
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Oleksandr Shabala 177229 IASM

DESIGN AND DEVELOPMENT OF MOBILE-
ORIENTED SOCIAL NETWORK. CLIENT

SIDE

Master's thesis

Supervisor: Eduard Petlenkov

Professor

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Oleksandr Shabala 177229 IASM

MOBIILSE SOTSIAALVÕRGUSTIKU
PROJEKTEERIMINE JA ARENDAMINE.

KLIENDI POOL

Magistritöö

Juhendaja: Eduard Petlenkov

Professor

Tallinn 2019

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Oleksandr Shabala

06.05.2019

3

Abstract

This thesis is written in English language and is 77 pages long, including 7 chapters, 62

figures and 2 tables.

4

Annotatsioon

Mobiilse sotsiaalvõrgustiku projekteerimine ja arendamine. Kliendi

pool

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 77 leheküljel, 7 peatükki, 62

joonist, 2 tabelit.

5

List of abbreviations and terms

UI User Interface

UX User Experience

RN React Native

JS JavaScript

JSX JavaScript-XML

MVP Minimum Viable Product

OS Operating System

NPM Node Package Manager

SDK Software Developer Kit

IDE Integrated Development Environment

6

Table of Contents

1. Introduction...12

2. Analysis of platforms for mobile application development…………………………13

2.1. Analysis of Android and iOS platforms for mobile application development…….13

2.2 Development complexity…………………………………………………………...15

3. Analysis of React Native development and Platform-Native development and their

comparison……………………………………….………………………….………….19

 3.1 React Native Development……………………………………………………...19

 3.1.1 React Native Description…………………………………………………...19

 3.1.2 Advantages of React Native Development…………………………...…….20

 3.1.3 Disadvantages of React Native Development……………………..………..22

 3.2 Native Development …. ………………………………………………………..23

3.2.1 Native Development Description…………………………………………...23

3.2.2 Advantages of Native Development………………………………………..23

3.2.3 Disadvantages of Native Development……………………………………..24

 3.3 Conclusion and selection of application development method…………………24

4. Product Overview and MVP………………………………………………...………25

 4.1 Product Overview…………………………………………….………………...26

 4.1.1 Existent problems/targets that MovieGo tends to solve/ reach……….….....26

 4.1.2 The importance of the problem……………………….….…………………26

 4.1.3 Alternatives……………………………………………….….……………...26

 4.2 Solutions………………………………………………………………………...27

 4.3 Minimum viable product………………………………………………………..28

 4.3.1 Requirements for MVP……………………………………………………...28

 4.3.2 MVP’s design……………………………………………………………….29

 4.4 Areas for improvement……………………………………………………….....34

5. Developing UI toolkit for React Native……………………………………………..35

6. Implementing client – side application………………………………………………44

 6.1 Screens example and description………………………...………………….…..44

7

 6.2 Client description………… ……………………………………………………..50

 6.2.1 Navigation…………………………………………………..……………..50

 6.2.2 Validation process………………………………..………………………..53

7. Summary……………………………………………………………………………..56

References………………………....…………………………………………………...57

Appendix……………………………………………………………………………….59

8

9

List of Figures

Figure 1. Worldwide Operating System Market for Android and iOS………………..13

Figure 2. European Operating System Market for Android and iOS………………….14

Figure 3. Initial screenshot…………………………………………………………….29

Figure 4. Movie description…………………………………………………………...29

Figure 5. User’s Avatar that lead’s to their profile……………………………………30

Figure 6. Invitations list with an ability to accept/decline…………………………….30

Figure 7. List of self-sent invitations………………………………………………….31

Figure 8. List of followers and their interests…………………………………………31

Figure 9. Chats with other users……………………………………………………….32

Figure.10. Chat conversation between 2 users………………………………………...32

Figure 11. Side bar menu……………………………………………………………...33

Figure 12. Manage personal information……………………………………………...33

Figure 13. Setting filters ………………………………………………………………34

Figure 14. Usage of Avatar component example……………………………………...35

Figure 15. Usage of DefaultButton component example……………………………...36

Figure 16. Usage of HeaderBackButton component example………………………...37

Figure 17. Usage of PrivacyButton component example……………………………..37

Figure 18. Usage of TextButton component example………………………………...38

Figure 19. Usage of CheckBox component example………………………………….39

Figure 20. Usage of Date-Picker component example………………………………..40

Figure 21. Usage of Gender-Picker component example……………………………..41

Figure 22. Usage of Input-fields component example………………………………...42

Figure 23. Usage of LocationPicker component example…………………………….42

Figure 24. Usage of Text Element component example………………………………43

Figure 25. Splash Screen………………………………………………………………44

Figure 26. Initial screen……………………………………………………………….45

Figure 27. “Forgot your password” screen……………………………………………45

Figure 28. Right email, valid length of the password…………………………………45

Figure 29. Sing In pressed when the fields are empty………………………………...46

Figure 30. Sing In pressed when email is not valid…………………………………...46

Figure 31. Right Email, no password………………………………………………….47

Figure 32. “Sign Up” screen…………………………………………………………..47

Figure 33. Not valid length of the password…………………………………………..48

Figure 34. SingUp Screen Error, everything is empty………………………………...48

Figure 35. All the information filled in on the Sign Up page…………………………49

10

Figure 36. Personal information fields are filled in…………………………………..49

Figure 37. Navigation Stack ………………………………………………………….50

Figure 38. AuthLoadingScreen ………………………………………………………51

Figure 39. Handle login function …………………………………………………….51

Figure 40. Auth screen………………………………………………………………..52

Figure 41. Yup schema example……………………………………………………...54

Figure 42. Formik component….……………………………………………………..55

Figure 43. Code example of Avatar Component……………………………………..58

Figure 44. Code example of Avatar Component – Prod……………………………...59

Figure 45. Code example of Avatar Component – Continuation……………………..60

Figure. 46 Code example of Avatar Component – Continuation…………………….61

Figure 47. Code example of Avatar Component – Continuation……………………..62

Figure 48. Code example of Avatar Component – Continuation……………………..63

Figure 49. Code example of DefaultButton Component ……………………………..64

Figure 50. Code example of HeaderBackButton Component………………………...65

Figure 51. Code example of Privacy Button Component………………………….....66

Figure 52. Code example of TextButton Component ………………………...……...67

Figure 53. Code example of CheckBox Component…………………………...……..68

Figure 54. Code example of date-picker component……………………..…………..69

Figure 55. Code example of date-picker component – continuation………….……...70

Figure 56. Code example of date-picker component – continuation………...……….71

Figure 57. Code example of gender-picker component………………………….…...72

Figure 58. Code example of gender-picker component – continuation………….…...73

Figure 59. Code example of gender-picker component – continuation……………....74

Figure 60. Code example of input-fields component………………………………....75

Figure 61. Code example of location-picker component…………………………......76

Figure 62. Code example of TextElement component……………………………......77

11

List of Tables

Table 1. Infographic of the most significant metrics about iOS and Android platforms.17

Table 2. MovieGo application…………………………………………………………..18

1. Introduction

 Technical advances of the Internet and mobile technologies have promoted new forms

of social communication, allowing the maintenance of large distributed networks of

contacts. Under these “new forms” we mean Social networks, mainly. Such tools can

either complement or replace face–to–face meetings.

 Initially, the main goal of social networks was to make communication much easier and

more accessible for people. With appearance of the very first social networks people

switched from sending letters to each other by post to sending electronic messages,

which were delivered instantly to the recipient. No doubts – that is a great progress.

 However, with the time social networks, gaining more and more popularity among the

society shown the other side of the medal – instead of complementing people’s real

communication – they are quit often tend to replace face-to-face meetings.

There is quite vast spectrum of factors influencing this, which even can be considered in

a separate thesis, however – we got an obvious need for social network to be the one

that besides virtual communication also encourages people’s real communication.

 That’s what this thesis is about – Developing a social network, which will gather

people by a common interests – films and will effectively encourage real communica-

tion, thus making virtual communication actually a useful one.

 Since nowadays, because of the most people’s lifestyle and temp of living, the most

popular and effectively used social networks are the mobile ones – the goal is to de-

velop, first of all, a mobile-oriented social network.

12

2. Analysis of platforms for mobile application development

2. 1. Analysis of Android and iOS platforms for mobile application
development.

When starting developing any mobile application – first thing that shall be paid atten-

tion to is the platform that will be used for development. Most widely used mobile plat-

forms are iOS and Android, so usually we’re choosing between them.

This choice depends on several major factors:

- The ratio of usage of both platforms among the target audience;

A well known fact – the only producer of iOS devices is Apple. But when talking about

Android phones – there are numerous different companies that produce these devices.

As a result, it creates high competition on the market, which leads to the lowing the

price of Android devices down, which, in it’s turn, gives Android the major part of the

market share. Here’s a chart that reflects this situation [1]:

Fig 1. Worldwide Operating System Market for Android and iOS

13

As we see – the major part of mobile users worldwide prefer Android – 75.66% against

iOS 19.23%.

