
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Cem Şamiloğlu 223607IASM

IMPROVEMENT IN THE APRIORI ALGORITHM TO

ENHANCE THE EFFICIENCY OF ASSOCIATION RULE

MINING TECHNIQUES

Master’s Thesis

Supervisor: Mohammadreza Heidari Iman
Early Stage Researcher

Co-supervisor: Tara Ghasempouri
Senior Researcher

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Cem Şamiloğlu 223607IASM

APRIORI ALGORITMI TÄIUSTAMINE

ASSOTSIEERIMISREEGLITE KAEVANDAMISE TEHNIKATE

TÕHUSUSE SUURENDAMISEKS

Magistritöö

Juhendaja: Mohammadreza Heidari Iman
Early Stage Researcher

Kaasjuhendaja: Tara Ghasempouri
Senior Researcher

Tallinn 2024

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Cem Şamiloğlu

05.05.2024

1

Abstract

Association rule mining is one of the core techniques used in data mining that discovers
unrevealed interesting relationships and patterns from a given dataset. Classical and widely
used association rule mining algorithms in the current literature such as Apriori, come
with drawbacks of long execution time and a large number of redundant association rules.
This thesis proposes an improved Apriori algorithm called apriori-D that overcomes these
limitations. Improvements made in frequent itemset generation of the Apriori by an
innovative solution of ranking and keeping the most valuable itemsets. Results collected
from benchmark datasets have demonstrated that the proposed algorithm surpasses the
original Apriori in terms of shorter execution time as well as achieving less redundant
association rules as a result of the efficient pruning capability.

The thesis is written in English and is 51 pages long, including 7 chapters, 11 figures and 9
tables.

2

Annotatsioon
Apriori algoritmi täiustamine assotsieerimisreeglite kaevandamise

tehnikate tõhususe suurendamiseks

Assotsiatsioonireeglite kaevandamine on üks peamisi tehnikaid, mida kasutatakse andmete
kaevandamisel, mis avastab varjatud huvipakkuvaid seoseid ja mustreid antud andmekogu-
mist. Klassikalised ja laialdaselt kasutatavad assotsiatsioonireeglite kaevandamise algorit-
mid praeguses kirjanduses, näiteks Apriori omavad puuduseid, milleks on pikk teostusaeg
ja suur hulk üleliigseid seoseid ja reegleid. Käesolev lõputöö pakub välja täiustatud Apriori
algoritmi nimega apriori-D, mis ületab nimetatud piirangud. Apriori liigse sagedusega
toimuvat üksuste genereerimist täiustati uuendusliku lahendusega kõige väärtuslikumate
üksuste järjestamiseks ja säilitamiseks. Kasete tulemused võrdlusandmekogumitel on
näidanud, et pakutud algoritm ületab algse Apriori nii lühema täitmisaja kui ka väiksema
hulga üleliigsete assotsiatsioonireeglite saavutamise poolest.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 51 leheküljel, 7 peatükki, 11
joonist, 9 tabelit.

3

List of Abbreviations and Terms

ARM Association Rule Mining
CPU Central Processing Unit
CSV Comma-Separated Values
FP Frequent Pattern
GPU Graphics Processing Unit
KDD Knowledge Discovery in Databases
OS Operating System
RAM Random Access Memory
TID Transaction Identifier
UCI University of California, Irvine

4

Table of Contents

1 Introduction . 8
1.1 Problem Statement . 8
1.2 Research Motivation . 9
1.3 Thesis Structure . 9

2 Background . 11
2.1 Preliminary Concepts . 12
2.2 Apriori Algorithm . 14

3 Related Works . 18

4 Methodology . 22
4.1 Preprocessing of the Data . 23
4.2 Improved Apriori Algorithm with Dominance - apriori-D 23

4.2.1 Dominance Relation . 23
4.2.2 Phases of the apriori-D Algorithm 26

4.3 Evaluation of the Redundancy of Association Rules 30

5 Experimental Results . 32
5.1 Dataset Properties . 32
5.2 Comparison of Results In Terms of Execution Time 33
5.3 Comparison of Results In Terms of Generated Rules 36
5.4 Comparison of Results In Terms of Discarded Redundant Rules 38

6 Conclusion . 41

7 Summary . 42

References . 43

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis . 50

Appendix 2 – Sources of Datasets and Implementations 51

5

List of Figures

1 Overview of the data mining process [14] 11
2 Techniques used in data mining [15] . 11
3 Itemset generation process of Apriori algorithm [18] 15

4 General flow of the methodology . 22
5 Overview of the algorithm apriori-D phases 26

6 Execution time comparison of apriori and proposed algorithm apriori-D

using dataset retail_small . 34
7 Execution time comparison of apriori and proposed algorithm apriori-D

using dataset retail_large . 35
8 Execution time comparison of apriori and proposed algorithm apriori-D

using dataset groceries . 35
9 Generated association rule count comparison of apriori and proposed

algorithm apriori-D using dataset retail_small 37
10 Generated association rule count comparison of apriori and proposed

algorithm apriori-D using dataset retail_large 37
11 Generated association rule count comparison of apriori and proposed

algorithm apriori-D using dataset groceries 38

6

List of Tables

1 Sample dataset having a horizontal data format [18] 14

2 Raw data where each TID mapped to an item 23
3 Preprocessed data where each TID contains all of its items 23
4 Set of itemsets and their corresponding measures 29
5 Dominance result of the itemsets and their corresponding measures 29

6 Properties of the datasets after preprocessing 32
7 Execution time comparison of apriori and proposed algorithm apriori-D . 34
8 Generated association rules comparison of apriori and proposed algorithm

apriori-D . 36
9 Number of discarded redundant rules in proposed algorithm apriori-D . . 39

7

1. Introduction

The advancements in digitized systems and wide usage of information technologies in
various fields have resulted in rapid data generation. Nowadays, many different domains
such as banking, healthcare, retail, marketing, and telecommunications produce enormous
amounts of data [1]. This increased trend of data generation in the last few decades has
been associated with the term in literature as big data [2]. Continuous generation of data
has introduced many opportunities such as giving important insight for many organizations
regarding their decision-making process.

Alongside the advantages of data generation, it also brings many challenges to overcome.
One of the major challenges it brings is the task of extracting useful information from the
raw data [3]. Manual approaches to finding useful information in smaller amounts of data
might be feasible, but once the size increases, manual methodologies would get inefficient
excessively. Therefore, the need to analyze the data in an automated manner has paved the
way for the foundation of a research field referred to as data mining.

Data mining, also known as KDD (Knowledge discovery in databases) is the process of
discovering unrevealed patterns and extracting interesting knowledge from a large amount
of data [4]. Starting from the beginning of the 1990s there has been significant growth in
data mining and many techniques have been developed over the years [5, 6].

An important method of data mining is ARM (Association rule mining), used to find
frequently occurring patterns and correlations in a given database [7]. Possible applications
of association rule mining include market basket analysis, mining web usage, healthcare an-
alytics, fraud detection, finance, marketing, sales, and many more in numerous fields [8, 9].
The result of ARM methods is the association rules, which are defined as if-then statements
that show the relations of items alongside interestingness measures [10]. These association
rules are later used by data analysts as input to process and provide insight for making
business decisions.

1.1 Problem Statement

Several algorithms have been proposed in the literature throughout the years for association
rule mining implementation. One of the earliest and most researched is the Apriori
algorithm. The studies proved that Apriori performs well overall when the database is

8

sparse and discovered patterns have short lengths [11].

However, the efficiency of Apriori degrades steeply, especially when being applied in
larger databases. It has two major downsides that affect the performance, a very large
number of candidate itemset generation and scanning the database multiple times during
the execution. As the dataset gets larger, both of these drawbacks contribute to the total
execution time generated association rules as well as memory usage significantly [12].

1.2 Research Motivation

The main objective of this research work is to propose an improved version of the Apriori
algorithm by analyzing the gaps that exist in the current literature. The first aspect of
improvement is to shorten the total execution time as it grows significantly alongside the
database size.

Another aspect to be optimized is the generation of more meaningful association rules. The
number of association rules can get huge and often the output of ARM algorithms contains
many redundant rules that provide the same or less information of usefulness and relevance
[13]. Therefore, the number of association rules is also aimed to be reduced by eliminating
the redundant rules, thus enabling a more convenient analysis of the association rules.

1.3 Thesis Structure

This thesis consists of seven main chapters and the content of each chapter is briefly
described below.

■ Chapter 2 explains the data mining and association rule mining process in more
detail and provides the necessary preliminary concepts to build a foundation for
ARM algorithms. Alongside these, the well-known Apriori algorithm is described in
this chapter.

■ Chapter 3 conducts a literature review where the previously proposed improved
Apriori algorithms are investigated. The most notable algorithms that develop an
optimized Apriori algorithm in terms of execution time and more relevant association
rules are examined together with their benefits and drawbacks.

■ Chapter 4 explains the methodology of this research work and the proposed algorithm
in this thesis is presented to improve the Apriori algorithm by utilizing a novel
approach called dominance relation.

■ Chapter 5 contains the experimental results of the original Apriori and the proposed

9

algorithm based on their execution time, number of generated rules, and redundant
rules.

■ Chapter 5 provides a conclusion of this research work, current limitations, and also
possible improvements for future work.

■ Chapter 6 summarizes briefly the initial problem, proposed solution, and achieve-
ments of the thesis.

Additionally, Appendix 2 includes the sources of all the datasets used for experiments
together with the implementations of all algorithms and scripts.

10

2. Background

The procedure of data mining consists of several steps until there is a piece of meaningful
information extracted as the output. A general overview of data mining is depicted in
Figure 1. The first step is selection where appropriate data is selected based on the content
of the research. Next, the preprocessing step involves removing incomplete or inconsistent
data and integrating the data in case of using multiple sources. The preprocessed data is
converted into a suitable format for mining in the transformation step. Then, the mining
phase takes place where interesting patterns are discovered and extracted for further
evaluation. Finally, these patterns can be interpreted to acquire knowledge [14].

Figure 1. Overview of the data mining process [14]

The data mining process itself can be classified into two categories as supervised and
unsupervised methods as shown in Figure 2.

Figure 2. Techniques used in data mining [15]

Supervised techniques, which consist of classification and regression use labeled input and
output data to predict future occurrences. Whereas in unsupervised techniques, such as
association rule mining and clustering unlabeled data is being used and explores hidden
relations during real-time execution [16].

11

Association rule mining is a fundamental method that discovers relationships of variables
from a given dataset [8]. It identifies the patterns and correlations of variables that occur
frequently. The goal is to extract meaningful information that provides insights into the
data [17].

2.1 Preliminary Concepts

In this section, the preliminary concepts about data mining and ARM will be presented to
develop a foundation for the algorithms proposed in the literature.

