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Abstract 

Network Intrusion Detection Systems face security challenges in detecting modern 

botnets. While different machine learning (ML) methods were extensively applied for 

botnet detection, the use of the human-machine interaction in detecting the botnets is still 

immature. 

This paper analyzes how classification models can be adopted in active machine learning 

with the help of various query selection methods for botnet detection in network intrusion 

detection systems. Under pool-based sampling scenario, performance of each label query 

selection of obtaining the most informative label class were analyzed and compared.  

Obtained results proved the effectiveness of the human-in-loop for labeling queried 

instances under the active learning approach in classifying the normal network traffic 

along with attack types (Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, 

Reconnaissance, Shellcode, Worms). Results also revealed that the learning process 

based on the most informative few labeled samples perform better than fully labeled data 

pools under supervised learning. However, the expert’s performance in providing 

inaccurate label class may be disturbed by changes in classification and detection 

accuracy.  

This study emphasizes adopting human-in-loop interaction in acquiring labeled instances 

which improve the learning of classification models, as well as the impact on the detection 

of botnet when inaccurate label class was provided. 

This thesis is written in English and is 80 pages long, including 6 chapters, 35 figures and 

20 tables.
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1 Introduction 

A botnet is a collection of compromised network devices that are infected and controlled 

remotely by a common server. Apart from functioning as an email spamming tool, botnets 

can penetrate and intrude into an organizational network to steal valuable assets such as 

financial data, intellectual property as well as stealing a considerable amount of money 

and perform a massively coordinated cyber-attack. Bots are capable of overloading the 

target network with requests and coordinating malicious attacks such as Distributed 

Denial of Service (DDOS) for personal and political motives. According to the survey [1] 

around 16% of computers connected to the internet are compromised either by active or 

passive bots. Bitdefender security insights reported that the power of the botnet attack 

increased in 2018 relatively to the previous year. As stated in the report [2], the most 

powerful giant botnets formed by cybercriminals are named as Mirai and Satori botnets.  

Modern botnets are becoming more vaguer, representing new joint features evolving 

unknown behavioral class. Recent botnets, continuously randomize the port numbers and 

domain names, making detecting botnet more challenging for Network-based Intrusion 

Detection Systems [3]. By randomly delaying transmitting traffic, botnets try to behave 

like "normal" sessions, which make signature-based methods [4] give more false negative 

results. 

With the use of machine learning, many tasks, like detection of cyber-attacks performed 

by botnets, can be automated and deployed into security tools. Without being explicitly 

programmed, machine learning algorithms are used to analyze data and predict the 

outcome occurrence based on received specified samples. 

A branch of artificial intelligence, machine learning aims a constructive study of the 

systems with the ability to recognize different patterns and predict qualified preference 

based on the given data. In recent decades more researches integrate machine learning 

into botnet detection studies and provide various experimental approaches by using 

generalized knowledge derived from systematic experiences of detection systems, to 

propose previously unseen computational methods. 



11 

Supervised learning algorithm use the data where the correct class is revealed (samples 

are labeled). Unsupervised learning algorithm does not have any labels attached to 

supervise the learning (samples are unlabeled). In semi-supervised learning, two different 

algorithms used, starting with the labeled examples, and then by telling other samples the 

way they think about unlabeled data. The difference between semi-supervised algorithm 

from active learning is that, in active learning, the algorithm itself decides which labels 

(usually most informative ones) human should label. Active learning makes the 

classification of data learning from other samples, but in additional confirms the decision 

by querying the user. 

Unlabeled data is relatively easy to acquire although expensive to label and generally 

corporations have limited resources to label all of their data. In such cases AL can provide 

similar and even better results than fully supervised algorithms with less cost and time 

spent to acquire label class for the data instances. Most of the studies point out that 

labeling is pricey and try to implement unsupervised methods. However, many 

organizations have started to have a Security Operations Center (SOC) capabilities that 

may help label some amount of the data (real case scenarios with few labeled instances). 

Although SOC’s have labeling capability, they cannot mark all data. But smart usage of 

limited labeling capability can improve the performance of learning models by applying 

human-machine interaction which is the crucial concept of active learning.  

For this reason, AL was chosen as it can provide aimed results by carefully increasing the 

size of selected labeled data. Moreover, in real life scenarios, when DDOS attacks are 

performed by the new botnets, which represent an unknown behavioral class, active 

machine learning algorithm model will fit the best to analyze the data and interact with 

the expert to detect the anomaly and classify the external network traffic. 

Under Active Learning (AL) method it was aimed to train the model using network 

packets created by the IXIA Perfect Storm tool in the Cyber Range Lab of the Australian 

Centre for Cyber Security (ACCS) [5] to predict contemporary botnet attack behavior. 

This dataset has nine types of attacks, which are Fuzzers, Analysis, Backdoors, DoS, 

Exploits, Generic, Reconnaissance, Shellcode, and Worms. All the records include 

different type of network data labeled as an attack and normal, as well as different attack 

vectors mentioned above. 
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Similar studies for botnet detection were approached by using supervised [6] [7] [8], 

unsupervised [9] and semi-supervised [10] [11] [12] training models. Studies had a 

different focus on feature selection and applied the algorithms comparing the obtained 

accuracy to analyze performance. In addition to this, as an example research study [10] 

applies active learning approach on regression model, with the help of “most likely 

unknown” (MLU) sampling method to pick the unlabeled sample that has the highest 

probability of belonging to the unknown class. Very limited feature set (8 features) was 

used and only three attack vectors are predicted based on the CSET'11 (prepared in 

conjunction with 20th USENIX Security Symposium in 2011) dataset.  

There are several differences with the study [10] regarding the application of active 

machine learning in the current work referred to as: 

• Use of classification models for the active machine learning approach; 

• Use of the broader set of the features (39 features – time, flow, connection, basic, 

additional) based on the network data; 

• Improved (regarding the problems referred in many other datasets for network 

intrusion detection systems) dataset with nine attack types; 

• Different methods for sample selection and their comparison; 

• Separate scenarios for acquiring accurate label and wrong label (ratio of mistakes 

between 10% and 50%) by complimenting it with the cost of the prediction 

accuracy.  

The key point of this study application of AL methods to learn from most informative 

data points queried from a small pool (try to match with real case scenarios) of labeled 

instances and train the algorithm.  

This paper attempts to answer the following questions: 

1. Is it possible to adopt classification models for active machine learning in botnet 

detection? 

2. How various sample selection methods for acquiring label class of each instance 

influences on the learning process of the classification model?  

3. How human-machine interaction (labeling the queried instance) with the help of 

active machine learning improve the overall prediction of the botnet compared to 

supervised learning? 
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The formulation of the present research problem statement is resumed in the following 

points: 

• Perform feature selection for botnet detection based on the network data.  

• Identifying most appropriate models to work with the active learning approach. 

• Querying the most informative data points with the help of several methods for 

expert labeling.  

• Learn from obtained samples and analyze the variability of selected predictions in 

the binary and multi-class labeled dataset. 

Several scenarios are performed to analyze the outcome where it is assumed that: 

a) security expert/oracle provides an accurate label for the most informative queried 

samples.  

b) security expert/oracle provides inaccurate labeled instances with error rate of 

10%, 20%, 30%, 40% and 50% for the most informative samples queried from 

the pool. 

The process repeated several times, including XGBoost, Decision Tree and Random 

Forest models, until the desired accuracy on botnet prediction is achieved.  

The present document is designed in the following stages: 

• Chapter 2: devoted to the background information and related literature; 

• Chapter 3: deals with current research methodology;  

• Chapter 4: presents a practical implementation of this thesis for the machine 

learning process; 

• Chapter 5: shows key results and analysis of the leading experimental tests; 

• Chapter 6: discusses the outcomes that are concluded from this study.
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2 Background  

2.1 What is the Botnet  

Initially, botnets were created to serve as a legitimate tool with a specific functionality 

over the Internet relay chats (IRC). Later on, when different vulnerabilities of the IRC 

networks discovered, botnets were developed to become a hacker's tool to perform 

various malicious activities, gain valuable data and information for different purposes. 

Currently, botnets hold the meaning of compromised computers connected and 

coordinated under the control of malicious actor. Those connected computers perform 

numerous tasks and launch attacks. Most common areas for botnet usage are an organized 

crime to conduct illegal activities online like:  

• email spamming  

• denial of service attacks (DoS and DDoS attacks) 

• transmitting malware/adware/spyware 

• stealing informative sensitive data like user logins and financial reports 

• phishing attacks, etc. 

The term “botnet” is a simple combination of words “bot” and “net.” The bot is holding 

the meaning of robot, which represents the infected by malware computer and net 

shortened from the network, which represents the group of linked systems over the 

internet. EarthLink Inc. was the first company who named the biggest spam network as a 

botnet during the lawsuit against Khan C. Smith in 2002 [13]. EarthLink was the company 

which processed around 10 billion emails per year, with the cost ratio 1$ per 1000 emails. 

According to the article, the situation was around a man named Tennessee who, used 

stolen credit card numbers and passwords of EarthLink users to create as many as 1,000 

accounts used to send unwelcome emails. According to that time, the man earned 3 

million dollars by running the most significant spam. However, he had to pay 25 million 

dollars back to the company due to the lawsuit court decision. This case becomes an 

excellent example of how dangerous and harmful botnet technology can be.  
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Mainly there are two primary models for setting up the botnets: 

• Client Server mode 

 

Figure 1. Client server mode 

• Peer-to-Peer model 

 

Figure 2. Peer-to-Peer Model 

The Client-Server model or Command and Control (C&C) is a very straight forward 

method of controlling and sending instructions from one single location to other infected 
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compromised devices. The central server is usually under the attacker's physical control 

and can stay active for a couple of days, but often, the lifetime of the shelf is quite limited. 

It was said aa a powerful model, since hackers usually choose a legitimate server, which 

it is harder to detect for law enforcement. However, recent studies show that botnet 

detection systems based on C&C are highly positive to give false negative results, due to 

the evolution of the botnets thought the continuous randomization of the port numbers 

and domain names.  

Since there are many solutions grounded on this model, recently, hackers prefer Peer-to-

Peer model over the C&C for the botnet construction. Another reason for this is that Peer-

to-Peer model meant to fix weaknesses of the C&C model by connecting and 

communicating directly from one infected machine to few others, and they are in their 

turns continue to do the same. This loop reaches until the whole puzzle is complete and 

the system is ready to give it a shot. Additionally, even if some of the devices will be 

removed or shut down, it will not cause problems, since other devices can replace them 

and pick up the chain fast.  

According to “Heimdal” security blog [14] botnets inherited from the Zeus botnet family 

were very popular and harmful before 2016 in context of stealing personal data and 

perform massive unauthorized money transfers with the use of bank account details. This 

case also shows that botnets did evade; they upgrade over time with new joint features to 

become less evident for the detection systems.  

Another example of the botnet with the successful performance of shutting down the 

Twitter, CNN, Spotify and many other servers and services in September 2016 was the 

botnet named as Mirai, which did the biggest in history DDoS attack [15]. Attack was 

performed with the usage of the compromised Internet of Things (IoT) devices. However, 

even after being discovered it did not stop hackers from creating new versions of the Mirai 

botnet and making another shot in July 2018, which caused many security discussions 

among security professionals and researches. The expansion of the Mirai botnet into 

different types proves that different techniques are applied to behave like regular network 

traffic, which indeed makes the botnet detection more challenging for different Network-

based Intrusion detection and prevention (IDS and IPS) systems [16]. 
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All of this raised the interest of the researchers to try and investigate new methods and 

models to capture botnets and prevent setup from being compromised. Due to the ability 

to automate the tasks and working with a large amount of data, recent academic literature 

highly focused in applying machine learning approaches to maximize the effect of the 

prediction and accuracy of the models. Various experimental methods by using 

generalized knowledge derived from systematic experiences of detection systems were 

studied, to propose previously unseen computational approaches. 

2.2 Machine Learning 

Google’s self-driving cars and robots get a lot of press, but the company’s real future is 

in machine learning, the technology that enables computers to get smarter and more 

personal [17].  

 – Eric Schmidt (Google Chairman) 

Machine learning (ML) is said to be a part of Artificial Intelligence (AI) filed. With the 

use of computational methods, ML technique learns information directly from the data 

without relying on predestined rule-based equations to build algorithms used to predict 

an output while updating newly available data. It is a natural process that teaches 

computers to learn from experience to help people process a large amount of data within 

a short period. The universal principle of predicting the data is to map learning function 

(f) with the input samples (X) and process an output variable (Y): Y=f(X). 

Nowadays many people are familiar with machine learning techniques from the internet, 

personalized adjusted ads processed from their purchases and actions of the same patterns. 

It happens because ML algorithms learn data from similar repeated model and behavior 

in real time and recommend the output based on experience. Apart from online marketing 

and personalized ads, machine learning widely used for spam filtering, fraud control 

systems, network security detection systems, and other maintenance, monitoring, and 

structuring news feed. Those examples are just a tiny part where ML algorithms used in 

today's practice. There are different variations of Machine Learning Algorithms which 

can be used and applied depending on the precise needs for the aimed process: 

a) Supervised Learning: This algorithm establishes a model and gives an output 

based on provided evidence. A supervised learning algorithm consists of a known 
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set of inputs with the predictors (knowm set of response) to the output data to train 

the model and provide a rational response to a new data. With the help of those 

set of independent variables, the function maps the inputs to desired outputs. With 

the determined variables and features, the model continues the training process 

until the desired accuracy level achieved. To develop predictive models 

Supervised learning techniques uses either regression or classification techniques. 

• Regression algorithms are used to make predictions regarding numerical 

entities. Examples are usually pointing to predict the pricing of different 

variables like products, house, and other goods. 

• Classification algorithms are used to create a diverse membership for a 

specific known class type. Email filtering (spam, not-spam) and medical 

diagnosis (identifying the diseases based on symptoms) are the examples 

for this type of algorithm. 

b) Unsupervised Learning: This algorithm does not require any target desired 

outcome data to train the model. Also known as neural network it approaches 

more complex processing tasks to cluster training data into different groups by 

correlating between many input variables. This algorithm widely used in image 

recognition, face recognition, bank associations and require a significant amount 

of data for training purpose. 

c) Semi-Supervised Learning: Combination of Supervised and Unsupervised 

machine learning provides this type of algorithm. Usually used when there is not 

enough labeled data to train an accurate model. Training approach can start with 

the labeled resources, and unsupervised machine learning algorithms will 

continue process learning from the outcome. Detection systems can detect well-

known fraud and anomaly, and rest can slip without being known and remain 

unlabeled, which is an excellent example of this type of algorithm. 

d) Active Learning: Similar approach to Semi-Supervised learning with slight 

modifications. Instead of learning from instances automatically and predicting an 

output, Active Learning predicts an output by selecting an unlabeled data and 

querying each iteration to Oracle or human expert who analyses and determines 

the label of the instance. Labeled data instance can be predefined lower than in 
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Semi-Supervised learning and still provide a high level of accuracy of the 

prediction model. 

e) Reinforcement Learning: With the use of this algorithm machine is trained to 

iterate an action in a dynamic environment to return specific decision based on 

trial and error method. The machine learns from every iteration to produce a 

favorable outcome based on previous experience to provide an optimal and 

accurate capture. As a result, we get a well-known process for online games with 

human and computer interaction.  

2.2.1 Classification Algorithms 

In this thesis, the main idea to obtain proper botnet detection by applying active learning 

algorithms with the help of classical classification algorithms. 

