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INTRODUCTION 
 
The H edgehog ( Hh) signaling p athway is essential for th e r egulation o f vital 
vertebrate embryonic processes and for the organogenesis (Ingham and McMahon, 
2001). Hh is a secreted as diffusible protein and is a critical signaling molecule for 
the pa ttern f ormation of  t he a nterior-posterior ax is. In v ertebrates, Hh pr otein 
family co nsists of t hree pr oteins: S onic H edgehog ( Shh), I ndian Hedgehog ( Ihh) 
and Deser t Hedgehog ( Dhh). In r odents, t argeted disruption of  S hh l eads t o 
multiple defects i n e mbryonic t issues, i ncluding n otochord, f loor pl ate a nd l imb 
structures (Chiang et al., 1996). The role of Hh during development is not limited 
to patterning. Hh regulates the proliferation of neuronal precursors, epidermal stem 
cells and somatic stem cells  

Hh signaling remains important in  the adulthood. Shh has been shown to 
promote t he pr oliferation of  a dult s tem c ells f rom va rious t issues, i ncluding 
primitive haemathopoetic cel ls, mammary, retina and neural st em cells (Ahn and 
Joyner, 2005 ; B hardwaj et a l., 2001;  J ian e t a l., 20 09; L iu e t a l., 2006) . Recent 
studies have demonstrated that Shh regulates adult neural progenitor proliferation 
in hippocampus (Lai et al., 2003). 

Alterations in Hh signaling are implicated in many types of malignancies. 
Aberrant act ivation o f t he Hh  p athway i n can cerogenesis is cau sed b y l igand-
independent mutations i n t he p athway or  t hrough l igand-dependent H h 
overexpression (for r eviews see  (Chari and M cDonnell, 2007;  E vangelista e t a l., 
2006). Overexpression of H h has be en s hown i n basal cel l carcinoma (BCC), 
medulloblastoma (MB), p ancreatic cancer, s mall cel l l ung can cer ( SCLC), b reast 
cancer, prostate cancer and d igestive t ract t umors ( for r eviews see  (Chari a nd 
McDonnell, 2 007; E vangelista et  al ., 2006;  L auth e t a l., 200 7; R ubin a nd de  
Sauvage, 20 06). The g rowth o f so me t umors c an be ef fectively su ppressed b y 
various p athway i nhibitors, su ch as Hh-neutralizing a ntibodies or  S moothened 
(Smo) antagonists. 

Accumulated data suggest that alteration of Hh signaling pathway may be 
used as a unique mechanism-based therapy (1) to block tumor growth or stimulate 
its regression and ( 2) t o s timulate t he adult neurogenesis. Fo r t hese reasons, Hh  
pathway r emains t he t arget o f co ntinuous i nvestigation and became the theme of  
this thesis. 
 
 
 



7 

ORIGINAL PUBLICATIONS 
 
1. Speek M., Njunkova O., Pa ta I ., Val dre E ., Kogerman P . ( 2006). A  potential 
role of alternative splicing in the regulation of the transcriptional activity of human 
GLI2 in gonadal tissues. BMC Molecular Biology, 7, 1 - 13. 
 
2. Hunt R., Bragina O., Drews M., Kasak L., Timmusk S., Valkna A., Kogerman 
P., J ärvekülg L.  (2007). Generation a nd C haracterization of  m ouse monoclonal 
antibody 5E1 against human transcription factor Gli3. Hybridoma, 26, 131 - 138. 
 
3. Bragina O., N junkova N., Se rgejeva S., Jär vekülg L., K ogerman P. ( 2010). 
Sonic hedgehog pathway activity in prostate cancer. Oncology letters, 1(2), 319 -
327.  
 
4. Bragina O., Sergejeva S., Serg M., Žarkovsky T., Maloverjan A., Kogerman P., 
Žarkovsky A. (2010). Smoothened agonist augments proliferation and survival of  
neural cells. Accepted for publication in Neuroscience letters. 
 

 

                                     

 



8 

ABBREVIATIONS 
Genes are indicated with italics (e.g. Ptch1), human proteins with capital letters 
(e.g. PTCH1), mouse proteins with an initial capital letter (e.g. Ptch1) and 
Drosophila proteins with small letters (e.g.ptc) 
 
ALK5 Activin receptor-like kinase 5 
BCC Basal Cell Carcinoma 
BrdU 5-bromo-2’-deoxyuridine 
cos2                      Costal2 
ci Cubitus interruptus                          
DNA Deoxyribonucleic acid 
Dhh Desert Hedgehog                     
DG Dentate Gyrus 
Disp Dispatched 
EGFR Epidermal growth factor receptor 
ELISA Enzyme-Linked Immunosorbent Assay 
ECS Electroconvulsive Seizure 
Fu Fused 
GCPS Greig’s cephalopolysyndactyly 
GFAP Glial fibrillary acidic protein 
GLIA GLI protein activator form 
GLIFL GLI protein full lenght 
GLIR GLI protein repressor form 
GS Gorlin’s syndrome 
Hh Hedgehog 
Hh-Ag Hedgehog agonist 
HPE Holoprosencephaly 
Ihh   Indian Hedgehog 
KAAD-cyclopamine 3-keto-N-(aminoethyl-aminocaproyl-

dihydrocinnamoyl)cyclopamine 
MB Medulloblastoma 
mRNA Messenger RNA 
MS Multiple Sclerosis 
NBCCS Nevoid Basal Cell Carcinoma Syndrome 
PD Parkinson’s disease 
PHS Pallister-Hall syndrome 
Ptch Patched 
PCR Polymerase Chain Reaction 
PKA Protein Kinase A  
RNA Ribonucleic acid  
qRT-PCR Quantitative reverse transcriptase PCR 
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SAG Smoothened Agonist 
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 
Smo Smoothened 
Shh Sonic Hedgehog 
SGZ Subgranular Zone 
SVZ   Subventricular Zone 
Su(fu) Suppressor of fused 
TGF-β Transforming growth factor beta 
TRAMP TRansgenic Adnocarcinoma Mouse Prostate model 
TUJ1 Neuron-specific class III beta-tubulin 
UTR Untranslated Region 
WT Wild type 
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1. REVIEW OF THE LITERATURE 
 

1.1 The canonical Hedgehog signaling pathway 
 

The H edgehog (Hh) signaling p athway h as co nserved r ole i n the 
embryonic development of  species ranging from Drosophila to human. Although 
the Hh s ignaling pa thway is well conserved through evolution (Burglin, 2008), a 
fraction of the pathway components underwent duplications and divergence of the 
Hh si gnaling mechanisms have been r eported b etween flies and mammals 
(Huangfu and Anderson, 2006) (Table 1). For example, divergence of Smoothened 
structure, the role of Fused and Suppressor of  Fused has been r eported (Burglin, 
2008).  

Drosophila has a single hh ligand, b ut in mammals t here ar e t hree H h 
ligands w ith di fferent patterns of  e xpression: Sonic Hedgehog ( Shh), I ndian 
Hedgehog (Ihh) and Desert Hedgehog (Dhh) and at least two Hh receptor, Patched, 
genes: Ptch1 and Ptch2. Th e glioma-associated Gli f amily of z inc f inger 
transcription f actors, i ncluding G li1, G li2 a nd Gli3, a re r esponsible f or t he 
activation or repression of Hedgehog target genes in vertebrates (Lee et al., 1997; 
Ruiz i A ltaba, 1998). In Drosophila there i s only one homolog of  Gli proteins – 
cubitus interruptus (ci). 

 
Table 1. Divergence of Hh signaling pathway components in Drosophila melanogaster and 
vertebrates. 
 

 
Hh s ignaling i s i nitiated by  binding of  the sec reted ch olesterol- and 

palmitoyl-modified H h pe ptide to th e 12-span t ransmembrane protein Patched 
(Ptch), resulting in loss of Ptch activity and consequent phosphorylation and 
posttranscriptional s tabilization of 7-span t ransmembrane pr otein Smoothened 
(Smo) (Fig. 1) (Osterlund a nd K ogerman, 2006) . In bot h, Drosophila and 

Drosophila melanogaster Vertebrates 
hedgehog (hh) Sonic hedgehog (Shh), Indian 

hedgehog (Ihh), Desert hedgehog 
(Dhh) 

disp  (dispatched) Disp1 
patched (ptc) Ptch1, Ptch2 
smoothened (smo) Smo 
fused (fu) Fu 
suppressor of fused (Su(fu)) Su(Fu) 
costal 2 (cos) KIF27, KIF7 
cubitus interruptus (ci) Gli1, Gli2, Gli3 
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mammals, release of Hh from producing cells requires the transmembrane protein 
Dispatched ( Disp) (Burke e t a l., 1 999; C aspary e t a l., 2 002; Kawakami e t a l., 
2002).  

