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1 Introduction

1.1 Motivation

Routine monitoring of large areas such as plate and pipe structures is an important
topic ensuring the safety for power and oil industries. For such aging structures, the
presence of hidden damage can severely limit their performance and cause extensive
environmental and economic damage. One potential inspection solution is to employ
non-destructive testing (NDT) techniques which should detect defects that are still
smaller than a given critical size before they lead to failure.

Among the various NDT techniques, ultrasonic guided waves are becoming es-
tablished for the inspection of plate and pipe structures [1, 2]. This technique is par-
ticularly advantageous since ultrasonic waves are guided by the structure to enable
the monitoring of large areas from a single point as shown in Fig. 1. By generating
waves in a chosen direction in the structure and then analyzing received reflections, it
is then possible to locate and quantify any defects along the line of wave propagation.
This reduces inspection time substantially and also enables the inspection of areas in
structures that are not directly accessible (for example, insulated pipes). This is not
possible with conventional local point-by-point scanning techniques.

For long range pipe testing, axi-symmetric longitudinal L(0,2) and torsional T(0,1)
mode are commonly used [3]. These modes can be easily excited and received at one
axial location using an array of transducers distributed around the circumference of
the pipe. Uniform wave field around the pipe circumference due to axi-symmetry
and nearly constant mode shape through the wall thickness allow to achieve 100%
pipe wall inspection coverage. Moreover both modes can propagate long axial dis-
tances (tens of meters in either direction) without significant loss of signal strength
and maintain their waveforms due to non-dispersive nature. The development and
research of using these modes for inspection purposes is well covered in literature.

An important subject in this field has been to understand how the guided waves
interact with different type of discontinuities. It is essential when processing received
signals properly for those which arise due to scattering from different defects and fea-
tures. However, the wave interaction with discontinuities is a complex phenomenon
which has not been explained for all of the possible cases encountered in real life.
Previous theoretical studies with guided waves usually employed a simplified model
of the defect, but typically do not make use of all available information, so there is
potential for improvement. In this thesis we deal with understanding the effect of
some geometrical discontinuities on guided wave propagation in plates and pipes.
The background literature on different issues is presented in the relevant chapters.
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Figure 1. Transducer array employed for guided wave inspection of pipes.

1.2 Aim of investigation

This thesis will focus on the interaction of ultrasonic guided waves with geometric
discontinuities in a wave-guide structure. The aim is to bring new understanding into
the detection capability of existing guided wave testing systems, as well as to aid
the signal processing procedure used by these systems. Two separate problems are
investigated by using semi-analytical approaches, finite element (FE) methods and
experimental measurements. The specific objectives are:

• Develop a numerical model which is based on normal mode expansion tech-
nique and to help analyzing longitudinal wave interaction with discontinuities
in a cylindrical pipe. The reflection of L(0,2) mode from a free edge of a pipe
wall will be studied in order to give understanding on the role of different wave
modes participating in the scattering phenomenon. Secondly, the interaction of
L(0,2) mode with a circumferential surface breaking crack will be examined in
order to find out the sensitivity to inner and outer surface cracks. Influence of
the pipe curvature on the scattering problems will be discussed.

• Investigate the detection capability of cracks which are aligned in the propaga-
tion direction of the wave. Two FE models will be exploited. Firstly, the study
with a low frequency shear horizontal mode SH0 in a plate will be performed
to understand the key physical mechanism and to evaluate the sensitivity to

14



such defects. Secondly, the interaction of low-frequency torsional mode T(0,1)
with an axial crack in a pipe is studied. A systematic analysis of the reflec-
tion coefficient will be carried out as the function of pipe size, defect size, and
frequency of the incident signal.
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2 Normal mode expansion (NME) for modelling the inter-
action of axi-symmetric longitudinal waves with disconti-
nuities in a pipe

2.1 Background

The aim of this chapter is to examine the axi-symmetric longitudinal wave propaga-
tion in a pipe and their interaction with discontinuities in the pipe wall.

A large number of wave modes can exist in a pipe with different propagation
characteristics. Each mode is described by its dependence on frequency, called dis-
persion, but also the distribution of field variables over the cross section of the pipe,
referred to as mode shape. When a specific propagating mode interacts with the
discontinuity, scattering occurs. In general, this is a very complicated phenomenon
because the wave field near the discontinuity is transformed and represents a diverse
superposition of propagating and infinite number of nonpropagating modes. The re-
sulting vibration depends on many parameters of the system such as the geometry of
the waveguide, the shape of the discontinuity, the stress level of the incident mode at
the defect location and is therefore difficult to interpret.

Such scattering problems can be solved analytically only for limited cases, and
usually a numerical approach is therefore required. Papers can be found on this sub-
ject, presenting models either on finite element, boundary element or hybrid methods
[4–6]. Although these numerical models allow to predict the amplitudes of scattered
waves, they usually are time consuming for parametric analysis and do not provide
easily a detailed information about the physics of the scattering process. This can
be achieved with semi-analytical approaches such as NME technique [7] which al-
lows flexible treatment of input data and fast computation. In this method the wave
field is expanded into the so-called normal modes which must satisfy the boundary
conditions of the wave-guide with discontinuity. Previously, this method has been
introduced for various geometries and interaction problems. Engan [8] treated the
case of torsional waves being scattered from a step change in the waveguide diame-
ter. Vogt et al. [9] examined the scattering of longitudinal and torsional waves at a
point when a free waveguide enters an embedding material. Grahn [10] investigated
the scattering from a circular partly through-thickness hole in a plate. Wang et al.
[11] considered anti-plane shear wave interaction with an elastic cylinder centered
in an isotropic plate. Castaigns et al. [12] studied the reflection and transmission
of low-order Lamb modes from vertical cracks in a plate. This method can be also
applied to the investigation of two-dimensional scattering problems in thick pipes.

The chapter starts with a brief introduction of wave propagation in an infinite pipe.
Then NME method is addressed followed by two examples describing the resonance
of pipe end and the wave scattering at circumferential surface breaking cracks in case
of L(0,2) mode incidence. The effect of pipe curvature on the wave scattering process
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is considered. FE modelling and experiments will be used for the validation of the
theoretical results.

2.2 Wave propagation in an infinite isotropic pipe

This subsection describes the axi-symmetric longitudinal wave propagation in a cylin-
drical pipe. The expressions of displacements, stresses and the characteristic disper-
sion equation for the modes have been given. The dispersion curves for propagating,
nonpropagating modes are shown and some characteristic mode shapes illustrated.
The derivation of the model is based on the work of Gazis [13] and Pavlakovic [14].

2.2.1 Solution of the wave equation

The motion of isotropic elastic media can be described by Navier’s equation

µ52 ~u+ (λ+ µ)55 · ~u = ρ(∂~u2/∂t2), (1)

where ~u is the displacement vector, ρ density of the material, λ and µ Lame’s con-
stants and52 is the three-dimensional Laplace operator. Displacement field ~u can be
presented as the sum of scalar and vectorial fields

~u = 5φ+5× ~ψ, (2)

where φ is the field’s scalar potential and ~ψ vector potential. Inserting potentials into
equation (1), it is possible to separate dilatational and rotational fields

52φ− 1
cL

∂2φ

∂t2
= 0,

52 ~ψ − 1
cT

∂2 ~ψ

∂t2
= 0,

(3)

where cL and cT are the longitudinal and transverse wave speeds in the media, re-
spectively. The solutions of (3) can be derived for pipe geometry, shown in Fig. 2, in
cylindrical coordinates (r, θ, z) in the form

φ(r, θ, z, t) = Rφ(r)ei(kθθ+ξz−ωt),
~ψ(r, θ, z, t) = ~Rψ(r)ei(kθθ+ξz−ωt),

(4)

where kθ is wave number’s θ-azimuthal component, ξ wave number’s z-axial com-
ponent, ω angular frequency and Rφ(r),~Rψ(r) the quantities describing the fields’
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Figure 2. Formulation of the problem in cylindrical coordinates.

dependence on coordinate r. The waves propagating in z-direction and having mo-
tion only in (r, z)-plane (θ = 0) can be described with two potentials

φ = f(r)ei(ξz−ωt),

ψθ = −ig(r)ei(ξz−ωt).
(5)

Substituting the potentials from (5) into equations (3), we can find the unknowns

f(r) = C1J0(αr) + C3N0(αr),
g(r) = C2J1(βr) + C4N1(βr),

(6)

where C1, C2, C3, C4 are unknown variables and

α2 = ω2/c2L − ξ2,
β2 = ω2/c2T − ξ2.

(7)

Here J0,1 and N0,1 are cylindrical Bessel functions of the first and second kind, re-
spectively.

2.2.2 Displacement and stress field

The displacement components in (r, z)-plane can be found using equation (2)

ur =
∂φ

∂r
− ∂ψθ

∂z
,

uz =
∂φ

∂z
+

1
r

∂

∂r
(rψθ).

(8)
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This leads to displacement field in terms of potential function of equation (5)

ur = (f ′ + ξg)ei(ξz−ωt),

uz = i(ξf +
1
r
g + g′)ei(ξz−ωt),

(9)

where symbol ′ means the derivation ∂/∂r.
The stresses can be found from Hook’s Law, which gives the relations between

the displacements, strains and stresses

εrr =
∂ur
∂r

,

εrz =
1
2

(
∂ur
∂z

+
∂uz
∂r

),

εzz =
∂uz
∂z

(10)

and

σrr = λ4+2µεrr,
σrz = 2µεrz,
σzz = λ4+2µεzz,

(11)

where

4 = 52φ = −
(
ω2

c2L

)
fei(ξz−ωt) = −(α2 + ξ2)fei(ξz−ωt). (12)

The resulting stress components in (r, z)-plane in terms of potentials are

σrr = [−λ(α2 + ξ2)f + 2µ(f ′′ + ξg′)]ei(ξz−ωt),

σrz = iµ[2ξf ′ + (ξ2 − β2)g]ei(ξz−ωt),

σzz = [−λ(α2 + ξ2)f − 2µξ(ξf +
1
r
g + g′)]ei(ξz−ωt).

(13)

2.2.3 The characteristic dispersion equation

The waves propagating in an infinite cylindrical pipe must satisfy stress-free bound-
ary conditions on the inner (r = a) and outer surfaces (r = b)

σrr = σrz = 0. (14)
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This leads to the system of linear equations for axi-symmetric longitudinal waves

G ·C =


G11 G12 G13 G14

G21 G22 G23 G24

G31 G32 G33 G34

G41 G42 G43 G44



C1

C2

C3

C4

 = 0, (15)

where

G11 = −(β2 − ξ2)a2J0(αa) + 2αaJ1(αa),

G12 = 2ξβa2J0(βa)− 2ξaJ1(βa),

G13 = −(β2 − ξ2)a2N0(αa) + 2αaN1(αa),

G14 = 2ξβa2N0(βa)− 2ξaN1(βa),

G21 = 2ξαa2J1(αa),

G22 = (β2 − ξ2)a2J1(βa),

G23 = 2ξαa2N1(αa),

G24 = (β2 − ξ2)a2N1(βa).

(16)

The remaining two rows of matrix G are obtained from the first two by the substi-
tution of b by a. To obtain nontrivial eigensolutions ξ, the characteristic equation
should be

det |G| = 0. (17)

The roots of this equation system can be found numerically, using Newton-Raphson
method [15].

2.2.4 Properties of the modes

The wave field structure in the pipe is characterized by its displacement and stress
components as well as field variation in the direction of propagation described by
the wave number. Following expressions (9) and (13), the arbitrary axi-symmetric
longitudinal mode can be described in a vectorial form

~u(r, z, t) = ~u(r)ei(ξz−ωt),

σ(r, z, t) = σ(r)ei(ξz−ωt),
(18)

from which it can be seen that the behaviour of radial ~u(r), σ(r) and axial ei(ξz) can
be analyzed separately.

In general, the solution ξ of the dispersion equation (17) can be real or complex,
having the real part ξre and imaginary part ξim. Separating the real and imaginary
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parts in expressions (18), we can get

~u(r, z, t) = ~u(r)ei(ξrez−ωt)e−ξimz,

σ(r, z, t) = σ(r)ei(ξrez−ωt)e−ξimz.
(19)

By the value of ξ it is possible to separate the modes into three families:

• propagating modes (ξre 6= 0, ξim = 0);

• nonpropagating modes (ξre = 0, ξim 6= 0);

• inhomogeneous modes (ξre 6= 0, ξim 6= 0).

Physically, propagating modes do not attenuate in the direction of propagation. Non-
propagating modes attenuate without spacial oscillation and inhomogeneous modes
attenuate while propagating. Therefore, only propagating modes are of interest in
long range inspection as they can transport information without attenuation. How-
ever, in the scattering problems they solely cannot describe the wave field around the
scatterer. The boundary value problem of the interaction can be treated properly only
in co-existance with all three wave mode families.

Fig. 3 represents a typical plot of wave numbers ξ for various propagating, non-
propagating and inhomogeneous modes as a function of frequency-thickness product
fd in the pipe. The material properties for the aluminium pipe are given in Table. 1.
The propagating modes are labelled as L(0, 1), L(0, 2), ... after Silk et. al [16]. The
nonpropagating and inhomogeneous modes with complex wave numbers are denoted
as C0, C1, C2, ... and their spatial attenuation along the propagation path is char-
acterized by its imaginary part ξim. The behavior of these modes is very similar to
Lamb modes in a plate, except in the region of low frequency where the mode with a
long wavelength is curvature dependent. This is shown in Fig. 4, where the deviation
of the lower order pipe modes L(0, 1) and L(0, 2) from Lamb modes A0 (flexural
mode) and S0 (membrane mode) can be seen. The curve of the mode L(0, 1) slowly
separates from Lamb modeA0 as the fd product decreases, and finally tends towards
S0 mode, but these two curves remain separate as can be seen later. Mode L(0, 2),
which is similar to S0 mode in plate, vanishes below the cutoff frequency fd ≈ 0.21
MHz-mm and the complex branch C0 appears. This mode does not appear in the
plate. The effect of the curvature increases as the curvature radius decreases. This
is shown in Fig.5 where the phase velocity (cph = ω/ξre) curves are presented for
different thicknesses to middle radius ratio ∆, defined as

∆ = d/R0, (R0 = a+ d/2), (20)

so that ∆ = 2 in case of a solid cylinder. Here, R0 is the mean radius of the pipe.
For example, the decrease in the inner radius a towards zero of the pipe causes the
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bending type mode L(0, 1) to vibrate in the same way as the compressional type
mode of a solid cylinder as was also shown by Nishino et. al [17].

Wave field components ~u(r), σ(r) illustrate how the displacements, stresses or
energy of the modes may vary through the thickness of the pipe. In general each
mode has its unique mode shape varying across the thickness of the pipe wall, de-
pending also on the frequency and curvature parameter ∆. These effects are shown
in Fig. 6 for the mode L(0, 1), where normalized axial and radial displacements as
the function of radius are calculated. A normalized amplitude is the ratio of the de-
sired displacement amplitude to the largest amplitude of the displacement. It can be
seen in Fig. 6(a) that the symmetry and antisymmetry of the displacement compo-
nents about the mid-thickness surface of the pipe wall is inherent to a pipe with a
ratio between a small and large radius as it is intrinsic to plate Lamb modes. On the
other hand, Fig. 6(b) shows that it does not hold true for thick-walled pipes. The
symmetry and antisymmetry of the displacement field is destroyed and, for example,
L(0, 1) mode becomes a compressional wave at fd = 0.3MHz-mm. Fig. 7 illustrates
the displacement and stress components of complex modes C0, C3 and C6. A nor-
malized amplitude is the ratio of desired stress amplitude to the largest amplitude of
stress. It can be seen that the wave field of higher order modes is characterized by
increasing variation across the thickness of the pipe’s wall.

All the results with real modes were validated using the commercial software
package DISPERSE [18].

Table 1. Material and geometric properties of the aluminium pipe used in the study.

a (mm) d (mm) ρ (kg/m3) cL (m/s) cT (m/s)

7.85 2.2 2765 6440 3113
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Figure 3. Axial wave number ξ dispersion curves for a pipe. Material properties are given in
Table. 1

Figure 4. The zoomed area in Fig. 3 at low frequencies showing the difference between the
wave numbers ξ of the pipe modes L(0, 1), L(0, 2) and the plate Lamb modes A0, S0.
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Figure 5. The dependence of phase velocity cph of the L(0, 1) mode on the curvature param-
eter ∆.

