
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Ainar Assuküll 212088 IASM

INVESTIGATING BEHAVIORAL ANOMALIES USING

MACHINE LEARNING
Master Thesis

Supervisor
Kalle Tammemäe

PhD

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Ainar Assuküll 212088 IASM

KÄITUMUSLIKE ANOMAALIATE TUVASTAMINE

KASUTADES MASINÕPPE MEETODEID
Magistritöö

Juhendaja
Kalle Tammemäe

PhD

Tallinn 2022

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Ainar Assuküll
(signature)

Date: 03.05.2022

i

Annotatsioon

Käesolev magistritöö käsitleb inimese võimalike käitumuslike anomaaliate või ohuolu-
korda sattumise tuvastamist tema oma kodus ühe toa piires. Töö fookuses on eakate
inimeste heaolu ja iseseisva hakkamasaamise toetamine. Andurina inimeste tegevuse
jälgimisel on kasutatud põhiliselt Omroni infrapuna maatrikstermosensorit (IRMT). IRMT
sensorist tulev info loetakse arvutisse, kus luuakse konkreetsest ruumist termopilt ja
seda analüüsitakse reaalajas, et tuvastada anomaaliaid ja ohuolukordi. Termopildi põhjal
tuvastatakse erinevaid tegevusi, nagu televiisori vaatamine, toas liikumine või magamine.
Hinnatakse võimalusi eristamaks järsku asendi muutust (kukkumist) tavalisest toas ringi
liikumisest. Lisaks uuritakse uneanomaaliad võttes appi andmed aktiivsusmonitorist.
Täiendavalt uuritakse masinõppe meetodeid sisendandmete lihtsustamiseks ja algoritmide
efektiivsemaks tegemiseks.

Töö käigus luuakse arvutiprogramm, mis reaalajas, kasutades masinõppe meetodeid,
analüüsib IRMT sensori väljundit ja ennustab anomaaliad. Lisaks luuakse masinõppe-
mudel, mis kirjeldatakse C keeles realiseerimaks ja valideerimaks mudelit mikrokontroller-
süsteemil. Täiendavaks tulemuseks on skriptid andmete visualiseerimiseks ja masinõppe
mudelite analüüsimiseks Pythoni keeles.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 54 leheküljel, 10 peatükki, 26
joonist, 4 tabelit.

ii

Abstract

This thesis investigates behavioral anomalies with focus on helping elderly people to live
safer on their own. Main input device used in current study is Omron D6T matrix thermal
sensor. The system consists of matrix thermal sensor, micro-controller and general purpose
computer (desktop or mobile), connected to the Internet. Sensor is used to create a low
resolution matrix thermal image of a specific room. Image is analyzed in the PC to detect
human behavior e.g. watching TV, sleeping or moving around in the room. Investigated
detecting and differentiating falling from moving around in the room. While person is
watching TV, body temperature is assessed to detect possible fever. Sleep anomalies
detection is made with help from activity sensor. Machine learning (ML) methods are used
to make analysis easier and/or more efficient.

The result of the thesis is a computer program prototype, which uses data from the thermal
sensor and implements machine learning model to detect anomalies. The ML model
is also written in C code to run on a micro-controller (STM32F4). Additional result is
python scripts, which are used to help visualize and analyze data to select machine learning
models.

The thesis is in English and contains 54 pages of text, 10 chapters, 26 figures, 4 tables.

iii

List of abbreviations and terms

IRMT sensor Infrared matrix thermal sensor - Omron D6T-44L
Activity Monitor PC application software name created during this thesis work
MCMC Markov chain Monte Carlo
PIR sensor Passive infrared sensor (Wikipedia)
MCU Microcontroller unit (Wikipedia)
STM32 Family of 32-bit microcontroller integrated circuits by ST-

Microelectronics (Wikipedia)
COM Communication port (Wikipedia)
GPS Global Positioning System (Wikipedia)
SIM Subscriber Identification Module (Wikipedia)
C# Microsoft developed programming language

(docs.microsoft.com)
.NET .NET Framework - Microsoft software platform (dot-

net.microsoft.com)
ML.NET Microsoft open source machine learning framework (dot-

net.microsoft.com)
Windows Forms Microsoft open source graphics library (docs.microsoft.com)
UART Universal Asynchronous Receiver-Transmitter (Wikipedia)
Bluetooth Standardized wireless communication technology

(Wikipedia)
SMS Short Message Service (Wikipedia)
IBM International Business Machines - American technology

company (Wikipedia)
Gaussian distribu-
tion

Normal distribution (Wikipedia)

ID Identity document (Wikipedia)
JSON JavaScript Object Notation (json.org)
Python General purpose programming language (python.org)
scikit-learn Open source machine learning framework in Python (scikit-

learn.org)

iv

pandas Open source data analysis and manipulation tool (pan-
das.pydata.org)

matplotlib Data visualization tool(matplotlib.org)
numpy Package for scientific computing with Python (numpy.org)

v

Table of Contents

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Research questions . 1

2 Literature Review 3
2.1 Localization methods for elderly people assistance 3
2.2 Developing internet of things and machine learning based bidirectional

people counting system with passive infrared sensors 3
2.3 Non-intrusive Human Activity Recognition with Low-Resolution Infrared

Array Sensor Using Long Short-Term Memory Neural Network 4
2.4 Tracking Motion and Proximity using Thermal-sensor Array 4
2.5 Markov chain and Monte Carlo for sleep time analysis 5

3 Market Status 8
3.1 Video camera . 8

3.1.1 Giraff avatar . 8
3.1.2 Proctorio . 9

3.2 Movement sensors . 9
3.2.1 Lively passive remote monitoring sensors 10

3.3 Fall detection sensors . 10
3.3.1 General working principles . 10
3.3.2 Devices available on the market 10

4 Machine Learning 12
4.1 Monte Carlo method . 12
4.2 ML.NET . 13
4.3 Python frameworks: scikit-learn, pandas, matplotlib ja numpy 13

4.3.1 Machine learning algorithms . 13
4.4 Tensorflow Keras . 14
4.5 NanoEdge AI Studio . 14

5 Application software 15
5.1 Used devices . 15

vi

5.1.1 Omron D6T-44L sensor . 15
5.2 Used Software . 15
5.3 Room plan . 16
5.4 Activity Monitor GUI and menu structure 16
5.5 Reading data . 21

5.5.1 Pre-processing data . 21
5.5.2 ML model training . 21

5.6 Detecting anomalies . 25
5.6.1 Fall detection . 25
5.6.2 Sleep anomaly detection . 26

5.7 Testing the program . 29
5.7.1 Manual testing . 29
5.7.2 Unit-testing . 30

6 Micro-controller software 31
6.1 Used devices . 31
6.2 Used Software . 31
6.3 ML model creation with X-CUBE-AI 31
6.4 STM32 program with ML . 35

6.4.1 Running the STM32 program . 35
6.5 ML model creation with NanoEdgeAIStudio 38

7 Analysis scripts 42
7.1 Processing input data . 42
7.2 Different machine learning models . 42

7.2.1 Comparing ML models . 43

8 Experiments 45
8.1 Input data analysis . 45

8.1.1 Finding best ML model . 45
8.1.2 Analyzing the amount of data needed 47

8.2 Measuring body temperature . 48
8.3 Calibrating parameters for sleep anomaly detection 49

9 Summary 51
9.1 Future work . 52

10 Kokkuvõte 53

Bibliography 55

vii

Appendices 58

Appendix 1 - Source code 58

viii

List of Figures

1 Will Koehrsen sleep start time with blue dots [5] 5
2 Logistic model for going to sleep [5] . 6
3 Sleep duration model [5] . 7

9 Activity Monitor GUI . 16
4 System overview . 17
5 Sensor introduction in the omron.com [33] 17
6 Room plan . 18
7 View from IRMT sensor 1 . 19
8 View from IRMT sensor 2 . 19
10 Starting of learning . 22
11 ML.NET Scenario selection . 23
12 ML.NET training environment . 23
13 ML.NET input data select . 24
14 ML.NET training time . 24
15 ML.NET training result . 25
16 Sleep/Awake anomaly detection algorithm 27
17 First 10 nights in 2019, red line showing when author was sleeping during

24h, in the lower window program log 28

18 STM32CubeMX configuration view . 32
19 STM32CubeMX X-CUBE-AI plugin . 32
20 STM32CubeMX X-CUBE-AI analyze error 35
21 STM32 program GUI . 36
22 STM32 program prediction for falling 37
23 STM32F4 not selectable . 38
24 NanoEdgeAIStudio Signals view . 39
25 NanoEdgeAIStudio Benchmark view . 39
26 NanoEdgeAIStudio Benchmark libraries view 40
27 NanoEdgeAIStudio Emulator view . 41
28 NanoEdgeAIStudio Deployment view 41

29 Prediction confidence with 4 thermal images 48
30 Resulting sleep expectation for one day shown in red after 345 full days

simulation . 49
31 Awake warnings between 09-12.2019 49

ix

List of Tables

1 Fall detection sensors comparison . 11

4 Constants used in the sleep anomalies algorithm 29

7 Random forest classifier confusion matrix 44

8 Body temeprature measurement results 49

x

1. Introduction

In given master thesis research is made to detect anomalies in human behaviour and
possible danger situations. The thesis has three focus topics. The the main focus is on
elderly people to live independently for longer and safer. Elderly could fear what happens
if one falls and cannot get up on his/her own. Getting help quickly could be vital. One
option is to monitor person and then assist if needed. For monitoring video camera can be
used, but it has intrusive nature to persons privacy. Much less invasive is low resolution
matrix thermal sensor (IRMT). This work is mainly focused on analysing the data from
given sensor. Thermal image of the room is created, which is analyzed to monitor human
behaviour and to detect anomalies and danger situations. The data is processed using
machine learning methods on a personal computer (Windows PC) and also the machine
learning model is developed for the microcontroller (STM32F4). The benefit of having the
solution run on a smaller device is its lower price, size and energy consumption.

