) such that u =

~+oo
Y. uvy € % g, then u is a solution of the direct problem (3.9)-(3.11).
k=1 ’

Proof. (i) Letu € %SJ; with some s € (1,0) solve (3.9)-(3.11). Since u —u(0,-) =u—¢@ €
oH?P ((0,T);L2(R2)), by Lemma 3.1there exists i € L;((0,T); L, (L)) such thatu — @ = 1517
and i = ®D (u— o).
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Let us denote u (1) = (u(t,-),vx). Duetou € Ly((0,T); L2 (R2)), we have iy € Lg(0,T).
On the other hand, u; — @ = (u— @, v) = (Igﬁ, Vk) = Ig (W, ve) = Ifﬁk. This relation with
Lemma 3.1 implies

e — @ € oHP (0, T) and *DY (ur — ) =

Further, fromu € % g C C([0,T]; L»(R2)) we immediately have u; € C[0,T]. Moreover,
taking the inner product of the initial condition u(0,-) = ¢ with v, we deduce (3.25).

The relation u; — @ € OHSB (0,T) with (3.25) and u; € C[0,T] proves that i € %Sﬁ. The
deduced equalities 7 = RDg (u—¢)and RDg (g — Q) = Uy imply

(RDB (u— @), vi) = RDB (u — gy).

Moreover, (—Lu,v) = (u, —Lvi) = A {u,vr) = Ayug. Consequently, taking the inner prod-
uct of the equation RDg (u— @) — Lu— m* Lu = F with v;, we obtain the equation (3.24).

(ii) Let the assumptions of (ii) hold for u;. Denote
R=RDP(u—@—p)—Lu—mxLu—F,  p=u(0,)—o.
Then u € %, g solves the problem
RDB(u— @) —Lu—mxLu=F,
u(0,-) =9,

where F=F +Rand ¢ = ¢ +p.
Applying the proved statement (i) to this problem, we see that u, k € N, solve the
problems

RDPB (g — @) + Mt + A (m =) = F,
Mk(o) = akv

where F; = F; + (R,vr) and @, = @ + (p,v). Comparing these problems with (3.24),
(3.25), we see that (R,v;) =0, (p,vi) =0, k € N. Thisimplies R = 0, p = 0. Consequently,
u is a solution of (3.9)-(3.11). O

Theorem 3.1. Let k € N. Then the following statements hold.

(i) (uniqueness) If F, =0, @y = 0 and u; € @ZB with some s € (1,00) solves (3.24), (3.25)
then u;, = 0.

(i) If F, € L,(0,T) with some p € (ﬁ ,00) then the problem (3.24), (3.25) has a solution uy,

in the space %pﬁﬁ' This solution is represented by the uniformly in [0, T] converging
series

too .
ug(t) = (PkZ(Mk*)lEﬁ( Mt + Mk* / e I (n)dr, (3.26)

where M (t) :—Ak/ eg =), 7)dr. (3.27)

58



Proof. (i) Let F, =0, ¢y =0 and u; € ?}Tﬁ with some s € (1,0) solve (3.24), (3.25).
Since u(0) = ¢ = 0, we have u;, € oH_f3 (0,7).
Denoting y; = RDguk, we obtain i = I([fyk and y; € L,(0,T), by Lemma 3.1. Moreover,

from the equation for u; we deduce the homogeneous Volterra equation of the second
kind

-1 -1
Vi +Kpxy, =0, with Kk:)tk7+)tkm*7, IE(O,T).
I'(B) I'(B)
Such an equation has only the trivial solution. Consequently, y, = 0 and u; = 0.
(i) Assume F; € L,(0,T) for some p € (%,oo). Let us consider the Volterra equation
of the second kind

Vi + K *yp = Ry, where R, =F,— A'k(Pk — lkm* Or € L],(O, T).

This equation has a solution y; € L,(0,T) ([22], Sect. 2.3).

Let us define u; = 5yk + @k. By Lemma 3.1, u;, — ¢ € OH,/,3 (0,T) and y; = RDg(uk —
@x). From the equation of y; we deduce the equation (3.24) for uy. Since p € (%,oo)
we obtain u; — @ € C[0,T] and u(0) — @, = 0. This implies (3.25) and u;, € @;’ﬁ. The
existence assertion of (ii) is proved.

Finally, let us deduce the formula (3.26) with (3.27). To this end, we need a solution
formula of the fractional differential equation RDgw + Aw = z. It can be found e.g.

in [81], Example 42.2. Provided z € L, (0,T), the solution w € OH,I,3 (0,T) of this equation

isw= eﬁl’ x 7. After rewriting (3.24) in the form of the equation

RDng +Akwk = Zk, where Wi = U — Pk and 7 =F— }{,k(pk — /'Lkm* uy,

and applying the mentioned solution formula to it we obtain u; = elgl’ * Zx + Q. Using
(3.19), (3.27) we transform the latter relation to the Volterra equation
u(t) = Or(t) + Myxu(t), t€(0,T), (3.28)
with O = @Ep (—MtP) +eg’l"t «F € C[0,T).

Next let us show that M« € £ (C[0,T]). Sincem € L;(0,T), itholdsthat M; € L;(0,T),
hence for any w € C[0,T] we have M*xw € C[0,T]. Due to (3.15) and (3.20) we obtain

—lkf —

A
1Ml < ImlliollAees ™ [l1o < Imlliol ey ™ 11 < llm]| 10 (3.29)

For any w € C[0,T], we have |[M* W5 < || Mk||1:6[|W]lesio < ||| 1:6]|W||oo,5. CoOnse-
quently, Mx € £ (C[0,T]). Moreover, there exists sufficiently large ¢ such that

M || 2(cor)) < llmllie < 1.

Thus, applying the theorem about the continuously inverse operator (see [92], p.140),
we express the solution of (3.28) by means of the uniformly convergent Neumann series
(3.26). O

Theorem 3.2. (i) (uniqueness) If F =0, ¢ = 0 and u € %, g with some s € (1,) solves
the direct problem (3.9)-(3.11) then u = 0.
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(i) If € L,(Q) and F = 0 then the direct problem (3.9)-(3.11) has a solution u that be-
longs to %, g for any s € (1, B L). This solution has the form

):‘PkZ M) Eg (— AP Yy (x) (3.30)
=0

and satisfies the estimate

||u||%ﬁ < Gyll@|l, whereCy is a constant. (3.31)

(iii) If @ =0and F € L,((0,T);L>(Q)) with some p € (%,oo) then direct problem has a
solution u € %p’ﬁ . The solution has the form

o0 fo0 i
= Y ¥ (M) / e IR (T)d T () (3.32)
k=1i=0

and satisfies the estimate
H”H%p,p < C22||F||Lp<(077);L2(Q>) where Cy; is a constant. (3.33)

Proof. (i) is an immediate consequence of Proposition 3.1 (i) and Theorem 3.1 (i).
(ii) Let us consider the sequence of problems (3.24), (3.25) with F; = 0. By Theorem 3.1
(ii), they have solutions u; € %, g forany p € (ﬁ, o). We construct the solution to (3.9)-

+
(3.11) in form of series u = ¥, uzvi and show that it satisfies the assertions of Theorem
2(ii).
We start by showing u € C([0,T]; L,(€2)). Since u € C[0,T] and vy € L»(Q), it follows

—+oo
that uyv, € C([0,T]; L2(2)). Now let us show that the series u = ): uvg is uniformly

k=
convergent in [0, 7] and therefore defines a continuous function. From (3.26) by means
of Young’s inequality (3.15), (3.16) and (3.29) we obtain

- v ' ||
()] < 1oxl (L IMello ) 15 MWM:WMZMMJ i
=0 o
provided o is sufficiently large to guarantee ||m||.c < 1. In view of ¢ € L,(Q), for any
2
€ > 0 there exists K € N such that ):k Ke (pk %8 Thus,

20T

o0
e 2
u(t VkH = |ux(2) — op <& Vtel0,T]. (3.34)
k% Z STl

Therefore this series is uniformly convergent and u € C([0,T]; L»(€2)). Similarly to (3.34)
we derive

26
e HM-WZWVM_ZW < szzﬁ (3.35)
eZGT )
ZWWPH , Vtel0,T].
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Secondly, we prove that u € L((0,7); 2(—L)). To this end, we investigate

1

2
Jut, )1 {zzk o [Z Mo Eg(~huP)] 1. (3.36)
For each term of the inner series in view of (3.27), we get
i B i =it i B
|(Mk>|<) Eﬁ(—/'th )| < (|m|*) (lkeﬁ *) Eﬁ(—lkl‘ )

Hence Lemma 3.2 implies | (M) Eg (— AP )| < (Jmlx)'C15Cio[A4tP]~1. Now we use this
inequality in (3.36). We reach the following estimate:

e < 3 08 [ Y 52 L [ oy S5 o

i=0

Let us choose & such that Cyo||m||1.¢ < 1. Since - 5 €L;(0,T) fors € (1, ﬁ) due to (3.15)
we obtain the estimate

+OO . .
Il oryo-ny < Cise®” [T Clollmllo] I P lsoliol <. 2.37)
i=0
This proves u € Ly((0,7); 2(—L)).
Next we show that u —u(0,-) € oHP ((0,T);L»(Q)) and u satisfies the direct problem.

Duetou € C([0,T];L»()) and uy(0) = ¢, k € N, we have the initial condition (0, -) = ¢.
In previous part of the proof of (ii) we showed that Lu € L;((0,7);L(Q)). By Young's

theorem, m* Lu € Ly((0,T);Lr(Q)). Lety = Ig (Lu+ m* Lu). Lemma 3.1 implies y €
oHP ((0,T); L2 (R)). Let us compute the Fourier coefficients of y:

e = (TP (Lu+mx Lu),ve) = (1B + 18 ms) (Lu,vi) = 1P (=D — m* Aayy), k€N,

On the other hand, applying the operator Ig to the equation (3.24) (there F;, = 0), we
obtain u, — @ = I (—Agup —m = Ly ), k € N. Therefore, yp = uy — ¢, k € N, and y =
u—@=u—u(0,-). We get that u — u(0,-) € OHP((O, T);L,(Q)). Substituting y by u — ¢
iny= Ig (Lu+ m = Lu) and applying the operator RDg we obtain the equation (3.9) with
F=0:
RDg (u—u(0,-)) = Lu+mx* Lu. (3.38)
Finally, we prove (3.31). The equation (3.38) implies the estimate

| — = |[Lu+mxLul| 1 ((0.1)1,0)) < (1+[|m[[1) (3.39)

u(0,) HOHf((O,T);Lz(Q»
1Ll (0.7):10)) = (U lmll) [l 2y 0.7y,2(-1) -

Then the estimates (3.35), (3.37), (3.39) imply (3.31). The solution formula (3.30) follows
from (3.26).

(iii) Applying the operator Ig to the equation in (3.9), it is transformed to the following
evolutionary integral equation in the space L, (Q):

u(t)— (axLu)(t) = (axmx*Lu)(t)+ (ax F)(¢), 1€ (0,T), (3.40)
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where a(r) = % By Lemma 3.1 the equation (3.40) is equivalent to the direct problem

(3.9)-(3.11) with zero initial condition in the space %

The assertion (iii) partially follows from Theorem 8 7 of [74] applied to the equation
(3.40). We verify the validity of the assumptions of Theorem 8.7 with the corresponding
reasonings:

1. (L) € B.9 P 2, because (—L) is a normal and sectorial operator, and 6_;) =0,
because (—L) has positive real spectrum (cf. [74] Sect. 8.7, comment c) (i));
2. ais1-regular and 6,-sectorial with 6, = 7r/2, because a is completely monotonic (it
follows from Proposition 3.3 of [74])
3. 0,4+ 6_1) < 7, because 6§, = % and 01)=0;
im 4 B < oo, 1
4, Jgr:o\a(u)m < oo, because a(u) ik
Thus, Theorem 8.7 (a) of [74] implies that (3.40) has a solution u in the space
Ly((0,7):2(~L)) NoHp ((0,T):L2(€)) and

lell ey 0.7 2-2)) + 11l g8 .72 00)) = CIF Npt0.m)i20000)-
Since p > % Lemma 3.1implies that OH,I,;(((),T);Lz(Q)) C C([0,T); L2 (Q)) and

[t )leqo.ryzy@) < Cllull oHE((0.T):Ly(Q))"

This proves that u € %, g and the estimate (3.33). Finally, the solution formula (3.32)
follows from the Proposition 3.1 (i) and Theorem 3.1 (ii). O

Theorem 8.7 of [74] implies the existence of a solution of (3.9)-(3.11) in case ¢ # 0, too,
but under the stronger assumption ¢ € Z(—L). The assertion (ii) of Theorem 3.2 in the
particular case m = 0 follows from Theorem 2.1 of [78].

3.5 Inverse source problem

Let us introduce the notation for Fourier coefficients of functions involved in IP1:

Jie={fove), (1) = (h(t,-),vi), Wi = (W, vi), k € N
Proposition 3.2. Assume that g € L,(0,T), h € L,((0,T);L>(Q)) with some p > ﬁ and

0,y € L(Q).
If (f,u) € Lr(Q) x U, g for some s > 1 is a solution of IP1, then f, k € N, are solutions
of the sequence of linear equations

~+o0

Afe=wi—Bi, Ax=Y ((Mp)e™ xg)(T), (3.41
i=0
Bi =9, Y (M) Eg(—htP)) (T) + Z()((Mwe,;*k’ ) (T).
i=0 =l

Conversely, let f;, k € N, be the solutions of the equations (3.41) and Z fk < oo,
Then f = Zk:l Sivk € Ly(Q), direct problem (3.9)-(3.11) with F = fg+ h has a solution

u€ %.p,s € (1,5)and the pair (f,u) solves IP1.

2.7 P is the space of operators with bounded imaginary powers. Here we refer to the defini-
tion of sectorial operator provided in [74].
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Proof. Let (f,u) € Lr(Q2) x U, g solve IP1. Using Proposition 3.1 (i) and Theorem 3.1,
we deduce the formula (3.26) with F;, = g + h. Setting theret = T and replacing u; (T')
by Wi, we obtain (3.41).

Conversely, let fi, k € N be the solutions of (3.41) such that ¥ f% < oo. Then by
Theorem 3.2, the problem (3.9) with F = g f +hand f = Y%} fivi has asolution u € Uy p
foranys e (1, %) Again, by Proposition 3.1(i) and Theorem 3.1 we reach (3.26). Comparing
it with (3.41), we see that uy(T) = y, k € N. This implies (3.12). Thus, (f,u) solves IP1. O

Now we prove a basic lower estimate of A; in (3.41). We do it separately for the differ-
ent cases of m.

Lemma 3.3. Assume that there exist T € (0,T), go > 0 such that one of the following
conditions is valid:

(A1) m<0, g€ L,((0,T);R) with some p > 4 58 >0andg(t)>goae.t € (T1,T);

(A2) g € L.((0,T);R), g >0, g(t) > g0 a.e. t € (T1,T), and ||m||; < m’ where
Co3 = 1—Eg(—M(T —T1)P);

(A3) m>0,g €W ((0,T);R),g—m*g>0,g >0and (g—mxg)(t) > gofort € (T, T).

Then A, > %4 k € N, where Co4 > 0 is a constant independent of k.

Proof. Firstly, we consider the case (A1). Note that m < 0 implies M > 0. Thus, due
to (3.19), the properties of g and the monotonicity of Eﬁ( Z), we obtain that each term
of the series for A; in (3.41) is nonnegative. Therefore, we estimate A; from below by the
first term of the series:

Ak>(e

-1 1 —Eg(—M(T —T7)P
A (T >g0/ le”lk’dt:( B (—A( 1)P))go @ (3.42)
B B Ak 7Lk

where C24 = [1 — EB (—kl (T — Tl)ﬁ)}go.
In case (A2), by means of (3.15) and (3.42) we deduce

(1—Eg(—2(T —T1)P))go

— Mgt . & i At
A= (e x ) (1) = | L (Me'e™ ) (T)| >

A
o0
i -
=Y 1Ml lleg™ 111 l1glo-
i=1
Using (3.20) and (3.29) we obtain A, > 24 , where
Cos =1~ Eg (AT =T g0~ 1 11— gl > .

Finally, we treat the case (A3). We point out that A; can be represented as

Ry .
Ay = Z(Mmz'eg*k’ #(g— My #g)(T)
i=0
+
Z M) e ™ 5 (g — /Ike Wxgrm)(T). (3.43)
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Let us estimate the term inside the braces in (3.43) (g — lkeg’l"l xg *m) By means of the
integration by parts we have

d
(EEﬁ(—lka))*gZEﬁ(—lkfﬁ)g(O)—g+Eﬁ(—/1ktﬁ)*g/~

Since —lkel;l"’ = %Eﬁ(—),ktﬁ) (see (3.19)) it holds that

d
At xgxm=g+ ((ZEﬁ(—lkl‘ﬁ))*g) *m = g(O)Eﬁ(—l]Jﬁ) *m

+g’*EB(flktﬁ)*m+gfm*g.

g— lkeg

Therefore, since g(0) = (g — g +m)(0) > 0 and in view of the assumptions (A3), we have

Ak

gflkel; "xgxm>=g—mxg>0.

Since My« My = (—m) * lkel;;t” * (—m) % /Ikel;l“ > 0, each term of series (3.43) is nonneg-
ative. Therefore, we estimate A; from below by the first addend from (3.43):

Ac > (eg™" 5 (g—m+g))(T).
Then similarly to (3.42), Ay, > %4, where Cyq = [1 — Eg(—A(T — Tl)ﬁ)]go. O

From Proposition 3.2 and Lemma 3.3 we easily deduce the uniqueness assertion for
IP1.

Corollary 3.1. Let the assumptions of Lemma 3.3 be satisfied, ¢ =0, h =0and v = 0. If
(f,u) € La(Q) x %, g for some s > 1 is a solution of the IP1, then f =0, u = 0.

Proof. If (f,u) € Lo(Q) x %p is a solution of the inverse problem, then by
Proposition 3.2, the formulas (3.41) are valid and it yields from the assumptions of the
corollary that y; = By =0, k € N. On the other hand, Lemma 3.3 implies A; > 0, k € N.
Therefore, the solution of (3.41) is f; = 0, k € N. This implies that f = 0 and therefore
F = fg+h=0. Thus by Theorem 3.2 (i) u = 0. O

The functions m corresponding to the kernels (M2) and (M4) are the examples of m > 0,
this follows directly from their representation (3.5) and (3.7).

The examples of m < 0 include the kernels (k2) with 2 terms and (M5).
Let us take a closer look at (k2) with 2 terms. For k = r(l1_—ﬁﬁ) +q r(‘;fz 7. Ba<PBthe

function m satisfies the equation:
B =B Bl B-1 .
+q2 * +m*x ——— | = 1.
L(1-pg) “I(-p) I'(B) I'(B)
Let us apply the Laplace transform to this relation:

1 % 11 1
<s1/3 Jrslﬁ2) (sﬁersﬁ) s

92
sﬁ—ﬁz + q2

Therefore
”;’l =
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and according to [20] p.312

m(t) = —qtP PEg 5 5 5 (—qutPP2) <0

At

Now Iet us check the case (M5). For this purpose let us substitute the expansion e~
;’0< l, " into (3.8)

B Jio tz+ﬁ 1 oo (_)‘)itﬂrﬁ—l
F(lfﬁ) = ( t+1 IT(B) = irp)
A tfﬁ *+°°( )tt1+ 1( +ﬁ)

ra-g) = G@+DITEB)

and then apply the formula (3.4) for the convolution. We obtain that

m(t) =

A ’F F 1
——w;) ’l+2 i:ﬁ;m CABIFR(14B.2,— A1) <

where | F] is the confluent hypergeometric function of the first kind.

The coupled conditions for m and g in (A3) cover all positive integrable m. This means
that foranym € L;((0,T);R), m > 0, itis possible to find a function g so that (A3) is valid.
Let us construct such a g. Choose an arbitrary z € W] ((0,7);R) so that z > 0,7 > 0 and
z(t) 2 z0 > 0,1 € (T1,T) and define g as a solution of the Volterra equation of the second
kind g —m=*g =z Then g —mxg — g(0)m =2/, hence g’ = Y./ (mx) (' + g(0)m) > 0.
So, the conditions (A3) are satisfied.

Theorem 3.3. Let the assumptions of Lemma 3.3 be satisfied, y € 2(—L),
h e Ly((0,T);Lx(Q)), with some p € (%,oo] and Y50 A2 |[||5 < o where @ is some
number satisfying inequality
1 ; 1
w] ~ s incasepe (5:°);

=0 in case p = oo.
Moreover, let one of the following conditions be valid:
(Ad) 9 € Z(-L);
(A5) ¢ € 2((—L)%) forsome { €[0,1)and m € L /((0, T);R) for some s’ >
(A6) ¢ € Lr(Q)and Fcyy =0, Y <11 |m(t)| < &

1 .
1-B(1-¢)’
™" age. te(0,T).

Ym )

Then IP1 has a unique solution (f,u) € Ly() x @/s,ﬁ forany s € (1, %) The components
of this solution satisfy the estimates

400 1
1A < Cos{IWlla 1y + 1l nyey + [ X A2 Nl3] ) (3.44)
k=0
and
lullp < Cao{ Wl -1y + 1 @ll 0 [Zx,fwuhkn} Al (0.725() } (3:45)

where Cys, Ca4 are the constants and the exponent @ equals 1, { and 0 in cases (A4), (A5)
and (A6), respectively.
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Proof. Let us consider the formula of By in (3.41). Since h € L, ((0,7T);L>(Q)) the
coefficients i € L, (0,T). Firstly, we estimate the term containing &, by means of (3.14),
(3.15) and (3.29):

+oo
i -2
X (Mg ™ ) (7)< “Tankumne o
i=0
T+oo i — it
<e® Y lmlliglles™ s« hgleo. (3.46)
i=0

In case p = o we have ® > 0 and by means of (3.15), (3.20) we obtain

71/(1 71](!

leg™ s« hilee < lleg™ [l llAnlleo < A" 1aelen < A2

Af
Next let p € (ﬁ o). Without restriction of generality we assume that @ < 1. We note
that the boundedness of E g (—z) for z > 0 and the asymptotical relation (1.21) imply the
inequalityEﬁ.ﬁ (—2) < ZIC% for z > 0 with some constant C»7. Thus

w Zl‘ﬁilEB.ﬁ(—lkl‘ﬁ) < C27/'Lka)71tﬁw71.

Due to the assumed inequality @ > 7L it holds F©~! ¢ Ly (0,T), where

1, 1 _
ﬁp 7+F—1.Thus,
by Hoélder inequality we obtain

p

_l _ _ 3
leg™ % hillee < CorA® [P | ol p = Cos 1

1

Let us continue the estimation of (3.46). For any p € (F’w] we have

+oo +oo

. _2’ . _ _
X ()™ 1) (7)< Cag T Y o A2 il = C3022 ™ iellp - (347
i=0 i=0

T
with Co9 = max{A; “;Cas}, C30 = ]fa“ﬁ provided o is large enough to guarantee
|ml|1;6 < 1.

Secondly, we estimate the factor of ¢y in (3.41). In the general case whenm € L (0,T)
(it is so in the case (A4)), we have due to (3.16) and (3.29) that

e .
’Z((M,@k)’Eﬁ(—lktﬁ ‘<eGTZ||m|| olIEg (=P )| < Gt (3.48)
i=0

eoT
1—[ml[ 1.6~

In case (A5), by means of (3.20) and (3.29) we obtain the estimate

where C31 =

oo ' » |
‘;)((Mk*)’Eﬁ (*/'thﬁ)) (T) ’: ’Eﬁ (—MTB) — izzé((Mk*)%kel;lkt

*m*Eﬁ(—lktﬁ))(T)‘ 5 (— 2 TP) + GTZHmHIGHm*E[;( AtP)||oo. (3.49)

Since by formula (3.17) Eg (— AP ) < 1+C/{:tﬁ <m tﬁ =%, £ €[0,1), we estimate

1 o _
lm Eg (—A4P) |0 < CisAf ™ mlgllr PO
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where % + % = 1. In this point we have ||t "B(1=%)||» < o because of the assumption
s> lfﬁ(llfg).Thus, from (3.49) we obtain

g .
‘Z((Mk*)’EB(—kktﬁ ))(T)]g CAl™! (3.50)
i=0

e

. c oT ¢
with C3; = Tﬁ(:ig) + = Hm”l ||m|| Ht C)HS”'
Finally, if the assumptlons (A6) hold for m, we deduce

‘Z (M) Eg(—MatP)) ( ‘<Z(

Using Lemma 3.2 and the formula (3.4) repeatedly, we continue the estimation:

C[’Ym

= ) (uey ™'V Eg(~MatP) ) (T).

oo . —Ym)—1 C Ci
i ﬁ Cf 18%19
‘;)((Mk*) Ep(~2iP))(T)|< Z( T A )(@)
(Crocpy )T =1m)=B .
— Lesra- =L, 3.51
3T L =g~ 50

where C33 = C13sTAT(1 — B)Ei_y,1-p (Cr9¢,, T'~¥). Summing up, (3.48), (3.50) and
(3.51) imply

g .
\Z (M) E (—MtB)) (T)]g C34A07! (3.52)
i=0

with C34 = max{C31 ;C32;C33} for all cases (A4) - (A6).

Now we are able estimate the quantity f; in (3.41). Lemma 3.3 and the relations (3.47),
(3.52) yield ‘fk| < C25{A«k‘ll/k| +)L®|(Pk| —‘y—)Lthka} where Cp5 = max{l C30,C34}
Assumptions of the theorem yield Zk:lfk < oo, Therefore, eX|stence assertion of the
Theorem follows from the Proposition 3.2.

1/2
Plugging the deduced estimate for |f;| into the relation || f|| = {Zkﬁj \fk|2} and us-

ing the triangle inequality in l,-space, we obtain (3.44).
By estimates (3.31) and (3.33) from Theorem 3.2 with F = fg + h we obtain the esti-
mate for u:

45 < Cas (1011 + Uy, 0.1 171+ 1l 0 120020 )

forany s € ( ,ﬁ>, where C35 = max{C,;,Cx»} and p; = p in case (A1), p; € (B’ ) in

cases (A2), (A3). After inserting the estimate for f (3.44) into this inequality we obtain
(3.45). O

The assumption (A6) is satisfied by kernels m corresponding to the cases (k2), (M2),
(M4), (M5), (M6).

3.6 Backward in time problem

Proposition 3.3. Assume that F € L,((0,T);L,(Q)) with some p >3 Land y € L,(Q). If
u € U, g for some s > 1 is a solution of P2, then ¢, = u;(0), k € N, are solutions of the
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sequence of linear equations

+oo )
Avpe=wi— B, A=Y (M) Eg(—MP))(T), (3.53)
i=0
A g i — At
B, = Z((Mk*)’eﬁ e F)(T),
i=0

where y;. = (Y, v,) as in the case of IP1.
Conversely, let @,k € N, be solutions of the equations (3.53) and Z,Z"I (p,? < o0, Then
the direct problem (3.9)-(3.11) with ¢ = Z = Ouvi € L2 () has a solution u € U p for any
€ (1, B L). The function u is also a solution to IP2.

The proof is similar to the proof of Proposition 3.2.

Next we derive a basic lower estimate for A in different cases of m. Unlike IP1, we have
no results in case of general positive m. Lack of an additional degree of freedom (as the
function g in IP1) makes the study of the case m > 0 very complicated.

Lemma 3.4. Let one of the following conditions hold:
(A7) m<0
(A8) ||ml||; <1,m e Ly((0,T);R) for some s’ > ﬁ and

[|m]|y - Ci7(1—Bs")'/
L—|mlly = Cig(1/2 +TB)T1/"=B’

where Cy7 and Cg are the constants from (3.17) and l, + % =1;

(A9) |m(1)| < s
such that

e Yn g.e. t € (0,T) with some ¥, < 1 and a sufficiently small c,, > 0,

Cry
C18C19F(1 —ﬁ)Tlfy’"fﬁ(l/)q —I—Tﬁ)’

CmEl—Ym,Z—)/m—ﬁ (Clngiym Cm) < (3.54)

where Cyg is the constant from (3.21).

Then Ak > @, k € N, where C3¢ > 0 is a constant independent of k.
Ak

Since El,%,l,z,%n,ﬁ in the left hand side of (3.54) is locally bounded as an entire func-
tion, the inequality (3.54) is satisfied for sufficiently small ¢,,,.

Proof. In case (A7), we have M, > 0 and by applying (3.17) we estimate:

L ; Ci7 Cse

A=Y (M) Eg(—tPV)(T) > Eg(— TPy > —L > =230

k ;:0,(( ) Eg(—Mt?))(T) = Eg(—MTP) AT X
where we take C3g = l/ﬁﬁ.

Secondly, let us consider the case (A8). We have the relation

Ay = f((Mzak)iEﬁ(—lkfﬁ))(T) > Eg(—MTP) - i((Miek)iEﬁ(—lktﬁ))(T)
i=0 i=1
> %— +Z°° Mk* EB A,kl‘ﬁ))(T) s
=1
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where we treat the series similarly to (3.49):

foo ' foo '
X (M) B (=) ()| = | K (e ™ e (=) ()

Cigllmxt Pl _ Cisgllt™]ly»

1o .
<Y llmllfllm s Eg (= 2utP) | <
i=0

< [[ml|s.
= (X ={ml[1) ~ (1= [lml[s) "
Then
" 1/5H
~ _ Cs Ci7 Cigllm|ly [ T'P¢
Ar > ——, whereCis = —
7k BTN TP 1= mlly \ T—Bs”

Finally, the case (A9) can be treated similarly to (A8) in the sense that we start from
the estimate

—+o0

Y (M) Eg (—MitP)) (T)

i=1

A Ci7
Az e —
“Z (/2 +TF)

)

and estimate the series from above. As in (3.51) by means of Lemma 3.2, we obtain

o0 ; 1 o0 (Clgcm)iTi(l—ym)—B
i:ZI«Mk*) Eg(—XtP))(T)| < prazat —B)i; T

The series starts with i = 1, thus we can extract the factor ¢,, and reach the estimate

o0

. 1 PV
Y (M) Eg (=) (T)| < chlstcmr(l*ﬁ)Tl P
=
+o0 (Clgcm)iTi(l—)/m) C37 oy
LT g 12 B g o Erma g (CoenT ),

where C37 = C13C1oI'(1 — B)Tl_Ym_B. We obtain the relation

C C
=36 where Cs6 = LU —Cs7emE|_y,

Ay > =2,
k )’k l/ll—‘rTﬁ m s

2—m—P (C]gcmTl_%”).

