

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED

ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

№ 337

ЭЛЕКТРОМЕХАНИКА

1У

ТАЛЛИН 1973

0.6.7

ТАLLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА № 337 1973

УДК 621.3

ЭЛЕКТРОМЕХАНИКА

1У

Таллин 1973

TAILINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

₩ 337

1973

УДК 621.313.33

Л.Э. Варик, Г.К. Самолевский

ОБ ОБЕСПЕЧЕНИИ ЛИНЕЙНОСТИ РЕГУЛИРОВОЧНЫХ ХАРАКТЕРИСТИК И ОТСУТСТВИЯ САМОХОДА ДВУХ-ФАЗНЫХ АСИНХРОННЫХ ИСПОЛНИТЕЛЬНЫХ ДВИГАТЕЛЕЙ С АКСИАЛЬНЫМ ПОТОКОМ

Для двухфазных асинхронных исполнительных двигателей с аксиальным потоком и дисковым ротором, подобно исполнительным двигателям переменного тока с полым ротором, действительно условие, согласно которому для обеспечения линейности регулировочных характеристик и отсутствия самохода ротора при снятии сигнала с обмотки управления эквивалентное активное сопротивление ротора Γ'_{3y} , приведенное к параметрам обмотки управления, должно быть больше индуктивного сопротивления X_{my} , соответствущего потоку воздушного зазора по оси обмотки управления, т.е.

$$r_{y} > x_{my}$$
 (I)

В данной работе рассматриваются вопроси, связанные с определением параметров р_{эу} и X_{ту} двухфазных асинхронных исполнительных двигателей с аксиальным потоком.

Для анализа принимается двигатель, карактеризующийся наибольшей простотой конструкции (фиг. I):

I. Статор двигателя предполагается выполненным с одним активным пакетом, имеющим радиальные без скоса пазы, в которых располагаются стороны секций фазных обмоток.

2. Ротор двигателя сплошной, дисковый, из немагнитного токопроводящего материала.

3. Обмотки управления и возбуждения однофазные, симметричные.

3

Фиг. 1. Схема магнитопровода двигателя. 1-статор, 2-ротор двигателя, 3-ярмо двигателя.

При выводе выражений р_{эу} и Х_{ту} делаются следующие допущения :

 предполагается синусондальное распределение индукции первичного поля по расточке статора, т.е. по тангенциальной координате первичной магнитной системы, высшие гармоники поля не учитываются,

2) магнитопровод не насыщен, т.е. $\mu_{cr} = \infty$,

 торцовые поверхности воздушного зазора статора, ротора и ярма плоскопараллельны,

 влияние вихревых токов в магнитопроводе статора и ярма не учитывается,

5) влияние краевых эффектов не учитывается,

6) взаимная индукция между обмоткой управления, расположенной по продольной оси магнитной системы, и обмоткой возбуждения, расположенной по поперечной оси, отсутствует.

Эквивелентное активное сопротивление дискового ротора г_{эу}

Тонкий немагнитный дисковый ротор (фиг. 2) представляется в виде короткозамкнутой обмотки, составленной из элементарных проводников с изменяющимся радиально сечением S и аксиальным размером δ_p , закороченными внешними и внутренними кольцеобразными лобовыми частями K₁, K₂ вылета дискообразного ротора вне пакета статора. Число элементарных проводников ротора $Z_p = \infty$. Обозначения геометрических размеров ротора указаны на фит. 2.

Фиг. 2. Ротор двигателя.

Согласно фиг. 2, очевидны следующие выражения для активных сопротивлений отдельных элементов короткозамкнутых витков обмотки дискового рстора, один из которых представлен на фиг. 2 в заштрихованном виде.

Активное сопротивление элементарного проводника:

$$\Gamma_{np} = \frac{(D_{cTi} - D_{cT2}) Z_p}{\chi \cdot \pi (D_{cTi} + D_{cT2}) \cdot \delta_p}.$$
 (2)

Сопротивление элементарного сегмента кольцеобразной лобовой части на внешней окружности:

$$P_{\kappa i} = \frac{\pi \left(D_{p_i} + D_{c\tau i} \right)}{\frac{1}{2} \cdot Z_p \left(D_{p_i} - D_{c\tau i} \right) \cdot \delta_p}$$
(3)

Сопротивление элементарного сегмента кольцеобразной лобовой части на внутренней окружности:

$$\Gamma_{\kappa_2} = \frac{\pi (D_{cr2} + D_{p2})}{\sqrt[3]{k} \cdot Z_p (D_{cr2} - D_{p2}) \cdot \delta_p}, \qquad (4)$$

где ¥ - удельная электрическая проводимость материала диска ротора.

Применяя общеизвестную методику определения эквивалентного сопротивления одной фазы обмотки типа беличьей клетки по эквивалентной схеме замещения, можем записать выражение (5) эквивалентного сопротивления короткозамкнутого витка (т.е. одной фазы) дискового ротора:

$$\Gamma_{9} = \frac{4}{p} \left(\Gamma_{np} + \frac{\Gamma_{\kappa \ell} + \Gamma_{\kappa 2}}{4 \sin^{2} \frac{p \pi}{Z_{p}}} \right), \qquad (5)$$

где р - число пар полюсов.

Введем обозначения:

$$\frac{D_{c\tau i} - D_{c\tau 2}}{\gamma \cdot \pi \left(D_{r\tau i} + D_{c\tau 2} \right) \cdot \delta_{p}} = R_{np};$$
(6)

$$\frac{\pi (D_{pi} + D_{cri})}{\gamma \cdot (D_{pi} - D_{cri}) \delta_{p}} = R_{\kappa_{i}};$$
(7)

$$\frac{\pi \left(D_{c\tau 2} + D_{p2} \right)}{\gamma \cdot \left(D_{c\tau 2} - D_{p2} \right) \cdot \delta_{p}} = R_{\kappa 2} .$$
(8)

Выражение (5) перепишем в виде:

$$r_{3} = \frac{i}{p} \left[R_{np} \cdot Z_{p} + (R_{\kappa i} + R_{\kappa 2}) \frac{\frac{1}{Z_{p}}}{4 \sin^{2} \frac{p\pi}{Z_{p}}} \right].$$
(9)

Далее приведем эквивалентное активное сопротивление фазы дискового ротора к параметрам обмотки управления.

Приведенное эквивалентное сопротивление

$$\Gamma_{yy} = \Gamma_{y} \frac{m_{y} (k_{wy} \cdot w_{y})^{2}}{m_{p} (k_{wp} \cdot w_{p})^{2}}, \qquad (10)$$

где my = 1 - число фаз обмотки управления,

k_{wy} и wy - обмоточный коэффициент и число витков обмотки управления,

 $m_p = \frac{Z_p}{p}$ – число фаз ротора, k_{wp} = 1 - обмоточный коэффициент обмотки ротора,

 $W_p = \frac{1}{2}$ - число витков ротора.

На основании выражений (9) и (10) найдем

$$n_{yy} = k_{wy}^{2} \cdot w_{y}^{2} \left[4R_{p} + (R_{\kappa_{1}} + R_{\kappa_{2}}) \frac{\frac{1}{Z_{p}^{2}}}{\sin^{2}\frac{p\pi}{Z_{p}}} \right].$$
(II)

С учетом того, что для сплошного дискового ротора Z = ∞ приведенное к параметрам обмотки управления эквивалентное активное сопротивление ротора рау определяется следующим пределом,

$$r'_{9y} = \lim_{Z_{p} \to \infty} k_{wy}^{2} \cdot w_{y}^{2} \left[4R_{np} + (R_{\kappa 1} + R_{\kappa 2}) \frac{\frac{1}{Z_{p}^{2}}}{\sin^{2} \frac{D\pi}{Z_{p}}} \right].$$
(12)

Применяя далее общеизвестные приемы математических преобразований и используя зависимости (6), (7), (8) и (12), найдем выражение эквивалентного активного сопротивления гу, приведенное к параметрам обмотки управления ротора

$$f_{3y}^{\prime} = \frac{k_{wy}^{\prime} \cdot w_{y}^{2}}{p^{3} \gamma \cdot \pi \cdot \delta_{p}} \left[\frac{4p^{2} (D_{c\tau_{1}} - D_{c\tau_{2}})}{D_{c\tau_{1}} + D_{c\tau_{2}}} + \frac{D_{p_{1}} + D_{c\tau_{1}}}{D_{p_{1}} - D_{c\tau_{1}}} + \frac{D_{c\tau_{2}} + D_{p_{2}}}{D_{c\tau_{2}} - D_{p_{2}}} \right].$$
(13)

Выражение (13) имеет физический смысл и действительно при выполнении условий

$$D_{p_1} > D_{cT_1}$$
(14)

M

$$D_{cT2} > D_{p2} . \tag{15}$$

Следует заметить, что условие (15) оказывается выполненным во всех практических случаях, т.е. D ст. определяется длиной выступающих внутренних лобовых соединений обмоток статора, а D р2 определяется диаметром вала двигателя.

С учетом действия вихревых токов в сплошном диске ротора целесообразно учитывать увеличение сопротивления у при помощи экспериментально определенных поправочных коэффициентов

$$k_{r} = f\left(f_{0}, 2p, \frac{D_{CTI}}{D_{pI}}\right),$$

где f. - частота сети.

В этом случае эквивалентное активное сопротивление ротора г["]_{эу} выражается в окончательном виде формулой

$$\mathbf{r}_{\mathbf{y}\mathbf{y}}^{"} = \mathbf{k}_{\mathbf{r}} \cdot \mathbf{r}_{\mathbf{y}\mathbf{y}} \,. \tag{16}$$

Численные значения коэффициентов k_р для дисковых роторов, изготовленных из сплава алюминия Д-16 представлены на фиг. 3.

Индуктивное сопротивление Х ту

Индуктивное сопротивление Х ту определяется из выражения действующего значения э.д.с. Е, индуктируемой в обмотке управления потоком основной гармоники Фу, действующим по оси обмотки управления:

$$E_1 = \pi \sqrt{2} f_0 w_y \cdot k_{wy} \cdot \Phi_y. \tag{17}$$

Магнитный поток основной гармоники одного полюса:

$$\Phi_{y} = B_{cpy} \cdot S_{y} = \frac{2}{\pi} B_{\delta y} \frac{\pi (D_{cT1} - D_{cT2})}{4.2p} , \qquad (18)$$

где В сру - среднее значение индукции по сечению полюса, В 5, - амплитудное значение индукции первой гармо- $S_y = \frac{\pi (D_{cT_1}^2 - D_{cT_2}^2)}{8n}$ - площадь сечения одного полюса.

Амплитуда магнитной индукции основной гармоники магнитного поля, созданной первой гармоникой намагничивающей силы фазы обмотки управления, с учетом допущения $\mu_{cr} = \infty$ определяется по закону полного тока и выражается формулой:

$$B_{\delta y} = \frac{2\sqrt{2}\,\mu_o, w_y, k_{wy}}{\pi \cdot \delta_y \cdot p} \cdot I_y.$$
(19)

Здесь .M.=4π. 10⁻⁷ 2H – магнитная проницаемость воздушного зазора.

δу - расчетная длина воздушного зазора по оси обмотки управления.

I_у - действующее значение тока управления В соответствии с фиг. І, бу выражается суммой:

$$\delta_{y} = k_{\xi} \cdot \delta + \delta + \delta_{p} = \delta(1 + k_{\xi}) + \delta_{p} , \qquad (20)$$

где б - односторонняя длина гладкого воздушного зазора статора,

k₅ - коэффициент зубчатости статора,

δ_р - толщина ротора.

Используя выражения (17)-(20). найдем выражение э.д.с. в виле

$$E_{i} = \frac{f_{o} \mu_{o} (D_{cTi}^{2} - D_{cT2}^{2})}{p^{2} [\delta(i + k_{\delta}) + \delta_{p}]} \cdot w_{y}^{2} k_{wy}^{2} \cdot I_{y} .$$
(21)

Отсюда находим индуктивное сопротивление X ту:

$$x_{my} = \frac{f_{o}\mu_{o}(D_{cT1}^{2} - D_{cT2}^{2})}{p^{2}[\delta(1 + k_{g}) + \delta_{p}]} \cdot w_{y}^{2} k_{wy}^{2} .$$
(22)

Из анализа выражений (I3), (I6) и (22) можно сделать следующий вывод.

У исполнительных двигателей с аксиальным потоком и дисковым ротором весьма просто осуществляется синтез намагничивающих сил с целью обеспечения линейности регулировочных характеристик и отсутствия самохода ротора при снятии сигнала с обмотки управления. Соответствующим выбором геометрических размеров $D_{cтi}$, D_{cti} , D_{pi} и D_{p2} возможно довести значение r_{3y} до оптимальной величины, при которой

$$k_{r}r_{y} > x_{my}$$
.

Необходимо также учитывать, что длина воздушного зазора двигателей с аксиальным потоком имеет большее значение, чем у сравнимых по мощности исполнительных двигателей с ферромагнитным ротором классической конструкции, в связи с чем индуктивное сопротивление X_{my} двигателей с аксиальным потоком сравнительно мало и условие (I) легче выполняется.

Изложенные в данной статье зависимости использованы на кафедре электрических машин ТШИ для расчета и изготовления образцов исполнительных двигателей с аксиальным потоком.

Литература

I. Е.М. Лопухина, Г.С. Сомихна. Асинхронные микромашины с полым ротором. "Энергия", М., 1967.

L.Varik, G.Samolevski

About the Ensuring of the Linearity of the Control Characteristics and about the Absence of the Creeping of the Two-Phase Axial Magnetic Flux Asynchronous Servomotors

Summary

The present article deals with the problem of the determination of the parameters r'_{gy} (the equivalent reduced resistance of the rotor) and x_{my} (inductive resistance according to the basic magnetic flux) of the two-phase asynchronous servomotor with axial magnetic flux. The motor has one active magnetic core and massive disk-shaped rotor from the nonmagnetic conductor. Formulae for calculating x_{my} and r'_{gy} have been deduced, the last being corrected by an experimentally determined coefficient. It is possible by proper selection of basic geometric dimensions to bring the values of r'_{gy} and x_{my} to the optimum rate, by which the linearity of the control characteristics and absence of the creeping of the rotor is ensured.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

₩ 337

1973

УДК 621.313.33

Л.Э. Варик, Г.К. Самолевский

О НЕКОТОРЫХ ОСОБЕННОСТЯХ ЭЛЕКТРОМАГНИТНЫХ ПРОЦЕССОВ ДВУХФАЗНОГО АСИНХРОННОГО ИСПОЛНИ-ТЕЛЬНОГО ДВИГАТЕЛЯ С АКСИАЛЬНЫМ ПОТОКОМ

Быстродействие двухфазного асинхронного исполнительного двигателя с аксиальным потоком определяется его электромагнитными процессами и механическими свойствами. Результаты исследований динамики двигателей обычного исполнения [I, 2, 3, 4 и др] к анализу рассматриваемого двигателя непосредственно применены быть не могут, ввиду специфической конфигурации последнего.

