
Tallinn 2019

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Department of Software Science

Nurbanu Konayeva IVCM 177189

Application of Active Learning for Botnet
Detection

Master’s Thesis

Supervisor: Hayretdin Bahsi,
Ph.D.

Sven Nõmm
Ph.D.

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia Teaduskond

Tarkvarateaduse instituut

Nurbanu Konayeva IVCM 177189

Aktiivõppel baseeruv botnet rünnakute
tuvastamine

Magistritöö

Juhendaja: Hayretdin Bahsi,
Ph.D.

 Sven Nõmm
Ph.D.

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Nurbanu Konayeva

13.05.2019

4

Abstract

Network Intrusion Detection Systems face security challenges in detecting modern

botnets. While different machine learning (ML) methods were extensively applied for

botnet detection, the use of the human-machine interaction in detecting the botnets is still

immature.

This paper analyzes how classification models can be adopted in active machine learning

with the help of various query selection methods for botnet detection in network intrusion

detection systems. Under pool-based sampling scenario, performance of each label query

selection of obtaining the most informative label class were analyzed and compared.

Obtained results proved the effectiveness of the human-in-loop for labeling queried

instances under the active learning approach in classifying the normal network traffic

along with attack types (Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic,

Reconnaissance, Shellcode, Worms). Results also revealed that the learning process

based on the most informative few labeled samples perform better than fully labeled data

pools under supervised learning. However, the expert’s performance in providing

inaccurate label class may be disturbed by changes in classification and detection

accuracy.

This study emphasizes adopting human-in-loop interaction in acquiring labeled instances

which improve the learning of classification models, as well as the impact on the detection

of botnet when inaccurate label class was provided.

This thesis is written in English and is 80 pages long, including 6 chapters, 35 figures and

20 tables.

5

Table of contents

1 Introduction ... 10

2 Background .. 14

2.1 What is the Botnet .. 14

2.2 Machine Learning ... 17

2.2.1 Classification Algorithms .. 19

2.3 Relevant research .. 20

2.3.1 Similar research from other fields ... 22

2.3.2 Traditional Machine learning models .. 24

3 Methodology .. 27

3.1 Stage 1. Data acquisition .. 27

3.1.1 Dataset ... 27

3.1.2 Extracted Features ... 29

3.2 Stage 2. Data Pre-processing .. 35

3.2.1 Feature selection .. 36

3.2.2 Numerical feature’s selection .. 38

3.3 Stage 3. Classification, Training ... 41

3.3.1 Decision Tree algorithms .. 43

3.3.2 Random Forest ... 45

3.3.3 XGBOOST .. 46

3.4 Stage 4. Performance Evaluation Metrics .. 48

3.4.1 Correct and Incorrect Classification .. 48

3.4.2 Classification Metrics and Performance Evaluation 49

3.4.3 Selected Performance Metrics ... 51

4 Botnet Detection: Practical Implementation .. 52

4.1 Selected numerical features for botnet detection .. 53

4.2 Classification algorithms .. 55

4.3 Unsupervised Learning ... 60

4.3.1 DBSCAN Clustering ... 60

4.4 Semi-supervised Learning .. 63

6

4.5 Active learning ... 64

4.5.1 Active Learning Scenarios .. 65

4.5.2 Query Strategy ... 67

5 Botnet Detection: Model Implementation Analysis .. 69

5.1 Semi-supervised algorithm results for botnet detection 69

5.2 Active learning botnet detection results ... 73

5.2.1 Queried Labels are True .. 74

5.2.2 Queried Labels are Wrong ... 82

6 Conclusion ... 87

References .. 89

Appendix 1 – Classification performance comparison for different set of features 93

Appendix 2 – Classification accuracy with top ranked features 94

Appendix 3 – Scatter Plot with three features .. 95

Appendix 4 – DBSCAN results .. 101

Appendix 5 – Semi-Supervised Pseudo-Labeling Results ... 103

Appendix 6 – Active learning performance results when queried label is wrong 107

Appendix 7– Active Learning Evaluation Performance Results 123

7

List of figures

Figure 1. Client server mode .. 15

Figure 2. Peer-to-Peer Model ... 15

Figure 3. Experiment results (KDD 99 Dataset) of using a) the active learning method;

b) random selection method [24] .. 23

Figure 4. Experiment results (AWID Dataset) of using a) the active learning method; b)

random selection method [24] .. 23

Figure 5. Proposed methodology scheme [29] ... 25

Figure 6. Configuration setup for obtaining the data [5] .. 29

Figure 7. Feature extraction with the Argus and Bro-IDS Tools [5] 30

Figure 8. Example of simple Decision Tree based on the botnet and normal network

traffic .. 44

Figure 9. Implementation Architecture .. 52

Figure 10. Accuracy performance results for both binary and multi class 53

Figure 11. Scenario 2. Original data labels .. 58

Figure 12. Scenario 2. XGB prediction results ... 58

Figure 13. Scenario 3. Original data labels .. 59

Figure 14. Scenario 3. XGB prediction results ... 59

Figure 15. DBSCAN clustering results for Scenario 3 ... 62

Figure 16. Membership Query Method .. 65

Figure 17. Stream-Based Selection Method ... 65

Figure 18. Pool-based sampling scenario ... 66

Figure 19. Pseudo Labelling Technique [62] ... 70

Figure 20. Semi-supervised learning results for binary label class 72

Figure 21. Semi-supervised learning results for multi label class 72

Figure 22. Binary class: Active learning performance results for Decision Tree 75

Figure 23. Binary class: Active learning performance results for Random Forest 76

Figure 24. Binary class: Active learning performance results for XGBoost 76

Figure 25. Multi class: Active learning performance results for Decision Tree 77

Figure 26. Multi class: Active learning performance results for Random Forest 77

8

Figure 27. Multi class: Active learning performance results for XGBoost 78

Figure 28. Binary class: Active learning performance results for Random Forest with

Margin Sample Selection .. 79

Figure 29. Binary class: Active learning performance results for XGBoost with Margin

Sample Selection .. 80

Figure 30. Binary class: Active learning performance results for Random Forest with

Entropy Selection ... 80

Figure 31. Binary class: Active learning performance results for XGBoost with Entropy

Selection ... 81

Figure 32. Multi class: Active learning performance results for Random Forest with

Margin Sample Selection .. 81

Figure 33. Multi class: Active learning performance results for Random Forest with

Margin Sample Selection .. 82

Figure 34. Binary Class: Active learning accuracy results for Random Forest with

Entropy Selection k=10 .. 84

Figure 35. Multi Class: Active learning accuracy results for XGBoost with Margin

Sampling Selection k=10 .. 85

9

List of tables

Table 1. Data set Statistics [38] .. 30

Table 2. FLOW FEATURES [38] .. 30

Table 3. BASIC FEATURES [38] ... 31

Table 4. CONTENT FEATURES [38] ... 31

Table 5. TIME FEATURES [38] ... 31

Table 6. ADDITIONAL GENERATED FEATURES [38] ... 32

Table 7. LABELLED FEATURES [38] ... 33

Table 8. DATA SET RECORD DISTRIBUTION [38] ... 33

Table 9. Distribution of the data instances among the label class 35

Table 10. The Fisher’s score results ... 39

Table 11. Matching top features for both scenarios (binary, multi) 40

Table 12. Confusion Matrix .. 48

Table 13. Accuracy metrics of the model trained with top numerical features 54

Table 14. Performance results for different models ... 56

Table 15. Performance results of the modes according to the given scenarios 57

Table 16. DBSCAN results for given scenarios ... 62

Table 17. Accuracy results for binary class .. 71

Table 18. Accuracy results for multi class ... 71

Table 19. Binary class: Supervised learning results for accurate and wrong labels 83

Table 20. Multi class: Supervised learning results for right label and wrong label 83

10

1 Introduction

A botnet is a collection of compromised network devices that are infected and controlled

remotely by a common server. Apart from functioning as an email spamming tool, botnets

can penetrate and intrude into an organizational network to steal valuable assets such as

financial data, intellectual property as well as stealing a considerable amount of money

and perform a massively coordinated cyber-attack. Bots are capable of overloading the

target network with requests and coordinating malicious attacks such as Distributed

Denial of Service (DDOS) for personal and political motives. According to the survey [1]

around 16% of computers connected to the internet are compromised either by active or

passive bots. Bitdefender security insights reported that the power of the botnet attack

increased in 2018 relatively to the previous year. As stated in the report [2], the most

powerful giant botnets formed by cybercriminals are named as Mirai and Satori botnets.

Modern botnets are becoming more vaguer, representing new joint features evolving

unknown behavioral class. Recent botnets, continuously randomize the port numbers and

domain names, making detecting botnet more challenging for Network-based Intrusion

Detection Systems [3]. By randomly delaying transmitting traffic, botnets try to behave

like "normal" sessions, which make signature-based methods [4] give more false negative

results.

With the use of machine learning, many tasks, like detection of cyber-attacks performed

by botnets, can be automated and deployed into security tools. Without being explicitly

programmed, machine learning algorithms are used to analyze data and predict the

outcome occurrence based on received specified samples.

A branch of artificial intelligence, machine learning aims a constructive study of the

systems with the ability to recognize different patterns and predict qualified preference

based on the given data. In recent decades more researches integrate machine learning

into botnet detection studies and provide various experimental approaches by using

generalized knowledge derived from systematic experiences of detection systems, to

propose previously unseen computational methods.

11

Supervised learning algorithm use the data where the correct class is revealed (samples

are labeled). Unsupervised learning algorithm does not have any labels attached to

supervise the learning (samples are unlabeled). In semi-supervised learning, two different

algorithms used, starting with the labeled examples, and then by telling other samples the

way they think about unlabeled data. The difference between semi-supervised algorithm

from active learning is that, in active learning, the algorithm itself decides which labels

(usually most informative ones) human should label. Active learning makes the

classification of data learning from other samples, but in additional confirms the decision

by querying the user.

Unlabeled data is relatively easy to acquire although expensive to label and generally

corporations have limited resources to label all of their data. In such cases AL can provide

similar and even better results than fully supervised algorithms with less cost and time

spent to acquire label class for the data instances. Most of the studies point out that

labeling is pricey and try to implement unsupervised methods. However, many

organizations have started to have a Security Operations Center (SOC) capabilities that

may help label some amount of the data (real case scenarios with few labeled instances).

Although SOC’s have labeling capability, they cannot mark all data. But smart usage of

limited labeling capability can improve the performance of learning models by applying

human-machine interaction which is the crucial concept of active learning.

For this reason, AL was chosen as it can provide aimed results by carefully increasing the

size of selected labeled data. Moreover, in real life scenarios, when DDOS attacks are

performed by the new botnets, which represent an unknown behavioral class, active

machine learning algorithm model will fit the best to analyze the data and interact with

the expert to detect the anomaly and classify the external network traffic.

Under Active Learning (AL) method it was aimed to train the model using network

packets created by the IXIA Perfect Storm tool in the Cyber Range Lab of the Australian

Centre for Cyber Security (ACCS) [5] to predict contemporary botnet attack behavior.

This dataset has nine types of attacks, which are Fuzzers, Analysis, Backdoors, DoS,

Exploits, Generic, Reconnaissance, Shellcode, and Worms. All the records include

different type of network data labeled as an attack and normal, as well as different attack

vectors mentioned above.

12

Similar studies for botnet detection were approached by using supervised [6] [7] [8],

unsupervised [9] and semi-supervised [10] [11] [12] training models. Studies had a

different focus on feature selection and applied the algorithms comparing the obtained

accuracy to analyze performance. In addition to this, as an example research study [10]

applies active learning approach on regression model, with the help of “most likely

unknown” (MLU) sampling method to pick the unlabeled sample that has the highest

probability of belonging to the unknown class. Very limited feature set (8 features) was

used and only three attack vectors are predicted based on the CSET'11 (prepared in

conjunction with 20th USENIX Security Symposium in 2011) dataset.

There are several differences with the study [10] regarding the application of active

machine learning in the current work referred to as:

• Use of classification models for the active machine learning approach;

• Use of the broader set of the features (39 features – time, flow, connection, basic,

additional) based on the network data;

• Improved (regarding the problems referred in many other datasets for network

intrusion detection systems) dataset with nine attack types;

• Different methods for sample selection and their comparison;

• Separate scenarios for acquiring accurate label and wrong label (ratio of mistakes

between 10% and 50%) by complimenting it with the cost of the prediction

accuracy.

The key point of this study application of AL methods to learn from most informative

data points queried from a small pool (try to match with real case scenarios) of labeled

instances and train the algorithm.

This paper attempts to answer the following questions:

1. Is it possible to adopt classification models for active machine learning in botnet

detection?

2. How various sample selection methods for acquiring label class of each instance

influences on the learning process of the classification model?

3. How human-machine interaction (labeling the queried instance) with the help of

active machine learning improve the overall prediction of the botnet compared to

supervised learning?

13

The formulation of the present research problem statement is resumed in the following

points:

• Perform feature selection for botnet detection based on the network data.

• Identifying most appropriate models to work with the active learning approach.

• Querying the most informative data points with the help of several methods for

expert labeling.

• Learn from obtained samples and analyze the variability of selected predictions in

the binary and multi-class labeled dataset.

Several scenarios are performed to analyze the outcome where it is assumed that:

a) security expert/oracle provides an accurate label for the most informative queried

samples.

b) security expert/oracle provides inaccurate labeled instances with error rate of

10%, 20%, 30%, 40% and 50% for the most informative samples queried from

the pool.

The process repeated several times, including XGBoost, Decision Tree and Random

Forest models, until the desired accuracy on botnet prediction is achieved.

The present document is designed in the following stages:

• Chapter 2: devoted to the background information and related literature;

• Chapter 3: deals with current research methodology;

• Chapter 4: presents a practical implementation of this thesis for the machine

learning process;

• Chapter 5: shows key results and analysis of the leading experimental tests;

• Chapter 6: discusses the outcomes that are concluded from this study.

14

2 Background

2.1 What is the Botnet

Initially, botnets were created to serve as a legitimate tool with a specific functionality

over the Internet relay chats (IRC). Later on, when different vulnerabilities of the IRC

networks discovered, botnets were developed to become a hacker's tool to perform

various malicious activities, gain valuable data and information for different purposes.

Currently, botnets hold the meaning of compromised computers connected and

coordinated under the control of malicious actor. Those connected computers perform

numerous tasks and launch attacks. Most common areas for botnet usage are an organized

crime to conduct illegal activities online like:

• email spamming

• denial of service attacks (DoS and DDoS attacks)

• transmitting malware/adware/spyware

• stealing informative sensitive data like user logins and financial reports

• phishing attacks, etc.

The term “botnet” is a simple combination of words “bot” and “net.” The bot is holding

the meaning of robot, which represents the infected by malware computer and net

shortened from the network, which represents the group of linked systems over the

internet. EarthLink Inc. was the first company who named the biggest spam network as a

botnet during the lawsuit against Khan C. Smith in 2002 [13]. EarthLink was the company

which processed around 10 billion emails per year, with the cost ratio 1$ per 1000 emails.

According to the article, the situation was around a man named Tennessee who, used

stolen credit card numbers and passwords of EarthLink users to create as many as 1,000

accounts used to send unwelcome emails. According to that time, the man earned 3

million dollars by running the most significant spam. However, he had to pay 25 million

dollars back to the company due to the lawsuit court decision. This case becomes an

excellent example of how dangerous and harmful botnet technology can be.

15

Mainly there are two primary models for setting up the botnets:

• Client Server mode

Figure 1. Client server mode

• Peer-to-Peer model

Figure 2. Peer-to-Peer Model

The Client-Server model or Command and Control (C&C) is a very straight forward

method of controlling and sending instructions from one single location to other infected

16

compromised devices. The central server is usually under the attacker's physical control

and can stay active for a couple of days, but often, the lifetime of the shelf is quite limited.