The main idea for machine learning classification algorithms is to categorize given data 

into desired and distinct numbers of classes. Boundaries conditions for each class 

determining the assigned target label class for every different subset. Classification can 

be binary and multi-class. Binary classifier gives an outcome with only two particular 

levels like normal and anomaly. A multi-class classifier can have more than two practical 

classes and predict a result for a different type of specific categories. In the example of 

this thesis multi-class classifier used to distinguish between types of attacks within the 

anomaly behavior.  

Even though the primary purpose is common for all classification algorithms, various 

mathematical and logical approaches are different for them to deal with the specific 

problem. Well-known and widely used classification algorithms with the brief 

explanation are listed below: 

• Decision trees classify the data into a tree structure by breaking down into smaller 

subsets. Thus, achieved with the help of consecutive rules based on the most 

significant differentiators in the input variables.  

• K-nearest neighbor classifies an object by the majority vote weight of the closest 

neighbors. The targeted object assigned to the most convenient and familiar class 

among its nearest k neighbors.  
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• Random forests classify the objects by constructing multiple decision trees and 

attaching it to the class with the most votes from all the trees.  

• Support Vector Machines classification algorithm plots training data points in n-

dimensional space (depending on the features set number) with a clear gap 

between them. New examples predicted according to the nearest category where 

they fall in the map.  

• Naive Bayes classifier inspired by the Bayes theorem. The probabilistic classifier 

uses works under a simple assumption where attributes are conditionally 

independent.  

• Logistic Regression classification is a statistical method that performs binary 

classification, where label outputs are binary. An output determined by the 

analysis of the dataset by defining one or more independent variables. 

• A Neural Network consists of units of layers or components with direct 

connections among them. Neural networks are needs enormous computational 

complexity but could be applied to many different tasks. This algorithm provides 

a good result if the job requires to work with images.  

2.3 Relevant research 

Due to evasion of the botnet generation Zhicong Qiu, David J. Miller and George Kesidis 

proposed semi-supervised active learning algorithms [11] to detect unknown anomaly 

botnet behavior. Detection of the botnet based on information taken from the sequence of 

packet sizes in a specifically given flow. Experimental setup mainly used three different 

PCAP files taken from: 

a) LBNL traces and used as a regular (normal) traffic [18], which was collected by 

monitoring medium-size enterprise network for more than 100 hours covering 22 

primary subnets with different protocols mentioned in data pre-processing step of 

the same research paper, such as TCP and three-way handshake. 

b) Zeus PCAP files taken from VRT Zeus [19] and ISOT Zeus [20]. Zeus bots were 

incorporated to the dataset, due to its well-known detection evasion techniques, 
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like using random ports and proxy server, which makes traditional methods 

challenging to detect. Authors mentioned that Zeus variations are trendy and 

commonly used for the botnet applications, especially the ones used for 

cybercrime activities. 

After obtaining three different PCAP files with normal and anomaly traffic, authors had 

datasets with the botnet having both C&C and non-C&C traffic for the training and testing 

purpose. Total flows of the standard (normal) and botnet flow are as follows, LBNL [18] 

9972 number of streams, VRT Zeus [19] 64, and ISOT Zeus [20] 23 flows respectively. 

Authors used 1/3 of the dataset with randomly (positive and negative) labeled samples to 

train Bayesian Network, remaining dataset split into half, as unlabeled regular (normal) 

traffic and unlabeled botnet for active learning approach. For testing the anomaly 

detection, they used the ratio of web flows, falsely identified as a botnet and the rate of a 

botnet, classified correctly as a botnet. The comprehensive trade-off between two metrics 

was combined to visualize ROC AUC curves to see the number of active labeling of the 

algorithm. For AL approach they moved forward with MLU (most likely unknown) 

sampling to pick the unlabeled sample with the highest priority of belonging to the 

specific class, According to the discussion, their experimental setup produced a highly 

effective solution which compared with similar studies,  [21] [22] [23] and proposed 

feature representation where most ineffective working systems could replace. The 

accuracy of the computation reached about 88% in ROC AUC performance and about 

90% for the supervised learning models. Also, they mentioned that some of the related 

works were ignoring the qualitative aspect of the traffic data used in the training and 

testing stages, which usually cause the poor performance of the methods used. 

There are many differences studied and applied in this thesis compared to the provided 

literature [11] review. The novelty of this study is the use of the different active learning 

methods, where sampling of the unlabeled instances achieved with the help of three 

different ways, namely Random Sampling, Margin Sampling Selection, and Entropy 

Selection, whereas literature [11] provided only one sampling method results based on 

MLU. Also, after initial training and testing of the dataset, three classification models are 

selected to be trained with the active learning scenario, which is XGBoost, Decision Tree 

and Random Forest, while in the literature [11] Bayesian Network used as the central 

model of the study. Nevertheless, the performance results for detection achieved as 95% 
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accuracy while having fewer data points, which is comparatively better from the literature 

[11] . The remarkable difference in this thesis with the explained research is the nine types 

of attacks studied and classified in the different active learning scenarios and sampling 

methods. Another variation of this thesis, the experimental setup, providing the 

performance results and cost of acquiring incorrect label class from the Oracle/Expert, 

whereas literature [11] experimental setup includes only one scenario with the assumption 

of acquiring all right labels.  

All the obtained results are compared and analyzed in section 5, and detailed information 

explained in the further parts of this thesis. 

2.3.1 Similar research from other fields 

Although there can be found many literature resources on ML techniques applied for 

botnet detection, only limited amount of them genuinely dedicated to the active learning 

approach. Similar reperch gap identified by Kai Yang, Jie Ren, Yanqiao Zhu, and Weiyi 

Zhang and published as “Active Learning for Wireless IoT Intrusion Detection” in 

December 2018, [24]. According to the content of the article, authors underline the similar 

problem of insufficient labeled training data, whereas AL a subfield of ML solves the 

problem by using a limited number of labeled samples. By querying the user/expert under 

the specific strategy, algorithms aim to receive new labeled data and continue the process 

of training until desired results obtained. Thus, reduces the cost and time of getting clean 

and labeled data.  

Experimental setup starts with the unsupervised model training to obtain the anomaly 

samples in the dataset. Then iteratively active learning approach was applied to reach the 

threshold of the performance where recall and precision used. The active learning applied 

in three steps: 

a) Supervised learning 

b) Label selection 

c) Labelling by the expert 

For the algorithm classification, XGBoost distributed gradient boosting library which 

implements machine learning algorithms under the Gradient Boosting framework [25]. 

XGBoost can solve many data science problems fast and accurate while having fewer 
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parameters with a more straightforward structure. Authors found this algorithm 

appropriate for the IoT resources due to scalable, portable and distributed characteristics.  

After applying and comparing the result in Figure 3 [24] and Figure 4 [24] obtained from 

supervised algorithms and AL with the usage of two different datasets, authors conclude 

that AL method can improve the performance of traditional supervised learning and 

optimize cost and time for computation. 

 

Figure 3 and Figure 4 taken from [24] describes the comparison of results obtained from 

supervised ML and AL application. Precision and Recall performance metrics were 

calculated, and different datasets were analyzed.  

The similar idea of utilizing AL algorithm was performed in “Active learning for semi-

supervised structural health monitoring” research paper [26] by L. Bull ∗, K. Worden, G. 

Manson, N. Dervilis. Authors noted the simplicity in getting unlabeled data due to the 

digitalization and wide range of technology used in health monitoring. Complexity of 

Figure 3. Experiment results (KDD 99 Dataset) of 
using a) the active learning method; b) random 

selection method [24] 

Figure 4. Experiment results (AWID Dataset) of 
using a) the active learning method; b) random 

selection method [24] 
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obtaining label class in a wide range of data, solved by AL where limited amount of 

labeled data is used. Authors worked on the project using MATLAB, and successfully 

obtained active learning experiment with the help of cluster-adaptive heuristic label 

propagation, where the process enabled by the heuristic hierarchal framework. This 

project supported by the UK Engineering and Physical Sciences Research Council 

(EPSRC). 

2.3.2 Traditional Machine learning models 

Nevertheless, there are a smaller number of studies with active learning application in 

botnet detection, many traditional supervised, unsupervised and currently being explored 

semi-supervised machine learning algorithms are used in this field.  

One of the literature works, written by Vaibhav Nivargi, Mayukh Bhaowal, and Teddy 

Lee, studied botnet detection [6] by comparing different machine learning models such 

as Naïve Bayers, k-NN classifier, Decision tree, and others. They decided to choose two 

different methodologies for their experimental setup. The first methodology based on 

Binary Detection focusing on binary profiling and hex dumps as feature selection, and 

second was IRC log-based detection using a public communication channel to get the 

traffic. Those methods approached separately and in combination to analyze and 

distinguish between the outcome. One of the datasets used for Binary detection included 

a large number of executables, labeled as botnets, which was taken from Computer 

science department of John Hopkins University [27].  The second dataset with the labeled 

IRC logs acquired from Computer science department of Northwestern University, where 

dataset collected for the wireless overlay network architectures and botnet detection 

research [28]. Users extracted around more than a million features and selected only most 

informative 10,000 features obtained with the usage of chi-square selection based on the 

highest chi-square scores. The results obtained from the experiment evaluated using 

accuracy and F1 to observe the usage of the classifiers based on a specific focus on 

features. Both models gave similar accuracy results approaching almost 99%. From the 

results, it was discussed that the more extensive datasets and feature dependency correlate 

the performance for specific model algorithms. 

A paper [29] by Gagandeep Kaur proposed semi-supervised learning algorithm under the 

description of “A Novel Distributed Machine Learning Framework for Semi-Supervised 

Detection of Botnet Attacks.” Author scheme a plan for generating a labeled dataset with 
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the usage of distributed KMeans clustering applied in Distributed Decision Tree base 

algorithm for botnet detection shown in Figure 5 [29]. For the experimental setup ISCX 

dataset [30] consisting of separate training and testing pcap files with the size 2,119,199 

KB and 5,141,869 KB respectively. Since the main focus of the work was to detect more 

botnet-based attacks, data pre-processing was applied to sanitize a large amount of data 

and remove unnecessary traffic flow. Author converted pcap file into CVS (comma 

separated value) for training and testing and left nine main features namely Source 

Number, time, Source IP Address, Destination IP Address, Source Port Number, 

Destination Port Number, Protocol Type, Data Length in bytes, Info. The network traffic 

or any dataset usually obtained without any labeling, and very costly to do it manually, 

author proposed model of unsupervised KMean learning approach of clustering instances 

lying closest to the normal or anomaly traffic, and label samples to train the obtained 

sample with the help of Decision Tree models.  

Performance of the model evaluated by precision, recall F1 score and confusion matrix, 

whereas accuracy varied from 84% to 88% and False positive rate for Gini and entropy 

is 1,4% and 1,3% respectively. “Gini Index” and “entropy” used in the context of 

measuring the impurity of the decision tree model. Gini Index (G) measures a nodes 

impurity whereas entropy is a measure of dispersion. 

 

Figure 5. Proposed methodology scheme [29] 
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Current research focuses on the application of active learning algorithm for botnet 

detection. After precise selection three models assigned to take part in the active learning 

algorithm application scenario. The primary use of the learning process achieved with the 

help of the sample selection methods like Random Selection, Margin Sampling Selection, 

and Entropy Selection to identify most informative data points regarding the label class 

and use them to train the model and get the performance results. Along with the accurate 

label class queried from Expert, wrong labeling and cost of the calculations also included 

in the experimental setup of this thesis. 



27 

3 Methodology 

The strategy of this master thesis designed in 4 main stages that are: 

1. Data acquisition 

2. Data pre-processing 

3. Data processing (Training, Classification) 

4. Model performance validation 

Summarily, data acquisition stage involves the explanation of the collection and gathering 

features and instances converting and preparing them with appropriate standards and 

format to be used. Data pre-processing stage explains the filtering and ranking features 

by using appropriate feature selection methods, to identify most discriminative ones 

depending on the label class, while eliminating the redundancy and avoiding overfitting. 

And finally, training and testing stages where various algorithms were trained and 

validated with the given input to detect the anomaly behavior and botnet attack type.  

3.1 Stage 1. Data acquisition  

3.1.1 Dataset 

At this stage UNSW-NB15: A Comprehensive Data set for Network Intrusion Detection 

systems was used [5]. This dataset created by the IXIA PerfectStorm tool in the Cyber 

Range Lab of the Australian Centre for Cyber Security (ACCS). The unavailability of the 

broad network-based data set that would include various low footprint intrusions and 

practical information, reflecting contemporary network traffic scenarios was one of the 

main reasons for generating this dataset. Most of the previous researches utilized KDD98 

[31], KDDCUP99 [32], and NSL-KDD [33] data sets which were prepared decades ago 

and currently outdated in respective of the network traffic and network attacks, that has 

been evaded from intrusion detection systems recently. Hybrid solution of the real normal 

traffic data and synthetic attack vectors used in the creation of the data set samples. 

Authors mentioned that existing and some novel methods used in generating the features 

for the research purpose.  
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The quality of the currently existing NIDS (network intrusion detection systems) data sets 

was composed and evaluated by the two essential characteristics that are the normal range 

of the traffic and latest thread inclusion. Some datasets match those characteristics namely 

KDDCUP99 and improved version of the same dataset NSL-KDD. 

However, many IDS researchers who used KDDCUP99 dataset in their projects [34] [35] 

[36] [37] noted some essential disadvantages that affect the evaluation of the models 

performed for the IDS. One of the problems states that training and testing sets have 

different records, where training set found to be having an enormous amount of redundant 

data. Thus, bring to the bias detection due to the numerous records. Despite the fact of 

having different attack vectors which expected from those models in the intrusion 

detection, training and testing sets had unbalanced records among malicious traffic with 

missing values and missing attack types in the testing set. Another one refers to attack 

data packets TTL (time to live) value given as 126 or 253, whereas those values are mostly 

127 and 254 respectively. However, TTL values 126 and 253 do not occur in the training 

records of the attack. And the main one that it doesn’t contain evaded new attack samples 

representing new joint features, reported as low footprint attacks. Even though, creators 

of the KDDCUP99 released upgraded and improved version of dataset, where duplicates 

are removed from training and testing sets, new NSLKDD data set was still missing the 

major drawback where new comprehensive modern attack scenarios were not considered. 

For those reasons the UNSW-NB15 data set chosen since it was created to improve major 

drawbacks mentioned above. 

To get the hybrid combination of the real modern normal and anomaly network traffic the 

authors of the UNSW-NB15 dataset applied IXIA PerfectStorm tool3. The anomaly 

traffic contains nine different families of the attack’s types namely, Fuzzers, Analysis, 

Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms. Information 

about attacks taken from the publicly available information security and vulnerability 

dictionaries that have continuously updated.  Tcpdump5 tool was utilized to capture the 

network traffic. The entire period of the simulation took 31 hours with a size of 100 GBs. 

To separate each pcap file into 1000 MB files tcpdump tool used. And finally, to obtain 

49 features and class label from the pcap files, the Argus and Bro-IDS are utilized along 

with the twelve C# language algorithms that have developed and applied for the in-depth 

analysis of the flow packets. All samples labeled from the ground truth table which 

contains all the simulated attacks types.  



29 

Full configuration setup of obtaining the data presented in Figure 6 taken from [5] where 

Tool IXIA is utilized. The final and the total number of the records collected for the 

training set is 175,341 and 82,332 records for the testing set. 

 

Figure 6. Configuration setup for obtaining the data [5] 

3.1.2 Extracted Features  

The architecture of obtaining the CVS data set files from pcap files for UNSW-NB15 

training and testing dataset is presented in Figure 7 taken from [38]. Features extracted 

with the Argus and Bro-IDS Tools are consist of packet-based and flow-based features. 