В данной работе рассматриваются некоторые вопросы электромагнитных переходных процессов пуска двухфазного асинхронного исполнительного двигателя, при скольжении S = I,0.

Для исследования принимается двигатель (фиг. I) с одним активным статорным пакетом S₄ с радиальными без скоса пазами, в которых уложены обмотки. Двигатель имеет один неактивный статорный пакет S₂, используемый в качестве ярма. Ротор двигателя R, дисковый, сплошной из немагнитного токопроводящего материала.

Ротор можно представить в виде двухфазной короткозамкнутой обмотки, состоящей из бесконечного количества радиальных алементарных проводников, закороченных внешними и внутренними кольцеобразными лобовыми частями. В этом случае, в момент времени пуска двигателя, при скольжении S = I,0 оси одноименных обмоток статора и ротора совпадают.

С учетом сказанного можно представить эквивалентную схему двигателя в соответствии с фиг. 2.

Фиг. 1. Схема магнитопровода двигателя.

На фиг. 2: U_A, U_B - напряжения, приложенные к зажимам обмоток фаз статора; W_A, W_B, W_a, W_b - расчетные числа витков фаз статора и ротора.

Принимаются следующие предположения:

2) взаимоиндуктивная связь между обмоткеми статора отсутствует,

 торцовые поверхности воздушного зазора плоскопараллельны,

4) напряжения, приложенные к фазным обмоткам статора, меняются во времени синусоцдально, с неизменным фазовым углом $\frac{\pi}{2}$

$$u_{A}(t) = U_{Am} \sin(\omega_{o}t + \psi); \qquad (I)$$

$$u_{B}(t) = U_{Bm}\sin(\omega_{o}t + \frac{\pi}{2} + \psi) = U_{Bm}\sin(\omega_{o}t + \xi).$$
 (2)

Здесь $U_{Am} \bowtie U_{Bm}$ – амплитудные значения напряжений, ω_o – угловая частота, ψ – начальный фазовый угол, $\xi = \frac{\pi}{2} + \psi$.

5) учитывается только первая пространственная гармоническая магнитного поля каждой обмотки фазы статора,

 насищение магнитопровода и потери в стали не учитиваются,

7) краевые эффекты не учитываются,

8) потоки рассеяния обмоток в переходных режимах менявтся по одинаковой закономерности с основными потоками.

На основании упрощенной эквивалентной схемы двигателя (фиг. 2) с учетом принятых допущений можно записать в операторной форме (по Карсону), при нулевых электромагнитных начальных условиях, следующие уравнения для токов фаз статора и ротора:

- цепь фазы А статора

$$I_{A}(p)(1+T_{A}p) + T_{Aa}p I_{a}(p) = \frac{p^{2}\sin\psi + \omega_{o}p\cos\psi}{p^{2} + \omega_{o}^{2}} K_{A}U_{Am}; \quad (3)$$

- цепь фазы В статора

$$I_{B}(p)(1+T_{B}p)+T_{Bb}pI_{b}(p) = \frac{p^{2}sin\xi+\omega \cdot pcos\xi}{p^{2}+\omega_{o}^{2}} K_{B}U_{Bm}; \quad (4)$$

- цепь фазы С ротора

$$I_{a}(p)(1+T_{a}p)+T_{aA}pI_{A}(p)=0;$$
 (5)

- цепь фазы b ротора

$$I_{b}(p)(i + T_{b}p) + T_{bB}pI_{B}(p) = 0.$$
(6)

В уравнениях (3) - (6) введены обозначения:

Фиг. 2. Эквивалентная схема двигателя.

- $I_{A}(p), I_{B}(p), I_{0}(p), I_{b}(p)$ операторные выражения токов фаз статора и ротора,
 - Τ_A, Τ_B, Τ_α, Τ_b постоянные времени, соответствующие индуктивности цепей A, B, α, b – соответственно,
 - Т_{Ад}, Т_{вь}, Т_{дА}, Т_{ьв} постоянные времени, соответствующие взаимоиндукции между цепями А и д, В и b - соответственно,

$$T_{A} = \frac{\sigma W_{A}^{2}}{K_{F} r_{A}}; \qquad (7)$$

$$T_{B} = \frac{\sigma_{W_{B}}}{\kappa_{F} r_{B}}; \qquad (8)$$

$$T_{a} = \frac{\sigma w_{a}^{2}}{\kappa_{F} r_{a}}; \qquad (9)$$

$$T_{b} = \frac{\sigma_{Wb}^{2}}{\kappa_{F}r_{b}}$$
(I0)

$$T_{\alpha A} = \frac{W_{\alpha} W_{A}}{K_{F} \Gamma_{\alpha}}; \qquad (I2)$$

$$T_{Bb} = \frac{W_B W_B}{K_F r_b}; \qquad (I3)$$

$$T_{bB} = \frac{W_b \ W_B}{K_F \ \Gamma_b}; \qquad (I4)$$

$$K_{A} = \frac{i}{\Gamma_{A}}; \qquad (15)$$

$$T_{Ad} = \frac{W_A W_d}{K_F r_A} \qquad (II) \qquad K_B = \frac{1}{r_B}$$
 (I6)

Величины, входящие в выражения (7) - (16), определяются следующим образом:

среднее значение коэффициента рассеяния,
 г_A, г_B, г_a, г_b – активные сопротивления фаз A, B, a, b – соответственно,
 г_a и г_b – рассчитываются по (6),
 w_A = ²p_Aw'_A k_{wA} – расчетное число витков фазы A,
 w_B = ²p_Bw'_B k_{wB} – расчетное число витков фазы B,
 w'_A, w'_B – количество витков обмоток фаз A и B – на полос,
 k_{wA}, k_{wB} – обмоточные коэффициенты,

$$w_{d} = w_{b} = \frac{1}{2}$$
 - расчетное число витков фазы дискового сплош-
ного ротора,

k_F – расчетный коэффициент пропорциональности между суммарной намагничивающей силой и основным потоком пары полюсов.

При ненасыщенной магнитной системе

$$k_{F} = \frac{2\delta'}{\mu_{o}S_{\delta}}, \qquad (17)$$

δ' - расчетная длина воздушного зазора,

в соответствии с фиг. I, при плоскопараллельном воздушном зазоре

$$\delta' = \delta (1 + K_{\delta}) + \delta_{p}, \qquad (I8)$$

гле

- действительная длина одностороннего воздушного зазора,
- К коэффициент зубчатости,
- бр толщина дискового ротора,
- H. магнитная проницаемость воздушного зазора,
- S₅ площадь поперечного сечения одного полюса пер-

вичной системы (статора), в соответствии с обозначениями на фиг. I

$$b_{\delta} = \frac{\pi (D_{cr1}^2 - D_{cr2}^2)}{8 p_{cr}}.$$
 (19)

В результате решения уравнений (3) - (6) находятся выражения токов фаз статора и ротора в операторной форме:

$$I_{A}(p) = K_{uA}U_{Am} \frac{p^{3} + \alpha_{A}p^{2} + \beta_{A}p}{(p^{2} + \omega_{o}^{2})(p + b)(p + c)};$$
(20)

$$I_{g}(p) = -K_{uA}U_{Am} \frac{p^{3} + \alpha_{A}p^{2}}{(p^{2} + \omega_{o}^{2})(p+b)(p+c)}; \qquad (21)$$

$$I_{B}(p) = K_{uB} U_{Bm} \frac{p^{3} + \alpha_{B} p^{2} + \beta_{B} p}{(p^{2} + \omega_{s}^{2})(p+f)(p+h)};$$
(22)

$$I_{b}(p) = -K_{ub}U_{Bm} \frac{p^{3} + \alpha_{b} p^{2}}{(p^{2} + \omega_{o}^{2})(p+f)(p+h)}$$
 (23)

В выражениях (20) - (23) дополнительно к принятым ранее, введены следующие обозначения:

 $K_{uA} = \frac{K_A T_A \sin \psi}{T_A T_a - T_{Aa} T_{aA}}; \quad (24) \qquad \alpha_A = \frac{T_a \omega_o \cos \psi + \sin \psi}{T_a \sin \psi}; \quad (25)$

$$\beta_{A} = \frac{\omega_{o}\cos\psi}{T_{a}\sin\psi}; \quad (26) \qquad K_{Ua} = \frac{K_{A}T_{aA}\sin\psi}{T_{A}T_{a} - T_{Aa}T_{aA}}; \quad (27)$$

0

$$a = \frac{\omega_{\circ}\cos\Psi}{\sin\Psi}; \qquad (28)$$

$$b = \frac{T_{A} + T_{a} - \sqrt{(T_{A} - T_{a})^{2} + 4T_{Aa}T_{aA}}}{2(T_{A}T_{a} - T_{Aa}T_{aA})};$$
(29)

$$C = \frac{T_A + T_a + \sqrt{(T_A - T_a)^2 + 4T_{Aa}T_{aA}}}{2(T_A T_a - T_{Aa}T_{aA})}; \qquad (30)$$

$$K_{uB} = \frac{K_B T_b \sin \xi}{T_B T_b - T_{Bb} T_{bB}}; \quad (3I) \qquad \alpha_B = \frac{T_b \omega_b \cos \xi + \sin \xi}{T_b \sin \xi}; \quad (32)$$

$$\beta_{B} = \frac{\omega_{o}\cos\xi}{T_{b}\sin\xi}; \quad (33) \qquad K_{ub} = \frac{K_{B}T_{bB}\sin\xi}{T_{B}T_{b} - T_{Bb}T_{bB}}; \quad (34)$$

$$\alpha_b = \frac{\omega_o \cos \xi}{\sin \xi}; \qquad (35)$$

$$f = \frac{T_{B} + T_{b} - \sqrt{(T_{B} - T_{b})^{2} + 4T_{Bb}T_{bB}}}{2(T_{B}T_{b} - T_{Bb}T_{bB})};$$
(36)

$$h = \frac{T_{B} + T_{b} + \sqrt{(T_{B} - T_{b})^{2} + 4T_{Bb}T_{bB}}}{2(T_{B}T_{b} - T_{Bb}T_{bB})}$$
(37)

Из выражений (20) - (23), применяя теоремы операционного исчисления [5], находятся зависимости токов в функции времени:

$$\begin{split} \dot{\mathbf{u}}_{A}(t) &= \mathbf{K}_{\mathbf{u}A}\mathbf{U}_{Am} \left[\frac{b^{2} - \alpha_{A}b + \beta_{A}}{(c-b)(\omega_{o}^{2} + b^{2})} e^{-bt} + \right. \\ &+ \frac{c^{2} - \alpha_{A}c + \beta_{A}}{(b-c)(\omega_{o}^{2} + c^{2})} e^{-ct} + \\ &+ \frac{(\beta_{A} - \omega_{o}^{2})(bc - \omega_{o}^{2}) + \omega_{o}^{2}\alpha_{A}(b+c)}{\omega_{o}(\omega_{o}^{2} + b^{2})(\omega_{o}^{2} + c^{2})} \sin \omega_{o}t + \\ &+ \frac{\alpha_{A}(bc - \omega_{o}^{2}) - (b+c)(\beta_{A} - \omega_{o}^{2})}{(\omega_{o}^{2} + b^{2})(\omega_{o}^{2} + c^{2})} \cos \omega_{o}t \right]; \end{split}$$
(38)

$$\begin{split} \dot{u}_{B}(t) &= K_{UB} U_{Bm} \cdot \left[\frac{f^{2} - \alpha_{B} f + \beta_{B}}{(h - f) (\omega_{o}^{2} + f^{2})} e^{-ft} + \right. \\ &+ \frac{h^{2} - \alpha_{B} h - \beta_{B}}{(f - h) (\omega_{o}^{2} + h^{2})} e^{-ht} + \\ &+ \frac{(\beta_{B} - \omega_{o}^{2}) (fh - \omega_{o}^{2}) + \omega_{o}^{2} \alpha_{B} (f + h)}{\omega_{o} (\omega_{o}^{2} + f^{2}) (\omega_{o}^{2} + h^{2})} \sin \omega_{o} t + \\ &+ \frac{\alpha_{B} (fh - \omega_{o}^{2}) - (f + h) (\beta_{B} - \omega_{o}^{2})}{(\omega_{o}^{2} + f^{2}) (\omega_{o}^{2} + h^{2})} \cos \omega_{o} t \right]; \end{split}$$
(39)

$$\begin{split} \dot{t}_{g}(t) &= -K_{Ug} U_{Am} \left[\frac{b^{2} - \alpha_{d} b}{(c-b)(\omega_{o}^{2} + b^{2})} e^{-bt} + \right. \\ &+ \frac{c^{2} - \alpha_{d} c}{(b-c)(\omega_{o}^{2} + c^{2})} e^{-ct} + \\ &+ \frac{\omega_{o}(\omega_{o}^{2} + b\alpha_{d} + c\alpha_{d} - bc)}{(\omega_{o}^{2} + b^{2})(\omega_{o}^{2} + c^{2})} \sin \omega_{o} t + \\ &+ \frac{b c \alpha_{d} + c \omega_{o}^{2} + b \omega_{o}^{2} - \alpha_{d} \omega_{o}^{2}}{(\omega_{o}^{2} + b^{2})(\omega_{o}^{2} + c^{2})} \cos \omega_{o} t \right]; \end{split}$$
(40)

$$b(t) = -K_{Ub} U_{Bm} \left[\frac{f^2 - d_b f}{(h - f)(\omega_o^2 + f^2)} e^{-ft} + \frac{h^2 - \alpha_b f}{(f - h)(\omega_o^2 + h^2)} e^{-ht} + \frac{\omega_o (\omega_o^2 + f\alpha_b + h\alpha_b - fh)}{(\omega_o^2 + f^2)(\omega_o^2 + h^2)} \sin \omega_o t + \frac{fh\alpha_b + h\omega_o^2 + f\omega_o^2 - \alpha_b \omega_o^2}{(\omega_o^2 + f^2)(\omega_o^2 + h^2)} \cos \omega_o t \right].$$

$$(41)$$

Легко проверить, что в момент времени t = 0 токи i_A , i_B , i_O и i_b имеют нулевое значение, т.е. начальные условия удовлетворяются.

Из рассмотрения выражений (38) – (41) можно сделать вывод, что при включении в сеть исполнительного двигателя с аксиальным потоком (при S = I,0) токи фаз статора и ротора в переходном режиме состоят из вынужденной гармонической составляющей с множителями Sin $\omega_{s}t$ и соз $\omega_{s}t$ и кроме того, из двух свободных составляющих, затухающих апериодически с различными постоянными времени. Сказанное вполне согласуется с теорией включения воздушного трансформатора на гармоническое напряжение.