O

Corollary 3.2. Let the assumptions of Lemma 3.4 be satisfied, F =0and v =0. If u € ?/sﬁ
for some s > 1 is a solution of 1P2, then u = 0.

The proof is similar to the proof of the previous corollary.
Theorem 3.4. Let the assumptions of Lemma 3.4 be satisfied, v € %(—L) and
F € Ly((0,T);L(€)), with some p € (%700] and Y5 A2°||Fi||5 < o where o is some
number satisfying the inequality
1 1
w] ~pp incasepe (5:°);
>0 in case p = oo.

Then IP2 has a unique solution u € %, g for any s € (1, ;3) This solution satisfies the

estimates

+o0 1
J(0,) | < Cas{ Wl oy + | X A22IAIR] )
k=0
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and
to !
I,y < Co{IWlatoy+ [ L AZIRI | 41y o o (359

where Csg,C39 are constants.

Proof. Let us estimate E’k from above. As in (3.47), we deduce the relation
A o P Mt 1
|Be| = ‘Z((Mk*)lfﬁ ‘ *Fk)(T)‘< C3o" || Fillp-
i=0

This estimate together with Lemma 3.4 and (3.53) yields | @] < C3g{Ax|Wi| + A8 | Fxllp }-
Now the assertions of the theorem follow by means of arguments similar to the proof of
Theorem 3.3. O
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4 Inverse problem for a generalized fractional derivative and
reconstruction of time- and space-dependent sources

In this Chapter we assume that the overdetermination condition is given not only at the
final moment of time T, but in its neighbourhood. Main results of this Chapter have ap-
peared in the Publication lIl. All scalar functional spaces are real by default in this Chapter.

4.1 Formulation of problems

We are solving problems with higher order generalized fractional derivatives in Riemann-
Liouville RDik}’” and Caputo sense CDik}’”'

n t t
(D)) = 2 [ ke— @z, €M) = [ ka- o @y,
t>a,n€{0}UN, k€ Lj5(0,00).

We utilize DM as a unified notation that stands either for RDI¥" or Cpikt"

In case k(t) = r(t%ﬁ), B € (0,1) we have that #D{)" and €D are the Riemann-
Liouville and Caputo fractional derivatives of the ordern+ 8 — 1, i.e.
n t(+_ ~\—B
D) (1) = RDrtP 1) (1) = % / 7(; q i) gyV(0 (4.)
(CDL{lk},nV)(t) _ (CDn+ﬁ71v)(t) _ /f ([ - T)iﬁ V(n)(T)dT. (4.2)
¢ a T(1-P)

Our basic inverse problem consists in reconstruction of a functionu at 0 <¢ < T by
means of measurements of u(¢) and its generalized fractional derivative in a left neigh-
borhood of T

Let0 <7y < T.IP1. Given @,g : (10,T) — R, find u : (0,T) — R such that

M‘OOJ) =¢ and D({)k}"nu“toj) =g. (4.3)

An example of IP1is the reconstruction of physical quantities in constitutive relations
involving fractional derivatives. In the subdiffusive model of heat flow discussed in the
Section 1.6 the flux is proportional to a time fractional derivative of antigradient of the
temperature (see (1.26)). In this context IP1 means the reconstruction of the history of
temperature by means of measurement of temperature and flux in a left neighborhood of
atime value T'. Similar meaning for IP1can be given in the Scott-Blair’s model of viscoelas-
ticity. Then the stress is proportional to a time fractional derivative of the
strain [65].

We use the results obtained for IP1in order to investigate an inverse problem of re-
construction of a history of a source in a general PDE that includes as particular cases
fractional diffusion and wave equations from the measurements in a left neighborhood
of final time 7. That is formulated as follows:

IP2. Given ¢, D : Q X (1,T) = R, find u, F : Qx (0,T) — R, such that
(D" Bu) (x,1) + D'u(x,t) — Au(x,t) = F(x,t), x€Q, 1€ (0,T), (4.4)
is fulfilled and
Ulaxi,r) =0 Flaxy,r) =P (4.5)
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Here Q C RN with some N € N, D! = Z anﬂ with some/ €N, g; € R, and A and B

are operators that act on functions dependlng on x. Throughout the Chapter we assume
that A and B with their domains Z(A) and Z(B) are suchthatA : Z(A) CC(Q) — C(Q),
B: 2(B) CC(Q) — C(Q) and B s injective.

The equation (4.4) generalizes different subdiffusion equations in Riemann-Liouville or
Caputo form, these are

0 My,
E D Lu=Q and

where L is an elliptic operator. In case of Riemann-Liouville subdiffusion equation
B = —L and in order to guarantee the injectivity of B, proper boundary conditions must
be specified in the domain 2(B).

The equation (4.4) also includes the fractional wave equation [24, 62, 99]

Dlut A(—A)u=F, Be(1,2), acl051], A>0

and the attenuated wave equation [17, 88]
92 R
82u+u DouflAufF B e(0,1)u(l,2).
We point out that the operators A and B in (4.4) are not necessarily linear.

In case if & = 0, IP2 means a reconstruction of a source that was active in the past using
a measurement of the state of u in a left neighbourhood of T'. Such an inverse problem
may occur in ground water pollution, seismology, etc.

Now we reduce IP2 to IP1. Let (u,F) solve IP2. Then the equation (4.4) restricted to
Q x (9, T) has the form (Dék}’"Bu)(x,t) +D'o(x,t) —A@(x,t) = ®(x,t). Therefore, Bu is
a solution of the following family of IP1:

Bulgy o) =B9 and  DYV'Bulg.m = g (4.6)
where
g(x,t) = ®(x,1) +A@(x,t) —D'o(x,1), xeQ, 1€ (1,T). (4.7)
The solution of IP2 is expressed by means of Bu explicitly:
u=B"'"Bu, F=D"Bu+Du—Au.

4.2 Dual problem for IP1

Let us consider the case n = 1. We assume that k is a Sonine kernel and M is its associate,
i.e. M xk = 1. Then firstly for Dék}’l = RD({)k}7l and u € W/'(0,T) we have

MR A (kD1 d &
RD;{) } RD({)} u(t) = ZM*Ek*u_dzM*k*u_u(t) t€(0,7).

Secondly, in case Dék}’l = CD({)k}’l foru e Wi(0,T), k+xu' € W!(0,T) we have

d d
CpMHICp ity () = M« Theu = S Mxksdd =il (1), 1€(0.T).
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Then, based on the relations (4.3), we write the problem for v(¢) = D({)k}’lu(t)

V(o,1) = & DéM}’IV\(;OJ) =¢, (4.8)

which we call dual to the IP1(4.3). After solving the problem (4.8) we can compute u that
satisfies (4.3). In case D({)k}’l = RD({)k}’l we compute u by the formula

ut)=M=v(t), t€(0,T). (4.9)
In case Dék}’l = CDék}’l we obtain ' = %M* v and therefore
u(t) = lim @(7) +M*v(t) =M (1), t€(0,T). (4.10)
T%to

4.3 Uniqueness results

Lemma 4.1. Letk be real analyticin (0,c0) and v € L (0,9). Thenw(t) = [* k(t — 7)v(t)dT
is real analytic in (1, o).

Proof. The function k can be extended as a complex analytic function k¢ in an open do-
main D C C containing the positive part of the real axis. Let us define

we(z) = /Otokc(z—r)v(r)dr for zeDy={z:z2=&+1,& eD}.

Using the analyticity of k¢, it is possible to show that functions u and v involved in the

formula we (t +is) = u(t,s) + iv(t,s), are continuously differentiable and satisfy Cauchy-

Riemann equationsin {(z,s) : 1+ is € D, }. This implies that wc is complex analytic in Dy, .

Its restriction to the subset {z =140 : 7 € (fp,°0)} is the real function w, therefore w is

real analytic in (9, o). O
We prove a uniqueness theorem for IP1.

Theorem 4.1. Assume that k satisfies the following conditions:

JueR: / e M k(t)]dt < oo, (4.11)
0
k is real analytic in (0,), (4.12)

%(s) cannot be meromorphically extended to the whole complex plane C.  (4.13)
Then the following assertions hold.
() If u € L1 (0,T), kxu € W/'(0,T) and ul ;, 7 = DY "ul 4, ) = 0 then u = 0.
(ii) If u € W(0,T) and ul 4, 1 = DYl 4y 1) = 0 then u = 0.

Proof. (i) Let us extend u(t) by zero for ¢ > T and define the function f : (0,e0) — R:

f= RD({)k}’nu.
Since u(t) =0, ¢ > 1y, it holds that
dar 10 )
f0 = [ k= tu(e)de = / KO (6 — Du(t)dz, 1> 1o,
0 0
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The function k is real analytic, therefore k" is also real analytic. Hence, Lemma 4.1implies
that f is real analytic in (7p,). Since f(r) = 0,1 € (0, T), and f is real analytic we obtain
that f(t) = 0,7 > 1.

Due to (4.11) the E(s) exists and is holomorphic for Res > . Moreover, in view the

o~

properties of f, the f(s) also exists and is expressed by the formula

d—j.(k*u)(t) . (414)

F(s) = 5"k(s)ii(s) = pos"' — .= pu-1, Res>u, pj= dti 1=0

Since the values f() and u(r) vanish for ¢ > 1y, f and i are entire functions. Thus, the
functions s"ii(s) and f(s) + pos™ ' + ... + pa_1 are also entire. Assume that @ does not
vanish on C. The Identity theorem and the fact that # is entire imply that the set of zeros
of u does not contain accumulation points. Then it follows from (4.14) that

F(5)+ pos" + oo+ paci
s"u(s)

k(s) =

for any s such that Res > p and s"u(s) # 0.

Therefore, the extension of kis meromorphic on C. This contradicts to the assump-
tion (4.13) of the theorem. Thus, the assumption u = 0 is invalid, which implies u = 0 in
Li(0,7).

(ii) At this part of the proof let us use the notation v := (™. Then

kY0
Vo) :RDé , V]g,r) =0

and v, kxv € L (0,T). Therefore, by the assertion (i) of this theorem v = 0. Consequently,
u™ = 0and ul(, ) = 0 imply that u = 0in W/'(0,T). O

Let us check if the kernels from the Section 1.7 satisfy the conditions of the
Theorem 4.1.

All of the kernels satisfy (4.11) and (4.12). Moreover, it is evident that the kernels (k1),
(M1), (k2), (M2), (k4), (M4), (k5), (M5), (k6), (M6), (k8) satisfy (4.13), because Laplace trans-
forms of these functions have branch points. To show that (k3) also satisfies (4.13) we
compute the limit under assumption that ¢ > 0 and ¢ # 0

pm Imk(s) = /01 q(B)sin((B —1)(£x))dp iO-
Isl=1

This shows that %(s) has a jump at s = —1, hence (4.13) holds. Similar result is valid for
(M3).

Summing up, the solution of IP1 for a derivative containing a kernel (k1) - (k6), (M1) -
(M6) or (k8) is unique.

The kernel of Caputo-Fabrizio fractional derivative (k7) does not satisfy (4.13), because
it has the meromorphic in C Laplace transform. IP1 with this kernel has infinitely many

solutions. In case D({)k}’" = RD({)k}’", the solution to homogeneous IP1is any function u that

satisfies the condition
oo B .
/ e P u(t)dt=0, ulyr)=0.
0 :
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Similarly, in case Dék}’” = CDék}’", the solution to homogeneous IP1is u such that

0] Lf
/ e " (1)dT =0, ulty,1) = O-
0 :

Now we proceed to IP2. We introduce the set of functions % related to the operators
A, Band D':

U ={u:Qx(0,T) =R :ul-t)€ 2(A)N2(B)Vr € (0,T),

j
u,Au,Bu € C(Qx (0,T)) and qj%u eC(Qx(0,7)),j=1,...,1}.

From Theorem 4.1 we can immediately deduce a uniqueness statement for IP2.
Corollary 4.1. Let k satisfy (4.11) - (4.13). Then the following assertions hold.

() If (uj,Fj) e{uecu : (kxBu)(x,-) e W0, T)Vx € Q} x C(Qx (0,T)), j=1,2, solve
(4.4) with DY = RDSH" and (u1, Fy) o) = (2. F2) e o,1) then (ur, Fy) =
(u27F2).

(i) If (uj,F;) € {u € % : Bu(x,-) € W'(0,T)Vx € Q} x C(Q x (0,T)), j = 1,2, solve
((4-4) W),-th DY = DI and (ur, Fi)laxy.r) = (2. F2) sy 1) then (un, Fi) =

I/t27F2 .

Proof. Proofis technically the same in cases (i) and (ii). The condition u[q (4. 7) = 2| x (10,7)
implies

(Buy _3”2)|Q><(t0,’l‘) =0. (4.15)

After subtracting the equations (4.4) corresponding to (u;, F1) and (uy, F>) we obtain the
equation

DI (Buy — Buy) (x,1) + D' (uy — ) (x,1) — (Auy — Aua) (x,1) = (Fy — Fy) (x,1),
xeQ,te(0,T). (4.16)

Since (u1,F1)|ax (i, 1) = (42, F2) |0 (1, 7) We get from (4.16)

D({)k}’n(Bul - Bu2)|£2><(l(),T) =0. (4.17)

Then by applying Theorem 4.1 to the problem (4.15), (4.17) we obtain that Bu; = Bu,.
Consequently, since the operator B is injective it holds u; = u». Finally, the equation (4.16)
implies F| = F>. ]

4.4 Reduction to integral equations

In this subsection we reduce IP1to integral equations. Let us assume that k satisfies (4.12).
Firstly, we consider the case D({)k}’n = RD({)k}’". Assume that u € L;(0,T) solves IP1and
k+ue W(0,T). Thenfort € (1,T)

/ "k(t — Du(t)dt = /m k(i — Du(ndt+ [ k(i —t)e(t)dr, (4.18)
0 0

T
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where the left hand side belongs to W' (o, T') and the first addend in the right-hand side
belongs to C*(#y, T]. Thus, for any & € (5, T) the data ¢ necessarily satisfies

/tk(t— D)o(t)dr € Wito+8,T).

0

Applying % to (4.18) we obtain:

1
Fpi () = [k (1 = u(z)de+ R0 "0 (1), 1€ (10,T).
0

Using the second condition in (4.3) and rearranging the terms we obtain the following
integral equation of the first kind for u/( )

o ) Ry (k)
K (t —t)u(t)dt = f(t), t € (to,T), where f=g—"D;""¢. (4.19)
0
. {k}.n cnik}tn -
Secondly, let us consider the case Dy = Dy, n > 1. In a similar manner we
conclude that if u € W/ (0, T) solves IP1 then u(") |(0,10) s @ solution of the integral equation
To

Kt —o)u™ (1)dt = f(1), 1 € (1o,T), where f=g—CDI""p.  (4.20)
0

Since lim uV)(7) = lim ¢U)(1), j =0,...,n— 1, the function u|(,,) is obtained from
Tty Tt ’

u |(0.9) bY the integration:

t (tff)"_l ) n—1 ) . (tfto)j
= | ——u"(1)dT+ 1 Wz —— 1€ (0,1).
0= [, TG e B lim o050, 1< 0)

Due to Lemma 4.1, the integral operators involved in (4.19) and (4.20) map L;(0,1)
into the space of functions that are real analytic in r > ty. This means that IP1 is severely
ill-posed and necessarily, f is real analytic in (7, 7). In the next section we will derive
solution formulas for IP1 that contain the quantities

" (1), me{0}UN,

where t| is an arbitrary point in (7, T).

4.5 Solution formula to an integral equation with a power-type kernel

Theorem 4.2. Let @ € R\ Z, 1, >ty > 0and f € C(ty, ). Let us introduce the following
family of sums that depend on a variable t € (0,1y) and parameters «, f, t1,1y:

N
Vn(a, f,t1,10)() = (1 _t)fa—z ZAnPn <2t1(t1 —1p) _ 21 —to> .
n=0

fo(t —1) to

Here N € {0} UNU {eo}, P, are normalized in L,(—1,1) Legendre polynomials

3 5 -
o n—21 _ n+1 1 1 n 21’1 21
Pi(t) = l:Z‘éant , where ¢, =1/ 5 ?(—1) ; . ,
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and

A, =Au(a, fit1,00) =

)T

X (m_m))mﬂr(a—m—&- DVARICYE

Iy

,_
H MN\:

Assume that the given function f is such that the equation

o (t—1)*

A F(OH_l)v(ﬂc)alr:f(t)7 r>1 (4.21)

has a solution v € L,(0,1).
Then the series V(o f,11,10)(t) converges almost everywhere in (0,1y) and

v(t) =Vul(a, f,t1,10)(t), a.e. t€(0,1). (4.22)

Moreover, Vy(a, f,t1,t0) — v in L»(0,t9) as N — oo. If in addition, v € BV[0,1)]°,
then V.(a, f,11,10)(t) converges pointwise in (0,1y) and the estimate is valid:

c(t)

[v(t) — V(o fot1,00)(1)] < N € (0,10),

where ¢(t) is a positive constant depending on t.

Proof. After taking the n-th derivative of (4.21) we obtain for #; > ¢

1 1o
— _ \a—n _ p(n)
p(afnﬂ)/o (=7 "w(r)dt=f"(n), ne{O0}UN.  (4.23)

The substitution s = tl%r under the integral takes (4.23) to the form

/1W S"w(s)ds =T(a—n+1)f"(t), ne{0}UN (4.24)

0

where w(s) =s~% 2y (1, — 1).
We would like to expand our function into series by means of orthonormal Legen-

dre polynomials P, € Lz(—l 1). Thus, we apply a linear substitution that takes us from
1

7 W] to the interval [—1,1]:

~ 2t1 (1 — ¢, 2t —t
s=as+b, where a:M7 p=_"1"70

Io 0]

By applying this substitution to (4.24) we obtain

/11 a,,1+1 (5=b)"w(Eds=T(a—n+1)f"(n), ne{0}UN  (4.25
where w(s) = w(s).

Since the performed changes of variables under the integrals are diffeomorphic,
v € Ly(0,19) implies w € L2(z1 - [0) and w € Ly(—1,1) (cf. [40] Section 16.4). Similarly,
v € BV|0,1] impliesw € BV[—1,1].

3BV[0,1] is a space of functions of bounded variation on [0,7].
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Sincew € L,(—1, 1), it can be expanded into the Fourier-Legendre series. Let us derive
this expansion. It follows from (4.25) that

/_ 11 7(3)d5 = /_ 11 (G- b)+ by FE)ds= Y (;) b /_ 11 G—b)"W(E)d5

m=0

= Z ( )b"_mam+1F(am+1)f(m>(t1), ne {0}UN.

n
m=0 \"
It implies that for the normalized Legendre polynomials
1 L%J 1 [%J n—21 n—2I
[ P@w@ds =Y o [ T =Y s ( )
—1 =0 -1 =0 m=0 n
an—Zl—znazn+11—~(a —m+ l)f(m) (t1) =An.

Then
w(s) = iAnPn(E). (4.26)
n=0

The series (4.26) converges in Ly(—1, 1) and for almost every s € (—1,1) [71].
For w € BV[—1,1] the series (4.26) is convergent pointwise for s € (—1,1) and accord-
ing to the Theorem 1(7]

2 se,

N
w(s) - ;}AnPn(ﬂ\ =<

where ¢ (5) is a positive constant.
Since the change of variables s'= /% + b, 1 € [0,19], is diffeomorphic and

v(t) = (6 — 1)~ % 2w (t“ +b> ,

all assertions of the theorem follow from the proved properties of the series (4.26). [

Remark 4.1. 1t follows from (4.22) that for f of form f(r) = f° lg(;fr);v(‘c)dr, t > 1,

where v € L»(0,1y), the sum of series Vo (o, f,11,%)(t) is independent of ¢ > 1.
The partial sums Vy(, f,1,%) (), N < oo, however, still may depend on 7.

For example, if v =1 then Vy (o, f,11,1)(t) = %‘/E(tl —1) 7O 2 [ — (1 — 1)1
4.6 Solution formulas for inverse problems in case of usual fractional
derivatives
In this Section we consider IP1 and IP2 in case k(r) = r(t%ﬁ)* B €(0,1),n > 1. Then
RD({)k}’" and CD({)k}’" are the Riemann-Liouville and Caputo fractional derivatives of the
order n+ 8 — 1 given by the formulas (4.1) and (4.2), respectively.

Theorem 4.3. Let k(t) = F(’%ﬁ), B €(0,1), n > 1. Then the following assertions hold.
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() Ifu € Lr(0,T), kxu € W'(0,T) and u solves IP1 with D({)k}’" = RD8+B_1 then
w(t) =75 (g KDL o)1), ae. 1€ (0,10), (4.27)

il

where the operator .7, 15, ;'11 is given by the rule
FRI)E) = Vo —n— B, f£,101,10) 2). (4.28)

(i) If u € W3(0,T), solves IP1 with D({)k}"” = CD8+B_1 then

u(t) = ZL (98— D P o)1), 1€ (0.10), (4.29)

where

n—1 _ j t (+_ ~\n—1
95,;'.[(<P;f)(t)=j2;)TILI%¢(-f)(r)(I j!tO)] +/to (s F(T;) Voo(—B, f+11,10)(T)d7. (4.30)

The formulas (4.27) and (4.29) are valid for any t; € (to,T).
Proof. (i) Firstly, we represent the IP1in form (4.19) with k(¢) = F(’%ﬁ) That is identical to
(4.21) with @ = —n— B, v(t) = u(t) and f(t) = g(t) —RDZ)’Lﬁ_l(p(t). Thus, the Theorem
4.2 implies (4.27).

(i) Similarly to the previous case we start from representing the problem in a form

(4.20) with k(z) = F(I%B)' This gives us the relation (4.21) with e = — 8, v(¢) = u("(r) and

f)=g(t)— CDZ)H}*I o(t). By applying Theorem 4.2 to it we obtain

W (1) = V(= B, f,11,10) (1), ae. 1€ (0,10), f=g— DL .

Since the condition u|, 7) = ¢ implies

u (1) = lim @) (z), j=0...n—1,

Ty
the solution formula (4.29) is valid. O
Remark 4.2. Let us consider the approximations of the exact solutions to IP1 with

k(r) = 1_{1777%) In case (i) this is given by the formula

MN,Il(t):VN(_n_ﬁ7fatlat0)(t)a tE(OatO)a N<°°a
where f(t) = g(t) —RDZfﬁ*l(p(t).

In case (ii) the approximation is given the formula

n—1 _ j t(+_ ~\n—1
T e R N I

t€(0,59), N <oo, where f(r)=g(r) —CDfE)*B’lq)(t).
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Then Theorem 4.2 can be used to compare uy,, with u in the process N — oo. In case
@), un 11 (049) = Ul0,50) 10 L2(0,20) and un y, (t) — u(t) ae. t € (0,1p). Similarly, in case

(i), N1y (0.10) = Ul(0.10) 10 W3 (0 10) and uly) (1) — ul) (1) ace. 1 € (0,10).

If in addition to the assumptions of (i), u| (0.10) € BV [0,10] holds then [uy ,, (¢) — u(t)] is
of the order 1/N for every ¢ € (0,1p). Similarly, if in addition to the assumptions of (ii),
u l(0.10) € BV[0,10] is valid then |”1<\7>tl (t) —u™(¢)| is of the order 1/N for every € (0,1).

The computation of uy,, is moderately ill-posed problem, because it contains the
derivatives of the finite order of the data.

Corollary 4.2. Let k(1) = r(t%ﬁ) B € (0,1), n > 1. Then the following assertions hold.

) If (u,F)e{ue : (kxBu)(x,-) e W'(0,T)Vx € Q} x C(Q x (0,T)) solves IP2 with
D({)k}’" = RDSW ! then

u(x,t) = [B_lﬁ]g;’:(g(xv') 7RDZ)+ﬁ_1(p(x7'))} (t)’ (xvt) €Qx (OatO)'

(i) If (u,F) € {u € % : Bu(x,-) € WJ(0,T)Vx € Q} x C(Q x (0,T)), solves IP2 with
D" = Cpith then

u(et) = [B7L 28 (980, =D P o(x,) [ (1), (1) € @3¢ (0,10,

In both cases g is given by (4.7), t, is an arbitrary number in (tp,T) and
Flox(os) = [D({)"}=”Bu +D'u— Au]

Qx(0.t9)

Proof. The proof follows from the Theorem 4.3 and the relations (4.6), (4.7) that describe
the transition from IP2 to IP1. O

4.7 Solution formulas in case of tempered and Atangana-Baleanu deriva-
tives

In this subsection we derive the solution formulas for particular subcases of the general-
ized fractional derivative of the order n = 1. They are based on solution formulas derived
for the usual fractional derivative and involve the operators 54’,’3[ , ﬁgt} Again we assume
that #1 is an arbitrary number in the interval (¢, T).

Firstly, let us consider case of tempered fractional derivative with the kernel (k5):

Theorem 4.4. Let k(1) = (M’ +2 f5 F(A]TT dt,0< B < 1,4 > 0. Then the following

assertions hold.

(i) Ifu € L»(0,T), kxu € W'(0,T) and u solves IP1 with D({)k}’1 = RD({)k}"1 then
u(t) =e M IR (Mg — MDY 9) (1), ace 1€ (0,10). (431
(ii) If u € W,/ (0, T) solves IP1 with DS = DI then
u(r) = lim (1) - /t M7 (e ("Dl 9)) (1)dz. 1€ (0,0). (432)
3
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Proof. Before starting the proof, let us point out that k'(z) = %. Hence, for

t € (to,T)and v € L (0,1):
fo / At fo (t — 1)717[3 AT
/0 K(it—1)v(t)dt=e /0 TR e*tv(r)dr. (4.33)

(i) Firstly, the IP1 can be rewritten by means of (4.19) and then formula (4.33) leads us
to the equation with the unknown term e*'u(r)

/(:0 [Unioine ;(ﬂﬁl)ﬁ Mu(t)dt = eMg(t) — eMRD,{Ok}‘l(p(t), t e (1,T).

Thus, by applying Theorem 4.2 and using the notation (4.28) we obtain (4.31).
(ii) Let us write 1P1in the form (4.20), differentiate it and obtain for z € (¢, T)

d

[ ka=t@an = 5 (60~ DI o).
0 dt

Then due to (4.33) we have

to (+ — 7)—1-B
/0 (tr(?ﬁ)elfu/(r)dr = elt%(g(t) _th{Ok},l(P(t))

and similarly to (i) we deduce the formula (4.32) using the notation (4.30). O

Now we deal with the case (k4).

Theorem 4.5. Let k(1) = F(llﬁ) e M1=B_ 0 < B <1, > 0. Then the following assertions
hold.

) lfRD({)k}’lu € L»(0,T), u € W!(0,T) and u solves IP1 with D({)k}’1 = RDék}’l then
u(t) = M*e*l’f;;}ﬁ’l((zh(p’ —r,’}“RD,{OM}’]g)(t)7 t€(0,00), (4.34)

where M(t) = ﬁe*“tﬁ*1 + ﬁ Jo e **tP~1dz is the associate kernel to k.

(i) If u € W,/ (0, T) solves IP1 with DS = DI then

1
u(t) = lim @(t) — / Yo htgpo (e_M(g—CD;{Ok}’I(p)) (t)dt, 1€ (0,1). (4.35)
Tty t ’

Proof. (i) Let us consider the dual problem for the function v = RDék}"lu, that is (4.8).
Therefore, we apply Theorem 4.4(i) to the dual problem (4.8) (with replacing 8 by 1 — 3
and k by M in the formulation) and obtain:

y= e’l’g“;;ﬁ’l(em(p/—e’ltRDlE)M}’lg)(t), a.e. t € (0,1).

Then by formula (4.9) we obtain the formula (4.34).

(i) Though it is possible to handle this case similarly to (i) by reducing it to Theorem
4.4(ii), we treat this problem directly to derive a simpler solution formula.

The IP1(4.3) is reduced to (4.20) with n = 1. Thus,

o (t—1)P k)1
./0 ) e“u/(r)drzel’(g—th{O} 0).
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By applying Theorem 4.2 to the problem above and using the notation (4.28) we obtain
- 0 k}1
W (1) = e M FEM (gD o)1), 1€ (10,7).
This implies the formula (4.35). O
To handle IP1 for derivatives that contain Mittag-Leffler functions, we need the follow-

ing lemma.

Lemma4.2. Let0<fB <1,A €Rand f € W (0,T).
Then the function p(t) = [;(t — )P ~'Eg g(A(t — 7)P) f(t)d is a solution of the equa-
tion
Dhp(1) = Ap(t) = f(1), 1€(0.T),

and the function q(t) = [y Eg(A (1 — 7)B) f(t)dt is a solution of the equation

Dhg(t)—Aq(t) =1, P (1), 1€(0T).

Proof. The proof of the first assertion can be found e.g. in [20], p. 174, and the second

assertion follows from the first one because [tP~1Eg 5(A1P)] «ly Pr= Eg(AtP)x £ [37].
O

Next we consider the case of a tempered fractional derivative with the kernel (M6)
denoted by k.