Definition 1. A dataset is a collection of data that contains transactions. An example of
dataset is D = {T1, T2, ..., Tn}, where each transaction is denoted as T.

Definition 2. Itemsets are collection of data that contains items. An example of itemset is
I = {i1, i2, ..., in}, where each item is denoted as i.

Definition 3. Frequent itemsets are a collection of itemsets that appear frequently in a
dataset. Indicating the notable relations between the itemsets [18]. The frequent itemsets

with a length k, is denoted as {Lk}.

Definition 4. Candidate itemsets are a collection of any valid itemsets which are potentially
frequent itemsets [18]. The candidate itemsets with a length k, is denoted as {Ck}.

Definition 5. An association rule is an if-then statement that uncovers relationships
of items in a dataset [10]. Association rule is defined as an implication presented in
Equation 2.1, meaning that if X is satisfied, it is highly probable that Y is also satisfied [19].
I is a set of items, X and Y are frequent itemsets.

X→ Y;where X ⊆ I,Y ⊆ I,X ∩ Y = ∅ (2.1)

Definition 6. Support is a metric used in association rule mining to measure how frequently
an itemset occurs in a dataset [20]. For an association rule X → Y , it states the ratio of
transactions in a dataset that contains the union of itemsets X and Y, and calculated by the
formula presented in Equation 2.2. It has a range of [0,1] where a larger support value
yields a higher statistical significance.

support(X→ Y) = P(X∪Y) =
Count of transactions containing itemsets X and Y

Total number of transactions in T
(2.2)

12

Definition 7. Minimum support is a threshold used to identify if an itemset is frequent in
a dataset or not. If an itemset has a higher support value than minimum support, then it is
considered as a frequent itemset [18].

Definition 8. Confidence is another metric used in association rule mining to measure the
proportion of transactions in a dataset that contains itemset Y in the same transactions that
contain itemset X [21]. For an association rule X → Y , confidence is calculated by the
formula presented in Equation 2.3. It has a range of [0,1].

confidence(X→ Y) = P(Y|X) = support(X→ Y)
support(X)

(2.3)

Definition 9. Minimum confidence is a threshold used to determine the strength of the
association between itemsets. If an association rule has a higher confidence value than
minimum confidence, then it is considered as a valid association rule [18].

Definition 10. Lift is also a key metric used in association rule mining to measure how
often itemsets X and Y occur together than expected if they happen to be independent
statistically [22]. For an association rule X → Y , lift is calculated by the formula presented
in Equation 2.4. It has a range of [0,∞] where a lift value less than 1 indicates a negative
correlation, equal to 1 indicates an independent correlation, and higher than 1 indicates a
positive correlation.

lift(X→ Y) =
P(Y|X)
P(Y)

=
confidence(X→ Y)

support(Y)
(2.4)

The interestingness metrics, also referred to as the measures such as support, confidence

and lift, are used for assessing the relevance and value of discovered patterns in association
rule mining.

The main high-level process of association rule mining methods can be viewed as a
two-step approach [20]:

1. Finding all the frequent itemsets that satisfy a pre-defined minimum support threshold
from a given dataset,

2. Generating association rules using the frequent itemsets that satisfy a pre-defined
minimum support and minimum confidence thresholds using the frequent itemsets
found in the first step.

13

Finding the frequent itemsets is considered to be the most computationally expensive step.
When the size of the dataset is larger, the frequent itemsets found in this step get bigger in
size, therefore it contributes most to the total execution time and use of resources [23].

Therefore, the majority of the previous research in literature has been done to optimize
this step in different approaches. Also worth mentioning is that the second step, which is
generating association rules is usually a generic task and does not vary widely between
different ARM algorithms.

In terms of the algorithms used in association rule mining, the Apriori algorithm is the most
known and widely used one. This is due to its convenient implementation, scalability, and
flexibility in terms of various types and sizes of datasets, and interpretability of generated
association rules.

2.2 Apriori Algorithm

Apriori is one of the first algorithms proposed for ARM applications by Agrawal and
Srikant [24]. It is a level-wise method that discovers the frequent itemsets (Definition 3)
from a dataset in an iterative way. These frequent itemsets found at each iteration are
extended to find longer frequent itemsets. Next, the association rules (Definition 5) are
generated based on all of the found frequent itemsets to discover the patterns and relations
of items in the dataset.

TID Items
T100 I1, I2, I5
T200 I2, I4
T300 I2, I3
T400 I1, I2, I4
T500 I1, I3
T600 I2, I3
T700 I1, I3
T800 I1, I2, I3, I5
T900 I1, I2, I3

Table 1. Sample dataset having a horizontal data format [18]

The frequent itemset discovery process is presented in Figure 3, based on a sample dataset
given in Table 1. The sample dataset shown in Table 1 has a horizontal data format
containing two columns. The first column represents the TID (Transaction Identifier), and
the second column represents the list of items that belong to a specific TID.

The first table {C1}, in Figure 3 represents the candidate 1-itemsets (Definition 4) and

14

their support count. In this example, support count is used instead of the ratio stated in
Definition 6. The next table {L1}, shows the frequent 1-itemsets, where it is constructed
by the itemsets in {C1} that have a higher support than minimum support count. The
minimum support count of 2 is used. Since all of the itemsets have higher support than 2,
the itemsets in {C1} and {L1} are the same.

After that, the table {C2} in Figure 3, is generated by joining the itemsets present in {L1}.
The process continues iteratively until there are no frequent itemset found that exceed the
minimum support count. The last table {L3} shows the frequent 3-itemsets found at the
end of this process.

Figure 3. Itemset generation process of Apriori algorithm [18]

Discovering the frequent itemsets procedure of Apriori is outlined in Algorithm 1. The
algorithm has two inputs, the minimum support (Definition 7) and frequent 1-itemsets.
The frequent 1-itemsets are found by scanning the dataset and keeping the itemsets that
have higher support values than the minimum support threshold.

The lines between 1 and 10 of Algorithm 1, find frequent itemsets iteratively starting from
frequent 2-itemsets. Candidate generation is executed in line 2 that returns a super-set of
all k-itemsets from frequent (k-1)-itemsets. Candidate generation consists of two steps,
join and prune which will be explained further separately.

In lines 3 to 8, all of the candidate k-itemsets are scanned in the transactions of the dataset

15

Algorithm 1 Finding frequent itemsets in Apriori algorithm
Input: L1 = {frequent 1-itemsets}, minimum_support

1: for (k = 2; Lk−1 ̸= ∅; k++) do
2: Ck = apriori-gen(Lk−1) ▷ candidate generation
3: for all transactions t ∈ D do
4: Ct = subset(Ck, t)
5: for all candidates c ∈ Ct do
6: Calculate support of c
7: end for
8: end for
9: Lk = {c ∈ Ck | c.support ≥minimum_support}

10: end for
Output: ∪kLk

to determine their support value. Finally, the support values of these candidate itemsets
are compared with minimum support in line 9. If they exceed the minimum support, they
are added to the frequent k-itemsets. This process continues iteratively until there is no
itemset that has a higher support value than minimum support. The output of the algorithm
is all of the discovered frequent itemsets.

The join step of candidate generation is presented in Algorithm 2. Frequent (k-1)-itemsets
are joined with each other to generate the candidate k-itemsets.

Algorithm 2 Join step of apriori-gen
1: insert into Ck

2: select p.item1, p.item2, ...p.itemk−1, q.itemk−1

3: from Lk−1 p, Lk−1 q
4: where p.item1 = q.item1, ...p.itemk−2 = q.itemk−2, p.itemk−1 < q.itemk−1

The prune step of candidate generation is presented in Algorithm 3. Where all itemsets c

that are present in candidate itemsets {Ck}, are removed if (k-1)-subset of c is not present
in {Lk−1}. By doing so, the final output of {Ck} will be smaller, and thus while generating
{Ck+1} from {Lk} in the next step, the total number of itemsets will be less. Since it is an
iterative process, this attribute will apply to all itemsets with length k.

Algorithm 3 Prune step of apriori-gen
1: for all itemsets c ∈ Ck do
2: for all (k-1)-subsets s of c do
3: if s /∈ Lk−1 then
4: delete c from Ck

5: end if
6: end for
7: end for

16

After all the frequent itemsets are found, they are used to generate association rules. For
each of the frequent itemset, all of its non-empty subsets are generated. Then for all of
these subsets, antecedent and consequent parts are used to construct association rules.

If an itemset has length k, then there are 2k − 2 candidate association rules that will be
generated from this itemset. For instance, if the itemset of length 3 is [X, Y, Z], then
there are 6 candidate association rules such as (X, Y)→ Z, (X,Z)→ Y , (Y, Z)→ X ,
X → (Y, Z), Y → (X,Z) and Z → (X, Y).

Despite being a straightforward algorithm to implement, Apriori also has drawbacks
that are discovered as the datasets get larger and contain longer patterns. The candidate
generation step has a major impact especially on the execution time due to generating a
huge number of candidates. Since it is an iterative approach, the dataset needs to be scanned
repeatedly which adds up to execution time. Also, Apriori generates many redundant rules
that do not provide any extra insight in the presence of another more meaningful rule.
Therefore, in the literature, most of the improvements have been targeted to improve the
Apriori algorithm in these aspects, which will be examined in the next chapter.

17

3. Related Works

There are several algorithms developed in the literature with the aim of improving the
original Apriori algorithm in different aspects. The literature review conducted in this
chapter will focus on the proposed Apriori algorithms that mainly improve execution time
and reduce redundant association rules in recent years.

A traditional algorithm used in association rule mining named FP-growth (Frequent pattern
growth) [25], was proposed to mitigate the negative effect of the huge candidate generation
of Apriori. It was a divide-and-conquer method that introduced a novel approach by
compressing the dataset into an FP-tree structure. Then this compressed structure is
divided into conditional datasets that only one frequent item is associated with and mines
each dataset separately. However, it also brought some disadvantages such as having a
complex data structure that is cumbersome to implement. Also, due to its recursive nature,
when the dataset gets larger and more sparse the memory requirement becomes an issue
for the FP-tree structure [19].

An innovative algorithm named Eclat [26], proposed to utilize a different data format
where each itemset is associated with a TID. Because of using this data format, Eclat
is considered to be a depth-first search algorithm. The main benefit of this is to be able
to calculate the support count of an itemset directly from the length of TIDs that it is
associated with. This means that there is no need to scan the dataset continuously to
calculate the support measure.

Eclat performs better compared to Apriori regarding execution time when the number of
transactions and the length of transactions are relatively small, whereas in higher numbers
and longer transactions, Apriori was still able to run faster than Eclat [27]. This is mainly
due to the fact that TID lists can get very long when dealing with a high number of frequent
patterns, having a negative effect on computation time for intersecting the long lists [19].