Table 1 represents the data set statistics, explaining and presenting the numbers of flows 

and bytes and time spent for the experimental setup while obtaining the data.  

All features categorized into three main groups: Basic, Content and Time along with the 

synthetic attack categories labeled accordingly. Additionally, flow features and additional 

features presented and described in Table 2 and Table 6. All features described in Tables 

3-5. Table 7 and Table 8 represents the labels class along with the data set distribution 

among the network traffic classified as normal and anomaly depending on the type of the 

attack. 
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Figure 7. Feature extraction with the Argus and Bro-IDS Tools [5] 

 

Table 1. Data set Statistics [38] 

Statistical features  16 hours  15 hours  

Number_of_flows  987,627  976,882  

Src_bytes  4,860,168,866  5,940,523,728  

Des_bytes  44,743,560,943  44,303,195,509  

Src_Pkts  41,168,425  41,129,810  

Dst_pkts  53,402,915  52,585,462  

 
Protocol types  

 

TCP  771,488  720,665  

UDP  301,528  688,616  

ICMP  150  374  

Others  150  374  

Label  

 

Normal  1,064,987  1,153,774  

Attack  22,215  299,068  

Unique  

 

Src_ip  40  41  

Dst_ip  44  45  

Table 2. FLOW FEATURES [38] 

#  Name  T.  Description  

1  proto  N   Transaction protocol  
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Table 3. BASIC FEATURES [38] 

#  Name  T  Description  

2 state  N   The state and its dependent protocol, e.g. ACC, CLO, else (-)  

3  dur  F   Record total duration  

4  sbytes  I   Source to destination bytes  

5  dbytes  I   Destination to source bytes  

6  sttl  I   Source to destination time to live  

7  dttl  I   Destination to source time to live  

8  sloss  I   Source packets retransmitted or dropped  

9  dloss  I   Destination packets retransmitted or dropped  

10  service  N   http, ftp, smtp, ssh, dns, and (-) (if not much used service) 

11  sload  F   Source bits per second  

12  dload  F   Destination bits per second  

13  spkts  I   Source to destination packet count  

14  dpkts  I   Destination to source packet count  

Table 4. CONTENT FEATURES [38] 

#  Name  T  Description  

15  swin  I  Source TCP window advertisement  

16  dwin  I  Destination TCP window advertisement  

17  stcpb  I  Source TCP sequence number  

18  dtcpb  I  Destination TCP sequence number  

19 smean I Mean of the flow packet size transmitted by the src 
20 dmean I Mean of the flow packet size transmitted by the dst 
21  trans_depth  I  The depth into the connection of http request/response transaction  

22  res_body_len  I  
The content size of the data transferred from the server’s http 

service 

Table 5. TIME FEATURES [38] 

#  Name  T  Description  

23  sjit  F   Source jitter (mSec)  
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24  djit  F   Destination jitter (mSec)  

25  sintpkt  F   Source inter-packet arrival time (mSec)  

26  dintpkt  F   Destination inter-packet arrival time (mSec)  

27  tcprtt  F   The sum of ’synack’ and ’ackdat’ of the TCP.  

28  synack  F   The time between the SYN and the SYN_ACK packets of the TCP.  

29  ackdat  F   The time between the SYN_ACK and the ACK packets of the TCP.  

Table 6. ADDITIONAL GENERATED FEATURES [38] 

#  Name  T  Description  

General purpose features  

30  is_sm_ips_ports  B  
 If source (1) equals to destination (3) IP addresses and port 

numbers (2)(4) are equal, this variable takes value 1 else 0  

31  ct_state_ttl  I  
 Number for each state (6) according to specific range of 

values for source/destination time to live (10) (11).  

32  ct_flw_http_mthd  I  
 Number of flows that has methods such as Get and Post in 

http service.  

33  is_ftp_login  B  
 If the ftp session is accessed by user and password, then 1 

else 0.  

34  ct_ftp_cmd  I   Number of flows that has a command in ftp session.  

Connection features  

35  ct_srv_src  I  

 Number of connections that contain the same service (10) 

and source address in 100 connections according to the 

record last time.  

36  ct_srv_dst  I  

 Number of connections that contain the same service (10) 

and destination address in 100 connections according to the 

record last time.  

37  ct_dst_ltm  I  
 Number of connections of the same destination address in 

100 connections according to the record last time.  

38  ct_src_ltm  I  
 Number of connections of the same source address in 100 

connections according to the record last time.  
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39  ct_src_dport_ltm  I  

 Number of connections of the same source address and the 

destination port in 100 connections according to the record 

last time.  

40 ct_dst_sport_ltm  I  

 Number of connections of the same destination address 

and the source port in 100 connections according to the 

record last time.  

41 ct_dst_src_ltm  I  

 Number of connections of the same source and the 

destination address in 100 connections according to the 

record last time.  

Table 7. LABELLED FEATURES [38] 

#  Name  T   
Description  

43  attack_cat  N  

The name of each attack category. In this data set, nine categories 

(e.g., Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, 

Reconnaissance, Shellcode and Worms) 

44  Label  B  0 for normal and 1 for attack records 

Type (T.) N: nominal, I: integer, F: float, and B: binary  

Table 8. DATA SET RECORD DISTRIBUTION [38] 

Type  
Number of 

Records  
 

Description  

Normal  2,218,761  Natural transaction data.  

Fuzzers  24,246  
Attempting to cause a program or network suspended by 

feeding it the randomly generated data.  

Analysis  2,677  
It contains different attacks of port scan, spam and html 

files penetrations.  

Backdoors  2,329  
A technique in which a system security mechanism is 

bypassed stealthily to access a computer or its data.  

DoS  16,353  
A malicious attempt to make a server or a network 

resource unavailable to users, usually by temporarily 
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interrupting or suspending the services of a host 

connected to the Internet.  

Exploits  44,525  

The attacker knows of a security problem within an 

operating system or a piece of software and leverages that 

knowledge by exploiting the vulnerability.  

Generic  215,481  

A technique works against all block- ciphers (with a given 

block and key size), without consideration about the 

structure of the block-cipher.  

Reconnaissance  13,987  
Contains all Strikes that can simulate attacks that gather 

information.  

Shellcode  1,511  
A small piece of code used as the payload in the 

exploitation of software vulnerability.  

Worms  174  

Attacker replicates itself in order to spread to other 

computers. Often, it uses a computer network to spread 

itself, relying on security failures on the target computer 

to access it.  

 

Tables 1-8 representing the features along with the descriptions taken from the official 

literature [38] prepared for the UNSW-NB15 network data set. 

The details of the twelve additional features presented in Table 6 are generated with the 

help of matched features (e.g., Tables 2-4). Authors of the UNSW-NB15 network data 

set [38] stated that those features are divided into two parts according to the nature and 

purpose of the additional generated features.  

1. First part (features 30-34), are considered to be general purpose features, whereby 

each feature has its own purpose, according to protect the service of protocols 

(defence point of view). 

2. Second part (features 35-41), are labelled as connection features. that are built 

from the flow of 100 record connections based on the sequential order of the last 

time. The attackers might scan hosts in a capricious way. For instance, one scan 

per minute or one scan per hour [39].  For this reason, those features are intended 

to sort and identify these attackers accordingly.   
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Note that in Moustafa and Slay’s work [38], they described “last time” feature, also 

referred to as "record last time" in Table 6. The description and information provided in 

their paper is limited. For the purpose of this research, it was assumed that every 

connection feature might have different record section. The experimental setup was 

captured twice (16 hours and 15 hours), where was more than 100 connections, however 

for each connection feature they calculated only last 100 sequential connections, indicated 

as the last experiment record time. For example, packets were captured between 0h and 

16h. The last 100 sequential connection for feature "ct_dst_ltm" captured between 12h to 

15h, whereas last 100 sequential connection for feature "ct_srv_src" is captured between 

14h to 16h. This assumption was based on the experimental setup performed by Moustafa 

and Slay, but the “last time” feature is not part of their released dataset. 

Current thesis utilized the UNSW-NB15 dataset obtained from the original source [5] 

with total number of 82332 data points, and 42 features. Distribution of the data samples 

of UNSW-NB15 dataset provided in numbers and percentage in Table 9. 

Table 9. Distribution of the data instances among the label class 

Type  Number of instances  Total In percentage 

Normal  37,000 37,000 45% 

Fuzzers  6,062  45,332 55% 

Analysis  677  

Backdoors  583  

DoS  4,089  

Exploits  11,132  

Generic  18,871  

Reconnaissance  3,496  

Shellcode  378  

Worms  44 

3.2 Stage 2. Data Pre-processing 

Data pre-processing is a vital step for ML tools that applied in the algorithm. The quality 

of data which is often incomplete, inconsistent or lacking some trends or overloading, 

directly influences the performance of the model and ability to derive valuable 
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information. That is why this stage is crucial before data is going to be trained and feed 

to the primary algorithm model. This step is proved to transform raw data into cleaner 

representation by eliminating overloading an unnecessary noise and information from the 

given data set to achieve better results. 

To achieve the most appropriate clean process, data needs to undergo through the few 

steps before being used in the next stages. The feature selection is a significant step in the 

whole process, due to its high impact on the performance of the model. This process 

allows you to automatically find and process the most useful and informative features for 

the learning pipeline. Not all the features work same as most informative ones, some of 

the additional features affect negatively to the whole process by decreasing the speed of 

computation and training, model interpretability and more importantly by reducing the 

overall performance of the model. 

“Feature selection is itself useful, but it mostly acts as a filter, muting out features that 

aren’t useful in addition to your existing features.” [40] 

Robert Neuhaus 

Not all of the features obtained in the data acquisition stage equally influence the selected 

models. Some of the features might have zero-importance relatively to the label class, 

some profound importance. Some features might have unique value or correlate to the 

model. That is why this process is used to eliminate redundant features from the data set 

with less informative gain relevant for the predicting class and provide better accuracy of 

the model based on the information stored in the selected variables and attributes. 

3.2.1 Feature selection 

In order to improve accuracy and efficiency of the classifier methods, three main feature 

selection methods usually are applied [41]. 

1) Filter method – this method generally performs selection independently from the 

classifier and doesn’t carry induction algorithms. The method involves statistical 

measure or distance between the classes to assign a specific score to each feature. 

The selection or removal of the feature from the further training process decided 

by the scoring rank of each feature found in the data set and considered 

individually or respectively to the dependent variable.  
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Some of the examples of the filter methods listed as Chi-square, Entropy, Fisher’s 

score, information gain, correlation, and one-attribute rule. 

2) Wrapper method – in this method classification of the features is performed to 

obtain better results and performance. The process based on search algorithms, 

and each combination with the set of features is evaluated to match the best 

possible outcome for the concrete machine learning algorithm. However, they 

tend to be slower, since it requires more considerable computational resources and 

not all these proposed sets are optimal for every other machine learning algorithm. 

The search process mainly divided into three categories: Forward feature 

selection, Step backward feature selection, and Exhaustive feature selection. An 

example of the wrapper method can be recursive feature elimination, sequential 

feature selection algorithms, and genetic algorithms. 

3) Embedded method – this method selects the feature based on a learning process 

in each iteration of the algorithm. Each iteration is equally essential for the process 

to extract those particular features that contribute the most for the training 

procedure. Even though the search guided by the learning process might be similar 

to the wrapper method, it follows with less computational consumption. 

The most common approach for the embedder technique is decision tree 

classification algorithm and another regularization method in the concept of 

LASSO. 

Since the wrapper method is computationally expensive and embedded model is 

computationally demanding, where each iteration needs high computational resources, in 

this research study, the filter method is used for the feature selection process. This method 

uses independent evaluation criteria for every feature and less computational load which 

flow-based network traffic would require for each separate feature selection.  

The given data set includes both numerical and categorical features. However, the 

inclusion of the three categorical (namely: proto, service, state) values does not affect the 

overall accuracy results of detecting the label class (see Appendix 1), compared to the use 

of only numerical features. Thus, it can be proven with the experiment results executed 

to measure the performance of the model with all features in comparison to only 



38 

numerical features. In the experiment, a dataset with the 82332 data points trained and 

tested using cross-validation method with 10 folds on the initially predefined five 

classification models. The results for both cases remained the same both for binary 

classification (around 94%) and multi-class (approximately 81%) label. For this reason, 

in this thesis, only numerical features and their selection are considered. 

3.2.2 Numerical feature’s selection 

Binary selection of the features is major characteristics for filter-based feature selection 

which helps to maximize some performance of the model. Numerous filter-based 

selection criteria’s like information gain [42], Laplacian score [43], ReliefF [44] and 

others were studied and proposed to be utilized in the last decades, where Fishers Score 

was the most widely used one, due to its overall favorable performance [45].  

The Fisher’s score intended for the numeric variables to measure the ratio of the average 

interclass to the average of the intraclass separation [46]. The discriminatory power of the 

attribute evaluated by the range of the score, which is calculated by the given formula: 

F =
∑ 𝑝&'𝜇& − 	𝜇+

,-
&./

∑ 𝑝&𝜎&,-
&./

 

Where 𝜇& and 𝜎& are the mean and the standard deviation of the class j, j = 1, 2, 3 … k, 

corresponding to the n-th feature. The value 𝜇 represented as the global mean of the whole 

data set, and 𝑝& is the fraction of the data points belonging to the class j.  

The Fisher’s score formula is applied to identify the score for each feature in respective 

of the two-class label and multi-class label. All features tested with the help of decision 

tree classification model and performance tested by iterating the feature with the highest 

score by adding every next feature till the least ranked. No direct threshold dictates the 

importance of the features to the specific model, and the scoring results might be different 

for a different type of the datasets and label class. Top features selected for the training 

stage are those that are higher compared to the others in the same feature set. According 

to the results shown in Table 10, F score for two-class label value is relatively lower than 

the multi-class label F score. 



39 

Fisher’s score was implemented and applied to the two-class label and multi-class label 

with the distribution records of different attack types, to select potentially the best features 

with the highest discriminatory value depending on the label class among all the given 

features set.  

The result for the two-class label and multi-class label feature ranking is given below in 

Table 10. The Fisher’s (F) score applied to 39 numerical features. 

Table 10. The Fisher’s score results 

Ranking Feature name Two-class 

label Score 

Feature name Multi-class 

label Score 

1 sttl     0.271061 ct_dst_sport_ltm 1.069932 

2 swin 0.174412 ct_srv_dst 0.916540 

3 ct_dst_sport_ltm 0.168184 ct_src_dport_ltm   0.853288 

4 dwin 0.132030 ct_srv_src 0.850996 

5 ct_src_dport_ltm 0.120486 ct_dst_src_ltm 0.714809 

6 rate 0.105343 ct_dst_ltm 0.667196 

7 ct_state_ttl 0.087106 swin 0.575036 

8 ct_srv_dst 0.083646 ct_src_ltm   0.547743 

9 ct_srv_src 0.081759 sttl 0.500799 

10 ct_dst_src_ltm 0.075949 dwin 0.490655 

11 ct_src_ltm 0.074142 dttl 0.310571 

12 dtcpb 0.071437 rate 0.262325 

13 stcpb 0.070716 stcpb 0.245961 

14 ct_dst_ltm 0.064143 dtcpb 0.244908 

15 dload 0.063985 ct_state_ttl 0.164801 

16 dmean 0.037995 dmean 0.117552 

17 synack 0.017699 dload 0.085526 

18 tcprtt 0.017568 tcprtt 0.082582 

19 sload 0.012956 ackdat 0.081581 

20 ackdat 0.011493 synack 0.062480 

21 sinpkt 0.011102 smean 0.060272 

22 is_sm_ips_ports 0.010466 sload 0.026655 

23 dttl 0.008224 dur 0.019671 
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24 ct_flw_http_mthd 0.004435 ct_flw_http_mthd 0.019027 

25 dpkts 0.003312 trans_depth 0.016491 

26 smean 0.003114 sinpkt 0.015017 

27 dloss 0.001729 is_sm_ips_ports 0.013977 

28 dinpkt 0.001102 sjit 0.013635 

29 dbytes 0.000929 djit 0.010410 

30 spkts 0.000698 dpkts 0.009701 

31 sjit 0.000607 is_ftp_login 0.009144 

32 trans_depth 0.000591 ct_ftp_cmd 0.008923 

33 djit 0.000588 spkts 0.007467 

34 sbytes 0.000391 dinpkt 0.007049 

35 ct_ftp_cmd 0.000240 dloss 0.005882 

36 response_body_len 0.000229 sloss 0.004907 

37 is_ftp_login 0.000215 sbytes 0.004137 

38 sloss 0.000037 dbytes 0.003909 

39 dur 0.000001 response_body_len 0.001099 

 

As can be noted from Table 10, some of the features having the highest score depending 

on the label class are similar. Namely, those features are ct_dst_sport_ltm and 

ct_src_dport_ltm that belongs to the group of connection features and having 

characteristics for evaluating number of connections between source/destination and 

destination/source ports for the last time among 100 connections. 