С учетом знака и численного значения корней характеристических уравнений в выражениях (20) - (23) для реальных исполнительных двигателей с аксиальным потоком |-b| < |-c|и |-f| < |-h| т.е. апериодические составляющие токов с множителями e^{-bt} и e^{-ft} затухают в переходном режиме медленнее, чем составляющие с множителями e^{-ct} и e^{-ht} .

Рассмотрим некоторые возможности ускорения переходного процесса. Одной из возможностей ускорения переходного процесса является уменьшение рассеяния, в связи с чем увеличивается численное значение b, c, f, h. Действительно, в соответствии с (7), (9), (II) и (I2) выражения (29) и (30) можно записать в виде

$$b = \frac{\sigma(T'_{A} + T'_{a}) - [\sigma^{2}(T'_{A} - T'_{a})^{2} + 4T'_{A}T'_{a}]^{\frac{1}{2}}}{2T'_{A}T'_{a}(\sigma^{2} - 1)};$$
(42)

$$=\frac{\sigma(T_{A}^{'}+T_{a}^{'})+\left[\sigma^{2}(T_{A}^{'}-T_{a}^{'})^{2}+4T_{A}^{'}T_{a}^{'}\right]^{\frac{1}{2}}}{2T_{A}^{'}T_{a}^{'}(\sigma^{2}-1)},$$
(43)

где

N

 $T_{A} = -$

$$T'_{\mathfrak{a}} = \frac{T_{\mathfrak{a}}}{\sigma}, \quad (44) \qquad T'_{\mathfrak{a}} = \frac{T_{\mathfrak{a}}}{\sigma}, \quad (45)$$

$$T_{A} T_{a} = T_{Aa} T_{aA}.$$
 (46)

Нетрудно доказать, что в пределе, при пренебрежении потоками рассеяния

$$\lim_{\sigma \to 1} \frac{\partial b}{\partial \sigma} = \infty \tag{47}$$

$$\lim_{\sigma \to 1} c = \infty$$
 (48)

Аналогичные рассуждения справедливы и к выражениям (36) и (37). Однако, принятие условия $\sigma = I,0$ означало бы необходимость создания магнитной системы и синтеза намагничивающих сил двигателя в таком исполнении, которое реально неосуществимо.

Практически уменьшение рассеяния у асинхронного исполнительного двигателя с аксиальным потоком осуществляется уменьшением пазового открытия и уменьшением воздушного зазора. Применяемое, с целью уменьшения рассеяния, у двигателей нормального исполнения, укорочение лобовых частей собмоток здесь не дает существенных результатов, так как "лобовые части" обмоток у двигателя рассматриваемого типа также участвуют в создании основного магнитного потока.

В частном случае может быть осуществлено равенство постоянных времени Т_л и Т_п, при условии, что

$$w_{A} = \frac{i}{2} \sqrt{\frac{\Gamma_{A}}{\Gamma_{Q}}}$$
(49)

N

$$w_{\rm B} = \frac{i}{2} \sqrt{\frac{\Gamma_{\rm B}}{\Gamma_{\rm b}}} \, \cdot \tag{50}$$

Обозначим

$$\mathsf{T}_{\mathsf{A}} = \mathsf{T}_{\mathsf{a}} = \mathsf{T}_{\mathsf{f}} \,, \tag{51}$$

$$T_{B} = T_{b} = T_{2} . \tag{52}$$

В этом случае выражения (29) и (30) приобретают вид

$$b = \frac{\sigma}{T_{1}(\sigma+1)}; \qquad (53)$$

$$C = \frac{\sigma}{T_1(\sigma-1)}$$
 (54)

Из выражений (53) и (54) следует, что при конечном значении коэффициента σ , в рассматриваемом частном случае также сохраняется общая закономерность переходных составляющих токов.

Рассмотрим, далее, зависимость b, c, f и h от геометрических параметров магнитной системы. Выражения (29) и (30) возможно представить видоизмененно следующим образом:

$$b = K_{\rm F} B, \qquad (55)$$

$$C = K_{F}C, \qquad (56)$$

или с учетом (17):

$$b = \frac{2\delta'}{\mu_o S_{\delta}} B, \qquad (57)$$

$$c = \frac{2\delta}{\mu_{o} S_{\delta}} C, \qquad (58)$$

$$B = \frac{\sigma \left(\frac{w_{A}^{2}}{r_{A}} + \frac{w_{a}^{2}}{r_{a}}\right) - \left[\sigma^{2} \left(\frac{w_{A}^{2}}{r_{A}} - \frac{w_{a}^{2}}{r_{a}}\right)^{2} + 4 \frac{w_{A}^{2} w_{a}^{2}}{r_{A} r_{a}}\right]^{\frac{1}{2}}}{2 \frac{w_{A}^{2} w_{a}^{2}}{r_{A} r_{a}} (\sigma^{2} - 1)};$$
(59)

$$C = \frac{\sigma\left(\frac{w_A^2}{r_A} + \frac{w_a^2}{r_a}\right) + \left[\sigma^2\left(\frac{w_A^2}{r_A} - \frac{w_a^2}{r_a}\right)^2 + 4\frac{w_A^2w_a^2}{r_Ar_a}\right]^{\frac{1}{2}}}{2\frac{w_A^2w_a^2}{r_Ar_a}(\sigma^2 - 1)}.$$
(60)

Аналогично можно представить видоизмененно выражения f и h.

Из рассмотрения выражений (57) и (58) можно заключить, что при неизменных значениях В и С ускорения затухания апериодических составляющих токов следует увеличивать δ' либо уменьшать S_{δ} . Известно, однако, что при неизменном значении намагничивающих сил увеличение воздушного зазора, или уменьшение площади сечения полосов приводит к уменьшению полезного магнитного потока, следствием чего является уменьшение пускового момента двигателя.

Рассмотрим, наконец, влияние синтеза намагничивающих сил на электромагнитный переходный процесс двигателя. Для выявления зависимости мгновенного значения полезного магнитного потока φ от намагничивающих сил и геометрических параметров магнитной системы исполнительного двигателя с аксиальным потоком можно, в соответствии с законом полного тока $\Sigma iw = \oint \bar{H} d\bar{i}$ записать следующие выражения для магнитного контура пары полюсов, например по продольной оси:

$$w_{A}i_{A} + w_{a}i_{a} = 2H_{\delta d}\delta', \qquad (61)$$

$$H_{\delta d} = \frac{B_{\delta d}}{\mu_{0}}, \qquad (62)$$

$$B_{\delta d} = \frac{\Psi_d}{S_{\delta}} .$$
 (63)

23

где

- Здесь Н_{бd} мгновенное значение напряженности поля в воздушном зазоре,
 - В_{бd} мгновенное значение индукции в воздушном зазоре,

Из (63), с учетом (18), (19), (61) и (62) находим амплитудное значение потока по продольной оси:

$$\varphi_{dm} = \frac{\pi \mu_{\bullet} (D_{c\tau_{1}}^{2} - D_{c\tau_{2}}^{2})}{16 \left[\delta (1 + K_{\delta}) + \delta_{p} \right] \cdot p_{c\tau}} (w_{a} I_{Am} + w_{a} I_{am}).$$
(64)

Амплитудное значение полезного магнитного потока по поперечной оси выражается аналогично:

$$\varphi_{qm} = \frac{\pi_{Ju_{o}}(D_{c\tau 1}^{2} - D_{c\tau 2}^{2})}{16 \left[\delta (1 + K_{\delta}) + \delta_{p} \right] \cdot p_{c\tau}} (w_{B} I_{Bm} + w_{d} I_{bm}). \quad (65)$$

Под I_{Am} , I_{am} , I_{Bm} , I_{bm} следует понимать амплитудные значения вынужденных гармонических составляющих этих то-ков, определяемых из общих выражений (38), (39), (40) и (41) при $t = \infty$.

Входящие в выражения (64) и (65) значения диаметров $D_{c\tau_1}$ и $D_{c\tau_2}$ определяются из расчета основных геометрических размеров двигателя, по заданным номинальным данным. В связи с этим изменение диаметров может проводиться только в строгом соответствии с прочими геометрическими размерами, а также с требованиями, изложенными в [6].

Вывод

Задача оптимизации синтеза намагничивающих сил с целью обеспечения наибольшего бистродействия двухфазного асинхронного исполнительного двигателя с аксиальным потоком может бить решена путем последовательных приближений. Исходя из заданных номинальных данных двигателя, производится предварительное определение основных геометрических размеров и обмоточных данных двигателя. Дальнейшее уточнение параметров следует проводить последовательным расчетом вариантов электромагнитного переходного процесса для пускового режима, с учетом зависимостей, представленных в данной работе. Выду возможного изменения результатов предварительного расчета, необходимо вместе с тем проводить анализ соответствия магнитной системы и параметров обмоток условию отсутствия самохода двигателя, а также условиям обеспечения заданных энергетических и механических показателей – в том числе минимального момента инерции ротора двигателя.

Литература

I. Е.Я. Казовский. Переходные процессы в электрических машинах переменного тока. Изд. АН СССР, М.-Л., 1962.

2. М.М. Соколов, Л.П. Петров, Л.Б. Масандилов, В.А. Ладензон. Электромагнитные переходные процессы в асинхронном электроприводе. "Энергия", М., 1967.

3. Н. Х э н к о к. Матричный анализ электрических машин. (Перевод с английского). "Энергия", М., 1967.

4. К.П. Ковач, И.Рац. Переходные процессы в машинах переменного тока. (Перевод с немецкого). ГЭИ, М.-Л., 1963.

5. М.И. К о н т о р о в и ч. Операционное исчисление и нестационарные явления в электрических цепях. Госиздат техн. теор. литературы, М., 1955.

6. Л.Э. Варик, Г.К. Самолевский. Об обеспечении линейности регулировочных характеристик и отсутствия самохода двухфазных асинхронных исполнительных двигателей с аксиальным потоком (См. наст. сб., стр. 3-II).

25

L.Varik, G.Samolevski

About Peculiarities of Some Electromagnetic Processes in the Two-Phase Axial Magnetic Flux Asyn-

chronous Servomotor

Summary

The present article deals with some questions of the electromagnetic transition transients of starting the twophase axial magnetic flux asynchronous servomotor by slipping s = 1,0.

Basing on equivalent circuit of the motor equations in operation form for the stator and rotor phase currents have been written down and the solutions of the equations given.

Basing on analyses of the equations of currents some possibilities for the acceleration of electromagnetic transition transients and optimizing the synthesis of the magnetomotive forces of the motor have been given.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

₩ 337

I973

УЛК 621.34

И.В. Давыдов

ЭЛЕКТРОМАГНИТНОЕ СУММИРОВАНИЕ ОБРАТНОЙ СВЯЗИ ПО ТОКУ В ЭЛЕКТРОПРИВОДЕ ПО СИСТЕМЕ МУ-Л

Каждая система электропривода имеет свою область применения. Электропривод по системе магнитный усилитель-двигатель (МУ-Д) имеет преимущества, когда не требуется реверса, к динамике не предъявляют особых требований, мощность небольшая. По сравнению с тиристорным приводом постоянного тока, схема электропривода по системе МУ-Д проще, надежность выше, не требуется столь высокая квалификация обслуживающего персонала.

В схемах без тахогенератора необходима обратная связь по напряжению якоря (отрицательная) и по току нагрузки МУ (положительная). Обратные связи суммируются либо электрически, либо электромагнитно. Электромагнитное суммирование заслуживает внимания, поскольку именно в этом случае, без тахогенератора и промежуточного усилителя, получен наибольший диапазон регулирования скорости – I:IOO [3]. В то же время схема с электромагнитным суммированием изучена наиболее слабо.

Ниже приведен анализ коэффициентов обратных связей и предложен основанный на обратных характеристиках управления МУ метод расчета привода.

Принципиальная схема изображена на фиг. І. Для этой схемы можно написать следующую систему уравнений:

$$U = Ri_{1} - kRi_{2},$$

$$-E_{a} = -kRi_{1} + (kR + R_{y} + R_{a})i_{2} + R_{a}i_{3},$$
(I)

Фиг. 1. Принципиальная схема привода.

- где i, i₂, i₃ контурные токи, R, R_y, R_p — общее сопротивление задатчика, сопротивления обмотки управления МУ и цепи якоря двигателя;
 - коэффициент, определяющий положение движка задатчика (0 ≤ k ≤ !).

Ток управления

$$I_{y} = k_{3}U - k_{03}E_{\beta} - k_{076}I_{H^{3}}$$
(2)

получен в результате решения системы уравнений (I). В этом выражении обозначено:

$$k_{3} = \frac{k}{k R(1-k) + R_{y} + R_{g}},$$
 (3)

коэффициент обратной связи по э.д.С.

$$k_{09} = \frac{1}{kR(1-k) + R_y + R_g}, \qquad (4)$$

коэффициент внутренней обратной связи по току

$$k_{otb} = \frac{R_{p}}{kR(I-K) + R_{y} + R_{p}}.$$
 (5)

Обратная связь по э.д.с. является расчетным понятием. Енешняя положительная обратная связь по току нагрузки МУ осуществляется посредством трансформатора тока. Ток в обмотке обратной связи по току (без учета регулировочного сопротивления R_p)

$$I_{2B} = \frac{k_2}{k_1 k_T} I_H,$$

где

$$k_{1} = \frac{I_{H}}{I_{1}}$$
, $k_{2} = \frac{I_{2}\beta}{I_{2}}$, $k_{\tau} = \frac{I_{1}}{I_{2}}$.

Намагничивающая сила обратных связей по току

$$F_{\sigma\tau} = \frac{k_2}{k_1 k_\tau} I_{\mu} w_{\sigma\tau} - k_{\sigma\tau\delta} I_{\mu} w_y = \left(\frac{k_2}{k_1 k_\tau} \frac{w_{\sigma\tau}}{w_y} - k_{\sigma\tau\delta}\right) I_{\mu} w_y ,$$

откуда коэффициент приведенной к обмотке управления обратной связи по току

$$k_{0\tau} = \frac{k_2}{k_1 k_\tau} \frac{w_{0\tau}}{w_y} - k_{0\tau\delta} .$$
 (6)

Полученный коэффициент зависит от положения движка задатчика, поскольку от коэффициента k зависит коэффициент k_{076} . Последний при крайних положениях движка имеет наибольшее значение равное $\frac{R_{B}}{R_{y}+R_{B}}$, а при k = 0,5 – наименьшее. При любых положениях движка сбратная связь по току в целом будет положительна, если

Фиг. 2. Зависимость коэффициента обратной связи по току от положения движка задатчика.

