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EESSÕNA 

 

Lõputöö teema pakkus välja Mehhatroonikasüsteemide õppetool. Sissejuhatavad tööd samal 

teemal viidi samuti läbi Mehhatroonikasüsteemide õppetoolis [14], kuid sel juhul telliti 

mõõtmised instituudist väljastpoolt. Käesoleva lõputöö mõõtmised viidi läbi 

Mehaanikateaduskonna masinnägemise laboris. Tööks vajalikud seadmed võimaldas samuti 

Mehaanikateaduskond ja Mehhatroonikasüsteemide õppetool. 

 

Autor soovib tänada töö juhendajat Märt Juurma‘t väärt nõuannete ja abi eest. Lisaks soovib 

autor tänada Mehaanikateaduskonda ja Mehhatroonikasüsteemide õppetooli ruumide ja 

seadmete kasutamise eest.  
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LIST OF ABBREVIATIONS AND ACRONYMS 

 

HSI – hyperspectral imaging 

MSI – multispectral imaging 

RGB – Red, Green, Blue 

NIR – near-infrared 

ROI – region of interest 

SG / SGF – Savitsky-Golay (filtering) 

SNV – Standard Normal Variate  

MSC - Multiplicative Scatter Correction 

PCA – principal components analysis 

LDA – linear discriminant analysis 

MNF transform – minimum noise fraction transform 

MDR – major dimension reduction 

MR-MIA – multi-resolutional multivariate image analysis 

MCR – multivariate curve resolution 

PPI method – pixel purity index method 

PLS-DA – Partial Least Squares-Discriminant Analysis 

SVM – support vector machines (discriminant analysis) 

k-NN – k-nearest neighbor (discriminant analysis) 

FOV – field of view 

N/A – not available 
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1. INTRODUCTION 

 

The purpose of this thesis was to use hyperspectral cameras to acquire datasets with full 

spectral information of paper materials in order to find spectral signatures – spectral 

reflectance patterns inherent only to this material. The data was analyzed to find distinct 

characteristics of different types of paper, and distinguishable characteristics from other 

materials. As a result, a method to sort paper waste was proposed which would be beneficial 

to waste sorting companies. In this work, Resonon Pika II and Resonon Pika NIR 

hyperspectral cameras were used to gather data of paper products. The data was analyzed to 

find patterns which would help to discern paper from other materials and – more importantly 

– distinguish different types of paper based on the quality. This work considered if it was 

possible to divide paper material into 3-5 groups based on the quality standards set by the 

companies that buy bulk wastepaper, using a range of spectral information. 

 

The motivation for this work was developing a tool to sort paper waste into different 

categories based on the quality or grade of the paper in waste sorting companies. Automated 

sorting of waste is needed in sorting stations where currently the work is done by hand or not 

done at all. An automated system would be more reliable and repeatable, as well as much 

faster. This would benefit the waste sorting companies economically because they could sell 

higher quality paper waste for higher prices. As it was stated in the previous work done in the 

institute of Mechatronic Systems [14], sorting paper using spectroscopy has many benefits 

before using RGB cameras and special gloss sensors, such as higher flexibility and cheaper 

implementation. However, despite the potential of spectroscopy in paper sorting, 

hyperspectral imaging is not used in waste paper sorting in industrial applications yet, 

probably due the higher price of hardware. For example, companies like CP Manufacturing 

and MSS Optical Sorters provide automated paper sorters, but the cameras used are either 

RGB or wideband NIR, and the sorting machines have only a few paper classes that can be 

sorted out. A goal of this work is to see if more classes can be separated using the 

hyperspectral cameras. 

 

As part of the analysis, thorough investigation of the wavelength ranges was conducted to 

identify if there would be a good combination of a small number of wavelength bands that 

make discrimination between classes possible. This would allow the production of cameras 
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for this specific task that would not record the whole light spectrum but only the wavelength 

ranges that are relevant to the application. These cameras would be potentially cheaper and 

the analysis would be much faster, so it might be possible to produce them on a larger scale. 

 

For the completion of this thesis the following software was used: Resonon‘s Spectronon Pro 

for acquiring the hypercubes; MatLab R2015a for the analysis of the data; Eigenvector‘s 

PLS_Toolbox for MatLab was used for the PCA analysis and classification models [23]. 

Additional MatLab toolboxes were used for smaller MatLab tasks: the recursive directory 

listing toolbox [16]; the Field Mapping Toolbox for 3D matrix filters [17] and MatLab Pattern 

Recognition and Machine Learning Toolbox [22]. The three additional toolboxes are included 

in the Matlab Scripts folder of the accompanying source material but the PLS_Toolbox 

requires a license to run so it must be downloaded by anyone who wishes to run the 

classification model proposed in this work, and therefore was not added to the source 

material. 

 

The thesis is organized as follows: Chapter 2 introduces the theoretical basis of hyperspectral 

imaging, provides an overview of sorting using spectroscopy and describes the requirements 

of the waste paper sorting system. Chapter 3 provides a detailed explanation on how the 

measurements were taken with the two hyperspectral cameras. Chapter 4 discusses the 

possible data analysis and classification methods and describes how they were used in this 

work and what can be concluded form the gathered data. Chapter 5 gives an overview of the 

classification models‘ validation and prediction result using the hypercubes acquired with the 

NIR camera. Chapters 6 and 7 discuss future usages of the knowledge gained in this work, 

possible improvements on the classification models and a summary of the work. Chapter 8 is 

the summary in Estonian. Chapter 9 provides a list of the references used in this work. 

Appendices 1 and 2 are the datasheets for the Pika II and NIR cameras, respectively. 

Appendix 3 describes the database of hypercubes that was gathered during the experiments. 

Appendix 4 is the full table of loadings of the PCA, for the NIR camera, to describe how the 

relevant variables were selected in Chapter 4. Appendix 5 includes plots of the PCA analysis 

for the Pika II hypercubes, as presenting them in the body of the work would have been 

repetitive to the NIR data and also because the Pika II results played a smaller role in this 

work. Appendix 6 gives an overview of the source data attached to this work. Appendix 7 

describes the MatLab scripts that were developed to read, parse, pre-process, manually 

classify and display the hypercubes and to make them compatible with the toolboxes.  
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2. THEORETICAL BASIS 

 

This chapter will introduce some of the theory behind hyperspectral imaging. A general 

overview alongside with a short description of the history and applications will be given. 

Furthermore, the theory and previous work specifically related to sorting waste or products 

will be described more thoroughly. Analyzing previous work about sorting paper using 

hyperspectral imaging, methods and algorithms best suited for the task proposed in this work 

can be selected. 

 

2.1. Introduction to hyperspectral imaging 

The term hyperspectral imaging (HSI) consists of three parts. Firstly, imaging or broadband 

imaging is the well-known process of taking a photo. Or more specifically – projecting 

objects in the 3D-space onto a 2D plane within the field of view of the imaging device; by 

collecting light intensity that has reflected back form objects. Spectral imaging refers to 

simultaneously taking images in many spectral bands – ranges of wavelengths of 

electromagnetic waves. Spectral imaging can generally be divided into three sub-groups:  

color imaging, multispectral imaging (MSI) and hyperspectral imaging (HSI). The most 

common form of the aforementioned is color- or RGB-imaging, which is used in all consumer 

color cameras. In this case color intensity information is saved within three separate 

wavelength bands. Figure 1.1b illustrates the light intensity of one pixel in the image, 

measured in three spectral bands. 

 

 

 

Figure 2.1. Hyperspectral imaging compared to RGB-imaging [4] 

  

b.) a.) 
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Multispectral imaging refers to imaging with tens of separate spectral bands and hyperspectral 

imaging systems use hundreds of spectral bands (Figure 2.1a). According to Kerekes and 

Schott in [1] there are three characteristics which distinguish HSI from color- and 

multispectral imaging: 

1. As mentioned before, the higher number of co-registered spectral bands. In HSI, the 

number of bands is much higher (see Figure 2.2) than in MSI. 

2. The higher spectral resolution 





 – center wavelength of the spectral band divided 

by the width of the band. The smaller the width of the spectral band, the higher the 

spectral resolution. Thus, the spectral resolution of HSI systems is typically 10 times 

higher than in MSI systems. 

3. The continuous intensity spectrum measured for each pixel within all wavelengths in 

the range of the device. Comparing the intensity charts of Figure 2.1, it can be seen 

that the HSI system gives a continuous spectrum for one pixel, whereas the RGB 

system gives a histogram of widely and irregularly spaced intensities. 

 

 

Figure 2.2. Difference between multispectral and hyperspectral data [5] 

 

The HSI cameras used in this work – Resonon Pika II and Resonon Pika NIR – have spectral 

ranges of 400 – 900 nm (spectral resolution 2,1 nm) and 900 – 1700 nm (spectral resolution 

5,5 nm), respectively (for more info on the Resonon HSI cameras, see Appendices 1 and 2). 

These ranges fall into the Near Infrared (NIR) category of spectroscopy. In comparison, a 

standard RGB-camera has a spectral range of visible wavelengths 400 – 700 nm and a typical 

spectral resolution of about 100 nm. 



12 

 

As a result of HSI a three-dimensional matrix is recorded, containing spatial and spectral data. 

This matrix is called a hypercube and a simplification of it can be seen on Figure 2.1a. For 

each pixel (a point in space) there exists a one-dimensional spectrum of wavelength versus 

reflectance or intensity. The spectrum – spectral signature or spectral fingerprint – depends on 

the state and material of the object and is in fact characteristic to the material. Therefore, the 

data gained from HSI is mainly used to identify and characterize features such as materials in 

images. It has been shown in experiments [1] that most characteristics of various materials 

become present within wavelengths of 400 to 2500 nm and spectral bands of 5 to 20 nm, 

which is within the technical capabilities of HSI, therefore making it an extremely appealing 

field of study for remote material identification.  

 

2.2. Applications of hyperspectral imaging 

Hyperspectral imaging first became viable in the 1970s when optical detector array 

technology advanced to a level where it became possible to collect spectrally continuous and 

spatially correlated data with 2D-sensors. Since then, HSI systems have been used in many 

different fields of study. Remote sensing of the Earth‘s surface was one of the very first 

applications for HSI systems. The goal in the first applications was to find minerals and oils 

with remote non-invasive sensing. As a result of years of research of the Earth‘s surface, two 

publicly accessible spectral libraries have been collected: the ASTER Spectral Library and the 

USGS Spectral Library which contain the spectral information of the most common minerals, 

rocks, soils etc. found on our planet‘s surface [2]. Unfortunately these do not contain a sub-

library of paper materials which would be very useful in the context of this thesis. 

Nevertheless, nowadays HSI is applied widely in agriculture and in environmental as well as 

military applications. 

 

Another use for HSI systems is in medical imaging. HSI makes it possible to analyze human 

tissue non-invasively and at the same time provide large amounts of data. The more common 

areas in medicine where HSI systems are used are diagnosing cancer, cardiac disease, 

diabetes, retinal disease and performing image-guided surgery. In addition to recording 

reflected light from tissues, medical HSI systems can implement fluorescence and 

transmission modes of HSI. Those mean injecting fluorescent additives to the inspected tissue 

(skin cancer, for example) or placing a light source behind the tissue so the light is transmitted 

through the tissue (for example, in microscopic inspection), respectively [4]. 



13 

 

Recently HSI systems have been taken into use in the industry as well. The frontrunners in 

applying HSI systems are food processing companies. The goal in food processing is reliably 

and in-line at full production volumes sorting out the foreign bodies and defective products. 

HSI systems are very widely used in the nut industry as well as the potato industry because 

the production values are very large and the foreign material frequent and nearly 

indistinguishable from the product with traditional sorting devices like machine vision and 

laser sensors. The higher cost of the HSI sorting system is justified due to the improved 

product quality, low false-positive rates and the HSI systems‘ ability to handle high loads. 

 

What is common among all of the above-mentioned applications is the fact that objects in the 

image are classified and grouped on the basis of the collected spectral fingerprints (see 

Chapter 2.3.1). The classification is achieved with a number of carefully chosen data 

processing methods and algorithms. The suitable methods for sorting paper waste are 

discussed in Chapters 2.4.3 and 2.4.4. 

 

2.3. Terminology related to hyperspectral imaging 

The HSI hypercube contains a vast amount of data. To be able to analyze and use the captured 

information, one must understand the physical phenomena that cause the readings on the 

optical sensors. The following chapters describe the most important terminology related to 

HSI. It is important to note that this chapter only includes the terminology relevant to sorting 

applications in controlled environments, and terms such as atmospheric and adjacency effects 

– relevant for remote sensing – are not discussed here. 

 

2.3.1. Spectral radiance and reflectance 

Spectral radiance is a directional quantity that describes the transfer of optical energy in a 

specific direction. It is the radiant flux received by the surface of the hyperspectral sensor, per 

unit of solid angle per unit of projected area per unit of frequency or of wavelength. The SI-

unit of spectral radiance is 
Hzmsr

W

 2
, which is the radiance received by the surface per unit 

of frequency. For HSI systems the unit of spectral radiance is more commonly the radiance 

received by the surface per unit of wavelength 
nmmsr

W

 2
. 
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Spectral reflectance is measured as the spectral radiance reflected from the surface of the 

target material, as a ratio of reflected energy to the incident optical energy as a function of 

wavelength. The changes in reflectance depending on the wavelength are due to the 

physiological and chemical structure of the materials. Spectral reflectance of materials is the 

basis of classifying them due to the fact that materials absorb or scatter light at different 

wavelengths in characteristic manners, producing a spectral fingerprint (see Figure 2.3).  

 

 

Figure 2.3. Spectral reflectance of common materials [2] 

 

Even though the spectral fingerprint is extremely important for classification, it is an 

oversimplification to say that it is consistent for materials in all environments and cases. 

There are numerous effects which can lead to variations in the spectral shape of the 

fingerprint, such as angle of illumination, angle of view, additives in the chemical 

composition of the material, age and exposure to the environment. However, these variations 

are mostly small in magnitude and spectrally correlated to the data, so further processing 

makes it possible to take these variables into account. Moreover, in the application of waste 

paper sorting in a waste treatment facility it is possible to create a fairly controlled 

environment to make the data more consistent. 

 

2.3.2. Spatial resolution and spectra mixing 

The term spatial resolution is used in every form of imaging and refers to the size of the area 

represented on the image by one pixel. Spatial resolution is directly related to the distance of 

the object from the imaging system‘s sensor as well as to the optics used and the parameters 
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of the sensor. For example, in remote sensing the spatial resolution can span from meters to 

kilometers, depending on the altitude from which the imaging is done. 

 

Spectra mixing occurs when within one imaged pixel there are several materials which have 

different spectral fingerprints. In the context of waste paper materials, common non-paper 

materials that could be present within one pixel are ink, paint, all kinds of dirt, plastics, metals 

(paperclips, staples etc.) and cloth. Each material‘s contribution to the mixed spectra is 

directly proportional to its area or composition percentage within the pixel, therefore the 

mixed spectra is a linear function of the spectra of its components. However, mixing spectra is 

directly related to the spatial resolution of the system, and the non-paper materials will be 

fairly large compared to the spatial resolution, then it can be said that these objects can be 

detected as objects within the frame. If the non-paper materials cause spectral mixing, then 

linear unmixing can be used. Linear unmixing is a process where it is assumed that the scene 

only includes a small number of different materials with quite constant spectral fingerprints or 

spectral endmembers. The variability in spectra is caused by mixing the spectra of the 

endmembers.  

 

2.4. Fundamentals of hyperspectral data collection and analysis 

This chapter summarizes the data acquisition methods and data analysis algorithms used in 

previous work related to material and/or product sorting in an industrial environment. Table 

2.1 gives an overview of the research. From the Table 2.1 it can be seen which steps have led 

to successful classifications of materials and therefore what methods are needed and proven to 

work. Based on research, the experimental setup of this thesis has been put together. 

 

Sub-chapters 2.4.2 – 2.4.4 divide the processing and analysis into three steps – calibration, 

pre-processing and calibration – and describe each of the methods and algorithms in Table 2.1 

more thoroughly and provide the reasoning why they are relevant in the waste paper sorting 

application. The results of the research are presented in Table 2.2 in Chapter 2.5, where the 

relevant information for this work has been organized and described. 
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Table 2.1. Overview of previous work 

Ref. Sorted 

Material 

Camera (range / 

spectral resolution) 

Experiment Setup Calibration Software Used Algorithms Results 

[3] 4 classes of 

plastics + 

background 

Headwall 1002A-

00371 (1009-1694 

nm / 4.85 nm).  

Line mapping (320 

px/line); 

14-bit CameraLink 

Camera 

perpendicular to the 

sample; 

Illuminated w/ 

diffuse white light at 

45
o
 in respect to the 

sample; 

Reflectance mode 

Dark current 

and 99% 

reflectance 

calibration w/ 

Spectralon 

plate; 

Correction of 

the hypercube 

performed by 

the software 

MatLab 

toolboxes: 

HYPER-Tools, 

PLS_Toolbox, 

Imge 

Processing 

Toolbox 

K-means clustering, 

SNV, Savitzky-

Golay, mean 

centering 

PCA, MCR, 

PLS-DA 

classification, 

statistical assessment 

 

Successful 

classification 

and sub-

classification 

of 5 

categories of 

plastics 

[7] Horticultural 

crops 

N/A Same as [3] Dark current 

and 99% 

reflectance 

calibration 

N/A SNV/MSC, PCA, 

MNF, PPI, MR-

MIA,  

PLS classification 

Overview of 

all steps in 

HSI process 

[8] Hazelnut XEVA-FPA-2.5-320 

(850-2500 nm/ 7,5 

nm), 320x256 px. 

Two exposure times 

used to get a HDR 

image to 

compensate for the 

lower sensitivity in 

the 1800-2500 nm  

Camera 

perpendicular to the 

samples; 

4x20 W halogen 

spotlights (DC 2800 

K) w/ DC voltage 

source to avoid 

output fluctuations at 

30
o
 and 60

o 
on both 

sides of the sample 

Dark current 

and 99% 

reflectance 

calibration w/ 

75% 

Spectralon 

plate, repeated 

after every 20 

scans 

LabVIEW, 

MatLab, 

PLS_Toolbox 

Binary masks, same 

preprocessing as [3] 

and [7] 

PLS-DA 

classification, 

additional spatial 

information used to 

improve 

classification 

Successful 

sorting into 4 

classes 

[9] Metal alloys VNIR camera (320-

1030 nm / 6,25 nm) 

Specim SWIR 

camera (1000-2500 

Halogen lamp array, 

light reflected from a 

extruded elliptical 

reflector 

Same as above MatLab 

PerClass 

Smile correction, 

PCA and LDA 

(LDA proved to be 

better). Random 

Metal allow 

classification 
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nm range) forest algorithm for 

classification was 

best 

[10] Nonferrous 

materials 

Specim PHL Fast10 

CL (384-1008 nm) 

Halogen and near-

UV lights, diffuse 

covers 

Same as above N/A Binary classification 

for background; 

PCA compared with 

Spectral Fuzzy Sets; 

Neighborhood Fuzzy 

Histograms, Region 

Merging 

Fuzzy sets 

perform 

better than 

PCA 

[11] Waste 

metals 

PHF Fast10 camera 

(400 – 1000 nm / 1 

nm), 1024 × 1024 

px, Fore OL10 lens 

Halogen and LED 

lights, parabolic 

reflectors, range of 

400 – 1000 nm 

N/A LabVIEW Uses [10] Full sorting 

line, 

separates 

nonferrous 

materials into 

6 classes 

[12] Waste 

cellulose-

based 

materials 

ImSpector N17 (900 

– 1700 nm / 13 nm), 

288 px/line, 100 fps 

NIR-optimized lens 

Halogen lamps, 900 

– 1700 nm, radiation 

intensity >70% in 

that range, material 

illuminated at a 70
o
 

angle 

Adjusting the 

camera and 

spectograph 

And same as 

above 

N/A PCA and then LDA 

on top; 

k-means clustering 

Classifying 4 

groups of 

cellulose-

based 

materials 

[14] Paper Imspector V10 (400 

– 1000 nm / 6,8 nm) 

and Imspector N17E 

(900 – 1700 nm / 5 

nm) 

Wide spectrum 

halogen light unit 

Same as above LabVIEW N/A It is possible 

to separate 

white paper 

from waste 

paper stream 
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2.4.1. Structure of hyperspectral images 

Before applying algorithms to the data, the structure of the hypercube must be understood. 