 

 
Figure 1.  Schematic r epresentation of  t he H edgehog s ignaling i n Drosophila 
melanogaster (A) and ma mmals (B). In t he a bsence of  H h, Ptch i nhibits t he 
activity of Smo. In Drosophila, Ci is processed into a repressor CiR, which inhibits 
the transcription of the target genes. In the presence of Hh, full-length Ci induces 
transcription of target genes. 
(B) In mammals, Gli is processed to GliR form, which inhibits transcription of the 
target genes. In the presence of  Hh, the inhibition of  Smo is relieved and GliA is 
produced, leading to the activation of target gene transcription. 
 

A 

B 
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Smo transduces the Hh signal across the plasma membrane. In Drosophila, 
Hh i nduces m ultiple phos phorylation in t he S mo C -terminal cytoplasmic t ail, 
leading to its cell surface accumulation and activation (Denef et al., 2000; Jia et al., 
2004; Zhang et al., 2004). Smo transmits the signal to a cytoplasmic complex 
composed of the kinase Fu, the kinesin/like protein Cos2, the protein Sufu and the 
transcription factor Ci (Monnier et al., 1998; Robbins et al., 1997; Ruel et al., 2003; 
Stegman e t a l., 2 000). This co mplex co ntrols t he p rocessing, act ivity an d 
subcellular distribution of the Ci transcription factor responsible for Hh target gene 
activation.  

Drosophila and mammalian Hh signaling have diverged between Smo and 
Ci/Gli. Based on functional an alysis and seq uence c onservation o f p utative Cos2 
orthologues, Sufu, Smo and Ci/Gli it was found that major Cos2-like activities are 
absent in mammalian cells and that the inhibition of the Hh pathway in the absence 
of ligand depends on Sufu (Varjosalo et al., 2006).  

The f unction of  F u i s a lso di fferent. I n Drosophila, Hh -induced S mo 
accumulation is inhibited in fu mutants (Ascano and Robbins, 2004). Mice 
deficient i n F u do not  e xhibit p henotypes i ndicative o f d efective Hh  si gnaling 
during embryonic development (Chen et al., 2005). 

Sufu, like Ptch, is a negative regulator of Hh signaling pathway (Kogerman 
et a l., 1999; Methot and Basler, 2000) . Drosophila Sufu appears to inhibit C i by 
blocking nuclear accumulation of full-length Ci (Methot and Basler, 2000; Wang et 
al., 2000b). In humans, Sufu is a tumor suppressor gene (Taylor et al., 2002). Sufu 
binds directly to the Gli proteins (Dunaeva et al., 2003; Stone et al., 1999). In the 
absence of signaling, Sufu retain Gli3 in the cytoplasm and promote its processing 
into a repressor form (Humke et al.) Initiation of Hh signaling allows dissociation 
of Gli proteins and Sufu, and the full-length Gli2/Gli3 proteins enter to the nucleus 
and work like transcriptional activators (Humke et al.).   

In Drosophila, in response to Hh pathway activation, the zinc finger 
transcription factor Ci activate or repress the Hh t arget g enes (Von O hlen et al., 
1997). The Ci activity control occur mainly at the post-transcriptional level (Aza-
Blanc e t a l., 1997). I n t he a bsence of  Hh l igand, f ull-length C i i s f ound i n the 
cytoplasmic c omplex w ith C os2, F u and Sufu an d i t i s a  t arget f or p rocessing 
(Chen e t a l., 1 999; Wa ng e t a l., 1 999). T runcated Ci ( CiR) t ranslocates t o t he 
nucleus and repress expression of target genes (Wang et al., 1999). In the presence 
of H h, pr ocessing of  C i i s i nhibited a nd t he c ytoplasmic c omplex di ssociate. C i 
translocates to the nucleus and activates expression of target genes.  

In mammals, in the absence of Hh, the full-length Gli (Gli2/3) zinc finger 
transcriptional factors are proteolytically processed by the proteosome to generate 
C-terminally truncated GliR that actively represses a subset of Hh target genes (Pan 
et al., 2006; Pan et al., 2009; Rohatgi et al., 2007). The activation of Hh signaling 
suppresses G li cl eavage and al lows the act ivator forms o f Gl i2A/Gli3A and Gli1 
activate t ranscription of target genes such as Ptch1, Gli1, CyclinD. Expression of 
Ptch1 starts a negative feedback loop that shuts down Hh signaling. 
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1.2 Hedgehog signaling and Gli transcription factors 
 

In vertebrates, the Hh signal transduction occurs via activation of a set  of 
transcription factors: Gli1, Gli2 and Gli3. The GLI1 gene was first isolated as an  
amplified ge ne of hum an i n gl ioblastoma (Kinzler e t a l., 1 987). By v irtue o f 
sequence si milarity, t wo GLI-related g enes, GLI2 and GLI3, wer e su bsequently 
identified (Ruppert et al., 1988). All Gli proteins bind to DNA through five zinc-
finger dom ains t hat r ecognize t he c onsensus G li-selective seq uence 5 ’-
TGGGTGGTC-3’ (Kinzler and Vogelstein, 1990).  

Gli1 does not contain a repressor domain and is not processed (Dai et al., 
1999; Kaesler et al., 2000; Sasaki et al., 1999), whereas Gli2 and Gli3 processing is 
phosphorylation- and proteasome-dependent. In the absence of Hh ligand, Gli3 is 
processed to the Gli3 transcriptional repressor, Gli3R (Wang et al., 2000a). In the 
presence of a Hh signal, Gli3 processing is inhibited and the full-length protein is 
activated (Huangfu a nd A nderson, 2005;  L itingtung e t a l., 2002;  W ang e t a l., 
2000a; Wen et al.). 

In c ontrast t o G li3, G li2 is  g enerally th ought to  a ct a s a t ranscriptional 
activator. E xpression of  Gli1 i n pl ace of  Gli2 locus can  r escue Gli2 mutant 
phenotypes (Bai and Joyner, 2001). In the absence of Hh signaling, full-length Gli2 
is processed via t he ubi quitin-proteasome p athway t o generate Gl i2 r epressor, 
Gli2R (Pan a nd W ang, 2 007). Hh  st imulation r epresses t his processing a nd i s 
thought to result in a predominance of full-length (presumably activator) forms of 
Gli2A.  

GLI2 is reported to be the primary activator of Hh signaling and Gli1 is a 
secondary target, downstream of Gli2, which also acts as a t ranscriptional activator 
(Dai et al., 1999). Because Gli1 itself is a transcriptional target of the Hh pathway, 
Gli1 mRNA expression serves as a reliable indicator of activated Hh signaling, and 
elevated Gl i1 ex pression was l inked with can cer d evelopment an d progression 
(Karhadkar et al., 2004; Sanchez et al., 2004). 

 

1.3 Cilia in mammalian Hedgehog signaling 
 

Genetic st udies i n mice r evealed t hat a n umber o f co mponents o f t he 
intraflagellar t ransport (IFT) machinery are required for mammalian Hh signaling 
(Huangfu and Anderson, 2005; Huangfu et al., 2003). IFT proteins are essential for 
assembly an d maintenance o f ci lia an d f lagella (Rosenbaum a nd W itman, 2002)  
and Hh signaling pa thway components i ncluding Ptch1, Smo, Su fu a nd all G li 
proteins have been found to l ocalize t o c ilia (Corbit e t a l., 2005; Haycraft e t al., 
2005). In the abcense of Hh signaling, Smo is not released from Ptch1 and GLI3 is 
constantly proteolytically cleaved into the repressor GLI3R. In response to Hh 
ligand, Smo moves into cilia, where it suppresses Gli3 processing and so activates 
downstream signaling e vents (Corbit e t a l., 2 005) (Fig. 2 ). I n I FT mutants t he 
localization of Smo to  c ilia is  d isrupted (May e t a l., 2005). The Gli transcription 
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factors and the negative regulator Suppressor of Fused (Sufu) are localized to cilia 
tips both in the presence and absence of  l igand (Haycraft et  al ., 2005). GLI2 and 
full-length (the activator form) GLI3 functions are disrupted in the IFT mutants, 
but t hat G LI1 a nd G LI3R ( the r epressor f orm) c an i nduce or  r epress t he Hh 
pathway, respectively, regardless of IFT function (Haycraft et al., 2005). . 
 