The second focus of current thesis is continuation of work done in given master thesis [1]
by Christel Nilsen, where author investigated using IRMT sensor for detecting human in a
specific room in different distances and positions.

The third focus is detecting sleep anomalies, based on the status received from the thermal
image of the room.

1.1 Research questions

1. Which infrared sensors are investigated for monitoring human activity?

Infrared sensors are used for example detecting movement (PIR sensors) or measuring
temperature. In given work author investigates detecting human behaviour using matrix
thermal sensor (IRMT)

2. How to use machine learning methods to simplify detecting different human activities?

In the given work different machine learning methods and frameworks are studied to
process data from the IRMT sensor to detect different activities by one person in a given

1

room.

3. Is use of machine learning meaningful to detect anomalies?

Based on the models from different machine learning methods, it will be studied if detecting
anomalies is possible using these models.

4. Is IRMT sensor useful for detecting dangerous situations?

Different experiments are made using the author as a test subject to create dangerous
situations and the IRMT sensor ability to help detect them.

5. Can machine learning model, which monitors human activity, run on a microcontroller
(MCU)?

If the machine learning model works successfully on a PC, investigate if it can also be
used efficiently on a MCU.

2

2. Literature Review

Overview of research made in the related subject. First thesises on similar subject from
TalTech are provided and also research which was found from the internet. Chapters from
2.1 to 2.4 describe the use of IRMT sensor and 2.5 describes sleep anomalies research.

2.1 Localization methods for elderly people assistance

Christel Nilsen investigated in her master thesis [1] using of Omron IRMT to detect warm
objects and their position in the room.
In her experiments 4x4 IRMT sensor is put in the upper corner of the room. It is used to
investigate detecting different objects including a person. Also person’s position in the
room is investigated. The focus is having the end solution to work on a micro-controller.
To calibrate the room thermal images are made with all the heat emitting objects both
switched on and off (e.g. TV or a lamp). This way the statical items in a room are dis-
covered. As a result the calibrated system does not start detecting human when e.g. lamp
is switched on. Person is investigated as a dynamic object in the room. When a person
moves the temperature changes in the thermal matrix rapidly. Binary matrix is created
where ’1’ means that in the given point human is detected. Precondition is that there is
only one person in a room and the human’s temperature is always higher than the room
temperature. Person’s distance from the sensor investigated by measuring the temperature
drop in different lengths. Test program is created which helps to analyze data from the
IRMT sensor.
Author’s work proves that IRMT sensor can be used to detect a person and his/her approxi-
mate position in the room. Current work will continue this work by using two sensor to get
improved field of view and to detect more detailed situations with the help of the machine
learning.

2.2 Developing internet of things and machine learning based bidirec-
tional people counting system with passive infrared sensors

In this master thesis [2] author investigates PIR sensors for counting number of people in
a room. This can be useful for e.g. adjusting the heating or ventilation. Author makes a
working product prototype where two PIR sensors are connected to the Arduino and it

3

counts people with 93% accuracy. Counting is done by detecting a person moving either
in or out the room. To count, 2 sensors are placed so that if one sensor detects movement
and the second within specified time, the counter is increased, and the counter is decreased
when the order of detection is the opposite. Author also investigates machine learning
method Support Vector Regression (SVR), but because COVID-19 there is only limited
field data collected and only initial predictions are made. Author mentions that more data
is needed to make more accurate estimates with machine learning methods.
Author’s work successfully monitors persons count in the room using a infrared sensor.
This work will continue in given thesis with more focus on the machine learning.

2.3 Non-intrusive Human Activity Recognition with Low-Resolution
Infrared Array Sensor Using Long Short-Term Memory Neural
Network

In this paper [3] authors investigate 8x8 IRMT sensor to detect human activity recognition
(HAR). A long short-term memory (LSTM) is used to extract human activity from the
filtered low resolution thermal image. Their motivation to use the IRMT sensor is its
relatively low cost and non-invasive nature.

Authors put IRMT sensor on the ceiling covering 3,3 x 2 meters detection area. Authors
investigate detecting 4 activities (lying, standing, sitting and walking) plus empty room.
20 sequential frames of 8x8 image is collected to get one input for the model. Also J-filter
and Butterworth filter is used to preprocess the input data. This improves accuracy from
84% with raw to 98 % with filtered data. Different recognition algorithms are tested and
the LSTM gives the best overall result of 98%.
Authors prove that using IRMT sensor to recognise human activity is possible. Current
work will continue this study and also try to detect anomalies.

2.4 Tracking Motion and Proximity using Thermal-sensor Array

In this paper[4] authors investigate detecting number of people and their direction of
motion using Panasonic Grid-EYE 8x8 matrix thermal sensor. Their motivation to choose
thermal image instead of video-camera is because of video-cameras intrusive nature. 8x8
thermal image can provide enough tracking info while preserving privacy of the subjects.

They saved 902 scenes (images from thermal sensor) with up to 4 people of different height.
They subtracted background by subtracting per pixel long term temperature average. They
found that usually it is the head of the person that has the highest temperature and therefore

4

finding local peaks in the thermal image helps identifying number of persons. They started
with using K-means clustering for number of instances estimation. This approach had a
problem distinguishing between 2 and 3 persons. They then used Support Vector Machine
classification and then achieved 80% accuracy.

For motion and direction detection they used 2,5m x 2,5m view from the sensor mounted
in the ceiling and only one person moving, without any other person on the scene. The
sampling rate for the sensor was 10 samples per second. Authors extracted the time series
from each pixel and computed a cross-correlation matrix with other cells. They used also
delay between boundary cells to get the direction. With this approach they successfully
identified 4 different directions of person walking in normal speed. For future work they
suggested detecting also more complex scenes with multiple persons moving or more than
4 directions of moving.
This work was another example of researching human activity using IRMT sensor.

2.5 Markov chain and Monte Carlo for sleep time analysis

In given article [5] Will Koehrsen investigates Markov chain[6] and Monte Carlo methods
[7] (MCMC) using own sleep data. Author takes input sleep data (time to fall asleep and
the sleep duration) from the activity monitor around the wrist. Formula which represents
time to fall a sleep is researched. Author creates a graph where 0 is being awake and 1
is asleep during last 60 nights (Figure [1]). From the graph it is visible, that time to fall

Figure 1. Will Koehrsen sleep start time with blue dots [5]

a sleep is usually after 10PM. Further it is evident that person does not fall asleep in the
same time every day and the shape of the graph seems to represent logistic equation. 2.1

p(sleep|time) =
1

1 + eβ∗t+α
(2.1)

5

Figure 2. Logistic model for going to sleep [5]

The β and α are parameters which could be learned using MCMC methods. Author uses
PyMC3 [8] library. The result is a logistic model (Figure [2]) which shows probability,
that author sleeps at given time. At 22:14 the probability that author sleeps is over 50%.
Author continues by investigating the duration of the sleep and discovers that normal

distribution does not describe this the best way. The reason is that while most of the time
author sleeps around 8 hours, there are multiple times where author sleeps significantly
more. To calculate the distribution graph asymmetric Metropolis-Hastingsi algorithm [9]
is used. Resulting graph (Figure [3]), where the right side is not so steep. Average sleep
duration is 7,67 hours.

In conclusion author finds this sleep data as a good data-set for learning Markov chains and
Monte Carlo methods. This thesis work will also study detecting sleep/awake anomalies.

6

Figure 3. Sleep duration model [5]

7

3. Market Status

In given chapter author gives overview of current market status for technical devices which
help aging people to live more safely and independently in their own homes. Author
focuses on devices which help detect dangerous situations and can work autonomously.

3.1 Video camera

With today’s wide range of affordable IP cameras it is quite often a practice that close ones
put a camera to their elderly relative home. This is to monitor their health and to assure
that everything is under control. The camera gives an accurate overview of the situation
in the placed room. In the article [10] Gareth Williams describes his experience using
a video camera to care for his mother and father. Author gives advice both on technical
and legal side. The legal part goes for the United States and the United Kingdom context.
The biggest negative side of the camera based solution is its privacy invasive nature. Not
many people would like to be monitored 24 hours a day. Legally it also can be problematic,
especially if the camera is put secretly, although the intentions might be good.

3.1.1 Giraff avatar

In the article [11] video call device is introduced. It was taken into use 2010 in a Swedish
nursing home and what is special about in this device, is that it looks as much as possible
as a human. The size of a screen provides visibility for the full size person head and
shoulders. Device can be in standing up or sitting down position. It can turn the head
unit, providing the caller full view of the room. The main benefit is that for the client in
the nursing home it feels more like talking to a person than on the video call on a phone.
When developing the device, clients privacy is taken into consideration e.g. this device
cannot be used to record a video.
This work gives an example of a technical solution using video camera to monitor and help
elderly without actual person having to be in the room. Given thesis will also monitor a
person, but with non-intrusive IRMT sensor.

8

3.1.2 Proctorio

Proctorio [12] is an add-on for the Google Chrome browser, which enables to autonomously
check that person who makes an exam does not cheat. It is used when the test is made using
a personal computer, either at school or in the students home. Solution uses web-camera to
analyze examinee and also the surroundings in the room. Program has following features:

■ User identification using persons ID card and facial recognition.
■ Examinee desk and room analysis to detected unauthorized use of aid.
■ Examinee behaviour analysis using machine learning methods and also optional

expert opinion.
■ Tests originality proofing, gives an estimate on how likely the test is a plagiarism.
■ Locking the PC for any other activity e.g. user cannot open new Internet browser

tab.

Connection to authors given thesis is that Proctorio also uses machine learning to detect
behavioral anomalies, in this case cheating in an exam.

Opinions

In the Internet there are many opinions (mostly from students) about using the Proctorio
during the exams. In the Reddit group discussion [13] participants were interested on how
effective the program is and how easy it would be to cheat. Answers were very different,
some said that even the slightest looking in the other direction caused problems and others
that they cheated without any consequences. Some came to the conclusion that it depends
on the program settings and also what the teacher considers as cheating.
In the Daily Illini article [14] students raise concern that Proctorio intrudes their privacy.
It also needs high speed Internet and a personal computer, but many students use only a
mobile phone. Some professors have taken the Proctorio into use, but because of mentioned
concerns not all.