The hypercube is a 3D dataset   yxH  where x and y represent spatial information and 

  represents spectral information. The NIR camera, for example produces hypercubes that 

have 320 pixels of width (y-dimension) and 44 usable wavelength bands as λ (while using 

binning with a window size 3). The x-dimension is arbitrarily chosen by the user and it 

depends on the field of view, integration time of the sensor and angular velocity of the camera 

head. The Pika II has higher resolution with 640 pixels in the y-dimension and 59 wavelength 

bands (also using windowing 3). The cameras have bit depth of 14 and 12 bits, so each layer 

in the hypercube along the λ-axis is an image of that bit depth at that wavelength band. For 

every point (xi; yi) there corresponds a spectra λi. 

 

2.4.2. Calibration and image correction 

Corrections for gain, dark current offset and variable integration time during image processing 

need to be taken into account when analyzing hyperspectral data. Causes for the 

aforementioned phenomena are bad quality equipment, heterogeneous lighting and inadequate 

resolution of analog-to-digital conversion. It is essential to choose equipment of good quality 

and that suits the application but it is important to note that it is impossible to get good quality 

data just with good quality equipment. The data collected from the camera sensor represents 

only intensity counts at the specific sensors but not the actual reflectance values. To get the 

actual reflectance and absorbance values the HSI system must be calibrated. 

 

The camera sensor arrays have wavelength-dependent dark current – a small flow of electrons 

at the sensor even when no photons reach the sensor. To take this current into account, a dark 

current background image D must be recorded. The same applies with the opposite situation – 

a reference image W is acquired from a sample with nearly 100% reflectance (99% standard). 

Using these values and the reflectance intensity count from the sample, S, a calibrated 

percentage of reflectance, R, can be calculated using the formula (2.1) [7]:  

DW

DS
R




      (2.1) 

DW

DS

R
A




 log

1
log   (2.2) 

 

where  R – percentage of reflectance of the sample 

 S – measured reflectance intensity  

D – dark current reference 

 W – 99% reflectance reference 
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Using the same values, absorbance values of samples can also be calculated using the formula 

(2.2). This equation is linear – because only one reference standard value is used – and is 

called the one-point calibration. Since a 100% reflectance standard is difficult to obtain then it 

must be considered that still minor errors in reflectance R and absorbance A can be present. 

To detect nonlinearities 2-, 5-, 50-, 75- and 99% reflectance standards are used. To obtain 

properly calibrated data, the sensor temperature must be constant because noise and the cutoff 

wavelength are temperature-sensitive. 

 

According to [12] it is extremely important to adjust the camera so that the spectral dimension 

is precisely projected in a vertical direction onto the sensor. This is achieved using a 

wavelength calibration lamp. These lamps produce peaks at certain wavelengths, but these 

peaks do not register as sharp lines in the image but as wide blurry lines. It is not possible to 

physically adjust the camera so that the lines on the image become sharp. Therefore sub-

pixeling must be used to calculate the positions of these maximums. The procedure consists of 

five steps [13]: 

1. Estimate the spectral center position of each peak for every spatial pixel across the 

spatial axis 

2. Fit a second-order polynomial through the estimated peak centers 

3. Estimate the spectral peak positions for the first and the last spatial pixel column 

by use of the 2nd order polynomial 

4. Estimate the difference between the two peak positions 

5. Rotate the camera until the difference is zero 

 

2.4.3. Pre-processing 

To decrease inspection time and the amount of data to be analyzed, spatial pre-processing is 

used to mark Regions Of Interest (ROIs) on the image. For example this can be done with a 

binary masking matrix, where values 1s denote areas to include in the inspection and 0s areas 

to discard. In the case of waste paper sorting spatial masking could only be used during 

training and/or data gathering procedures and not during in-line inspection due to the 

unforeseeable location of the waste.  

 

Spectral pre-processing is performed to increase the spectral differences between the 

background and the inspected objects. In reference [3] k-means clustering shows great results 

in removing the background from the various materials. The clustering is done on the first 
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derivative of the data because derivatives increase the differences between spectra as well as 

minimize spectral noise and artifacts. Subsequently, the Savitzky-Golay (SG) filter is used for 

smoothing and de-noising of the data. Moreover, Standard Normal Variate (SNV) filter or 

Multiplicative Scatter Correction (MSC) filter is used in NIR spectroscopy to normalize the 

data and to minimize the effects of light scattering. These two aforementioned filters 

generally give similar results, but occasionally the results differ and the comparison of the two 

may give interesting insight. It is important to note that spectral pre-processing might cause 

extra noise or loss of information if not used correctly and therefore the filters must be applied 

with care. 

 

Hyperspectral data cubes consist of vast amounts of spatial and spectral data, a part of which 

is either corrupted or simply nonessential to the task at hand. To reduce the amount of data 

and storage space required, principal components analysis (PCA), minimum noise fraction 

(MNF) transform and linear discriminant analysis (LDA) methods are used. These methods 

reduce the dimensions of the data when at the same time preserving all of the critical data of 

the samples, especially LDA. Furthermore, the pixel purity index (PPI) methods can be used 

the further reduce the spatial dimensions. 3D wavelet transformations are also used in size 

reduction but based on [7], the multiresolutional multivariate image analysis (MR-MIA) 

performs better than any of the five Daubechies family wavelet types in the case of 

hyperspectral data. These methods help separate the data and analyze if the samples are 

separable into classes, they are not classification methods. They also provide a visual way of 

confirming the separability of the classes. 

 

2.4.4. Classification methods 

The sample classification is achieved with either supervised or unsupervised classification 

methods. Most of the classifiers used in previous research were fairly simple, the simplest 

method was k-nearest neighbor clustering. K-nearest neighbor clustering is a non-parametric 

supervised classification technique which is relatively simple but also has been proven to be 

effective in many cases [12]. The technique is based on the assumption that pixels that are 

close to each other in the feature space are also likely to belong into the same class. This 

method measures the distance between an observed pixel vectors and all the other pixels. The 

pixel belongs to the class where the distance is smallest, but above a set threshold. By 

selecting the number of likely neighbors, the separation boundaries can be very flexible and 

give great results. Another widely used method in classification was Partial Least Squares-
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Discriminant Analysis (PLS-DA), used with great results in [3] and [8]. It is a supervised 

classification method that uses the partial least squares method to determine if the sample 

belongs into a class. For this method it is necessary to create the class calibration matrices: 

one with the samples of data and another with binary data of classification. 

 

2.5. Plans for experiments with the HSI system 

As a result of the previous research, a plan of how to conduct experiments with the 

hyperspectral cameras was composed. The following Tables 2.2 – 2.5 include the methods 

and algorithms that should be applied on the HSI system and on the acquired data, presented 

in order by which they should be applied. 

 

Table 2.2 Experimental setup of the camera, lighting and background 

Device Detail Notes 

Camera Camera position Sensor perpendicular to the test subjects 

Lens Optimized for NIR 

Acquisition Test with different exposure times to suit 

the sensitivity of the sensor across the 

wavelength scale 

Filtering Order blocking filter is needed if 

2/ 12  , where
1  and 

2  are the 

minimum and maximum recordable 

wavelength of the sensor, respectively 

[12] 

Lighting Lighting source choices :  

 tungsten halogen (durable, 

stable, 400-2500 nm light, 

but emits a lot of heat)  

 quartz halogen  

 LED  

 tunable lasers  

 heated xenon lamps 

Characteristics should be [7]: 

 Homogeneous illumination over FOV 

 Short pulses <10 fs 

 Intense polychromatic light 

 Polarized light (know Stokes 

parameters) 

 Excellent transmission through 

samples 

 Controlled reflection from sample 

 No radiation damage to samples 

Background Based on preliminary tests with 

the Pika II and NIR cameras, the 

most suitable background turned 

out to be the one with the 

minimal reflectance. 

Based on [15], the lowest reflectivity of a 

common non-metal material is black felt. 

Software Resonon‘s Sprectronon Pro 

MatLab 

 

For Spectronon Pro, check if slope and 

intercept values are set as with calibration 

sheet 
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In Table 2.3, the suggestions for calibrating the system are brought out. However, the steps 1-

3 are done by the Spectronon Pro software and step 4 is unnecessary in this application due to 

the fact that alignment has been done by the manufacturer of the cameras. Regardless, 

calibration is a necessary step that must be repeated after a number of scans. Table 2.4 shows 

the pre-processing steps and Table 2.5 describes the classification options. 

 

Table 2.3. Plan for calibrating the hyperspectral cameras 

Order No. Method Notes 

1. Acquire dark current image Black non-reflective cap on 

lens 

2. Acquire reflectance image  With reference plate 

3. Apply equations (2.1) and (2.2) on acquired 

data 

Should be repeated after a 

number of scans (for 

example, 20) 

4. Calibrating the alignment of the axis of the 

spectograph and the camera sensor, using a 

wavelength calibration lamp 

Might not be required 

Based on [13], pages 69-72 

 

Table 2.4. Hyperspectral data pre-processing plan 

Order 

No. 

Filter/method Goal Notes 

1. Binary mask Separate background 

from objects 

Easier than k-means 

K-means clustering on 

derivative spectra 

Try 2-5 clusters 

2. Savitzky-

Golay 

filtering 

Wavelets 

(Daubechies 

family of 

orthonormal 

wavelets) 

Smoothing and 

denoising 

Find 

optimal 

window 

size 

Try if SG 

has no 

result 

3. SNV MSC Normalize data, 

minimize scattering 

Choose best of two 

4. MNF PCA PPI MR-

MIA 

Reduce dimensions Less relevant for 

sorting 

5. PCA LDA Find the Principal 

Components where 

the differences 

between classes are 

biggest; data 

decorrelation 

Gives clues about what 

classification 

algorithms to use and 

gives a visual overview 

of the different classes 

6. Fuzzy Sets, Neighborhood 

fuzzy Histograms, Region 

Merging 

If PCA or LDA 

prove unsuccessful in 

decorrelating the data 

Fuzzy sets and region 

merging have given 

best results in [10] and 

[11]  
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Table 2.5 Classification plan 

Order 

No. 

Method Description Notes 

1. Non-normal 

distribution of 

the residuals 

Check the non-linearity of the 

models to make sure if the 

problem can be solved with 

linear classification models 

If correlation between the 

spectra and  target property is 

linear, use PLS-DA 

2. Non-linear 

relationship in 

the prediction 

Else, use non-linear models, like 

support vector machines (SVM) 

3. PLS-DA Main classification process Find best suited classification 

method k-NN 

SVM 

4. Statistical 

assessment of 

the model 

CAL, CV and PRED methods Enables to assess the prediction 

performance 

5. Region merging 

and re-

classification 

Merge the different classes of 

connected regions (within one 

sample) into one 

Based on minimization of the 

matching cost criterion 

 

These tables were used as a reference in conducting the experiments. The experiments in are 

described in Chapter 3 and the data processing and analysis is described in Chapter 4. 

 

2.6. Classification of waste paper 

In recycling waste paper it is important to sort paper into classes because the purer the 

material the more effectively it can be used as a raw material in paper production. In general, 

the paper is divided into two groups: paper with bleached fibers and paper with non-bleached 

fibers. Since only bleached paper can be used in producing white paper then it must be sorted 

out from the waste paper stream. Furthermore, fiber length also plays an important part in 

recycling: short-fibred cardboard, for example, cannot be used in producing white paper, and 

therefore must be separated from white paper. 

 

The main principles of sorting waste paper come 

from European Union directives [18] as well as 

the needs of the commissioning company. The 

goal is to sort out white bleached paper, 

cardboard, newspaper and others from the waste 

paper stream. The stream can also include non-

cellulose materials in the form of paperclips, plastic binders etc. The concentration of paper 

White paper

Colorful mixed paper

Cardboard,

newspapers, magazines
Non-cellulose material

Figure 2.4 Approximate concetration of 

paper classes in the waste paper stream 
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classes in the waste paper stream is shown in Figure 2.4. The desired classes and subclasses 

are described in Table 2.6. According to the information given by the Chair of Mechatronics 

Systems and based on the recycling process, the classes marked with a gray background in 

Table 2.6 are higher priority and more important to sort out from the waste paper stream. 

Identifying clean pieces of white bleached paper is of the highest priority because it has the 

highest market value. 

 

Based on the information on classification and similarly to the database in [12], a library of 

paper and cardboard materials was carefully selected. Appendix 3 shows the full library, in 

which there are over 500 samples of paper, carton and cardboards, as well as samples of paper 

in plastic covers and covered in tape. In this library all samples were classified according to 

Table 2.6 and to their physical appearance. However, the white papers with print were marked 

only as white papers and unlike in Table 2.6 where the percentage of the coverage was given. 

The percentage was calculated by the proposed method in this thesis and would be given as 

additional information on the output.  

 

Table 2.6 Classes of cellulose-based materials 

Class White bleached 

paper (WP) 

News-

paper 

(NP) 

Magazine 

(MG) 

Cardboard 

(incl. carton) 

(CB) 

Office 

supply 

Copy 

paper 

Non-

cellulose 

materials 

Subclasses Clean paper   Cardboard Post-its   

Up to 10%  

P
ri

n
t 

 Carton Checks 

Up to 50% Colorful p. 

Over 50% Etc. 

 

2.7. Summary of theoretical basis 

In Chapter 2, the theoretical terms and real-life applications of hyperspectral imaging were 

discussed. A research of previous work was conducted, based on which the plan for the tests 

was put together. This plan includes suggestions for the setup of the camera as well as a list of 

preprocessing steps to take and what previously successful classification methods to use. 

Based on the European Union directives, the needs of the client and the recycling process, a 

library of papers, cardboards and cartons was carefully collected and classified. This library 

was used in the experiments described in Chapter 3.  
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3. DATA ACQUISITION 

 

In this chapter the process of the experiments is described, from the setup to the data 

acquisition. The Chapter 3.1 describes how the camera and stage were set up and Chapter 3.2 

describes the calibration process as well as how to images were acquired. 

 

3.1. Camera and stage setup 

The test setup was based on Table 2.2. This chapter describes the actual setup in detail. Figure 

3.1 shows the setup with the NIR camera. The setup with the Pika II was basically the same, 

differing only in the working distance and lens selection. 

 

 

Figure 3.1 Front view of the test setup. 1. Resonon NIR camera; 2. Stingray 

Opticts lens; 3. Halogen lamps; 4. Black felt background; 5. Test subjects; 6. 

White diffuse reflective background. 

 

Both cameras were linescan cameras and therefore needed either an actuator for the samples 

or the camera itself to accumulate a 2D image. The camera was attached to a stepper motor 

with which it was possible to change the angle φ of the camera. Ideally the sensor would have 

been at φ = 0 at all times (therefore the sensor being perpendicular to the samples) and the 

samples would have moved on a linear actuator below the camera, but unfortunately that was 
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not possible. Nevertheless the measurements taken were suitable for the task due to the 

uniform lighting (see ahead) and the fact that the distance from the sensor changed minimally 

and it did not affect the spectral response. The lenses and image acquisition or integration 

times are given in Table 3.1. The lenses were provided by the camera manufacturer and were 

suitable for the respective wavelength ranges. The working distance was chosen so that it 

would be comfortable to lay out the samples in front of the camera. The mount of the camera 

was at a constant height but due to the different dimensions of the Pika II and the NIR, the 

sensors were at a varying distance from the samples. Also, due to the differences in pixel size 

and lens focal length, the field of view (FOV) along the y-axis varied between the cameras. 

The field of view along the x-axis was dependent on the maximum angle of φ which was 

chosen to be about 25-30
o 
to keep the change in working distance to a minimum. 

 

Table 3.1. The camera lenses, field of view and integration times‘ specification 

Detail Resonon Pika II Resonon NIR 

Lens Name Schneider Xenoplan 

1.4/23-0902 

Stingray Optics 

SR0907-184 

Focal length 23 mm 25 mm 

Used aperture setting f11 fmax 

Field of view Pixel size (# of px) 7,4 µm (640) 30 µm (320) 

Along x-axis FOVx  About 450 mm 

Along y-axis FOVy 150 mm 210 mm 

Working distance Minimum (φ = 0) 495 mm 600 mm 

 

The lighting choice for the tests was also based on Table 2.2, previous research and the 

Resonon reseller. Two industrial halogen lights were used (as seen on Figure 3.1, 3).  Halogen 

lights output light in the wavelength range of 400-2500 nm which was perfectly suitable for 

the task. The field of view depended on how many lines the camera scanned. This was chosen 

to be so that the entire field of view would have been illuminated as uniformly as possible. 

Therefore, a field of view along the x-axis of about 450 mm was chosen, because the two 

industrial lamps could not illuminate a larger area uniformly enough (see Figure 3.2). In 

addition to the two lamps, a white diffuse reflective screen (marked as 6. on Figure 3.1) was 

positioned on the opposite side of the samples from the lamps. This would provide a more 

uniform and diffuse lighting of the samples, as light from the lamps would reflect on the 

samples furthest away from the lamps. The light sources were not polarized, however a linear 

polarizer was used for the Pika II.For the NIR measurements, excess reflection was not a 

problem and a polarizer was not used. 
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Figure 3.2 Images at 1320 nm. a.) Illumination of FOVx = 900 mm, without 

white diffuse screen. Samples 1 and 4 are much less illuminated than 2 and 3. b.) 

FOVx = 450 mm, with white diffuse screen. Also shown is the standard deviation 

of the samples 1 and 2.  

 

As stated in Table 2.2, the background was chosen so that it reflects the least amount of light. 

Various backgrounds with different reflectances were tested, the background materials with 

the highest reflectance affected the spectral responses of the samples the most. Therefore, 

based on [15], common black felt (with a thickness of about 1 mm) was used as a background 

for a very low reflectance fingerprint throughout all the wavelength range (see Figures 3.3 and 

3.4). 