 
Figure 2. Hh signaling pathway in mammals cilia.  
(A) N o s ignaling. GLI i s processed t o create a t ranscriptional r epressor, w hich is 
transported back to the cell body.  (B) S ignaling. B inding of  Hh turns off G li-repressive 
(GLIR) processing and the active form of Gli (GLIA) activates transcription of target genes. 
Adapted from (Fliegauf et al., 2007). 
 

1.4 Hedgehog signaling in embryonic development 
 

The importance of Hedgehog signaling as well as the identity and function 
of ke y H edgehog s ignal t ransduction m ediators was f irst established by  w ork i n 
Drosophila, where it contributes to the segmentation of embryos and the patterning 
of i maginal-disk out growth (Nusslein-Volhard a nd Wieschaus, 1 980). H edgehog 
signaling has since been proved to be essential for the regulation of vital vertebrate 
embryonic processes as well as for the development of many organ systems. These 
include d ifferentiation o f v isceral e ndoderm, th e e stablishment o f left - right 
asymmetry (Levin e t a l., 1 995), s omite p atterning (Johnson et a l., 1994)  and 
differentiation (Fan e t a l., 1 995; Te illet e t a l., 1 998), cen tral n ervous s ystem 
patterning a nd di fferentiation (Echelard e t a l., 1 993; R oelink e t a l., 1 994), 
spermatogenesis (Bitgood e t al., 1996) , sp ecification o f h aemathopoietic a nd 
endothelial cells (Dyer et  al., 2001), lung (Bellusci et al., 1997; Motoyama et al., 

A B 
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1998), pancreatic (Hebrok et a l., 2000) and intestinal development (Motoyama et  
al., 1998) , hair cy cle r egulation (St-Jacques et  al., 1 998), t ooth de velopment 
(Hardcastle e t al ., 1 998), l imb pa tterning a nd outgrowth (Riddle e t a l., 1 993), 
regulation of  c hondrocyte (St-Jacques et a l., 1999;  V ortkamp et a l., 1996)  and 
osteoblast d ifferentiation (Chung e t a l., 2001;  S t-Jacques et  al ., 1 999) and brain 
development (Hynes et al., 1997). 

The Hh  ligand f unction a s morphogen is wel l-known i n ne ural t ube 
(Dessaud et  al., 2 008) and in  th e lim bs (Butterfield e t a l., 2 009). At the cel lular 
level, t he ef fect o f Hh  r anges from gr owth a nd self-renewal t o cel l su rvival, 
differentiation a nd/or m igration (Jacob a nd L um, 2007; J iang and H ui, 2008) . 
Thus, Hh signaling drives the proliferation of precursor cells in organs such as the 
skin (Ambler a nd M aatta, 200 9) and cer ebellum (Wechsler-Reya, 20 03), and 
mediates i nteractions b etween ep ithelial an d mesenchymal co mpartments that 
sculpt organs such as lung (Kimura and Deutsch, 2007).   
 

1.5 Hedgehog signaling in adulthood 
 

Hh signaling is also involved in adult tissue homeostasis. Thus, Hh plays a 
central r ole i n t he c ontrol of p roliferation and di fferentiation of  bot h e mbryonic 
stem cells and adult stem cells and stem-like progenitors. Studies in mice central 
nervous system have shown that Shh is required not  only for patterning, but a lso 
for the proliferation of neuronal precursors (Rowitch et al., 1999). Inhibition of Shh 
signaling decreases p roliferation o f st em cells i n t he su bventricular zo ne o f t he 
brain, while addition of Shh increases proliferation of neurospheres derived f rom 
subventricular zone cultures (Palma et al., 2005). Hh also regulates the 
proliferation of ot her s tem c ells, l ike h uman bone  m arrow-derived m esenchymal 
stem cells (Warzecha et al., 2006), epidermal stem cells (Adolphe et al., 2004) and 
somatic stem cel ls o f the g onad (Zhang a nd Kalderon, 2001) . Two papers 
established a strong role for Hh signaling in adult cardiovascular pathophysiology 
(Pola et a l., 2003; Po la e t a l., 2001). More recent studies have demonstrated that 
Shh i s r equired f or c ell pr oliferation i n t he s ubventricular zone, t uberculum 
olfactorium, and dentate gyrus (DG) of the hippocampal formation in adult animals 
(Blaess et al., 2006; Palma et al., 2005).  
 

1.6 Hedgehog signaling in neurogenesis 
 

Neurogenic stem cells are restricted to two specific brain regions in adult 
central nervous system (CNS): the subventricular zone (SVZ) and the hippocampal 
subgranular z one ( SGZ) (Gage, 2000) . Intensity of hi ppocampal neurogenesis is 
associated with learning abilities, memory strength and regulation of emotions and 
mood (Gould et al., 1999; Shors et al., 2001). Neurogenesis in the DG dramatically 



16 

decreases with age, and may contribute to age-related memory deficits (Drapeau et 
al., 2003; Kuhn et al., 1996).  

It ha s be en pr eviously shown t hat S hh i s a p owerful r egulator o f a dult 
hippocampal neurogenesis and is essential for the maintenance of t he adult stem 
cell n iches (Lai e t a l., 2 003; M achold et a l., 2 003; Palma e t a l., 2 005).  I n adult 
brain, S hh m RNA i s ex pressed i n t he Purkinje cel ls o f th e c erebellum, S VZ, in  
motor  ne urons and i n the f orebrain s tructures, w here i t is t hought to be 
anterogradely t ransported t o t he hi ppocampus (Traiffort e t a l., 1 999). With in t he 
hippocampus, e xpression of t he Shh r eceptor P atched i s se en within th e h ilar 
region, th e p yramidal cel l an d t he n eurogenic n iche o f S GZ (Lai e t a l., 2 003; 
Traiffort et al., 1999). Smo mRNA is found i n the granule cells of the DG 
(Traiffort e t a l., 1 998). Interestingly, nonpe ptidyl S mo a ntagonists ha ve be en 
shown to inhibit the growth of medulloblastoma, whereas Smo agonists have been 
proved to be a potential therapeutic approach for Parkinson's disease and peripheral 
nerve damage (Borzillo and Lippa, 2005). Recently it has been shown that increase 
in a dult hi ppocampal ne urogenesis can be induced by el ectroconvulsive sei zure 
(ECS) (Scott e t a l., 2 000). Th e EC S-induced i ncrease i n pr oliferation of  a dult 
hippocampal progenitors was completely blocked in rats treated with cyclopamine, 
a pharmacological inhibitor of Shh signaling (Banerjee et al., 2005).  

 

1.7 Hedgehog signaling pathway in genetic diseases 
 

As it was p reviously discussed, Hh signaling pathway is important during 
embryogenesis. Mutations in  Hh pathway components have b een associated wi th 
genetic d isorders s uch as holoprosencephaly (HPE), Greig’s 
cephalopolysyndactyly (GCPS), Pallister–Hall sy ndrome (PHS) and Gorlin’s 
syndrome (GS) (nevoid b asal cell carcinoma s yndrome) ( Table 2 ). Patients 
carrying heterozygous m utations i n SHH results in  HPE, wh ich affects t he 
forebrain and face to various degrees, from the most extreme, lethal alobar type, to 
milder microforms that include small midline facial defects (Muenke and Beachy, 
2000). 30–40% of GS have familial loss-of-function mutations in the PTCH1 gene. 
Clinically, G S p atients p resent co ngenital ab normalities wi th v ariable p enetrance 
that i nclude skeletal de fects ( e.g. general ove rgrowth, polydactyly, f used or  bi fid 
ribs), early onset of multiple BCCs and a h igher-than-normal rate of other tumors, 
including medulloblastomas of  t he cerebellum ( reviewed in (Goodrich and Scott, 
1998; Ruiz i Altaba et al., 2002)). PHS has been shown to be caused by mutations 
in t he middle t hird of  t he G LI3 ge ne, w hich ha ve be en pr edicted t o r esult i n a  
truncated GLI3 protein (Johnston et al., 2005; Kang et al., 1997; Wild et al., 1997). 
PHS is a pleiotropic disorder of human development that comprises a multitude of 
symptoms ranging from skeletal dysplasia to life-threatening malformations of the 
inner o rgans. M oreover, t ranslocations as well as point m utations affecting one  
allele o f t he zinc f inger g ene GLI3 has b een d emonstrated to b e asso ciated wi th 
GCPS, characterized by craniofacial and limb anomalies (Johnston et al., 2005). 
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Table 2. Genetic disorders associated with germline and/or somatic mutations in the Shh 
pathway components. 
 