Figure 6. Axial uz (solid line) and radial ur (dashed line) displacements of the L(0, 1) mode.
a) ∆ ≈ 0.25; b) ∆ = 1.
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Figure 7. a) modulus of normalized axial uz (solid line) and radial ur (dashed line) displace-
ments of the complex modes, b) modulus of normalized stresses σzz (solid line) and σrz

(dashed line); ∆ ≈ 0.25 and fd = 0.1MHz-mm.

2.3 Description of the NME method

2.3.1 Solving the boundary value problem

In a NME analysis, any acoustic field can be developed as a sum of eigenmodes of
the structure. Ditri et. al [19] showed that the modes of the hollow cylinder form a
complete and orthogonal set, which allows them to be used in wave field expansions.

Let us consider an incident wave in Fig. 8 propagating in the z-direction in the
pipe wall and interacting with the void type discontinuity. Due to material changes
in the waveguide, reflected and transmitted waves occur. The total displacement and
stress field, ~utot and σtot at the discontinuity can be considered as the sum of incident,
reflected and transmitted wave fields

~utot = ~uinc + ~urefl + ~utrans,

σtot = σinc + σrefl + σtrans.
(21)
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Figure 8. Formulation of the scattering problem for axi-symmetric longitudinal waves in the
wall of the pipe

The scattered wave fields can be developed into an expansion, yielding

~utot = (c0~u0)inc +

( ∞∑
i=1

ci~ui

)
refl

+

( ∞∑
i=1

di~ui

)
trans

,

σtot = (c0σ)inc +

( ∞∑
i=1

ciσi

)
refl

+

( ∞∑
i=1

diσi

)
trans

,

(22)

where ~ui = ~ui(r)ei(ξz−ωt) and σi = σi(r)ei(ξz−ωt) are the displacement and stress
field for the ith mode and ci and di represent the amplitude of reflected and transmit-
ted waves, respectively. In the expansions, there is a finite number of real propagat-
ing and imaginary nonpropagating modes and an infinite number of inhomogeneous
modes with complex wave numbers. The reflection and transmission of the modes
requires selecting specific imaginary and complex roots, so that the amplitudes of the
modes decrease away from the obstacle. Therefore the sign for reflected modes must
be taken 

−ξre, for propagating modes
iξim, for nonpropagating modes
±ξre + iξim, for inhomogeneous modes

(23)

and for transmitted modes
ξre, for propagating modes
−iξim, for nonpropagating modes
±ξre − iξim, for inhomogeneous modes.

(24)

The different coefficients of expansion ci and di could be determined from the bound-
ary conditions: normal traction vanishes on the boundary S and traction and particle
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displacements are continuous where the defect is not presented

σtot · ~n = 0 if (r, z) ∈ S
(c0uz)inc + (

∑∞
i=1 ciuzi)refl = − (

∑∞
i=1 diuzi)trans , if (r, z) /∈ S

(c0σrr)inc + (
∑∞

i=1 ciσrri)refl = − (
∑∞

i=1 diσrri)trans , if (r, z) /∈ S
(c0σrz)inc + (

∑∞
i=1 ciσrzi)refl = − (

∑∞
i=1 diσrzi)trans , if (r, z) /∈ S

(c0σzz)inc + (
∑∞

i=1 ciσzzi)refl = − (
∑∞

i=1 diσzzi)trans , if (r, z) /∈ S.

(25)

However, it cannot readily be seen how to calculate the scattering coefficients from
this system because of the finite number of boundary conditions and an infinite num-
ber of unknown coefficients. This can be done numerically. Truncating the system
after a certain mode and applying the boundary conditions in l discrete point on the
defect surface and in the plane normal to the pipe surface and containing the defect
leads to finding a solution of a linear system of equations

M ·X =


M11 M12 · · · M1m

M21 M22 · · · M2m
...

...
. . .

...
Ml1 Ml2 · · · Mlm



x1

x2
...
xm

 =


y1

y2
...
ym

 = Y, (26)

where M consists of displacements and stresses of scattered modes, X is the vector
of unknown scattering coefficients and Y is the vector for displacements and stresses
of the incident mode. There can be used several methods to solve this system. In
the case when l = m, the usual Gaussian elimination (GE) scheme is applied; when
l ≥ m, the method of least squares (LS) or singular value decomposition (SVD) can
be used [15].

2.3.2 Convergence of the solution: conservation of the energy

An energy balance criterion is used to check the validity of the numerical results: the
energy carried by the reflected and transmitted propagating modes must be as close
as possible to the energy of incident mode. The nonpropagating and inhomogeneous
modes do not transport energy in z-direction and therefore all the energy is divided
between the propagating modes.

The energy carried by an arbitrary propagating ith mode can be expressed as

Ei = cic
∗
i pi, (27)

where the superscript asterisk means complex conjugate. In this expression, pi is the
acoustic Poynting vector flow, which represents the average power flow over a period
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of the ith mode propagating in the z-direction

pi = −1
2
Re

[
−iω

∫ 2π

0

∫ b

a
(u∗riσrzi + u∗ziσzzi) dθdr

]
(28)

The propagating wave energy reflection and transmission coefficient Ri and Ti can
be calculated by dividing the energy of the reflected or transmitted wave Ei and Ej ,
respectively, by the incident wave energy E0

Ri =
Ei
E0
, Tj =

Ej
E0
. (29)

Obviously, the guided wave scattering solutions in this study can be influenced by
the inevitable error sources from the NME method scheme: the approximated field
variables, the numerical integration, the Gaussian elimination scheme with finite in-
tegration points, the discretized boundary with finite boundary nodes, and the finite
number of modes used in the mode superposition. The relative error in energy bal-
ance ε due to approximated solution is

ε = |1−
∑
i

Ri −
∑
j

Tj |. (30)

2.4 Example1: edge resonance in a semi-infinite thick pipe

2.4.1 Introduction

In this section the NME method is applied to investigate the interaction of axi-
symmetric longitudinal L(0,2) mode with the edge of a semi-infinite pipe. The re-
flection at the edge is one of the simplest cases of guided wave scattering, but it
provides insight into its essential features. It helps to understand the role of different
wave modes in the scattering processes and also to evaluate the influence of waveg-
uide parameters on the interaction phenomenon.

The studies of Lamb wave interaction with the free edge of the plate [20–25] have
shown that the end of the plate is often accompanied by mode conversions and the
generation of nonpropagating modes. At certain conditions of the waveguide and
the incident mode the vibration of these nonpropagating modes is strongly amplified
leading to the edge resonance phenomenon. The behavior of this type of motion
has been thoroughly studied both theoretically and experimentally in plates [26–32],
solid cylinders [33–37] and rods [38]. In plates it was found that the edge resonance
appeared as a result of the superposition of incident and reflected first symmetric
Lamb mode S0 and rapidly attenuating vibration modes that must satisfy the stress-
free boundary condition at the end of the plate all at the same time. The first pair of
nonpropagating modes caused a remarkable increase in the displacements of the plate
end and clearly indicated the resonance phenomenon. Similarly, in solid cylinders at
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a specific frequency the symmetric L(0,1) mode caused a strong vibration of low
order nonpropagating modes.

However, only a few works deal with the explanation of the resonance phenomenon
in pipe-like structures [39, 40]. In these papers the authors used the theory of shells,
which restricted the analysis to thin-walled structures. Only Grinchenko [41] has in-
vestigated the edge resonance in a thick pipe but in the case when the first longitudinal
mode is incident. The aim of this study is to extend the analysis of edge resonance
to thick pipes and additionally to investigate the influence of the curvature on axi-
symmetric longitudinal wave propagation characteristics in a semi-infinite pipe. The
influence of the curvature on the excitation of edge mode in the case of incident L(0,2)
is thoroughly investigated and the results are compared with the results of the finite
element (FE) method. Finally, an experimental determination of edge resonance is
made in an aluminium pipe in order to verify the computational predictions.

The experimental work presented in this section was the result of the collaboration
between the Department of Mechanics at Tallinn University of Technology and the
Laboratoire d’Acoustique Ultrasonore et d’Electronique at the Université du Havre.
It resulted in a joint publication [P5].

2.4.2 Modelling procedures

Computation of the reflection at the end of a semi-infinite pipe

Consider a two-dimensional axial cross-section of a semi-infinite pipe wall as shown
in Fig. 9. An incident mode L(0,m) propagating in the z > 0 direction interacts with
the free end of the pipe at z = 0. The general boundary problem (25) introduced in
Subsection 2.3 can be simplified to a problem where only the normal and shear stress
σzz and σrz at the edge must vanish

σzz(r) =
∞∑
i=0

ciσzzi(r) = 0,

σrz(r) =
∞∑
i=0

ciσrzi(r) = 0.

(31)

This system can be solved approximately, setting σzz and σrz equal to zero at a fixed
number l points along the edge of the pipe, thus forming a system of equations. The
l equations are

σzz(rj) =
m∑
i=0

ciσzzi(rj) = 0 and j = 1, 2, · · · , l + 1
2

; (32)
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Figure 9. L(0,m) mode reflection at the edge of the pipe wall.

where rj = a+ 2d(j−1)
l−1 and

σrz(rj) =
m∑
i=0

ciσrzi(rj) = 0 and j = 1, 2, · · · , l − 1
2

; (33)

where rj = a+ 2dj
l−1 + δ. Here δ is the parameter which allows to change the position

of the collocation points for σrz and is taken always smaller than the step s = 2dj
l−1 .

The energies of the reflected waves are found numerically using the compos-
ite Simpson’s rule [15] in the integration formula in Poynting vector flow expres-
sion (28).

FE modelling

The edge resonance has been successfully studied with the FE method in plates in
case of S0 incidence [29]. A similar study was performed to predict the effect of cur-
vature on edge vibration of the pipe in case of incident L(0,2) mode using the explicit
procedure of the program ABAQUS [42]. Due to the axial symmetry of the problem,
a two-dimensional region representing a radial-axial section through the pipe was
modelled as shown in Fig. 10(a). The thickness of the wall of the pipe was 2.2 mm
and the length varied from 250 to 750 mm. The mesh of the pipe consists of four
noded linear quadrilateral axi-symmetric elements with 2 degrees of freedom in each
node (displacements in r, z directions). These elements satisfactorily describe the
motion of axi-symmetric longitudinal pipe modes, as was shown in previous studies
[43, 44]. On one side of the pipe the absorbing region [45] is applied to decrease
the model size and neglect undesired reflections from the edge. The waves that enter
this area are increasingly damped and eventually die out. A number of geometries
was set up in order to model the pipes with different thickness to mid-radius ratios
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Figure 10. a) FE axi-symmetric model of the pipe; b) group velocity dispersion curves for
axi-symmetric longitudinal modes propagating in an aluminium pipe, ∆= 1.0.

∆. The thickness of the pipe always remained the same; only the position of the axis
was modified to model the pipe with the desired radius. The pipes with the following
geometries were studied: ∆ = d/R0 = 0.25; 0.5; 0.75 and 1. In each model the
density of the mesh was also changed according to the wavelength of propagating
modes. At least 15 elements per wavelength were used, that is more than the lower
limit of spatial discretization of 8 elements per wavelength for accurate modeling.
A summary of the FE models that were used in the study can be found in Table. 2.
The signal was generated 20 mm away from the edge of the pipe where the absorb-
ing region was applied. The excitation of the L(0,2) mode was achieved by ”center
mode shape” excitation technique [46] which is used for pure mode generation in a
non-dispersive regime. The desired mode in the FE model was generated by scaling
the tone bursts applied to each node through thickness according to the amplitude of
displacement at that location in the exact mode shape profile at a center frequency
of excitation. However, the group velocity curves in Fig. 10(b) show that it is not
possible to generate an entirely pure mode with this technique because over the in-
vestigated frequency bandwidth the excited mode L(0,2) is dispersive and the other

Table 2. Summary of FE models used in the study.

∆ Length (mm) Element through Tone burst (cycles)
thickness

0.25 250 15 20
0.5 350 15 40

0.75 450 20 50
1.0 750 20 60
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Figure 11. a) Typical time record showing the edge resonance in case of L(0,2); center
frequency-thickness product is 2.335 MHz-mm; ∆=0.25. b) Frequency spectrum of the res-
onance part of the signal shown in a).

lower order axisymmetric modes L(0,1) and L(0,3) are also generated. To avoid any
other modes interfering with the results a sufficiently long propagation distance was
chosen to make the signals separable in time domain.

In each pipe model a different tone burst was used. The narrow band signals con-
sisting of a tone burst multiplied by sinusoid window containing 20, 40, 50 and 60
cycles centered at resonance frequency were used for the excitation. The higher num-
ber of cycles was used in models where the wave propagation distance was longer and
reduction of distortion of the wave packet was needed. The resonance of the edge was
supposed to be excited at a specific frequency in the frequency spectrum of the exci-
tation. The rough estimation of this frequency was achieved by using the numerical
modeling results and the calculation was repeated with adjusted frequency. The re-
sults of the simulations were obtained by monitoring nodal displacements at the free
edge and close to the edge on the surface of the pipe. Both radial and axial displace-
ment components were monitored to describe the edge mode. An illustrative time
record of radial displacement of the outer corner of the edge measured at resonance
frequency is plotted in Fig. 11(a), showing permanent high amplitude vibration of
the edge. The resonance frequency was measured as that corresponding to maximum
value from the frequency spectrum, shown in Fig. 11(b).

2.4.3 Experimental setup

The experimental set-up is described in Fig. 12. Measurements were performed on
aluminium pipe of 230 mm length, with an inner radius of 7.85 mm and a wall thick-
ness of 2.2 ± 0.1 mm (∆ = 0.25). The pipe was vertically posed to the transducer.
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Figure 12. Scheme of the experimental setup.

Metalscan gel layer was used to ensure a good ultrasound coupling. The set is verti-
cally mobile by means of a motion setup, which allows measuring the displacement
from different positions on the pipe surface.

Excitation of the L(0,2) mode was achieved using the broadband piezoelectric
transducer (Panametrics V401) with a central frequency of 1MHz. The transducer
was excited using a narrow band signal consisting of a tone burst multiplied by sinu-
soid window containing 20 cycles using the signal generator (3314 Generator). The
detection of the signal was achieved using a laser interferometer (BMI heterodyne
probe SH140) to measure the normal displacement on the surface of the tube. The
measurements were taken at a series of equally spaced positions along the pipe from
0.1 to 16.7 mm with the step 0.1 mm at the upper end. The measured signals by the
laser interferometer were averaged (sweep average: 200) and displayed on a digi-
tal oscilloscope. Thereafter the obtained signal was recorded on a computer via the
IEEE bus in order to reveal the numerical treatments. This computer also allowed us
to drive and to control the motion of the pipe.

2.4.4 Results and discussion

Reflection of L(0,2) mode by a free end: validation of analytical calculations

From previous research with plates [26] it is well known that the edge resonance is
produced by Lamb mode S0 at a particular frequency and is due to the high amplitude
standing waves raised by complex modes at the end of the plate. In the previous
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section it was shown that the propagation of L(0,2) mode in a thin-walled pipe is
similar to Lamb mode S0 propagation in a plate. It means that the behavior of the
reflection of L(0,2) mode at the edge must be analogous. This is shown in Fig. 13,
where the reflection ratio of this mode is observed as a function of frequency. A
similar incident energy transformation into energies of higher order modes is seen,
and was observed in the plate by Gregory et al [47]. Plate results are shown by dots,
which fit the curves very well corresponding to the pipe results. Therefore it can be
expected that the edge resonance in thin-walled pipe appears at the same frequency
and is mainly due to the oscillation of the first complex mode C1. This statement is
confirmed in Fig. 14, where the displacement amplitudes of this mode clearly exceed
those of the incident wave and other higher order complex modes near the resonance
frequency fd = 2.317 MHz-mm. Again there is a good agreement with the previous
results of Wilkie-Chancellier et. al [30]. The accuracy of the numerical results was
estimated by the concept of energy conservation and the relative error ε was found to
be less than 5%.

Figure 13. Reflection of L(0,2) mode at a pipe edge. The parameters of the pipe: a = 40 mm,
d = 1 mm, ∆ = 0.025, ρ = 7800 kg/m3, cL = 1000 m/s, cT = 577.4 m/s.
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Figure 14. Normalized displacement ur amplitudes of reflected modes at the edge of the pipe.
The parameters of the pipe: a = 40 mm, d = 1 mm, ∆ = 0.025, ρ = 7800 kg/m3, cL = 5850
m/s, cT = 3150 m/s.