 

 

Figure 3.3 Mean spectra of black felt 

background compared to the mean 

spectra of a random sample of white 

paper. Pika II spectra. 

 

Figure 3.4 Mean spectra of black felt 

background compared to the mean 

spectra of a random sample of white 

paper. NIR spectra. 

 

Choosing the acquisition parameters – such as integration time, framerate, gain – and stepper 

motor settings – angular velocity and acceleration – was done experimentally using the 
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Spectronon Pro Software. Table 3.2 shows these parameters for the respective cameras. The 

Pika II sensor needed a lot of light and therefore the integration time was quite long, forcing 

the framerate to be very low. The stepper motor was operating at its minimal angular velocity, 

yet still it was not possible to retain the spatial dimensions, therefore on the Pika II images the 

x-dimension has less spatial information than the y-dimension (see Figure 3.5 b.). The NIR 

sensor was much more responsive to light and so in that case it was possible to retain the x-

dimension spatial information as well (see Figure 3.5 a.). The spatial distortions caused by the 

change in the working distance are shown on Figure 3.6. As seen in Table 3.1, the aperture 

settings of the lenses are at the maximum, so the aperture is very small. This was chosen also 

because of the change in the working distance, to increase the depth of field and doing so, 

keep the samples in focus (Figure 3.6, all samples were in focus). The software used sample 

binning (bin number = 3) so that the spectral responses of three adjacent spectral bands were 

combined into one data point. This was used to reduce the size of the acquired data and 

increase the signal-to-noise ratio. 

 

Table 3.2. Final camera acquisition parameters 

Parameter Resonon Pika II Resonon NIR 

Acquisition 

parameters 

Integration time (ms) 32.8 11101 

Framerate (Hz) 30 30 

Gain 0.0 N/A 

Stepper motor 

parameters 

Angular velocity (deg/s) 1.0 1.6 

Acceleration (deg/s
2
) 15 15 

 

 

Figure 3.5 Image compression along the x-

axis. Pink lines represent full circles, objects 

are circular. a.) Image with the NIR camera, 

distortions are minimal. b.) Image with the 

Pika II camera, distortions are visible 

 

Figure 3.6 Image compression along the y-

axis due to the varying working distance. a.) 

Nir camera: compression 4,0 %. b.) Pika II 

camera: compression 3,3 % 
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Interestingly, the wavelength ranges for the cameras had to be adjusted because at the limits 

of the working range given in the datasheets the data was very noisy or completely random 

white noise. The hypercubes of both cameras were cropped: NIR data was usable from 960 

nm to 1663 nm and Pika II data from 520 nm to the maximum 888 nm. 

 

The setup described in this chapter remained constant throughout all the tests with the 

cameras. The camera setup, lighting and background remained the same with both cameras, 

the lenses; field of view and acquisition parameters changed to suit the needs of the respective 

sensors. The chapter 3.2 describes the repeated calibration process and the acquisition of 

images in more detail. 

 

3.2. Calibration and image acquisition 

The calibration process was described in Table 2.3. Based on previous research and the 

suggestions of the cameras‘ manufacturer, the calibration process should have been repeated 

after a constant number of scans, for example 20 scans. However, in this case the calibration 

process was repeated for each group (class) of the samples (see Appendix 3). On average, this 

meant recalibration after every 5-10 scans, but the time between each recalibration could be 

several hours so the temperature of the sensor could have changed drastically. The calibration 

process was fairly simple, thanks to the Spectronon Pro software, which did the calculations 

(using Equation 2.1) automatically, after a two-step calibration process: 

 Dark image recording with a lens cap on the lens to eliminate dark current effects 

 White reflectance image recording with a Spectronon plate of known reflectance. 

 

As mentioned before, the image acquisition was done in groups, the samples manually 

classified and the samples given codes and numbers by which they could later be retraced, if 

necessary. For each group, a text file containing the classification info of each single sample 

was composed, named Scan Info.txt. Figures 3.8 and 3.9 show examples of acquired 

hyperspectral images, rendered from one wavelength band. 

 

The samples were positioned on the background material so that none of the samples‘ edges 

would be touching. This would make the sample separation process easier in this work so 

focus could be put on the spectral analysis of the data and not machine vision analysis for 

separating blobs (samples) on the image. 
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Figure 3.7 Example of NIR image at wavelength 1200 nm. 

 

 

Figure 3.8 Example of Pika II image, at wavelength 643 nm. 
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4. DATA ANALYSIS 

 

This chapter describes the process of analyzing the vast amount of data acquired in Chapter 3. 

The steps applied are in the same order as in Table 2.4. This chapter is divided into three 

parts: data pre-processing, the principal components analysis and the classification. For 

simplicity, the analysis given below is mostly based on the NIR spectra. The results of the 

Pika II analysis are summarized in Chapter 4.2.1. 

 

4.1. Data pre-processing 

The goal of the preprocessing is to separate the samples from the background, smooth the data 

and remove noise, normalize the data and minimize scattering and lastly, separate the non-

essential data from the essential. To do all of this, a huge number of methods and algorithms 

have been proposed by mathematicians and statisticians but in this thesis the successful 

methods used in previous similar applications have been used. 

 

4.1.1. Initial analysis 

To get an overall estimation of how the spectra of different paper classes would look like and 

if some conclusions of the data can be made by eye, some examples of data were taken and 

plotted (Figure 4.1 for NIR data and Figure 4.2 for Pika II data).  

 

 

Figure 4.1 NIR spectra 

 

Figure 4.2 Pika II spectra 
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As can be seen, the spectra are quite similar among classes for NIR, and the same applies for 

Pika II as well. For NIR data, the most obvious variance between classes seemed to be at 

wavelength ranges 1400-1550 nm as well as right at the end of the range, at about 1600 nm. 

The spectral fingerprint of varying classes seemed to be similar in shape but expectedly varied 

in magnitude. Unlike Pika II data and visible light, data from the NIR could not be interpreted 

as color and the changes in the fingerprint must have been due to the chemical composition of 

the materials. Nevertheless, when examining the derivatives and filtered data of the NIR 

camera, it could be seen that it contained a lot of useful information in many wavelength 

ranges that needed to be investigated further.  

 

The same did not apply for the Pika II data however. As mentioned before, the data was very 

noisy. What is more, the spectra of different classes seemed very similar, mostly flat 

throughout the whole range. Still, there were a few interesting factors that could be read from 

the spectral plots. Firstly, there seemed to be two sharp peaks at wavelengths 544 nm and 613 

nm for a certain portion of the classes. These spikes can also be seen on Figure 4.2. These 

spikes, were very small in magnitude or not present at all for matte papers, but significant for 

glossy papers like magazine and newspaper covers. From that it could be concluded that the 

spikes were not noise or pixel error but turned out to be reflection from the illumination that 

was not filtered out by the polarizing filter. This fact could be used in feature selection, to 

select wavelengths where the variance between shiny materials and matte materials is the 

greatest. 

 

As expected, color related results also showed on the spectral fingerprints of the Pika II. For 

example, Äripäev (an Estonian newspaper) had pink-toned paper and this was reflected in a 

step in intensity in the spectral fingerprint around the visible red wavelengths. Other cases like 

this could be seen for green and blue colors as well. However, these steps in intensity are clear 

indicators of color but they by themselves do not say much about the material and for 

information about the material the underlying trends of the spectral fingerprint had to be 

observed. The overall trend for all paper materials was continuously rising in intensity (except 

for the reflection spikes discussed above) and this was also consistent with the NIR data 

because the Pika II range ended around where the NIR range started. Another step in intensity 

could be observed for printed materials like newspaper and magazines right outside the visible 

range, especially for some dark print colors (large dark images). 
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4.1.2. Sample selection 

The first step in analyzing the data was to group the obtained spectra together into classes 

based on Table 2.6 in order to form the classification calibration dataset. As suggested in 

previous research, k-means clustering was the simplest option to separate the background 

from the samples. A description of applying the k-means algorithm on the data and the 

various combinations with manual selection are described below. 

 

In this thesis the algorithm in Pattern Recognition and Machine Learning Toolbox [22] with 

slight modifications is used. It is an optimized version of the MatLab k-means clustering 

algorithm and it uses the same principles as described above. The goal is to separate the 

background from the samples. As an output, the k-means clustering algorithm will give a 

binary x × y mask for the x × y × λ hyperspectral image. K-means clustering is a very simple 

algorithm to separate data points into k partitions or clusters. For each cluster, the mean value 

of the data points belonging to the cluster is calculated and each data point belongs to the 

cluster with the nearest mean (mean with the smallest Euclidean distance). The process is 

iterative and is repeated until convergence is reached, meaning the mean values (cluster 

centers) do not change anymore.  

 

 

Figure 4.3 k-means clustering of clean white paper sheets with varying 

number of clusters, NIR, samples of white paper 
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The steps of the algorithm are the following: 

1. Initializing the centers of the clusters. In [22] this is done by randomly labeling the 

data points. 

2. Assignment of each data point to the cluster whose mean is closest in the Euclidean 

sense. The assigned labels are given in integers in [22]. 

3. Updating the means of the clusters to be the mean of the data points assigned in step 2. 

4. Repeating steps 2 and 3 until convergence. 

 

As suggested in [3], the k-means algorithm with two to five clusters should be tried. Figure 

4.3 shows the results of the k-means algorithm with a varying number of clusters. As can be 

seen, using two and three clusters worked the best. Because using only two clusters is 

computationally the fastest and simplifies the algorithm (its output is already binary) then two 

clusters were used. However, k-means clustering works well on paper and cardboard samples 

with no print on them. Pixels of samples with dark print will be classified to the background 

class (see Figure 4.4) and therefore in these cases manual binary selection must be used. 

 

 

Figure 4.4 K-means clustering of paper with dark print. The dark print gets 

assigned to the background class. Manual selection must be applied here for 

classification. 

 

As it turned out during the classification model calibration, separating the areas of the samples 

without any print was in fact desirable. The areas with print resulted in very large variances 

within classes and provided classification models with high error rates. Moreover, sample 

selection became crucial to the overall performance of the model, taking into account the 

accuracy as well as the speed of the algorithm. For example, the hyperspectral images of the 

NIR camera consisted of 44 wavelength bands in 320 samples per line and about 650-680 

lines to cover the field of view, so the images were 320 × 650 × 44 of 14-bit depth. This 
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meant that the images were quite large and it was not possible (and also redundant) to use all 

spectrums from all pixels to calibrate the method. Single pixels also contained a lot of noise 

and errors, showing as spikes in the raw spectral data (see Figure 4.2). To offset the large 

amount of data while acquiring various samples of different classes at the same time, different 

methods of sample selection were tried: 

1. k-means clustering to select only the areas of the samples and then taking the 

median of each wavelength band of each class. This resulted as one spectral 

fingerprint per image. This method turned out to be suboptimal because it resulted 

in a quite small number of spectral fingerprints of different classes. Another 

disadvantage was the fact that, to get the spectral fingerprints, a large number of 

sample pixels were used which were obtained from areas of different illumination, 

camera angle etc. so the median spectral fingerprint included all of the samples but 

didn‘t really represent many of the pixels. See Figure 4.6. 

2. Manual binary selection to select each paper sample separately and then taking the 

median of the pixels in that region of interest (ROI). This improved the sampling 

by resulting in greater number of samples from smaller areas of variance but by 

selecting the whole sample, areas with dark print were also included in the spectral 

fingerprint, lowering the integral value (area under the curve, meaning the overall 

intensity) of the spectral fingerprint significantly as well as altering some parts of 

the fingerprint due to different reflectivity of the ink. This could be avoided by 

manually selecting only areas of the sample without ink. This method had the 

same downside as the one above, namely the fact that the spectral fingerprint that 

was obtained did not represent many areas of the sample well due to the taking of 

the median. 

3. Manual binary selection of the light/no print areas of the samples and taking n-

uniformly distributed raw samples from the area. This method allowed the samples 

to be classified and a large number of samples to be taken without becoming 

uncontrollably large as well as having a good representation across all the samples 

due to no averaging taking place. However, this method did not smooth the 

spectral fingerprints in any way, resulting in samples of raw data. This meant that 

the samples included sensor noise and errors that had to be corrected later (see 

Figure 4.5). To get good representations of the spectrums within classes, the data 

was manually cleaned from false positives. Some of the samples contained 

erroneous data from the sensors that couldn‘t be fixed by filters nor manually so 
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the samples had to be removed from the training set. The downside is that the 

samples are taking from arbitrary locations on the sample and if the sample 

contains printed areas then the sample could include erroneous data. 

4. Running a small median filter over the hypercube, taking the median along the 

spectral dimension and then repeating steps in 3. This made the obtained spectra 

less prone to contain sensor errors see Chapter 4.1.3 below. This method has the 

same downside as 3, namely that it can include spectra of printed areas. 

5. The same method as 4, but adding a step of manual thresholding so that no 

samples would be taken form printed areas. 

 

 

Figure 4.5 Raw spectras. Significant spikes 

and noise can be seen. 

 

Figure 4.6 Spectra obtained by k-means 

clustering and taking a median 

 

In addition to selecting samples, reading and parsing the hypercubes needed to be done. The 

description of scripts involved in the reading, parsing and plotting processes, as well as all the 

selection methods are in Appendix 7. 

 

4.1.3. Data transformation 

As seen on Figure 4.5, sensor errors result in spikes in the data. There were a few options to 

smooth the data to reduce the influence of noise. Firstly, as suggested in previous research, 

the Savitzky-Golay filter was used only along the third dimension of the hypercube, meaning 

only along the wavelength range of the pixel. For this filter, three parameters could be 

adjusted: window size, polynomial order and derivative order. For just filtering the derivative 

order was kept at zero but the same filter was later used for deriving the data as well. The 
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impact of the filter can be seen on Figure 4.7, where one data point from Figure 4.5 was 

filtered. The blue plot represents the raw data, the orange plot shows a fairly good result using 

a window size of 7 and polynomial order 3, while the yellow plot shows a poorly chosen 

Savitzky-Golay filter with a too large window size, filtering out some of the relevant data. 

However, it can be seen that the high spike on the spectra (this spike can also be seen on 

Figure 4.5 as it is the same newspaper spectra) caused by sensor noise was not filtered out 

with Savitzky golay filter. On the contrary, the filter caused the spike to widen (due to the 

polynomial fit) and the edges of the spike to become sharp. To filter out this spike with 

Savitzky-Golay filter, a very large window size would have been needed and, as stated above, 

this would have eliminated useful information as well. 

 

 

Figure 4.7 Effects of Savitzky-Golay 

filtering on one point of data 

 

Figure 4.8 Effects of SGF after using 

median filter on the hypercube 

 

Figure 4.9 Effects of median filter on data 

at wavelength band 16 of the NIR camera. 

a.) before filtering and b.) after filtering

 

To deal with sensor error like above, a widowing median filter was used before the Savitzky-

Golay filter. Figure 4.9 shows the sensor error effects on one slice of the hypercube at band 16 

of the NIR camera, where errors were often observed. Since the hypercube is a 3D matrix 

then it was possible to control the dimensions along which the filter operated as well as the 

size of the window. A window size of just 3 bands along the third (spectral) dimension 
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worked well in this case, as in Figure 4.9 where it can also be seen that no spatial information 

is lost due to the fact that the filter did not operate along the x- and y-dimensions. Figure 4.8 

shows the same filters as applied in Figure 4.7 but applied after the median filter. The spike 

caused by noise is removed. It is important to note that for the NIR data this spike removal 

was desired but for the Pika II, as discussed above there were spikes in the measurements that 

were relevant and therefore a median filter was not used. 

 

After the samples were selected and filtered, a number of standard pre-processing steps for 

PCA analysis were carried out. To reduce unwanted overall variation of the data within the 

classes, the data was normalized using the SNV method that was successfully used in 

previous work as well. The normalization removed the in class variation that was caused by 

the uneven lighting and other environmental influences. SNV (see Figure 4.10) method 

worked very similarly to the area normalization, MSC and PQN methods, but had slightly 

better results. Generally, the SNV normalization is used for scatter correction which is a 

common drawback of NIR spectroscopy but the same filter was used with good results on the 

Pika II data as well. 

 

 

Figure 4.10 Magazine spectra measured with NIR camera. The samples are medians of 

selected areas and the first derivative of the spectral fingerprint a.) derivative spectra; b.) 

derivative spectra with applied SNV. 

 

As can be seen of Figure 4.10, the SNV changed the data in two ways. First, it lowered the 

variance of the data, shown by the plots converging more closely together on Figure 4.10 b.). 

Secondly, it moved the data closer to the zero point. This is a feature of the SNV method [20] 

and the transformation could be named equal to a total-energy scaling (normalization) applied 

to a centered signal. 
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For principal components analysis and partial least-squares methods it is generally advised to 

use centering of the data to align the data around the origin of the n-dimensional space. The 

most common centering method is mean centering, which is subtracting the mean of all of the 

values within one variable (in this case, one wavelength band) from the corresponding 

variable. This results in the data clustering around the origin and this also emphasizes the 

differences from the overall mean of the data. However, since the centered data will depend 

on the overall mean then it is important that the samples are represented equally among the 

classes. Another common and often suggested and required preprocessing step is to scale the 

data so that variables of different units can be taken into account equally. In analyzing 

spectral data however the data is already in the same units of light intensity. Even then it is 

generally advised to perform scaling so that the variance of the spectra would be of one unit 

because otherwise the higher peaks in the data become more relevant than smaller variations 

[21].  

 

By trying out various combinations of all the steps in Chapter 4.2, the pre-processing steps 

were chosen. The quality of the pre-processing was evaluated in cooperation with the 

classification and cross-validation methods discussed below. The final selected combination 

of pre-processing for respective data is shown in Table 4.1. Some of the pre-processing steps 

that had good results on spectra of separate classes, were not used in the pre-processing of the 

training and prediction because they caused unnecessary errors (such as SNV).  

 

Table 4.1 Pre-processing steps 

Step NIR Pika II 

Sample 

selection 

12 evenly distributed data points per 

sample, thresholding to remove dark 

areas, median filter 

Median of each sample that was 

previously thresholded to remove 

dark areas 

Pre-

processing 

Mean centering, 2
nd

 derivative with 

window size 11, polynomial order 2. 

Autoscale 

 

 

4.2. Principal Components Analysis 

Principal Components Analysis (PCA) is a very common technique while working with big 

data and in interpreting influence of various variables on the data. PCA is not a classification 

method but it gives plenty of information about the dataset, it can also be used for variable 

selection. PCA analysis was done on both datasets, the discussion and results are given below. 

The following discussion is based on the analysis on the data acquired with the NIR camera, 
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but the same applied for the Pika II datasets as well (the plots for the same Pika PCA analysis 

are in Appendix 5). For the PCA analysis MatLab toolbox PLS_Toolbox [23] was used.  