It was said aa a powerful model, since hackers usually choose a legitimate server, which

it is harder to detect for law enforcement. However, recent studies show that botnet

detection systems based on C&C are highly positive to give false negative results, due to

the evolution of the botnets thought the continuous randomization of the port numbers

and domain names.

Since there are many solutions grounded on this model, recently, hackers prefer Peer-to-

Peer model over the C&C for the botnet construction. Another reason for this is that Peer-

to-Peer model meant to fix weaknesses of the C&C model by connecting and

communicating directly from one infected machine to few others, and they are in their

turns continue to do the same. This loop reaches until the whole puzzle is complete and

the system is ready to give it a shot. Additionally, even if some of the devices will be

removed or shut down, it will not cause problems, since other devices can replace them

and pick up the chain fast.

According to “Heimdal” security blog [14] botnets inherited from the Zeus botnet family

were very popular and harmful before 2016 in context of stealing personal data and

perform massive unauthorized money transfers with the use of bank account details. This

case also shows that botnets did evade; they upgrade over time with new joint features to

become less evident for the detection systems.

Another example of the botnet with the successful performance of shutting down the

Twitter, CNN, Spotify and many other servers and services in September 2016 was the

botnet named as Mirai, which did the biggest in history DDoS attack [15]. Attack was

performed with the usage of the compromised Internet of Things (IoT) devices. However,

even after being discovered it did not stop hackers from creating new versions of the Mirai

botnet and making another shot in July 2018, which caused many security discussions

among security professionals and researches. The expansion of the Mirai botnet into

different types proves that different techniques are applied to behave like regular network

traffic, which indeed makes the botnet detection more challenging for different Network-

based Intrusion detection and prevention (IDS and IPS) systems [16].

17

All of this raised the interest of the researchers to try and investigate new methods and

models to capture botnets and prevent setup from being compromised. Due to the ability

to automate the tasks and working with a large amount of data, recent academic literature

highly focused in applying machine learning approaches to maximize the effect of the

prediction and accuracy of the models. Various experimental methods by using

generalized knowledge derived from systematic experiences of detection systems were

studied, to propose previously unseen computational approaches.

2.2 Machine Learning

Google’s self-driving cars and robots get a lot of press, but the company’s real future is

in machine learning, the technology that enables computers to get smarter and more

personal [17].

 – Eric Schmidt (Google Chairman)

Machine learning (ML) is said to be a part of Artificial Intelligence (AI) filed. With the

use of computational methods, ML technique learns information directly from the data

without relying on predestined rule-based equations to build algorithms used to predict

an output while updating newly available data. It is a natural process that teaches

computers to learn from experience to help people process a large amount of data within

a short period. The universal principle of predicting the data is to map learning function

(f) with the input samples (X) and process an output variable (Y): Y=f(X).

Nowadays many people are familiar with machine learning techniques from the internet,

personalized adjusted ads processed from their purchases and actions of the same patterns.

It happens because ML algorithms learn data from similar repeated model and behavior

in real time and recommend the output based on experience. Apart from online marketing

and personalized ads, machine learning widely used for spam filtering, fraud control

systems, network security detection systems, and other maintenance, monitoring, and

structuring news feed. Those examples are just a tiny part where ML algorithms used in

today's practice. There are different variations of Machine Learning Algorithms which

can be used and applied depending on the precise needs for the aimed process:

a) Supervised Learning: This algorithm establishes a model and gives an output

based on provided evidence. A supervised learning algorithm consists of a known

18

set of inputs with the predictors (knowm set of response) to the output data to train

the model and provide a rational response to a new data. With the help of those

set of independent variables, the function maps the inputs to desired outputs. With

the determined variables and features, the model continues the training process

until the desired accuracy level achieved. To develop predictive models

Supervised learning techniques uses either regression or classification techniques.

• Regression algorithms are used to make predictions regarding numerical

entities. Examples are usually pointing to predict the pricing of different

variables like products, house, and other goods.

• Classification algorithms are used to create a diverse membership for a

specific known class type. Email filtering (spam, not-spam) and medical

diagnosis (identifying the diseases based on symptoms) are the examples

for this type of algorithm.

b) Unsupervised Learning: This algorithm does not require any target desired

outcome data to train the model. Also known as neural network it approaches

more complex processing tasks to cluster training data into different groups by

correlating between many input variables. This algorithm widely used in image

recognition, face recognition, bank associations and require a significant amount

of data for training purpose.

c) Semi-Supervised Learning: Combination of Supervised and Unsupervised

machine learning provides this type of algorithm. Usually used when there is not

enough labeled data to train an accurate model. Training approach can start with

the labeled resources, and unsupervised machine learning algorithms will

continue process learning from the outcome. Detection systems can detect well-

known fraud and anomaly, and rest can slip without being known and remain

unlabeled, which is an excellent example of this type of algorithm.

d) Active Learning: Similar approach to Semi-Supervised learning with slight

modifications. Instead of learning from instances automatically and predicting an

output, Active Learning predicts an output by selecting an unlabeled data and

querying each iteration to Oracle or human expert who analyses and determines

the label of the instance. Labeled data instance can be predefined lower than in

19

Semi-Supervised learning and still provide a high level of accuracy of the

prediction model.

e) Reinforcement Learning: With the use of this algorithm machine is trained to

iterate an action in a dynamic environment to return specific decision based on

trial and error method. The machine learns from every iteration to produce a

favorable outcome based on previous experience to provide an optimal and

accurate capture. As a result, we get a well-known process for online games with

human and computer interaction.

2.2.1 Classification Algorithms

In this thesis, the main idea to obtain proper botnet detection by applying active learning

algorithms with the help of classical classification algorithms.

The main idea for machine learning classification algorithms is to categorize given data

into desired and distinct numbers of classes. Boundaries conditions for each class

determining the assigned target label class for every different subset. Classification can

be binary and multi-class. Binary classifier gives an outcome with only two particular

levels like normal and anomaly. A multi-class classifier can have more than two practical

classes and predict a result for a different type of specific categories. In the example of

this thesis multi-class classifier used to distinguish between types of attacks within the

anomaly behavior.

Even though the primary purpose is common for all classification algorithms, various

mathematical and logical approaches are different for them to deal with the specific

problem. Well-known and widely used classification algorithms with the brief

explanation are listed below:

• Decision trees classify the data into a tree structure by breaking down into smaller

subsets. Thus, achieved with the help of consecutive rules based on the most

significant differentiators in the input variables.

• K-nearest neighbor classifies an object by the majority vote weight of the closest

neighbors. The targeted object assigned to the most convenient and familiar class

among its nearest k neighbors.

20

• Random forests classify the objects by constructing multiple decision trees and

attaching it to the class with the most votes from all the trees.

• Support Vector Machines classification algorithm plots training data points in n-

dimensional space (depending on the features set number) with a clear gap

between them. New examples predicted according to the nearest category where

they fall in the map.

• Naive Bayes classifier inspired by the Bayes theorem. The probabilistic classifier

uses works under a simple assumption where attributes are conditionally

independent.

• Logistic Regression classification is a statistical method that performs binary

classification, where label outputs are binary. An output determined by the

analysis of the dataset by defining one or more independent variables.

• A Neural Network consists of units of layers or components with direct

connections among them. Neural networks are needs enormous computational

complexity but could be applied to many different tasks. This algorithm provides

a good result if the job requires to work with images.

2.3 Relevant research

Due to evasion of the botnet generation Zhicong Qiu, David J. Miller and George Kesidis

proposed semi-supervised active learning algorithms [11] to detect unknown anomaly

botnet behavior. Detection of the botnet based on information taken from the sequence of

packet sizes in a specifically given flow. Experimental setup mainly used three different

PCAP files taken from:

a) LBNL traces and used as a regular (normal) traffic [18], which was collected by

monitoring medium-size enterprise network for more than 100 hours covering 22

primary subnets with different protocols mentioned in data pre-processing step of

the same research paper, such as TCP and three-way handshake.

b) Zeus PCAP files taken from VRT Zeus [19] and ISOT Zeus [20]. Zeus bots were

incorporated to the dataset, due to its well-known detection evasion techniques,

21

like using random ports and proxy server, which makes traditional methods

challenging to detect. Authors mentioned that Zeus variations are trendy and

commonly used for the botnet applications, especially the ones used for

cybercrime activities.

After obtaining three different PCAP files with normal and anomaly traffic, authors had

datasets with the botnet having both C&C and non-C&C traffic for the training and testing

purpose. Total flows of the standard (normal) and botnet flow are as follows, LBNL [18]

9972 number of streams, VRT Zeus [19] 64, and ISOT Zeus [20] 23 flows respectively.

Authors used 1/3 of the dataset with randomly (positive and negative) labeled samples to

train Bayesian Network, remaining dataset split into half, as unlabeled regular (normal)

traffic and unlabeled botnet for active learning approach. For testing the anomaly

detection, they used the ratio of web flows, falsely identified as a botnet and the rate of a

botnet, classified correctly as a botnet. The comprehensive trade-off between two metrics

was combined to visualize ROC AUC curves to see the number of active labeling of the

algorithm. For AL approach they moved forward with MLU (most likely unknown)

sampling to pick the unlabeled sample with the highest priority of belonging to the

specific class, According to the discussion, their experimental setup produced a highly

effective solution which compared with similar studies, [21] [22] [23] and proposed

feature representation where most ineffective working systems could replace. The

accuracy of the computation reached about 88% in ROC AUC performance and about

90% for the supervised learning models. Also, they mentioned that some of the related

works were ignoring the qualitative aspect of the traffic data used in the training and

testing stages, which usually cause the poor performance of the methods used.

There are many differences studied and applied in this thesis compared to the provided

literature [11] review. The novelty of this study is the use of the different active learning

methods, where sampling of the unlabeled instances achieved with the help of three

different ways, namely Random Sampling, Margin Sampling Selection, and Entropy

Selection, whereas literature [11] provided only one sampling method results based on

MLU. Also, after initial training and testing of the dataset, three classification models are

selected to be trained with the active learning scenario, which is XGBoost, Decision Tree

and Random Forest, while in the literature [11] Bayesian Network used as the central

model of the study. Nevertheless, the performance results for detection achieved as 95%

22

accuracy while having fewer data points, which is comparatively better from the literature

[11] . The remarkable difference in this thesis with the explained research is the nine types

of attacks studied and classified in the different active learning scenarios and sampling

methods. Another variation of this thesis, the experimental setup, providing the

performance results and cost of acquiring incorrect label class from the Oracle/Expert,

whereas literature [11] experimental setup includes only one scenario with the assumption

of acquiring all right labels.

All the obtained results are compared and analyzed in section 5, and detailed information

explained in the further parts of this thesis.

2.3.1 Similar research from other fields

Although there can be found many literature resources on ML techniques applied for

botnet detection, only limited amount of them genuinely dedicated to the active learning

approach. Similar reperch gap identified by Kai Yang, Jie Ren, Yanqiao Zhu, and Weiyi

Zhang and published as “Active Learning for Wireless IoT Intrusion Detection” in

December 2018, [24]. According to the content of the article, authors underline the similar

problem of insufficient labeled training data, whereas AL a subfield of ML solves the

problem by using a limited number of labeled samples. By querying the user/expert under

the specific strategy, algorithms aim to receive new labeled data and continue the process

of training until desired results obtained. Thus, reduces the cost and time of getting clean

and labeled data.

Experimental setup starts with the unsupervised model training to obtain the anomaly

samples in the dataset. Then iteratively active learning approach was applied to reach the

threshold of the performance where recall and precision used. The active learning applied

in three steps:

a) Supervised learning

b) Label selection

c) Labelling by the expert

For the algorithm classification, XGBoost distributed gradient boosting library which

implements machine learning algorithms under the Gradient Boosting framework [25].

XGBoost can solve many data science problems fast and accurate while having fewer

23

parameters with a more straightforward structure. Authors found this algorithm

appropriate for the IoT resources due to scalable, portable and distributed characteristics.

After applying and comparing the result in Figure 3 [24] and Figure 4 [24] obtained from

supervised algorithms and AL with the usage of two different datasets, authors conclude

that AL method can improve the performance of traditional supervised learning and

optimize cost and time for computation.

Figure 3 and Figure 4 taken from [24] describes the comparison of results obtained from

supervised ML and AL application. Precision and Recall performance metrics were

calculated, and different datasets were analyzed.

The similar idea of utilizing AL algorithm was performed in “Active learning for semi-

supervised structural health monitoring” research paper [26] by L. Bull ∗, K. Worden, G.

Manson, N. Dervilis. Authors noted the simplicity in getting unlabeled data due to the

digitalization and wide range of technology used in health monitoring. Complexity of

Figure 3. Experiment results (KDD 99 Dataset) of
using a) the active learning method; b) random

selection method [24]

Figure 4. Experiment results (AWID Dataset) of
using a) the active learning method; b) random

selection method [24]

24

obtaining label class in a wide range of data, solved by AL where limited amount of

labeled data is used. Authors worked on the project using MATLAB, and successfully

obtained active learning experiment with the help of cluster-adaptive heuristic label

propagation, where the process enabled by the heuristic hierarchal framework. This

project supported by the UK Engineering and Physical Sciences Research Council

(EPSRC).

2.3.2 Traditional Machine learning models

Nevertheless, there are a smaller number of studies with active learning application in

botnet detection, many traditional supervised, unsupervised and currently being explored

semi-supervised machine learning algorithms are used in this field.

One of the literature works, written by Vaibhav Nivargi, Mayukh Bhaowal, and Teddy

Lee, studied botnet detection [6] by comparing different machine learning models such

as Naïve Bayers, k-NN classifier, Decision tree, and others. They decided to choose two

different methodologies for their experimental setup. The first methodology based on

Binary Detection focusing on binary profiling and hex dumps as feature selection, and

second was IRC log-based detection using a public communication channel to get the

traffic. Those methods approached separately and in combination to analyze and

distinguish between the outcome. One of the datasets used for Binary detection included

a large number of executables, labeled as botnets, which was taken from Computer

science department of John Hopkins University [27]. The second dataset with the labeled

IRC logs acquired from Computer science department of Northwestern University, where

dataset collected for the wireless overlay network architectures and botnet detection

research [28]. Users extracted around more than a million features and selected only most

informative 10,000 features obtained with the usage of chi-square selection based on the

highest chi-square scores. The results obtained from the experiment evaluated using

accuracy and F1 to observe the usage of the classifiers based on a specific focus on

features. Both models gave similar accuracy results approaching almost 99%. From the

results, it was discussed that the more extensive datasets and feature dependency correlate

the performance for specific model algorithms.

A paper [29] by Gagandeep Kaur proposed semi-supervised learning algorithm under the

description of “A Novel Distributed Machine Learning Framework for Semi-Supervised

Detection of Botnet Attacks.” Author scheme a plan for generating a labeled dataset with

25

the usage of distributed KMeans clustering applied in Distributed Decision Tree base

algorithm for botnet detection shown in Figure 5 [29]. For the experimental setup ISCX

dataset [30] consisting of separate training and testing pcap files with the size 2,119,199

KB and 5,141,869 KB respectively. Since the main focus of the work was to detect more

botnet-based attacks, data pre-processing was applied to sanitize a large amount of data

and remove unnecessary traffic flow. Author converted pcap file into CVS (comma

separated value) for training and testing and left nine main features namely Source

Number, time, Source IP Address, Destination IP Address, Source Port Number,

Destination Port Number, Protocol Type, Data Length in bytes, Info. The network traffic

or any dataset usually obtained without any labeling, and very costly to do it manually,

author proposed model of unsupervised KMean learning approach of clustering instances

lying closest to the normal or anomaly traffic, and label samples to train the obtained

sample with the help of Decision Tree models.