Experimental detection of the edge resonance

Due to the spread in thickness of the pipe, an effort should be made to determine the
frequency of the edge resonance accurately. Initially, a resonance spectrum was mea-
sured at 0.1 mm from the upper end of the pipe in the frequency-thickness product
range 2.2-2.53 MHz-mm with a step of 0.011 MHz-mm. Fig. 15(a) shows the vari-
ation of the amplitude for the normal surface displacement ur depending on the fd.
The edge resonance frequency was determined at the maximum of the measured mag-
nitude of the resonance spectrum at fd = 2.435 MHz-mm. This value differs from
the theoretically obtained result fd = 2.336 MHz-mm. However, the non-uniform
thickness of the pipe used in the test allows for expanding the resonance frequency
range to fd = (2.324, 2.565) MHz-mm. Thereafter the spatiotemporal representation
at the resonance frequency was performed as shown in Fig. 15(b). Here it is clearly
seen that after the reflection of the incident mode with the end (140 s), the edge re-
mains vibrating at a high amplitude, which is the resonance behavior. Fig. 16 shows
the time domain record measured at 0.1 mm from the pipe edge. The long tail due to
edge resonance can be clearly seen in this plot.
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Figure 15. a) Resonance spectrum of normal displacement of L(0,2) mode measured at 0.1
mm from the pipe end. b) Contour plot of measured normal displacements in time and space
domain showing the generation of edge resonance.
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Figure 16. Normal surface displacement ur time record at 0.1 mm from the pipe end at fd =
2.435 MHz-mm.

Influence of the curvature on the edge resonance. Mode conversion

The variation of the curvature parameter ∆ strongly affects the interaction of L(0,2)
mode with the end of the pipe and the generation mechanism of the edge resonance.
The edge resonance can be found at a maximum displacement amplitude value of
complex mode C1 versus frequency-thickness product fd. An illustrative calculation
was performed for the pipes with a curvature parameter ∆ = 0.25; 0.5; 0.75; 1.0, as
shown in Fig. 17, where the normalized radial displacement amplitude of C1 at the
edge is shown as a function of fd. A normalized amplitude is the ratio of the largest
amplitude of complex mode to the largest amplitude of the L(0,2) incident wave any-
where in the thickness of the pipe wall. As can be seen from the figure, the amplitude
of the complex mode drops when the parameter increases and the peaks move to-
wards a higher fd. This behavior can be explained by the increasing difference of
the inner and outer radii in a thick pipe, by which the symmetry is broken. The agree-
ment between numerical approaches GE and LS is very good. The edge resonance
frequencies obtained with the analytical and FE model are shown in Table. 3. The
frequency values obtained by the FE method tend to be always smaller than by the
numerical model.

To see the extent of the edge resonance along the pipe, the radial displacement
of outer surface near the end for the two different pipes ∆ = 0.25; 0.75 is calculated
by the finite element model and by the analytical approach, shown in Fig. 18. The
finite element data represent the amplitudes of the displacements measured in the
frequency domain at a resonance frequency. A rapid decrease in amplitudes of the
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Figure 17. Normalized radial displacement ur amplitudes of reflected modes at the edge of
the pipe as a function of curvature parameter ∆. ( —– ) GE, ( o o o ) LS.

total displacement field is seen moving away from the edge. There is good agreement
between the results obtained using these two methods.

The variation of the curvature parameter also changes the through-thickness dis-
placement variations of the edge. Normalized axial and radial displacement at the
resonance frequencies are shown in Fig. 19 for the pipes with a curvature parameter
∆ = 0.25; 0.75; 1.0. The axial displacement of the pipe edge (∆ = 0.25) is nearly
symmetric to the mid-surface of the pipe wall, which is similar to the plate case.
However, when the curvature parameter ∆ increases, this symmetry is broken and
the inner surface of the pipe vibrates more intensively than the outer surface.

Table 3. Predicted edge resonance frequencies by numerical and FE model

∆ fdnum (MHz-mm) fdFE (MHz-mm)

0.25 2.362 2.335
0.5 2.382 2.352
0.75 2.420 2.400
1.0 2.493 2.468
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Figure 18. The normal displacement component of the total displacement field at the outer
surface of the pipe measured as the function of the distance near the edge at resonance fre-
quency. ( —– ) analytical model, ( o o o ) FE predictions. The results have been normalized
by the outer surface radial displacement amplitude of the incident mode.

Figure 19. Through-thickness mode shapes of the edge at resonance frequencies for different
pipes ∆ = 0.25; 0.75; 1.0. Numerical predictions ur (dashed line), uz (solid line); FE predic-
tions ur ( o o o ), uz ( x x x ). The extremities of the normalized radius scale represent the
inner and outer radii of the pipe.
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It is also interesting to observe the energy balance at the edge of the pipe as a
function of the curvature parameter ∆. In Fig. 20 it can be seen that when ∆ is close
to zero (a very thin shell or plate), the energy is entirely reflected into the L(0,2)
mode. This is also true for big curvature parameter values (∆ = 2 for a solid cylin-
der). Between these extreme values of ∆, reflection of the L(0,2) mode generates
antisymmetric type modes L(0,1) and L(0,3). The energy ratio of L(0,2) mode is
reduced to zero at ∆ = 0.667 (pipe thickness nearly equal to its inner radius), where
the reflected energy is completely transferred into L(0,1) and L(0,3) modes at the
resonance frequency, as seen in Fig. 21, where energy balance of modes versus fd
product is presented.

Figure 20. Energy balance of the L(0,2) mode as the function of curvature parameter ∆. a)
The energies for the modes have been obtained at resonance frequencies. b) All energies have
been calculated at fd = 2.405 MHz-mm.

Figure 21. Energy balance of the L(0,2) mode as the function of frequency-thickness fd for
the pipe of ∆ = 0.667.
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Figure 22. Relative error ε in energy balance of the propagating modes as the function of
frequency-thickness product fd and curvature parameter ∆; δ = 0. ( —– ) GE, ( o o o ) LS.

The relative error ε is calculated to evaluate the energy balance criterion. 60
modes were used in the expansion and both numerical approaches Gaussian elimi-
nation scheme (GE) (m = 59, l = 59) and least squares (LQ) (m = 59, l = 185)
were implemented. In Fig. 22 it is seen that the largest errors for different ∆ appear
around the edge resonance frequencies and, for example, GE gives the biggest error
ε = 0.077 at ∆ = 0.75. The convergence of these two methods is different and de-
pends on the number of modes in the expansion as seen in Fig 23(a). This example
shows that although the relative error ε for LS is less than 0.05, after 100 modes it
converges and is the same as in GE 0.077. Similar converging behaviour of εwas also
observed for other values of ∆ but for brevity is not shown here. Another variable
that can influence the solution is the parameter δ which allows to change the position
of the collocation points along the edge of the pipe wall. Fig 23(b) shows how the
error ε varies when the positions of the collocation points are changed around its ini-
tial point. In general, both approaches are stable to the variation of δ, however, the
GE approach is more sensitive to the change whilst some values of the error deflect
largely from its stable values.
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Figure 23. Relative error ε in energy balance of the propagating modes as the function of
number of modes (a) and the parameter δ/s which controls the position of collocation points
(b) at fd = 2.42 MHz-mm. ( x x x ) GE, ( o o o ) LQ.

2.5 Example 2: wave interaction with a vertical part-through crack in

a thick pipe

2.5.1 Introduction

In this section the NME method is applied to investigate the axi-symmetric longi-
tudinal L(0,2) mode interaction with a vertical zero-width crack in the wall of the
pipe. The scattering analysis helps to understand how the depth of the crack and the
curvature of the pipe influence the scattering process.

An extensive amount of literature has been published on guided wave interaction
with crack type features in plate [4, 5, 12, 48–57] and pipe structures [1, 43, 44, 58–
65] and only some of them are named here. The experimental and FE modelling
study of longitudinal wave scattering at circumferential through and part-through
crack was reported by Alleyne and Lowe [43, 44]. They showed that when L(0,2)
mode is incident at the notch, the reflected energy is divided between axi-symmetric
and nonaxi-symmetric modes, which intensity depends on the circumferential extent
and depth of the defect. Later, Bai et. al [62] used a three-dimensional numerical
wave field expansion technique to validate their results. However, these works did
not investigate wave scattering problems in thick pipes. As we saw in the previous
section, in the thick pipe the curvature affects wave interaction with discontinuities.
Therefore, it is important to study how this influence manifests on wave scattering at
cracks.

Here we study a simple axi-symmetric model with a full circumferential extent
surface crack that allows to reduce the problem into a two-dimensional problem with
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Figure 24. L(0,m) mode scattering at the surface crack in the wall of the pipe.

the assumption of plane strain. Two types of cracks are considered in this study: a) an
outer and b) an inner surface crack. The frequency-thickness of the propagating mode
is chosen 1.3 MHz-mm, which is below the cut-off frequencies of the L(0,3) and
L(0,4) mode. The reflection and transmission coefficients are measured for L(0,1)
and L(0,2) modes (due to mode conversion) as the function of the depth of the crack
for pipes with different curvature parameter. The difference between the scattering
at outer and inner surface crack is investigated. The results are compared with the
results of the FE method and the other ones found in literature.

2.5.2 Modelling procedures

Computation of the reflection and transmission at the vertical crack in the wall

of the pipe

The present NME technique allows to solve only two-dimensional wave scattering
problems. Therefore, this study is limited to treat the L(0,m) mode interaction with
the crack, which is circumferential and perpendicular to the axis of the pipe. Then
the problem is axi-symmetric and the scattering can be analyzed in a two-dimensional
axial cross-section of the pipe as shown in Fig. 24. The normal and shear stress at
the crack faces must vanish and, additionally, the continuity of the wave field in the
remaining part of the wall must be satisfied:
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Stress-free left surface of crack:

σzz(r) =
k∑
i=0

ciσzzi(r) = 0,

σrz(r) =
k∑
i=0

ciσrzi(r) = 0;

(34)

Stress-free right surface of crack:

σzz(r) =
m−k∑
i=1

diσzzi(r) = 0,

σrz(r) =
m−k∑
i=1

diσrzi(r) = 0;

(35)

Displacement continuity out of crack:
k∑
i=0

ciuzi(r)−
m−k∑
i=1

diuzi(r) = 0; (36)

Stress continuity out of crack:
k∑
i=0

ciσzzi(r)−
m−k∑
i=1

diσzzi(r) = 0,

k∑
i=0

ciσrzi(r)−
m−k∑
i=1

diσrzi(r) = 0,

k∑
i=0

ciσrri(r)−
m−k∑
i=1

diσrri(r) = 0.

(37)

When the system is correctly solved, the complex displacement field at the crack
location is computed in the following equations:

To the left of the crack:

u(r, zcrack left) =
∑k

i=0 ciui(r), (38)

To the right of the crack:

u(r, zcrack right) =
∑m−k

i=1 diui(r). (39)
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The reflection and transmission coefficients can be given in the form

R∗i =
∣∣∣∣ cic0 ukj(r = a, b)

u0j(r = a, b)

∣∣∣∣ ,
T ∗i =

∣∣∣∣dic0 ukj(r = a, b)
u0j(r = a, b)

∣∣∣∣ , (40)

where i represents the mode and j = r or z.

FE study

Similar FE procedures were performed as introduced in Section 2.4.2 to understand
the scattering phenomenon at the crack in the wall of the pipe. The modelled pipe
wall was 1.92 m long consisting of axi-symmetric square shape elements as shown
in Fig. 25. 8 elements were used through the thickness of the 2.2 mm pipe wall
which was more than 15 elements per incident wavelength. Both sides of the pipe
were surrounded by absorbing type of elements that help to remove unwanted re-
flections at the edges. A number of geometries were set up in order to model the
pipes with a different thickness to mid-radius ratios ∆. The pipes with the following
geometries were studied: ∆ = 0.25 and 1. A zero-width crack was created in the
middle of the pipe length by disconnecting the nodes at the place of the crack and
it ran perpendicularly in the surface of the wall of the pipe. The disconnected nodes
that have the same position move independently. That means there is no transfer of
stresses and displacements between them. The depths of the crack were varied from
p = 12.5; 25; 37.5; 50; 62.5; 75 to 87.5% of the thickness of the wall.

Figure 25. FE axi-symmetric model of the pipe with a surface crack.
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Figure 26. Group velocity dispersion curves and some mode shapes for axi-symmetric longi-
tudinal modes with the pipe curvature ∆ = 0.25 (thick solid line) and ∆ = 1 (solid line).

The signal was generated 60 mm away from one edge using the center mode
shape excitation. A Hanning windowed tone burst containing 30 cycles at a center
frequency 590.9 kHz (fd = 1.3 MHz-mm) was used as the excitation signal. The
dispersive characteristics and mode behaviour are shown in Fig. 26. The results of
the simulations were obtained by monitoring nodal displacements at the outer surface
of the pipe for reflected and transmitted modes as shown in Fig. 25. Typical time
records for reflected and transmitted signals are shown in Fig. 27. In this example,
the depth of the outer surface crack is p = 50% of the thickness of the wall and the
curvature parameter is ∆ = 0.25. Although some of the energy of the incident mode
is converted to L(0,1) mode and there are also some modes reflected and transmitted
due to the impure excitation of L(0,2) mode but then the traveling distance of the
waves has been taken long enough allowing for the separation of the wanted wave
packets. The reflection and transmission coefficients were calculated in the frequency
domain, dividing the spectrum of the reflected or transmitted signal by that of the
incident wave signal.

The motion of the crack was monitored on both sides of the crack - in the nodes
to the left and right straight along the crack. Displacements in both directions r and
z were recorded at these points.
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Figure 27. Typical time records of uz displacement from FE simulations; the crack is p =
50% deep, the pipe’s curvature parameter is ∆ = 0.25. a) Reflected signal, b) transmitted
signal.

2.5.3 Results and discussion

Validation of some numerical results

Fig. 28 shows the reflection coefficient of the L(0,2) mode from a circumferential
notch which covers the whole pipe circumference and is half the wall thickness deep
taken from the FE study by Alleyne et al.[43] and compared with the reflection from
a zero-width crack in a pipe using the NME technique with GE approach. The fre-
quency is varied from 60 to 85 kHz. A similar trend can be seen in the result but a
remarkable difference between the values of the two reflection curves. The reason
for this is that the the axial width of the notch was different in these calculations.
The width of the notch influences the reflection strength as it was shown by Lowe
et al.[52] in case of the Lamb mode S0 in a plate. They found that the reflection
coefficient has a cyclic behaviour when plotted as a function of the notch width.
Specifically, the reflection starts at a certain value when the notch width was zero,
then raised as the notch width was increased and obtained the peak when the notch
width was about 10% of the wavelength of an incident wave. The axial width of a
notch in pipe FE study was 4% of the incident wavelength, therefore, suggesting a
stronger reflection.

47



Figure 28. Reflection coefficients of the L(0,2) mode for the full circumference outer crack
in a pipe with the depth p = 50% as the function of frequency; FE - Alleyne et al., NME -
current method.

Other results with L(0,2) mode are compared with the S0 mode reflection from
cracks in a plate. Such a comparison can be made with a pipe with a large diam-
eter to wall thickness ratio, in that case the longitudinal modes correspond to plate
Lamb waves. The predicted reflection function spectra for various crack depth and
frequency-thickness values are shown in Fig. 29. The inner radius of the pipe was
assumed 40 times bigger than the thickness. Predictions show the reflection to be an
increasing function of frequency and of crack depth. There can be observed a good
agreement between the results from FE study by Lowe et al. [52] and using the NME
method on a pipe.

Finally, in Fig. 30, the crack motion in case of incident L(0,2) mode is compared
with the crack motion in a plate for the S0 mode from the study by Castaings et al.
[12]. The correlation is again good between the results. They used a similar NME
technique at 1.12 MHz-mm. There can be detected an opening behaviour of the crack
due to the strong in-plane compression stress σzz , which causes unequal repartition
of L(0,2) modes on both sides of the crack [12]. It is important to note that the
model does not account for the contact between the crack faces that actually can take
place with a zero-width crack, which faces might have opposite axial movements. In
this case a more sophisticated approach, e.g. a crack model with a spring boundary
enforced by quasi-static approximation, can be used [66].
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Figure 29. Reflection coefficients of the L(0,2) mode from a surface breaking crack, for
various depths of the crack and frequency-thickness value; FE - Lowe et al. (solid line),
NME - (o o o).