 

Simply put, PCA finds a linear subspace in the λ-dimensional space (λ is the number of 

wavelength bands) with orthogonal axes (principal components, PCs) where the variability of 

the data is the largest. The principal components are linear transformations of the original data 

points. The goal of PCA is to represent the same data within a subspace of minimal 

dimensions. Along with the PCA model, the PLS_Toolbox runs cross-validation, iteratively 

separating the training set into sub-sections with which to validate the model. The method of 

cross-validation in the tests carried out here was Venetian blinds cross-validation with 10 

iterations and one sample per ―blind‖ or selection to the cross-validation. Cross-validation 

helped to estimate how well the model fit the data and how data points outside the training set 

would fit the data as well. What is more, cross-validation helped in choosing the number of 

latent variables (number of PCs) of the PCA, which was a crucial step in selecting a good 

model. The PLS_Toolbox suggests a number of PCs based on the root mean square error of 

calibration (RMSEC) and the root mean square error of cross validation (RMSECV). Figure 

4.11 shows how the number of latent variables affects the RMSEC and RMSECV. In general, 

the number of principal components should be chosen so that by adding one additional 

principal component does not improve the RMSEC and RMSECV significantly. For example, 

for the model in Figure 4.11, the optimal number of principal components is four, because 

having five PCs would not have a significant improvement of the RMS errors anymore. 

 

 

Figure 4.11 Number of PCs vs the RMSEC 

and RMSECV 

Table 4.2 Variances and RMS errors in the 

PCA model 

# % var. 

in PC 

% cum. 

var. 

RMSEC RMSE

CV 

1 81.01  81.01    9.52 20.63 

2 14.81  95.82   4.466  11.1 

3  3.50  99.32   1.804 8.245 

4  0.53  99.84  0.8644 2.724 

5  0.07  99.91  0.6504 2.554 

6  0.05  99.96  0.4526 2.082 

7  0.02  99.97  0.3515 2.077 

8  0.01  99.98  0.2762 2.234 
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Table 4.2 shows how the variance of the data points is captured in the PCs. Since PCA finds 

PCs where the variance of the data points is the largest then the first PCs also capture the most 

of the variance. So in Table 4.2 the first principal component captures 81% of the total 

variance. Four PCs were chosen with the reasoning mentioned above, so the total variance 

captured by the four PCs is 99,84%. The next PCs held very little extra information. The 

RMSECV was expectedly higher from the RMSEC due to the fact that the cross-validation 

data points were not used in the calibration of the model and the PCA models are quite prone 

to over fitting (the more PCs, the more likely the over fitting). When the number of PCs is 

chosen, the fit of the model can be further investigated by the Q-residuals and Hotelling T
2
 

values. The Q-residuals showed the percentage of how much of the data point cannot be 

explained by the model. Therefore a sample with a large Q-residual has unusual variation 

outside the model. For example, on Figure 4.12 there are a few data points belonging to the 

Magazine, Magazine Shiny and Newspaper data points that have quite large Q-residuals, 

meaning that these data points do not fit the model very well and they should be investigated 

further to see whether they are erroneous samples. The more PCs are used in the calibration of 

the model, the better the Q residuals calculation, with the downside of over fitting when using 

a large number of PCs. If nr of measured variables is equal to the number of PCs then 

calculation of Q-residuals is not possible. That means outliers of the model cannot be 

detected. This was not the case in Figures 4.12 to 4.18 because all of the variables 

(wavelength bands) were used, but had to be taken into account when selecting variables. The 

Hotelling T
2
 showed how much variance the data points have inside the model. A large T

2
 

value for the Cardboard and Carton classes indicates unusual variation inside the model.  

 

When looking at the scores and loadings plots, what could be read out from the PCA plots 

was the fact that using data points taken from dark or printed areas of the materials resulted in 

very poor separation of the classes. Figure 4.13 shows the scatter plot of scores of principal 

components 1 and 3 of training data where dark and printed areas were not filtered out. Figure 

4.16 shows the same scatter plot of only data points of light and/or uncoated areas of the 

materials. Sample selection and pre-processing are the same for the datasets, as well as the 

number of latent variables used; the only difference being that for the second dataset a simple 

manual thresholding was used, so that no spectra from areas covered with print would be 

selected for the training set. 
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Figure 4.12 Q-residuals and Hotelling T
2
 plots, showing how the data points 

fit the model. In parentheses the percentage of the variance covered. 

 

 

Figure 4.13 PCA on samples containing 

print. Scatter plot of scores on Principal 

Components 1 and 3. Plot generated with 

PLS_Toolbox 

 

 

Figure 4.14 PCA on samples containing 

print. Biplot of scores and loadings of 

Principal Components 1 and 3. Plot 

generated with PLS_Toolbox 

On Figure 4.13 it can be seen that only the spectra of white paper (dark blue squares) was 

separated from the main cluster of data points (in fact, behind the legend there was another 

cluster of cardboard class). All of the other classes were scattered around the origin of the 

principal components. It could also be seen that the data points were scattered with quite large 

variance within classes as well as overlap of the data points projected onto the principal 

components‘ axes. Similar behavior of data points was observed on scatter plots of scores of 
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other principal components. On the other hand, on Figure 4.15 it can be seen how the 

variation within a class was reduced significantly for most of the classes. What is more, some 

of the classes, for example ‗Newspaper shiny‘, have moved away from the other classes. It is 

worth mentioning that cluster separation does not necessarily mean that the classes would be 

separable from each other. However, here the classes could be declared separable if they are 

visually separable on the scores plot and they fall within the 95% confidence limit marked 

with a blue dotted line on Figures 4.13 and 4.15. So on Figure 4.15 the Cardboard2 cluster 

fell out of the confidence limits, meaning that the model did not fully explain the separability 

of this cluster. Nevertheless, comparing Figures 4.13 and 4.15, it could be said that it was 

more likely that classification using only areas not covered with print would be more accurate. 

The print would either have to be classified separately (which would include the risk of being 

misclassified as background) or using some further methods of machine vision to include the 

black print to the appropriate class. 

 

 
 

Figure 4.15 PCA on samples not containing 

print. Scatter plot of scores on Principal 

Components 1 and 3. Plot generated with 

PLS_Toolbox 

 

 

 

 

Figure 4.16 PCA on samples not containing 

print. Biplot of scores and loadings of 

Principal Components 1 and 3. Numbers 

above loadings markers are the wavelength 

bands (some omitted for clarity). Plot 

generated with PLS_Toolbox 

Figures 4.14 and 4.16 show the loadings and scores biplots for the respective datasets within 

PC 1 and 3. Scores and loadings are correlated in the sense that when a variable (in this case, 

one wavelength band marked as blue triangles on Figures 4.14 and 4.16) has a large value on 
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the loadings plot then this variable has directly influenced the data points (marked as red 

diamonds) that also have a large value in that principal component. For example, of Figure 

4.16 it can be seen that a cluster of data points was separated from the others in the first sector  

of the plot (PC1 > 0; PC2 < 0). From Figure 4.15 it can be determined that this cluster is of 

the white paper class. Figure 4.16 also shows a number of variables (wavelength bands) that 

have an increasingly large positive value in PC1. The meaning of this was that wavelengths 

1549 – 1663 nm were directly responsible for the separation of the White Paper cluster as 

well as the Cardboard2 cluster, but for the latter wavelengths around 961 nm also played an 

important role. Analyzing the loadings and scores plots in this manner gave an overview of 

what wavelength bands play a role in the class separation. The same information about all of 

the four principal components used in Figures 4.15 and 4.16 is summarized by the variables 

versus loadings plots on Figure 4.17. The sum of the squares of the loadings for each principal 

component is 1 and the loadings essentially show the contribution of the variable to the 

principal component. 

 

 

Figure 4.17 Variable (band number) vs. loadings for PC1 – PC4. 

Plot generated with PLS_Toolbox. 

 

So for example, the previously mentioned cluster of white paper data points had a high score 

on the first principal component and it could be seen that the variables from the end of the 

wavelength band range were responsible for this. This can be confirmed on the loadings plot 

as the loadings for the first component are relevant at the range 1549 – 1663 nm (on Figure 

4.17 the variables are labeled by their index rather than the actual value, so 1549 nm = 
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variable 37 and 1663 nm = variable 44). In each principal component, the variables with the 

highest peaks in the loadings plot are the most relevant to this component (the sign of the 

loading value is not relevant). Table 4.3 summarizes these most relevant variables for each 

principal component (see full table in Appendix 4). This table can be used for variable 

selection, where only one band from the relevant range can be selected, because the other 

values in the same range are highly correlated with the selected variable. So for instance from 

the wavelength range 1549 – 1663 nm only the last band at 1663 nm can be selected because 

its contribution to the principal component is the greatest and the others with high loadings in 

this principal component have the same effect on the data (all the before mentioned PCA data 

could also be accessed via the PLS_Toolbox model, not only the plots). 

 

Table 4.3 Variables with largest contributions to the loadings of principal components, NIR 

 PC1 % of 

PC 

PC2 % of 

PC 

PC3 % of 

PC 

PC4 % of PC 

Ranges 1664 

nm 

38,0 1468-

1500 nm 

31,6 961-994 

nm 

72,0 1386-

1418 nm 

33,2 

1615-

1647 

nm 

44,5 1321-

1353 nm 

23,0 1500-

1533 nm 

19,8 

1663 nm 2,9   

 

 

4.2.1. Summary of results of PCA for the Pika II spectra 

The PCA analysis was carried out on the Pika II data as well. The Pika II data contained less 

variance between classes. Therefore the classes were not divided into the actual paper 

materials, but into three sub-groups: white paper, cardboard (and carton) and glossy papers 

(glossy newspaper and magazine). The figures in Appendix 5 show the scores plot and the 

loadings plot of the PC1 and PC3, as in these principal components the class separation was 

the most obvious. The white paper and cardboard subgroups had fairly small variance within 

the class, as seen on A.1. The magazine subgroup displayed the largest variance. From the 

loadings plot A.2 it can be seen which wavelength bands are most relevant for each principal 

component. The loadings plot confirms the previous discussion of the fact that the spikes 

caused by the illumination are relevant markers in separating glossy materials from matte 

materials. The most relevant wavelengths have been added to Table 4.4. The PCA analysis of 

Pika II spectra showed that it was possible to separate the spectra into a few subgroups of 

materials. However, the NIR data provided in general the same kind of separation 
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possibilities, with more data to refine the classification so materials could be separated. A 

disturbing factor for the Pika II spectra was the amount of noise present in the data. The Pika 

II wavelength range tests should be repeated using more illumination to see if that gives better 

results. The only information that the Pika II provided and the NIR did not was visible color 

information. But for color detection a hyperspectral camera is highly over dimensioned, a 

simple RGB camera would resolve the colors as successfully as the Pika II. The Pika II data 

acquisition should be revised but the data acquired in this work was not used for further 

classification, only NIR data was used in the following chapters.  

 

As mentioned above, if the classes are well separated within the first PCs on the scores plots 

then the loadings with large values in the loadings have good potential in being relevant in the 

separation of classes and can be selected as contributing variables. Out of the 44 wavelength 

bands for NIR data, six variables were selected. Out of the 59 bands of Pika II data, also six 

variables were selected (Table 4.4). 

 

Table 4.4 Summary of selected wavelength bands 

Selected wavelengths 

NIR 961 nm 1337 nm 1402 nm 1484 nm 1517 nm 1664 nm 

Pika II 537 nm 544 nm 550 nm 575 nm 738 nm 888 nm 

 

 

4.3. Classification 

The PCA was performed on the data to get some insight about it but as mentioned before, it is 

not a method of classification. To discriminate classes, three methods were tried: PLS-DA, 

SVM and k-nearest neighbor (k-NN) methods, all of which were also mentioned with good 

results in previous research. The classification was run on the full set of data, not with the 

variables selected with the PCA method to see how accurate the model could get. In the 

Chapter 4.3.1, an overview is given of how the model calibration was done using the 

PLS_Toolbox. Next, a description of how the model quality was assessed is given. Then the 

results are reviewed, starting with SVM and k-nearest neighbors because they were deemed 

less suitable than PLS-DA and therefore there is less information concluded from these 

methods. After the SVM and k-nearest neighbor analysis a detailed overview of the PLS-DA 

application was given and the results of the classification were presented in Chapter 5. 
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4.3.1. Calibrating the classification model 

The model calibration, analysis, cross-validation and initial validation were done using the 

PLS_Toolbox GUI [22]. This made it simple to review the results and recalibrate accordingly. 

The following overview is given so that the results of this work could be reproduced when 

needed. 

 

Firstly, the data from the cameras needed to be prepared for the toolbox. That meant selecting, 

parsing, reading and reshaping the data to be suitable for the toolbox. Also, since this process 

is a calibration where the data needed to be previously labeled then the methods described 

above for sample selection were used (see Table 4.5 for the chosen classes). The reading and 

labeling process was done using scripts described in Appendix 7. The following steps were: 

1. Importing the data to the PLS_Toolbox model X-block (Figure 4.18 1.). The X-block 

contained the data in a M × N matrix, where M – number of samples (single pixels 

from the hypercube) and N – number of variables (wavelength bands). 

 

 

Figure 4.18 The PLS_Toolbox GUI [22]. 1. Load and edit the X-block data. 2. 

Pre-processing. 3. Calibrate model. 4. Review the calibration data and fit. 5. 

Select plots for more information on the calibration. 6. Load validation data. 

 

2. Importing the labels of the data. The labels were in a vector of M × 1, containing 

strings or the class names (for example, ―Cardboard‖ or ―White paper‖). There was 

two methods of how to import the labels and connect them to the data: 

a. Loading the labels into the Y-block of the model 

b. Editing the X-block data so that the row labels tab included the labels as 

classes. 
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In this work, the second option was used. This gave the benefit of seeing the classes on 

the plots as different symbols etc. as well as the option to combine classes. 

3. Reviewing the X-block data to exclude outliers from the model. 

4. Selecting the preprocessing (see reasoning above in Chapter 4.1.3), (Figure 4.18 2.) 

5. Loading the model. Reviewing the results (Figure 4.18 3., 4. and 5.) 

6. Assessing the quality of fit of the model by the cross-validation (Figure 4.18 4.) 

7. Loading validation data into X-block-validation and predicting, assessing the results 

(Figure 4.18 6.) 

 

The toolbox included the cross-validation option. Cross-validation was the main mteric in 

assessing the fit of the model to the data. In the calibration done in this work, venetian blinds 

cross-validation was used with 10 data splits and one sample per blind. In this way, for each 

iteration of the calibration, 10% of the dataset was left out of the calibration and was used for 

validation of the model. This produced an average cross-validation (CV) error for each model 

and, if the modeling groups were chosen, for each group. Obviously, the lower the cross-

validation error the more likely that the model would work on new data as well so this was a 

very valuable insight to how to model was fitting the data. 

 

Table 4.5 Classes used in model 

calibration 

Label 

number 

Classes 

1 White paper (WP) 

2 Magazine (MG) 

3 Newspaper (NP) 

4 Carton (CA) 

5 Cardboard (CB) 

6 WP dark print (WP D) 

0 No class – N/A 

 

Table 4.6 Average cross-validation errors 

when classifying all classes with one model 

was attempted  

 PLS-DA SVM k-NN 

Average 

CV-error  

21,7% 8,7% 7,7% 

Pre-proc. SGF, 2
nd

 

deriv. 

(15-2) 

mean 

center 

SGF, 1
st
 

deriv. 

(15-2) 

autoscale, 

1
st
 deriv. 

(15-2) 

 

To assess how the discrimination methods would work on the data, the cross-validation error 

of all of the models was compared. The pre-processing of the data was not the same for all of 

the methods, but chosen so that the CV error would be minimal (see Pre-processing in Table 

4.5). Different pre-processing steps were taken because the methods generate the 

discriminators differently and need different kinds of data for input, the biggest difference 

being that the SVN and k-NN methods do not require mean centering but for the PLS-DA it is 
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highly recommended. As it turned out (see Table 4.4), the paper materials‘ spectral 

fingerprints were too closely related to correctly and reliably separate into classes with just 

one classification model. Many classification models had to be used together, firstly to 

separate materials into groups and then use other models to separate the sub-groups further. 

This was easily achieved with the PLS_Toolbox‘s Hierarchical Model Builder. 

 

4.3.2. SVM and k-nearest neighbor discriminant analysis 

Support Vector Machine classification is a linear supervised classification process. The cross-

validation errors of each class of the model are shown in Table 4.7. See full data in file 

SVM_model_allClasses.txt. 

 

Table 4.7 Cross-validation errors of classification with the SVM model, within classes 

 White paper Magazine Newspaper Carton Cardboard 

c-SMV CV-error 3,3% 6,0% 5,3% 12,5% 8,6% 

Nu-SVM CV-error 2,0% 15,2% 12,6% 17,2% 12,6% 

 

Table 4.8 Cross-validation errors of classification with the k-NN model, within classes 

 White paper Magazine Newspaper Carton Cardboard 

k-NN CV-error 13,9% 7,3% 6,6% 15,9% 10,6% 

 

A downside of the CVM classification was that compared to the PLS-DA method, it was very 

slow. As the method remaps all of the data points then a lot of calculations on the data were 

carried out. A faster version of SVN was the nu-SVM classification, but it was far less 

accurate (see nu-SVM_model_allClasses.txt). 

  

The k-nearest neighbor (k-NN) algorithm is one of the simplest machine learning or 

classification algorithms. It does classification only locally, basically counting the classes of 

the data points‘ nearest neighbors in the Euclidean sense and classifying the data point to the 

class that would have the largest amount of neighbors in the same class. The within class CV-

errors are shown in Table 4.8 (all details in k-NN_allClasses.txt). The k-NN method was fast 

and quite accurate so it was considered in using in some of the modeling steps of the total 

hierarchical model. The problem with the k-NN method was that despite being quite fast in 

the calibration process (where the number of data points is quite small), it was extremely slow 

in the prediction process because the hypercubes contained about 320 times 680 spectra, each 

of which needed to be compared to every data point in the training set. Another downside of 
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using the k-NN method in the PLS_Toolbox was that class grouping was not possible so if the 

goal was to group data points into groups of classes and not specific one-material classes 

(classes 1-5) then the labeling needed to be done manually. Both of these methods had their 

benefits but the PLS-DA seemed more fitting and faster so the further classification was done 

using the PLS-DA. 

 

4.3.3. Classification using the PLS-DA method 

The PLS-DA method was chosen because it was much faster to run than the SVM and k-NN 

methods. Additionally, the PLS-DA method in the PLS_Toolbox allowed the classes to be 

easily grouped to make hierarchical modeling simple. Furthermore, the PLS-DA method 

generated far more information about the model than the other methods. The information was 

very similar to the principal components analysis, outputting scores and loadings plots as well 

as prediction information. Table 4.9 shows the cross-validation errors of classes when all 

classes are classified within one model (see all details in PLS-DA_model_info.txt). As can be 

seen, the errors are much higher than in Tables 4.7 and 4.8. Nevertheless, the results of 

separating the classes first into subgroups and then into classes was more successful. 

 

Table 4.9 Cross-validation errors of 

classification with the PLS-DA model, 

within classes 

Class PLS-DA CV-error 

White paper 20,7% 

Magazine 19,4% 

Newspaper 18,3% 

Carton 18,6% 

Cardboard 31,7% 

 

 

Figure 4.19 Three-tier hierarchical 

classification model. Generated in the 

PLS_Toolbox 

 

The three-model hierarchical classification model concept is shown on Figure 4.19. The first 

model (Model 0) was responsible for separating carton and cardboard from the other classes. 