Both features are holding almost the same characteristics differing only in the source and 

destination ports represented in Table 11. 

Table 11. Matching top features for both scenarios (binary, multi) 

ct_src_dport_ltm 

No of connections of the same source address and the 

destination port in 100 connections according to the last 

time. 

Integer 

ct_dst_sport_ltm 

No of connections of the same destination address and 

the source port in 100 connections according to the last 

time. 

Integer 



41 

According to the multi-class label (Normal, Fuzzers, Analysis, Backdoors, DoS, Exploits, 

Generic, Reconnaissance, Shellcode and Worms) the most discriminative highest ranked 

6 features (ct_dst_sport_ltm, ct_srv_dst, ct_src_dport_ltm,  ct_srv_src, ct_dst_src_ltm, 

ct_dst_ltm) are considered and labeled as connection features. Those features are 

provided in the dataset for defense phase during the attempt depending on the connection 

scenarios [38]. According to the various scenarios, unpredictable way of scanning the 

host could be used by attackers, where some of them can take once per minute and others 

one scan per hour [39]. For this reason, connection features were created and extracted to 

the database to capture similar characteristics of the connection records for the last 100 

connections.  

As it was mentioned formerly scoring value of two most discriminative features 

(ct_dst_sport_ltm, ct_src_dport_ltm) are similar in two-class and multi-class label 

scenarios. Scoring value is obtained from Fisher’s score ranking. However, the other four 

features named as sttl, swin, dwin and rate belong to the content features and basic 

features. Those features are mostly representing the integrated gathered information from 

the data packets. Those features are described in Tables 2-6 as Source/Destination TCP 

window advertisement and source to destination time to live.  

Nevertheless, different groups of features are candidates for best discriminatory power, it 

was also noted that almost all the connection features created to analyze the defense stage 

during the attempt are getting the higher results compared to the other features. All of the 

connection features have a threshold of 0,06 and 0,24 for two-class and multi-class label 

respectively, and thus affecting the better accuracy results on the supervised 

classification, which described in the section 3.3.   

3.3 Stage 3. Classification, Training 

After settling with the dataset, data pre-processing, getting the most discriminative 

features by applying appropriate feature selection criteria and hypothetical testing the 

obtained input is ready for the next stage. In this stage, an input is ready to be processed 

and fed to the machine learning classification models. Different models were used to build 

an appropriate algorithm and compare performance results using classification algorithms 

with the help of supervised, semi-supervised and active learning approaches. 
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In the current thesis, the primary approach of botnet detection is achieved by active 

machine learning algorithms. However, supervised unsupervised and semi-supervised 

algorithms with the combination of different classification problems are also applied in 

or order to evaluate the difference and analyze the performance of each separate way. 

Dataset provides labeled samples to characterize attributes as normal network traffic and 

anomaly behaviors, whereas nine different attributes for each instance describe anomaly 

behavior. Malicious and normal traffic are measured with the numerical value 0 for 

normal and 1 for botnet, while separate instances within anomaly traffic are defined by 

the categorical value, identifying attack type. Thus, brings the classification problem to 

discriminate between two classes or label samples, as normal and anomaly (0 and 1), and 

between multi-class as normal and type of the attack vectors (Fuzzers, Analysis, 

Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms). 

To achieve a classification of assigned one or more predefined categories, some instances 

from a given dataset should be used to train the model and the rest for testing or validation 

process. Depending on the problem training data is provided with fully labeled instances 

for supervised learning or with few labeled instances (dataset has labeled and unlabeled 

instances) for semi-supervised and active learning, while testing data is used to predict 

the label class. After the process is completed original labels and predicted instances are 

analyzed and compared to provide the performance of excellent and lousy classification 

practice. In supervised learning, dataset with fully labeled instances is mostly split into 

training with a ratio of 70% to train the model and testing part with the rest of 30% to test 

the model. For the semi-supervised and active learning labeled samples for training stage 

might vary from 1% to 99%, depending on the desired performance and number of 

instances. Following this process, the performance of the evaluation is determined. 

Another similar but more complicated approach can be achieved with the help of K-fold 

Cross Validation, whereas data is divided into folds ensuring that every fold is used both 

as training and testing sets at some point. K-fold Cross Validation split data into k number 

of sections/folds and performs k iterations where the current iteration used to test the 

model and rest to train. The process repeats until every iteration has used given fold as a 

testing set. This approach provides better performance results compared to splitting the 

data into 70/30. In the current thesis work, both methods applied in different machine 

learning techniques.  
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In the testing experiment using a supervised classification approach, the most competitive 

five classification models were chosen. After initial analysis and performance of the 

models in detecting the label class XGBoost, Decision Tree and Random Forest gave 

overall better and similar results. As a result, the next stages of this thesis, utilized those 

models in experimental testing scenarios for semi-supervised and active learning 

algorithms.  

3.3.1 Decision Tree algorithms 

Decision tree algorithms are the most popular machine learning algorithms that fall under 

supervised learning and can be used both for solving regression and classification 

problems. Decision trees are easy to understand for human-level thinking and use the tree 

representation to solve the problem in which each node represents a feature (attribute), 

each branch represents a decision, and leaf node corresponds to an outcome (label class). 

The whole idea lies in creating a tree for the entire given data and process every result in 

the leaf by minimizing the possible error. 

The decision tree has different ways to identify the attribute for the root node in each 

level. There are two primary attribute selection methods which are: 

1. Information Gain - a measure of the change in the entropy when the root node in 

a decision tree for every level decided after the partition of the training instances 

into smaller subsets. Entropy is a standard measurement of the uncertainty of a 

random variable, and it characterizes the impurity of an arbitrary collection of 

examples. The higher the entropy more the information content. 

2. Gini Index - a metric to measure how often a randomly chosen element would be 

incorrectly identified. Thus, followed by the usage of the lowest Gini in each split. 

Sklearn supports both criteria’s, however, uses Gini index as a default measure to 

calculate the root node.  

Below, there is a simple visualization of the decision tree, based on the botnet and normal 

traffic with the help of the top ranked (Fisher’s score) three features for binary 

classification. To visualize small tree only 40 entries from the original data set are used.  
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Figure 8. Example of simple Decision Tree based on the botnet and normal network 
traffic 

 
Like all other models, Decision Trees has advantages and disadvantages for problem-

solving as listed below.  

Pros: 

• Easy to understand, interpret, generate rules, visualize and draw 

• Deals well with noise or incomplete data 

• Can be used both for regression and classification problems 

• Suitable both for categorical and numerical data 

• Handles both binary and multi-class output problems 

• Validation of the model can be achieved by using quantitative analysis and 

statistical tests, which makes the reliable decision model leading to good 

predictive results. 

Cons: 

• Instability, where small changes in the data lead to a significant difference in the 

model 
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• Overfitting, low bias but high variance, performance decreases or fails on testing 

data (unseen data) even if the score on the training data shown as highly accurate. 

This happens when the decision tree tries to fit all samples into training data by 

creating multiple branches with strict rules, which fails on training data. Thus, can 

be improved with the pruning method, where some branches of the tree tend to be 

removed.  

• Complexity, decision trees are easy to use, however, decision making on the 

extensive data makes trees complex including many branches and time-

consuming 

• Cost, where large decision trees require advanced knowledge in quantitative and 

statistical analysis. 

In the experimental setup of this thesis, all required functions to build the decision tree 

model using the classification problem were archived by using the scikit-learn Python 

library package. 

3.3.2 Random Forest 

Random Forest is easy to use and flexible machine learning algorithm that produces good 

performance result. Random Forest is a supervised learning algorithm used both for 

classification and regression tasks. Random Forest creates a forest, which is an ensemble 

of Decision Trees, by adding additional randomness and trains the model by merging 

decision trees to get more accurate and stable prediction results.  

The model offers excellent performance and diversity in the results obtained from training 

by searching the best feature among the subset for the features, rather than searching for 

the most essential feature when splitting a node. Therefore, in Random Forest, only a 

random subset of the features is taken into consideration by the algorithm for splitting a 

node. Trees can become more random, by additionally using arbitrary thresholds for each 

feature rather than searching for the best possible limits (comparing to the decision tree 

methods). 

Like every other model there are Pros and Cons of the Random Forest as followed below: 

Advantages: 

• Works correctly for more extensive data items, due to having fewer variances 
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• Flexible, provides high accuracy results 

• Preparation of the input and data scaling are not required 

• Accuracy maintained even if massive data proportions are missing 

• The process of averaging and combining the results obtained from different 

decision trees helps to solve the overfitting problem. 

Disadvantages: 

• Complexity: Harder to follow, not easily interpretable and time-consuming than 

constructing decision trees 

• Requires more computational resources and are less intuitive. 

• The prediction process is slow (time-consuming) 

3.3.3 XGBOOST 

 “The name xgboost, though, actually refers to the engineering goal to push the limit of 

computations resources for boosted tree algorithms. Which is the reason why many 

people use xgboost” [47] 

- Tianqi Chen 

XGBoost is an optimized distributed gradient boosting library designed to be highly 

efficient, flexible and portable [25]. Gradient Boosting framework is used to implement 

machine learning algorithms. Many data science problems solved in a fast and accurate 

way under XGBoost, which provides a parallel tree boosting. In its turn gradient boosting 

is a machine learning technique for regression and classification problems. It produces a 

prediction model in the form of weak prediction models, generally decision trees. 

XGBoost belongs to a broader collection of tools under the Distributed Machine Learning 

Community or DMLC, the creators of the popular MXNet [48] deep learning library. 

XGBoost is a software library that can be downloaded and installed on the machine and 

accessed from a variety of interfaces. In this thesis, XGBoost library is used and 

implemented under Python interface in scikit-learn. 

The main reasons for the utilization XGBoost in the project are the execution speed and 

model performance. Compared to the other gradient boosting implementations XGBoost 

is very fast. Regarding to the performance of the model, XGBoost was a winner in the 

most of Machine learning competitions providing the highest performance results. Even 
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though the library mainly focuses on computational speed and model performance, it also 

offers many advanced features that are described as Model Features, System Features, 

and Algorithm Features. 

Model Features 

Scikit-learn supports the implementation of the features in the model with some 

regularization. Three primary forms of gradient boosting features that supported are 

described below: 

1. Gradient Boosting algorithm also known as gradient boosting machine including 

the learning speed. 

2. Stochastic Gradient Boosting includes subsample in a row, column, and a column 

for separate levels. 

3. Regularized Gradient Boosting contains L1 and L2 regularization. 

System Features 

The library provides the usage to a system in a variety of computing environments: 

• All CPU cores uses the parallelization tree construction while training. 

• Distributed Computing for training huge models utilizing a cluster of machines. 

• Out-of-Core Computing for extensive datasets that do not fit into the memory. 

• Optimization of the data structure cache and algorithm for the best use of hardware 

equipment. 

Algorithm Features 

The implementation of the algorithm was designed to calculate time and memory 

resources efficiently. The purpose of the development was to maximize the use of 

available resources for the training stage of the model. Some key features of the 

implementation of the algorithm include: 

• Sparse Aware deployment with automatic process of missing data values. 

• Block Structure supports the parallelization of tree construction. 

• Continuous Training for further boost in already fitted model with new data. 
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• XGBoost is free, open source software available for use under the Apache-2 

license. 

In the present thesis, XGBClassifier is utilized in different training and testing scenarios 

under the Python interface in scikit-learn. 

3.4 Stage 4. Performance Evaluation Metrics  

In order to classify obtained results as poor or satisfying, evaluation of the machine 

learning algorithms is essential. Several classification metrics are used to ensure 

expectations for the detection performance and efficiency of the experimental setups.  

The fundamental quantities used in the definitions of performance criteria, where N is a 

number of classifications, are as follows: 

Table 12. Confusion Matrix 

 Labels returned by the classifier 

positive negative 

True labels positive NTP NFN 

negative NFP NTN 

3.4.1 Correct and Incorrect Classification 

When testing a classifier on a defined sample, those four fundamental quantities used: 

• The example is positive, and the classifier correctly recognizes it as such (true 

positive); 

• The case is negative, and the classifier correctly identifies it as such (true 

negative);  

• The example is positive, but the classifier labels it as negative (false positive);  

• The case is negative, but the classifier labels it as positive (false negative); 

The following definitions are originally from [49]. 
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3.4.2 Classification Metrics and Performance Evaluation 

3.4.2.1 Error Rate and Classification Accuracy  

One of the primary and fundamental detection performance metrics used in supervised 

learning algorithms is error rate and classification accuracy as stated from the name. It is 

calculated by diving either correct classification or frequency of the errors by the total 

number of given samples.  

𝐸 = 	
𝑁34 +	𝑁36

𝑁34 +	𝑁36 +	𝑁74 +	𝑁76
 

𝐴𝑐𝑐 = 	
𝑁74 +	𝑁76

𝑁34 +	𝑁36 +	𝑁74 +	𝑁76
 

Acc = 1 – E 

|T| =NFP + NFN + NTP + NTN (size of the set) 

Classification accuracy is the ratio of number of correct predictions to the total number 

of input samples. Accuracy metric works well, when the data set has equal number of 

samples belonging to each class. Accuracy is considered as the most common and 

universal performance metric for classification problems measured by using 

straightforward and intuitive way. However, both accuracy and error rate can give a poor 

measure results for imbalanced data. Hence, there is an opinion that accuracy is improper 

scoring rules [50] for imbalanced data (with different numbers of samples belonging to 

each class, whereas one class considered to be on the much higher side than the others). 

For this reason, many authors in [7] [9] used these metrics used along with the Precision 

and Recall giving broader performance overview of the experiment for imbalanced data. 

3.4.2.2 Precision and Recall 

Some datasets most commonly have a higher amount of negative results than positive. In 

this sense, calculating the error rate might misdirect the classification performance. For 

this reason, calculating the ratio of items classified as positive (X) among all examples 

which are labeled as X is more sensible.  Showing the probability that the classifier is 

right is called Precision (Pr) or Positive Predictive Value (PVV) and achieved by the 

following equation: 
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𝑃𝑟 = 	
𝑁74

𝑁34 +	𝑁74
 

Another way of phrasing the Precision is to say, that calculation of the probability 

classifier is right when labeling an example as positive [49]. Holding this meaning 

precision calculation can be used for a multi-class problem considering unsupervised and 

semi-supervised algorithm approaches. 