Genetic disorders Mutation in Reference 
Holoprosencephaly SHH, 

PTCH1, 
GLI2 

(Ming et al., 
2002; Odent et 
al., 1999) 

Greig’s 
cephalopolysyndactyly 

GLI3 (Wild et al., 
1997; Vortkamp 
et al., 1991) 

Pallister–Hall 
syndrome 

GLI3  (Kang et al., 
1997) 

Gorlin’s syndrome 
(basal cell nevoid) 

SUFU 
PTCH1 

(Goodrich and 
Scott, 1998)  

 

1.8 Hedgehog signaling pathway in cancer 
 

Mutations in Hh pathway components are implicated in the develoment of 
variety of cancers. Hyperactivation of Hh signaling pathway, caused by mutation in 
PTCH1, l eads to the development of the BCCs (Hahn e t a l., 1996). Mutations in  
SMO have also been associated with sporadic BCCs and primitive neuroectodermal 
tumors (Ruiz i Altaba et al., 2007). Overexpression of Shh in mouse skin produces 
basal cell ca rcinoma-like tu mors (Oro e t a l., 1997) . SU(FU) is l ocated i n a  
chromosomal r egion l inked t o s everal t ypes of  t umors, i ncluding gl ioblastoma 
multiforme, prostate cancer, malignant melanoma and endometrial cancer (Stone et 
al., 1 999). C orrelation between mutations i n SU(FU) and pr edisposition t o 
desmoplastic m edulloblastoma has b een est ablished in children (Taylor et  al., 
2002). The involvement of GLI1 in brain tumors has been described (Kinzler et al., 
1987). Also, increased expression of G li1 was f ound i n c olon and l ung cancer 
(Varnat et al., 2009; Watkins et al., 2003). 

Overall, Hh pathway activation has been described in tumors of the brain/ 
cerebellum ( glioma an d m edulloblastoma), t he p rostate, t he o ral cav ity ( oral 
squamous ce ll car cinoma), t he m uscle ( rhabdomyosarcoma) and i n cel l l ines 
derived from lung, di gestive t ract and pancreatic t umors and melanomas 
(Karhadkar et al., 2004; Kinzler et al., 1987; Sheng et al., 2004; Stecca et al., 2007; 
Thayer e t a l., 2 003; Th ompson e t a l., 2 006; Wa tkins e t a l., 2 003) (Fig. 3). The 
mechanisms of p athway activation i nclude l oss o f S U(FU) function, m issense 
mutations in SMO, overexpression of GLI1/GLI2, GLI1 chromosomal translocation 
or GLI2 protein stabilization. 
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Figure 3. Cancers, associated with mutations in the Shh pathway components. 
 

1.8.1 Hedgehog signaling pathway and prostate cancer 
 

In the male reproductive tract, Hh signaling is necessary for the formation 
of the external genitalia and for the development of  the prostate (Podlasek et  al ., 
1999). SHH is expressed in the developing prostatic epithelium and inhibition of  
Hh signaling causes defects of ductal patterning and in the reduction of epithelial 
cell proliferation (Berman et al., 2004; Freestone et al., 2003). 

In adults, there is compelling evidence on the involvement of Hh signaling 
in p rostate tumorigenesis. A se ries o f a rticles defined the role o f Hh signaling in 
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Small Cell Lung cancer 
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the growth and metastasis of advanced prostate cancer (Fan et al., 2004; Karhadkar 
et a l., 2 004; Sanchez e t al., 2 004; Sh eng e t a l., 2 004). Expression d egree o f Hh 
pathway components and targets has been reported to be elevated in high-grade or 
metastatic prostate cancers (Karhadkar et al., 2004; Shaw et al., 2008; Sheng et al., 
2004).  

Bioinformatic analysis of data from genetic studies of familial prostate 
cancer showed mutations in genes, coding components of  Hh signaling pa thway, 
including GLI1, GLI3, SMOH and SU(FU) (Easton et  al ., 2 003; S anchez et al ., 
2004; Xu et al., 2003) (Fig. 4). 
 

 
Figure 4. Prostate cancer genetic associations and the Hh pathway (Datta and Datta, 2006). 
 

Knockdown of  transcription f actor GLI2 by GL I2-specific s mall h airpin 
RNA in the prostate cancer cells resulted in significant down-regulation of the Hh 
signaling pathway, f ollowed b y inhibition of  colony f ormation and growth of  
prostate can cer c ell-line xenografts in vivo (Thiyagarajan et  al ., 2 007). Ectopic 
expression of  G li2 i n normal prostate epithelial cel ls r esulted i n accel erated c ell 
cycle p rogression, especially tr ansition th rough G 2-M phase and i ncreased cell 
proliferation (Thiyagarajan et al., 2007).  

Growth of the prostate cancer can be inhibited using specific Hh 
antagonists t hat b lock t he p athway at  three d ifferent l evels: lig and, re ceptor a nd 
transcription factors. Thus, antibody against Hh was proven to inhibit proliferation 
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of primary prostate tumors and cell l ines  (Karhadkar et  al ., 2004; Sanchez et  al., 
2004). C yclopamine t reatment via blocking S MO activity have be en r eported t o 
decrease v iability and proliferation of  pr ostate c ancer in vitro (Karhadkar et  a l., 
2004; Sanchez e t al., 2004 ; Sheng e t a l., 2004)  and in a  xenograft mouse model 
(Karhadkar e t a l., 200 4). S pecific s mall-interfering RNAs ag ainst GLI1 coding 
sequence was f ound to  in hibit th e g rowth o f metastatic p rostate tu mor c ell lin es 
(Sanchez et al., 2004).   

On the contrary, some studies have demonstrated that for instance prostate 
cancer cel l l ine, PC-3, is n ot susceptible for a ctivation or  r epression of  Hh 
signaling pathway (McCarthy and Brown, 2008; Zhang et al., 2007). Also, recent 
in vivo data from LADY prostate cancer m ouse model have shown that the 
expression level of Shh and other components of Hh signaling pathway (Ptc1, 
Gli1) are not altered during prostate tumor development (Gipp et al., 2007). 
 

1.9 Hedgehog signaling pathway in neurological diseases 
 

Hh signal transduction determines success in embryonic organogenesis and 
postnatal t issue r epair t hroughout a dulthood. H owever, l ittle i s known a bout the 
molecular mechanisms b y w hich a lterations in  th e cell s ignal tr ansduction cause 
age-related pathologies.  

Several studies suggested that endogenous Shh signaling is diminished by 
aging. It has been shown that angiogenesis is dependent on Shh activity in an age-
specific manner (Riobo et al., 2006). Thus, injecting Shh into ischemic mice hind 
limbs, o r S hh DNA i nto myocardial i schemia models, resulted i n en hanced 
revascularization and organ salvage (Muller et al., 2000). In diabetic rats suffering 
from diabetic neuropathy, Shh treatment induced arteriogenesis and restored nerve 
function (Kusano e t a l., 2004) . Moreover, H h signaling was f ound t o pl ay a  
regulatory role in a therosclerosis development and progression, and its i nhibition 
reduced plasma cholesterol levels (Beckers et al., 2007). 

At the level of coordination between nervous and immune systems, age-
specific ch anges in Hh signaling are al so i mplicated in the pathophysiology of 
multiple s clerosis ( MS) an d P arkinson’s d isease ( PD). S hh-N (N -terminal) l evels 
are reduced in both grey and white matter from MS patients. However, the 45 kDa 
precursor S hh p rotein i s still p resent, su ggesting a d efect i n t he au tocatalytic 
cleavage r eaction (Mastronardi e t a l., 2003) . I ntrastriatal in jections o f Sh h-N ( in 
form of purified recombinant protein or delivered by adenoviral vector) resulted in 
partial pr otection of  do paminergic ni grostriatal ne urons i n a  r at m odel of  P D 
(Hurtado-Lorenzo e t a l., 2004; T suboi a nd S hults, 2002). Th is protection li kely 
occurs via normal Shh signaling, since transfection of Gli1 encoding DNA in the 
rat striatum had the similar effect (Hurtado-Lorenzo et al., 2004).  
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1.10 Hedgehog pathway inhibitors and activators  
 

Hedgehog signaling pa thway i s at tractive target for drug discovery 
scientists be cause of  i ts i mportant r ole i n t he e mbryonic pa tterning, the 
development of m any t issues an d so matic st ructures as well a s maintaining an d 
repairing tissues in adults. Its role in tumorigenesis is also an important factor. 