Model 0 also separated a small group of dark print on white paper into a separate group, but 

classifying real data into this class was very rare. So the model discriminates between three 
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classes: cardboard or carton, white paper (and MG and NP) and WP D. Model 1 was 

responsible for separating cardboard from carton and Model 2 discriminated between white 

paper, magazine and newspaper. If the data point did not fit any of these classes then it was 

classified as N/A or value 0. A description of each model‘s properties is given below and the 

results of classification are given in Chapter 5. 

 

 

Figure 4.20 Model 0 separating cardboard and carton from other classes. Figure generated 

with PLS_Toolbox 

 

For Model 0 four latent variables were used, in total explaining 99,97% of the variance of 

data. Figure 4.20 shows the fit of the model and the class separation. From the first plot, the 

Q-residuals vs. Hotelling T
2
, it can be seen that most of the data points are within the 95% 

confidence limits (blue dotted line) of both axes, meaning that generally the data points fit the 

model and that they have reasonable variance within the model. There is one white paper data 

point highlighted with pink. This data point had high values for both the Q-residuals and the 

Hotelling T
2
, meaning that it could have been an outlier. Excluding outliers may have helped 

to increase the quality of the model, so it had to be considered. However, this data point didn‘t 

seem to make the fit of the model worse because, as seen on the samples vs. prediction plots, 

it was always classified correctly with high probability values. The samples vs. prediction 

scatter-plots on the figure show how the training set of data is discriminated within the model. 

The red dotted line is the threshold for the model, which is calculated based on the Bayesian 

method (for more information on threshold calculation, see [23]). As seen on the graphs, the 
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data points that have a larger probability value than the threshold of the class, are considered 

members of that class. The cross-validation errors by class are in Table 4.10. It is important to 

note here that only white paper data points (and not NP or MG) were used for the separation 

of the ―Other‖ class. Nevertheless the model trained on white paper seemed also to apply to 

magazine and newspaper, as the validation showed (see Chapter 5). 

 

Table 4.10 The cross-validation class error 

for the PLS-DA model separating 

cardboard and carton from the other 

classes 

Class Cardboard, 

Carton 

WP D Others 

CV 

error 

14,3% 7,1% 2,4% 

 

 

Figure 4.21 Loadings of Model 0. In 

brackets – the variance explained  

 

The loadings values for the model were inspected to confirm the results of the PCA analysis 

that six wavelength bands could be used instead of 44 to classify the materials. Figure 4.21 

shows the loadings plot of the four principal components used. The most noteworthy 

difference from Figure 4.17 is that the first PC that explains 99% of the variance, uses all of 

the variables equally. The other PCs that explain much less variance (a total of about 1%) 

seem to confirm the fact that the wavelength bands at the range limits and at bands around 

band 30 are important for the classification. Regardless of the other principal components, the 

first PC explains so much variance that dropping some of the wavelength bands from the 

dataset might have an extremely negative effect on the quality of the model. This was 

confirmed also by the selectivity ratio which showed essential variables for each of the 

classes. The trend in the selectivity ratio plots was the same: in general all the wavelength 

bands are required, but the most crucial ones are the bands around band 30 (around 1300 – 

1500 nm). Therefore, in the following analysis, only full sets of data were used. 

 

Model 1 separated cardboard from carton. The error percentage of this classification was quite 

high due to the fact that the spectra of the data were very similar and the differences could not 
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be brought out by pre-processing. The best separation seemed to work with only autoscaling 

the data and not applying any more filters. The cross-validation error of this model was 

26,2%. Once again four principal components were used. The Q-residuals vs. Hotelling T
2
 

and the discrimination plots looked very similar to the plots in Figure 4.20 meaning that the 

data fit the model quite well.  

 

Model 2 discriminated between the WP, MG and NP classes. Figure 4.22 shows the fit of the 

model and the class separation. On the plots, the cardboard and carton data points are included 

to show how they would fit into the model but in practice carton and cardboard spectra should 

not reach this model as they would be filtered out by Model 0. The Q-residuals vs. Hotelling 

T
2
 plot confirms the fact that this model is not very well suited to classify cardboard and 

carton data (and WP D), but suits well for the other classes. The similarities of newspaper and 

cardboard spectra can be seen on the newspaper class discrimination plot, where cardboard is 

largely classified as newspaper. This behavior was seen in running the model on real data as 

well and printed areas on newspaper material were classified to the cardboard class (see 

Chapter 5 below for more details). 

 

Table 4.11 Model 2 cross-

validation errors per class 

Class CV error 

WP 14,0% 

NP 5,3% 

MG 16,7% 

 

 

The magazine class contained 

data points from three materials: 

magazine sheets, magazine 

covers (magazine shiny) and 

newspaper covers (glossier 

material than newspaper, 

resembles magazine sheets in 

both spectra and physical qualities). They were put together into one group because these data 

points had very little difference in the spectra. The magazine cover however did not classify 

well into the magazine class and that was also seen later in the testing phase. As can be seen 

Figure 4.22 Model 2 separating WP, NP and MG. Figure 

generated with PLS_Toolbox 
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from Tables 4.10 and 4.11, the cross-validation error was still quite high. To counteract the 

high misclassification, a simple statistical generalization was performed on the classified data 

of the hierarchical model, described below in Chapter 4.3.4. The three models were combined 

into one hierarchical model as seen on Figure 4.19 and the results were output to MatLab to 

process further. An example of an output of the hierarchical model (reshaped to regain the 

spatial information) is in Figure 4.24. 

 

4.3.4. Generalized classification method 

The output of the hierarchical classification model was a N × 1 matrix, where N was the 

number of data points in the hypercube, containing the label of the class. Using MatLab 

scripts (see Appendix 7), the hypercube was reshaped into an image of the same size as the 

hypercube‘s spatial dimensions. Figure 4.23 shows an image cropped from the hypercube at 

wavelength band 23 (1320 nm) and Figure 4.24 shows the reshaped output of hypercube 

Validation 1. Each color represents an integer label number (for example, 1 for white paper, 

see labeling in Table 4.4). As can be seen, each pixel is classified regardless of its surrounding 

pixels and therefore there are many classes present within one sample of paper. Also, the 

pixel-by-pixel classification error ratio is quite high. As can be seen, the areas of the samples 

containing print, especially dark print, are often classified differently as the areas of the 

sample that do not contain paint.  

 

What is interesting as well is that the illumination of the scene also played a role in the 

classification. Figure 4.25 shows samples of white paper that contain some print. The bottom 

row of the samples shows exactly how much the illumination affected the classification. All 

the pixels (except the pixels containing print) should be classified into the white paper class 

(as they are in the top row) because the model worked very well on white paper. Nevertheless, 

in the bottom row the samples are misclassified and the shape of the misclassified areas 

showed that it was not random misclassification or material-based misclassification but 

misclassification caused by spatial environmental variables. Variations in illumination would 

explain these errors well. However, these kinds of errors do not show the poorness of the 

model but the fact that the camera setup should be adjusted. It is clear that in an industrial 

setting the samples would be linearly moving past the sensor and the illumination area would 

be one line where the illumination could be held constant instead of a rectangular region 

where the illumination very highly depends on the positioning of the lamps. 
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Figure 4.23 Image of Validation 1 hypercube, cropped at wavelength 1320 nm 

 

 

Figure 4.24 Predicted classes by the hierarchical model of hypercube Validation 1, strict 

classification 

 

 

Figure 4.25 Example of how illumination affected classification (hypercube WP P 13-24) 



 

56 

 

To improve the quality of the classification and to reject useless information, a simple 

generalization model was developed on top of the pixel-by-pixel classification. For the 

generalization both the pixel-by-pixel classification image and the raw hypercube were used. 

For the generalization a few assumptions were made: 

 that each sample always belongs to only one class 

 that the samples are separated from each other spatially (no touching edges) 

 that the samples were rectangles (or at least polygonal) 

All of these assumptions can be made for paper waste as well, with some exceptions but the 

exception cases were not taken in to account in this model anyway. Figure 4.26 shows how 

the generalization process worked.  

 

 

Figure 4.26 Generalization of the pixel-by-pixel classification 



 

57 

 

 

The hypercube was processed during reading from file with a small median 

filter that was applied on the cube to get rid of sensor artifacts (discussed in 

Chapter 4). Then, the hypercube was run through the k-means clustering 

(using three clusters, as this was the best solution for samples with print). 

The result was an image where the background was separated from the 

samples. This k-means result was binarized so that the result was a binary 

mask where zero signified background and ones signified sample pixels. 

The binary image was processed with simple MatLab machine vision 

algorithms:  

 fill the holes left by the dark print and that were classified to the 

background class in k-means clustering (4 on Figure 4.27); 

 remove small objects (skipped on Figure 4.27, there were no small 

blobs to remove); 

 using convex hull on the sample to unite the samples that were 

divided by the dark print (5 on Figure 4.27); 

 

 

 

 

Figure 4.27 shows an example of an extreme case where the print caused 

most data points of the sample to be classified as background or N/A. It can be seen how the 

processing steps improve the area of the sample. Processing the hypercube this way allows the 

separation of samples to be much more accurate. An accurate positioning of samples is 

essential in physically sorting out the papers. As a result of these processing steps, a 

generalized classification is calculated where each sample is classified into one and only one 

class. An example of the generalized classification output can be seen on Figure 4.28, where 

the Validation 1 hypercube was classified. The hypercube is the same as on Figure 4.24. 

When comparing the pixel-by-pixel classification and the generalized classification, it can be 

seen that each sample is classified into only one class. When there are not enough classified 

pixels within the sample (10% of all pixels) then the classification fails, showing that the class 

is not known. The samples are labeled by class and their centroid is shown. The centroid 

could be used for giving spatial information to the physical sorting machine.  

Figure 4.27 Example of processing. 1. Raw cropped image of 

hypercube at wavelength 1320 nm. 2. K-means clustering with 3 

clusters. Backgroung is always assigned to 0. 3. Binarized k-

means result. 4. Fill holes. 5. Convex hull of the object. 
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Figure 4.28 also shows a case where the k-means clustering failed to correctly separate a 

sample. The sample at the far right of the bottom row of Figure 4.28 is from an advertisement 

that has a glossy and thick material, much like a magazine cover. The advertisement has a 

very dark printed middle part (see Figure 4.24) that was not detected by the k-means 

clustering. Therefore the lighter parts are considered as separate samples. To fix this issue, a 

localized threshold could be used alongside with the k-means clustering to adapt to the dark 

black samples and to separate them from the background. However, improving the sample 

detection method was outside the scope of this work and should be done in the future. 

 

 

Figure 4.28 Generalized classification of hypercube Validation 1 

 

Figure 4.29 shows that if a sample is 

classified as white paper, the percentage of 

coverage is calculated and displayed as 

well. This helps to sort the white paper 

further as required in Table 2.6. The 

percentage calculation was done using a 

rigid thresholding of the sample area, 

strictly inside the sample area (meaning no 

background data points were involved). As 

white paper has fairly constant reflectance 

values (and recorded brightness values) 

then the threshold was chosen to be 60% of 

the maximum brightness of the image. 

 

Figure 4.29 Computation of the percentage 

of areas covered in print. 
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Wavelength band 22 (1320 nm) was chosen for the thresholding image. The result of the 

thresholded image is a binary 2D mask containing the value „0― for areas covered with print 

and „1― for clean areas. To get the percentage, the dark pixels were counted and divided by 

the whole area of the sample. Figure 4.29 shows the steps of the percentage calculation. This 

percentage only includes dark print to the printed pixels. For example, if the page was covered 

in bright yellow print then the percentage would still very likely show around 0%. One 

possible solution to include light prints in the percentage calculation would be to incorporate a 

simple RGB-camera to the system that would detect colors (see more in Chapter 6). 

 

All in all, the generalization model applied on top of the pixel-by-pixel classification 

improved the quality of the classification greatly (see more in Chapter 5) as well as provided 

the system with outputs that could be passed on to other parts of the system for further 

processing and physical sorting. 

 

4.3.5. Validation method 

The previous chapter described how the generalized classification method operates and how 

to provide an output from the classification system. Before the system can be applied on real-

time data, however, it must be validated to show the quality and accuracy of the proposed 

classification method. For this, a few MatLab scripts were developed that provided both 

numerical and visual information on the quality of the model. 

 

The samples on the hypercubes that were used for validation were manually classified using 

the same method as for the model calibration part. Then the hypercubes were classified using 

the methods described above. To get an estimation on how the method performed, the 

manually classified regions were compared with the generalized classification images (for a 

description of the validation script, see Appendix 7). For each hypercube, two error images 

were generated. The first was the errormap of the pixel-by-pixel classification, the second was 

the errormap of the generalized classification. The validation method compared all of the 

pixels inside the region of interest (ROI) that was manually selected. So if the classification 

method did not correctly detect the area of the sample then that also counted as an error 

alongside misclassification. For the pixel-by-pixel errormap, the accuracy percentage of each 

sample was given as an output (see file Validation percentages.xml for the single sample 

percentages and Chapter 5 for the average validation hypercube percentages). For the 



 

60 

 

generalized errormap a binary array was provided that showed if a specific sample was 

correct or not. Examples of errormaps are shown on Figures 4.30 and 4.31, generated of the 

Validation 1 hypercube. On the figures, the centroid of the sample can be seen as well as the 

real class provided by the manual classification. If the area is green then that means that it is 

incorrectly classified. 

 

 

Figure 4.30 Pixel-by-pixel errormap of 

hypercube Validation 1. Green areas are 

misclassified 

 

Figure 4.31 Generalized errormap of 

hypercube Validation 1. Green areas are 

misclassified 
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5. VALIDATION AND CLASSIFICATION RESULTS 

 

Three PLS-DA classification models were combined into one hierarchical model. The result 

was a numeric output of each pixel‘s classification. Additionally to pixel-by-pixel 

classification (and based on pixel-by-pixel classification), a generalized classification model 

was developed that in the case of white paper also output the percentage of paper covered 

with print. The developed scripts used the models generated in the PLS_Toolbox to suit the 

hypercubes generated by Resonon cameras and to show the output as images. The more 

interesting aspects of the classification are discussed below, all of the validation images are in 

the folder Matlab data/NIR/Validation Results and the scripts can be run to classify arbitrary 

Resonon hypercubes (see Appendix 7 for overview of the scripts). 

 

For validation of the classification model, ten hypercubes were used. For each hypercube 

classified ROIs were assigned. Three of the validation images contained validation samples 

that were not in any of the training datasets and the materials were randomly selected. Some 

of the validation samples were from classes that were not present at all in the training set. On 

the other hand, the remaining seven hypercubes were of the classes included in the training set 

and some of the samples in the hypercubes were used in the training set. Nevertheless, only 

single pixels from each sample were used for the training, and the hypercubes include 

hundreds of thousands of pixels so it was no problem that the validation set included some of 

the training set data. Table 5.1 shows the results of the validation.  

 

Table 5.1 Accuracy of the classification model 

 

Pixel-by-pixel model accuracy, % Generalized model, accuracy, % 

Per hypercube Average Per hypercube Average 

Validation 1  27,5 

27,6 

56,1 

33,3 

32,9 

66,2 

Validation 2 41,4 50,0 

Validation 3 13,9 15,4 

WP 1-10 99,1 

68,3 

100,0 

82,9 

WP G 1-12 99,1 100,0 

WP P 13-24 56,7 83,3 

MGS 25-36 63,5 83,3 

CA 13-24 84,7 91,7 

CB 1-12 48,3 63,6 

NP 37-48 27,1 58,3 
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As can be seen in Table 5.1, the classification accuracy for the three validation hypercubes 

was very low, only 27,6% on average (the per-sample validation results can be seen in 

Validation percentages.xmlx). As mentioned before, the validation sets contained many 

classes that were not present in the training data nor in the class labels‘ set. The model 

showed much higher accuracy when run on the distinct class materials. Table 5.1 also shows 

how much the generalized prediction improved the classification accuracy. For the validation 

sets the improvement was not very high but for the other tested hypercubes the improvement 

was significant, especially for the magazine and newspaper samples due to the fact that they 

were prone to misclassification into the carton class. Darker areas of materials very often were 

misclassified as carton, probably due to the smaller total intensity of the carton spectra. Figure 

5.1 shows how newspaper samples are very likely to be classified as carton. For the 

generalized classification, as specialized part of the script checked if carton was the most 

numerous class within the sample and if so, whether there was a certain percentage of 

newspaper classification also present. In that case the newspaper class was preferred. 

 

White paper classification was the focus point of this work due to the highest economic 

benefit (highest price on the recycling market of the waste paper materials). Therefore the 

print percentage is also included, to provide an even better classification of white paper. As 

seen in Table 5.1 and on Figure 5.2, the classification of white paper was very successful, 

reaching 100% for clean white paper samples, using the generalized classification method. 

However, as seen on the hypercubes Validation 1-3 then the white paper is not always 

correctly classified. In the case of Validation 3 in Figure 5.4 it can be seen that a sample of 

white paper is classified as cardboard. White paper samples being included in the cardboard 

stream is not a very big loss, but the opposite (and much more undesired) case can also occur. 

On Figure 5.4 (a.) it can be seen that a piece of advertisement leaflet was classified as white 

paper when it should have been classified as magazine or N/A. This misclassification was 

partially caused by the fact that the advertisement material was not in the training set but for 

future developments it might be beneficial to impose more strict classification rules on white 

paper. Another case where the classification was unsuccessful (and not only for white paper) 

was the case when the paper sheets were stacked on top of each other, as they naturally would 

be also in the waste paper stream. This was caused by the fact that much less light is reflected 

back from single sheets than from stacks of material. These cases should be investigated 

further. 
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Sorting out clean carton and cardboard could also be deemed successful, with respective 

accuracy percentages of 91,7% and 63,6% for the generalized model. The cardboard accuracy 

percentage is lower due to the fact that cardboard often got misclassified as carton. But 

because carton and cardboard were grouped together in Table 2.6 then mixing between these 

classes is not a very serious issue. However, the model definitely needs improvement in 

separating cardboard or carton that has paint on it from the waste paper stream. For example 

in hypercube Validation 1 (see Figures 4.23, 4.24, 4.28, 4.30 and 4.31) in the top row, far 

right corner is a sample of cardboard with a top coating of black paint. This sample was 

picked up by the k-means clustering but was not classified by the model, probably due to lack 

of similar spectra in the training set. 

 

On Figure 5.4 (b.) the carton sample had a thick black plastic triangle on top of the sample. 

The plastic part was not classified into any of the paper classes, as the pixel-by-pixel 

classification shows. Nevertheless, since the plastic was in the middle of the sample then the 

convex hull removed the cavity caused by the non-classified pixels and the fact that there was 

plastic on the sample did not carry on to the generalized classification. Figure 5.3 shows how 

non-paper materials were classified (the k-means image and pixel-by-pixel classification 

image are in the folder Validation Results in the accompanying files). In the figure, all 

samples are non-paper. Most of them were not identified as paper materials, with three 

exceptions, all of which were classified as carton. The materials that were classified as carton 

were rock, metal and plywood. In general, the model should be improved to detect more 

common non-paper materials as well in the waste paper stream to be able to sort them out.   