Performance of the model evaluated by precision, recall F1 score and confusion matrix,

whereas accuracy varied from 84% to 88% and False positive rate for Gini and entropy

is 1,4% and 1,3% respectively. “Gini Index” and “entropy” used in the context of

measuring the impurity of the decision tree model. Gini Index (G) measures a nodes

impurity whereas entropy is a measure of dispersion.

Figure 5. Proposed methodology scheme [29]

26

Current research focuses on the application of active learning algorithm for botnet

detection. After precise selection three models assigned to take part in the active learning

algorithm application scenario. The primary use of the learning process achieved with the

help of the sample selection methods like Random Selection, Margin Sampling Selection,

and Entropy Selection to identify most informative data points regarding the label class

and use them to train the model and get the performance results. Along with the accurate

label class queried from Expert, wrong labeling and cost of the calculations also included

in the experimental setup of this thesis.

27

3 Methodology

The strategy of this master thesis designed in 4 main stages that are:

1. Data acquisition

2. Data pre-processing

3. Data processing (Training, Classification)

4. Model performance validation

Summarily, data acquisition stage involves the explanation of the collection and gathering

features and instances converting and preparing them with appropriate standards and

format to be used. Data pre-processing stage explains the filtering and ranking features

by using appropriate feature selection methods, to identify most discriminative ones

depending on the label class, while eliminating the redundancy and avoiding overfitting.

And finally, training and testing stages where various algorithms were trained and

validated with the given input to detect the anomaly behavior and botnet attack type.

3.1 Stage 1. Data acquisition

3.1.1 Dataset

At this stage UNSW-NB15: A Comprehensive Data set for Network Intrusion Detection

systems was used [5]. This dataset created by the IXIA PerfectStorm tool in the Cyber

Range Lab of the Australian Centre for Cyber Security (ACCS). The unavailability of the

broad network-based data set that would include various low footprint intrusions and

practical information, reflecting contemporary network traffic scenarios was one of the

main reasons for generating this dataset. Most of the previous researches utilized KDD98

[31], KDDCUP99 [32], and NSL-KDD [33] data sets which were prepared decades ago

and currently outdated in respective of the network traffic and network attacks, that has

been evaded from intrusion detection systems recently. Hybrid solution of the real normal

traffic data and synthetic attack vectors used in the creation of the data set samples.

Authors mentioned that existing and some novel methods used in generating the features

for the research purpose.

28

The quality of the currently existing NIDS (network intrusion detection systems) data sets

was composed and evaluated by the two essential characteristics that are the normal range

of the traffic and latest thread inclusion. Some datasets match those characteristics namely

KDDCUP99 and improved version of the same dataset NSL-KDD.

However, many IDS researchers who used KDDCUP99 dataset in their projects [34] [35]

[36] [37] noted some essential disadvantages that affect the evaluation of the models

performed for the IDS. One of the problems states that training and testing sets have

different records, where training set found to be having an enormous amount of redundant

data. Thus, bring to the bias detection due to the numerous records. Despite the fact of

having different attack vectors which expected from those models in the intrusion

detection, training and testing sets had unbalanced records among malicious traffic with

missing values and missing attack types in the testing set. Another one refers to attack

data packets TTL (time to live) value given as 126 or 253, whereas those values are mostly

127 and 254 respectively. However, TTL values 126 and 253 do not occur in the training

records of the attack. And the main one that it doesn’t contain evaded new attack samples

representing new joint features, reported as low footprint attacks. Even though, creators

of the KDDCUP99 released upgraded and improved version of dataset, where duplicates

are removed from training and testing sets, new NSLKDD data set was still missing the

major drawback where new comprehensive modern attack scenarios were not considered.

For those reasons the UNSW-NB15 data set chosen since it was created to improve major

drawbacks mentioned above.

To get the hybrid combination of the real modern normal and anomaly network traffic the

authors of the UNSW-NB15 dataset applied IXIA PerfectStorm tool3. The anomaly

traffic contains nine different families of the attack’s types namely, Fuzzers, Analysis,

Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms. Information

about attacks taken from the publicly available information security and vulnerability

dictionaries that have continuously updated. Tcpdump5 tool was utilized to capture the

network traffic. The entire period of the simulation took 31 hours with a size of 100 GBs.

To separate each pcap file into 1000 MB files tcpdump tool used. And finally, to obtain

49 features and class label from the pcap files, the Argus and Bro-IDS are utilized along

with the twelve C# language algorithms that have developed and applied for the in-depth

analysis of the flow packets. All samples labeled from the ground truth table which

contains all the simulated attacks types.

29

Full configuration setup of obtaining the data presented in Figure 6 taken from [5] where

Tool IXIA is utilized. The final and the total number of the records collected for the

training set is 175,341 and 82,332 records for the testing set.

Figure 6. Configuration setup for obtaining the data [5]

3.1.2 Extracted Features

The architecture of obtaining the CVS data set files from pcap files for UNSW-NB15

training and testing dataset is presented in Figure 7 taken from [38]. Features extracted

with the Argus and Bro-IDS Tools are consist of packet-based and flow-based features.

Table 1 represents the data set statistics, explaining and presenting the numbers of flows

and bytes and time spent for the experimental setup while obtaining the data.

All features categorized into three main groups: Basic, Content and Time along with the

synthetic attack categories labeled accordingly. Additionally, flow features and additional

features presented and described in Table 2 and Table 6. All features described in Tables

3-5. Table 7 and Table 8 represents the labels class along with the data set distribution

among the network traffic classified as normal and anomaly depending on the type of the

attack.

30

Figure 7. Feature extraction with the Argus and Bro-IDS Tools [5]

Table 1. Data set Statistics [38]

Statistical features 16 hours 15 hours

Number_of_flows 987,627 976,882

Src_bytes 4,860,168,866 5,940,523,728

Des_bytes 44,743,560,943 44,303,195,509

Src_Pkts 41,168,425 41,129,810

Dst_pkts 53,402,915 52,585,462

Protocol types

TCP 771,488 720,665

UDP 301,528 688,616

ICMP 150 374

Others 150 374

Label

Normal 1,064,987 1,153,774

Attack 22,215 299,068

Unique

Src_ip 40 41

Dst_ip 44 45

Table 2. FLOW FEATURES [38]

Name T. Description

1 proto N Transaction protocol

31

Table 3. BASIC FEATURES [38]

Name T Description

2 state N The state and its dependent protocol, e.g. ACC, CLO, else (-)

3 dur F Record total duration

4 sbytes I Source to destination bytes

5 dbytes I Destination to source bytes

6 sttl I Source to destination time to live

7 dttl I Destination to source time to live

8 sloss I Source packets retransmitted or dropped

9 dloss I Destination packets retransmitted or dropped

10 service N http, ftp, smtp, ssh, dns, and (-) (if not much used service)

11 sload F Source bits per second

12 dload F Destination bits per second

13 spkts I Source to destination packet count

14 dpkts I Destination to source packet count

Table 4. CONTENT FEATURES [38]

Name T Description

15 swin I Source TCP window advertisement

16 dwin I Destination TCP window advertisement

17 stcpb I Source TCP sequence number

18 dtcpb I Destination TCP sequence number

19 smean I Mean of the flow packet size transmitted by the src
20 dmean I Mean of the flow packet size transmitted by the dst
21 trans_depth I The depth into the connection of http request/response transaction

22 res_body_len I
The content size of the data transferred from the server’s http

service

Table 5. TIME FEATURES [38]

Name T Description

23 sjit F Source jitter (mSec)

32

24 djit F Destination jitter (mSec)

25 sintpkt F Source inter-packet arrival time (mSec)

26 dintpkt F Destination inter-packet arrival time (mSec)

27 tcprtt F The sum of ’synack’ and ’ackdat’ of the TCP.

28 synack F The time between the SYN and the SYN_ACK packets of the TCP.

29 ackdat F The time between the SYN_ACK and the ACK packets of the TCP.

Table 6. ADDITIONAL GENERATED FEATURES [38]

Name T Description

General purpose features

30 is_sm_ips_ports B
 If source (1) equals to destination (3) IP addresses and port

numbers (2)(4) are equal, this variable takes value 1 else 0

31 ct_state_ttl I
 Number for each state (6) according to specific range of

values for source/destination time to live (10) (11).

32 ct_flw_http_mthd I
 Number of flows that has methods such as Get and Post in

http service.

33 is_ftp_login B
 If the ftp session is accessed by user and password, then 1

else 0.

34 ct_ftp_cmd I Number of flows that has a command in ftp session.

Connection features

35 ct_srv_src I

 Number of connections that contain the same service (10)

and source address in 100 connections according to the

record last time.

36 ct_srv_dst I

 Number of connections that contain the same service (10)

and destination address in 100 connections according to the

record last time.

37 ct_dst_ltm I
 Number of connections of the same destination address in

100 connections according to the record last time.

38 ct_src_ltm I
 Number of connections of the same source address in 100

connections according to the record last time.

33

39 ct_src_dport_ltm I

 Number of connections of the same source address and the

destination port in 100 connections according to the record

last time.

40 ct_dst_sport_ltm I

 Number of connections of the same destination address

and the source port in 100 connections according to the

record last time.

41 ct_dst_src_ltm I

 Number of connections of the same source and the

destination address in 100 connections according to the

record last time.

Table 7. LABELLED FEATURES [38]

Name T
Description

43 attack_cat N

The name of each attack category. In this data set, nine categories

(e.g., Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic,

Reconnaissance, Shellcode and Worms)

44 Label B 0 for normal and 1 for attack records

Type (T.) N: nominal, I: integer, F: float, and B: binary

Table 8. DATA SET RECORD DISTRIBUTION [38]

Type
Number of

Records

Description

Normal 2,218,761 Natural transaction data.

Fuzzers 24,246
Attempting to cause a program or network suspended by

feeding it the randomly generated data.

Analysis 2,677
It contains different attacks of port scan, spam and html

files penetrations.

Backdoors 2,329
A technique in which a system security mechanism is

bypassed stealthily to access a computer or its data.

DoS 16,353
A malicious attempt to make a server or a network

resource unavailable to users, usually by temporarily

34

interrupting or suspending the services of a host

connected to the Internet.

Exploits 44,525

The attacker knows of a security problem within an

operating system or a piece of software and leverages that

knowledge by exploiting the vulnerability.

Generic 215,481

A technique works against all block- ciphers (with a given

block and key size), without consideration about the

structure of the block-cipher.

Reconnaissance 13,987
Contains all Strikes that can simulate attacks that gather

information.

Shellcode 1,511
A small piece of code used as the payload in the

exploitation of software vulnerability.

Worms 174

Attacker replicates itself in order to spread to other

computers. Often, it uses a computer network to spread

itself, relying on security failures on the target computer

to access it.

Tables 1-8 representing the features along with the descriptions taken from the official

literature [38] prepared for the UNSW-NB15 network data set.

The details of the twelve additional features presented in Table 6 are generated with the

help of matched features (e.g., Tables 2-4). Authors of the UNSW-NB15 network data

set [38] stated that those features are divided into two parts according to the nature and

purpose of the additional generated features.

1. First part (features 30-34), are considered to be general purpose features, whereby

each feature has its own purpose, according to protect the service of protocols

(defence point of view).

2. Second part (features 35-41), are labelled as connection features. that are built

from the flow of 100 record connections based on the sequential order of the last

time. The attackers might scan hosts in a capricious way. For instance, one scan

per minute or one scan per hour [39]. For this reason, those features are intended

to sort and identify these attackers accordingly.

35

Note that in Moustafa and Slay’s work [38], they described “last time” feature, also

referred to as "record last time" in Table 6. The description and information provided in

their paper is limited. For the purpose of this research, it was assumed that every

connection feature might have different record section. The experimental setup was

captured twice (16 hours and 15 hours), where was more than 100 connections, however

for each connection feature they calculated only last 100 sequential connections, indicated

as the last experiment record time. For example, packets were captured between 0h and

16h. The last 100 sequential connection for feature "ct_dst_ltm" captured between 12h to

15h, whereas last 100 sequential connection for feature "ct_srv_src" is captured between

14h to 16h. This assumption was based on the experimental setup performed by Moustafa

and Slay, but the “last time” feature is not part of their released dataset.

Current thesis utilized the UNSW-NB15 dataset obtained from the original source [5]

with total number of 82332 data points, and 42 features. Distribution of the data samples

of UNSW-NB15 dataset provided in numbers and percentage in Table 9.

Table 9. Distribution of the data instances among the label class

Type Number of instances Total In percentage

Normal 37,000 37,000 45%

Fuzzers 6,062 45,332 55%

Analysis 677

Backdoors 583

DoS 4,089

Exploits 11,132

Generic 18,871

Reconnaissance 3,496

Shellcode 378

Worms 44

3.2 Stage 2. Data Pre-processing

Data pre-processing is a vital step for ML tools that applied in the algorithm. The quality

of data which is often incomplete, inconsistent or lacking some trends or overloading,

directly influences the performance of the model and ability to derive valuable

36

information. That is why this stage is crucial before data is going to be trained and feed

to the primary algorithm model. This step is proved to transform raw data into cleaner

representation by eliminating overloading an unnecessary noise and information from the

given data set to achieve better results.

To achieve the most appropriate clean process, data needs to undergo through the few

steps before being used in the next stages. The feature selection is a significant step in the

whole process, due to its high impact on the performance of the model. This process

allows you to automatically find and process the most useful and informative features for

the learning pipeline. Not all the features work same as most informative ones, some of

the additional features affect negatively to the whole process by decreasing the speed of

computation and training, model interpretability and more importantly by reducing the

overall performance of the model.

“Feature selection is itself useful, but it mostly acts as a filter, muting out features that

aren’t useful in addition to your existing features.” [40]

Robert Neuhaus

Not all of the features obtained in the data acquisition stage equally influence the selected

models. Some of the features might have zero-importance relatively to the label class,

some profound importance. Some features might have unique value or correlate to the

model. That is why this process is used to eliminate redundant features from the data set

with less informative gain relevant for the predicting class and provide better accuracy of

the model based on the information stored in the selected variables and attributes.

3.2.1 Feature selection

In order to improve accuracy and efficiency of the classifier methods, three main feature

selection methods usually are applied [41].

1) Filter method – this method generally performs selection independently from the

classifier and doesn’t carry induction algorithms. The method involves statistical

measure or distance between the classes to assign a specific score to each feature.

The selection or removal of the feature from the further training process decided

by the scoring rank of each feature found in the data set and considered

individually or respectively to the dependent variable.

37

Some of the examples of the filter methods listed as Chi-square, Entropy, Fisher’s

score, information gain, correlation, and one-attribute rule.

2) Wrapper method – in this method classification of the features is performed to

obtain better results and performance. The process based on search algorithms,

and each combination with the set of features is evaluated to match the best

possible outcome for the concrete machine learning algorithm. However, they

tend to be slower, since it requires more considerable computational resources and

not all these proposed sets are optimal for every other machine learning algorithm.

The search process mainly divided into three categories: Forward feature

selection, Step backward feature selection, and Exhaustive feature selection. An

example of the wrapper method can be recursive feature elimination, sequential

feature selection algorithms, and genetic algorithms.

3) Embedded method – this method selects the feature based on a learning process

in each iteration of the algorithm. Each iteration is equally essential for the process

to extract those particular features that contribute the most for the training

procedure. Even though the search guided by the learning process might be similar

to the wrapper method, it follows with less computational consumption.

