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Abstract

Results  of  multi-temporal  InSAR  processing  of  satellite  data  often  contain  noise.

Common  practice  for  separating  reliable  results  from  unreliable  is  application  of

threshold  on  temporal  coherence.  Excluding  results  solely  based  on  their  temporal

coherence may cause areas, which are undergoing complex deformation scenarios, to be

left  unnoticed.  Decrease in  temporal  coherence  may happen for  example  in case of

landslides, earthquakes or subsidence caused by underground mining activities.

The goal of this thesis is to create a free and open source solution for post processing of

multi-temporal InSAR results by identifying multivariate outliers in order to improve

identification  of  surface  deformation.  The  created  solution  is  based  on  approach

proposed in [1] . The purpose of created method is to separate multivariate outliers from

processed satellite data in order to provide a reliable alternative to practice of applying

threshold on temporal coherence.

The expected outcome of the implemented method is to supplement  high coherence

points with low coherence points which behave in a similar manner and to identify new

areas of interest which might be deforming but for some reason experience decrease in

temporal coherence.

This thesis is written in English and is 40 pages long, including 9 chapters, 20 figures

and 7 tables. 
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Annotatsioon

R-teek ajaliste InSAR tulemuste järeltöötluseks tuvastamaks mitme

muutujaga võõrväärtusi

Satelliitidelt kogutud ja ajalise InSAR töötluse läbinud andmed on sageli mürarikkad.

Levinud viis huvipakkuvate objektide tuvastamiseks on ajalisele koherentsusele alumise

piirmäära kehtestamine. Tulemuste välistamine pelgalt ajalise koherentsuse põhjal võib

viia olukorrani, kus reaalselt vajunud alad jäävad edasise uurimise valimist välja, kuna

mingil  põhjusel  on  nende  koherentsus  piirist  madalam.   Koherentsuse  langus  on

sagedane  juhtudel,  kui  maapinna  deformatsioon  toimub  prognoositavast  mudelist

kiiremini  –  näiteks  maanihete  ja  maavärinate  korral,  aga  sageli  ka  kaevandamisest

tingitud maapinna vajumise korral

Käesoleva magistritöö sisuks on luua tasuta ja vabalt kättesaadav tarkvaraline lahendus,

mis  võimaldaks  eeltöödeldud  satelliidiandmete  põhjal  tuvastada  mitme  muutujaga

võõrväärtusi  selleks,  et  maapinna  deformatsioone  saaks  paremini  tuvastada.  Töö

põhineb metodoloogiale, mis on välja pakutud [1] poolt. Loodud tarkvara ülesandeks on

analüüsida  mitme  muutujaga  andmeid,  millest  tuvastada  ja  eraldada  võõrväärtused,

pakkumaks  koherentsuse  piirmäära  seadmisele  alternatiivset  meetodit  võõrväärtuste

väljaselgitamiseks.  Loodud  meetodi  käivitamise  oodatav  tulemus  on  kõrge

koherentsusega  punktidele  täiendavate  huvipakkuvate  punktide  leidmine,  seejuures

kinnitades kõrge koherentsusega punktide usaldusväärsust. Lisaks on loodud meetodi

eesmärgiks tuvastada täiendavaid piirkondi, kus maapinna nihkumine aset leiab, ent mis

jääksid märkamatuks rakendades tavalist koherentsuse alampiiri tehnikat.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 40 leheküljel, 9 peatükki, 20

joonist, 7 tabelit. 
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List of abbreviations and terms

CSV Comma-separated values

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DEM Digital elevation model

ESA European Space Agency

InSAR Interferometric synthetic aperture radar

LOS Line of sight

MAD Median absolute deviation

MTI Multi-temporal InSAR

OC Outlier candidate

PCA Principal component analysis

PS Persistent scatterer

ROBPCA Robust Principal Component Analysis

SAR Synthetic aperture radar

SNAP Sentinel Application Platform

UTM Universal Transverse Mercator
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1 Introduction

European Space Agency has launched family of  satellites  called  the Sentinels,  each

carrying  advanced radar  systems  and taking images  of  the Earth.  Although satellite

information has been available for a while already, the Sentinels provide it much more

often and the collected data is available for free.

One  of  the  many  applications  of  using  satellite  data  is  measuring  deformations  of

surface.  Information  about  surface deformation  can be used for  example  to monitor

subsidence of different areas (e.g. active landslides, volcanic areas, mines etc.) but also

could be used to make predictive models on how certain areas might behave or deform.

The  biggest  benefit  of  using  data  from  the  Sentinels  satellites  for  deformation

measurements  is  their  free and frequent  data  delivery.  If  processed in  effective  and

correct way, they provide ultimate value in gathering information from areas which are

difficult to access.  

One of the challenges of processing satellite data is how to separate noisy points from

points that contain useful information. A common strategy is applying a threshold on

temporal coherence. But sometimes important information can be found in low coherent

points as well, for example in case of earthquakes or landslides. Time series data does

not follow linear model when unexpected changes happen and therefore points in these

deformed areas experience decrease in temporal coherence resulting in exclusion from

the final results.

Overall goal of this thesis is to build a filter for the points with low temporal coherence

with the purpose of keeping the points that contain useful information in the final data

set. For this purpose an outlier detection approach is implemented on software level.

The techniques used for post processing of data is based on  [1]  . In the scope of this

thesis an R package is created for outlier detection.
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The  expected  value  of  the  implemented  method  is  to  provide  points  of  interest  in

addition to selection made by applying threshold on coherence value. The method aims

to supplement high coherence points with low coherence points behaving in a similar

manner.  As  well  as  to  potentially  detect  new  areas  which  experience  decrease  in

coherence value due to more complex deformation scenarios.

For validation, the results of executing implemented methods are tested on datasets of

three  different  areas  where  is  known  that  deformations  take  place.  Test  data  was

provided by AS Datel. Results are validated by visualisation of identified points and are

compared  to  the  specifics  known  about  areas  under  investigation  as  well  as  using

interferograms for two of the test regions. 

1.1 Organization of the thesis

The thesis includes following chapters:

• Background: an overview of specifics of satellite data processing is given.

• Problem  statement: motivation,  problem  statement  and  alternative

implementations are described. 

• Methodology: a  short overview of different algorithms and techniques which

are used in the method implementation is given.

• Method implementation  in  R: reasoning  for  choice  of  technology,  running

manual, dependencies on other packages and requirements for input and output

data are specified. 

• Step by step implementation: each step of the implemented method and the

most important functions are described in detail.

• Validation of results: experimental results and validations of outputs of created

method  are  visualised  and  explained.  Also performance  measurements  are

displayed.