In Europe situation is a bit different - 72.77% for Android and 26.21% for iOS users [2]

– but still Android takes the lion part of the market share:

 Fig 2. European Operating System Market for Android and iOS

- User payment capacity;

Statistics shows that the iOS users spend 45% more money on in-app purchases than the

Android users[3]. This fact shall be certainly taken into account in case if the app’s

main revenue model is build mainly on the in-app purchases, even though that Android

holds larger part of market share.

- Brand loyalty;

92% of iPhone users say that their next device will be an iPhone too [4]. Among the

vendors of mobile phones running on Android this number is significantly smaller

14

(Samsung – 72%, LG – 59%, others much less). That also increases the possibility of

selecting an iPhone as a new phone for these users which will, obviously, increase the

number of iOS users more and more each year.

So, today it is clear that if you’re building a free app, without any in-app purchases the

most critical parameter will be the area where you want to launch the application and

percentage of people using certain platform. For Europe – makes sense to go with An-

droid.

If the revenue model of the application is build mainly on the in-app purchases and/or

the application itself is paid, then obviously iOS users would be a better target audience.

However, there are many other points described in the following paragraphs that influ-

ence the choice of the platform for the application.

2.2 Development complexity

Of course, the crucial point on which the app’s complexity depends on – is the desirable

functionality set. Another important parameter – is the platform. The main factors that

determines development complexity are next:

- Hardware

In order to build an Android application – almost any computer can be good for that

(Windows, MacOS, Linux – all are fine). But only Mac computer can be used for devel-

oping an iOS app.

- Compatibility

When dealing with the modern projects, it is a better idea to choose newer technologies

for this purpose. So makes sense to go with Swift and Kotlin programming languages,

rather then sticking to older Objective C.

15

But here, the main questions that rises up is the compatibility of these languages. For

example, Kotlin is completely compatible with Java, which means that you can use all

of the countless libraries, frameworks for Java in the Kotlin project. Moreover, in fact

even switching from one programming language to another is possible.

That cannot be said about Swift. Newer Swift is not 100% compatible with Objective-C.

Here’s where a lot of compatibility issues arise, which creates more headache for the

developer. Along with that, the same framework can be more compatible with one code

version (e.g. Swift 2) but less compatible with another (e.g. Swift 3) or vice versa, since

the compatibility of every code version is different.

- Code

Also, it should be taken into account that there’s constant development and, thus,

changes of the programming languages. Newer versions are getting more and more ad-

vanced. New, updated versions are more universal and advanced. This is good, however

it leads to another point – when the updated version of the programming language is

way different from the previous one - as in the case with Swift, which makes the devel-

opment process harder, when dealing with projects, written in the previous versions, and

even when writing new project – it takes time to get used to the new version.

- Device Fragmentation

Today there are 14 iPhone models in regular use. With Android devices – situation is

quite different. Nobody even know exactly what is the number of existing Android

phones, all different in sizes and shapes.

This is what we call “device fragmentation”. When building an app specifically for An-

droid – it is reasonable to select some certain devices and screens, which will be suppor-

ted by the application, which definitely has it’s influence on the costs and makes devel-

opment more complicated.

Beside that, the number of different OS systems that are currently in use is much greater

than in the case with iOS, and that rises one more fragmentation problem.

With all these points – it is obviously very hard to build an app, which will be compat-

16

ible with all devices running on all OS versions and all devices, since it eats a lot of

time and money.

 - Interface peculiarities

Both Google and Apple want the apps in PlayStore and AppStores respectively to look

like native ones, as they sell those (or distribute) and want their users to get some qual-

ity guaranties.

For that reasons, they both created guidelines for the app’s design – to give an app a re-

cognizable look among countless number of applications in the stores. These guidelines

can be different but in any case they are quite easy to follow.

The major difference between Google and Apple apps is that the second ones are very

strict in their requirements, which are precisely checked when the app is under review.

Google also prefer to go along with the main design principles, but still – gives an op-

portunity for innovation.

Conclusion:

Table 1 below shows both platforms comparison in regards of target users in a simple

way [5]:

19 % Market share 75%

76 % % of users running

latest OS version

5.7 %

More loyal users User loyalty Less loyal users

North America, Europe,

Australia

 User demography Europe, Asia, Africa

 Table 1. Infographic of the most significant metrics about iOS and Android platforms

17

In order to check which one (or both) would be more reasonable to start with, let’s

check the requirements of the MovieGo application:

User demography Globally

Application cost/fee for users Application is free

In-app purchases Yes

OS version updates needed Yes

 Table 2. Requirements of the MovieGo application

Since the plan is to make the application available globally (even-though starting with

Europe) – it’s certainly not an option to stick only to one platform.

So, if starting simultaneously with both iOS and Android platforms - we need to choose

the way of development:

 - Native development separately for each platform (using Java/Kotlin for Android and

Objective C/Swift for iOS);

 - Cross-platform development (using React/React Native).

Pros and Cons of each method is described in Part 3.

18

3. Analysis of React Native development and Platform-

Native development and their comparison.

3.1 React Native Development

3.1.1 React Native Description

React Native is the framework for cross-platform development, which is based on Re-

actJS and JSX.

When React Native has just entered the market it was extremely popular – framework

developed by such a giant company was causing trust among a lot of companies, who

started developing their projects with the help of React Native.

One of the RN’s advantages is that it is capable to facilitate the design system’s use and

maintain also atomic-oriented components among mobile platforms and across the web

as well. React Native has libraries which are strengthening this ability.

Beside that, it respects both iOS and Android design peculiarities – RN’s components

compile to the native ones and it is shown as a native component on each of those.

Since React Native uses native layout components – it gives a possibility to make com-

pelling UIs that are basically identical to the native iOS or Android application. It’s

code is shared through both of these code bases, however for example for the design

elements (styles, views and so on), JSX uses native for the appropriate platform com-

ponents for creating the layout for the corresponding platform (iOS or Android). This is

actually the reason of the name of the framework – React Native.

On the other hand – it’s only possible with either default components or some another

ones, which are implemented in different ways on each platform, thus, it’s casing a kind

of snag since because of that many applications have to work out a solution which will

help to prevent breaking of some features on one or another platform.

19

It is also so that it gives a possibility to use platform specific code and makes use of the

native modules for both platforms.

So React native has definitely found it’s place and probably holds the leading position

when considering community and production experience.

3.1.2 Advantages of React Native Development

 - Development speed

The biggest advantage of React Native is that development time is much shorter. It

provides a lot of ready components, which can speed up the process. Actually, RN is not

ideal and sometimes happens that some solutions should be built from the scratch, how-

ever React Native is based on JavaScript, meaning that it has access to the NPM, which

is biggest package ecosystem. Since you can access so large package base – it saves a

lot of time already now, and, most probably, it will even be better in the future. As the

number of products built with RN is growing and the new updates are coming out regu-

larly, in most cases it is possible to find needed components for most cases.

Investigation shows that to built the very same app with Swift takes as much as 33%

more time than with React Native and still it will be working only on iOS – with no An-

droid version [5].

Also, RN allows to share the codebase between OS in a matter of few hours, so it helps

to save both time and money when developing apps for both platforms.

- Usage of one framework for several platforms

React Native allows to share the bigger part of the codebase between both OS in a mat-

ter of few hours. Actually, full cross-platform development is doable in certain extents,

depending on how many native modules are used in the app.[6].

In MovieGo application 2 modules are currently used:

 - react-native-splash-screen [7,8]. (See paragraph 6.1 for the splash screen picture and

Appendix 1 for code example).

20

 - react-native-gesture-handler [9]- for routing between multiple screens.

More details see in paragraph 6.2.1

Some features are present in NPM packages, some others may need to be written from

the scratch, though. The good thing is that the framework is constantly improving, as it

is supported by community – more and more tools are being added to the open source.

JS Development also makes it possible to share the codebase between React Web apps

(not only between mobile platforms). That means that it is even possible to work on

web applications and mobile ones both – because of the pretty similar technologies.

From one side – it is a question how stable such solutions are, but in any case – it is still

quite beneficial to be able to share non-UI dependent code. And in addition to shorten-

ing the time of development, it also helps improving the consistency of business logic of

the application between the supported platforms.

- Hot Reloading

Because of the hot reloading you can run the application while implementing updates

and setting the UI. Thanks to that the changes are applied without rebuilding the applic-

ation, which is surely a great plus, because firstly, it saves the compilation time and

secondly – it doesn’t loose any app’s states while applying these changes. It raises pro-

ductivity and shortens the time of the development process.

- Single Team

Another major advantage of RN, in my case in particular, is that I don’t have to develop

iOS and Android app separately, which simplifies the development itself and also –

doesn’t slow down the process.

- Speedy Apps

There are a lot of debates that React Native code may obstruct the performance of the

app.

In fact that’s true, since JS is not that fast as native code, however this difference is so

small that can be neglected – the average end user won’t even see it in most cases. In-

deed, when developing some more complex applications, I assume that RN’s efficiency

will inferior to native code, but even in those cases it is possible to switch to a native

module and transfer some part of the code there, so it’s not such a big issue.

21

- Simple User Interface

React Native is very convincing when dealing with mobile UI creation. In the case with

native development, you have to make a sequence of actions in your app, and React

Native engages declarative programming, where such implementation of actions is out-

dated. So it’s way easier to detect errors and bugs on the user’s paths [11].