 

Table 2.6 shows that the highest priority materials to be sorted out are white paper with 

varying degrees of print coverage, newspaper and carton/cardboard. All of these goals were 

reached with a high percentage of accuracy in separating all of these classes from the waste 

stream. Furthermore, a model to separate cardboard from carton was also included in the 

overall sorting model, however the success rate of this separation was not very high. There are 

numerous class separations that could be improved on, for example classifying magazine 

covers or stacks of materials reliably. Mentioned above were the most interesting results and 

conclusions that could be drawn from the validation process. For the full set of validation 

figures and information, refer to the folder Validation Results in the accompanying data.  
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Figure 5.1 Validation of newspaper samples (hypercube NPS 37-38). 

From the top: the strict pixel-by-pixel classification; generalized 

classification; pixel-by-pixel errormap; generalized errormap. 

 

 

 

 

Figure 5.2 Validation results of white paper (hypercube WP 1-10). 

From the top: the strict pixel-by-pixel classification; generalized 

classification; pixel-by-pixel errormap. The generalized errormap 

is omitted because all samples were classified correctly. On the 

generalized classification figure the print coverage percentages 

were unfortunately cropped from the figure, but they were the 

same as for the top row: all zeros. 

 

Figure 5.3 Non-paper materials. Image at wavelength 1320 nm 

overlaid with the generalized classification result. 

 

Figure 5.4 Results for Validation 2. From the top: cropped image 

of the hypercube at wavelength 1320 nm; the strict pixel-by-pixel 

classification; generalized classification; generalized errormap.

a. b. 
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6. FUTURE GOALS 

 

As seen above in the classification results chapter, the classification model is far from perfect. 

In this chapter an overview of the future possibilities is given, both on how to improve the 

model and how to make use of the information acquired in this work. 

 

The first improvement could be applied to the data acquisition step. In this work, the camera 

was mounted on a moving head and the samples stayed stationary as the camera scanned 

them. This solution was suitable for the scope of the thesis but would never be used in an 

industrial setting so tests should be carried out with a stationary linescan camera and a linear 

conveyor belt moving the samples. Not only would this remove the spatial distortions 

associated with the changing of the working distance but it would also provide a much smaller 

field of view and therefore also a much more uniform lighting. It would also be possible then 

to improve the lighting intensity which would be especially beneficial for the Pika II data 

acquisition as it was much less light sensitive than the NIR camera. Furthermore, if it is 

possible to get less noisy results with the Pika II data than in this thesis, then combining the 

hypercubes and repeating the analysis would hopefully provide even better results. 

 

Another possibility to improve the classification model would be the increase the number of 

classes included in the training set. For example, classes of highly glossy advertisement paper 

or painted cardboard could be added. Additionally, this work did not concentrate on the 

differences between single sheets of sample materials and stacks of samples. In practice, 

newspapers and magazines would rarely run through the waste paper stream as single sheets 

and therefore this situation should be thoroughly investigated.  The possibility of foreign 

materials occurring in the waste paper stream should also be investigated further. The model 

proposed here did not classify many non-paper materials as paper, but there were some cases 

where it did. There was also a case (discussed in Chapter 5) where a plastic bit was not 

classified as paper by the pixel-by-pixel classification but the generalized model nevertheless 

classified it as paper. Therefore, improvements should be made to the generalized model, to 

detect foreign objects. 

 

Another option to improve the model would be to omit the Pika II and use a simple machine 

vision CCD camera for color and print detection. The hyperspectral classification model was 
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not capable of separating materials by color, for example gray and brown carton, or light print 

on white paper. The machine vision camera can be combined with the hyperspectral system to 

improve the quality of the model. The machine vision camera could also handle the print 

percentage calculation, reducing the workload on the hyperspectral data. This could improve 

speed. 

 

As classification speed is definitely an important factor in sorting applications then 

multispectral cameras could be used for the classification, as they are faster due to the smaller 

number of wavelength bands. For example, one manufacturer of custom visible, NIR and 

SWIR multispectral cameras is Fluxdata. They provide multispectral cameras with three 

wavelength bands and promising a highly customizable range of wavelengths. However, a 

price quotation given by the sales representative of Fluxdata showed that the cameras are 

extremely expensive (the SWIR products ranging from 125000 USD to 145 000 USD each). 

Therefore a comparison of multispectral and hyperspectral cameras should be made, both in 

the applicability of multispectral cameras (whether the specific wavelengths can truly be used 

for classification) and the gain in speed/processing time. Furthermore, in this work, the 

analysis was done offline, meaning that the data was processed after it was acquired and no 

output was given for further processing. But in inline systems in the industry, the system 

should provide the output of class and spatial position online. Further work is required to 

assess the possible speeds at which this could be done in an industrial setting. 

 

This work could be a good basis for further research on the topic. Many improvements can be 

made so that in the future could lead to a sorting system with numerous output streams of 

waste paper classes. When combined with a physical sorting system, a fully functional paper 

sorting machine could be developed which would be very attractive for many waste 

processing companies.  



 

67 

 

7. SUMMARY 

 

Waste management is a very important part of modern society and in order to keep economies 

sustainable, recycling must be performed to reduce strain on the environment. This thesis 

concentrates on automated waste paper sorting. Currently waste paper is being sorted 

manually – if at all – and it is a very slow process with small throughput. Automated sorting 

of paper would increase the speed and reliability of the output streams and would motivate 

more companies to recycle due to the higher market value of the white long-fibered paper 

sorted out from the waste paper stream. This work was a continuation of the previous research 

in the Department of Mechatronics [14] where it was established that hyperspectral imaging 

can be used in automated waste paper sorting into numerous classes based on the samples‘ 

spectral response. The goals of this work were to collect a database of paper materials and 

their spectral responses as hypercubes; analyze the hypercubes to see what information they 

contained; and propose a classification model for waste paper classification.  

 

Research in the field of material sorting using hyperspectral imaging (HSI) revealed that 

although it is used quite widely in agriculture, medicine and food production, HSI is not 

commonly used for waste sorting. If waste paper sorting is performed automatically, then 

usually RGB- or NIR wideband cameras are used. However, these solutions are limited to 

only a few classes (white paper vs. cardboard, for example). One research group that focused 

on waste paper sorting using HSI [12], found that it is very effective for this application. 

Based on the research, data analysis methods as well as classification methods were chosen 

for this work as well. The main goal in classification was to separate white paper (printer 

paper) from other papers, as it has the highest value on the recycling market. If the white 

paper was covered in print then the percentage of print coverage was to be given as output as 

well. Additionally, newspaper and cardboard were required to be separated from the waste 

paper stream. 

 

The experiments were conducted on over 500 samples of paper materials and using two 

hyperspectral cameras provided by the Chair of Mechatronics Systems: Resonon Pika II 

(range 400 – 900 nm) and Resonon Pika NIR (range 900 – 1700 nm). The analysis of the 

acquired hypercubes showed that the 900-1700 nm range includes more relevant information 

for material classification than the 400-900 nm range. The latter range could successfully be 
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used for material color detection and, if needed, provided information on which papers had 

glossy surfaces. However the Pika II data was not used for classification in the scope of this 

thesis, as the NIR hypercubes included even more information. The principal components 

analysis showed that for the NIR data, the most significant variances between classes occur 

between six wavelength bands. However, all bands were used in this work for classification 

purposes to guarantee maximal separation of classes. 

 

For classification, three methods were tried: Support Vector Machines (SVM) discrimination, 

k-nearest neighbor (k-NN) classification and Partial Least-Squares Discriminant Analysis 

(PLS-DA). The classification models were built using Eigenvector‘s PLS_Toolbox [23]. PLS-

DA proved to be faster and more informative than the other methods so this method was 

chosen for classification of paper waste. As it turned out, all the classes could not be separated 

with just one classification model. So a hierarchical classification model was built to first 

separate cardboard and carton from the other classes and then two more classification models 

that separated the other classes. In total, the proposed model could separate between five 

classes: white paper, magazine, newspaper, cardboard and carton. Two classification types 

were proposed: a pixel-by-pixel classification that classified each pixel of the image 

independently from its surroundings; and a generalized classification that assigned one class 

to the whole sample. The generalized model used k-means clustering as well as the pixel-by-

pixel classification to assign classes. The generalized model was much more accurate in 

classification as was seen during the validation process of the classification methods. For 

validation, ten hypercubes were used, three of which contained paper materials that were not 

in the training set, and seven hypercubes that contained samples from the training set‘s 

classes. The highest accuracy was achieved while classifying white paper, the lowest for 

classification of random materials not in the training set. 

 

In conclusion, the work done in this thesis can be deemed successful, as all goals were 

reached. Additionally, the work done for this thesis will stay in the Department of 

Mechatronics and further research can be based on it. Especially useful could be the database 

of papers and their respective hypercubes, as they could also be used as training material. The 

classification model could be improved by adding color information from the Pika II or a 

RGB-camera and more classes could be added. This work showed that class separation using 

HSI is possible and that HSI has a lot of information that can be put to use in waste paper 

treatment.  
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8. KOKKUVÕTE 

 

Jäätmetöölus on tänapäeva ühiskonnas äärmiselt oluline ning selleks, et tagada jätkusuutlikku 

majanduslikku arengut, tuleb jäätmeid taaskasutada. Käesolev töö keskendub automaatsele 

jäätmepaberi sorteerimisele hüperspekraalkaamerat kasutades. Enamus tänapäeva 

jäätmetöötlusjaamu sorteerivad paberit käsitsi – kui üldse – ning see on väga aeganõudev 

protsess, mille kasutegur on väike. Automaatne papberi sorteerimine teeks kogu protsessi 

kiiremaks ja täpsemaks ning sorteeritud paberi (eriti valge paberi) kõrgem hind vanapaberi 

turul motiveeriks paljusid firmasid taaskäsitlusega tegelema. Käesolev töö jätkas 

Mehaatroonikainstituudi varasemat uurimistööd [14], milles instituudiväliste mõõtmistega 

tehti kindlaks, et paberi sorteerimine hüperspektraalkaameratega on võimalik. Antud töö 

eesmärgid olid: paber- ja pappmaterjalide andmebaasi kogumine ja nendest 

hüperspektraalsete andmete kogumine; hüperspektraalsete andmete analüüs, et välja selgitada, 

milliseid andmeid on neist võimalik välja lugeda; ning välja pakkuda klassifitseerimismudel 

paberi klasside eraldamiseks. 

 

Varasemad tööd materjalide sorteerimisest kasutades hüperspekraalkaameraid näitasid, et 

kuigi hüperspektraalset infot kasutatakse küllalt laialdaselt põllumajanduses, meditsiinis ja 

toiduainetööstuses, siis jäätmekäitluses seda eriti ei kasutata. Kui paberjäätmeid automaatselt 

sorteeritakse, siis pigem RGB- ja/või NIR-lairibakaameratega, mis suudavad jäätmed 

sorteerida vaid kahte-kolme klassi. Üks uurimisgrupp, kes keskendusid paberjäätmete 

sorteerimisele hüperspektraalkaameraid kasutades [12], leidis, et antud lahendus on väga 

efektiivne. Uurimistöö põhjal valiti välja eelnevalt edukad meetodid hüperspektraalsete 

andmete töötlemiseks ja klassifitseerimiseks ning rakendati neid ka käesoleva töö käigus 

saadud andmetele. Antud töö põhiülesandeks sai valge paperi (printeripaberi) eraldamine 

muust materjalist, kuna sellel on vanapaberi turul kõrgeim väärtus. Kui valge paber oli kaetud 

trükiga, siis lisaks klassile andis väljund ka trükiga kaetuse protsendi. Lisaks valgele paberile 

keskendus käesolev meetod ka ajalehe- ja ajakirjapaberi ning papi ja kartongi eraldamisele. 

 

Mõõtmised viidi läbi üle 500 paber- ja pappmatrjali näidisega ning kasutades kahte 

Mehaatroonikainstituudis asuvat hüperspektraalkaamerat: Resonon Pika II (lainepikkuste 

vahemikus 400 – 900 nm) ja Resonon Pika NIR (lainepikkuste vahemikus 900 – 1700 nm). 

Mõõtmiste käigus saadud andmete analüüs näitas, et lainepikkuste vahemik 900 – 1700 nm  
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sisaldas rohkem klassifitseerimiseks olulist infot, kui lainepikkuste vahemik 400 – 900 nm. 

Viimane vahemik näitas materjalide värviinfot ja võimaldas tuvastada läikega pindu. 

Sellegipoolest ei kasutatud lainepikkuste vahemikku 400 – 900 nm käesoleva töö 

klassifitseerimismudelites, kuna vahemik 900 – 1700 nm sisaldas rohkem infot. Andmete PC 

analüüs (PCA) näitas, et kogu lainepikkuste vahemikust on võimalik eraldada kuus 

lainepikkust, mis sisaldavad enim erinevusi klasside vahel. Sellegipoolest kasutati käesoleva 

töö klassifitseerimisel kõiki lainepikkusi, et tagada maksimaalne klasside eristuvus ja näidata 

hüperspektraalse klassifitseerimise võimalusi. 

 

Klassiftseerimiseks prooviti kolme meetodit: Support Vector Machines‘i (SVM) ja k-nearest 

neighbor‘i (k-NN) klassifitseerimist ning Partial Least-Squares Discriminant Analysis‘i 

(PLS-DA). Klassifitseerimismudelid genereeriti Eigenvector‘i PLS_Toolbox‘iga [23]. Kõige 

edukamaks klassifitseerimise meetodiks osutus PLS-DA, mis oli kiirem ja palju 

informatiivsem kui teised meetodid. Selgus, et paberi klasse ei saa eraldada vaid ühe 

klassifitseerimise mudeliga. Seega koostati hierarhiline klassifitseerimise mudel, mis sisaldas 

kolme mudelit. Esmalt eraldati papp ja kartong muust pabermaterjalist. Seejärel eraldasid 

kaks mudelit materjali viieks klassiks: valge paber, ajakiri, ajaleht, papp ja kartong. Välja 

pakuti kaks klassifitseerimise tüüpi: pikslipõhine klassifitseerimine, mis klassifitseeris iga 

piksli sõltumatult ümbritsevatest pikslitest; ning üldistatud klassifitseerimismudel, mis 

kasutas nii pikslipõhist klassifitseerimist kui ka k-means clustering‘i, et määrata igale 

näidisele üks ja ainult üks klass. Üldistatud mudel oli täpsem, nagu oli näha 

klassifitseerimismudeli valideerimistulemustest. Mudeli valideerimiseks kasutati kümmet 

hüperspektraalpilti, millest kolm sisaldasid pabermaterjale, mille klasse mudeli 

kalibreerimisel ei kasutatud. Ülejäänud seitse hüperspektraalpilti sisaldasid näidiseid 

klassidest, millega mudel oli kalibreeritud. Suurim täpsus saavutati valge paberi 

klassifitseerimisel, madalaim aga nende materjalide klassifitseerimisel, mida 

kalibreerimishulgas ei olnud. 

 

Kokkuvõtteks võib käesoleva töö lugeda edukaks, kuna kõik püstitatud eesmärgid saavutati. 

Lisaks jäävad kõik mõõtmiste ja analüüsi käigus saadud andmed Mehhatroonikainstituuti ning 

nende andmetega saab uurimistööd jätkata. Eriti võib kasu olla pabermaterjalide 

andmebaasist, kuna neid võib kasutada ka õppematerjalina. Klassifitseerimismudelit saab 

edasi arendada ning loodetavasti tulevikus ka töösse rakendada. Käesolev töö näitas, et 

hüperspektraalsed andmed võimaldavad materjale jaotada paljudeks eri klassideks.  



 

71 

 

9. REFERENCES 

 

[1] Chang, C.-I. Hyperspectral Data Exploitation: Theory and Applications, Chapter 2 

Hyperspectral Imaging Systems. Published online 2007 

[2] Microimages, Inc. Introduction to Hyperspectral Imaging [PDF] 

http://www.microimages.com/documentation/Tutorials/hyprspec.pdf (18.02.2016) 

[3] Amigo, J. M., Babamoradi, H., Elcoroaristizabal, S. Hyperspectral image analysis. A 

tutorial (2015) – Analytica Chimica Acta. Volume 896, pages 34–51 

[4] Lu, G., Fei, B. Medical hyperspectral imaging: a review (2014) – Journal of 

Biomedical Optics. Volume 19, Issue 1, pages 1-23 

[5] What is Imaging Spectroscopy (Hyperspectral Imaging)? [WWW] 

http://www.markelowitz.com/Hyperspectral.html (18.02.2016) 

[6] Sacré, P.-Y., De Bleye, C., Chavez, P.-F., Netchacovitch, L., Hubert, Ph., Ziemons, E. 

Data processing of vibrational chemical imaging for pharmaceutical applications 

(2014) – Journal of Pharmaceutical and Biomedical Analysis. Volume 101, pages 

123–140 

[7] Mahesh, S., Jayas, D.S., Paliwal, J., White, N.D.G. Hyperspectral imaging to classify 

and monitor quality of agricultural materials (2015) – Journal of Stored Products 

Research. Volume 61, pages 17–26 

[8] Moscetti, R., Saeys, W., Keresztes, J.C., Goodarzi, M., Cecchini, M., Danilo, M., 

Massantini, R. Hazelnut Quality Sorting Using High Dynamic Range Short-Wave 

Infrared Hyperspectral Imaging (2015) – Food Bioprocess Technol. Volume 8, pages 

1593–1604 

[9] Barnabé, P., Dislaire, G., Leroy, S., Pirard, E. Design and calibration of a two-camera 

(visible to near-infrared and short-wave infrared) hyperspectral acquisition system for 

the characterization of metallic alloys from the recycling industry (2015) – Journal of 

Electronic imaging. Volume 24, issue 6  

[10] Picón, A., Ghita, O., Whelan, P.F., Iriondo, P.M. Fuzzy Spectral and Spatial Feature 

Integration for Classification of Nonferrous Materials in Hyperspectral Data (2009) - 

IEEE Transactions on Industrial Informatics. Volume. 5, number. 4, pages 483-494 

[11] Picon, A., Ghita, O., Iriondo, P., Bereciartua, A., Whelan, P.F. Automation of waste 

recycling using hyperspectral image analysis (2010) - Emerging Technologies and 

Factory Automation (ETFA), 2010 IEEE Conference on. Pages 1-4 

[12] Tatzer, P., Wolf, M., Panner, T. Industrial application for inline material sorting using 

hyperspectral imaging in the NIR range (2005) - Real-Time Imaging. Volume 11, 

pages 99 – 107 

[13] Rasmus NJ. The VTTVIS line imaging spectrometer—principles, error, sources, and 

calibration. Denmark: Pitney Bowes Management, 2002 

http://www.microimages.com/documentation/Tutorials/hyprspec.pdf
http://www.markelowitz.com/Hyperspectral.html


 

72 

 

[14] Põlder, A., Juurma, M., Tamre, M. Waste Paper Sorting Using Imaging Spectroscopy 

(2013) - Publication of Doctoral School of Energy and Geotechnology, pages 283-284 

[15] Marshall, J.L, Williams, P., Rheault, J.-P., Prochaska, t., Allen, R.D., DePoy, D. L. 