 
Several compounds altering SMO activity have been developed and second 

generation of SMO antagonists have entered phase I  clinical trials (Mahindroo e t 
al., 2009). These d rug candidates are claimed to be effective in situations where 
pathway is stimulated by e ctopic H H l igand pr oduction or  a lterations a t t he 
PTCH/SMO level. Cyclopamine, a t eratogenic st eroidal a lkaloid de rived f rom 
plant Veratrum californicum, w as associated with h oloprosencephaly an d o ther 
teratogenic effects in lambs. In 1998, it was reported that this compound blocks the 
Shh s ignaling pa thway (Cooper e t a l., 199 8). Modified c yclopamine ( KAAD-
cyclopamine) is currently in preclinical development. In some cases, cyclopamine 
and other SMO antagonists are not likely to be effective, favoring the development 
of synthetic GLI in hibitors. R ecently c ompounds t argeting G li-mediated 
transcription have al so been reported (Tabl. 3) (Arai e t al., 2008; La uth e t al., 
2007).  
 
Table 3. Hh pathway inhibitors.  
 
Inhibitors of Shh Reference 
Robotnikinin (Stanton et al., 2009) 
Inhibitors of Smo  
Cyclopamine and its 
derivatives 

(Chen et al., 2002a), 
(Tremblay et al., 2008), 
(Zhang et al., 2008), (Kumar 
et al., 2008) 

Noncyclopamine-Scaffold 
compounds (SANT, 
aminoprolines, 
quinazolinones and 
quinazolines, 
biarylcarboxamide, 
bisamide, benzimidazole, 
pyridyl and quinoxaline 
derivates, triazole 
derivates) 

(Chen et al., 2002b), 
(Williams et al., 2003), 
(Brunton et al., 2008; Peukert 
et al., 2009; Remsberg et al., 
2007) 

Inhibitors of alkohol dehydrogenase IV  
JK184, JK35 (Lee et al., 2007) 
Inhibitors of Gli-mediated transcription 
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GANT61, GANT58 (Lauth et al., 2007) 
Natural compounds for inhibition of Gli transcription 
Extract from plants 
Zinginber zerumbet, 
Physalis  minima, Zizyphus 
cambodiana 

(Arai et al., 2008; Hosoya et 
al., 2008) 

 
Cholesterol a nd ot her c ertain ox ysterols, na turally oc curring p roducts, 

participate in  th e a ctivation o f th e Shh s ignaling pa thway (Corcoran a nd S cott, 
2006; Dwyer et al., 2007). T he oxysterols do not bind directly to Smo, but they 
may indirectly affect Smo, perhaps by stabilizing it in the conformation where it is 
less sensitive to Ptch1-mediated repression and activate Gli-mediated transcription 
in a variety of cell types (Corcoran and Scott, 2006; Dwyer et al., 2007). 

Purmorphamine is a synthetic Shh pathway agonist, discovered by Schultz 
and co -workers (Wu e t a l., 2 002). Initially, purmorphamine was f ound t o induce 
osteoblast f ormation in  C3H10T1/2 cell l ine. S ubsequent g ene ex pression p rofile 
studies showed that purmorphamine upregulates Gli1 and Ptch1, but not Ihh, Dhh, 
or Shh, c onfirming pur morphamine’s r ole a s a  S hh pa thway a gonist (Wu e t a l., 
2002). 

Lately, several s mall molecule a ctivators o f t he S hh p athway have b een 
identified (Chen e t a l., 2002b; F rank-Kamenetsky et al ., 2 002). Screening of 
140000 compounds for the ability to activate luciferase expression in the luciferase 
reporter ass ay in t he a bsence of  S hh pr otein l ed t o t he i dentification of  t he 
leiosamine family of compounds (Fig. 5).  

 

 
Figure 5. The structures of small molecules that activate Hh signaling. 
 
The leiosamine family of compounds can activate Hh signaling by binding 

to Sm o heptahelical d omain (Fig. 6 ). Hh-Ag 1.1 w as t he or iginal c ompound 
identified in  th e h igh-throughput s creen by  F rank-Kamenetsky et al . (Frank-
Kamenetsky et al., 2002) with an EC50 of 3 µM in their luciferase reporter assay. 

SAG 
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Hh-Ag 1.2, a more potent derivative, was characterized by Chen et al. (Chen et al., 
2002b). Hh-Ag 1.5, refered as SAG, is the most potent Hh agonist reported (Frank-
Kamenetsky et al., 2002), with an EC50 of 1 nM. Moreover, SAG and cyclopamine 
activities are mutually antagonistic, consistent with opposing actions on a common 
target (Chen et al., 2002b). 

 

 
 
Figure 6 . Schematic representation of t he p harmacological m odulators’ a ction 

target i n t he Hh p athway. Depicted a re major H h pathway c omponents a nd ge ne t argets 
PTCH and GLI1. Small molecule a ntagonist (cyclopamine) a nd a gonist (SAG) t hat 
modulate SMOH activity (modified from (Ehtesham et al., 2007)) are shown. 

 
 

Importantly, the Hh pathway agonists can activate Shh signaling pathway 
in a wi de v ariety of in vitro and in vivo assays (Frank-Kamenetsky et  al ., 2 002; 
Harper et al., 2004; Paladini et al., 2005; Wichterle et al., 2002). The SAG, Smo 
agonist, is a  s mall molecule th at d irectly binds Sm o, causes i ts a ccumulation i n 
cilia, and p otently act ivates t arget g ene t ranscription (Chen e t a l., 2002 b; F rank-
Kamenetsky et al., 2002; Rohatgi et al., 2007).  
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These molecules f eature many p roperties t hat make t hem at tractive a s 
potential therapeutic agents including their low-nanomolar potencies and favorable 
pharmacokinetic p rofiles in targeted tissues. Also, a g reat advantage of these 
compounds i s that th e molecules r emain active after o ral ad ministration an d ar e 
able to cross the blood-brain and placental barriers in humans. 
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2. AIMS OF THE STUDY 
 

The general aim of this thesis was to investigate the role of Shh pathway in 
neuro- and cancerogenesis in adulthood. 
 
Specific aims were: 
 

1. To determine the mRNA structure of the human transcription factor GLI2. 
To analyse the alternative mRNA splicing forms of human GLI2.  
To clarify the expression pattern of full length and spliced isoforms of the 
human t ranscription f actor G LI2 in  normal adult t issues and can cer ce ll 
lines (Paper I).  

2. To ge nerate a ntibody a gainst hum an t ranscription factor G LI3 for t he 
further analyses and usage (Paper II). 

3. To determine the role of Shh pathway in prostate cancer (Paper III). 
4. To d etermine t he e ffect of  S hh a nd S moothened a gonist ( SAG) on  

proliferation, s urvival and di fferentiation of  hippocampal de novo 
produced cells in vitro and in vivo (Paper IV). 
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3. METHODS 
 

All molecular b iology procedures were p erformed a ccording t o the 
standard p ractice (Sambrook and Russell, 2001)  or according or according to the 
manufacturers’ i nstructions. T he f ollowing m ethods w ere us ed (refer fo r t he 
detailed description to the original papers in the end of the thesis): 
 
Paper I 

• Bioinformatic analyses of gene and mRNA structure; 
• Reverse transcription, DNA amplification by PCR and cloning; 
• In vitro translation; 
• Cell culture and transfection; 
• Luciferase assay. 

 
Paper II 

• Expression and purification of recombinant protein; 
• ELISA; 
• SDS-PAGE and Western blot analysis; 
• RNA isolation and RT-PCR; 
• Immunocytochemistry and immunohistochemistry. 

 
Paper III 

• Immunohistochemistry; 
• RNA isolation and RT-PCR. 

 
Paper IV 

• Cell line culture and primary cell culture; 
• Double immunocytochemistry; 
• RNA isolation and qRT-PCR; 
• Luciferase assay; 
• Animals surgery; 
• Double immunohistochemistry. 
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4. RESULTS 
 
Paper I 
A potential role of alternative splicing in the regulation of the transcriptional 
activity of human GLI2 in gonadal tissues 
 

In t his st udy we characterized the e xon-intron or ganization of  hum an 
GLI2. T he a lignment of  m ouse Gli2 mRNA ( GenBank: X 99104), h uman GLI2 
mRNA ( GenBank: N M_030379) t o t he hu man ge nomic c ontig ( GenBank: 
NT_022135) showed that human GLI2 consist of the 14 exons, similarly to mouse 
Gli2 (Paper I Fig. 1). 