Zaki and Gouda later proposed another algorithm called dEclat [28] to address the high
cost of intersecting TIDs. It is based on keeping track of only the differences of TIDs of a
k-itemset and a correspondent (k-1)-itemset. When the dataset contains dense and long pat-
terns it shows favorable results compared to Eclat while mining frequent itemsets, but still
has downsides such as consuming a significant amount of memory for its data structure [18].

18

A fundamental method used to improve Apriori is to establish parallel execution. The
proposals made in [29] and [30] employ the parallel processing of the Apriori algorithm.
They are implemented in the MapReduce framework of the Hadoop platform to distribute
the data in large clusters. The experimental results show that execution time was shortened
with the help of multiple computing nodes. In other research works [31] and [32], a different
platform called Spark is used to apply parallel processing of the Apriori. Compared to the
proposals that work on Hadoop, results obtained from this proposal made on Spark can
run faster due to using memory for caching and processing of the data.

Parallel execution is further improved in proposals such as in [33] and [34] by integrating
the use of GPU (Graphics processing unit) to handle complex calculations that showed
favorable results in total runtime. Even though parallelism improves the execution time for
Apriori, these approaches have the drawback of relying on a separate processing platform
to handle the parallel computing.

Another aspect of improving the Apriori algorithm is the utilization of different data
structures. A method presented in [35] implements a hash tree structure. This resulted in
more efficient counting of support and also reduced the frequent dataset scanning. The
work proposed in [36] introduces a frequent matrix that stores the frequency of each item.
Furthermore, in [37], the use of a boolean matrix structure is proposed, and then operations
are performed on the compressed matrix row vectors. These proposals also resulted in
scanning the dataset less and reduced the time complexity of the original Apriori.

Apart from the proposals that reduced scanning of the database as a side effect of imple-
menting different data structures, there are also approaches to optimize Apriori directly
by avoiding unnecessary scanning of the dataset based on basic properties. Some notable
efforts presented in [38], [39], and [40] reduce the number of dataset scans by first splitting
each itemset in frequent itemsets. Then, uses the TIDs of the split itemset which has a
lower support value to scan the next candidate itemsets only in transactions with these
specific TIDs instead of scanning in the whole database.

The methods proposed in [41] and [42], are based on skipping scanning the transaction if
the transaction length is less than the current iteration number. Obviously, the runtime is
shortened since scanning fewer transactions however it introduces a risk of losing potential
valuable itemsets that are included in those transactions.

The research work presented in [43] takes a different approach where a new parameter
infrequent support is introduced. This parameter is used instead of classical support
measure to decide whether an itemset is found infrequent early in the scanning of the

19

database therefore there is no need to continue scanning for it anymore.

The method to reduce the scanning over the database is often an effective solution to
shorten the runtime of Apriori. However, they might also yield reasonable results only on
specific conditions such as in [43], the approach improves in the cases of using a higher
minimum support threshold.

Some research works employ the use of an adaptive minimum support level instead of
inputting a constant threshold value as in the original Apriori. In the proposal made in [44],
the minimum support threshold is updated iteratively. The update is based on dividing
the sum of support counts of all items and then dividing it by the number of unique
transactions. Then, the updated minimum support threshold is used to prune candidate
itemsets to generate frequent itemsets.

A different approach of using a dynamic minimum support level is investigated in [45]
by utilizing the binomial distribution. An adaptive threshold is calculated at the start of
finding frequent by first calculating the binomial distribution of each itemset. Then the
final adaptive threshold is determined by multiplying the sum of all binomial distributions
and total transactions, then dividing by the number of candidate sets.

Furthermore, recalculation of the minimum support level is done by the sum of support
levels found in the candidate itemset divided by the size of the candidate itemset in [46].
The resulting new average threshold is then used to prune candidate itemsets instead of
a static minimum support level. Dynamic determination of minimum support level is
an effective method to reduce the execution time of Apriori but its effect on generating
valuable association rules is not a well-researched aspect.

Applying efficient pruning techniques is another common way to optimize Apriori. A
proposal made in [47] aims to extend the pruning process during frequent itemset generation
step. At the first iteration, pruning is done only on minimum support threshold, and in the
next iterations of frequent itemset generation, the rule is already generated and confidence
is calculated. Itemset is marked as one if its confidence is higher than 1/2, then all items
are subtracted from it and the items marked as zero are deleted.

Another effort to improve pruning is presented in [48]. It is based on an inference that in a
frequent itemset, all of the itemsets should be checked if it is included in the transaction
database. If not, it is pruned before continuing the generation of candidate itemset. In
contrary to the original Apriori where the candidate itemset is generated first and then
pruned, but some of these generated candidate itemsets might not be in the transactions.

20

Moreover, a proposal made in [49] uses a filtration approach instead of pruning to overcome
unnecessary candidate generation by generating extra infrequent itemsets alongside the
frequent itemsets. The infrequent itemsets are used to determine if an itemset in a previously
generated candidate itemset is infrequent, then it does not need to be included in the next
iteration and can be pruned.

A very elementary pruning application is proposed in [50] where the current number of
iteration is compared with all of the frequent itemsets and the itemsets that have a support
value less than that are pruned. Therefore, this results in a smaller size of candidate itemsets
to be used in the next generations.

Reducing the redundant association rules is also a subject that has been researched in
the literature. The proposal made in [51] proposes an algorithm named DKARM that
eliminates itemsets that could potentially generate redundant rules. In another research
work [52], the redundant association rules are identified and pruned in the post-processing
step based on prior knowledge. However, these approaches are based on prior domain
knowledge and require extra background information about the data which may not be
available in all applications.

The research works in [53] and [54] state the definition of redundant association rule and
propose a method to reduce redundant rules without relying on domain knowledge. Simi-
larly, the proposals in [55] and [56] also develop methods to reduce redundant association
rules but with different definitions. Nevertheless, all of these methods are applied as a
post-processing step in addition to the main ARM algorithm. This means that the main
ARM algorithm already generates the redundant association rules. However, these rules
are later identified and pruned as an extra process by these proposed methods.

There are still limitations in the above-mentioned proposals that solely aim to improve one
aspect of Apriori without considering the other aspects. Apriori-based algorithms suffer
from generating many redundant rules that do not provide extra insight in the presence
of another meaningful rule. The proposals made for improving execution time do not
provide an optimization in the redundancy of association rules. Similarly, the methods
aimed to reduce redundant association rules do not provide information about their effect
on the execution time. Therefore, there is still a need to improve the apriori by proposing
innovative solutions and approaches that enhance both of these aspects.

21

4. Methodology

The literature review done in the previous chapter has shown that the most costly step of
Apriori-based algorithms is candidate generation, which adds complexity to the compu-
tational aspect and biggest contributor to long execution time. Analysis of original and
improved versions of Apriori algorithms indicates that all of them have a limitation in that
the pruning operation is handled by relying on only one metric which is support.

There are other metrics used in Apriori that can be utilized alongside support, such as
confidence and lift. However, using any other metric in the pruning step will yield different
results because the evaluation of an itemset varies from metric to metric, as well as favoring
some of the itemsets [57].

So, using one metric may conclude that this itemset has a low metric and can be pruned,
while another one may yield a higher metric thus keeping this itemset for the next iterations.
As a result, there may be interesting and valuable itemsets that are pruned in this step that
cannot be generated into strong association rules. In order to overcome this limitation, an
improved version of Apriori based on dominance relation will be proposed in this chapter
referred to as apriori-D algorithm.

Figure 4. General flow of the methodology

The overall high-level process of the methodology and how the proposed algorithm is used
is illustrated in Figure 4. The operation starting from the raw data to the generation and
evaluation of association rules is comprised of several steps. First, the structure of input
data has to be decided whether it is suitable to be processed in an algorithm directly or
if it needs to go through a preprocessing step. Then the preprocessed data is used as an
input for the proposed algorithm to generate association rules. After that, in the evaluation
method, another separate algorithm will be used to check the redundancy of the association
rules that apriori-D algorithm has generated.

22

In the following sections, each phase of the methodology will be elaborated.

4.1 Preprocessing of the Data

Often the datasets do not have the suitable structure to be able to be directly used as an
input to the proposed algorithm. Because of that, for some of the datasets, a preprocessing
step before the actual algorithm execution might be necessary including filtering and
restructuring of the data.

TID Item
T100 A
T100 B
T200 X
T300 C
T300 D
T300 E

Table 2. Raw data where each TID
mapped to an item

TID Items
T100 A, B
T200 X
T300 C, D, E

Table 3. Preprocessed data where each
TID contains all of its items

Consider a dataset that has a structure with a TID mapped to one item per row as shown in
Table 2. A preprocessing script will transform the raw data into a structure where each
TID contains all of its items as shown in Table 3.

4.2 Improved Apriori Algorithm with Dominance - apriori-D

The proposed algorithm named apriori-D, uses three metrics support, confidence, and lift
to enhance the pruning step of finding frequent itemsets by utilizing the dominance relation.
Even though the use of different metrics is not limited, these three metrics are chosen as
they are widely used in association rule mining methods. The notion of dominance relation
will be explained in the following subsection.

4.2.1 Dominance Relation

Dominance is a novel approach for discovering association rules without favoring or
excluding any of the used metrics [58]. In this thesis, it will integrated into finding frequent
itemsets step of Apriori and will be utilized in the context of itemsets.

Considering that I is a collection of frequent itemsets where I = {i1, i2, ..., ik}. All
of these itemsets are evaluated based on a set M of different metrics such as support,
confidence, and lift, where M = {m1,m2, ...,mn}. Then the structure Ω = (I,M) is

23

created that consist of the itemsets in I and the metrics in M . The value of the metric m

for the itemset i is denoted by i[m], such that i ∈ I and m ∈M .

The dominance relation is based on the inference as follows; for all of the measures
(i.e., support, confidence, lift), if an itemset i is dominated by another itemset i’, then
the itemset i is removed because it is not interesting according to the combination of all
measures. Formally it is defined in two levels, value dominance and itemset dominance.

Definition 11. Value dominance: Given two values of a measure m from M corresponding
to two itemsets i and i’ from I, i[m] dominates i′[m], denoted by i[m] ≥ i′[m], if i[m] is
preferred to i′[m]. If i[m] ≥ i′[m] and i[m] ̸= i′[m], then it is defined that i[m] strictly
dominates i′[m], denoted as i[m] > i′[m].

Definition 12. Itemset dominance: Given two itemsets i, i’ from I;

■ i dominates i’, denoted as i ≥ i′, iff i[m] ≥ i′[m], ∀m ∈M .
■ If i ≥ i′ and i′ ≥ i, for example i[m] = i′[m] ∀m ∈M then i and i’ are equivalent,

denoted as i ≡ i′.
■ If i ≥ i′ and ∃ m ∈ M such that i′[m] > i[m], then i’ is strictly dominated by i,

denoted as i > i′.