Characterization of the Reflectivity of Various Black Materials (2014) - Ground-based 

and Airborne Instrumentation for Astronomy V 

[16] MatLab Recursive directory listing toolbox [WWW]: 

 http://www.mathworks.com/matlabcentral/fileexchange/19550-recursive-directory-

listing (23.04.16) 

 

[17] MatLab Field Mapping Toolbox [WWW]: 

 http://www.mathworks.com/matlabcentral/fileexchange/30853-field-mapping-

toolbox/content/medfilt3.m (26.04.16) 

 

[18]  Paper and board – European list of standard grades of recovered paper and board for 

recycling. (2014). EVS-EN 643:2014. Tallinn: Estonian Centre For Standardisation. 

[19] The new EN 643. CEN Standard [PDF] http://www.cepi.org/system/files/public/epw-

presentations/2013/Standard+EN+643+-+new.pdf (3.04.2016)  

[20] Randolph, T.W. Scale-based normalization of spectral data (2005) [PDF]: 

 http://research.fhcrc.org/content/dam/stripe/randolph/files/Publications/Normalization

_DiseaseMarkers_Offprint.pdf (10.05.2016) 

[21] Worley, B., Powers, R. Multivariate Analysis in Metabolomics (2015) [WWW]: 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465187/ (10.05.2016) 

[22] MatLab Pattern Recognition and Machine Learning Toolbox [WWW]: 

http://www.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-

and-machine-learning-toolbox (19.04.2016) 

[23] Eigenvector PLS_Toolbox for MatLab [WWW]: http://eigenvector.com/ (22.04.16) 

and http://wiki.eigenvector.com/ (15.04.16) 

 

http://www.mathworks.com/matlabcentral/fileexchange/19550-recursive-directory-listing
http://www.mathworks.com/matlabcentral/fileexchange/19550-recursive-directory-listing
http://www.mathworks.com/matlabcentral/fileexchange/30853-field-mapping-toolbox/content/medfilt3.m
http://www.mathworks.com/matlabcentral/fileexchange/30853-field-mapping-toolbox/content/medfilt3.m
http://www.cepi.org/system/files/public/epw-presentations/2013/Standard+EN+643+-+new.pdf
http://www.cepi.org/system/files/public/epw-presentations/2013/Standard+EN+643+-+new.pdf
http://research.fhcrc.org/content/dam/stripe/randolph/files/Publications/Normalization_DiseaseMarkers_Offprint.pdf
http://research.fhcrc.org/content/dam/stripe/randolph/files/Publications/Normalization_DiseaseMarkers_Offprint.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465187/
http://www.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-and-machine-learning-toolbox
http://www.mathworks.com/matlabcentral/fileexchange/55826-pattern-recognition-and-machine-learning-toolbox
http://eigenvector.com/
http://wiki.eigenvector.com/index.php?title=Main_Page


 

 

 

APPENDICES 

  



 

 

 

Appendix 1. Resonon Pika II datasheet 

  



 

 

 

Appendix 2. Resonon Pika NIR datasheet 

 

 

  



 

 

 

Appendix 3 – Overview of the database of samples 

 

The folders including the samples have files called Scan Info.txt, in which the order of all the 

samples on all the hypercubes is explained. 

 

Table A.0.1 Database of samples 

Class Subclass Code Count Both 

sides? 

White paper WP White printer paper 1-50 50 

 White thick paper WP_40_THICK_oneSheet 1 

 Yellow Paper Y Watercolor paper Y WC  9 

 Notepad Y NP  8 

 Notepad perforated edges Y NP Perf 6 

 Notepad recycled Y NP R 4 

 Diploma Y D 9 

 Sketch recycled Y S R 10 

 Thicker print paper Y PR 2 

  

   White paper WP with 

print  

Text, markings on one side WP 1S 36 

 Text, markings on both sides WP 2S 12 

 Graphic print, either 1S or 

2S WP G 12 

 Mostly covered in print, 

strong print WP COV 36 

 Drafting paper (squares), 

empty WP DR E 12 

 Drafting paper (squares), 

pen WP DR P 12 

  

   Magazine Cover MGC 12 Yes 

Sheets MGS 36 

  

   Newspaper Matte pages NPM 48 

 Shiny pages (Arguably same 

as MGS) NPS 24 

  

   Carton Clean: Without any 

covering/paint CAC 24 

 One side painted CA1S 24 Yes 

Strong paper, one side 

painted CASP 24 Yes 

Colored strong paper CACO 8 

 Colored strong paper, both 

sides CACO2 10 

  

   



 

 

 

Cardboard One side covered in paint CB1S 10 Yes 

Two sides covered in paint CB2S 12 Yes 

Clean cardboard CBC 24 

  

   Advertisement Shiny printed paper AD 36 

     

Class Subclass Marking Count Both 

sides? 

Checks Checks and Receipts CH 24 

  

   Colored paper  Colored paper COP 12 

 Post-its PO 20 

  

   WP with cover and 

fasteners 

Plastic binder Cover 1 1 

 Plastic cover Cover 2 3 

 Plastic cover thick  Cover 3 1 

 WP with tapes etc. Tape Tape 3 

 Rubber band RBAND 1 

 String String  3 

 Paperclip  

 

1 

  

   
Total 580 

 

  



 

 

 

Appendix 4 – Table of loadings for PCA model, NIR 

 

Table A.2 Table of loadings, PCA, NIR 

Wavelength, nm PC1 Abs % of PC1 PC2 Abs % of PC2 PC3 Abs % of PC3 PC4 Abs 

% of 

PC4 

961 -0,069 0,069 0,005 0,045 0,045 0,002 0,613 0,613 0,376 0,086 0,086 0,007 

978 -0,050 0,050 0,002 0,033 0,033 0,001 0,460 0,460 0,212 0,061 0,061 0,004 

994 -0,037 0,037 0,001 0,020 0,020 0,000 0,364 0,364 0,132 0,040 0,040 0,002 

1010 -0,026 0,026 0,001 0,007 0,007 0,000 0,296 0,296 0,088 0,016 0,016 0,000 

1027 -0,020 0,020 0,000 -0,007 0,007 0,000 0,243 0,243 0,059 -0,005 0,005 0,000 

1043 -0,015 0,015 0,000 -0,021 0,021 0,000 0,202 0,202 0,041 -0,018 0,018 0,000 

1059 -0,011 0,011 0,000 -0,031 0,031 0,001 0,176 0,176 0,031 -0,025 0,025 0,001 

1076 -0,008 0,008 0,000 -0,040 0,040 0,002 0,155 0,155 0,024 -0,026 0,026 0,001 

1092 0,005 0,005 0,000 -0,056 0,056 0,003 0,065 0,065 0,004 -0,033 0,033 0,001 

1108 0,005 0,005 0,000 -0,054 0,054 0,003 0,049 0,049 0,002 -0,023 0,023 0,001 

1125 0,005 0,005 0,000 -0,040 0,040 0,002 0,046 0,046 0,002 -0,003 0,003 0,000 

1141 0,005 0,005 0,000 -0,020 0,020 0,000 0,042 0,042 0,002 0,021 0,021 0,000 

1157 0,004 0,004 0,000 0,002 0,002 0,000 0,035 0,035 0,001 0,041 0,041 0,002 

1174 0,004 0,004 0,000 0,026 0,026 0,001 0,027 0,027 0,001 0,055 0,055 0,003 

1190 0,004 0,004 0,000 0,044 0,044 0,002 0,023 0,023 0,001 0,061 0,061 0,004 

1206 0,004 0,004 0,000 0,051 0,051 0,003 0,015 0,015 0,000 0,051 0,051 0,003 

1223 0,004 0,004 0,000 0,040 0,040 0,002 0,011 0,011 0,000 0,022 0,022 0,000 

1239 0,005 0,005 0,000 0,007 0,007 0,000 0,013 0,013 0,000 -0,021 0,021 0,000 

1255 0,005 0,005 0,000 -0,034 0,034 0,001 0,015 0,015 0,000 -0,068 0,068 0,005 

1272 0,007 0,007 0,000 -0,078 0,078 0,006 0,020 0,020 0,000 -0,157 0,157 0,025 

1288 0,008 0,008 0,000 -0,143 0,143 0,020 0,034 0,034 0,001 -0,245 0,245 0,060 

1304 0,002 0,002 0,000 -0,227 0,227 0,052 0,037 0,037 0,001 -0,232 0,232 0,054 



 

 

 

1321 -0,006 0,006 0,000 -0,282 0,282 0,079 0,035 0,035 0,001 -0,162 0,162 0,026 

1337 -0,016 0,016 0,000 -0,290 0,290 0,084 0,026 0,026 0,001 -0,046 0,046 0,002 

1353 -0,025 0,025 0,001 -0,259 0,259 0,067 0,017 0,017 0,000 0,094 0,094 0,009 

1370 -0,030 0,030 0,001 -0,191 0,191 0,037 0,005 0,005 0,000 0,226 0,226 0,051 

1386 -0,029 0,029 0,001 -0,089 0,089 0,008 -0,006 0,006 0,000 0,314 0,314 0,099 

1402 -0,022 0,022 0,000 0,030 0,030 0,001 -0,019 0,019 0,000 0,348 0,348 0,121 

1419 -0,012 0,012 0,000 0,139 0,139 0,019 -0,027 0,027 0,001 0,335 0,335 0,112 

1435 0,000 0,000 0,000 0,228 0,228 0,052 -0,030 0,030 0,001 0,278 0,278 0,077 

1451 0,012 0,012 0,000 0,287 0,287 0,082 -0,023 0,023 0,001 0,187 0,187 0,035 

1468 0,024 0,024 0,001 0,318 0,318 0,101 -0,009 0,009 0,000 0,069 0,069 0,005 

1484 0,037 0,037 0,001 0,335 0,335 0,112 0,004 0,004 0,000 -0,070 0,070 0,005 

1500 0,048 0,048 0,002 0,320 0,320 0,103 0,018 0,018 0,000 -0,214 0,214 0,046 

1517 0,052 0,052 0,003 0,261 0,261 0,068 0,037 0,037 0,001 -0,282 0,282 0,080 

1533 0,067 0,067 0,004 0,183 0,183 0,033 0,034 0,034 0,001 -0,268 0,268 0,072 

1549 0,154 0,154 0,024 0,103 0,103 0,011 0,041 0,041 0,002 -0,171 0,171 0,029 

1566 0,173 0,173 0,030 0,075 0,075 0,006 0,042 0,042 0,002 -0,127 0,127 0,016 

1582 0,199 0,199 0,040 0,048 0,048 0,002 0,048 0,048 0,002 -0,071 0,071 0,005 

1598 0,238 0,238 0,057 0,034 0,034 0,001 0,048 0,048 0,002 -0,024 0,024 0,001 

1615 0,293 0,293 0,086 0,028 0,028 0,001 0,045 0,045 0,002 -0,002 0,002 0,000 

1631 0,369 0,369 0,136 0,004 0,004 0,000 0,033 0,033 0,001 0,020 0,020 0,000 

1647 0,472 0,472 0,223 -0,060 0,060 0,004 0,029 0,029 0,001 0,070 0,070 0,005 

1664 0,616 0,616 0,380 -0,169 0,169 0,029 0,028 0,028 0,001 0,181 0,181 0,033 

 

Sum 1,000 Sum 1,000 Sum 1,000 Sum 1,000 

 

The table shows the loadings of variables (wavelengths) on four first PCs on the PCA model using only light parts of the samples. The columns 

% of PC show how many percent the PC is contributed by the variable. The variables with highest percentages are the most relevant in this PC 

and are marked with an orange background. 



 

 

 

Appendix 5 – PCA of Pika II data 

 

 

Figure A.0.1 Scores plot of PCA for Pika II 

data. PC1 vs PC3. Plot generated with 

PLS_Toolbox

 

Figure A.0.2 Loadings plot of PCA for Pika 

II data. Generted with PLS_Toolbox



 

 

 

Appendix 6 – Overview of included data 

 

Accompanying this work is a folder with the same name as the thesis. In the folder there is the 

following data: 

1. The hypercubes acquired with both cameras in the folder Hypercubes. The hypercubes 

are divided into groups by class. For each class, recalibration was performed. In each 

folder for each group, there is a file called Scan Info.txt in which all of the samples are 

listed by position in the images. 

2. The MatLab-generated files are in the folder MatLab data. This folder includes the 

saved manually classified specifications of ROIs (for both classification as well as 

validation) as well as the classification models used in this work. This folder also 

includes the validation results for the NIR camera. 

3. The MatLab scripts folder includes all the scripts developed for the completion of this 

thesis. It also includes three toolboxes that were used to complete the tasks. This 

folder does not include the PLS_Toolbox files, however. So in order to run the 

classification models, the toolbox must be downloaded from [23]. 

4. The folder Research includes the scientific papers referenced in this work. 

5. The folder Resonon includes the Resonon cameras‘ datasheets. 

6. The root folder also includes three Excel files: 

a. The Generalized model.xlsx – the flowchart of the generalized model 

processing; 

b. The NIR loadings.xlsx – includes all the loadings data for the NIR PCA 

analysis; 

c. The Paper database (23.04.16).xlsx – includes the comprehensive list of all the 

paper samples. 

  



 

 

 

Appendix 7 – MatLab scripts 

 

Here described are the MatLab functions that can be used to work with the hypercubes as was 

done in the scope of this thesis. The most essential scripts‘ code is also presented, but the 

smaller non-important scripts are not given here as code (these can be seen in the folder 

MatLab scripts). Note that the Downloaded subfolder in the MatLab scripts folder must also 

be added to the MatLab path. 

 

In the following table are descriptions of the scripts that could be written into the MatLab 

command line to execute the tasks described in the body text of this work. 

 

Table A.3 MatLab command line functions. The scripts are presented in the order that they 

would naturally be used in. 

1. Syntax Description 

2. path = 

getPathAndAddSubfolders(); 
Get the path of the MatLab scripts folder. It is 

needed for saving and opening ROIs 

3. classEnumeration = 

addClassEnumeration(path, 

label, className) 

Add a class to the class enumeration file. If the file 

does not exist, it is created (see Appendix 7.1) 

4. [hypercube, wavelengths, 

fileName] = 

readHypercubeFromFile 

(shouldDisplayImage, band) 

 

Read a hypercube from file into the MatLab 

workspace (is not required for the classification 

steps). See Appendix 7.2. 

5. saveROIsOfCubes(path) Opens the graphical user interface to select 

hypercubes, assign ROIs on them and assign 

classes to these ROIs (see Appendix 7.3 and 7.4) 

6. spectra = 

loadTrainingSpectra(path) 
Saves the spectra from the ROIs to file. This script 

can be modified to change the sample selection 

method. See Appendix 7.5 

6.1 [spArray, labelStrings, 

labelNumbers] = 

spectra2array(spectra) 

Converts the spectra format to three separate 

arrays. The spArray can be fed to the 

PLS_Toolbox as training data. 

7. pls Opens the PLS_Toolbox. Needs the toolbox 

installed on PC 

8. [predictionData, hypercube, 

fileName] = 

PLSDApredictHypercubeFromHierar

chicalModel(modelIn) 

Opens the hypercube selector, and applies the 

hierarchical model on it. The model can be loaded 

into the workspace \MatLab data\NIR\Calibrated 

Models\a_Hierarchical_Model.mat (Appendix 

7.6) 

9. [generalizedPrediction, 

printPercentage] = 

getGeneralizedPrediction(predic

tionData, hypercube) 

Returns the generalized prediction from the pixel-

by-pixel prediction. See Appendix 7.7 

 

 

 



 

 

 

10. [predictionData, 

printPercentage, 

pixelByPixelValidation, 

generalizedValidation] = 

validateModel(model) 

Returns the same as 8. and 9., but also validates 

the hypercubes (if there are validation ROI files). 

Also returns the pixel-by-pixel and generalized 

model accuracy percentages. See Appendix 7.8 

 

The table above and the following appendices do not include scripts called by the above 

scripts, for simplicity‘s sake. For the full list of the scripts, see the folder MatLab scripts, 

where all the scripts have been commented (about the inputs/outputs) for easy 

usage/modification.  

 

NB! To use the classification models on the data, the PLS_Toolbox must be downloaded from 

[23]. The hypercubes can be opened, manually classified and the training data plotted without 

the PLS_Toolbox. 

 

 

  



 

 

 

Appendix 7.1 addClassEnumeration() 

% If a class enumeration file exists, the input class is added. If the file 
% does not exist, it is created and then the class added. 
% Input: 
% path - path of the scripts folder 
% label - integer, numerical label for the class 
% className - string, label for the class 
% Output: 
% classEnumeration - a n x 2 cell array with the saved class labels  

  
function classEnumeration = addClassEnumeration(path, label, className) 
    fileName = 'classEnumeration';     
    classEnumeration = openClassEnumerationFile(path); 
    if ~isempty(classEnumeration{1,1})  
        classEnumeration{size(classEnumeration, 1) + 1, 1} = label; 
        classEnumeration{size(classEnumeration, 1), 2} = className; 
    else 
        classEnumeration{1, 1} = label; 
        classEnumeration{1, 2} = className; 
    end 
    save([path, fileName], fileName, '-append'); 
end 

 

  



 

 

 

Appendix 7.2 readHypercubeFromFile() 

% Opens a file selector and reads selected hypercube into workspace 
% 
% Inputs: 
%   shouldDisplayImage - boolean to indicate if user wants to see image 
%   band - if shouldDisplayImage == true then this is the selected band 
% 
% Outputs: 
%   hypercube - opened hypercube 
%   wavelengths - an array of the central wavelengths of the bands 
%   fileName - name of the hypercube file 

  
function [hypercube, wavelengths, fileName] = readHypercubeFromFile(shouldDisplayImage, band) 

    % Choose .bip or .bil file from computer 

    [fileName, path] = uigetfile({'*.bip';'*.bil'}, 'Select a .bip or a .bil file'); 

    if fileName == 0 

        hypercube = []; 

        wavelengths = []; 

        return  

    end 

    fullPath = fullfile(path, fileName); 

    headerName = [fullPath, '.hdr']; 

    fileName = strtok(fileName, '.'); 

  

    % Get file data from .hdr file  

% (see http://www.ehu.eus/ccwintco/uploads/d/dc/LoadHypercubesMatlab.pdf) 

    disp(['Parsing header file ', headerName]); 

    fileID = fopen(headerName,'r'); 

    C = textscan(fileID,'%s', 'delimiter','\n'); 

    strings = C{1,1}; 

    fclose(fileID); 

 hypercubeData = getHeaderFileField(strings); % Parse header file data into struct 

    wavelengths = hypercubeData.wavelengths; 

     

    % Read hypercube 

    disp('Reading hypercube...'); 

    inputHypercube = multibandread(fullPath, ... 

 [hypercubeData.lines, hypercubeData.samples, hypercubeData.bands], ... 

                                   hypercubeData.dataType, ... 

                                   hypercubeData.offset, ... 

                                   hypercubeData.interleave, ... 