Theorem 4.6. Let k(t) = e”“tﬁ’lEﬁ_ﬁ(lﬁtﬁ), % < B < 1, A > 0. Then the following
assertions are valid:

(i) If u € W} (0,T) and u solves IP1 with D({)k}’1 = RD({)k}"1 then

15
u(t) = / e 7 (Rpf —AP1n.7E) (e“(<p' +2Pg) Jnge“g) (1)dt+ lim (),

fo T—1)

t € (0,10). (4.36)
(ii) If u € W2(0,T) and u solves TP1 with Dék}'l = CDék}’l then

t
u(t)= [ e+ Df -2 FE, (Hgi (9 + 2Pg) = Dheg) 1T+ lim (),
0

t € (0,10). (4.37)
Proof. Firstly we prove (ii). Let us define the function w as

t
w(t) = M EDWH (1) = / (t—0)PEg g(AP (1 — T)P) (X7 (7))d.
0 :
Due to Lemma 4.2, this function solves the equation

DPw(t) = APw(t) = (1), 1€(0,T). (4.38)

Therefore, CDgw = e* ' + APw and in view of the conditions (4.3) we have the IP1 with
usual fractional derivative

W) = Mg, CDgw\(tolT) =o' + APMg. (4.39)
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In order to apply Theorem 4.3 (ii) to this problem, we must verify that w € W21 (0,T) is
valid. Let us compute:

w!(t) =P Eg g (APtP )l (0) + [P E g (AP )] 5 (X0) (1).
Due to the assumptions 3 < B < 1 and u € W(0,T) we have tﬁflEﬁ’ﬁ (ABtPY € 1,(0,T)
and (¢*u') € L(0,T). Using the Young’s theorem for convolutions, we deduce

w' € L,(0,T). Thus w € W, (0,T).
By applying Theorem 4.3 (ii) to (4.39) we obtain

w(t) = FE (M gieM @+ APeMg —CDR M) (1), 1€ (0.19).

Since by (4.38), i/ = e (CDg — /’Lﬁl)w, this implies formula (4.37).

Secondly we prove (i). Let us define w(z) = e“RD({)k}’lu(t). Then w(r) = (5 —A)z(t),
where

() = /(:(z BB (AP (- o)) (FFu(a) ).
By Lemma 4.2 z solves thé equation
DP2(t) = APz(t) = Mu(r), 1€ (0,T). (4.40)
Let us differentiate the equation (4.40) to derive the equation for w:
RpP (7 —Az)(1) + RDE (A2) (t) = APZ (1) = AeMu(t) + ¥ (1), ace. t € (0,T).
That is
RDPyo(t) = APw(t) + A (RDE2(6) = APz(1)) = AeMu(t) + i (1), a.e. 1€ (0,T).

Since z(0) = 0, we have that RDgz = CDgz and using (4.40) again we obtain

RDgw(t) =MPw(t)+eMu (1), ae 1€(0,T). (4.47)
Based on (4.41) and (4.3) we formulate IP1 for w:
W|(zO,T) = elt& RDgW|(t0.,T) = elt((P/ +)~ﬁg)~ (4.42)

To apply Theorem 4.3 (i) we should prove that w € L,(0,T), and (1_(’1777%)) W= ]é—ﬁw €
W (0,T), that is RDgw € Li(0,T). Let us investigate

w(t) = <5¢ - A) (tﬁ-lEﬁﬁ(zﬁtﬁ)) +(u(t)) = u(0) (;ﬁ-lEﬁ,ﬁ (Aﬁtﬁ))

n (tﬁ—lEBﬁ (AB[B)) * ((emu(t))’ —lel’u(t)), t€(0,T).

Since tﬁ_lEBﬁ (APtB) € 1,(0,T) for B € (1/2,1) and e*u(t) € W,'(0,T) we obtain that
(ZB’IEBJ; (APtP)) x ((eMu(t)) — Ae*u(t)) € Lr(0,T) , thus w € L»(0,T). Due to (4.41)

RDgw € L1(0,T), because w € L»(0,T) and u € W,'(0,T).
That enables us to apply Theorem 3 (i) to (4.42):

w(t) = ﬁﬁ;: (e’“((p’Jr/lBg) —RDf)e’“g) (t), a.e. t€(0,1).
This in view of (4.41) implies the formula (4.36). O
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Remark 4.3. It is possible to extend the range of 8 to 0 < 8 < 1 in Theorem 4.6 assum-
ing more regularity of u and the conditions #(0) = 0 and u/(0) = 0 in cases (i) and (ii),
respectively.

Finally, we consider the case of Atangana-Baleanu fractional derivative.

Theorem 4.7. Let k(t) = E[; ( B’ ) 0 < B < 1. Then the following assertions hold:

(i) If u € W} (0,T) and u solves IP1 with D({)k}’1 = RD({)k}"1 then
1—
)= (5L w0 1) 7! (Be—"0h0—(1-)0)) ()

t € (0,10). (4.43)

(ii) If u € W2(0,T) and u solves IP1 with Dék}’l = CD({)k}’1 then
1—
)= (5P Db 1) 7L (0 (1 B B~ Dlito - (1- P 0.
t € (0,19). (4.44)

Proof. (ii) Let us denote w = (1 — ﬁ)CD({)k}’lu. For this particular kernel type the relation

holds: p
! B(t—7
w(t) = / Ep (—g_[;)u’(r)dr.
By Lemma 4.2 and the identity I1 Pu CDgu, w solves the equation
Dl r(r) + lfﬁw(t) =DPutr), re(o,1). (4.45)

Since the relation (4.3) is valid, |, 7) = (1 — B)g. It follows from (4.45) that CDg (u—w)=

%W. Thus, we have the IP1 with usual fractional derivative

u=wor =9—(1—-B)g, D u—w)|u.r = Bs.

To apply Theorem 4.3 (ii), we have to show that u —w € W2l (0,T). Since Eé =3 Eﬁ g and
Eg(0) = 1, we obtain

B
(u—w) = lﬁﬁ[tﬁ IE[;[;( Btﬁ)]*u

Due to the assumptions of (ii), this belongs to L,(0,T), hence u —w € Wz1 (0,T). According
to Theorem 4.3 (ii)

(u=w)l0s) = Fer (0~ (1= B)g:Bg—Dig(@—(1-B)g)) . (4.46)
The relation (4.45) implies w = TB g( w). Therefore,
wlow = 5= DEFL, (0 (1= PlesBe~ Do~ (1-P)) .

84



Hence, from (4.46) we obtain (4.44).
(i) Let us denote w = (1 — [S)RD({)k}’] u. Then

w= %z, where z(t) = /(: Eg (—W)u(r)dr.

The function z solves the equation

CDgz(t) + 1fﬁz(z) = I(;’Bu(t), t€(0,7). (4.47)
Next we differentiate the equation (4.47) and obtain
RDﬁ L _ RpB
ow(t) + l_ﬁw(t) ="Dyu(t), ae.t€(0,T). (4.48)

Therefore RDg (u—w)(t) = %w(z) that leads us to the IP1 with a usual fractional deriva-
tive

(= wor =@~ (1-B)g  *DEu—w)|er) = Bs.

Now we have to show that u —w € L,(0,7) and RDg(u —w)(r) € Li(0,T). Firstly,

0= (B (-2 )uo) =0 (<50 oo (- 55

Since Eg ( £ t5> € L,(0,T) for any B € (0,1) we obtain that w € L,(0,T). Due to the
Sobolev embedding Theorem u € W' (0,T) C L,(0,T). Thus, u —w € L»(0,T). Secondly,
D (u—w)(r) = tEsw(r) € L2(0,7),

We continue the proof by applying Theorem 3 (i) to the IP1 for u —w

(u=w)l0a) = Fhs (Bg—2Df (0~ (1-B)g)).

It follows from (4.48) that w = %RDS (u—w), thus, the formula (4.43) holds. O

Similarly to Corollary 4.2, formulas of solutions of IP2 can be derived in cases of tem-
pered and Atangana-Baleanu derivatives.

Formulas of solutions of IP1in case of multiterm and distributed fractional derivatives
(kernels (k2) and (k3)) cannot be derived on the basis of Theorem 4.2. The problem of
reconstruction of explicit representations for solutions in these cases remains open.
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Conclusions

In the thesis we discuss some inverse problems that arise in generalized subdiffusion mod-
els. The problems considered in the thesis are new. In our treatment of subdiffusion mod-
els we do not address fractional diffusion, since it is rather well-known. In the thesis we
focus on a generalized model, that maintain somewhat similar features and behaviour to
the fractional diffusion, but is much richer in its applications. Therefore, the complement
m to the fractional diffusion kernel was introduced in the Chapter 3 and the generalized
fractional derivative D({)k} was introduced in the Chapters 2 and 4. We try to keep the as-
sumptions on the kernels k and M of the generalized fractional derivative as general as
possible to make this research is compatible with wide range of potential applications .
The content of the Chapters is based on the papers provided in the appendix.

In the Introduction we discuss the formulation of the problems and their history. We
start from the discussion of the fractional diffusion and general concepts of inverse and
ill-posedness. We provide the insight on how this ideas have developed over time: at first
independent from each other and over time by merging into a separate field of studies.

Next we explain basic mathematical notations and concepts used in the thesis. Af-
terwards, we provide the insight into the underlying physical models and explain three
approaches to derive the subdifusion equation. We deeply analyze the potential theoret-
ical applications of the problems with a generalized fractional derivative. Therefore, we
provide the list of subdiffusion kernels that fit into the description of the model and their
Laplace transforms. We discuss the properties of the kernels and refer to their applica-
tions in the literature.

In the Chapters 2 and 3 two different theoretical methods of handling the inverse prob-
lems with final overdetermination are represented.

Firstly, in the Chapter 2 we discuss the problem of reconstruction of a space-dependent
component f of a source term F(t,x) = f(x)g(z,x) + h(¢,x) in a subdiffusion equation
with a generalised fractional derivative. The problem is considered in a setting of C- and
Holder spaces in time. The uniqueness of the solution is proved by means of the positivity
principle and the existence and stability of the solution is shown by applying the Fredholm
alternative. Thanks to the general problem formulation, namely to the assumption that
g = g(t,x), we are able to immediately apply this results to the inverse problem for re-
action coefficient. We prove the global uniqueness and local existence and stability of
solution to this problem. It is possible to apply similar approach to determine the higher
order coefficients of the equation as well. Moreover, we show how to apply these results
to the problem with the integral overdetermination condition. We show how the con-
crete kernels discussed before satisfy the conditions of the theorems of this Chapter, that
clarifies further applications in the literature.

In Chapter 3 we consider the problem of reconstruction of a space-dependant term f
of a source function F(z,x) = f(x)g(¢) + h(z,x) along with a state function u. We formu-
late the problems for the particular case of the kernel M that is a convolutional pertur-
bation of a power function involved in the usual fractional derivative. This formulation is
still sufficiently general, since it contains as particular cases most important Sonine ker-
nels occurring in the practice (except for the continuously distributed kernels). Moreover,
having a kernel of a usual fractional derivative as a principal part of perturbed kernel M,
enables us to use the well-elaborated theory of Mittag-Leffler functions. Since g = g(¢)
we are able to apply the Fourier method to the direct and the inverse problems, that can-
not be applied in case g = g(,x). This methods enables to prove the results under rather
weak assumptions on the data, in particular for g in L, and the initial condition in L,. By
means of Fourier method we derive explicit solution formulas and obtain uniqueness, ex-
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istence and stability results for the both direct and inverse problems. Finally, we consider
an inverse problem backward in time that is solved in a similar manner.

The inverse source problems considered in the Chapters 2 and 3 are moderately ill-
posed, since their solutions depend continuously on derivatives of the data of finite order.
Therefore, in case approximate data are given with errors, regularization procedures can
be successfully applied.

It is common to use a final time overdetermination data in order to reconstruct the
space-dependent unknown. In practice, however, it is not possible to measure the state
exactly at final time T'. In fact a real measurement yields an average of u at some small
neighborhood of T. In Chapter 4 we propose a new approach to the inverse problems
with final overdetermination: we consider an inverse source problem with the extra data
given in a neighbourhood of final time. Unlike problems with final overdetermination,
such problem is severely ill-posed. Final data on a continuous interval makes it possible
to reconstruct the source term f(z,x).

It turns out that an inverse problem with the overdetermination condition on a final
time subinterval for a subdiffusion equation and a wide variety of other fractional PDEs
can all be treated in the same way. Among these PDEs are the equations governing frac-
tional wave processes, equations with non-linear unbounded space operators. Precisely,
this is done by reducing the original problem to the problem of backward continuation
of function u, given the value of u and its generalized fractional derivative D({)k} on a final
time subinterval. We consider this backward continuation problem in details and prove
the uniqueness result under very general assumptions on the kernel k. The uniqueness
result for the inverse source problem is obtained as the consequence of the latter result.
Afterwards, for some particular cases of the kernel k we deduce explicit solution formulas
of the backward continuation problem . These formulas involve infinite series and contain
all derivatives of the data. Approximation of the solutions by means of truncated series
leads to moderately ill-posed problems (Remark 4.2).

Finally, we would like to present some open questions that arise from the research
presented in the thesis. These are:

e the inverse coefficient problem for r with non-zero initial condition;

e derivation of solution formulas in case of multiterm and distributed order deriva-
tives for the backward continuation problem studied in Chapter 4;

o effective numerical methods to the problems studied in Chapter 4;

e generalization of results of Chapter 4 to the case when PDE involves a fractional time
derivative and a non-local space operator (e.g. fractional Laplacian), derivation of
solution formulas for the inverse problems in Chapter 4 in cases of multiterm and
distributed derivatives;. A problem consists in reconstruction of unknown source in
Q x (0,T) provided measurements are given in Q' x (tp,7) where Q' C Q,0 <1y <
T.
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Abstract
Inverse Problems for Generalized Subdiffusion Equations

The thesis focuses on the inverse problems for subdiffusion equations with generalized
fractional derivatives that generalize previously studied inverse problems for the time frac-
tional diffusion equation. Since generalized fractional derivative incorporates the cases of
usual fractional derivative, distributed order and tempered fractional derivatives, Atangana-
Baleanu fractional derivative, the problems with generalized fractional derivatives have a
lot more potential applications than their usual fractional analogues.

The thesis is started by considering two inverse problems for a generalized subdiffusion
equation with the final overdetermination condition in a setting of C- and Holder spaces.
Firstly, a problem of reconstruction of a space-dependent component in a source term is
studied. Existence, uniqueness and stability of the solution to this problem are proved.
Based on these results, an inverse problem of identification of a space-dependent coeffi-
cient of a linear reaction term is considered. Thus, the uniqueness and local existence and
stability of the solution to this problem are proved. This is done by means of the theory of
evolutionary integral equations, positivity principle, Fredholm alternative and fixed point
theorem.

The next object under consideration is an inverse problem to recover a space-dependent
factor of a source term in a perturbed time fractional diffusion equation in a setting of
Lebesgue spaces. Afterwards, backward in time problem for the same equation is inves-
tigated. Existence, uniqueness, and stability of solutions to these problems are proved,
mainly by means of the Fourier method.

Finally, two inverse problems with a generalized fractional derivative with an overde-
termination condition given in the neighbourhood of the final time are investigated. The
first one is a problem of backward continuation of the function u based on its values and
the values of its fractional derivative in the neighborhood of the final time. The unique-
ness of the solution to this problem is proved by considering the problem in the Laplace
domain. Afterwards, given measurements in a neighborhood of final time, the problem
of reconstruction of a source term in an equation that generalizes fractional diffusion and
wave equations is discussed. The source to be determined depends on time and all space
variables. The uniqueness is proved based on the results for the backward continuation
problem. In addition, the explicit solution formulas to the both problems for some partic-
ular cases of the generalized fractional derivative are derived.

Open problems that arise from this research are formulated.
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Kokkuvote
Poordiilesanded lildistatud subdifusioonivorranditele

Vaitekirjas tegeletakse poordiilesannetega subdifusioonivérranditele, mis sisaldavad l-
distatud murrulisi tuletisi, ja tildistavad varem vaadeldud p6o6rdiilesandeid murrulise aja-
tuletisega difusioonivorrandile. Kuna tldistatud murruline tuletis hélmab erijuhtudena ta-
valist murrulist tuletist, jaotatud ja tempereeritud tuletist ning Atangana-Baleanu tuletist,
omavad taoliste tuletistega tlesanded palju suuremat rakenduspotentsiaali kui nende ta-
valised murrulised analoogid.

Koigepealt kasitletakse kahte 16pptingimust kasutavat péordiilesannet Gldistatud sub-
difusioonivorrandile C- ja Holderi ruumides. Esimeses {ilesandes on eesmargiks maara-
ta ruumimuutujast séltuv allikakomponent. Toestatakse selle lilesande lahendi olemas-
olu, Gihesus ja stabiilsus. Lahtudes neist tulemustest uuritakse podrdiilesannet lineaarse
reaktsioonililkme ruumimuutujast soltuva kordaja identifitseerimiseks. Toestatakse selle
Glesande lahendi tihesus ja lokaalne olemasolu ning stabiilsus. Analiitisimisel kasutatakse
evolutsiooniliste integraalvorrandite teooriat, positiivsusprintsiipi, Fredholmi alternatiivi
ja pusipunktiprintsiipi.

Jargnevalt vaadeldakse poordiilesannet hairitud murrulise tuletisega difusioonivorran-
di allikafunktsiooni ruumimuutujast séltuva komponendi maaramiseks I6pptingimuse alu-
sel Lebesgue’i ruumides. Seejarel uuritakse ajas péératud tilesannet sama vorrandi jaoks.
Toestatakse nende llesannete lahendite olemasol, tihesus ja stabiilsus peamiselt Fourier’
meetodi abil.

Lopuks kasitletakse kahte Uldistatud murrulist tuletist sisaldavat péordilesannet, mis
kasutavad vaatlusandmeid l6pphetke imbruses. Esimesene Uilesanne seisneb funktsiooni
u tahapoole jatkamises Iahtudes funktsiooni u ja tema Uldistatud murrulise vaartustest
I6pphetke Gimbruses. Toestatakse selle tlesande lahendi ihesus Laplace’i teisenduse abil.
Peale selle uuritakse tlesannet murrulisi difusioonivorrandeid ja murrulisi lainevérrandeid
ldistavas vorrandis sisalduva allikafunktsiooni maaramiseks [6pphetke imbruses tehtud
mootmiste alusel. Allikafunktsioon voib séltuda nii aja- kui ruumimuutujatest. Toestatak-
se selle tilesande lahendi ihesus kasutades (ihesusteoreemi tahapoole jatkamise Glesan-
de kohta. Lisaks tuletatakse mélema tlesande lahendite jaoks ilmutatud lahendivalemeid
teatud erijuhtudel.

Peale selle formuleeritakse méned lahendamata probleemid, mis lIahtuvad vaitekirjas
tehtud uuringutest.
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1 | INTRODUCTION

Differential equations containing fractional time (and also space) derivatives of order less than 1 are extensively used to
model slow diffusion (subdiffusion) processes in physics, chemistry, biology, nuclear power engineering, etc.'™

Sometimes parameters of processes or models (coefficients of equations, source terms, initial or boundary conditions)
are unknown. To determine unknown parameters, inverse problems that involve observation of states of processes are
solved.>°

Usually an observation of a state over a whole space-time domain is not possible or not practical. Depending on possi-
bilities or unknowns to be recovered, measurements of the state in a subdomain, at a boundary of a space domain or at a
final time moment, are used in the reconstruction.®

Problems with final overdetermination for diffusion equations containing single fractional time (and also space) deriva-
tives were studied in papers!'*® (reconstruction of source terms) and Sakamoto and Yamamoto'’ (reconstruction of an
initial state). An inverse problem to recover a source term in an equation containing multiple Caputo time derivatives by
means of local interior measurements was treated in Jiang et al.’®

Recently, the second author'® introduced a perturbed time fractional diffusion equation that contains an additional
convolution term with a kernel m and generalizes diffusion models with multiple time fractional derivatives. The paper'
studies reconstruction of m and an order of a derivative from measurements over the time.

In the present paper, we consider 2 inverse problems for the mentioned perturbed equation: a problem to reconstruct a
space-dependent factor of a source function and a problem to determine an initial state. Additional data are given in the
form of final measurements. We prove existence and uniqueness of the solutions of posed inverse problems and derive
stability estimates. In addition, we consider a regularization and provide numerical examples.

We will establish the solvability in the L,-space, which means that solutions of the inverse problems are allowed to
have discontinuities. Proofs rely on positivity properties of solutions of involved direct problems. This brings along sign
or smallness restrictions on m.

Math Meth Appl Sci. 2018;41:1925-1943. wileyonlinelibrary.com/journal/mma Copyright © 2017 John Wiley & Sons, Ltd. 1925
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2 | FORMULATION OF DIRECT AND INVERSE PROBLEMS

Let us consider the generalized subdiffusion equation'*

u(t, %) = x(M % Au),(t,x) + Q(t, %), @
where u is a physical state, ¢ is the time, x € R" is a space variable, A is the Laplacian, subscript ¢ stands for the time
derivative, y > 0 is a constant, Q is a source term, and * denotes the time convolution, ie,

t
V1 = W)() = /vl(t — )y (r)dz.
0
The kernel M is a memory function that is related to a waiting time density of an underlying random walk process going

on in micro-level.?

In case of a power-type waiting time density, the kernel M has the form M(¢) = 0 < B < 1, and (1) becomes the

T‘(ﬂ )’
celebrated time fractional diffusion equation***!

u; = xD" PAu+ Q, )

where D7y = (% * v) is the Riemann-Liouville fractional derivative of the order 1 — . More advanced fractional
t

diffusion models contain multiple Riemann-Liouville derivatives. Then (refer to Mainardi et al and Sokolov et al*>%),

M(t)——+ 0<p<p <1, 3)
T(B) 2 Y F(ﬂ, !
or more generally, M(t) = fo a(s) ™ dy, where a is an integrable function and y is a Borel measure.?>*
In the present paper, we assume that (cf Janno')
Moy =2 e @
=Y im .
) T r(p)

where m is an integrable function and 0 < # < 1. The function (4) includes as particular cases the kernels of the form (3)

(then m(t) = Za, o) ﬁ)) and also M(f) = Tﬁ) + fﬁ a(s)mds (then m(t) = fﬁ a(s)rt( pﬁ)ds).

Plugging (4) 1nt0 (1), we arrive at the perturbed time fractional diffusion equation

u; = xD' P(Au+ m = Au) + Q. (5)

This equation enables an immediate integration. Applying the operator of fractional integration I'~# = F(l 5 * of the
order 1 — f to (5), we obtain the equation

’u=x(Au+m * Au)+ F (6)

that contains the Caputo fractional derivative of the order g, ie, 0’v = * vy and in case m = 0 is referred to as a

normal form of the Equation 2. There F = I' Q.

We mention that the Equation (6) can be obtained by means of other considerations, too. For instance, it is an extension
to the fractional case of the parabolic integro-differential equation u; = x(Au+m * Au) + F that describes heat processes
with memory.?> Moreover, it is a generalization of an equation with multiple Caputo derivatives d’u + 2£'=1 bjotiu =
xAu+2z,0 < yj < f <1, that was studied in previous works.'®***” Rewriting the latter equation as

,—/f
ra-p

th—Hi—
T - )

defining m as a solution of the Volterra equation of the second kind m + k * m = —k and applying the operator 7 + m =,
where 7 is the unity operator, to the Equation (7), we reach (6) with F = z + m * z.
For the sake of generality, let us transform the Caputo derivative 0’u contained in (6) to the form D’ (u — u(0, x)) that
does not contain the first order derivative of u. We obtain the following equation: D?(u — u(0,x)) = x(Au + m * Au) + F.
Now we are in a situation to formulate problems to be treated in the present paper. Let Q € R" be an n-dimensional
open bounded domain with sufficiently smooth boundary 0Q. In direct problem, we have to find a function u that satisfies

u+k+0’u=xAu+z, where k()= Zb 7
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the differential equation, initial and homogeneous boundary conditions:

DP(u — @)(t,x) = x(Au(t,x) + (m = Au)(t,x)) + F(t,x), x€Q,te0,T), }

u(0,x) = p(x), x€Q, ®)

Bu(t,x) =0, x€0Q,te(0,T).
Here B, is a boundary operator:
Bv(x) =v(x) or Bvx)=39x)- - Vv(x)+ 0v(x), 6>0,

and J(x) is the outer normal of 0Q at x € 0Q2. A problem with nonhomogeneous boundary conditions can be transformed
to a problem with homogeneous boundary conditions by means of a simple change of variables.
Moreover, we formulate 2 inverse problems that use the final overdetermination condition

w(T,x) =w(x), xe€Q, 9

with a given observation function y.
IP1. Let F have the form

F(t,x) = g(©) f (x) + h(t,x), 10

where g and h are given functions. The aim is to find a function f such that the solution u of (8) with F of the form (10)
satisfies the condition (9).

We mention that in terms of the physical source function Q occurring in (5), the formula (10) has the form Q(t,x) =
q(Ofx) + H(t,x), where g = ' ’qand h = ' ’H.

IP2. Find an initial state ¢ such that the solution u of (8) satisfies (9).

IP1 and IP2 in case m = 0 were studied in previous papers.!!*416:7

3 | DEFINITIONS, NOTATION, AND AUXILIARY STATEMENTS

Firstly, we introduce some spaces of abstract functions that map the interval (0, T) into a Banach space Y. As usual,
Ly((0,7);Y), p € [1, 0], stands for the abstract Lebesgue space. The space C([0, T]; Y) consists of abstract functions that
are continuous in the interval [0, T]. Next, let X be a Hilbert space.* We introduce the spaces

H,((0,T);X) = {wlor) : we HyR;X)}, pe (1,00),5>0,

where

H;(R;X) ={wel,R;X) : F_1|§|ST'W € L,(R;X)}
and F denotes the Fourier transform with the argument & (Priiss?» P226; Zacher?* P?8). Moreover, we define
o0, T); X) = {wlo.r) : we Hy(R; X), suppw C [0,00)}, p € (1,0), s> 0.

In the particular case X = R, we drop the symbol of value space, ie, write Hf,(O, T) instead of Hj,((O, T); R) and on,(O, T)
instead of oH3((0, T); R).
Next, we formulate a lemma that follows from discussions in Zacher.?: P28-29

Lemma 1. Lets € (0,1),p € (1, ). The operator of fractional integration of the order s, ie, I* = % %, is a bijec-

tion from Ly((0, T); X) onto OH/S,((O, T); X), the inverse of I is the Riemann-Liowville fractional derivative D* = %I 1=s

and ||w||OHp((0 nx = IDWllL 1)) is a norm in the space oH,((0, T); X). Moreover, in case p € (%,oo), it holds
70,

H3((0, T); X) < C([0, T]; X) and w(0) = 0 for w € oH}((0, T); X)

Another useful sentence is the Young's theorem for convolutions which states that for m € Ly(0, T) and w € L,((0, T); Y)
with p, g € [1, o], the convolution m * w belongs to the space m * w € L,((0, T); Y) where 1+% = 1;+é and the inequality

llm * wllz, o1:v) < 1Ml 0.0 Wi,y is valid.?

*Or more generally, a Banach space of the class H7 28
THere f = 0iff s = 400 (sis either p, g or r).
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In treatment of convolutional terms, we will apply norms with exponential weights. Let us define these norms in the
spaces of scalar functions L,(0, T), p € [1, co]:

Wl = lle”' Wiz, o1, whereo >0.

If 6 = 0, then || - ||, becomes the usual norm in Ly (0, T) and we denote it by || - ||,. The following equivalence relations
are valid:

el < Wllpe < [l
Note that the weight can be easily brought into the convolution, ie, e™'m * w = (e7°'m) = (e °'w) and the Young's
inequality extended to the weighted norms:

1 1, 1
”m * W”r;zr < ”m”q;tr”W”p;o’s 1+-=-+-. (11)
rp q
Finally, in case p < oo, [[W||p;; = 0as o — co.
An important tool in the analysis of fractional differential equations is the family of Mittag-Leffler functions
+o0 zk +o0 Zk
E =) ———, E = _—, eC. 12
«(?) kz::jl"(ak+1) 0y (2) };F(ak+y) z (12)
The function E,, is entire in case & > 0, y > 0. The formulas (12) immediately imply E,; = E, and
1 1
E,(0) =1, Ea,a(o) == E(,l = _Ea,a- (13)
I'(a) a

Let us point out some useful properties of Ez(—z) and Ej 3(—2) in case f € (0, 1). The functions Eg(—z) and Ej4 s(—z) are
completely monotonic for z € [0, o) and satisfy the asymptotic relations (see Gorenflo et al*’)

1
2Ej(—7) = ——— + 0@z} as z- oo, (14)
’ r(1-p)
2 1 -1
ZEpp(—2) = ———+ 0@ ") as z— oo. 15)
e I(-p)
Since Eg(—z) is bounded for z > 0 and (14) holds, there exist Cy, C, > 0 such that
(&) C, C,
< Ep(—2) < <= fi >0. 16
T2z = 5( Z)_1+Z_z or z> (16)

In addition to the Mittag-Leffler functions, we introduce the a-exponential function®:
et = t* 1By o (M%), a> 0. @a7)

The relations (13) and (17) yield the following formula:

/Ot /Iel;’“dr =1-Ey(—-th). (18)
Moreover, the formula (18) in view of the relations
0<Ey(-2)<1, z2>0, (19)
following from the complete monotonicity of E4(—z) and E»(0) = 1, implies
e, h <1, 4A>o0. (20)
We complete this section proving a technical lemma. It will be applied in proofs of Theorem 2 (ii), Theorem 3, and
Lemma 4.