3.1.3 Disadvantages of React Native Development

- Navigation issues

React Native is already widely used in production by numerous companies, however we

can’t say that it’s the best solution in any case. Pretty often some changes in tools and

dependencies appear between different versions and this causes issues – for example,

failures of hot reloading, not compatible packages and so on. In it’s turn it slows down

the development.

 - Absence of Some Custom Modules

Despite being so advanced platform, React Native still lacks some components and

some are kind of “underdeveloped”. In fact, there weren’t such situations with MovieGo

app, as the custom modules that were needed were found well-documented and they

properly work. Still, this probability needs to be pointed out. It can also be so that it will

be needed to create own solution or somehow modify the one that exists. And if you de-

velop a custom module – instead of one codebase you can eventually have 3 codebases

(iOS, Android and React Native), in each of which there may be obtained some appear-

ance and behaviour differences. Luckily, there’s a very low probability of such occa-

sion.

 - Performance Issues

When making rather simple apps, then React native is, without doubts, the best solution

because of all the advantages mentioned above.

However, when some more advanced functionality is required, then performance goes

down in comparison to applications created with platform-specific logic.

22

3.2 Native Development

3.2.1 Native Development Description

Native applications are the ones developed for some specific platform using the respect-

ive programming language – Java or Objective C/Swift for Android or iOS applications

respectively.

Native applications work on the OS of the device. They do require full access to all the

device’s functionality and hardware and they are placed on the device.

Both Android and iOS provide developers with standard SDK – a kit with a set of

needed tools, code examples and documentation, libraries and guides for developing an

app on the platform.

These SDKs, together with the set of tools native app development gives great perform-

ance and nice UX.

Apple’s XCode and Google’s Android Studio are specially created IDE - software

suites, which consist of editor, compiler and debugger of the code. These suites are very

comfortable to use when to write and test the software.

IDE’s raise up the application development efficiency, as it fixes bugs and shortens the

time of development process.

3.2.2 Advantages of Native Development

 - Higher Speed

As these are native applications – they work faster, because they work with the existent

features of the device and it receives the user’s data from the web, not the whole app.

23

https://developer.apple.com/xcode/features/

 - Common well-known look and UX

Native apps are kind of modified versions of the default applications of the device.

When some function is performed by the user – it gives him a possibility to figure out

the way how this application works, since it’s quite similar to they way how all the

other apps on that device work. Native apps have an advantage here, because mobile

apps that want to play an upper hand here, as mobile applications that try to imitate the

appearance and usage peculiarities of native ones often fail.

 3.2.3 Disadvantages of Native Development

- Flexibility lack

You have to write code separately for each platform.

 - Development and Maintenance Peculiarities

Because of the above mentioned statement - more people are needed not only to develop

an app but also for post development maintenance, again, for each platform, iOS and

Android, separately. Which also leads to more expenses.

 - Development process consumes more time

Since you can’t develop an app for both platforms simultaneously, but need to do it sep-

arately for Android and iOS, then in case if you can’t hire people to work separately on

iOS and Android development – it will take much more time to develop the application

for each platform, comparing to RN development.

3.3 Conclusion and selection of application development method

So, taking into account all the pros and cons in this certain situation, more suitable solu-

tion will be to go along with React Native development, as it allows to simultaneously

develop application for bot Android and iOS platforms, and thus doesn’t require more

people for separate development for iOS and Android. As for the running speed of the

app – indeed it will be slower as in the case of native development, however, in this

case the difference will be minor and can only be visible when applying some perform-

ance test, which is not a crucial point for the user.

24

4. Product Overview and MVP

4.1 Product Overview

4.1.1 Existent problems/targets that MovieGo tends to solve/reach

The pain point for the target user is a great improving of a social aspects of the everyday

life. With the help of the MovieGO app it’s possible to just grab your phone – see what

are the most relevant movies in the nearby cinemas, choose the one you like, buy tickets

and GO! But, in contradiction to other similar services – the user doesn’t have to go

alone (in case if no friends are available right now). It’s possible to see other people

who are interested to see this particular movie at the same time which is suitable for you

and in the same cinema. With just clicking a button you already have a good plan for

this evening, and, it’s not ending there at the cinema – you’ve just made a new friend –

why not to prolong your good time? Have a walk, discuss the movie you’ve just

watched or do whatever you want – it’s up to you – you will definitely have a great

time. Before, when people wanted to visit a cinema – they used some kind of checking

service, buying tickets, watching the movie and that’s it. Of course, there’re a plenty of

incredible movies nowadays and another plenty of them are going to see the world soon,

but it is much more cool to watch the movie with someone else – it’s becoming more in-

teresting and it’s not only up to a movie then. Meet new people, make cool acquaint-

ances, have fun and see the life from a different, much more brighter angle – that what’s

the user gets from the MovieGO! Absolutely for free.

Another important point that MovieGo encourages people to do charity. And, it is not

only about the customers but also rather Cinemas as well. It’s possible for Cinemas to

give the customers an opportunity to buy a ticket a bit cheaper and spend the difference

on charity. Thus, it will encourage users to visit the cinemas more and more often for

various reasons: tickets are cheaper, now it’s much more entertaining than before, and,

along with all these – they can help others. And everybody wins!

25

4.1.2 The importance of the problem

The significance of these points is obvious. It is brand new page of the people’s social

life. Starting from improving the esthetic aspects of watching the movie, improving the

social integration and interaction of the society, differing the daily routine and ending

up with charity. Moreover, it’s not only related to the actual private users of the applica-

tion, but also the cinemas as well – as it is the additional source of promoting their

activity.

- Using MovieGo users can solve all the problems and gain the opportunities mentioned

above, mainly:

- Immediately find a buddy you’d LIKE to go for a movie with and book/buy a ticket at

once, using one application.

- Make a new acquaintance with a person/people you like or with somebody new

without any fears of seem weird as you are sure that these people are pursuing the same

goal.

- Not making any efforts to do the above mentioned (e.g. with thinking how to compose

a message to be liked or to attract) as it possible just to press a button to invite some-

body.

- MovieGo has more simple interface than other movie checking services, so you won’t

spend time figuring out how to choose an appropriate movie in an appropriate cinema.

Just scroll the main feed page with all the movies sorted by relevantness.

- Involves you into charity projects. You don’t need to do or even spend anything (un-

less you want it), but anyway will help those who needs your help.

- Allows more organizations (cinemas in particular) into charity projects. Provides the

cinemas with an additional wide source of promotion of their activity.

4.1.3 Alternatives

Currently there are no alternatives which allows to get all these benefits (you’re basic-

ally help people in need by having fun and making your life better) – in just one app.

There are different booking services where you can book/buy a movie ticket, also

there’re different charity platforms as well (but only minority of people cares about that)

26

and for sure there’re a plenty of social networks, dating services, etc, but the first ones

are used in more wide purposes and are not strictly related only to people’s spontaneous

communication (in other words: it may look weird to invite a stranger for a movie in an

original social network) thus in many cases it stops possible communication (especially

between unknown people). MovieGo gives people some common purpose, uniting them

together.

4.2. Solutions

Using MovieGo users can solve all the problems and gain the opportunities mentioned

above, mainly:

- Immediately find a buddy you’d LIKE to go for a movie with and book/buy a ticket at

once, using one application.

- Make a new acquaintance with a person/people you like or with somebody new

without any fears of seem weird as you are sure that these people are pursuing the same

goal.

- Not making any efforts to do the above mentioned (e.g. with thinking how to compose

a message to be liked or to attract) as it possible just to press a button to invite some-

body.

- MovieGo has more simple interface than other movie checking services, so you won’t

spend time figuring out how to choose an appropriate movie in an appropriate cinema.

Just scroll the main feed page with all the movies sorted by relevantness.

- Involves you into charity projects. You don’t need to do or even spend anything (un-

less you want it), but anyway will help those who needs your help.

27

- Allows more organizations (cinemas in particular) into charity projects. Provides the

cinemas with an additional wide source of promotion of their activity.

4.3 Minimum viable product.

4.3.1 Requirements for MVP

So, minimum viable product is the application, where you can:

1. Register with the help of email or Facebook

2. Log in

3. See the list of movies in a certain area

4. Go to the Movie page, see the description of the film.

5. “Like” a film and see other’s who liked it in the same area.

6. Send and receive invitations for a movie.

7. Follow users.

8. Track history (Likes, and visited movies)

9. See my plans (movies marked as the ones you’d like to go and all the info about it)

10. Chat with users (1 to 1 chat).

28

4.3.2 MVP’s design

 Fig. 3 Shows the initial screen of the app (home
page), which user can see once signed in.

Here you can see the list of movies which are currently
showing at cinemas. You can scroll down to see the

whole list of movies, click “Go” button and after that
users that are visiting this movie page will see you in
the list of people who’d like to go for that movie (See.

Fig. 2) or “like” a certain movies and then check it
from the Bookmarks page (which will be implemented

later on).

 Fig. 3 Initial Screen

Fig. 4 shows the page that you reach when clicking on
any movie card presented on the previous screen Fig.
4). Here you will see the description of the movie and

People, who’d like to watch it.