3.4.2.3 Sensitivity and Specificity 

Another way to assess the performance of the algorithm is to define the probability of 

positive examples among all positive cases in the set. But, since the particular choice of 

the criteria might influence the given application area, sensitivity and specificity are 

accustomed as Recall measured on positive and negative examples which represented as 

following formulas: 

Sensitivity or Recall measured on positive examples: 

𝑆𝑒 = 	
𝑁74

𝑁36 +	𝑁74
 

Specificity or Recall measured on negative examples: 

𝑆𝑝 = 	
𝑁76

𝑁34 +	𝑁76
 

3.4.2.4 Combination of Precision and Recall 

Sometimes when the desired outcome cannot be decided on an exact parameter, neural 

value combination of precisions and recall is used. Authors of [7] have chosen this method 

as one of the performance evaluation metrics to measure various algorithms used in their 

work. 

𝐹/ = 	
2 ∗ 𝑃𝑟 ∗ 𝑅𝑒
	𝑃𝑟 + 𝑅𝑒  

3.4.2.5 ROC and AUC Curves  

Another performance measurement is AUC ROC Curves. In binary and multi-class 

classification problems, where specific parameters can modify NFP and NFN, it highly 
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predicted that the overall classifier behavior could be affected and improved by tweaking 

particular settings (parameters). This logic is used when a user is sure about specific 

quantities and which focus is more critical for the training dataset. According to “Towards 

Data Science” blog, when it comes to label samples with various threshold settings, “AUC 

(Area Under the Curve) ROC (Receiver Operating Characteristics) curve is the most 

important evaluation metric for checking any classification model's performance because 

it tells how much model is capable to distinguishing between classes." [51]. Naturally, it 

works by distinguishing between classes by predicting positive or negative labeling 

supported by evidence of nearest neighbors’ classification.   

3.4.3 Selected Performance Metrics 

Since, the data set utilized in this research has more balanced prediction class with similar 

amount of normal and botnet samples, accuracy evaluation metrics are performed in all 

experimental setups in this master thesis. In addition, confusion matrix was applied in 

active learning experiments, to be able to see a full range of the positive and negative 

samples for a correct label returned from the training phase. Nevertheless, some of the 

evaluation metric described above used in different parts of training, validation and 

analysis stage. Accuracy was decided as primary metric for evaluating the final result and 

visualize the graphs obtained from the process.  
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4 Botnet Detection: Practical Implementation 

To obtain a proper botnet detection, machine learning (classification) algorithm/model, 

implementation was performed on the Python programming language as a base. Scikit-

learn library [52] and supportive libraries like panda [53] were additionally used for some 

mathematical equations. According to the official documentation, scikit-learn is an open 

source, freely accessible for everyone, simple and efficient tool for data mining and data 

analysis [52]. This library is reusable in various contexts and build on widely used 

numerical and scientific libraries like NumPy, SciPy, and matplotlib. Scikit-learn has the 

features and functionality of providing resources for Classification, Regression, 

Clustering, Pre-processing, Model selection, and Dimensionality Reduction [52]. In this 

thesis the power of Scikit-learn used as the main library for designing the machine 

learning algorithm. Data pre-processing and training stages are achieved on the base of 

Scikit-learn library, with the use of classification models (Decision Tree, Random Forest, 

XGBoost). Testing and validation that were implemented on the same base and provided 

systematic performance outputs. The workflow architecture presented in Figure 9. 

 

Figure 9. Implementation Architecture 
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4.1 Selected numerical features for botnet detection 

In the previous stages, it was described that Fisher’s score applied to the 39 numerical 

features. 19 (see Figure 10) of them were proven potentially good with discriminative 

power in respect of binary class and multi-class supervised classification. The dataset 

with the 82332 samples was used to train and test the Decision Tree model (model chosen 

arbitrary). Sklearn train_test_split technique with 70% training and 30% testing data and 

cross-validation method with 10 folds were applied.  

All features from the highest rank to the lowest were classified to identify the statistical 

probability of distribution and effect on the accuracy of the desired label and prediction 

results. Results are obtained by splitting the data into training 70% and testing 30% sets 

with the help of train_test_split function and cross-validation method by folding the data 

10 times. Results of classification using supervised Decision Tree model are given in 

Figure 10 both for binary and multi-class. The difference in accuracy for both ways can 

be seen by mostly 2 %. However, the results are primarily the same, which can be 

visualized from the graphs represented below. 

 

Figure 10. Accuracy performance results for both binary and multi class 

 
As can be seen from the graph above, the accuracy results for the binary class are mostly 

stable after applying 19 and more features. Those top most informative 19 features are 

involved in the further stages of training and classification for the binary class task to 
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reduce overfitting of the selected models. Additional graphs with separate label class are 

provided in Appendix 2. 

For multi-class label accuracy results are fluctuating more on the same scale after 

applying 21 highest ranked numerical features. In the same way, next stages of the 

experimental setup utilized those top 21 features according to the Fisher’s score ranking. 

In both scenarios (binary and multi) the firsts breakout can be seen from the graph after 

applying 9 top features, reaching the accuracy around 80% for multi-class and 90% for 

binary class, dominated by the connection features. 

Table 13 shows the accuracy metrics for each different range and set of features according 

to their highest discriminative score to the label class.  

Table 13. Accuracy metrics of the model trained with top numerical features 

Number of features Binary classification 

(normal, anomaly) 

Multi-class classification 

(normal and attack types) 

 Cross 

validation 

Train test 

split 

Cross 

validation 

Train test 

split 

Best feature 76.63 76.57 65.43 65.51 

3 best features 80.12 80.80 67.41 69.10 

10 best features 91.74 93.76 77.73 80.96 

19 best features 93.44 95.51 77.51 81.62 

21 best features 93.31 95.23 80.95 84.57 

All features  93.88 96.26 81.56 85.03 

 

Table 13 shows that: 

• The highest ranked single feature (which is different for the binary and multi-

class) is capable to identify the botnet in the network flow by 76% in the binary 

classification and 65% in the multi-class. Even though, the performance results 

are different and relatively low, it is still good indicator for the binary 

classification. 
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• Discriminative power gradually increases in both cases with the addition of the 

next essential features. By training the model with the most three discriminative 

features the accuracy reached 80% in binary class and 67-69% in the multi-class.  

• Visible accuracy improvements for binary class label were noted when top valued 

10 features were included in the training stage. Accuracy metrics increased by 

10% compared to the 3 feature accuracy metrics. However, for multi-class label 

the results kept almost on the same scale with 2-3% of fluctuation. 

• Gradual improvements for the multi-class label were introduced while training 

model with the 21 best features proving the accuracy results in 84%. The results 

are mostly stable after including the rest of the features. 

• The best result according to the training stage for two-class label hit the record 

with 93-95% kept from 19 most important features until the full feature set in the 

training process. 

4.2 Classification algorithms 

As stated in the background part, the main idea for machine learning classification 

algorithms is to categorize given data into desired and distinct number of classes.  

Since there are many options to build a classification model, some of the critical elements 

need to be compared with others in order to choose the most convenient one for the 

desired problem to be solved. The list of those characteristics are explained below:  

• Prediction Accuracy, determining the ability to estimate the correct prediction of 

the testing samples.  

• Speed, determining the computational cost and time to process the data. 

• Scalability, determining the amount of training data to estimate the parameters.  

• Interpretability, determining the level of the interpretation of understanding the 

model. 
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• Simplicity, addressing the level of complexity of the model. The ability to be less 

complicated without losing its efficiency on the performance. 

For the initial model testing purpose, XGBoost (XGB), Decision Tree (DT), K-Nearest 

Neighbor (KNN), Random Forest (RF), Linear Regression (LR) selected as competing 

and most referred [54] [55] [56] models. Those models commonly used for predicting the 

anomaly and provides excellent feedback. However, to identify the most appropriate one 

for the specified and selected data set, the results of the given models need to be compared 

and evaluated. To choose the best for the further training, these five models are trained 

and tested using cross-validation method with 10 folds both for binary and multi-class 

label classification. Accuracy was defined as the primary and common performance 

evaluation metrics in both cases. For this test 44 features and 82332 instances are used. 

The results presented in Table 14. 

Table 14. Performance results for different models 

Scenario/Models Binary Classification Multi class classification 

 Accuracy Recall Precision Accuracy 

XGB 94.76 95.36 95.35 84.04 

DT 94.16 95.50 94.25 81.99 

KNN 87.79 87.33 90.54 75.47 

RF 95.74 95.39 97.24 83.63 

LR 86.18 87.85 88.23 74.04 

 

In this testing experiment the most competitive classification models were chosen using 

a supervised classification approach. As shown in Table 14, XGBoost, Decision Tree and 

Random Forest gave overall better and similar results. As a result, on the next stages of 

this thesis, those models will be utilized in experimental testing scenarios with semi-

supervised and active learning algorithms.  
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Next testing scenario was implemented to identify separability of the data by visualizing 

it in the three-dimensional plot. For this case, three previously selected models and top 3 

features based on the Fisher's score raking were used. Different scenarios described in 

Table 14 along with the performance results and the plot graphs are represented in Figures 

12 - 24. The cross-validation approaches training and testing with k=10. In multi-class 

problems only accuracy metric is used, since multiclass format is not supported in scikit 

cross-validation calculation technique. 

Table 15. Performance results of the modes according to the given scenarios 

Scenario/Models XGB DT RF 

Scenario 1: Binary class 

Top three features 

(sttl, swin, ct_dst_sport_ltm) 

Accuracy: 81.72 

Recall: 79.76 

Precision: 84.34 

Accuracy: 82.28 

Recall: 79.79 

Precision: 84.32 

Accuracy: 82.28 

Recall: 79.76 

Precision: 84.36 

Scenario 2: Multi class 

Top three features 

(ct_src_dport_ltm, 

ct_dst_sport_ltm, 

ct_srv_dst) 

Accuracy: 67.69 

 

Accuracy: 67.49 

 

Accuracy: 67.61 

 

Scenario 3: Binary class 

Random three features (from 

top 19) (dpkts, rate, sttl)  

Accuracy: 82.25 

Recall: 84.46 

Precision: 83.53 

Accuracy: 81.58 

Recall: 88.35 

Precision: 82.93 

Accuracy: 81.75 

Recall: 87.95 

Precision: 82.91 

Scenario 4: Multi class 

Random three features (from 

top 19) (dpkts, rate, sttl) 

Accuracy: 66.92 

 

Accuracy: 63.07 

 

Accuracy: 63.36 

 

 

Figure 11 - 14 represents the scatter plot with the set of different three features defined in 

the Scenarios. Original label class of the data points and classification results of XGBoost, 

Decision Tree and Random Forest models are provided. All the scatter graphs with 

different sets of features were attached in Appendix 3. 

As can be stated from figures represented below, network traffic with normal (green) and 

malicious (red) behavior using sttl, rate, and dpkts features, provides a good separability 

with a minimal collision of the data points by creating layers and rows. For multi-class 
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scenario shown in Figure 11 and Figure 12 data separability can also be noted. However, 

some collisions between attack types are kept. 

 
Figure 11. Scenario 2. Original data labels 

 

Figure 12. Scenario 2. XGB prediction results 
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Figure 13. Scenario 3. Original data labels 

 

Figure 14. Scenario 3. XGB prediction results 
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4.3 Unsupervised Learning 

At this point, unsupervised learning was applied to identify if there is a natural ability of 

data points to cluster. For this reason, testing scenario utilizes Clustering method, which 

allows splitting the dataset into groups according to the most common similarity. 

Identifying different groups will help to see the separability of the data points and 

threshold segments. DBSCAN provides excellent results in separating clusters of high 

density over low density. For this reason, it was utilized to see the possible separability 

of the data points into clusters/groups. In this thesis, DBSCAN was applied only for 

graphical demonstration of data points separability.  

Experiment with the use of unsupervised learning was performed to understand the 

separability of the data points regarding the label class and to analyze results for a better 

understanding of the data set. To approach data point separability results and plot the 

scatter graphs, only three different features according to the specified scenarios were 

used.  

The application of DBSCAN results are not considered in the active learning algorithm. 

However, this method can be studied separately as a different technique, which requires 

different scope of outline analysis. For the future studies, unsupervised clustering can be 

studied deeply as a separate subject and considered as one of the ways to approach similar 

study.  

4.3.1 DBSCAN Clustering 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a popular 

clustering algorithm used to separate clusters of high density from clusters of low density. 

DBSCAN divides the dataset into n dimensions, and for each data point, it forms an n-

dimensional shape around that point. This shape was defined as a cluster and each cluster 

expands iteratively by counting the number of nearest data points. The density of each 

region classified into core, border and noise points. The explanation of each point taken 

from [46] and as follows: 

1. Core point: A data point is defined as a core point if it contains at least τ data 

points. Where τ (minimum points within ε (eps) distance) is a threshold for the 

number of the data points in the same neighborhood. 
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2. Border point: data point is defined as a border point if it contains less than τ points 

(minimum points within ε (eps) distance), but it also includes at least one core 

point within a radius Eps. Epsilon (Eps) is the radius given to test the distance 

between data points. 

3. Noise point: A data point that is neither a core point nor a border point. 

The silhouette coefficient achieves cluster validation since it provides a good intuitive feel 

of the clustering quality. The overall silhouette coefficient is the average of the data point-

specific coefficients. It is calculated by the given formula where Davgiin in is the average 

distance of Xi to data points within the cluster of Xi. And Dminiout represent the minimum 

of these (average) distances, over the other clusters [46]. 

𝑆A = 	
𝐷𝑚𝑖𝑛AFGH −	𝐷𝑎𝑣𝑔AAL

𝑚𝑎𝑥N𝐷𝑚𝑖𝑛AFGH, 𝐷𝑎𝑣𝑔AALP
 

The scikit-learn implementation doesn’t require some clusters as an input to run the code. 

However, it provides a default value of 0.5 for the eps parameter, which can be tuned to 

get the desired number of clusters.  

For this implementation, Eps parameter tuned to get several clusters closer to the original 

multi-label class given in the labeled dataset. Since the active learning approach does 

require some labeled data, eps parameter can be tuned easily according to the essential 

problem. For existing task, Eps value was tuned, to obtain the closest number of clusters 

that are already given in the data set. Since, this experimental part was not included in the 

active learning study, binary classification scenario was eliminated from the current 

experiment. The initial idea of performing this experiment, aimed to see the ability of data 

points to group into natural clusters. For this reason, only multi-class label experiment 

was conducted, since all groups of nine synthetic attack types belong to anomaly traffic 

which is denoted as 1 in the binary label class.  