Lemma 2. There exists a constant C3 > 0 such that
i

it N B GG .
(A" #)'Eg(=At") < TR t>0, A>0, ieN. 21)

Proof. The convolution formula of Mittag-Leffler functions (see Haubold et al,** (11.12)) implies

Ae;* x Ey(=at") = AP}

B
p (A = %Eﬂ,ﬂ(—u”). (22)



KINASH AND JANNO Wl LEY 1929

Here, E; 5 is the 3-parametric Mittag-Leffler function and we used the formula Ef} 5 () = %Eﬂ,ﬁ(z) (Haubold et al,*
(11.4)), too. The asymptotic relations (14), (15), and I'(1 — B) = (—A)I'(—p) yield

2’Egp(—2) = PzEp(-2) + O™") as z — oo.
Thus, there exists zop > 0 such that %Eﬁﬁ(—z) < (14 e)Ep(—z) for z > zo where € > 0 is some fixed number. On the

other hand, since zE; 3(—z) € C[0, 0] and Eg(—z) is decreasing, we obtain ﬁEﬂ’ﬂ(—Z) < C4Ep(—z) for 0 < z < zp where

max yEj 5(=y)
Cy = “S;ZZ,(—ZO) Therefore, %Eﬂ,ﬂ(—z) < C3Eg(—z) for any z > 0, where C; = max{1 + ¢; C4} and from (22), we have
e

et x Ep(—AtP) < C3Ep(—Ath). (23)
So we continue the iterations and obtain
(/le,;“ #) Eg(—At?) < CLEp(—AtP).

Finally, estimating E4(—At’) by means of (16), we reach (21). O

4 | RESULTS CONCERNING DIRECT PROBLEM

Firstly, we put the direct problem (8) into a context of functional spaces. Let || - || and (-, -) stand for the norm and the
inner product in the space L,(2), respectively. We define the operator L = —xA with the domain D(L) = {z € WZZ(Q) :
Bz =0 in 0Q} in the space L,(Q).

Let 0 < A; < 4, < ... be the eigenvalues and v;,v,, ... the corresponding orthonormal eigenvector§ of the operator L.
Then the system of functions vy, k € N, forms a basis in the space L,(Q) and ||z||pz) = [Z,J;"i Ai(z, vk)z] % isa an equivalent
norm in the space D(L).

In the sequel, we will search for the solution u of (8) from the following set:

Urp = {u € L0, T): DL)) N C([0, T]; Ly(Y) : u— u(0) € oHL (0, T); La()}.
Let us introduce a notation for the Fourier coefficients of data functions involved in the direct problem:
ur(D) = (u(t, ), ), Fi(t) = (F(8, ), ), ok = (@, ), keN.

Proposition 1. Let F € Ly((0, T); Ly(Q)) with some p € (1,00), m € L;(0,T) and ¢ € L(Q). Then the following
assertions are valid.

(i) Ifu € U, pwithsomer € (1, ) is a solution of the direct problem (8), then the Fourier coefficients uy, k € N,

belong to
Urp={weC[0,T] : w—w(0) € (H'(©0,T)}

and are solutions of the following sequence of problems for k € N:

D (wie — i)(0) + Aur(t) + A(m = w)(t) = Fi(t), t € (0, T), (24)

ur(0) = . (25)
+oo

(ii) If (24), (25) have solutions uy € %, p, k € N, with some r € (1, 00) such that u = Zukvk € Urp thenuisa
k=1

solution of the direct problem (8).

Proof.

(i) Letu € %,p with some r € (1,00) solve (8). Since u —u(0) = u — ¢ € on((O, T); L,(Q)), by Lemma 1
there exists I € L,((0, T); L,(Q)) such that u — ¢ = I’#i and i = D’(u — ¢). Let us denote T (t) = (Hi(t, -), vi).
Due to & € L.((0, T); L»(Q)), we have @iy € L.(0, T). On the other hand, ux — @ = (u — @, ) = IP0,v) =
I°(@i,v) = I’fi. This relation with Lemma 1 implies u; — ¢x € oH’(0, T) and DP(uy — @) = fir. Further,
fromu € %,5 C C([0, T]; L»(R)), we immediately have u; € C[0, T]. Moreover, taking the inner product of
the initial condition u(0,-) = ¢ with v, we deduce (25). The relation u, — @, € OH,ﬁ (0, T) with (25) and
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u, € C[0, T] proves that u;, € ??,,ﬂ. The deduced equalities I = D?(u — @) and D’ (ux — @) = Uy imply
(DP(u - @), vy = DP(ug — @;). Moreover, (Lu, vg) = (u, Lvg) = Ax(u, v) = Axug. Consequently, taking the inner
product of the equation D’(u — @) + Lu + m * Lu = F with vy, we obtain the Equation (24).

(ii) Let the assumptions of (ii) hold for u;. Denote R = D?(u — ¢ — p) + Lu+ m % Lu — F and p = u(0, ) — @. Then
u € %, solves the problem D?(u—@)+Lu+m * Lu = F,u(0,-) = @, where F=F+Rand @ = ¢+p. Applying
the proved statement (i) to this problem, we see that uy, k € N, solve the problems D? (uy — @) + AUy + Ax(m *
uy) = Fy, ug(0) = @y, where Fy = Fy, + (R, v¢) and @, = @ + (p, v¢). Comparing these problems with (24), (25),

we see that (R, v) = 0, (p,vx) = 0, k € N. This implies R = 0, p = 0. Consequently, u is a solution of (8). 0

Theorem 1. Let m € L;(0,T) and k € N. Then the following statements hold.

(i) (uniqueness) If F, =0, ¢, = 0and uy € ??,,ﬂ with some r € (1, o) solves (24), (25) then uy, = 0.
(ii) IfFi € Ly(0, T) with some p € (%, o) then the problem (24), (25) has a solution uy in the space %, 5. This solution
is represented by the uniformly in [0, T| converging series

+00 +o0 t
(1) = o (Z(Mk *>f> Ep(—at”) + (Z(Mk *)"> / e, "I (nd, (26)
0

i=0 i=0

t
where My (t) = —ﬁk/ e;Ak(’_T)m(r)dr. 27)
0

Proof.

(i) Let Fy = 0, ¢ = Oand u; € CZ/Z,,/; with some r € (1, o) solve (24), (25). Since ux(0) = ¢, = 0, we have
u, € OHf(O, T). Denoting y, = DPuy, we obtain uy, = Iﬂyk and y, € L0, T), by Lemma 1. Moreover, from the
equation for uy, we deduce the homogeneous Volterra equation of the second kind y;, + Ky * y, = 0 with the
kernel K = Ak% + Agm % % € L,(0, T). Such an equation has only the trivial solution. Consequently, y, = 0
and u, = 0.

(ii) Assume Fy. € Ly(0, T) for some p € (%, o). Let us consider the Volterra equation of the second kind y; + Kj *
Yx = Rk, where K; is defined before and Ry = F — Ak — Akm * @ € Ly(0, T). It has a solution y, € L,(0, T)
(Gripenberg et al*» 5t 23), Let us define uy = I’y + ;. By Lemma 1, u;— gy € OHﬁ(O, T)and y, = D’ (ux—@p).
From the equation of y,, we deduce the Equation (24) for u;. Since p € ( % o), we obtain uyx — ¢, € C[0, T] and

uk(0) — @) = 0. This implies (25) and u € % ».p- The existence assertion of (ii) is proved.

Finally, let us deduce the formula (26) with (27). To this end, we need a solution formula of the fractional
differential equation D’w + Aw = z. It can be found, eg, in Samko et al.* Exmple 422 proyided z € L,(0, T), the
solution w € OHII,j (0, T) of this equation is given by w = e[;’“ % z. Rewriting (24) in the form of the equation
DPwy + Agwy = z¢, where wy, = ux — @y, 2 = Fr — Ar@y — Aam # uy and solving, we obtain uy, = e/;’” * Zk + Qk-
Using (18), (27), we transform the latter relation to the Volterra equation

ur(®) = Qr(t) + My * u(t), t€(0,7), (28)
with Qx = (pkEﬁ(—/lktl’) + e;M x Fy € C[0, T). Next, let us show that My « € Z(C[0, T]). Since m € L,(0,T), it
holds that My € L,(0, T), hence for any w € C([0, T]), we have My = w € C[0, T]. Due to (11) and (20), we obtain

) —A

Ml < Il llAke, o < imllollAke, ™ Iy < llmlli,. (29)
For any w € C[O, T], we have ”Mk * W”oo;n' < ”Mklll;cr”W”oo;d < ”m”l;allwllm,a- Consequenﬂy’ Mk * €
Z(C[0, T]). Moreover, there exists sufficiently large o such that |[My * || #cjo.r) < lIm|l1, < 1. Applying the
theorem about the continuously inverse operator (see Trenogin®>P140), we express the solution of (28) by means

of the uniformly convergent Neumann series (26). 0

Theorem 2. Assumem € L;(0, T). Then

(i) (uniqueness)if F=0, 9 =0andu € %,  with somer € (1, ) solves the direct problem (8) then u = 0;
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(ii) if p € L,(Q) and F = 0, then the direct problem (8) has a solution u that belongs to %, foranyr € (1, %) and
this solution has the form

+o0 +o0
u(t,x) = Yo (Z(Mk *)")EA—Akt”)vk(x); (30)
k=1 i=0

(iii) if @ = 0 and F € Lp((0, T); L»(2)) with some p € (%, o) then direct problem has a solution u € %, 4 and the
solution has the form

k=1

t
u(t,x) = Z(Z(Mk *)‘) / ;Ak(t_T)Fk(T)d‘rvk(x). (31)

Proof.

(i) is an immediate consequence of Proposition 1 (i) and Theorem 1 (i).
(ii) Let us consider the sequence of problems (24), (25) with Fi = 0. By Theorem 1 (ii), they have solutions ux € %,

+0oo
foranyp € (% oo). The aim is to show thatu = Zukvk € U.pforanyr e (1, % > Then the existence assertion
1

follows by Proposition 1 (ii) and the formula (30) 1:s obtained from (26). We start by showing u € C([0, T1; L»(2)).
Since ux — @x C C[0, T] and vx € Ly(Q), it follows that uv, € C([0, T]; L,(Q)). Now let us show that the series
+o0

u= ZMkvk is uniformly convergent in [0, T] and therefore defines a continuous function. From (26) by means
k=1
of Young's inequality (11), (19), and (29), we obtain

+co +oo
_6 i i | @k
T u®)] < il (Zanna;,,) IEs(=At")loozo < lopx] <Z||m||§;,,> S Tl
30

i=0 i=0

provided o is sufficiently large to guarantee ||m||1,, < 1. Inview of ¢ € L,(Q), for any £ > 0, there exists K, € N
_ 2

such that Zk_K v < el ¢ Thus,

20T
T

+00 +oo
PRTGL 2 ()] < —2 Y l<e vielo.T]
k=K, limlle)? &

Therefore, this series is uniformly convergent and u € C([0, T]; L»(Q2)). Secondly, we prove that u €
L,((0, T); D(L)). To this end, we investigate

2

2
llutt. Mpw) = szwk[Z(Mk ) Ep(~ M)] . (32)

For each term of the inner series in view of (27), we get
(M %) Ep(=ait?)] < (Im] )/ (aee,™ ) Bp(=Aet”).

Hence, Lemma 2 implies |(M; #)'Ep(—Act?)| < (Im| %)'C,C[4t#]7!. Now, we use this inequality in (32). We
reach the following estimate:
S5 ol
I '

Let us choose ¢ such that Cs||m||1,; < 1. Smce ; € L(0,T) forr e (1, —) due to (11), we obtain the estimate

+00 Ci 2 +oo0
lluct, Moy <4 D02 [Zﬂml o —2 ] = [2(|m| o
i=0

k=1 i=0

+oo

r . . _
lullz,o.mpwy < Cae” [ZCQIIMIILU] 1N ll@ll < oo
i=0
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(iii)

This proves u € L.((0,T); D(L)). Finally, we need to show that u — u(0,-) € on ((0, T); Ly(L2)). Due to the
+0o0

proved uniform convergence of u = Zukvk and the initial conditions u,(0) = ¢4, we have u(0,-) = ¢. Let
k=1

Y« = D?(ux — @;). From the Equation (24) (there F;, = 0), we obtain y, = —Aglyy — m * Axuy. Consider the

function y defined by y = 22:1 YikVk. In previous part of the proof of (ii), we showed that Lu = ZZ:} AUV €

L,((0,T); Ly(2)). Thus, y € L((0, T); L»(£2)). Moreover, the series defining y is absolutely convergent for a.e

(t,x) € (0, T) x Q. That allows us to use the Tonelli's theorem to deduce the relation

+00 +o00 +00
I'y= Iﬂzykvk = ZIﬁYka = Z(uk — @V =U—@.
k=1 k=1 k=1

In view of y € L((0, T); L(Q2)) and Lemma 1, we get thatu — ¢ € on((O, T); Ly(L2)).
Applying the operator I to the equation in (8), it is transformed to the following evolutionary integral equation
in the space L,(Q):

u(®) + (a = Lu)(t) = —(a + m + Lu) + (a * F)©), te(0,T), (33)

where a(t) = % The assertion (iii) partially follows from Theorem 8.7 of Priiss® applied to this equation.

However, in our case, the validity of assumptions of this theorem is not directly transparent and has to be
verified. Let us list these assumptions with corresponding reasonings:

. L € BIP,* because L is a normal and sectorial operator, and 0, = 0, because L has positive real spectrum (cf

Priiss®® Sect. 8.7, comment c) (i)).
>

. ais l-regular and 0,-sectorial with 6, = /2, because a is completely monotone (it follows from Proposition

3.3 of Priiss®);

3. 0, + 01 < &, because 0, = % and 0, = 0;

4.

lim |a(u)|u”? < co where 4 is the Laplace transform of a, because d(u) = ﬁ
H—00

Theorem 8.7 of Priiss® implies that (33) has a solution u in the space L,((0, T); D(L)). Bringing all terms of (33)
except for u to the right-hand side, we obtain u = Iﬁy, wherey = —Lu—m * Lu+ F € L,((0, T); L,()). Thus, Lemma
1 impliesu € OHf ((0, T); L,()). Since p € (1—1), ), we obtain u € C([0, T]; L,(R)) and the homogeneous initial
condition u(0, ) = 0. The proved properties of u show thatu € %, . Applying the operator D? to (33), we reach the
differential equation in (8). Finally, the formula (31) follows from (26). The proof is complete. O

Theorem 8.7 of Priiss® implies the existence of a solution of (8) in case ¢ # 0, too, but under the stronger assumption
@ € D(L). The assertion (ii) of Theorem 2 in the particular case m = 0 follows from Sakamoto and Yamamoto.'?> Theorem 2.1

5 | RESULTS CONCERNING IP1

Let us introduce the notation for Fourier coefficients of functions involved in IP1: fi = (f,v), hi(t) = (h(t, ), Vi), Wy =
<l[/,vk>, ke N.

Proposition 2. Assume that g € L,(0,T), h € Ly((0, T); L»(Q)) with some p > %m € L1(0,T) and @,y € Ly(Q). If
f € Lx(Q) is a solution of IP1, then f,, k € N, are solutions of the sequence of linear equations

+o0
i, Akt

Axfie=wk—Br, Ar= 2 ((Mk *)ey, g) (D),
=0 (34)

+00 +oo
Be = @ Y, (M 0'Ep(=au”) (D) + Y (Mic 0™ 5 b ) ().
i=0 i=0

Conversely, if fi.k € N, are solutions of the Equations (34) and Y3 f]f < cothen f = Y7 five € Ly(Q) solves IP1
and the related solution of the direct problem (8) belongs to %, s for any r € (1, %)

#BIP is the space of operators with bounded imaginary powers.
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Proof. Letf e L,(Q)solve IP1. Then the functions ¢ and F = gf+ h satisfy the assumptions of Theorem 2 (ii) and (iii),
respectively. Thus, the related solution of the direct problem (8) belongs to %, 4 for any r € (1, 1), Using Proposition
1 and Theorem 1, we deduce the formula (26) with Fj, = gfk + hi. Setting there t = T and replacing u(T) by vy, we
obtain (34). Conversely, let fx,k € N, solve (34) and 2 W 2 < co0. By Theorem 2, the problem (8) with F = gf + h
and f = Zk:1 frvihasasolutionu € %, 5 foranyr e (1, 7 ) Again, by Proposition 1 and Theorem 1, we reach (26).
Comparing it with (34), we see that uy(T) = v, k € N. This implies (9). Thus, f solves IP1. O

Now, we prove a basic lower estimate of Ay in (34). We do it separately for the cases of negative, small and positive m.

Lemma 3. Assume that m € L;(0,T) and there exist T; € (0,T), g, > 0 such that one of the following conditions is
valid:
(A1) m <0, g € Ly(0, T) with some p > l,g > 0andg(t) > goa.ete (T;,T);
(A2)g € L(0.T).8 2 0.8(t) > gy a.e.t € (T1,T), and [|mll; < cg0+|fgu where Cs = 1 — Eg(=A(T — T)P);
(A3)m >0, ge Wl(O T),g—m=+g>0,g >0and(g—mx*g)(t)>goforte (T, T).
Then Ay > k € N, where Cs > 0 is a constant independent of k.

Proof. Firstly, we consider the case (Al). Note that m < 0 implies My > 0. Thus, due to (18), the properties of g and
the monotonicity of Eg(—z), we obtain

(1 — Es(— (T = T1)P))go 5 G
Ak -

Az (™ % (D) 2 golle; ™ N, 01-1,) = (35)

>

where Cs = [1 — Ep(—A1(T — T1)")1g,-
In case (A2), by means of (11) and (35), we deduce

+oo

X (M we) xg) () 2

i=1

A-EhT =T

A > (" % g)(T) - = S IMeldlle, ™ 1 gl
i=1

Using (20) and (29), we obtain Ay > S where Cs = [(1 — Eg(—A1(T — T1)"))]go — 1“;;‘)""” llglls > O.

Finally, we treat the case (A3). We pomt out that Ay can be represented as

+o0
Ay = <2<Mk >> e, x (g— ey ™ s g m) (D). (36)

i=0
By means of the integration by parts, we have
(%Eﬁ(—iktﬂ)> # g = Eg(—t")g(0) — g + Ep(—Axt’) % g
Since — e, ™" = L Ey(~4t), it holds that
g- /lke;‘k‘ xgxm=g+ (%Eﬁ(—lktﬁ)> % g+ m=gO)Ey(—Ath) x m+g  Eg(~t’) s m+g-—m=g.

Therefore, in view of the assumptions (A3), we have g — Ake;w * gxm>g—mx*g > 0. Moreover, My * M) =
(-m) * /lke;‘ﬂ“t * (—m) * Ake?“t > 0. We get from (36)

Az (M« @-mxg) @,
Then similarly to (35), Ay > ,where Cs = [1 = Es(— (T — T1)P)]g,. O

From Proposition 2 and Lemma 3, we easily deduce the uniqueness assertion for IP1.

Corollary 1. Let the assumptions of Lemma 3 be satisfied, ¢ = 0,h = 0 and w = 0. If f € L,(Q) is a solution of the IP1,
thenf=0.



1934 KINASH AND JANNO
WILEY

Proof. Iff € L,(Q)is a solution of the inverse problem, then by Proposition 2, the formulas (34) are valid and it yields
from the assumptions of the corollary that y, = By = 0, k € N. On the other hand, Lemma 2 implies Ay > 0, k € N.
Therefore, the solution of (34) is f, = 0, k € N. Thus f = 0. O

Remark 1. Recall that the physical source contains a time factor g that is connected with g by the formula g(t) =
gt = /0[ (F’("IT_); q(7)dr (see a remark after the formulation of IP1 in Section 2). The conditions for g in (A1)
and (A2) may be satisfied in case of q that changes the sign or vanishes before T. For instance, defining q(t) =
il g ii;:g where 0 < € < 27$T0rq(t) = {(1) g iiz
Therefore, the assertion of Lemma 3 holds provided m € L,(0, T) is negative or small enough, and the solution of IP1
is unique.
The case m < 0 is comparable with results of the paper,’* where a reconstruction of f in the heat equation with

where 0 < # < T, (Al) and (A2) hold for g.

memory u; = Lu + m % Lu + g(t, x)f(x) from final data was considered. Uniqueness was proved under cone conditions
that are even stronger than m < 0.

The coupled conditions for m and g in (A3) cover all positive integrable m. This means that for any m € L,(0, T),
m > 0, it is possible to find a function g so that (A3) is valid. Let us construct such a g. Choose an arbitrary z € W} (0, T)
sothatz > 0,7’ > 0and z(t) > zo > 0, t € (T;, T) and define g as a solution of the Volterra equation of the second kind
g-mx*g=zTheng —-m* g —g(0)m =z, henceg’ = Y5 (m %)(z’ +g(0)m) > 0. So the conditions (A3) are satisfied.

To formulate an existence theorem for IP1, we have to introduce fractional powers of L and related domains. The
operator L*, s > 0, can be defined by the relation Lz = ,:r:i 442, vic)vi and has the domain

1

2

+00
D) =1z € Ly : lzllpes) = [ZA@S(&W] <o
k=1

in the space L,(Q).1” Evidently, D(L?) = L,(Q).

Theorem 3. Let the assumptions of Lemma 3 be satisfied, w € D(L) and h € L,((0, T); D(L®)), Y155 AN hell; < oo
with some p € (%, o], where @ > ﬁl—pfor pE (% oo) and w = 0 for p = 0. Moreover, let one of the following conditions
be valid:

(A4) ¢ € D(L);
(A5) @ € D(L®) for somes € [0,1) and m € L,(0, T) for somer > ﬁ;

(A6) @ € Ly(Q)and ¢y, > 0,7, <1 : |m@)| < m‘l"y )r}'m ae t€(0,T).

Then IP1 has a unique solution f € L,(Q) and the related solution of the direct problem (8) belongs to %, for any
S <1, %) This solution satisfies the estimate

1

+o0 2
1A < C7 9 llwlipe) + llellpee) + [Zli‘”llhkllﬁ] , (37
k=0

where the exponent © equals 1, s and 0 in cases (A4), (A5), and (A6), respectively, and C; is a constant that depends on
Cs,m, T and p.

Proof. Let us consider the formula of By in (34). Firstly, we estimate the term containing hy by means of (11) and (29):

+oo

X (i 0'e,™ x i) (1)

i=0

+o0

+oo

i — At i — At

< e"TZIIMkllﬁ;UIIe,, il < €T ) lImlly, lle ™ x Ryl oo (38)
i=0 i=0

In case p = co, by means of (20), we obtain ||e;kt # Myl < ||e[;’1“||1||hk||oo < A7 Ihkllo- Next, let p € (%oo) We

note that the boundedness of E4 s(—z) for z > 0 and the asymptotical relation (15) imply the inequality E4 s(—z) < Zlc—fm
for z > 0 with some constant Cg. Thus,

e[;’l” = ' B p(=At?) < C 2071 Po71,
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Due to the assumed inequality @ > i, it holds t#o~1 € Ly(0,T), where i + ;% = 1. We obtain ||e;w * Myl <
Cg/lf’l (P27 |l = Cg/lf’l |7kl ,,- Let us continue the estimation of (38). For any p € (%, oo], we have

+00
< Ce”" ) limlly, 47 Ikell, = Crady lell, (39)
0k k
i=0

+o0

X (Mic0'e,™ < i) (1)

i=0

oT
with Cjo = max{1; Gy}, C1y = ljunfﬁ?

Secondly, we estimate the factor of ¢, in (34). In the general case, when m € L,(0, T) (it is so in the case (A4)), we
have due to (19) and (29) that

, provided o is large enough to guarantee ||m||1,, < 1.

+o0

<Y Imlll, 1Ep (=4t < Cra. “0)
i=0

+00

D (M ) Ep(=4it") (T)

i=0

In case (A5), by means of (16), (20), and (29), we obtain the estimate

+oo

D (M ) Ep(=ait”)) ()

i=0

+o0

Ep(=AT") = Y (i)', ™
i=0

oo (41
# m ok Bg(= i) (T)] < Ep(=AT?) + ¢ Y lImllllm + Ep(= At
i=0

Since Ep(—Atf) < G G

<« G .
S S (Aktﬁ)H’s € [0,1), we estimate

llm * Ep(=Act))llw < A3 Imll 1P,

1

where % + % = 1. In this point, we have ||t#1~9||,, < co because of the assumption r > Thus, from (41), we

1-p(1-s)"
obtain
+o0
2 (M 'Ep(=2u") (D)| < Crady”™ (42)
i=0
with Cyy = % + (:H:% lm]|||t=#A=9]|,.. Finally, if the assumptions (A6) hold for m, we deduce
+o0 +o0 ot i .
i " —Akt i
D (M Ep(=aith)) (D) < Y ('"— *) (e, ) Ep(=at?) ) (T).
= i I -ym)
Using Lemma 2 and the formula A R repeatedly, we continue the estimation:

T(d+a) ~ T+b) ~ T(2+a+b)

+o0

D (M 5 Ep(=ait?)) (T)

i=0

roo /i 4i-y,)-1 CyCE
< z c’"t— it (T)
S\ TEA —ym)  At?

1 (C3Cm)lTl )™ -1
= OIA-pY =2 =i
A’ ;r(z(l —tmt+1-p  °
where Ci5s = C,T~I(1 - PE1_y, 1-p(Cscpy T'~m). Summing up, (40), (42), and (43) imply
+0oo
B (M #YEp(=ait?)) (T)| < C16227! (44)
i=0

with C16 = max{Ci,; C14; C15} for all cases (A4)-(A6).
Now, we are able to estimate the quantity f; in (34). Lemma 3 and the relations (39), (44) yield | fi| < C7{ Axlwk| +
Aflq)kl + ¢ Nhell, }, where C; = cL max{1; Cyy; Ci6}. Assumptions of the theorem yield ZZ:; sz < oo. Therefore,
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Proposition 2 implies that f = Z;:i Jfivi € L(Q2) solves IP1. Finally, plugging the deduced estimate for |f; | into the

relation || £1l = [ X5 1/l 2 and using the triangle inequality in I,-space, we obtain (37). O

The condition |m(t)| < r(l‘i"y )rvm, ¢m = 0,ym < 1in assumption (A6) holds for kernels of the special form m(t) =
1

Bj—h-1
Za i m, B; > f,j =1, ..., that occur in models with multiple Riemann-Liouville derivatives (see Section 2). More-
J

=
over, this condition is valid for the kernel m in the Equation (6) that results from (7). Then the relation m + k « m = —k

is valid, and we have m = Y2 (—k #){(=k). The right formula in (7) implies |k(#)| < mc"y )t’”ﬂ with some ¢, > 0, y, < 1.
Ik
[b Il+u+b

Estimating m by means of the formula £y = ———, we obtain |m(t)] <

T'(1+a) T'(1+b) T'(2+a+b)
em =l = 7)E1y 1y, (G TV 7).

Cm
F(A=7y)

t~'m with y,, = v, and

6 | RESULTS CONCERNING IP2

Proposition 3. Assume that F € Ly((0, T); L»()) with some p > %,m € Li(0,T)and y € Ly(Q). If p € L,(Q) isa
solution of IP2, then ¢, k € N, are solutions of the sequence of linear equations

+o0
A=y =B, A=) (M Ey(—=At)) (T),
i=0
. (45)
A P
Be= Y (M0 « Fe) (D),
i=0
where y = (y,Vx) as in the case of IP1. Conversely, if gk, k € N, are solutions of the Equations (45) and 2;:; (pi < o0
then ¢ = 2;:; @V € Ly(Q) solves IP2 and the related solution of (8) belongs to %, foranyr € <1, %)
The proof is similar to the proof of Proposition 2.
Next, we derive a basic lower estimate for Ay in case of negative or small m. We have no results in case of general positive
m. Lack of an additional degree of freedom (as the function g in IP1) makes the study of the case m > 0 very complicated.

Lemma 4. Let one of the following conditions hold:

(A7)m € L;(0,T), m < 0;
(A8) m € L0, T) with some r > ﬁ and ||m|l; <1,

Imll, __ Ga- Brir
1-|imlly ~ Co(1/A1 + THTV"=b

5

where C; and C are the constants from (16) and % + % =1;

(A9) Im(t)| < mci"y )t‘ym a.e. t € (0, T) with some y,, < 1 and a sufficiently small c,, > 0, such that

G
C,CI'(1 — )T -rm=F (1/,11 +T7) ’

CmEl—VmYZ—}'m—ﬁ (C3T1_y'” Cm) < (46)
where Cs is the constant from (21).
Then Ay > &, k € N, where C;; > 0 is a constant independent of k.
k

A

We remark that E_,, >, —4 in the left hand side of (46) is locally bounded as an entire function.

Proof. In case (A7), we have M} > 0 and by applying (16), we estimate

+o0
Ar= ), (M 9'Ey(=2t?)) (T) 2 Ep(=4T") >
i=0

_G >&
14+ 4T8 = A’

C
where we take C17 = m
1
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Secondly, let us consider the case (A8). We have the relation
+00

Ay = ) ((My #)Ep(=at")) (T) = Eg(=uT) -
i=0

+oo

D ((Mi #)'Eg(=4t")) (T)

i=1

+oo

D ((Mi #)Eg(=4th)) (T)],

i=1

> G _
At

where we treat the series similarly to (41):

+00
X (M ' Ep(=ait") (T)
i=1

+o0

+o0

X () g™ s Ep(= 2t ) (T
i=0

; Clms )l Gty
< Y lmlltllm  Eg(=ait?)lloo < < limll,.
ZO ! ’ A =lmll) = @ —[mll)"
Then o
R C 1-pr' 1/r
A> ﬁ, where Cyy = Cy _ llmlly (T
A A+ TF 1-|ml\1-pr

Finally, the case (A9) can be treated similarly to (A8) in the sense that we start from the estimate

+oo

D (M 'Ep(—ait”)) (T)

i=1

Ak > L —
A(1/ A1 + TF)

>

and estimate the series from above. As in (43) by means of Lemma 2, we obtain

+o0

D ((Mi ) Ep(=4t") (T)

i=1

+oo P
1 (Cs¢p) T A—1m)=F
< =CI'a1 - _
<3 ﬁ);r(iu—ymwl—ﬂ)

The series starts with i = 1; thus, we can extract the factor ¢,, and reach the estimate
+0oo
D (M ' Ep(=ait”) (T)
i=1

+00

Z (Csep) T 1) Cig

< %Czcscmr(l — TP
k

X . = —2cpEi—, 2y —p (C3cpmT ),
TG =) +2=f—rm) A rap (Caen ')

where Ci3 = C,C3I'(1 — )T ~"»~#. We obtain the relation

C C _
17 where C17 = L - CISCmElfym,nymfﬂ (C3CmT1 V"‘) .