Definition 13. Reference itemset: It is a fictitious itemset that dominates all the itemsets
of I. Formally it is denoted as ∀ i ∈ I and i⊥ ≥ i.

Definition 14. Degree of similiarity: It is a numerical value that defines the strengths of
associations between two variables [59], in this case the itemsets. It is calculated by the
Equation 4.1. The sum operation is done for all of the metrics, starting from n = 1 up to k,
which represents the total number of metrics used. The variables i and i′ represent two
itemsets, and m̂n represents a value according to the metric n.

DegSim(i, i′) =

∑k
n=1 |i[m̂n]− i′[m̂n]|

k
(4.1)

Detailed step-by-step execution of dominance relation is presented in Algorithm 4. The
algorithm has one input as the set of itemsets and their corresponding measures. Where
the variables used during the execution for accumulating the data are as follows:

■ Variable S is initialized to an empty set that is used to keep track of undominated
itemsets.

■ Variable C is initialized to I, containing the set of current candidate itemsets to be
qualified as undominated.

24

■ Variable E is initialized to I, containing all current sets covering the undominated
space of all undominated itemsets.

The lines between 4 and 26 of Algorithm 4, are executed iteratively while the set of
candidate rules C is empty, if so the execution ends and the current undominated itemsets
that are added to S are returned. Otherwise, each itemset in C is assumed to be an
undominated itemset. Next, in lines 5 to 10, a degree of similarity calculation is performed.
If the current itemset i, has a minimal degree of similarity with the reference itemset i⊥,
then i is said to be an undominated itemset, added to S and deleted from C. In lines 11 to
24, all of the itemsets are compared with undominated space i∗, if i∗ is dominated by i,
then i is no longer a candidate and deleted from C. If not, i∗ is still a candidate itemset and
added to the undominated subspace of i. This process is done iteratively until there are no
more candidate itemsets left in C.

Algorithm 4 Dominance algorithm

Input: Ω = (I,M), {set of itemsets and measures}
1: S ← ∅
2: C ← I
3: E ← {I}
4: while C ̸= ∅ do
5: i∗ ← i ∈ C having min(DegSim(i, i⊥))
6: C ← C \{i∗}
7: for n = 1 to k do
8: si∗n ← ∅
9: end for

10: S ← S ∪ {i∗}
11: for all e ∈ E such that i∗ ∈ s do
12: for all i ∈ e do
13: if i∗ > i then
14: C ← C \{i}
15: else
16: for n = 1 to k do
17: if i[mn] > i∗[mn] then
18: si∗n ← si∗n ∪ {i}
19: end if
20: end for
21: end if
22: end for
23: E ← E \{e}
24: end for
25: E ← E ∪ {si∗1 , ..., si∗k }
26: end while
27: Return S
Output: S = Set of undominated itemsets of Ω

25

4.2.2 Phases of the apriori-D Algorithm

The high-level overview execution of algorithm apriori-D is illustrated in Figure 5. In the
first iterations, the algorithm behaves identically to Apriori, keeping only the itemsets that
have support values bigger than the minimum support threshold. In the last 2 iterations,
firstly the itemsets are pruned based on minimum support still. Then for all of the resulting
itemsets, confidence and lift measures are also calculated to help the mining of more
meaningful rules. These itemsets together with three calculated measures are fed through
the dominance for further pruning.

Figure 5. Overview of the algorithm apriori-D phases

Dominance is decided to be executed on the last 2 iterations after extensive testing with
different starting conditions on a couple of iterations. Executing it in the very early itera-
tions of the algorithm will potentially prune an excessive amount of itemsets. Obviously, it
will result in a shorter execution time overall and fewer number of generated association
rules. However, it may also indicate that many valuable association rules are lost during
the process. Whereas executing it on the last iteration would not improve the algorithm
much in terms of execution time. Therefore, running it on the last 2 iterations was found to
be a balanced improvement between execution time and the generated number of rules.

Phase 1. Generating Candidate Itemsets

Generation of candidate itemsets is the first step of the algorithm where the dataset is
scanned once to get support levels of each itemset and then they are used to create the
candidate 1-itemsets {C1}. The candidate 1-itemsets are assumed to be all the possible
itemsets of length 1 that are found in the dataset.

26

Next, there is a statement to check if the candidate 1-itemsets found in the previous step
is an empty set, which would reveal that the dataset is empty and there are no itemsets
found. In this scenario, the algorithm terminates completely without being able to find any
frequent itemsets to generate any association rules.

In the case that candidate 1-itemsets are not an empty set, they are passed to the next
step of pruning the candidate 1-itemsets based on minimum support to generate frequent
1-itemsets. The frequent 1-itemsets found are used to create candidate 2-itemsets by joining
the frequent 1-itemsets by itself. For instance, considering the frequent 1-itemsets, the
{L1} is joined by itself to generate {C2}.

This process is executed iteratively to generate candidate itemsets with each length. In
order to generate candidate 3-itemsets {C3}, the frequent 2-itemsets {L2} are joined with
each other. In order to find candidate k-itemsets {Ck}, the frequent (k-1) itemsets are
joined with each other as {Lk−1} and so on.

After the generation of each candidate k-itemset, the statement checks again if it is an
empty set to decide whether to move the generation of association rules step or to continue
finding frequent itemsets. For example, there might be only one candidate 6-itemset. Since
performing a union operation on it cannot generate any longer itemset with a length of 7,
the result would be considered as an empty set.

If the result of candidate itemset generation is an empty set, the algorithm moves to the
generation of association rules by using all of the found frequent itemsets up to this stage.
In the case of the above example, it would use frequent itemsets with lengths 1, 2, 3, 4, 5,
and 6 to generate association rules.

Phase 2. Pruning Itemsets Based on Minimum Support

After all the candidate k-itemsets are found, the next step is to prune them based on a
minimum support threshold. All of the itemsets in the candidate k-itemsets are compared
with a pre-defined input parameter minimum support. The itemsets that have lower support
value than this threshold are removed from {Ck} and the remaining itemsets are called
frequent k-itemsets {Lk}.

Once the frequent k-itemsets are generated, the statement checks if the algorithm is within
the last 2 iterations or not. If the algorithm is not within the last 2 iterations, it continues
back to generating candidate itemsets step. If the execution is within the last 2 iterations,
then it will move to another path that calculates multiple interestingness measures for each

27

subset of the itemsets.

Phase 3. Calculating Interestingness Measures

In this step, the confidence (Definition 8) and lift (Definition 10) metrics will be calculated
for each subset of the itemsets and these measures will be given as input to the dominance
relation. Support metric was calculated in the previous step and the frequent k-itemsets
already have their associated support value, therefore there is no need to recalculate it
again.

Originally, these two metrics were defined for association rules, where there is an an-
tecedent and consequent. To be able to calculate these metrics for itemsets, the possible
subsets of itemsets are generated and confidence and lift are calculated for these subsets
first. Then, the average confidence and lift for the subsets are used to determine the final
metrics for a specific itemset.

The result of this operation is a set of itemsets and three calculated measures corresponding
to them.

Phase 4. Pruning Itemsets Based on Dominance

A set of itemsets and measures determined in the previous step are used as an input to the
dominance. The main purpose of using dominance relation at this step is to compare the
multiple measures of each of the itemsets and perform a further pruning operation on them.
The remaining itemsets after this stage will have a higher degree of interestingness and
less number that will be used to continue generating candidate itemsets.

An example to show the usage of dominance is examined in Table 4 where a set of itemsets
and their respective three different measures are presented. Table 4 consists of four columns
where the first column indicates the itemsets and the remaining three columns are different
measures calculated for a specific itemset.

According to the Definition 11 and Definition 12, the itemset i3 strictly dominates i2

since all of its corresponding measures are bigger or equal, such as if i3[m1] ≥ i2[m1],
i3[m2] ≥ i2[m2] and i3[m3] > i2[m3]. This relation is applied to all itemsets in Table 4.
The execution of dominance results in only two undominated itemsets as shown in Table 5.

As a result, dominance ensures that only valuable itemsets are kept for the next iterations
and pruning non-interesting itemsets to benefit in terms of computational aspect as well as
reducing the execution time at this step.

28

Itemsets
Measure 1 (m1) Measure 2 (m2) Measure 3 (m3)

Support Confidence Lift
i1 0.20 0.67 0.02
i2 0.10 0.50 0.00
i3 0.10 0.50 0.02
i4 0.20 0.40 0.10
i5 0.20 0.33 0.02
i6 0.20 0.33 0.10
i7 0.10 0.20 0.01
i8 0.10 0.17 0.02

Table 4. Set of itemsets and their corresponding measures

Itemsets
Measure 1 (m1) Measure 2 (m2) Measure 3 (m3)

Support Confidence Lift
i1 0.20 0.67 0.02
i4 0.20 0.40 0.10

Table 5. Dominance result of the itemsets and their corresponding measures

Phase 5. Generating Association Rules

The generation of association rules is the final step and is presented in Algorithm 5. It is
executed if the output of candidate itemsets is found to be an empty set. The algorithm has
two inputs as minimum confidence and all of the discovered frequent itemsets.

In line 3 of Algorithm 5 the association rules are generated by antecedent and consequent
parts of each non-empty subset for each itemset. For instance, if the frequent itemset is
[A,B,C], then the generated association rules are (A,B)→ C, (A,C)→ B, (B,C)→
A, A → (B,C), B → (A,C) and C → (A,B). Between lines 4 to 6, the confidence
value of the generated rule is compared with minimum confidence. If it is higher, the
association rule is considered as strong.

Algorithm 5 Generating association rules
Input: ∪kLk = {all frequent itemsets}, minimum_confidence

1: for all itemset i ∈ Lk do
2: for all non-empty subset s of i do
3: Generate rule as s→ (i− s)
4: Calculate confidence of rule
5: if rule.confidence ≥ minimum_confidence then
6: {Association rules}← rule
7: end if
8: end for
9: end for

Output: {Association rules}

29

The whole procedure of apriori-D is presented in Algorithm 6. It has two inputs, the
minimum support, and frequent 1-itemsets. The algorithm iteratively finds the frequent
itemsets starting from the length of 2 and terminates when there are no more frequent
itemsets to be generated. Line 2 handles the candidate generation step which was described
previously.

Then, in lines 5 to 12, the transactions in the dataset are scanned for all of the candidate
itemsets to determine their metric. Lines 6 to 10 describe which metrics to calculate
depending on the current iteration. Next, lines 13 to 18 perform the pruning based on the
current iteration, if it is within the last 2 iterations, dominance-based pruning is executed
in addition to pruning based on the minimum support threshold. Otherwise, the candidate
itemsets are pruned based on only the minimum support threshold.