В противном случае k_{от} может иметь как положительное так и отрицательное значения. На фиг. 2 изображен этот случай. Коэффициент обратной связи по току два раза приобретает нулевое значение, изменяется бистро при малых и больших значениях k. Поэтому следует ограничить с двух сторон ход движка задатчика, установив коэффициенту k минимальное k_m и максимальное k_м значения.

Для обеспечения требуемой жесткости статических карактеристик привода необходимо согласование характеристик МУ и кривой $k_{or} = f(k) \cdot K$ первым относятся обратные характеристики управления $I_v = f(I_H)$ при E = const работарщего на нагрузку с противо-э.д.с. Е магнитного усилителя. На фиг. З приведена зависимость н.с. управления от тока нагрузки МУ.

Фиг. З. К расчету статики.

Крутизна обратных характеристик управления различна. При очень малых значениях противо-э.д.с. крутизна больше, чем при средних значениях. Это значит, что при малых скоростях требуется более сильная обратная связь, чем при средних скоростях. Но коэффициент k_{or} при средних скоростях имеет большее значение чем при малых скоростях. В результате этого противоречия в диапазоне средних скоростей получаются поднимающиеся статические характеристики привода.

Для расчета электропривода требуются две обратные характеристики управления МУ. Одна из них может быть снята при неподвижном якоре, а вместо второй воспользуемся точкой холостого хода при максимальной скорости (на фиг. 3 точка X).

При идеальном холостом ходе и минимальной скорости вращения обмоткой управления создается н.с.

$$F_{ymo} = (k_{3m}U - k_{o3m}E_{gm}) Wy, \qquad (7)$$

а при максимальной скорости

$$F_{ymo} = (K_{3M}U - K_{opm}E_{RM})W_y = F_{ymo} + F_3, \qquad (8)$$

К и Козм – коэффициенты обратной связи по э.д.с. при минимальной и максимальной скоростях. После замены в (8) н.с. F_{уто} на (7), получено выражение для напряжения на узле сравнения:

$$U = \frac{k_{09M} E_{9M} - k_{09m} E_{9m} + \frac{F_3}{Wy}}{k_{3M} - k_{3m}}$$

Внешняя обратная связь по току должна компенсировать действие внутренней отрицательной обратной связи и создавать дополнительную н.с. Последняя определяется крутизной обратной характеристики управления МУ и должна быть пропорциональна току нагрузки МУ (если обратная характеристика прямая). Поэтому можно написать (фиг. 3):

$$F_2 = k_{oTT} I_{HH} W_y , \qquad (9)$$

где

е k_{этт} - коэффициент обратной связи по току при k=k_m, I_{нн} - ток нагрузки МУ, при котором определена н.с. F₂ (может равняться номинальному току).

После небольшого преобразования с использованием (5), (6) и (9), коэффициент трансформации трансформатора тока

$$k_{\tau} = \frac{\frac{k_{2}}{k_{\star}} \left[k_{m}R(i-k_{m})+R_{y}+R_{\beta}\right] \frac{w_{0\tau}}{w_{y}}}{\frac{F_{2}}{I_{HH}w_{y}} \left[k_{m}R(i-k_{m})+R_{y}+R_{\beta}\right] - R_{\beta}}.$$

Намагничивающая сила смещения определяется, согласно фиг.3: $F_{c\,M}=F_{y\,mo}\,+\,F_4\,\cdot$

Рассмотренным методом была рассчитана экспериментальная установка, состоящая из трехфазного магнитного усилителя УМ.3II.20.20.2I с номинальным напряжением 220 В и двигателя II-I2M с номинальным напряжением 220 В, номинальной мощностью 0,95 кВт и скоростью вращения 3000 об/мин. На этой установке сняты характеристики управления МУ и получены характеристики $F = f(I_{\mu})$. По ним определены намагничивающие силы $F_4 = 28,5$ А, $F_2 = I0$ А и $F_3 = 23,5$ А. Расчет базировался на выбранных значениях R = 3000 Ом и $k_m = 0,25$. Число витков $w_y = 400$, $w_{0T} = w_{CM} = 200$. Сопротивление $R_y = 24$ Ом и $R_g = 3,4$ Ом. Коэффициент k_M принят равным 0,89, при котором коэффициент обратной связи по току равен нулю.

Согласно расчету напряжение U = 262 В, коэффициент трансформации $k_{\tau} = 30,5$ (фактически 29,8), ток смещения $I_{cm} = 364$ мА. Собственно говоря, это один из 55 рассчитанных на ЦВМ вариантов, вариант же выбирался, исходя из наличной аппаратуры.

Экспериментальные характеристики привода изображены на фиг. 4. Характеристики достаточно жесткие, максимальное изменение скорости не превышает 7,3 % при изменении тока якоря от I,25 до 5 А. Нижняя характеристика не соответствует нижнему пределу вращения двигателя. Получена минимальная устойчивая скорость 40 об/мин, но характеристики получаются вогнутнми с относительно большим изменением скорости.

Выводы

I. Обратные характеристики управления МУ являются хорошей основой для расчета привода по системе МУ-Д.

2. Коэффициент обратной связи по току зависит от установленной скорости двигателя.

3. В диапазоне средних скоростей трудно, почти невозможно, избежать поднимающихся характеристик.

Литература

I. И.В. Давыдов. Некоторые свойства статики электропривода МУ-Д. Труды Таллинского политехнического института, серия А, № 264, 1968, стр. II-22.

2. И.В. Давыдов. Статика электропривода по системе МУ-Д с электрическим суммированием обратной связи по току. Труды Таллинского политехнического института, серия А, № 304. 1971. стр. III-II9.

3. Ю.И. Видманов, Д.В. Кузьминнх, Л.Я. Макаровский и др. Регулируемый электропривод постоянного тока с магнитными усилителями. "Станки и инструмент", № 4, 1968, стр. 19-20.

4. И.Б. Кардашева, Я.Б. Розман. Автоматизированные приводы с магнитными усилителями в металлорежущих станках. "Энергия", М., 1969, стр. 72.

I. Davydov

Elektromagnetische Summierung der Stromrückkopplung im Transduktorantrieb

Zusammenfassung

Die Stromrückkopplung setzt sich aus zwei Bestandteilen zusammen. Sie hängt von der vorgegebenen Motordrehzahl ab. Die Berechnung des Antriebes basiert auf den Kennwerten des Magnetverstärkers. Nach der Auswahl des Sollwertgebers werden das Übersetzungsverhältnis des Stromwandlers, die Spannung am Sollwertgeber und der Verschiebungsstrom berechnet.

TAILINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУЛЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

₩ 337

I973

УДК 621.318.43

Я.Я. Ярвик

ПОКАЗАТЕЛИ БЫСТРОДЕЙСТВИЯ УПРАВЛЯЕМЫХ РЕАКТОРОВ БОЛЬЦЮЙ МОЩНОСТИ

В настоящее время происходит внедрение в электроэнергетику новых электромагнитных аппаратов, управляемых реакторов с вращающимся магнитным полем (УР).

Более года в системе Белорусэнерго успешно эксплуатируется первый УР мощностью 200 кВА. В стадии изготовления находятся три реактора мощность 25 МВА. Уточняются техникоэкономические показатели реакторов, определяющие рациональную область их применения. Одним из важнейших технических показателей, определяющих применение УР, является скорость изменения его электромагнитного режима. Для определения ее величины, в случае реактора параллельного включения, в [I÷ 6] предложены несколько методов расчета.

Ниже приводятся расчетные формулы и универсальные зависимости, характеризующие быстродействие реакторов большой мощности как для УР параллельного, так и для последовательного включения. Исходными при их нахождении явились предложенные в [3] универсальные электромагнитные характеристики для серии реакторов мощностью 0,15 ÷ 500 MBA, изготовленных из горячекатанной электротехнической стали и имеющих диапазон регулирования по току 1:12.

<u>Переходные процессы при скачкообразном</u> изменении напряжения подмагничивания

Управляемый реактор – существенно нелинейный аппарат, в котором в зависимости от параметров цепи управления, величины и знака напряжения управления, исходного подмагничивания (тока управления) и величины приложенного переменного

напряжения переходные процессы регулирования обладают различной длительностью и характером протекания. Поэтому инеримонность непи полмагничивания реактора практически невозможно охарактеризовать одним значением постоянной времени. В связи с этим, в [1,2] для сравнения реактора по OHCTDOдействию с устройствами аналогичного назначения И оценки длительности переходных процессов УР при скачкообразных возмущениях со стороны обмотки управления, уведено понятие времени установления режима - t vcr. Под t vcr понимается время, за которое переменная величина (ток управления или ток реактора) достигает 95 % от своего установившегося значения.

Инерционность УР определяется, в основном, тремя фактореми:

а) индуктивностью и активным сопротивлением цепи управнения,

 б) вихревыми токами и потерями на гистерезис в ярмах УР,

в) переходными процессами в обмотке переменного тока.

Длительность переходных процессов в обмотке переменного тока существенно меньше, чем минимальная реальная длительность процессов регулирования. Последняя для реакторов мощностью 0,15 МВА и более составляет не менее 0,06 сек.Поэтому при дальнейшем рассмотрении процессов регулирования реактора пренебрегаем переходными процессами в обмотке переменного тока. Из-за своей быстротечности последние должна рассчитываться только с целью выявления требований к механической прочности конструкции УР, параметрам коммутирующих аппаратов и для оценки перенапряжений в обмотках.

Вихревые токи и потери на гистерезис вызывают отставание изменения индукции от напряженности подмагничивающего поля. При этом влияние гистерезиса, как показали эксперименты реактором 200 кВА, практически ничтожно, а влияние вихревых токов можно свести к минимуму, применив электромагнитные материалы с малой толщиной и высоким электрическим сопротивлением. В связи с тем, что в электромашиностроении последнее требование выполняется, оказывается возможным пренебречь замедлением переходного процесса, обусловленным вихревыми токами и гистерезисом.

36

С учетом вышеизложенного время установления практически спределяется переходным процессом в цепи управления. Типичные зависимости изменения тока управления iv и времени установления режима от величины "скачка" напряжения AU, на обмотке управления при значении трехфазного напряжения питания реактора U_p равного номинальному $(U_p = U_{pH})$ даны на фиг. І и 2. Они получены на АВМ применением предложенных в [3] универсальных характеристик и методов шоделирования реактора и относятся к УР мощностью IO MBA с косвенным газовым охлаждением и имеющим статическую постоянную времени обмотки управления в номинальном режиме T_{ст. н}=I сек. (см. фиг. 3 [3]). Поскольку в относительных единицах TOK I_у и напряжение U_у обмотки управления в установившихся режимах равны друг другу, то при t >> type имеем

$$I_{v} = I_{vo} + \Delta I_{v} = U_{v} = U_{vo} + \Delta U_{v},$$

где ΔU_y - величина скачкообразного изменения напряжения управления,

U_{уо} и I_{уо} – начальные значения напряжения и тока управления.

На фиг. I и для кривой "а" на фиг. 2 $U_{N0} = 0$.

Рассмотрение зависимостей (фиг. I и 2) показывает, что время установления для УР является величиной переменной и определяется величиной скачка напряжения ΔU_y и положением начальной рабочей точки. Применение начального тока подмагничивания $I_{y0} \ge 0,2$ (относительных единиц - о.е.) резко сокращает время установления переходного процесса. Следует отметить, что зависимости на фиг. I и 2 можно рассматривать как универсальные, пригодные при соответствующем простом пересчете для УР любой мощности. Пересчет производится изменением масштаба времени пропорционально значению стати-

I) Как следует из рассмотрения регулировочной характеристики УР (см. фиг.2 [3]) ток реактора в первом приближении сравнительно мало отличается от тока управления, имея лишь исходное значение, равное току холостого хода. В связи с этим у указанных токов характер и длительность переходных процессов практически одинаковы.

ческой постоянной времени Т_{ст.н} которая с учетом номинальной мощности реактора и системы охлаждения его обмоток находится из кривых фиг. 4 [3]. Пример расчета переходных процессов реактора применением зависимостей фиг. I и 2 дан в приложении I.

Фиг. 3. Изменение тока подмагничивания при скачкообразных уменьшениях напряжения управления Uy от исходного Uyo до нуля (Тст.н = 1,0 сек).

Аналогичные зависимости, также универсальные ($T_{CT.H} = I$ сек) для случая "сброса" мощности УР путем уменьшения напряжения управления на ΔU_y от значения $U_y = U_{y0}$ до

 $U_y = U_{y0} - \Delta U_y$ приведены на фиг. 3 и 4. Время установления t_{yCT} , как и ранее, здесь принято равным длительности достижения током управления 95 % от сигнала задания. Расфорсировка напряжения управления отсутствует ($U_y \ge 0$). Кривые фиг. 4 позволяют оценить t_{yCT} при уменьшении тока управления от исходного значения I_{y0} до значения $I_{yyCT} = 0$, 0,2, 0,4 и 0,6 о.е. Видно, что при частичных сбросах мощности до уровня, отвечающего $I_{yyCT} = 0,2$ и выше, время переходного процесса существенно сокращается.

Характер переходных процессов при набросах и сбросах одинаковых значений мощности существенно отличен. Вид кривых i_y(t) (фиг. I, 3) легко объясняется при рассмотрении выражения для производной тока в относительных единицах,

$$\frac{di_y}{dt} = \frac{U_y - i_y}{T_{cT,H} L_y duH} = \frac{I_{yycT} - i_y}{T_{cT,H} L_y duH} = \frac{\Delta I_y(t)}{T_{cT,H} L_y duH}$$
(I)

полученного из дифференциального уравнения обмотки управления

$$T_{cT,H} \frac{d\Psi_y}{dt} + i_y = U_y, \qquad (2)$$

где ∆I_y(t) – рассогласование текущего значения тока і_у и установившегося тока І_{ууст}, соответствующее заданному напряжению управления, а

L_{удин}(i_y) - динамическая индуктивность обмотки управления, определяется по фиг. 3 [3].

При сбросе мощности до нуля процесс на заключительной стадии существенно затягивается (Lydun — Lydunm; $\Delta I_y = 0$), скорость $\frac{di_y}{dt}$ максимальная в начале "сброса" мощности, когда Lydun относительно мала, а ΔI_y велико. Характерно, что в целом длительность переходного процесса до момента достижения током управления 50 % от сигнала задания при сбросе в 2-3 раза меньше соответствующей длительности при набросе мощности. Эти особенности процессов в УГ необходимо учитывать при изучении режимов работы системы подмагничивания и электрической сети с подобными УР. Отметим, что понятие t_{yCT} в случае сброса мощности является менее удачным, чем при набросах мощности, так как при сбросе

Фиг. 4. Время установления режима реактора при скачкообразном уменьшении напряжения управления от его начального значения Uyo до нового установившегося значения Uy уст. (Тст.н = 1,0 сек).

Фиг. 5. Вид зависимости No=f(Iyo/Iy уст).