A > =L, _
=T 1/ + TP 0

Corollary 2. Let the assumptions of Lemma 4 be satisfied, F = 0 and y = 0. If ¢ € L,(Q) is a solution of IP2, then
@ =0.

The proof is similar to the proof of the previous corollary.

Theorem 4. Let the assumptions of Lemma 4 be satisfied, w € D(L) and F € L,((0, T); D(L®)), Z::(’) /li’”llelllz, < ©
with some p € (/lj, o], where @ > ﬂ—lpforp S (113 oo) and w = 0 for p = co. Then IP2 has a solution ¢ € L(Q) and the

related solution of the direct problem (8) belongs to %, foranyr € (1, %) This solution satisfies the estimate

+oo 2
lell < Cro} lwllnay + [Ziiwumuﬁ] :
k=0

where Cg is a constant that depends on C;;, m, T, and p.

Proof. Let us estimate By from above. As in (39), we deduce the relation

+o0

X (0™ < Fe) (1)

i=0

Bl = < Cu Ay IFll-

This estimate together with Lemma 4 yields |@x| < Cio{ Ax|wk| + AN Fell,}- Now the assertions of the theorem follow
by means of arguments similar to the proof of Theorem 3. O
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7 | REGULARIZATION

According to Theorem 3, the solution fof IP1 is stable with respect to y in the norm of D(L). However, if the function y
is given approximately in a norm weaker than D(L), the stability of the solution is not ensured. That creates a necessity
to incorporate regularization into the numerical computations.

Now let us assume that instead of exact y we are given y® € L,(Q), such that ||y® — y|| < 8. For the sake of simplicity,
we assume that the other data, ie, ¢ and h, are given exactly.

Since the solution has a closed form f = Y7 ¥y — hpaed %vk, we propose a direct method of regularization that
k

k=1 4
k
consists in truncation of the involved series and is known as a method of least error.*® Similar approach in case m = 0 was

exploited in Tuan and Dinh'® and Zhang and Wei.*”” We define the approximate solution as

N ll/zi +ooB
k k
fN"S = ZA—ka - ZA—ka, lI/;:s = <lI/6,Vk>~
k=1 k=1

Here, the number N works as a regularization parameter and depends on the noise level 5. We skip the traditional part
of a priori parameter choice and go directly to the a posteriori choice, because the latter one will be applied in numerical
examples in next section. Namely, we choose N according to the discrepancy principle:

IASY? =yl <6 < IASNH =y, (47)

where ¢ > 0 is a constant and A : f — y is the input-output mapping. It is defined by the formula

+o0

Af = Y (Arfic+ B,
k=1

whereas the inverse mapping is given by f = A~y = 32, vy — e %vk, that implies A N4 = AA IYN® = yNo
k k
where yN?4 = 211:]:1 WiV
Practically, the approximate value of N(§) can be found as follows:

« starting with N = 1 and increasing it, compute the integrals

N 2
= / [Zw,kam—wé(x)] dx; (48)
Q k=1

N 2
Ry = le/,ka -y’
k=1

« stop when Ry becomes smaller than or equal to ¢252.

The current goal is to derive an error estimate for this method, ie, to estimate ||f*** — f]|, given that (47) holds. For this
reason, we impose the assumptions of the Theorem 3 on the data. Moreover, we assume thaty € D(L'**) for some u > 0.
Firstly, let us deduce some auxiliary formulas. We obtain

8 < lyM 0 =yl < Nlw® —w) = N — N+ N =yl

+oo 1/2
W’ —y) = @M =N = [Z(Wk‘%f)z] < lly —y°ll <6,

k=N
e il
N-1 _ 2u+2. 2 _ D(L'1)
117 vl < Lzm A wk] =
N k=N N

Therefore we obtain an estimate of § in terms of Ay:

[l pim
<

6 —1.
(c— DAY

(49)

On the other hand,
™2 =yl = JASY? — AFI S NASY =l + llw — v’ < 8(c+ D). (50)
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Now, let us introduce the norm

+00 1 1/2 +o0 /IZa 1/2
Il = <2Ff;f> = (2_2afk> s Ak = A
=14

k=1Aj

Here A; > Ce > 0, by Lemma 3. It follows directly from the definition that || f lloy = I fllL,@ = IIf]l. Such a norm
definition applied to the Holder inequality results in the interpolation inequality

1
A< U (51)

Since Ay > C, inequalities (49), (50) yield the estimate

+1 +1
1Y = fllgo < e ™o -yl < A8+ D lyllpgen(e+1) ( Ane )"
) = é+u - Cé#—u C1+y(C _ 1) AN .

There exist ¢,c and a > 0 such that ck® < A, < ck? k € N.*® Thus, ;’“ < C, = ¢71c2% and we obtain || fN4 — f||¢, <
N

“+ ”W”D(Lu)(ﬁ'l)

e .On the other hand, || fN4 = f |1 = |ASN? = Af]| < (c+1)8, by (50). Hence, by means of the interpolation
inequality (51), we derive the following error estimate for the discrepancy principle:

D(Ll“‘”
Ce(c — 1)1/0+m
A similar regularization scheme can be constructed for IP2 and the error estimate derived:

1/(1
s X Collwll e+ 1)
1FN9 = £l < Coo8"/ WD where Cpg = —————————

1/(1+p)
Cullw g€+ 1)

N.6 1/ (u+1) =
_ < =
llo™" — @l < Ca16 ., WhereCyy Cre — DU

8 | NUMERICAL EXAMPLES

Before we start, let us point out that in our computations, we strongly rely on the idea of the Fourier expansion and this
is argumented by the theoretical part of the article. All the data are decomposed into Fourier series with respect to the
eigenfunctions vy of the operator L.

To provide the numerical examples for the IP1, we use the simulation scheme that works as follows:

given the exact function fa numerical solution up,m(t,x) = Zl,jzl u(t)vi(x) to the direct problem is found, where N* is
a sufficiently high predefined order of approximation;

the function w(x) = upum(T,X) is computed, based on that the synthetic noisy data y? is generated;

the approximation order N for the inverse problem is computed by the parameter choice rule (47) (eg, computing Ry
by (48) until it is small enough);

given w? and the order of approximation N the solution to IP1 f % is computed.

For all the examples provided, we assume that the order of the fractional derivative is § = 0.5. The memory kernel is
given by the formula m = —%, eg, it is a fractional integral kernel. We fix y = 0.1 in this relation.

The problems are considered in a domain Q = (0, 1) and the boundary conditions are u(0, ) = u(1,t) = 0. Thus, all the
eigenfunctions v and eigenvalues A, k = 1, ... ,max{N, N*} are found analytically. Fourier coefficients are computed
by means of a trapezoidal rule. For this purpose, the grid Grid = Ufi olxit, xi = Ai;, is defined.

Regarding the direct problem, we are looking for u,um,(t,x) = Zl,jzl u, (Hve(x). As it has been shown before, for each

k =1, ... ,N*, the coefficient uy is uniquely determined from (24), (25), that is equivalent to a weakly singular Volterra
equation of the second kind

t t
- ! -y
u(t) + /lk/ ——u(r)dr + /lk/ [ ] u,(z)dr = / ———Fi(r)dr + @, t€(0,T7).
r r T
A 8 A 8 2]

s=t—1
Taking into account the particular form of m, each equation is solved by the linear spline collocation method on a
uniform mesh.
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Thus, we already know w(x) = Upu,(T,x) and continue with generation of the noisy data y°(x;) = w(x;) + 16,1 ~
U(-1,1),i =0, ... ,M. In its turn, it enables us to determine the order N of approximation to the inverse problem IP1.

In all the examples provided constant in the discrepancy principle is chosen as ¢ = 1.1.

As for the inverse problem IP1, to find fN4(x) = Zle f}ka(x), we reuse the approach for solving the direct problem.
For this purpose, let us point out that

we(t) = up(t) + fRup(®, te[o,TI,
where

. u}c solves (24), (25) with Fi(t) = hi(t),t € (0, T) and u}c(O) = @,

. ui solves (24), (25) with Fy(t) = g(t),t € (0, T) and zero initial condition.

Finally, since v = u(T), we compute the coefficients /7 by the formula

5 _ 1
= W"Z—M"(T) k=1,..,N.
uX(T)
Actually, ullc(T) = Ay and ui(T) = By, where Ay, By are defined by (34).
Similar procedure is applied to provide the numerical examples for the IP2.
GNU Octave IDE has been used to run all the computations.
Example to the IP1. Given the input data h = 0, ¢(x) = x(1 — x), g(t) = t and the exact solution to the inverse problem
S0 =10x(1 — x)(2/3 — x), we compute N under the level of noise § and, afterwards, f NS We also compute the maximal
error on the grid

_ N
err-rggj{lf(xl) S0l

Errors and N for different values of § are listed in Table 1. Figure 1 illustrates the case § = 0.001.
Example 1 to the IP2. The inverse problem IP2 is investigated for the similar functions. Namely, the source term F = 0
and @(x) = 10x(1 — x)(2/3 — x). Errors and values of N are given in Table 2.

TABLE1 Number N and
errors in Example to IP1

) N err

0.01 2 0.092959
0.001 4 0.032201
0.0001 8 0.010361

— = - numerical
/ exact
0.6
o / \
: 4
I
4
w 0.2 \\
0
4
/
0.2 Z

3

0.8

-0.4

X

FIGURE1 Example toIP1:f andf N4 for 5 = 0.001 [Colour figure can be viewed at wileyonlinelibrary.com]



KINASH AND JANNO

WILEY——*
TABLE 2 Number N and
errors in Example 1 to IP2

6 N err

0.01 2 0.094353

0.001 5 0.029403

0.0001 10 0.0066018

TABLE 3 Number N and errors in

Example 2 to IP2
8 N rmse err;
0.01 5 0.27823  0.16459

0.001 17  0.18367  0.064002
0.0001 57  0.14417  0.020943

— — - numerical
exact
1.2
- r

1\ 1\

4 R [N s - \ N LTy
[ , 7 N < ~ ~ N N7 T

I \ - 1

] 1

08 t
< ! !
I |

0.6 | ¢
1 1

I |
0.4 f 1
I 1
I 1
0.2 f L
|

0

0 0.2 0.4 0.6 0.8 1

X

FIGURE 2 Example 2 to IP2: Oscillations of ¢ near ¢ = 1 in case § = 0.001 [Colour figure can be viewed at wileyonlinelibrary.com]

Example 2 to the IP2. In another example, F = 0, ¢ = 1 was taken. (Then ¢ € D(L*),s < }1.) The numerical solution
preserves constant error 1 at the boundary 0Q = {0; 1}. Therefore, instead of err we employ the root mean square error:

M 1/2
1
rmse = MZ(@O@) - "N (x))?
i=0
and maximal error on a subgrid
erry = max () — @ ()],
Gridn[0.2,0.8]

Results are given in Table 3 and an illustration in Figure 2.

ACKNOWLEDGEMENTS
The research was supported by the Estonian Research Council, grant PUT568.
ORCID

Nataliia Kinash"* http://orcid.org/0000-0002-9782-8976
Jaan Janno"“ http://orcid.org/0000-0003-3809-6020



1942 KINASH AND JANNO
WILEY

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.
30.

Berkowitz B, Klafter J, Metzler R, Scher H. Physical pictures of transport in heterogeneous media: advection-dispersion, random-walk,
and fractional derivative formulations. Water Resour Res. 2002;38(10, 9):1-12. https://doi.org/10.1029/2001WR001030

. Fang C, Cao J-Z, Sun L-F. Exact solution of fractional diffusion model with source term used in study of concentration of fission product

in uranium dioxide particle. Commun Theor Phys. 2011;55(5):863-867.

. Magin RL. Fractional calculus models of complex dynamics in biological tissues. Computers Math Appl. 2010;59(5):1586-1593. htpps://

doi.org/10.1016/j.camwa.2009.08.039

. Metzler R, Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys Reports. 2000;339(1):1-77.

https://doi.org/10.1016/S0370-1573(00)00070-3

. Hussein MS, Kinash N, Lesnic D, Ivanchov M. Retrieving the time-dependent thermal conductivity of an orthotropic rectangular

conductor. Appl Anal. 2017;96(15):2604-2618. htpps://doi.org/10.1080/00036811.2016.1232401

. Isakov V. Inverse Problems for Partial Differential Equations. New York: Springer; 2006.

. Ismailov MI, Cicek M. Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions. Appl Math

Modell. 2016;40(7):4891-4899. htpps://doi.org/10.1016/j.apm.2015.12.020

. Lopushanska H, Lopushansky A, Myaus O. Inverse problems of periodic spatial distributions for a time fractional diffusion equation.

Electron J Differ Eqns. 2016;2016(14):1-9. https://ejde.math.txstate.edu/Volumes/2016/14/lopushanska.pdf

. Lyubanova AS, Tani A. On inverse problems for pseudoparabolic and parabolic equations of filtration. Inverse Prob Sci Eng.

2011;19(7):1023-1042.
Miller L, Yamamoto M. Coefficient inverse problem for a fractional diffusion equation. Inverse Prob. 2013;29(7):075013. htpps://doi.org/
10.1088/0266-5611/29/7/075013

Furati KM, Iyiola OS, Kirane M. An inverse problem for a generalized fractional diffusion. Appl Math Comput. 2014;249:24-31. htpps://
doi.org/10.1016/j.amc.2014.10.046

Janno J, Kasemets K. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Prob Imaging.
2017;11(1):125-149. htpps://doi.org/10.3934/ipi.2017007

Kirane M, Malik AS, Al-Gwaiz MA. An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal
boundary conditions. Math Methods Appl Sci. 2013;36(9):1056-1069. htpps://doi.org/10.1002/mma.2661

Orlovsky DG. Parameter determination in a differential equation of fractional order with Riemann-Liouville fractional derivative in a
Hilbert space. J Siberian Fed Univ Math Phys. 2015;8(1):55-63.

Tatar S, Tinaztepe R, Ulusoy S. Determination of an unknown source term in a space-time fractional diffusion equation. J Fract Calc Appl.
2015;6(1):83-90.

Tuan NH, Dinh L. Fourier truncation method for an inverse source problem for space-time fractional diffusion equation. Electron J Diff
Egns. 2017;2017(122):1-16. https://ejde.math.txstate.edu/Volumes/2017/122/tuan.pdf

Sakamoto K, Yamamoto M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse
problems. J Math Anal Appl. 2011;382(1):426-447. htpps://doi.org/10.1016/j.jmaa.2011.04.058

Jiang D, Li Z, Liu Y, Yamamoto M. Weak unique continuation property and a related inverse source problem for time fractional
diffusion-advection equations. Inverse Prob. 2017;33(5):055013. htpps://doi.org/10.1088/1361-6420/aa58d1

Janno J. Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion
equation. Electron J Diff Eqns. 2016;2016(199):1-28. https://ejde.math.txstate.edu/Volumes/2016/199/janno.pdf

Chechkin AV, Gorenflo R, Sokolov IM. Fractional diffusion in inhomogeneous media. J Phys A Math Gen. 2005;38:L679—L684. htpps://
doi.org/10.1088/0305-4470/38/42/L03

Baeumer B, Kurita S, Meerschaert MM. Inhomogeneous fractional diffusion equations. Fractional Calculus Appl Anal. 2005;3:
371-386.

Mainardi F, Mura A, Pagnini G, Gorenflo R. Time-fractional diffusion of distributed order. J Vib Control. 2008;14(9-10):1267-1290. htpps://
doi.org/10.1177/1077546307087452

Sokolov IM, Chechkin AV, Klafter J. Distributed-order fractional kinetics. Acta Physica Polonica B. 2004;35(4):1323-1341. https://arxiv.
org/abs/cond-mat/0401146

Chechkin AV, Gonchar V, Gorenflo R, Korabel N, Sokolov IM. Generalized fractional diffusion equations for accelerating subdiffusion
and truncated Levy flights. Phys Rev E. 2008;78(2):021111. htpps://doi.org/10.1103/PhysRevE.78.021111

Amendola G, Fabrizio M, Golden JM. Thermodynamics of Materials with Memory. Theory and Applications. New York: Springer; 2012.

Li Z, Yamamoto M. Uniqueness for inverse problems of determining orders of multi-term time-fractional derivatives of diffusion equation.
Appl Anal. 2015;94(3):570-579. htpps://doi.org/10.1080/00036811.2014.926335

Luchko Y. Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J Math Anal Appl.
2011;374(2):538-548. htpps://doi.org/10.1016/j.jmaa.2010.08.048

Zacher R. Quasilinear Parabolic Problems with Nonlinear Boundary Conditions. Dissertation, Halle: Martin-
Luther-Universitét Halle-Wittenberg; 2003. https://www.yumpu.com/en/document/view/4926858/
quasilinear-parabolic-problems-with-nonlinear-boundary-conditions

Priiss J. Evolutionary Integral Equations and Applications. Berlin: Birkhéduser; 1993.
Gorenflo R, Kilbas AA, Mainardi F, Rogosin SV. Mittag-Leffler Functions, Related Topics and Applications. New-York: Springer; 2014.



KINASH AND JANNO WI LEY;1943

31. Bonilla B, Rivero M, Trujillo JJ. Linear differential equations of fractional orders. In: Sabatier J, Agrawal OP, Tenreiro Machado JA, eds.
Advances in Fractional Calculus. New York: Springer; 2007:77-91.

32. Haubold HJ, Mathai AM, Saxena RK. Mittag-Leffler functions and their applications. ArXiv:0909.0230 [math.CA]; 2009.
33. Gripenberg G, Londen SO, Staffans O. Volterra Integral and Functional Equations. Cambridge: Cambridge University Press; 1990.

34. Samko SG, Kilbas AA, Marichev OI. Fractional Integrals and Derivatives. Theory and Applications. Amsterdam: Gordon and Breach Sci.
Publ; 1993.

35. Trenogin VA. Functional Analysis. Moscow: Science; 1980. (in Russian).

36. Ganina A, Hamarik U, Kangro U. On the self-regularization of ill-posed problems by the least error projection method. Math Modell Anal.
2014;19(3):299-308. htpps://doi.org/10.3846/13926292.2014.923944

37. Zhang ZQ, Wei T. Identifying an unknown source in time-fractional diffusion equation by a truncation method. Appl Math Comput.
2013;219(11):5972-5983. htpps://doi.org/10.1016/j.amc.2012.12.024

38. Courant R, Hilbert D. Methods of Mathematical Physics, Vol. 1. New York: Interscience; 1953.

How to cite this article: Kinash N, Janno J. Inverse problems for a perturbed time fractional diffusion equation
with final overdetermination. Math Meth Appl Sci. 2018;41:1925-1943. https://doi.org/10.1002/mma.4719







Appendix 2

Publication Il
N. Kinash and J. Janno. Inverse problems for a generalized subdiffusion

equation with final overdetermination. Mathematical Modelling and
Analysis, 24(2):236-262, 2019.

121






( MATHEMATICAL MODELLING AND ANALYSIS http://mma.vgtu.lt
| f Volume 24, Issue 2, 236-262, 2019 ISSN: 1392-6292
B https://doi.org/10.3846 /mma.2019.016 eISSN: 1648-3510

Inverse Problems for a Generalized Subdiffusion
Equation with Final Overdetermination

Nataliia Kinash and Jaan Janno

Department of Cybernetics, Tallinn University of Technology
Ehitajate tee 5,19086 Tallinn, Estonia

E-mail: nataliia.kinash@taltech.ee

E-mail(corresp.): jaan.janno@taltech.ee

Received November 22, 2019; revised February 4, 2019; accepted February 6, 2019

Abstract. We consider two inverse problems for a generalized subdiffusion equa-
tion that use the final overdetermination condition. Firstly, we study a problem of
reconstruction of a specific space-dependent component in a source term. We prove
existence, uniqueness and stability of the solution to this problem. Based on these
results, we consider an inverse problem of identification of a space-dependent coef-
ficient of a linear reaction term. We prove the uniqueness and local existence and
stability of the solution to this problem.

Keywords: inverse problem, subdiffusion, final overdetermination, fractional diffusion.

AMS Subject Classification: 35R30; 35R11.

1 Introduction

Anomalous diffusion processes are described by different models [6]. Among
them stands out the time (or space-time) fractional diffusion equation that is
the most common way to represent a subdiffusion. For some situations such
approach does not work [19]. Therefore, more general models that unify wider
range of subdiffusion processes are introduced [19,25].

In this paper we use an operator that is more general than the fractional
time derivative:

ka}’v = %k*v, (1.1)

where # denotes the time convolution, i.e. (vy * v2)(t) = fot v1(t — T)ve(T)dr.
Taken k = F(tl;fﬁ), (1.1) transforms into a well-known Riemann-Liouville frac-

Copyright © 2019 The Author(s). Published by VGTU Press
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Inverse Problems for a Generalized Subdiffusion Equation 237

tional derivative. The operator corresponding to the Caputo fractional deriva-
tive denoted as ]D)(C,;)v was introduced by Luchko and Yamamoto in [23] and
also in [15].

The toolkit for treating such a type of derivative have been developed by
Priiss et al. [5]. They have created a setting to introduce the operator inverse

to D;{k} through the concept of Completely Positive kernels [5]: a kernel M €
L1 ,0c(R4) is called completely positive if there are kg > 0 and nonnegative
and nonincreasing k1 € Li jo.(Ry) such that M (koo + k1) = 1 holds. The
applications of this concept can be found in [1,33,34]. Another approach to
this issue has been developed by Kochubei [19].

Often parameters of models are unknown. Then additional observations
are performed and inverse problems solved to reconstruct unknown quantities
[12,13,16,17,20,21]. In the present paper we consider two inverse problems
(IPs) that use final observation data: IP1 is to identify a space-dependent
factor f of a source term g(¢,z) f(x); IP2 is to reconstruct a coefficient r(x) of
a linear reaction term.

IP1 for fractional and perturbed fractional diffusion equations is studied in
several papers. Theoretical and numerical results are obtained in the particular
case g = g(¢) [7,17,18,26] and in the case g = g(¢, ) [30,32]. In latter papers the
existence and uniqueness of solutions are proved for almost all scalar diffusion
coefficients. IP1 for a semilinear fractional diffusion equation is considered
n [15]. Uniqueness of the solution is proved.

In this paper we consider IP1 for a more general diffusion equation that
includes the operator (1.1) instead of the fractional derivative. We prove the
uniqueness of the solution to IP1 by applying a modified version of the positivity
principle from [15]. That falls into category of maximum principle results
[13,20,22]. Similar approaches to the inverse problems are well-known in the
domain of parabolic equations [2,12]. Next we prove the existence and stability
of the solution of IP1 by means of the Fredholm alternative. The uniqueness of
solution of IP2 follows from the IP1-results. Finally, we prove local existence
and stability of the solution to IP2 by means of the contraction argument.

2 Formulation of direct and inverse problems
Let us consider the generalized subdiffusion equation
Ut(t>x) - (M*LU)t(tax) +Q(t,$), (21)

where U physical state, t is the time, x € R™ is a space variable, () is a source
term, the operator L = L(x) is such that

8$j

i,j=1

L(z) = Li(z) + r(x)I, where Li(z) = Z aij(a:)ax?axj + Zaj(x)i

and [ is the unity operator. The kernel M is a memory function related to a
non-locality of the diffusion process.

Math. Model. Anal., 24(2):236-262, 2019.
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There are two ways to derive the equation (2.1) from physical laws. One
method consists in modelling continuous time random walk processes in micro-
level and taking a continuous limit in a macro-level [4] and another one uses
conservative laws and specific constitutive relations with memory [27].

Real world applications of the equation (2.1) include diffusion in fractal and
porous media, e.g. propagation of pollution, heat flow in media with memory,
dynamics of protein in cells, transport in dielectrics and semiconductors, usage
of optical tweezers, Hamiltonian chaos etc. [3,4,6,27,31].

Let us assume that there is a function k£ such that k« M = M xk = 1.
Then if we apply k* to (2.1), we obtain an equation that contains the explicit
differential operator L and is called the normal form of (2.1): k * U(t,x) =
LU(t,x)+H(t,z), where H(z,t) := k+*Q(t,x). The term kU, can be rewritten
in the form D;{k}(U —U(0,-)) that does not contain the 1st order derivative of
U. Therefore, we get the equation

DU —U(0,) = LU(t, ) + H(t, z). (2.2)

Conversely, in case of sufficiently regular U, the equation (2.1) follows from
(2.2) by means of the application of the operator %M *.

The equation (2.1) and its analogue (2.2) incorporate the following possi-
bilities:

1. The kernel M(t) = 0 < B < 1, represents a power-type mem-

()’
ory. Then (2.1) becomes the celebrated time fractional diffusion equation
U, = D' PLU + Q, where D'y = (% * v) is the Riemann-
t

Liouville fractional derivative of the order 1 — 8 [4,17,20,26]. For such
M, it holds k = F(%fﬁ) and [k % (v — v(0)]; = k * v, = 8P v is the Caputo
fractional derivative.

2. The kernel M or its associate k is a linear combination of power functions
[25,31]:

M= s 1, p;>0
0T Ly (<A< mo

t—B ! t—Bi

3. The kernel M has the form M(t) = fol p(s)%ds where p > 0 is a
nonvanishing integrable function (cf. [3,25,31]). Such a kernel stands
for the distributed order fractional derivative that is used for modeling

diffusion with a logarithmic growth of the mean square displacement [19].

4. Tempered fractional calculus [29], that is another way to generalize a
fractional calculus, falls into the case

1 A ¢
M(t —e_)‘tt’g_l—l—/ e A dr, A > 0.
O =T 705 Jo
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This type of kernel is used for modelling the transition from anomalous
to normal diffusion.

Every presented example of M (or k) has a completely monotonic associate k
(or M) that solves k* M =1 (see Section 3).

Let 2 € R™ be an open bounded domain with the boundary 9f2. In direct
problem we have to find a function u that solves the initial-boundary value
problem

DI (U — ®)(t,2) = LU(t,z) + H(t,z), z€R2,te (0,T),
U(0,z) =P(x), xz€i2, (2.3)
BU —-b)(t,x) =0, xz€dR, te(0,T).
Here @ and b are given functions and
Bu(z) =v(z) or Bu(zx)=w(z)-  Vu(z),
with w - v > 0 and v(z) denoting the outer normal of 92 at x € 2. An
important particular case is w = (Z?Zl aijuj|i:1,m,n). Then the condition
B(U — b)|,2)e(0,1yx002 = 0 corresponds to the flux specified at 952.
Let us proceed to inverse problems. To this end we introduce the condition
U(T,z) =%(x), xz€ {2, (2.4)

with a given observation function ¥. Firstly, we formulate of an inverse source
problem. Let

H(t,z) = g(t, ) f(x) + ho(t, z), (2.5)

where the components ¢gf and hg may correspond to different sources or sinks.
The factor f is unknown and to be reconstructed by means of the data (2.4).
Since the whole function U is also unknown, the first inverse problem consists
in determination a pair of functions (f, U) that satisfies (2.3), (2.4) and (2.5).

In the second inverse problem, our aim is to identify the coefficient r of
the linear reaction term rU. In the mathematical formulation, the problem
consists in finding a pair (r,U) that satisfies (2.3) and (2.4). We can handle
the case of zero initial condition @ = 0 (for details, see the end of Section 6).

Methods to be used in this paper require homogeneous boundary conditions.
Therefore, we perform the change of the second unknown v = U — b in our
problems. It brings along shifts of data by addends containing b.

Firstly, from (2.3) we obtain the following problem for u = U — b:

D™ (u—)(t,x) = Lult, ) + F(t,z), =€ 2,te(0,T),
u(0,7) = p(x), =€ 2, (2.6)
Bu(t,z) =0, z€02,te(0,T),

where

Math. Model. Anal., 24(2):236-262, 2019.
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The overdetermination condition (2.4) in terms of u has the form
uw(T,z) =Y(x), =z €1, (2.9)

where ¢(z) = ¥(z) — b(T, z). Plugging (2.5) into (2.8) we obtain
F(t,z) = g(t,x)f(z) + h(t, x), (2.10)

where h(t,x) = ho(t, ) + Lb(t,z) — DI (b — (0, ) (¢, z).

In the reformulated first inverse problem (IP1), we seek for the pair of
functions (f,u) that satisfies (2.6), (2.9) and (2.10).

Let us reformulate the second inverse problem, too. From the relations
(2.3), (2.4) with ¢ = 0 by means of the change of variable u = U — b, we obtain
the following problem for the pair (r, u):

DM u(t, x) = Lyu(t, z) + r(@)(u + b)(t,2) + Fy(t,z) x € 2, te(0,T),
u(0,z2) =0, =z €12, Bu(t,x) =0, =z €92, te(0,T), (2.11)
U(Ta l‘) = 1/1(1‘), x € (2,

where b(0,2) = 0, x € £2, the function 1) is expressed by ¥(z) = ¥(z) — b(T, x)
and Fy(t,2) = H(t,z) + Lib(t,z) — DI b(t, ).

Thus, the reformulated second inverse problem (IP2) is to find the pair of
functions (r,u) that satisfies (2.11).

3 Basic assumptions

In this section we collect basic conditions on the domain, operator L and kernels
k and M that will be assumed throughout the paper.
We assume that 92 is uniformly of the class C? and w € (C1(992))".