• Conclusions  and  further  development  options: results  of  the  thesis  with

suggestions for future work are presented.
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2 Background

2.1 Copernicus programme

Copernicus  is  a  joint  programme  of  European  Space  Agency  (ESA)  and  European

Commission  [2]  . The purpose of the initiative is to provide easily accessible satellite

information  in  order  to  benefit  to  the  environment,  civil  security  and  detection  of

climate change. Central part of the Copernicus programme is a family of satellites called

the Sentinels. Each of the 6 missions are a constellation of two satellites which carry

advanced radar instruments to be able to provide images of Earth's surface during day

and night, in all weather conditions.

Relevant to this thesis are Sentinel-1A and -1B which were launched respectively in

April  2014 and April  2016.  They carry  a  C-band Synthetic  Aperture  Radar  (SAR)

which is an enhancement of ESA's and Canada's heritage SAR systems ERS-1, ERS-2,

Envisat and Radarsat  [3]  . The centre frequency of C-band SAR is 5.405 GHz which

corresponds to a wavelength of about 5.5 cm.

Sentinel-1A and Sentinel-1B orbit the entire Earth 180° apart each other in every six

days,  covering  large  areas  on  land  and  sea  [3]  .  The  data  collected  by  Sentinel-1

missions is meant for example for monitoring of land deformations, sea-ice mapping

and forest and soil mapping.

2.2 Synthetic aperture radar 

“Synthetic  aperture  radar  (SAR)  is  an  active,  coherent,  microwave  imaging  remote

sensing system that  can be mounted on an airborne or a spaceborne platform”  [4]  .

SARs are able to deliver images in all weather conditions, during day and night and can

be used to create two-dimensional images of three-dimensional reconstructions [5] .

Two different orbital geometries can be distinguished in acquiring of SAR images [6] ,

enabling  areas  to  be  observed  from  two  angles  which  are  almost  symmetrical.
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Descending  geometry  means  that  the  satellite  is  passing  from  north  to  south  and

observing from east. Ascending orbital geometry means that satellite moves from south

to north and observes from west. It is possible to measure displacements from SAR

images, but only along the satellite's Line of Sight (LOS). So for example when there

are ground movements to west, the satellite on ascending orbit seems it as moving near

to the satellite, while descending satellite sees it as movement away from the satellite.

When both geometries recognize the movement as distancing, it can be said, that the

land is subsiding vertically.

2.3 Interferometric synthetic aperture radar

Interferometric synthetic aperture radar (InSAR) is a radar technique which involves

interferometric phase comparison of SAR images which are gathered at different times

and with different baselines. By using the radar phase information,  InSAR measures

distance between the satellite and a target point on Earth's surface. InSAR can provide

digital  elevation  models  (DEM) with  meter  accuracy  and terrain  deformations  with

millimetre accuracy [7] .

The process of comparing phase information of two (or more) SAR images is called

interferometry  and  as  a  result,  an  interferogram  is  produced.  In  order  to  measure

deformation of the ground, the images which are used to form an interferogram have to

be acquired from different times and from different positions [8] , [9] . 

InSAR is used to detect displacements of Earth's surface. For example it can be used to

measure  and  observe  changes  from earthquakes,  volcanic  eruptions  and  subsidence

occurring from mining activities.  Although there are alternative  ways  for measuring

surface  movements  (for  example  GPS),  InSAR  provides  clear  advantages  by  not

needing any special equipment on ground in areas under investigation and by covering

even the areas which are difficult to access by other means than satellite data.

2.4 Multi-temporal InSAR

Application of InSAR is limited for example due to changes in Earth's surface with time

and  seasonal  changes  and  variations  in  atmospheric  properties  and  therefore  the

displacement measure may be overprinted by noise. In order to overcome this obstacle,
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Multi-temporal InSAR (MTI) techniques [10] – processing of multiple images in time –

can be applied. 

MTI techniques are used for measuring deformations and for extracting time-series of

LOS surface displacements  with millimetre  accuracy  [7]  ,  [11]  .  The key idea is  to

identify persistent scatterers  (or permanent  scatterers  [7]  )  by using all  archived but

suitable data of a certain area. Differential interferograms are co-registered to a common

master which is chosen from the middle (or near middle) of the time series. Phase of

isolated coherent  points is  analysed  as a function of time and space  [4]  .  Persistent

scatterers are identified from the stack of co-registered interferograms as points with

high coherence.  

Interferometric  coherence  [4]  is  a  correlation measure of the phase noise and phase

precision of two SAR images. Coherence value ranges from 0 to 1 – higher value means

less noise and more reliable phase measurement. Coherence is affected for example by

geometric decorrelation, system noise, temporal decorrelation (due to physical changes

in the target), decorrelation due to processing.

2.4.1 Temporal Coherence

Desired  estimates  of  MTI  results  are  for  example  velocity,  height,  cumulative

displacement which often are considered reliable only when their temporal coherence

exceeds some desired limit. Parameter of temporal coherence expresses the quality of fit

between deformation model and measurements of phase  [12]  .  Decrease in temporal

coherence  expresses  lack  of  effectiveness  in  removing  noise  by  linear  deformation

model.

Some of the causes for decrease in temporal coherence are: temporal and geometrical

decorrelation, noise from signal delays, orbit errors. Temporal coherence decreases also

in  cases  when  non-linear  movements  occur,  for  example  landslide  activations  and

earthquakes. 

A common practice in post-processing of MTI results is to apply threshold of 0.7 [1] on

temporal coherence in order to distinguish reliable results from noise. The biggest issue

with this kind of approach is that non-linear movements may be left unnoticed due to

their low or medium temporal coherence. 
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3 Problem statement

For the last few years, since the Sentinels were launched, it has been possible to get

satellite data for free in every six days for the whole Earth. The data is available, but the

question of how to process it most efficiently still remains

By  using  multi-temporal  InSAR  methodology  it  is  possible  to  identify  offsets  of

persistent scatterers by magnitude of 1mm. This presents us an opportunity to measure

deformation of different areas and buildings anywhere in the world over long periods of

time without having to do it manually or without being present physically. In general

MTI techniques  are  successfully applied for measuring subtle  deformations  of land-

surface.  But  the  results  often  include  inaccuracies  which  cause  problems  with

identifying unexpected deformations. For example causes of inaccuracies might be orbit

errors, sub-pixel positions, noise from signal delays, seasonal changes (snow, temporal

expansion). 