To compare results the same three features from previous scenarios are applied to get the 

output results and three-dimensional scatter plot. Table 16 describes the results including 

Silhouette Coefficient for the DBSCAN. All calculations are estimated compared to the 

multi-class label. In an estimated number of clusters, noise is ignored, if present.  
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Table 16. DBSCAN results for given scenarios 

Scenario Sceanrio 1: 
Top three features  
(sttl, swin, 
ct_dst_sport_ltm) 
Eps: 0.46 

Scenario 2: 
Top three features 
(ct_src_dport_ltm, 
ct_dst_sport_ltm, 
ct_srv_dst) 
Eps: 0.36 

Scenario 3: 
Random three features 
(from top 19) (dpkts, 
rate, sttl)  
Eps: 0.49 

Results Estimated number of 
clusters: 8 
Homogeneity: 0.266 
Completeness: 0.331 
V-measure: 0.295 
Adjusted Rand Index: 
0.164 
Adjusted Mutual 
Information: 0.266 

Estimated number of 
clusters: 9 
Homogeneity: 0.003 
Completeness: 0.160 
V-measure: 0.006 
Adjusted Rand Index: 
0.001 
Adjusted Mutual 
Information: 0.003 

Estimated number of 
clusters: 10 
Homogeneity: 0.196 
Completeness: 0.311 
V-measure: 0.240 
Adjusted Rand Index: 
0.029 
Adjusted Mutual 
Information: 0.196 

 Silhouette 
Coefficient: 0.464 

Silhouette Coefficient: 
0.518 

Silhouette Coefficient: 
0.231 

 

 

Figure 15. DBSCAN clustering results for Scenario 3 
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As can be seen from the scatter plot presented in Figure 15, data points separability is 

quite similar to the original layers. However, the exact label points cannot be identified 

easily with the help of clustering, which makes the algorithm less effective compared to 

the supervised, semi-supervised and active learning. Especially in the active learning 

querying the most informative data points for expert labeling purpose notably improves 

the detection of the classified labels. Additional Figures with plotted graphs for mentioned 

scenarios are provided in Appendix 4. 

4.4 Semi-supervised Learning  

Semi-supervised learning deals with the limited labeled samples in the training data. The 

combination of supervised and unsupervised methods, semi-supervised learning provides 

almost the same or even better accuracy results considering the small number of labeled 

data and a large amount of unlabeled data.  

Some of the semi-supervised methods described below: 

In semi-supervised classification, several approaches described below have been 

proposed in addressing the problem: 

• Label Propagation algorithm assigns labels to previously unlabeled samples 

based on the labels that the neighboring nodes possess. Obtained labels are 

propagated to the unlabeled points throughout the algorithm. The disadvantage is 

that it produces no unique solution, but an aggregate of many solutions [57]. 

• The Co-training algorithm requires two views of the data to provide different, 

complementary information about the instance by assuming each described 

example using two different feature sets. For each view, co-training learns a 

separate classifier by using any labeled instances. Later, the most confident 

predictions of each classifier on the unlabeled data were used to construct 

additional labeled training data iteratively [58]. Co-training works only if one of 

the classifiers correctly labels a chunk of data that the other classifier previously 

misclassified, which doesn’t fit in the logic being performed in the current thesis. 

• Pseudo-Labelling also referred to as Self-training builds a model on the labeled 

data to estimate labels for the unlabeled pool. Later, the model re-build on the 
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“pseudo-labeled” unlabeled data and the labeled data. The process can be repeated 

if necessary. This setting, effectively practicing Entropy Regularization 

(encourages the classifier to make confident predictions on unlabeled data). 

Among all possible methods, Pseudo Labeling [59] was defined as a simple and efficient 

method to do semi-supervised learning. This method combines almost all neural network 

and other training models to get Pseudo-Label. The unlabeled data used to predict the 

pseudo-labels as an output. Performed predictions don’t provide entirely correct pseudo-

labels. However, they give quite accurate labels, which can be seen from the training 

results of fully supervised learning validations metrics. Pseudo-Label for each unlabeled 

sample was picked from the class with the highest predicted probability according to the 

training model. Then, Pseudo-Labels were identified as the target class for unlabeled data 

as if they were correct labels.  

The algorithm was re-trained in the supervised learning mode with the obtained results in 

a combination of the real label class. Several pseudo-label samples can be tuned, and 

validation metrics compared with the entire right labeled samples training, mix according 

to the predefined ration and fully pseudo-labeled samples training.   

4.5 Active learning 

“Active Learning is a special case of Machine Learning in which a learning algorithm is 

able to interactively query the user to obtain the desired outputs at new data points.” [60] 

The main idea of active learning is to provide better performance with less training data 

while being allowed to choose data from which it learns. Active learning is also called 

“query learning” where the learner queries the sample from the unlabeled data pool for 

labeling purpose. Each queried sample is labeled by the “oracle” (human expert) to solve 

the assigned task and train the defined model. This approach is well adopted in data 

mining, artificial intelligence and other modern machine learning algorithms and 

techniques where labeled data is not readily available, expensive or time-consuming to 

obtain.  

In different scenarios, getting few labels such as defining spam email by marking it, may 

improve the filtering in applications to avoid unwanted emails. Every flag or mark is 

considered as a label for the data, which promotes the screening of daily used tools and 
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software. However, it is not always easy to obtain malicious or anomalous network traffic 

labels, due to its vague nature and continuous reconstruction. 

4.5.1 Active Learning Scenarios  

Active learning provides several scenarios, where the active learner requests the labels of 

the instances by querying the data. The main three methods that are considered in active 

learning literature are: 

• Membership Query Synthesis: when learner generates or constructs an instance 

and, this generated sample is sent to the oracle for labeling. See Figure 16 for the 

illustration of this scenario.  

 

Figure 16. Membership Query Method 

• Stream-Based Selective Sampling: when each unlabeled instance is considered 

separately, based on the assumptions that obtaining an unlabeled sample is free. 

This allows the learner to determine whether every single query coming one at a 

time needs to be labeled or discarded based on its informativeness. The 

informativeness of the instance identified with the query strategy is described in 

the section 4.5.2. For illustration see Figure 17. 

 

Figure 17. Stream-Based Selection Method 
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• Pool-Based sampling: this scenario assumes that chosen samples are from a large 

pool of unlabeled data, for the labeling purpose. Instances are then selected from 

the pool according to the predefined informativeness measure. This measure is 

applied to all samples in the pool and most informative ones are selected. 

Following this scenario, all unlabeled samples are ranked and the best (most 

educational) instances chosen for the label query. This is the most common 

scenario used in active learning literature. In this case, queries are not discarded 

or rejected compared to the previous example. For illustration see Figure 18. 

 

Figure 18. Pool-based sampling scenario 

As it can be seen from different scenarios, querying the instances requires informativeness 

measures of the unlabeled instances. This is the crucial difference between active and 

passive learning process. In passive learning, the set of instances or the label class are 

fixed, whereas in active learning it can be decided.  

Learning process usually starts with a small number of labeled instances in the training 

set. In the pool-based active learning cycle, learning algorithm requests for labels for one 

or more carefully selected instances and then learns from the results of the query. This 

knowledge then leveraged to select which instances to query next. Alternative ways to 

query label class, such as Membership Query Sampling and Stream-Based Selective 

Sampling, were briefly explained above (see section 4.5.1). 

Usually there are no additional assumptions on the part of the learning algorithm once a 

query has been made. The new labeled instance is simply added to the labeled set, from 

which the learning proceeds in a standard supervised manner. 

Active learning can be also combined with semi-supervised learning to provide 

alternative way of solving the problem. 
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According to the Active Literature learning Survey by Burr Settles, pool-based scenario 

is referenced in many literatures, and is more common for classification problems studied 

in real-world problems with reasonable outcome [60]. For this reason, in this study, the 

pool-based scenario is adopted along with several query strategies.  

4.5.2 Query Strategy 

All active learning scenarios involve evaluating the informativeness of unlabeled 

instances, which can either be generated or sampled from a given distribution. There are 

some proposed ways of formulating such query strategies in the literature. An overview 

for the most known ones is given below: 

• Random sampling: the data points or samples are randomly selected from the 

validation set 

• Uncertainty sampling: the algorithm selects the most uncertain class instances to 

the label. Different resources also call this method as Least Confidence (least 

confidence in its most likely label) 

• Margin Sampling: in this scenario, the algorithm selects the instances with the 

smallest difference between the first and second probable label class. 

• Entropy Sampling: in this case entropy formula is applied to each instance, and 

instance with the highest entropy is selected. Entropy formula is given below, 

where pi is frequentist probability of an element/class ‘i’ in the data: 

𝐸(𝑆) =S−𝑝A𝑙𝑜𝑔,𝑝A

V

A./

 

Uncertainty sampling is less effective in complex structured instances, such as sequences 

and trees [61]. Since this work focuses on evaluating Decision Tree, Random Forest and 

XGBoost, then uncertainty sampling was not considered in the active learning 

experimental part of this study. All other sampling techniques such as Random sampling, 

Margin Sampling and Entropy Sampling are included in the practical experiment under 

Pool-based scenario. 
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Furthermore, software companies and large-scale research projects such as CiteSeer, 

Google, IBM, Microsoft, and Siemens are increasingly using active learning technologies 

in a variety of real-world applications [60]. However, published results in botnet detection 

and industry adoption are not sufficient to indicate how active learning methods are used 

in practice.  

In most active learning works, there is an assumption that the quality of labeled data is 

high. However, when labels come from an empirical experiment (e.g., in biological, 

chemical, or clinical studies), noise resulted from the instrumentation of experimental 

setting is mostly expected. Even when labels acquired from human experts, variability in 

the quality of their annotations might be introduced, for several reasons: 

• When instances are implicitly difficult for people and machines 

• Distraction  

• Misclassification due to fatigue 

For this reason, annotations obtained from machines and experts need to “average” 

different level of noise and show that both true instance labels and individual oracle 

qualities that can be estimated. Subsequent iterations of active learning can be improved, 

where these estimates considered to request for only reliable annotators.  

There are still many open research questions in the context of these lines. They can be 

only addressed if more studies will be conducted in active learning including true label 

and noisy oracle scenarios.  

For this reason, this master’s thesis includes experiments with true label and different 

levels of noise in the label class queried from the expert. The study will help analyze the 

tolerable results, where few exceptions can be made. Besides, it will provide the required 

level of expertise for the annotator/oracle.
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5 Botnet Detection: Model Implementation Analysis 

This section is dedicated to present the testing results and analysis for supervised, semi-

supervised and active learning algorithm implantations: both binary and multi-class 

classifiers included in the implantation stage. Testing results are evaluated and presented 

in comparison with the different models and algorithms applied.  

5.1 Semi-supervised algorithm results for botnet detection 

As it was stated above, semi-supervised learning is the part of machine learning where a 

small amount of labeled data with a large number of unlabeled data are used to train the 

models. Due to the lack of labeled data, high cost and time resources the input dataset for 

the machine learning algorithms can consist of many unlabeled data. Those datasets 

cannot be trained with the supervised learning algorithms which make the task harder to 

achieve. However, semi-supervised learning can train the model with the combination of 

unlabeled data.   

As it was already described, Pseudo Labeling defined as a simple and efficient method to 

do semi-supervised learning while having less labeled instances, in this thesis Pseudo 

Labeling approach was utilized. Also, this method earned the second prize in the ICML 

2013 Workshop in Challenges in Representation Learning: The Black Box Learning 

Challenge [59]. 

The main idea approached in this step is to train the model with the available number of 

labeled instances to predict the label class for unlabeled data, which are called pseudo-

labels. Further, a combination of labeled data and newly obtained pseudo-labeled data 

were used as a new dataset input to train predefined three classification models. Figure 

19 shows a brief explanation for this algorithm’s architecture [62].  
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Figure 19. Pseudo Labelling Technique [62] 

Usually, this method mentioned in the deep learning (online algorithms); however, in this 

thesis, it was approached with traditional machine learning classification models, namely 

XGBoost, Decision Tree and Random Forest. Those models were chosen from previous 

tests, due to higher performance results.  

At this stage, the dataset with labeled instances including 82332 samples was split into 

training and for testing where unlabeled instances considered as 57632 instances. The 

ratio of labeled to unlabeled data was 0.3:0.7. Performance evaluation explored on 

XGBoost, Decision Tree and Random Forest classification models achieved by the 

accuracy metric performance for each model, using 5-fold cross-validation technique.  

The PseudoLabler class achieved Pseudo-Labels for 70% of unlabeled data, written in 

sklearn estimator. Naturally, it wraps a sklearn classification while passing the test along 

with the list of features and target column. In this class, a function that creates “augmented 
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training set” consist of pseudo-labeled and labeled data. Function takes such arguments 

like the name of the model, training set, testing set, data input, features (since 19 for 

binary and 21 for multi-class most discriminative features have been selected, in this part 

all models are trained and tested respectively with those top features) and the parameter 

sample_rate. The parameter sample_rate was designed to control the percentage ratio of 

the pseudo-labeled data mixed with the valid labeled data. If sample_rate is defined as 

0.0, that means a model is being trained exclusively with the labeled data. And the same 

logic applies for sample_rate parameter holding the value of 0.5 where proportion for 

both labeled and pseudo-labeled data are kept the same. In both cases resulting models 

used all labeled data for training and testing purpose. Obtained data was used to fit the 

model and tested with true labels to compare results of training with pseudo-labels. 

As an example, Table 17 and Table 18 provide the accuracy results for PseudoLable (for 

all selected models) compared to original labeled data, using 5-fold cross-validation 

technique. Visual representation for all sample_rate values in range between 0.0 and 1.0 

with all three models are given in Figure 20 and Figure 21. But for the purpose of showing 

the difference between classification results using originally labeled and Pseudo-Labeled 

data, sample_rate was set to 0.3. As it can be seen from Tables 17-18 below, accuracy 

result for both scenarios is similar, with a very small change where PseudoLabel accuracy 

result are lower by around 1/10.   

Table 17. Accuracy results for binary class  

 Accuracy 

 Model Classifier PseudoLabel 

Decision Tree 94.2022 94.0969 

Random Forest 95.6111 95.5382 

XGBoost 93.8216 93.408 

Table 18. Accuracy results for multi class  

 Accuracy 

 Model Classifier PseudoLabeler 

Decision Tree 83.5742 83.2057 

Random Forest 85.1898 85.3599 

XGBoost 85.4084 84.8861 
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Performance of pseudo-labeling based on different sample rates and machine learning 

models, using 5-fold cross-validation technique is presented in Figure 20 and 21. The 

fluctuation of the accuracy can be seen in all models for 1-2% at a different ratio of the 

sample_rate. However, 5-fold cross validation provided better accuracy results for about 

4%, compared to the same models evaluated with 10-fold cross-validation method in the 

previous stages.  

 

Figure 20. Semi-supervised learning results for binary label class 

 

Figure 21. Semi-supervised learning results for multi label class 

Appendix 5 includes the representation of each model separately in respect to different 

class type scenarios. 

Pseudo-labeling is a powerful technique which allows utilizing large pool of unlabeled 

data while training the models. As can be analyzed from the results, this technique 

provided a slight performance boost/improvement while having a smaller number of 

labeled samples. Best model performance results in a two-class label can be noted in 

Random Forest. However, the performance of the other models was almost the same and 

competitive. Although all the models provide good accuracy results in both multi-class 
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and two-class label scenarios, XGBClassifer accuracy metric results are continuously 

decreasing in both scenarios while pseudo-labeled instances are increased.  

5.2 Active learning botnet detection results 

In this part, an experiment was designed in two stages. The first scenario assumes that the 

queried label was given correctly and in the second scenario; it was considered that expert 

might give wrong labeled samples, while the instance was queried. Nevertheless, the 

algorithm design was kept the same for both cases.  

The algorithm for the active learning approach was designed in scikit-learn machine 

learning library for Python, using the pool-based sampling. The central part is described 

in the pseudo-algorithm below: 

1. Initial data is divided into a pool and test-set 

2. k samples in the set of numbers [10, 25, 50] are selected from the pool for the 

training and labeling purpose and remaining data is used for validation. 

3. All defined sets (training, testing, and validation) are normalized using MinMax 

scaler in a given range (0, 1). 

4. Base models are defined as XGBoost, Decision Tree and Random Forest 

Classifiers are trained with the training set with balanced weights. 

5. Trained model was validated by the validation-set separated in step 2, to get the 

probabilities per sample. 

6. Trained model is tested with testing-set to get the performance results. 

7. k most informative samples are selected using one of the three methods in each 

experiment, based on each sample probabilities. (the most uncertain) 

• Random selection, k samples are randomly chosen from the validation set.  