Algorithm 6 Finding frequent itemsets in Apriori with Dominance - apriori-D
Input: L1 = {frequent 1-itemsets}, minimum_support

1: for (k = 2; Lk−1 ̸= ∅; k++) do
2: Ck = apriori-gen(Lk−1) ▷ candidate generation
3: for all transactions t ∈ D do
4: Ct = subset(Ck, t)
5: for all candidates c ∈ Ct do
6: if last 2 iterations then
7: Calculate measures {support, confidence, lift} of c
8: else
9: Calculate support of c

10: end if
11: end for
12: end for
13: if last 2 iterations then
14: Lk = {c ∈ Ck | c.support ≥minimum_support}
15: Lk = dominance(Lk, measures) ▷ execute dominance
16: else
17: Lk = {c ∈ Ck | c.support ≥minimum_support}
18: end if
19: end for
Output: ∪kLk

All of the discovered frequent itemsets are used to generate the association rules, which
will be used in the next step to evaluate the redundancy of these association rules.

4.3 Evaluation of the Redundancy of Association Rules

The final generated association rules will be compared and evaluated between Apriori
and the proposed algorithm to determine which rules the proposed algorithm is able to

30

find redundant and discard. The redundant association rules are the rules that do not
provide any extra insight in the presence of another more meaningful rule. Even though
association rules are also pruned and only those that exceed minimum confidence and
minimum support threshold are considered to be included in the output, often it does not
provide enough insight to determine whether these association rules are valuable.

For this purpose, another method named redundancyRulesChecker is developed and used
to identify redundant association rules from the output of algorithms. The Algorithm 7 has
two inputs as the association rules of original apriori and proposed algorithm apriori-D.

Algorithm 7 Identify redundant association rules - redundancyRulesChecker
Input: (rules_of_apriori), (rules_of_proposed_algorithm)

1: redundantRules← ∅
2: redundantRuleCount← 0
3: different_rules← (rules_of_apriori) - (rules_of_proposed_algorithm)
4: for all r ∈ different_rules do
5: Parse rule: r.ant, r.cons ▷ Parse as antecedent and consequent
6: for all k ∈ rules_of_proposed_algorithm do
7: Parse rule: k.ant, k.const ▷ Parse as antecedent and consequent
8: if (r.ant is subset k.ant) and (r.cons is subset k.cons) then
9: redundantRules← r ▷ Flag r as a redundant rule

10: redundantRuleCount++
11: end if
12: end for
13: end for
Output: redundantRules, redundantRuleCount

In line 3 of Algorithm 7, the different rules are determined by subtracting all the rules of
original apriori and proposed algorithm apriori-D. Next, the lines 5 and 7 parses each rule
of different_rules and rules_of_proposed_algorithm as antecedent and consequent. Finally,
between lines 8 and 11, the redundancy is identified if both the consequent and antecedent
of rule in different_rules are a subset of an association rule in proposed algorithm output
rules_of_proposed_algorithm. In that case, this specific rule is flagged as redundant and
the redundantRuleCount variable is incremented. An example of identifying a redundant
rule will be explained below.

Consider an association rule of (X,Y)→ (A,B), which appears in the difference set and does
not appear in the output of the proposed algorithm. This association rule can be identified
as redundant if there is an association rule present in output of proposed algorithm such as
(X,Y,Z)→ (A,B), (X,Y)→ (A,B,C) or (X,Y,Z)→ (A,B,C). The reason is that there is another
rule that is a superset of the former one in the final output. It means that the dominance
can get rid of itemsets that might produce this redundant association rule at the end.

31

5. Experimental Results

The experimentations are performed on an Intel Core i7-6600U CPU (Central processing
unit) with 2.60 GHz clock rate, and 8 GB of RAM (Random access memory) running
Windows 10 - 64 bit as the OS (Operating system). For the algorithms, Python pro-
gramming language is used to implement an original Apriori algorithm without any
modifications named as apriori, and an improved algorithm based on dominance relation
named as apriori-D.

The output of the algorithms includes information regarding the number of frequent
itemsets found at each step, the number of generated association rules, and the total
execution time. For calculation of execution time Python standard time module is used
and takes into account the time between the algorithm starts running until it completely
terminates. The original and proposed algorithms are going to be compared in terms of
these aspects as well as the number of found redundant rules in this chapter.

5.1 Dataset Properties

Three different datasets have been selected and used in the experimentations. All of the
datasets have the CSV (Comma-separated values) format. Each of them has different sizes
in terms of total transactions, unique items, and lengths per transaction.

Dataset name Transaction count Unique items Avg. item count per transaction
retail_small 1349 2337 18.8
retail_large 2183 3232 19.7
groceries 9835 331 4.4

Table 6. Properties of the datasets after preprocessing

Table 6 contains the information of different attributes of each dataset. It consists of four
columns and three rows. The first column represents the name of the dataset, the second
column represents the total transaction number of the dataset, the third column represents
how many unique items the dataset has and the last column represents how many items
each transaction contains on average in the dataset. Each row of the table has the name of
the dataset and three of their attributes respectively.

The first dataset named retail_small, contains online retail transactions taken from the UCI
(University of California, Irvine) Machine Learning Repository. It has several columns

32

including invoice number, item description, and country of origin. It is filtered only to
keep transactions with countries other than the United Kingdom to reduce the transaction
count. Since this dataset has the structure that all items belong to the same invoice number
in different rows, it needs to be preprocessed as described in Section 4.1, so that it can be
used by the algorithms. After the filtering and preprocessing steps, it has 1349 transactions,
2337 unique items, and on average 18.8 items per transaction.

The second dataset is also a dataset containing retail transactions and it is from the UCI
Machine Learning Repository. It is named as retail_large. It has the same structure as
retail_small but with a higher transaction count and overall longer transactions with more
unique items. It is also filtered to keep transactions with countries other than the United
Kingdom. Also, a preprocessing step is needed as described in Section 4.1 to be able to
use this dataset. After preprocessing, it has 2183 transactions, 3232 unique items, and on
average 19.7 items per transaction.

The last dataset that is named groceries contains transactions of a grocery market basket
taken from Kaggle. This dataset is already in a suitable structure where it has each
transaction mapped to all of the items that it contains. So, no preprocessing is needed
for this dataset. It has 9835 transactions, 331 unique items, and on average 4.4 items per
transaction.

5.2 Comparison of Results In Terms of Execution Time

The algorithms are executed on three different datasets with four different minimum
support thresholds for each of them. On the other hand, minimum confidence levels of
0.6, 0.8, and 0.4 are used in retail_small, retail_large, and groceries datasets respectively
for the association rule generation step. The reasoning behind using different minimum
support and confidence levels for different datasets is because of the diverse properties of
the datasets.

Using the same minimum support and minimum confidence thresholds for different datasets
often results in extreme outcomes such as generating a huge number of association rules or
generating no association rules at all in some cases. So, after a series of tests, these values
are found to provide a balance in both execution time and association rule generation
aspects.

Table 7 is composed of five columns where the first one shows the name of the dataset, the
second one shows the minimum confidence threshold, the third one shows the minimum
support thresholds used for these datasets, the fourth and the fifth ones show the execution

33

Datasets
Minimum
confidence

Minimum
support

Total execution time (sec.)
Original algorithm Proposed algorithm

apriori apriori-D

retail_small 0.6

0.02 4.2 3.7
0.015 8.2 7.8
0.01 21.5 21.4

0.008 41.7 40.9

retail_large 0.8

0.01 28.2 27.6
0.008 47.8 47.2
0.006 103.9 98.3
0.005 154.9 142.6

groceries 0.4

0.003 43.1 42.5
0.002 81.4 79.2

0.0018 98.2 92.7
0.0015 164.3 151.2

Table 7. Execution time comparison of apriori and proposed algorithm apriori-D

time in seconds for apriori and apriori-D respectively. It has three main rows that represent
the results for each dataset and another four rows per dataset that represent the minimum
support levels used and execution time in both algorithms.

The improvement of execution time was achieved on the lowest minimum support levels
for all of the datasets. For the dataset retail_small on minimum support level 0.008, there
was a 0.8 seconds improvement. For the dataset retail_large on minimum support level
0.005, a 12.3 seconds shorter execution is achieved. Lastly for the dataset groceries on
minimum support level 0.0015, the proposed algorithm has 13.1 seconds shorter execution
time.

0.02 0.015 0.01 0.008
0

20

40

4.2

8.2

21.5

41.7

3.7

7.8

21.4

40.9

Minimum support threshold

To
ta

le
xe

cu
tio

n
tim

e
(s

ec
.)

apriori
apriori-D

Figure 6. Execution time comparison of apriori and proposed algorithm apriori-D using
dataset retail_small

The first graph illustrated in 6, shows the total execution time for both the original algorithm

34

apriori and the proposed algorithm apriori-D executed on dataset retail_small, on four
minimum support thresholds as 0.02, 0.015, 0.01 and 0.008. The execution time grows
as the minimum support level is decreased, due to finding many more frequent itemsets
during the first stage of both algorithms that contribute to the computational aspect. The
results show that the proposed algorithm is clearly able to improve execution time on all
minimum support levels on this dataset.

0.01 0.008 0.006 0.005
0

50

100

150

28.2

47.8

103.9

154.9

27.6

47.2

98.3

142.6

Minimum support threshold

E
xe

cu
tio

n
tim

e
(s

ec
.) apriori

apriori-D

Figure 7. Execution time comparison of apriori and proposed algorithm apriori-D using
dataset retail_large

The results illustrated in Figure 7 also show a similar trend on the dataset retail_large. It
represents the total execution time for both the original apriori and proposed algorithm
apriori-D on four minimum support levels as 0.01, 0.008, 0.006, and 0.005. Again, the
proposed algorithm is able to surpass the original one in all minimum support thresholds
by achieving a shorter execution time. The difference between the two algorithms gets
even wider on lower minimum support levels, where 12.3 seconds of improvement was
achieved on 0.005 minimum support level.

0.003 0.002 0.0018 0.0015
0

50

100

150

43.1

81.4

98.2

164.3

42.5

79.2

92.7

151.2

Minimum support threshold

E
xe

cu
tio

n
tim

e
(s

ec
.) apriori

apriori-D

Figure 8. Execution time comparison of apriori and proposed algorithm apriori-D using
dataset groceries

35

Lastly, the total execution time for the original algorithm apriori and proposed algorithm
apriori-D tested on minimum support thresholds as 0.003, 0.002, 0.0018, and 0.0015 using
the dataset groceries are illustrated in Figure 8. The proposed algorithm provides shorter
execution time on all minimum support thresholds but the most prominent one is on 0.0015
where a 13.1 seconds improvement is achieved.