After initial data has been processed, the results, including time series of measurements,

might  still  contain  a  lot  of  noise.  It  is  somewhat  possible  to  manually  go  over

measurements to identify which of them are reliable and which are outliers. But this

approach requires involvement of an expert and is not cost nor time efficient, especially

if there are thousands or even tens of thousands of points under investigation. So the

key issue is, how to identify and eliminate outlying observations. The idea of this thesis

is to contribute to finding deformations by creating an automated procedure for post-

processing of multi-temporal satellite data.

Common practice for dividing observations into reliable and non-reliable is application

of lower limit  on temporal  coherence.  Eliminating targets based solely on their  low

temporal  coherence  can  give  incomplete  estimates  and unreliable  results  as  well  as

decrease the number of interesting points too dramatically. Especially in cases of rapid,

non-linear movements which would not be expected from the linear model behaviour,

changes may be left unnoticed. In those cases it might happen that more than half of
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identified persistent scatterers are with low-medium temporal coherence, although many

of them still carry important information. 

The scope of this thesis is to take into use methodology proposed in [1] and to create a

software component for post-processing of multi-temporal InSAR results by identifying

outlying observations. The overall purpose is to be able to identify subsidence of areas

by interferometric measurements in an unattended way, while not excluding persistent

scatterers solely on their low temporal coherence value. 

Expected outcome of the created method is to supply additional areas of interest as well

as  to  confirm  the  results  obtained  by  coherence  threshold  (for  examples  on  high

coherent areas). Another important outcome is to complement high coherence points

with low coherence points which behave in a similar manner. 

The required input is a dataset of persistent scatterers which have undergone standard

MTI processing.  Important  variables  would  be e.g.  velocity,  height,  residual  height,

standard deviations, temporal coherence. The key idea of the methodology is to separate

non-outlying observations from outlying.

Results of the created method are validated by executing outlier detection on data of

areas where it is already known that deformation takes place. It is then also possible to

compare  the  remaining  relevant  scatterers  to  the  result  of  simply  removing  low

coherence points. This can give an overview of whether the used techniques provided

any value.

3.1 Alternative implementations

The author is not aware of any implementation of the approach described in  [1]  that

would  be  open  source  and  could  be  used  in  a  processing  pipeline.  Different  steps

implemented in current work could manually be carried out in several applications, for

example Matlab  [13]  , but this would require extensive amount of manual work and

therefore the approach could not be generalized.
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4 Methodology

Functions implemented in scope of this thesis are greatly based on an approach and

techniques  proposed  in  [1]  .  The  overall  purpose  of  applying  these  methods  is  to

distinguish observations which are statistically significant from those which seem to be

outlying  by identifying  location-,  data-  and application  driven outliers  and therefore

increase  the  number  of  points  of  interest.  This  section  briefly  explains  theoretical

background of algorithms and techniques which have been proposed by [1] and which

are the basis for the implementation in R.

4.1 Used techniques

4.1.1 Clustering analysis

Location-driven outliers can be separated by applying clustering analysis on data under

investigation. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

algorithm  [14]  is  capable  of  finding  clusters  with  arbitrary  sizes  and  shapes  and

additionally to identify noise. The algorithm requires two parameters – minPts which is

minimum number of points needed to form a cluster. And eps which is the maximum

distance between two connected points in a cluster. 

In order to form a cluster, DBSCAN starts with an arbitrary point p and retrieves all

points which are density-reachable from p within distance  eps with regards to  minPts

[14] . Each point is either assigned to a cluster or marked as a noise point.

Selection of minPts is dependent on specific data. Eps can be determined by calculating

pairwise distances of points in the dataset. Then when sorting the distances and plotting

them in ascending order, it is possible to find a knee point of the plotted graph which

would represent the optimal value for eps [15] .

DBSCAN  is  widely  used  and  effective  algorithm  for  detecting  clusters  of  varying

shapes  but it  might  fall  short  of  identifying  clusters  of varying densities.  There are

19



several alternatives and additions to DBSCAN which could be used for clustering as

well, for example HDBSCAN [16] , OPTICS [17] , DMDBSCAN [15] etc. Concept of

eps  would need to be further analysed when different algorithm is chosen to be used

instead of DBSCAN as value of eps has a key role in the final step of processing outlier

candidates (OC). If a chosen algorithm does not involve a value for maximum distance

of a neighbouring point (eps or similar), then this distance would have to be calculated

or set based on some other calculation. In scope of this thesis, the DBSCAN seemed to

provide sufficient value and good results in data clustering.

4.1.2 Principal component analysis

Principal component analysis (PCA) [18] is a widely used technique which is capable of

discovering multivariate outliers. Overall purpose of PCA is finding a small number of

linear combinations of correlated parameters in order to convert them to a set of linearly

uncorrelated  variables  (principal  components)  which  would  describe  most  of  the

variation in the dataset [19] .

PCA is very sensitive to outliers,  but there are some modifications of the technique

which are more robust, outlier-resistant and can be used for outlier detection purpose. In

this thesis Robust PCA approach (ROBPCA) [20] is used. The purpose of this technique

is  to  find  linear  combinations  of  original  variables  which  contain  most  of  the

information despite presence of outliers and hence to identify outlying observations.

In general, for each observation, their score and orthogonal distances are calculated. By

applying a cut-off value, it is possible to identify outliers – observations which do not

behave in a similar manner as majority of observations are marked as outliers. 

4.1.3 Analysis of detected outliers

The proposed procedure for final processing of outlier candidates found by ROBPCA

consists of several steps. The goal here is to investigate further the behaviour of all

detected outliers in context of their allocated cluster.

First,  by calculating  Delaunay triangulation  and Voronoi  diagram  [21]  ,  [22]  ,  it  is

possible to separate grouped and isolated outliers. Grouped outliers are points that share

Voronoi adjacency cells and are within Eps radius (the same as used in DBSCAN).
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Then calculation of Median Absolute Deviation (MAD)  [23]  is used to estimate each

variable in each point for both isolated and grouped outliers. MAD allows to compare a

certain point to the behaviour of non-outlying part of the cluster.

The final step is calculating pairwise Jaccard index [24] for outliers in every group in

order  to  compare  their  similarity  and  diversity.  The  aim  of  this  comparison  is  to

discover set of points in near distance which behave in a similar (outlying) manner.

When such groups are found, they become relevant despite their previous classification

as outliers.

4.2 Alternative approaches

There are several techniques which try to automate extraction of meaningful data of

MTI results.  Most  common is  thresholding  on coherence.  Another  way is  focusing

solely on velocity. But these are not multivariate analysis and therefore their efficiency

can be rather limited. There are alternative approaches for exploiting low coherent areas

e.g. [25] ,[26] .

