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1 Introduction
1.1 Motivation
Underwater Sensor Networks (USNs) have become widespread and are being deployedin a wide range of applications, ranging from harbor security to monitoring underwaterpipelines and fish farms. Due to the fact that USNs often operate in an extremely harshenvironment, and many of their applications are safety critical, it is imperative to developtechniques enabling these networks to tolerate faults. Moreover, USNs face many chal-lenges that are not present in terrestrial networks, such as the virtual inapplicability ofthe wireless radio communication under water and the limitations of the acoustic means.The challenges of the underwater environment arise fromenvironmental conditions - highpressure, low temperature, high turbulence, exposure to aquatic life, and engineeringconstraints - limited communication, costly maintenance, and energy constraints.It is important to stress that the underwater environment is mostly different from ter-restrial conditions, in the sense of additional and more fatal hazards, such as increasedpressure and the danger of flooding, as well as added difficulty of communication andphysical access. Some communication media, such as radio signals, are not applicable un-derwater. Furthermore, falling temperatures with increasing depth may affect the equip-ment’s operation and reliability. The challenges of fault management in sensor networksinclude:

• Reliability and accuracy in sensor networks are important because their data is oftenused for critical decision making. Faults in sensor networks may lead to inaccurateand unreliable data.
• System Resilience: Sensor networks often operate in challenging environments,where failures can occur due to various factors such as environmental conditions,hardware malfunctions, or communication issues. Fault management techniquesimprove the resilience of the sensor network by enabling fault detection, localiza-tion, and recovery mechanisms. By quickly identifying faults and implementing ap-propriate actions, the system can continue to function or gracefully degrade, mini-mizing disruptions and ensuring continuous operation.
• ResourceOptimization: Sensor networks often operate under resource-constrainedconditions, including limited energy, bandwidth, and processing capabilities. Effec-tive faultmanagement helps optimize theutilization of these resources. By promptlydetecting faults, the network can dynamically reconfigure, redistribute tasks, or ac-tivate backup resources, thus minimizing unnecessary resource consumption andprolonging the network’s overall lifespan.
• Cost Reduction: Fault management plays an important role in reducing the mainte-nance and repair costs associated with sensor networks. By proactively detectingfaults and addressing them before they escalate, the need for extensive repairs orreplacements can be minimized. Furthermore, fault management techniques en-able targeted maintenance activities, focusing only on affected components, ratherthan performing routine maintenance on the entire network, thus optimizing re-source allocation and reducing costs.
• Safety andCritical Applications: Sensor networks are often deployed in safety-criticalapplications such as environmentalmonitoring, industrial control systems, or health-care. Faultmanagement becomesparticularly important in these scenarios, as faulty
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data or system failures can have severe consequences, including safety hazards orcompromised operational efficiency. By implementing effective fault managementstrategies, the integrity and reliability of the sensor network can be ensured, miti-gating potential risks and ensuring the safety of the overall system.
Overall, fault management is crucial in sensor networks to maintain reliability, accu-racy, system resilience, resource optimization, cost reduction, and safety. By proactivelymanaging faults, sensor networks can operate efficiently, provide accurate data, and fulfilltheir intended purposes in a wide range of applications.Hardware faults may occur for various reasons, including:
• Manufacturing Defects: During the manufacturing process, hardware componentscan have defects or errors introduced. These defects may arise from issues in thefabrication process, assembly errors, or faulty components. Manufacturing defectscan lead to hardware malfunctions or failures that cause faults.
• Wear and Tear: Continuous usage, environmental conditions, and aging can causewear and tear in hardware components. Over time, this can lead to material degra-dation, deterioration of electrical connections, or mechanical failures. Such wearand tear can manifest as hardware faults.
• Environmental Factors: Hardware can be exposed to various environmental factorsthat can contribute to faults. Extreme temperatures, humidity, vibrations, electro-magnetic interference, or exposure to corrosive substances can affect the perfor-mance and reliability of hardware components. These environmental factors maycause electrical shorts, component degradation, or physical damage, leading tofaults.
• Power Supply Issues: Fluctuations or disruptions in the power supply can affect thestability and functionality of hardware components. Power surges, voltage drops,or sudden power outages can cause transient or permanent faults in the hardware.Insufficient power supply or improper grounding can also contribute to faults.
• Human Errors: Human errors during installation, maintenance, or handling of hard-ware can introduce faults. Improper installation, incorrect configurations, or ac-cidental physical damage can impact the performance and reliability of hardwarecomponents. Incorrect handling, such as mishandling sensitive connectors or in-serting components in the wrong orientation, can also result in faults.
Due to manufacturing advances the number of hardware faults is predicted not todisappear but to increase in the future [127]. One way to cope with faults is to acceptimperfect devices to fail and compensate failures at higher levels in the system stack [34],tolerating faults across layers involving circuit design, firmware, operating system, appli-cations, etc. Cross-layer fault tolerant systems have potential to implement reliable, high-performance and energy-efficient solutions without overwhelming costs [21] by distribut-ing the responsibilities of tolerating faults across multiple layers [154].

1.2 Problem Formulation
The research questions addressed in this thesis are the following ones:
RQ1. What are the research caps in cross-layer fault tolerant underwater sensor net-works?
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RQ2. How can data management help estimate quality classes?
RQ3. How can the data and essential intrinsic functionality of sensor networks be usedfor cross-layer fault management?
RQ4. How to validate the quality and reliability of aggregated data, considering the inte-gration of data frommultiple sensors, and incorporating techniques to handle faultsor anomalies during aggregation?

Figure 1: Fault management in data layers presented in current thesis.

While usually cross-layer fault management is viewed from the perspective of systemlayers [34], the systems can be developed in multiple ways, functionalities implementedin different system layers, and fault management does not have to be coupled to a specificimplementation.Thus, current work looks at cross-layer fault management from the perspective of sen-sor data. Data are an essential functionality of the sensor network and have built-in re-dundancy properties. The author proposes data layers, Raw, Processed, and Aggregated,to fulfill the cross-layer fault tasks. Figure 1 shows the defined data layers and their rela-tions to fault sources, problems, corresponding published publications by the author ofthe current thesis and chapters covering specific topics. The data-driven approach utilizesthe inherent redundancy within the sensor network as opposed to applying dedicatederror monitors and/or duplicated hardware resources.The problems that the author addresses in this thesis are redundancy, decoding, andcalibration errors, false readings, and data anomalies. The faults, for instance in intra- andinter-hub communications, and sensor nodes, are typically detected when advancing tothe upper data layers.The thesis work is divided as shown in the figure between single sensors and sensorgroups. Publication III (discussed in Chapter 4) covers faults by processing single sensor
12



data in Raw data layers. Next, Publication I (Chapter 5) discusses the single sensors faultson procesed data layer and proposes Data-driven cross Layer Fault Management concept.Finally, Publication IV (Chapter 6) is covering the faults in sensor groups and Aggregateddata layer. Publication V is discussed in Chapter 3 and is not presented on the Figure 1.
1.3 Contributions
The main contribution of this thesis is proposing a data-driven and cross-layer resilient
architecture for sensor networks, where instead of system stack layers, data layers are
applied to the detection and diagnosis of faults. Specific contributions categorized bychapters are as follows.

• Conducting the first survey of fault-tolerant, particularly cross-layer fault-tolerant,techniques in USNs (in Chapter 2, addresses research question RQ1)
– Introducing a new taxonomy of the Fault Tolerance tasks for categorizing fault-tolerant techniques for USNs;
– Presenting a comprehensive, categorized list of 127 articles ofworks applicablein fault-tolerant USN design and deployment;
– Listing the open research issues within the focused area;

• Proposing a data-drivenmethod for processing the sensor data to improve themea-surement accuracy and improve the estimation of quality classes based on that. (inChapter 4, RQ2);
– Developing and applying anbaseline correction algorithm for in-door CO2 baselevel based on CO2 data logged during 6 months from 56 rooms.
– Improving quality estimation by almost 3 times by applying the baseline cor-rection algorithm for more than 1000ppm CO2 threshold in rooms.

• Proposing three data layers for cross-layer fault management - raw, processed, ag-gregated; (in Chapter 5, RQ3)
– The data-driven cross-layer fault management allows improving the sensorgroupmeasurement accuracy by 35% in case of a single sensor fault and nearlytwofold in case of double sensor fault.

• Proposing a data-driven method for aggregating sensor data to improve quality (inChapter 6, RQ4).
– Incorporating different sources of sensor uncertainty by including the timeseries measurements’ difference and age/latency uncertainty for adapting aKalman Filter to compensate incorrect readings for more efficient state pre-diction;
– Proposing nonlinear, parabolic and sigmoid, sensor uncertainty functions fromthe residual difference for the latency and difference based Adaptive KalmanFilter techniques, respectively.

• Applying and evaluating the proposed techniques in natural environments with ex-tremely unreliable sensor readings(in Chapters 3.3, 5, 6)
13



1.4 Thesis Structure
The rest of the thesis is organized as follows. First, Chapter 2 gives a review of relatedworks and the current state of the art on the current topic, as well as introduce the taxon-omy of fault management tasks for sensor networks. Chapter 3 introduces the softwareframework architecture developed by the author for the current thesis. Next, Chapter4 covers the initial fault management processing in a sensor network based on buildingin-door climate measurement. Following, Chapter 5 covers the processing of the faultsin an underwater sensor network detected on Raw and Processed data layers. Chapter 6explains fault filtering in the Aggregated data layer for sensor groups. Finally, Chapter 7concludes the thesis.
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2 Related Works
2.1 Motivation
The main goal of this chapter is to explore the current state of research on cross-layerFault Tolerance in underwater sensor networks and to identify any gaps in existing knowl-edge. Notably, there has been limited effort from the research community in studyingFault Tolerance in underwater sensor networks. To address this limitation, the used crite-ria (See Publication II) has been expanded to include papers that cover specific aspects offault-tolerance. Additionally, the author also considers generic terrestrial fault tolerancein sensor networks, since research on faults in underwater sensor networks is scarce. Thecurrent chapter is based on Publication II.
2.2 Method
The methodology follows the PRISMA [105] guidelines for systematic reviews. In order toobtain a relevant sample in the field of fault-tolerant techniques in USNs, online environ-ments were searched and results analyzed. A critical amount of papers was not reachedusing the initial under-water criteria, and the criteria were expanded to include also rel-evant non-marine-specific (terrestrial) papers. Many of the techniques, approaches, andtools developed for terrestrial networks can potentially be adapted for use in underwatersensor networks.
2.3 Results
To further emphasize the differences in research focus between marine and terrestrialsensor networks, the author presents a radar diagram in Figure 2. The diagram illustrateseight specific areas of interest.Figure 2 shows that a considerable portion of marine research (depicted in blue) is de-voted to underwater wireless communication. Some attention is also paid to underwaterfault tolerance techniques, but there is minimal research on underwater cross-layer faulttolerance. Areas such as underwater energy efficiency and scalability receive more cover-age compared to underwater vehicles (mobility) and security. On the other hand, papersrelated to terrestrial techniques (displayed in green) primarily focus on fault tolerance,including cross-layer fault tolerance, while energy efficiency and security aspects receivecomparatively less attention.The high research effort inmarinewireless networking, as evident in Figure 2, confirmsthe claim by [78] that progress in the Internet of Underwater Things (IoUT) has been slowdue to the unique challenges posed by underwater wireless sensor networks. Specifically,the main challenges for IoUT lie in the differences between underwater wireless sensornetworks and terrestrial wireless sensor networks [78], for example, radio signals are ab-sorbed in a short distance under water making them unusable, recharging devices may becomplicated because physical access may be limited, water flow may move the devices,and pressure and corrosion may lead to flooding of the electronics.
2.3.1 Fault Tolerance Tasks
The objective of the current section is to define a taxonomy of Fault Tolerance tasks tohelp categorize the identified papers. The Fault Tolerance tasks are based on more gen-eral Fault Tolerance principles from Reference [147, 21]. Figure 3. shows the taxonomy ofFault Tolerance tasks applicable in USNs and how they affect each other. While the Designand initial Deployment of USNs contribute to Fault Prevention and Prediction abilities,Data Collecting techniques at the run-time contribute also to Fault Detection and Fault

15



Fault Tolerant

Cross Layer

Energy Efficient

Scalable

Secure

Localization

Mobile

Wireless

10

20

30

40

Terrestrial
Marine

Figure 2: A radar chart of the analyzed papers addressing the main specific areas.

16



Fault tolerance

Fault prevention
and prediction

Design Deployment Data collection

Fault detection
and identification

Fault Isolation,
Masking and Recovery

Figure 3: Taxonomy of Fault Tolerance tasks in USNs.

Recovery stages of the system.The techniques under consideration can be categorized into the following groups:
• Fault Prediction and Prevention
This task is about both preventing a fault to happen, as well as about proactive faultavoidance. Sensor networks can prevent certain faults from happening by designand/or deployment aspects. A disadvantage of fault prevention is a potentially in-creased system complexity. Fault avoidance, in turn, includesmanufacturing testingand verification, which have a high cost often exceeding that of the entire designprocess.

• Fault Detection and Identification
One of the central parts of Fault Tolerance is Fault Detection and Fault Identificationof affected components which can, for instance, be performed by utilizing data col-lection with ping messages. Without Fault Identification, for instance, sensor nodeand network faults may be hard to distinguish. A disadvantage of Fault Detectionand Fault Identification may be additional energy requirements and network con-gestion.

• Fault Isolation, Masking, and Recovery
Isolation, masking, and recovery are different techniques for repairing a fault, min-imizing the effect of a fault, or avoiding it to turn to system failure. Identified faultscan be isolated, masked, and sensor network recovered, for instance, redirectingtraffic through healthy backup components. Fault Recovery can ensure overall sys-tem operation even when components degrade. The downside may be the cost ofadding components to ensure redundancy.

2.3.2 Comparative Analysis
All the papers that were included in the survey are listed in Table 1. The table includes in-formation about the targeted extra-functional aspects and Fault Tolerance task(s). In ad-dition, the Marine column in Table shows if the listed paper is explicitly touching aquaticenvironments. The papers are ordered by their order of citation within this survey paper.Papers that are not directly cited in the text but still listed in Table 1 are ordered chrono-logically by the publishing year. Papers that are not included in the analysis but are cited(e.g., definitions) have not been included in the table.

17



It can be seen from Table 1 that only two papers address both marine and cross-layerFault Tolerance aspects. However, in the work targeting cross-layer analysis of error con-trol [41], the term ’cross-layer’ does not apply to the system stack but only to the com-munication protocol layers. Another work authored by the authors of this survey [155] isfocusing on data-driven cross-layer Fault Tolerance. Thus, there is a serious gap in researchaddressing cross-layer Fault Tolerance in underwater sensor networks.Regarding other extra-functional aspects, security inmarine environments is addressedby six marine enrivonment related papers and is focusing on securing wireless communi-cation [91, 61, 5], authentication [22], and hybrid attacks [60]. On scalability, sevenmarine-related papers were identified, and underwater scalability has been researched, for in-stance, in the context of monitoring underwater pipelines [104]. On Energy-efficiency,there were 14 marine-related papers identified, and extensive focus has been on energy-efficient underwater wireless protocols [43, 171, 167, 163, 159, 68, 124] and less on otheraspects. Open research issues from all the mentioned extra-functional aspects are dis-cussed in the following section.
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Table 1: Categorized papers.

Pub. Year Extra-functional aspect Marine Fault Tolerance (FT) Tasks andSecure Energy-efficient Scalable Cross-layer other Research Areas[78] 2017 - - - - + FT design, survey, wireless[3] 2019 - - - - - FT detect/recover, survey[88] 2018 - - + - - FT detect/recover[80] 2013 - - + + - FT detect/recover, wireless[116] 2007 - - - + - FT detect/recover, survey, wireless[39] 2009 - - - - + FT detect, wireless[41] 2012 - - - + + FT detect/recover, wireless[67] 2011 - - - + - FT design/detect/recover[53] 2013 - - - + - FT design/detect/recover, vehicle[97] 2012 - - - - - FT prevent[140] 2012 - - - - - FT prevent[127] 2016 - - - + - FT prevent/detect/recover[76] 2000 - - - - - FT prevent/detect/recover[143] 2012 - - - - - routing protocol, survey , wireless[144] 2018 - + - - + sensor network, wireless[152] 2013 + + + - - survey, wireless, routing protocol[113] 2016 - - - - + routing protocol, sensor network, wireless[74] 2018 - - - - + survey, wireless, sensor network[161] 2007 - - - - - deployment, localization, sensor network, wireless[71] 2004 - - - - - deployment, sensor network, wireless[42] 2020 - + - - + sensor network, wireless, FT recover[24] 2008 - - - - - deployment, sensor network, wireless[14] 2018 - + - - - sensor network, wireless, FT detect[55] 2017 - - - - + wireless, sensor network[56] 2017 - - - - + wireless, sensor network, FT detection, FT recoveryContinued on next page
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Table 1 – continued from previous page
Pub. Year Extra-functional aspect Marine Fault Tolerance (FT) Tasks andSecure Energy-efficient Scalable Cross-layer other Research Areas[18] 2016 - - - - + framework, wireless, sensor network[118] 2015 - - - - + framework wireless, sensor network[119] 2013 - - - - + framework, wireless, sensor network[5] 2015 + - - - + framework, wireless, sensor network[21] 2010 - - - + - FT design[95] 2013 + + - + - wireless, sensor network[58] 2011 - - + - - FT design[110] 1995 - - - - - sensor network, FT detect, FT recover[112] 1992 - - - - - FT design[12] 2014 - - - - - sensor network[25] 2012 - - - - - sensor network, deployment[29] 2016 - - - + - sensor network, FT detect, FT recover[50] 2015 - - - - - survey, sensor network, wireless, FT detect[2] 2019 - - - - + vehicle, FT recovery[26] 2011 + - + - - FT detect, FT recover[102] 2016 - + + + - survey, wireless, FT detect, FT recover,[137] 2007 - - - + - sensor network, FT detect, FT recover[34] 2010 - + + + - FT detect, FT recover[30] 2017 + - - - - survey, sensor network, wireless[154] 2017 - - - + - survey, FT detect, FT recover[103] 2010 - - - + - FT detect, FT recover[66] 2014 - - - + - FT detect, FT recover[155] 2020 + - + + + sensor network, FT detect[163] 2012 - + + - + FT detect, FT recover, sensor network[167] 2016 - + + - + sensor network, routing protocol, survey, FT detect, FTrecoverContinued on next page
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Table 1 – continued from previous page
Pub. Year Extra-functional aspect Marine Fault Tolerance (FT) Tasks andSecure Energy-efficient Scalable Cross-layer other Research Areas[91] 2016 + - + - + wireless, sensor network[31] 2017 - - + - + localization, sensor network, FT recover[104] 2011 - - + - + sensor network, FT detect[16] 2000 - + + - - localization, sensor network[111] 2001 - - - - - FT prevent[168] 2002 - + + - - wireless, sensor network[33] 2004 - - - - - FT design, sensor network[15] 2005 - - - + - cross-layer, FT design, FT recover, framework, sensornetwork[64] 2006 - - - - + sensor network, wireless[92] 2008 - - - - - wireless, FT detect, sensor network[160] 2008 - - - - + sensor network[81] 2009 - + + - - wireless, FT design, sensor network[150] 2009 - - - - + localization, sensor network[166] 2009 - - - - + localization, wireless, sensor network[6] 2010 - - - - - sensor network, survey[83] 2011 - - - + - vehicle, FT detect, FT recover,[146] 2011 - - - - - vehicle, FT detect[133] 2011 + - - - - sensor network,[68] 2011 - + - - + wireless, sensor network, routing protocol[117] 2011 + - - - - sensor network[164] 2011 - - - - + wireless, sensor network, routing protocol, FT recov-ery[40] 2012 - - - - + sensor network[41] 2012 - - - - + wireless, sensor network, FT detection, FT recovery[100] 2013 - - + + - wireless, sensor network, FT detect, FT recoverContinued on next page
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Table 1 – continued from previous page
Pub. Year Extra-functional aspect Marine Fault Tolerance (FT) Tasks andSecure Energy-efficient Scalable Cross-layer other Research Areas[151] 2013 - - - - - FT detect[57] 2013 + - + - - wireless, sensor network,[59] 2013 - - + - + localization, sensor network[4] 2013 + - + - + vehicle[43] 2013 - + - - + sensor network, wireless[114] 2014 - - - + - wireless, sensor network[126] 2014 - - + - - wireless, sensor network[87] 2014 - + - - - wireless, sensor network, routing protocol[172] 2014 - - - - + sensor network[134] 2015 - + - - + sensor network, wireless[10] 2015 - - - - - FT mask[13] 2015 - - - + - sensor network[169] 2015 - - - - + localization, wireless, sensor network[62] 2015 - - - - + localization, wireless, sensor network, deployment[153] 2015 - - - - + wireless, sensor network, routing protocol[61] 2015 + - - - + wireless, sensor network[128] 2016 - - - + - FT detect, FT recover,[159] 2016 - + - - + sensor network, wireless[171] 2016 - + - - + wireless, sensor network, routing protocol[135] 2016 - - - + - FT design, FT detect[36] 2016 - - + - - survey[93] 2016 - - - - + localization, vehicle[94] 2016 - - - - + sensor network, wireless, localization[79] 2016 - - - - + vehicle, sensor network[22] 2016 + - - - + sensor network, wireless[84] 2017 - - - + - FT detectContinued on next page
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Table 1 – continued from previous page
Pub. Year Extra-functional aspect Marine Fault Tolerance (FT) Tasks andSecure Energy-efficient Scalable Cross-layer other Research Areas[106] 2017 - + + - - sensor network, survey[124] 2017 - + - - + sensor network, routing protocol[145] 2017 - + - - + wireless, sensor network, routing protocol[20] 2017 - + - - + sensor network, wireless[44] 2017 - + - - + localization, wireless, sensor network[77] 2017 - - - - + survey, sensor network, wireless[108] 2017 - - - - + localization, wireless, sensor network[141] 2017 - - - - + vehicle[32] 2017 - - - - + localization, sensor network[7] 2018 - - - + - FT detect, FT recover[136] 2018 - - - - + clustering, sensor network, routing protocol, FT de-tect, FT recover[28] 2018 - - - - + sensor network, FT detect, FT recover[148] 2018 - - - - + wireless, sensor network, fault, FT detect, FT recover[165] 2018 - - + - - vehicle, sensor network, wireless[63] 2018 - - - - + localization, wireless, sensor network[142] 2018 - - + - + localization, sensor network[19] 2020 - - - - - sensor network, FT detect, FT recover[60] 2020 + - + - + sensor network, wireless[35] 2020 - - - - - sensor network, FT detect[75] 2020 - - - - + sensor network, wireless, routing protocol, vehicle, FTdetect; FT recover[120] 2020 - + - - + wireless, sensor network, fault, FT recover, FT detect[107] 2020 - - - - - sensor network, wireless, FT detect, FT recover[162] 2020 + + - + - sensor network, survey. FT detect, FT recover[73] 2021 + + + - + sensor network, surveyContinued on next page
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Table 1 – continued from previous page
Pub. Year Extra-functional aspect Marine Fault Tolerance (FT) Tasks andSecure Energy-efficient Scalable Cross-layer other Research Areas[121] 2022 - + - - - sensor network, routing protocol, wireless[11] 2023 + + + + - wireless, sensor netwok, data aggregation, FT detect[173] 2023 + + + - + survey
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2.3.3 Open Research IssuesThe open research issues identified are presented according to the categories of extra-functional aspects reported in Table 1.
Security and faults are interrelated concepts [26] as faults can enable new intrusionvectors [34] and security intrusion can lead to faults. Energy usage need to be addressedas USN-s may not have unlimited power supply and cross-layer approach is consideredmore energy-efficient [21] than single layer. Scaling benefit is to allow lower cost perfunctionality [34]. At the same time large scale fault tolerant systems are researchedwithout paying special attention to energy and communication constraints [26]. Currentthesis addresses these issues to some extent from the cross-layer perspective (see forexample Section 3.3).