3.2 Movement sensors

Given thesis focuses on assisting elderly in non-invasive way. Movement sensors for given
purpose are mostly either fall detectors (3.3) or sensors attached to moving objects e.g.
refrigerator door. In the following chapters some of the sensor systems are introduced and
their working principles explained.

9

3.2.1 Lively passive remote monitoring sensors

In given article [11] elderly assistance and monitoring systems are introduced. In San
Fransisco a company named Lively started selling remote monitoring devices in 2013.
Sensors with accelerometer are placed on different devices which move in persons home,
e.g. key-chain or refrigerator door. Over Bluetooth movement detection is sent to a base
station. Base station sends data to a central server which compares and analyses data
against expected movement. Expected data is gotten by monitoring the client during
the first week of device use. Clients relatives can monitor remotely to see if the client
situation is as expected, shown as a green status. When detecting danger situation e-mail or
SMS is sent to a client’s contact. When designing the system clients privacy is taken into
consideration, e.g. person monitoring the client cannot know how often client uses toilet.

3.3 Fall detection sensors

Falling at home, especially in case of elderly, is quite common and might result serious
consequences. Every year 36 million elderly people (65+) fall in the United States alone,
resulting in over 32 000 deaths [15]. Due to unexpected medical condition or due to bad
health in general, it might be hard or even impossible to stand up again. Getting help could
be vital. To solve this problem of getting help, the market provides fall detection sensors.
These are mostly attached to the person and could send a message to either persons relative
or to medical personnel.

3.3.1 General working principles

Fall detectors are generally attached to a person and the accelerometer [16] inside detects
falling and then the device raises the alarm. Device usually has a button to cancel the alarm
if a person manages to get up or it is a false alarm. More advanced versions have internal
algorithms for detecting if person can get up on its own. The main disadvantage with these
kind of devices is the constant need to be attached to a person, which one can forget or
could just be uncomfortable.

3.3.2 Devices available on the market

Following table [1] introduces some of the devices available in the market which are
considered best for year 2022 from this article [17] and also best rated (4+) found from
amazon web store.

10

Table 1. Fall detection sensors comparison

Name Info Pros Cons Price
BlueStar
SeniorTech
Sentry
in-Home
Medical
Alert

Two device solution. Base
station which is connected
to a landline and sensor
which is worn around neck
or wrist.

Can call help with
pressing one but-
ton and relatively
long range (180
m)

Requires landline
and available only
in the United
States

$29.95 a
month

SureSafeGO
2 ’Any-
where’
Alarm

Mobile device solution
with mobile SIM card and
GPS tracking. Device can
be used to contact response
center 24/7.

Unlimited range,
no base station.
Built-in GPS

Battery needs reg-
ular charging (ev-
ery 4-th day)

£149.95
for de-
vice plus
£18.99 a
month

GreatCall
Lively

Mobile device worn around
neck or wrist, which uses
smart phone over Blue-
tooth as a base station.

Relativley cheap,
no charging re-
quired

Smart phone has
to be in Blue-
tooth range and
only works in the
United States

$49.99
for de-
vice plus
$14,99 a
month

Buddi Mobile device which looks
like a wristwatch. Device
needs a base station which
could be smart phone or a
dedicated base station.

Wireless charging.
Adjustable fall
sensitivity.

Requires regular
charging. Cus-
tomer support
only in the UK

£99
device,
£149
base
station.
£1.99 -
£4.99 a
month

AMG Emer-
gency Call
Button [18]

Small mobile device which
can be carried with a col-
lar. Has GPS inside and
makes alarm call to up to
3 persons. Can be config-
ured via SMS

Unlimited range
due to no base
station and built
in GPS. Monthly
cost for only
regular SIM
card. Low battery
warning SMS

Requires charg-
ing.

C121.80,
no
monthly
pay-
ment,
but own
SIM
card is
needed

11

4. Machine Learning

Author uses Machine learning methods to analyze input data and make the prediction. Use
of machine learning has proven efficient [19] in solving problems which include relatively
big amount of input data. In the given chapter author gives general introduction to machine
learning methods, frameworks and tools used in this work.

Machine learning (ML) is the study of computer algorithms that can improve automatically
through experience and by the use of data [20].
There are 3 sub-types in machine learning:

1. Supervised learning [21], which means that during learning input data is labelled.
We know result/prediction of each input data set.

2. Unsupervised learning [22], where input data is not labelled at all, mostly clustering
is used to group similar data.

3. Reinforcement learning [23], where only part of the input data is labelled and using
intelligent agent who is rewarded when predictions are getting better.

Given work uses supervised learning. During learning different states like watching TV
are simulated, state is selected from the list and program stores data from the IRMT sensor
with the correct label. Later stored data with all different labels is used when creating the
machine learning model. First the model is created and used on a PC and then using the
same input data MCU versions are created. Input data is also analyzed and visualized
using different python based frameworks.

4.1 Monte Carlo method

Monte Carlo methods are a broad class of computational algorithms that rely on repeated
random sampling to obtain numerical results [7]. Focus is on using randomness for getting
deterministic result. Author has created sleep anomalies detection algorithm (Figure [16])
inspired by the Monte Carlo methods.

12

4.2 ML.NET

Open-source machine learning framework, which is meant for .NET developers, using
either C# or F# programming language. It is installed as an add-on for the Visual Studio
[24]. Using of ML.NET is made relatively simple, with one mouse-click wizard is opened
which guides the user through the machine learning model learning process. The ML
model is selected by the framework automatically, user only needs the input data and can
select the maximum time for training. Learning can be done on the user PC, but there is
also option to delegate this to the cloud. At the time of this writing cloud computing option
was only available for Image classification. For given work Text classification scenario
was chosen, because this enables to predict same type of input data-set into 2+ categories.
Given framework was used because of authors experience with the .NET development and
its easy user interface.

4.3 Python frameworks: scikit-learn, pandas, matplotlib ja numpy

List of Python frameworks used in given thesis

■ scikit-learn [25] open-source ML framework in Python.
■ pandas [26] data analysis tool in python.
■ matplotlib [27] visualization tool in Python.
■ numpy [28] tool written in C to be used for scientific calculations in python.

4.3.1 Machine learning algorithms

Following machine learning algorithms were used using Python when analyzing input data.
They were selected to compare the accuracy of different algorithms.

■ Naive Bayes classifier [29] - is statistics based one of the simplest machine learning
methods. Precondition is that input data vector values are independent and with
equal scale. Given work uses Naive Bayes with normal distribution, which is defined
by given function 4.1

p(x = v|Ck) =
1√
2πσ2

k

e−
(v − µk)

2

2σ2
k

(4.1)

x - continuous attribute
µk - mean of the values in x

σ2
k - Bessel corrected variance

13

v - observed value
Ck - x associated class
π - Pii
e - Euler’s number

■ Random Forest classifier [30] - multiple decision trees are used and prediction
which get the most votes is chosen. Preconditions for the model are:

1. Inputs need to have a correlation with the output.
2. Multiple independent decision trees can be made from the inputs.

■ Logistic regression - Generalization of linear regression. Uses logistic model. [31].

4.4 Tensorflow Keras

Keras is a neural network library in Tensorflow which is an open source library for machine
learning. Author used it to create machine learning model which can be converted to
Tensorflow Lite, which in turn can be realised in C code and then run on a MCU.

4.5 NanoEdge AI Studio

Tool to create edge AI solutions for STM32 devices [32]. It is an automated machine
learning solution, meaning that no coding is required. It uses the sensors e.g. accelerometer
present in the STM32. Author used it to create machine learning model for STM32 device.

14

5. Application software

One of the main end products from the thesis work is a Windows program called Activity
Monitor which reads input data from the IRMT sensor and makes live predictions based
on a machine learning model. Input data needed for the machine learning model is also
created using the program to read data from the IRMT sensor during the learning phase.
Activity Monitor system overview (Figure [4])

5.1 Used devices

2 x Omron D6T-44L Two 4x4 IRMT sensors, which create 4x8 thermal image of
the room [33]. Sensors are equipped with I2C interface

TM4C123GXL IRMT sensors are connected to TM4C123G LaunchPad
Evaluation Kit with TI MCU

Windows PC Used for developing and running Activity Monitor which is
connected to the MCU via virtual COM port

Garmin Vivomove Sleep and activity monitor for getting sleep data

IRMT sensors and the TM4C123GXL were provided by the supervisor and are used as an
input device.

5.1.1 Omron D6T-44L sensor

Two Omron D6T-44L IRMT sensors are used, which are described in the product homepage
[33] as being good for human presence detection (Figure [5]).

5.2 Used Software

Visual Studio 2019 Community Windows application development in C#
ML.NET Microsofti open-source machine learning framework, which

is used to train the ML model and in real time predict the
output

CCS Code Composer Studio C language MCU code development environment

15

The Jupyter Notebook Open-source programming environment which supports
Python

Live Home 3D Home and interior design application, which is used to create
model of the room

Microsoft Visio Program for diagrams

5.3 Room plan

To test method author uses this room (Figure [6]) for experiments. With purple is the
placement of the IRMT sensor shown.

Figure [7] is view from the first and in Figure [8] second IRMT sensor (Sensors, with view
of 45 degrees, are in 22,5 degree angle to each other, for the optimal view of the room)

5.4 Activity Monitor GUI and menu structure

Figure [9] shows the program main user interface.