 Fig. 4 Movie description

29

You can also click on users avatar and see their profile, where you can also see the list
of movies this user is interested in and invite a user to watch it together, like shown on
Fig. 5

 Fig. 5 User’s Avatar that lead’s to their profile

 Invited user will be able to see his/her invitations and confirm/decline it on the invita-
tions page Fig. 6

Fig. 6 Invitations list with an ability to accept/decline

 And the one who invites, can see all his/her sent invitations and their statuses as well
(Fig.7).

30

Fig. 7 List of self - sent invitations

Also, a user can follow other users to see what movies are they interested in, and any
other info they post on their page (this feature will be implemented later). User can al-
ways check his/her list of followers as shown on Fig. 8

Fig. 8 List of followers and their interests posted on their page

Also, users can chat with each other(Fig 9, 10). Currently only the chat between two
people is considered for MVP, however it is possible to add a group chat option later
on.

31

Fig. 9 Chats with other users Fig. 10 Chat conversation between 2 users

32

When you press on the “burger” on the top left
corner of the main page (as shown on fig.3) a side
bar menu will appear (Fig.11). From here user can

go to all the other pages of the app: Homepage
(Fig.3), Invitations (Fig. 6,7), Followers (Fig. 8),

Chats (Fig 9, 10), Settings page where you can set
and edit your personal information (Fig. 12).

 Fig. 11 Side bar menu

 Fig. 12 Manage personal information

33

and also set the filters (Fig. 13) of users
you’d like to see under the list of people

that are interested in going for some certain
movie (Like shown on Fig. 4).

 Fig. 13 Setting filters

All these pages are necessary for MVP. Also, it is planned to add Bookmarks page,
where user could see all the posts he liked, Cinemas page – with the list of cinemas in
your location and News page – just for some interesting info, facts, announces about
movies, actors, etc.

4.4 Areas for improvement

1. Enlarge the area of service.

2. Provide a possibility to buy a ticket directly through the app.

3. Create a Group chat option.

4. Create a Feed line – interesting news from the film industry (kind of blog).

5. Usage of micro services backend architecture instead of monolithic architecture

34

5. Developing UI toolkit for React Native

avatar/
 Avatar.js #Avatar component. See Figures 1-6. in Appendix
1 for code example. It works as a placeholder for the user’s photo. With it help user up-
loads image to the server.

Example of usage of Avatar component on the client:

Properties of Avatar component:

size => string or number: Size of the main View.

• OnPress => function: Handler to be called when the user taps on the avatar.

• BackgroundIcon => number: Path to the icon that will be located inside the

avatar (instead of the image).

• IconAddPhoto => number: Path to the icon that displays information to add

photo.

• ContainerStyle => object: Custom styles to the container.

• OverlayContainerStyle => object: Overlay container styles.

• Source => image: Avatar image.

• AvatarStyle => object: Image styles.

• ActiveOpacity => number: Active opacity number for TouchableOpacity.

• ShowAddPhotoButton => boolean: Trigger to show icon from "iconAddPhoto".

• EditButton => object: Props that could be applied to the showAddPhotoButton.

• ImageProps => object: Props that could be applied to Image component.

• ...attributes => all the other props inherited from TouchableOpacity

35

<Avatar

 size="xlarge"

 onPress={this.openImagePicker}

 backgroundIcon={icons.camera}

 showAddPhotoButton

 iconAddPhoto={icons.add}

 source={avatar}

 />

Figure 14. Usage of Avatar component example

https://facebook.github.io/react-native/docs/touchableopacity

 buttons/
 DefaultButton/ # Button component. See Figure 7 in Appendix 1
for code samples. This components is responsible for rendering of buttons with pre-
defined styles (e.g. “Sign in”, “Sign up” or any other default (red oval) button).
 index.js
 styled_components/ # Styled components of Button component
 StyleTouchableOpacity.js
 Title.js
 index.js

Properties of DefaultButton component:

• backgroundColor => string: Background color of the button. (not-required)

• title => string: Text that displays inside of the button. (required)

• onPress => function: Handler to be called when the user taps on the button. (re-

quired)

• disabled => boolean: Disables all interactions with the element if 'true'. (not-re-

quired)

• ...rest => all the other props inherited from TouchableOpacity

HeaderBackButton/ # Button component. Left Arrow button that leads
the user to the previous page. See Figure 8 Appendix 1 for code samples. The pur-
pose of this button is usage for backwards navigation. And as it’s going to be used sev-
eral times, it makes sense to create a separate component. In this certain case an icon is
used instead of a title (when you press on the button).
 index.js
 styled_components/ # Styled components of Header Back Button
component
 StyledAllText.js
 StyleTouchableOpacity.js
 Wrapper.js
 index.js

36

<DefaultButton

 title="Sign Up"

 disabled={avatarUploadProgress !== 100}

 onPress={() => formikProps.handleSubmit()}

 />

Figure 15. Usage of DefaultButton component example

https://facebook.github.io/react-native/docs/touchableopacity

Properties of HeaderBackButton component:

• imagePath => number: Path to the image that will be served as a view for button.
(required)

• onPress => function: Handler to be called when the user press the button. (re-
quired)

• ...rest => all the other props inherited from TouchableOpacity

 PrivacyButton/ # Button component. See Figure 9 in Appendix
1 for code samples. This button is a text buttons (“Terms of Use” “Privacy Policy”),
which are marked in red color.
 index.js
 styled_components/ # Styled components of Privacy Button component
 StyledText.js
 Wrapper.js
 index.js

Properties of PrivacyButton component:

• emphasizeColor => string: A color that will emphasize important words. (re-

quired)

• onPress => function: Handler to be called when the user press the button. (re-

quired)

• ...rest => all the other props inherited from TouchableOpacity

37

<PrivacyButton

 emphasizeColor={Theme.primary_red}

 onPress={() => console.log('pressed')}

 />

Figure 17. Usage of PrivacyButton component example

<HeaderBackButton
 imagePath={icons.back}

 onPress={() => navigation.goBack()}

 />

Figure 16. Usage of HeaderBackButton component example

https://facebook.github.io/react-native/docs/touchableopacity
https://facebook.github.io/react-native/docs/touchableopacity

 TextButton/ # Button component. Clickable text (e.g. ‘Forgot
password button’) See Figure 10 in Appendix 1 for code samples. The functionality of
this component is similar to the previous one, but this component can be used for abso-
lutely any text button.
 index.js
 styled_components/ # Styled components of Text Button component
 StyledText.js
 StyledTouchableOpacity.js
 index.js

Properties of TextButton component:

• greyText => string: Text that will be displayed grey-colored. required

• redText => string: Text that will be displayed red-colored. required

• onPress => function: Handler to be called when the user press the button. Re-

quired

• ...rest => all the other props inherited from TouchableOpacity

 checkbox/ # Check box component. See Figure 11 in Ap-

pendix 1 for code samples.

 CheckBoxIcon.js

 index.js

 styled_components/ # Styled components of Check box component

 StyledContainer.js

 StyledTitle.js

 index.js

38

<TextButton
 greyText="Forgot your"

 redText="password?"

 onPress={() => navigation.navigate('ForgotPassword')}

 />

Figure 18. Usage of TextButton component example

Properties of CheckBox component:

• checked => boolean: Flag for checking the icon. required

• title => string: Title of checkbox. (not-required)

• Default: 'Check Me'.

• TitleColor => string: Color of the checkbox title. (not-required)

• Default: Black color.

• OnPress => function: Function for the checkbox. (required)

• checkedColor => string: Color the checkbox icon when 'checked' is 'true'. (not-

required)

• Default: Red color.

• UncheckedColor => string: Color the checkbox icon when 'checked' is 'false'.

(not-required)

• Default: Grey'ish color.

date-picker/ # Date picker component. See Figure 12 -14 in

Appendix 1 for code samples. This component vidpovidae for birth date selection. You

won’t be ablt to select invalid date (less then 14 years from now), since users have to be

at least 14 years old.

 index.js

 styled_components/ # Styled components of Date picker component

 DatePickerInnerView.js

 DatePickerOuterView.js

 StyledText.js

 index.js

39

<CheckBox
 checked={this.state.checked}

 title="Check me"

 titleColor="#fff"

 onPress={this.handleCheck}

 checkedColor="#00ff00"

 uncheckedColor="#0000ff"

 />

Figure 19. Usage of CheckBox component example

Properties for Date-Picker component:

• icon => number: Path to the local icon allocation. (not-required)

• iconPosition => string: String either 'right' or 'left' that points on the position of

icon. (not-required)

• text => string: Field name. (required)

• minimumDate => date: Minimum date. (required)

• maximumDate => date: Maximum date. (required)

• getDate => function: Helper that sends selected date to the parent component, so

it is possible to use date further. (required)

40

 <DatePicker
 iconPosition="left"

 icon={icons.calendar}

 text="Date of Birth"

 minimumDate={

 new Date(

 new Date().getFullYear() - 110,

 new Date().getMonth()

)

 }

 maximumDate={

 new Date(

 new Date().getFullYear() - 14,

 new Date().getMonth()

)

 }

 getDate={date =>

 formikProps.setFieldValue('birthDate', date, true)

 }

 />

Figure 20. Usage of Date-Picker component example

 gender-picker/ # Gender picker component. See Figure 15-17 in Ap-
pendix 1 for code samples. Is used for user’s gender selection

 index.js

Properties for Gender-Picker component:

• icon => number: Path to the local icon allocation. (not-required)

• iconPosition => string: String either 'right' or 'left' that points on the position of

icon. (not-required)

• value => string: Picker value. (required)

• onValueChange => function: Function that handles change of the value. (re-

quired)

input-fields/ # Component of input fields. See Figure 18 Appendix
1 for code samples. This component is used for entering data to input fiels (e.g email,
password, username, etc)
 TextInput.js
 styled_components/ # Styled components of input field component
 Icon.js
 StyledTextInput.js
 StyledView.js
 index.js

41

<GenderPicker
 iconPosition="left"
 icon={icons.gender}
 value={gender}
 onValueChange={value => this.setState({ gender: value })}
 />

Figure 21. Usage of Gender-Picker component example

Properties for Input-fields component:

• icon => number:

• Path to the local icon allocation. (not-required)

• iconPosition => string:

• String either 'right' or 'left' that points on the position of icon. (not-required)

• onChangeText => function:

• Handler to be called when the user enters text. not-required

• onBlur => function:

• Callback that is called when the text input is blurred. (not-required)

• ...rest => all the other props inherited from TextInput.