2.4 Chapter Summary
The current chapter presented fault tolerant techniques in USNs and pointed out openresearch issues in this field. The techniques were divided into groups according to thenew taxonomy of Fault Tolerance tasks, and papers utilizing these techniques were shownin sections corresponding to the tasks.The conducted survey was the first to investigate the state-of-the-art in Fault Toler-ance, particularly cross-layer Fault Tolerance, in USNs. According to the survey, there is alack of research about the cross-layer Fault Tolerance aspect for underwater sensor net-works, which is covered in this thesis.
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3 Preliminaries: Sensors, SensorNetwork Framework, Data Lay-
ers, and Case Study Scenarios

3.1 Motivation
This chapter further elaborates on the devices, framework and concept that are not ex-haustively presented in published papers; additional information is provided here to pro-vide a better understanding of these essential elements that are used in the presentedworks. In Section 3.2 the author is describing the sensors used in Chapters 4-6. Thesesensors were not built by the author of this thesis. In Section 3.3 the author describes thesoftware framework developed and used exquisitely for the current thesis Chapters 5, 6by the author. In Section 3.4 the implementation of data layers proposed by the author isexplained, which was implemented in the software framework and used in Chapters 5,6.
3.2 Sensors Used for Experiments
In the next sections, we cover sensor networks for two case studies - an underwater flowmonitoring and an indoor climate sensing.
3.2.1 Underwater Sensor Network Installation
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Figure 4: A) Sensor Node B) Harbor Installation

The proposed approach was evaluated in an underwater network to monitor the seacurrents in the harbor. Sensor nodes are installed on the underwater harbor infrastruc-ture to notify approaching ships about the water flow around the piers. The goal is thatberthing ships get information about the flow and turbulence from Sensor Nodes installedon the pillars of the pier. The Sensor Nodes are connected to the Sensor Gateway withunderwater cables over RS-485 serial communication, and thus the configuration of theunderwater sensor network is fixed.Hydromasts [130, 132, 125, 131] are sensors that have previously been used for under-water flow sensing [130, 132, 131], hydromorphological classification [130], and surface
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vessel localization [125]. In this thesis Hydromasts are used for flow sensing and are fromhere on referred to as Sensor Nodes.The Sensor Node applied in the case study is shown in Figure 4. A and its detaileddescription is given in [132]. The Sensor Nodesmeasure the flowmagnitude and directionfrom the stem vibrating in the flow. An IMU (Inertial Measurement Unit) embedded intothe Sensor Node calculates the accelerations of the stem in x and y directions. In thecurrent implementation, to estimate the flow magnitude from the IMU data, a 15 s seriesof IMURawdata is transformedwith FFT (Fast Fourier Transform) into a frequency domainin 120 s intervals, and the PSD (Power Spectral Density) is used to find flow direction andmagnitude using calibrations described in [132]. All the Sensor Nodes are wired to theSensor Gateway in a star network topology.The Sensor Nodes are installed around the pillars at two different depths so that atboth depths 4 Sensor Nodes are attached around the pillar at 90 degrees angle from eachother forming a logical Sensor Group. This is necessary because, depending on the flowdirection, the pillar itself always shelters some of the Sensors Nodes from the flow. There-fore, each aggregation of 4 Sensor Nodes (Sensor Group) is used to estimate the flow ateach point. Note, however, that the values of the Sensor Nodes in the same Sensor Groupare correlated. Knowing how the flow should behave around obstacles helps us identifyfailing Sensor Nodes as well as to estimate how the readings of the sensors should becorrelated.In total, the installation has 16 Sensor Nodes, grouped into 4 aggregations (SensorGroups) of 4 sensors as shown in Figure 4.B.
3.2.2 Indoor Sensor Network Installation

School building

classroom

CO2 Sensor

Figure 5: School building installation

For the indoor climate sensing experiment covered in Section 4 the sensors used wereas follows. Commercial indoor air quality sensors manufactured and designed by SmartTemp Australia Pty Ltd model number SMT-IAQ3 [149] were used. The producer claimsthat the accuracy of the temperature sensor is +/- 0.5 ° C at 25 ° C (operating range –5 to50 ° C) and the accuracy of the relative humidity (RH) sensor is +/- 5% at 25 ° C and 30%to 80% RH (range 0 to 95 % RH). The CO2 sensor is a non-dispersive infrared sensor with
27



+/- 30ppm accuracy at 25°C, and the operating range is 0-2000 ppm. The sensor appliesauto-calibration as themanual [149] states that – “The CO2 sensorwithin the SMT-IAQ3 has
an advanced learning self-calibrating function. This calibration process takes place over
an 8-day period.”. The sensors were installed into 56 different rooms in a well-ventilatedschool building in Estonia and the data logged during 6 month time period (see Figure 5).The installation of the sensor network for the indoor experiment was implemented bya commercial third party and the framework described in 3.3 was not used. The authorof the current thesis analyzed and developed an algorithm based on the already gatheredsensor data (see Chapter 4).
3.3 Implemented Software framework for sensor networks

Figure 6: Server-based Underwater Sensor Network framework software architecture.

This subsection presents the software framework for underwater sensor networks im-plemented in the current thesis. The implemented software framework is also presentedin the publication V. The author provides an overview of related works, describes thedeveloped components, and gives an overview of the high-level software architecture ofthe framework.
3.3.1 Overview of Related Works
[86] has proposed a general Sensor Network application approach. The threat of errorpropagation is addressed. It covers Input, Signal processing, and Output. Data processingand prediction are alsomentioned. However, no clearmethodology choices are proposed,the paper is very general, and no implementation details are covered.[99] is introducing the Fault Tolerance Event Manager (FaTEMa) into IoT systems. It isa multi-layer approach and divides challenges into Heterogeneity, Adaptability and Evolu-tion, Distributed Decision Mechanism, and Information Redundancy. Resource consump-tion was considered and scalability was addressed using distributed decisions. Security ismentioned, but no details like Infrastructure as Code and ease of development and rapiddeployment are addressed.Other works [96, 138, 17, 38, 89, 115, 1, 90, 65] lack the following advantages that areimplemented in the sensor network framework developed by the author of the current

28



thesis and presented in the publication V.
• Infrastructure as Code (IaC)

– Scalability, immutable infrastructure, ease of operational maintenance. Re-duce time and resource-consuming software configuration and maintenance.Automatic scalability from cloud reliance and easy infrastructure multiplica-tion for new installations. Immutable infrastructuremakes it possible tomain-tain more complex systems with the same resources.
• Containerized edge application.

– Platform independence, configuration automation
• Edge cloud VPN.

– Fault management, edge devices online monitoring, IoT fleet management.Allows monitoring state of devices near real-time, which is not possible with-out IP network (e.g. LoRa). Proactive fault management is possible.
• Transparent remote release process.

– Rapid bugfixes, reduced downtime. Not possible without IP network (e.g.LoRa). Software code will be accessible, and new releases do not need physi-cal access to sensors.
• Security

– Every Sensor Hub has own SSL public/private key pair signed by public CA, au-thentication is done via private keys, validated on cloud side and whole traffictravelling over public network is encrypted into SSL tunnel.
– Multitenant
– Open Source

3.3.2 High-Level Software Architecture of the FrameworkFor the purpose of managing underwater sensor networks and their faults, the author de-veloped and implemented an initial software framework for running the components onone or multiple network servers. The initial implementation of the framework architec-ture is shown in Figure 6. In the following, a brief overview of the developed componentsdivided into logical Edge, Fog, and Cloud [8] computing environments is provided.
1. The Edge computing environment includes Sensor Nodes that measure environ-mental data and transfer it to a Sensor HUB.
2. The Fog computing environment consists of a Sensor HUB that is connected to mul-tiple sensor nodes that can form Sensor Groups. A Sensor Hub gathers sensor data,processes it, and publishes data further into the Broker in the Cloud Layer.
3. The cloud computing environment has a Broker component, which acts as a com-munication bus between the Cloud and Fog layers, as well as between functionalcomponents in the Cloud layer. The term Broker originates from the MQTT [72]standard; however, its functionality is not vendor-locked. The Cloud layer can alsoinclude an Aggregator that manipulates the data according to defined domain-specific rules and publishes the manipulated (aggregated) data back to the Broker.
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The Recorder is subscribed to the Broker and listens to the incoming data. It doesnot manipulate the data in any way and only records them using predefined rules.
Subscribers can subscribe to the Broker to the data interested. This allows accessingdifferent data feeds that pass the Broker with small latency. The Web componentis presenting data from the Storage to End Users. The name is an abstraction thatdoes not have to be a Web application but can be any kind of user interface.

A more detailed view of the software framework using a cloud service provider is pre-sented in Figure 7. Components are divided by the used environment into 4 layers. Edgelayer (red) contains components with limited network connectivity, computational and/orstorage resources. There are 2 cloud layers used. Balena cloud (blue) is used for edgecomponents monitoring andmanagement. AmazonWeb Services (orange) contains maincloud components for data collection, additional processing, and presentation. The exter-nal access layer (white) is for 3rd-party integrations, software deployment, fleet manage-ment, and data access.Components in Figure 7 presented with blue background are administered servicesprovided by Balena, orange background means administered services managed by AWSand green background notes custom developed components. The continuous lines in Fig-ure 7 shownetwork connections established by the system, dashed lines human-activatedand on-demand connections.For AWS services, IaC (infrastructure as code) is used, specifically AWS Cloudforma-tion CDK. The source code for self-developed components as well as IaC is kept in GITrepositories. Self-developed components are using Python 3.9 and ReactJS (for the webinterface).On the Edge layer, there are sensor hub devices. The sensor hub hardware is Rasp-berry Pi 3, Beaglebone Black/Green, or other single board computer (SBC). It can storethe data of each sensor locally on an SD card or USB memory stick, and send data viaMQTT or LoRaWAN to AWS IoT Core. Hydromast sensors that can be reached with a ca-ble, can connect to a single sensor hub. Usually, 1-5 sensors connect to one sensor hub.The sensor hubs run on Taltech developed Sensor Hub application (see Figure 7) on Bale-naOS. BalenaOS is an operating system that is based on Linux kernel and is optimized torun Docker containers on embedded devices. Sensor hubs are managed through Balena-Cloud or OpenBalena servers. These servers keep all the devices in groups called fleets,which enablesmonitoring, developing, configuring, and updating the software on specificor all connected fleet devices simultaneously. A Sensor Hub can be either offline or online.In case of being online, a CloudLink OpenVPN connection is established to Balena cloudservices and (depending on configuration) to MQTT Broker (see Figure 7). Balena cloudVPN connection allows tomonitor the health of the device, change the configuration vari-ables of the hub, and manage software releases on it. MQTT connection allows to uploaddata and respond to commands.
3.4 Proposed Layered Data Model
In this section, we look at the sensor network from the perspective of the sensor data.Table 2 presents the data-driven layers of the sensor network architecture proposed bythe author of this thesis. There are three data layers - Raw, Processed and Aggregated thatcorrespond to different functionalities that can be loosely connected to given computingenvironments as shown in the Table.In the Raw data layer (i.e. layer L1), there are data that are measured and transferredby the set of Sensor Nodes S = {si}. The Raw data layer holds Sensor Node data before
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Figure 7: The implemented underwater framework architecture.
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transformations and calibrations.
Processed data (layerL2) is generated by the Sensor Gateway (s) (see Section 3.3) fromRaw data. The processing step is essential in the current application (see Section 3.2),where sensor acceleration has to be transformed into the frequency domain. Additionally,during the processing outlier data is smoothed out and it is determined whether the dataare within the measurement limits.
Aggregated data (layer L3) is generated for the Sensor Groups G = {g j} by the Ag-gregator component (see Section 3.3) from the Processed data of the Sensor Nodes {si}.The purpose of the Aggregating process is to provide transition from single Sensor Nodes’data to Sensor Groups’ data.

Table 2: Data layers and their mapping to computing environments

Data Layer State Computing
environment

L1: Raw direct data from sensors Edge
L2: Processed pre-processed data from sensors Edge/Fog
L3: Aggregated data combined to sensor groups Cloud
More formally, the data processing and aggregation takes place as follows. Let us as-sume that sensors measure and send values periodically and the event of receiving a validtest packet at the Raw data layer L1 by sensor si at a discrete time instance t be ρ(i, t). Allthe valid ρ(i, t)measurement values received during a time interval T , containing n timeinstances, are pushed into the Raw data queue of length n, which acts as a First-In-First-Out (FIFO) data buffer:

Q = {q1,q2, ...,qn},
where q1, ...,qn represent n latest valid ρ(i, t)measurement values.To obtain the processed data at layer L2, the data in Q are processed by a signal pro-cessing function Ψ to obtain the processed data value of σ(i, t), i.e.

σ(i, t) = Ψ(Q).

Subsequently, the processed data value σ(i, t) of the node si is passed through a cali-bration function Φi, i.e. the calibrated processed value of sensor si at time t is
γ(i, t) = Φi(σ(i, t)).

Subsequently, the aggregated value α( j, t) of the sensor group g j in layer L3 is calculatedby an aggregation functionΩ on calibrated values γ(i, t) of the sensor nodes si that belongto the sensor group g j, i.e.
α( j, t) = Ω({γ(i, t)|si ∈ g j}).

Finally, the aggregated value α( j, t) is converted to the physical quantity β ( j, t) requiredby the end user by applying the conversion function Ξ:
β ( j, t) = Ξ(α( j, t)).

3.5 Chapter Summary
In the current chapter, the author covered the pereliminaries of the Data-driven cross-layer Fault management in underwater sensor networks. In the next chapter, we proceedwith the proposed fault management framework by presenting the data-driven methodfor sensor data processing.
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4 Data-Driven Method for Processing Raw Sensor Data
4.1 Motivation
Often direct environmental measurements of sensor networks need data processing toimprove data quality. The purpose of this processing can be mitigating hardware faultsbut possibly also othermisbehavior of the specific devices, or for instance the caseswherenot absolute but relative values are needed.The Data-Driven Fault-Resilient Cross-Layer methods proposed in this thesis are gen-eral and not dependent on the used environment. However, underwater conditions aremuch harsher and faults more frequent. Although this thesis is mainly focused on under-water sensor networks, in this chapter, that is based on Publication III, due to the lack ofthe sufficient underwater data, a terrestrial sensor network of in-door climate is consid-ered and analyzed. The applicability of the methods to UWSN-s is covered in more detailin Section 4.2.In-door climate sensors can measure temperature, humidity, and CO2 concentrationin the rooms. These data are often used for ventilation control, air quality assessment,and occupancy detection. The measurement of the concentration of gases is technicallycomplicated and may lead to significant measurement errors [109]. Additionally, the in-door sensors may have the auto-calibration function that shifts the zero level so that themeasurementswould not drift off. However, this creates jumps in the data and sometimesvalues below the outdoor CO2 level. If the data is further used, occupancy is detecteddifferently, ventilation would not function as designed, and the assessment would resultin a different air quality class estimation.Data-driven methods for processing of Raw data from CO2 sensors were developedto improve the quality of ventilation control and in-door air quality assessment in thepublication III on which the current chapter is based. Methods were tested and verifiedon data collected from 56 CO2 sensors from a school building with balanced heat recoveryventilation in Estonia. The developed methods can be implemented in existing buildingmanagement and In-door Air Quality analysis tools with reasonable computational cost.Section 4.2 discusses the data correction method applicability in the context of Un-derwater Sensor Networks. Section 4.3 describes the development of the method. Theresults are described in Section 4.4 and Section 4.5 concludes the chapter.
4.2 Applicability in the context of USN’s
Although this thesis is mainly focusing on underwater sensor networks, the current chap-ter discusses methods in an in-door sensor network. This section discusses the applica-bility of the described methods in the underwater context.Identified underwater challenges (see Section 2) can be divided by the cause into en-vironmental conditions and engineering constraints. The applicability of the techniquesdiscussed in the current chapter by this division is the following.

• Theunderwater harsh environmental conditions like high pressure, high turbulence,and aquatic lifeformsmay contribute tomore frequent and different types of faults.While the cause of the faultsmaybedifferent, the data behaviour in Raw, Processed,and Aggregated data layers, like redundancy and calibration errors, false readings,and decoding exceptions, is similar. Thus, the underwater environmental conditionsallow to use the methods described in the current chapter.
• Additional optimization of methods may be necessary based on bandwidth and en-ergy constraints. The processes may need to be redesigned to determine the ap-
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propriate IoT layer for their execution. However, the data correction methods areapplicable also in USN’s.
The technique presented in the current chapter aligns with the proposed data layermodel(see Figure 1) by manipulating the Raw data to contribute to the Processed data layer.While the operative scenarios and fault models may be different in in-door and under-water environments, there is no distinction in data life cycle and behaviour on specificfaults. It should be clarified that the example of the concrete sensor correction algorithmdescribed in the current chapter, is aimed at the specific anomalies caused by the shiftingof the sensors, either in in-door, underwater, or other environments. The method pre-sented in the current chapter can be viewed as an optional pre-processing step for faultmanagement discussed in the subsequent chapters.
4.3 Data Collection: Smart Building Case Study

In-door climate data was collected from a high school building for over 6 month period.The following typical cases of deviation from the expected behavior of the C02 measure-ments were identified and further analyzed:
• Outliers were identified as sudden change of the logged CO2 concentration, whichwas followed by a sudden change of the samemagnitude in the opposite direction.

• Incorrect baseline was identified as a significant difference of CO2 concentrationfrom the outdoor concentration of 400 ppm.

• Auto-calibration of the indoor climate sensor controller was identified as a suddenchange in the logged CO2 concentration to approximately 400 ppmwith no changein the opposite direction thereafter.

• Potentially inadequate placement of CO2 sensor was identified as sudden changesin the CO2 concentration at reoccurring times of workdays when the ventilation sys-tem is either turned on or off. This could be caused by the non-uniform distributionof CO2 in the room air caused by the air distribution solution.