Figure 9. Activity Monitor GUI

16

Figure 4. System overview

Figure 5. Sensor introduction in the omron.com [33]

17

Figure 6. Room plan

18

Figure 7. View from IRMT sensor 1

Figure 8. View from IRMT sensor 2

19

In the following the menu structure of the program is described

■ File
• Start - Open the connection to the IRMT sensor over Virtual COM port
• Save log - Saves log to a file
• Exit - Closes connection and closes the program

■ View - Views
• Log - Program log
• Raw input - Direct input from the sensor
• Input - Sensor input in degrees
• Filtered Input - Filtered sensor input in degrees
• Movement row - Input change in 1 second interval
• Input table - Sensor input visualized as a table
• Black and White -Above and below 25 ◦C
• Colored - Colorized table
• Numbers - Number values in degrees in a table

• Sleep graph - Sleep graph
• Temperature - Min, Max and average room temperature
• ML Prediction - Machine learning prediction

■ Mode
• ML Learning - Machine learning input data
• Empty room
• Person moving
• Person watching TV
• Person sleeping
• Falling - Fall simulation

• Sleep
• Garmin data - Analyze json input from Garmin activity monitor.
• Live monitoring - Live sleep monitoring from IRMT sensor

• Test - Program test and helper functions
• Convert temp - Temperature conversion
• Prediction - Test machine learning prediction from the input file
• Room temp - Find room temperature from the input file
• Calibrate room temp

■ Settings
• General
• Reset to default

■ Help
• About

20

5.5 Reading data

Omron IRMT sensor output is read via I2C with MCU and from there is sent over UART
to Windows PC, which is input for the Activity Monitor application. Since there are two
sensors, observing adjacent spaces, two lines of data are needed for one input image.

Example input:
I2C1: 12 01 e3 00 e4 00 e4 00 e5 00 e6 00 e5 00 e5 00 e4 00 e5 00 e6 00 e4 00 e5 00 e5
00 e5 00 e4 00 e1 00 37
I2C0: 13 01 e7 00 e7 00 e5 00 e3 00 e7 00 e8 00 e7 00 e4 00 e9 00 e9 00 e7 00 e4 00 ec
00 ea 00 e5 00 e5 00 cc
I2C1 is the left sensor and the I2C0 the right followed by high-byte low-byte value pairs of
temperature values in decidegree Celcius (d◦C).

5.5.1 Pre-processing data

It is a known difficulty in machine learning to get the input data in correct format before
inputting it to the ML model. Most of the input values are around room temperature which
was about 23 ◦C. But since the room temperature can change depending on the weather
and heating, author observed with initial tests that ML model which worked fine one day
was useless on another. To filter out room temperature changes, input data is filtered by
deducting the minimum temperature value from each value from the thermal image.

To be able to detect movement from the input data and to satisfy the Markov property [6],
author collected multiple of images (4 in one experiment, but this can be configured in the
Activity Monitor application) and then set them all together as one data line for the input
of the ML. Making the each new frame input to the rolling window, where the oldest is
thrown away. Multiple images are needed for detecting movement and for better accuracy.
More about it in the experiments (Chapter 8.1.2)

5.5.2 ML model training

Reading input data

To save and label input data for the machine learning model, Activity Monitor has the
following options:

■ 0 - Room is empty
■ 1 - Person moving around

21

■ 2 - Person watching TV (expressing long set of behaviors in sitting position)
■ 3 - Person sleeping
■ 4 - Person falling

To simplify the learning other heat emitting objects e.g. radiator, pet or multiple people,
were not allowed in the room.

To start learning user selects from the menu ML Learning type of the learning e.g. Empty

room. Program gives 3 seconds delay time to create needed situation. (Figure [10]).
Learning can be paused or ended. After all the interested states are learned, the program
creates a formatted text file, which can be used for ML model training input data.

Figure 10. Starting of learning

Training the ML model

To train the model author used Visual Studio wizard for ML.NET. In first step type of the
model is chosen (Figure [11]). For given task Text classification suited the best.

Next step is environment selection (Figure [12]). For given task only local PC can be
selected but e.g. for Image classification cloud computing is also an option.

To continue training data needs to be selected. For that text file, which was created by the
Activity Monitor, is chosen. First column shows prediction. (Figure [13]).

Maximum time for training can be set in seconds (Figure [14]). Suitable maximum time 30
seconds was found experimentally, which was enough for given size of input data. Training
result for given input data was 100% and it was calculated in 12 seconds (Figure [15]).

22

Figure 11. ML.NET Scenario selection

Figure 12. ML.NET training environment

23

Figure 13. ML.NET input data select

Figure 14. ML.NET training time

24

Figure 15. ML.NET training result

5.6 Detecting anomalies

Author investigated two different anomalies i.e. falling and sleep anomalies. Fall detection
is based on direct input from the IRMT sensor to the ML model. For sleep anomalies first
sleeping or not sleeping is detected from the IRMT sensor and then based on a longer
period anomaly is detected as difference from expected behaviour.

5.6.1 Fall detection

Detecting person falling was more complicated than the other human activity detection.
Reason is harder to get the proper training data, when compared to e.g. watching TV.

To start author made experiments, where author moved around in the room and made
sudden drops to the floor. Then author manually investigated the saved data file and
selected data lines which had warm object moving from upper row to lower one. This
data was easily distinguishable by the ML.NET machine learning. Model accuracy was
100%. Author wanted to improve the Activity Monitor and added extra function which
detects warm object moving down, so when user trains falling these data lines are stored
automatically. No need for manually selecting data lines.
/ / / <summary>
/ / / D e t e c t i f t h e movement row has warmer v a l u e s i n t h e lower row
/ / / </ summary>
/ / / <param name="mRow">Movement v e c t o r </ param>
/ / / <param name=" t h r e s h o l d "> Value which i s c o n s i d e r e d as t h r e s h o l d f o r human moving </ param>
/ / / <r e t u r n s ></ r e t u r n s >
p u b l i c s t a t i c bool DetectMovingDown (i n t [] mRow, i n t t h r e s h o l d)
{

i f (mRow == n u l l)
{

re turn f a l s e ;
}

f o r (i n t i = 1 ; i < SENSOR_COLUMS; i ++)
{

f o r (i n t j = 0 ; j < (SENSOR_COLUMS * NOF_SENSORS) ; j ++)
{

i f (mRow[i * 8 + j] − mRow [((i − 1) * 8) + j] > t h r e s h o l d && mRow [((i − 1) * 8) + j] < −1)

25

{
re turn true ;

}
}

}
re turn f a l s e ;

}

Raising fall alarm and cancelling the alarm

When the falling is detected during program operational mode, then it is not yet known if
the person can get up on its own or was it just incorrect interpretation of sensor data (false
alarm). To reduce false alarms author added a 10 second timeout, and only if during that
10 second no new state e.g. movement around in the room is detected, only then alarm is
raised. Activity Monitor has a support for contact person, who gets notification when fall
event is detected. User has to first configure both the sender and the receiver e-mail.

5.6.2 Sleep anomaly detection

Using the machine learning model created in the Activity Monitor, we know if a person
is either sleeping or not sleeping. This info is the input to the sleep anomalies detection
algorithm, which also runs on the Activity Monitor

Algorithm description

Author made a sleep anomalies detection algorithm which is inspired by the Monte Carlo
methods (Figure [16]).

With the Activity Monitor it is possible to detect if a person is sleeping or not. As a next
step author investigated sleep anomalies. Garmin Vivomove activity monitor [34] was
used to get the sleep data. Author had used given monitor for longer period and this way
actual data from one year can be used. Data can be loaded in JSON format where one file
is for one day. In each file there is a sleep starting minute and then sleep level for every
minute. Since author made a sleep algorithm interval one minute in the Activity Monitor, it
was possible to implement additional functionality in the program to accept data in JSON
format for sleep anomalies detection algorithm. Given graph [17] shows algorithm result
for first 10 nights of year 2019.

Time axis has minutes (1440) in twenty-four hours, and in other axis the expectation
strength if a person is sleeping. Graph is made so that in every minute it is evaluated if
person is sleeping. This is done by assessing if more than half of the is sleeping values
within one minute from the machine learning model are true. Program holds data for
every minute of the day. After every new minute passing the value for the given minute

26

Figure 16. Sleep/Awake anomaly detection algorithm

27

Figure 17. First 10 nights in 2019, red line showing when author was sleeping during 24h,
in the lower window program log

is updated. If the person is sleeping value is added by 1 and if not subtracted by 1. If the
value reaches maximum (+-10 by default) then it is not updated anymore.
To detect sleep anomaly, every minute program checks the expectation if a person is
sleeping (value above 5) or not sleeping (below 5) matches the current value, if not the
current value is added to the sum value for given anomaly. If the sum reaches configured
maximum (default is 600, which represents 1 hour of maximum values) anomaly is
detected. The sum value for either is sleeping or not sleeping anomaly is reset every time
the expected value matches current value.
In the following table [4] there is description of the constants used in the algorithm and
what effect they have.

Calibrating parameters

Author tried to detect anomalies (in period 01.2019-07.2020) with assumption that 1% of
days could be considered as anomaly. 1% was chosen because then there would be about
3-4 days in a year where the warning is raised. Although the author had rather regular
sleeping behaviour, these days should indicate something author remembers was outside
of normal sleep/awake days. Author either slept when should not or did not when should
have. Preliminary parameters:

const int AWAKE_WARNING = 600;

const int SLEEP_WARNING = 600;

const int MAX_VAL_FOR_MINUTE = 10;

28

Table 4. Constants used in the sleep anomalies algorithm

Name Info Effect
AWAKE_WARNING Limit for awake

warning
Limit, when alarm is given
when person is awake when
should be asleep

SLEEP_WARNING Limit for sleep
warning

Limit, when alarm is given
when person is asleep when
should be awake

MAX_VAL_FOR
MINUTE

Maximum value
for any given
minute

Increasing the value, it takes
more time for algoritm to get
the max values, but it contains
more previous is asleep val-
ues.

SLEEP_EXP THRESH-
OLD

Time when it is
expected for the
person to sleep

Increasing the value makes the
exact time to go sleep less rel-
evant

AWAKE_EXP
THRESHOLD

Time when it
is expected for
the person to be
awake

Increasing the value makes the
exact time to be awake less rel-
evant

const int SLEEP_EXP_THRESHOLD = 5;

const int AWAKE_EXP_THRESHOLD = 5;

Calibrating parameters more under experiments 8.3

5.7 Testing the program

To test the program, manual testing and unit-testing was used.