мощности все переходные процессы в конечной стадии протекают практически одинаково и отличаются лишь на небольшом участке.

Аналитические методы расчета переходного процесса реактора

Обратимся к рассмотрению формул для расчета длительности переходного процесса реактора параллельного включения. Они получены совместным применением универсальных характеристик реактора с магнитопроводом из горячекатанной стали [3] и классических методов расчета нелинейных цепей со сталью. Выражения для нахождения длительности переходного процесса при скачкообразных возмущениях (увеличениях U_y) со стороны обмотки управления имеют вид:

$$t_{ycr} = \frac{4,68T_{cr.H}}{I_{yycr}^{3/4}},$$
(3)

$$t_{ycr} = \frac{1.65 - N_o}{0.98 I_{yycr}^{3/4}} \cdot T_{cr.H} .$$
(4)

Формулы (3) и (4) имеют простой вид благодаря представлению универсальной зависимости потокосцепления обмотки управления [3] выражением $i = k \Psi_y^4$. При этом максимальные значения погрешности аппроксимации не превышают IO-15 %. Кроме того, в выражении (4), которое относится к случаю частичного изменения тока управления от значения $i_{y4} = I_{y0}$ до $i_{y2} = I_{yyct}$, зависимость для различных

соотношений токов задана на фиг. 5 графически.

$$N_{o} = f(I_{yo}/I_{yyc\tau}) = \frac{i}{2} \left[0.5 \ln \frac{1 + \sqrt[4]{\frac{iy}{T_{yyc\tau}}}}{1 - \sqrt[4]{\frac{iy}{I_{yyc\tau}}} + \arctan \frac{4}{\sqrt{\frac{iy}{I_{yyc\tau}}}} \right].$$
(5)

При использовании (3) и (4) обеспечивается удовлетворительная точность и выполнение расчета не представляет труда, так как неизвестным является лишь значение статической постоянной времели номинального режима реактора Т_{ст.н}. Для на-

хождения последней воспользуемся зависимостями $T_{cт.н} = f(s_{ph}, Tun системы охлаждения) [3], по которым, зная номинальную мощность и тип системы охлаждения, находим искомое значение <math>T_{cт.н}$ без дополнительного выполнения электромагнитного расчета конкретного реактора.

Пример расчета времени установления режима дан в приложении 2.

Охарактеризуем кратко различия переходных процессов реактора последовательного и параллельного включения. Последнее является частным случаем последовательного включения, когда величина сопротивления последовательно включенной нагрузки близка нулю. Основные отличия переходных процессов УР последовательного включения обусловлены TeM. что при изменении тока реактора в широких пределах изменяется приложенное к нему фазное напряжение. Последнее теоретически может изменяться от номинального значения U, до нуля. Так как с уменьшением переменного напряжения питания длительность переходного процесса увеличивается, то очевидно, что переходные процессы реактора последовательного включения протекают несколько быстрее, чем при отсутствии переменного поля в подмагничиваемом ярме (трехфазная обмотка разомкнута) и несколько медленнее, чем в реакторе параллельного включения. Экспериментальные исследования на различных модельных реакторах и на УР 200 кВА показали, что длительность переходного процесса реактора последовательного включения, в пределе примерно на 20 %, выше, чем у УР параллельного включения. Это позволяет приближенно рассчитать ее введением поправочного коэффициента λ учитывающего соотношения сопротивления нагрузки Z, и реактора Z, по формулам (3), рассмотренным для реактора параллельного включе-HNA.

$$t_{ycr} = \frac{\lambda \cdot I_{,68} T_{cr.H}}{I_{yycr}^{3/4}},$$

$$t_{ycr} = \frac{\lambda (I_{,65} - N_{o})}{0.98 I_{yycr}^{3/4}} \cdot T_{cr.H},$$
(6)

где λ при $\frac{Z_p}{Z_H} = \infty$ равно I,0, а при $\frac{Z_p}{Z_H} = 0$ равно I,2.

Более точные результати можно получить при моделировании на ABM или при численном интегрировании уравнений реактора и нагрузки, когда шаг интегрирования выбирается достаточно малым.

Параметры, характеризующие быстродействие реактора при малых возмущениях со стороны обмотки управления

В реакторах как параллельного, так и последовательного включения при малых возмущениях со стороны обмотки подмагничивания зависимость потокосцепления ψ_y от тока ι_y в области исходного тска управления может быть принята линейной. Переходный процесс при таком возмущении протекает по экспоненциальному закону и заканчивается примерно через $3 T_{дин}$, где $T_{дин}$ определяется по следующему соотношению

$$T_{\partial UH}[C] = 1 + \frac{X_{BH}}{X'_{\partial UH}} \cdot L_{y \partial UH}[0.e] \cdot T_{CT.H}[C],$$

$$X'_{\partial UH} = \frac{X_{\partial UH}}{1 + K_{y n p} \cdot K_{CB} \cdot X_{\partial UH}},$$

$$(7)$$

Х_{дин} и Х_{дин} – динамическое индуктивное сопротивление и переходное динамическое сопротивление реактора.

При эквивалентном сопротивлении системы $X_{BH} = 0$ и $T_{cr.H} = 4,0$ $T_{\partial uH}$ [cek] численно совпадает с кривой $L_{y\partial uH}$ (I_y) фиг. 3 [3]. Оттуда видим, что в режимах, близких к холостому ходу, $T_{\partial uH}$ в I5 раз больше $T_{\partial uH}$ в номинальных и перегрузочных режимах. Это обстоятельство имеет большое значение при расчетах режимов работы систем автоматического регулирования УР.

Быстродействие изменения электромагнитного режима при малых возмущениях можно оценить по времени установления

 $T_{yc\tau} \simeq 3T_{duh}$ и скорости изменения тока реактора $t'_p = \frac{dt_p}{dt}$ равной в момент возникновения возмущения

$$\dot{\nu}_{po}^{\prime} = \frac{\Delta U_{y} K_{ynp}}{T_{\partial UH}} \left[\frac{\epsilon_{A} \cdot \tau_{OKA}}{\epsilon \epsilon_{K}} \right]. \tag{8}$$

Если осуществить форсирование напряжения управления в K_{ϕ} раз, понимая под K_{ϕ} отношение $K_{\phi} = \frac{\Delta U_{y\phi}}{U_{yw}}$, то скорость \dot{U}_{pa} увеличивается пропорционально K_{ϕ} :

$$r_{po} = \frac{K_{\phi} K_{ynp}}{T_{\partial UH}}.$$
(9)

Способы повышения быстродействия реактора

В случае применения реактора для повышения динамической и статистической устойчивости электрических систем в составе управляемого статического компенсатора реактивной мощности (УСК) на подстанциях передач постоянного тока и в качестве стабилизатора напряжения толчковой нагрузки (например на металлургических заводах) естественные скорости изменения электромагнитного режима могут оказаться недостаточными.

В первую очередь приведем соображения относительно возможности увеличения скорости протекания электромагнитных процессов в УР за счет выбора соответствующих значений рабочих индукций в ярмах, марки электротехнической стали, типа подмагничивающего ярма, числа полюсов трехфазной обмотки.

Известно, что быстродействие изменения тока управления при разомкнутых фазных обмотках УР (или при закороченных

U_n = 0) несколько ниже (до 20 %) по сравнению со случаем нормального режима УР, когда в ярмах имеется переменный магнитный поток. Быстродействие, ссобенно при малых подмагничиваниях (на колене кривой $\Psi_{V}(i_{V})$) увеличивается C ростом индукций первой гармонической В., т.е. с повышением напряжения номинальной рабочей точки УР. Однако при больших индукциях существенно сужается регулировочный диапазон (увеличивается ток холостого хода УР), уменьшается коэффициент регулирования, увеличиваются потоки рассеяния, потери. Внигрыш в быстродействии при реально допустимых вариациях индукции не превышает IO %, и, очевидно, нет необходимости в отклонениях от общепринятых правил и принципов выбора рабочих индукций электромагнитных аппаратов.

Эксперименты на модельных реакторах и аналитические расчеты, выполненные для УР из различных марок горячекатанной электпотехнической стали (ЭП, Э2П, ЭЗП, Э4П, Э44 – 0,5 мм) показали практическое отсутствие влияния марки стали на их быстродействие. Проявление искомого эффекта возможно лишь при переходе на материалы с прямоугольной петлей гистерезиса типа пермаллоя, однако, это может иметь применение лишь в маломощных конструкциях.

Переход в одном и том же УР от подмагничивания внутреннего ярма к подмагничиванию наружного ярма приводит к некоторому (на 6-10 %) увеличению быстродействия в области, близкой к холостому ходу и в области, где I_v≥ 0,7 I_{vн} вследствие некоторой разности в динамической индуктивности в этих режимах, и несколько меньшему снижению быстродействия в области изменений тока управления 0,2 < Iv < 0,7 Ivн. В итоге время установления номинального режима реактора с подмагничиванием внутреннего ярма не превышает tycr.ном УР с подмагничиванием наружного ярма более, чем на 5 %. Отмеченные отличия в динамической индуктивности обусловлены тем, что при подмагничивании внутреннего ярма для вывода УР в тот же номинальный режим потребуется большие напряженности подмагничивающего поля, так как в последнем случае меньшая доля всего объема железа магнитопровода подвергается постоянному подмагничиванию.

Число полюсов трехфазной обмотки практического влияния на быстродействие не оказывает.

Из всего сказанного следует вывод, что при создании мощных реакторов марку стали, число полюсов, тип подмагничивания ярма и величину индукций следует выбирать, руководствуясь экономическими, технологическими и конструктивными факторами, но не соображениями быстродействия, поскольку, как будет показано ниже, динамические характеристики реактора, в основном, определяются затратами мощности на управление в установившихся и переходных режимах, а также характеристиками регуляторов подмагничивания.

Эффективным средством повышения быстродействия УР является исключение его режимов работы с максимальными значениями динамической индуктивности т.е. в области тока управ-

47

ления 0 < by < 0,2 IVH (см. фиг. I и 3), что приводит к некоторому сужению диапазона регулирования реактора (на 20-30 %). В ряде случаев это мероприятие вполне приемлемо, так как обеспечение и при таких условиях удовлетворительного цианазона регулирования реактора не является технически сложной задачей. Весьма действенным экономичным способом повышения быстродействия является также применение малоинерционных источников подмагничивания с высскими потолками форсировки и расфорсировки (ионных и тиристорных систем) и быстродействующих регуляторов. Более того, специбика JP. имеющих низкое быстродействие в области малых токов подмагничивания, требует применения систем подмагничивания, обеспечивающих возможность изменения знака напряжения управления (расфорсировку). В противном случае режим установления холостого хода УР затягивается до IO сек и более.

На фиг. 6 и 7 приведены результаты расчетов для случая форсирования напряжения управления из режима холостого хода (фиг. 6) и расформирования из режима двухкратной перегрузки (фиг. 7).

При применении двух, трех- и четырехкратных форсировок время установления номинального режима сокращается по сравнению со случаем однократной форсировки соответственно 3.1. 5.2 и 7.3 раза. Длительности перехода на режим холо-Iy = 2IyH при I, 2, 3, и 4-кратных стого хода из режима с расфорсировках сокращаются по сравнению со случаем скачкообразного установления $U_v = 0$ в 3, I, 4, 7, 6,5 и IO раз. Напомним, что пересчет универсальных зависимостей к параметрам конкретного реактора производится путем ИЗМенения масштаба времени, пропорционально номинальной статической постоянной времени.

Различие в быстродействии реакторов из-за разных значений статической постоянной времени номинального режима имеет глубокий физический смысл и непосредственно связано с долей мощности, затрачиваемой на управление. Чем больше потери на управление, тем меньше Т_{ст.н} и, тем выше скорость изменения электромагнитного режима реактора. С ростом номинальной мощности S_{рн} реакторов мощность источника подмагничивания (в процентах по отношению к S_{рн}) уменьшается, поэтому ухудшаются и их показатели по скорости изменения электромагнитного режима. Поэтому, при прочих равных условиях в целях повышения быстродействия, следует стремиться к повышению плотности тока управления и интенсификации теплосъема в обмотке управления, по сравнению с трехфазной.

В заключение отметим, что как показали моделирование и расчеты, скорость изменения электромагнитного режима реактора и статистического компенсатора реактивной мощности на его базе (в случае исключения режимов работы реактора с током управления iv < 0.2 I vн) в 5-10 раз выше, чем у станлартных синхронных компенсаторов такой же мошности (предполагается, что УР и синхронная машина оснащены системами подмагничивания, возбуждения, обладающими одинаковыми кратностями форсирования и расфорсирования), в I-3 раза выше, чем у синхронных генераторов с наилучшими показателями ПО быстродействию. Если не исключаются режимы работы реактора с током управления и < 0,2 I ин , то показатели быстродействия УР мало отличаются от соответствующих показателей современных стандартных синхронных генераторов с наилучшими показателями по быстродействию.

Приложение 'І

ПРИМЕР. Определить длительность переходного процесса реактора с непосредственным жидкостным охлаждением, мощностью IOO MBA при скачкообразном изменении его напряжения управления:

а) от нуля до 0,6 Uун .

б) от 0,2 до 0,6 Uун.

РЕШЕНИЕ: І. Определяем, пользуясь кривой 3 фиг. 4 [3], значение статической постоянной времени – Т_{ст.н} = 2 сек.

2. Находим длительность переходного процесса ($I_y = 95 \% \cdot 0,6$) т.е. время за которое ток управления достигает 95 % от 0,6 I_{yH} , пользуясь кривой $\Delta U_y = 0,6$ фиг.I. a) $t_{ycr} = t \cdot T_{cr.H} = 2,3 \cdot 2 = 4,6 \text{ cek}$,

6)
$$t_{VCT} = t.T_{CT,H} = 1, 1 \cdot 2 = 2, 2 CEK$$
.

3. Находим то же, пользуясь кривыми фиг. 2

а) по кривой "а"
$$(U_{y_0}=0)$$
 $t_{y_{CT}}=t_{y_{CT}}T_{c_{T,H}}=2,3\cdot 2=4,6$ сек,

б) по кривой "б" (U_{уо} = 0,2) t_{уст} = 1,1.2 = 2,2 сек.

Определить время установления номинального режима реактора мощностью 200 кВА (Т_{ст.н} = 0,614 сек).

Согласно уравнению (3), время установления номинального режима (I_{VVCT} = I,0 о.е.) равно

$$t_{ycT.HOM} = \frac{1.68 \cdot I_{cT.H}}{1.0 3/4} = 1.68 T_{cT.H} = 1.68.0.614 =$$

= 1.03 cek

Экспериментально получено $t_{yct.hom} = I, I6$ сек. Расхождение этих величин на II,2 % следует считать удовлетворительным.