Figure 30. Through-thickness displacements on both sides of an outer-surface crack (p =
50%) in a pipe for the incident L(0,2) mode at 1.12 MHz-mm. Result from Castaings et al.
(solid line), pipe NME results: uz - (x x x), pipe ur - (o o o).
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Reflection and transmission characteristics for L(0,2) incidence

Fig. 31 shows the reflection and transmission coefficients, as the function of the crack
depth, for the L(0,2) mode in a pipe with various curvature parameters ∆ = 0.25;1.0.
Coefficients are calculated by monitoring axial displacements on outer surface of the
pipe as it was shown in the FE setup in Fig. 25. Additionally, the energy balance
of the scattering problem is considered by observing the relative error ε between the
energies of reflected and transmitted modes. 99 modes were used in the expansion
and the solution was calculated by GE scheme. The author was not able to produce
satisfactory results by applying the other two, LS and SVD methods.

As expected, there can be detected a monotonic increase in the reflection ampli-
tudes and decrease in the transmission strength along with the crack depth. Interest-
ingly enough, the curves show that the results are remarkably dependent on the pipe
curvature parameter and the location of the crack. While the reflection coefficient of
the L(0,2) mode is the same from the outer and inner surface crack in a thin pipe (∆
= 0.25), there is a remarkable difference in case of a thick pipe (∆ = 1.0). Specifi-
cally, the reflection from a crack of the same depth on outer surface is much stronger
than from the one on the inner surface of the pipe. The reason for this is the change
in wave propagation characteristics of the incident mode due to the pipe curvature.
Fig. 26 showed that the axial displacement uz component is almost constant for a
thin pipe suggesting equal sensitivity to an outer and inner surface crack. However,
in case of a thick pipe it can be seen that the displacement value on the outer surface
is much larger than close to the inner surface indicating better sensitivity. The results
of NME technique are in a good agreement with the FE data. However, there is a
reason for concern when observing the energy balance. In the case of a thin pipe
(∆ = 0.25) the energy error ε is around 2% but for thicker pipes it reaches 12% for
some crack depth values. The error did not decrease when the number of modes was
increased in the expansion.

Figure 31. Predicted (a) reflection and (b) transmission coefficients of L(0,2) mode and rela-
tive error ε in energy balance (dotted line) for L(0,2) incident on outer and inner surface crack
as a function of relative crack depth at 1.3 MHz-mm. NME results (—); FE results (o o o).
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As the defect represents the non-symmetric reflection boundary in the waveguide,
and more than one mode can propagate in the pipe at the studied frequencies, the
mode conversion phenomenon may occur. This means that a part of the incident
mode energy can be reflected or transmitted into L(0,1) mode. Fig. 32 shows the
reflection and transmission coefficients, as the function of crack depth, for the L(0,1)
mode in a pipe with a various curvature parameter ∆ = 0.25;1.0. Coefficients were
calculated by monitoring axial displacements on the outer surface of the pipe. Again,
the results depend on the curvature parameter and the location of the crack. We
can see that monitored displacements of the mode converted L(0,1) mode are the
strongest in case of a thin pipe (∆ = 0.25) at a half-thickness crack depth. When the
pipe is thicker, the amplitudes of the reflected and transmitted L(0,1) mode weaken
and the maxima are shifted toward smaller crack depths for the outer crack, and
larger crack depth values for the inner crack depth. It can be seen from the results
that there are some discrepancies in the results of the two methods. Especially the
curve calculated by NME method and representing the displacement amplitude of the
reflected and transmitted L(0,1) mode from the inner crack for a pipe ∆ = 1.0 does
not approach zero when the crack depth comes close to zero, which happens with
the FE results. This can indicate some inconsistency in a numerical NME solution or
some additional physical phenomenon due to the pipe curvature that is not considered
in the crack problem.

Figure 32. Predicted (a) reflection and (b) transmission coefficients of L(0,1) mode for L(0,2)
incident on the outer and inner surface crack as a function of relative crack depth at 1.3 MHz-
mm. NME results (—) and various FE results.

In principle, it is possible to determine the surface where the crack begins from
by measuring the mode conversion intensity. In Fig. 33(a) the ratio of the reflected
L(0,1) and L(0,2) mode displacement amplitude is shown for the inner and outer
surface breaking crack for a pipe (∆ = 1.0). It can be seen that the conversion to
L(0,1) is much stronger for the inner surface crack and the curve, as a function of
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the crack depth indicates that this difference increases along with the reduction of the
crack depth. This demonstrates that it is easier to differentiate small cracks, which
is important from the practical point of view. Fig. 33(b) shows how the conversion
intensity is affected by the curvature parameter ∆ for different crack depth values.
The curves show the ratio of the reflected L(0,1) intensity from the inner and outer
crack, respectively. As expected, larger conversion intensity is more notable in thick
walled pipes and the ratio approaches 1 in thin walled pipes.

In practical pipe testing this information should be used with care. Usually, the
cracks do not cover the whole pipe circumference which causes also other nonaxi-
symmetric modes to be scattered from cracks than only L(0,1) in case of L(0,2) inci-
dence [44]. Secondly, the shape of the defect influences the scattering. For example,
even non-zero axial width of the crack can affect the scattering considerably [52].
And thirdly, the need to change the testing frequency, not considered here, which has
an effect on wave propagation and scattering characteristics.

Figure 33. Predicted FE results showing (a) mode conversion intensity and (b) mode conver-
sion intensity ratio for inner and outer cracks for L(0,2) incident at 1.3 MHz-mm.

2.6 Summary

A theoretical investigation of axi-symmetric longitudinal wave propagation in elastic
pipe with discontinuities has been presented. Specifically, the scattering of the L(0,2)
mode at the edge of a pipe and a full-extent circumferential crack has been modeled
by applying the normal mode expansion technique and Finite Element method.

It has been shown that the wave propagation characteristics depend on the curva-
ture of the pipe, which also affects the wave interaction with features.

Firstly, a well-known phenomenon in a plate, the edge resonance, which is caused
by the vibration of inhomogeneous wave modes, also exists in a pipe. In a thin-walled
pipe it has a similar character to that in a plate, but for thick pipes the influence of
the curvature cannot be neglected with a thickness to medium radius ratio ∆ > 0.5.
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In this case, through-thickness axial displacement distribution is no more symmetric
with respect to the middle surface of the pipe, and the results will increasingly dif-
fer from those of the plate. The study of the curvature effect on wave propagation
showed that the edge resonance in case of L(0,2) weakens when curvature radius de-
creases, and the resonance frequency shifts to higher values. Interestingly enough,
at ∆ = 0.667 the L(0,2) wave was completely converted into L(0,1) and L(0,3) wave
modes at the resonance frequency. The edge resonance of the pipe was experimen-
tally detected by observing the displacement field near the edge caused by incident
L(0,2) mode. Both FE and the experimental studies confirmed the existence of the
edge resonance in pipes and were in a good agreement with the theory.

Secondly, in the study of L(0,2) mode interacting with a surface breaking crack at
the frequency-thickness 1.3 MHz-mm showed that there is a clear difference in the
reflection and transmission characteristics between a thin- and thick-walled pipe. In a
thin-walled pipe, the scattering character from the outer and inner surface crack is the
same but differs in case of a thick pipe. In a thick pipe the reflection of L(0,2) mode
from the outer crack was larger than from the inner crack, and the mode conversion
intensity to L(0,1) mode helped to distinguish the crack surface origin.

The present method is also applicable to 2D-modelling of torsional mode interac-
tions with discontinuities in a pipe wall.
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3 Scattering of the SH0 mode in a plate when incident at a

crack aligned in the propagation direction of the mode

3.1 Background

The subject of this chapter is to investigate the interaction of the low frequency fun-
damental shear horizontal mode SH0 with a crack in a plate. This mode is particularly
attractive for this study because the particle displacement is perpendicular to the plane
of propagation and therefore it is expected to be sensitive to cracks that are oriented
along the propagation direction. Lamb modes such as A0 and S0 can also be used for
the detection of cracks in plates [52, 53] but they have the particle motion entirely
in the plane of the propagation and are thus expected to be reflected less by axially
aligned cracks. The SH0 mode is also very similar in nature to the torsional mode
T(0,1) in pipes, the only difference being the geometric curvature of the material. The
T(0,1) mode is the main mode of choice for the established long range guided wave
pipe inspection tools [3]. Therefore, this study can be helpful to practical pipe testing
by improving understanding of the torsional mode interaction with axial cracks in
pipes.

Studies of the interaction of shear waves [63, 67–72] and Lamb waves [4, 12, 52,
53, 73] with discontinuities such as thickness changes have already been performed
by other authors. For example, Finite Element method (FE) simulations and exper-
imental studies [4, 52, 53] have helped to understand the interaction of individual
Lamb waves with a variety of defects. It was shown that the sensitivity of different
wave modes to particular notches or cracks is dependent on the frequency-thickness
product, the mode type, the mode order, and the geometry of the reflector. Also, an-
alytical approaches, such as modal decomposition, have been useful to describe the
role of nonpropagating modes on the reflection and transmission characteristics from
thickness changes in planar waveguides using various wave modes [12, 63, 70]. A
popular method used has also been to combine Finite Element and analytical tech-
niques for analyzing the interaction of guided waves with arbitrarily shaped planar
cracks [68, 69]. However, all these approaches have been focused on defects which
are aligned normally to the direction of wave propagation and are, therefore, not suit-
able for explaining the case of an axial crack which has a small, or indeed negligible,
dimension in that direction.

Recent papers by Rajagopal and Lowe [71] showed that the analysis of the SH0

mode scattering, normally incident at a finite crack, can be performed with a plane
stress model, using the FE method. Their study showed that at normal incidence to
the face of the crack, the nearby reflected field is strongly affected by the surface
waves, diffracting at the tips of the crack. In the present case, these surface waves
play a much more important role, because there is no straight reflection due to the
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limited or zero cross-section area of the crack. A parallel phenomenon can be seen
from the classical problem where bulk shear waves interact with the boundary of a
semi-infinite medium at grazing incidence [74]. Moreover, the problem resembles
closely that of a bulk shear wave scattering by internal cracks in an infinite media
at low frequencies. In this case, the incident mode is converted to Rayleigh surface
waves, which travel along the surface of the crack and are diffracted and reflected at
the tips of the crack, thus forming the wave field around the crack [75].

The chapter begins with a small introduction into wave propagation characteris-
tics in a plate at low frequencies. Thereafter the scattering characteristics of SH0

incidence from aligned cracks in a plate will be determined by using FE method.
The scattering is investigated for a range of crack lengths, depths and shapes. The
report focuses on the straight reflection back towards the source, which is monitored
at several distances from the crack. Also, some results are shown for the diffraction
of the SH0 mode in the direction of 90 degrees from the crack face. The predictions
are validated by experiments. Finally the influence of several surface waves on the
scattering mechanism is investigated. The results of this study will be essential to
understand the physical nature of the phenomenon and provide some insight into the
possibility of detecting and characterizing this kind of defect using ultrasonic guided
waves.

The work presented in this part was the result of collaboration between the Depart-
ment of Mechanics at Tallinn University of Technology and the the Nondestructive
Evaluation Group at Imperial College London. It resulted in a joint publication [P4].

3.2 Low frequency guided waves in a plate

The properties of Lamb waves and SH waves were extensively studied during the
past [76]. Fig. 34 presents the group velocity dispersion curves for a steel plate.
These group velocity curves show the speed of propagation of a wave packet and
are, therefore, useful for long range testing. They were calculated using the program
Disperse [18]. In practice, the authors favor an approach to NDT in which the signals
are kept as simple as possible and to avoid multimodality [77]. Therefore, the work
presented here is limited to the very low frequency-thickness range below 400 kHz-
mm, where only three modes - A0, S0 and SH0 - may exist. This relatively low
frequency range is also of particular interest to the authors because this aids our
understanding of the case of pipes with cracks where a low frequency torsional wave
is used [78].

The SH0 mode is very attractive for long range NDT. It is completely nondisper-
sive at all frequencies, and its phase velocity and group velocity are equal to the bulk
shear wave velocity. The displacement and stress fields of this mode are also simple.
In Fig. 35, the mode propagating in the x direction has only one displacement com-
ponent, uz , in the z direction and one component of stress. Also, its displacement
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Figure 34. Group velocity dispersion curves for shear and Lamb waves in a steel plate.

and stress are uniform through the thickness of the plate so that its sensitivity to a
defect is not dependent on the through-thickness location of the defect. The absence
of normal displacement means that there is no attenuation if the plate is in contact
with inviscid liquids. The main advantage of using the SH0 mode in the current study
is that its particle motion is perpendicular to the crack surfaces. Therefore it might
be sensitive to such defects and provide reflections that characterize the crack.

Although the S0 and A0 modes have been used efficiently in defect characteri-
zation [52, 53], they are not suitable for the detection of cracks aligned in the wave
propagation direction. Both modes have particle motion which is entirely in the plane
of the propagation and, therefore, obviously their wave field is much less affected by
axially oriented defects. The S0 mode, being the fundamental symmetric compres-
sional wave, has a predominant in-plane motion in the direction of x. The A0 mode
represents a flexural type of mode having predominant out-of-plane displacement uy;
in-plane displacement ux, and stresses σxx are antisymmetric with respect to the mid-
plane of the plate. However, since these two waves may exist within the frequency
range of interest, it is possible in principle, for both of them to be excited by mode
conversion when SH0 is incident.

3.3 Finite Element modelling

3.3.1 Plate with a through-thickness notch

The Finite Element study was performed in a two-dimensional domain, with the as-
sumption of plane stress, using the ABAQUS software with its explicit time stepping
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Figure 35. Predominant displacement mode shapes of A0, S0 and SH0 at low frequencies
propagating in x-direction.

procedure [42]. The plane stress approximation has been found to work very satis-
factorily in earlier studies modeling the SH0 mode propagation in plates [71].

The spatial model of the problem is shown in Fig. 36(a). The properties of the
material are shown in Table. 4. The mesh of the plate consists of perfectly square four
noded linear elements with 2 degrees of freedom (displacements in x, z directions).
More than 16 elements per wavelength of the SH0 mode were used in the study,
which satisfies the limit for accurate modeling [71]. Also, these elements describe
satisfactorily the motion of the S0 and SH0 modes at low frequencies, since these
modes have predominant in-plane displacement fields, which are symmetric to the
mid-plane of the plate and approximately uniform through the thickness. This model
does not support the propagation of the bending type modes, such as A0. However,
antisymmetric waves are not generated in the cases studied in this work because
all of the features of the geometry and of the incident wave are symmetric. The
plate is surrounded by an absorbing region [45]. The waves that enter this area are
increasingly damped and eventually they die out. This helps to reduce the model size
and avoid unwanted reflections from the edges of the plate.

Variants of the spatial models were set up in order to model different cracks,
shown in Fig. 37. The following three geometries of the discontinuity were modelled.
1) Crack. This defect type was created simply by disconnecting adjacent elements
in the plate model. This approach to defining a crack has been used widely in previ-
ous FE studies of guided wave interactions with defects [52, 53, 71]. 2) Rectangular

Table 4. Material properties for steel used in the FE plane stress model.

Density ρ (g/cm3) Poisson’s ratio ν Young modulus E (GPa)

7.9 0.3 210
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Figure 36. (a) Setup of the FE model. (b) Typical FE time record showing the displacement
amplitudes of reflected and diffracted waves around the crack after the interaction of the SH0

mode with the 24mm long crack.

notch. The notch is defined by removing elements from the mesh of the plate. The
width of the elements along the notch line was also modified when necessary to ob-
tain the desired width of the notch. Additional Finite Element analyses with further
refinement of the mesh (results not shown here) showed that the unequal element
dimensions used in the simulations did not cause discrepancies in the wave propaga-
tion. However, care must be taken when modeling very narrow notches. The reduced
size of the element also increases the calculation time. 3) V-notch. This geometry
is suitable for modeling very narrow notches but with sharp tips. Defect geometries
2) and 3) were important to compare the FE results with experiments where a finite
width machined notch was used.

Low frequency excitation in the z direction was applied at the desired node on the
crack axis. This generates circular waves of the SH0 mode primarily propagating in
the x direction, and also the S0 mode, which primarily propagates in the z direction.
The displacement amplitude of both modes is the strongest in their principal direction
of propagation and decays according to a cosine angular pattern away from the main
direction [79]. Although this means that the S0 mode can be present in areas away
from the crack axis, at low frequency-thicknesses this mode travels much faster than
SH0 and can be time-gated out. The point force excitation consisted of a 100 kHz
five cycle tone burst multiplied by a Hanning window. The propagation of the waves
was simulated in the time domain. Explicit time integration and a fixed time step,
corresponding to stable integration, were used for the simulation [80].