Overall, it can be clearly observed that the proposed algorithm apriori-D provides an
improvement compared to the original algorithm apriori by accomplishing superior total
execution time across all datasets and minimum support threshold inputs. These results
prove that the dominance relation is performing well during the finding of frequent itemsets
step by efficiently pruning the itemsets.

5.3 Comparison of Results In Terms of Generated Rules

In this section, the number of generated association rules for the original algorithm apriori

and proposed algorithm apriori-D is compared.

Datasets
Minimum
confidence

Minimum
support

Generated association rules
Original algorithm Proposed algorithm

apriori apriori-D

retail_small 0.6

0.02 284 189
0.015 933 415
0.01 2835 2632

0.008 5303 5100

retail_large 0.8

0.01 669 594
0.008 2051 1158
0.006 9809 9195
0.005 14428 13737

groceries 0.4

0.003 817 643
0.002 1894 1175

0.0018 2327 1356
0.0015 3610 1733

Table 8. Generated association rules comparison of apriori and proposed algorithm
apriori-D

Table 8 represents the generated association rules of both original algorithm apriori and
proposed algorithm apriori-D on three datasets and four minimum support levels on each
of them. The table contains five columns where the first column represents the name of
the dataset, the second column represents the minimum confidence threshold, the third
column represents the different minimum support thresholds used, and the fourth and fifth
columns represent the number of generated association rules for original and proposed
algorithms. It has three main rows that show the results for each dataset and another four

36

rows per dataset that show the minimum support levels used and generated association
rules in both algorithms respectively.

0.02 0.015 0.01 0.008
0

2,000

4,000

6,000

284

933

2,835

5,303

189
415

2,632

5,100

Minimum support threshold

G
en

er
at

ed
as

so
ci

at
io

n
ru

le
co

un
t

apriori
apriori-D

Figure 9. Generated association rule count comparison of apriori and proposed algorithm
apriori-D using dataset retail_small

The data in Figure 9 illustrates the number of generated association rules in the original
algorithm apriori and the proposed algorithm apriori-D executed on dataset retail_small,
on four minimum support thresholds as 0.02, 0.015, 0.01 and 0.008.

Similar to execution time, decreasing the minimum support level results in a higher number
of association rules in the output. This is an expected behavior since the number of found
frequent itemsets increases due to smaller minimum support levels and these frequent
itemsets are later used to generate association rules. On all conditions, it can be observed
that the proposed algorithm generates a smaller number of association rules as an outcome
of using the dominance relation.

0.01 0.008 0.006 0.005
0

0.5

1

1.5

·104

669

2,051

9,809

14,428

594
1,158

9,195

13,737

Minimum support threshold

G
en

er
at

ed
as

so
ci

at
io

n
ru

le
co

un
t

apriori
apriori-D

Figure 10. Generated association rule count comparison of apriori and proposed algorithm
apriori-D using dataset retail_large

37

In Figure 10, the number of association rules using the dataset retail_large on minimum
support levels as 0.01, 0.008, 0.006, and 0.005 are represented. There is a big difference in
terms of the generated number of association rules in minimum support thresholds 0.008
and 0.006. The reason behind these results is that there are a very big number of frequent
itemsets found between these two levels for this particular dataset.

0.003 0.002 0.0018 0.0015
0

1,000

2,000

3,000

4,000

817

1,894

2,327

3,610

643

1,175
1,356

1,733

Minimum support threshold

G
en

er
at

ed
as

so
ci

at
io

n
ru

le
co

un
t

apriori
apriori-D

Figure 11. Generated association rule count comparison of apriori and proposed algorithm
apriori-D using dataset groceries

Lastly, the results shown in Figure 11 illustrate the number of generated association rules
from the dataset groceries, for the original algorithm apriori and proposed algorithm
apriori-D. The minimum support levels are 0.003, 0.002, 0.0018 and 0.0015. The reason
for selecting very low thresholds on this dataset is because of the sparse distribution of
data and the short length of transactions compared to other datasets.

5.4 Comparison of Results In Terms of Discarded Redundant Rules

The very high number of association rules is often inconvenient to analyze. Therefore,
having less number of association rules with more relevance is a desirable result. However,
it introduces the question of whether this reduction results in association rules with more
relevance or not.

In order to evaluate the efficiency of reduction in association rules, the difference of rules
in original algorithm apriori and proposed algorithm apriori-D will be compared, and
the number of association rules that are found redundant and eventually discarded in the
proposed algorithm will be identified.

The data represented in Table 9 has five columns where the first column show the name of
the dataset. The second and third columns show the minimum confidence and minimum

38

support levels respectively. The fourth column represents the number of different rules in
apriori and apriori-D. The last column shows the number of redundant association rules
found in the original algorithm’s output apriori and discarded in the output of the proposed
algorithm apriori-D. It has three main rows that represent the results for each dataset and
another four rows per dataset that represent the minimum support levels used, the rule
difference, and discarded redundant rules in algorithm apriori-D respectively.

Datasets
Minimum
confidence

Minimum
support

Rule difference in Discarded redundant
apriori and rules in algorithm
apriori-D apriori-D

retail_small 0.6

0.02 95 6
0.015 518 10
0.01 203 203
0.008 203 203

retail_large 0.8

0.01 75 23
0.008 893 70
0.006 614 614
0.005 691 614

groceries 0.4

0.003 174 6
0.002 719 6

0.0018 971 6
0.0015 1877 6

Table 9. Number of discarded redundant rules in proposed algorithm apriori-D

As it can be observed in Table 9, in all scenarios of experimentation, the proposed algorithm
apriori-D is able to identify and discard redundant association rules. For the dataset
groceries, the number of discarded rules is the lowest due to the sparse distribution of data.

On the other hand, where the data is distributed densely with overall longer transactions
such as retail_small and retail_large, the proposed algorithm identifies and discards many
more redundant association rules. This is especially relevant at lower minimum support
thresholds where in some cases all of the rules different in apriori and apriori-D were
found to be redundant and discarded completely which is a very desirable result.

For instance, the execution on the minimum support level as 0.01 and 0.008 on the dataset
retail_small, it is apparent that 203 rules were different in the output of apriori and
apriori-D, and proposed algorithm found all 203 rules to be redundant and discarded
them. Similarly on the execution with the minimum support level 0.006 on the dataset
retail_large, 614 rules were found to be different, and all of them were identified as
redundant and thus discarded.

It is clear that by reducing the minimum support threshold, the number of rule difference

39

gets bigger and there is a higher probability of finding redundant rules with the proposed
algorithm apriori-D.

Whereas in the executions with higher minimum support thresholds, there are more frequent
itemsets found with a shorter length and bigger number. This results in a scenario where
dominance prunes most of these frequent itemsets with shorter lengths, therefore the
possibility of finding redundant rules at the end is minimized. This is not an apparent
problem on lower minimum support thresholds by pruning the lower number of frequent
itemsets with longer lengths.

40

6. Conclusion

In this thesis, an improved algorithm named apriori-D was proposed to enhance the pruning
step of finding the frequent itemsets phase of the original Apriori algorithm. The novel
approach called dominance relation is utilized to use multiple metrics to extend the pruning
process instead of solely relying on the support measure.

The experimentation results have shown that the proposed algorithm apriori-D outperforms
the original Apriori in terms of execution time on all of the tested conditions. Apart
from improvement in the execution time, the number of generated rules aspect was also
optimized by achieving fewer number of rules by discarding the redundant ones will make
the rule analysis much more convenient for data analysts.

In future work, various metrics can be utilized by extending the proposed algorithm
apriori-D, in order to evaluate the effect of using different measures on the redundancy of
generated association rules.

41

7. Summary

Association rule mining is a foundational method for data mining that has been widely
researched in the current literature. The necessary background regarding data mining,
association rule mining as well as its most known algorithms was explained in Chapter 2.
The widespread adaption of Apriori has been discussed alongside the main drawbacks it
brings and proposals made to overcome these limitations in Chapter 3. Following that,
based on the gaps found in the literature, the notion of dominance relation is introduced in
Chapter 4 together with a proposed algorithm by this thesis using the dominance relation
named as apriori-D to be able to utilize multiple metrics during the frequent itemset
generation process. The experimentation results performed on several datasets have been
presented in Chapter 5. The results demonstrate the proposed algorithm was able to further
improve the original Apriori in terms of execution time and the number of generated
valuable association rules. Finally, Chapter 6 provided an overall conclusion with possible
advancements for a future research work.

42

References

[1] Manoj Kumar Gupta and Pravin Chandra. “A comprehensive survey of data mining”.
In: International Journal of Information Technology 12.4 (Feb. 2020), pp. 1243–
1257. ISSN: 2511-2112. DOI: 10.1007/s41870-020-00427-7.

[2] Min Chen, Shiwen Mao, and Yunhao Liu. “Big Data: A Survey”. In: Mobile Net-

works and Applications 19.2 (Jan. 2014), pp. 171–209. ISSN: 1572-8153. DOI:
10.1007/s11036-013-0489-0.

[3] Tim Kraska. “Finding the Needle in the Big Data Systems Haystack”. In: IEEE

Internet Computing 17.1 (Jan. 2013), pp. 84–86. ISSN: 1089-7801. DOI: 10.1109
/mic.2013.10.

[4] William J. Frawley, Gregory Piatetsky-Shapiro, and Christopher J. Matheus. “Knowl-
edge Discovery in Databases: An Overview”. In: AI Magazine 13.3 (Sept. 1992),
p. 57. DOI: 10.1609/aimag.v13i3.1011. URL: https://ojs.aaai.o
rg/aimagazine/index.php/aimagazine/article/view/1011.

[5] M. Moulet. “From machine learning towards knowledge discovery in databases”.
In: IEE Colloquium on Knowledge Discovery in Databases. IEE, 1995. DOI: 10.1
049/ic:19950116.

[6] Majid Ramzan and Majid Ahmad. “Evolution of data mining: An overview”. In:
2014 Conference on IT in Business, Industry and Government (CSIBIG). IEEE, Mar.
2014. DOI: 10.1109/csibig.2014.7056947.

[7] Surbhi K. Solanki and Jalpa T. Patel. “A Survey on Association Rule Mining”. In:
2015 Fifth International Conference on Advanced Computing and Communication

Technologies. IEEE, Feb. 2015. DOI: 10.1109/acct.2015.69.

[8] Dion H. Goh and Rebecca P. Ang. “An introduction to association rule mining: An
application in counseling and help-seeking behavior of adolescents”. In: Behavior

Research Methods 39.2 (May 2007), pp. 259–266. ISSN: 1554-3528. DOI: 10.375
8/bf03193156.

[9] Kamran Shaukat Dar, Sana Zaheer, and Iqra Nawaz. “Association Rule Mining:
An Application Perspective”. In: International Journal of Computer Science and

Innovation 1 (Nov. 2015), pp. 29–38.