Литература

I. М.С. Либкинд. Управляемый реактор для линии передач переменного тока. Изд-во АН СССР, 1961, стр. 70-81.

2. С.В. У с о в. А.К. Черновец, В.С. Козулин. Быстродействие управляемого реактора с вращающимся магнитным полем. "Электричество", 1967. № 3, стр. 81-85.

3. Л.А. Кучумов, А.К. Черновец, Я.Я.Ярвик. Математическое моделирование управляемых реакторов большой мощности, "Электричество", № 1, 1970, стр. 26-31.

4. А.Ф. А б, Л.А. К у ч у м о в, А.К. Ч е р н о – в е ц, Я.Я. Я р в и к. Определение быстродействия управляемого статического компенсатора. Изд. АН СССР, "Энергетика и транспорт", 1969, № 2, стр. 46-53. 5. А.Ф. А б, Л.А. К у ч у м о в, Я.Я. Я р в и к. Автоматическое регулирование статического компенсирующего устройства реактивной мощности в системах с ударной нагрузкой. "Автоматизация и релейная защита в энергосистемах". Материалы к научно-технической конференции. Сентябрь, 1969, Л., 1969, стр. 153-164.

6. Л.А. К у ч у м о в, А.К. Ч е р н о в е ц, Я.Я.Я р – в и к. Влияние регулирования реактора статического компенсатора на режим электрической системы, "Электричество", 1971, № 11, стр. 5-9.

J. Jarwick

The Dynamic Indices of High Power Controllable Reactors

Summary

The formulae and universal graphical dependences are presented, making possible to determine the duration of the process of transition of high power controllable reactors.

The ways of improvement of those dynamic indices will be examined.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

₩ 337

I973

УДК 621.318.43

Я.Я. Ярвик

ОПАСНЫЕ РЕЖИМЫ СИСТЕМЫ ПОДМАГНИЧИВАНИЯ УПРАВЛЯЕМОГО РЕАКТОРА

Система автоматического регулирования полмагничивания реактора (система АРП), кроме удовлетворения требованиям нормальных режимов, должна удовлетворять требованиям наиболее тяжелых аварийных и переходных режимов управляемого реактора (УР). Последние могут сопровождаться возникновением в цепи полмагничивания (управления) опасных перенапряжений и сверхтоков. Применительно к УР подобные процессы являются малоизученными, отсутствуют методики оценки как перенапряжений, так и сверхтоков. Поэтому на пвух модельных реакторах и на УР мощностью I50 кВА (УР-I50), əKспериментально были исследованы с точки зрения перенапряжений и сверхтоков различного рода переходные процессы возникающие при возмущениях как со стороны трехфазной цепи, так и со стороны цепи управления.

Запись переходных процессов производилась при помощи шлейфового осциллографа типа H-IO5. Записывались фазные токи реактора I_p ток и напряжение управления (I_y и U_y). Для получения большого количества экспериментальных данных, позволяющих выявить наиболее неблагоприятные начальные фазы возникновения переходных процессов, применялась несложная система автоматики, допускающая непрерывное снятие необходимого количества осциллограмм.

Для УР наиболее перспективными являются вентильные источники подмагничивания, которые с максимальной полнотой позволяют реализовать преимущества реактора как статического аппарата. Поэтому все опасные режимы рассматриваются применительно к вентильным системам.

53

Строгое физическое моделирование мощных УР маломощными модельными реакторами в настоящее время в силу известных специфических особенностей реактора трудно выполнимо. Для того, чтобы результаты, полученные на маломощных реакторах, более точно характеризовали аналогичные процессы мощных реакторов, при экспериментах соблюдались следующие условия:

I) система управления модельного реактора состояла из моста неуправляемых кремниевых вентилей, питание реактора осуществлялось с помощью регулировочного автотрансформатора. У подобной системы подмагничивания соотношение сопротивления обмотки управления R_{оу} и эквивалентного внутреннего сопротивления источника постоянного тока R₃ близко к тому, которое имеет место в мощных конструкциях УР,

2) регулировочные сопротивления в цепи подмагничивания не использовались. Регулирование U_у осуществлялось изменением переменного напряжения, подаваемого на мост вентилей.

Возможные перенапряжения в цепи управления

реактора

В цепи управления УР возможно возникновение перенапряжений из-за процессов как в цепи переменного, так и в цепи постоянного тока.

Известно, что при размыкании цепи с индуктивностью могут возникнуть опасные перенапряжения. Цепь обмотки управления реактора обладает большой индуктивностью: например, в номинальном режиме статическая индуктивность цепи управления УР-I50 равна 0, 86 Гн. а в режимах, близких к холостому ходу $L_y^{CT} \simeq 5$ Гн. Поэтому обмотка управления (ОУ) при всех коммутациях в её цепи была шунтирована IO-ти кратным по отношению к номинальному сопротивлению ОУ разрядным сопротивлением.

Для того, чтобы при обрывах и отключениях ОУ не пробивало возникающим напряжением (полагается, что размыкание происходит мгновенно и дуга не возникает) вентили источника и не создавался при этом обходный низкоомный контур, замедляющий гашение поля, вентили необходимо выбирать с номинальным напряжением, не меньшим чем разрядное напряжение. Кратность последнего равна кратности величины разрядного сопротивления, если нет форсировки по току. Поэтому, например, при номинальном напряжении ОУ 50 В и при вентилях с номинальным напряжением 300 В нельзя применять разрядные сопротивления величиной более 6-ти кратного сопротивления обмотки.

При конечной скорости размыкания цепи управления возникает электрическая дуга. Это приводит к тому, что увеличение напряжения на разрядном сопротивлении и вентилях будет несколько меньше, чем в рассмотренном выше случае.

Отметим, что для строгого расчета возникающих перенапряжений необходим, кроме учета возникновения дуги, также учет влияния межвитковых емкостей обмотки управления и емкостей на землю. Без такого учета подобные расчеты носят ориентировочный характер.

Другой причиной перенапряжений в цепи управления реактора является э.д.с. небаланса в обмотке управления.Известно, что э.д.с. небаланса (Е_{нв}), появляющаяся вследствие прямой электромагнитной связи между трехфазной цепью и обмоткой управления из-за отсутствия идеальной симметрии реактора, может представить значительную опасность для источника постоянного тока и обмотки управления УР. В качестве основных причин возникновения Е_{нь} на выводах ОУ считаются [I, 2]:

I) эксцентриситет внемного сердечника реактора,

2) анизотропия свойств стали,

неравномерность намотки ОУ и трехфазной обмотки.
 Для реактора без зазора первая причина исключается.

Согласно [2], ожидаемое значение Е_{нв} для двухполюсного реактора 25 MBA достигает 5,75 кв. Представляет интерес исследование Е_{нв} в симметричных, несимметричных, установившихся, переходных режимах УР при различных значениях тока управления и приложенного к трехфазной обмотке напряжения с целью выявления наиболее опасных, с точки зрения возможных перенапряжений, обратных напряжений и условий коммутации преобразователя системы АРП. Таким обрезом, основной задачей эксперимента было отыскание наиболее тяжелого режима, при котором $E_{\rm HB}$ достигает максимального значения, определение кратности $E_{\rm HB}$ по отношению к номинальному фазному напряжению УР ($U_{\rm PH}$), что позволяет рассчитать величину разрядного сопротивления для снижения $E_{\rm HB}$ до необходимой безопасной величины и оценить насколько осложняется нормальная работа вентилей.

Как показал эксперимент, проведенный с реактором УР--I50, наиболее тяжелым режимом оказалось включение реактора на симметричное номинальное напряжение при разомкнутой обмотке управления (фиг. Ia).

Фиг. 1. Ослиллограммы э.д.с. небаланса разомкнутой обмотки управления при Up = UpH = 380 В а) включение реактора, б) нормальный режим и отключение реактора.

Кратность первого всплеска Е_{нь} равна 2,5, в то время, как в установившемся режиме равна 0,7 по отношению к номинальному фазному напряжению. При отключении УР всплеска Е_{нь} не наблюдалось (фиг. Iб). Все эти осциллограммы фиг.I сняты в случае разомкнутой ОУ. С целью ослабления шунтирующего действия шлейфов осциллографа для записи Е_{нь} использовались шлейфы с максимальной чувствительностью (0,015 В/мм), что позволило использовать максимальные значения включенных последовательно со шлейфом регулировочных сопротивлений.

В режиме холостого хода реактора, когда обмотка управления замкнута на мост неуправляемых вентилей; а также в режимах с подмагничиванием, наведенная э.д.с. небаланса шунтируется малым, по сравнению с индуктивным, сопротивлением ОУ, эквивалентным внутренним сопротивлением источника постоянного тока (для мощных конструкций УР R₃ = (0, I - 0, 25) R₀). Кроме того, при питании ОУ от источника постоянного тока Е_{нь} несколько (на 20 ÷ 30 %) уменьшается. Последнее объясняется возникновением уравнительного тока и симметрирурщим действием постоянного подмагничивания за счет насыщения магнитопровода [2]. Уравнительные токи в контуре, состоящем из ОУ, соединительных проводов и силового устройства подмагничивания, создают дополнительный переменный поток в подмагничиваемом ярме, направленный таким образом, чтобы уменьшить величину э.д.с. небаланса.

Переменное напряжение на ОУ реактора \bigcup_{y}^{\vee} , обусловленное E_{HE} , пропорционально уравнительному току и эквивалентному сопротивлению соединительных проводов и сопротивлению силовой части источника подмагничивания R_{g} . Таким образом, при подмагничивании УР переменное напряжение, обусловленное E_{HE} , на выходах ОУ практически равно нулю, так как $Z_{0V} >> R_{g}$.

Исследования несимметричных режимов УР при разомкнутой обмотке управления показали, что появление несимметрии в напряжении питания, а также появление неполнофазности режима уменьшают величину Е_{нь} как в установившихся, так и при коммутационных процессах.

Таким образом, расчетным режимом для выбора защитных средств от опасных перенапряжений из-за Е_{нв} для УР-150 является режим включения УР на холостой ход при разомкнутой ОУ. Аналогичные исследования двух модельных реакторов показали, что там расчетным является практически установившийся режим холостого хода (см. фиг. 2а). Из сказанного следует, что природа Е_{нв} недостаточно ясна, величина

Е_{нб} зависит от нескольких случайных факторов, которые достоверно оценить на мощной конструкции реактора практически невозможно. Это делает нецелесообразным расчетный путь определения Е_{нб} и единственный достоверный путь ее определения – физический эксперимент на готовом УР. Для иллюстрации сказанного отметим, что в процессе испытания УР-150 при проведении измерений одними и теми же приборами заметно изменился как гармонический состав, так и величина Е_{нб}.

Фиг. 2. Э.д.с. небаланса в установившихся и коммутационных режимах реактора:

- а) включение и отключение трех фаз реактора,
- б) включение и отключение одной фазы при двух включенных фазах,
- в) двухфазное включение и отключение реактора,
- г) двухфазное включение при одной постоянно включенной фазе,
- д) трехфазное включение и отключение реактора, когда одна фаза включается и отключается с опозданием на 0,02 сек.

Следовательно, для экспериментального определения амплитудного значения э.д.с. небаланса достаточно снятие осциллограмм переходного процесса при включении реактора на симметричное номинальное напряжение питания. При эксперименте обязательно применение защитных средств, рекомендуемых в [3].

Возможные сверхтоки в цепи управления реактора

При скачкообразных изменениях трехфазного напряжения в цепи подмагничивания, вследствии параметрической связи между обмоткой управления (ОУ) и трехфазной, возникают броски тока управления ΔI_{y} , стремящиеся поддерживать HOTOKOсцепление обмотки управления Чу постоянным. Эти броски тока достигают своих максимальных значений при коммутационных процессах (включение, отключение реакторов), когда скачкообразные изменения трехфазного напряжения ΔUp достигают своих максимальных значений $(\Delta U_p = \Delta U_{pM} = U_{pH}).$

Значения бросков тока ΔI_y можно рассчитать, воспользовавшись уравнениями и универсальными характеристиками реактора, приведенными в [4]. Линеаризированное уравнение, характеризующее изменение тока управления при скачкообразном изменении трехфазного напряжения реактора в режиме, характеризуемом начальными значениями переменных Ivo, Чvo и Upo, имеет вил:

$$\Delta I_y = \frac{1}{L_y \partial u_H} \Delta \Psi_y + \frac{1}{\chi_{cB}} \Delta U_p, \qquad (I)$$

где Цудин - динамическая индуктивность ОУ.

- $X_{cB} = \frac{\partial U_{P}}{\partial I_{y}} = \frac{i}{K_{cB}}$ сопротивление взаимной индукции для параметрической связи обмотки переменного тока и тока обмотки управления.
 - К_{св} коэффициент параметрической связи обмоток JP.

Во время скачка тока Іу, ввиду малой длительности процесса его нарастания, постоянная составляющая потокосцепления может быть принята практически неизменной. T.e. $\Delta \psi_{v} = 0$ и уравнение (I) примет вид:

$$\Delta I_{y} = \frac{1}{\chi_{cB}} \Delta U_{p} = K_{cB} \Delta U_{p}.$$
 (2)

Из уравнения (2) следует, что для нахождения ΔI_{v} достаточно знать AUp и зависимость коэффициента связи OT исходного тока управления $K_{cB} = f(I_{yo}; \psi_{yo})$. В [4] последняя зависимость представлена также в виде универсальных характеристик УР.

Экспериментально на УР-150 проверялась правильность приведенной в [4] характеристики $K_{cs} = f(I_{y0}; \Psi_y)$ применительно к малым скачкообразным изменениям ($\Delta U_p \leq 5\% U_{pH}$).