• CO2 concentration’s dependency on the air temperature was identified as an un-explainable fluctuation of CO2 concentration fluctuation during unoccupied hoursthat had a negative correlation with the air temperature fluctuation.
To help mitigating the above-mentioned problems, several on-line (sequential) andoffline (retrospective) change point detection [85] and data smoothing algorithms wereinvestigated. Change point detection helps identifying rapid variations in time series data.Accordingly, data smoothing can be used to eliminate peaks and noise caused by mea-surement errors. The author developed a low quantile method [70] that uses specifiedfraction of lower valued measurements to determine the current baseline. The algorithmis described in the following pseudocode block.
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Algorithm: Return input vector with corrected baseline
1: function get_fixed_baseline(vec, window_size, bottom=1, base)
2: result← []
3: for j← 0 to len(vec)−window_size do
4: l p← np.percentile(vec[ j : j+window_size],bottom)
5: result.append(median(l p))
6: end for
7: lb← np.concatenate((np.ones(window_size)× result[0],np.array(result)),)
8: return vec− lb+base
9: end function

The algorithm to return the measurement vector with corrected baseline values isshown as an offline version in the pseudocode. The input variables are as follows : vec isthe sensor measurement vector of floating point numbers, window_size is an integer withthe size of the sliding window buffer (120 in case of 5 min measurement interval and 10hwindow), bottom is an integer with the needed bottom percentile value and base is thefloating point actual baseline value (400 in our case, provided by legislation). The calledfunctions are as follows: np.percentile returns the requested percentile vector from theinput vector, np.concatenate joins multiple arrays and is used for the first values when thecorrect baseline cannot be determined yet.
The developed low quantile method is discussed in detail in the publication III. Themethod can detect and compensate the above-mentioned baseline and auto-calibrationdeviations, as well as also eliminate high outlier data. The time complexity of the methodin the big O notation is O(n) where n is the size of the data in the defined sliding timewindow (10 h for the classroom data used in the experiments). Being online as well ascomputationally light-weight enables its use also in real-time applications.

4.4 CO2 Concentration Correction Results
The performance of the CO2 base value correction algorithm used was qualitatively eval-uated by comparing initial logged and corrected CO2 level concentrations. Figure 8 illus-trates the respective CO2 concentrations during 5 weeks in all the classrooms. The ini-tially logged CO2 concentration outside expected occupied hours varied constantly over100 ppm and was typically above 400 ppm. This highlights the need for further post-processing of logged data of the installed sensors despite the in-built auto-calibrationfunction. The corrected values reflect the expected behavior. However, there were stillsomeoutlierswith values significantly below400ppmdue to the chosenquantilemethod,which should be removed by further developing the data-processing methods before ap-plied for IAQ assessment or ventilation control.

The performance of the base-level correction method was additionally assessed bycomparing the duration curves of initially logged and corrected data. The results of allthe rooms with CO2 sensors are given in Figure 9. Visually, the largest difference appearsduring periods when the CO2 values are near outdoor level.Table 3 shows the impact of the baseline level correction by comparing the loggedvalues against different CO2 concentration levels. The COVID-19 pandemic situation rec-ommended ventilation control setpoint 550 ppm [129] for was exceeded during 89.1 and74. 4%of the occupied periodwith initially logged and corrected data, respectively. There-fore, the impact of baseline-level correction would have been significant if the school haddemand-controlled ventilation and the recommendations had been followed. The dif-
35



2021-01-15 2021-01-22 2021-02-01 2021-02-08 2021-02-15 2021-02-22
time

500

1000

1500

CO
2 (

pp
m

)

Original CO2 for all rooms

2021-01-15 2021-01-22 2021-02-01 2021-02-08 2021-02-15 2021-02-22
time

500

1000

1500

CO
2 (

pp
m

)

Fixed CO2 for all rooms

Figure 8: Example of CO2 concentration of all rooms during 5 weeks with initially logged (above) and
corrected (below) baseline values

0 20 40 60 80 100
time (%)

0

500

1000

1500

CO
2 (

pp
m

)

Cumulative CO2 of all rooms

0 20 40 60 80 100
time (%)

0

500

1000

1500

CO
2 (

pp
m

)

Cumulative corrected CO2 of all rooms

Figure 9: Cumulative CO2 of all rooms in the same timeframe as previous figure

36



ferences in exceedances of 800 and 1000 ppm were even more significant. As initiallylogged CO2 concentrations were generally higher than the corrected values, then the ini-tially logged valueswould have prompted unnecessary disturbances in school work due toopening windows during classes or even stopping schoolwork due to increased infection-risk.
Table 3: The impact of baseline level correction of comparing logged values against different CO2
concentration levels

Time of occupied period above the respective CO2 level, %550 ppm 800 ppm 1000 ppmInitial 89.1 46.2 18.2Corrected 74.4 27.7 5.9

4.5 Chapter Summary
In this chapter, a terrestrial sensor network for in-door climate monitoring was consid-ered. Data-Driven Fault-Resilient Cross-Layer methods are general and not dependenton the used environment, but underwater conditions are much harsher and faults morefrequent. Although this thesis is mainly focused on underwater sensor networks, in thischapter, that is based on Publication III, a terrestrial sensor network of in-door climate isconsidered and analysed, due to the lack of the sufficient underwater data. Data-Drivenmethods are not environment dependent and can be used for underwater as well as ter-restrial sensor networks. The data from sensor networks are frequently used for assess-ment, automation, or as input to other processes. However, often when sensor data areflawed, it needs processing before moving on. In the current chapter, a method for CO2base level correction was developed and method’s performance qualitatively assessed.The method used percentile values from a sliding time window to identify the baselevel, and subsequently the data were corrected so that the base level would be constant.The best compromise between accuracy and delay in data correction was reached using1% percentile values in a 10 hour sliding time window. The impact of the algorithm wassignificant when comparing the initially logged and corrected values against CO2 concen-tration thresholds.The method was developed to correct CO2 concentrations in near real-time withoutknowing future values. Therefore, the current implementation is more effective in cap-turing the downward jumps of the CO2 base level. The baseline correction method can beimplemented also for regular In-Door Air Quality assessment, e.g. with weekly ormonthlyfrequency, and for such application the method should be developed further to also ef-fectively capture the upward jumps, which is currently delayed.The developed method needs to be further tested based on data from inadequatelyventilated buildings, building with different occupancy patterns, and sensors that mightprovide worse quality data that contain more outliers. Additionally, the post-processedCO2 concentration needs comparison with more detailed measurements with calibratedsensors for further validation anddevelopment. Finally, the current implementation of thealgorithm effectively captures downward shifts in the logged data, but not upward shifts.That behavior is caused by the minimum values of the sliding time window that cannotbe easily predicted because of the online (i.e. near-real-time) nature of the proposedalgorithm. Future development is needed to be able to capture upward shifts with a lesserdelay.
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5 Cross-Layer Fault Management in Data Processing
5.1 Motivation
Cross-layer resilience is the cooperation of multiple techniques from different layers ofthe system stack to achieve cost-effective error resilience, as a possible solution to designlow-cost resilient systems [23].Data-driven signal processing-based fault detection and diagnosis employ signal pro-cessing functions to identify faults and anomalies [37, 27, 52, 170, 54].The current chapter is based on the publication I and combines two concepts men-tioned above, introducing a data-driven, cross-layer fault-resilient architecture for sensornetworks. The proposed approach does not focus on the system stack but rather on thedata health of the sensor network.The main purpose of a sensor network is to measure, gather, and deliver valid data.Although the root cause of invalid data lies somewhere in the system stack, the conceptof data-driven cross-layer resilience is basedmainly on the purpose of the sensor networkand less on the implementation details. In the approach proposed in the current thesis,the data layers are part of the sensor network’s essential functionality itself, and no addi-tional dedicated hardware is needed. In proposed architecture data are collected exclu-sively by the functional sensors (the Raw data layer) that are part of the system. Furtherdata layers include processed data and aggregated data from different sensor sources. Asit is shown in this chapter, the approach allows detecting faults on a higher data layerseven if they escape lower layer detection, and provides online diagnosis capabilities tothe network in order to pin point the root cause and location of the error.
5.2 Fault Detection and Diagnosis at Different Data Layers
Figure 10 presents a flowchart of Raw and Processed data layer processes. When a serialpacket arrives from a sensor node, it is decoded, and the sensor values are pushed to afixed size raw data FIFO queue. When the FIFO queue is full, then the oldest values aredisposed. Simultaneously, at the predefined time intervals, data from the raw data FIFOqueue are cloned taking a still snapshot of the contents of the Raw queue. This allowsto compute the Processed data layer values without interfering with the continuous Rawdata layer update. For a more detailed definition, implementation, and notation of datalayers, please see Section 3.4) or Publication I on which the current chapter is based.

Fault detection at Raw Data Layer L1: The fault detection at the Raw data layer is exe-cuted when decoding the incoming sensor measurements (see Figure 10). Invalid packetsat sensor nodes si (e.g., malformedormissing packets) at time instance t are filtered at thislayer. In addition, the ratio of good to bad packets is accumulated. At this level, problemsthat may occur and cause invalid packets are as follows:
• Data Decoding Error - the data packet does not correspond to the correct length orbyte values and cannot be read from current stream.
• Redundancy check failing - One of the values in the data packet is the name of theSensor Node, which should stay constant and never change.
The amount of deterioration of a sensor on the Raw data layer is characterized by thedifference on invalid and valid packets.
Fault detection at Processed data Layer L2: Processed data layer consists of singlesensor si values identified by index i values, similar to Raw Data Layer. This layer includesan incoming FIFO queue for the data from the Raw data layer of which a snapshot is taken
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at a predefined interval (see Figure 10). The contents of the queue are processed, and theresults are assigned to the processed data collection that is then sent upstream. To beable to obtain the processed value (e.g. Fourier transorm), the Raw data FIFO queue hasto be full. The processing steps at this data layer include the following.
• Not enough data - The FIFO queue is cleared after every data acquisition by theprocessed data layer. If not enough good packets from the Raw data layer came induring the last acquisition interval, the queue may not be full. This indicates thatprocessing cannot be done.
• Filtering out data values outside the measurement boundaries.

The fault on the Processed data layer is detected when a processed value is outside pre-defined boundaries.
Fault detection at Aggregated Data Layer L3: Single sensors si form a sensor group g jidentified by group index j. At Aggregated data layer, the sensor groups aremanaged, sin-gle Sensor Nodes’ data and Health-maps are analyzed, combined, and aggregated. Whena sensor fails, it is removed from its Sensor Group. If a critical number of sensor nodeshave decayed then the group data cannot be trusted anymore and the sensor group is re-garded as faulty. The aggregatingmethods are discussedmore in detail in the next Chapter6 and the aggregation processes flowchart presented on Figure 16.

5.3 Results
In current section the author presents the results of synthetic scenarios based on real datashowing the benefits provided by the cross-layer data-driven faultmanagement approach.In addition, some real-world examples of naturally occurred incidents are given, wherefaults were detected and diagnosed by the approach.
5.3.1 Graceful Data Degradation Enabled by Fault ManagementIn current subsection, the author is using real data recorded from natural measurementsduring a selected time interval. The faults are injected into these data by overriding datavalues in specific sensors by constant zero vectors. Thus, synthetic fault scenarios arecreated. This set of data values is then simulated to obtain the aggregated values for thesensor group.Figure 11 shows the data degradation in synthetic scenarios based on real data, wherethe sensors were degraded. The comparison (see Figure 11) includes proportional dif-ferences of the aggregated data calculated using failing sensors compared to the goodaggregated data scenario with operational sensors. Proportional differences are foundusing max(x,y)/min(x,y) where x is the best scenario measurement value and y is corre-spondingly some other scenario measurement value at the same time. The orange linerepresents the case where one faulty sensor has been removed from the aggregation ofthe group value. This is equal to the good aggregated value. The blue line represents thecase where one sensor is faulty (having σ .d f q = 0 where σ .d f q denotes the dominantfrequency value from the result of the data processing function) but is still included in theaggregated data computation. The red line represents the scenario where 2 sensors arefaulty (with σ .d f q = 0). Finally, the green line shows the scenario where the 2 faultingsensors are removed from aggregated data computation by the fault manager. The exper-iments show that data-driven cross-layer fault management allows on average to improvesensor groupmeasurement accuracy by 35% (1.0× versus 1.35× deviation from the goodvalue) in case of single sensor errors and nearly twofold (1.72 versus 3.18 × deviation) incase of double sensor errors (see the average values for different scenarios in Figure 11).
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1 faulty sensor included (max:1.90 min:1.00 avg:1.35)
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Figure 11: Proportional difference in aggregated data

In the following, the author shows real data (without any overriding) from two dif-ferent naturally occurred incidents, where fault detection was performed from data atdifferent layers.
5.3.2 Incident 1: Fault detection at the Raw Layer
Incident 1 illustrates a naturally occurred incident, which resulted in cables connecting theSensor Nodes to the Sensor Gateway torn. Figure 12 shows data from one Sensor Groupin different data layers during a 6 hour interval. The Aggregated data layer shows medianwater flow velocity over all the nodes from a Sensor Group at 5 meter depth in the giventime period. The Processed data layer in Figure 12 shows Dominant Frequency on Sensorsbelonging to the same Sensor Group. The Raw Layer in Figure 12 shows the packet countof valid measurements during 180s intervals during this period. On the Raw data layeronly one color can be seen, as all the drawn nodes follow the same line. Although theSensor Groups consist of 4 Sensor Nodes, Node 004 was broken before the time of thisevent and was removed from the Sensor Group. Therefore, its measurements are notdrawn. In Figure 12 all the layers clearly present an incident between 19:54-19:57, wherecorrespondingly faults occurred on all data layers. The incident stopped incoming datafrom the Raw Layer, which is represented as the number of incoming raw data packetsdropping to zero. The processed and aggregated layers show the last good values thatremain constant because no new data came in after the incident. During the incident, theconnection cables were physically cut (see Figure 13).During the 6 hour period that is given around Incident 1, the events from the node levelHealth map are also quantified and shown in Table 4. The few fault events recorded werefrom the incident in which packets were disrupted, ending up with bad packet length and
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Figure 12: Incident 1 time series: Fault manifestation at the Data Layers
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decoding errors. However, this error quantity is low and can be a part of normal operation.It can be seen that for this type of incident, fault detection can be performed from the Rawdata layer monitoring the valid packet flow as shown in the lower section of Figure 12.

Figure 13: Incident 1: Incident damage

5.3.3 Incident 2: Fault Detection at the Processed LayerIncident 2 represents an incident where a stem of a Sensor Node was detached. Figure 14 shows data from different data layers of one node during a 1-hour interval. In this case it can be seen that valid packets kept coming in, however the measurements dropped tozero. Thus f2(i, t) (fault on the processed layer L2 of sensor i at time t) occurred, but no 
f1(i, t) (fault on the Raw data layer L1 of sensor i at time t). It was later found that the moving part of a sensor’s stem was torn off as shown in Figure 15. It can be seen from 
Figure 14 that this type of incident was not identifiable from the Raw data layer, but 
rather from the sudden drop of the dominant frequency to zero at the Processed layer.Table 5 shows that there were no detected faults at the Raw layer (¬ f1(i, t)) and thevalid data packets count was higher than in Incident 1 (see Table 4) due to the fact thatthe data flow was never interrupted.
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Table 4: Incident 1 event quantification (same interval as Figure 12)

Count
Event type Sensor 001 Sensor 002 Sensor 003Valid packets 3559807 3559774 3559793Data not yet ready 0 0 0Bad packet length 3 2 2Decoding error 0 1 0Serial number changed 0 0 0Port closed 0 0 0
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Figure 14: Incident 2 time series: Fault manifestation at the Data Layers

Table 5: Incident 2 event quantification (same interval as Figure 14)

Count
Event type Sensor 009Valid packets 4317807Data not yet ready 0Bad packet length 0Decoding error 0Serial number changed 0Port closed 0
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Figure 15: Incident 2: Incident damage

5.4  Chapter Summary
The proposed architecture was implemented and tested in real life on a single sensor 
network. Although our intention was to develop a generic sensor network architecture 
and it showed benefits in implemented water velocity measuring sensor network, it has not been validated on other type of real sensor networks.The sensor network used for testing has essential signal processing needed for its functionality, so the data layers were not artificial, and data-driven cross-layer fault management was integral addition to the core functionality of the sensor network. Not in case of all types of sensor networks the proposed architecture may be possible to implement or be resource and cost efficient.The incidents and synthetic scenarios based on real data show that the data-driven cross-layer fault management allows improving the accuracy of sensor group measure-ment by 35% in the case of single sensor errors and nearly twofold in case of double sensor errors. Additionally, the proposed architecture is cost and resource effective as it relies on the sensor network internal functionality and no additional hardware is needed. The architecture is scalable in the sense that there can be multiple hierarchies of sensor groups. In the future, it would be useful to implement and validate the same framework on different types of sensor network applications.In the next chapter, fault management on the Aggregated data layer is researched to dynamically manage sensor outliers and neighboring sensor group degradation.
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6 Fault Management in Data Aggregation
6.1 Motivation
The faults can also be managed on the Aggregated Data Layer. In the current chapterthe author proposes a data-driven method for aggregating the sensor data to improveit’s quality. The current chapter is based on the publication IV. One of the most popularmathematical state estimation tools is the Kalman Filter (KF) [46, 98, 45, 48, 49, 51, 69,139, 82] with its multiple flavors. Sensor data aggregation can also be seen as a stateestimation task, andKF is used for that [101],[9], [122]. The author uses KF data aggregationfor fault masking with details described in the publication IV.
6.2 Methods
Due to physical limitations, harsh underwater environment and possibility of occurrenceof both, persistent and intermittent faults, the sensors vary from correct measurements.To cope with that issue, the author relies on Sensor Groups (see Section 3.4) to generatedata fusion for univariate measurements - that is multiple sensors simultaneously mea-sure similar physical entity. The author is applying KF in the Aggregation Data layer (seesection 3.4) after an initial signal processing is done.The author is using adaptive KF for data fusion to compute aggregated data and getthe filtered estimate that is more reliable than the sources. The KF sensor uncertaintyma-trices (see Publication IV for details) are updated in different configurations as explainedbelow. The following KF configurations were implemented and compared:

• Kalman Static, where sensors’ uncertainty is not updated.
• KalmanDifference, where sensors’ uncertainty is updated using the difference func-tion (see Section 6.2.1).
• Kalman Latency, where sensors’ uncertainty is updated using latency function (SeeSection 6.2.1)
• Kalman Adaptive, where sensors’ uncertainty is updated using both difference andlatency functions.

The computational complexity of the updating steps of the KF state is dependent on thedimensionality of the measurement vector [123], which in our case is the number of sen-sors in a sensor group. Kalman Difference, Kalman Latency and Kalman Adaptive methodshave additional computational steps for updating the uncertainty using residual and timevalues accordingly, making them more complex than the Kalman Static method.The calculation is iterative over time and the aggregated values are the outputs of theKF. The aggregation processes of a sensor group are shown in Figure 16. At the predefinedintervals the last known good processed values from all the sensors belonging to a singlesensor group are collected, the sensor group’s aggregated value is computed, and the nextexecution time scheduled.
6.2.1 Uncertainty from the Difference of Measurement and Estimation
Small latency for sensor measurements can be tolerated, but larger latency values dete-riorate fast. For uncertainty caused by measurement latency, the author applied the sig-moid function described in the publication IV. Sigmoid function used for latency is shownin normalized form in Figure 17 (left).
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Detecting outlier values based on the difference between estimation and measure-ment should not be linear - small differences in velocity should be proportionally moretolerated than larger differences. It should be noted that the sensors used had a de-fined reporting range, so the difference could not increase uncontrollably. For calculat-ing adaptive weights based on difference, the author applied the parabole function thatis described in publication IV. The parabole function used for the difference is shown innormalized form in Figure 17 (right).
6.3 Results
Experiments in two different underwater environments were conducted. The Flow Ob-struction experiment was a short time experiment that took place in freshwater in a riveron February 2, 2023. For this experiment, in addition to the Sensor Nodes, ADV (Acous-tic Doppler Velocimeter) measurements were also used as reference values. The sensornetwork was installed to a river bed (see Section 6.3.1) and the water flow was manuallydisturbed and interfered with.

The Harbor Experiment was a long-time experiment active from April to August 2020.The sensor network was installed into sea water by a harbor for measuring underwatercurrents (see Section 3.2.1). For this experiment, we did not have a reference device.The sensors were neither disturbed nor interfered with manually, the collected data wasnaturally occurring. Most of the time during that period, the water flow was too slow tobe measurable with sensors due to non-windy weather conditions. However, there werea couple of time intervals with a stronger water movement.
6.3.1 Flow Obstruction Experiment
The Sensor Nodes were attached to a metal bar at 20 cm intervals. Perpendicular tothe center of the Sensor Node was another bar with attached ADV (Acoustic Doppler Ve-locimeter, Nortek Vectrino Profiler) approximately 50 cm from the Sensor Nodemetal bar.The constructionwas installed to a river bottom around 1m depth, with the ADV facing theflow and the Sensor Nodes side by side behind it. The order of the Sensor Nodes from theshore was H24, H25, H26, H27. The unobstructed water velocity appeared similar at all
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Sensor Nodes. The Sensor Node offset coefficients are calibrated after installation to cor-respond to the mean value magnitude of the ADV beams. The velocity is calculated usingthemagnitude of median x and y axis angles of the 1 s time frame of 50 Hzmeasurements.Figure 18 shows the obstruction experiment.
• Sensor measurements are shown as dots. Aggregations by different Kalman filtersare shown as lines.
• A human was obstructing the flow by standing in the water for every Sensor Nodefor 30 s in the following order - 1st H24, 2nd H25, 3rd H26, 4th H27
• It can be seen that the obstruction changed the SensorNode angles correspondinglyas the dots representing single measurements move downwards at specific times.
• H25 obstruction is less clear, but happened also while obstructing H24 and H26,thus standing near the 1st and 3rd Sensor Node obstructed the flow also at the 2ndSensor Node.
It can also be seen from Figure 18 that the water flow measurement of the sensors isconsistent and reacts adequately to changes in the water flow. From Figure 18, it can beseen that the Kalman difference is the most optimal aggregation method for this case, asit accurately filters out disturbances at individual sensors. It was followed by median andKalman adaptive aggregation. However, Kalman latency and Kalman static were far moreinfluenced by disturbances at individual sensors.