42

<LocationPicker

 iconPosition="left"

 icon={icons.marker}

 text={`${

 latitude && longitude ? 'Your location is set!' :
'Location'

 }`}

 onPress={this.getLocation}

 />

Figure 23. Usage of LocationPicker component example

<TextInput
 icon={icons.email}

 iconPosition="left"

 onChangeText={formikProps.handleChange('email')}

 onBlur={formikProps.handleBlur('email')}

 placeholder="email@example.com"

 autoFocus

 />

Figure 22. Usage of Input-fields component example

locatin-picker/ # Component of location picker. See Figure 19 in

Appendix 1 for code samples. This component gets the vales of latitude and lon-

gitude of user’s location in case if use gives his permission

 index.js

• Properties for LocationPicker component:

• icon => number: Path to the local icon allocation. (not-required)

• iconPosition => string: String either 'right' or 'left' that points on the position of

icon. (not-required)

• text => string: Field name. (required)

• onPress => function: Handler to be called when user will press on a button. (re-

quired)

text/ # Text Component. See Figure 20 in Appendix 1 for
code samples. This component is responsible for Header’s text on the pages.
 TextElement/
 index.js
 styled_components/ # Styled components of text component

Properties for TextElement component:

• header => boolean: Either 'true' or 'false' that points whether component header

or not. (required)

• color => string: Color of the text. (not-required)

• title => string: Displayed text. (required)

43

<TextElement header title="Sign Up" />

Figure 24. Usage of Text Element component example

6. Implementing client-side of application

6.1 Screens example and description

Fig. 25 Splash Screen

44

Fig. 26 Shows the initial screen which user see
right after the splash screen. It contains:
- the MovieGO logo on the top;
- 2 fields for email and password;
- “Forgot your password” button, which leads to
another screen (Shown in Fig 27.) to enter your
email to get a password recovery link;
- “Sign in” button, which lets the user in, ones he
enters the correct email and password (Fig. 28) or
recognizes that the fields are empty (Fig. 29) or
that the email or/and password were not entered
correctly (Fig. 30).
-“Sign Up” button, which leads to the Sing Up
page (Fig. 32)
- Sign In with Facebook button, which redirects
users to the Facebook app, where they can con-
firm their sign in.
- Sign In with Google button
- “Terms of Use” button, which opens the Terms
of Use of the application.
- “Privacy Policy” button, which opens the Pri-
vacy Policy of the application.

 Fig.26 Initial Screen

Fig. 28 Right email, valid length of the password Fig. 27 “Forgot your password” screen

45

 Fig. 29 Sing In pressed when the fields are empty Fig. 30 Sing In pressed when email is not valid

46

 Fig. 31 Right Email, no password Fig. 32 “Sign Up” screen

- When the email is entered correctly, but the password field is still empty – it will ac-

cept the email and will not show any error message under email field, but will still show

“Password is a required field” under the Password field, as shown in Fig. 31.

47

Fig. 33 Not valid length of the password Fig. 34 SingUp Screen Error, everything is empty

- When the email is entered correctly and the written password is shorter than 8 charac-

ters – the message “The length should be greater 8 characters” displays, as shown in

Fig. 33.

- When the user is on the Sign Up page but hasn’t filled any info – it will show error

messages under each field, like shown on Fig. 34.

If user has filled all the information on the sign up page – it will not show any errors

and user will be able to click next and proceed to the next page (Fig. 35), where he/she

also will need to fill all the fields (Fig. 36), and after that user will be able to access the

application.

48

Fig. 35 All the information filled in on the Sign Up page Fig. 36 Personal information fields are filled in

49

6.2 CLIENT DESCRIPTION

6.2.1 Navigation:

Auth Flow and Auth Navigation behaves in the following way:

In App.js file (which is a root one), with the help of react-navigation package, the Nav-

igation Stack is formed:

Here 3 main Stacks are created:

1) AuthLoading - Which is the starting point for the application.

2) App is the internal navigation stack (Profile, Movies List and all other routes that

should be protected).

3) Auth is the Authentication stack that checks and handles all the stuff related to the

User permissions, logging in and out.

AuthLoadingScreen is the starting point for the mobile application:

50

createSwitchNavigator(

 {

 AuthLoading: AuthLoadingScreen,

 App: AppStack,

 Auth: AuthStack

 },

 {

 initialRouteName: 'AuthLoading'

 }

)

Figure 37. Navigation Stack

When the app is loaded, inside of the AuthLoadingScreen constructor, the following

check is executed:

I am checking there whether I have a token in the local device storage. If there is a

token, navigation redirects the user to the Profile Screen, where token is passed to the

server and server validates it. If everything is OK, the access granted for user and he can

navigate inside of the app, otherwise the navigation redirects user to the Auth Stack (it

is a SignIn Screen) and user has to log in.

The token is saved to the local storage using the _handleLogin() function from SignIn.js

file:

51

const token = await AsyncStorage.getItem('x-auth');

this.props.navigation.navigate(token ? 'App' : 'Auth');

Figure 38. AuthLoadingScreen

const { navigation } = this.props;

 try {

 // get token from header

 const token = res.headers['x-auth'];

 if (token) {

 // save token to the local storage

 AsyncStorage.setItem('x-auth', token)

 .then(() => {

 navigation.navigate('App');

 })

 .catch(() => {

 Alert.alert('Error', 'There was a problem with logging in.');

 });

 }

 } catch {

 Alert.alert('Error', 'There was a problem with logging in.');

 }

Figure 39. HandleLogin function

The function above takes token from header and tries to save it into the device local

storage. If that was successful, the user will be redirected to the ProfileScreen where I

do the check whether token is valid. Otherwise, app will redirect the user to the Auth

screen.

52

_checkToken = () => {

 const { navigation } = this.props;

 AsyncStorage.getItem('x-auth')

 .then(token =>

 Axios.get('http://localhost:4444/user/account', {

 headers: {

 'x-auth': token

 }

 })

 .then(res => {

 this.setState({

 res: JSON.stringify(res.status)

 });

 })

 .catch(() => {

 Alert.alert('Error', 'Credentials are not valid');

 navigation.navigate('Auth');

 })

)

 .catch(() => {

 Alert.alert('Error', 'Credentials are not valid');

 navigation.navigate('Auth');

 });

 };

Figure 40. Auth screen

6.2.2 Validation Process

Validation is needed for checking the correctness of input information (email, password,

username).

 - Email should be written in one string and have the following form:

<example@email.com>

In case if it is written in a different form – it will show an error “Incorrect email ad-

dress”.

 - Password should be minimum 8 characters long.

 - Username shall be minimum 4 characters long. Also it should not contain symbols

like “-,<>, @” and system usernames cannot be used (admin, etc). Also, in case if user

choose a username that already exists – an error “User already exists” will be shown.

The most popular components for validation are yup, formik and redux. Redux is

mainly used for global state management, which is currently not an option for this ap-

plication at the moment. Currently we are sticked to yup and formik.

 YUP & Formik

- A Yup schema is an immutable object responsible for validating an object and defines

the validation schema (shown in Figure 41 below),:

Sign in screen example:

53

// schema for validation fields

const validationSchema = yup.object().shape({

 email: yup - schema with predefined functions for validation of email field is created.

 .string() - defines that email should be written in a string.

 .label('Email') – defines the name of the field that is validated.

 .email() - instruction that checks this field in order to ensure that current string is written

as an email (example@gmail.com)

mailto:example@email.com

- <Formik/> is a component that helps you with building forms. It uses a render props

pattern made popular by libraries like React Motion and React Router.

Pros of Formik:

- Declarative

Formik takes care of the repetitive and annoying stuff - keeping track of values/errors/

visited fields, orchestrating validation, and handling submission - so you don't have to.

This means you spend less time wiring up state and change handlers and more time fo-

cusing on your business logic.

- Intuitive

No fancy subscriptions or observables under the hood, just plain React state and props.

By staying within the core React framework and away from magic, Formik makes de-

bugging, testing, and reasoning about your forms a breeze. If you know React, and you

know a bit about forms, you know Formik.