The most common approach for the embedder technique is decision tree

classification algorithm and another regularization method in the concept of

LASSO.

Since the wrapper method is computationally expensive and embedded model is

computationally demanding, where each iteration needs high computational resources, in

this research study, the filter method is used for the feature selection process. This method

uses independent evaluation criteria for every feature and less computational load which

flow-based network traffic would require for each separate feature selection.

The given data set includes both numerical and categorical features. However, the

inclusion of the three categorical (namely: proto, service, state) values does not affect the

overall accuracy results of detecting the label class (see Appendix 1), compared to the use

of only numerical features. Thus, it can be proven with the experiment results executed

to measure the performance of the model with all features in comparison to only

38

numerical features. In the experiment, a dataset with the 82332 data points trained and

tested using cross-validation method with 10 folds on the initially predefined five

classification models. The results for both cases remained the same both for binary

classification (around 94%) and multi-class (approximately 81%) label. For this reason,

in this thesis, only numerical features and their selection are considered.

3.2.2 Numerical feature’s selection

Binary selection of the features is major characteristics for filter-based feature selection

which helps to maximize some performance of the model. Numerous filter-based

selection criteria’s like information gain [42], Laplacian score [43], ReliefF [44] and

others were studied and proposed to be utilized in the last decades, where Fishers Score

was the most widely used one, due to its overall favorable performance [45].

The Fisher’s score intended for the numeric variables to measure the ratio of the average

interclass to the average of the intraclass separation [46]. The discriminatory power of the

attribute evaluated by the range of the score, which is calculated by the given formula:

F =
∑ 𝑝&'𝜇& − 	𝜇+

,-
&./

∑ 𝑝&𝜎&,-
&./

Where 𝜇& and 𝜎& are the mean and the standard deviation of the class j, j = 1, 2, 3 … k,

corresponding to the n-th feature. The value 𝜇 represented as the global mean of the whole

data set, and 𝑝& is the fraction of the data points belonging to the class j.

The Fisher’s score formula is applied to identify the score for each feature in respective

of the two-class label and multi-class label. All features tested with the help of decision

tree classification model and performance tested by iterating the feature with the highest

score by adding every next feature till the least ranked. No direct threshold dictates the

importance of the features to the specific model, and the scoring results might be different

for a different type of the datasets and label class. Top features selected for the training

stage are those that are higher compared to the others in the same feature set. According

to the results shown in Table 10, F score for two-class label value is relatively lower than

the multi-class label F score.

39

Fisher’s score was implemented and applied to the two-class label and multi-class label

with the distribution records of different attack types, to select potentially the best features

with the highest discriminatory value depending on the label class among all the given

features set.

The result for the two-class label and multi-class label feature ranking is given below in

Table 10. The Fisher’s (F) score applied to 39 numerical features.

Table 10. The Fisher’s score results

Ranking Feature name Two-class

label Score

Feature name Multi-class

label Score

1 sttl 0.271061 ct_dst_sport_ltm 1.069932

2 swin 0.174412 ct_srv_dst 0.916540

3 ct_dst_sport_ltm 0.168184 ct_src_dport_ltm 0.853288

4 dwin 0.132030 ct_srv_src 0.850996

5 ct_src_dport_ltm 0.120486 ct_dst_src_ltm 0.714809

6 rate 0.105343 ct_dst_ltm 0.667196

7 ct_state_ttl 0.087106 swin 0.575036

8 ct_srv_dst 0.083646 ct_src_ltm 0.547743

9 ct_srv_src 0.081759 sttl 0.500799

10 ct_dst_src_ltm 0.075949 dwin 0.490655

11 ct_src_ltm 0.074142 dttl 0.310571

12 dtcpb 0.071437 rate 0.262325

13 stcpb 0.070716 stcpb 0.245961

14 ct_dst_ltm 0.064143 dtcpb 0.244908

15 dload 0.063985 ct_state_ttl 0.164801

16 dmean 0.037995 dmean 0.117552

17 synack 0.017699 dload 0.085526

18 tcprtt 0.017568 tcprtt 0.082582

19 sload 0.012956 ackdat 0.081581

20 ackdat 0.011493 synack 0.062480

21 sinpkt 0.011102 smean 0.060272

22 is_sm_ips_ports 0.010466 sload 0.026655

23 dttl 0.008224 dur 0.019671

40

24 ct_flw_http_mthd 0.004435 ct_flw_http_mthd 0.019027

25 dpkts 0.003312 trans_depth 0.016491

26 smean 0.003114 sinpkt 0.015017

27 dloss 0.001729 is_sm_ips_ports 0.013977

28 dinpkt 0.001102 sjit 0.013635

29 dbytes 0.000929 djit 0.010410

30 spkts 0.000698 dpkts 0.009701

31 sjit 0.000607 is_ftp_login 0.009144

32 trans_depth 0.000591 ct_ftp_cmd 0.008923

33 djit 0.000588 spkts 0.007467

34 sbytes 0.000391 dinpkt 0.007049

35 ct_ftp_cmd 0.000240 dloss 0.005882

36 response_body_len 0.000229 sloss 0.004907

37 is_ftp_login 0.000215 sbytes 0.004137

38 sloss 0.000037 dbytes 0.003909

39 dur 0.000001 response_body_len 0.001099

As can be noted from Table 10, some of the features having the highest score depending

on the label class are similar. Namely, those features are ct_dst_sport_ltm and

ct_src_dport_ltm that belongs to the group of connection features and having

characteristics for evaluating number of connections between source/destination and

destination/source ports for the last time among 100 connections.

Both features are holding almost the same characteristics differing only in the source and

destination ports represented in Table 11.

Table 11. Matching top features for both scenarios (binary, multi)

ct_src_dport_ltm

No of connections of the same source address and the

destination port in 100 connections according to the last

time.

Integer

ct_dst_sport_ltm

No of connections of the same destination address and

the source port in 100 connections according to the last

time.

Integer

41

According to the multi-class label (Normal, Fuzzers, Analysis, Backdoors, DoS, Exploits,

Generic, Reconnaissance, Shellcode and Worms) the most discriminative highest ranked

6 features (ct_dst_sport_ltm, ct_srv_dst, ct_src_dport_ltm, ct_srv_src, ct_dst_src_ltm,

ct_dst_ltm) are considered and labeled as connection features. Those features are

provided in the dataset for defense phase during the attempt depending on the connection

scenarios [38]. According to the various scenarios, unpredictable way of scanning the

host could be used by attackers, where some of them can take once per minute and others

one scan per hour [39]. For this reason, connection features were created and extracted to

the database to capture similar characteristics of the connection records for the last 100

connections.

As it was mentioned formerly scoring value of two most discriminative features

(ct_dst_sport_ltm, ct_src_dport_ltm) are similar in two-class and multi-class label

scenarios. Scoring value is obtained from Fisher’s score ranking. However, the other four

features named as sttl, swin, dwin and rate belong to the content features and basic

features. Those features are mostly representing the integrated gathered information from

the data packets. Those features are described in Tables 2-6 as Source/Destination TCP

window advertisement and source to destination time to live.

Nevertheless, different groups of features are candidates for best discriminatory power, it

was also noted that almost all the connection features created to analyze the defense stage

during the attempt are getting the higher results compared to the other features. All of the

connection features have a threshold of 0,06 and 0,24 for two-class and multi-class label

respectively, and thus affecting the better accuracy results on the supervised

classification, which described in the section 3.3.

3.3 Stage 3. Classification, Training

After settling with the dataset, data pre-processing, getting the most discriminative

features by applying appropriate feature selection criteria and hypothetical testing the

obtained input is ready for the next stage. In this stage, an input is ready to be processed

and fed to the machine learning classification models. Different models were used to build

an appropriate algorithm and compare performance results using classification algorithms

with the help of supervised, semi-supervised and active learning approaches.

42

In the current thesis, the primary approach of botnet detection is achieved by active

machine learning algorithms. However, supervised unsupervised and semi-supervised

algorithms with the combination of different classification problems are also applied in

or order to evaluate the difference and analyze the performance of each separate way.

Dataset provides labeled samples to characterize attributes as normal network traffic and

anomaly behaviors, whereas nine different attributes for each instance describe anomaly

behavior. Malicious and normal traffic are measured with the numerical value 0 for

normal and 1 for botnet, while separate instances within anomaly traffic are defined by

the categorical value, identifying attack type. Thus, brings the classification problem to

discriminate between two classes or label samples, as normal and anomaly (0 and 1), and

between multi-class as normal and type of the attack vectors (Fuzzers, Analysis,

Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms).

To achieve a classification of assigned one or more predefined categories, some instances

from a given dataset should be used to train the model and the rest for testing or validation

process. Depending on the problem training data is provided with fully labeled instances

for supervised learning or with few labeled instances (dataset has labeled and unlabeled

instances) for semi-supervised and active learning, while testing data is used to predict

the label class. After the process is completed original labels and predicted instances are

analyzed and compared to provide the performance of excellent and lousy classification

practice. In supervised learning, dataset with fully labeled instances is mostly split into

training with a ratio of 70% to train the model and testing part with the rest of 30% to test

the model. For the semi-supervised and active learning labeled samples for training stage

might vary from 1% to 99%, depending on the desired performance and number of

instances. Following this process, the performance of the evaluation is determined.

Another similar but more complicated approach can be achieved with the help of K-fold

Cross Validation, whereas data is divided into folds ensuring that every fold is used both

as training and testing sets at some point. K-fold Cross Validation split data into k number

of sections/folds and performs k iterations where the current iteration used to test the

model and rest to train. The process repeats until every iteration has used given fold as a

testing set. This approach provides better performance results compared to splitting the

data into 70/30. In the current thesis work, both methods applied in different machine

learning techniques.

43

In the testing experiment using a supervised classification approach, the most competitive

five classification models were chosen. After initial analysis and performance of the

models in detecting the label class XGBoost, Decision Tree and Random Forest gave

overall better and similar results. As a result, the next stages of this thesis, utilized those

models in experimental testing scenarios for semi-supervised and active learning

algorithms.

3.3.1 Decision Tree algorithms

Decision tree algorithms are the most popular machine learning algorithms that fall under

supervised learning and can be used both for solving regression and classification

problems. Decision trees are easy to understand for human-level thinking and use the tree

representation to solve the problem in which each node represents a feature (attribute),

each branch represents a decision, and leaf node corresponds to an outcome (label class).

The whole idea lies in creating a tree for the entire given data and process every result in

the leaf by minimizing the possible error.

The decision tree has different ways to identify the attribute for the root node in each

level. There are two primary attribute selection methods which are:

1. Information Gain - a measure of the change in the entropy when the root node in

a decision tree for every level decided after the partition of the training instances

into smaller subsets. Entropy is a standard measurement of the uncertainty of a

random variable, and it characterizes the impurity of an arbitrary collection of

examples. The higher the entropy more the information content.

2. Gini Index - a metric to measure how often a randomly chosen element would be

incorrectly identified. Thus, followed by the usage of the lowest Gini in each split.

Sklearn supports both criteria’s, however, uses Gini index as a default measure to

calculate the root node.

Below, there is a simple visualization of the decision tree, based on the botnet and normal

traffic with the help of the top ranked (Fisher’s score) three features for binary

classification. To visualize small tree only 40 entries from the original data set are used.

44

Figure 8. Example of simple Decision Tree based on the botnet and normal network
traffic

Like all other models, Decision Trees has advantages and disadvantages for problem-

solving as listed below.

Pros:

• Easy to understand, interpret, generate rules, visualize and draw

• Deals well with noise or incomplete data

• Can be used both for regression and classification problems

• Suitable both for categorical and numerical data

• Handles both binary and multi-class output problems

• Validation of the model can be achieved by using quantitative analysis and

statistical tests, which makes the reliable decision model leading to good

predictive results.

Cons:

• Instability, where small changes in the data lead to a significant difference in the

model

45

• Overfitting, low bias but high variance, performance decreases or fails on testing

data (unseen data) even if the score on the training data shown as highly accurate.

This happens when the decision tree tries to fit all samples into training data by

creating multiple branches with strict rules, which fails on training data. Thus, can

be improved with the pruning method, where some branches of the tree tend to be

removed.

• Complexity, decision trees are easy to use, however, decision making on the

extensive data makes trees complex including many branches and time-

consuming

• Cost, where large decision trees require advanced knowledge in quantitative and

statistical analysis.

In the experimental setup of this thesis, all required functions to build the decision tree

model using the classification problem were archived by using the scikit-learn Python

library package.

3.3.2 Random Forest

Random Forest is easy to use and flexible machine learning algorithm that produces good

performance result. Random Forest is a supervised learning algorithm used both for

classification and regression tasks. Random Forest creates a forest, which is an ensemble

of Decision Trees, by adding additional randomness and trains the model by merging

decision trees to get more accurate and stable prediction results.

The model offers excellent performance and diversity in the results obtained from training

by searching the best feature among the subset for the features, rather than searching for

the most essential feature when splitting a node. Therefore, in Random Forest, only a

random subset of the features is taken into consideration by the algorithm for splitting a

node. Trees can become more random, by additionally using arbitrary thresholds for each

feature rather than searching for the best possible limits (comparing to the decision tree

methods).

Like every other model there are Pros and Cons of the Random Forest as followed below:

Advantages:

• Works correctly for more extensive data items, due to having fewer variances

46

• Flexible, provides high accuracy results

• Preparation of the input and data scaling are not required

• Accuracy maintained even if massive data proportions are missing

• The process of averaging and combining the results obtained from different

decision trees helps to solve the overfitting problem.

Disadvantages:

• Complexity: Harder to follow, not easily interpretable and time-consuming than

constructing decision trees

• Requires more computational resources and are less intuitive.

• The prediction process is slow (time-consuming)

3.3.3 XGBOOST

 “The name xgboost, though, actually refers to the engineering goal to push the limit of

computations resources for boosted tree algorithms. Which is the reason why many

people use xgboost” [47]

- Tianqi Chen

XGBoost is an optimized distributed gradient boosting library designed to be highly

efficient, flexible and portable [25]. Gradient Boosting framework is used to implement

machine learning algorithms. Many data science problems solved in a fast and accurate

way under XGBoost, which provides a parallel tree boosting. In its turn gradient boosting

is a machine learning technique for regression and classification problems. It produces a

prediction model in the form of weak prediction models, generally decision trees.

XGBoost belongs to a broader collection of tools under the Distributed Machine Learning

Community or DMLC, the creators of the popular MXNet [48] deep learning library.

XGBoost is a software library that can be downloaded and installed on the machine and

accessed from a variety of interfaces. In this thesis, XGBoost library is used and

implemented under Python interface in scikit-learn.

The main reasons for the utilization XGBoost in the project are the execution speed and

model performance. Compared to the other gradient boosting implementations XGBoost

is very fast. Regarding to the performance of the model, XGBoost was a winner in the

most of Machine learning competitions providing the highest performance results. Even

47

though the library mainly focuses on computational speed and model performance, it also

offers many advanced features that are described as Model Features, System Features,

and Algorithm Features.

Model Features

Scikit-learn supports the implementation of the features in the model with some

regularization. Three primary forms of gradient boosting features that supported are

described below:

1. Gradient Boosting algorithm also known as gradient boosting machine including

the learning speed.

2. Stochastic Gradient Boosting includes subsample in a row, column, and a column

for separate levels.

3. Regularized Gradient Boosting contains L1 and L2 regularization.

System Features

The library provides the usage to a system in a variety of computing environments:

• All CPU cores uses the parallelization tree construction while training.

• Distributed Computing for training huge models utilizing a cluster of machines.

• Out-of-Core Computing for extensive datasets that do not fit into the memory.