One additional  approach for effectively detecting multivariate  outlier  could be  [27]  

which  uses  information  of  time  series  for  continuous  monitoring  of  ground

deformations.
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5 Method implementation in R

Most suitable  programming language for implementing multivariate  outlier  detection

was chosen by three main criteria

• support for statistical computing

• free-ware

• high integration options with other systems and potential work flows

Considering all prerequisites, choice of technology was made between Python and R.

After some experiments, the final decision was made in favour of R, as it seemed to

have even better and faster support for some of the statistical methods needed in the

implementation (for example DBSCAN, ROBPCA).

5.1 Running manual

Package  outdetect was  created  in  scope  of  this  thesis.  In order  to  run  the  outlier

detection  process,  the  package  needs  to  be  cloned  from  git  repository

https://github.com/kristiin/outlier-detection and  then  locally  installed  as  any other  R

package.

The main method is executed by running following command:

outdetect::extractOutliers(data)

5.2 Dependencies

Most important dependencies of the created R package are on libraries, deldir  [28]  ,

dbscan [29]  ,rrcov [30]  , igraph [31]  , sp[32] . All dependencies are listed in project

directory  in  file  DESCRIPTION  under  section Imports.  When  installing  package

outdetect, all required packages listed in Imports get installed as well. 
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Library  testthat  [33]  is  used  for  unit  testing.  Testthat is  listed  as  Suggests in

DESCRIPTION file. This means that the package is not needed to execute the main

code, but it is necessary when wanting to run the tests and therefore has to be installed

manually.

5.3 Requirements for input data

The purpose of created package and its  functions is  to  further analyse  satellite  data

which has already gone through standard processing by MTI techniques. In a work-flow

context, MTI results are retrieved either by direct select from some database or by e.g. a

CSV file. The aim of the created code is to work regardless of the specific data source,

therefore at this stage the functions have been created with an assumption that input

parameters are R data-types. No support for querying database or reading files from disk

has been provided as this does not seem relevant at this point and can easily be added

once the need for it arises.

5.3.1 Arguments of extractOutliers()

All input arguments, their type and default value for optional arguments are given in

Table 1.

23



Table 1. List of arguments for extractOutliers.

Name Type Description Default value

data data frame MTI data to be analysed for outliers

minPts integer Minimum number of points to form

a  cluster  for  DBSCAN.  This  is

highly dependent on specific data to

be analysed.

3

eps numeric Neighbourhood  radius  for

DBSCAN. If no value is provided,

then the optimal value is calculated.

Considered as euclidean distance.

NULL

utm integer Universal  Transverse  Mercator

(UTM) zone

NULL

minCoher numeric Coherence threshold 0.7

k integer Number of principal components to

be retained ROBPCA

2

cl numeric Confidence level for ROBPCA 0.9

rejCrit numeric Conservancy  index  for  data  when

comparing  to  median  absolute

deviation

3

minJacc numeric Threshold  for  pairwise  Jaccard

index  used  in  application  driven

outliers

0.6

5.3.2 Required columns of data and their order

All required columns which have to be present in input data frame with their sequence

number are given in Table 2.
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Table 2. Required columns of data.

Name Description Sequence no

ID ID of observation 1

LAT Latitude value in coordinate system WGS84 2

LON Longitude, coordinate system WGS84 3

COHER Coherence with value between 0 and 1 Not relevant

All other columns present in the input data frame are considered as variables and are

included as basis for detection of multivariate outliers. Examples of usual variables are

velocity and its standard deviation, height at sea level and its standard deviation, height

with  regards  to  digital  elevation  model,  cumulative  displacement.  Example  of  a

structure of data argument is given in Figure 1.

5.4 Output requirements

Output value of function extractOutliers is a list providing following elements:

nonoutliers – dataframe of all points which were found as non outlying

outliers – dataframe of all points which were found to be outliers

params – list of parameters used in data processing
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Figure 1. Example of input data structure.

ID LAT LON HEIGHT VEL CUM DISP COHER
2100 58.456026.7555 52.4 0.6 0.5966 0.61
2101 58.925926.7447 41.1 -2.9 -2.9404 0.78
2102 58.655926.7531 46.2 -8.3 -9.0585 0.74



6 Step by step implementation

This section describes main functions which were created in package outdetect as well

as their required input parameters and dependencies on other R packages. 

The entry point  of  package  outdetect  is  function  extractOutliers.  Its  implementation

consists of three logical steps 

1) Input data validation and transformation

2) Detection of location, data and application driven outliers.

3) Extracting and binding outliers and outlier free data

Example call of extractOutliers:

outdetect::extractOutliers(data)

6.1 Input data validation

When  calling  the  method  extractOutliers,  input  data  is  validated  for  structure

correctness by function validate.

Validations:

• First three columns must be in order ID, LAT, LON

• Presence of column COHER with values between 0 and 1.

• All fields in data must be in numeric form.

• All input parameters are numeric.

• minPts greater than 0.

• utm in range 1 – 60 if present.
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 If parameter utm is present, then coordinates are transformed into applicable coordinate

system with corresponding UTM zone by function prepareData. If  utm is not present,

then coordinate system EPSG3359 [34]  is used and added to the dataframe as LAT.1

and LON.1. Function  spTransform  in package  sp  [32]   is used for transformation of

coordinates. Reasoning for the transformation is explained in 6.2. Value of utm (or its

presence) does not have much impact on the end result (difference might be only a few

points), but it benefits mostly to debugging and to investigation of clusters and groups.

The more accurate the provided UTM zone is for an area under investigation, the closer

the value of calculated eps is to actual distance in meters.

6.2 Location driven outliers

The purpose of this step is to cluster data based on geographic coordinates and extract

noise points.

Function  getDbscan(data,  params) is  used  for  extraction  of  location  based  outliers.

DBSCAN clustering  is  available  by  function  dbscan of  package  dbscan  [29]  . The

dbscan implementation is very fast but its calculations are based on Euclidean distances

of coordinates and it does not support clustering of geographic coordinates with great-

circle/spherical distance.

While  it  would  be  possible  to  pre-calculate  distance  matrix  based  on  geographic

coordinates and pass it to dbscan, it is much faster to simply transform coordinates into

suitable  system  (done  by  prepareData())  and  perform  clustering  based  on  the

transformed values. Due to the nature of the problem at hand, the pairwise distances of

points are rather small and therefore the Euclidean versus great-circle/spherical distance

do not differ much from each other. 