6.3.2 Harbor ExperimentFinally an experimentwas carried out on naturally occurring data from the actual use case.From the data collected during the five-month period, we selected an interval on 7 May2020 where all of the sensors in the sensor group were active and there was enough flowto measure velocity and direction. The flow is in a measurable range from approximately6:30 to 20:00 when it begins to fade. The day is characteristic for representing the harsh-ness of the environment as there are multiple gaps and outliers in the readings, and oneof the sensors (H3) stops providing new measurements around 13:20.In this harsh, real-world environment, the Kalman difference and Kalman adaptive per-formequally efficiently, while the aggregation provided by theMedian and Kalman latencymethods is far too unstable. Theweakest performance is obtained by Kalman static, whichis consistently overestimating the water current flow.As the result of the experiments, themost robust and stable aggregation performancewas achieved by the Kalman differencemethod, which took into account the difference ofthe measurement value at the sensor from the estimated value. This method performedwell in a stable current as well as in the case of disturbances and also in very harsh condi-tions, where there were gaps and outliers.Kalman adaptive was slightly less accurate with faulty sensor reading, but becamemore robust and equal to Kalman difference in case of more frequent gaps in readings.It might become the preferred option when conditions are extremely harsh and becomeeven more dominated by gaps.
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Figure 18: Comparison of the aggregation methods in the obstruction experiment
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Figure 19: Aggregation methods and processed values for velocity measurement in the harbor ex-
periment
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6.4 Chapter Summary
A fault-resilient underwater sensor network based on sensor data aggregation by updat-ing themeasurement errormatrix of an adaptive Kalman filterwas proposed. A case studyon a real-world harbor water flowmonitoring use-case showed that the adaptive and dif-ference based technique allowed for a significantly smoother aggregation in case of highfault rates in sensors’ readings when compared to traditional Kalman filter and medianvalue based aggregation techniques.
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7 Conclusions
7.1 Summary
The current thesis proposed a data-driven and cross-layer resilient architecture for sensornetworks, where instead of the system stack layers, the data layers are applied in faultdetection and diagnosis to combine fault detection across data layers into a coordinatedsystem health management architecture. The goal was to achieve graceful degradationin sensor networks, allowing them to continue their operations uninterrupted, but with adegraded quality of service. The main specific contributions of the thesis are summarizedbelow.

• The thesis presented a systematic survey of fault-tolerant techniques in underwa-ter sensor networks (USNs), collecting and categorizing the papers based on an in-troduced taxonomy of Fault Tolerance tasks and highlighting open research issues(addresses research question RQ1).
– Systematic search of top papers and related papers was conducted and thosepapers analyzed.
– Taxonomies for fault sources and Fault Tolerance tasks were described to cat-egorize and systematize the analyzed papers.
– The 127 analyzed papers were divided into categories, and open research is-sues as well as more addressed areas were identified.
– The full table of the survey results was presented.

• The thesis also proposed a data-driven method to process sensor data improvingthe quality of data (RQ2).
– An algorithm for in-door CO2 base level correction in near real-time was de-veloped based on CO2 data logged during 6 months from 56 rooms.
– An optimal trade-off between accuracy and data correction delaywas reachedusing 1% percentile values in a 10 h sliding time window of the in-door CO2data.
– The period with more than 1000ppm CO2 concentration in classrooms afterapplying the developed baseline correction algorithmwas almost 3 times less.

• The thesis proposed three data layers - Raw, Processed, Aggregated to use in data-driven cross-layer fault management (RQ3).
– The sensor network architecture was proposed that is cost and resource ef-fective as well as scalable, because it relies on the sensor network internalfunctionality with no additional hardware needed and hierarchies of sensorgroups can be used.
– Both synthetic scenarios and in-field, real-world experiments were providedfor evaluating the cross-layer fault management capabilities and the aggrega-tion of a system health map based on the faults manifesting at the differentlayers.
– Data-driven cross-layer fault management allows the sensor group measure-ment accuracy to be improved by 35% in case of single sensor errors and nearlytwice in case of double sensor error.
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• A data-driven method was proposed to improve the quality of aggregated sensordata (RQ4).
– An adaptive Kalman filter based data aggregation algorithm by updating themeasurement error matrix was proposed. It was the first implementationwhere sigmoid and parabole functions were used for the adaptive Kalman fil-ter weights, as far a the author knows,
– A case study based on a real-world harbor water flow monitoring use-casewas presented that showed the proposed method to allow for a significantlysmoother aggregation in case of high fault rates in sensors’ readings whencompared to traditional Kalman filter and median value based aggregationtechniques.

• A sensor network software framework was developed and implemented and exper-iments in natural environments were conducted.
7.2 Limitations and Future work
One of the limitations of the proposed architecture is that it may not be abstract enough,as it was validated in limited environments and mainly with one type of sensors - Hydro-masts. In addition, data health history collection and prediction of the future state ofan USN, for example, maintenance schedule planning, is not implemented nor discussedthoroughly.To reduce the limitations in the future, the following directions can be further pro-gressed:

• Different types of sensor network applications could be implemented. For used sen-sor networks the Raw, Processed and Aggregated data layers came naturally, whileother sensor networks applications may have different requirements and the archi-tecture framework may need to be shifted to fulfill those. This could help to makethe framework more abstract and less dependent on the specific sensor networktype.
• The architecture should be further tested based on data from different sources andenvironments. The sensors in a sensor group connected to a Sensor Hub in Edgeenvironment and a Cloud service provider was considered generic enough to beenable to implement for various sources and environments, but it should be vali-dated more with different sources.
• The architecture can be developed further to dynamically manage sensor outliersand degradation of sensor groups. Keeping track and storing the health of the singlesensors and the degradation rate of the sensor groups may allow to implement ca-pacity management and predicting the neededmaintenance for the sensor groups.
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Abstract
Data-Driven Fault-Resilient Cross-Layer Sensor Network Archi-
tecture
Underwater Sensor Networks (USNs) have found extensive application in environmentsfraught with challenges unique to underwater conditions, such as extreme pressures, lim-ited visibility, and communication constraints. These networks play a pivotal role in ap-plications ranging from harbor security to underwater pipeline monitoring. This thesis ismotivated by the critical need to develop fault management techniques for USNs, wherefaults can lead to inaccurate data, system failures, and severe consequences, particularlyin safety-critical scenarios.The underwater environment presents numerous hazards, including manufacturingdefects in hardware components, wear and tear due to continuous use and environmentalfactors, power supply issues, and the potential for human errors during installation andmaintenance. Anticipating an increase in hardware faults with technological advances,this research explores cross-layer fault tolerance as a means of coping with imperfectionsin system components.The primary research questions addressed by this thesis include leveraging sensor datafor fault management and graceful degradation, implementing cross-layer fault manage-ment without significant hardware costs, applying real-time fault detection and localiza-tion techniques to sensor data, ensuring the reliability of sensor data integrity, adaptingprocessing algorithms to changing conditions or faults, and validating the quality of ag-gregated data from multiple sensors.The thesis introduces a data-driven approach that utilizes inherent redundancy in sen-sor networks, proposing data layers (raw, processed, and aggregated) for efficient cross-layer fault management. Contributions include a comprehensive survey of fault-toleranttechniques in USNs, data-driven fault management methods that allow to improve mea-surement accuracy by 35% in case of single sensor faults and nearly double in case of adouble sensor faults, and a novel approach to sensor data aggregation. The proposedtechniques are evaluated in the context of a challenging harbor USN with unreliable sen-sor readings.This research advances fault management strategies crucial for maintaining the reli-ability, accuracy, and safety of sensor networks. By proactively managing faults, thesenetworks can continue to operate efficiently and provide accurate data, making them in-valuable for a wide range of applications.
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Kokkuvõte
Andmepõhine tõrkekindel kihtideülene sensorvõrgu arhitek-
tuur
Veealused sensorvõrgud on leidnud laialdast rakendust karmides keskkondades, mis onomased veealustele oludele ning täis väljakutseid nagu äärmuslik rõhk, piiratud nähtavusja sidepiirangud. Need võrgustikud mängivad olulist rolli alates sadama turvalisusest kuniveealuste torujuhtmete seireni. Käesolev lõputöö on motiveeritud kriitilisest vajadusesttöötada välja rikkehaldustehnikad veealuste sensorvõrkude jaoks, kus rikked võivad põh-justada ebatäpseid andmeid, süsteemi tõrkeid ja eriti tõsiseid tagajärgi ohutuskriitilistestsenaariumide korral.Veealuses keskkonnas asuvaid sensorvõrke mõjutab terve rida ohte, sealhulgas riist-varakomponentide tootmisdefektid, pidevast kasutamisest ja keskkonnast tingitud kulu-mine, toiteallika probleemid ja võimalikud inimlikud vead paigaldamise ja hoolduse ajal.Tehnoloogia arengust tulenevalt ennustatakse riistvararikete kasvu. Käesolev töö uuribkihtidevahelist rikketaluvust kui vahendit puudustega toimetulekuks süsteemi komponen-tides.Väitekirjas käsitletavad peamised uurimisküsimused hõlmavad andurite andmete või-mendamist rikete haldamiseks ja nendega toimetulemiseks, rakendades kihtidevahelistrikkehaldust ilma oluliste riistvarakuludeta, rakendades reaalajas rikete tuvastamist ja lo-kaliseerimist. anduri andmetele, tagades anduriandmete terviklikkuse usaldusväärsuse,kohandades töötlemisalgoritmid muutuvate tingimuste või tõrgete jaoks ja valideeridesmitmetest anduritest agregeeritud andmeid.Doktoritöö tutvustab andmepõhist lähenemist, mis kasutab sensorvõrkudele omastliiasust, pakkudes välja andmekihid (toorandmed, töödeldud ja agregeeritud andmed) tõ-husaks kihtideüleseks rikkehalduseks. Töö teaduspanus hõlmab põhjalikke tõrketaluvus-tehnikaid allvee sensorvõrkudes, andmepõhiseid rikkehaldusmeetodeid,mis võimaldavadühe anduri rikke korral suurendada mõõtetäpsust 35% ja kahe anduri rikke korral peaae-gu kahekordistada, ning ka uudset lähenemist andurite andmete agregeerimiseks. Väljatöötatud tehnikaid hinnati sadamas, reaalses keskkonnas, ebausaldusväärsete andurinäi-tudega.Käesolev uuring edendab rikete haldamise strateegiaid, mis on andurite võrkude usal-dusväärsuse, täpsuse ja ohutuse säilitamiseks üliolulised. Rikete ennetav haldus tagab, etneed võrgud saavad jätkuvalt tõhusalt töötada ja pakkuda täpseid andmeid, muutes needsobivaks mitmete rakenduste jaoks.
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Abstract—The paper proposes a data-driven cross-layer re-
silient architecture for sensor networks. The novelty of the ap-
proach lies in combining fault detection across data and network
layers into a coordinated system health management architecture.
The implemented fault detection is entirely data-driven: data are
collected exclusively by the functional sensors that are part of the
system. Thus, there is no need for additional hardware resources.
The data layers considered include the raw sensor data layer,
the processed data layer and the data aggregation layer. The
proposed cross-layer fault management architecture utilizes a
hierarchical health-map structure for fault detection and data
aggregation. A practical case study of an underwater sensor
network for harbor water flow monitoring application based on
the proposed architecture is presented. Synthetic experiments
with real data demonstrate the effectiveness of the approach
in fault detection and diagnosis. The experiments show that
the data-driven cross-layer fault management allows improving
the sensor group measurement accuracy by 35% in case of
single sensor errors and nearly twofold in case of double sensor
errors. The paper also presents examples of system health-map
aggregation and fault diagnosis based on faults manifesting at
the different layers for real incidents occurring in the field.

Index Terms—data-driven, cross-layer, fault management, fault
resilience, sensor network, under-water

I. INTRODUCTION

Sensor networks are a promising solution for monitoring the
physical environment and providing observations for various
applications in the cyber-physical critical infrastructure [1].
However, they often operate in harsh environments causing
reliability issues in their sensing, computing and communica-
tion. Moreover, the growing complexity of sensor networks
is expected to increase the frequency of faults [2]. At the
same time, due to cost considerations, such networks need to
be composed of essentially unreliable components. Traditional,
passive fault tolerance solutions (e.g. duplex or triple-modular-
redundancy) are often not viable in this context as they are
expensive (by more than doubling the required resources) and
do not facilitate keeping track of the system health.

One way to cope with the faults is to allow devices to
fail and compensate failures at higher levels of the system
stack [3] tolerating faults across layers involving hardware,
firmware, operating system, applications etc. Cross-layer fault-
tolerant systems have a potential to implement reliable, high-
performance and energy-efficient solutions without an exces-

sive cost [4] by distributing the fault tolerance tasks to
multiple layers [5].

One of the promising concepts in fault tolerance is fault
resilience, defined as the persistence of service delivery that
can justifiably be trusted, when facing changes [6]. Resilience
takes advantage of distributed systems, which provide inherent
redundancy in the network. As a further step, the concept
of cross-layer resilience, combining the cross-layer approach
with fault resilience, has been proposed as a cost-effective
and efficient solution to contend the faults [7]. According
to Cheng et al. cross-layer resilience is a cooperation of
multiple techniques from different layers of the system stack
to achieve cost-effective error resilience, as a possible solution
for designing low-cost resilient systems [8].

In sensor networks previous works on resilience have fo-
cused almost exclusively on wireless sensor networks utilizing
network clustering and routing algorithms [9], [10] as well
as adaptable network deployment [11].

Several frameworks for cross-layer resilience have been
proposed. ERSA [12] addresses multi-/many-core systems,
assuming one reliable core and several unreliable ones. How-
ever, it is tailored towards a special class of probabilistic
applications utilizing the algorithmic level cognitive resilience.
The framework called CLEAR is reported to deliver the
targeted degree of resilience at low cost in terms of energy,
power consumption, execution time and area by combining
different resilience techniques across various layers of the
system stack (circuit, architecture, OS, application) [8]. Both
of the methods target processor cores and not the network.

IMMORTAL action [13] proposed cross-layer fault re-
silience and system health management for on-chip networks.
A cross-layer fault-resilient Network-on-Chip (NoC) architec-
ture Bonfire [14] , which includes concurrent checker cir-
cuitry, fault classification and cross-layer health management,
was developed as a result [15]. Further, [16] developed a
Phoenix distributed fault-tolerant architecture over an NoC-
based multiprocessor platform that consists of a hardware part
placed on each router of the NoC and a software part placed
on the operating system of each processing element node
composed of a paired processor-memory. The common de-
nominator of the mentioned works is that they are constrained
to single chip architectures. Moreover, most of the cross-layer



resilient approaches (e.g. [13], [15] and [16]) require the
addition of dedicated hardware for fault monitoring within the
system. Other cross-layer fault tolerance approaches [3], [7],
[17], [18] are implementing multiple layers of the system stack
for resilience tasks. Multi-tier industrial scale fault detection
and diagnosis has been described in [19], where tiers consist
of different systems.

Data-driven and signal processing based fault detection and
diagnosis is a concept [19], [20] that uses signal processing
functions for fault diagnosis. Data-driven techniques may also
allow detecting anomalies and faults that are not properly esti-
mated by model-based fault detection [21]. Signal processing
based fault detection is based on analysis of the output signals
and does not always need explicit input-output model [22],
[23] of the system. However, no hierarchy of data layers have
been considered in the above-mentioned works.

This paper takes a different approach, where fault detection
is data-driven cross-layer. Proposed approach does not focus
on the system stack but rather on the data health of the sensor
network. The main purpose of a sensor network is to measure,
gather and deliver valid data. While the root cause of invalid
data lies somewhere in the system stack, the concept of data-
driven cross-layer resilience is based mainly on the purpose
of the sensor network and less on the implementation details.
In the approach proposed in the current paper the data layers
are part of the sensor network’s essential functionality itself
and no additional dedicated hardware is needed. In proposed
architecture data are collected exclusively by the functional
sensors (the raw data layer) that are part of the system. Further
data layers include the processed data and aggregated data
from different sensor sources. As it will be shown in this paper,
the approach allows detecting faults on a higher data layers
even if they escape lower layer detection, and provides online
diagnosis capabilities to the network in order to pin point the
root cause and location of the error.

The main contribution of this work is proposing a combined
data-driven and cross-layer resilient architecture for sensor
networks, where instead of system stack layers, data layers
are applied in fault detection and diagnosis. The data-driven
approach utilizes the inherent redundancy within the sensor
network as opposed to applying dedicated error monitors
and/or duplicated hardware resources. The proposed approach
enables keeping track of the system health within the sen-
sor network in real time by using hierarchical health-maps.
The proposed architecture also allows triggering actions like
network reconfiguration and predictive maintenance to cope
with failures in parts of the network. Ultimately, the proposed
solution enables graceful degradation to sensor networks al-
lowing them to continue their operation with degraded quality
of service but in an uninterrupted manner even if a subset of
the resources have failed.

In order to validate the proposed architecture, a case-study
on an underwater sensor network implementation for flow
monitoring in harbors has been carried out. The paper presents
examples of cross-layer data detection during real incidents
happening in the field. Moreover, synthetic experiments based

on real in-field data demonstrate the effectiveness of the
approach in fault detection and diagnosis. The experiments
show that the data-driven cross-layer fault management allows
improving the sensor group measurement accuracy by 35% in
case of single sensor errors and nearly twofold in case of
double sensor errors.

The rest of the paper is organized as follows. Section II
presents developed software framework for managing sensor
networks. Section III explains the data-driven cross-layer
architecture for system health management. Section IV pro-
vides the real-world practical case study of an underwater
sensor network for harbor water flow monitoring utilizing the
proposed architecture and V presents an evaluation of the
data-driven cross-layer fault detection and diagnosis in the
field. In Section VI we discuss the limitations of proposed
approach. Finally, Section VII concludes the paper.

II. SOFTWARE FRAMEWORK FOR SENSOR NETWORKS

For the purpose of managing sensor networks we have
developed a generic software framework. The framework ar-
chitecture is shown in Fig 1. In the following, a brief overview
of the developed components divided into logical Edge, Fog
and Cloud [24] computing environments is provided.

1) The Edge computing environment includes Sensor
Nodes that measure environmental data and transfer it
to a Sensor Gateway.

2) The Fog computing environment consists of a Sensor
Gateway that is connected to multiple sensor nodes that
may form Sensor Groups. A Sensor Gateway gathers
Sensor data, processes it and publishes data further into
the Broker in the Cloud Layer.

3) The Cloud computing environment has a Broker com-
ponent which acts as a communication bus between
the Cloud and Fog layers as well as between func-
tional components in the Cloud layer. The term Broker
originates from the MQTT [25] standard, however its
functionality is not vendor-locked. The Cloud layer can
also include an Aggregator that manipulates the data
according to defined domain specific rules and publishes
the manipulated (aggregated) data back to the Broker.
The Recorder is subscribed to the Broker and listens
to incoming data. It does not manipulate data in any
way and is only recording it using predefined rules.
Subscribers can subscribe to the Broker to interested
data. This allows accessing different data feeds that pass
the Broker with small latency. The Web component is
presenting data from the Storage to End Users. The
name is an abstraction that does not have to be a Web
application but can be any kind of user interface.

III. DATA-DRIVEN CROSS-LAYER SYSTEM HEALTH
MANAGEMENT ARCHITECTURE

A. Data layers

While previously (see Section II) we introduced the sensor
network software components by computing environments,
in this section we look at the sensor network from the
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perspective of the sensor data. Table I presents the data-driven
layers of the sensor network architecture. There are three data
layers - raw, processed and aggregated that correspond to
different functionalities that can be loosely connected to given
computing environments as shown in Table I.

At the Raw data layer (i.e. layer L1), there is data that
is measured and transferred by the set of Sensor Nodes
S = {si}. The Raw data layer holds Sensor Node data before
transformations and calibrations.

Processed data (layer L2) is generated by the Sensor Gate-
way(s) (see Section II) from Raw Data. The processing step
is essential in the current application (see Section IV), where
sensor acceleration has to be transformed into the frequency
domain. Additionally, during the processing outlier data is
smoothed out and it is determined whether the data is within
the measurement limits.

Aggregated data (layer L3) is generated for the Sensor
Groups G = {gj} by the Aggregator component (see Section
II) from the Processed Data of the Sensor Nodes {si}. The
purpose of the Aggregating process is to provide transition
from single Sensor Nodes’ data to Sensor Groups’ data.