• Optimization of the data structure cache and algorithm for the best use of hardware

equipment.

Algorithm Features

The implementation of the algorithm was designed to calculate time and memory

resources efficiently. The purpose of the development was to maximize the use of

available resources for the training stage of the model. Some key features of the

implementation of the algorithm include:

• Sparse Aware deployment with automatic process of missing data values.

• Block Structure supports the parallelization of tree construction.

• Continuous Training for further boost in already fitted model with new data.

48

• XGBoost is free, open source software available for use under the Apache-2

license.

In the present thesis, XGBClassifier is utilized in different training and testing scenarios

under the Python interface in scikit-learn.

3.4 Stage 4. Performance Evaluation Metrics

In order to classify obtained results as poor or satisfying, evaluation of the machine

learning algorithms is essential. Several classification metrics are used to ensure

expectations for the detection performance and efficiency of the experimental setups.

The fundamental quantities used in the definitions of performance criteria, where N is a

number of classifications, are as follows:

Table 12. Confusion Matrix

 Labels returned by the classifier

positive negative

True labels positive NTP NFN

negative NFP NTN

3.4.1 Correct and Incorrect Classification

When testing a classifier on a defined sample, those four fundamental quantities used:

• The example is positive, and the classifier correctly recognizes it as such (true

positive);

• The case is negative, and the classifier correctly identifies it as such (true

negative);

• The example is positive, but the classifier labels it as negative (false positive);

• The case is negative, but the classifier labels it as positive (false negative);

The following definitions are originally from [49].

49

3.4.2 Classification Metrics and Performance Evaluation

3.4.2.1 Error Rate and Classification Accuracy

One of the primary and fundamental detection performance metrics used in supervised

learning algorithms is error rate and classification accuracy as stated from the name. It is

calculated by diving either correct classification or frequency of the errors by the total

number of given samples.

𝐸 = 	
𝑁34 +	𝑁36

𝑁34 +	𝑁36 +	𝑁74 +	𝑁76

𝐴𝑐𝑐 = 	
𝑁74 +	𝑁76

𝑁34 +	𝑁36 +	𝑁74 +	𝑁76

Acc = 1 – E

|T| =NFP + NFN + NTP + NTN (size of the set)

Classification accuracy is the ratio of number of correct predictions to the total number

of input samples. Accuracy metric works well, when the data set has equal number of

samples belonging to each class. Accuracy is considered as the most common and

universal performance metric for classification problems measured by using

straightforward and intuitive way. However, both accuracy and error rate can give a poor

measure results for imbalanced data. Hence, there is an opinion that accuracy is improper

scoring rules [50] for imbalanced data (with different numbers of samples belonging to

each class, whereas one class considered to be on the much higher side than the others).

For this reason, many authors in [7] [9] used these metrics used along with the Precision

and Recall giving broader performance overview of the experiment for imbalanced data.

3.4.2.2 Precision and Recall

Some datasets most commonly have a higher amount of negative results than positive. In

this sense, calculating the error rate might misdirect the classification performance. For

this reason, calculating the ratio of items classified as positive (X) among all examples

which are labeled as X is more sensible. Showing the probability that the classifier is

right is called Precision (Pr) or Positive Predictive Value (PVV) and achieved by the

following equation:

50

𝑃𝑟 = 	
𝑁74

𝑁34 +	𝑁74

Another way of phrasing the Precision is to say, that calculation of the probability

classifier is right when labeling an example as positive [49]. Holding this meaning

precision calculation can be used for a multi-class problem considering unsupervised and

semi-supervised algorithm approaches.

3.4.2.3 Sensitivity and Specificity

Another way to assess the performance of the algorithm is to define the probability of

positive examples among all positive cases in the set. But, since the particular choice of

the criteria might influence the given application area, sensitivity and specificity are

accustomed as Recall measured on positive and negative examples which represented as

following formulas:

Sensitivity or Recall measured on positive examples:

𝑆𝑒 = 	
𝑁74

𝑁36 +	𝑁74

Specificity or Recall measured on negative examples:

𝑆𝑝 = 	
𝑁76

𝑁34 +	𝑁76

3.4.2.4 Combination of Precision and Recall

Sometimes when the desired outcome cannot be decided on an exact parameter, neural

value combination of precisions and recall is used. Authors of [7] have chosen this method

as one of the performance evaluation metrics to measure various algorithms used in their

work.

𝐹/ = 	
2 ∗ 𝑃𝑟 ∗ 𝑅𝑒
	𝑃𝑟 + 𝑅𝑒

3.4.2.5 ROC and AUC Curves

Another performance measurement is AUC ROC Curves. In binary and multi-class

classification problems, where specific parameters can modify NFP and NFN, it highly

51

predicted that the overall classifier behavior could be affected and improved by tweaking

particular settings (parameters). This logic is used when a user is sure about specific

quantities and which focus is more critical for the training dataset. According to “Towards

Data Science” blog, when it comes to label samples with various threshold settings, “AUC

(Area Under the Curve) ROC (Receiver Operating Characteristics) curve is the most

important evaluation metric for checking any classification model's performance because

it tells how much model is capable to distinguishing between classes." [51]. Naturally, it

works by distinguishing between classes by predicting positive or negative labeling

supported by evidence of nearest neighbors’ classification.

3.4.3 Selected Performance Metrics

Since, the data set utilized in this research has more balanced prediction class with similar

amount of normal and botnet samples, accuracy evaluation metrics are performed in all

experimental setups in this master thesis. In addition, confusion matrix was applied in

active learning experiments, to be able to see a full range of the positive and negative

samples for a correct label returned from the training phase. Nevertheless, some of the

evaluation metric described above used in different parts of training, validation and

analysis stage. Accuracy was decided as primary metric for evaluating the final result and

visualize the graphs obtained from the process.

52

4 Botnet Detection: Practical Implementation

To obtain a proper botnet detection, machine learning (classification) algorithm/model,

implementation was performed on the Python programming language as a base. Scikit-

learn library [52] and supportive libraries like panda [53] were additionally used for some

mathematical equations. According to the official documentation, scikit-learn is an open

source, freely accessible for everyone, simple and efficient tool for data mining and data

analysis [52]. This library is reusable in various contexts and build on widely used

numerical and scientific libraries like NumPy, SciPy, and matplotlib. Scikit-learn has the

features and functionality of providing resources for Classification, Regression,

Clustering, Pre-processing, Model selection, and Dimensionality Reduction [52]. In this

thesis the power of Scikit-learn used as the main library for designing the machine

learning algorithm. Data pre-processing and training stages are achieved on the base of

Scikit-learn library, with the use of classification models (Decision Tree, Random Forest,

XGBoost). Testing and validation that were implemented on the same base and provided

systematic performance outputs. The workflow architecture presented in Figure 9.

Figure 9. Implementation Architecture

53

4.1 Selected numerical features for botnet detection

In the previous stages, it was described that Fisher’s score applied to the 39 numerical

features. 19 (see Figure 10) of them were proven potentially good with discriminative

power in respect of binary class and multi-class supervised classification. The dataset

with the 82332 samples was used to train and test the Decision Tree model (model chosen

arbitrary). Sklearn train_test_split technique with 70% training and 30% testing data and

cross-validation method with 10 folds were applied.

All features from the highest rank to the lowest were classified to identify the statistical

probability of distribution and effect on the accuracy of the desired label and prediction

results. Results are obtained by splitting the data into training 70% and testing 30% sets

with the help of train_test_split function and cross-validation method by folding the data

10 times. Results of classification using supervised Decision Tree model are given in

Figure 10 both for binary and multi-class. The difference in accuracy for both ways can

be seen by mostly 2 %. However, the results are primarily the same, which can be

visualized from the graphs represented below.

Figure 10. Accuracy performance results for both binary and multi class

As can be seen from the graph above, the accuracy results for the binary class are mostly

stable after applying 19 and more features. Those top most informative 19 features are

involved in the further stages of training and classification for the binary class task to

54

reduce overfitting of the selected models. Additional graphs with separate label class are

provided in Appendix 2.

For multi-class label accuracy results are fluctuating more on the same scale after

applying 21 highest ranked numerical features. In the same way, next stages of the

experimental setup utilized those top 21 features according to the Fisher’s score ranking.

In both scenarios (binary and multi) the firsts breakout can be seen from the graph after

applying 9 top features, reaching the accuracy around 80% for multi-class and 90% for

binary class, dominated by the connection features.

Table 13 shows the accuracy metrics for each different range and set of features according

to their highest discriminative score to the label class.

Table 13. Accuracy metrics of the model trained with top numerical features

Number of features Binary classification

(normal, anomaly)

Multi-class classification

(normal and attack types)

 Cross

validation

Train test

split

Cross

validation

Train test

split

Best feature 76.63 76.57 65.43 65.51

3 best features 80.12 80.80 67.41 69.10

10 best features 91.74 93.76 77.73 80.96

19 best features 93.44 95.51 77.51 81.62

21 best features 93.31 95.23 80.95 84.57

All features 93.88 96.26 81.56 85.03

Table 13 shows that:

• The highest ranked single feature (which is different for the binary and multi-

class) is capable to identify the botnet in the network flow by 76% in the binary

classification and 65% in the multi-class. Even though, the performance results

are different and relatively low, it is still good indicator for the binary

classification.

55

• Discriminative power gradually increases in both cases with the addition of the

next essential features. By training the model with the most three discriminative

features the accuracy reached 80% in binary class and 67-69% in the multi-class.

• Visible accuracy improvements for binary class label were noted when top valued

10 features were included in the training stage. Accuracy metrics increased by

10% compared to the 3 feature accuracy metrics. However, for multi-class label

the results kept almost on the same scale with 2-3% of fluctuation.

• Gradual improvements for the multi-class label were introduced while training

model with the 21 best features proving the accuracy results in 84%. The results

are mostly stable after including the rest of the features.

• The best result according to the training stage for two-class label hit the record

with 93-95% kept from 19 most important features until the full feature set in the

training process.

4.2 Classification algorithms

As stated in the background part, the main idea for machine learning classification

algorithms is to categorize given data into desired and distinct number of classes.

Since there are many options to build a classification model, some of the critical elements

need to be compared with others in order to choose the most convenient one for the

desired problem to be solved. The list of those characteristics are explained below:

• Prediction Accuracy, determining the ability to estimate the correct prediction of

the testing samples.

• Speed, determining the computational cost and time to process the data.

• Scalability, determining the amount of training data to estimate the parameters.

• Interpretability, determining the level of the interpretation of understanding the

model.

56

• Simplicity, addressing the level of complexity of the model. The ability to be less

complicated without losing its efficiency on the performance.

For the initial model testing purpose, XGBoost (XGB), Decision Tree (DT), K-Nearest

Neighbor (KNN), Random Forest (RF), Linear Regression (LR) selected as competing

and most referred [54] [55] [56] models. Those models commonly used for predicting the

anomaly and provides excellent feedback. However, to identify the most appropriate one

for the specified and selected data set, the results of the given models need to be compared

and evaluated. To choose the best for the further training, these five models are trained

and tested using cross-validation method with 10 folds both for binary and multi-class

label classification. Accuracy was defined as the primary and common performance

evaluation metrics in both cases. For this test 44 features and 82332 instances are used.

The results presented in Table 14.

Table 14. Performance results for different models

Scenario/Models Binary Classification Multi class classification

 Accuracy Recall Precision Accuracy

XGB 94.76 95.36 95.35 84.04

DT 94.16 95.50 94.25 81.99

KNN 87.79 87.33 90.54 75.47

RF 95.74 95.39 97.24 83.63

LR 86.18 87.85 88.23 74.04

In this testing experiment the most competitive classification models were chosen using

a supervised classification approach. As shown in Table 14, XGBoost, Decision Tree and

Random Forest gave overall better and similar results. As a result, on the next stages of

this thesis, those models will be utilized in experimental testing scenarios with semi-

supervised and active learning algorithms.

57

Next testing scenario was implemented to identify separability of the data by visualizing

it in the three-dimensional plot. For this case, three previously selected models and top 3

features based on the Fisher's score raking were used. Different scenarios described in

Table 14 along with the performance results and the plot graphs are represented in Figures

12 - 24. The cross-validation approaches training and testing with k=10. In multi-class

problems only accuracy metric is used, since multiclass format is not supported in scikit

cross-validation calculation technique.

Table 15. Performance results of the modes according to the given scenarios

Scenario/Models XGB DT RF

Scenario 1: Binary class

Top three features

(sttl, swin, ct_dst_sport_ltm)

Accuracy: 81.72

Recall: 79.76

Precision: 84.34

Accuracy: 82.28

Recall: 79.79

Precision: 84.32

Accuracy: 82.28

Recall: 79.76

Precision: 84.36

Scenario 2: Multi class

Top three features

(ct_src_dport_ltm,

ct_dst_sport_ltm,

ct_srv_dst)

Accuracy: 67.69

Accuracy: 67.49

Accuracy: 67.61

Scenario 3: Binary class

Random three features (from

top 19) (dpkts, rate, sttl)

Accuracy: 82.25

Recall: 84.46

Precision: 83.53

Accuracy: 81.58

Recall: 88.35

Precision: 82.93

Accuracy: 81.75

Recall: 87.95

Precision: 82.91

Scenario 4: Multi class

Random three features (from

top 19) (dpkts, rate, sttl)

Accuracy: 66.92

Accuracy: 63.07

Accuracy: 63.36

Figure 11 - 14 represents the scatter plot with the set of different three features defined in

the Scenarios. Original label class of the data points and classification results of XGBoost,

Decision Tree and Random Forest models are provided. All the scatter graphs with

different sets of features were attached in Appendix 3.

As can be stated from figures represented below, network traffic with normal (green) and

malicious (red) behavior using sttl, rate, and dpkts features, provides a good separability

with a minimal collision of the data points by creating layers and rows. For multi-class

58

scenario shown in Figure 11 and Figure 12 data separability can also be noted. However,

some collisions between attack types are kept.

Figure 11. Scenario 2. Original data labels

Figure 12. Scenario 2. XGB prediction results

59

Figure 13. Scenario 3. Original data labels

Figure 14. Scenario 3. XGB prediction results

60

4.3 Unsupervised Learning

At this point, unsupervised learning was applied to identify if there is a natural ability of

data points to cluster. For this reason, testing scenario utilizes Clustering method, which

allows splitting the dataset into groups according to the most common similarity.

Identifying different groups will help to see the separability of the data points and

threshold segments. DBSCAN provides excellent results in separating clusters of high

density over low density. For this reason, it was utilized to see the possible separability

of the data points into clusters/groups. In this thesis, DBSCAN was applied only for

graphical demonstration of data points separability.

Experiment with the use of unsupervised learning was performed to understand the

separability of the data points regarding the label class and to analyze results for a better

understanding of the data set. To approach data point separability results and plot the

scatter graphs, only three different features according to the specified scenarios were

used.

The application of DBSCAN results are not considered in the active learning algorithm.

However, this method can be studied separately as a different technique, which requires

different scope of outline analysis. For the future studies, unsupervised clustering can be

studied deeply as a separate subject and considered as one of the ways to approach similar

study.

4.3.1 DBSCAN Clustering

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a popular

clustering algorithm used to separate clusters of high density from clusters of low density.

DBSCAN divides the dataset into n dimensions, and for each data point, it forms an n-

dimensional shape around that point. This shape was defined as a cluster and each cluster

expands iteratively by counting the number of nearest data points. The density of each

region classified into core, border and noise points. The explanation of each point taken

from [46] and as follows:

1. Core point: A data point is defined as a core point if it contains at least τ data

points. Where τ (minimum points within ε (eps) distance) is a threshold for the

number of the data points in the same neighborhood.