In case value for eps has not been given, it is found by finding a knee point in a curve of

calculated  pairwise  distances  of  points.  Although there  is  a  way for  calculating  the

optimal value of eps, one might want to set it manually. Especially when its clear that

there are clusters with different densities. Therefore it is best to be able to set the value

manually as well. 
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As a result  of clustering,  each point  gets  assigned to  a cluster. All  noise points  are

assigned to cluster 0. Cluster with the most points belonging to it, is set as GROUP

cluster – to be used in the next steps.

6.3 Data driven outliers

Central  function for extracting data driven outliers is  applyPCA(data,  params). This

function is responsible for applying robust principal component analysis (ROBPCA) on

initial data. For execution of ROBPCA function  PcaHubert  in package  rrcov  [30]  is

used. Parameters to follow in this step are cl, which is used for computing the cut-off

values  for  the  orthogonal  and score  distances,  and  k  which  is  value  for  number  of

principal components.

Lowering  value  of  cl results  in  larger  number  of  outlier  candidates  identified  by

ROBPCA, hence more points get passed to next steps of processing and therefore the

execution time may be longer. Increasing value of k has the same impact. The default

values are cl=0.9 and k=2 as used in [1] .

It  is  important  to  select  relevant  variables  for  comparison  inside  the  method.  As

prerequisite of the input stated, all fields except for ID, LAT, LON are considered as

variables  describing  the behaviour  of the point.  Therefore all  other  initial  fields  are

subject to principal component analysis.

Return value of  applyPCA is the input data with additional column  ISCORE for each

column. ISCORE is a representation of whether a certain point was identified as a core

point (true) or as an outlier (false) by ROBPCA.

From  here  on,  all  next  steps  and  calculations  require  data  with  outlier  and  noise

indications. Example set of data is shown in Figure 2.
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Figure 2. Data with outlier candidacy information.

ID LAT LON HEIGHT VEL CUM DISP COHERLAT.1 LON.1 CLUSTER ISCORE
2100 58.45601 26.755560 52.4 0.6 0.5966 0.61 0 TRUE
2101 58.92596 26.744734 41.1 -2.9 -2.9404 0.78 1 FALSE
2102 58.65599 26.753105 46.2 -8.3 -9.0585 0.74 1 TRUE



All points with  CLUSTER!=0  and  ISCORE==TRUE are kept in the final dataset as

non-outliers. These are points which were not classified as noise by DBSCAN, and at

the same time were also found as non-outlying by PCA. 

6.4 Application driven outliers

6.4.1 Overview

All outlier candidates which were identified by ROBPCA and were not marked as noise

by DBSCAN are processed in this step. The aim is to analyse these outlier candidates

even further to identify if they act as outliers on their own or perhaps they form a group

of outliers – in case they are located in “near enough” distance (eps radius) and behave

in a similar manner, they could be included into final non-outlying dataset. 

Top  level  function  which  is  responsible  for  detecting  application  driven  outliers  is

processOCs(pointsWithOCFlag, madOfVariablePerClusterDF, params). 

Arguments:

• pointsWithOCFlag – original data with additional columns of cluster and outlier

flag. 

• madOfVariablesPerClusterDF –  result of  calculateMadOfVariablePerCluster()

(described in 6.4.2).

• params – list of additional parameters. Relevant in this step are: eps, minCoher,

cl, k, rejCrit, minJacc.

6.4.2 Calculation of MAD

Function calculateMadOfVariablePerCluster() is responsible for one of the key steps in

processing outlier candidates.

Prior to any further processing of outlier candidates found in previous step, it is needed

to calculate upper and lower borders for each variable in each cluster. Calculations are

based on median absolute deviation [23] :
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Specified  rejection  criterion  with  values  3  as  very  conservative,  2.5  moderately

conservative and 2 as poorly conservative. The index is specified by parameter rejCrit.

In case there are clusters which have more outlying points than non-outlying points,

borderline data of core group clusters are used.

Example of a return value of calculateMadOfVariablePerCluster() is shown in Figure 3.

The data frame contains minimum and maximum values of each variable in each cluster

based on non-outlying observations. Cluster based MAD information is used in final

decision making steps described in 6.4.4 and 6.4.5.

6.4.3 Division of outliers

All points detected as OCs by ROBPCA and not classified as noise by DBSCAN are

processed.  First,  Delaunay  triangulation  and  Voronoi  tesselation  are  calculated  by

deldir function in package deldir in order to identify neighbouring points which share

Voronoi adjacency cells.

Then euclidean distance between each point pair in triangulation is calculated. Outlier

candidates  are  separated  into two – outlier  candidates  which have any other  outlier

within distance eps (the same as used in clustering) are marked as grouped outliers. All

others are considered isolated.

6.4.4 Grouped outliers

We now have set of point pairs with pairwise distance less than or equal to  eps. The

structure  allows  to  apply  graph  theory  grouping  to  separate  outliers  into  groups.

Function  graph_from_data_frame of  package  igraph  [31]   is  used  to  make  an
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undirected graph of non-isolated outlier candidates. It is then possible to extract groups

of connected outlier candidates from the graph.

Then,  for  each  outlier  in  a  given  group,  a  rejection  table  (described  in  6.4.6)  is

calculated  to  indicate  if  a  specific  variable  exceeds rejection  criteria  (1)  or  not  (0).

Based on rejection table, Jaccard difference and similarity are calculated.

If there are no point pairs with smaller index than selected similarity threshold minJacc,

then  all  points  are  kept  in  the  outlier-free  dataset.  Otherwise  only  the  points  with

coherence more than initially selected minimum are kept.  Smaller  value of  minJacc

means more conservative approach in deciding whether outlier candidates behave in a

similar manner and therefore might cause smaller number of non-outlying points to be

present in final results. Default value is 0.6 as was used in [1] . 

6.4.5 Isolated outliers

All outlier candidates which were not classified as grouped, are considered as isolated.

Each isolated outlier with coherence greater than selected minimum minCoher, is then

processed. For each variable rejection table is calculated. If there are no dissimilarities

found, then the outlier candidate is kept in the final outlier free dataset. Otherwise the

point will be marked as an outlier.

6.4.6 Calculation of rejection table

Function  calculateMatrixPerOc(noiseFreeOutlierCandidates,  ocInds,

madOfVariablePerClusterDF) is responsible for calculating a rejection matrix for every

outlier.

NoiseFreeOutlierCandidates is  a  set  of  points  which  were  used  for  calculation  of

Voronoi tessellation.

Argument  ocInds is either a list of indexes or a single index (in case of an isolated

outlier) of a record in noiseFreeOutlierCandidate dataframe.

Each variable of every outlier candidate is compared to corresponding range per cluster

in madOfVariablesPerClusterDF. Each variable is then flagged as 0 (within the limits)

or 1 (outside the limits) as illustrated in Table 3.
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Table 3. Example of a structure of rejection table for group of outlier candidates.