5.7.1 Manual testing

Creating the program and after adding new features, it was manually tested with different
states and inputs. Also special testing options added to the program e.g. predict data from
saved file input. So instead of testing that e.g. the prediction for watching TV is still
working author ran previously saved test file to see how the program behaves.

29

5.7.2 Unit-testing

To make the testing more efficient especially against regressions, that old features
does not need to be manually re-tested after every update, author added unit tests,
which test smaller components. After every code change they can be run automatically.
MSTest.TestFramework was used for unit-testing.

30

6. Micro-controller software

When the experiments with IRMT sensor and machine learning model running on the PC
proved successful, author investigated running the model also on a micro-controller. For
that author used single board controller with STM32F429 MCU [35].

6.1 Used devices

Windows PC Used for developing the ML model and code for the MCU.
STM32F429 MCU used to implement machine learning model on the

edge device. It has Cortex-M4 core clocking frequency at
180 MHz, 192 KiB RAM and 2.00 MiB flash.

6.2 Used Software

STM32CubeMX Windows application for graphical configuration of the
STM32 microcontrollers (Figure [18])

X-CUBE-AI Artificial Intelligence Pack version 5.2.0 for STM32 MCUs
NanoEdgeAIStudio Automated Machine Learning (ML) tool for STM32 devel-

opers
System workbench for STM32 Eclipse like IDE for STM32
Tensorflow Keras Deep learning API written in Python
Tensorfloe Lite Open source deep learning framework for microcontrollers

6.3 ML model creation with X-CUBE-AI

Author took the same input data file which was created during the learning process with the
Activity Monitor. Then author used Tensorflow Keras framework in Python to create a ML
model. Author had the limitations of the MCU to consider. This meant that the maximum
RAM is 192 KiB and maximum flash size is 2.0 MiB (which is not that problematic as the
RAM run out first)

31

Figure 18. STM32CubeMX configuration view

Figure 19. STM32CubeMX X-CUBE-AI plugin

32

Steps to create model for STM

■ Create and train using Tensorflow Keras
■ Convert model to Tensorflow Lite
■ Analyze model using X-CUBE-AI in STM32CubeMX (Figure [19])
■ Generate C code from the ML model in STM32CubeMX
■ Use generated ML model using System workbench for STM32

33

Model created for the the STM32

Model : " s e q u e n t i a l "

Layer (t y p e) Outpu t Shape Param #
===
conv2d (Conv2D) (None , 256 , 1 , 64) 640

conv2d_1 (Conv2D) (None , 256 , 1 , 64) 36928

b a t c h _ n o r m a l i z a t i o n (BatchNo (None , 256 , 1 , 64) 256

d r o p o u t (Dropout) (None , 256 , 1 , 64) 0

conv2d_2 (Conv2D) (None , 256 , 1 , 64) 36928

conv2d_3 (Conv2D) (None , 256 , 1 , 32) 18464

d r o p o u t _ 1 (Dropout) (None , 256 , 1 , 32) 0

b a t c h _ n o r m a l i z a t i o n _ 1 (Batch (None , 256 , 1 , 32) 128

conv2d_4 (Conv2D) (None , 256 , 1 , 64) 18496

conv2d_5 (Conv2D) (None , 256 , 1 , 32) 18464

b a t c h _ n o r m a l i z a t i o n _ 2 (Batch (None , 256 , 1 , 32) 128

a c t i v a t i o n (A c t i v a t i o n) (None , 256 , 1 , 32) 0

f l a t t e n (F l a t t e n) (None , 8192) 0
===
T o t a l params : 130 ,432
T r a i n a b l e params : 130 ,176
Non− t r a i n a b l e params : 256
V a l i d a t i o n e v a l u a t i o n r e s u l t s : l o s s − 0 .434 a c c u r a c y − 0 .936

34

Figure 20. STM32CubeMX X-CUBE-AI analyze error

Model creation is an iterative process, reason is that resulting model might not fit to the
MCU, but also not every layer/combination is supported by the X-CUBE-AI. Example of
an error caused by connecting two Dense layers [36] (Figure [20])

6.4 STM32 program with ML

After model is successfully created and also the analyze from STM32CubeMX is success-
ful, then the ML model C code can be created. STM32 project to receive the C code has to
exist first. Author made one based on a previous school project. The generated C code
has the main interface put into app_x-cube-ai.h file and the ML model goes by default to
network.c file.

Author added 5 random data samples from initial input file for ML training to the C
code. Then programmed GUI code to visualize the thermal image and the ML prediction.
Resulting STM32 program runs through the inputs one by one and shows the result on the
LCD screen (Figure [21]).

6.4.1 Running the STM32 program

Video about the code running on the MCU through all the input samples is uploaded along
with the source code to GitHub (Chapter 10).
Like mentioned before author hard-coded 5 test samples to the STM32 code to verify the

35

Figure 21. STM32 program GUI

36

accuracy and the speed of the ML model.

Processing time

The processing time for the ML model was 682 milliseconds for all inputs. Author did not
see any time fluctuation.

Accuracy

When author run through all the test samples, it was noticed that all but prediction for the
falling were correct. To see how much the prediction was wrong, author modified the GUI
code so that it printed the prediction confidence for the highest and also for the expected
value (Figure [22]). This showed that the difference was not over 5.6 for regular moving
around in the room when it was 5.1 for falling. Author tried couple of other samples for
falling, they all were predicted wrongly, but the error was not big. This suggests that adding
additional code checks could make the fall detection work e.g. if the falling prediction is
within 10-20% of regular moving prediction.

Figure 22. STM32 program prediction for falling

37

6.5 ML model creation with NanoEdgeAIStudio

Author investigated creation of the model using the NanoEdgeAIStudio, because it creates
the model and compiles C code in 5 simple steps using a wizard. A lot fewer steps
compared to previous ML model creation for the MCU, where different programs and
frameworks had to be used. Here only one program is needed. Unfortunately the STM32F4,
which author had, was not supported by the tool at the time of thesis writing. It was grayed
out in the target selection combo-box(Figure [23]). Author asked about it from the support
e-mail, but did not get any reply.

Figure 23. STM32F4 not selectable

Author continued to study the program by selecting target which was supported (STEVAL-
STWINKT1B) and a generic sensor. In the next step (Figure [24]) input signals need to be
imported. Author modified the test data which was made by the Activity Monitor to be
suitable for given program. This meant that all observed predictions had to be in a separate
file. Then program analyses input files to see if they are suitable for the model creation, e.g.
if they fit into the RAM (with previous model creation, only after the model was created,
one could see the required RAM). Also there are input signal visualization and filtering
options.

Next step is the creation of the machine learning model (Figure[25]). User only selects
how many CPU cores are allocated and the rest is done by the program.

The result of the model creation was 31 different ML libraries, with the best ones having
accuracy 88%, memory usage for RAM 1,2 kB and required flash 12,3 kB. User can get
more info about each of the resulting model/library (Figure[26]). In the view one can see
the type of the model, in given case the support vector machine (SVM) gave the best result.
Also confusion matrix is shown to see where the wrong predictions went. Basically all of
the ML models failed to successfully detect falling, but were close to 100% on all other
predictions.

Confusion matrix had only one prediction of falling, which was wrong, but does not indicate

38

Figure 24. NanoEdgeAIStudio Signals view

Figure 25. NanoEdgeAIStudio Benchmark view

39

Figure 26. NanoEdgeAIStudio Benchmark libraries view

that all of the predictions for falling are wrong. Author tried to predict falling using the
best library with the emulator, which is the next step in the program wizard (Figure[27]).
For test author made test file with 5 data lines, 2 for moving around in the room and 3 for
falling. Author modified randomly input data values by increasing/decreasing 3 values in
each line but one, which remained identical to the one in the learning phase. This was to
not have exact match from training data. The result was 100% accuracy.

Last step in the program is deployment, which compiles the machine learning library to C
library. There are few configuration possibilities like compiler flags and option to have
multiple libraries deployed to the same STM32 board. The view also includes library
integration C code example (Figure[28])

Although the required STM32F4 could not be selected, author found the program very
promising. Reason is that it had very few simple steps to create the model from input data
ready to be deployed to the MCU board.

40

Figure 27. NanoEdgeAIStudio Emulator view

Figure 28. NanoEdgeAIStudio Deployment view

41

7. Analysis scripts

In the Activity Monitor program, the wizard in the ML.NET selects best machine learning
model automatically. Author decided to analyze the input data and test different machine
learning models to see their accuracy. Author used Jupyter Notebook and machine learning
frameworks in python to analyze input data. Reason for using python is its wide use in the
machine learning and data processing. Python is considered the most popular language for
ML [37].