Unlike the mouse Gli2, human GLI2 contains two alternative 5’ noncoding 
exons (exon 1a and 1b). RT-PCR analysis revealed that both exons are expressed in 
defferent tested cell lines and in tissues.  

Comparing the published 3’ UTR of human GLI2 (Tanimura et al., 1998) 
with the 3’ UTR of mouse Gli2 revealed the absence of two thirds of the 14th exon 
of hum an GLI2. We  id entified th e m issing part of  3 ’ UTR of human GLI2 and 
showed that it contains a noncanonical polyadenylation signal ATTAAA. 

We next analysed the expression of GLI2 mRNA in different human adult 
tissues and c ell l ines. GLI2 mRNA w as strongly ex pressed i n t he o vary, t estis, 
pancreas, liver, s mall in testine a nd th ymus (Paper I  Fig . 5), w hile lo w le vel of 
expression was observed in placenta, prostate and colon. Almost no GLI2 mRNA 
expression was detected in heart, brain and peripheral blood leukocytes.  

We identified novel alternatively spliced forms of human GLI2 mRNA 
(Paper I F ig. 6). These t ranscripts wer e p resent ex clusively i n ovary, t estis an d 
several cell lin es (SH-SY5Y, 2 93, NT era2D1, SK -N-SH, M DA-231). We cl oned 
the identified spliced forms (GLI2∆3 and GLI2∆4-5) and analyzed their activation 
or r epression pot ential in the l uciferase r eporter assay. W e f ound t hat GL I2∆4 -5 
increased t he r eporter act ivity ab out 1 0-fold, w hereas GL I2∆3 activity was 
comparable to that of the GLI2fl.  
 
 
Paper II 
Generation and characterization of mouse monoclonal antibody 5E1 against 
human transcription factor GLI3 
 

In t his s tudy w e pr oduced a  m onoclonal a ntibody a gainst t ranscription 
factor GLI3 for the further characterization of the Gli3. 
 Human Hi s-tagged GLI3 pr otein was ex pressed i n E. coli, p urified a nd 
used for immunization of Balb/c mice. Hybridoma screening r evealed a p anel of 
monoclonal antibodies. After specificity analysis by ELISA, one antibody clone - 
5E1 - was c hosen an d ch aracterized f urther i n d ifferent immunological assay s 
(western blotting, immunohistochemistry and immunocytochemistry). 
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RT-PCR an alysis sh owed t he p resence o f Gli3 mRNA i n h uman 
NTera2D1 (teratocarcinoma) and mouse TM3 (Leydig-like) and TM4 (Sertoli-like) 
cell lines. The endogenous GLI3 protein was detected in the cytoplasm of 
NTera2D1 cells by immunocytochemistry. Application of cyclopamine to this cell 
line changed the localization of GLI3 from cytoplasmic to nuclear (Paper I I, Fig. 
4A, C). 

Although Gli2 and Gli3 share homology in repressor domain region, the 
novel antibody does not cross-react with Gli2. Anti-GLI2 antibody showed mainly 
nuclear localization of GLI2 protein in NTera2D1 cells (Paper II, Fig. 5A, B). 
 
 
Paper III 
Sonic Hedgehog pathway activity in prostate cancer 
 

In t his st udy we i dentified ag e-related d ependence of prostate can cer 
development on activation of Shh signaling pathway in transgenic adenocarcinoma 
mouse prostate (TRAMP) mice. 

The expression of the following components of Shh signaling pathway was 
investigated: Shh, Gli1, Gli2 and Gli3 (Paper III, Fig. 2). We examined changes in 
the num ber of pos itive c ells i n pr ostate by i mmunohistochemistry a t t hree t ime 
points - 12, 17 and 21 weeks of age. 

We f ound t hat t he num ber of  S hh-positive cel ls was i ncreased 5 -fold 
during can cer p rogression i n T RAMP mice co mpared t o wi ld t ype ( WT) mice. 
Older TRAMP (17 and 21 w eeks of age) had increased number of Gli1 and Gli3 
positive cel ls co mpared t o W T. Det ected i ncrease i n t he G li1 pos itive and Gl i3 
positive cel l number as w ell as d ecrease i n t he n umber o f Gl i2 cel ls was a ge-
dependent i n t he T RAMP m ice. Interestingly, the number of  S hh-positive c ells 
significantly decreased in WT mice in age-dependent manner. 

Increase of Shh, Gli1 and Gli3 and decrease of Gli2 mRNA was confirmed 
by RT-PCR. 

We also examined changes in the number of FoxA1- and Notch1-positive 
cells, two important r egulators o f c ell proliferation and d ifferentiation ( Paper III, 
Fig. 3,  panel II). The number of FoxA1-positive cel ls was increased three-fold in 
older TRAMP mice compared to WT mice. 

We d id not d etect an y significant d ifference i n No tch1-positive cel ls 
between TRAMP and WT mice at any time points. 
 
Paper IV 
Smoothened agonist augments proliferation and survival of neural cells 
 

In this study we detected SAG induced Gli-dependent luciferase activity in 
Shh-LIGHT2 cel ls. q RT-PCR sh owed SAG co ncentration d ependent increase o f 
Gli1 mRNA (Paper IV, Fig. 1). 
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We also detected direct effect of SAG application on cortical/hippocampal 
progenitor cells in vitro. The number of newly produced BrdU-labeled cel ls was 
increased in cell culture and the highest effect was reached with SAG concentration 
of 1 nM.  

Double-immunocytochemistry w ith anti-BrdU a nd anti-GFAP ( glial 
marker) o r anti-TUJ1 ( neuronal m arker) a ntibodies r evealed n o ef fect o f S AG 
administration on t he di fferentiation of  t he pr ecursors de rived from n euronal 
culture (Paper IV, Fig. 2B and C). 

Next we tested the neurotoxicity of Shh and SAG on the primary cerebellar 
granular cells. We detected increased neuronal death induced by application of Shh 
compared to SAG at the concentration of 50 nM (Paper IV, Fig.3). 

In vivo study s howed t hat intracerebroventricul administration of  S hh or 
SAG at  d oses 2 .5 nmol or  2. 5 µmol respectively, intracerebroventriculary, 
significantly i ncreases the num ber of ne wly p roduced c ells i n a dult rat 
hippocampus (Paper IV, Fig . 4A, B). BrdU-labeled cells, o ften found in clusters, 
were distributed in the inner layer of the granular cell layer and in the hilus of the 
dentate gyrus. Detected increased number o f de novo produced neural cel ls three 
weeks after t reatment indicated drug-induced prolonged in vivo survival of newly 
produced cells. 

 The phenotype of de novo produced, BrdU-labeled cells in adult rat 
hippocampus, was de termined b y d ouble immunohistochemistry w ith antibodies 
against BrdU and the glial marker, GFAP, or the neuronal marker, TUJ1 (Paper IV, 
Suppl. Fig. 2 and 3). Neither Shh nor SAG administration affected the proportion 
of cell differentiation into neurons or glial cells (Paper IV, Fig. 4). 
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5. GENERAL DISCUSSION AND PERSPECTIVES 
 

Shh pathway acts on gene expression through the activity of the Gli 
transcription factors family – Gli1, Gli2 and Gli3. It has been proposed that Gli2 
and G li3 a re t he pr imary m ediators of  H h s ignaling. The e xpression a nd 
posttranslational modification of the various Gli family members create a  distinct 
combination of Hh transcriptional activators and repressors that results in a specific 
biological readout (Ruiz i Altaba et al., 2007). One of these ways is the processing 
of G li2 a nd G li3 (Sasaki e t a l., 1 999). P rocessing i s phos phorylation- and 
proteasome- dependent (Pan et al., 2006; Pan et al., 2009). Another possibility of 
creating proteins with different activities is mRNA alternative splicing.  