[10] Trupti A. Kumbhare and Santosh V. Chobe. “An Overview of Association Rule
Mining Algorithms”. In: 2014. URL: https://api.semanticscholar.or
g/CorpusID:6316475.

43

https://doi.org/10.1007/s41870-020-00427-7
https://doi.org/10.1007/s11036-013-0489-0
https://doi.org/10.1109/mic.2013.10
https://doi.org/10.1109/mic.2013.10
https://doi.org/10.1609/aimag.v13i3.1011
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1011
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1011
https://doi.org/10.1049/ic:19950116
https://doi.org/10.1049/ic:19950116
https://doi.org/10.1109/csibig.2014.7056947
https://doi.org/10.1109/acct.2015.69
https://doi.org/10.3758/bf03193156
https://doi.org/10.3758/bf03193156
https://api.semanticscholar.org/CorpusID:6316475
https://api.semanticscholar.org/CorpusID:6316475

[11] Dongmei Ai, Hongfei Pan, Xiaoxin Li, Yingxin Gao, and Di He. “Association rule
mining algorithms on high-dimensional datasets”. In: Artificial Life and Robotics

23.3 (May 2018), pp. 420–427. ISSN: 1614-7456. DOI: 10.1007/s10015-018-
0437-y.

[12] Sandhya Harikumar and Divya Usha Dilipkumar. “Apriori algorithm for association
rule mining in high dimensional data”. In: 2016 International Conference on Data

Science and Engineering (ICDSE). IEEE, Aug. 2016. DOI: 10.1109/icdse.20
16.7823952.

[13] Yves Bastide, Nicolas Pasquier, Rafik Taouil, Gerd Stumme, and Lotfi Lakhal. “Min-
ing Minimal Non-redundant Association Rules Using Frequent Closed Itemsets”. In:
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2000, pp. 972–986.
ISBN: 9783540449577. DOI: 10.1007/3-540-44957-4_65.

[14] Aimin Yang, Wei Zhang, Jiahao Wang, Ke Yang, Yang Han, and Limin Zhang.
“Review on the Application of Machine Learning Algorithms in the Sequence Data
Mining of DNA”. In: Frontiers in Bioengineering and Biotechnology 8 (Sept. 2020).
ISSN: 2296-4185. DOI: 10.3389/fbioe.2020.01032.

[15] Rashi Rastogi and Mamta Bansal. “Diabetes prediction model using data mining
techniques”. In: Measurement: Sensors 25 (Feb. 2023), p. 100605. ISSN: 2665-9174.
DOI: 10.1016/j.measen.2022.100605.

[16] Ritu Sharma. “Study of Supervised Learning and Unsupervised Learning”. In:
International Journal for Research in Applied Science and Engineering Technology

8.6 (June 2020), pp. 588–593. ISSN: 2321-9653. DOI: 10.22214/ijraset.20
20.6095.

[17] Jagmeet Kaur and Neena Madan. “Association Rule Mining: A Survey”. In: Inter-

national Journal of Hybrid Information Technology 8.7 (July 2015), pp. 239–242.
ISSN: 1738-9968. DOI: 10.14257/ijhit.2015.8.7.22.

[18] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Tech-

niques. 3rd ed. Elsevier, 2012. ISBN: 9780123814791. DOI: 10.1016/c2009-0-
61819-5.

[19] Jose Maria Luna, Philippe Fournier-Viger, and Sebastian Ventura. “Frequent itemset
mining: A 25 years review”. In: WIREs Data Mining and Knowledge Discovery 9.6
(July 2019). ISSN: 1942-4795. DOI: 10.1002/widm.1329.

[20] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. “Mining association rules
between sets of items in large databases”. In: ACM SIGMOD Record 22.2 (June
1993), pp. 207–216. ISSN: 0163-5808. DOI: 10.1145/170036.170072.

44

https://doi.org/10.1007/s10015-018-0437-y
https://doi.org/10.1007/s10015-018-0437-y
https://doi.org/10.1109/icdse.2016.7823952
https://doi.org/10.1109/icdse.2016.7823952
https://doi.org/10.1007/3-540-44957-4_65
https://doi.org/10.3389/fbioe.2020.01032
https://doi.org/10.1016/j.measen.2022.100605
https://doi.org/10.22214/ijraset.2020.6095
https://doi.org/10.22214/ijraset.2020.6095
https://doi.org/10.14257/ijhit.2015.8.7.22
https://doi.org/10.1016/c2009-0-61819-5
https://doi.org/10.1016/c2009-0-61819-5
https://doi.org/10.1002/widm.1329
https://doi.org/10.1145/170036.170072

[21] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. “Dynamic
itemset counting and implication rules for market basket data”. In: ACM SIGMOD

Record 26.2 (June 1997), pp. 255–264. ISSN: 0163-5808. DOI: 10.1145/25326
2.253325.

[22] Nada Hussein, Abdallah Alashqur, and Bilal Sowan. “Using the interestingness
measure lift to generate association rules”. In: Journal of Advanced Computer

Science & Technology 4.1 (Apr. 2015), pp. 156–162. ISSN: 2227-4332. DOI: 10.1
4419/jacst.v4i1.4398.

[23] Pang Ning Tan and Vipin Kumar. “Interestingness Measures for Association Patterns:
A Perspective”. In: (Aug. 2000).

[24] Rakesh Agrawal and Ramakrishnan Srikant. “Fast Algorithms for Mining Associa-
tion Rules in Large Databases”. In: Proceedings of the 20th International Conference

on Very Large Data Bases. VLDB ’94. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1994, pp. 487–499. ISBN: 1558601538.

[25] Jiawei Han, Jian Pei, and Yiwen Yin. “Mining frequent patterns without candidate
generation”. In: ACM SIGMOD Record 29.2 (May 2000), pp. 1–12. ISSN: 0163-
5808. DOI: 10.1145/335191.335372.

[26] M.J. Zaki. “Scalable algorithms for association mining”. In: IEEE Transactions on

Knowledge and Data Engineering 12.3 (2000), pp. 372–390. ISSN: 1041-4347. DOI:
10.1109/69.846291.

[27] Otmane Stit, Jamal Riffi, Ali Yahyaouy, and Hamid Tairi. “Comparative Study of
Different Association Rule Methods”. In: 2018 IEEE 5th International Congress on

Information Science and Technology (CiSt). IEEE, Oct. 2018. DOI: 10.1109/ci
st.2018.8596670.

[28] Mohammed J. Zaki and Karam Gouda. “Fast vertical mining using diffsets”. In:
Proceedings of the ninth ACM SIGKDD international conference on Knowledge

discovery and data mining. KDD03. ACM, Aug. 2003. DOI: 10.1145/956750
.956788.

[29] Seema A. Tribhuvan, Nitin R. Gavai, and Bharti P. Vasgi. “Frequent Itemset Min-
ing Using Improved Apriori Algorithm with MapReduce”. In: 2017 International

Conference on Computing, Communication, Control and Automation (ICCUBEA).
IEEE, Aug. 2017. DOI: 10.1109/iccubea.2017.8463915.

[30] Hongqin Wang, Huiyong Jiang, Hongxia Wang, and Lina Yuan. “Research on an
improved algorithm of Apriori based on Hadoop”. In: 2020 International Conference

on Information Science, Parallel and Distributed Systems (ISPDS). IEEE, Aug. 2020.
DOI: 10.1109/ispds51347.2020.00057.

45

https://doi.org/10.1145/253262.253325
https://doi.org/10.1145/253262.253325
https://doi.org/10.14419/jacst.v4i1.4398
https://doi.org/10.14419/jacst.v4i1.4398
https://doi.org/10.1145/335191.335372
https://doi.org/10.1109/69.846291
https://doi.org/10.1109/cist.2018.8596670
https://doi.org/10.1109/cist.2018.8596670
https://doi.org/10.1145/956750.956788
https://doi.org/10.1145/956750.956788
https://doi.org/10.1109/iccubea.2017.8463915
https://doi.org/10.1109/ispds51347.2020.00057

[31] Shaosong Yang, Guoyan Xu, Zhijian Wang, and Fachao Zhou. “The Parallel Im-
proved Apriori Algorithm Research Based on Spark”. In: 2015 Ninth International

Conference on Frontier of Computer Science and Technology. IEEE, Aug. 2015.
DOI: 10.1109/fcst.2015.28.

[32] Sanjay Rathee, Manohar Kaul, and Arti Kashyap. “R-Apriori: An Efficient Apriori
based Algorithm on Spark”. In: Proceedings of the 8th Workshop on Ph.D. Workshop

in Information and Knowledge Management. CIKM’15. ACM, Oct. 2015. DOI: 10
.1145/2809890.2809893.

[33] Mayank Tiwary, Abhaya Kumar Sahoo, and Rachita Misra. “Efficient implementa-
tion of apriori algorithm on HDFS using GPU”. In: 2014 International Conference

on High Performance Computing and Applications (ICHPCA). IEEE, Dec. 2014.
DOI: 10.1109/ichpca.2014.7045323.

[34] Yuxin Wang, Tongkun Xu, Shiqing Xue, and Yanming Shen. “D2P-Apriori: A deep
parallel frequent itemset mining algorithm with dynamic queue”. In: 2018 Tenth

International Conference on Advanced Computational Intelligence (ICACI). IEEE,
Mar. 2018. DOI: 10.1109/icaci.2018.8377536.

[35] Sara Tanha, Richard Tirtho Biswas, Tonosree Roy Ritu, and Shaheena Sultana.
“Improved Apriori Algorithm Using Hash Technique”. In: 2023 International Con-

ference on Next-Generation Computing, IoT and Machine Learning (NCIM). IEEE,
June 2023. DOI: 10.1109/ncim59001.2023.10212624.

[36] Kun Niu, Haizhen Jiao, Zhipeng Gao, Cheng Chen, and Huiyang Zhang. “A de-
veloped apriori algorithm based on frequent matrix”. In: Proceedings of the 5th

International Conference on Bioinformatics and Computational Biology. ICBCB
’17. ACM, Jan. 2017. DOI: 10.1145/3035012.3035019.

[37] Liu Shuwen and Xiao Jiyi. “An Improved Apriori Algorithm Based on Matrix”. In:
2020 12th International Conference on Measuring Technology and Mechatronics

Automation (ICMTMA). IEEE, Feb. 2020. DOI: 10.1109/icmtma50254.202
0.00111.

[38] Mohammed Al-Maolegi and Bassam Arkok. An Improved Apriori Algorithm for

Association Rules. 2014. DOI: 10.48550/ARXIV.1403.3948.