- Adoptable

Since form state is inherently local and ephemeral, Formik does not use external state

54

 .required(), - shows that current field is required for filling.

 password: yup - schema with predefined functions for validation of password field is cre-

ated.

 .string() -defines that password should be written in a string.

 .label('Password') - defines the name of the field that is validated.

 .required() - shows that current field is required for filling.

 .min(8, 'The lenght should be greater 8 characters')

});

Figure 41. Yup schema example

management libraries like Redux or MobX. This also makes Formik easy to adopt in-

crementally and keeps bundle size to a minimum.

Formik serves as a component, which uses a yup schema for validation purposes:

Example:

55

<Formik

 initialValues={{
 email: '',
 password: ''
 }}
 onSubmit={(values, actions) => { // accepts validated values
 this.handleLogin(values.email, values.password); // makes a request to server
and post data
 actions.setSubmitting(false); // stop the data transferring
 }}
 validationSchema={validationSchema} // schema defined by yup (see
Figure 41)
 >
{formikProps => (
 ... // custom components
{formikProps.isSubmitting ? (// if submitting values are sent
then activity indicator is shown
 <ActivityIndicator />
) : (
 <DefaultButton
 title="Sign In"
 onPress={formikProps.handleSubmit} // triggers form submission
 />
)}
 </View>
)}
 </Formik>

Figure 42. Formik component

7. Summary

During this work I reviewed different ways of building an application for iOS and An-

droid platforms and performed the following tasks:

1. Analyzed both platforms for mobile application development (iOS and Android) and

defined different scenarios in which a certain platform would be more efficient to go

with and why.

2. Analyzed the React Native framework for mobile applications development, it’s ad-

vantages and disadvantages.

3. Analyzed the case with specific platform native development, it’s advantages and dis-

advanteges.

4. Compared both of the above mentioned ways, peculiarities of development in each of

these methods and found out alternatives which could applied in particular solutions.

Selected React Native as more efficient way of building the mobile application exactly

for this case.

5. Created Minimum Viable Product, based on the product’s specifications and require-

ments and on the existent problems that MovieGo application offers solution to.

Defined the ways of implementing these solutions, why is it important to do that. Ana-

lyzed alternatives that do exist today and the ones that can be expected in the future.

6. Defined the ways of improving the MVP, ways of developing future updates and pos-

sible redesigning of the application.

7. Described the structure of the application, it’s peculiarities and tools for developing

UI toolkit for the React Native.

8. Described the client side of the application.

56

References

[1] "iOS vs Android Development: Which One is Best for Your App'?, Daria R.
[Internet Source] - 20.06.2018

[2] "Mobile Operating System Market Share Europe", Statcounter, LLC [Internet
Source] - 01.04.2019

[3] "Despite Android's growing market share, Apple users continue to spend twice as
much money on apps as Android users", Prachi Bhardwaj and Shayanne Gal,
[Internet Source] - 06.07.2018

[4] "Mobile Vendor Market Share Worldwide", Statcounter, GlobalStats [Internet
Source] - 01.04.2019

[5] "How I built my first React Native app for my first freelance client", Charlie
Jeppsson [Internet Source] - 02.04.2019

[6] ""What do you dislike about React Native", Christoph Nakazawa [Internet
Source] - 27.02.2019

[7] "Build native mobile apps using JavaScript and React", GitHub [Internet Source] -
02.01.2019

[8] "How to Add a Splash Screen to a React Native App (iOS and Android)", Spencer
Carli [Internet Source] - 27.02.2019

[9] "Routing and navigation for your React Native apps", React Navigation [Internet
Source] – 15.01.2019

[10] "React Native Pros and Cons - Facebook’s Framework in 2019 (update)", Natalia
Chrzanowska [Internet Source] - 07.03.2019

57

https://reactnavigation.org/
https://reactnavigation.org/
https://medium.com/handlebar-labs/how-to-add-a-splash-screen-to-a-react-native-app-ios-and-android-30a3cec835ae
https://medium.com/handlebar-labs/how-to-add-a-splash-screen-to-a-react-native-app-ios-and-android-30a3cec835ae
http://facebook.github.io/react-native/
http://facebook.github.io/react-native/
https://www.netguru.com/blog/react-native-pros-and-cons
https://www.netguru.com/blog/react-native-pros-and-cons
https://github.com/react-native-community/discussions-and-proposals/issues/104
https://github.com/react-native-community/discussions-and-proposals/issues/104
https://medium.freecodecamp.org/how-i-built-my-first-react-native-app-for-my-first-freelance-client-d78bdab795e1
https://medium.freecodecamp.org/how-i-built-my-first-react-native-app-for-my-first-freelance-client-d78bdab795e1
http://gs.statcounter.com/vendor-market-share/mobile
http://gs.statcounter.com/vendor-market-share/mobile
https://www.businessinsider.com/apple-users-spend-twice-apps-vs-android-charts-2018-7
https://www.businessinsider.com/apple-users-spend-twice-apps-vs-android-charts-2018-7
https://www.businessinsider.com/apple-users-spend-twice-apps-vs-android-charts-2018-7
http://gs.statcounter.com/os-market-share/mobile/europe
http://gs.statcounter.com/os-market-share/mobile/europe
https://rubygarage.org/blog/ios-vs-android-development
https://rubygarage.org/blog/ios-vs-android-development

Appendix – [Program Code Examples]

58

import React from 'react';

import {

View,

Text,

Image,

Platform,

StyleSheet,

TouchableOpacity

} from 'react-native';

import PropTypes from 'prop-types';

import Theme from '../_configs/Theme';

import ViewPropTypes from '../_configs/ViewPropTypes';

const DEFAULT_SIZES = {

small: 34,

medium: 50,

large: 75,

xlarge: 150

};

const Avatar = props => {

const {

size,

onPress,

backgroundIcon,

iconAddPhoto,

containerStyle,

overlayContainerStyle,

source,

avatarStyle,

activeOpacity,

showAddPhotoButton,

editButton,

imageProps,

...attributes

} = props;

Figure 43. Code example of Avatar Component.

59

const iconDimension =

typeof size === 'number'

? size

: DEFAULT_SIZES[size] || DEFAULT_SIZES.small;

let height;

const width = (height = iconDimension);

const renderUtils = () => {

if (showAddPhotoButton) {

const editButtonProps = { ...editButton };

const defaultEditButtonSize = (width + height) / 2 / 3;

const editButtonSize = editButton.size || defaultEditButtonSize;

const editButtonSizeStyle = {

width: editButtonSize,

height: editButtonSize,

borderRadius: editButtonSize / 2

};

return (

<View

style={{

position: 'absolute',

bottom: 0,

right: 0,

alignItems: 'center',

justifyContent: 'center'

}}

>

<View

style={[

styles.editButton,

editButtonSizeStyle,

editButtonProps.style

]}

underlayColor={editButtonProps.underlayColor}

>

<View>

<Image source={iconAddPhoto} />

</View>

</View>

<Text style={{ color: '#fff', left: 40, bottom: 0 }}>add photo</Text>

</View>

);

}

};

Figure 44. Code example of Avatar Component - Prod

60

const iconDimension =

typeof size === 'number'

? size

: DEFAULT_SIZES[size] || DEFAULT_SIZES.small;

let height;

const width = (height = iconDimension);

const renderUtils = () => {

if (showAddPhotoButton) {

const editButtonProps = { ...editButton };

const defaultEditButtonSize = (width + height) / 2 / 3;

const editButtonSize = editButton.size || defaultEditButtonSize;

const editButtonSizeStyle = {

width: editButtonSize,

height: editButtonSize,

borderRadius: editButtonSize / 2

};

return (

<View

style={{

position: 'absolute',

bottom: 0,

right: 0,

alignItems: 'center',

justifyContent: 'center'

}}

>

<View

style={[

styles.editButton,

editButtonSizeStyle,

editButtonProps.style

]}

underlayColor={editButtonProps.underlayColor}

>

<View>

<Image source={iconAddPhoto} />

</View>

</View>

<Text style={{ color: '#fff', left: 40, bottom: 0 }}>add photo</Text>

</View>

);

}
};

 Figure 45. Code example of Avatar Component – Continuation

61

const renderContent = () => {
if (source) {
return (
<Image
style={[
styles.avatar,
{ borderRadius: width / 2 },
avatarStyle && avatarStyle
]}
source={source}
{...imageProps}
/>
);
}
if (backgroundIcon) {
return <Image source={backgroundIcon} />;
}
};
const styles = StyleSheet.create({
container: {
backgroundColor: 'transparent',
width,
height
},
avatar: {
width,
height
},
overlayContainer: {
flex: 1,
alignItems: 'center',
borderWidth: 1.2,
borderColor: '#fff',
backgroundColor: Theme.avatar_default_color,
alignSelf: 'stretch',
justifyContent: 'center',
position: 'absolute',
top: 0,
left: 0,
right: 0,
bottom: 0
},
editButton: {
position: 'absolute',
bottom: 20,
left: 30,
alignItems: 'center',
justifyContent: 'center',
backgroundColor: Theme.avatar_default_color,
...Platform.select({
ios: {
shadowColor: Theme.primary_red,
shadowOffset: { width: 1, height: 1 },
shadowRadius: 2,
shadowOpacity: 0.5
},
android: {
elevation: 1
}
})
}
});