61

2. Border point: data point is defined as a border point if it contains less than τ points

(minimum points within ε (eps) distance), but it also includes at least one core

point within a radius Eps. Epsilon (Eps) is the radius given to test the distance

between data points.

3. Noise point: A data point that is neither a core point nor a border point.

The silhouette coefficient achieves cluster validation since it provides a good intuitive feel

of the clustering quality. The overall silhouette coefficient is the average of the data point-

specific coefficients. It is calculated by the given formula where Davgiin in is the average

distance of Xi to data points within the cluster of Xi. And Dminiout represent the minimum

of these (average) distances, over the other clusters [46].

𝑆A = 	
𝐷𝑚𝑖𝑛AFGH −	𝐷𝑎𝑣𝑔AAL

𝑚𝑎𝑥N𝐷𝑚𝑖𝑛AFGH, 𝐷𝑎𝑣𝑔AALP

The scikit-learn implementation doesn’t require some clusters as an input to run the code.

However, it provides a default value of 0.5 for the eps parameter, which can be tuned to

get the desired number of clusters.

For this implementation, Eps parameter tuned to get several clusters closer to the original

multi-label class given in the labeled dataset. Since the active learning approach does

require some labeled data, eps parameter can be tuned easily according to the essential

problem. For existing task, Eps value was tuned, to obtain the closest number of clusters

that are already given in the data set. Since, this experimental part was not included in the

active learning study, binary classification scenario was eliminated from the current

experiment. The initial idea of performing this experiment, aimed to see the ability of data

points to group into natural clusters. For this reason, only multi-class label experiment

was conducted, since all groups of nine synthetic attack types belong to anomaly traffic

which is denoted as 1 in the binary label class.

To compare results the same three features from previous scenarios are applied to get the

output results and three-dimensional scatter plot. Table 16 describes the results including

Silhouette Coefficient for the DBSCAN. All calculations are estimated compared to the

multi-class label. In an estimated number of clusters, noise is ignored, if present.

62

Table 16. DBSCAN results for given scenarios

Scenario Sceanrio 1:
Top three features
(sttl, swin,
ct_dst_sport_ltm)
Eps: 0.46

Scenario 2:
Top three features
(ct_src_dport_ltm,
ct_dst_sport_ltm,
ct_srv_dst)
Eps: 0.36

Scenario 3:
Random three features
(from top 19) (dpkts,
rate, sttl)
Eps: 0.49

Results Estimated number of
clusters: 8
Homogeneity: 0.266
Completeness: 0.331
V-measure: 0.295
Adjusted Rand Index:
0.164
Adjusted Mutual
Information: 0.266

Estimated number of
clusters: 9
Homogeneity: 0.003
Completeness: 0.160
V-measure: 0.006
Adjusted Rand Index:
0.001
Adjusted Mutual
Information: 0.003

Estimated number of
clusters: 10
Homogeneity: 0.196
Completeness: 0.311
V-measure: 0.240
Adjusted Rand Index:
0.029
Adjusted Mutual
Information: 0.196

 Silhouette
Coefficient: 0.464

Silhouette Coefficient:
0.518

Silhouette Coefficient:
0.231

Figure 15. DBSCAN clustering results for Scenario 3

63

As can be seen from the scatter plot presented in Figure 15, data points separability is

quite similar to the original layers. However, the exact label points cannot be identified

easily with the help of clustering, which makes the algorithm less effective compared to

the supervised, semi-supervised and active learning. Especially in the active learning

querying the most informative data points for expert labeling purpose notably improves

the detection of the classified labels. Additional Figures with plotted graphs for mentioned

scenarios are provided in Appendix 4.

4.4 Semi-supervised Learning

Semi-supervised learning deals with the limited labeled samples in the training data. The

combination of supervised and unsupervised methods, semi-supervised learning provides

almost the same or even better accuracy results considering the small number of labeled

data and a large amount of unlabeled data.

Some of the semi-supervised methods described below:

In semi-supervised classification, several approaches described below have been

proposed in addressing the problem:

• Label Propagation algorithm assigns labels to previously unlabeled samples

based on the labels that the neighboring nodes possess. Obtained labels are

propagated to the unlabeled points throughout the algorithm. The disadvantage is

that it produces no unique solution, but an aggregate of many solutions [57].

• The Co-training algorithm requires two views of the data to provide different,

complementary information about the instance by assuming each described

example using two different feature sets. For each view, co-training learns a

separate classifier by using any labeled instances. Later, the most confident

predictions of each classifier on the unlabeled data were used to construct

additional labeled training data iteratively [58]. Co-training works only if one of

the classifiers correctly labels a chunk of data that the other classifier previously

misclassified, which doesn’t fit in the logic being performed in the current thesis.

• Pseudo-Labelling also referred to as Self-training builds a model on the labeled

data to estimate labels for the unlabeled pool. Later, the model re-build on the

64

“pseudo-labeled” unlabeled data and the labeled data. The process can be repeated

if necessary. This setting, effectively practicing Entropy Regularization

(encourages the classifier to make confident predictions on unlabeled data).

Among all possible methods, Pseudo Labeling [59] was defined as a simple and efficient

method to do semi-supervised learning. This method combines almost all neural network

and other training models to get Pseudo-Label. The unlabeled data used to predict the

pseudo-labels as an output. Performed predictions don’t provide entirely correct pseudo-

labels. However, they give quite accurate labels, which can be seen from the training

results of fully supervised learning validations metrics. Pseudo-Label for each unlabeled

sample was picked from the class with the highest predicted probability according to the

training model. Then, Pseudo-Labels were identified as the target class for unlabeled data

as if they were correct labels.

The algorithm was re-trained in the supervised learning mode with the obtained results in

a combination of the real label class. Several pseudo-label samples can be tuned, and

validation metrics compared with the entire right labeled samples training, mix according

to the predefined ration and fully pseudo-labeled samples training.

4.5 Active learning

“Active Learning is a special case of Machine Learning in which a learning algorithm is

able to interactively query the user to obtain the desired outputs at new data points.” [60]

The main idea of active learning is to provide better performance with less training data

while being allowed to choose data from which it learns. Active learning is also called

“query learning” where the learner queries the sample from the unlabeled data pool for

labeling purpose. Each queried sample is labeled by the “oracle” (human expert) to solve

the assigned task and train the defined model. This approach is well adopted in data

mining, artificial intelligence and other modern machine learning algorithms and

techniques where labeled data is not readily available, expensive or time-consuming to

obtain.

In different scenarios, getting few labels such as defining spam email by marking it, may

improve the filtering in applications to avoid unwanted emails. Every flag or mark is

considered as a label for the data, which promotes the screening of daily used tools and

65

software. However, it is not always easy to obtain malicious or anomalous network traffic

labels, due to its vague nature and continuous reconstruction.

4.5.1 Active Learning Scenarios

Active learning provides several scenarios, where the active learner requests the labels of

the instances by querying the data. The main three methods that are considered in active

learning literature are:

• Membership Query Synthesis: when learner generates or constructs an instance

and, this generated sample is sent to the oracle for labeling. See Figure 16 for the

illustration of this scenario.

Figure 16. Membership Query Method

• Stream-Based Selective Sampling: when each unlabeled instance is considered

separately, based on the assumptions that obtaining an unlabeled sample is free.

This allows the learner to determine whether every single query coming one at a

time needs to be labeled or discarded based on its informativeness. The

informativeness of the instance identified with the query strategy is described in

the section 4.5.2. For illustration see Figure 17.

Figure 17. Stream-Based Selection Method

66

• Pool-Based sampling: this scenario assumes that chosen samples are from a large

pool of unlabeled data, for the labeling purpose. Instances are then selected from

the pool according to the predefined informativeness measure. This measure is

applied to all samples in the pool and most informative ones are selected.

Following this scenario, all unlabeled samples are ranked and the best (most

educational) instances chosen for the label query. This is the most common

scenario used in active learning literature. In this case, queries are not discarded

or rejected compared to the previous example. For illustration see Figure 18.

Figure 18. Pool-based sampling scenario

As it can be seen from different scenarios, querying the instances requires informativeness

measures of the unlabeled instances. This is the crucial difference between active and

passive learning process. In passive learning, the set of instances or the label class are

fixed, whereas in active learning it can be decided.

Learning process usually starts with a small number of labeled instances in the training

set. In the pool-based active learning cycle, learning algorithm requests for labels for one

or more carefully selected instances and then learns from the results of the query. This

knowledge then leveraged to select which instances to query next. Alternative ways to

query label class, such as Membership Query Sampling and Stream-Based Selective

Sampling, were briefly explained above (see section 4.5.1).

Usually there are no additional assumptions on the part of the learning algorithm once a

query has been made. The new labeled instance is simply added to the labeled set, from

which the learning proceeds in a standard supervised manner.

Active learning can be also combined with semi-supervised learning to provide

alternative way of solving the problem.

67

According to the Active Literature learning Survey by Burr Settles, pool-based scenario

is referenced in many literatures, and is more common for classification problems studied

in real-world problems with reasonable outcome [60]. For this reason, in this study, the

pool-based scenario is adopted along with several query strategies.

4.5.2 Query Strategy

All active learning scenarios involve evaluating the informativeness of unlabeled

instances, which can either be generated or sampled from a given distribution. There are

some proposed ways of formulating such query strategies in the literature. An overview

for the most known ones is given below:

• Random sampling: the data points or samples are randomly selected from the

validation set

• Uncertainty sampling: the algorithm selects the most uncertain class instances to

the label. Different resources also call this method as Least Confidence (least

confidence in its most likely label)

• Margin Sampling: in this scenario, the algorithm selects the instances with the

smallest difference between the first and second probable label class.

• Entropy Sampling: in this case entropy formula is applied to each instance, and

instance with the highest entropy is selected. Entropy formula is given below,

where pi is frequentist probability of an element/class ‘i’ in the data:

𝐸(𝑆) =S−𝑝A𝑙𝑜𝑔,𝑝A

V

A./

Uncertainty sampling is less effective in complex structured instances, such as sequences

and trees [61]. Since this work focuses on evaluating Decision Tree, Random Forest and

XGBoost, then uncertainty sampling was not considered in the active learning

experimental part of this study. All other sampling techniques such as Random sampling,

Margin Sampling and Entropy Sampling are included in the practical experiment under

Pool-based scenario.

68

Furthermore, software companies and large-scale research projects such as CiteSeer,

Google, IBM, Microsoft, and Siemens are increasingly using active learning technologies

in a variety of real-world applications [60]. However, published results in botnet detection

and industry adoption are not sufficient to indicate how active learning methods are used

in practice.

In most active learning works, there is an assumption that the quality of labeled data is

high. However, when labels come from an empirical experiment (e.g., in biological,

chemical, or clinical studies), noise resulted from the instrumentation of experimental

setting is mostly expected. Even when labels acquired from human experts, variability in

the quality of their annotations might be introduced, for several reasons:

• When instances are implicitly difficult for people and machines

• Distraction

• Misclassification due to fatigue

For this reason, annotations obtained from machines and experts need to “average”

different level of noise and show that both true instance labels and individual oracle

qualities that can be estimated. Subsequent iterations of active learning can be improved,

where these estimates considered to request for only reliable annotators.

There are still many open research questions in the context of these lines. They can be

only addressed if more studies will be conducted in active learning including true label

and noisy oracle scenarios.

For this reason, this master’s thesis includes experiments with true label and different

levels of noise in the label class queried from the expert. The study will help analyze the

tolerable results, where few exceptions can be made. Besides, it will provide the required

level of expertise for the annotator/oracle.

69

5 Botnet Detection: Model Implementation Analysis

This section is dedicated to present the testing results and analysis for supervised, semi-

supervised and active learning algorithm implantations: both binary and multi-class

classifiers included in the implantation stage. Testing results are evaluated and presented

in comparison with the different models and algorithms applied.

5.1 Semi-supervised algorithm results for botnet detection

As it was stated above, semi-supervised learning is the part of machine learning where a

small amount of labeled data with a large number of unlabeled data are used to train the

models. Due to the lack of labeled data, high cost and time resources the input dataset for

the machine learning algorithms can consist of many unlabeled data. Those datasets

cannot be trained with the supervised learning algorithms which make the task harder to

achieve. However, semi-supervised learning can train the model with the combination of

unlabeled data.

As it was already described, Pseudo Labeling defined as a simple and efficient method to

do semi-supervised learning while having less labeled instances, in this thesis Pseudo

Labeling approach was utilized. Also, this method earned the second prize in the ICML

2013 Workshop in Challenges in Representation Learning: The Black Box Learning

Challenge [59].

The main idea approached in this step is to train the model with the available number of

labeled instances to predict the label class for unlabeled data, which are called pseudo-

labels. Further, a combination of labeled data and newly obtained pseudo-labeled data

were used as a new dataset input to train predefined three classification models. Figure

19 shows a brief explanation for this algorithm’s architecture [62].

70

Figure 19. Pseudo Labelling Technique [62]

Usually, this method mentioned in the deep learning (online algorithms); however, in this

thesis, it was approached with traditional machine learning classification models, namely

XGBoost, Decision Tree and Random Forest. Those models were chosen from previous

tests, due to higher performance results.

At this stage, the dataset with labeled instances including 82332 samples was split into

training and for testing where unlabeled instances considered as 57632 instances. The

ratio of labeled to unlabeled data was 0.3:0.7. Performance evaluation explored on

XGBoost, Decision Tree and Random Forest classification models achieved by the

accuracy metric performance for each model, using 5-fold cross-validation technique.

The PseudoLabler class achieved Pseudo-Labels for 70% of unlabeled data, written in

sklearn estimator. Naturally, it wraps a sklearn classification while passing the test along

with the list of features and target column. In this class, a function that creates “augmented

71

training set” consist of pseudo-labeled and labeled data. Function takes such arguments

like the name of the model, training set, testing set, data input, features (since 19 for

binary and 21 for multi-class most discriminative features have been selected, in this part

all models are trained and tested respectively with those top features) and the parameter

sample_rate. The parameter sample_rate was designed to control the percentage ratio of

the pseudo-labeled data mixed with the valid labeled data. If sample_rate is defined as

0.0, that means a model is being trained exclusively with the labeled data. And the same

logic applies for sample_rate parameter holding the value of 0.5 where proportion for

both labeled and pseudo-labeled data are kept the same. In both cases resulting models

used all labeled data for training and testing purpose. Obtained data was used to fit the

model and tested with true labels to compare results of training with pseudo-labels.

As an example, Table 17 and Table 18 provide the accuracy results for PseudoLable (for

all selected models) compared to original labeled data, using 5-fold cross-validation

technique. Visual representation for all sample_rate values in range between 0.0 and 1.0

with all three models are given in Figure 20 and Figure 21. But for the purpose of showing

the difference between classification results using originally labeled and Pseudo-Labeled

data, sample_rate was set to 0.3. As it can be seen from Tables 17-18 below, accuracy

result for both scenarios is similar, with a very small change where PseudoLabel accuracy

result are lower by around 1/10.

Table 17. Accuracy results for binary class

 Accuracy

 Model Classifier PseudoLabel

Decision Tree 94.2022 94.0969

Random Forest 95.6111 95.5382

XGBoost 93.8216 93.408

Table 18. Accuracy results for multi class

 Accuracy

 Model Classifier PseudoLabeler

Decision Tree 83.5742 83.2057

Random Forest 85.1898 85.3599

XGBoost 85.4084 84.8861

72

Performance of pseudo-labeling based on different sample rates and machine learning

models, using 5-fold cross-validation technique is presented in Figure 20 and 21. The

fluctuation of the accuracy can be seen in all models for 1-2% at a different ratio of the

sample_rate. However, 5-fold cross validation provided better accuracy results for about

4%, compared to the same models evaluated with 10-fold cross-validation method in the

previous stages.