Наибольшие броски тока, которые могут представлять опасность для цепи управления реактором, имеют место при максимальных симметричных скачкообразных изменениях напряжения реактора, т.е. при включении и отключении УР. При таких больших возмущениях из-за нелинейности характеристик реактора коэффициент связи К св лишь условно может быть применен при аналитических расчетах в виде эквивалентного коэффициента связи К свэ Причем при одинаковом значении исходного тока управления величины Ксвэ, получаемые для процессов включения и отключения УР, существенно различны. Они могут быть равными для процессов включения и отключения реактора только в том случае, если эти процессы происходят при одинаковых значениях исходного постоянного потокосцепления УР. Эти положения наглядно иллюстрируют пример расчета К_{сва}. Например, для реактора УР-150 при ΔU_р = U_{рн} =220 В и исходном значении тока управления Iyo = 3 A с учетом относительных единиц имеем:

а) включение трехфазной цепи: $\psi_{yo} = 25 \text{ Bo}, \Delta I_y = 37 \text{ A},$ т.е.

$$K_{CB9} = \frac{\Delta I_{y} U_{PH}}{\Delta U_{p} I_{yH}} = \frac{37.220}{220 \cdot 24} = 1,55 ,$$

б) отключение трехфазной цепи: Ψ_{ν0} = I2,5 Bσ, ΔI_y =2,4 A

$$K_{CB9} = \frac{2, 4.220}{220.24} = 0, 1,$$

в) включение трехфазной цепи: $\Psi_{yo} = I2,58\sigma$, $I_{yo} = 0,75$ A $\Delta I_y = 2,4$ A

$$K_{cB3} = \frac{2.4 \cdot 220}{220 \cdot 24} = 0.1 \cdot$$

На фиг. З приведены кривне $K_{cs3}(I_{y0}, \Delta U_p = U_{pH} = const)$ для реактора УР-150 в случае включения (кривая I) и отключения (кривая 2). Они получены в результате обработки осциллограмм включения и отключения УР-150 при фиксированных значениях I_{y0} . Серия таких переходных процессов при исходных токах управления 5, IO, 2O, 3O, 4O A приведена на фиг. 4. Из расунка следует, что с ростом исходного тока управления

Фиг. 3. Зависимость от исходного тока управления при включении (кривая 1, 3, 6, 7) и отключении (кривая 2, 8, 4, 5) рабочей иепи реактора. 1, 2 – эксперимент для УР-150, 3, 4 – расчет для УР-150, 5, 6, 7, 8 – эксперимент для моделей 10 кВА, 1, 2,- рекомендуемая для расчета.

 I_{y0} бросок ΔI_y возрастает и наибольшее его значение наблюдается при процессах включения УР. При появлении ΔI_y преобразователь источника подмагничивания переходит в более глубокий режим и в первый момент времени из-за того, что все вентили преобразователя открываются, напряжение на обмотке управления равно нулю (например, фиг. 46). Если бы данный реактор был идеально симметричен, то вследствии свойств симметричной трехфазной обмотки УР ток I_y не содержал бы переменной составляющей и после броска достигалбы своего установившегося значения за время t_{ycr} такое же, как и при скачкообразном уменьшении U_y в пределах, обеспечивающих равное процессу коммутации уменьшение тока I_y .

Дополнительные эксперименты с реактором УР-150 показали, что незначительным влиянием переменной составляющей тока I_у на характер и длительность переходного процесса установления исходного (до коммутации) значения I_{уо} можно пренебречь. Поэтому длительность этих процессов рассчитывается с помощью методов рассмотренных в [5].

Аналогичные экспериментальным кривым I и 2 (фиг. 3), зависимости можно получить, воспользовавшись характеристиками постоянного потокосцепления $\psi_{y} = f_{1}(I_{y}; U_{p})$ для двух

6I

Фиг. 4. Переходные процессы при коммутациях (включение и отключение) в цепи переменного тока при отсутствии регулирования тока управления а) Туо =0, б) Туо = 5А, в) Туо = 10А, г) Туо = 20А, д) Туо = 30А, е) Туо = 40А. значений напряжения реактора $U_p = 0$ и $U_p = U_{pH}$. Характеристика $\psi_y = f_i(I_y; U_{pH})$ дана в [3] в виде универсальной, а $\psi_y = f_2(I_y, U_p=0)$ можно найти, зная геометрические размеры подмагничивающего ярма, по характеристикам стали на ярмо. Применяя зависимости ψ_y для различных значений I_{yo} при включении и отключении УР по фиксированному значению

 $\Delta \, U_p = U_{pH}$ находим значения $\Delta \, I_y$ и далее K_{cB3} , где $K_{cB3} = \frac{\Delta \, I_y \, U_{pH}}{\Delta \, U_p \, I_{yH}} \, .$

Расчетные значения $K_{c_{B}}$ для УР-150 при его включении (кривая 3) и отключении (кривая 4) представлены на фиг. 3. Сравнение кривых 2 и 4 показывает, что в случае отклонения УР экспериментальные значения $K_{c_{B}}$ меньше расчетных на 20 ÷ 30 %. Это объясняется тем, что бросок тока управления происходит не мгновенно (фиг. 4е) из-за наличия большой индуктивности ОУ, к тому же нелинейной. Таким образом, в случае применения расчетной зависимости $K_{c_B} = f(I_{y_0}; \Delta U_p)$, для определения ΔI_y в формулу $\Delta I_y = K_{c_{B}} \Delta U_p$ следует внести поправочный коэффициент, т.е. формула (2) примет вид:

$$\Delta I_{y} = \xi \cdot K_{cB} \Delta U_{p} . \tag{3}$$

Для случая отклонения УР $\xi = 0,6 \div 0,8$, причем меньшее его значение относится к малым токам управления, а для включения УР $\xi = I, I \div I, 2$.

Существенное расхождение экспериментальных и расчетных значений К. можно объяснить тем, что строгое определе-К свэ расчетным путем (при использовании характеристик ние одновременного намагничивания электротехнической стали, определенных за период изменения переменной составляющей поля) возможно лишь в случае отключения трехфазной цепи. При этом установившийся режим до отключения удовлетворительно описывается этими характеристиками. После отключения новый установившийся режим (переменное поле отсутствует) характеризуется обычными характеристиками стали на ярмо. В случае включения УР для расчета К свэ подобные характеристики стали менее пригодны, так как бросок тока в обмотке управления происходит за доли периода. В этом случае определение К свэ возможно экспериментальным путем или расчетом поля в подмагничиваемом ярме с учетом мгновенных значений суммарного поля, что представляет большие трудности.

Аналогичное определение К_{свэ} производилось на двух модельных реакторах. Удовлетворительное совпадение экспериментальных кривых (в относительных единицах, см. фиг.3)

 $K_{cB3}(I_{y0})$ полученных на трех различных реакторах, позволяет рекомендовать приведенные на фиг. З усредненные значения K_{cB3} (кривая I и 2) и расчетную формулу $\Delta I_y =$ = $K_{cB3} \Delta U_p$ в качестве второго, более простого способа ориентировочного расчета амплитудных значений броска тока в случае включения и отключения трехфазной обмотки и для реакторов больших мощностей. Из кривой 8 фиг. З и фиг. 4 г следует, что в случае включения трехфазной обмотки УР на номинальное напряжение при исходном номинальном токе управления мгновенное значение i_{yM8x} достигает, примерно, пятикратного значения. Возможности появления подобных бросков I_y необходимо учитывать при проектировании систем управления реакторов.

Возникновения опасных сверхтоков при переходных процессах УР по другим причинам в ходе экспериментов не наолюдались. Это следует и из уравнений УР [4]. Превышение тока управления сверх номинального возможно дополнительно лишь в режиме форсировки подмагничивания.

В заключении отметим, что при коммутациях реактора из-за параметрической связи обмоток УР принципиально возможно появление на выводах ОУ напряжения обратной полярности. Однако, как показали многочисленные эксперименты на модельных реакторах и УР-150 при таких процессах (см. фиг. 4) І_у не проходит через нуль, т.е. появление переналряжений на вентилях по этой причине невозможно. Поэтому при разработке защитных средств цепи управления расчетными являются:

 а) с точки зрения перенапряжений – переходный процесс коммутации или обрыва цепи управления или процесс включения и работа УР в режиме холостого хода при разомкнутой обмотке управления,

б) с точки зрения сверхтоков – бросок тока управления при включении реактора с исходным номинальным подмагничиванием, когда мгновенное значение тока управления примерно в пять раз превышает номинальное значение и режим форсировки реактора.

Литература

I. М.С. Либкинд. Управляемый реактор для линий передачи переменного тока. Изд-во АН СССР, М., 1961, 14-18.

2. А.К. Черновец, В.С. Козулин. Э.д.с. небаланса управллемого реактора с вращающимся магнитным полем, "Электротехника", № 9,

3. Я.Я. Я р в и к. Особенности защиты системы подмагничивания управляемого реактора. Наст. сб., стр. 67-75.

4. Л.А. Кучумов, А.К. Черновец, Я.Я.Ярвик. Математическое моделирование управляемых реакторов большой мощности. "Электричество", № I, 1970, 26-31.

5. Я.Я. Я р в и к. Показатели быстродействия управляемых реакторов большой мощности. Наст. сб., стр. 35-51.

J.Jarwick

Dangerous Conditions of Magnetizing Chain of Controllable Reactors

Summary

Dangerous conditions of the control-chain are examined from the point of view of excess-voltage and excess-current. The recommendations and methods of determining the initial data are presented for the elaboration of safety devices.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

₩ 337

1973

УДК 621.318.43

Я.Я. Ярвик

ОСОБЕННОСТИ ЗАЩИТЫ СИСТЕМЫ ПОДМАГНИЧИВАНИЯ УПРАВЛЯЕМОГО РЕАКТОРА

Система автоматического регулирования подмагничивания (система АРП) является одним из наиболее ответственных элементов управляемого реактора (УР), т.к. ее характеристики и надежность ее работы существенно могут влиять на эффективность применения УР. Согласно [I] в цепи подмагничивания (управления) УР возможно возникновение опасных перенапряжений и сверхтоков. Поэтому для обеспечения надежной работы как системы АРП, так и обмотки управления (ОУ), необходимо применение специальных защитных средств.

При разработке защитных средств для цепи управления реактора необходимо использовать богатый опыт, накопленный при решении тех же проблем в случае синхронных машин (СМ). Поэтому, видимо, целесообразно выявить общие и отличительные черты в самой природе опасных режимов, протекающих в цепи управления ЦР и в цепи возбуждения СМ.

Отметим следующие принципиальные их отличия:

I. Peaktop – статический потребитель электрической энергии. Поэтому нет необходимости в автомате гашения поля, т.к. после отключения реактора ток в трехфазной обмотке равен нулю, в то время как в СМ из-за инерции вращающегося ротора осуществляется подпитка поврежденного участка.

2. Для СМ одним из наиболее опасных режимов с точки зрения перенапряжений, являются синхронизация и выпадение его из синхронизма. У статического аппарата – реактора, подобные режимы невозможны.

67

З.В цени возбуждения СМ, особенно тех, которые оснащены системой фазового компаундирсвания, при коротких замыканиях на зажимах генератора или при повреждениях в линии возникают опасные перенапряжения. В системах АРП нецелесообразно применение фазового компаундирования. Примером этой нецелесообразности может послужить работа реактора и СМ при аверийных посадках напряжения в сети. В целях поддержания напряжения сети неизменным УР должен перейти в режим холостого хода путем уменьшения напряжения управления, в то время как СМ должен перейти в режим форсирования напряжения возбуждения.

4. Для СМ расчетными являются в основном выше перечисленные режимы, а для реактора, согласно [1], расчетными режимами при выборе защитных средств цепи управления являются:

А. С точки зрения перенапряжений — во-первых, обрыв или коммутация цепи управления, во-вторых, появление э.д.с. небаланса при включении и работе УР с разомкнутой обмоткой управления в сети с номинальным симметричным напряжением.

В. С точки эрения сверхтоков – появление до четырехкратного (по отношению к номинальному)скачка тока управления при включении реактора с исходным номинальным подмагничиванием, или форсировка тока управления.

С учетом вышеизложенного для защиты от перенапряжений (при коммутациях или обрывах цепи подмагничивания) MOXHO предусмотреть введение шунтирующих активных сопротивлений в цепь до ее отключения по аналогии с АГП синхронных машин. что для УР является неперспективным решением. Более рациональным является выполнение соединений в цепи управления с повышенной надежностью и полное исключение коммутации в цепи постоянного тока. Отключение тока управления можно проводить переводом преобразователя источника подмагничивания в инверторный режим или снятием переменного напряжения питания преобразователя. Это практически исключает возникновение перенапряжений, т.к. обмотка управления шунтируется малым, по сравнению с полным сопротивлением ОУ, сопротивлением преобразователя системы подмагничивания.

При защите цепи управления УР от э.д.с. небаланса Е_{нь} необходимо считаться с тем, что Е_{нь} может представлять опасность для разомкнутой обмотки управления и для тиристорного (ионного) источника в режиме холостого хода реактора, когда вентили преобразователя заперты. Для защиты цепи подмагничивания от Е_{нь} нужно также отказаться от коммутаций в цепи управления, т.е. ОУ должна быть все время замкнута на источник. Дополнительно требуется применение специального защитного устройства.

Как показали эксперименты, при выборе защитных средств следует учитывать особенность э.д.с. небаланса, состоящую в том, что из-за большого индуктивного сопротивления обмотки управления уравнительные токи, осусловленные э.д.с. небаланса, очень малы. Поэтому и мощность, выделяемая в защитных устройствах, мала. Например, применение IO, IOO, 50O, IOOOкратных по отношению к R_{оу} линейных шунтирующих сопротивлений обеспечивает уменьшение приложенного к вентилям напряжения более, чем в I3O, I3, 2,6, I,3 раза. При этом мощность шунтирующего сопротивления с линейной характеристикой нужно выбирать по потерям от постоянного тока, вызванного напряжением источника подмагничивания.

Для перечисленных шунтирующих сопротивлений их мощность составляет, примерно, IO, I,O, O,5, O,I % от номинальной мощности источника подмагничивания. Доля мощности, выделяемой в шунтирующем сопротивлении от уравнительного тока небаланса, близка к нулю.

Отметим, что для эффективного уменьшения перенапряжений возникающих в процессе отключения ОУ реактора, необходимо использовать шунтирующие сопротивления большей мощности и меньшей кратностью по отношению к R_{0y} , чем в случае защиты цепи управления от э.д.с. небаланса. Тут при исходном номинальном токе управления УР, возникающее на разрядном шунтирующем сопротивлении (R_{pA3}), примерно в К раз превышает номинальное напряжение управления (U_{yH}), где К = $\frac{R_{pA3}}{R_{0y}}$ -кратность величины разрядного сопротивления.

Таким образом, защиту цепи управления от перенапряжений при ее отключении и защиту цепи подмагничивания от Е_{нв} следует решать комплексно с применением средств, решающих обе задачи. В этом случае расчет параметров защитного устройства, (например, величины шунтирующего сопротивления) следует вести, ориентируясь на снижение перенапряжений при коммутациях в цепи управления. Снижение э.д.с. небаланса будет при этом осуществляться автоматически с большим запасом. При этом методика расчета аналогична методике, применяемой для расчета защитных приспособлений цепи возбуждения синхронных машин.

Для УР возможными защитными средствами, кроме выше отмеченных, принципиально могут быть применены все те, которые уже используются или внедряются в электромашиностроении. Однако нерациснальным следует считать применение разрядников одноразового действия и 10-ти кратного постоянно включенного шунтирующего сопротивления из-за относительно больших потерь в нем (потери на подмагничивание возрастают~ 10 %), что экономически невыгодно.

Значительный практический интерес представляет простейшая схема с постоянно подключенным к ОУ нелинейным сопротивлением, которое резко снижает свою величину при увеличении на нем напряжения сверх критического. Критическое напряжение необходимо выбирать выше напряжения форсировок.