The signals were monitored at three different positions [Fig. 36(a)]. The choice
of these points was made after trial simulations and points were selected at locations
where the scattered wave field was the strongest. A typical plot, showing the contour
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Figure 37. FE defect models: (a) crack, (b) rectangular notch, (c) V-notch.

of resultant displacements of different scattered waves after the interaction of the
incident mode with the crack is illustrated in Fig. 36(b). In the first location, which
is along the line of the crack and the excitation point, the displacement uz of the
reflected SH0 mode was monitored. The second monitoring point is at 90◦ from crack
line, measured from the back tip of the crack, in order to monitor the displacement
ux of the diffracted SH0 mode. In the third position, which is at 45◦ to the incident
direction and has the same x coordinate as the first monitoring point, the displacement
component uz of the reflected S0 mode was monitored. The incident signal was
always monitored at point 1. The model was repeated for different crack lengths.
The main focus was directed towards scattering of cracks, which length was up to the
wavelength of the incident mode, but the direct reflection was also investigated for
long cracks of up to 15 wavelengths in length.

Both modulus and phase of the reflected and diffracted signals were calculated.
The modulus was obtained by dividing the amplitude of the reflected or diffracted
signals by the amplitude of the incident signal in the frequency domain. To obtain
the results for plane waves interacting with the crack, it is necessary to consider the
beam spreading of the propagating waves. This is necessary for the comparison of
plate results with pipe results. As the waves in the plate model decay cylindrically
away from the source, and also assuming the crack to act as the emitter of cylindrical
waves, the reduction of the amplitudes in both cases is inversely proportional to the
square root of the propagation distance from the source. Thus

Coefficient =
A(f)

√
r

I(f)
√
d
, (41)

where A(f) is the amplitude in the frequency domain of reflected or diffracted sig-
nals, I(f) is the amplitude in the frequency domain of the incident signal, r is the
distance between the tip of the crack and the monitoring point, and d is the distance
from the source to the monitoring point. The phase was calculated only for the re-
flected and diffracted SH0 signals and was obtained by using a simple FFT algorithm.
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3.3.2 Plate with a part-through notch

The second study was performed in a three-dimensional domain, using 8 noded lin-
ear cubic elements in the plate mesh. 5 elements were used through a 3 mm thick
plate. Cracks of a vanishing width were created by disconnecting nodes on elements
representing adjacent faces. Also, notches of a 0.6 mm width were created by remov-
ing rows of elements from the mesh. The material for the plate was steel, but also
material properties of aluminium were used (Table 5), simply in order to match the
experiment.

Other parts of the model were similar to the one shown in Fig. 36(a). The plate
was surrounded by an absorbing region which helped to remove the unwanted side
reflections. The excitation was achieved by applying a force parallel to the plate sur-
face at the desired node in a perpendicular direction to the crack axis. This generates
circular waves of the SH0 and S0 modes, with their principal directions parallel and
perpendicular, respectively, to the applied force and no A0 is generated. The point
source excitation consisted of a 5 cycle Hanning windowed tone burst centered at the
required frequency. The propagation of the waves was simulated in the time domain.
The signals were monitored in the first and second monitoring points (Fig. 36(a)).

The reflection and diffraction behaviour of SH0 mode was studied by calculating
the frequency domain ratio ( 41) of the monitored signals.

Table 5. Material properties for the aluminium used in the FE 3D model.

Density ρ (g/cm3) Poisson’s ratio ν Young modulus E (GPa)

2.7 0.33 70

3.4 Experimental work

Two sets of plates were used for the experiments described in Table 6. Notches with
various depths and lengths were cut into each plate using a milling machine. The
notches were positioned approximately 800 mm from one end of the plate, with its
axis lying at equal distances from the other sides of the plate, as shown in Fig. 38.

Table 6. Plates with defects used in the experiment.

Plate size Material Notch Notch Notch
(mm·mm·mm) depth (%) length (mm) width (mm)

1. set 1250×1250×1 steel 100 4, 8, 12, 70 0.7

2. set 1250×1250×3 aluminium 80 3.5, 5.8, 8, 11.4 0.6
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Figure 38. Arrangement of the experimental test. (a) side view, (b) plan view.

Excitation of the SH0 mode was achieved using a wide-band piezoelectric shear
transducer (Panametrics V301, 0.5 MHz center frequency) coupled to the plate through
a small area using a small brass disc (3 mm diameter, 0.4 mm thickness) and a shear
coupling agent. The excited signal consisted of a five cycle tone burst in a Hanning
window centered at the required frequency. Such narrow band signals were used in
order to achieve a good signal strength. For each crack length, the center frequency
of excitation was varied from 200 kHz to 400 kHz in order to obtain different values
of length of the crack in terms of the wavelength of the incident mode. This scaling
is permissible because the SH0 and S0 modes in the low frequency range of study
have velocity and mode shapes which are independent of the plate thickness; thus the
only spatial dimensions of the problem are the crack dimensions and the propagation
distances. The signals were generated using a Wavemaker (Macro Design Ltd, UK)
instrument.

The monitoring of the incident signal and detection of the reflected and diffracted
signals was achieved using a laser interferometer (Polytec OFV 2700, with dual dif-
ferential fiber optic lines) to measure the displacements at the surface of the plate at
the required positions. Two laser beams were aligned at +30 degrees and -30 degrees
to the normal, but focused on the same spot; thus the difference between their two
signals gave the in-plane displacement. In the test with aluminium plates it was de-
cided to measure in-plane velocity. The reason for this was the better signal-to-noise
ratio of the velocity decoder at the frequencies used here. A thin reflective tape was
attached to the surface of the plate to enhance the optical backscatter. The signals
were in general quite weak and the quality of each measurement was enhanced by
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Figure 39. Typical experimental signals; center frequency is 200kHz; the through-thickness
notch is 12 mm long. (a) time record from the 1st monitoring point 118 mm away from notch,
(b) time record from the 2nd monitoring poing 118 mm away from notch. Both signals are
plotted to the same scale.

taking 500 averages and by applying a band pass filter.
The excitation and detection positions were varied at each center frequency value,

so that the distances between the crack and monitoring point and transducer remained
a certain number of wavelengths. Typical experimental time records measured at the
1st and 2nd monitoring points are shown in Fig. 39(a) and Fig. 39(b), respectively.
The length of the through-thickness notch was 12 mm, excitation frequency 200 kHz,
the signal was generated at 22 λSH0 (SH0 wavelengths at the center frequency of the
tone burst) away from the notch and the measurement distance from the notch was 7
λSH0 for both measurement points. From the measurement in Fig. 39(a), it can be
seen that only the incident and reflected SH0 mode are presented, but in Fig. 39(b)
the measured signal at the 2nd point contains also some S0 and A0 modes that were
excited by the transducer. Differentiation of unwanted signals and the SH0 mode may
most easily be achieved by choosing sufficiently long propagation distances that their
signals separate.

The coefficient of the reflected and diffracted SH0 mode for each crack length
was calculated similarly to that of the FE procedure, by dividing the frequency spec-
trum of the reflected signal by that of the incident signal and compensating for beam
spreading.
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Figure 40. Typical FE time records from the (a) first, (b) second, and (c) third monitoring
points showing the reflected and diffracted signals; 0.7 mm wide notch 24 mm in length was
used in the model; and center frequency of the incident pulse is 100 kHz.

3.5 Results and discussion

3.5.1 Through-thickness crack: reflection and diffraction as a function of crack

length

Using the results of the FE simulations, the scattering effect was studied with SH0

mode incident. This was done over varying defect lengths in a plate. The excitation
was located at a distance of 22 λSH0 and nodal displacements were monitored at
7 λSH0 from the defect. Fig. 40(a,b,c) shows the typical FE time history records
monitored at the 1st, 2nd and 3rd points. Notch is 0.7 mm wide and 24 mm long (
λSH0/l = 0.75, where l is the length of the notch). The figures show that the incident,
reflected and diffracted parts of the signals are separable, allowing time gating for the
calculation of the modulus of reflection and diffraction.

The reflection and diffraction coefficients were calculated for each crack length
using Eq. 41 and the results of different excitation frequencies and crack lengths
were normalized to the wavelength of the incident mode SH0. In the FE study, the
excitation frequency was 100 kHz, and in the experiment this was varied from 200 to
400 kHz. Experimental measurements were taken at the appropriate excitation and
monitoring distances for each frequency. It is important to add here that the results
of 100 kHz would be valid at other excitation frequencies, provided the crack length
and the other dimensions are scaled appropriately by incident wavelength.

At first, we investigate the scattering at short cracks the length of which is compa-
rable to the wavelength of the incident mode. This means that the direct reflection of
SH0 includes the reflection components at the tip and at the end of the crack which
are not separable in the signal. Fig. 41 shows the reflection modulus for monitored
SH0 modes at the 1st and S0 mode at the 3rd point. The predictions for direct SH0
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Figure 41. Predicted variation of reflection modulus with length of the crack normalized to
wavelength. Monitored SH0 mode at the 1st point: FE results with a 0.7 mm width notch
(solid circle), 0.7 mm width V crack (dash-dot), zero-width crack (dotted line), and experi-
mental results (empty circle). Monitored S0 at the 3rd point - FE results (solid square).

mode reflection were obtained for three defect cases: crack, 0.7 mm wide notch and
0.7 mm wide V-notch. As we see, the width of the defect slightly affects the reflection
behavior. It can be observed that the reflection from the crack is slightly weaker, and
its values are shifted towards higher crack length to wavelength ratios compared to
other defect types used in the study. The simulations with a notch and with a V-notch
are similar, and give the best agreement with the experimental results. The S0 mode
is clearly the weakest reflected signal and, therefore, it is not suitable for the defect
characterization. However, it shows that the scattering phenomenon is accompanied
by mode conversions. Due to the symmetry of the problem there is no reflection of
the S0 mode along the axis of the defect and the 1st monitoring point.

The reflection coefficient of the SH0 mode at crack in Fig. 41 starts at a value of
zero, and then rises, as the crack length is increased. But while we would expect the
ratio to approach a constant value as the crack grows larger, there is an oscillation the
origin of which is not clear. As we can see, the first maximum reflection occurs when
the length of the crack is about 45% of the incident wavelength SH0. Then there is
a low point at around 63%, followed by an increase again reaching a maximum at
about 87%. Finally the ratio starts to drop again. This behavior is due to interfer-
ence between the reflection from the near tip of the crack and the reflection slightly
later from the far tip of the crack. This will be shown and discussed later. Their
superposition in the resulting reflected wave packet may be constructive or destruc-
tive, depending on the duration of the delay. Thus, for example, the reflection from
the far end of a crack of 45% wavelength returns with a delay corresponding to one
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Figure 42. Predicted variation of diffraction modulus with length of the defect normalized to
wavelength. Monitored SH0 mode at the third point: FE results with a 0.7 mm width notch
(solid circle), 0.7 mm width V-notch (dash-dot), crack (dotted line), and experimental results
(empty circle).

wavelength, so that it is in the same phase as the reflection from the start of the crack,
and thus causes maxima. However, the maxima and minima do not occur precisely at
multiples of 25% wavelength positions, but at slightly smaller distances. The reason
for this is that the SH0 mode is partially converted to ”Rayleigh type” surface waves,
also known as pseudo-Rayleigh waves [81], on the stress free surfaces of the crack,
which are reflected and diffracted at the crack tips. These waves are slower than the
shear mode and have a smaller wavelength. Additionally, it is worth noting that these
interfering waves have different amplitudes. This explains a reflection minimum that
is not zero at 63% of λSH0.

Fig. 42 shows the diffraction modulus of monitored SH0 modes at the 2nd point,
90 degrees from the crack face. The diffraction in this direction is stronger than
the reflection in the incident direction. Here we can see a similar initial rise of the
diffraction strength with the increase in the crack length. However, there is a maxi-
mum instead of a trough at 60% of SH0 compared with the reflection modulus of the
direct reflection. Again ”Rayleigh type” surface waves play an important role here.
The diffraction is composed of two signals - one diffracted from the front tip of the
crack and the other from the back tip of the crack. The second diffraction is delayed
due to the surface wave propagation along the crack faces. However, this time the
diffraction is in phase with the first diffraction, because there is no additional phase
delay due to the absence of back propagation. Finally, the ratio starts to decrease.
Again the finite width rectangular crack gives the best fit with the experimental re-
sults. However, the difference between the results with the different crack types is
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Figure 43. Reflection modulus of SH0 mode for short and long defects. FE results: SH0 near
tip reflection at 0.7 mm V-notch (solid square), SH0 far tip reflection at 0.7 mm V-notch (solid
circle), and SH0 far tip reflection at the crack (dashed). Experimental SH0 far tip reflection
(empty circle).

not significant.
The reflection character from longer cracks up to 10 λSH0 is investigated in

Fig. 43. Predictions were made for the crack and the V-notch. There is a very good
agreement between modeling and experimental results. Again we can observe that
the reflection from the crack is slightly weaker compared to the other results.

Now we can easily separate the near tip reflection, which is notably smaller than
the delayed far tip reflection. Its amplitude is independent of the crack length. Inter-
estingly enough, the modulus of the far tip reflection, even if it is separated from the
near one, remains periodically undulating with a weakening amplitude. The interval
between peaks is longer for long cracks than for short cracks (in a wavelength range).
The main reason for this is that the interference phenomenon is complicated consid-
erably by the presence of another wave generated at the surfaces of the crack, the
reflection of which is not separable from the reflected SH0 in short crack cases. But
the reflection of these waves can be seen separately in cases of long cracks, as shown
in Fig. 44(a,b). Here it is important to note that the separation of reflected signals also
depends on the duration of the tone burst. In case of a longer tone burst, the crack
would also have to be longer before it is possible to separate the reflections. These
figures show the FE and experimental time records of SH0 wave interaction with a
8.1λSH0 long crack. The two reflections are clearly separable - the smaller reflection
at the near tip is followed by the second stronger reflection from the far tip, induced
by ”Rayleigh type” surface waves. But we can also see small amplitude waves arriv-
ing before the second reflection. These waves are generated due to the presence of
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Figure 44. Typical time domain signals showing the reflections at long cracks. (a) FE mea-
surement at 262 mm (8.1λSH0) long crack, center frequency 100 kHz; (b) experimental mea-
surement at 70 mm (8.1λSH0) long crack, center frequency 390 kHz.

”leaky type” surface waves on the crack, which also cause small reflection of the SH0

mode. These waves are faster than ”Rayleigh type” surface waves and are generated
due to the S0 mode interacting with the crack surfaces; this is a similar phenomenon
to that of bulk pressure wave conversion to leaky surface waves on the free boundary
of a semi-infinite medium [82]. Quantitative analyses will follow later. The weak-
ening oscillation in Fig. 43 is explained by the fact that this wave is coupled into a
plane shear wave that propagates away from the crack. Due to this, the surface wave
loses energy and, thus, decays in its propagation direction. Therefore, the strength of
the final diffraction weakens as the crack length is increased, and this also decreases
the amplitude of undulations in superimposed signals as seen in Fig. 44.

3.5.2 Through-thickness crack: influence of the distance of source and mea-

surement location on direct reflection

In order to see how the distance between the source, receiver and the crack influences
the reflection of the SH0 mode, FE predictions were made for a couple of source and
receiver points along the crack axis. The distance between the source and measure-
ment point was chosen to be 5λSH0, while the distance between source and the crack
was varied through four values: λs=10, 20, 30 and 40λSH0. The crack length was
again varied using a number of simulations, and the reflection modulus was calcu-
lated according to Eq. 41. Fig. 45 shows that the reflection modulus for all crack
length to wavelength ratios decreases with the source distance from the crack. The
reason for this is that the reflected waves show simple cylindrical decay away from
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Figure 45. FE predictions of SH0 reflection modulus as a function of crack length for various
source distances λs from the crack. The distance between the source and monitoring point
was always 5 λSH0.

Figure 46. FE predictions of the dependence of reflection modulus on the distance between
the source and the crack for different crack length to wavelength ratios. Reflection modulus
extrapolated from the source distance 40λSH0 (line), reflection modulus obtained using the
source distances 10, 20 and 30λSH0 (empty circle).
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the crack. It is clearly seen that the reflection modulus for different source and mea-
surement locations has the same variance when the crack length to wavelength ratio
changes. The placement of peaks and troughs is similar for all curves. Moreover,
the ratio of modulus M1/M2 of any two arbitrarily chosen source location results 1
and 2, at each crack length, can be expressed as a square root inverse ratio of source
distances from the crack. This assumption is valid when the measurements have been
made in the far field. In Fig. 46, the reflection modulus for different crack length to
wavelength ratios 0.25, 0.875 and 1.125 is calculated using the modulus that is ob-
tained at the source point 40λSH0 from the crack, and it is extrapolated to smaller
source distances and compared with the exact calculations with source distances 10,
20 and 30λSH0. As we see, the results agree well when the source distance is equal
or larger than 20λSH0, thus the compensation based on cylindrical spreading is ac-
ceptable.