Figure. 46 Code example of Avatar Component – Continuation

62

return (

<TouchableOpacity

onPress={onPress}

activeOpacity={activeOpacity}

style={[

styles.container,

{ borderRadius: width / 2 },

containerStyle && containerStyle

]}

{...attributes}

>

<View

style={[

styles.overlayContainer,

{ borderRadius: width / 2 },

overlayContainerStyle && overlayContainerStyle

]}

>

{renderContent()}

</View>

{renderUtils()}

</TouchableOpacity>

);

};

Avatar.propTypes = {

size: PropTypes.oneOfType([

PropTypes.oneOf(['small', 'medium', 'large', 'xlarge']),

PropTypes.number

]),

onPress: PropTypes.func,

backgroundIcon: PropTypes.number,

showAddPhotoButton: PropTypes.bool,

iconAddPhoto: PropTypes.number,

containerStyle: PropTypes.objectOf(PropTypes.any),

overlayContainerStyle: PropTypes.objectOf(PropTypes.any),

source: Image.propTypes.source,

avatarStyle: PropTypes.objectOf(PropTypes.any),

activeOpacity: PropTypes.number,

editButton: PropTypes.shape({

size: PropTypes.number,

iconName: PropTypes.string,

iconType: PropTypes.string,

iconColor: PropTypes.string,

underlayColor: PropTypes.string,

style: ViewPropTypes.style

}),

imageProps: PropTypes.objectOf(PropTypes.object)

};

Figure 47. Code example of Avatar Component – Continuation

63

Avatar.defaultProps = {

size: 'small',

onPress: () => {},

backgroundIcon: null,

showAddPhotoButton: false,

iconAddPhoto: null,

containerStyle: {},

overlayContainerStyle: {},

source: null,

avatarStyle: {},

activeOpacity: 0.5,

editButton: {

size: null,

iconName: 'mode-edit',

iconType: 'material',

iconColor: '#fff',

underlayColor: Theme.primary_red,

style: null

},

imageProps: {}

};

export default Avatar;

Figure 48. Code example of Avatar Component – Continuation

64

import React from 'react';

import Wrapper from '../../_common-styled-components/Wrapper';

import { Title, StyledTouchableOpacity } from './styled-components/index';

const DefaultButton = ({

backgroundColor,

title,

onPress,

disabled,

...rest

}) => (

<Wrapper>

<StyledTouchableOpacity

backgroundColor={backgroundColor}

onPress={onPress}

disabled={disabled}

{...rest}

>

<Title>{title}</Title>

</StyledTouchableOpacity>

</Wrapper>

);

DefaultButton.defaultProps = {

backgroundColor: null,

onPress: null,

disabled: false

};

DefaultButton.propTypes = {

backgroundColor: PropTypes.string,

title: PropTypes.string.isRequired,

onPress: PropTypes.func,

disabled: PropTypes.bool

};

export default DefaultButton;

Figure 49. Code example of DefaultButton Component

65

 import React from 'react';
import { Image } from 'react-native';

import PropTypes from 'prop-types';

import {

Wrapper,

StyledTouchableOpacity,

StyledAltText

} from './styled-components/index';

const HeaderBackButton = ({ imagePath, onPress, ...rest }) => (

<Wrapper>

<StyledTouchableOpacity onPress={onPress} {...rest}>

{imagePath ? (

<Image source={imagePath} />

) : (

<StyledAltText>{'< Back'}</StyledAltText>

)}

</StyledTouchableOpacity>

</Wrapper>

);

HeaderBackButton.defaultProps = {

imagePath: null

};

HeaderBackButton.propTypes = {

onPress: PropTypes.func.isRequired,

imagePath: PropTypes.number

};

export default HeaderBackButton;

Figure 50. Code example of HeaderBackButton Component

66

 import React from 'react';
import { TouchableOpacity } from 'react-native';

import PropTypes from 'prop-types';

import { Wrapper, StyledText } from './styled-components/index';

// --- Text as constants for easier manipulation

const BLANK_SPACE = ' ';

const FULL_STOP = '.';

const AND = `and${BLANK_SPACE}`;

const TERMS_OF_USE = `Terms of Use${BLANK_SPACE}`;

const PRIVACY_POLICY = 'Privacy Policy';

const PRIVACY_BTN_TITLE = `By signing up, you are indicating that you have read and agree to the$

{BLANK_SPACE}`;

// ---

const PrivacyButton = ({ emphasizeColor, onPress, ...rest }) => (

<Wrapper>

<TouchableOpacity onPress={onPress} {...rest}>

<StyledText>

{PRIVACY_BTN_TITLE}

<StyledText emphasizeColor={emphasizeColor}>{TERMS_OF_USE}</StyledText>

<StyledText>{AND}</StyledText>

<StyledText emphasizeColor={emphasizeColor}>

{PRIVACY_POLICY}

</StyledText>

<StyledText>{FULL_STOP}</StyledText>

</StyledText>

</TouchableOpacity>

</Wrapper>

);

PrivacyButton.propTypes = {

emphasizeColor: PropTypes.string.isRequired,

onPress: PropTypes.func.isRequired

};

export default PrivacyButton;

Figure 51. Code example of Privacy Button Component

67

 import React, {Fragment} from 'react';
import PropTypes from 'prop-types';

import Theme from '../../_configs/Theme';

import { StyledTouchableOpacity, StyledText } from './styled-components/index';

const TextButton = ({ greyText, redText, onPress, ...rest }) => (

<Fragment>

<StyledTouchableOpacity onPress={onPress} {...rest}>

<StyledText color={Theme.primary_grey}>

{greyText}

<StyledText color={Theme.primary_red}>{` ${redText}`}</StyledText>

</StyledText>

</StyledTouchableOpacity>

</Fragment>

);

TextButton.propTypes = {

greyText: PropTypes.string.isRequired,

redText: PropTypes.string.isRequired,

onPress: PropTypes.func.isRequired

};

export default TextButton;

Figure 52. Code example of TextButton Component

68

 import React from 'react';
import PropTypes from 'prop-types';

import { TouchableOpacity } from 'react-native';

import Theme from '../_configs/Theme';

import CheckBoxIcon from './CheckBoxIcon';

import { StyledContainer, StyledTitle } from './styled-components/index';

const CheckBox = props => {

const { ...rest } = props;

const {

checked,

title,

titleColor,

onPress,

checkedColor,

...attributes

} = rest;

return (

<TouchableOpacity {...attributes} onPress={onPress}>

<StyledContainer>

<CheckBoxIcon {...props} checkedColor={checkedColor} />

<StyledTitle checked={checked} titleColor={titleColor}>

{title}

</StyledTitle>

</StyledContainer>

</TouchableOpacity>

);

};

CheckBox.defaultProps = {

center: false,

title: 'Check Me',

titleColor: `${Theme.primary_black}`

};

CheckBox.propTypes = {

...CheckBoxIcon.propTypes,

title: PropTypes.string,

titleColor: PropTypes.string,

center: PropTypes.bool,

onPress: PropTypes.func.isRequired

};

export default CheckBox;

Figure 53. Code example of CheckBox Component

69

 import React, { Component } from 'react';
import {

Modal,

View,

Alert,

Platform,

TouchableOpacity,

DatePickerIOS,

DatePickerAndroid

} from 'react-native';

import PropTypes from 'prop-types';

import moment from 'moment'; // prettify time from Date() object

import Wrapper from '../_common-styled-components/Wrapper'; // common wrapper

// styled components from 'input-field'

import { Icon } from '../input-fields/styled-components/index';

import { TextElement, DefaultButton } from '../../index';

import Theme from '../_configs/Theme';

// styled components for the 'date-picker'

import {

DatePickerOuterViewIOS,

DatePickerInnerViewIOS,

StyledText

} from './styled-components/index';

class DatePicker extends Component {

state = {

isVisible: false,

chosenDate: new Date(),

isChosenDate: false // triggers when chosenDate is specified

};

openIOSDatePicker = visible => {

const { isVisible } = this.state;

this.setState({

isVisible: visible

});

if (isVisible === false) {

this.setState({

isChosenDate: false

});

} else {

this.setState({

isChosenDate: true

});

}

};

setIOSDate = newDate => {

this.setState({ chosenDate: newDate });

};

Figure 54. Code example of date-picker component

70

 openAndroidDatePicker = async (minimumDate, maximumDate) => {
try {
DatePickerAndroid.open({
date: minimumDate,
minDate: maximumDate,
maxDate: minimumDate
}).then(date => {
if (date.action !== DatePickerAndroid.dismissedAction) {

this.setState({
chosenDate: date,
isChosenDate: true
});
}
});
} catch ({ code, message }) {
this.setState({
isChosenDate: false
});
Alert.alert(`Error ${code}`, `${message}`);
}
};

render() {
const { isVisible, chosenDate, isChosenDate } = this.state;
const { iconPosition, icon, text, minimumDate, maximumDate } = this.props;
return (
<Wrapper>
<View style={{ marginTop: 22 }}>
<Modal
animationType="slide"
transparent
visible={isVisible}
onRequestClose={() => {
Alert.alert('Modal has been closed.');
}}
>
<DatePickerOuterViewIOS>
<DatePickerInnerViewIOS>
<TextElement
header
title="Choose the Birth Date"
color={Theme.primary_grey}
/>
<DatePickerIOS
mode="date"
date={chosenDate}
minimumDate={minimumDate}
maximumDate={maximumDate}
onDateChange={this.setIOSDate}
/>
<DefaultButton
backgroundColor={Theme.primary_red}
title="Confirm"
onPress={() => {
this.openIOSDatePicker(false);
}}
/>
</DatePickerInnerViewIOS>
</DatePickerOuterViewIOS>
</Modal>
</View>