Moreover, we assume that a;;,a;,r € C(f2) and the principal part of L is

uniformly elliptic, i.e. Y. a;;(2)&&; > c|€]? V€ € R™, x € 2 for some ¢ > 0.
ij=1

Concerning the function k, we assume that

1. k belongs to Li 0.(0,00) and is a solution of the equation M x k = 1
with a kernel M € L ;,.(0,00) that satisfies the conditions

M e C'0,00), lim M(t)=00, M >0, M <0,

t—0t
. . _ (3.1)
— M’ is nonincreasing and convex;

2. k has the following properties:

ke C(0,00), tlirél+k<t) =00, k>0, kisnonincreasing, (3.2)

Tt > 0 : k(t) is strictly decreasing in (0, ). (3.3)
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The assumptions (3.1) ensure the existence of a sufficiently regular solution
of the direct problem (see Lemma 3) and the assumptions (3.2), (3.3) are needed
for the application of a positivity principle to this solution.

We mention that restricting generality a bit it is possible to reduce all
conditions 1 and 2 to the single kernel M. Firstly, M € Lj ;0.(0,00) and
(3.1) imply the existence of a unique solution k € L1 j,.(0,00) of the equation
k+ M =1 ( [10], Ch. 5, Corollary 5.6). Secondly, all properties (3.2), (3.3)
follow from conditions that are a bit stronger than (3.1). It is shown in the
following lemma. Proof is in Appendix.

Lemma 1. Let M € Lq 0.(0,00) satisfy (3.1) and M’ < 0, logM - convez,
log(—M') - convex. Then the solution of M x k = 1 satisfies (3.2), (3.3).

The imposed assumptions on M and k hold for weakly singular completely
monotonic kernels from

CM={2€L116c(0,00) [ |C*(0,00) : lim z(t) =00, (—1)'2) >0, i=0,1,.. }.

t—0+

For M and k satisfying M = k = 1, it holds M € CM if and only if Kk € CM
( [9], Theorem 3).
All examples of M and k given in Section 2 belong to CM.

4 Preliminaries

4.1 Functional spaces

Let X be a Banach space. Since k * M = 1, we have
{k} _ 4 = .
D, (M*v)—%k*M*v—%l*v—v, Vv e Li((0,T); X), (4.1)

where L1 ((0,T); X) is the space of functions u : (0,7) — X that are integrable
in the Bochner sense on (0,7"). This means that the operator Mx is a one-to-
one mapping from L1((0,7); X) to {M xv : v € L1((0,7); X)} and Dt{k} is
the inverse of M.

As usual, let C([0,T]; X) stand for the Banach space of functions u
[0,7] — X that are continuous on [0,7] with the norm |[ullc(o,r;x) =

t&&%}”u(t)”)( and Co([0,T);X) = {u € C([0,T]; X) : u(0) = 0}. Based

on the relation (4.1), we introduce the functional space
N[0, T); X) = M+ C([0,T); X) = {M xv : v e C([0,T]; X)}.
It is a Banach space with the norm
lull 3 (o 275 = 10 Hulleomix)-
Since Mx* € L(C([0,T]; X),Co([0,T]; X)), it holds
C5*H(0.T): X) < Co([0.7]: X).

Math. Model. Anal., 24(2):236-262, 2019.
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We also define the space
¢ ([0,T]; X) == ¢ ([0, T); X) + X
={u : u(t) =ui(t) + ug, us € Cék}([O,T];X), ug € X} (4.2)
that is a Banach space with the norm
lulloess oz = It = ()l ggor o,z + 2Ol x.
Next we introduce the abstract Holder spaces with corresponding norms

C(10,T); X) = {u € Co([0,T); X) -

U t2 —Uu tl X
[ullcg o,rix) == sup lut2) (a)|| - OO}’
0<t1<ta<T (tQ — tl)

C*([0,T]; X) = C§([0,T]; X) + X,
[ullca(o,r1:x) = lu = u(0)[lce (jo,11:x) + [[w(0)] x,
where 0 < a < 1, and define the Banach spaces with norms
C§2([0,T]; X) = M+ Cg ([0, T; X), (4.3)
lall o o 1) = 128 allog (o715
b ([0, T]; X) = M+ C*([0,T); X) + X,
lalloos.a o) = 1D (= w(0))lowo,ix) + u(0)]x-

Let us establish some connections between the spaces (4.2), (4.3) and the
usual C, C'- and Holder spaces. For C{¥}([0, T]; X) the embeddings

CH([0,T]; X) = C¥H([0,T]; X) = C(0,T}; X) (4.4)
are valid. The right embedding follows from M= € £(C([0,7]; X))* . To prove
the left embedding, we choose some u € C*([0,T]; X). Then
lulletry o.715x) = lu=2(0) | 1 o 7,30y H (O = Fxw’ [ oo o, 71:x) + 1(0) [

and since kx € L(C([0,T]; X), Co([0,T]; X)), the left relation in (4.4) follows.
Analogous relations for the space C’ék} ([0, T); X) are

Ot (0, T]; X) = C§™ ([0, T]; X) — €5((0,T]; X) (4.5)

where
Cé+a([0,T};X) ={u :u, v €C§(0,T]; X)}.

The right embedding in (4.5) is a consequence of the fact that Mx €
L(C§([0,T); X)) (see Lemma 4.2 in [14]) and the left embedding in (4.5) can
be proved similarly to the left embedding in (4.4).

Under additional assumptions on M it is possible to show that the operator
M * increases the order of Holder continuity of a function. Namely, the following
lemma is valid. Its proof is deferred to Appendix.

1 The symbol £ stands for the space of linear and bounded operators.
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Lemma 2. If M(t) < eitP~1 [M'(t)] < cotP=2,t € (0,T) for some c1,co €
Ry, 0<fB<a<1 then Mx € L(CSP(0,T); X),C4([0,T]; X)).

Under conditions of Lemma 2, Cék}’afﬂ([o, T; X) — C§(]0,T]; X). In the
particular case M(t) = % (then M= is the fractional integral of the order

B), it holds the equality C\**~2([0, T); X) = ([0, T]; X) [15).
By exchanging M and k in above relations, we obtain definitions and em-
beddings of spaces that contain {M} instead of {k} in the superscript.

4.2 Abstract Cauchy problem

Let A : D(A) — X be a linear densely defined operator in a Banach space X.
We say that A belongs to the class S(n,0) for n € R, 0 € (0,x) if

p(A) D X(n,0)={AeC : N#£mn, arg|]A —n| <} and

(e — A)_1||L(X) < Yu € ¥(n,0) for some constant C' > 0.

_C
|1 =]
An operator A € §(n,0) is closed. This implies that X4 := D(A) is a Banach
space with the graph norm ||w|/x, = |w| x + || Aw]| x-

Obviously, S(n,01) C S(n,62) for 8; > 65. Operators of the class S(n,6),
0 e (g, 77), are the sectorial operators that generate analytic semigroups.

Now let us consider the Cauchy problem
DI (u—p)(t) = Au(t) + F(t), t€[0,T], u(0)=¢, (4.6)
with given F': [0,7] = X and ¢ € X.

Lemma 3. Let A € S(n,5) for somen € R. Then the following statements
are valid.

(i) (uniqueness) Let u € C1*}([0,T); X) N C([0,T]; X a) solve (4.6) and o = 0,
F=0. Then u=0.

(i) Let F € C§([0,T]; X) and ¢ = 0. Then (4.6) has a solution u in the space

C’ék}’a([O,T]; X)NC§([0,T); X 4). This solution satisfies the estimate
lull g0 A g 0.11:x0) < CLllEF lleg 0,730 - (4.7)

(iii) Let F € C*([0,T];X) and ¢ € X4. Then (4.6) has a solution u in the
space CT*}([0,T]); X) N C([0, T); X a). This solution satisfies the estimate

lulletss (o, 11:x) N co.r)ixa) < CollFllca(o,rix) + el xa)- (4.8)
The constants C1 and Cy depend on M and A.

Proof. The change of variable v = ka}(u —¢) & u= M *xv+ ¢ reduces
(4.6) of the integral equation

u(t) = A(M #v)(t) + F(t) + Ap, te0,T). (4.9)
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Provided F € C([0,T);X), ¢ € Xa, the function u € C¥*}([0,T]; X)N
C(]0,T); X4) solves (4.6) if and only if v € V := {v € C([0,T]; X) : M x
v € Co([0,T]; X4)} solves (4.9). Similar one-to-one correspondence holds for
u € Cék}’a([O,T];X)ﬂCg([O,T];XA) and v € V* := {v € C§([0,T]; X) :
M xv e C§([0,T); Xa)} in the particular case F' € C§([0,T]; X), ¢ = 0.

Since M satisfies the conditions (3.1) and A € S(n, §), we can apply results
of Ch. 3 of [28] to (4.9).

(i) Theorem 3.2 with Corollary 1.1 and Proposition 1.2 in [28] implies that
there exists a family of operators S : [0,00) — £(X) (called resolvent of (4.9))
so that a solution v € V' (if it exists) is represented by the formula v = 45« F.
By assumptions of (i), (4.9) has a solution v € V. Since F = 0, we have v = 0.
Thus, v = 0.

(ii) Theorem 3.3 (i) [28] implies that for F' € C§([0,7]; X) there exists a
solution v € V* of (4.9). This proves the existence of the solution u €
Cék}’a([O,T];X)ﬂCg‘([O,T];XA) of (4.6). The estimate (4.7) follows from
the bounded inverse theorem.

(iii) It is sufficient to prove this assertion in case F'(t) = ¢ € X, because the
problem with given pair of data (F,¢) can be splitted into two problems with
the data (F — F(0),0) and (F(0), ), respectively. For the first problem, the
assertion (ii) applies. Having proved (iii) for the second one, u is expressed as
the sum of solutions of these two problems and satisfies (iii), too.

Thus, let us assume that F(t) = £ € X. Due to Proposition 1.2 (ii) [28],
(4.9) has the solution v = S({ + Ap) € V. This implies the existence assertion
of (iii). Due to the strong continuity of S(t) [28], [[S(t)|l¢(x) < C3, t € 0,77,
where Cj is a constant. Thus, [[v]|c(o,7),x) < Cs ([[€llx + | A¢l|x). Extracting
the term A(M*v) from (4.9) and estimating it we obtain [|A(M*v)| ¢, (j0,77,x) <
(Cs + D(lIEllx + [[Aw]x). Consequently,

lullcxr o, 71,5 N eo,rx4) = Nvllv + lellxa < Callléllx + llellxa)
with a constant Cy. This implies (4.8). O

4.3 Statements on direct problem

In order to apply Lemma 3 to the direct problem (2.6), we must introduce
appropriate Banach spaces of z-dependent functions and define realizations of
the operator L in these spaces so that they belong to S (77, g)

Let us introduce the following spaces and operators:

1. X, =Ly(2),1<p< oo,
Ap: Xa, = X, with Xa, = {z € W2(2) : Bz|se =0} and
Apz =1Lz, z€ Xa,.

0 o Co(2)={2€C(N2) : z|lpo =0} in case B=1,
"7 ) C(@)incase B=w-V,

Ao : Xa, = Xo with Xy, ={z€ (| W2(R2): Bzlsq =0, Lz € Xo}
1<p<oo
and Aoz = Lz, z€ Xa,.
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Corollary 1. Operators A,, p € {0} J(1,00), are sectorial. Thus, Lemma 3
holds in cases X = X,,, A= A,, p € {0} |J(1, 00) and applies to problem (2.6).

Proof. It follows from Theorems 3.1.2, 3.1.3 and Corollary 3.1.24 (ii) in [24].
g

Lemma 4. Let K € L1(0,7)(C*(0,T), lim K (t) = oo, K >0, K be non-
t—0

increasing and Itx > 0 : K is strictly decreasing in (0,tx). Moreover, let
F € C(]0,T] x £2). Assume that u solves the problem

DI (u— @) (t,x) = Lult, ) + F(t,z), t € (0,T), z € £,
uw(0,2) =@, z € 2

and satisfies the smoothness conditions u € C([0,T] x £2), uz, € C((0,T] x §2),
u e C(0,T|;W2(R2)) for some p > n, Liu € C((0,T] x ﬁ),DEK}(u —p) €
C((0,T) x £2). Finally, let

1 [ _
lim / K(7)dr sup |u(t—s,z)—u(t,x)| =0, Vte (0,T], xz€ 2. (4.10)
e—0t € Jo 0<s<e

If o >0, F >0 and Bu|gqn > 0 then the following assertions are valid.
(i) u > 0;
(ii) f u(to, xo) = 0 in some point (tg,zo) € (0,T] x 2n, where

O — 2 in case B=1
N1 2 incwseB=w-V ’

then u(t,xo) = 0 for any t € [0, to].

This lemma is a slight modification of a positivity principle that was proved
in [15] for a semilinear equation in case of a more smooth solution u €
C((0,T];C%(£2)) and strictly decreasing in (0,7) kernel K.

To prove Lemma 4, we need the following auxiliary result. It is proved in
Appendix of the paper.

Lemma 5. Letw € W2(R2) for some p>n, Lyw € C(£2) and x* =argmin w(z).
z€ENR

In case z* € 012 we also assume that (w- Vw)(z*) > 0. Then Lyw(z*) > 0.
Proof of Lemma 4. Without a restriction of generality we assume that r < 0.
Otherwise it is possible to define @ = e~ ?‘u as in [15] and to consider the
corresponding problem for #. Such a problem also satisfies the assumptions of
Lemma 4 and has the coefficient 7 =r — o fOT e 79K (s)ds in place of r. Since
lim K(t) = oo, for sufficiently large o, 7 < 0.

t—0t
Let us suppose that (i) does not hold. Then there exists (t1,21) € (0,T] x 2
such that u(t1,21) < 0 and (¢1,21) = argmin wu(¢,x). It was shown in [15]
r€02,t€[0,T]

(formula (37)) that the assumptions DEK}(u — ) € C((0,T] x 2), (4.10),
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K > 0 and K — nonincreasing together with the relations u(t,xz1) > u(t1, 1)
and u(ty,z1) < 0 imply Dt{K}(u — ©)(t1,71) < 0. On the other hand, Lemma
5 applies to the function w = u(t1,-) at z* = ;. We obtain Liu(t1,z1) > 0.
Also r(z1)u(t1,z1) > 0 and F' > 0. Thus, the left-hand side of the equation
D;{K} (u—)(t1,21) = [Lu + F](t1,21) is negative, but the right-hand side is
nonnegative. We have reached a contradiction. The assertion (i) is valid.

Let us prove (ii). Let wu(to,z0) = 0 at (to,xo) € (0,7] x 2y. Define
to = inf{t :t <to, u(r,z0) =0 for 7 € [t,to}}. If (ii) is not valid, then £y > 0
and u(t,zo) > 3, t € (ta,t3) for some § > 0 and (ta,t3) C (0,%o) such that
to — ty < tg. Then, similarly to the proof in [15] p.138, from the assumptions
DI (= ) € C((0,T] x 2), (4.10), K > 0, K — nonincreasing and relations
u >0, u(t,mg) > >0, t € (ta,t3), we derive

D — ) (Ho, w0) < 8(K(fo — ta) — K (io — t3)). (4.11)

Since 0 < tg — t3 < fo — t2 < txr and K is strictly decreasing in (0,¢x), (4.11)
implies D;{K}(u — ¢)(to, 7o) < 0. On the other hand, from u(ty, zo) = 0 and
u(t,z) > 0, (t,z) € (0,7] x £2, we conclude that (to,x0) = argminu(to,z).
xef?
By Lemma 5, Lyu(tg,z9) > 0. Moreover, (ru)(to,z¢) = 0 and F > 0. Left-
hand side of the equation DZEK} (u — @)(to, 20) = [Lu + F](to, o) is negative,
but right-hand side is nonnegative. Again, we have reached the contradiction.
Thus, (ii) holds. a

At this point we present somewhat more concrete assumptions on the input
data of the direct problem (2.6) that imply the assumptions of Lemma 4 and
Lemma 3.

Corollary 2. Let F > 0, ¢ = 0 and one of the assumptions (al)—(a3) hold:
(al) F € c1Mbe((0,T); Xo) for some 0 < a < 1 and F(0,-) = 0;

(a2) F € C§([0,T); Xo) and M(t) > ct?" t € (0,T) for some ¢ € Ry,
O<y<a<ly

(a3) F € CO7P([0,T); Xo) and et~ < M(t) < eotB~1, |M/(t)] < estP—2,
t € (0,T), for some c1,co,c3 ERL, 0<B<y<a<].

Then assertions Lemma 4 are satisfied by solution of the problem (2.6).

Proof. Defining X = Xy, Lemma 3 with Corollary 1 implies that the solution
of (2.6) exists and satisfies the smoothness conditions of Lemma 4. It remains
to show that (4.10) holds.

The case (al). The relations F € C{Mbe([0,T]; X;), F(0,-) = 0 mean that
F =k F, where F' € C°([0,T); Xo). Thus, it follows from Lemma 3 that the
function @ that solves (2.6) with F, ¢ replaced by a , © = 0 belongs to the space
C#}([0,T); Xo). Next, after convolving equation for @ with k it is easy to see
that u = k % @ solves (2.6) with F' = k  F. Therefore, u € k x C1*}([0,T]; X),

that isu=kxMx*v=1x%xv,v € C([0,T]; Xo). This allows us to conclude that
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u € C1([0,T]; Xo). Hence,

i L[ = im1 ‘ T)dT - O(€
lim /0 k(r)dr sup |u(t —s,z) —u(t,z)| = 1 /0 k(T)dr - O(e)

e—0t € 0<s<e e—0t €

=0, Vte(0,T],x€N.

The case (a2). Again, by Lemma 3 (ii), u € Cék}’a([O,T];Xo) and by (4.5),
u € C§([0,T]; Xo). The relation (4.10) follows from the estimate

€ €

1 1
lim — [ k(r)dr sup |u(t—s,z) —u(t,z)] = lim — [ k(7)dr-O(e%)
e—0+ € Jg 0<s<e =0t € Jo

o) [f o _
< E1_1}r(§1+ (o) /0 M(e — 7)k(r)dr = €1_1>r61+0(6 )=0 Vte(0,T], z € 12

The case (a3). According to Lemma 3 (i), F € C3~°(]0,T]; Xo) implies
that u € CH¥78([0,T]; Xo) = M « C27?([0,T]; Xy). By Lemma 2 it holds
u € C§([0,T]; Xo). This enables us finish the proof as in case (a2). O

5 Results on IP1

We will study IP1 in context of Holder spaces with respect to t. For the sake
of generality, we will assume different orders of spaces related to g and h: for
g we use o and for h we use as.

Theorem 1. Let one of the following assumptions be valid:

(A1) g € C; ([0, T); C(2)) for some 0 < oy < 1;

(A2) g € Cgk}’al([O,T]; C(2)) and M(t) > ct"~ ', t € (0,T) for some c € Ry,

O0<y<ag <1

(A3) g € CI75((0,T);C(@)) and ext7=! < M(t) < eotP~1, [M/(t)] <

estP=2,t € (0,T), for some ci1,ca,c3 ERL, 0< B<y<ag <1.

Additionally, we assume that g > 0, g1 := D;{k}g—Rg > 0 where R := maxr(x)
€N

and

a.e.x € 2 Ft, € (0,T]: g(ty,x) > 0. (5.1)

In case B =1 we also assume that Y € 052, either g(T,xz) > 0 or g(-,x) = 0.
Finally, let (f,u) € C(2) x (C§(10,7); €(@) N Co((0, T1; WE(2))) for
some p > 1 solve IP1 for ¢ =0, ¢ =0, h =0. Then (f,u) = (0,0).

Proof. We start the proof by showing that in case B = I, for any « € 0f2 such
that g(T,x) > 0, the equality f(z) = 0 is valid. To show this, we consider the
equality

D;[k}u(T,x) = f(z)g9(T,x), z€,
that follows from equation (2.6) in view of ¢p = 0. If z € 92 and B = I then the
left-hand side of this equality equals zero. Thus, f(x)g(T,x) = 0 and provided
g(T,z) > 0 we obtain f(x) = 0.
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Let us introduce the functions f* = \fl;f and f~ = |f\2+f' Due to the
definition, f* € C(£2) and f* > 0. Moreover,

in case B = I, for any = € 92 such that g(T,z) > 0, it holds f*(z) = 0. (5.2)

Firstly, we consider the problems

DIt (t,x) = Lu* (t,2) + g(t,2) fE(2), =€ 2, te(0,T),

(5.3)
uF(0,2) =0, ze€, Butf(t,z)=0, zedn te(0,T).

By assumptions of the theorem and (5.2), g(t,-)f* € X, t € [0,T]. There-
fore, in cases (A1) and (A2) due to (4.5) we have gf* € C{M} ([0, T); Xo)
and gf* € C§'([0,T); Xo), respectively. Similarly, in case (A3) due to (4.5)
and Lemma 2 we obtain gf* € C§'([0,7]; Xo). Moreover, gf* > 0. The
assumptions of Corollary 2 are satisfied for the functions F' = gf*. Hence, the
solutions u® of (5.3) satisfy the assertions of Lemma 4.

Secondly, let us consider the problems

Dt{k}vi(t,x) = LvE(t,z) + g1 (t, ) fE(z), €N, te(0,T),

N L (5.4)
v (0,2) =0, €2, Bv(t,z)=0, z€d,te(0,T).
In case (Al) we have ¢’ € C§*([0,T);C(£2)). Thus, g1 = = DMy - Rg =
k+xg —Rg € C{M}’”‘l([o T];C(£2)). From g(t,-)f* € Xo, t € [0,T] we imme-
diately get g1 (t,-)fT € Xo, t € [0,T]. Therefore, g, f* € C’{M} “1([0,T]; Xo).
Using similar reasoning, we deduce g; f* € C§*([0, T] Xo) and g, f* €
C'gl_'@([O,T];XO) in cases (A2) and (A3), respectively. Moreover, g; f* > 0.
Again, the assumptions of Corollary 2 are satisfied for F' = g; f*. The solutions
vt of (5.4) satisfy the assertions of Lemma 4.

Let us point out that the problem for M x v* is equivalent to the problem
for u* — RM % u™. Thus,

= Dzll{k}ui — Ru*. (5.5)

Moreover, since f = f* — f~, we have u = u™ — u~. Thus, ¥ u( )=

0 implies that u™(7,-) = u=(T,-). Let us denote z* = argmaxu™(T,z) =
z€N

argmaxu~ (T, z). By definition, either f*(z*) = 0 or f~(z*) = 0. Let us
e

assume that f(z*) = 0 (the situation when f~(x*) = 0 can be considered in
a similar manner).

Let us suppose that either z* € 2 or B = w - V (the case x* € 92 and
B = I will be considered later separately). Then we can apply Lemma 5 to the
function w = —u™ (T, -). We get Lyut(T,2*) < 0. Thus, from (5.3), (5.5) and
ut >0, r < R it follows:

v(T,2*) = Liwt (T, 2*) + (r(z™) — R)u™ (T,z*) <0. (5.6)
Due to Lemma 4 (i),

v (t,z) >0, (t,r) € (0,T) x £2. (5.7)
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Hence, (5.6) and (5.7) imply v* (7T, 2*) = 0. Thus, by Lemma 4 (ii), v* (¢, 2*) =
0,t € [0,T]. By formula (5.5) it means DI u*(¢,2*) — Rut(t,2*) = 0, t €
[0,7]. Applying M to to this equality, we obtain the following homogeneous
Volterra equation of the second kind:

ut(t,x*) — RM xu™(t,2*) =0, te[0,T].

It has only the trivial solution u™ (t,z*) = 0, t € [0, T]. Hence, u™ (T, z*) = 0.
Since z* is a maximum point of u™ (T, z) and u* (T, z) > 0, we also get

ut(T,z) =0, =€ 0. (5.8)

Now we consider the case z* € 92, B = I, too. Then by But|sp = 0,
immediately (T, 2*) = 0 and again we have (5.8).

Since v = ut—u~ and ¢ = u(T,-) = 0 holds, from (5.8) we get u™ (T, z) = 0,
r € . Lemma 4 (i) implies u*(¢,z) = 0, (t,x) € [0,T] x £2. Therefore,
u(t,x) =0, (t,z) € [0,T] x 2. From the differential equation for u we obtain
f(z)g(t,x) =0, (t,x) € [0,T] x £2. Finally, (5.1) yields f =0. O

Next we provide simple sufficient conditions that imply the assumption
D;{k}g — Rg > 0 in Theorem 1. For this we need the following lemma.

Lemma 6. Let w € C¥}([0, T);R) be nonnegative and nonincreasing. Then
D;{k}w > k(T)w.

Proof. The assertion follows from the estimate

t+5 t
D w(t) = 61ir(1)1+ % [/t k(m)w(t+6—7)dr + /0 E(T)(w(t4+6—T)

— w(t—T))dT] > 61361+ k(T—!—é)% [/tt+6 w(t+0—T7)dr + /()t(w(t+5—T)

- w(m))df]: E(T)w(t), 0<t<T.
O

Due to that Lemma 6, Dt{k} g — Rg > 0 holds provided along with other
assumptions on g in Theorem 1, g is nondecreasing in ¢ and k(T) > R in case
R > 0.

Theorem 2. Let g, M satisfy the assumptions of Theorem 1 and the inequality
g(T,z) > 0,z € 2, hold. If p,1p € Xa, and h € C**([0,T); X,), where
p € {0}U(1,00), 0 < as < 1, then IP1 has a unique solution (f,u) € X, x
CR}([0,T7; X,) N C([0,T]; X a,) and the following estimate holds:

1 1x, + 1wl qo,ry:x,) N eqorixa,)

< G5 (Ilpllxa, + 1¥llxs, + IBllcoagorrix,)) (5.9)
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If additionally ¢ = h(0,-) = 0, then u € C’ék}’a([O,T];Xp)ﬂCg‘([O,T};XAP)

where o — { Qo, in case (A1),

min{ay, as}, in cases (A2), (A3) and the estimate

”f||Xp+HUHCg’“%"([o,T];Xp)ﬂCS([OyT];XAP)§06 (|W\|XA,J+||}LHC§2([o,T];Xp))(5-10)
s valid. The constants Cs5 and Cg depend on the parameters M, L, g, p, cas.

Proof.  Firstly, we are going to replace the overdetermination condition (2.9)
by a fixed-point equation with respect to f.

Suppose that (f,u) € X, x Ct*}([0,T]; X,) N C([0,T]; Xa,) solves IP1.
Then, since (2.9) holds, the equation (2.6) at t =T with F = fg + h yields

(DI (1= ) = ) (T, 2) = (4, = )() = W(T,2)

fla) = e ,

(5.11)

where 7 is chosen so that 0 € p(A, — nI).
Let us split u into the sum of two functions: u = u; + us, such that
D;{k}ul :Apul+fg7 ul(O,'):O,
ka}(uz — ) =Aus+h, u(0,-)=e. (5.12)
In the context of IP1, us is a known function. According to Lemma 3, the

solution to (5.12) belongs to us € C1¥}([0,T7; X,). Thus, vy := D,;{k}(uz — ) —
nug € C([0,7T7; X;). Next we formulate the following problem:

Dy = Ay, + F(DF g —ng), vi(0,-) =0. (5.13)

Due to the assumptions (A1)—(A3) and (4.5), it holds Dt{k}g € C§([0,T);0(02))
where

4= { o, in cases (Al), (A2), (5.14)

a1 — B, in case (A3).

Thus, f(ka}g —ng) € C§([0,T]; X,). According to Lemma 3, (5.13) has

a solution vy in C’ék}’a([O,T]; X,)NC§([0,T]; Xa,). It is easy to check that

v = Dt{k}ul — NU1.

The notations introduced allow us to rewrite (5.11) in the form

f=Ff+g, (5.15)

where

g(l?) _ UZ(T7 .%') — (AP — 77)¢(35) — h(T,JJ)’

9(T, z)
(Ff) (@) = o [fI(T,2)/g(T, x) (5.17)

x € 12, (5.16)
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and vq[-] stands for the operator that assigns to f the solution v; of (5.13).
Thus, (2.6), (2.9), (2.10) imply (5.15). On the other hand, taking into account
all the substitutions performed, we can move back from (5.15) to (5.11). To-
gether with (2.6) at t = T" and (2.10) it implies (A, —n)u(T, z) = (Ap —n)Y(z).
Since (A, — 7)) is injective, it yields (2.9). Consequently, IP1 is in the space
X, x C¥([0,T); X,) N C([0,T]; X 4,) equivalent to the problem of finding the
pair of functions (f,u) that solves (2.6), (2.10), (5.15).

We point out that (5.15) is an independent equation for the first component
f of the solution of IP1. Let us analyse properties of the operator F involved in
this equation. By Lemma 3, v1[] € £(X,; C§([0,T]; X4,)). Thus, v [|(T},-) €
L(Xp, Xa,).

Furthermore, X4, —<— X,. In case p € (1,00) it is a direct consequence
of W2(£2) < L,(£2). In case p = 0 it follows from the continuous embedding
of Xa, in C4(2) := X0 C'(2) (see Theorems 3.1.19, 3.1.22 in [24]) and

Therefore, vi[-](T,-) : X,, = X,, is compact. Since g(T
assumptions of this theorem, 7 : X,, — X, is also compact.

Next, let us show that 1 ¢ o(F). Firstly, let us consider the case p = 0.
Suppose that 1 € o(F). Then the equation f = Ff has a solution f € X,
f # 0. This means that the problem (2.6), (2.10), (5.15) with homogeneous
data ¢ = 0,4 = 0, h = 0 has the nontrivial solution (f,u;) in the space
Xo x CFH ([0, T); Xo) N Co ([0, T]; X 4, ). But due to the Theorem 1, IP1 with a
homogeneous data has only the trivial solution in such a space. We came to a
contradiction. Consequently, 1 ¢ o(F).

€ C(£2) due to the

Secondly, let us consider the case p € (1,00). We again suppose that
1 € o(F), hence the equation f = Ff has a nontrivial solution f € X,.
The idea is to show that this solution actually belongs to Xy. Then we can
apply the arguments from the previous case to show that 1 € o(F) leads to a
contradiction.