Previous studies suggested that human GLI2 mRNA may exist in at  least 
four different isoforms, which can be detected in tumor cell lines or tissues 
(Tanimura e t a l., 1998; Tojo e t a l., 2003). We analyzed the expression o f human 
GLI2 sp liced f orms ( skipping e xon 3  and e xons 4 -5) ( Paper I ) an d d etermined 
enhanced expression of GLI2∆4-5 in Gli-dependent luciferase reporter assay. The 
detected en hancement was most l ikely d ue t o t he l oss o f r epressor act ivity, i.e. 
excision of the repressor domain (or part of it) by alternative splicing. These results 
showed that alternative splicing is involved in the deletion of the repressor domain 
encoded by exons 4 a nd 5 and may be responsible for the enhanced activation of 
GLI2 protein. Moreover, we i dentified the t issue-specific pattern of GLI2 spliced 
forms’ expression in normal tissues. Thus, GLI2∆3 and GLI2∆4-5 spliced proteins 
were uniquely expressed in human ovary and t estis. Particular ex pression pattern 
suggests a specific role of GLI2 as activator in normal adult human gonadal tissues. 
The determination of the factors causing alternative splicing was not in the scope 
of our studies but certainly warrants further investigation. Changes in such factors 
may cau se i ncrease i n p roportion o f act ive GLI2, wh ich i n t urn l eads t o t he 
overexpression of GLI2 target genes and subsequent tumorigenesis.  
 

Gli3 is indispensable part of the Hh pathway and its analysis is absolutely 
required to fully understand the mechanisms of  Hh pathway activation/inhibition. 
The l ack o f commercially av ailable antibodies ag ainst t ranscription f actor G LI3 
incited us to develop this reagent (Paper II). Cell immunocytochemistry indicated 
that G LI3 i s l ocated i n t he c ytoplasm i n human teratocarcinoma cel l l ine cells, 
where t he S hh si gnaling pathway i s k nown t o b e activated (Satoh a nd K uroda, 
2000). A pplication of  c yclopamine t o t he c ells bl ocks S hh pa thway t ransduction 
and as a r esult, GLI3R form enters to the cel l nucleus. Obtained results indicated 
that monoclonal antibody against GLI3 recognizes endogenous GLI3 in GLI3R and 
also in  GLI3FL form. C alculated by NCBI BLAST algorithm similarity between 
human G LI3 r epressor dom ain a nd m ouse G li3 r epressor dom ain w as 97, 4%. 
Immunohistochemistry in mouse embryo samples (10.5 days post-coitum) showed 
that a ntibody r ecognizes a lso m ouse G li3 r epressor m otif. I mmunocytochemistry 
using a ntibodies a gainst hum an G LI3 a nd hum an G LI2 s howed s pecificity of 
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created an tibody wi thout an y cr oss-reactivity a gainst h uman G LI2. T hus, 
developed m onoclonal a ntibody 5E1 against h uman t ranscription f actor GL I3 
repressor motif was highly specific and was used in subsequent studies. 

 
The r ole o f Hh p athway i n p rostate c ancer d evelopment i s n ot clearly 

established. SHH p athway co mponents, for example GL I, are detected in adult 
human p rostate can cer with en hanced l evels as compared t o t hose i n t he healthy 
conditions (Karhadkar e t a l., 2004;  S anchez et a l., 2004;  S heng e t a l., 2004) . 
Although many recently identified genes have been implicated in the progression 
of prostate cancer, relatively few were suggested to initiate prostate tumorigenesis. 
It was d emonstrated that Hedgehog over-expression (via introducing a  Hedgehog 
expressing vector by  intra-prostate i njection) cau sed p rostate tumorigenesis and 
such transformation involved morphological changes within both the epithelial and 
the stromal prostate co mpartments (Chen e t a l., 2 006). On t he ot her ha nd, i n 
LADY p rostate can cer mouse model S hh pa thway w as inactive a nd di d not  
influence tumor formation (Gipp et al., 2007).  

We i dentified t hat T RAMP p rostate can cer mouse model i s t he f irst 
prostate can cer mouse model wh ere tumor f ormation i s co rrelated wi th S hh 
pathway activation ( Paper I II). According t o o ur da ta, S hh pa thway a ctivity 
increased at  t he 21st week o f age in TRAMP mice. We found that Shh, Gl i1 and 
Gli3 expression was enhanced in TRAMP mice compared to WT mice at the same 
week of age. To our su rprise, the t ranscription factor Gl i2 was d ecreased at  both 
protein and mRNA level in TRAMP mice. The possible explanation may be that 
Gli2 mRNA spliced to produce protein modification with higher activity and even 
small amounts o f a ctive-spliced Gl i2 was ab le t o i nduce ex pression o f t he t arget 
genes. As we found in Paper I, Gli2 spliced forms are present in tumor cell lines, 
like NT era2D1 ( teratocarcinoma), S H-SY5Y (neuroblastoma) a nd G 168P44 
(glioma).  Many groups have documented abnormal or alternative mRNA splicing 
in can cer c ells. Thus, a lternative s plicing o f DNMT3B, BRCA1, KLF6, Ron, 
Gemin5 genes, has b een asso ciated wi th can cer f ormation (Bonatti e t a l., 2 006; 
DiFeo et al., 2008; Fabbri et al., 2007; Klinck et al., 2008). Moreover, alternative 
splicing (alternative 5' and 3' splice site selection and intron retention) was found to 
be elevated in can cerous compared to n ormal t issues (Kim e t a l., 2008) . Our 
findings suggested that the alternative splicing of Gli2 may be an important factor 
in tumor initiation; however, additional studies are required to clarify this matter.  
 It was f ound ear lier t hat Hedgehog signaling modulated metastatic 
potential of rodent prostate cancer cell lines (Karhadkar et al., 2004). Based on the 
breeder d escription, T RAMP m ice de velop pr ostate a denocarcinoma by  t he 24 th 
week and metastasis b y t he 3 0th week o f ag e ( www.jax.org).  Age-dependent 
activation of the Shh pathway in TRAMP transgenic mice detected in our studies 
points out the possible role of Shh pathway in metastasis spreading. Invasion and 
tumor metastasis ar e c losely r elated an d b oth o ccur wi thin t umor-host 
microecology, where stroma and tumor cells exchange enzymes and cytokines that 
modify t he l ocal ex tracellular matrix, s timulate c ell m igration, a nd p romote cell 

http://www.jax.org/�
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proliferation and tumor cell survival. The most important changes occur in genes 
which r egulate cel l cycle p rogression, ex tracellular matrix homeostasis an d ce ll 
migration. I n a  v ariety o f e pithelial c ancers ab errant Hh  si gnaling was  recently 
detected and it has been shown that the Hh target gene Gli1 induces expression of 
Snail, which represses E-cadherin and induces epithelial–mesenchymal transition, a 
process also exploited by invasive cancer cells (Fendrich et al., 2007). Moreover, it 
was r eported t hat t he S HH signaling pa thway, a cting t hrough the T GF-β/ALK5 
pathway, may selectively contribute to tumor cell motility and invasion in gastric 
cancer (Yoo et a l., 2008) . Despite the critical role t hat Hh s ignaling plays in  the 
promotion of  t umorigenesis, the molecular a nd c ellular mechanisms behind H h 
regulation in  prostate tumor metastatic b ehavior ar e unknown. Recent st udy 
showed t hat combined us e of  bot h t he s elective inhibitors of  E GFR a nd H h 
signaling cascades, may represent a p romising st rategy for improving the current 
standard an tihormonal an d r adiotherapeutic t reatments u sed i n t he ear ly st ages 
against l ocalized p rostate can cers (Mimeault e t a l., 2 007). Further st udies ar e 
necessary t o define t he ex act r ole o f S hh p athway i n p rostate can cer metastasis, 
particularly its influence on the expression of metastasis-associated genes.  
 