• Entropy selection, k samples with the highest entropy selected from the 

validation set.  

• Margin selection, k samples with the lowest difference between the two 

highest class probabilities are selected from the validation set.  

8. Selected k samples are moved from the validation set to the train set with queried 

label class. (since data set already have fully labeled instances, labeling part is 

processed automatically) 

9. Normalization of all data sets are inversed 
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10. If all experiments are completed, the algorithm is completing work, otherwise 

continuing from step 3. 

Things to note regarding the normalization steps (3 and 9):  

• Normalization for all sets was inversed and normalized again after samples from 

the validation set was removed, because sample distribution changed in both the 

new validation and new train-sets. 

The simple formula calculates a total number of the experiments, where the number of 

base models (3) multiplied to the number of selection methods (3) and several k set 

samples (3) to the number of desired repeats. In current work, a number of repeats are 

defined as 1 to see the initial results. Total 27 experiments are approached and results for 

each selection method and number of k samples are visualized in the graphs. Figures 41-

46 are the representation of the accuracy results depending on the base model and 

different sampling scenarios separated by different colors. 

The critical area of applying active learning method is influenced by the sample selection 

method, which is described in step 7. There are literature such as [60], [63], [64] where 

query selection strategies such as Random selection, Entropy selection and Margin 

selection are discussed. For this reason, this study included them to compare the results 

and analyze the benefit of using them in the data set and models assigned for the 

experiment. 

The Training Model accepts one of the selection learning algorithms with predefined Base 

Model (XGBoost, Decision Tree, Random Forest). Model is trained using the training set 

and evaluation performance metrics are calculated using testing set. 

5.2.1 Queried Labels are True 

Initially, data of 82332 samples were split into 3% for the training set with 2469 instances 

and rest 97% for the testing set. This scenario of using only a few labeled instances is 

adapted to be closer to real-life enterprise situations. Later the train set was split to train 

and validation sets. For the purpose of acquiring label class marked by oracle, a total 

number of 500 instances was queried with the predefined methods described above. As it 

was already stated, 19 top features were selected for the binary class problem and 21 best 

for the multi-class task. Upper bound for each model is identified by a straight blue line, 
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calculated using supervised learning with 2469 instances as training set and the rest 

number of instances for testing purpose. This scenario presents results for the 

classification, assuming that the expert has correctly labeled data points. The results are 

presented in graphical visualization for each selected model and label class type in Figures 

22-27. 

 

Figure 22. Binary class: Active learning performance results for Decision Tree  
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Figure 23. Binary class: Active learning performance results for Random Forest 

 

 
Figure 24. Binary class: Active learning performance results for XGBoost 
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Figure 25. Multi class: Active learning performance results for Decision Tree 

 

 

Figure 26. Multi class: Active learning performance results for Random Forest 
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Figure 27. Multi class: Active learning performance results for XGBoost 

On the basis of the above, it can be seen that XGBoost and Random Forest models 

performed better than Decision Tree both in binary and multi-class classification problem. 

Moreover, querying most informative 500 data points under active learning approach 

provided competitive results compared to the fully labeled (upper bound) accuracy results 

trained on 2469 instances.  

In the binary class label scenario, the most significant and competitive samples selection 

methods for all models was Margin Selection with k=[10,25] instances and Entropy 

selection with k=10. Even though, Margin Selection gave most discriminative results both 

for binary class and multi class experiment scenarios, Random Selection contributed 

higher accuracy results in multi-class scenario for Decision Tree model. Nevertheless, 

Margin Selection method with k=[10,25,50] proved as the most competitive keeping 

better accuracy results for multi class label scenario. Also, it is concluded that, for all 

models in binary class label, the least competitive selection method was Random 

Selection with all tested numbers of k samples. 

For the purpose of analysis and comparison between active learning and supervised 

learning, visual representation of Margin Selection and Entropy Selection methods for 
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binary class scenario was given in Figures 28-31. Since Decision Tree was the least 

confident model in this particular experiment, graphs are given only for XGBoost and 

Random Forest models. 

Additionally, as can be concluded from Figure 25, in the multi-class label scenario, 

Decision Tree model did not reach upper bound results in the first iteration of label 

querying process, for this reason in Figures 32-33, the most competitive Margin Selection 

method with Random Forest and XGBoost models was presented to provide better visual 

representation of the multi class label learning process. 

 

Figure 28. Binary class: Active learning performance results for Random Forest with 

Margin Sample Selection 
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Figure 29. Binary class: Active learning performance results for XGBoost with Margin 

Sample Selection 

 

Figure 30. Binary class: Active learning performance results for Random Forest with 

Entropy Selection 
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Figure 31. Binary class: Active learning performance results for XGBoost with Entropy 

Selection 

 

Figure 32. Multi class: Active learning performance results for Random Forest with 

Margin Sample Selection 
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Figure 33. Multi class: Active learning performance results for Random Forest with 

Margin Sample Selection 

As can be concluded from the above given figures, learning process from the most 

informative instances can provide higher accuracy results while having small pool of 

labeled data. In most of the cases, active learning accuracy results with 350 and 400 most 

informative labeled samples exceeded supervised learning accuracy results with 2469 

labeled instances. Different data sets and models tend to have different most appropriate 

selection method and number of k queried samples. However, based on the experiment 

results, intuitively it can be concluded that it is easier and more appropriate for expert to 

label less number or queried samples with k=10 and k=25.  

5.2.2 Queried Labels are Wrong 

In real-case implementations, to get realistic outcome, labeling with misclassification 

should be considered. Complete results should take into account both true labeling and 

misclassification approaches. For this reason, it was assumed that the obtained label class 

has wrong labels both for binary and multi-class problem statements. Different 

experiments were conducted based on the assumption if the queried instances labeled 

with 10%, 20%, 30%, 40% and 50% wrong label class (noise). All the results obtained 

from this experiment are visualized in graphs and are attached in Appendix 6.  
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Classification accuracy results with accurate and wrong label proportions are shown in 

Tables 19-20. This information is provided to visualize the difference in supervised 

learning between different wrong acquired label class and accurate labeled classification 

scenario.  

Table 19. Binary class: Supervised learning results for accurate and wrong labels 

 Accurate 

Labels 

10% 

wrong 

Labels 

20% 

wrong 

Labels 

30% 

wrong 

Labels 

40% 

wrong 

Labels 

50% 

wrong 

Labels 

XGBoost 92.74 91.94 91.00 85.24 55.85 53.33 

Decision Tree 91.80 82.64 72.71 61.25 57.19 47.63 

Random Forest 93.42 90.37 84.43 70.86 59.11 49.62 

 

Next scenario shown in Table 20, was performed on the multi-class problem with one 

normal traffic and nine attack type labels.  

Table 20. Multi class: Supervised learning results for right label and wrong label 

 Accurate 

Labels 

10% 

wrong 

Labels 

20% 

wrong 

Labels 

30% 

wrong 

Labels 

40% 

wrong 

Labels 

50% 

wrong 

Labels 

XGBoost 84.1 82.57 80.14 73.79 60.03 42.16 

Decision Tree 79.56 70.46 62.30 51.27 43.97 40.37 

Random Forest 82.09 78.71 73.86 62.37 51.61 42.23 

 

From Tables 19-20 presented above, it can be concluded that, testing results under 

supervised learning algorithm with 2469 trained instances tends to have different 

behavior of decreasing accuracy results. XGBoost model had tolerable accuracy decline 

in 10%, 20% and 30% from the classification with accurate label. However, Decision 

Tree model decreased accuracy results similarly to the percentage of the wrong labeled 

instances. In every scenario around 8-10% decrease in accuracy was noted for Decision 
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Tree model. Also, it was noted that acquiring 50% wrong labeled instances leads to 

decrease accuracy results for the same amount. And results after 30% wrong labeled 

instances are less tolerable for all models. 

According to the preliminary analysis, Decision Tree model has more fluctuation and 

unstable results. But, Random Forest and XGBoost models provided similar classification 

performance and even tolerable results with 10% and 20% inaccurate label class. Since 

there were not much difference between two models, Random Forest model selected to 

provide mode detailed information regarding the classification performance results for 

binary class label scenario, whereas XGBoost for multi-class label scenario.   

Taking into account that wrong labeled instances provided for the training stage, Random 

Forest with Entropy selection method visualized in the graph to compare the results 

obtained from all scenarios conducted for the experiment in this section. Entropy 

Selection with k=10 samples were selected, due to the better performance compared to 

other query selection methods. 

 

Figure 34. Binary Class: Active learning accuracy results for Random Forest with 

Entropy Selection k=10 
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In Figure 34 x-axis represents the total number of queries using the Entropy selection 

method with k=10 samples. In this case, total number of queries instances equals to 500.   

Analysis of the graph provided reveals that 10% and 20% wrong labeled instances can be 

tolerated. This assumption was based on the accuracy performance results given for 

Random Forest with Entropy sample selection method. However, 40% and 50% 

inaccurate label class tend to keep low accuracy results similar to supervised learning 

results shown in Table 19. In addition, it can be seen that 30% wrong labeled instances 

still tend to increase the accuracy results when number of queried instances for testing 

purpose are increased. 

 

Figure 35. Multi Class: Active learning accuracy results for XGBoost with Margin 

Sampling Selection k=10 

As presented in the graph above, for multi-class label classification problem, performance 

reduction equals to the wrong label acquisition percentage. Comparatively to the 

supervised learning upper bound overall reduction cost varies from 30% to 40%. 

However, the results are similar to the binary class scenario, where 10% and 20% wrong 

labeled instances can be tolerated, while 40% and 50% are not likely for network intrusion 

detection systems. Also, similar behaviors noted from the case where inaccurate labeled 
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instances reach 30%, where accuracy still tend to increase and learn from accurate label 

class. 

All models and sample selection methods used in this particular experimental setup are 

shown in Appendix 6. Each selection method was denoted with specific color and was 

named accordingly. The most significant reduction cost in accuracy results can be seen 

from Decision Tree, whereas some scenario cases can be tolerated for XGBoost and 

Random Forest models. However, unlike the scenario where all queried samples are 

obtained with accurate label class, in this experiment it can be noted that most appropriate 

selection method varies from depending on the model and case with the wrong label 

percentage.  

According to the results provided in this section, it can be concluded that active learning 

algorithms can drastically improve the detection problems while having small pool of 

labeled instances and large pool of unlabeled instances. Learning process from the most 

informative samples provides higher accuracy (and other performance metrics, see 

Appendix 7) results in identifying the normal traffic and attack types. Nevertheless, 

experiments where models were trained with wrong labeled instances proved that small 

mistakes (10%-20%) in the label class can be tolerated, since the accuracy results did not 

have significant changes. However, obtaining the 40% to 50% wrong label class cost 

same amount of accuracy reduction compared to the right class, which makes the 

detection systems lousier in production usage. This also concludes that proficiency level 

of the expert/oracle should be higher than average with minimal cost of making mistakes 

in providing label class for each instance.  
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6 Conclusion 

Active learning is a growing area of research in machine learning. Active learning 

provided a lot of evidence that the number of labeled instances necessary to train accurate 

models can be dramatically reduced in a variety of applications. Taking advantage of 

these foundations, different cyber-attack and malicious network traffic can be detected by 

applying the knowledge derived from the active learning concepts. This research aimed 

at using active learning methods in practice on botnet detection. Results of the study 

introduced many essential problem variants and practical concerns.  

In this thesis, the application of classification models for active learning was investigated 

concerning the binary and multi-class label for network botnet detection. Different 

querying methods are applied and studied to identify their effect on the classification of 

normal and malicious network traffic. The learning process with most informative data 

points was considered and concluded as an effective way for botnet detection 

performance. Feature selection methods provided a reduced and the most discriminative 

number of features for botnet detection, which is used to train and test classification 

models along with the active learning methods. Analysis of feature selection states that 

best predictive features belong to the connection features in the network traffic.  

In the active learning section, pool-based sampling method along with the three querying 

scenarios was implemented and analyzed. Analysis of each separate way provided 

different results where Margin Sample Selection scenario with the XGB and Random 

Forest classification model executed the most competitive results. Learning process states 

that from a labeled and unlabeled pool of instances, most informative samples can be 

chosen and increase the prediction accuracy than classical supervised algorithms. 

Obtained results are an essential addition for the research gap in the active machine 

learning methodology, for the botnet detection in the network intrusion detection systems. 

More specifically, results show that if a queried sample was correctly labeled, training of 

the model provides better results than incorrectly labeled data in detecting both normal 

traffic and attack types within a malicious set. Moreover, classification of normal and 
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botnet traffic provided tolerable performance results, where acquired sample had 10% to 

20% of inaccurate label class. Different experiments with wrongly labeled instances are 

conducted and concluded, to predict the reduction cost for the network intrusion systems. 

Based on the results, suggestions on the proficiency of expert/oracle were given. 

The critical point in utilizing active learning for botnet detection, allowing to minimize 

the cost of obtaining the label class, while learning on the accurately chosen ones from 

the whole pool. This fact may lead to improve network intrusion detection systems and 

build accurate classifiers that focus on main predictors. However, the procedure for 

different datasets and desired detection may vary. This research shows that depending on 

detection objectives and requirements, different datasets might require investigation of 

several query methods and different models, in order to accomplish experimental results 

with optimal botnet detection performance. 

This work can be extended considering combining learning algorithms. By following the 

results and analysis presented in this study, semi-supervised pseudo labeling can be 

applied to the unlabeled pool, where label class of the instance obtained from the active 

learning phase. In addition, the clustering technique can be studied more broadly, in order 

to identify the areas of its application in the active learning scenarios.



89 

References 

 
[1]  Sergio SC Silva, Rodrigo MP Silva, Raquel CG Pinto and Ronaldo M Salles, 

"Botnets: A survey," Computer Networks, vol. Volume 57, no. Issue 2, pp. 378-
40, 4 February 2013.  

[2]  I. Ilascu, "BitdefenderBOX," 9 October 2018. [Online]. Available: 
https://bit.ly/2KDuvZw. 

[3]  Guofei Gu, Roberto Perdisci, Junjie Zhang and Wenke Lee, "Botminer: Clustering 
analysis of network traffic for protocol-and structure-independent botnet 
detection," The 17th USEN1X Security Symposium, pp. 139-154, July 2008.  

[4]  J. Goebel and T. Holz, "ishi: Identify bot contaminated hosts by IRC nickname 
evaluation," in Proceedings of USENIX HotBots'07, 2007.  

[5]  "The UNSW-NB15 Dataset Description," Australian Centre for Cyber Security 
(ACCS), 2015. [Online]. Available: https://www.unsw.adfa.edu.au/unsw-
canberra-cyber/cybersecurity/ADFA-NB15-
Datasets/?fbclid=IwAR3LKJNjf34sCAP-
bAs99W_64jITks04KBdzNkX0iZlrbHbe2YUawwOMc9Y. 

[6]  Vaibhav Nivargi, Mayukh Bhaowal and Teddy Lee, "Machine Learning Based 
Botnet Detection," Stanford. 

[7]  Xuan Dan Hoang and Quynh Chi Nguyen, "Botnet Detection Based On Machine 
Learning Techniques Using DNS Query Data," Future Internet, 18 May 2018.  

[8]  García, A. Zunino and M. Campo, "Survey on network-based botnet detection 
methods," Security and Communication Networks, vol. 7, no. 5, pp. 878-903, May 
2014 .  

[9]  Bahşi Hayretdin and Nõmm Sven, "Unsupervised anomaly based botnet detection 
in IoT networks," in 17th IEEE International Conference on Machine Learning 
and Applications, Orlando, Florida, USA, 17-20 December 2018.  