[39] Akshita Bhandari, Ashutosh Gupta, and Debasis Das. “Improvised Apriori Algo-
rithm Using Frequent Pattern Tree for Real Time Applications in Data Mining”.
In: Procedia Computer Science 46 (2015), pp. 644–651. ISSN: 1877-0509. DOI:
10.1016/j.procs.2015.02.115.

46

https://doi.org/10.1109/fcst.2015.28
https://doi.org/10.1145/2809890.2809893
https://doi.org/10.1145/2809890.2809893
https://doi.org/10.1109/ichpca.2014.7045323
https://doi.org/10.1109/icaci.2018.8377536
https://doi.org/10.1109/ncim59001.2023.10212624
https://doi.org/10.1145/3035012.3035019
https://doi.org/10.1109/icmtma50254.2020.00111
https://doi.org/10.1109/icmtma50254.2020.00111
https://doi.org/10.48550/ARXIV.1403.3948
https://doi.org/10.1016/j.procs.2015.02.115

[40] Xuexian Qiu, Shiyong Ning, Shihui Zhang, and Zhuorui Yang. “Research and
Application of an Improved Apriori Algorithm in Market Basket Data”. In: 2023

4th International Conference on Machine Learning and Computer Application.
ICMLCA 2023. ACM, Oct. 2023. DOI: 10.1145/3650215.3650319.

[41] Jai Puneet Singh and Hari Ram. “Improving Efficiency of Apriori Algorithm Using
Transaction Reduction”. In: 2013. URL: https://api.semanticscholar
.org/CorpusID:17968176.

[42] Sakshi Aggarwal and Ritu Sindhu. “An approach to improve the efficiency of apriori
algorithm”. In: (June 2015). DOI: 10.7287/peerj.preprints.1159v1.

[43] Shyam Kumar Singh and Preetham Kumar. “I2Apriori: An improved apriori algo-
rithm based on infrequent count”. In: 2016 International Conference on Electrical,

Electronics, and Optimization Techniques (ICEEOT). 2016, pp. 1281–1285. DOI:
10.1109/ICEEOT.2016.7754889.

[44] Fei Gao, Ashutosh Khandelwal, and Jiangjiang Liu. “Mining Frequent Itemsets
Using Improved Apriori on Spark”. In: Proceedings of the 2019 3rd International

Conference on Information System and Data Mining. ICISDM 2019. ACM, Apr.
2019. DOI: 10.1145/3325917.3325925.

[45] Md. Mahamud Hasan and Sadia Zaman Mishu. “An Adaptive Method for Mining
Frequent Itemsets Based on Apriori And FP Growth Algorithm”. In: 2018 Interna-

tional Conference on Computer, Communication, Chemical, Material and Electronic

Engineering (IC4ME2). IEEE, Feb. 2018. DOI: 10.1109/ic4me2.2018.846
5499.

[46] Jovita Vani Sequeira and Zahid Ahmed Ansari. “Analysis on Improved Pruning in
Apriori Algorithm”. In: 2015. URL: https://api.semanticscholar.org
/CorpusID:61252211.

[47] Meng Xiao, Yong Yin, Yunyao Zhou, and Shengzhi Pan. “Research on improvement
of apriori algorithm based on marked transaction compression”. In: 2017 IEEE 2nd

Advanced Information Technology, Electronic and Automation Control Conference

(IAEAC). IEEE, Mar. 2017. DOI: 10.1109/iaeac.2017.8054177.

[48] Ke Zhang, Jianhuan Liu, Yi Chai, Jiayi Zhou, and Yi Li. “A Method to Optimize
Apriori Algorithm for Frequent Items Mining”. In: 2014 Seventh International

Symposium on Computational Intelligence and Design. IEEE, Dec. 2014. DOI:
10.1109/iscid.2014.233.

[49] Lalit Mohan Goyal and M. M. Sufyan Beg. “Evaluation of filtration and pruning
approach for Apriori algorithm”. In: 2014 International Conference on Computer

and Communication Technology (ICCCT). IEEE, Sept. 2014. DOI: 10.1109/icc
ct.2014.7001464.

47

https://doi.org/10.1145/3650215.3650319
https://api.semanticscholar.org/CorpusID:17968176
https://api.semanticscholar.org/CorpusID:17968176
https://doi.org/10.7287/peerj.preprints.1159v1
https://doi.org/10.1109/ICEEOT.2016.7754889
https://doi.org/10.1145/3325917.3325925
https://doi.org/10.1109/ic4me2.2018.8465499
https://doi.org/10.1109/ic4me2.2018.8465499
https://api.semanticscholar.org/CorpusID:61252211
https://api.semanticscholar.org/CorpusID:61252211
https://doi.org/10.1109/iaeac.2017.8054177
https://doi.org/10.1109/iscid.2014.233
https://doi.org/10.1109/iccct.2014.7001464
https://doi.org/10.1109/iccct.2014.7001464

[50] Jiao Yabing. “Research of an Improved Apriori Algorithm in Data Mining Associa-
tion Rules”. In: International Journal of Computer and Communication Engineering

(2013), pp. 25–27. ISSN: 2010-3743. DOI: 10.7763/ijcce.2013.v2.128.

[51] Jing Zhang, Bin Zhang, Zihua Wang, and Lijun Shi. “Elimination Algorithm of
Redundant Association Rules Based on Domain Knowledge”. In: 2010 Seventh

Web Information Systems and Applications Conference. IEEE, Aug. 2010. DOI:
10.1109/wisa.2010.23.

[52] Julio César Díaz Vera, Guillermo Manuel Negrín Ortiz, Carlos Molina, and María
Amparo Vila. “Knowledge redundancy approach to reduce size in association rules”.
In: Informatica 44.2 (June 2020). ISSN: 0350-5596. DOI: 10.31449/inf.v44i
2.2839.

[53] Mafruz Zaman Ashrafi, David Taniar, and Kate Smith. “A New Approach of Elimi-
nating Redundant Association Rules”. In: Database and Expert Systems Applica-

tions. Springer Berlin Heidelberg, 2004, pp. 465–474. ISBN: 9783540300755. DOI:
10.1007/978-3-540-30075-5_45.

[54] Mafruz Zaman Ashrafi, David Taniar, and Kate Smith. “Redundant Association
Rules Reduction Techniques”. In: Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2005, pp. 254–263. ISBN: 9783540316527. DOI: 10.1007/11
589990_28.

[55] Ye Xin, Wang Na, and Wang Chunyu. “A New Method for Eliminating Redundant
Association Rules”. In: 2010 International Conference on Intelligent Computation

Technology and Automation. IEEE, May 2010. DOI: 10.1109/icicta.2010
.129.

[56] Rafael Garcia Leonel Miani and Estevam Rafael Hruschka Junior. “Eliminating
Redundant and Irrelevant Association Rules in Large Knowledge Bases”. In: Pro-

ceedings of the 20th International Conference on Enterprise Information Systems.
SCITEPRESS - Science and Technology Publications, 2018. DOI: 10.5220/000
6668800170028.

[57] Mohammad Reza Heidari Iman, Jaan Raik, Maksim Jenihhin, Gert Jervan, and
Tara Ghasempouri. “An automated method for mining high-quality assertion sets”.
In: Microprocessors and Microsystems 97 (Mar. 2023), p. 104773. ISSN: 0141-9331.
DOI: 10.1016/j.micpro.2023.104773.

[58] S. Bouker, R. Saidi, S. B. Yahia, and E. M. Nguifo. “Ranking and Selecting Associ-
ation Rules Based on Dominance Relationship”. In: 2012 IEEE 24th International

Conference on Tools with Artificial Intelligence. IEEE, Nov. 2012. DOI: 10.1109
/ictai.2012.94.

48

https://doi.org/10.7763/ijcce.2013.v2.128
https://doi.org/10.1109/wisa.2010.23
https://doi.org/10.31449/inf.v44i2.2839
https://doi.org/10.31449/inf.v44i2.2839
https://doi.org/10.1007/978-3-540-30075-5_45
https://doi.org/10.1007/11589990_28
https://doi.org/10.1007/11589990_28
https://doi.org/10.1109/icicta.2010.129
https://doi.org/10.1109/icicta.2010.129
https://doi.org/10.5220/0006668800170028
https://doi.org/10.5220/0006668800170028
https://doi.org/10.1016/j.micpro.2023.104773
https://doi.org/10.1109/ictai.2012.94
https://doi.org/10.1109/ictai.2012.94

[59] Dirk Ifenthaler. “Measures of Similarity”. In: Encyclopedia of the Sciences of

Learning. Springer US, 2012, pp. 2147–2150. DOI: 10.1007/978-1-4419-1
428-6_503.

49

https://doi.org/10.1007/978-1-4419-1428-6_503
https://doi.org/10.1007/978-1-4419-1428-6_503

Appendix 1 – Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis1

I Cem Şamiloğlu

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Improvement in the Apriori Algorithm to Enhance the Efficiency of Associ-
ation Rule Mining Techniques”, supervised by Mohammadreza Heidari Iman and
Tara Ghasempouri
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

05.05.2024

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

50

Appendix 2 - Sources of Datasets and Implementations

The source of dataset retail_small to be found at:

https://archive.ics.uci.edu/dataset/352/online+retail

The source of dataset retail_large to be found at:

https://archive.ics.uci.edu/dataset/502/online+retail+ii

The source of dataset groceries to be found at:

https://www.kaggle.com/datasets/irfanasrullah/groceries

The implementation of the original algorithm apriori is to be found at:

https://github.com/cemsam/apriori-dominance/blob/master/apr

iori-original.py

The implementation of the proposed algorithm apriori-D is to be found at:

https://github.com/cemsam/apriori-dominance/blob/master/apr

iori-dominance.py

51

https://archive.ics.uci.edu/dataset/352/online+retail
https://archive.ics.uci.edu/dataset/502/online+retail+ii
https://www.kaggle.com/datasets/irfanasrullah/groceries
https://github.com/cemsam/apriori-dominance/blob/master/apriori-original.py
https://github.com/cemsam/apriori-dominance/blob/master/apriori-original.py
https://github.com/cemsam/apriori-dominance/blob/master/apriori-dominance.py
https://github.com/cemsam/apriori-dominance/blob/master/apriori-dominance.py

	Introduction
	Problem Statement
	Research Motivation
	Thesis Structure

	Background
	Preliminary Concepts
	Apriori Algorithm

	Related Works
	Methodology
	Preprocessing of the Data
	Improved Apriori Algorithm with Dominance - apriori-D
	Dominance Relation
	Phases of the apriori-D Algorithm

	Evaluation of the Redundancy of Association Rules

	Experimental Results
	Dataset Properties
	Comparison of Results In Terms of Execution Time
	Comparison of Results In Terms of Generated Rules
	Comparison of Results In Terms of Discarded Redundant Rules

	Conclusion
	Summary
	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis
	Appendix 2 – Sources of Datasets and Implementations