ID HEIGHT VEL CUM DISP COHER

2100 1 1 1 1

2101 1 1 1 0

2102 0 1 1 1

6.5 Returning results

Return  value  of  outdetect::extractOutliers is  an  object  consisting  of  fields  outliers,

nonOutliers, params.

6.5.1 NonOutliers

Points identified as non-outlying by ROBPCA.

Points identified as outlying by ROBPCA and as noise (cluster 0) by DBSCAN and

with coherence value more than minCoher.

Isolated  outlier  candidates  with  coherence  more  than  minCoher and  none  of  the

variables exceeding rejection criteria.

Grouped outlier candidates with similar behaviour or grouped outlier candidates with

coherence value more than minCoher.

6.5.2 Outliers

Points identified as outliers by both ROBPCA and DBSCAN and coherence less than or

equal to minCoher.

Isolated outlier candidates with coherence less than or equal to minCoher or at least one

value exceeding rejection criteria.

Grouped outlier candidates from groups which do not behave in a similar manner and

with coherence less than or equal to minCoher.
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6.5.3 Params

For information purpose. Includes all values of input parameters, calculated value of

eps, names of all the fields which were used in ROBPCA. 
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7 Validation of results 

Validation of results of the implemented algorithm is not very straightforward as the

desired outcome is not a specific value which could easily be defined. The expected

output of the method is a set of additional points, which indicate that they are suitable

for further analysis. One of the greatest challenges of satellite data processing in general

is the problem of identifying relevant information from noise and acquiring meaningful

information.  In smaller scale,  the challenge of MTI results is to increase number of

relevant  points,  since  threshold  on  coherence  often  leaves  out  areas  of  significant

importance. 

The effectiveness  of  the  method  can be tested  by executing  the method on regions

where it is known for a fact that deformations take place. Then the results obtained by

multivariate outlier detection can be visualised in order to compare them to what would

be the expected behaviour.

Tests  were  performed  on  three  different  data  sets  and  results  are  presented  in  this

section.  The data was provided by AS Datel in a CSV format.  Data originates from

Sentinel-1 satellites and has undergone MTI processing. While the original unprocessed

satellite  data  is  freely  available  [35]  ,  the  processed  results  in  a  CSV format  were

provided as confidential information by AS Datel. 

Tools which have been used for visualisation purposes for this section are QGIS [36] ,

RStudio [37] and Google Earth [38] .

7.1 Rattlesnake Hills Landslide

Rattlesnake Hills is a mountain ridge south of Yakima, WA, USA. In late 2017 a large

landslide was reported to be occurring in the ridge with blocks of basalt sliding on a

weaker sedimentary layer. Moving rate was reported to be around half a meter per week

in a southward direction. It has been estimated by observing geologists and engineers
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that most probably the landslide will keep moving south until accumulating into the

quarry [39] .

Approximate extent of the landslide and its movement direction are visible in  Figure 4

and Figure 5.

7.1.1 Test data of Rattlesnake Hills

The dataset consists of 4710 points, with temporal coherence from 0.38 to 0.96 and was

acquired from Sentinel-1 relative orbit number 115 between 06th November 2014 and 7th

January 2018. Variables  presented in MTI results  are height,  height  with regards to

DEM, standard deviation of height, velocity, standard deviation of velocity, cumulative

displacement and temporal coherence. When applying the standard threshold of 0.7 on

coherence, only 1902 points remain. 

Propagation of temporal coherence and velocities of high coherent points are shown in

Figure 6. As can be seen from images, majority of high coherent points do not express

any significant movement and only few points with increased movement rate have been

identified in the landslide area.
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Figure 5. Approximate landslide extent [39] .

Figure 4. Movement direction [39] .



7.1.2 Results of executing multivariate outlier detection

Method was executed with command: outdetect::extractOutliers(data, utm=10)

Location based clustering identified 35 clusters and 102 noise points. 4325 points were

assigned  to  core  group  cluster.  Application  of  robust  principal  component  analysis

identified 3342 points as non-outlying and 1368 as outliers. Histogram of the overall

coherence  versus  coherence  of  points  identified  as  outliers  by  principal  component

analysis  is given in  Figure 7. 1305 outlier  candidates remain when excluding points

identified as noise by DBSCAN. 
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Figure 6. Temporal coherence (a) and velocity (b) of Rattlesnake area (image from QGIS).

Figure 7. Histogram of temporal coherence of Rattlesnake (image from RStudio).



Next steps identified additionally 55 low coherent points as non outlying. Several of

additional points are located in the most active landslide area (illustrated in Figure 8).

As final result, 3608 points were identified as non-outlying and 1102 as outliers. Most

of  additional  non-outlying  points  support  the  model  of  high  coherence  points.

Additional deforming area has been identified on the landslide area which would have

been left  unnoticed by the standard coherence threshold procedure.  Velocities  of all

identified points are visible in Figure 9. 
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Figure 9. Velocities of all identified non-outliers (image from QGIS)

Figure 8. Velocities of grouped outlier candidates to be included as non-outliers (large dots) in context
of high coherent points (small dots), Rattlesnake (Image from QGIS).



When comparing the results of  Figure 9 to  Figure 6 (b) and to illustrated movement

directions presented in Figure 4, then it can be seen, that new areas of interest have been

identified by the applied outlier detection method. 

7.1.3 Comparison to an interferogram

Another  possibility  for  validation  could  be  comparison  of  identified  points  with  an

interferogram  of  an  area  under  investigation.  The  Sentinels  data  is  available  for

download on Copernicus Open Access Hub  [35]  .  Collection  of Sentinel  Toolboxes

called  Sentinel  Application  Platform (SNAP)  [40]  can  be  used  for  generating  SAR

interferograms. Manual for creating SAR interferograms is available by ESA on [41] .

A plugin named SNAPHU [42] can be used for phase unwrapping in order to eventually

visualise displacements. 

Successful generation of a SAR interferogram is somewhat tricky, because the data files

are large (around 5-10GB), SNAP requires  extensive amount  of RAM and tends  to

occasionally  fail  in  the middle  processing.  Also,  the  resulting  interferogram is  very

dependent on selected time periods. 

Interferogram of data from 20th November 2017 and 24th February 2018 is visible in

Figure 10 (applied as KMZ on Google Earth) as a result of executing Goldstein phase

filtering and terrain correction [41] as final steps of processing. The legend in Figure 10

expresses value of phase which ranges from -π to  π. The full colour cycle is called a

fringe (e.g. from blue to blue as seen on the image) and the “pixelated” area indicates

noise. The fringe expresses change of elevation in half the wavelength of sensor (around

5.4cm for C type used in Sentinel 1) along the line of sight. The actual displacement

cannot  be estimated directly from examining the fringes and need to be unwrapped

instead.