TABLE I
DATA LAYERS AND THEIR MAPPING TO COMPUTING ENVIRONMENTS

Data Layer State Computing
environment

L1: Raw direct data from sensors Edge
L2: Processed pre-processed data from sensors Edge/Fog
L3: Aggregated data combined to sensor groups Cloud

More formally, the data processing and aggregation takes
place as follows. Let us assume sensors measuring and sending
values periodically and the event of receiving a valid test
packet at the Raw Data Layer L1 by sensor si at a discrete
time instance t be ρ(i, t). All the valid ρ(i, t) measurement

values received during a time interval T , containing n time
instances, are pushed into the raw data queue of length n,
which acts as a First-In-First-Out (FIFO) data buffer:

Q = {q1, q2, ..., qn},
where q1, ..., qn represent n latest valid ρ(i, t) measurement
values.

To obtain the processed data at layer L2, the data in Q
are processed by a signal processing function Ψ to obtain the
processed data value of σ(i, t), i.e.

σ(i, t) = Ψ(Q).

Thereafter, the processed data value σ(i, t) of the node si
is passed through a calibration function Φi, i.e. the calibrated
processed value of sensor si at time t is

γ(i, t) = Φi(σ(i, t)).

Subsequently, the aggregated value α(j, t) of the sensor group
gj at layer L3 is calculated by an aggregation function Ω on
calibrated values γ(i, t) of the sensor nodes si that belong to
the sensor group gj , i.e.

α(j, t) = Ω({γ(i, t)|si ∈ gj}).
Finally, the aggregated value α(j, t) is converted to the phys-
ical quantity β(j, t) required by the end user by applying the
conversion function Ξ:

β(j, t) = Ξ(α(j, t)).

B. Health-map hierarchy

In the proposed architecture the current state of the system
is collected into multilevel distributed Health-Maps. These
Health-Maps are in essence hierarchical continuously updating
data collections containing information about the health of



the underlying data layer (e.g. successful/failed data packets
during the latest interval). In the proposed architecture, we
have defined a hierarchy of Health-maps at two levels: Node-
Level Health-Maps HNode(i, t) for keeping track on the health
status at Sensor Nodes si and Group-Level Health-Maps
HGroup(j, t) for the status of the Sensor Groups gj at a
discrete time instance t.

C. Fault detection and diagnosis at different data layers

This paper concentrates on hardware faults [26]) and how
they are reflected on data that is generated, processed and
aggregated at different data levels. In other words, model-free
(i.e implicit) fault detection [20] is applied, i.e. erroneous data
values at different layers are regarded as faults.

Using hierarchical health-maps (see Sect. III-B) and com-
paring gathered data to previously stored metrics, higher levels
of data manipulation can isolate and smooth out the occurring
faults.

In the following, description of the proposed fault detection
mechanisms at different data layers and description of the
cross-layer fault diagnosis is presented.

Faults at data layers L1 and L2 are detected and located
with a resolution of a single sensor si. Let us denote the case
of a fault being detected in sensor si at discrete time t at the
Raw Layer L1 by f1(i, t) and at the Processed Layer L2 by
f2(i, t), respectively. Denote by ¬f1(i, t) the case of no faults
detected in sensor si at L1 and ¬f2(i, t) no faults at L2.

At every sensor si, one of the three cases presented below
may occur:

1) ¬f1(i, t)∧¬f2(i, t) - i.e. the case, where no faults were
detected at si;

2) ¬f1(i, t)∧ f2(i, t) - sensor si is still transmitting struc-
turally valid packets. However, the data is erroneous and
the fault is detected at L2; This case corresponds to
the case, e.g. where the sensor node si encounters a
mechanical damage;

3) f1(i, t)∧f2(i, t) - The node si has a complete electronic
failure or the connection is broken.

Detection of faults at the aggregated data layer L3 at time t
occurs at sensor groups gj and is denoted by f3(j, t). A sensor
group is considered faulty if a critical number of sensors in that
group are faulty. (For example, in the current implementation,
a sensor group is regarded to be not faulty if at least 2 out of
4 nodes belonging to the group are still operational).

IV. CASE STUDY: UNDERWATER SENSOR NETWORK FOR
HARBOR WATER FLOW MONITORING

A. Sensor Network Installation

We evaluated the proposed approach on an underwater
network for monitoring sea currents in the harbor. The Sensor
Nodes are installed to the underwater harbor infrastructure
to notify approaching ships about the water flow around
the piers. The goal is that berthing ships get information
about the flow and turbulence from Sensor Nodes installed
on the pillars of the pier. The Sensor Nodes are connected
to the Sensor Gateway with underwater cables over RS-485
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serial communication, thus the configuration of the underwater
sensor network is fixed.

The Sensor Node applied in the case study is shown in
Fig. 2.A and its detailed description is given in [27]. The
Sensor Nodes measure the flow magnitude and direction from
the stem vibrating in the flow. An IMU (Inertial Measure-
ment Unit) embedded into the Sensor Node calculates the
accelerations of the stem in x and y directions. In the current
implementation, to estimate the flow magnitude from the IMU
data, a 15s series of IMU raw data is transformed with FFT
(Fast Fourier Transform) into a frequency domain in 120s
intervals and the PSD (Power Spectral Density) is used to find
flow direction and magnitude using calibrations described in
[27]. All the Sensor Nodes are wired to the Sensor Gateway
in a star network topology.

The Sensor Nodes are installed around the pillars at two
different depths so that at both depths 4 Sensor Nodes are
attached around the pillar at 90 degrees angle from each other
forming a logical Sensor Group. This is necessary because
depending on the flow direction, the pillar itself always shelters
some of the Sensors Nodes from the flow. Therefore each
aggregation of 4 Sensor Nodes (Sensor Group) is used to
estimate the flow at each point. Note however that the values
of the Sensor Nodes in the same Sensor Group are correlated.
Knowing how the flow should behave around obstacles helps
us identify failing Sensor Nodes as well as to estimate how
the readings of the sensors should be correlated.

In total the installation has 16 Sensor Nodes, grouped into
4 aggregations (Sensor Groups) of 4 sensors as shown in Fig.
2.B.

B. Layered data model implementation

For the example sensor network, the data layers described
in Section III-A are specified as follows.

Raw data layer L1: The raw measurement value ρ(i, t) of
the sensor node si at time t is a vector containing values such
as Inertial Measurement Unit (IMU) XY positions, tempera-
ture and pressure.

Processed data layer L2: The processing function Ψ first
transforms the raw values ρ(i, t) into a intermediate processed



value σ′(i, t), which is a vector containing median values of
the IMU XY positions, of temperature and of pressure over
all the elements in the processing data queue Q.

In addition, Ψ calculates the dominant frequency (σ′.dfq)
by performing Fast Fourier Transform (FFT) over Q, taking
half spectrum, finding index of maximum value, generating
frequency scale and applying found index on frequency scale,
which takes place at 120 second intervals. The σ′.dfq value
is obtained through a high pass filter in frequency domain
by filtering out frequencies lower than 3Hz. The maximum
value of the resulting array is assigned to this variable. Ψ(Q)
also provides the maximum value of Power Spectrum Density
(PSD) σ′.psd obtained from the FFT, where PSD values lower
than 1000 are also filtered out.

Thereafter, Ψ(Q) pushes the intermediate processed data
value σ′(i, t) to a processed data queue P = {p1, p2, ..., pm},
where p1, ..., pm hold the m latest intermediate processed data
values. The processed data value σ(i, t) is obtained as the
median value of the elements in P , i.e. σ(i, t) = median(P ).

Aggregation layer L3: As explained above, in the current
implementation each sensor group gj consists of 4 nodes si.
The median value of the calibrated values γ(i, t) of the 4
sensor nodes si becomes the aggregated value α(j, t). Finally,
the conversion function Ξ converts α(j, t) into flow direction
and velocity which are the physical quantity values β(j, t)
required by the end user of the harbor water flow monitoring
application.

C. Health-map implementation and fault detection

In the presented case-study, the Node Health-Map
HNode(i, t) is managed by the Sensor Gateway and contains
information about each connected Sensor Node’s traffic during
the latest interval T . It contains counters of valid and invalid
data packets as well as detected faults and a log for debugging
purposes. In our implementation RS-485 serial communication
was used and no automatic cyclic redundancy checking was
implemented initially, thereby packet validation was done by
the Sensor Gateway indirectly. At regular time intervals, in
current implementation every 180s interval, this Health-map
is published to the Broker for the Aggregator (see Section
II).

More precisely, in the current implementation, the Node
Health Map HNode(i, t) is defined as:

HNode(i, t) = {v+(i), v−(i), tok, ρ(i, tok),∆σ},
where v+(i) is the number of valid packet reads and v− is
the number of invalid packet reads occurring in the sensor
node si during T , respectively. tok is the time of the last
good sensor measurement, ρ(i, tok) is the last known good
sensor measurement value and ∆σ is the range of the dominant
frequency values in the processed data queue P (See Sections
III.A and III.B)).

A Group Health-Map HGroup(j, t) keeps track of the
healthy sensor nodes belonging to the sensor group gj and
it is managed by t he Aggregator component. The Aggregator
is subscribed to the Broker for Node Health-Maps and in

case of deteriorated health of any Sensor Node si, removes
that node from its Sensor Group gj in the Group Health-Map
HGroup(j, t).

In the current implementation, fault detection at the different
data layers takes place as follows.

Fault detection at Raw Data Layer L1: Invalid packets at
Sensor nodes si (e.g. malformed or missing packets) at time
instance t are filtered at this layer. In addition, the ratio of good
and bad packets is being accumulated into the Node Health-
Map HNode(i, t). At this level, problems that may occur and
cause invalid packets are as follows:
• Data Decoding Error - the data packet does not corre-

spond to the correct length or byte values and cannot be
read from current stream.

• Redundancy check failing – One of the values in the data
packet is the name of the Sensor Node, which should stay
constant and never change.

The amount of deterioration of sensor si during T is
characterized by the node deterioration rate dNode(i) =
v−(i)−v+(i), which shows the difference on invalid and valid
packets. If v+(i) = 0 then the sensor si is fully deteriorated
at Raw Data Layer and if t0 − tok < ∆t, where t0 is
current time and ∆t is a predefined timeout period taking into
consideration current environmental change rate, then ρ(i, tok)
is used instead of the missing measured values. Otherwise, if
the ∆t is exceeded then the sensor is marked as currently
faulty at Raw Data Layer, i.e. f1(i, t) = true.

Fault detection at Processed Data Layer L2: This layer
includes an incoming FIFO buffer Q for the data from the raw
data layer of which a snapshot is taken at a predefined interval
T . The contents of Q are processed and results sent upstream.
The processing steps at this data layer include the following.
• Buffer underflow – The FIFO buffer is cleared after every

data acquisition by the processed data layer. If not enough
good packets from the raw data layer came in during the
last acquisition interval, the buffer may be not full. This
indicates that not enough valid incoming data has been
read from the sensor node.

• High pass filtering of data – Filtering out data values
outside of measurement boundaries.

The range of the dominant frequency values ∆σ in the
processed data queue P is written to the Node Health-Map
HNode(i, t). If ∆σ = 0 then a fault is said to be detected at
the processed data layer L2 (i.e. f2(i, t) = true).

Fault detection at Aggregated Data Layer L3: At this
layer, the sensor groups are managed, single Sensor Nodes’
data and Health-maps are analyzed, combined and aggregated.
When a sensor fails, it is removed from its Sensor Group. If a
critical number of sensor nodes have decayed then the group
data cannot be trusted anymore and the sensor Group gj is
regarded as faulty.

Data aggregation in the current underwater sensor net-
work takes place as follows. Let Wj be the set of sensor
nodes si that are operational in group gj , i.e. for them
¬f1(i, t) ∧ ¬f2(i, t) = true. In current implementation, the



aggregated value α(j, t) of the sensor group gj is the median
value of calibrated values γ(i, t) of sensor nodes si ∈ Wj .
A group deterioration rate dGroup(j) is calculated based on
the functioning sensor nodes in it as dGroup(j) = 1 − |Wj |

|Sgj
| .

In the current implementation, each sensor group consists of
4 nodes and at most 2 faulty sensor nodes per group (i.e.
dGroup(j) ≤ 1/2) are tolerated. If dGroup(j) > 1/2 then a
group level fault is marked to be detected and f3(j, t) = true.

V. EXPERIMENTAL STUDY AND FIELD OBSERVATIONS

In this Section we will present the results of synthetic
scenarios based on real data showing the benefits provided
by the cross-layer data-driven fault management approach. In
addition, we will give some real-world examples of naturally
occurred incidents, where faults were detected and diagnosed
by the approach.

A. Graceful data degradation enabled by fault management

In current subsection, we are using real data recorded from
natural measurements during a selected time interval. The
faults are injected to this data by overriding data values in
specific sensors by constant zero vectors. Thereby, synthetic
fault scenarios are created. Then this set of data values is
simulated to obtain the aggregated values for the sensor group.

Fig. 3 shows the data degradation in synthetic scenarios
based on real data, where sensors were degraded. The compar-
ison (see Fig. 3) includes proportional differences of the ag-
gregated data calculated using failing sensors compared to the
good aggregated data scenario with operational sensors. Pro-
portional differences are found by using max(x, y)/min(x, y)
where x is the best scenario measurement value and y is
correspondingly some other scenario measurement value at
the same time. The orange line represents the case, where
one faulty sensor has been removed from the aggregation
of the group value. This is equal to the good aggregated
value. The blue line represents the case, where one sensor
is faulty (having σ.dfq = 0) but is still included to aggregated
data computation. The red line represents scenario where
2 sensors are faulty (with σ.dfq = 0). Finally, the green
line is showing the scenario where the 2 faulting sensors
are removed from aggregated data computation by the fault
manager. The experiments show that the data-driven cross-
layer fault management allows in average improving the sensor
group measurement accuracy by 35% (1.0 × versus 1.35 ×
deviation from the good value) in case of single sensor errors
and nearly twofold (1.72 versus 3.18 × deviation) in case
of double sensor errors (See the average values for different
scenarios in Fig. 3).

In the following, we will show real data (without any
overriding) from two different naturally occurred incidents,
where fault detection was performed from data at different
layers.

B. Incident 1: Fault detection at the Raw Layer

Incident 1 illustrates a naturally occurred incident, which
resulted in cables connecting the Sensor Nodes to the Sensor
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Fig. 3. Proportional difference in aggregated data

Fig. 4. Incident 1 time series: Fault manifestation at the Data Layers

Gateway torn. Fig. 4 shows data from one Sensor Group at
different Data Layers during a 6 hour interval. The Aggregated
data layer shows median water flow velocity over all the nodes
from a Sensor Group at 5 meter depth in the given time
period. The Processed Data Layer in Fig. 4 shows Dominant
Frequency on Sensors belonging to the same Sensor Group.
The Raw Layer in Fig. 4 shows the packet count of valid
measurements during 180s intervals during this period. On
the raw data layer only one color can be seen as all the
drawn nodes follow the same line. Although Sensor Groups
consist of 4 Sensor Nodes, Node 004 was broken before



the time of this event and it was removed from the Sensor
Group. Therefore, its measurements are not drawn. In Fig.
4 all the layers clearly present an incident between 19:54-
19:57, where correspondingly f1(i, t), f2(i, t) and f3(j, t)
happened. The incident stopped incoming data from the Raw
Layer that is represented as the number of incoming raw data
packets dropping to zero. Processed and Aggregated Layers
are showing last good values remaining constant because no
new data was coming in after the incident. During the incident,
connection cables were physically cut (See Fig. 5).

During the 6 hour period that is given around Incident 1,
also the events from the Node level Health-map are quantified
and shown in Table II. The few fault events recorded were
from the incident where packets were disrupted ending up
with bad packet length and decoding errors. However, this
error quantity is low and can be a part of normal operation. It
can be seen that for this type of incident, fault detection can
be done from the Raw data layer monitoring the valid packet
flow as shown in the lower section of Fig. 4.

Fig. 5. Incident 1: Incident damage

TABLE II
INCIDENT 1 EVENT QUANTIFICATION (SAME INTERVAL AS FIG. 4)

Count
Event type Sensor 001 Sensor 002 Sensor 003

Valid packets 3559807 3559774 3559793
Data not yet ready 0 0 0
Bad packet length 3 2 2

Decoding error 0 1 0
Serial number changed 0 0 0

Port closed 0 0 0

C. Incident 2: Fault detection at the Processed Layer

Incident 2 represents an incident where a stem of a Sensor
Node was detached. Fig. 6 shows data from different data
layers of one node during a 1-hour interval. In this case it

can be seen that valid packets kept coming in, however the
measurements dropped to zero. Thus f2(i, t) occurred, but no
f1(i, t). It was later found that the moving part of a sensor’s
stem was torn off as shown in Fig. 7. It can be seen from Fig.
6 that this type of incident was not identifiable from the Raw
data layer, but rather from the sudden drop of the dominant
frequency to zero at the Processed layer.

Fig. 6. Incident 2 time series: Fault manifestation at the Data Layers

Fig. 7. Incident 2: Incident damage

Table III shows that there were no detected faults at the
Raw layer (¬f1(i, t)) and the valid data packets count was
higher than in Incident 1 (see Table II) due to the fact that
the data flow was never interrupted.

TABLE III
INCIDENT 2 EVENT QUANTIFICATION (SAME INTERVAL AS FIG. 6)

Count
Event type Sensor 009

Valid packets 4317807
Data not yet ready 0
Bad packet length 0

Decoding error 0
Serial number changed 0

Port closed 0



VI. VALIDITY ASSESSMENT AND LIMITATIONS

The proposed architecture was implemented and tested in
real life on a single sensor network. While our intention
was to develop a generic sensor network architecture and
it showed benefits in implemented water velocity measuring
sensor network, it has not been validated on other type of real
sensor networks.

The used sensor network for testing has essential signal
processing needed for its functionality, so the data layers were
not artificial and data-driven cross-layer fault management
was integral addition to the core functionality of the sensor
network. Not in case of all types of sensor networks the
proposed architecture may be possible to implement or be
resource and cost efficient.

VII. CONCLUSIONS

The paper proposed a data-driven cross-layer resilient ar-
chitecture for sensor networks that combines fault detection
across data layers into a coordinated system health manage-
ment architecture. A practical experiments on an underwater
sensor network for harbor water flow monitoring application
were presented. The synthetic scenarios as well as in-field,
real-world experiments for evaluating the cross-layer fault
management capabilities and the aggregation of a system
health-map based on the faults manifesting at the different
layers were provided.

The incidents and synthetic scenarios based on real data
show that the data-driven cross-layer fault management allows
improving the sensor group measurement accuracy by 35%
in case of single sensor errors and nearly twofold in case of
double sensor errors. Additionally the proposed architecture is
cost and resource effective as it relies on the sensor network
internal functionality and no additional hardware is needed.
The architecture is scalable in sense that there can be multiple
hierarchies of sensor groups. In future the architecture can
be developed further to dynamically manage sensor outliers
and neighboring sensor group degradation. In addition we
would like to implement and validate the same framework
on different types of sensor network applications.
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Abstract: Sensor networks provide services to a broad range of applications ranging from intelligence
service surveillance to weather forecasting. While most of the sensor networks are terrestrial,
Underwater Sensor Networks (USN) are an emerging area. One of the unavoidable and increasing
challenges for modern USN technology is tolerating faults, i.e., accepting that hardware is imperfect,
and coping with it. Fault Tolerance tends to have more impact in underwater than in terrestrial
environment as the latter is generally more forgiving. Moreover, reaching the malfunctioning devices
for replacement and maintenance under water is harder and more costly. The current paper is the
first to provide an overview of fault-tolerant, particularly cross-layer fault-tolerant, techniques in
USNs. In the paper, we present a systematic survey of the techniques, introduce a taxonomy of the
Fault Tolerance tasks, present a categorized list of articles, and list the open research issues within
the area.

Keywords: underwater sensor network; fault tolerance; cross-layer fault tolerance; fault management

1. Introduction

Underwater Sensor Networks (USNs) have become widespread and are being de-
ployed in a wide range of applications ranging from harbor security to monitoring under-
water pipelines and fish farms. Due to the fact that USNs often operate in an extremely
harsh environment, and many of their applications are safety-critical, it is imperative to
develop techniques enabling these networks to tolerate faults. Moreover, USNs face many
challenges that are not present in terrestrial networks, such as virtual inapplicability of
the wireless radio communication under water and limitations of the acoustic means,
for example.

In the current paper, applications, practices, and central issues on fault tolerant USNs
are discussed, and a systematic survey of fault tolerant techniques in USN networks is
presented. Our objective is to investigate the state of the art and main focuses of ongoing
research on cross-layer Fault Tolerance in underwater sensor networks, as well as to identify
the existing gaps in previous research. As by now a limited effort has been put on the
Fault Tolerance of USNs by the research community, the criteria is expanded, and papers
covering some specific aspects of the fault-tolerance topic are also taken into account.
Moreover, the sources also include generic terrestrial Fault Tolerance in sensor networks
because research on underwater sensor network faults is limited, and many of the generic
technologies, approaches, and tools can be adapted for use in USNs.

It is important to stress that the underwater environment is mostly different from
terrestrial conditions, in the sense of additional and more fatal hazards, like an increased
pressure and a danger of flooding, as well as added difficulty of communication and
physical access. Some communication media, such as radio signals, are not applicable
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underwater. Additionally, falling temperatures with increasing depth may affect the
equipment’s operation and reliability.

In this paper, a systematic search in IEEExplore, Google Scholar, and ScienceDirect
online environments was carried out to obtain a relevant sample of works in the field of fault
tolerant techniques in USNs. The search revealed 122 papers, with 59 of them dedicated
to the Fault Tolerance of USNs, while the 63 remaining ones were generic fault tolerant
techniques for terrestrial sensor networks applicable to the underwater environment.