7.1 Processing input data

Input data is the values stored using the Activity Monitor with IRMT sensor. To load the
data for analysis pandas framework is used.
Example to validate the input data and its structure the following methods were used:

s e e how many rows and columns

df . shape
s e e t h e f i r s t 5 rows

df . head (5)
s e e t h e l a s t 5 rows

df . t a i l (5)
check t h a t v a l u e s are n o t n u l l

df . i s n u l l () . v a l u e s . any ()
Data c o r r e l a t i o n shows how each i n p u t column i s d e p e n d e n t on

t h e o t h e r , where 1 means 100%

df . c o r r ()

7.2 Different machine learning models

Naive Bayes classification

from s k l e a r n . n a i v e _ b a y e s import GaussianNB

nb_model = GaussianNB ()
nb_model . f i t (X _ t r a i n , y _ t r a i n . r a v e l ())

42

Random forest classification

from s k l e a r n . ensemble import R a n d o m F o r e s t C l a s s i f i e r

r f _ m o d e l = R a n d o m F o r e s t C l a s s i f i e r (r a n d o m _ s t a t e =42 , n _ e s t i m a t o r s =10)
r f _ m o d e l . f i t (X _ t r a i n , y _ t r a i n . r a v e l ())

Logistic regression

from s k l e a r n . l i n e a r _ m o d e l import L o g i s t i c R e g r e s s i o n

l r _ m o d e l = L o g i s t i c R e g r e s s i o n (C= 0 . 7 , s o l v e r = ’ l i b l i n e a r ’ , r a n d o m _ s t a t e =42)
l r _ m o d e l . f i t (X _ t r a i n , y _ t r a i n . r a v e l ())

7.2.1 Comparing ML models

To know which ML model gave the best result, author compared following metrics using
metrics library from the scikit-learn [38]:

■ Accuracy of training and test data
■ Confusion Matrix
■ Classification Report

Accuracy

To know the model accuracy author compared the training data accuracy and also the test
data accuracy. Author used accuracy_score method

p r e d i c t _ t r a i n = model . p r e d i c t (X _ t r a i n)
m e t r i c s . a c c u r a c y _ s c o r e (y _ t r a i n , p r e d i c t _ t r a i n)

p r e d i c t _ t e s t = model . p r e d i c t (X _ t e s t)
m e t r i c s . a c c u r a c y _ s c o r e (y _ t e s t , p r e d i c t _ t e s t)

Confusion Matrix

Confusion matrix shows the summary of predictions in a matrix. Author used it to see
where the wrong predictions went. confusion_matrix is part of the sklearn.metrics

p r i n t (" Confus ion Ma t r i x ")
p r i n t (" {0} " . format (m e t r i c s . c o n f u s i o n _ m a t r i x (y _ t e s t , p r e d i c t _ t e s t)))

43

Example confusion matrix 7, which shows that one prediction for falling is wrong and is
predicted as sleeping:

Table 7. Random forest classifier confusion matrix

Empty Moving TV Sleep Fall
20 0 0 0 0
0 24 0 0 0
0 0 21 0 0
0 0 0 46 0
0 0 0 1 1

Classification Report

classification_report method shows additional metrics about the ML model predictions:

p r i n t (" C l a s s i f i c a t i o n Re po r t ")
p r i n t (m e t r i c s . c l a s s i f i c a t i o n _ r e p o r t (y _ t e s t , p r e d i c t _ t e s t))

■ Precision - percentage of positive predictions which are actually correct for given
label

■ Recall - number of predictions for given label divided by all the predictions for given
label

■ F1-score - precision and recall combined to one value

44

8. Experiments

8.1 Input data analysis

Author made experiments with the python scripts described in 7. For input data author
used the values stored using the Activity Monitor with IRMT sensor. Author used version
where 8 consecutive thermal images were saved to get one row of input data with 256
(8x32) values 5.5.1.

8.1.1 Finding best ML model

Naive Bayes classification
T r a i n i n g d a t a a c c u r a c y : 0 .9430
T e s t d a t a a c c u r a c y : 0 .7788
Confus ion M at r i x
[[0 20 0 0 0]

[0 20 0 0 4]
[0 0 21 0 0]
[0 0 0 45 1]
[0 0 0 0 2]]

C l a s s i f i c a t i o n R epo r t
p r e c i s i o n r e c a l l f1 − s c o r e s u p p o r t

0 0 . 0 0 0 . 0 0 0 . 0 0 20
1 0 . 5 0 0 . 8 3 0 . 6 2 24
2 1 . 0 0 1 . 0 0 1 . 0 0 21
3 1 . 0 0 0 . 9 8 0 . 9 9 46
4 0 . 2 9 1 . 0 0 0 . 4 4 2

a c c u r a c y 0 . 7 8 113
macro avg 0 . 5 6 0 . 7 6 0 . 6 1 113

w e i g h t e d avg 0 . 7 0 0 . 7 8 0 . 7 3 113

Random Forest classification

45

T r a i n i n g d a t a a c c u r a c y : 1 .0000
T e s t d a t a a c c u r a c y : 0 .9912
Confus ion M at r i x
[[2 0 0 0 0 0]

[0 24 0 0 0]
[0 0 21 0 0]
[0 0 0 46 0]
[0 0 0 1 1]]

C l a s s i f i c a t i o n R epo r t
p r e c i s i o n r e c a l l f1 − s c o r e s u p p o r t

0 1 . 0 0 1 . 0 0 1 . 0 0 20
1 1 . 0 0 1 . 0 0 1 . 0 0 24
2 1 . 0 0 1 . 0 0 1 . 0 0 21
3 0 . 9 8 1 . 0 0 0 . 9 9 46
4 1 . 0 0 0 . 5 0 0 . 6 7 2

a c c u r a c y 0 . 9 9 113
macro avg 1 . 0 0 0 . 9 0 0 . 9 3 113

w e i g h t e d avg 0 . 9 9 0 . 9 9 0 . 9 9 113

Logistic Regression
T r a i n i n g d a t a a c c u r a c y : 1 .0000
T e s t d a t a a c c u r a c y : 0 .9823
Confus ion M at r i x
[[2 0 0 0 0 0]

[0 24 0 0 0]
[0 0 21 0 0]
[0 0 0 46 0]
[0 1 0 1 0]]

C l a s s i f i c a t i o n R epo r t
p r e c i s i o n r e c a l l f1 − s c o r e s u p p o r t

0 1 . 0 0 1 . 0 0 1 . 0 0 20
1 0 . 9 6 1 . 0 0 0 . 9 8 24
2 1 . 0 0 1 . 0 0 1 . 0 0 21
3 0 . 9 8 1 . 0 0 0 . 9 9 46
4 0 . 0 0 0 . 0 0 0 . 0 0 2

46

a c c u r a c y 0 . 9 8 113
macro avg 0 . 7 9 0 . 8 0 0 . 7 9 113

w e i g h t e d avg 0 . 9 7 0 . 9 8 0 . 9 7 113

Result

The best result for training data gave Random Forest (RF) and Logistic Regression (LR)
with 100% accuracy, but for the test data RF was better 99,1% vs 98,2%. When looking
into the wrong predictions, then the RF had one wrong prediction for falling which was
predicted as sleeping. For LR both of the predictions for falling went into wrong labels
(sleeping and moving).

8.1.2 Analyzing the amount of data needed

Author made an assumption that multiple sequential thermal images are needed in one
data line to detect movement. To verify this assumption, author used python scrips. To
verify the stability author used Activity Monitor and reduced the number of data rows used
for machine learning and then observed prediction probability for each prediction.

Number of images needed for accuracy

When input data from the IRMT sensor using Activity Monitor was collected, the initial
setup saved values from 8 thermal images to one data row. Author used this input data
and reduced number of images as an input to python scripts to see how much it affects
prediction accuracy. The best ML model (Random Forest) from the previous section was
used. The result was that almost no effect when reducing the number of input data from
256 to 32 (8 images to 1). The training data accuracy 100% and test data accuracy 99,1%
remained the same. Author thinks that the reason for this is due to different locations in the
room used for e.g. watching TV or moving in the room. The moving around in the room
gave never identical thermal image. In the following chapter 8.1.2 author experiments
what happens if moving around can overlap static positions.

Number of images needed for stability

In the previous chapter author observed that multiple thermal images were not needed to
detect moving. Author set-up new test, with 4 states: empty room, standing on the left side,
standing on the right and moving from left to right. Author modified Activity Monitor to
support this. To train the model author first used 4 consecutive thermal images (128 data
lines) and then tried the ML model accuracy while testing these different states.
Author made a test where he first stood on the left side, then moved around in the room,

47

stopped at the right side and then left the room. In the following graph one can see better
accuracy and stability from having four thermal images compared to one (Figure [29]) in
one data line. Graph shows that standing in either left or right has close to 100% accuracy
on both images but upper one is more stable. With moving state there are inaccuracy’s in
both graphs but again upper one has more correct predictions. And regarding empty room

the lower graph shows it wrongly as moving.

Figure 29. Prediction confidence with 4 thermal images

8.2 Measuring body temperature

Christel Nielsen [1] found in her thesis, that when a person is close (about 10 cm from the
sensor) body temperature is measured 35 ◦C and from 1 meter distance 30 ◦C. Sensor does
not get the infrared only from the person but also from the surrounding environment and
the average will be smaller.
Author decided to see if using the IRMT sensor in live monitoring mode could be used
for measuring persons temperature. Idea was to measure temperature while a person
is watching TV (which is about 1,5 meters from the sensor). To know how much is
distance affecting temperature changing in given setup, author measured maximum body
temperature from 3 different distances 0,5, 1 and 1,5 meters. Author’s body temperature at
the time of the test was 36,6 ◦C. In the table [8] it is possible to see that average change in
temperature is 0,45◦C per half a meter. Since the change between distances is constant it is
reasonable to assume that when persons temperature is changing the resulting measurement
is changing. To test persons temperature change author took cup of hot tea and sat on a
TV watching position. Maximal average temperature was 32,34 ◦C. Since the cup of tea is
smaller than persons head, but hotter, it is not clear if we could use given setup to measure
reliably fewer, but the experiments suggest there could be a possibility, which could be
further investigated. Then the system has to take into consideration other heat emitting
objects like the actual cup of hot tea.

48

Table 8. Body temeprature measurement results

Distance Value Difference Results
0,5 m 31,27 ◦C 0 39
1 m 30,82 ◦C 0,45 ◦C 22

1,5 m 30,37 ◦C 0,45 ◦C 54

8.3 Calibrating parameters for sleep anomaly detection

Preliminary parameters (5.6.2) in sleep anomaly algorithm (Figure [16]) were chosen
without deep analysis and gave this result (Figure [30]). Red line shows if the author is
expected to be asleep (value 10) or be awake (value -10) in every minute of a full day.

Figure 30. Resulting sleep expectation for one day shown in red after 345 full days
simulation

Out of 345 analysed days the awake anomaly was detected 59 times and the sleep anomaly
48 times.For example on 2020-07-22 author woke up half past 4 which made the program
raise the awake anomaly.