3.5.3 A through-thickness crack: the influence of a ”leaky type” surface wave

on SH0 reflection in the incident direction

The most important signal for identifying and characterizing the crack is that which
reflects directly towards the source, measured at the 1st point. As we saw in Sub-
section 3.5.1, this reflection had an undulating nature due to the presence of different
surface waves. Here we take a deeper look at the generation mechanism of this re-
flection to explain the contribution of ”leaky type” surface waves to the reflection. In
order to understand this we use FE simulations. We study the reflection for a very
long crack l = 15λSH0 and at central frequency 100 kHz. This ensures that all signals
investigated can be separated and analyzed.

The wave field patterns from FE study at different time steps that describe the
interaction and reflection/diffraction of the waves at the crack are shown in Fig. 47(a-
c). Fig. 47(a) shows the wave field record when the incident SH0 mode interacts with
the front tip of the crack. It is seen that there is a small backward reflection, denoted
as near tip reflected SH0, in the figure. Due to the free boundary of the crack edges,
the incident mode and also the diffraction are converted to Rayleigh type surface
waves at the tip. Besides, there is the diffracted S0 mode, which is converted to leaky
type surface waves on the crack faces. All these surface waves propagate toward the
end of the crack and are reflected and diffracted. This is illustrated in Fig. 47(b). We
can see that Rayleigh type waves are converted strongly to SH0 modes and also to
reflected S0 modes, which again interact with the crack face causing the leaky type
surface waves to propagate. Finally, the surface waves interact with the front tip of
the crack, and the far tip reflected SH0 mode is generated, shown in Fig. 47(c). It is
obvious that this reflection is much stronger than the near tip reflected SH0.
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Figure 47. Various FE time records showing the displacement amplitudes of the wave field
around the crack during the interaction of the SH0 mode with the crack. (a) Incident SH0

mode interaction with the near tip of the crack. (b) Rayleigh type wave interaction with
the far tip of the crack. (c) Reflected and diffracted waves after back propagating leaky and
Rayleigh type wave interaction with the near tip of the crack.

The interference phenomenon between different surface waves causes the undu-
lations in the reflected signal. As we saw, they travel with different speeds along the
crack face and their phase changes are, therefore, also different. By predicting the
wave number of these waves we can explain the occurrence of the undulations more
quantitatively. Following a procedure similar to that in the preceding parts of the
work [71], the wave numbers of the surface waves can be calculated by measuring
the phase difference between the diffracted and reflected signals as a function of the
crack length. Here we investigate the diffraction at the second point and reflection
at the first point (Fig. 36(a)) at an equal distance from the crack again. Fig. 48(a)
and (b) show the corresponding time histories recorded at these points. We measure
the phase φ1 of the diffracted SH0 mode (the last signal) in Fig. 48(a) by taking the
Fourier transform of the gated signal. Similarly, we calculate the phase φ2 of the far
tip reflected SH0 mode from the Rayleigh type wave contribution, and phase φ3 of the
reflected SH0 from leaky type wave contribution, both shown in Fig. 48(b). There-
after, we plot the phase differences ∆φ2=φ1-φ2 and ∆φ3=φ1-φ3 for increasing crack
lengths. The slope of these linear variations yields then the wave number for the sur-
face wave. Fig. 49(a) shows that the wave number for Rayleigh type surface waves
is k=215.7 rad/m. The corresponding phase velocity 2913 m/s is close to Rayleigh
wave phase velocity 2966 m/s for the material properties used in the FE simulations.
Fig. 49(b) gives the wave number for leaky type surface waves k=118.1 rad/m, indi-
cating that its phase velocity 5320 m/s is slightly lower than the phase velocity of the
S0 mode 5404 m/ s of the studied plate.
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Figure 48. FE time traces; the length of the crack is 15λSH0; center frequency is 100 kHz.
(a) Measurement at the second point; (b) measurement at the first point.

Figure 49. Phase differences from FE simulations as a function of crack length. (a) φ2 and its
slope showing the wave number of Rayleigh type surface waves; (b) φ3 and its slope showing
the wave number of leaky type surface waves.

Let us return now to Fig. 43 in Subsection 3.5.1, where the reflection modulus
was characterized by undulations. Here the explanation to the undulations, which
take place for crack lengths longer than 2λSH0, are given. We are interested in the
period of these undulations. We can see from the figure that the reflections caused by
surface waves are in the same phase when the crack length is 2.8λSH0. The changing
part of the phase difference φ2-φ3=97.6 x gives us the phase delay between these two
reflections. The first minimum occurs after a half cycle calculated as π/97.6 which
corresponds to 1λSH0 and the first maximum occurs after 1 cycle at 2π/97.6 which
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corresponds to 2λSH0. Similar values between the peaks and troughs are seen also
in the figure; maxima occurring at 2.8, 4.8, and 6.8λSH0; minima lying at 3.8 and
5.8λSH0. This supports the fact that undulations in the reflected signal are caused by
the interference of these different surface waves.

3.5.4 A part-through crack: reflection and diffraction as a function of defect

depth, width and frequency-thickness

In practice, it is important to detect defects that are not through. Therefore, it is
essential to know the impact of the defect depth on the scattering. Also, previous
studies have shown that the scattering from a part-thickness defect is strongly influ-
enced by the operating frequency [52, 53, 83]: in general, higher frequencies are
more sensitive in finding smaller defects.

Firstly, it is shown that the scattering results are also dependent on defect width.
Fig. 51(a) and (b) show the predicted reflection and diffraction coefficients as a func-
tion of a defect length from a 80% deep crack and notch which width was 0.6 mm.
The incident SH0 mode was generated at 250 kHz. Compared with the through-
thickness defect results in Fig. 41 and Fig. 42 it can be seen that the width of the
defect has a much stronger influence on the scattering from part-through defects.
Similar observations were made in the study of SH0 mode interaction with cracks at
normal incidence [84].

Secondly, FE scattering studies with finite-width notches in aluminium plate were
experimentally compared. Fig. 51(a) and (b) show the measured reflection and diffrac-
tion coefficient respectively at 200 to 325 kHz from a 80% deep notch in which the
defect length was 3.5, 5.8, 8.8 and 11.4 mm long. The excitation was located at the
distance 27λSH0 and nodal displacements of scattered SH0 were monitored at 7λSH0

Figure 50. Predicted (a) reflection and (b) diffraction coefficients from an 80% deep crack and
0.6 mm wide notch expressed as a function of ratio of defect length to incident wavelength.
The SH0 mode was excited at 250 kHz in a 3 mm thick plate.
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from the defect at monitoring points 1 and 2 according to Fig. 36(a).
Compared to through-notch results there can be detected a similar variation of

the reflection and diffraction coefficient with a notch length but a remarkable drop in
amplitude for almost all notch lengths, except for some short and long length defects.

Figure 51. Measured (empty) and predicted (solid) (a) reflection and (b) diffraction coef-
ficients from an 80% and 100% deep (dashed line) notch expressed as a function of ratio
of defect length to incident wavelength. Measurements and predictions are made within the
frequency range of 200 to 325 kHz.
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Besides that, the results are affected by frequency. This is seen as a discontinuity be-
tween the results of different notch lengths: higher frequency reflections are stronger
than the ones at a lower frequency from notches which values of the scaled lengths
are the same. The experimental measurements and FE predictions can be seen to
agree well in both cases, except for the diffraction coefficient from an 8.8 mm notch
where some of the values of the curves differ significantly. The reason for such dis-
crepancy is not clear but the author believes that it might be caused by a non-ideal
shape of the notch which might affect the diffraction. It is not possible to ensure the
uneven depth along the entire notch length while machining.

In order to understand the effect of the frequency more clearly, some additional
FE modeling was performed. This time a crack geometry was considered. Fig. 52
shows the variation of the reflection and diffraction coefficient with the depth of the
crack for different frequencies in a plate with a constant thickness. The normalized
crack length was taken as l/λSH0 = 0.7. It is clear that when the depth of the crack
decreases, the amplitudes of scattered waves also decrease in a nonlinear manner.
However, it can be seen that if the frequency decreases, the curve becomes increas-
ingly concave, the reflectivity and diffraction at low frequency decreasing markedly.
Therefore, this result suggests that it is more difficult to detect shallow defects as the
test frequency is decreased.

Figure 52. Predicted variation of (a) reflection and (b) diffraction coefficient as the function
of depth of the crack normalized to wavelength l/λSH0 = 0.7. The SH0 mode was excited
at 100, 250 and 350 kHz in a 3 mm thick plate.

Another important parameter that should be considered in the scattering study is
the plate thickness. Fig. 53 shows the predicted variation of the reflection and diffrac-
tion coefficient with frequency-thickness in the case of an 80% deep crack. The simu-
lations were performed with centre-frequencies 100, 250 and 350 kHz. It can be seen
that the reflection amplitude increases almost linearly with the frequency-thickness.
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It is also interesting to observe that when the frequency-thickness is similar, the re-
flection amplitude is also similar. Thus, the results may be applied equally to other
thicknesses of plate provided the frequency-thickness is retained.

Figure 53. Predicted (a) reflection and (b) diffraction coefficient versus frequency-thickness
for 80% deep crack in a plate at l/λSH0 = 0.7.

3.6 Summary

FE studies, supported by experimental measurements, were performed in order to
investigate the nature of the interaction of the low frequency SH0 wave mode with a
narrow notch in a plate, oriented in the wave propagation direction. Both, through-
thickness and part-through defects, were considered. Satisfactory agreement between
the FE results and measurements was achieved.

The interaction between the wave and the defect was not strong. The scattering
field mainly consisted of SH0 modes, which were reflected in the incident direction
and diffracted at 90◦ to that direction. The study showed that the incident wave is
mode-converted at a defect to several types of surface waves which propagate along
the crack faces and radiate at the tips of the crack, thus forming a scattered field. The
examination of the results has identified the important phenomenon of the interfer-
ence between the reflections from the near and far tip of the crack, which leads to an
undulating shape of the reflection as the function of crack length. The larger delayed
far tip reflection was caused by the conversion of the incident mode into Rayleigh
type surface waves, propagating along the crack faces.

The interaction of the SH0 wave with a part-depth crack showed a weakening
trend in the scattering when decreasing the crack depth and excitation frequency. It
has also been shown that the reflection and diffraction function is depending on the
notch width and is characterized by a linear dependence of frequency-thickness.
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4 T(0,1) mode interaction with axial crack in pipes

4.1 Background

The aim of this chapter is to investigate the low frequency T(0,1) mode interaction
with an axial crack in a pipe. This mode has already been adopted for a guided wave
inspection of pipes [3] due to its suitable properties for long range inspection. Simi-
larly to SH0 wave mode in a plate, this mode is non-dispersive and its incident pulse
signals maintain their waveforms and can propagate long distances with small atten-
uation. Also, at lower frequencies it is the only mode in the torsional wave family
that can propagate in the pipe when applying axi-symmetric torsional excitation, thus
excluding multimode generation by the transducers. This simplifies the analysis of
the signals reflected from the features, which is highly desirable in practical testing.

Like SH0 mode, the T(0,1) mode has a uniform particle displacement perpendicu-
lar to the plane of propagation, and is therefore expected to be sensitive to cracks that
are oriented along the propagation direction [85]. Axi-symmetric longitudinal modes
can also be used for the detection of cracks in pipes but they have the particle motion
entirely in the plane of the propagation and are thus expected to be reflected little
by axially aligned cracks [86]. Although some nonaxi-symmetric flexural modes can
also be sensitive to axial defects, having a significant circumferential stress field,
their dispersive nature and changing wave field along the propagation direction dra-
matically complicates their exploitation for practical NDT [87]. In principle, it is
also possible to use guided circumferential waves for the detection of axial cracks
in pipes [88]. However, guided circumferential waves have the limitation that they
propagate around the pipe over a small axial extent of the pipe, and cannot be used
for long-range inspection.

The research into the potential of using guided waves for the detection of defects
in pipes has been intense [1, 3, 43, 44, 58, 59, 61, 62, 64, 65, 78, 85–91]. Quantitative
studies [78] of the T(0,1) mode scattering at circumferential notches and cracks have
revealed that the reflection coefficient is a roughly linear function of the circumfer-
ential extent of the defect. It was shown that when the defect becomes narrower in
the circumferential direction of the pipe, its detection possibility decreases. There-
fore, defects aligned axially along the pipe have not received as much attention until
this time, as they were known to give much smaller reflections than circumferen-
tial defects. However, Liu et al. [92] demonstrated in their experimental work with
the torsional mode that the reflection coefficient at a through-thickness axial notch
was more than 15 times larger than its negligible circumferential width should al-
low, according to previous knowledge. Besides, the reflected signal consisted of a
substantial tail the origin of which was not clear. Kwun et al. [89] proposed that
the interaction is accompanied by the circumferential shear-mode resonance which
leads to the generation of regularly spaced decaying signals in the reflection. Such a
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scattering mechanism can be understood from the previous chapter where the plate
studies showed that the SH0 mode is scattered remarkably in lateral directions, which
in case of the pipe will propagate circumferentially around the pipe and then interact
again with the crack.

The aim of this chapter is to determine the reflection coefficients from cracks and
notches of a varying depth and axial length when the T(0,1) mode is traveling in the
pipe. The results of this study are important to understand the physical nature of the
phenomenon and provide some insight into the possibility of detecting and charac-
terizing this kind of defect using ultrasonic guided waves. Finite element models and
experiments on a 5 inch diameter pipe were used for this investigation. The report
focuses on the analysis of the reflection as functions of length, depth, thickness and
diameter of the pipe, and frequency of the incident signal.

The work presented in this part was the result of collaboration between the Depart-
ment of Mechanics at Tallinn University of Technology and the the Nondestructive
Evaluation Group at Imperial College London. It will result in a joint publication
[P2].

4.2 Experimental work

Experiments were performed on nominal 5 inch, schedule 120 steel pipes with an
outer diameter of 141.3 mm and a wall thickness 12.5 mm. The pipes were 3.7 m
long. Fig. 54 shows the experimental set-up. The pipes were supported horizontally
on ’v’ blocks which had a negligible effect on the wave propagation behavior in the
pipe. A milling machine was aligned so that an axial slot could be cut along the
axis of the pipe, and the axial position of the cut was changed by simply moving the
pipe along its axis. This enabled the cutting of the axial notches in an accurate fashion
without having to disturb the guided wave instrumentation. The cut was started 1.8 m
from the end of the pipe, where the transducers were located and extended away from
it. Experiments were conducted on two separate pipes, using the following notches:
a) a through thickness notch; b) an 80% deep notch. The notches were 3 mm wide
and their length was increased incrementally in steps of 8 mm from 8 mm up to 120
mm. Due to the shape of the cutting tool the ends of the notch were rounded and the
part depth notch was flat-bottomed.

The torsional T(0,1) mode was generated by clamping a transducer ring at one
end (end A) of the pipe, as shown in Fig. 54. The transducer ring was produced
by Guided Ultrasonics Ltd [93]. The ring is made up of two rows of piezoelectric
transducer elements [90], each consisting of 16 elements spaced uniformly around
the circumference. The elements impart tangential force and are oriented in such a
way as to act in the circumferential direction around the pipe. This means that only
the T(0,1) mode is excited [3]. The contact between the transducers and the pipe
was dry and no pipe surface cleaning was performed. Although in usual practice it is
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possible to control the directionality of the generated waves, by controlling the phase
difference between the two rows, this was not necessary in this test, because the ring
was at the end of the pipe, so all the transducers were excited simultaneously.

The equipment used to generate and receive the signals was a Guided Ultrasonics
Ltd. Wavemaker G3 instrument. The test signal was 5 cycle tone burst modulated
by a Hanning window. For each crack length, the center frequency of excitation was
varied from 20 kHz to 65 kHz in increments of 5 kHz. In order to obtain a reference
measurement, reflections from end B were recorded before any milling was done. As
the signals reflected from the notch were in general quite weak, the quality of each
measurement was enhanced by taking 256 averages and applying a band pass filter.