In order to provide a systematic view of the paper categories, this survey introduces a
taxonomy of Fault Tolerance tasks. Specifically, the identified relevant papers are grouped
according to the tasks of fault prevention and prediction and Fault Detection and Fault
Identification, as well as Fault Isolation and Fault Masking, respectively.

Moreover, a comparative analysis of the identified papers was presented, where the
works were characterized according to their extra-functional aspects covered (i.e., security,
energy-efficiency, scalability, cross-layer aspect) and Fault Tolerance tasks targeted, as well
as marine or terrestrial application. As a result of the analysis, the lack of cross-layer
Fault Tolerance approaches in the USN domain was identified as a particular gap in the
state-of-the-art with prospective future research.

There are several surveys investigating underwater sensor networks. For example,
Reference [1] introduced the term of Internet of Underwater Things (IoUT) and showed its
applications in fish farms, monitoring underwater pipelines, harbor security, etc., and [2]
analyzed cross-layer error control in Underwater Wireless Sensor Networks (UWSNs);
however, the analysis focused on the underwater wireless network functionality faults and
not on other sources of the USN faults. Underwater communications have been specifically
surveyed in Reference [3,4], disregarding aspects of underwater sensor networks outside
communication issues.

The main challenges identified for Internet of Underwater Things are the communica-
tion reliability and the differences between Underwater and Terrestrial Networks [5], such
as mobility caused by water flow. For terrestrial sensor networks, there were 11 surveys
found. Thereof, 3 terrestrial surveys addressed cross-layer aspects. Reference [6] was
surveying cross-layer resilience design methods and [7,8] fault management techniques
in wireless sensor networks. In addition, Reference [9,10] included surveys about aspects
of the internet of things, and 7 papers by References [7,8,11–15] were surveys of different
aspects of terrestrial wireless sensor networks. Reference [16] presented a survey about
fault tolerant control systems, and, finally, Reference [14] was focused on surveying fault
management frameworks in terrestrial wireless sensor networks.

The current state-of-the-art is lacking literature reviews covering faults in USNs not
only from communication but from the entire infrastructure perspective, as well. To that
end, the current paper has the following novel contributions:

• to the best of the authors’ knowledge, this is the first survey of fault-tolerant, particu-
larly cross-layer fault-tolerant, techniques in USNs;

• it introduces a taxonomy of the Fault Tolerance tasks for categorizing fault-tolerant
techniques for USNs;

• it presents a comprehensive, categorized list of articles of works applicable in fault-
tolerant USN design and deployment; and

• the survey also lists the open research issues within the focused area.

The paper is organized as follows. In Section 2, the formal methodology of select-
ing the papers is explained and a breakdown of the sample by keywords is provided.
Section 3 gives an overview of the specific Fault Tolerance challenges in underwater sensor
networks. In Section 4, the taxonomy of possible fault sources and that of Fault Toler-
ance tasks is presented. Subsequently, Section 5 is divided according to this taxonomy
of tasks. In Section 5.1, works targeting the fault prevention and prediction task are dis-
cussed and the respective design, deployment, data collection, and testing frameworks
are reviewed. Section 5.2 gives an overview of Fault Detection and Fault Identification
techniques. Section 5.3 provides an overview of Fault Masking and Fault Recovery tech-
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niques. In Section 6, a categorized table of the related works identified by the survey is
presented. Finally, in Section 7, open research issues are discussed, and conclusions are
drawn in Section 8.

2. Methodology

The current overview is following the PRISMA [17] guidelines for systematic reviews.
In order to obtain a relevant sample in the field of fault tolerant techniques in USNs,
IEEExplore, Google Scholar, and ScienceDirect online environments were searched with
the following search keywords: “underwater”, “sensor network”, “internet of things”,
“resilient”, “fault tolerant”, “fault management”, “cross-layer” in English language. Be-
cause the resulting counts were low (see Table 1), some keywords were removed, and more
papers identified. Top papers were selected by the order of relevance offered by the
respective environments. The papers published before the year 1990 were not consid-
ered. Further, citations within those sources were searched from the aforementioned
environments, and additional papers were identified this way. Related articles offered
by IEEExplore and ScienceDirect algorithms were also taken into account. Next, the du-
plicates and non-relevant papers (e.g., control theory) were removed from the collected
papers, and the collected papers were analyzed, categorized, and divided into marine and
terrestrial categories. Personalization on search engines was turned off wherever possible.

Table 1 shows the count of results using combinations of keywords in Google Scholar,
IEEExplore, and Sciencedirect. (Searches were conducted on 13 April 2021, from Taltech,
Estonia, IP addresses.). From Table 1, it can be seen that some combinations were giving no,
or a very limited number of, results. A critical amount of papers was not reached using the
initial criteria, and the criteria were expanded to include also relevant non-marine-specific
(terrestrial) papers. The argumentation behind this is that many of these techniques may
also be usable in underwater environments (see Section 3).

Table 1. Search engine result count of respective keyword combinations.

Search Keywords G. Scholar IEEEX S.Direct

“underwater”, “internet of things”, “resilient”, “fault tolerant”, “fault management”,
“cross-layer”

4 0 0

“underwater”, “internet of things”, “resilient”, “fault tolerant”, “fault management” 8 0 1
“underwater ”, “sensor network”, “resilient”, “fault tolerant”, “fault management” 36 0 4
“sensor network”, “resilient”, “fault tolerant”, “fault management”, “cross-layer” 49 1 4
“underwater ”, “sensor network”, “fault management” 162 0 10
“sensor network”, “resilient”, “fault tolerant”, “fault management” 223 9 16

As a result of the search procedure, 122 related works were identified. These included
59 papers on marine Fault Tolerance and 63 papers being on terrestrial. The papers
were tagged by specific areas addressed by them. The tags for specific areas included
’sensor network’, ’fault tolerant’, ’wireless’, ’scalable’, ’mobile’, ’routing protocol’, ’security’,
’localization’, ’framework’, ’survey’, ’energy-efficient’, ’cross-layer’, ’deployment’, ’marine’,
and ’terrestrial’.

A bar graph showing the number of papers from our search that covered different
specific areas is presented in Figure 1. The specific areas are ordered by the number of
papers addressing them, and the bars for the specific areas maintain their colors throughout
Figures 1–3. It should be noted that, in the following context, the meaning of “localization”
is location detection in space, and the meaning of “mobile” is capacity of movement. It can
be seen from Figure 1 that there were substantially more terrestrial papers than the ones
specific to marine environments. In addition, wireless communication is a frequently
targeted area. Figure 2 shows research areas of the analyzed papers falling into terrestrial
category. It should also be noted that papers on general fault-tolerant sensor networks,
not specifically claiming any environments, were categorized into the terrestrial category.
Figure 2 presents the frequency of specific areas addressed in terrestrial papers where
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the order of the most frequent categories has switched but is not much different from
Figure 1. However, Figure 3, which presents the analyzed marine and aquatic environment-
related papers covering different specific areas, shows that marine wireless communication
related research works have the highest number of papers among those identified by the
current survey.
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Figure 1. The number of papers by specific areas.
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Figure 3. The number of marine-related papers by specific areas.

In order to further highlight the differences of the previous research focus in marine
and terrestrial sensor networks, a radar diagram is shown in Figure 4. For the diagram, we
selected eight significant specific areas: ’fault tolerant’, ’wireless’, ’mobile’, ’localization’,
secure’, ’scalable’, ’energy efficient’, and ’cross-layer’, respectively. It can be seen from
Figure 4 that a large share of marine research (shown by blue color in Figure 4) interest from
the identified papers has been drawn to underwater wireless communication, while some
are drawn to underwater Fault Tolerance techniques and almost none to underwater cross-
layer Fault Tolerance. Underwater energy-efficiency and scalability are more covered areas
than underwater vehicles (mobility) and security. Papers addressing terrestrial techniques
(shown by green in Figure 4) were, according to the initial search criteria, more focusing
on Fault Tolerance, including cross-layer Fault Tolerance, and less on energy efficiency
or security.

High research effort on marine wireless networking in Figure 4 confirms the claim [5]
that current pace of research on Internet of Underwater Things (IoUT) is slow due to the
challenges arising from the uniqueness of underwater wireless sensor networks. Specifi-
cally, the main challenges for IoUT are the differences between Underwater Wireless Sensor
Networks and Terrestrial Wireless Sensor Networks [5].

Fault Tolerant Control Systems is another extensive research area of Fault Tolerance
not covered by current paper. There is an existing recent review paper [16] on the overview
of research works in that topic.
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Figure 4. A radar chart of the analyzed papers addressing the main specific areas.

3. Specifics of Underwater Sensor Networks

Environmental and engineering challenges for sensor networks in underwater envi-
ronments are shown on Figure 5. An underwater environment is mostly different from a
terrestrial one due to the harsh physical conditions—high pressure and hard accessibility,
as well as limited communication and energy resources. Depending on the specific location,
the temperature may fall with increasing depth, which may affect, e.g., the battery lifetime.
In underwater environments, faults can be caused over time by ambient flowing water
generated by surface waves or other reasons that shake the components of the sensor
networks. Moreover, faults can be introduced by humans or aquatic organisms.

Many communication methods are unavailable underwater, and there are multiple
phenomena [2,18] that obstruct communication there. Because of the possibility of flooding
the hardware due to water leakage, more attention and resources should be paid to the
physical integrity of sensor nodes. On the other hand, faults from excessive heat should be
rare and avoidable underwater. In the underwater context, Fault Tolerance has been so
far addressed for reliant UWSN networking [2,3,19,20], space localization [21], and moni-
toring underwater pipelines [22]. While it should be possible to adapt most of the generic
Fault Tolerance concepts for the underwater use, the environment is more demanding
and unforgiving, and faults are more costly. Some more demanding approaches, like
cloud computing, may not make sense to be implemented in USNs. However, the authors
cannot see any obstacles for applying those fault tolerant approaches that yield appropri-
ate communication methods, low network bandwidths, and power requirements in the
underwater domain.

Last but not least, one of the promising approaches that could be adapted suc-
cessfully within the underwater environment’s constraints appears to be cross-layer re-
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silience, which is an open research topic and lacking in recent research works, even for the
terrestrial implementations.
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Figure 5. Environmental and engineering challenges in USNs.

4. Taxonomy of Faults and Fault Tolerance Tasks

In the following, we present the taxonomy of the sources of faults, as well as of the
Fault Tolerance tasks. The objective of describing and representing these taxonomies is to
categorize the articles for the current survey.

4.1. Sources of Faults

A fault is defined [23] as an underlying defect of a system that leads to an error.
An error is a faulty system state, which may lead to failure, and failure is an error that
affects system functionality. Faults may occur in different components and layers of
systems for different reasons. The only type of fault possible in software is a design
fault introduced during the software development, i.e., a bug [24]. Software bugs can be
addressed separately and will not be covered further in the current paper.

Fault sources can be categorized by components where they occur. In sensor net-
works, they can occur in sensor nodes, in the communication network, and in the data
sink [25]. Sensor networks share common failure issues with traditional networks, as well
as introduce node failures as new fault sources [7].

USNs additionally introduce faults caused by environmental conditions, such as pres-
sure, currents, underwater obstacles, etc. Those conditions may cause physical damage
that may result in failures, as well as obstruct the system’s functionality. For instance,
in underwater acoustic networks, loss of connection and high bit error rate may be caused
by shadow zones [18] formed by different physical reasons. Domingo and Vuran dis-
tinguish up to five different underwater propagation phenomena which may obstruct
communication [2].

Faults can either be permanent or temporary [26]. Permanent faults may be caused by
manufacturing defects, as variances of the hardware components are inevitable due to phys-
ical reasons [27]. One of the other factors that can introduce faults is aging and wear-out of
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the hardware components [28]. In addition to the components themselves, the interconnec-
tions between them are also affecting the reliability and may cause faults [29].

One of the challenges of fault management is temporary faults, especially soft errors.
Soft error is a temporary change of signal value due to ionizing particles [26] that may
lead to failure. Due to high integration density, it is estimated that soft failure rate is
increasing in the future [30]. Another potential source of temporary faults is electromagnetic
interference [31].

4.2. Fault Tolerance Tasks

The objective of the current section is to define a taxonomy of Fault Tolerance tasks to
help categorize the identified papers. The Fault Tolerance tasks are based on more general
Fault Tolerance principles from Reference [32,33]. Figure 6. shows the taxonomy of Fault
Tolerance tasks applicable in USNs and how they affect each other. While the design and
initial deployment of USNs contribute to Fault Prevention and Prediction abilities, data
collecting techniques at the run-time contribute also to Fault Detection and Fault Recovery
stages of the system, all of which are going to be discussed in the current paper.

The techniques under consideration can be categorized into the following groups:

• Fault Prediction and Prevention
This task is about both preventing a fault to happen, as well as about proactive fault
avoidance. Sensor networks can prevent certain faults from happening by design and/or
deployment aspects. A disadvantage of fault prevention is a potentially increased system
complexity. Fault avoidance, in turn, includes manufacturing testing and verification,
which have a high cost often exceeding that of the entire design process.

• Fault Detection and Identification
One of the central parts of Fault Tolerance is Fault Detection and Fault Identification of
affected components which can, for instance, be performed by utilizing data collection
with ping messages. Without Fault Identification, for instance, sensor node and
network faults may be hard to distinguish. A disadvantage of Fault Detection and
Fault Identification may be additional energy requirements and network congestion.

• Fault Isolation, Masking, and Recovery
Isolation, masking, and recovery are different techniques for repairing a fault, mini-
mizing the effect of a fault, or avoiding it to turn to system failure. Identified faults
can be isolated, masked, and sensor network recovered, for instance, redirecting
traffic through healthy backup components. Fault Recovery can ensure overall system
operation even when components degrade. The downside may be the cost of adding
components to ensure redundancy.

The overview of fault tolerant techniques presented in the following section follows
the above-described taxonomy.

Fault tolerance

Fault prevention
and prediction

Design Deployment Data collection

Fault detection
and identification

Fault Isolation,
Masking and Recovery

Figure 6. Taxonomy of Fault Tolerance tasks in USNs.
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5. Overview of Techniques by Fault Tolerance Tasks

In the following, the Fault Tolerance techniques categorized according to the Fault
Tolerance Tasks introduced in Section 4.2 and presented in Figure 6 will be discussed in
more detail.

5.1. Fault Prevention and Prediction

Fault prevention and prediction in sensor networks are dependent on the architectural
design of the system and the initial deployment method of the sensor network. These will
be discussed in the following subsections. In addition, data collection in USNs and testing
frameworks for UWSNs are presented.

5.1.1. Design of the Sensor Network

In Wireless Sensor Networks (WSN), instead of a centralized homogeneous topology,
dividing nodes into clusters is an energy efficient and resilient method [12], where dedicated
cluster head nodes may have more energy and communication capabilities to effectively
act as mediators between regular nodes and data sinks.

To overcome the issues caused by varying environmental challenges of Underwater
Wireless Sensor Networks (UWSN), natural algorithms may be utilized. For instance, clus-
tering and routing can be done utilizing Cuckoo Search algorithm and Particle Swarm Op-
timization [34], which have behaved more resiliently in underwater conditions than more
usual terrestrial Low Energy Adaptive Clustering Hierarchy (LEACH) protocol [11]. Pres-
sure measurements have been used for UWSN routing [35] with floating depth-controlling
sensors. Fault Management tasks can also be distributed across the whole network. In WSN
with enough spare nodes energy efficient grid can be formed [36], changing the node man-
ager, gateway and sensing nodes selected and spare nodes put to sleep. This results in
energy-efficient and lightweight network but requires excess nodes.

However, existing UWSN protocols have not been adequately compared in underwa-
ter field trials yet [4].

5.1.2. Sensor Network Deployment

Sensor network deployment techniques are important for WSNs where deployment
may directly affect the nodes’ locations and networking availability. Even for terrestrial
wireless sensor networks, to obtain a satisfactory network performance, an adaptable
deployment method is essential [37]. Usually, the sensor placement for WSNs utilizes,
for redundancy reasons, more sensors than the minimum required number [38]. The de-
ployment costs and energy efficiency of WSNs have been investigated in Reference [39],
and it has been found that there is no single solution that can easily be applied in prac-
tice [40].

Wired sensor network deployment is less researched, possibly because wired sensor
networks’ node deployment locations are limited by the cables, their locations are more
predetermined, and node connectivity is not directly related to the location.

5.1.3. Data Collection

Sensor networks tend to have limited network bandwidth, energy, and storage capa-
bilities. Thus, filtering and aggregating sensor information may be a way to meet those
requirements. Raw sensor data near the source can be divided into informative, non-
informative, and outlier groups [41], and only the needed data could be communicated or
stored. Outlier data may result from noise, failures, disturbances, etc., and may be useful
for Fault Tolerance purposes.

Different techniques to compress and aggregate collected information in UWSNs are
investigated in Reference [42]. It was found that aggregation is justified, and cluster-based
aggregation techniques are performing better than non-cluster-based ones. For instance,
cluster head (CH) switching to backup (BCH) technique was proposed [43] for cluster-
based UWSNs.
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Moreover, security challenges need to be addressed. One way to minimize the risk of
data tampering and/or interference is to ensure that the data is processed locally or, if that
is not possible, then communicated end-to-end encrypted [44].

5.1.4. UWSN Testing Frameworks

Wireless networking protocols are one of the key research areas in UWSNs. To evaluate
the implementation of underwater wireless protocols, simulation is often used. Due to the
specifics of underwater environments (See Section 3), generic simulation environments
are not able to capture some of the relevant features. Frameworks covered in the current
section are useful for underwater acoustic protocols’ simulation and evaluation.

Frameworks, such as DESERT version 1 and 2 [45] and SUNSET [46], that allow
simulation, emulation, and testing of the sensor networks, have been developed for UWSNs.
An analysis conducted in Reference [47] shows that SUNSET represents a more mature,
flexible, and robust framework for in-field testing than DESERT. However, DESERT v2 was
released subsequently. For acoustic UWSN security testing, SecFUN framework [48] has
been proposed.

5.2. Fault Detection and Identification

In essence, Fault Detection means determining that one or more bits in the computa-
tion differ from their correct value [33]. This can be detected via continuous monitoring of
the network and nodes’ status. Some sources also use the word “Diagnosis” in a broader
meaning than just detection and identification. Diagnosis has been defined as “characteriz-
ing the system’s state to locate the causes of errors, determine how the system is changing
over time, and predict errors before they occur [33]”. The current section covers different
techniques to execute the previously mentioned concepts.

A distributed hierarchical fault management [49] has been used for WSNs, where
agent Fault Detection devices collect information from the power modules and sensors to
determine failure conditions and sequentially diagnose the nature of the detected failure.

At higher abstraction levels, there has been a wide use of the SNMP protocol [50] by
the industry for Fault Detection querying and triggering in IP networked devices. There
are multiple commercial tools for generating failures, e.g., Chaos Monkey from Netflix [51],
that randomly terminate services in production environments, to ensure their resiliency.
The latter does not manage the occurring faults but ensures that the repairing mechanisms
are in place and operable. Intelligent Platform Management Interface (IPMI) [52] is an
industrial technology specification for hardware system management and monitoring.

A neural-network-based scheme for sensor failure detection, identification, and ac-
commodation can be used which may allow the conditions to deviate to greater extent
from theoretical models and estimation. A relatively simple and computationally light ap-
proach has been presented [53], where a neural network is used as an online learning state
estimator for detecting faults. The neural network itself can be built as fault-tolerant [54],
so that failing nodes have the least impact on result data.

Situational Awareness approach, using a mechanism that has been borrowed from
humans, can be applied in sensor data interpretation for Internet of Things (IoT), specifically,
regarding processes of sensation, perception and cognition. In addition to specification-
based and learning-based approaches, a perception-based approach utilizing Fuzzy Formal
Concept was proposed [55] for Situational Awareness identification.

Semantic Sensor Network Ontology has been proposed in Reference [56] for managing
interoperability between sensing systems. The Semantic Ground describes information
for interoperability and cooperation among agents [57]. To enhance resilience in Semantic
Sensor Networks, monitoring nodes may forward observations to association nodes, which
develop Situational Awareness by mining association rules, for example, via a natural
Artificial Bee Colony algorithm [57].



Sensors 2021, 21, 3264 11 of 22

Electric Power Grids need efficient monitoring since, for outage detection, environmen-
tal monitoring, and fault diagnostics, different WSN-based approaches are reviewed [13].
Most of these approaches are also applicable in other kinds of applications.

5.3. Fault Isolation, Masking and Recovery

Subsequent to Fault Detection, Fault Identification, and Fault Diagnosis, a fault han-
dling stage can be entered [49] to prevent further data corruption and system deterioration.
The fault handling consists of Fault Isolation, Masking, and Recovery. Fault handling
can hide the fault occurrence from other components by applying Fault Masking; the
key techniques for such masking are informational, time, and physical redundancy [32].
Proposed masking technique For Underwater Vehicles is Triple Modular Redundancy
(TMPR) [58], which is also one of the most commonly used Fault Masking techniques.
Isolating a faulty component from the others can be facilitated by using virtualization [32].
In large scale distributed systems, frozen virtual images of healthy services have been used
as checkpoints [59] for rolling back in case of a fault occurrence.