Защита цепи управления получается экономичной и надежной при полупроводниковом управлении разрядным сопротивлением. Тут возможны различные варианты схем защиты. В простейшем случае ОУ все время подключена к разрядному сопротивлению диодом, что дает надежную защиту от перенапряжений при обрыве или коммутации цепи управления. Достоинством такой схемы является полное отсутствие потерь в разрядном сопротивлении в нормальных режимах реактора. Дополнив эту схему параллельно диоду включенным тиристором (с противоположным пропускным направлением), можно в режиме холостого хода реактора защищать цепь его управления и от EHE . Tuристор должен открываться в тот момент, когда напряжение Ha выводах ОУ станет равным критическому. Последняя схема обеспечит надежную защиту от всех возможных видов перенапряжений в цепи управления, и в ней при нормальных режимах потери в разрядном сопротивлении отсутствуют. Разрядное сопротивление расчитывается, исходя из условий належного снижения перенапряжений с учетом требований к скорости гашения поля, например, при обесточивании преобразователя источника, со стороны переменного тока. Перспективными являются также схемы защиты на симисторах.

70
Следует также остановиться на целесообразности создания в реакторе тороидальной короткозамкнутой обмотки, играющей защитную роль [2]. Действительно такая обмотка, B особенности "сверхпроводящая", т.е. с параметрами, близкими к параметрам обмотки управления, эффективно защищала бы основную обмотку управления как при коммутациях в рабочей цепи, так и при коммутациях в цепи подмагничивания и несколько снижала бы э.д.с. небаланса за счет токов, индуктируемых в короткозамкнутой обмотке. Однако наличие такой короткозамкнутой обмотки приводит к резкому замедлению скорости регулирования реактора, что неприемлемо. Например, как показали эксперименты, выполнение на модельном реакторе мощностью 6 кВА, который имеет две одинаковые обмотки управления, намотанные вместе в одних и тех же пазах и охватывающие одно и то же ярмо реактора, при использовании одной из обмоток в качестве короткозамкнутой обмотки Е нь уменьшалась в I,25, бросок тока управления ΔI_y в I,67, перенапряжения U пер при отклонении ОУ в 2,8, а время установления номинального режима tуст. и увеличивалось при этом в 3.8 раза.

Дополнительно эксперименты проводились на другом MOдельном реакторе, который имеет на одном ярме пять обмоток управления выполненных из провода с одинаковым сечением. Доля каждой обмотки от суммарного числа витков Wyr всех пяти обмоток составляет 15,2, 9,1, 9,1, 33,3, 33,3 %. Использовав последовательное включение разных обмоток, получили возможность изменить число витков короткозамкнутой обмотки (W_{к3}) обмотки управления Wy и ссотношения W_{к3}/Wy. По данным экспериментов на фиг. I приведены относительные значения E_{H5}^* , U_{nep}^* , ΔI_y^* , t_{ycr}^* (по отношению соответствующих им величин в случае отсутствия короткозамкнутой обмотки) в зависимости от доли числа витков короткозамкнутой обмотки по отношению Wy. Из фиг. I следует, что отношение $W_{\kappa_3}/W_y = 0,2 \div 0,4$ является наиболее целесообразным с точки зрения уменьшения опасных напряжений и токов в цепи подмагничивания реактора. При W_{к3}/W_y = 0,2 ÷ 0,4 э.д.с. небаланса уменьшается в I, 25 ÷ I, 4 раза, бросок тока управления - в 1.25 - 1,35 раза, перенапряжения от отключения СУ - в I,6 ÷ 2,3 раза, а время установления режима увеличивается в I,5 ÷ 2, I раза. Как следует из фиг. I, приме-

Фиг. 1. Влияние короткозамкнутой обмотки на эначения э.д.с. небаланса (Енб), броска тока управления (ΔI^{*}y), перенапряжений в цепи управления(U^{*}mgp) и на время установления (t^{*}gcr), переходного процесса реактора.

нение короткозамкнутой обмотки лишь ослабляет опасные напряжения и токи в цепи управления УР и не исключает необходимости использования других защитных средств. Дополнительное применение короткозамкнутой обмотки всегда ухудшает быстродействие реактора и осложняет конструкцию УР. Поэтому более рациональным, дешевым и эффективным является применение выше рассмотренных защитных мер, не приводящих к снижению быстродействия и не усложняющих конструкцию реактора.

Отдельно следует рассмотреть и вопросы защиты цепи подмагничивания при экспериментальном определении амплитудного значения э.д.с. небаланса, которое по данным эксперимента на реакторе I50 кВА составляет до 2,5 Upr. На такие же зна-Е нь необходимо ориентироваться при испытаниях более чения модных УР. Поэтому эксперимент следует проводить в два этапа. Сперва целесообразно снять осциллограмму напряжения небаланса U_{нь} для процесса включения реактора на холостом ходу при наличии сопротивления, шунтирующего ОУ, величина которого равна десятикратному сопротивлению обмотки управления (R₁₁₁ = 10 R_{0V}). По найденному значению U_{45M} и заданному максимально допустимому значению э.д.с. небаланса [Ень] цля данной цепи управления реактора легко определяется максимально допустимое значение шунтирующего сопротивления R_{шм}, которое обеспечивает минимальные потери в нем и гарантирует безопасную работу цепи управления:

$$R_{\rm WM} = \frac{10 \left[E_{\rm HB} \right]}{U_{\rm HBM}} \cdot R_{\rm oy} \,. \tag{I}$$

На втором этапе, если интересуемся точным значением е_{нвм}, запись е_{нь} необходимо производить при разомкнутой ОУ. Однако обязательным является тут применение защитных средств, срабатывающих в случае, когда напряжение на выводах ОУ превышает допустимое.

Сриентировочное значение с_{ным} можно определить и на основе первого опыта по следующему приближенному выражению

$$\theta_{HEM} = \xi \cdot U_{HEM} \cdot \frac{R_{\omega}}{R_{0V}}, \qquad (2)$$

где ξ=1,2÷1,3 – поправочный коэффициент, учитывающий влияние уравнительного тока, который создает магнитный поток, уменьшающий величину Е_{нв}.

Таким образом, не имеется дополнительных осложнений в определении максимальных, расчетных значений перенапряжений и в работе самой системы АРП реактора по сравнению с работой АРВ синхронных машин.

Выше были рассмотрены вопросы защиты цепи управления от перенапряжений. Далее остановимся и на защите ее от сверхтоков как от бросков тока управления при коммутациях в трехфазной цепи, так и при форсировании напряжения управления.

Для ограничения I_y в режиме форсировки в автоматическом регуляторе, как и в APB, целесообразно предусмотреть устройство мгновенного ограничения I_y на определенном уровне (например, на уровне ~ 2,4 I_{yн}, что соответствует току управления, обеспечивающему двукратную перегрузку по току реактора). Устройство ограничения воздействует на систему управления вентилей преобразователя. Дополнительно необходимо иметь измеритель перегрузки тока управления, который обеспечивает защиту обмотки управления от длительной перегрузки, уменьшая ток управления до номинального значения. При защите цепи управления от сверхтоков, возникающих в коммутационных процессах реактора, необходимо учитывать следующее. Всплеск тока управления до пятикратного значения

I_{VH}, как правило, из-за кратковременности процесса (≤ 0,02 сек) не является опасным для вентилей преобразователя источника подмагничивания, так как при всплеске все вентили проводят ток. Но в случаях, когда кратковременная пятикратная (по отношению Іун) перегрузка источника подмагничивания является опасной, необходимо предусмотреть специальные скемы блокировки, исключающие возможность включения УР при токе управления $I_{yo} \approx 0, 1 I_{yH}$, а также обеспечивающие бистрое гашение поля подмагничивания (в случае внезапного глубокого понижения напряжения при коротких замыканиях в питающей сети УР) во избежание появления сверхтоков при восстановлении напряжения. Как показал сравнительный анализ различных методов гашения поля, наиболее эффективным является перевод преобразователя (на тиристорах или ионных управляемых вентилях) системы подмагничивания в инвенторный режим с тем, чтобы обеспечить гашение поля за время ~ 0, I сек, меньшее времени отключения короткого замыкания (к.з.). Отметим также, что шунтирующее сопротивление практически не влияет на величину броска тока в цепи управления при коммутациях в трехфазной цепи и поэтому включение предварительно подмагниченного реактора нежелательно, но в большинстве случаев допустимо.

В заключение укажем еще одну особенность защиты обмотки управления УР. В синхронных машинах при пробое изоляции обмотки возбуждения в одной точке защита работает на сигнал. Для реактора это недопустимо, т.к. возможно возникновение тяжелого аварийного режима из-за пробоя изоляции ОУ в другой точке. При этом, вследствие прямой электромагнитной связи с трехфазной обмоткой, переменное напряжение на короткозамкнутых участках в пределе может достигнуть значения U_{рн}, что приведет к необходимости отключения УР при первом пробое изоляции ОУ.

Литература

I. Я.Я. Я р в и к. Опасные режимы системы подмагничивания управляемого реактора. Наст. сб., стр. 53-65. 2. М.С. Либкинд. Л.И. Дорожко. Электромагнитные характеристики управляемого реактора с поперечным подмагничиванием. "Электричество", 1967, № 1, стр. 56-61.

J. Jarwick

Specific Features of Safety Devices of Magnetizing Chain of Controllable Reactors

Summary

The analysis of general and special states in defending the excitement chain of synchron machine and magnetizing chain of controllable reactor has been given here.

On the ground of that the recommendations of using different safety devices and the determining of triggering indices are given.

Содержание

Стр.

Teadsolk Baamatukegu

dusta

I.	Л.Э. Варик, Г.К. Самолевский. Об обеспече-	
	нии линейности регулировочных характеристик	
	и отсутствия самохода двухфазных асинхрон -	
	ных исполнительных двигателей с аксиальным	
	ПОТОКОМ	3
2.	Л.Э. Варик, Г.К. Самолевский. О некоторых	
	особенностях электромагнитных процессов двух-	
	фазного асинхронного исполнительного двига-	
	теля с аксиальным потоком	13
3.	И.В. Давыдов. Электромагнитное суммирование	17. IL 17.
	обратной связи по току в электроприводе по	
	системе МУ-Д	27
4.	Я.Я. Ярвик. Показатели быстродействия управ-	
	ляемых реакторов большой мощности	35
5.	Я.Я. Ярвик. Опасные режимы системы подмагни-	
	чивания управляемого реактора	53
6.	Я.Я. Ярвик. Особенности защиты системы подмаг-	e sedena
	ничивания управляемого реактора	67

ЭЛЕКТРОМЕХАНИКА 1У. Таллинский политехнический институт. Редактор И. Давыдов. Технический редактор Е. Раксева. Сборник утвержден коллегией Трудов ТПИ 29/У1 1972. Подписано к печати 20/П 1973. Бумага 60х90/16. Печ. л. 4,75 + 0,25 прилож. Уч.-вэд. л. 4,2. Тираж 350. МВ-02097. Заказ № 164. Ротапринт ТПИ, Таллии, ул. Коскла, 2/9. Цена 42 коп.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

№ 337

I973

ЭЛЕКТРОМЕХАНИКА

IY

УДК 621.313.33.

Об обеспечении линейности регулировочных характеристик и отсутствия самохода двухфазных асинхронных исполнительных двигателей с аксиальным потоком. Л.Э. Варик, Г.К. Самолевский. Труды Таллинского политехнического института, 1973, №337, стр. 3-11.

В данной работе рассматриваются вопросы, связанные с определением параметров г. (эквивалентное приведенное активное сопротивление ротора) и хту (индуктивное сопротивление, соответствующее основному магнитному потоку)двухфазного асинхронного исполнительного двигателя с аксиальным потоком. Последний имеет один активный пакет статора и сплошной дисковый ротор из немагнитного токопроводящего материала. Вывслятся формулы для расчета 🔩 и r: последняя корригируется экспериментально определенным коэффициентом. Соответствующим выбором основных геометрических размеров возможно довести значения r' Xmv M по оптимальной величины, при которой обеспечивается линейность регулировочных характеристик и отсутствие самохода ротора.

Фигур 3, библиографий I.

I

УДК 621.313.33

0 некоторых особенностях электромагнитных процессов двухфазного асинхронного исполнительного двигателя с аксиальным потоком. Л.Э. Варик, Г.К. Самолевский. Труды Таллинского политехнического института, 1973, № 337, стр. I3-26.

В статье рассматриваются некоторые вопросы электромагнитных переходных процессов пуска двухфазного асинхронного исполнительного двигателя с аксиальным потоком, при скольжении $S = I_0.$

На основании упрощенной схемы замещения этого двигателя записываются в операторной форме уравнения для токов фаз статора и приводятся их решения.

На основании анализа уравнений токов рассматриваются некоторые возможности ускорения электромагнитного переходного процесса и оптимизации синтеза намагничивающих сил данного двигателя.

Фитур 2, библиографий 6.

YIK 621.34

Электромагнитное суммирование обратной связи по току в электроприводе по системе МУ-Д. И.В.Давыдов. Труды Таллинского политехнического института, 1973, № 337, стр. 27-33.

Обратная связь по току состоит из двух составляющих и зависит от установленной скорости двигателя. Расчет привода основан на характеристиках магнитного усилителя. После выбора задатчика рассчитываются коэффициенты трансформации трансформатора тока, напряжение на задатчике и ток смещения.

Фигур 4, библиографий 4.

УДК 621.318.43

Показатели быстродействия управляемых реакторов большой мощности. Я.Я. Ярвик. Труды Таллинского политехнического института. 1973, № 337, стр. 35-51.

Предлагаются формулы и универсальные графические зависимости, позволяющие определить длительность переходного процесса при скачкообразных возмущениях со стороны обмотки управления для управляемых реакторов различной мощности. Рассматриваются и способы повышения их быстродействия.

Фигур 7, библиографий 6.

УДК 621.318.43

Опасные режимы системы подмагничивания управляемого реактора. Я.Я. Ярвик. Труды Таллинского политехнического института, 1973, № 337, стр. 53-65.

Рассматриваются опасные режимы системы подмагничивания управляемого реактора с точки зрения перенапряжений и сверхтоков. Приводятся рекомендации и методы определения расчетных величин, исходных при разработке и выборе защитных средств.

Фигур 4, библиографий 5.

УДК 621.318.43

Особенности защиты системы подмагничивания управляемого реактора. Я.Я. Ярвик. Труды Таллинского политехнического института, 1973, № 337, стр. 67-75.

Дается анализ общих и отличительных положений в защите цепи возбуждения синхронной машины и цепи подмагничивания управляемого реактора. На основании этого приводятся рекомендации по применению различных средств защиты и по выбору и определению критических параметров их срабатывания.

Фигур I, библиографий 2.

Цена 42 коп.

1