By summing up all the received signals of the transducer elements it was possible
to monitor just the reflected T(0,1) mode [44] and ignore mode converted signals re-
flected at the crack. The reflection coefficient for each crack length was calculated in
the given time domain. This was done by calculating the envelope of the time signal,
by taking a Hilbert transform, then simply dividing the value of the reflection peak by
that of the end-wall reflection peak which had been recorded in the undamaged pipe.
Since the signals are fairly narrow-band, this approach gives a reflection coefficient
which is sensibly representative of the center frequency of the signal.

Figure 54. Experimental setup of pipe testing.
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4.3 Finite Element modelling

4.3.1 The membrane model for through-thickness axial crack

The interaction of the T(0,1) mode with circumferential cracks and notches in pipes
has been successfully studied in the past using the Finite Element (FE) method [78].
A similar study was performed here to predict the scattering at an axial through-
thickness crack, using the ABAQUS software with its explicit time stepping proce-
dure [42]. The geometry of the pipe model was discretisized using two-dimensional
membrane elements, assuming a plane stress condition in the pipe wall. This ap-
proach has already been shown to work well to model the extensional and torsional
behavior of the propagating modes around the frequencies at which the experiments
were performed. However, it is not possible with this approach to simulate modes in
which there is a local bending of the pipe wall, nor to model part-through notches.

A mesh of identically sized linear (four noded) quadrilateral membrane elements
was used. The models of the 5 inch pipe represented a 3.7 m length, using 925 ele-
ments along the length and 128 elements around the circumference. As a result each
element was 4 mm long and 3.16 mm wide around the circumference corresponding
to about 12 elements per wavelength at the highest frequency used, respecting the
spatial discretization limit required for accurate modelling. Additionally, some larger
radius pipes were modelled by using more elements with the same element dimension
along the circumference. Zero-width cracks with zero stress on edges were modelled
by disconnecting adjacent elements. Notches with nonzero width were introduced by
removing elements from the model; the notches were, therefore, rectangular in shape.

The axi-symmetric torsional mode T(0,1) was generated by prescribing identical
tangential displacement time histories at all nodes at the end A of the pipe. The
central frequency of the tone burst varied from 15 to 65 kHz. The detection of re-
flected waves was achieved simply by monitoring circumferential displacements at
16 nodes, simulating the receivers, around the circumference at the end A of the
pipe. The reflected T(0,1) mode was obtained by summing all the received signals,
and the reflection coefficient measurements were performed in the same way as in
experiments. Some results were also obtained by measuring the nodal displacements
around the pipe at a location between the excitation end of the pipe and the defect.

4.3.2 3D model for part-through axial crack

The whole volume of the pipe was discretisized using 8-node ”brick” elements. Each
node of the element has three degrees of freedom (displacements in x; y; z directions)
and such elements permit a full 3D vibration analysis of the pipe. Although this
approach enables the modelling of real part-thickness notches, it is computationally
expensive due to the large number of elements.
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The 3.7 m long pipe was modelled with 925 elements along the length, 128 el-
ements around the circumference, and 5 elements through the wall thickness. Both
cracks and finite width notches were modelled 80% deep through the wall thickness.
The width of the notch varied through the thickness of the pipe wall, being 3.46
mm wide on the surface of the pipe and 2.96 mm wide at the bottom of the defect.
Excitation and monitoring locations were arranged similarly to the membrane model.

4.4 Results

4.4.1 Through-thickness notch (membrane models)

The results from the experimental data and FE simulations are presented. Typical
time records from the experiment and simulation are shown in Fig. 55(a,b). Both of
these records are for a 5 inch pipe with a notch of 56 mm in axial extent, and for a
5-cycle T(0,1) mode incident at 35 kHz. The results are normalized to the maximum
absolute displacement value of the end-wall reflection. The figures show clearly the
initial tone burst on its way towards the notch and then the reflected T(0,1) mode
at the defect and at the pipe end. Interestingly enough, the reflection consists of a
series of pulses with gradually decaying amplitudes. In this example these pulses
are spaced with a period which is approximately equivalent to the duration of the
shear wave pulse passing the circumference of the pipe. Such behavior is caused by
the diffraction at the notch, as was shown in the previous chapter for fundamental
shear mode interaction with the crack in a plate. The resulting scattering consisted of
the direct reflection and diffraction which was composed of ultrasonic shear waves
propagating in both directions perpendicularly to the crack alignment. Similarly, such
waves are generated in the present case which propagate circumferentially around the
pipe and subsequently interact repeatedly with the crack, giving characteristic echoes
after the first reflected pulse. This phenomenon affects the time-domain amplitude of
the final reflection, if the pipe is sufficiently small in diameter, and the tone burst is
to long that overlapping of signals can occur.

It can also be see from the results that there is a small time shift between the
two records and that the generated and reflected wave packets in the experimental
measurements are slightly wider than those in the FE data. The reason for this comes
from the design of the transducer ring. It has two rows of transducers which are
set apart by a specific distance, so one of the rows is slightly away from the end of
the pipe. When this ring is excited, there is an additional delayed reflection at the
near end of the pipe which distorts the shape of the incident signal. Also, we can
see that the back-wall reflection is significantly larger in amplitude than the incident
signal. This is due to the doubling of the displacement amplitudes as the measured
displacements incorporate both incoming and reflected wave fields at the end A of
the pipe [23].
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Figure 55. Predicted FE (a) and experimental (b) time record for a 5 inch pipe with a 56 mm
axial notch, and a 5-cycle T(0,1) mode incident at 35 kHz.

The variation of the T(0,1) reflection coefficient with axial length l of the notch
normalized to incident wavelength λ is shown in Fig. 56 at 30, 35 and 40 kHz. In
general, the agreement between the FE and experimental results is good. The differ-
ences between the results can be accounted for by the presence of noise. Very small
signals are being examined and the small deviations in an experimental set-up can
cause a small noise level. The reflection coefficient has similar features to that of the
plate case from the previous chapter. The predicted FE curve has small characteristic
peaks and troughs which are due to interference of reflection components at the tip
and at the far end of the notch which are not separable in the first dominant reflection
of T(0,1).

Fig. 57 shows the predicted T(0,1) reflection coefficient versus axial length of the
crack normalized to the incident wavelength for a wider range of incident frequen-
cies. If we consider a specific normalized crack length value, we observe that the
reflection ratio decreases when the frequency increases. This is not consistent with
the previous plate results, from where it is known that the reflection coefficient does
not depend on the operating frequency when the crack length is similarly scaled to the
wavelength of the incident wave for those frequencies. In the plate study the waves
were excited and monitored at a single point along the crack alignment, and the sig-
nals were beamcompensated. However, in the pipe case the reflection from a crack
spreads around the pipe and the reflection coefficient is calculated by summing all
the amplitudes of the received waves, measured at the pipe circumference. Recently,
an approximate relationship between the pipe mode and plate solutions was derived
[91] and it was shown that pipe mode amplitudes are related to plate amplitudes by
the law of inverse square root of frequency. The reduction in frequency can be also
seen in the figure.
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Figure 56. Variation of the reflection coefficient with the length of the notch normalized
to wavelength for a 5 inch pipe and T(0,1) mode incident at 30, 35 and 40 kHz; (ooo) -
experiment, (solid line) - FE membrane model with a notch, (dashed line) - FE membrane
model with a crack.
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Figure 57. Variation of the reflection coefficient with the length of the crack normalized to
wavelength at various frequencies for a 5 inch pipe.

Another difference between the curves in Fig. 57 is the remarkable increase in the
reflection coefficient of the 15 kHz result, compared to the plateau region, exhibited
by the higher frequency curves. This is due to a resonance of the different wave pack-
ets reflected at the crack. As the excitation signal was a 5-cycle tone burst, and the
circumferential extent of the pipe is slightly less than 2λ, there is an overlapping be-
tween the prime reflection, and the reflections induced later by circumferential waves
interacting with the crack. Furthermore, the lateral scattering, and thus the interac-
tion of the circumferential waves with the crack, is the strongest at crack dimensions
around l/λ = 0.7 [71].

Fig. 58(a) shows a normalized FE time signal for a 5-cycle T(0,1) wave reflected
from a 36 mm long zero-width notch at 45 kHz. The signals were monitored at 1.4
m from the pipe end A. Its magnitude of reflection coefficient in Fig. 58(b) was cal-
culated by dividing the magnitude of the Fourier transform of the full reflected signal
by that of the incident signal. Note that there are two horizontal axes (frequency and
normalized circumference) in the figure. It is interesting to observe that, it is not a
smooth function of the frequency as was found for circumferential through-cracks in
pipes [78], but there are regularly spaced peaks in the spectrum. These peaks are due
to resonance of the consecutive wave pulses reflected at the crack. The interpretation
of this can be understood by observing the reflection coefficient as a function of the
circumference lc of the pipe, measured in wavelengths of the tone. It can be seen
that the maxima of the reflection coefficient spectrum occur almost at the frequencies
corresponding to integer wavelength values around the pipe circumference. Conse-
quently, constructive interference occurs at those wavelengths, when the reflections
are an integer number of cycles behind the leading reflection. However, the results
indicate that these maxima do not occur exactly at an integer number of wavelength
values but at slightly smaller values. The reason for this is not known, but it is
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Figure 58. Results for a 5-cycle T(0,1) mode incident at an axial crack l = 36mm(l/λ =
0.524): (a) predicted FE time record and (b) reflection coefficient as the function of frequency
and pipe circumference for 5 inch pipe at 45 kHz.

believed that this is probably due to a phase delay when the circumferential waves
are reflected at the crack, giving the appearance of lengthening the propagation path.
The revealed peak-like nature of the signal can be a clear indicator of the presence of
an axial crack.

Fig. 59 shows the prediction for the reflection coefficient versus the circumference
of the pipe for a specific case of a 36 mm long crack and a 5-cycle T(0,1) tone burst
with center frequency of 45 kHz. Both the time-domain (solid line) and frequency
domain (dashed line with circles) reflection coefficients are shown. The time-domain
reflection coefficient decreases smoothly along with the increase in the pipe circum-
ference, except at low pipe circumference values, where the curve oscillates. Most of
the curve is smooth because the time domain amplitude is given only by the peak of
the first arrival wave packet, without interference from later packets. The irregularity
at a low frequency is because there is overlapping of the subsequent reflected wave
pulses from the crack. Closer examination shows that the amplitude of the reflection
is inversely proportional to the pipe circumference which is consistent with the data
above [91]. The overall reduction in the reflection coefficient with increasing circum-
ference means that it is more difficult to detect the crack of the same length in larger
radii pipes at the same testing frequency. As expected, the frequency domain results
oscillate with the variation of pipe circumference. The reason for this was explained
in Fig. 58. The frequency spectrum incorporates the summation of the amplitudes
of all the waves reflected at a crack which may, at certain pipe circumferences, be in
phase, having maxima in the frequency spectrum, or being out of phase and causing
reduction in the amplitude in the final spectrum.
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Figure 59. Variation of reflection coefficient with circumference: (solid line) - time domain
values at 45 kHz, (dashed line) - frequency domain values at 45 kHz, (solid triangle) - values
at 15 to 60 kHz for a 5 inch pipe.

An interesting correlation is observed in the time-domain results if we replot the
reflection coefficients using different incident frequencies and the same normalized
crack length. Fig. 59 shows that the reflection coefficient values, which are obtained
for a 5 inch pipe at frequencies from 15 kHz to 60 kHz (solid triangle), agree with
the above 45 kHz results, if the circumferences are similarly scaled. This means that,
in the studied frequency range for a given normalized circumference and normalized
crack length, the reflection has the same amplitude whatever the frequency is. For
example, if the pipe diameter is 125 mm, the reflection amplitude from a 62 mm long
crack at 30 kHz, will be approximately the same as that for the pipe with the diameter
of 75 mm and a 37 mm long crack at 50 kHz.

4.4.2 Part-thickness notch (3D model)

A typical FE time trace showing the interaction of a 35 kHz 5-cycle T(0,1) mode
with a 56 mm long and 80% deep notch is presented in Fig. 60. The reflection at the
notch is hardly noticeable, and its amplitude is around half the size of the reflection
amplitude of the through thickness notch of the same length. This means that the
variation of the amplitude is not linearly related to the variation of the depth of the
notch. Such behavior was observed in the previous chapter for the SH0 scattering
from a part-thickness crack and notch in a plate. As the T(0,1) is closely related to
the plate SH0, some scattering aspects for the pipe case have the same explanation.
Moreover, an approximate relationship between the solutions for plates and pipes ex-
ists [91]. Fig. 52 demonstrated that the reflection coefficient for a plate is decreasing
in a non-linear manner, when the depth of the crack decreases.

85



Figure 60. Predicted FE time record from 56 mm 80% deep axial notch at 35 kHz for a 5
inch pipe.

Figure 61. Variation of reflection coefficient with a length of the 80% deep notch normalized
to wavelength at 35 and 40 kHz for a 5 inch pipe; (ooo) - experiment, (solid line) - 3D model
with a notch, (dashed line) - 3D FE model with a crack.

The variation of the T(0,1) reflection coefficient with a normalized notch length
from the 80% deep notch is shown in Fig. 61 at 35 and 40 kHz. Although the am-
plitudes of the reflected signals were very small, the agreement between the experi-
mental and FE notch model results is quite satisfactory. Here it is important to note
that the width of the notch affects the reflection strength substantially. It is clearly
seen that the reflection from the crack in a pipe is much smaller than from a finite
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width notch at all defect lengths. Again, this is a similar result to the one found for
the scattering from a part-thickness crack and notch in a plate.

Fig. 62 shows FE predictions of the variation of the reflection coefficient with a
normalized crack length for a wider range of incident frequencies. We can see that
the maximum reflection strength is slightly weaker for higher frequencies. Compared
with the through-crack results in Fig. 57 it can be seen that the reflection strength
has dropped drastically, especially for low frequencies. The plate results in Fig. 53
showed that the reflection amplitude for part-thickness cracks decreases with the de-
creasing frequency-thickness product parameter which also occurs here in case of the
pipe.

Finally, the similarity between the reflections of the incident pipe T(0,1) and plate
SH0 mode from a crack, is shown. In Fig. 63 the frequency-domain plate reflection
coefficient results are compared with the time-domain pipe results. The FE predic-
tions have been obtained for 60% and 80% deep cracks and are normalized to the
reflection amplitude of the through-thickness crack. It can be seen that the results are
close. Therefore, it is reasonable to use the plate results for the pipe analysis. An-
other important observation from the figure is that at varying crack lengths, variation
of reflection strength with the depth is different. This means that it is not possible
to obtain the unique scale factor, which links the reflection amplitude from a part-
thickness crack, by knowing that from a through-crack of the same length, because
in general the effects of the length and depth of the crack on the scattering process
are coupled [83].

Figure 62. Variation of reflection coefficient with length of the 80% deep crack normalized
to wavelength at various frequencies for a 5 inch pipe.
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Figure 63. Predicted variation of normalized reflection coefficient with the length of crack
normalized to wavelength for 60% and 80% deep cracks. (solid line) - plate FE results, (ooo)
- pipe FE results; waves were excited at 250 kHz and the thickness of the structure was 3 mm.

4.5 Discussion

The aim of this chapter is to provide an insight into the possibility of detecting and
characterizing axially aligned cracks in the wall of a pipe. As it has been observed
above, the interaction of the torsional mode with an axial crack was influenced by
several parameters: crack length, crack depth, frequency-thickness and diameter of
the pipe. Furthermore, in practice we have to deal with the cracks the geometry of
which is much more complex compared to the idealized straight-edge crack model
used in this study. Nevertheless, some generalizations can be made with this idealized
crack model and some limits for practical testing concluded. The results showed two
important trends. On the one hand, the study of through-thickness cracks showed
that lower frequencies allowed the acquisition of larger reflections, as was seen in
Fig. 57. On the other hand, investigating reflections at part-depth cracks in plates, it
was observed that as the frequency-thickness value decreased, so did the reflection
amplitude, shown in Fig. 53. Therefore it is important to discuss where to make
the compromise using different frequencies for different pipes with different crack
lengths. In the following part we will find the reflection coefficients for an axial
through-crack in a specific defined pipe at all axial extents using FE, and will then
introduce approximation formulas to generalize the results for other pipe sizes. The
collection of reflection coefficients of the part-depth cracks in a plate helps us to
estimate the reflection strength of similar defects in pipes.
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4.5.1 The effect of frequency and pipe circumference in case of a through-

thickness crack

According to Velichko et al. [91], the reflection coefficient from a fixed sized defect
is inversely proportional to the pipe radius. Thus, for any pipe circumference, the
reflection coefficient R at a given crack length and frequency can be approximated
with the formula:

R = R0
lc0
lc
, (42)

where R0 is the reference reflection coefficient for a pipe, with the reference circum-
ference lc0, and lc refers to the circumference of pipe under investigation.