If p> %, then v, [f|(T,-) € Xa, — Xo. Thus, f = Ff = TI)Ul[f](T,'
Xo. If p < %, then according to embedding theorems, X4, — X, = Ly, (
where p; = n:”;p > p. Therefore, v1[f](T,:) € X,, and f Ff
[f1(T, ) € Xp1 After a finite number of iterations we obtain f € X, ,
w5 > 5 (works for ¢ > 7o —1). Next iteration gives f € Xo.

We have shown that the first case of Fredholm alternative is satisfied for
the equation (5.15). Consequently, the solution to (5.15) exists and is unique
for any G € X, and (I — F)~! € £(X,).

Since F' = fg + h is Holder-continuous with values in X, Lemma 3 im-
plies that the problem (2.6), (2.10) has unique solution u € C{¥}([0, T7; X,,) N
C([0,T]; X4,). This completes the proof of the existence and uniqueness as-
sertion of the theorem.

~ M

)
),

1
9Ty V1
where p; =

In the rest of the proof, C stands for a generic constant depending on the
parameters M, L, g, p, as. Let us deduce the stability estimate (5.9). We obtain

1fllx, < 1T =F) M leex,lGlx, < C (Ilh(Tv')llxp +nlllellx, + 19]xa,
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. )
+ 1D (w2 = 9) = nuzlleqoryx, ) < € (IIllcws o.mix,) + 1¥lx.,
+iglixa, ) - (5.18)

Further, we note that g € Cy ([0, T]; C(£2)) for any v € (0,1) in case (A1) and
for v = o in cases (A2), (A3). Using Lemma 3 we have
lulletr (o,m:x,) Neqo,rxa,) = lur +uzllcw qo,11;x,) N eom1:x4,)
< CUI111x, 9l ez o,y + IPlloes qo.m1ix,) + Il ).

Together with the estimate of f (5.18) it implies (5.9).
In case ¢ = h(0,-) = 0, the solution of (2.6), (2.10) belongs to the space

Cgk},a([a T]; X,) N C5([0,T]; X4,) and can be estimated as

HUHC{’“} ([0,T1:X,)NCE ((0,T);X a,,) (HfHX ”gHC’V ([0,T); C(Q))"‘HhHC"2 ([0,7];X. ))

This with (5.18) implies (5.10). O

We point out that in case p = 0 and B = I, the assumptions of Theorem 2
allow to recover f € Xg = Cp(£2) only. In order to fix that in the following
theorem we provide some additional conditions that are sufficient to restore

feC()in case B=1I.
Theorem 3. Let g, M satisfy the assumptions of Theorem 2. If v, 1, Ly €
Xa, for some p > 2, Ly € (), h € C1e2([0,7]; X,) N C((0,T): C(2)),
where 0 < az < 1 and h(0,-) € X4, then IP1 has a unique solution (f,u) €
C(92) x C¥}([0,T); X 4,). Moreover, Lu € C([0,T]; C(£2)) and the estimate
1 e T lullcws o, ryxa,) T I Lull oo, e my) < < Cr(llellx, 1 Lellxa,
HIYllx, LYo HIl o e (o0,13:x,) A cco.rie@) IO llxa,) (5.19)
holds. If additionally = h(0,)= D" 1(0,-) =0, then we C{*'((0,T); X 4,)
and the estimate
Il + lullgpre qo.yix.,,) T 4l ey qoryic@)
< 08(||¢||Xp + ”qubHC(ﬁ) + Hh”Cék}’az([O,T];Xp)ﬂCO([O,T];C(ﬁ))) (520)

is valid where o/ = min{&; an} and & is given by (5.14). The constants C7 and
Cg depend on M, L, g,p, as.

Proof. Throughout the proof, C denotes a generic constant depending on
M,L,g,p, ao and RHS stands for the expression in brackets at the right-
hand side of (5.19). By Theorem 2, IP1 has a unique solution (f,u) € X, x
C1RH([0,T7; X,) NC([0,T]; X a,). Let us consider the problem

DI (wy—w,(0,-)) = Ayws + DI (h—h(0,)), wa(0,-) = Lo + h(0,-). (5.21)
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Under the assumptions of this theorem, Lemma 3 implies that (5.21) has a
unique solution wy € C1*}([0,T); X,,) N C([0, T7; X4,). Moreover, due to (4.7)

and (4.8), [walloqor1xa,) < CUlhllcorono,ryx,) + 1700 )l xa, +I1Lelx4,)-

It is easy to check that we = Dll/{k} * (uz — ) and ug = M * wa + ¢ where uy
solves (5.12). Therefore, we have us € CtF}([0,T]; X 4,) — Ct¥3([0,T]; C(2))
and

lluzll oo o,71,x4,)

< C(Jbllotm oa oy, 1RO, Y xa, L@l xa, ) Hlellxa, - (5:22)

Let us consider the function G given by (5.16). (Recall that there vy = wo —
nug.) Due the proved properties of we and ue and the assumptions of the
theorem, it holds G € C(£2) and 19]lc@) < CRHS.
Now, let us provide an estimate for || f||o s, using the formulas (5.15) and
(5.17). Since 1/g(T,-) € C(2) and v1[](T,-) € L(Xp, X4, ), we have
@ < IFFlle@) +19lo@) < Clloil /T lle@) + 19]e@)
< ClllfUT ) xa, + 19l < Clifllx, +19]lcm):

Since (I — F) is invertible in X,,, the estimate holds
I1£1x, < 1= F) e 9%, < ClGlom.
Thus, we obtain
I£ll ez < CRHS. (5.23)

Finally, let us derive an estimate for u and finish the proof of the first part
of the theorem. We have u = uy + us, where uqy = M * wq, w1 = D;{k}ul and
wy solves the problem

DI wy = Aywy + fDM g, wi(0,7) =0.

Since fD;ik}g € C’(‘f/([O,T];Xp)7 Lemma 3 implies w; € C’gl([O,T];XAp) and

A {k}
Hulﬂcék}wa'(m?T];XAp) = ||w1||cg'([0,T};XAp) < C||f||c(§)||Dt gHCg’([O,T];Xp)'

Using here (5.23) we have

||U1||Cék},a/([07T];XAp) < CRHS. (5.24)

From (5.22) and (5.24) we obtain for u = u; + us the estimate
[ull ey o.77:x ) < C RHS. (5.25)
It remains to estimate Lu in the space C ([0, T]; C(£2)). Using (5.25) we deduce
101 (= @)oo mye@y < CIPE (w = Pllogoryx,,) < CRES.
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From the expression Lu = D;{k}(u — ) — fg — h due to the proved estimates
for D;{k} (u — ¢) and f we obtain

[Lull e o,r:0(m2)) < CRHS. (5.26)

Summing up, (5.23), (5.25) and (5.26) imply (5.19).
Now let us focus on the second part of this theorem that is concerned with

the particular case ¢ = h(0,-) = Dt{k}h(O, -) = 0. Then RHS reduces to the ex-
pression in brackets at the right-hand side of (5.20). Lemma 3 implies that the
function wy which solves (5.21) belongs the space Cg ([0,77; X4, ), the func-

tion us = M * wo belongs to Cék}’a/([O,T];XAP) and HUQHC{k},QI(
0

éﬂh”C{k},aQ([O T):X,)" This relation by u = u; + ue and the estimates (5.23),
0 ) 1P
(5.24) and (5.26) implies (5.20). O

0T):Xa,) =

Provided the assumptions of Theorem 3 hold and B = I, an explicit expres-
sion of the unknown function f at the boundary can be derived. Namely, setting
t =T and x € 012 in (2.6) and taking the relations F' = fg+h and w(T,-) = ¢

1
into account we obtain f(x) = —ﬁ[Lzb(x) +h(T,z)], =z €012
g,

6 Results on IP2

In the context of IP2 let us introduce the following sets for the coefficient r:
Kp={reC() :r(x) <R, v €N}, where R € R.

Theorem 4. Let R be some real number and IP2 have two solutions (r,u),
(r1,u1), such that

reC(2), reXgr, uu € Cék}([O,T];Ll(Q)) ﬂco([O,T];Wf(Q)),
up —u € C (0,71, C(2)) () Coll0, TT; W2(12))

for some p > 1 and the function U = u+b (and M) satisfy one of the following
assumptions:

(A4) U € C;T([0,T); C(2)) for some 0 < a; < 1;

(A5) U € CFH*([0,T); C(R)) and M(t) > ct’=1, t € (0,T) for some c € Ry,
O0<y<a <1

(A6) U € Ct =80, 7);C(R)) and c1t7=! < M(t) < eptb=1, | M'(t)] <
c3tP=2, t € (0,T), for some ci,co,c3 ERy, 0< <y <y <1,

Additionally, we assume that
U>0 D®U-RU>O, (6.1)
ae. x €2, It,e€ (0,T]: U(ty,z) > 0.

In case B = I we also assume that Yz € 052, either U(T,x) >0 or U(-,x) = 0.
Then (r1,u1) = (r,u).
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Proof. The difference (7,4) = (ry — r,u; —u) € C(2) x (Cék}([O,T};C(ﬁ))
N Co([0,T); Wg(Q))) solves the problem

DMt x) = (Ly + r)a(t, z) + ( 2)i(z), z €, te(0,T),
w(0,2) =0, =xze€f2, Bu(t,x)= x €902, te(0,T), (6.2)
w(T,z) =0, xe€

The inequalities (6.1) imply that Dt{k}U — R, U >0, where R, := maxri(z) <

el
R. Consequently, the assumptions of Theorem 1 are satisfied for the problem

(6.2) and we obtain # =0, 4 =0. O

Let us formulate a problem that contains approximate data:

DN a—@)(t,x) = Lyalt, &) +7(x)(@+b)(t, z)+ Fy(t,x), x €2, te(0,T),
w(0,z) =0, =€ 12, Bu(t,x) =0, x€dR,te(0,T), (6.3)
W(T,z) =1, z¢€f.

We are going to prove an existence and approximation theorem for this problem

in case its data vector D = (b, Fy, 1)) is close to the data vector D = (b, Fy, 1))
of the exact problem IP2.

Theorem 5. Assume that R € R and IP2 has a solution (r,u) € Kg
X Cé‘k}([O,T];Ll(Q)) N Co([0,T); W2(£2)) such that U = u+b (and M) sat-
isfy one of the assumptions (A4)-(A6), the inequalities (6.1) and U(T,x) > 0,
x € 2. Then the following statements are valid.

(i) Letp € {0} U (g, oo), ag € (0,1). There exist constants 61 > 0 and K1 > 0
depending on M, L1,r,U,p, as such that if

D —D e Dy =C§([0,T];Cpy(2)) x C2([0,T]; X,p) x Xa,
— . n
and HD — DH'D1 < (517 where C(p)(ﬁ) = { C<~Q)a m case p € (5,00)7 then

Xo, i case p =0,
problem (6.3) has a unique solution in the set

{(f,ﬂ):(r—ru—u)eé‘(l =X, x(cgk}“([o:r ) () Ca ([0, T): X o ))

|G = 7.~ w)llx < KaJID = Dllp, },

where o — 4 42 in case (A4),
| min{ag, a2}, in cases (A5), (A6).

(ii) Let p € (g,oo), ag € (0,1). There exist constants d3 > 0 and Ko > 0
depending on M, L1,r,U, p, as such that if

DD e Dy = (G (0.7:x,) N C5(0. 71 C@)) x ¥,
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and ||D—D||p, < 8 where Y, = {1 : 1 € X4, L € C(2)}, then the problem

(6.3) has a unique solution in the set

{73 (=r.i—u) € % == C@ X Upar, |F=r.-0) 2, < Kol D=Dllp,},

where Uy o = {v € C’gk}’a,([O,T};XAP) : Lv € Co([0,T;C(N2)}, o =

o .| oa, in cases (A4), (Ab),
min{d; az} and & = { ay — B, in case (A6).

We mention that in this theorem, the operator A, and the space X4, defined
on the basis of L = L1 + rI depend on the component r of the solution of the
exact problem IP2.

Proof. Let us denote the difference (#,4) = (7 — r,4 — u). Then the problem
for the pair (7, 4) reads

DI = (Ly + )i+ #(u+b) + [+ By = Fi+ (7 +7)(b - b)] 6.
4(0,:) =0, Bilpo =0, (T,")=1—1.

This problem can be treated as IP1 with f =7, g =u+b, h = 7u + F—F +
(7 +r)(b—10). Therefore, applying the solution operator of IP1 A to (6.4), it is
reduced to the operator equation

where Fy (7, 1) = A(*i+ Fy — Fy 4 (7 4+ 1)(b — b),0,9 — 1).
We are going to show that F» is a contraction in a ball ||(7,4)|x, < p with a

suitable chosen p > 0. Firstly, we have to prove that this ball remains invariant
with respect to the operator Fs. Let ||(7, )| x, < p. According to (5.10),

1P, )12, < Co (1= llx., + 7By = B+ (1) (B=b) e 0,110, ) -
Let ¢, be an embedding constant such that [|wl|cg) < ¢pllwl/x,, . Then
Hfﬂllcgz([o,ﬂ;xp) < ||72||Xp||ﬂ||cg([o,T];c(§)) < HfHchp||"CLHCg([0,T];XAp) < Cppz-
Therefore,

12, @)l < Co (1 = Yllxa, +cp® + 152 = Fillega oriix, )

0+ B)lIb = Blogeo.myc, @) < Co (0° + (o 4+ 1+ R)ID = Dl )

where Ry = ||7||x, in case p € (g,oo) and Ry = |7/ 5 in case p = 0. Now

let us take p = K|/ D — D||p, with a constant K;. Then

|F2(7, @)l < Cs ((epKF + Kn)IID = Dllp, +1+ R1) ID = Dllo,.
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In case |D — D||p, < d; we have
1F2(7, @)l 2, < Cs (KT + K1)d1 + 1+ Ri) |D — D,

Let us define the constants as follows: K; = Cg(2 + Ry), 61 = m
Then || Fo(7, )| x, < K1||D — D||p,. Consequently, for ||(7,1)||x, < p we have
[F2 (7, @) 2, < p-

Secondly, inside the set ||(7, )| x, < p= K1||D — Dl||p, let us consider the
difference of F» at (71, 42) and (72, uz). Assuming ||D — D||p, < d1, we deduce
the estimate

[ F2(P1, @1) — Falfo, t2)|lx, < A[|I(F1 — P2)ty + F2(d — d2)

(1 — o) (b — )]

co2 (jo,11:x,) < Co (CpPHf‘l —7allx,
+eppllin — talleg (o,11x4,) + 01l — f2||Xp) < Cs(cpK161 + 01)

1 . . .
)H(Tl — o, Uy — Ug)| x, -

X||(F1 = T, Uy — o) || 3, = C+R)

It shows that the operator F» is a contraction in the ball ||(7,4)]|x, < p.
According to the Banach fixed point theorem there exists a unique solution to
the equation (6.5) in that ball. This proves the assertion (i).

(ii) The proof of (ii) repeats the proof of (i) with appropriate changes of
spaces and norms. For A, the estimate (5.20) is used instead of (5.10). O

Remark 1. In case the data of (6.3) are close to data of a process without
reaction (i.e. 7 = 0), Theorem 5 implies the existence of the reaction coefficient
7 in small.

Remark 2. Supposing the existence of a solution (r, u) of IP2, we ask: what are
sufficient conditions on the data that guarantee the validity of inequality-type
conditions (6.1) and U(T, z) > 0, x € {2 in Theorems 4, 57 To answer this ques-
tion, we return to the problem (2.3) for U and set there & = H(0,-) = 0. Let us
suppose that U is sufficiently smooth. Then constructing a corresponding prob-
lem for Dt{k}U — RU and assuming Dt{k}H —RH >0, (D:[k}[)’b— RBb)|ag > 0,
Lemma 4 (i) implies the inequality ka}U — RU > 0. Next, we consider the
conditions U > 0 and U(T,x) > 0, x € £2. Let us assume that

Ju e Cl0,T], p>0, u+#0, u—nondecreasing :
H(t,.’lj) > /L(t), T € ﬁ: te [O?T]v Bb(tax) > ,u(t)v r €N te [OyT}

Define V= U — 01 % p with § > 0. The function V solves the problem
DMV =LV 4+ H,, V(0,)=0, BV —(b-05lxpu)sg =0,

where H; = H+§(rl*xpu— D;{k}l % 11). Since D;{k}l x =k * 1, we get that for
sufficiently small 9,

Hy(t,2) 2 p(O)[1L = dmaxr(@)T + [kl o)) 2 0. t€0.7], v €0
xe
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and BV|so = B(b— 61 % p)|se > 0. Lemma 4 (i) yields V > 0. Thus, U =
V+0lxpu>0and U(T,z) =V(T,x) +5f0T,u(T)dT >0, z € (2.

At the end of this section, we make some general remarks. We applied
results on IP1 to analyze IP2. In a similar manner, results on IP1 can be
applied to study inverse problems to determine other coefficients of L, too.

The basic set of assumptions (A1)—(A3) for g involves the restriction
9(0,-) = 0. This is due to the fact that in case g(0,-) # 0 we cannot ensure
sufficient regularity of v to apply the positivity principle in the proof of Theo-
rem 1. In IP2, the function u+ b = U works as g. For that reason, we consider
the case @ = U(0,-) = 0 in IP2.

In the beginning of the proof of Lemma 4 we showed that the direct problem
with 7 > 0 can be reduced to a problem with » < 0 by the change of unknown
@ = e~ “tu, where o > 0. This suggests a possible exponential growth of v and
a related time limitation of the linear reaction model in case r > 0. For bigger
T, nonlinear reaction models are more relevant [6].

Solutions of IP1 and IP2 depend continuously on derivatives of the data
of finite order. This means that these problems are moderately ill-posed. In
case approximate data are given with errors, regularization procedures can be
effectively applied (cf. e.g. [17] for IP1 with g = g(t)).
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Appendix: Proofs of Lemmas 1, 2 and 5

Proof of Lemma 1. Theorems 3 and 4 of [9] guarantee that k is nonnegative,
nonincreasing and convex. Convexity implies the continuity of k. From the
equation M x k = 1 we easily deduce 1iI(1)’l+]{2(t) = 400, because in the opposite
t—
case k is bounded from which it follows that lim+(M xk)(t) = 0.
t—0

Let us prove k > 0. Suppose that it is not true. Then in view of proved
properties of k, Jtg : k(t) > 0,t < tg and k(¢t) = 0, ¢t > tg. For t > ¢y from
M xk =1 we get foto M (t —7)k(7)dr = 1. Therefore, go M'(t—T1)k(t)dr = 0.
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The last equality contradicts to the assumptions k(t) > 0,t € (0,ty) and
M’ < 0. Thus, k > 0.

Finally, let us prove (3.3) Let us choose some t3 > 0. Since lim+k(t) = 400,
t—0

there exists an interval (0,0), 6 < ts3, such that k(t) > k(ts) for t € (0,9).

Suppose that (3.3) is not true. Then we can find two points t; < t9 in (0, 9)

so that k(t1) = k(t2). Consequently, for t; < to < t3 we have k(t1) = k(ta2) >

k(t3). Obviously, it contradicts to the convexity of k. Therefore, (3.3) is valid.

g

Proof of Lemma 2 is similar to proof of Theorem 14 in [11] that is concerned
8!

with the case M(t) = T Let z € C’g_'g([O,T];X). Then | M * z(t)||x <

=&
const P =1 % t*=F = O(t*). Secondly,
(M x2)(t) — (M *2)(t—h)=J + Jo+ J3,

where

t h
J1 = z(t) - M(r)dr, Jy= —/0 [2(t) — 2(t — )M (7)dT,

Jy = — /ht[z(t) — 2t —1)] /T_h M/ (s)ds dr.

Immediately, ||Jo]|x < const foh 7= Br8=1dr = O(h®). Moreover,

t
1]l x < const to‘_ﬁ/ P71 = const t*P[tP — (t — h)P],
t—h
t T t
[|J3]|x < const / T‘“_ﬁ/ s772ds dr = const /TO‘_B[(T —h)P~t — 8 Nar.
h T—h h

Further estimation of J; and Js can be performed exactly as in [11]. As a
result, we get ||J1] x, ||Js]|x = O(h®). This completes the proof. O

Proof of Lemma 5. Firstly, we point out that the assumption w € WI?(Q), p>n

implies w € C1(£2). We will use maximum principles for elliptic equations in
Sobolev spaces to prove the lemma. Let us consider the case x* € 2. Suppose
that Lyw(z*) < 0. Then there exists a ball B(z*,¢) C 2 and § > 0 such that
Liyw(x) < =6 < 0 for x € B(z*,¢). Let us define the auxiliary function

2(z) = alz — 2*|? with a > 0 (7.1)

such that Li(w+ z) < 01in B(z*,¢). Since w(z*) < w(z) and z(z*) < z(x) for
xr € 0B(x*,¢), we get

(w+2)(z") < (w+2)(z), z€dB(x"e). (7.2)

On the other hand, due to L (w+2z) < 0 it follows from the Theorem 9.1 [8] that

gl(in )(w +2)(z) = 81113}?1 )(w + 2)(z), that contradicts (7.2). Therefore,
xeB(z*,e re x*,e

the supposition Liw(x*) < 0 was wrong.

Math. Model. Anal., 24(2):236-262, 2019.
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Next let us consider the case z* € 9f2. Again, suppose Liw(z*) < 0.
Then there exists B(z*,¢) and 6 > 0 such that Lyw(z) < —§ < 0 for z €
B(z*,e) (2. Similarly to the previous case we define z by (7.1) so that
Li(w+ 2) < 0in B(z*e)()2. Then (w + 2)(z*) < (w + 2)(z) for z €
B(z*,e)( 2. Hence, Lemma 3.4 [8] is applicable and yields 2%(z*) =

Bl
W(x*) < 0. That contradicts to 8%11)(35*) > 0 following from the assump-

tion %w(m*) > 0. Therefore, Lyw(z*) > 0 holds. O
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Abstract: In this article, we consider two inverse problems with a generalized fractional derivative.
The first problem, IP1, is to reconstruct the function u based on its value and the value of its fractional
derivative in the neighborhood of the final time. We prove the uniqueness of the solution to this
problem. Afterwards, we investigate the IP2, which is to reconstruct a source term in an equation
that generalizes fractional diffusion and wave equations, given measurements in a neighborhood of
final time. The source to be determined depends on time and all space variables. The uniqueness is
proved based on the results for IP1. Finally, we derive the explicit solution formulas to the IP1 and
IP2 for some particular cases of the generalized fractional derivative.
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1. Introduction

Fractional derivatives are increasingly used in modeling various processes in physics, biology,
economics, engineering sciences, etc. [1]. In addition to classical fractional derivatives, several
generalizations have been introduced to better match the models to the reality in different situations.
In this paper, we work with generalized fractional derivatives of Riemann-Liouville and Caputo type
where the power-type kernel (fractional derivative case) is replaced by an arbitrary function k. Such
a generalization was previously used in [2-5] and covers many specific cases that are important in
applications (see Section 2.1).

Fractional derivatives of Riemann-Liouville and Caputo type are non-local: the derivative of
a function u(t) at t = T depends on values of u at t < T. We consider an inverse problem (IP1) to
recover a history of a function u at 0 < + < T by means of measurements of u(t) and its generalized
fractional derivative in a left neighborhood of T. To the authors” knowledge, such a problem has not
yet been considered in the literature.

We use the results obtained for IP1 in order to investigate an inverse problem of reconstruction of
a history of a source in a general PDE that includes as particular cases fractional diffusion and wave
equations from the measurements in a left neighborhood of final time T (IP2).

Quite often in the inverse source problem, the goal is to determine a source that is either a space-
or time-dependent function. The space-dependent source term is usually reconstructed based on the

Mathematics 2019, 7, 1138; doi:10.3390 /math7121138 www.mdpi.com/journal /mathematics
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final time overdetermination condition [6—11]. The time-dependent source term can be recovered
from additional boundary measurements [7] or from integral conditions [12,13]. In this paper [14], the
source term dependent on time and part of the space variables has been determined. In this paper, we
assume that the overdetermination condition is given not only at the final moment of time T, but in
its neighborhood. This enables us to reconstruct the source term that depends on both time and all
space variables.

In Section 2, we explain the concept of generalized fractional derivative with examples. Next, we
formulate the inverse problems and give hints to their physical applications. In Section 3, we prove
the uniqueness for a general class of kernels k and reduce IP1 to an integral equation that is further
used to derive the solution formulas. Finally, in Section 4, we derive the solution formulas in some
particular cases of k based on the expansion with the Legendre polynomials.

2. Problem Formulation

2.1. Generalized Fractional Derivatives

In this paper, Ly (0, T) and W} (0, T) stand for real Lebesgue and Sobolev spaces.
We are solving problems with a generalized fractional derivative. This concept has been used
in [2-5]. We utilize Dik}’” as a unified notation that stands for the generalized fractional derivatives in

Rk (K},

Riemann-Liouville and Caputo sense €D,

{(k}n an ot {k}n t
(R0 (1) = ﬁ/ k(t — )o(t)dr, (CDM o) (1) = / k(t — 7)o (T)dt
t>a,ne{0}UN, k € Ly, (0,00).
The notation of generalized fractional derivative incorporates the following possibilities.
The basic case is

k1) k(t) = r(l ﬁ € (0,1). Then, RDik}’" and CDik}’” are the Riemann-Liouville and Caputo
fractional derlvatlves of theordern+ B —1,1ie,

(D)0 = (oi Mo = 4 [ o 50T

(D 170)(0) = (Do)t = [ %v%m

"“?

1) RD{k} 0 .

Moreover, in case k(t) =
B>0,ie,

it is the Riemann-Liouville fractional integral of the order

=

Rpy{K}0 Bo)(t) = / (t—
D, t Io)(t T)dT.
( 0)(t) = (lao)(t) = T ( ﬁ) ( )
Often a memory is not of power-type. A direct generalization of (k1) leads to multiterm and
distributed order fractional derivatives [15-17]. These derivatives have the following kernels:

(k2) () ]lp]l"lﬁ ,Bj €(0,1), p; #0,and

(k3) k(t fo p(B) wt—a = dﬂ p € L1(0,1), respectively.
Dlstrlbuted order and multlterm derivatives enable to model accelerating and retarding sub(super)
diffusion, since different powers of t dominate as t — 0" and t — oo in the kernel. A proper choice of
p in (k3) allows modelling ultraslow diffusion [16].

The cases (k2) and (k3) can be unified to a form of Lebesque-Stiltjes integral k(¢ fo T=p) 1 ;3 d u(B),
but we will treat them separately.

Tempered fractional derivatives are used to describe slow transition of anomalous diffusion to
a normal one. There are two models of this type in the literature that differ in their mathematical
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derivations. The corresponding kernels are:

(k) k(1) = 7555 + Ay 047, 0 < B < 1,4 > 0[18,19]; and

(k5) k(t) = e MtP~1Eg g(APtF), 0 < B < 1,A > 0[19,20].

We will call derivatives with kernels (k4) and (k5) tempered fractional derivatives of type I and

II, respectively.
Removing the singularity of kernels at t = 0 allows to highlight memory effects better [21]. In this
paper, we consider the following bounded kernels:

k6) k(t) = ﬂe ! ,0 < B < 1is the kernel of Caputo-Fabrizio derivative [21,22];
K7) k(t) = = ﬁ Eg ( b ﬁ) 0 < B < 1is a kernel of Atangana-Baleanu fractional derivative [23,24].

Here, Eg and Eg g are one-parametric and two-parametric Mittag-Leffler functions, respectively, given
by the formulas:

ZFMH—I Rea >0,
o
Epp(t) =Y, i txn+ﬁ) Rea > 0,Ref > 0.

2.2. Formulation of Inverse Problems

Let 0 < tg < T < 0. Our basic inverse problem consists in a reconstruction of a function in (0, #o)
provided that this function and its derivative are given in (o, T).

IP1. Given ¢,g : (t,T) = R, find u : (0,T) — R such that
k},
u\(tO,T) =¢ and Dé }"u\(t(ﬂ) =g. 1)

An example of IP1 is the reconstruction of physical quantities in constitutive relations involving
fractional derivatives. In the Scott-Blair model of viscoelasticity, the stress is proportional to a time
fractional derivative of the strain [25]. In this context, IP1 means the reconstruction of a history of the
strain of a body by means of the measurement of strain and stress in a left neighborhood of a time
value T. A similar meaning for IP1 can be given in the subdiffusion where the flux is proportional to a
time fractional derivative of the concentration (temperature) gradient [26].

Next, we formulate IP2 that is an inverse source problem that can be reduced to IP1:

IP2. Given ¢, ® : Q X (¢, T) = R, find u, F : QO x (0,T) — R, such that
(DS Bu) (x, ) + D'u(x, t) — Au(x,t) = F(x,t), x€Q, te (0,T) @)
is fulfilled and

ulaxi,r) =@ Flox@,r = -

Here, O C RN with some N € N, D! = Z qjaﬂ with some ! € N, g; € R, and A and B are

operators that act on functions depending on x. Throughout the paper, assume that A and B with their
domains D(A) and D(B) are such that A : D(A) C C(Q)) — C(Q), B : D(B) C C(Q) — C(Q)). We
also assume that B is invertible.

Equation (2) generalizes the fractional wave equation CDﬁ u+A(=A)*u=F Bec(1,2),ae051],
A > 0[13,27,28], the attenuated wave equation %u +u RDgu —AAu =F, B € (0,1)U(1,2) [29,30]
and different subdiffusion equations CD{ Vi~ AAu = Fand ﬁ” —A RDék}'lAu = F, where k has
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one of the above forms (k1)-(k7) [16-18,20,23,26,31]. In the latter equation, B = —AA and, in order to
guarantee the invertibility of B, proper boundary conditions must be specified in the domain D(B).

We point out that the operators A and B in (2) are not necessarily linear.

In case if ® = 0, IP2 means a reconstruction of a source that was active in the past using a
measurement of the state of u in a left neighborhood of T. Such an inverse problem may occur in
seismology, ground water pollution, etc.