Displacement  map created  by phase  unwrapping,  phase to  displacement  and terrain

correction  steps  is  shown  in  Figure  11.  Additional  points  (without  high  coherence

points) coloured by cumulative displacement (movement of the point with regards to the

first time series) are represented in Figure 12.
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The method implementation appears to fulfil its purpose on Rattlesnake ridge dataset by

identifying new areas of deformation which experience more rapid movement than was

expected from linear model. Additional low coherent points were identified supporting

high  coherent  points  behaving  in  a  similar  manner.  When  taking  into  account  that

landslide  was  reported  only  late  2017  but  time  frame  of  data  was  between  06th
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Figure 10. Interferogram 20.11.2017/24.02.2018 (result after Goldstein Phase Filtering) of
Rattlesnake applied on Google Earth.

Figure 11. Interferogram 26.12.2017/24.02.2018 (result after Phase To Displacement) of
Rattlesnake applied on Google Earth

(a) Interferogram with points - high coherence points are in green and additional identified
points are in red (b) Interferogram without points



November  2014  and  7th January  2018,  then  it  can  be  concluded  that  the  method

implementation proved to be effective on detecting unexpected movements caused by

landslide. 

The only concern with the results seems to be south-east part of the selected area where

some low coherent points with significantly low velocities were identified. This could

be something to investigate further in context of whether these points are just noise –

and if they are, then how to further improve the outlier detection process.

7.2 Kiruna mine

Kiruna  mine  is  a  large  scale  mine  in  Sweden,  near  city  of  Kiruna,  owned  by

Luossavaara-Kiirunavaara AB and producing 28 Mt of iron ore per year [43] , [44] . It

was  transformed  from an  open  pit  to  an  underground  mine  in  1960s.  The  mine  is

oriented from north to south, with foot-wall on its west and hanging-wall on east. Ore

body positions at around 60-degree angle in the bedrock underneath the city.

Deformations  have been identified  on both hanging-wall  and foot-wall  [44]  ,  [45]  .

Surface deformations in hanging-wall are caused by collapsing cavities which are left in

the bedrock by mining activities. These deformations are moving towards the city centre
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Figure 12. Additional points identified by outlier detection, Rattlesnake (image from Google Earth).



of Kiruna,  situated  on the hanging-wall  side  of  the mine,  forcing  the  entire  city  to

relocate around 3.2 km east by 2033.

7.2.1 Test data of Kiruna mine area

Test  data  was  retrieved  from both  ascending  and  descending  orbits  and  have  gone

through MTI processing. Summary of points of both orbits is given in Table 4.

Table 4. Overall parameters of test data of Kiruna mine.

Initial data

Orbit Relative orbit
number

From To Total number
of points

Temporal 
coherence > 0.7

Ascending 58 14.05.17 05.10.17 29381 21060

Descending 95 11.05.17 14.10.17 28184 18838

Propagation of temporal coherence and velocities of high coherent points for each orbit

geometry is visible in Figure 13 and Figure 14.

Interferogram of ascending orbit between dates 14th May 2017 and 5th October 2017 is

visible  in  Figure 15.  While  phase interferogram does not  give information  on exact

measures  of  displacement,  it  can  still  be used to  indicate  whether  the movement  is

present.
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Figure 13. Coherence of Kiruna mine area (a) ascending orbit (b) descending orbit (images from QGIS).



 

7.2.2 Results of executing outlier-detection

Results of executing outlier detection with parameters minPts = 5 and utm=34 is shown

in Table 5. Velocities of additional points identified as non-outlying in context of high

coherent points are visualised in Figure 16. 

The method identified an area on the foot-wall side for both orbits (Figure 16, white

rectangle) which shows movement also on the interferogram. This is an indication that

one  area  of  interest  has  been  recognized  and  could  be  included  into  further

investigation.

42

Figure 15. Phase interferogram. Descending orbit, 14.05.2017 vs 05.10.2017. (a) – interferogram (b) –
propagation of high coherence points.

Figure 14. Velocities of points with high coherence in Kiruna (a) ascending orbit (b) descending orbit
(images from QGIS).



Table 5. Results of applying multivariate outlier detection on Kiruna mine dataset

After outlier detection

Orbit Total number of
points

Temporal 
coherence > 0.7

Outliers Non-outly-
ing points

Ascending 29381 21060 3803 24418

Descending 28184 18838 4902 23282

From  Figure  13 and  Figure  14 it  is  clearly  visible  that  a  large  area  in  the  east  is

uncovered by application of coherence threshold – the area where the mine ridge is. For

experimental purposes this smaller area can be chosen to be observed more closely.

7.2.3 Results of small area of Kiruna mine

Input data and results of outlier detection on smaller area of Kiruna mine are given in

Table 6. Both tracks had rather low coherent results, especially for the descending orbit.

After  execution  of  outlier  detection,  number  of  points  identified  as  non-outlying

increased severely in both cases. Velocities of identified points are visible in Figure 17

and  additional  points  identified  on  ascending  geometry  are  illustrated  in  context  of

interferogram in Figure 18.
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Figure 16: Kiruna results of executing outlier detection. (a) - ascending orbit (b) - descending
orbit. Dots express additional points identified by outlier detection method (images from QGis).



Table 6. Results of applying multivariate outlier detection on small region of Kiruna mine.

After outlier detection

Orbit Total Temporal 
coherence > 0.7

Outliers Non-outlying
points

Ascending 7825 4799 882 6943

Descending 5859 2633 853 5006
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Figure 17. Kiruna high coherent (HC) vs all identified points (a) ascending orbit HC, (b) ascending orbit
all points, (c) descending orbit HC, (d) descending orbit all points (images from QGIS).



7.2.4 Interpretation of results

In case of ascending geometry, satellite moves from south to north, observing from west

to east. Hence, all points visible with positive values of velocities in figures 13-17 for

ascending geometry are movements towards the satellite, while negative values indicate

movement  away from the satellite.  And it  is  the opposite  situation  with descending

geometry.  When value is in the same direction in case of both geometries, then this

most probably implies vertical movement. 