Figure 31. Awake warnings between 09-12.2019

49

That many anomalies (Figure [31]) did not seem reasonable to the author, especially
because no real anomaly occurred in given period. And by anomaly author means e.g. not
sleeping at all during the night or not waking up for many hours after the normal time.
Author raised the threshold for raising an alarm from 600 to 1200, which means that 2
full hours of maximum wrong value. After rerunning the algorithm with test data, the
result was 14 awake warnings and 6 sleep warnings. Warnings made more sense now e.g.
awake warning on 2019-09-04, was caused by awaking up for going to an early flight,
and another for author going to a party and went to a sleep more than 3 hours later than
normal. Sleep warnings came when author slept longer than usual in the weekends e.g.
on 2020-03-28 author slept until 10 a clock in the morning. The last does not seem like a
real warning and then author increased only the sleep warning to 1800, which results to 3
hours of maximum wrong value, and then there were no sleep warnings.
More test data from multiple test subjects would be needed to adjust the algorithm which
could work on a wider population.

50

9. Summary

Author investigated human behavioral anomalies in one specific room using mainly thermal
image read from the IRMT sensor. Author successfully detected different situations using
ML i.e. watching TV, moving around in the room or sleeping in the bed. Author wrote
application software (Activity Monitor) on Windows PC which uses ML.NET framework
to create the ML model. Given program managed to monitor one person in one specific
room and detect 2 types of anomalies - falling and sleep anomaly.

Fall detection was possible using machine learning with extra checks in the code (detecting
warm object moving down and waiting 10 seconds for safe situation) before raising the
alarm. The accuracy of the created ML model in ML.NET was 100%. After analysing
input data with Python scripts using scikit-learn, pandas and numpy frameworks, the best
result for test data was 99%. The difficult part was getting fall detection to work, hence the
extra checks in the code.

To investigate sleep anomaly (is person sleeping when should not or vice versa) author
used the prediction from the ML model, if the person is sleeping or not. Then created an
algorithm inspired by Monte Carlo methods to detect anomaly. To verify the algorithm
author used sleep data from his Garmin activity monitor. The verification worked, but
defining when is persons is sleeping status considered as an anomaly was not investigated
further.

Additionally author used the ML training data from the IRMT sensor and created ML
model using Tensorflow for the STM32 MCU. The model accuracy was 93,6%. Author
created a prototype program for the STM32 which showed successful predictions for 4 out
5 predicted states. Falling was not detected properly, but when analyzing prediction values
it could be possible with additional code checks.

Finally author investigated NanoEdgeAIStudio, which is an automated ML model creation
tool for STM32 devices. The model accuracy 88% was lower than with previous tools,
but still promising. Author did not have the required device to test given model, but the
emulator in the tool predicted falling 3 out of 3 tries.

51

9.1 Future work

The prototype PC program (Activity Monitor) could with correct adjustment and in similar
conditions, as with the experiments, successfully fulfill its task of detecting fall and sleep
anomalies. But since the tests were only performed in lab like environment with only
author as a test subject and no additional heat emitting objects, further research should be
done. E.g. experimenting with other heat emitting objects in the room like other person,
pet or a radiator. Also there are now higher resolution thermal matrix sensors in the market
like 32x32 [33], which supports having more detailed image of the room.
Author also implemented ML model on a STM32 MCU and a proof of concept was made.
Initial tests showed that the ML model for given task could run on a MCU. Fall detection
was only successful on an emulator, which could be further researched on the actual MCU
hardware.

52

10. Kokkuvõte

Autor uuris inimese käitumuslikke anomaaliad ühes kindlas ruumis, kasutades põhiliselt
IRMT sensorist loetud termopilti. Autoril osutus võimalikuks tuvastada erinevaid oluko-
rdi, nagu televiisori vaatamine, toas ringi liikumine või voodis magamine võttes abiks
masinõppe meetodid. Töö käigus loodud arvutiprogrammis (Activity Monitor) oleva mas-
inõppe mudeli valis ML.NET raamistik automaatselt. Lisaks analüüsiti andmeid kasutades
Pythoni skripte scikit-learn, pandas ja numpy raamistikus ning andmeid visualiseeriti kasu-
tades matplotlib raamistikku. Uuriti ka masinõppe mudeli realiseeerimist mikrokontrolleri
peal.

Anomaaliatest uuriti kukkumist ja uneanomaaliat.

Inimese kukkumine suudeti tuvastada masinõppe ja sellele lisatud lisakontrolliga (soo-
jussignaali liikumine ülevalt alla, ning häire antakse alles kui 10. sekundi jooksul pole
tuvastatud ohtutut olukorda). Masinõppe mudel suudeti siis luua 100%-ilise täpsusega.
Sisendandmete analüüs, kus osa andmeid jäeti testiks kõrvale andis tulemuse 99% juures.
Katsed kukkumist tavalisest toas liikumist eristada, aga andsid aegajalt tavalise liikumise
peale ka häire, lisakontrollid aitasid vältida valehäireid.

Uneanomaalia tuvastamiseks võeti appi andmed aktiivsusmonitorist ja loodi Monte Carlo
meetoditest ja Markovi ahelatest inspireeritud anomaalia tuvastamisalgoritm. Antud
algoritm andis katsete tulemusel anomaalia kui inimene magas paar tundi kauem või läks
paar tundi hiljem magama. Erinevad konfiguratsiooniparameetrid võimaldvad algrotimi
vastavalt vajadustele seadistada.

Lisaks uuris autor masinõppe mudeli realiseerimist STM32 mikrokontrolleri peal. Mudeli
täpsuseks tuli 93,6%. Autor teostas programmi prototüübi, mis suutis ennustada neli
olekut viiest. Kukkumist ei suudetud tuvastada, aga analüüsides tulemusi, leidis autor,
et kukkumise tuvastamine oleks võimalik kui rakendada lisakontrolle lisaks masinõppe
mudeli väljundile.

Lõpetuseks uuris autor ka NanoEdgeAIStudio programmi, mis võimaldab luua masinõppe-
mudeli automaatselt STM32 mikrokontrollerile. Mudeli täpsuseks tuli 88%. Täpsus on

53

küll madalam kui eelnevate meetoditega, aga see-eest programmis oleva emulaatori peal
tuvastati kukkumine kolmel korral kolmest katsest.

Võimalikuks edaspidiseks arenduseks võiks olla kogu lahenduse töölesaamine mikro-
kontrolleri peal.

54

Bibliography

[1] Christel Nilsen. “Localization methods for elderly people assistance”. MA the-
sis. TalTech, 2015. URL: https://digikogu.taltech.ee/et/Item/
8c8d39db-56de-42e3-85ae-75389dfc1c02.

[2] Emre Arslan. “Developing internet of things and machine learning based bidirec-
tional people counting system with passive infrared sensors”. MA thesis. TalTech,
2021. URL: https://digikogu.taltech.ee/et/Item/139cddaf-
ceb6-4044-9db9-63bba1cff189.

[3] Yin C. Chen J. Miao X. Jiang H. Chen D. “Device-Free Human Activity Recognition
with Low-Resolution Infrared Array Sensor Using Long Short-Term Memory Neural
Network”. In: (2021). URL: https://www.mdpi.com/1424-8220/21/
10/3551.

[4] Anthony Rowe Chandrayee Basu. “Tracking Motion and Proxemics using Thermal-
sensor Array”. In: (2015). URL: https://arxiv.org/abs/1511.08166.

[5] Will Koehrsen. “Markov Chain Monte Carlo in Python”. In: Medium (2018).
URL: https://towardsdatascience.com/markov-chain-monte-
carlo-in-python-44f7e609be98.

[6] Wikipedia. Markov property. 01-02-2022 [Accessed: 01-02-2022]. URL: https:
//en.wikipedia.org/wiki/Markov_property.

[7] Wikipedia. Monte Carlo method. 19-01-2022 [Accessed: 22-02-2022]. URL:
https://en.wikipedia.org/wiki/Monte_Carlo_method.

[8] PyMC3 Documentation. [Accessed: 22-07-2020]. URL: https://docs.pymc.
io/.

[9] Wikipedia. Metropolis–Hastings algorithm. 26-06-2020 [Accessed: 30-07-2020].
URL: https://en.wikipedia.org/wiki/Metropolis%E2%80%
93Hastings_algorithm.

[10] Gareth Williams. Looking after mom and dad. 23-07-2020 [Accessed: 21-10-2020].
URL: https://lookingaftermomanddad.com/video-surveillance-
for- elderly- monitoring- and- safety- a- helpful- survey/

?cn-reloaded=1.

55

https://digikogu.taltech.ee/et/Item/8c8d39db-56de-42e3-85ae-75389dfc1c02
https://digikogu.taltech.ee/et/Item/8c8d39db-56de-42e3-85ae-75389dfc1c02
https://digikogu.taltech.ee/et/Item/139cddaf-ceb6-4044-9db9-63bba1cff189
https://digikogu.taltech.ee/et/Item/139cddaf-ceb6-4044-9db9-63bba1cff189
https://www.mdpi.com/1424-8220/21/10/3551
https://www.mdpi.com/1424-8220/21/10/3551
https://arxiv.org/abs/1511.08166
https://towardsdatascience.com/markov-chain-monte-carlo-in-python-44f7e609be98
https://towardsdatascience.com/markov-chain-monte-carlo-in-python-44f7e609be98
https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://docs.pymc.io/
https://docs.pymc.io/
https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm
https://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm
https://lookingaftermomanddad.com/video-surveillance-for-elderly-monitoring-and-safety-a-helpful-survey/?cn-reloaded=1
https://lookingaftermomanddad.com/video-surveillance-for-elderly-monitoring-and-safety-a-helpful-survey/?cn-reloaded=1
https://lookingaftermomanddad.com/video-surveillance-for-elderly-monitoring-and-safety-a-helpful-survey/?cn-reloaded=1

[11] Keith Kirkpatrick. “Sensors for Seniors”. In: COMMUNICATIONS OF THE ACM

57.12 (2014), pp. 17–19.

[12] A Comprehensive Learning Integrity Platform. [Accessed: 29-07-2020]. URL:
https://proctorio.com/.