Now, we reduce IP2 to IP1. Let (u, F) solve IP2. Then, Equation (2) restricted to Q) x (to, T) has
the form (Dék}’nBu)(x, t) + Dlg(x,t) — Ap(x,t) = ®(x,t). Therefore, Bu is a solution of the following
family of IP1:

Bulo(ir) = Bg and DI Bulo. 1) = 8, ®
where
g(x,t) = d(x,t) + Ag(x,t) — Dlo(x,t), x€Q, te (t,T). @)
The solution of IP2 is expressed by means of Bu explicitly: u = B~'Bu, F = Dék}’"Bu + D' — Au.
3. Results in Case of General k

3.1. Uniqueness Results

Lemma 1. Let k be real analytic in (0, 00) and v € L1(0,to). Then, w(t) = '0[0 k(t — t)v(t)d is real analytic
in (to, c0).

Proof. The function k can be extended as a complex analytic function k¢ in an open domain
D C C containing the positive part of the real axis. Let us define w¢(z) = foto kc(z — T)v(T)dT for
z € Dyy = {z : z=E+ty, { € D}. Using the analyticity of k¢, it is possible to show that functions u
and v involved in the formula w¢ (f + is) = u(t,s) + iv(t,s), are continuously differentiable and satisfy
Cauchy-Riemann equations in {(t,s) : t +is € Dy, }. This implies that w¢ is complex analytic in Dy,.
On the other hand, its restriction to the subset {z = £ +i0 : t € (fy, c0)} is the function w. Therefore, w
is real analytic in (fp,00). O

We will denote the Laplace transform of a function f : (0,00) — R by

7o) = (Lisf)lo) = [ (e

The symbol * will stand for the time convolution, i.e., (f1 * f2)(t) = fot f1(t = 1) fo(T)dT.

We prove a uniqueness theorem for IP1.

Theorem 1. Assume that k satisfies the following conditions:

JeR : /O e M k(1) |dt < oo, 5)
k is real analytic in (0,00), (6)
ﬁ(s) cannot be meromorphically extended to the whole complex plane C. (7)

Then, the following assertions hold.

(@) Ifu € L1(0,T), kxu € Wi (0,T) and ul 1y = RDék}’nu\(to/T) =0, then u = 0.
(i) If u € Wi (0, T) and ul(;, ) = CDék}’”u\([O,T) =0, then u = 0.
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Proof. (i) Let us extend u(t) by zero for t > T and define the function f : (0,00) — R:
f= RDék}’”u.

Since u(t) = 0,t > to, it holds that

ar rh rto
0 = g [Tkt =tu@ar = [Tk - Du(ydr, >
The function k is real analytic, therefore, k(") is also real analytic. Hence, Lemma 1 implies that f is
real analytic in (#g, o). Since f () =0, t € (tp, T), and f is real analytic, we obtain that f() =0, £ > .
Due to (5) the k(s) exists and is holomorphic for Res > u. Moreover, in view the properties of f,
the f(s) also exists and is expressed by the formula

~ ~ _ di
f(s) = s"k(s)ii(s) — pos" "t — ... — pu_1, pj = ¥ — (k= u)(t) o Res > p.
Therefore,
o A(s) +pos" L+ Pt .
k(s) = for any s such that Res > y and s"ii(s) # 0.

s"i(s)

Since the values f(t) and u(t) vanish for t > to, f and i are entire functions. Thus, the function
f(s) + pos”’1 + ...+ py_1 is also entire. Assume that i does not vanish on C. Then, by Identity theorem
and the fact that 7 is entire the set of zeros of 7 does not contain accumulation points. This implies
that the extension of k is meromorphic on C. This contradicts to the assumption (7) of the theorem.
Therefore, the assumption i # 0 is invalid, which implies u = 0in L (0, T).

(ii) At this part of the proof, let us use the notation v := u("). Then, v (to,T) = RD({)k}’OU\ (to1) =0
and v, k* v € L1(0, T). Therefore, by the assertion (i) of this theorem v = 0. Consequently, um =0
and u|(;, 7y = 0 imply that u = 0in W}'(0,T). O

Let us compute the Laplace transform for the kernels from Section 1 to see if they satisfy the
conditions of Theorem 1.

. . ~
(k1) In the basic case k(t) = /3 € (0,1), it holds k(s) = T

1 ﬁ)’
(k2) Similarly for k(t) = Z] 1 p]r = ﬁ >,0 < Bj <1,p;#0, wehave k( ) = Z]’." 1 pj%ﬁ/
(k3) For the distributed fractional derivative k(¢ fo 1 ﬁ) dg, p € L1(0,1), the Laplace
transform is k(s fo
(k4) For the tempered fractlonal derivative of type [ k(t) = (;ttﬁﬁ; +A ft e ;Tfﬁ)ﬁ dr, 0 < B <

1, A > 0, it holds %(s) = M
(k5) For tAhe tempered fractional derivative of type IL k(t) = e’/\‘t/}’llz"ﬁ,ﬁ(/\l3 t#),0<B<1,A>0,
we have that k(s) = m [19].

_ B
(k6) The kernel of Caputo-Fabrizio fractional derivative k(f) = ﬁe 1*/5t, 0<pB<1lhasa

Tle) — 1
Laplace transform k(s) = BT ;
(k7) In case of Atangana—Baleanu fractional derivative k(t) = —pEp (* %) ,

0 < B < 1, it follows from [32] that ?(s) = %
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The kernels (k1)-(k7) satisfy (5),(6). Moreover, it is evident that the kernels (k1), (k2), (k4), (k5),
(k7) satisfy (7), because Laplace transforms of these functions have branch points. To guarantee that
(k3) also satisfies (7) we assume additionally that p # 0, p > 0. Then,

JimmE() = [ p(p)sin((p 1) x (£7))dp o,
Iol=1

This shows that k(s) has a jump at s = —1, hence (7) holds.
Summing up, the solution of IP1 for a derivative containing a kernel (k1)—(k5) or (k7) is unique.
The kernel of Caputo-Fabrizio fractional derivative (k6) does not satisfy (7) because it has the
meromorphic in C Laplace transform. IP1 with this kernel has infinitely many solutions. Any function
B
such that foto eT P u(t)dT = 0, u| ¢, ) = O satisfies the homogeneous IP1 in case Dé‘k}’n = RDék}’n
B
and any function such that foto eTF Ty (T)dr =0, u|(t0,T) = 0 satisfies the homogeneous IP1 in case
{kin _ cplkhn
D" = cpyiin,
Now, we proceed to IP2. We define the following set related to operators A, B and D!
U={u:Q0x(0,T)—>R:u(,t)e D(A)ND(B) YVt (0,T),

o/
u, Au,Bu € C(Qx (0,T)) and Urris eC(Qx(0,T)),j=1,...,1}
From Theorem 1, we can immediately deduce a uniqueness statement for IP2.

Corollary 1. Let k satisfy (5)~(7). Then, the following assertions hold.

@ If (uj, F;) € {u €U = (kxBu)(x,-) € Wi(0,T)Vx € Q} x C(QA % (0,T)), j = 1,2, solve (2) with

k}, k},
Di" = Rp{H" ana (w1, F1)laxto,1) = (42, B2) |l (t,1), then (11, Fr) = (uz, B).
(i) If (u;, F) € {u € U : Bu(x,-) € Wi'(0,T)Vx € Q} x C(QAx (0,T)), j = 1,2, solve (2) with

Dék}'n = CDék}'n and (u1,F1)|QX(tO,T) = (”2'F2)|Q><(to,T)f then (u1,F1) = (MZ,FZ).

Proof. Proof is technically the same in cases (i) and (ii). After considering the formulation of IP2 in
terms of IP1 (3) and subtracting the corresponding equations for (11, F;) and (u2, F»), we obtain that

k},
(Bul — B”2)|Q><(tg,T) =0 and Dé }n(Bul — Buz)‘Qx(to,T) =0.

Then, it follows from Theorem 1 that (Bu; — Buz)|nx(o,r) = 0 and, consequently, since the
operator B is invertible it holds 11 (x, t) = up(x,t), (x,t) € Q x (0, T). Finally, the Equation (2) implies
Fi(x,t) = FE(x,t), (x,t) € Qx (0,T). O

3.2. Reduction to Integral Equations

In this subsection, we reduce IP1 to integral equations. Let us assume that k satisfies (6).
Firstly, we consider the case Dék}’" = RDék}’". Assume that u € Ly(0,T) solves IP1 and
k+u € W] (0, T). Then,

/t k(t — T)u(t)dT = /“’ k(t—Du(Ddr+ [ Kkt —1)g(t)dr 8)
Jo JO Jto

for t € (to, T), where the left hand side belongs to Wj'(to, T) and the first addend in the right-hand
side belongs to C®(ty, T]. Thus, the data ¢ necessarily satisfies jtg k(t —T)p(t)dT € Wi (tg+9,T),
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V6 € (to, T). Applying 45 to (8), using the second condition in (1) and rearranging the terms, we
obtain the following integral equation of the first kind for u/g ):

£
/0 KO(t - Du(t)d = f(t), t€ (o, T), where f=g-FD{"y, ©)

Secondly, let us consider the case D({]k}’” = CDék}’n, n>1.1If u e WJ'(0,T) solves IP1, then
u(] (0,t9) is a solution of the integral equation

t
/0 k(t—T)u" (t)dt = f(t), t € (t),T), where f=g— CDt{Ok}’"(p. (10)
Jo

Since lim ull (1) = lim+ V) (1),j=0,...,n —1, the function ul(0,t) is obtained from u( l(o,19) Y
T Tt
the integration:

u(t) = /L‘Ot wu(”)(r)dr + nil lim+ (p(j)("c) (t — to)/

n , te€(0,t).
(n—1)! et ! (0, t)

Due to Lemma 1, the integral operators involved in (9),(10) map L;(0,tp) into the space of
functions that are real analytic in t > t. This means that IP1 is severely ill-posed and necessarily, f
is real analytic in (f, T). In the next section, we will derive solution formulas for IP1 that contain
the quantities

(), me {0}UN,

where #; is an arbitrary pointin (¢, T).
4. Solution Formulas in Particular Cases of k

4.1. A Basic Theorem

Theorem 2. Let o € R\Z, t; > typ > 0and f € C®(ty,00). Let us introduce the following family of sums
that depend on a variable t € (0, to) and parameters o, f, tq, to:

Ve £t 0) = (1~ 72 L Aup, (200 0) 2oy,
n=0

to(ty —t) to

Here, N € {0} UNU {oo}, P, are normalized in Ly(—1,1) Legendre polynomials

L5 5
—21 n+11 (1 (2n—2I
Pu(t) =) cat"™*, wherec,; = \/727(,1) l e}

1=0

and

l7] n—21 n—2] to — O n—2l—m
Ay :An(“/f/tlfto) = Cn,l Z ( ) < 0 1)
0

1= m=0 m to

(B9 g,

to

Assume that v € Ly(0,t) and f is given by f(t) = foto lgt(;i)liv(r)dr, t > to. Then, the series

Voo (@, f, 11, t0) (t) converges almost everywhere in (0, ty) and

v(t) = Veo(w, f, 11, t0)(t), ae. t€(0,t). (11)
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Moreover, Vn(w, f,t1,tg) — v in Ly(0,tg) as N — oo. If in addition, v € BV|0,ty], then
Voo (@, f, 11, t0) (t) converges pointwise in (0, ty) and the estimate is valid:

t
[o(t) — Vn(a, f,t1,t0)(8)| < %, t € (0,tp),
where c(t) is a positive constant depending on t.

Proof. For t; > tg we have

1 fo a—n _ ¢(n)
m/0 (t — )" "o(t)dt = f(t), ne {0} UN. (12)
The substitution s = h%f under the integral takes (12) to the form
1
/;17[0 s"w(s)ds =T(a —n+1)f"(t), ne{0}UN, (13)

i

where w(s) = s™* 20 (tl — %)
We would like to expand our function into series by means of orthonormal Legendre polynomials;

thus, we apply a linear substitution that takes us from [ 1.1

i —7;) to the interval [~1,1], where such an

expansion can be applied:

2t1(t — to) po _2h—t

§=as+ b, wherea =
to to

We also denote @(5) = w(s). Since the performed changes of variables under the integrals
are diffeomorphic, v € L,(0, to) implies w € Lz(%, ﬁ) and @ € Ly(—1,1) (cf. [33] Section 16.4).
Similarly, v € BV(0, to] implies @ € BV[—1,1].

Since @ € Ly(—1,1), it can be expanded into the Fourier-Legendre series. It follows from (13) that
forn € {0} UN

to
/1 an+t (3—b)"@(3)ds = T(a —n+1)f" (1)

and, therefore,
1 1
/ §'w(8)ds = / (5=0)+b)"w(5)ds
-1 J—=1
- mgo <Zl) o /jl (8= b)" m(E)ds = mgo (:1> b T (a = m A1) f (1),

It implies that for the normalized Legendre polynomials

gJ n—21 n—2I
5" m

m=0

L
/jl Pu()@(3)ds = Y cuy /711 §" 2w (3)ds = 1

0
an7217mamr((x —m+ 1)f(m)(tl) = A,

Then, @(5) = Y, 0AnP:(5). This series converges in Ly(—1,1) and for almost every
5e (—1,1) [34].
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For @ € BV[—1,1], the series for @ is convergent pointwise for § € (—1,1) and according to
Theorem 1 [35]

N ~
5)— Y AnPu(3)] < al®)  se (-1,1),
n=0 N
where ¢ (5) is a positive constant.
Since the change of variables § = % +b,t € [0,tg], is diffeomorphic and o(t) = (f —

£ w( o+ b), all assertions of the theorem follow from the proved properties of the series
W(5) = Lplo AnPu(8). O

Remark 1. It follows from (11) that for f of form f(t) = 00 rt(ail v(T)dT, t > to, where v € Ly(0, tp),

the sum of series Voo (t, f, t1, to) (t) is independent of t1 > to. The partial sums Vy(a, f,t1,t0)(t), N < oo,
however, still may depend on t1 in case of such f. For example, if v = 1, then Vy(a, f, t1, to)(t) = ﬁ(tl -

p)—a-2 I:tit‘f’l —(h— to)w+1].

4.2. Solution Formulas in Case of Usual Fractional Derivatives

In this subsection, we consider the case k(t) = r(tl;fﬁ)' B € (0,1),n > 1. Then, RDék}’n and CDék}’n
are the Riemann-Liouville and Caputo fractional derivatives of the order n + B — 1, respectively.

Theorem 3. Let k(t) = 0 < B < 1. Then, the following assertions hold.

(1 /5)’
@) Ifu € Ly(0,T), k xu € Wi(0,T) and u solves IP1 with Dék}’n = RDék}’", then
u(t) = Fpl (g~ "D 9) (1), ae. te (0,t0), 14)
where the operator F, IQZ is given by the rule

FRA(F)0) = Veol=n = B, £, 11 o) (1): (15)

(i) Ifu € W2 (0, T), n > 1, solves TP1 with D" = DI, then

u(t) = F& (9:8 = DI ) (1), te (0t0), (16)
where
t _ n—1
]-"gfl(qJ,f) Z hm @l (T)( .tO)] +/to (t F(Tn)) Veo(—B, f, 11, t0) (T)dT. 17)

The Formulas (14), (16) are valid for any t; € (to, T).

Proof. (i) Firstly, we represent the IP1 in form (9) with k(t) = I‘(tl;fﬁ) That is identical to
ft) = f F(a+1 v(T)dT witha = —n — B, o(t) = u(t) and f(t) = g(t) — Dy, ¢(t) and Theorem
2 implies (14).

(ii) Similarly to the previous case we start from representing the problem in a form (10) with

k(t) = % This gives us the relation f(t) = Oto ét(ail v(T)dT with e = —B, v(t) = u( (t) and

f(t) =g(t) — CD/S " (") (1). By applying Theorem 2 to it, we obtain

W (8) = Voo (=B, ft1,t0) (1), ae. t€ (0,t0), f=g—C DI,
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Since the condition u| ;1) = ¢ implies ul (k) = limrﬁtg oV (1), j=0...n—1,the solution
Formula (16) is valid. O

Remark 2. Let us consider the approximations of the exact solutions defined by un, (f) = Vn(—n —

Bft)D), 1 € (Ot), N < oo in case (i) and uny() = ¥ lim gl)(r) (=) ¢
j=0 1=t

fti, (tfrfr)l’;’l VN(=B, f,t1,t0)(T)dT, t € (0,t0), N < oo, in case (ii). Then, Theorem 2 can be used to compare
N, with u in the process N — oo. In case (i), un i, |(0,19) — l(0,ty) i1 L2(0, to) and un s (£) — u(t) a.e.
t € (0, ty). Similarly, in case (ii), un 1| (0.49) = Ul (0,49) i W3 (0, o) and u%")tl(t) — u(t)ae t € (0,t).
If in addition to the assumptions of (i), ul (o) € BV, to] holds, then |unt (t) — u(t)| is of the order 1/N
for every t € (0,ty). Similarly, if in addition to the assumptions of (i), u( l(0,t9) € BV0,to] is valid, then

|”§\7,)t1 (£) — ul) (1| is of the order 1/ N for every t € (0, tg).

Corollary 2. Let k(t) = ,0 < B < 1. Then, the following assertions hold.

=
@) If (u,F) € {u €U : (k=Bu)(x,-) € WI(0,T)Vx € Q} x C(Q x (0, T)) solves IP2 with D" =
RDék}’", then

u(x,t) = [B,1f£:Z (g(x,-) — RDt{Ok}’”q)(x,-))] (t), ae. (x,t) € Qx(0,t).

@) If (u,F) € {u € U : Bu(x,-) € Wi, T)Vx € Q} x C(Q x (0,T)), n > 1, solves IP2 with
D({)k}’" = CD({)k}/", then

u(x,t) = [BLFE (p(x,)ig(x,) = RDIM 9 (x,))] (1), (x,1) € O x (0,k0).

In both cases g is given by (4), t1 is an arbitrary number in (to,T) and Flo.(op) =

D" Bu + D' — Au] ‘m(om

Proof. The proof follows from Theorem 3 and the relations, (3), (4), that describe the transition from
P2 toIP1. O
4.3. Solution Formulas in Case of Tempered and Atangana—Baleanu Derivatives

In this subsection, we derive the solution formulas for particular subcases of the generalized
fractional derivative of the order n = 1. They are based on solution formulas derived for the usual
fractional derivative and involve the operators F, 1€ e ﬁ |- Again, we assume that f; is an arbitrary
number in the interval (¢, T).

Firstly, let us consider the tempered fractional derivatives of type I.

Theorem 4. Let k(t) = (Mf Ly Aft ST );TTﬁ; dt, 0 < B <1, A > 0. Then, the following assertions hold.
() Ifu € Ly(0, T), k + u € W0, T) and u solves IP1 with DL = RDFH ey
1 0 0
u(t) = e*)‘t]-'g:tll (eMg— eMRDfOk}’lcp)(t), ae. t€(0,t). (18)

(ii) If u € W3 (0, T) solves IP1 with D({)k}’1 = CDék}'l, then

u(t) = tim g(r) — [ e N FEL (e (g~ RDIMg)) (v,

+
Ty

€ (0,ty). (19)
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Proof. Before starting the proof, let us point out that k'(¢) = % Hence, for t € (tp,T) and
v € L1(0, tp):
fo / _ ,—At fo (t — T)iliﬁ AT
/0 K(t—rt)v(t)dt=e /0 W@ v(T)dr. (20)

(i) Firstly, the IP1 can be rewritten by means of (9), and then Formula (20) leads us to the equation
with the unknown term eu(t)

h(t—1) P o _ At MR 1y {k}1
'/0 We u(t)dt = e'g(t) — e Dy g(t), te€ (to,T).

Thus, by applying Theorem 2 and using the notation (15), we obtain (18).
(ii) Let us write IP1 in the form (10), differentiate it and obtain for ¢ € (to, T)

[ K=o @ = &g - DIV ().

Then, due to (20) we have foto (t}Tfliﬁ ! (t)dt = M (g(t) — CDt{Ok}’l(p(t)) and similarly to

(i) we deduce Formula (19) using the notation (17). O

To handle IP1 for derivatives that contain Mittag-Leffler functions, we need the following lemma.

Lemma2. Let 0 < B <1, A € Rand f € WE(0,T). Then, the function p(t) = fot(t — T)ﬁflE/;,ﬁ(/\(t —
T)B) f(T)dt is a solution of the equation CDgp(t) —Ap(t) = f(t), t € (0,T), and the function q(t) =
fot Eg(A(t — 7)B) f(T)d is a solution of the equation Cng(t) —Aq(t) = Iéfﬁf(t), te(0,T).

Proof. The proof of the first assertion can be found e.g., in [32], p. 174, and the second assertion
follows from the first one because [tF~1Eg g(AtF)] « I(l)_ﬁf =Eg(MP)« f[6]. O

Next, we consider the case of a tempered fractional derivative of type IL
Theorem 5. Let k(t) = e~ MtP~1Eg g(APtP), 1 < B <1, A > 0. Then, the following assertions are valid:
() Ifu € WL(0, T) and u solves IP1 with D{"" = RD{M, then

t
u(t) = /t e’AT(RDg - AﬁI)}'gﬁl (e”(qo’ + APg) — RDfZe“g) (t)dt
0

+limg(t), te(0t). (21)

Tty

(i) If u € W2(0, T) and u solves IP1 with Dék}’l = CDék}’l, then

t
u(t) = /t e’)‘T(CDg - /\IBI)FC’S::l (e”g; Mg+ APg) — CDE’)e“g) (t)dt
0
+lim (1), te(0,f). (22)
T—tp

Here, T is the unity operator.

Proof. Firstly, we prove (ii). Let us define the function w as

w(t) = M DIy (1) = /0 t(t — )P Eg s (AP(t — 1)P) (MU (7)) dT.
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Due to Lemma 2, this function solves the equation
CDPw(t) — APw(t) = Mu'(t), te(0,T). (23)

Therefore, CDg w = eMu’ + APw and, in view of the condition (1), we have the IP1 with usual
fractional derivative:
wl 1) = €8, °p§ Wl m) = €' + APeMg. (24)

In order to apply Theorem 3 (ii) to this problem, we must verify that w € W} (0, T) is valid. Let
us compute:

w'(t) = P Eg g (APEP YU/ (0) + [tF 1 Ep g (APEP)] x (eMu') (1).

Due to the assumptions 3 < B < 1and u € WZ(0,T) we have tﬁ’lEﬁ,ﬁ()\ﬁtﬁ) € L(0,T) and
(eMu') € L1(0,T). Using the Young’s theorem for convolutions, we deduce @’ € Ly(0, T). Thus,
w e W3(0,T).

By applying Theorem 3 (ii) to (24), we obtain

w(t) = Fg:tll(e“g;e”(p’ + )\ﬁe)‘tg — CDﬁ)eMg)(t), t € (0,tp).
Since by (23), u’ = e*)‘t(CDg — APT)w, this implies Formula (22).
Secondly we prove (i). Let us define w(t) = e“RDék}’lu(t). Then, w(t) = (% — A)z(t), where
t
z(t) = / (t— T)ﬁflEﬁ,ﬁ()\ﬁ(t — )8 (eMu(1))dt.
0
By Lemma 2, z solves the equation
CDPz(t) — APz(t) = Mu(t), te(0,T). (25)
Let us differentiate Equation (25) to derive the equation for w:
RDE(2' = Az)(t) + RDP(Az) (£) — APZ/(£) = AeMu(t) + eMu/(t), ae. te (0,T).
That is
RDBw(t) — ABw(t) + A(RDE(2)(£) — APz(t)) = AeMu(t) + M/ (1), ae. te (0,T).
Since z(0) = 0, we have that RDg z = CDg z and using (25) again, we obtain
RDgw(t) = APw(t) +eMiu'(t), ae te(0,T). (26)
Based on (1),(26), we formulate IP1 for w:

i, r) = Mg, RDgw|(t0,T) =eV(¢' + AFy). (27)
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To apply Theorem 3 (i), we should prove that w € L,(0,T), and (F(tl;fﬂ)

WL(0,T), that is RDg w € L1(0,T). Let us investigate

) kW = Iéfﬁw c
w(t) = (% - A) (PP Eg g (AP1R) ) 5 (Mu(t)) = u(0) (1 Eg p(APHF) )

n (tﬁflzzﬁ,ﬁmﬁtﬁ)) « ((eMu(t)) — AeMu(t)), te (0,T).

Since tﬁflEﬁ,ﬁ(Aﬁtﬁ) € L(0,T) for B € (1/2,1) and eMu(t) € W}(0,T), we obtain that
(tP1Eg g(APEP)) x ((eMu(t)) — AeMu(t)) € Ly(0,T); thus, w € Ly(0,T). Due to the (26) RDé;w €
L1(0,T), because w € Ly(0,T) and u € W} (0, T).

That enables us to apply Theorem 3 (i) to (27):

w(t) = Flé::l (e}‘t((p’ + APg) 7RDfoeMg) (t), ae. te(0,tp).
This in view of (26) implies Formula (21). O

Remark 3. It is possible to extend the range of B to 0 < B < 1in Theorem 5 assuming more regularity of u
and the conditions u(0) = 0 and u'(0) = 0 in cases (i) and (ii), respectively.

Finally, we consider the case of Atangana-Baleanu fractional derivative.

Theorem 6. Let k(t) = ﬁEﬁ (—%), 0 < B < 1. Then, the following assertions hold:

(i) Ifu € WL(0, T) and u solves IP1 with Dék}’l = RDék}’l, then

utn) = (52 *0f +7) #3, (b5 - *Dhlo- 1~ p9)) (1)
ae. te(0,t). (28)
(i) If u € W2(0, T) and u solves IP1 with Dék}’l = CDék}’l, then
ut) = (5L o +2) 78, (0- - pigi b~ Do - 1= p)9) )
t € (0,tp). (29)

Proof. (ii) Let us denote w = (1 — /S)CDék}’lu. For this particular kernel type the relation holds:

w(t) = /Ot Eﬁ<fﬁ(1t%;)ﬁ)u'(r)dr.

By Lemma 2 and the identity Iéfﬁ u' = CDg u, w solves the equation

Dlw(t) + %w(t) —DPu(t), te(0,T). (30)

Since the relation (1) is valid, |, 1y = (1 — B)g. It follows from (30) that CDg(u —w) = %w

Thus, we have the IP1 with usual fractional derivative

(u—w)lgyry = ¢~ (1—B)g, CDf(u—w)|yr) = Be.
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To apply Theorem 3 (ii), we have to show that u — w € W} (0, T). Since Ek = %Eﬁ,ﬁ and Eg(0) =1,

we obtain (1 — w) = *ﬁ [tﬁ’lEﬁ,ﬁ(f%)] * 1. Due to the assumptions of (i), this belongs to

L,(0, T), hence u — w € W} (0, T). According to Theorem 3 (ii)
,1
(=)o) = Fei, (@ = (1= BgiBg — Dy (g — (1= B)g)) - (31

The relation (30) implies w = % CDg(u — w). Therefore,

wlon = 5 DOFE, (9= (1= Pl s — Dl (9~ (1= p)9)) .

Hence, from (31), we obtain (29).
(i) Let us denote w = (1 — IS)RDék}’lu. Then

w= iz where z(t) = /Ot Eﬂ(fw)u(r)d’r.

at”’ 1-8
The function z solves the equation
Dfa(t) + 1 £ 520 =1 Pue), 1) (32)
Next, we differentiate Equation (32) and obtain
RpyP B _ Rpp
Dow(t) + w(t) = "Dyu(t), ae te(0,T). (33)

1-p

Therefore, RDg (u—w)(t) = %w(t) that leads us to the IP1 with a usual fractional derivative

(—w)| gy =9~ (1—B)g, RD§(u—w)|4 1) = B

Now, we have to show that u —w € Ly(0, T) and RDg(u —w)(t) € L1(0, T). Firstly,
_ d ﬁ B _ ,B B ﬁ B !
w(t) = 4 (Eﬁ(—ﬂt )*u(t)) = u(0)Eg (—ﬂt >+E/g(—ﬂt ) (1)

Since Eg <f%t5> € Ly(0,T) for any B € (0,1), we obtain that w € Ly(0, T). Due to the Sobolev
embedding Theorem u € W}(0,T) C Ly(0,T). Thus, u — w € Ly(0, T). Secondly, RDg(u —w)(t) =
pw(t) € L(0,T).

We continue the proof by applying Theorem 3 (i) to the IP1 for u — w:

1
(1= )l (04 = Fhr, (B~ "Df (9= (1= p)g)) .
It follows from (33) that w = %RD(’? (u — w); thus, the Formula (28) holds. O

Similarly to Corollary 2, formulas of solutions of IP2 can be derived in cases of tempered and
Atangana-Baleanu derivatives.

5. Conclusions

In this paper, two inverse problems were considered . The goal of IP1 was to reconstruct the
history of a function based on its value and the value of its generalized fractional derivative on a final
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time subinterval. Afterwards, the obtained results were applied to IP2 that includes reconstruction
of a source term in a fractional PDE based on the final time subinterval measurements. Defining the
overdetermination condition on a final time subinterval, not pointwise, enabled us to treat the problem
of the reconstruction of a source term (IP2) in a different manner than usual.

In this article, we have proved the uniqueness of the solution to IP1 and IP2 in case the
derivative contains general kernel k and derived the solution formulas for some particular cases
of k. Namely, these are the cases of usual fractional derivative, tempered, and Atangana-Baleanu
fractional derivatives.

In the case of multiterm and distributed fractional derivatives, solution formulas cannot be
derived by means of the method presented in this paper. The problem of reconstruction of explicit
representations for solutions in these cases remains open.

Since the IP1 and IP2 are severely ill-posed the solution formulas cannot be applied to the real-life
applications without prior regularization. Thus, the numerical analysis of the problems is another
non-trivial open question to be considered.
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