[10]  Zhicong Qiu, David J. Miller and George Kesidi, "Flow-Based Botnet Detection 
through Semi-supervised Active Learning," CSE Dept, PSU, Technical Report 
CSE-16-010, September 13, 2016. 

[11]  Zhicong Qiu, David J. Miller and George Kesidis, "Flow based botnet detection 
through semi-supervised active learning," in 2017 IEEE International Conference 
on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 
5-9 March 2017.  

[12]  Khalid Huseynov, Kwangjo Kim and Paul D. Yoo, "Semi-supervised Botnet 
Detection Using Ant Colony Clustering," in The 31th Symposium on 
Cryptography and Information Security, Kagoshima, Japan, Janury 21-24, 2014.  

[13]  C. M. Jane, "Atlanta Business Chronicle," 22 July 2002. [Online]. Available: 
http://bit.ly/2Dp95gi. 

[14]  A. Zaharia, "HEIMDAL Security," 25 April 2016. [Online]. Available: 
http://bit.ly/2VZKXbs. 



90 

[15]  D. Etherington and K. Conger, "TechCrunch," 2016. [Online]. Available: 
https://tcrn.ch/2Gy9S0k. 

[16]  T. I. Team, "Avast," 25 October 2018. [Online]. Available: 
http://bit.ly/2XwAeFN. 

[17]  M. Weinberger, "Business Insider," 22 April 2015. [Online]. Available: 
http://bit.ly/2UTkKyZ. 

[18]  V. Paxson, "LBNL/ICSI Enterprise Tracing Project," Lawrence Berkeley National 
Laboratory and ICSI, 2005. [Online]. Available: https://www.icir.org/enterprise-
tracing/download.html. 

[19]  "VRT Labs - Zeus Trojan Analysis," [Online]. Available: 
https://labs.snort.org/papers/zeus.html. 

[20]  "ISOT Dataset Overview," [Online]. Available: 
https://www.uvic.ca/engineering/ece/isot/assets/docs/isot-datase.pdf. 

[21]  Wei Li, Marco Canini, Andrew W Moore and Raffaele Bolla, "Efficient 
application identification and the temporal and spatial stability of classification 
schema," Computer Networks: The International Journal of Computer and 
Telecommunications Networking, vol. 53, no. 6, pp. 790-809 , 2009.  

[22]  Andrew Moore, Denis Zuev and Michael Crogan, "Discriminators for use in flow-
based classification," Queen Mary: University of London , London, 2005. 

[23]  Z Berkay Celik, Jayaram Raghuram, George Kesidis and David J Miller, "Salting 
public traces with attack traffic to test flow classifiers," in Proceedings of the 4th 
conference on Cyber security experimentation and test, 2011.  

[24]  Kai Yang, Jie Ren, Yanqiao Zhu and Weiyi Zhang, "Active Learning for Wireless 
IoT Intrusion Detection," IEEE Wireless Communications, vol. 25, no. 6, pp. 19 - 
25, December 2018.  

[25]  "XGBoost Documentation," [Online]. Available: 
https://xgboost.readthedocs.io/en/latest/. 

[26]  L. Bull, N. Dervilis, K. Worden and G. Manson, "Active learning for semi-
supervised structural health monitoring," Journal of Biomedical Informatics, vol. 
64, pp. 168-178, December 2016.  

[27]  Moheeb Abu, Jay Zarfoss, Fabian Monrosereas and Andreas Terzis, "A 
Multifaceted approach to understanding the botnet phenonmenon," 2006. 

[28]  Y. Chen, "Towards wireless overlay network architectures". 
[29]  G. Kaur, " Novel Distributed Machine Learning Framework for Semi-Supervised 

Detection of Botnet Attacks," in Eleventh International Conference on 
Contemporary Computing (IC3), August 2018.  

[30]  "Botnet dataset," Canadian Institute for Cybersecurity, [Online]. Available: 
https://www.unb.ca/cic/datasets/botnet.html. 

[31]  "KDD98," [Online]. Available: https://www.openml.org/d/23513. 
[32]  "KDD Cup 1999 Data," 2007. [Online]. Available: 

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. 
[33]  "NSL-KDD," 2009. [Online]. Available: https://www.unb.ca/cic/datasets/nsl.html. 
[34]  P. e. al, "Packet and flow based network intrusion dataset. Contemporary 

Computing," Springer Berlin Heidelberg, pp. 322-334, 2012.  
[35]  John McHugh, "Testing intrusion detection systems: a critique of the 1998 and 

1999 DARPA intrusion detection system evaluations as performed by Lincoln 



91 

Laboratory," ACM transactions on Information and system Security, vol. 3, pp. 
262-294, 2000.  

[36]  V.Mahoney and K.Philip, "An analysis of the 1999 DARPA/Lincoln Laboratory 
evaluation data for network anomaly detection."Recent Advances in Intrusion 
Detection," Springer Berlin Heidelberg, 2003.  

[37]  A.Vasudevan, E. Harshini and S. Selvakumar, "SSENet-2011: a network intrusion 
detection system dataset and its comparison with KDD CUP 99 dataset," in 
Second Asian Himalayas International Conference, 2011.  

[38]  N. Moustafa and Jill Slay, "UNSW-NB15: a comprehensive data set for network 
intrusion detection systems (UNSW-NB15 network data set).," in Military 
Communications and Information Systems Conference (MilCIS), Canberra, 
Australia, November 2015.  

[39]  Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu and Ali, "A Detailed Analysis of 
the KDD CUP 99 Data Set," in CISDA'09 Proceedings of the Second IEEE 
international conference on Computational intelligence for security and defense 
applications.  

[40]  "How valuable do you think feature selection is in machine learning? Which do 
you think improves accuracy more, feature selection or feature engineering? - 
Quora," [Online]. Available: http://bit.ly/2UM1UcI. 

[41]  "An Introduction to Feature Selection," [Online]. Available: 
http://bit.ly/2UU8OwU. 

[42]  B.Azhagusundari and Antony Selvadoss Thanamani, "Feature Selection based on 
Information Gain," International Journal of Innovative Technology and Exploring 
Engineering (IJITEE) ISSN, vol. 2, no. 2, pp. 2278-3075, January 2013.  

[43]  Xiaofei He, Deng Cai and Partha Niyogi, "Laplacian Score for Feature Selection". 
[44]  Igor Kononenko and Marko Robnik-Sˇikonja, "Theoretical and Empirical 

Analysis of ReliefF and RReliefF," University of Ljubljana, Faculty of Computer 
and Information Science. 

[45]  Quanquan Gu, Zhenhui Li and Jiawei Han, "Generalized Fisher Score for Feature 
Selection". 

[46]  A. C.C., Data Mining: The textbook, New York: Springer, 2015, p. 290. 
[47]  T. Chen, "Quora," [Online]. Available: http://bit.ly/2XzcAsk. 
[48]  "MXNet," [Online]. Available: https://mxnet.apache.org. 
[49]  M. Kubat, in An Introduction to Machine learning, 2017, p. 212. 
[50]  "Damage Caused by Classification Accuracy and Other Discontinuous Improper 

Accuracy Scoring Rules," Statistical Thinking, 2017. [Online]. Available: 
http://www.fharrell.com/post/class-damage/. 

[51]  S. Narkhede, "Understanding AUC - ROC Curve," Towards Data Scienece , 
[Online]. Available: https://bit.ly/2E0YdqU. 

[52]  "Scikit-learn," [Online]. Available: https://scikit-learn.org/stable/. 
[53]  "Pandas: Python Data Analysis Library," [Online]. Available: 

https://pandas.pydata.org. 
[54]  "Classification Algorithms in Machine Learning – Medium," [Online]. Available: 

http://bit.ly/2ZpSlPw. 
[55]  "Types of classification algorithms in Machine Learning," [Online]. Available: 

http://bit.ly/2IAmDcY. 



92 

[56]  "Machine Learning Algorithms: Which One to Choose for Your Problem," 
[Online]. Available: http://bit.ly/2XxaEAo. 

[57]  "Label Propagation Algorithm," [Online]. Available: 
https://en.wikipedia.org/wiki/Label_Propagation_Algorithm. 

[58]  "Semisupervised Learning Approaches," [Online]. Available: 
http://videolectures.net/mlas06_mitchell_sla/. 

[59]  D.-H. Lee, "Pseudo-Label : The Simple and Efficient Semi-Supervised Learning 
Method for Deep Neural Networks," in ICML Workshop: Challenges in 
Representation Learning (WREPL), Atlanta, Georgia, USA, 2013.  

[60]  B. Settles, "Active Learning Literature Survey," Computer Sciences Technical 
Report 1648 University of Wisconsin–Madison, January 26, 2010. 

[61]  S. Hosein, "DataCamp: Active Learning: Curious AI Algorithms," 9 February 
2018. [Online]. Available: 
https://www.datacamp.com/community/tutorials/active-learning. 

[62]  V. Kodžoman, "Pseudo-labeling a simple semi-supervised learning method," 6 
September 2017. [Online]. Available: http://bit.ly/2GxZxBI. 

[63]  Sheng-Jun Huang, Rong Jin and Zhi-Hua Zhou, "Active Learning by Querying 
Informative and Representative Examples," IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 36, no. 10, pp. 1936 - 1949, October 
2014.  

[64]  S. Hosein, "Active Learning: Curious AI Algorithms," DataCamp , 9 February 
2018. [Online]. Available: 
https://www.datacamp.com/community/tutorials/active-learning. 

[65]  L. S. Sterling, The Art of Agent-Oriented Modeling, London: The MIT Press, 
2009.  

 
 
 
 
 
  



93 

Appendix 1 – Classification performance comparison for 

different set of features  

The results presented in table below, provided to support the statement that elimination 

of the three categorical features (proto, state and service) does not influence the 

classification performance. Result provided both for binary class and multi class problems 

and different evaluation performance metrics are used. First table has all 42 features, 

second table has only 39 numerical features.  

 
Scenario/Models Binary Classification Multi class classification 

 Accuracy Recall Precision Accuracy 

XGB 94.76 95.36 95.35 84.04 

DT 94.16 95.50 94.25 81.99 

KNN 87.79 87.33 90.54 75.47 

RF 95.74 95.39 97.24 83.63 

LR 86.18 87.85 88.23 74.04 

 
 
Scenario/Models Binary Classification Multi class classification 

 Accuracy Recall Precision Accuracy 

XGB 94.52 95.33 95.01 83.93 

DT 93.91 95.29 94.24 81.58 

KNN 87.76 87.27 90.53 75.51 

RF 95.50 95.22 96.77 83.74 

LR 84.41 87.54 86.25 73.06 
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Appendix 2 – Classification accuracy with top ranked features 

Accuracy result based on the list of score obtained from Fisher’s score feature selection, 

trained with Decision Tree Classification. 

 

 

 

  



95 

Appendix 3 – Scatter Plot with three features 

Here different scatter plots are presented with the binary class and multi-class original 

labeled data points and prediction results from classification models (XGB, Decision 

Tree, Random Forest). 
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Appendix 4 – DBSCAN results 

DBSCAN clustering results with the different sets of three features (most discriminative 

based on the Fisher’s score) and classification models, represented in the scatter plots. 
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Appendix 5 – Semi-Supervised Pseudo-Labeling Results 

In this section, Semi-Supervised Pseudo-Labelling botnet prediction accuracy results are 

presented based on the sample rate and classification model. The first graph shows the 

results for binary classification and the following chart for the same model presents multi-

class classification results.  
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Appendix 6 – Active learning performance results when 

queried label is wrong 

In this section, graphs for three models with three query selection methods are presented. 

Graphs contains binary class and multi class scenarios with 10%, 20%, 30%, 40%, 50% 

wrong labels. The blue straight line is the upper bound supervised classification accuracy 

with correct label. This line indicated to give overall comparison between fully supervised 

model using accurate label class and the active learning methods using wrong label class. 
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Appendix 7– Active Learning Evaluation Performance 

Results 

In this section, classification performance both for binary class and multi class provided 

using accuracy, precision, recall and f1 scores. Results are calculated from the confusion 

matrix foe each label class. Since, there are too many results for each specific case, the 

results presented in this section were chosen randomly. All cases provide results for the 

500 most informative samples queried during the active learning experiments.  

Binary  

(correct label) 

Label 

 

Accuracy Precision Recall F1-score 

Decision Tree 0 87.900530 86 88 87 

1 90 88 89 

weighted average 88 88 88 

Random Forest 0 94.191303 93 95 94 

1 96 94 95 

weighted average 94 94 94 

XGBoost 0 93.925848 93 93 93 

1 94 95 94 

weighted average 94 94 94 

(0-normal, 1-botnet) 

 

Multi Class 

(correct label) 

Label 

 

Accuracy Precision Recall F1-score 

Decision Tree 0 87.900530 86 88 87 

1 42 51 46 

2 11 28 16 

3 28 27 27 

4 54 44 48 

5 7 13 9 
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6 20 15 17 

7 7 23 11 

8 10 21 14 

9 92 95 94 

weighted average 72 72 72 

Random Forest 0 77.889636 82 95 88 

1 63 59 61 

2 12 4 6 

3 38 21 27 

4 64 65 65 

5 12 21 15 

6 21 4 7 

7 0 0 0 

8 14 11 12 

9 93 96 94 

weighted average 73 78 75 

XGBoost 0 83.859860 92 97 94 

1 85 73 79 

2 12 17 14 

3 39 25 31 

4 63 73 67 

5 7 3 4 

6 65 51 57 

7 0 0 0 

8 37 24 29 

9 99 96 97 

weighted average 83 84 83 

(0-normal, 1-fuzzers, 2-analysis, 3-backdoors, 4-dos, 5-exploits, 6-generic, 

7-reconnaissance, 8-shellcode, 9-worms) 

 

Since 10% and 20% of the wrong labelling does not reflect visible changes in the overall 

classification performance 30% of wrong labeled training data for active learning 



125 

experiment chosen here to present results. All other cases are selected arbitrary, for the 

purpose of visual representation.   

 

Binary  

(incorrect label) 

Label 

 

Accuracy Precision Recall F1-score 

Decision Tree 0 61.809599 56 65 61 

1 68 59 63 

weighted average 63 62 62 

Random Forest 0 76.927989 76 71 73 

1 78 82 80 

weighted average 77 77 77 

XGBoost 0 72.178606 73 60 66 

1 72 82 76 

weighted average 72 72 72 

(0-normal, 1-botnet) 

 

Multi Class 

(correct label) 

Label 

 

Accuracy Precision Recall F1-score 

Decision Tree 0 50.463919 59 58 59 

1 65 40 49 

2 12 11 11 

3 23 19 21 

4 51 42 46 

5 1 1 1 

6 42 34 38 

7 0 24 0 

8 9 13 10 

9 98 59 73 

weighted average 63 50 55 

Random Forest 0 65.114008 64 85 73 

1 83 36 50 

2 13 8 10 

3 30 14 19 
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4 63 40 49 

5 12 4 6 

6 53 17 25 

7 0 0 0 

8 22 11 8 

9 99 78 87 

weighted average 69 65 64 

XGBoost 0 58.170868 57 72 63 

1 83 21 33 

2 10 3 4 

3 34 8 13 

4 53 19 28 

5 6 3 4 

6 53 17 26 

7 0 0 0 

8 0 0 0 

9 1 90 95 

weighted average 65 58 58 

(0-normal, 1-fuzzers, 2-analysis, 3-backdoors, 4-dos, 5-exploits, 6-generic, 

7-reconnaissance, 8-shellcode, 9-worms) 

 