Another group of diseases wh ere S hh p athway represents an  at tractive 
target for therapy are adulthood disorders associated with diminished neurogenesis 
(depression, Parkinson’s disease, e tc). Previous studies have shown that Shh is 
involved in the regulation of the proliferation of neuronal progenitors in adult brain 
(Lai e t a l., 2003) . In o ur st udies ( Paper I V), in vitro SAG, s imilarly to Sh h, 
promoted proliferation of  the cortical/hippocampal cells without significant effect 
on t heir differentiation p attern. In a ddition to  in vitro experiments, we a lso 
demonstrated the effects of Shh and SAG on the survival of newly born cells in the 
DG of adult rats. While majority of newly proliferated cells in the DG die shortly 
after birth, some of them survive and differentiate (Cameron et al., 1993). Presence 
of p ersistently i ncreased number of Br dU-labeled c ells t hree w eeks af ter S hh o r 
SAG administration in rat hippocampus suggests that these molecules serve as a 
survival factors for hippocampal n eural cel ls. Our in vivo results f rom c ell 
proliferation, differentiation and survival studies in rats suggest that Shh or SAG-
stimulated hippocampal neurogenesis is likely to be the consequence of increased 
cell proliferation and survival rate rather than modification of the commitment of 
de novo produced cel ls. A si milar n europroliferative ef fect wi th unchanged cell 
differentiation pattern was o bserved in vitro in adult c ortical/hippocampal 
progenitor c ells. Importantly, in vitro studies have shown that unlike S hh, SAG 
does not  exhibit sustained neurotoxic ef fect. Thus, our  s tudies suggest the use of  
nonpeptidyl Smo ag onists as a p otential t herapeutic ap proach for 
neurodegenerative diseases.  
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CONCLUSIONS 
 

1. The mRNA structure of human transcription factor GLI2 is clarified. 
 
2. Two a lternative spliced f orms o f h uman t ranscription f actor GLI2 are 

characterized. 
 
3. Alternatively spliced forms ∆3 and ∆4 -5 GLI2 act as activator i n normal 

adult human gonadal tissues.  
 
4. Monoclonal a ntibody 5E1 against hum an t ranscription f actor G LI3 i s 

generated, characterized and successfully used in experimental settings. 
 
5. Prostate cancer age-dependent development and possibly its metastasizing 

are associated with the activation of Shh signaling pathway.  
 

6. Shh a nd S moothened a gonist SAG enhance t he pr oliferation o f ne ural 
progenitors in vitro. 

 
7. Shh and Smoothened agonist SAG increase survival of neural newly born 

neural cells in vivo. 
 

8. Neither S hh nor  S moothened a gonist SAG affects t he p attern o f 
differentiation of the neuronal progenitors in vitro and in vivo. 

 
9. Nonpeptidyl Smoothened agonist SAG bears t he t herapeutic potential in 

treatment of neurodegenerative diseases. 
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ABSTRACT 
 

Hedgehog ( Hh) s ignaling i s c rucially i mportant dur ing e mbryonic 
development and in adulthood. 

Hh s ignaling pa thway is i nitiated b y the b inding of the secr eted 
morphogen, Hh, to i ts receptor, Patched 1 ( Ptch1). As a result of  this interaction, 
the inhibition of another receptor Smoothened (Smo) is relieved and activation of 
the g lioma-associated (Gli) f amily o f zinc f inger t ranscription factors is  in itiated.  
In vertebrates, there are three Gli proteins, where Gli1 and Gli2 are activating Hh 
target genes, whereas Gli3 is thought to act mainly as a repressor. 

In the first set of experiments performed within the scope of this thesis, we 
produced monoclonal antibody 5E1 against human transcription factor GLI3. The 
specificity of  5E 1 a ntibody w as c onfirmed by di fferent i mmunological m ethods: 
immunocytochemistry, ELISA and mouse embryo immunohistochemistry. 

In t he s cope of  t his w ork, we i dentified t he ex act mRNA st ructure o f 
human t ranscription f actor GLI2 and d escribed i ts ex pression p attern i n n ormal 
human tissues. Furthermore, we identified two alternatively spliced forms of GLI2 
and their unique expression in human normal gonadal tissue. Interestingly all tested 
human cancer cell lines expressed GLI2 alternatively spliced forms. Moreover, 
these sp liced GLI2 proteins act ivated Gl i-dependent reporter wi th h igher ef ficacy 
compared to full length GLI2 protein. 

Mutations and ot her regulatory er rors i n t he Hh  p athway ar e asso ciated 
with a number of birth defects and certain cancers. Recent d ata indicate that Hh 
signaling is  activated in  m ajority o f metastatic p rostate t umors an d su bsets o f 
locally metastasized tumors. In this thesis we have shown age-dependent activation 
of Shh pathway in the transgenic prostate adenocarcinoma mice model (TRAMP). 
Importantly, these T RAMP m ice ar e t he f irst t ransgenic m odel reported t o h ave 
activated Shh pathway. 

Chronic n eurodegenerative d iseases su ch as P arkinson's d isease, 
Huntington's ch orea, a myotrophic l ateral s clerosis an d multiple scl erosis are 
associated with degeneration of discrete populations of neuronal elements. In this 
study we ch aracterized t he i nfluence o f Smoothened a gonist SAG on t he n eural 
cells in vitro and in vivo. We found that SAG induced de novo production of neural 
cells without a ffecting th eir f urther c ommitment r ate. Fu rthermore, te sted SAG 
compound did not  ha ve p ronounced neurotoxic ef fects in vitro. B ased upon our 
results SAG compound represents a promising drug candidate for the treatment of 
disorders as sociated wi th ex cessive n euronal death an d war rants f urther 
investigation. 
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KOKKUVÕTE 
 

Hedgehogi (Hh) signaalirada mängib olulist rolli organismi embrüonaalses 
arengus, ku igi ta  jääb a ktiivseks k a t äiskasvanueas. Signaali e dastamine algab 
sekreteeritud morfogeeni, Hh, seondumisega oma retseptorile, Patched1-le (Ptch1). 
Selle t ulemusel va baneb S moothened ( Smo) j a kä ivitatakse signaalikaskaad, m is 
viib G li pe rekonna t sink-sõrm tr anskriptsioonifaktorite a ktivatsioonini. Se lgroog-
setes esineb kolm Gli valku, mis erinevad oma funktsiooni poolest. Gli1 ja Gli2 on 
Hh raja sihtmärkgeenide aktiveerijad, Gli3 aga käitub peamiselt repressorina. 

Esmalt töötasime välja m onoklonaalse an tikeha i nimese t ranskriptsiooni-
faktori GL I3 v astu. T õestasime 5 E1 an tikeha sp etsiifilisust er inevate i mmuno-
loogiliste m eetoditega: i mmunotsütokeemiaga rakukultuuris, ELI SA-ga j a i mmu-
nohistokeemiaga hiire embrüo lõikudel.   

Peale selle t uvastasime a ntud töös inimese t ranskriptsioonifaktori GLI2 
täpse mRNA st ruktuuri ja k irjeldasime sel le ek spressioonimustrit inimkudedes. 
Veelgi en am – identifitseerisime GLI2 kaks alternatiivselt splaissitud v ormi ja  
määrasime n ende spetsiifilist ek spressiooni i nimese suguorganite k udedes. 
Normaalsete k udede k õrval an alüüsisime sa muti k asvajarakuliine, mis l isaks 
täispikale transkriptile ekspresseerisid ka kahte alternatiivselt splaissitud mRNA-d. 
Leidsime, et  alternatiivselt splaissitud GLI2 valkudel on suurem märklaudgeenide 
aktivatsioonivõime võrreldes täispika GLI2-ga. 

Hh r aja mutatsioone j a r egulatsiooni vigu seo statakse mitmete sü nni-
defektide ja teatud vähi tüüpidega. Hh signaali aktivatsioon on tuvastatud enamikul 
metastaatiliste eesn äärme kasvajate ja m itmete lo kaalselt metastaseeruvate t uu-
morite puhul. Antud väitekirjas oleme näidanud ajast sõltuvat Sh h raja 
aktivatsiooni tr ansgeense p rostata a denokartsinoomi h iire mudelil ( TRAMP). 
Olulise aspektina märgime, et eelmainitud TRAMP hiir on esimene eesnäärmevähi 
transgeenne mudel, kus Shh rada on aktiivne.  

Kroonilisi ne urodegeneratiivseid ha igusi, na gu P arkinsoni j a H untingtoni 
tõbi, amülotroofne lateraalne skleroos ning hulgiskleroos, on s eostatud neuro-
naalsete elementide er inevate p opulatsioonide d egeneratsiooniga. Antud uu ringus 
oleme iseloomustanud Smo agonisti (SAG) mõju neuraalsetele rakkudele in vitro ja 
in vivo. Leidsime, et SAG indutseeris neuraalsete raakkude de novo produktsiooni  
nende edasist diferentseerumise suunda mõjutamata. Veelgi enam – kasutatud SAG 
ühend e i avaldanud ne urotoksilist mõju in vitro. T uginedes saad ud t ulemustele, 
võib j äreldada, e t S AG ühe nd on potentsiaalne r avimikandidaat neuraalsete 
rakkude ülemäärase surmaga s eotud h aiguste t ulevikuravis n ing v ajaks seet õttu 
edasist uurimist.  
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