Figure 55. Code example of date-picker component – continuation

71

 <TouchableOpacity
onPress={() =>
Platform.OS === 'android'
? this.openAndroidDatePicker(maximumDate)
: this.openIOSDatePicker(true)
}
style={{ width: '80%' }}
>
<View
style={{
flexDirection: 'row',
padding: 10,
borderBottomWidth: 2,
borderBottomColor: Theme.primary_grey
}}
>
{iconPosition === 'left' && (
<Icon iconPosition={iconPosition} source={icon} />
)}
<StyledText icon={icon}>
{isChosenDate ? moment(chosenDate).format('ll') : text}
</StyledText>
{iconPosition === 'right' && (
<Icon iconPosition={iconPosition} source={icon} />
)}
</View>
</TouchableOpacity>
</Wrapper>
);
}
}

DatePicker.defaultProps = {
icon: null,
iconPosition: null
};

DatePicker.propTypes = {
icon: PropTypes.number,
iconPosition: PropTypes.string,
text: PropTypes.string.isRequired,
minimumDate: PropTypes.instanceOf(Date).isRequired,
maximumDate: PropTypes.instanceOf(Date).isRequired
};

export default DatePicker;

Figure 56. Code example of date-picker component - continuation

72

 import React, { Component } from 'react';
import {

Platform,

Modal,

View,

Alert,

TouchableOpacity,

Picker

} from 'react-native';

import PropTypes from 'prop-types';

import Wrapper from '../_common-styled-components/Wrapper'; // common wrapper

// styled components from 'input-field'

import { Icon } from '../input-fields/styled-components/index';

import { TextElement, DefaultButton } from '../../index';

import Theme from '../_configs/Theme';

// styled components for the 'date-picker'

import {

StyledText,

DatePickerOuterViewIOS,

DatePickerInnerViewIOS

} from '../date-picker/styled-components/index';

class GenderPicker extends Component {

state = {

isVisible: false

};

openModal = visible => {

this.setState({

isVisible: visible

});

};

Figure 57. Code example of gender-picker component

73

 render() {
const { isVisible } = this.state;

const { iconPosition, icon, value, onValueChange } = this.props;

return (

<Wrapper>

<View style={{ marginTop: 22 }}>

<Modal

animationType="slide"

transparent

visible={isVisible}

onRequestClose={() => {

Alert.alert('Modal has been closed.');

}}

>

<DatePickerOuterViewIOS>

{Platform.OS === 'android' ? (

<View

style={{ backgroundColor: 'white', width: 300, height: 150 }}

>

<TextElement

header

title="Please select gender..."

color="black"

/>

<Picker selectedValue={value} onValueChange={onValueChange}>

<Picker.Item label="Please select gender..." value="" />

<Picker.Item label="Man" value="Man" />

<Picker.Item label="Woman" value="Woman" />

</Picker>

<DefaultButton

backgroundColor={Theme.primary_red}

title="Confirm"

onPress={() => {

this.openModal(false);

}}

/>

</View>

) : (

<DatePickerInnerViewIOS>

<Picker selectedValue={value} onValueChange={onValueChange}>

<Picker.Item label="Please select gender..." value="" />

<Picker.Item label="Man" value="Man" />

<Picker.Item label="Woman" value="Woman" />

</Picker>

<DefaultButton

backgroundColor={Theme.primary_red}

title="Confirm"

onPress={() => {

this.openModal(false);

}}

/>

</DatePickerInnerViewIOS>

)}

</DatePickerOuterViewIOS>

</Modal>

</View>

Figure 58. Code example of gender-picker component - continuation

74

 <TouchableOpacity
style={{ width: '80%' }}

onPress={() => this.openModal(true)}

>

<View

style={{

flexDirection: 'row',

padding: 10,

borderBottomWidth: 2,

borderBottomColor: Theme.primary_grey

}}

>

{iconPosition === 'left' && (

<Icon iconPosition={iconPosition} source={icon} />

)}

<StyledText icon={icon}>

{value !== '' ? value : 'Please select gender...'}

</StyledText>

{iconPosition === 'right' && (

<Icon iconPosition={iconPosition} source={icon} />

)}

</View>

</TouchableOpacity>

</Wrapper>

);

}

}

GenderPicker.defaultProps = {

icon: null,

iconPosition: null

};

GenderPicker.propTypes = {

icon: PropTypes.number,

iconPosition: PropTypes.string,

value: PropTypes.string.isRequired,

onValueChange: PropTypes.func.isRequired

};

export default GenderPicker;

Figure 59. Code example of gender-picker component - continuation

75

 import React from 'react';
import PropTypes from 'prop-types';

import Theme from '../_configs/Theme';

import Wrapper from '../_common-styled-components/Wrapper';

import { StyledTextInput, StyledView, Icon } from './styled-components/index';

const TextInput = ({ icon, iconPosition, onChangeText, onBlur, ...rest }) => (

<Wrapper>

<StyledView>

{iconPosition === 'left' && (

<Icon iconPosition={iconPosition} source={icon} />

)}

<StyledTextInput

icon={icon}

onChangeText={onChangeText}

onBlur={onBlur}

placeholderTextColor={Theme.primary_grey}

{...rest}

/>

{iconPosition === 'right' && (

<Icon iconPosition={iconPosition} source={icon} />

)}

</StyledView>

</Wrapper>

);

TextInput.defaultProps = {

icon: null,

iconPosition: null,

onChangeText: null,

onBlur: null

};

TextInput.propTypes = {

icon: PropTypes.number,

iconPosition: PropTypes.string,

onChangeText: PropTypes.func,

onBlur: PropTypes.func

};

export default TextInput;

Figure 60. Code example of input-fields component

76

 import React from 'react';
import { TouchableOpacity, View } from 'react-native';

import PropTypes from 'prop-types';

import Theme from '../_configs/Theme';

import Wrapper from '../_common-styled-components/Wrapper'; // common wrapper

// styled components from 'input-field'

import { Icon } from '../input-fields/styled-components/index';

// styled components for the 'date-picker'

import { StyledText } from '../date-picker/styled-components/index';

const LocationPicker = ({ iconPosition, icon, text, onPress }) => (

<Wrapper>

<TouchableOpacity style={{ width: '80%' }} onPress={onPress}>

<View

style={{

flexDirection: 'row',

padding: 10,

borderBottomWidth: 2,

borderBottomColor: Theme.primary_grey

}}

>

{iconPosition === 'left' && (

<Icon iconPosition={iconPosition} source={icon} />

)}

<StyledText icon={icon}>{text}</StyledText>

{iconPosition === 'right' && (

<Icon iconPosition={iconPosition} source={icon} />

)}

</View>

</TouchableOpacity>

</Wrapper>

);

LocationPicker.defaultProps = {

icon: null,

iconPosition: null

};

LocationPicker.propTypes = {

icon: PropTypes.number,

iconPosition: PropTypes.string,

text: PropTypes.string.isRequired,

onPress: PropTypes.func.isRequired

};

export default LocationPicker;

Figure 61. Code example of location-picker component

77

 import React from 'react';
import PropTypes from 'prop-types';

import Wrapper from '../../_common-styled-components/Wrapper';

import StyledText from './styled-components/StyledText';

import Theme from '../../_configs/Theme';

const TextElement = ({ header, color, title }) => (

<Wrapper>

<StyledText header={header} color={color}>

{title}

</StyledText>

</Wrapper>

);

TextElement.defaultProps = {

color: Theme.primary_white

};

TextElement.propTypes = {

header: PropTypes.bool.isRequired,

color: PropTypes.string,

title: PropTypes.string.isRequired

};

export default TextElement;

Figure 62. Code example of TextElement component

	1. Introduction 12
	2. Analysis of platforms for mobile application development…………………………13
	3.1 React Native Development……………………………………………………...19
	3.1.1 React Native Description…………………………………………………...19
	3.1.2 Advantages of React Native Development…………………………...…….20
	3.1.3 Disadvantages of React Native Development……………………..………..22
	3.2 Native Development …. ………………………………………………………..23

	4. Product Overview and MVP………………………………………………...………25
	4.1 Product Overview…………………………………………….………………...26
	4.1.1 Existent problems/targets that MovieGo tends to solve/ reach……….….....26
	4.1.2 The importance of the problem……………………….….…………………26
	4.2 Solutions………………………………………………………………………...27
	4.3 Minimum viable product………………………………………………………..28
	5. Developing UI toolkit for React Native……………………………………………..35
	6. Implementing client – side application………………………………………………44
	1. Introduction
	- Absence of Some Custom Modules

	7. Summary
	References
	Appendix – [Program Code Examples]