[13] Reddit. r/USF - Is Proctorio even effective? [Accessed: 29-07-2020]. URL: https:
//www.reddit.com/r/USF/comments/7shh2i/is_proctorio_

even_effective/.

[14] Laszlo Richard Toth. “Students raise concerns over virtual proctoring”. In:
The Daily Illini (2020). 17-04-2020 [Accessed: 29-07-2020]. URL: https :
//dailyillini.com/news/2020/04/17/proctorio-concerns/.

[15] Centers for Disease Control and Prevention. Keep on Your Feet-Preventing Older

Adult Falls. 16-12-2020 [Accessed: 28-03-2022]. URL: https://www.cdc.
gov/injury/features/older-adult-falls/index.html.

[16] Wikipedia. Accelerometer. 04-02-2022 [Accessed: 11-02-2022]. URL: https:
//en.wikipedia.org/wiki/Accelerometer.

[17] Mark Pickavance. Best Fall Detection Sensors of 2022. 16-07-2021 [Accessed:
11-02-2022]. URL: https://www.techradar.com/best/best-fall-
detection-sensors.

[18] Amazon.de: DIY Tools. AMG Emergency Call Button with GPS Transmitter for Se-

niors Safe at Home and on the Go with Lanyard and Charging Station Splash-proof

Modern and Discreet. [Accessed: 28-03-2022]. URL: https://www.amazon.
de/gp/product/B01N12P33I/ref=ppx_yo_dt_b_asin_title_

o01_s00?ie=UTF8&&psc=1&language=en_GB¤cy=EUR.

[19] Machine Learning Mastery. Machine Learning is Popular Right Now. 09-12-2020
[Accessed: 28-03-2022]. URL: https://machinelearningmastery.com/
machine-learning-is-popular/.

[20] McGraw Hill. Machine Learning textbook. [Accessed: 28-03-2022]. URL: http:
//www.cs.cmu.edu/~tom/mlbook.html.

[21] Wikipedia. Supervised learning. 08-04-2020 [Accessed: 20-04-2020]. URL: https:
//en.wikipedia.org/wiki/Supervised_learning.

[22] Wikipedia. Unsupervised learning. 08-04-2020 [Accessed: 21-04-2020]. URL:
https://en.wikipedia.org/wiki/Unsupervised_learning.

[23] Wikipedia. Reinforcement learning. 15-04-2020 [Accessed: 21-04-2020]. URL:
https://en.wikipedia.org/wiki/Reinforcement_learning.

56

https://proctorio.com/
https://www.reddit.com/r/USF/comments/7shh2i/is_proctorio_even_effective/
https://www.reddit.com/r/USF/comments/7shh2i/is_proctorio_even_effective/
https://www.reddit.com/r/USF/comments/7shh2i/is_proctorio_even_effective/
https://dailyillini.com/news/2020/04/17/proctorio-concerns/
https://dailyillini.com/news/2020/04/17/proctorio-concerns/
https://www.cdc.gov/injury/features/older-adult-falls/index.html
https://www.cdc.gov/injury/features/older-adult-falls/index.html
https://en.wikipedia.org/wiki/Accelerometer
https://en.wikipedia.org/wiki/Accelerometer
https://www.techradar.com/best/best-fall-detection-sensors
https://www.techradar.com/best/best-fall-detection-sensors
https://www.amazon.de/gp/product/B01N12P33I/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&&psc=1&language=en_GB¤cy=EUR
https://www.amazon.de/gp/product/B01N12P33I/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&&psc=1&language=en_GB¤cy=EUR
https://www.amazon.de/gp/product/B01N12P33I/ref=ppx_yo_dt_b_asin_title_o01_s00?ie=UTF8&&psc=1&language=en_GB¤cy=EUR
https://machinelearningmastery.com/machine-learning-is-popular/
https://machinelearningmastery.com/machine-learning-is-popular/
http://www.cs.cmu.edu/~tom/mlbook.html
http://www.cs.cmu.edu/~tom/mlbook.html
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Reinforcement_learning

[24] Microsoft. ML.NET Tutorial: Get started in 10 minutes: .NET. [Accessed: 26-03-
2020]. URL: https://dotnet.microsoft.com/learn/ml-dotnet/
get-started-tutorial/scenario.

[25] scikit-learn. [Accessed: 05-07-2020]. URL: https://scikit-learn.org/
stable/.

[26] pandas. [Accessed: 05-07-2020]. URL: https://pandas.pydata.org/.

[27] Visualization with Python. [Accessed: 05-07-2020]. URL: https://matplotlib.
org/.

[28] NumPy. [Accessed: 05-07-2020]. URL: https://numpy.org/.

[29] Wikipedia. Naive Bayes classifier. 18-02-2022 [Accessed: 22-02-2022]. URL:
https://en.wikipedia.org/wiki/Naive_Bayes_classifier.

[30] Tony Yiu. “Understanding Random Forest”. In: Medium (2019). URL: https:
//towardsdatascience.com/understanding-random-forest-

58381e0602d2.

[31] Tanel Kaart. Logistiline regressioon. [Accessed: 26-11-2020]. URL: http://ph.
emu.ee/~ktanel/bin_tunnuste_analyys/pt31.php.

[32] STMicroelectronics. Automated Machine Learning (ML) tool for STM32 developers.
[Accessed: 23-03-2022]. URL: https://www.st.com/en/development-
tools/nanoedgeaistudio.html.

[33] Omron. D6T MEMS Thermal Sensors. [Accessed: 03-05-2022]. URL: https:
//components.omron.com/us- en/solutions/sensor/mems-

thermals-sensors.

[34] Garmin e-pood. Vivomove. [Accessed: 08-08-2020]. URL: https://garmin.
com.ee/et/arhiiv/672-vivomove.html.

[35] STMicroelectronics. STM32F429. [Accessed: 06-02-2022]. URL: https://www.
st.com/en/microcontrollers-microprocessors/stm32f429-

439.html.

[36] Keras. Dense layer. [Accessed: 06-02-2022]. URL: https://keras.io/api/
layers/core_layers/dense/.

[37] GeeksforGeeks. Top 5 Programming Languages and their Libraries for Ma-

chine Learning in 2020. 06-11-2021 [Accessed: 29-03-2022]. URL: https :
//www.geeksforgeeks.org/top-5-programming-languages-

and-their-libraries-for-machine-learning-in-2020/.

[38] scikit. Metrics. [Accessed: 29-03-2022]. URL: https://scikit- learn.
org/stable/modules/classes.html#module-sklearn.metrics.

57

https://dotnet.microsoft.com/learn/ml-dotnet/get-started-tutorial/scenario
https://dotnet.microsoft.com/learn/ml-dotnet/get-started-tutorial/scenario
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://pandas.pydata.org/
https://matplotlib.org/
https://matplotlib.org/
https://numpy.org/
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
http://ph.emu.ee/~ktanel/bin_tunnuste_analyys/pt31.php
http://ph.emu.ee/~ktanel/bin_tunnuste_analyys/pt31.php
https://www.st.com/en/development-tools/nanoedgeaistudio.html
https://www.st.com/en/development-tools/nanoedgeaistudio.html
https://components.omron.com/us-en/solutions/sensor/mems-thermals-sensors
https://components.omron.com/us-en/solutions/sensor/mems-thermals-sensors
https://components.omron.com/us-en/solutions/sensor/mems-thermals-sensors
https://garmin.com.ee/et/arhiiv/672-vivomove.html
https://garmin.com.ee/et/arhiiv/672-vivomove.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f429-439.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f429-439.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f429-439.html
https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/core_layers/dense/
https://www.geeksforgeeks.org/top-5-programming-languages-and-their-libraries-for-machine-learning-in-2020/
https://www.geeksforgeeks.org/top-5-programming-languages-and-their-libraries-for-machine-learning-in-2020/
https://www.geeksforgeeks.org/top-5-programming-languages-and-their-libraries-for-machine-learning-in-2020/
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics

Appendices

Appendix 1 - Source code

Three types of source code implemented for given work. All of them are uploaded to
github repository: ml.net-activity-monitor

1. Windows desktop program in C# containing few thousand lines of code.
2. Python scripts for data analysis and visualization.
3. Python scripts for converting ML model to be used on MCU

58

https://github.com/ainar-master-thesis/ml.net-activity-monitor

	List of Figures
	List of Tables
	Introduction
	Research questions

	Literature Review
	Localization methods for elderly people assistance
	Developing internet of things and machine learning based bidirectional people counting system with passive infrared sensors
	Non-intrusive Human Activity Recognition with Low-Resolution Infrared Array Sensor Using Long Short-Term Memory Neural Network
	Tracking Motion and Proximity using Thermal-sensor Array
	Markov chain and Monte Carlo for sleep time analysis

	Market Status
	Video camera
	Giraff avatar
	Proctorio

	Movement sensors
	Lively passive remote monitoring sensors

	Fall detection sensors
	General working principles
	Devices available on the market

	Machine Learning
	Monte Carlo method
	ML.NET
	Python frameworks: scikit-learn, pandas, matplotlib ja numpy
	Machine learning algorithms

	Tensorflow Keras
	NanoEdge AI Studio

	Application software
	Used devices
	Omron D6T-44L sensor

	Used Software
	Room plan
	Activity Monitor GUI and menu structure
	Reading data
	Pre-processing data
	ML model training

	Detecting anomalies
	Fall detection
	Sleep anomaly detection

	Testing the program
	Manual testing
	Unit-testing

	Micro-controller software
	Used devices
	Used Software
	ML model creation with X-CUBE-AI
	STM32 program with ML
	Running the STM32 program

	ML model creation with NanoEdgeAIStudio

	Analysis scripts
	Processing input data
	Different machine learning models
	Comparing ML models

	Experiments
	Input data analysis
	Finding best ML model
	Analyzing the amount of data needed

	Measuring body temperature
	Calibrating parameters for sleep anomaly detection

	Summary
	Future work

	Kokkuvõte
	Bibliography
	Appendices
	Appendix 1 - Source code