Figure 20. Semi-supervised learning results for binary label class

Figure 21. Semi-supervised learning results for multi label class

Appendix 5 includes the representation of each model separately in respect to different

class type scenarios.

Pseudo-labeling is a powerful technique which allows utilizing large pool of unlabeled

data while training the models. As can be analyzed from the results, this technique

provided a slight performance boost/improvement while having a smaller number of

labeled samples. Best model performance results in a two-class label can be noted in

Random Forest. However, the performance of the other models was almost the same and

competitive. Although all the models provide good accuracy results in both multi-class

73

and two-class label scenarios, XGBClassifer accuracy metric results are continuously

decreasing in both scenarios while pseudo-labeled instances are increased.

5.2 Active learning botnet detection results

In this part, an experiment was designed in two stages. The first scenario assumes that the

queried label was given correctly and in the second scenario; it was considered that expert

might give wrong labeled samples, while the instance was queried. Nevertheless, the

algorithm design was kept the same for both cases.

The algorithm for the active learning approach was designed in scikit-learn machine

learning library for Python, using the pool-based sampling. The central part is described

in the pseudo-algorithm below:

1. Initial data is divided into a pool and test-set

2. k samples in the set of numbers [10, 25, 50] are selected from the pool for the

training and labeling purpose and remaining data is used for validation.

3. All defined sets (training, testing, and validation) are normalized using MinMax

scaler in a given range (0, 1).

4. Base models are defined as XGBoost, Decision Tree and Random Forest

Classifiers are trained with the training set with balanced weights.

5. Trained model was validated by the validation-set separated in step 2, to get the

probabilities per sample.

6. Trained model is tested with testing-set to get the performance results.

7. k most informative samples are selected using one of the three methods in each

experiment, based on each sample probabilities. (the most uncertain)

• Random selection, k samples are randomly chosen from the validation set.

• Entropy selection, k samples with the highest entropy selected from the

validation set.

• Margin selection, k samples with the lowest difference between the two

highest class probabilities are selected from the validation set.

8. Selected k samples are moved from the validation set to the train set with queried

label class. (since data set already have fully labeled instances, labeling part is

processed automatically)

9. Normalization of all data sets are inversed

74

10. If all experiments are completed, the algorithm is completing work, otherwise

continuing from step 3.

Things to note regarding the normalization steps (3 and 9):

• Normalization for all sets was inversed and normalized again after samples from

the validation set was removed, because sample distribution changed in both the

new validation and new train-sets.

The simple formula calculates a total number of the experiments, where the number of

base models (3) multiplied to the number of selection methods (3) and several k set

samples (3) to the number of desired repeats. In current work, a number of repeats are

defined as 1 to see the initial results. Total 27 experiments are approached and results for

each selection method and number of k samples are visualized in the graphs. Figures 41-

46 are the representation of the accuracy results depending on the base model and

different sampling scenarios separated by different colors.

The critical area of applying active learning method is influenced by the sample selection

method, which is described in step 7. There are literature such as [60], [63], [64] where

query selection strategies such as Random selection, Entropy selection and Margin

selection are discussed. For this reason, this study included them to compare the results

and analyze the benefit of using them in the data set and models assigned for the

experiment.

The Training Model accepts one of the selection learning algorithms with predefined Base

Model (XGBoost, Decision Tree, Random Forest). Model is trained using the training set

and evaluation performance metrics are calculated using testing set.

5.2.1 Queried Labels are True

Initially, data of 82332 samples were split into 3% for the training set with 2469 instances

and rest 97% for the testing set. This scenario of using only a few labeled instances is

adapted to be closer to real-life enterprise situations. Later the train set was split to train

and validation sets. For the purpose of acquiring label class marked by oracle, a total

number of 500 instances was queried with the predefined methods described above. As it

was already stated, 19 top features were selected for the binary class problem and 21 best

for the multi-class task. Upper bound for each model is identified by a straight blue line,

75

calculated using supervised learning with 2469 instances as training set and the rest

number of instances for testing purpose. This scenario presents results for the

classification, assuming that the expert has correctly labeled data points. The results are

presented in graphical visualization for each selected model and label class type in Figures

22-27.

Figure 22. Binary class: Active learning performance results for Decision Tree

76

Figure 23. Binary class: Active learning performance results for Random Forest

Figure 24. Binary class: Active learning performance results for XGBoost

77

Figure 25. Multi class: Active learning performance results for Decision Tree

Figure 26. Multi class: Active learning performance results for Random Forest

78

Figure 27. Multi class: Active learning performance results for XGBoost

On the basis of the above, it can be seen that XGBoost and Random Forest models

performed better than Decision Tree both in binary and multi-class classification problem.

Moreover, querying most informative 500 data points under active learning approach

provided competitive results compared to the fully labeled (upper bound) accuracy results

trained on 2469 instances.

In the binary class label scenario, the most significant and competitive samples selection

methods for all models was Margin Selection with k=[10,25] instances and Entropy

selection with k=10. Even though, Margin Selection gave most discriminative results both

for binary class and multi class experiment scenarios, Random Selection contributed

higher accuracy results in multi-class scenario for Decision Tree model. Nevertheless,

Margin Selection method with k=[10,25,50] proved as the most competitive keeping

better accuracy results for multi class label scenario. Also, it is concluded that, for all

models in binary class label, the least competitive selection method was Random

Selection with all tested numbers of k samples.

For the purpose of analysis and comparison between active learning and supervised

learning, visual representation of Margin Selection and Entropy Selection methods for

79

binary class scenario was given in Figures 28-31. Since Decision Tree was the least

confident model in this particular experiment, graphs are given only for XGBoost and

Random Forest models.

Additionally, as can be concluded from Figure 25, in the multi-class label scenario,

Decision Tree model did not reach upper bound results in the first iteration of label

querying process, for this reason in Figures 32-33, the most competitive Margin Selection

method with Random Forest and XGBoost models was presented to provide better visual

representation of the multi class label learning process.

Figure 28. Binary class: Active learning performance results for Random Forest with

Margin Sample Selection

80

Figure 29. Binary class: Active learning performance results for XGBoost with Margin

Sample Selection

Figure 30. Binary class: Active learning performance results for Random Forest with

Entropy Selection

81

Figure 31. Binary class: Active learning performance results for XGBoost with Entropy

Selection

Figure 32. Multi class: Active learning performance results for Random Forest with

Margin Sample Selection

82

Figure 33. Multi class: Active learning performance results for Random Forest with

Margin Sample Selection

As can be concluded from the above given figures, learning process from the most

informative instances can provide higher accuracy results while having small pool of

labeled data. In most of the cases, active learning accuracy results with 350 and 400 most

informative labeled samples exceeded supervised learning accuracy results with 2469

labeled instances. Different data sets and models tend to have different most appropriate

selection method and number of k queried samples. However, based on the experiment

results, intuitively it can be concluded that it is easier and more appropriate for expert to

label less number or queried samples with k=10 and k=25.

5.2.2 Queried Labels are Wrong

In real-case implementations, to get realistic outcome, labeling with misclassification

should be considered. Complete results should take into account both true labeling and

misclassification approaches. For this reason, it was assumed that the obtained label class

has wrong labels both for binary and multi-class problem statements. Different

experiments were conducted based on the assumption if the queried instances labeled

with 10%, 20%, 30%, 40% and 50% wrong label class (noise). All the results obtained

from this experiment are visualized in graphs and are attached in Appendix 6.

83

Classification accuracy results with accurate and wrong label proportions are shown in

Tables 19-20. This information is provided to visualize the difference in supervised

learning between different wrong acquired label class and accurate labeled classification

scenario.

Table 19. Binary class: Supervised learning results for accurate and wrong labels

 Accurate

Labels

10%

wrong

Labels

20%

wrong

Labels

30%

wrong

Labels

40%

wrong

Labels

50%

wrong

Labels

XGBoost 92.74 91.94 91.00 85.24 55.85 53.33

Decision Tree 91.80 82.64 72.71 61.25 57.19 47.63

Random Forest 93.42 90.37 84.43 70.86 59.11 49.62

Next scenario shown in Table 20, was performed on the multi-class problem with one

normal traffic and nine attack type labels.

Table 20. Multi class: Supervised learning results for right label and wrong label

 Accurate

Labels

10%

wrong

Labels

20%

wrong

Labels

30%

wrong

Labels

40%

wrong

Labels

50%

wrong

Labels

XGBoost 84.1 82.57 80.14 73.79 60.03 42.16

Decision Tree 79.56 70.46 62.30 51.27 43.97 40.37

Random Forest 82.09 78.71 73.86 62.37 51.61 42.23

From Tables 19-20 presented above, it can be concluded that, testing results under

supervised learning algorithm with 2469 trained instances tends to have different

behavior of decreasing accuracy results. XGBoost model had tolerable accuracy decline

in 10%, 20% and 30% from the classification with accurate label. However, Decision

Tree model decreased accuracy results similarly to the percentage of the wrong labeled

instances. In every scenario around 8-10% decrease in accuracy was noted for Decision

84

Tree model. Also, it was noted that acquiring 50% wrong labeled instances leads to

decrease accuracy results for the same amount. And results after 30% wrong labeled

instances are less tolerable for all models.

According to the preliminary analysis, Decision Tree model has more fluctuation and

unstable results. But, Random Forest and XGBoost models provided similar classification

performance and even tolerable results with 10% and 20% inaccurate label class. Since

there were not much difference between two models, Random Forest model selected to

provide mode detailed information regarding the classification performance results for

binary class label scenario, whereas XGBoost for multi-class label scenario.

Taking into account that wrong labeled instances provided for the training stage, Random

Forest with Entropy selection method visualized in the graph to compare the results

obtained from all scenarios conducted for the experiment in this section. Entropy

Selection with k=10 samples were selected, due to the better performance compared to

other query selection methods.

Figure 34. Binary Class: Active learning accuracy results for Random Forest with

Entropy Selection k=10

85

In Figure 34 x-axis represents the total number of queries using the Entropy selection

method with k=10 samples. In this case, total number of queries instances equals to 500.

Analysis of the graph provided reveals that 10% and 20% wrong labeled instances can be

tolerated. This assumption was based on the accuracy performance results given for

Random Forest with Entropy sample selection method. However, 40% and 50%

inaccurate label class tend to keep low accuracy results similar to supervised learning

results shown in Table 19. In addition, it can be seen that 30% wrong labeled instances

still tend to increase the accuracy results when number of queried instances for testing

purpose are increased.

Figure 35. Multi Class: Active learning accuracy results for XGBoost with Margin

Sampling Selection k=10

As presented in the graph above, for multi-class label classification problem, performance

reduction equals to the wrong label acquisition percentage. Comparatively to the

supervised learning upper bound overall reduction cost varies from 30% to 40%.

However, the results are similar to the binary class scenario, where 10% and 20% wrong

labeled instances can be tolerated, while 40% and 50% are not likely for network intrusion

detection systems. Also, similar behaviors noted from the case where inaccurate labeled

86

instances reach 30%, where accuracy still tend to increase and learn from accurate label

class.

All models and sample selection methods used in this particular experimental setup are

shown in Appendix 6. Each selection method was denoted with specific color and was

named accordingly. The most significant reduction cost in accuracy results can be seen

from Decision Tree, whereas some scenario cases can be tolerated for XGBoost and

Random Forest models. However, unlike the scenario where all queried samples are

obtained with accurate label class, in this experiment it can be noted that most appropriate

selection method varies from depending on the model and case with the wrong label

percentage.

According to the results provided in this section, it can be concluded that active learning

algorithms can drastically improve the detection problems while having small pool of

labeled instances and large pool of unlabeled instances. Learning process from the most

informative samples provides higher accuracy (and other performance metrics, see

Appendix 7) results in identifying the normal traffic and attack types. Nevertheless,

experiments where models were trained with wrong labeled instances proved that small

mistakes (10%-20%) in the label class can be tolerated, since the accuracy results did not

have significant changes. However, obtaining the 40% to 50% wrong label class cost

same amount of accuracy reduction compared to the right class, which makes the

detection systems lousier in production usage. This also concludes that proficiency level

of the expert/oracle should be higher than average with minimal cost of making mistakes

in providing label class for each instance.

87

6 Conclusion

Active learning is a growing area of research in machine learning. Active learning

provided a lot of evidence that the number of labeled instances necessary to train accurate

models can be dramatically reduced in a variety of applications. Taking advantage of

these foundations, different cyber-attack and malicious network traffic can be detected by

applying the knowledge derived from the active learning concepts. This research aimed

at using active learning methods in practice on botnet detection. Results of the study

introduced many essential problem variants and practical concerns.

In this thesis, the application of classification models for active learning was investigated

concerning the binary and multi-class label for network botnet detection. Different

querying methods are applied and studied to identify their effect on the classification of

normal and malicious network traffic. The learning process with most informative data

points was considered and concluded as an effective way for botnet detection

performance. Feature selection methods provided a reduced and the most discriminative

number of features for botnet detection, which is used to train and test classification

models along with the active learning methods. Analysis of feature selection states that

best predictive features belong to the connection features in the network traffic.

In the active learning section, pool-based sampling method along with the three querying

scenarios was implemented and analyzed. Analysis of each separate way provided

different results where Margin Sample Selection scenario with the XGB and Random

Forest classification model executed the most competitive results. Learning process states

that from a labeled and unlabeled pool of instances, most informative samples can be

chosen and increase the prediction accuracy than classical supervised algorithms.

Obtained results are an essential addition for the research gap in the active machine

learning methodology, for the botnet detection in the network intrusion detection systems.

More specifically, results show that if a queried sample was correctly labeled, training of

the model provides better results than incorrectly labeled data in detecting both normal

traffic and attack types within a malicious set. Moreover, classification of normal and

88

botnet traffic provided tolerable performance results, where acquired sample had 10% to

20% of inaccurate label class. Different experiments with wrongly labeled instances are

conducted and concluded, to predict the reduction cost for the network intrusion systems.

Based on the results, suggestions on the proficiency of expert/oracle were given.

The critical point in utilizing active learning for botnet detection, allowing to minimize

the cost of obtaining the label class, while learning on the accurately chosen ones from

the whole pool. This fact may lead to improve network intrusion detection systems and

build accurate classifiers that focus on main predictors. However, the procedure for

different datasets and desired detection may vary. This research shows that depending on

detection objectives and requirements, different datasets might require investigation of

several query methods and different models, in order to accomplish experimental results

with optimal botnet detection performance.

This work can be extended considering combining learning algorithms. By following the

results and analysis presented in this study, semi-supervised pseudo labeling can be

applied to the unlabeled pool, where label class of the instance obtained from the active

learning phase. In addition, the clustering technique can be studied more broadly, in order

to identify the areas of its application in the active learning scenarios.

89

References

[1] Sergio SC Silva, Rodrigo MP Silva, Raquel CG Pinto and Ronaldo M Salles,

"Botnets: A survey," Computer Networks, vol. Volume 57, no. Issue 2, pp. 378-
40, 4 February 2013.

[2] I. Ilascu, "BitdefenderBOX," 9 October 2018. [Online]. Available:
https://bit.ly/2KDuvZw.

[3] Guofei Gu, Roberto Perdisci, Junjie Zhang and Wenke Lee, "Botminer: Clustering
analysis of network traffic for protocol-and structure-independent botnet
detection," The 17th USEN1X Security Symposium, pp. 139-154, July 2008.

[4] J. Goebel and T. Holz, "ishi: Identify bot contaminated hosts by IRC nickname
evaluation," in Proceedings of USENIX HotBots'07, 2007.