                                   hypercubeData.byteOrder); 

                                

    % Rotate hypercube (original orientation is wrong)                           

    hypercube = rot90(inputHypercube); 

     

    if ~isempty(inputHypercube) 

        disp('Finished reading hypercube...'); 

    end 

  

    %Display image if requested of selected wavelength 

    if shouldDisplayImage == true 

        if band >= 0 && band <= hypercubeData.bands 

            Y = squeeze(hypercube(:,:,band)); 

            figure('Name', (['Image at band ', num2str(band)])); 

            imagesc(Y) 

            colormap(gray) 

            title(['Opened hypercube, image at band ', num2str(band)]); 

            axis equal 

            axis([0,hypercubeData.lines,0,hypercubeData.samples]) 

            xlabel('x - lines'); 

            ylabel('y - samples'); 

        else 

            warndlg('Wavelength band out of range.', 'Could not create figure');     

        end       

    end 

end 

  



 

 

 

Appendix 7.3 saveROIsOfCubes() and selectROIs() 

% Initializes the graphical user interface to select hypercubes,  
% assign ROIs on them and assign classes to these ROIs  
% Method of selection can be selected in Section Selection 
%  
% Input: 
%   path - the path of the scripts folder 
%  
 function saveROIsOfCubes(path) 

    roiDirectory = uigetdir(path, 'Select directory where to save the ROI files'); 

    roiDirectory = [roiDirectory, '\']; 

     

    shouldStopFlag = false; 

     

    while ~shouldStopFlag 

        [hypercube, wavelengths, fileName] = readHypercubeFromFile(false, 40); 

         

        selectROIs(path, roiDirectory, fileName, hypercube); 

         

        questionDialog = questdlg('How would you like to continue?', ... 

                    'Select action',...                  

                    'Select another cube', ... 

                    'Finish', 'Finish'); 

  

        switch questionDialog 

            case 'Select another cube' 

                %continue on to selection 

            case 'Finish' 

                disp('Finished saving ROIs'); 

                shouldStopFlag = true; 

                return 

            otherwise 

                disp('Finished saving ROIs'); 

                shouldStopFlag = true; 

                return 

        end 

    end 

end 

 

 

% Opens the graphical user interface to  
% assign ROIs on input hypercube and assign classes to these ROIs  
%  
% Input: 
%   path - the path of the scripts folder 
%   roiDirectory - directory of the ROI files 
%   fileName - name of the hypercube 
%   hypercube - the hypercube 

  
function selectROIs(path, roiDirectory, fileName, hypercube) 
    % Get image to display during ROI selection 
    image = squeeze(hypercube(:,:,ceil(size(hypercube, 3) / 2))); 

  
    shouldStopAddingFlag = false; 

  
    if exist([roiDirectory, fileName, '.mat'], 'file') 
       questionDialog = questdlg('The ROI file already exists for this cube 

in this folder. Would you like to overwirte?', ... 
                    'ROI file for cube already exists!',...                  
                    'Yes', ... 
                    'No', 'No'); 
        switch questionDialog 
            case 'Yes' 
                %continue on to selection 
            case 'No' 
                disp(['Skipped selecting ROI for ', fileName]); 



 

 

 

                return 
            otherwise 
                disp(['Skipped selecting ROI for ', fileName]); 
                return 
        end 
    end 

  
    labelStrings = openClassEnumerationFile(path); 
    labelNumbers = cell2mat(labelStrings(:,1)); 
    labelStrings = labelStrings(:,2); 
    roiInfo = cell(1,1); 
    visualization = zeros(size(hypercube,1), size(hypercube,2)); 
    count = 1; 

  
    figure('Name', 'Selected areas') 
    while ~shouldStopAddingFlag 
       [selectedMask, xi, yi] = roipoly(mat2gray(image)); 

  
       [label,ok] = listdlg('PromptString','Select a label:',... 
            'SelectionMode','single',... 
            'ListString',labelStrings); 

  
       if ok  
           roiInfo{count, 1} = xi; 
           roiInfo{count, 2} = yi; 
           roiInfo{count, 3} = labelStrings(label); 
           roiInfo{count, 4} = labelNumbers(label); 

  
           visualization = visualization + selectedMask; 
           imagesc(visualization); 

  
           questionDialog = questdlg('Would you like to add ROIs or 

save?',... 
                'How would you like to proceed?', ... 
                'Save', ... 
                'Select more', ... 
                'Cancel', 'Cancel'); 

  
           switch questionDialog 
                case 'Save' 
                    save([roiDirectory, fileName, '.mat'], 'roiInfo'); 
                    shouldStopAddingFlag = true; 
                    disp(['Saved to database file ', roiDirectory, 

fileName, '.mat']); 
                case 'Select more' 
                    % continue 
                case 'Cancel' 
                    shouldStopAddingFlag = true; 
                    return 
               otherwise 
                    shouldStopAddingFlag = true; 
                    return 
           end 
           count = count + 1; 
       end 

  
    end 

     
end 



 

 

 

 

Appendix 7.4 GUI of the ROI selection 

1. Select a hypercube 

 

 

2. Select area by drawing a ROI. 

Double-click to confirm 

 

3. Select the class of the ROI 

 

 

4. Choose how to proceed: 

  



 

 

 

Appendix 7.5 loadTrainingSpectra() 

% Get spectra from the ROIs for training data. The method of sampe 
% selection can be selected in Section Selection 
% Input: 
%   path - the path of the scripts folder 
% Output: 
%   spectraOut -    n x 3 cell array of the extracted spectra, the 

numerical label and the label 

  
function spectraOut = loadTrainingSpectra(path) 
    roiDirectory = uigetdir(path, 'Select directory of ROI files'); 
    roiDirectory = [roiDirectory, '\'];  
    [spectraFileName,spectraPathName] = uiputfile('*.mat', 'Enter filename 

where to save spectra'); 
    fullSpectraPath = fullfile(spectraPathName, spectraFileName);    
    matFiles = dir(roiDirectory); 

  
    % Read all the hypercubes that have a ROI file in the ROI directory 
    for i = 1 : size(matFiles,1) 
       if ~matFiles(i).isdir 
           [hypercube, wavelengths, fileName] = 

readHypercubeFromFileByName(strtok(matFiles(i).name, '.'), false, 4); 
           disp([num2str(i), ' of ', num2str(size(matFiles,1))]); 
           if isempty(hypercube) 
               disp('Could not read hypercube'); 
           else 
               hypercube = medfilt3(hypercube, [3 1 3]); 

                
               %% Selection. Choose one of two options: 
               % get a number of uniformly distributed data points of ROI 

as 
               % spectra: 
               getNSamplesToPath(path, fileName, hypercube,fullSpectraPath, 

roiDirectory); 
               % get the medians of each ROI as spectra: 
               %getMedianSpectraOfEachSampleToPath(path, fileName,     

hypercube, fullSpectraPath, roiDirectory); 
               %% 
           end 
       end 
    end 

     
    load(fullSpectraPath, 'spectra'); 
    if exist('spectra', 'var') 
       spectraOut = spectra; 
    else 
       spectraOut = []; 
    end 
end 

  



 

 

 

Appendix 7.6 PLSDApredictHypercubeFromHierarchicalModel() 

% Uses the input model for classification and displays the pixel-by-pixel 
% result 
%  
% Input: 
%   modelIn - the PLS_Toolbox hierarchical classification model 
%  
% Outputs: 
%   predictionData - the pixel-by-pixel  
function [predictionData, hypercube, fileName] = 

PLSDApredictHypercubeFromHierarchicalModel(modelIn) 
    labelStrings = {'Not known', 'White paper', 'Magazine', 'Newspaper', 

'Carton', 'Cardboard', 'WP D'}; 
                    %   0         1     2     3     4     5     6 

  
    [hypercube, wavelengths, fileName] = readHypercubeFromFile(false, 40); 
    hypercube = medfilt3(hypercube, [3, 1, 3]); 
    data = reshape(hypercube, [size(hypercube, 1) * size(hypercube, 2), 

size(hypercube, 3)]); 

     
    prediction = modelIn.apply(data);  
    predictionData = prediction.data; 
    predictionData = reshape(predictionData, [size(hypercube, 1), 

size(hypercube, 2), 1]); 

     
    numberOfClasses = max(max(predictionData)) + 1; 

     
    figure('Name', ['Predicted classes by the combined Hierarchical model, 

', fileName]) 

     
    imagesc(predictionData) 
    getColormapBasedOnClassNr(numberOfClasses, true) 
    clrbar2 = colorbar; 
    set(clrbar2,'YTick', ... 
            0.5*(numberOfClasses - 1)/numberOfClasses:(numberOfClasses-

1)/numberOfClasses:numberOfClasses); 
    set(clrbar2,'YTickLabel',labelStrings) 
    axis equal 
    axis([0,size(hypercube,2),0,size(hypercube,1)]) 
    xlabel('x - lines') 
    ylabel('y - samples') 
    title('Predicted classes by the PLS-DA model, strict classifictaion') 

     
    figure('Name', 'Image of hypercube at central band') 
    Y = squeeze(hypercube(:,:,ceil(size(hypercube,3)/2))); 
    imagesc(Y) 
    colormap(gray) 
    axis equal 

     
end 

  



 

 

 

Appendix 7.7 getGeneralizedPrediction() 

% Returns the generalized prediction from the pixel-by-pixel prediction  
%  
% Input: 
%   predictionData - the pixel-by-pixel classification 
%   hypercube - the hypercube 
% 
% Outputs: 
%   generalizedPrediction - the generalized prediction mask/image 
%   printPercentage -   an array with the print percentages. If No print or 
%                       if not WP, then 0 

  
function [generalizedPrediction, printPercentage] = 

getGeneralizedPrediction(predictionData, hypercube) 
    labelStrings = {'Not known', 'WP', 'MG', 'NP', 'CA', 'CB', 'WP D'}; 
                    %   0         1     2     3     4     5     6 

     
    kmeans = kMeansClustering(hypercube, 3); 
    kmeans = kmeans > 0; 
    %figure; imshow(kmeans); title('Binarized k-means') 

     
    kmeansMask = imfill(kmeans, 'holes'); 
    %figure; imshow(kmeansMask); title('fill holes') 

         
    kmeansMask = bwareaopen(kmeansMask, 100); 
    %figure; imshow(kmeansMask); title('Remove small blobs') 

     
    maskConvHull = bwconvhull(kmeansMask, 'objects'); 
    %figure; imshow(maskConvHull); title('Convex hull') 

     
    s = regionprops(maskConvHull, 'centroid','PixelIdxList'); 
    centroids = cat(1, s.Centroid); 

     
    regionInfo = cell(size(s)); 
    printPercentage = zeros(size(s,1),1); 

     
    generalizedPrediction = zeros(size(maskConvHull)); 
    for i = 1 : size(s, 1) 
        regionGeneralization = zeros(size(maskConvHull)); 

         
        objectMask = false(size(maskConvHull)); 
        objectMask(s(i).PixelIdxList) = 1; 

         
        regionGeneralization(objectMask > 0) = predictionData(objectMask > 

0); 
        regionLabels = predictionData(objectMask > 0); 

         
        % find all labels in region: 
        labels = unique(regionLabels); 
        labelCounts = zeros(size(labels)); 
        for j = 1 : length(labels) 
           labelCounts(j) = sum(regionLabels==labels(j)); 
        end 
        [mostCount, mostIndex] = max(labelCounts); 
        mostLabel = labels(mostIndex); 
        areaSize = size(s(i).PixelIdxList,1); 

         
        % If the most common label is zero, pick next common 



 

 

 

        if mostLabel == 0 
            labelCounts(mostIndex) = 0; 
            [mostCount, mostIndex] = max(labelCounts); 
            if mostCount / areaSize * 100 > 10 
                mostLabel = labels(mostIndex); 
            end 
        end 

         
        % Give precedence to NP in front of CB/CA 
        if mostLabel == 4 
            % if there's at least 10% of NP 
            if labelCounts(4) / areaSize * 100 > 5 
                labelCounts(mostIndex) = 0; 
                [mostCount, mostIndex] = max(labelCounts); 
                if labels(mostIndex) == 3 
                    mostLabel = labels(mostIndex); 
                end 
            end 
        end 

         
        regionGeneralization(objectMask > 0) = mostLabel; 
        regionInfo{i,1} = ['Pred: ', labelStrings(mostLabel + 1)]; 

         
        % Get print percentage by thresholding 
        if mostLabel == 1 
            Y = 

mat2gray(squeeze(hypercube(:,:,ceil(size(hypercube,3)/2)))); 
            thresholdMask = im2bw(Y, 0.6); 
            thresholdMask = thresholdMask & objectMask; 
            whiteSize = nnz(thresholdMask); 
            percentage = (1 - (whiteSize / areaSize)) * 100; 
            printPercentage(i) = percentage; 
            perText = [num2str(percentage, '%3.0f'), '% print']; 
            regionInfo{i,1} = ['Pred:', labelStrings(mostLabel + 1), 

perText]; 

             
        end 

         
        generalizedPrediction = generalizedPrediction + 

regionGeneralization; 

         
    end 

     
    numberOfClasses = max(unique(generalizedPrediction)) + 1; 
    figure;imagesc(generalizedPrediction); 
    hold on; plot(centroids(:,1),centroids(:,2), 'w*') 
    hold off 
    text(centroids(:,1), centroids(:,2) + 15, regionInfo, 

'HorizontalAlignment', 'center', 'VerticalAlignment', 'top', 'Color', 'w') 
    getColormapBasedOnClassNr(numberOfClasses, true) 
    clrbar2 = colorbar; 
    set(clrbar2,'YTick', ... 
            0.5*(numberOfClasses - 1)/numberOfClasses:(numberOfClasses-

1)/numberOfClasses:numberOfClasses); 
    set(clrbar2,'YTickLabel',labelStrings) 
    title('Generalized classification') 
    axis equal 
    axis([0,size(hypercube,2),0,size(hypercube,1)]) 
end 

 



 

 

 

Appendix 7.8 validateModel() 

% User can select hypercube to validate. Also user has to provide the 

folder 
% of the ROI files (or modify the roiDirectory folder to point at the 
% folder). Then the hypercube is classified using the hierarchical model, 
% the generalized classification is given as well as errormaps for both. 
%  
% Input: 
%   model - the hierarchical model to be used for classification 
% Output: 
%   predictionData - the pixel-by-pixel classification 
%   printPercentage - an array of each sample's print percentage 
%   pixelByPixelValidation -    the errormap of the pixel-by-pixel 
%                               classification 
%   generalizedValidation - the errormap of the generalized classification 

  
function [predictionData, printPercentage, pixelByPixelValidation, 

generalizedValidation] = validateModel(model) 
    labelStrings = {'Not known', 'WP', 'MG', 'NP', 'CA', 'CB', 'WP D'}; 
                    %   0         1     2     3     4     5     6 

  
    pixelByPixelValidation = zeros(0); 
    generalizedValidation = zeros(0); 

                     
    [predictionData, hypercube, fileName] = 

PLSDApredictHypercubeFromHierarchicalModel(model); 

     
    [generalizedPrediction, printPercentage] = 

getGeneralizedPrediction(predictionData, hypercube); 

     
    % If the ROI files are in a constant location then it can be input here 
    % In that case the uigetdir should be commented out 
    %roiDirectory = 'C:\Users\Mari-Liis\Dropbox\MSc Thesis\MatLab 

scripts\Validation set ROIs'; 
    roiDirectory = uigetdir(path, 'Select directory of Validation set ROI 

files'); 
    roiDirectory = [roiDirectory, '\']; 

     
    if exist([roiDirectory, fileName, '.mat'], 'file') 
       load([roiDirectory, fileName, '.mat'], 'roiInfo'); 
       if exist('roiInfo', 'var')     
           errorImage = zeros(size(predictionData)); 
           errorImageGen = zeros(size(predictionData)); 

            
           pixelByPixelValidation = zeros(size(roiInfo, 1),2); 
           generalizedValidation = zeros(size(roiInfo, 1),2); 

            
           centroidx = zeros(size(roiInfo, 1),1); 
           centroidy = zeros(size(roiInfo, 1),1); 

            
           regionInfo = cell(size(roiInfo, 1),1); 

            
           for i = 1 : size(roiInfo, 1) 
                errorPerROIimage = zeros(size(predictionData)); 
                mask = poly2mask(cell2mat(roiInfo(i,1))', 

cell2mat(roiInfo(i,2))', size(hypercube,1), size(hypercube,2)); 
                centroidsROI = regionprops(mask, 'Centroid'); 
                centroidsROI = cat(1, centroidsROI.Centroid); 



 

 

 

                centroidx(i) = centroidsROI(1,1); 
                centroidy(i) = centroidsROI(1,2); 
                mask = mask .* roiInfo{i,4}; 

                 
                regionInfo{i,1} = ['Real: ', roiInfo{i,3}]; 

  
                % Get per-pixel errors 
                errorPerROIimage(mask>0) = predictionData(mask>0); 
                errorPerROIimage = errorPerROIimage - mask; 
                errorPerROIimage = abs(errorPerROIimage) > 0; 
                errorImage = errorImage + errorPerROIimage; 
                ppErrorPercentage = (1 - nnz(errorPerROIimage) / nnz(mask)) 

* 100; 
                ppTrueClass = roiInfo{i,4}; 
                pixelByPixelValidation(i,:) = [ppErrorPercentage, 

ppTrueClass]; 

                 
                % Get generalization error 
                errorPerROIimage = zeros(size(predictionData)); 
                errorPerROIimage(mask>0) = generalizedPrediction(mask>0); 
                errorPerROIimage = errorPerROIimage - mask; 
                errorPerROIimage = abs(errorPerROIimage) > 0; 
                errorImageGen = errorImageGen + errorPerROIimage; 
                ppIsCorrect = nnz(errorPerROIimage) == 0; 
                ppTrueClass = roiInfo{i,4}; 
                generalizedValidation(i,:) = [ppIsCorrect, ppTrueClass]; 

                 
           end 
           errorImage = errorImage > 0; 
           figure;imagesc(errorImage); 
            hold on; plot(centroidx,centroidy, 'k*') 
            hold off 
            text(centroidx, centroidy + 15, regionInfo, 

'HorizontalAlignment', 'center', 'VerticalAlignment', 'top', 'Color', 'k')       
            title(['Strict errormap for image ', fileName]); 
            axis equal 
            axis([0,size(hypercube,2),0,size(hypercube,1)]) 
            colormap([245/255 245/255 245/255; 90/255 180/255 172/255]) 

             
           figure;imagesc(errorImageGen); 
            hold on; plot(centroidx,centroidy, 'k*') 
            hold off 
            text(centroidx, centroidy + 15, regionInfo, 

'HorizontalAlignment', 'center', 'VerticalAlignment', 'top', 'Color', 'k') 

             
            title(['Generalized errormap for image ', fileName]); 
            axis equal 
            axis([0,size(hypercube,2),0,size(hypercube,1)]) 
            colormap([245/255 245/255 245/255; 90/255 180/255 172/255]) 
       else 
           disp('Could not find ROIs'); 
           pixelByPixelValidation = 0; 
           generalizedValidation = 0; 
       end 
    else 
        disp('Could not find ROI file for validation'); 
        pixelByPixelValidation = 0; 
        generalizedValidation = 0; 
    end  
end 