 Several observations could be pointed out from results presented above:

1) Small deformation area (green tetragon in Figure 17 (c)) has been identified by high

coherent points as subsiding by both ascending and descending orbits. Very few extra

points were identified in addition to high coherent points by outlier detection performed

on larger  area.  Processing of small  area,  on the  contrary,  provided many additional

points of interest and expanded the small subsidence area.  So it can be said that the

method  provided  value  in  context  of  complementing  high  coherence  areas  with

additional points.
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Figure 18. Kiruna (small area) identified low coherent points of ascending orbit
with interferogram (image from Google Earth).



2) Quite a small  area of high temporal coherence has been identified by descending

orbit – marked with yellow tetragon in Figure 17 (c) – while coverage from ascending

orbit is quite extensive. It can be assumed that in this area some movement from east to

west  is  taking  place.  For  both  orbits,  complimentary  motion  areas  were  detected,

assuring correctness of the initial model and expanding the area under investigation. 

3) Rather few points with high temporal coherence (light blue) or no points at all (dark

blue) were identified in areas marked by blue tetragons in  Figure 17 (c) by either of

satellites.  After  executing  outlier  detection,  ascending  orbit  identified  new areas  of

interest  in areas marked by both tetragons,  while descending mostly in area of light

blue.  When  comparing  results  to  an  interferogram of  phase  change,  it  appears  that

deformations  most  probably  take  place  and  the  area  could  be  taken  for  further

investigation.

4) Comparing the processing results of larger area (Figure 16) to smaller area (Figure

17),  we can see that local  results  of area in yellow tetragon are quite similar  while

results of regions of blue and green tetragons differ a lot.  This raises a topic which

could be investigated in further work – how to assure an optimal region selection for

multivariate outlier detection. 

7.3 Bytom

Bytom is a town in Silesia, Poland located in Upper Silesian Coal Basin. Underground

coal mining is a common reason for subsidence caused by human activities. Widespread

subsidence has been registered in Bytom which has caused for example building and

road breaks as well as railway track movements. The deformation from underground

mining and damages to infrastructure have been widely investigated for several years

[46] , [47] .

Two  areas  which  are  well  known  and  investigated  for  deformation  are  Karb  and

Miechowice  [48]  ,  [49]  and have therefore been selected as test areas for multivariate

outlier detection in this section.
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7.3.1 Test data of Bytom area

The test data originates from two different orbits of Sentinel-1 – relative orbit number

124 with descending pass direction (01.12.2014 – 12.08.2018) and relative orbit number

175 with ascending pass direction (26.06.2015 – 20.09.2018). In original data provided

by AS Datel there were 41718 points identified from descending direction with only

377 low coherence points. And 64150 points from ascending orbit of which 848 were

low coherence points.  

For testing purposes a small  selection of data has been used which covers Karb and

Miechowice areas. Points with their temporal coherence are shown in Figure 19. 1183

points have been selected from descending orbit (a) of which 83 have low temporal

coherence. And 1422 points from ascending orbit (b) with 73 low temporal coherence

points. Overall it can be said that in this test case outlier detection is applied on very

coherent data set and therefore it provides additional value to previous test sets which

have medium and high amount of points with low coherence.

22 low coherent points were identified by outlier detection from descending track, and

35 from ascending track. Results are displayed in  Figure 20. It's visible that for both

tracks large proportion of identified low coherent points complement neighbouring high

coherent points. In results of both tracks, the displacement is negative, which indicates

subsidence of the area.
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Figure 19. Bytom Temporal Coherence (a) – descending, (b) – ascending (image from QGis).



Although the amount of additionally identified points was not large in this test case, the

experiment provides value in localizing and mapping the extent of damages caused by

mining in current test region. 
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Figure 20. Bytom detected outliers compared to high coherence points. (a) descending (b) ascending
(images from QGIS).



7.4 Performance

Performance of the implemented method was measured by executing it on different data

sets. Results are displayed in  Table 7. Execution time is primarily dependent on the

number  of  processed  points.  Additionally,  the  number  of  clusters  identified  by

clustering  and  the  structure  of  outlier  candidates  identified  by  principal  component

analysis play important role in execution time of specific data.

Table 7. Comparison of execution time.

Number of points minPts cl Processing
time/seconds

56478 5 0.9 144.93

56478 3 0.9 162.77

56478 3 0.85 217.06

25202 5 0.9 29.18

25202 3 0.9 21.45

25202 3 0.85 68.26

4710 5 0.9 8.18

4710 3 0.9 7.35

4710 3 0.85 7.06
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8 Conclusions and further development options

The implemented method for multivariate outlier detection was tested on three different

regions  and on seven different  datasets.  Results  of  the  execution  were  validated  in

context  of  specifics  of  areas  under  investigation.  Additionally  for  two  areas,  the

identified points were compared to interferograms.

The implementation of outlier detection proved to be successful in both goals specified

as expected outcome – identifying new areas of interest amongst low coherent points as

well  as finding additional  points to support high coherent points. Application of the

method was successful in datasets with both large (Kiruna, Rattlesnake Hills) and very

small (Bytom) proportion of low coherent points. 

Although the overall results seem to provide value, the author would like to raise one

additional issue about how the optimal size of the area under investigation should be

determined. As seen from experiments with data of Kiruna, size of selected area (and

number  of  points)  affects  results  quite  a  lot.  Selection  of  specific  area  under

investigation is definitely something that could be analysed in further work.

Current  implementation  of  outlier  detection  could  be  enhanced  in  future  to  include

analysis  of  time  series.  In  the  applied  approach  it  was  already  assumed  that  low

coherent  points  behaving in  a  similar  manner  might  be of  interest.  The assumption

could be developed even further and applied on time series analysis as well. 
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9 Summary

The scope of the thesis was to create an outlier detection method on software level for

post  processing  of  multi-temporal  InSAR  results  in  order  to  identify  multivariate

outliers. The implementation is coded in R and the solution greatly based on approach

proposed in [1] . 

The overall purpose of the implemented outlier detection method was to address the

problem of extracting  meaningful  information from processing of satellite  data.  The

implemented  solution  was  created  to  benefit  to  monitoring  and  observing  surface

changes  as  well  as  estimating  the  extent  of  deformations  especially  in  areas  which

experience  non-linear  movements,  for  example  due  to  landslides,  earthquakes  or

underground mining.

The implemented method was tested on three different areas and in total on seven data

sets. Test data was provided by AS Datel in CSV format containing results of multi-

temporal  InSAR  processing  on  data  collected  by  Sentinel-1  satellites.  Results  of

executing outlier detection method were validated based on different studies on each

area  as  well  as  using  interferograms  for  two  areas.  It  can  be  concluded  that  the

implementation of the method fulfilled its purpose of detecting additional and relevant

points of interest. 

Future work could benefit from including time series analysis as well in order to make

the outlier detection even more efficient.
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