[5] "The UNSW-NB15 Dataset Description," Australian Centre for Cyber Security
(ACCS), 2015. [Online]. Available: https://www.unsw.adfa.edu.au/unsw-
canberra-cyber/cybersecurity/ADFA-NB15-
Datasets/?fbclid=IwAR3LKJNjf34sCAP-
bAs99W_64jITks04KBdzNkX0iZlrbHbe2YUawwOMc9Y.

[6] Vaibhav Nivargi, Mayukh Bhaowal and Teddy Lee, "Machine Learning Based
Botnet Detection," Stanford.

[7] Xuan Dan Hoang and Quynh Chi Nguyen, "Botnet Detection Based On Machine
Learning Techniques Using DNS Query Data," Future Internet, 18 May 2018.

[8] García, A. Zunino and M. Campo, "Survey on network-based botnet detection
methods," Security and Communication Networks, vol. 7, no. 5, pp. 878-903, May
2014 .

[9] Bahşi Hayretdin and Nõmm Sven, "Unsupervised anomaly based botnet detection
in IoT networks," in 17th IEEE International Conference on Machine Learning
and Applications, Orlando, Florida, USA, 17-20 December 2018.

[10] Zhicong Qiu, David J. Miller and George Kesidi, "Flow-Based Botnet Detection
through Semi-supervised Active Learning," CSE Dept, PSU, Technical Report
CSE-16-010, September 13, 2016.

[11] Zhicong Qiu, David J. Miller and George Kesidis, "Flow based botnet detection
through semi-supervised active learning," in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA,
5-9 March 2017.

[12] Khalid Huseynov, Kwangjo Kim and Paul D. Yoo, "Semi-supervised Botnet
Detection Using Ant Colony Clustering," in The 31th Symposium on
Cryptography and Information Security, Kagoshima, Japan, Janury 21-24, 2014.

[13] C. M. Jane, "Atlanta Business Chronicle," 22 July 2002. [Online]. Available:
http://bit.ly/2Dp95gi.

[14] A. Zaharia, "HEIMDAL Security," 25 April 2016. [Online]. Available:
http://bit.ly/2VZKXbs.

90

[15] D. Etherington and K. Conger, "TechCrunch," 2016. [Online]. Available:
https://tcrn.ch/2Gy9S0k.

[16] T. I. Team, "Avast," 25 October 2018. [Online]. Available:
http://bit.ly/2XwAeFN.

[17] M. Weinberger, "Business Insider," 22 April 2015. [Online]. Available:
http://bit.ly/2UTkKyZ.

[18] V. Paxson, "LBNL/ICSI Enterprise Tracing Project," Lawrence Berkeley National
Laboratory and ICSI, 2005. [Online]. Available: https://www.icir.org/enterprise-
tracing/download.html.

[19] "VRT Labs - Zeus Trojan Analysis," [Online]. Available:
https://labs.snort.org/papers/zeus.html.

[20] "ISOT Dataset Overview," [Online]. Available:
https://www.uvic.ca/engineering/ece/isot/assets/docs/isot-datase.pdf.

[21] Wei Li, Marco Canini, Andrew W Moore and Raffaele Bolla, "Efficient
application identification and the temporal and spatial stability of classification
schema," Computer Networks: The International Journal of Computer and
Telecommunications Networking, vol. 53, no. 6, pp. 790-809 , 2009.

[22] Andrew Moore, Denis Zuev and Michael Crogan, "Discriminators for use in flow-
based classification," Queen Mary: University of London , London, 2005.

[23] Z Berkay Celik, Jayaram Raghuram, George Kesidis and David J Miller, "Salting
public traces with attack traffic to test flow classifiers," in Proceedings of the 4th
conference on Cyber security experimentation and test, 2011.

[24] Kai Yang, Jie Ren, Yanqiao Zhu and Weiyi Zhang, "Active Learning for Wireless
IoT Intrusion Detection," IEEE Wireless Communications, vol. 25, no. 6, pp. 19 -
25, December 2018.

[25] "XGBoost Documentation," [Online]. Available:
https://xgboost.readthedocs.io/en/latest/.

[26] L. Bull, N. Dervilis, K. Worden and G. Manson, "Active learning for semi-
supervised structural health monitoring," Journal of Biomedical Informatics, vol.
64, pp. 168-178, December 2016.

[27] Moheeb Abu, Jay Zarfoss, Fabian Monrosereas and Andreas Terzis, "A
Multifaceted approach to understanding the botnet phenonmenon," 2006.

[28] Y. Chen, "Towards wireless overlay network architectures".
[29] G. Kaur, " Novel Distributed Machine Learning Framework for Semi-Supervised

Detection of Botnet Attacks," in Eleventh International Conference on
Contemporary Computing (IC3), August 2018.

[30] "Botnet dataset," Canadian Institute for Cybersecurity, [Online]. Available:
https://www.unb.ca/cic/datasets/botnet.html.

[31] "KDD98," [Online]. Available: https://www.openml.org/d/23513.
[32] "KDD Cup 1999 Data," 2007. [Online]. Available:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
[33] "NSL-KDD," 2009. [Online]. Available: https://www.unb.ca/cic/datasets/nsl.html.
[34] P. e. al, "Packet and flow based network intrusion dataset. Contemporary

Computing," Springer Berlin Heidelberg, pp. 322-334, 2012.
[35] John McHugh, "Testing intrusion detection systems: a critique of the 1998 and

1999 DARPA intrusion detection system evaluations as performed by Lincoln

91

Laboratory," ACM transactions on Information and system Security, vol. 3, pp.
262-294, 2000.

[36] V.Mahoney and K.Philip, "An analysis of the 1999 DARPA/Lincoln Laboratory
evaluation data for network anomaly detection."Recent Advances in Intrusion
Detection," Springer Berlin Heidelberg, 2003.

[37] A.Vasudevan, E. Harshini and S. Selvakumar, "SSENet-2011: a network intrusion
detection system dataset and its comparison with KDD CUP 99 dataset," in
Second Asian Himalayas International Conference, 2011.

[38] N. Moustafa and Jill Slay, "UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set).," in Military
Communications and Information Systems Conference (MilCIS), Canberra,
Australia, November 2015.

[39] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu and Ali, "A Detailed Analysis of
the KDD CUP 99 Data Set," in CISDA'09 Proceedings of the Second IEEE
international conference on Computational intelligence for security and defense
applications.

[40] "How valuable do you think feature selection is in machine learning? Which do
you think improves accuracy more, feature selection or feature engineering? -
Quora," [Online]. Available: http://bit.ly/2UM1UcI.

[41] "An Introduction to Feature Selection," [Online]. Available:
http://bit.ly/2UU8OwU.

[42] B.Azhagusundari and Antony Selvadoss Thanamani, "Feature Selection based on
Information Gain," International Journal of Innovative Technology and Exploring
Engineering (IJITEE) ISSN, vol. 2, no. 2, pp. 2278-3075, January 2013.

[43] Xiaofei He, Deng Cai and Partha Niyogi, "Laplacian Score for Feature Selection".
[44] Igor Kononenko and Marko Robnik-Sˇikonja, "Theoretical and Empirical

Analysis of ReliefF and RReliefF," University of Ljubljana, Faculty of Computer
and Information Science.

[45] Quanquan Gu, Zhenhui Li and Jiawei Han, "Generalized Fisher Score for Feature
Selection".

[46] A. C.C., Data Mining: The textbook, New York: Springer, 2015, p. 290.
[47] T. Chen, "Quora," [Online]. Available: http://bit.ly/2XzcAsk.
[48] "MXNet," [Online]. Available: https://mxnet.apache.org.
[49] M. Kubat, in An Introduction to Machine learning, 2017, p. 212.
[50] "Damage Caused by Classification Accuracy and Other Discontinuous Improper

Accuracy Scoring Rules," Statistical Thinking, 2017. [Online]. Available:
http://www.fharrell.com/post/class-damage/.

[51] S. Narkhede, "Understanding AUC - ROC Curve," Towards Data Scienece ,
[Online]. Available: https://bit.ly/2E0YdqU.

[52] "Scikit-learn," [Online]. Available: https://scikit-learn.org/stable/.
[53] "Pandas: Python Data Analysis Library," [Online]. Available:

https://pandas.pydata.org.
[54] "Classification Algorithms in Machine Learning – Medium," [Online]. Available:

http://bit.ly/2ZpSlPw.
[55] "Types of classification algorithms in Machine Learning," [Online]. Available:

http://bit.ly/2IAmDcY.

92

[56] "Machine Learning Algorithms: Which One to Choose for Your Problem,"
[Online]. Available: http://bit.ly/2XxaEAo.

[57] "Label Propagation Algorithm," [Online]. Available:
https://en.wikipedia.org/wiki/Label_Propagation_Algorithm.

[58] "Semisupervised Learning Approaches," [Online]. Available:
http://videolectures.net/mlas06_mitchell_sla/.

[59] D.-H. Lee, "Pseudo-Label : The Simple and Efficient Semi-Supervised Learning
Method for Deep Neural Networks," in ICML Workshop: Challenges in
Representation Learning (WREPL), Atlanta, Georgia, USA, 2013.

[60] B. Settles, "Active Learning Literature Survey," Computer Sciences Technical
Report 1648 University of Wisconsin–Madison, January 26, 2010.

[61] S. Hosein, "DataCamp: Active Learning: Curious AI Algorithms," 9 February
2018. [Online]. Available:
https://www.datacamp.com/community/tutorials/active-learning.

[62] V. Kodžoman, "Pseudo-labeling a simple semi-supervised learning method," 6
September 2017. [Online]. Available: http://bit.ly/2GxZxBI.

[63] Sheng-Jun Huang, Rong Jin and Zhi-Hua Zhou, "Active Learning by Querying
Informative and Representative Examples," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 36, no. 10, pp. 1936 - 1949, October
2014.

[64] S. Hosein, "Active Learning: Curious AI Algorithms," DataCamp , 9 February
2018. [Online]. Available:
https://www.datacamp.com/community/tutorials/active-learning.

[65] L. S. Sterling, The Art of Agent-Oriented Modeling, London: The MIT Press,
2009.

93

Appendix 1 – Classification performance comparison for

different set of features

The results presented in table below, provided to support the statement that elimination

of the three categorical features (proto, state and service) does not influence the

classification performance. Result provided both for binary class and multi class problems

and different evaluation performance metrics are used. First table has all 42 features,

second table has only 39 numerical features.

Scenario/Models Binary Classification Multi class classification

 Accuracy Recall Precision Accuracy

XGB 94.76 95.36 95.35 84.04

DT 94.16 95.50 94.25 81.99

KNN 87.79 87.33 90.54 75.47

RF 95.74 95.39 97.24 83.63

LR 86.18 87.85 88.23 74.04

Scenario/Models Binary Classification Multi class classification

 Accuracy Recall Precision Accuracy

XGB 94.52 95.33 95.01 83.93

DT 93.91 95.29 94.24 81.58

KNN 87.76 87.27 90.53 75.51

RF 95.50 95.22 96.77 83.74

LR 84.41 87.54 86.25 73.06

94

Appendix 2 – Classification accuracy with top ranked features

Accuracy result based on the list of score obtained from Fisher’s score feature selection,

trained with Decision Tree Classification.

95

Appendix 3 – Scatter Plot with three features

Here different scatter plots are presented with the binary class and multi-class original

labeled data points and prediction results from classification models (XGB, Decision

Tree, Random Forest).

96

97

98

99

100

101

Appendix 4 – DBSCAN results

DBSCAN clustering results with the different sets of three features (most discriminative

based on the Fisher’s score) and classification models, represented in the scatter plots.

102

103

Appendix 5 – Semi-Supervised Pseudo-Labeling Results

In this section, Semi-Supervised Pseudo-Labelling botnet prediction accuracy results are

presented based on the sample rate and classification model. The first graph shows the

results for binary classification and the following chart for the same model presents multi-

class classification results.

104

105

106

107

Appendix 6 – Active learning performance results when

queried label is wrong

In this section, graphs for three models with three query selection methods are presented.

Graphs contains binary class and multi class scenarios with 10%, 20%, 30%, 40%, 50%

wrong labels. The blue straight line is the upper bound supervised classification accuracy

with correct label. This line indicated to give overall comparison between fully supervised

model using accurate label class and the active learning methods using wrong label class.

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

Appendix 7– Active Learning Evaluation Performance

Results

In this section, classification performance both for binary class and multi class provided

using accuracy, precision, recall and f1 scores. Results are calculated from the confusion

matrix foe each label class. Since, there are too many results for each specific case, the

results presented in this section were chosen randomly. All cases provide results for the

500 most informative samples queried during the active learning experiments.

Binary

(correct label)

Label

Accuracy Precision Recall F1-score

Decision Tree 0 87.900530 86 88 87

1 90 88 89

weighted average 88 88 88

Random Forest 0 94.191303 93 95 94

1 96 94 95

weighted average 94 94 94

XGBoost 0 93.925848 93 93 93

1 94 95 94

weighted average 94 94 94

(0-normal, 1-botnet)

Multi Class

(correct label)

Label

Accuracy Precision Recall F1-score

Decision Tree 0 87.900530 86 88 87

1 42 51 46

2 11 28 16

3 28 27 27

4 54 44 48

5 7 13 9

124

6 20 15 17

7 7 23 11

8 10 21 14

9 92 95 94

weighted average 72 72 72

Random Forest 0 77.889636 82 95 88

1 63 59 61

2 12 4 6

3 38 21 27

4 64 65 65

5 12 21 15

6 21 4 7

7 0 0 0

8 14 11 12

9 93 96 94

weighted average 73 78 75

XGBoost 0 83.859860 92 97 94

1 85 73 79

2 12 17 14

3 39 25 31

4 63 73 67

5 7 3 4

6 65 51 57

7 0 0 0

8 37 24 29

9 99 96 97

weighted average 83 84 83

(0-normal, 1-fuzzers, 2-analysis, 3-backdoors, 4-dos, 5-exploits, 6-generic,

7-reconnaissance, 8-shellcode, 9-worms)

Since 10% and 20% of the wrong labelling does not reflect visible changes in the overall

classification performance 30% of wrong labeled training data for active learning

125

experiment chosen here to present results. All other cases are selected arbitrary, for the

purpose of visual representation.

Binary

(incorrect label)

Label

Accuracy Precision Recall F1-score

Decision Tree 0 61.809599 56 65 61

1 68 59 63

weighted average 63 62 62

Random Forest 0 76.927989 76 71 73

1 78 82 80

weighted average 77 77 77

XGBoost 0 72.178606 73 60 66

1 72 82 76

weighted average 72 72 72

(0-normal, 1-botnet)

Multi Class

(correct label)

Label

Accuracy Precision Recall F1-score

Decision Tree 0 50.463919 59 58 59

1 65 40 49

2 12 11 11

3 23 19 21

4 51 42 46

5 1 1 1

6 42 34 38

7 0 24 0

8 9 13 10

9 98 59 73

weighted average 63 50 55

Random Forest 0 65.114008 64 85 73

1 83 36 50

2 13 8 10

3 30 14 19

126

4 63 40 49

5 12 4 6

6 53 17 25

7 0 0 0

8 22 11 8

9 99 78 87

weighted average 69 65 64

XGBoost 0 58.170868 57 72 63

1 83 21 33

2 10 3 4

3 34 8 13

4 53 19 28

5 6 3 4

6 53 17 26

7 0 0 0

8 0 0 0

9 1 90 95

weighted average 65 58 58

(0-normal, 1-fuzzers, 2-analysis, 3-backdoors, 4-dos, 5-exploits, 6-generic,

7-reconnaissance, 8-shellcode, 9-worms)