Fault Recovery ensures that the fault does not propagate to visible results, for instance,
by rolling back to a previous healthy state (checkpointing) or re-trying failed operations
(time redundancy). Some of the techniques for Fault Recovery can be Reconfiguration,
which is changing the system’s state so that the same or similar error is prevented from
occurring again, and Adaptation, which is re-optimizing the system, for instance, after Re-
configuration task [33].

In Sensor Networks, different approaches for Fault Recovery have been used, that have
different resource overheads, energy-efficiencies, scalabilities and network types. For both
network and node Fault Recovery in wireless sensor networks, Mitra et al. (2016) [8]
compares techniques, such as checkpoint-based recovery (CRAFT), agent-based recovery
(ABSR), fault node recovery (FNR), cluster-based and hierarchical fault management
(CHFM), and Failure Node Detection and Recovery algorithm (FNDRA). While some
of those are specific to terrestrial wireless usage, some principles (e.g., checkpointing,
etc.) can also be used in wired and/or underwater environments. To reduce the network
bandwidth requirements, checkpoint backup can be mobile to nearby nodes [60] and used
for recovering from fault situations.

In network protocols, Fault Masking and Fault Recovery are handled by error control
schemes that are commonly categorized into the following three groups [2]:

• Automatic Repeat Request (ARQ)—re-transmission of corrupted data is asked;
• Forward Error Correction (FEC)—data corruption can be detected and corrected by

the receiving end; and
• Hybrid ARQ (HARQ)—a combination of FEC and ARQ.

The cross-layer approach benefits Fault Recovery significantly since single-layer re-
dundancy, such as hardware redundancy and application checkpointing, have very high
costs, and latency between fault occurrence and detection makes the recovery difficult [33].

6. Comparative Analysis

All the papers that were selected according to the criteria described in Section 2 are
listed in Table 2. The table includes information about the targeted extra-functional aspects
and Fault Tolerance task(s). In addition, the Marine column in Table shows if the listed
paper is explicitly touching aquatic environments. The papers are ordered by their order of
citation within this survey paper. Papers that are not directly cited in the text but still listed
in Table 2 are ordered chronologically by the publishing year. Papers that are not included
in the analysis but are cited (e.g., definitions) have not been included in the table.

It can be seen from Table 2 that only two papers address both marine and cross-
layer Fault Tolerance aspects. However, in the work targeting cross-layer analysis of
error control [2], the term ’cross-layer’ does not apply to the system stack but only to the
communication protocol layers. Another work authored by the authors of this survey [61]
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is focusing on data-driven cross-layer Fault Tolerance. Thus, there is a serious gap in
research addressing cross-layer Fault Tolerance in underwater sensor networks.

Regarding other extra-functional aspects, security in marine environments is ad-
dressed by six marine papers and is focusing on securing wireless communication [20,48,62],
authentication [63], and hybrid attacks [64]. On scalability, seven marine papers were iden-
tified, and underwater scalability has been researched, for instance, in the context of
monitoring underwater pipelines [22]. On Energy-efficiency, there were 14 Marine papers
identified, and extensive focus has been on energy-efficient underwater wireless proto-
cols [3,19,65–69] and less on other aspects. Open research issues from all the mentioned
extra-functional aspects will be discussed in the following section.

Table 2. Categorized papers.

Pub. 1st Auth. Year Extra-Functional Aspect Marine Fault Tolerance (FT) Tasks and
Secure Energy-

Efficient
Scalable Cross-

Layer
Other Research Areas

[1] Domingo 2012 - - - - + sensor network
[2] Domingo 2012 - - - + + sensor network, FT

detect/recover, wireless
[3] Zenia 2016 - + + - + sensor network, routing protocol,

survey, FT detect, FT recover
[4] Jiang 2018 - - - - + survey, wireless, sensor network
[5] Kao 2017 - - - - + FT design, survey, wireless
[6] Veleski 2017 - - - + - survey, FT detect, FT recover
[7] Paradis 2007 - - - + - FT detect/recover, survey,

wireless
[8] Mitra 2016 - + + + - survey, wireless, FT detect, FT

recover,
[9] Atzori 2010 - - - - - sensor network, survey

[10] Diaz 2016 - - + - - survey
[11] Tyagi 2013 + + + - - survey, wireless, routing protocol
[12] Singh 2012 - - - - - routing protocol, survey , wireless
[13] Fadel 2015 - - - - - survey, sensor network, wireless,

FT detect
[14] Moridi 2020 - - - - - sensor network, wireless, FT

detection, FT recovery
[15] More 2017 - + + - - sensor network, survey
[16] Amin 2019 - - - - - FT detect/recover, survey
[18] Domingo 2009 - - - - + FT detect, wireless
[19] Xu 2012 - + + - + FT detect, FT recover, sensor

network
[20] Lal 2016 + - + - + wireless, sensor network
[21] Das 2017 - - + - + localization, sensor network, FT

recover
[22] Mohamed 2011 - - + - + sensor network, FT detect
[23] Kumar 2018 - - + - - FT detect/recover
[25] Khan 2013 - - + + - FT detect/recover, wireless
[26] Henkel 2011 - - - + - FT design/detect/recover
[27] Georgakos 2013 - - - + - FT design/detect/recover, vehicle
[28] Lorenz 2012 - - - - - FT prevent
[29] Sauli 2012 - - - - - FT prevent
[30] Rehman 2016 - - - + - FT prevent/detect/recover
[31] Kaaniche 2000 - - - - - FT prevent/detect/recover
[33] Carter 2010 - - - + - FT design
[34] Sofi 2018 - + - - + sensor network, wireless
[35] Noh 2016 - - - - + routing protocol, sensor network,

wireless
[37] Wu 2007 - - - - - deployment, localization, sensor

network, wireless
[38] Isler 2004 - - - - - deployment, sensor network,

wireless
[39] Dong 2020 - + - - + sensor network, wireless, FT

recover
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Table 2. Cont.

Pub. 1st Auth. Year Extra-Functional Aspect Marine Fault Tolerance (FT) Tasks and
Secure Energy-

Efficient
Scalable Cross-

Layer
Other Research Areas

[40] Cheng 2008 - - - - - deployment, sensor network,
wireless

[41] Bhuvana 2018 - + - - - sensor network, wireless, FT
detect

[42] Goyal 2017 - - - - + wireless, sensor network
[43] Goyal 2018 - - - - + wireless, sensor network, FT

detection, FT recovery
[45] Campagnaro 2016 - - - - + framework, wireless, sensor

network
[46] Petrioli 2015 - - - - + framework wireless, sensor

network
[47] Petroccia 2013 - - - - + framework, wireless, sensor

network
[48] Ateniese 2015 + - - - + framework, wireless, sensor

network
[49] Liu 2013 + + - + - wireless, sensor network
[51] Gunawi 2011 - - + - - FT design
[53] Napolitano 1995 - - - - - sensor network, FT detect, FT

recover
[54] Neti 1992 - - - - - FT design
[55] Benincasa 2014 - - - - - sensor network
[56] Compton 2012 - - - - - sensor network, deployment
[57] DAniello 2016 - - - + - sensor network, FT detect, FT

recover
[58] Alansary 2019 - - - - + vehicle, FT recovery
[59] Cristea 2011 + - + - - FT detect, FT recover
[60] Salera 2007 - - - + - sensor network, FT detect, FT

recover
[61] Vihman 2020 + - + + + sensor network, FT detect
[62] Han 2015 + - - - + wireless, sensor network
[63] Chae-

Won
2016 + - - - + sensor network, wireless

[64] Han 2020 + - + - + sensor network, wireless
[65] Dong 2013 - + - - + sensor network, wireless
[66] Zhou 2016 - + - - + , wireless, sensor network,

routing protocol
[67] Wang 2016 - + - - + , sensor network, wireless
[68] Huang 2011 - + - - + wireless, sensor network, routing

protocol
[69] Rani 2017 - + - - + sensor network, routing protocol
[70] DeHon 2010 - + + + - FT detect, FT recover
[71] Darra 2017 + - - - - survey, sensor network, wireless
[72] Mitra 2010 - - - + - FT detect, FT recover
[73] Henkel 2014 - - - + - FT detect, FT recover
[74] Bulusu 2000 - + + - - localization, sensor network
[75] Nassif 2001 - - - - - FT prevent
[76] Zhao 2002 - + + - - , wireless, sensor network
[77] de Lemos 2004 - - - - - FT design, sensor network
[78] Bokareva 2005 - - - + - cross-layer, FT design, FT recover,

framework, sensor network
[79] Heidemann 2006 - - - - + sensor network, wireless
[80] Mengjie 2007 - - + + - wireless, sensor network, FT

detect, FT recover
[81] Lee 2008 - - - - - wireless, FT detect, sensor

network
[82] Wang 2008 - - - - + sensor network
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Table 2. Cont.

Pub. 1st Auth. Year Extra-Functional Aspect Marine Fault Tolerance (FT) Tasks and
Secure Energy-

Efficient
Scalable Cross-

Layer
Other Research Areas

[83] Khan 2009 - + + - - wireless, FT design, sensor
network

[84] Teymorian 2009 - - - - + localization, sensor network
[85] Yu 2009 - - - - + localization, wireless, sensor

network
[86] Kim 2011 - - - + - vehicle, FT detect, FT recover,
[87] Tanasa 2011 - - - - - vehicle, FT detect
[88] Roman 2011 + - - - - sensor network,
[89] Paul 2011 + - - - - sensor network
[90] Xu 2011 - - - - + wireless, sensor network, routing

protocol, FT recovery
[91] Thomas 2013 - - - - - FT detect
[92] Gubbi 2013 + - + - - wireless, sensor network,
[93] Guo 2013 - - + - + localization, sensor network
[94] Amory 2013 + - + - + vehicle
[95] Oteafy 2014 - - - + - wireless, sensor network
[96] Rault 2014 - - + - - wireless, sensor network
[97] Kuila 2014 - + - - - wireless, sensor network, routing

protocol
[98] Zhu 2014 - - - - + sensor network
[99] Rossi 2015 - + - - + sensor network, wireless
[100] Bauer 2015 - - - - - FT masking
[101] Benson 2015 - - - + - sensor network
[102] Zhehao 2015 - - - - + localization, wireless, sensor

network
[103] Han 2015 - - - - + localization, wireless, sensor

network, deployment
[104] Valerio 2015 - - - - + wireless, sensor network, routing

protocol
[105] Rehman 2016 - - - + - FT detect, FT recover,
[106] Sahoo 2016 - - - + - FT design, FT detect
[107] Li 2016 - - - - + localization, vehicle
[108] Liu 2016 - - - - + sensor network, wireless,

localization
[109] Khan 2016 - - - - + vehicle, sensor network
[110] Koraz 2017 - - - + - FT detect
[111] Suvarna 2017 - + - - + wireless, sensor network, routing

protocol
[112] Cario 2017 - + - - + sensor network, wireless
[113] Dong 2017 - + - - + , localization, wireless, sensor

network
[114] Kao 2017 - - - - + survey, sensor network, wireless
[115] Mortazavi 2017 - - - - + localization, wireless, sensor

network
[116] Seto 2017 - - - - + vehicle
[117] Azad 2018 - - - + - FT detect, FT recovery
[118] Sahu 2018 - - - - + clustering, sensor network,

routing protocol, FT detection, FT
recovery

[119] Dala 2018 - - - - + sensor network, FT detection, FT
recovery

[120] Tang 2018 - - - - + wireless, sensor network, fault,
FT detection, FT recovery

[121] Yanmaz 2018 - - + - - vehicle, sensor network, wireless
[122] Han 2018 - - - - + localization, wireless, sensor

network
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Table 2. Cont.

Pub. 1st Auth. Year Extra-Functional Aspect Marine Fault Tolerance (FT) Tasks and
Secure Energy-

Efficient
Scalable Cross-

Layer
Other Research Areas

[123] Shah 2018 - - + - + localization, sensor network
[124] Caporuscio 2020 - - - - - sensor network, FT detection, FT

recovery
[125] Desai 2020 - - - - - sensor network, FT detection
[126] Jin 2020 - - - - + sensor network, wireless, routing

protocol, vehicle, FT detection; FT
recovery

[127] Prasanth 2020 - + - - + wireless, sensor network, fault, ft
recovery, ft detection

7. Open Research Issues

In the following, the open research issues identified are presented according to the
categories of extra-functional aspects reported in Table 2.

7.1. Security

Faults and security are interrelated concepts [59]. It requires effort to prevent systems
from being penetrated, even when they operate as intended; however, faults will add
further uncertainty and make the task of prevention even harder. Faults can be created by
an intrusion; but, moreover, faults can enable new intrusion vectors [70]—misbehaving
devices violate key assumptions and create a number of new attack vectors to systems.
For example, soft errors explained in Section 4.1 can be used to defeat cryptography [128].
In wireless sensor networks, intrusion detection systems have been investigated [71],
and intrusion detection can be divided into Anomaly detection, which can work well for
unknown attacks, and Misuse detection, for known attack signatures.

7.2. Energy-Efficiency

Power dissipation has by now reached a point where energy concerns limit the
computation we can deploy on the chip [70], and the aim is shifting from transistor density
and speed to energy density and cost. Energy density and efficiency need also to be
addressed on a larger scale; for instance, WSNs may not have unlimited power supply and
need to utilize energy-efficiency strategies [11,12,36,40]. For Fault Tolerance techniques,
cross-layer approach is considered more energy-efficient [33] than single layer. Strategic
redundancy in cross-layer approach may allow systems to safely operate on the verge of
failure [70], spending less energy without going over the edge.

In sensor networks, energy consumption can be reduced, for instance, by using
specific low-energy communication protocols, reducing the number and speed of the
nodes, and pausing the nodes [129]. However, with the growing complexity of applications,
energy consumption is becoming one of the limiting factors.

7.3. Scalability

One of the traditional benefits of scaling has been the decrease of cost per func-
tionality [70], but easing reliability problems by multiplicating logic, voting and similar
techniques means that the scaled technology might not offer a reduction of energy or area.
Some Fault Tolerance techniques may increase computing overhead, and not all approaches
are scalable [8]. Large scale fault tolerant systems are researched without paying special
attention to energy and communication constraints [59].

7.4. Cross Layer Approach to Fault Tolerance

Faults are not going to disappear but likely to increase in the future [30]. One way to
cope with faults is to accept imperfect devices to fail and compensate failures at higher
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levels in the system stack [70], tolerating faults across layers involving circuit design,
firmware, operating system, applications, etc. Cross-layer fault tolerant systems have
potential to implement reliable, high-performance and energy-efficient solutions without
overwhelming costs [33] by distributing the responsibilities of tolerating faults across
multiple layers [6]. Cross-layer Fault Tolerance has also been viewed from the perspective
of sensor data layers [61].

In case Fault Detection and Fault Recovery are to be implemented in different system
layers, then following challenges arise [72]:

• For statistical validation and metrics high confidence resource-light reliability and
availability estimation is needed.

• Verification of resilience techniques, to be sure that resilience techniques perform
under all possible scenarios.

• Reliability grades for testing and grading system-wide reliability and data integrity.
Reliability may change under different workloads.

In addition to the cross-layer approach, a Multi-Layer approach [73] has also been
proposed, where system layers are adapted to each other to reduce error propagation.
However, in the opinion of the authors of the current paper, this does not constitute a
principally distinct approach but, rather, an increment to the cross-layer approach.

8. Conclusions

The current paper presented a systematic survey on fault tolerant techniques in USNs and
pointed out open research issues in this field. The paper considered fault tolerant techniques
that are developed for underwater use or could be adapted for that. The techniques were
divided into groups according to the taxonomy of Fault Tolerance tasks, and papers utilizing
these techniques were discussed in sections corresponding to the tasks.

We collected top papers by conducting a systematic search from different online
environments, related papers suggested by those environments, and sources cited by the
collected papers. Next, we analyzed the collected papers, divided them into categories and
discussed aspects covered in those papers. Areas of high research interest and open research
issues in the scope of the initial criteria were detected and brought out. Additionally,
in order to categorize and systematize the analyzed papers, taxonomies for fault sources
and Fault Tolerance tasks were described, and a full table of the papers was presented.

The current paper is the first to investigate the state-of-the-art in Fault Tolerance,
particularly cross-layer Fault Tolerance, in USNs. According to the survey, there is a
lack of research covering the cross-layer Fault Tolerance aspect for underwater sensor
networks. Therefore, the mentioned topic is a prospective candidate for future works on
fault tolerant USNs.

Author Contributions: Conceptualization, L.V., M.K. and J.R.; methodology, L.V. and M.K.; software,
L.V.; validation, L.V. and J.R.; formal analysis, L.V. ; investigation, L.V.; writing—original draft
preparation, L.V., M.K. and J.R.; writing—review and editing, L.V and J.R.; visualization, L.V. and
J.R.; supervision, M.K. and J.R.; funding acquisition, M.K. J.R. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Estonian Centre of Excellence in ICT Research (EXCITE)
and by the Estonian Ministry of Education and Research and European Regional Fund (grant 2014-
2020.4.01.20-0289).

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.



Sensors 2021, 21, 3264 17 of 22

References
1. Domingo, M.C. An overview of the internet of underwater things. J. Netw. Comput. Appl. 2012, 35, 1879–1890,

doi:10.1016/j.jnca.2012.07.012.
2. Domingo, M.C.; Vuran, M.C. Cross-layer analysis of error control in underwater wireless sensor networks. Comput. Commun.

2012, 35, 2162–2172, doi:10.1016/j.comcom.2012.07.010.
3. Zenia, N.Z.; Aseeri, M.; Ahmed, M.R.; Chowdhury, Z.I.; Shamim Kaiser, M. Energy-efficiency and reliability in MAC and routing

protocols for underwater wireless sensor network: A survey. J. Netw. Comput. Appl. 2016, 71, 72–85, doi:10.1016/j.jnca.2016.06.005.
4. Jiang, S. State-of-the-Art Medium Access Control (MAC) Protocols for Underwater Acoustic Networks: A Survey Based on a

MAC Reference Model. IEEE Commun. Surv. Tutor. 2018, 20, 96–131, doi:10.1109/COMST.2017.2768802.
5. Kao, C.C.; Lin, Y.S.; Wu, G.D.; Huang, C.J. A study of applications, challenges, and channel models on the Internet of Underwater

Things. In Proceedings of the 2017 International Conference on Applied System Innovation (ICASI), Sapporo, Japan, 13–17 May
2017; pp. 1375–1378, doi:10.1109/ICASI.2017.7988162.

6. Veleski, M.; Kraemer, R.; Krstic, M. An overview of cross-layer resilience design methods. In Proceedings of the Fifth International
Conference Reliability—ETS’17 Fringe Workshop, Limasol, Cyprus, 25–26 May 2017.

7. Paradis, L.; Han, Q. A survey of fault management in wireless sensor networks. J. Netw. Syst. Manag. 2007, 15, 171–190,
doi:10.1007/s10922-007-9062-0.

8. Mitra, S. Comparative study of fault recovery techniques in wireless sensor network. In Proceedings of the 2016 IEEE International
WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Pune, India, 19–21 December 2016; pp. 19–21.

9. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805, doi:10.1016/j.comnet.2010.05.010.
10. Díaz, M.; Martín, C.; Rubio, B. State-of-the-art, challenges, and open issues in the integration of Internet of things and cloud

computing. J. Netw. Comput. Appl. 2016, 67, 99–117, doi:10.1016/j.jnca.2016.01.010.
11. Tyagi, S.; Kumar, N. A systematic review on clustering and routing techniques based upon LEACH protocol for wireless sensor

networks. J. Netw. Comput. Appl. 2013, 36, 623–645, doi:10.1016/j.jnca.2012.12.001.
12. Singh, S.P.; Sharma, S.C. A survey on cluster based routing protocols in wireless sensor networks. Procedia Comput. Sci. 2015,

45, 687–695, doi:10.1016/j.procs.2015.03.133.
13. Fadel, E.; Gungor, V.C.; Nassef, L.; Akkari, N.; Abbas Malik, M.G.; Almasri, S.; Akyildiz, I.F. A survey on wireless sensor networks

for smart grid. Comput. Commun. 2015, 71, 22–33, doi:10.1016/j.comcom.2015.09.006.
14. Moridi, E.; Haghparast, M.; Hosseinzadeh, M.; Jassbi, S.J. Fault management frameworks in wireless sensor networks: A survey.

Comput. Commun. 2020, 155, 205–226, doi:10.1016/j.comcom.2020.03.011.
15. More, A.; Raisinghani, V. A survey on energy efficient coverage protocols in wireless sensor networks. J. King Saud Univ. Comput.

Inf. Sci. 2017, 29, 428–448, doi:10.1016/j.jksuci.2016.08.001.
16. Amin, A.A.; Hasan, K.M. A review of Fault Tolerant Control Systems: Advancements and applications. Meas. J. Int. Meas. Confed.

2019, 143, 58–68, doi:10.1016/j.measurement.2019.04.083.
17. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The

PRISMA statement. Int. J. Surg. 2010, 8, 336–341, doi:10.1016/j.ijsu.2010.02.007.
18. Domingo, M.C. A topology reorganization scheme for reliable communication in underwater wireless sensor networks affected

by shadow zones. Sensors 2009, 9, 8684–8708, doi:10.3390/s91108684.
19. Xu, J.; Li, K.; Min, G. Reliable and energy-efficient multipath communications in underwater sensor networks. IEEE Trans.