From equation ( 42), we can see another useful relation if the circumference is
given in terms of incident wavelength, which is related to the frequency. This links
reflection coefficients R for different incident frequencies at a given pipe circumfer-
ence and a normalized crack length:

R = R0
f0

f
, (43)

where R0 is the reference reflection coefficient for a pipe with the reference incident
frequency f0 and f is the required test frequency.

The advantage of the relations ( 42, 43) is that they enable us to calculate reflec-
tion coefficients for all crack lengths at different frequencies and pipe circumferences
if the reflection coefficients for all crack lengths from a specific pipe size are known.
An example which shows sensitivity limits for practical testing for a clean pipe is
given in Fig. 64 where the contour curves for 2% reflection coefficients for different
pipe sizes are shown. In this case, the reference reflection coefficients are defined for
a 5 inch schedule 80 pipe. We limit our study to the lowest frequency f = cph/2πr
(r is the mean radius of the pipe), in which case the wavelength corresponds to the
pipe circumference. As expected, it is possible to detect shorter cracks in smaller
diameter pipes and also, as the pipe size grows, the highest frequency that can be
used decreases. Another observation from this figure is that higher frequency waves
are more sensitive to shorter cracks, but the increase in sensitivity is rather slow. For
example, in the case of a 5 inch pipe, even if the frequency increases by a factor of
four, it is only possible to detect cracks that are half as long.

89



Figure 64. Variation of the crack length with a frequency for reflection amplitude 2% from
incident wave amplitude for schedule 80 pipes; results derived from FE 5 inch pipe membrane
model.

4.5.2 Estimating the smallest detectable crack depth

Evaluation of the maximum depth of a defect is one of the main targets in pipe inspec-
tion. It was demonstrated that the reflection coefficient from an axial crack of a given
length increased monotonously with depth at all frequencies, but the variation was
not monotonous over the observable range of crack length, as was shown in Fig. 62.
Therefore, the appropriate selection for maximum sensitivity would depend on the
crack length. In the studied cases, the highest sensitivity could be established when
the crack length-incident wavelength ratio was between 0.2 and 0.5 but, in general,
the exact value also depends on frequency and pipe dimensions.

From the findings in Section 4.5.1, we propose that a simplified analysis for the
crack depth estimation may be achieved by using combined results from the plate and
pipe models. An interesting outcome was that the scattering strength at a part-depth
crack in a plate can be scaled to frequency-thickness, and reflection amplitudes at a
crack can be approximated with the results from the FE plate model. Therefore, by
obtaining the normalized reflection amplitudes for different crack depths and lengths
at a specific frequency-thickness value from a plate model, it is possible, by using
additionally the equations ( 42, 43), to derive the reflection amplitudes for different
pipe sizes having the same frequency-thickness. It is also possible to derive the result
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by using the theory in Ref.[91].
Such a study was performed by modeling 3 mm thick plates with 60, 80 and

100% deep cracks. The SH0 mode was excited at 60, 100, 200 kHz and the normal-
ized reflection coefficients at different crack lengths were obtained in the frequency
domain. The additional frequency-thickness data points were obtained by making
use of the full width of the spectrum of the signal, so that the frequency-thickness
range 115...800 kHz-mm covered most of the studied pipe cases. At each frequency-
thickness product value, the reflection coefficients for different crack depths were ob-
tained by an approximate third-degree polynomial fit through the coefficient values
at crack depths 60, 80 and 100%. Thereafter, reflection maps showing the reflection
coefficient with varying crack depth and length for each specific pipe case at a fixed
frequency were created.

Fig. 65(a) shows a 3D plot of the reflection coefficient for T(0,1) at 35 kHz inci-
dent on an axial crack of a varying depth and axial length. The results are obtained
for cracks with normalized lengths up to l/λ = 0.6, where the highest sensitivity to
crack depth is expected to occur. In Fig. 65(b), the contour curves of this 3D plot
show that the satisfactory sensitivity to axial cracks can be achieved only for very
deep cracks. Furthermore, it can be seen that the sensitivity is similar for various
crack depth and length combinations, which means that it is not possible to extract
both dimensions from the measurement of a single reflection coefficient; this makes
the evaluation of the crack parameters impossible. However, it is possible to suggest
the crack length for which the sensitivity is the highest at a given frequency. For ex-
ample, in this studied case the shallowest crack with the reflection coefficient of 2%
can be detected, when the crack is 40 mm long. Similar analysis was also performed
for other frequencies and pipe sizes, and the results are shown in Fig. 65(c). There
is a clear trend for all pipe sizes showing that the detectable crack depth increases
and crack length decreases with the increase in frequency. Therefore, in practice it is
useful to test the pipe at several frequencies, as the crack length is not known.
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Figure 65. Results for schedule 80 pipes and T(0,1) mode incident: (a) 3D graph of reflection
coefficient from axial cracks with varying depth and length and (b) contour curves of reflec-
tion coefficients 1, 2, 3, 4 and 5% at 35 kHz in a 5 inch pipe; (c) variation of the crack length
with depth and frequency for a reflection amplitude of 2% from incident wave amplitude for
various pipe sizes, results are derived from the FE 5 inch pipe membrane model.
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4.5.3 The effect of the crack shape

So far the work has described wave scattering at a perfect straight-edge notch or a
crack. It was shown that the reflection from a part-thickness notch was stronger than
the one from a part-thickness crack. However, in practice these two cases rarely oc-
cur, and the shape of the defect can be much more complex having irregularly shaped
surfaces and varying depth along its axial extent, and, therefore, the scattering might
be different. The influence of the crack shape on the scattering is studied by using
the FE modelling, the depth variation is not considered. Two different cracks (a) and
(b) with constant depths of 80% and 100% of wall thickness were modelled by dis-
connecting the nodes following the regular square grid on the pipe surface, as shown
in Fig. 66(a,b). Both defects are oriented along the pipe axis and are characterized
by their width w in the circumferential direction of the pipe. These shapes do not
cover all the cases met in practice but still such a crude approach can illustrate what
happens with the reflection. Fig. 66(c) shows the time-domain reflection coefficient
as a function of the crack width w from a 24 mm long crack. The excitation was a
5 cycle tone burst at 45 kHz. It can be seen that the reflection amplitude increases
with the crack width w in both crack cases suggesting that randomly shaped axial
defects with a non-zero circumferential extent can more easily be detected than the
zero-width cracks. This trend was also confirmed for all the other frequencies from
15 to 60 kHz. Therefore, it is reasonable to assume that the zero-width crack is a
good limit for the minimum sensitivity.

Figure 66. Schematic representation of irregularly shaped cracks (a) and (b). (c) Variation of
reflection coefficient with a crack circumferential width w for the 24mm long and 80, 100%
deep crack. The results are for T(0,1) incident at 45kHz in a 5 inch schedule 120 pipe. (empty
circle) - crack (a), (solid triangle) - crack (b).
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4.6 Summary

This chapter dealt with the scattering of the fundamental torsional mode by an axially
oriented defect in a pipe wall.

The FE simulations, confirmed by experimental measurements for selected cases,
provided a useful collection of reflection coefficient results at notches of various
lengths and depths. Furthermore, the examination of the time signal identified an
interesting phenomenon of the series of wave pulses with a gradually decaying am-
plitude reflecting from a defect, which led to a periodic peak-like structure in the
frequency spectrum. The phenomenon was found to be due to the diffraction at a
notch which then, propagating in the circumferential direction, interacted repeatedly
with the notch, giving additional echoes. Thus the axial notch could be identified by
the occurrence of the peaks in the frequency spectrum. It was shown that the time-
domain reflection coefficient increases with the crack length at all frequencies but
finally reaches an oscillating regime. The reflection behavior for a through-thickness
crack can be normalized to account for the crack length, the pipe circumference and
excitation frequency. Thereby at a given frequency and crack length the reflection
decreases with the increase in pipe circumference.

The examination of the reflection coefficient as a function of crack depth demon-
strated that the reflection strength decreases substantially with the decrease in the
crack depth. The three-dimensional plate study allowed to show that the sensitiv-
ity for a given crack length drops with the decreasing frequency-thickness product.
However, in the pipe case the higher frequency reflection strength suffers from beam-
spreading of reflected waves to a larger area of the pipe. The results demonstrated
that the torsional wave is capable of detecting defects which are deeper than 75% of
the wall thickness, if the noise level is very low. The sensitivity to defects is depen-
dant on frequency, whereby higher frequencies are more sensitive to deeper cracks,
though the crack length also influences the detectability. Therefore, in practice, it is
reasonable to test at more than one frequency to avoid missing the defects due to the
unknown length of the crack. The results were shown for various pipe sizes.
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5 Conclusions

5.1 Summary of findings

In this thesis the effects of geometrical discontinuities on the propagation of guided
waves in plates and pipes were investigated.

In chapter 2, a numerical method based on normal mode expansion (NME) tech-
nique was employed for the analysis of axi-symmetric longitudinal wave interac-
tions with features in a pipe. This study brought new insights into the characteriza-
tion of wave propagation in thick pipes where the plate analogy cannot be used any
more. The curvature effect on the wave propagation was investigated in two exam-
ples. Firstly, the interaction of the compressional type L(0,2) mode with a free edge
demonstrated that there exists resonance of the pipe edge similar to that of incident
S0 mode in a plate. The NME study highlighted the importance of nonpropagating
and inhomogeneous modes in the resonance generation mechanism. It was found
that with increasing thickness to the medium radius ratio, the pipe results will in-
creasingly differ from those of the plate. This was due to the changes in the wave
field of the incident wave which led to the weakening of the resonance. Both Fi-
nite Element (FE) simulations and experimental measurements validated the main
predictions. Secondly, the interaction of the L(0,2) mode with surface breaking cir-
cumferential cracks was examined. It was shown that sensitivity to outer surface
cracks, compared to inner cracks, increased gradually with the increase in the wall
thickness of the pipe.

A study of the scattering of the SH0 mode from a defect was presented in chapter
3. FE simulations and experimental measurements showed that SH0 mode is sensitive
to a crack which is aligned in the direction of the propagating mode. This is due to
its wave field which is perpendicular to crack orientation. The scattered field at the
crack consisted of the SH0 modes, which were reflected in the incident direction
and diffracted at the lateral directions. The results revealed an undulating shape of
the reflection amplitude as the function of defect length. The influence of different
surface waves, propagating along the defect faces on the scattering, was explained.
The scattering weakened when the crack depth or excitation frequency was decreased.
The study on SH0 in a plate was an effective starting point for a more complicated
analysis of reflection from similar defects in pipes.

In chapter 4, a systematic analysis of effect of pipe size, defect size and excitation
frequency on the reflection of the T(0,1) mode from axial defects in a pipe was carried
out. As an interesting phenomenon, a series of wave pulses reflected from a through-
thickness crack, was observed in a time signal. This was due to diffraction at a
notch which then, propagating in the circumferential direction, interacted repeatedly
with the crack, giving additional echoes. Its spectrum showed a strong frequency
dependence which could be an indicator of such defects. The reflection behavior in
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the time-domain for a through-thickness crack can be normalized to account for the
crack length, the pipe circumference and excitation frequency. Thereby, at a given
frequency and crack length, the reflection decreases along with the increase of pipe
circumference. The examination of the reflection coefficient as a function of crack
depth demonstrated that the reflection strength decreases substantially along with the
decrease of the crack depth. The maps of reflection coefficients, as a function of crack
length and depth, showed that the evaluation of both parameters is not possible. The
study showed that the torsional mode is capable of detecting very deep axial cracks.

5.2 Recommendation for future research

The topic on the interaction of guided waves with discontinuities is still attractive.
It is desirable to understand the scattering from defects with complex geometry.
The first step for the L(0,2) mode study could be the development of the wave-
guide model with irregularly shaped defects. This could be achieved by modelling
the defect as a superposition of small steps which then are connected with proper
boundary conditions. Another important area that could be investigated is the three-
dimensional scattering in plate and pipe structures.

Secondly, the study with the torsional mode T(0,1) showed that the reflection from
an axial crack is quite weak and its sizing and circumferential positioning is compli-
cated. However, recently it has been demonstrated [94] that it is possible to use the
same torsional mode for imaging of pipe features. The pipe image which is recon-
structed by using synthetic focusing of the recorded signals shows the information
about the location and severity of defects. Moreover, it has been shown that there is a
large increase in defect sensitivity when using this technique over simple screening as
used in this work. This might be helpful in detecting and characterizing axial defects
in pipe-lines. The research on this has already been started and the first results will
be reported in [P1].
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Abstract

The thesis investigates some aspects of the wave propagation and interaction with
discontinuities in an isotropic plate and cylindrical pipe. The motivation comes from
the need to find and characterize defects in plate structures and pipe-lines by em-
ploying non-destructive testing procedures which are based on long range ultrasonic
guided wave measurements. Two main themes are addressed.

The first part examines the interaction of axisymmetric longitudinal wave with
a free edge of a pipe and circumferential crack. The problems are analyzed with a
two-dimensional waveguide model by employing numerical method based on nor-
mal mode expansion and finite element simulations. It is shown theoretically and
experimentally that in case of the incident L(0,2) mode the pipe edge resonance phe-
nomenon at a specific frequency exists. The importance of the inhomogeneous and
nonpropagating wave modes on the resonance generation mechanism is explained.
Also, the influence of pipe curvature on the phenomenon is studied. The reflection
analysis of the L(0,2) mode from surface-breaking circumferential cracks helps to re-
veal differences between scattering from inner and outer surface crack in thick-walled
pipes.

The second part studies the ways how to detect cracks in plates and pipes which
are aligned in the direction of the testing wave. Shear horizontal mode SH0 in a plate
and torsional mode T(0,1) in a pipe are used for such tests. Both waves have the
wave field perpendicular to the propagation direction of the wave and therefore are
expected to be sensitive to such defects. Finite element method and experiments are
used to investigate the scattering from a defect. A systematic analysis of the effect
of crack length, depth, excitation frequency and plate/pipe geometry on the reflection
from cracks is presented and the defect detection possibility is discussed.
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Kokkuvõte 
Käesolev töö uurib mõningaid aspekte lainelevist ja lainete interaktsioonist 
geomeetriliste iseärasustega isotroopsetes plaatides ja silindrilistes torudes. See 
uuring on vajalik ultrahelil põhinevate mittepurustava kontrolli meetodite täiusta-
miseks, mille eesmärk on hõlbustada defektide avastamist ja iseloomustamist. 
Vaadeldakse kahte teemat. 

Töö esimeses osas uuritakse telgsümmeetriliste pikilainete interaktsiooni toru vaba 
servaga ning toru ringsuunalise praoga. Antud probleeme analüüsitakse kahemõõt-
melise lainejuhi mudeliga, mida lahendatakse normaalmoodide superpositsiooni 
meetodit ja lõplike elementide meetodit kasutades. Näidatakse teoreetiliselt ja 
eksperimentaalselt, et teatud sagedusel põhjustab lainemood L(0,2) toru serva 
resonantsi. Selgitatakse mittehomogeensete ja mittelevivate lainete tähtsust reso-
nantsi tekkemehhanismis. Samuti vaadeldakse toru kõveruse mõju antud prot-
sessile. Lainemoodi L(0,2) peegelduse analüüs toru ringsuunalistelt pragudelt aitab 
välja tuua erinevused lainete hajumises toru seina sise- ja välispinna pragudelt pak-
suseinalistes torudes. 

Töö teises osas uuritakse, kuidas oleks võimalik avastada plaatides ja torudes 
pragusid, mis on suunatud kontroll-laine levimise suunas. Selleks kasutatakse 
nihkelainet SH0 plaadis ja väändelainet T(0,1) torus. Mõlema laine laineväli on risti 
laine levimise suunaga, mille tõttu nad võivad olla tundlikud selliste defektide 
suhtes. Defektil hajunud lainevälja uuritakse lõplike elementide mudeli abil ning 
eksperimentaalselt. Teostatakse süstemaatiline analüüs, milles käsitletakse prao 
pikkuse, sügavuse, testsageduse ja plaadi/toru geomeetria mõju praolt peegeldunud 
laine parameetritele ning diskuteeritakse prao avastamise võimalikkuse üle. 
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Lainelevi modelleerimine elastsetes struktuurides

9. Teised uurimisprojektid

Vedeliku ja konstruktsiooni koostoime mehaanika
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