Parallel Distrib. Syst. 2012, 23, 1326–1335, doi:10.1109/TPDS.2011.266.
20. Lal, C.; Petroccia, R.; Conti, M.; Alves, J. Secure underwater acoustic networks: Current and future research directions. In

Proceedings of the 2016 IEEE Third Underwater Communications and Networking Conference (UComms), Lerici, Italy, 30
August–1 September 2016, doi:10.1109/UComms.2016.7583466.

21. Das, A.P.; Thampi, S.M. Fault-resilient localization for underwater sensor networks. Ad Hoc Netw. 2017, 55, 132–142,
doi:10.1016/j.adhoc.2016.09.003.

22. Mohamed, N.; Jawhar, I.; Al-Jaroodi, J.; Zhang, L. Sensor network architectures for monitoring underwater pipelines. Sensors
2011, 11, 10738–10764, doi:10.3390/s111110738.

23. Kumar, S.; Balamurugan B. Fault tolerant cloud systems. In Encyclopedia of Information Science and Technology, 4th ed.; Khosrow-
Pour, D.B.A., Ed.; IGI Global: Hershey, PA, USA 2018; Chapter 93, pp. 1075–1090, doi:10.4018/978-1-5225-2255-3.ch093.

24. Wilfredo, T.; Torres-Pomales, W. Software Fault Tolerance: A Tutorial; Technical Report October; NASA: Washington, DC, USA 2000.
25. Khan, M.Z. Fault Management in Wireless Sensor Networks. GESJ Comput. Sci. Telecommun. 2013, 1, pp. 3–17.
26. Henkel, J.; Hedrich, L.; Herkersdorf, A.; Kapitza, R.; Lohmann, D.; Marwedel, P.; Platzner, M.; Rosenstiel, W.; Schlichtmann, U.;

Spinczyk, O.; et al. Design and architectures for dependable embedded systems. In Proceedings of the Seventh IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis, Taipei, Taiwan, 9–14 October 2011; ACM Press:
New York, NY, USA, 2011; p. 69, doi:10.1145/2039370.2039384.

27. Georgakos, G.; Schlichtmann, U.; Schneider, R.; Chakraborty, S. Reliability challenges for electric vehicles. In Proceedings of the
50th Annual Design Automation Conference, Austin, TX, USA, 29 May–7 June 2013; ACM Press: New York, NY, USA, 2013; p. 1,
doi:10.1145/2463209.2488855.

28. Lorenz, D.; Barke, M.; Schlichtmann, U. Efficiently analyzing the impact of aging effects on large integrated circuits. Microelectron.
Reliab. 2012, 52, 1546–1552, doi:10.1016/j.microrel.2011.12.029.



Sensors 2021, 21, 3264 18 of 22

29. Sauli, Z.; Retnasamy, V.; Taniselass, S.; Shapri, A.H.; Hatta, R.M.; Aziz, M.H. Polymer core BGA vertical stress loading analysis.
Proc. Int. Conf. Comput. Intell. Model. Simul. 2012, 129, 148–151, doi:10.1109/CIMSim.2012.83.

30. Rehman, S. Reliable Software for Unreliable Hardware—A Cross-Layer Approach. Ph.D. Thesis, Karlsruhe Institute of Technology
(KIT), Karlsruhe, Germany, 2015.

31. Kaaniche, M.; Laprie, J.C.; Blanquart, J.P. Dependability engineering of complex computing systems. In Proceedings of the
Sixth IEEE International Conference on Engineering of Complex Computer Systems 2000, Tokyo, Japan, 11–14 September 2000,
pp. 36–46, doi:10.1109/iceccs.2000.873926.

32. Tanenbaum, A.S.; Van Steen, M. Distributed Systems: Principles and Paradigms; Prentice-Hall: Upper Saddle River, NJ, USA, 2007.
33. Carter, N.P.; Naeimi, H.; Gardner, D.S. Design techniques for cross-layer resilience. In Proceedings of the 2010 Design,

Automation & Test in Europe Conference & Exhibition (DATE 2010), Dresden, Germany, 8–12 March 2010; pp. 1023–1028,
doi:10.1109/DATE.2010.5456960.

34. Sofi, S.A.; Mir, R.N. Natural algorithm based adaptive architecture for underwater wireless sensor networks. In Proceedings of
the 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India,
22–24 March 2017; pp. 2343–2346, doi:10.1109/WiSPNET.2017.8300179.

35. Noh, Y.; Lee, U.; Lee, S.; Wang, P.; Vieira, L.F.; Cui, J.H.; Gerla, M.; Kim, K. HydroCast: Pressure routing for underwater sensor
networks. IEEE Trans. Veh. Technol. 2016, 65, 333–347, doi:10.1109/TVT.2015.2395434.

36. Asim, M.; Mokhtar, H.; Merabti, M. A fault management architecture for wireless sensor network. In Proceedings of the
2008 International Wireless Communications and Mobile Computing Conference, Crete, Greece, 6–8 August 2008; pp. 779–785,
doi:10.1109/IWCMC.2008.135.

37. Wu, C.H.; Lee, K.C.; Chung, Y.C. A Delaunay Triangulation based method for wireless sensor network deployment. Comput.
Commun. 2007, 30, 2744–2752, doi:10.1016/j.comcom.2007.05.017.

38. Isler, V.; Kannan, S.; Daniilidis, K. Sampling based sensor-network deployment. In Proceedings of the 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 28 September–2 October 2004; pp. 1780–1785.

39. Dong, M.; Li, H.; Li, Y.; Deng, Y.; Yin, R. Fault-tolerant topology with lifetime optimization for underwater wireless sensor
networks. Sadhana Acad. Proc. Eng. Sci. 2020, 45, doi:10.1007/s12046-020-01406-1.

40. Cheng, Z.; Perillo, M.; Heinzelman, W.B. General network lifetime and cost models for evaluating sensor network deployment
strategies. IEEE Trans. Mob. Comput. 2008, 7, 484–497, doi:10.1109/TMC.2007.70784.

41. Bhuvana, V.P.; Preissl, C.; Tonello, A.M.; Huemer, M. Multi-Sensor Information Filtering with Information-Based Sensor Selection
and Outlier Rejection. IEEE Sens. J. 2018, 18, 2442–2452, doi:10.1109/JSEN.2017.2789239.

42. Goyal, N.; Dave, M.; Verma, A.K. Data aggregation in underwater wireless sensor network: Recent approaches and issues. J. King
Saud Univ. Comput. Inf. Sci. 2017, doi:10.1016/j.jksuci.2017.04.007.

43. Goyal, N.; Dave, M.; Verma, A.K. A novel fault detection and recovery technique for cluster-based underwater wireless sensor
networks. Int. J. Commun. Syst. 2018, 31, 1–14, doi:10.1002/dac.3485.

44. Kohnstamm, J.; Madhub, D. Mauritius Declaration. In Proceedings of the 36th International Conference of Data Protection &
Privacy Commissioners, Balaclava, Mauritius, 14 October 2014; pp. 1–2.

45. Campagnaro, F.; Francescon, R.; Guerra, F.; Favaro, F.; Casari, P.; Diamant, R.; Zorzi, M. The DESERT underwater framework v2:
Improved capabilities and extension tools. In Proceedings of the 2016 IEEE Third Underwater Communications and Networking
Conference (UComms), Lerici, Italy, 30 August–1 September 2016, doi:10.1109/UComms.2016.7583420.

46. Petrioli, C.; Petroccia, R.; Potter, J.R.; Spaccini, D. The SUNSET framework for simulation, emulation and at-sea testing of
underwater wireless sensor networks. Ad Hoc Netw. 2015, 34, 224–238, doi:10.1016/j.adhoc.2014.08.012.

47. Petroccia, R.; Spaccini, D. Comparing the SUNSET and DESERT frameworks for in field experiments in underwater acous-
tic networks. In OCEANS 2013 MTS/IEEE Bergen: The Challenges of the Northern Dimension; IEEE: Bergen, Norway, 2013,
doi:10.1109/OCEANS-Bergen.2013.6608141.

48. Ateniese, G.; Capossele, A.; Gjanci, P.; Petrioli, C.; Spaccini, D. SecFUN: Security framework for underwater acoustic sensor
networks. In MTS/IEEE OCEANS 2015—Genova: Discovering Sustainable Ocean Energy for a New World; IEEE: Genova, Italy, 2015,
doi:10.1109/OCEANS-Genova.2015.7271735.

49. Liu, T.H.; Yi, S.C.; Wang, X.W. A fault management protocol for low-energy and efficient Wireless sensor networks. J. Inf. Hiding
Multimed. Signal Process. 2013, 4, 34–45.

50. Case, J.D.; Fedor, M.; Schoffstall, M.L.; Davin, J. RFC1157: Simple Network Management Protocol (SNMP); Technical Report,
RFC Editor. 1990.

51. Gunawi, H.S.; Do, T.; Hellerstein, J.M.; Stoica, I.; Borthakur, D.; Robbins, J. Failure as a service (faas): A cloud service for
large-scale, online failure drills. In Technical Report No. UCB/EECS-2011-87; University of California: Berkeley, CA, USA, 2011.

52. Intel. Intelligent Platform Management Interface. 2004. Available online: https://www.intel.com/content/www/us/en/servers/
ipmi/ipmi-home.html (accessed on 6 May 2021).

53. Napolitano, M.R.; Neppach, C.; Casdorph, V.; Naylor, S.; Innocenti, M.; Silvestri, G. Neural-network-based scheme for sensor
failure detection, identification, and accommodation. J. Guid. Control. Dyn. 1995, 18, 1280–1286, doi:10.2514/3.21542.

54. Neti, C.; Schneider, M.H.; Young, E.D. Maximally Fault Tolerant Neural Networks. IEEE Trans. Neural Netw. 1992, 3, 14–23,
doi:10.1109/72.105414.



Sensors 2021, 21, 3264 19 of 22

55. Benincasa, G.; D’Aniello, G.; De Maio, C.; Loia, V.; Orciuoli, F. Towards perception-oriented situation awareness systems.
Adv. Intell. Syst. Comput. 2014, 322, 813–824, doi:10.1007/978-3-319-11313-5_71.

56. Compton, M.; Barnaghi, P.; Bermudez, L.; García-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth, M.; Henson, C.;
Herzog, A.; et al. The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant. 2012, 17, 25–32,
doi:10.1016/j.websem.2012.05.003.

57. D’Aniello, G.; Gaeta, A.; Orciuoli, F. Artificial bees for improving resilience in a sensor middleware for Situational Awareness.
In Proceedings of the 2015 Conference on Technologies and Applications of Artificial Intelligence, Tainan, Taiwan, 20–22
November 2015; pp. 300–307, doi:10.1109/TAAI.2015.7407104.

58. Alansary, K.A.; Daoud, R.M.; Amer, H.H.; Elsayed, H.M. Networked control system architecture for autonomous underwater
vehicles with redundant sensors. In Proceedings of the 2019 11th International Conference on Electronics, Computers and
Artificial Intelligence (ECAI), Pitesti, Romania, 27–29 June 2019; pp. 2019–2022, doi:10.1109/ECAI46879.2019.9042033.

59. Cristea, V.; Dobre, C.; Pop, F.; Stratan, C.; Costan, A.; Leordeanu, C.; Tirsa, E. A dependability layer for large-scale distributed
systems. Int. J. Grid Util. Comput. 2011, 2, 109, doi:10.1504/IJGUC.2011.040598.

60. Salera, I.; Agbaria, A.; Eltoweissy, M. Fault-tolerant mobile sink in networked sensor systems. In Proceedings of the 2006 2nd IEEE
Workshop on Wireless Mesh Networks, Reston, VA, USA, 25–28 September 2007; pp. 106–108, doi:10.1109/WIMESH.2006.288624.

61. Vihman, L.; Kruusmaa, M.; Raik, J. Data-driven cross-layer fault management architecture for sensor networks. In Proceedings
of the 2020 16th European Dependable Computing Conference (EDCC), Munich, Germany, 7–10 September 2020; pp. 33–40,
doi:10.1109/EDCC51268.2020.00015.

62. Han, G.; Jiang, J.; Sun, N.; Shu, L. Secure communication for underwater acoustic sensor networks. IEEE Commun. Mag. 2015,
53, 54–60, doi:10.1109/MCOM.2015.7180508.

63. Chae-Won, Y.; Jae-Hoon, L.; Okyeon, Y.; Soo-Hyun, P. Ticket-based authentication protocol for Underwater Wireless Sensor
Network. In Proceedings of the 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna,
Austria, 5–8 July 2016; pp. 215–217, doi:10.1109/ICUFN.2016.7537019.

64. Han, G.; He, Y.; Jiang, J.; Wang, H.; Peng, Y.; Fan, K. Fault-Tolerant Trust Model for Hybrid Attack Mode in Underwater Acoustic
Sensor Networks. IEEE Netw. 2020, 34, 330–336, doi:10.1109/MNET.001.2000006.

65. Dong, Y.; Dong, H. Simulation study on cross-layer design for energy conservation in underwater acoustic networks. In 2013
OCEANS—San Diego; IEEE: San Diego, CA, USA, 2013; pp. 1–4, do:10.23919/OCEANS.2013.6741315

66. Zhou, Z.; Yao, B.; Xing, R.; Shu, L.; Bu, S. E-CARP: An Energy Efficient Routing Protocol for UWSNs in the Internet of Underwater
Things. IEEE Sens. J. 2016, 16, 4072–4082, doi:10.1109/JSEN.2015.2437904.

67. Wang, K.; Gao, H.; Xu, X.; Jiang, J.; Yue, D. An Energy-Efficient Reliable Data Transmission Scheme for Complex Environmental
Monitoring in Underwater Acoustic Sensor Networks. IEEE Sens. J. 2016, 16, 4051–4062, doi:10.1109/JSEN.2015.2428712.

68. Huang, C.J.; Wang, Y.W.; Liao, H.H.; Lin, C.F.; Hu, K.W.; Chang, T.Y. A power-efficient routing protocol for underwater wireless
sensor networks. Appl. Soft Comput. J. 2011, 11, 2348–2355, doi:10.1016/j.asoc.2010.08.014.

69. Rani, S.; Hassan, S.; Malhotra, J.; Talwar, R. Energy e ffi cient chain based routing protocol for underwater wireless sensor
networks. J. Netw. Comput. Appl. 2017, 92, 1–9, doi:10.1016/j.jnca.2017.01.011.

70. DeHon, A.; Quinn, H.M.; Carter, N.P. Vision for cross-layer optimization to address the dual challenges of energy and reliability.
In Proceedings of the 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), Dresden, Germany, 8–12
March 2010; pp. 1017–1022, doi:10.1109/DATE.2010.5456959.

71. Darra, E.; Katsikas, S.K. A survey of intrusion detection systems in wireless sensor networks. Intrusion Detect. Prev. Mob. Ecosyst.
2017, 393–458, doi:10.1201/b21885.

72. Mitra, S.; Brelsford, K.; Sanda, P.N. Cross-layer resilience challenges: Metrics and optimization. In Proceedings of the 2010
Design, Automation & Test in Europe Conference & Exhibition (DATE 2010), Dresden, Germany, 8–12 March 2010; pp. 1029–1034,
doi:10.1109/DATE.2010.5456961.

73. Henkel, J.; Bauer, L.; Zhang, H.; Rehman, S.; Shafique, M. Multi-layer dependability: From microarchitecture to application
level. In Proceedings of the 51st Annual Design Automation Conference, San Francisco, CA, USA, 1–5 June 2014; pp. 47:1–47:6,
doi:10.1145/2593069.2596683.

74. Bulusu, N.; Heidemann, J.; Estrin, D. GPS-less low-cost outdoor localization for very small devices. IEEE Pers. Commun. 2000,
7, 28–34, doi:10.1109/98.878533.

75. Nassif, S. Modeling and analysis of manufacturing variations. In Proceedings of the IEEE 2001 Custom Integrated Circuits
Conference, San Diego, CA, USA, 9 May 2001; pp. 223–228, doi:10.1109/CICC.2001.929760.

76. Zhao, Y.J.; Govindan, R.; Estrin, D. Residual energy scan for monitoring sensor networks. In Proceedings of the 2002 IEEE
Wireless Communications and Networking Conference Record, Orlando, FL, USA, 17–21 March 2002; Volume 1, pp. 356–362,
doi:10.1109/WCNC.2002.993521.

77. de Lemos, R.; Gacek, C.; Romanovsky, A. LNCS 3069—Architecting dependable systems II. In Architecting Dependable Systems II;
Springer-Verlag: Berlin, Germany; 2004; pp. 286–304.

78. Bokareva, T.; Bulusu, N.; Jha, S. SASHA: Toward a self-healing hybrid sensor network architecture. In Proceedings of the
Second IEEE Workshop on Embedded Networked Sensors 2005, Sydney, Australia, 31 May 2005; Volume 2005, pp. 71–78,
doi:10.1109/EMNETS.2005.1469101.



Sensors 2021, 21, 3264 20 of 22

79. Heidemann, J.; Wei, Y.; Wills, J.; Syed, A.; Yuan, L. Research challenges and applications for underwater sensor networking.
In Proceedings of the IEEE Wireless Communications and Networking Conference 2006, Las Vegas, NV, USA, 3–6 April 2006;
pp. 228–235, doi:10.1109/WCNC.2006.1683469.

80. Mengjie, Y.; Mokhtar, H.; Merabti, M. Fault management in wireless sensor networks. IEEE Wirel. Commun. 2007, 14, 13–19,
doi:10.1111/1471-0528.14614.

81. Lee, M.H.; Choi, Y.H. Fault detection of wireless sensor networks. Comput. Commun. 2008, 31, 3469–3475, doi:10.1016/j.comcom.
2008.06.014.

82. Wang, Y.; Cao, L.; Dahlberg, T.A. Efficient fault tolerant topology control for three-dimensional wireless networks. In Proceedings
of the 2008 17th International Conference on Computer Communications and Networks, St. Thomas, VI, USA, 3–7 August 2008;
pp. 336–341, doi:10.1109/ICCCN.2008.ECP.75.

83. Khan, M.Z.; Merabti, M.; Askwith, B. Design considerations for fault management in wireless sensor networks. In Proceedings of
the 10th Annual Conference on the Convergence of Telecommunications, Networking and Broadcasting, Liverpool, UK, 12–23
June 2009, doi:10.13140/2.1.1071.9685.

84. Teymorian, A.Y.; Member, S.; Cheng, W.; Ma, L.; Cheng, X. 3D Underwater Sensor Network Localization. Network 2009,
8, 1610–1621, doi:10.1109/TMC.2009.80.

85. Yu, C.H.; Lee, K.H.; Moon, H.P.; Choi, J.W.; Seo, Y.B. Sensor localization algorithms in underwater wireless sensor networks. In
Proceedings of the 2009 ICCAS-SICE, Fukuoka, Japan, 18–21 August 2009; pp. 1760–1764.

86. Kim, J.Y.; Yoon, H.; Kim, S.H.; Son, S.H. Fault management of robot software components based on OPRoS. In Proceedings of the
2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing, Newport
Beach, CA, USA, 28–31 March 2011; pp. 253–260, doi:10.1109/ISORC.2011.41.

87. Tanasa, B.; Bordoloi, U.D.; Eles, P.; Peng, Z. Reliability-aware frame packing for the static segment of flexray. In Proceedings
of the 2011 Proceedings of the Ninth ACM International Conference on Embedded Software (EMSOFT), Taipei, Taiwan, 9–14
October 2011; ACM Press: New York, NY, USA, 2011; pp. 175–184, doi:10.1145/2038642.2038670.

88. Roman, R.; Najera, P.; Lopez, J. Securing the Internet of things. Comput. (Long. Beach. Calif.) 2011, 44, 51–58,
doi:10.1109/MC.2011.291.

89. Paul, S.; Pan, J.; Jain, R. Architectures for the future networks and the next generation Internet: A survey. Comput. Commun. 2011,
34, 2–42, doi:10.1016/j.comcom.2010.08.001.

90. Xu, M.; Liu, G. Fault tolerant routing in three-dimensional underwater acoustic sensor networks. In Proceedings of the 2011
International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 9–11 November 2011;
doi:10.1109/WCSP.2011.6096859.

91. Thomas, A.; Pattabiraman, K. Error detector placement for soft computation. Proc. Int. Conf. Dependable Syst. Netw. 2013, 15, 1–25,
doi:10.1109/DSN.2013.6575353.

92. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions.
Futur. Gener. Comput. Syst. 2013, 29, 1645–1660, doi:10.1016/j.future.2013.01.010.

93. Guo, Y.; Liu, Y. Localization for anchor-free underwater sensor networks. Comput. Electr. Eng. 2013, 39, 1812–1821,
doi:10.1016/j.compeleceng.2013.02.001.

94. Amory, A.; Meyer, B.; Osterloh, C.; Tosik, T.; Maehle, E. Towards fault-tolerant and energy-efficient swarms of underwater robots.
In Proceedings of the 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum,
Cambridge, MA, USA, 20–24 May 2013; pp. 1550–1553, doi:10.1109/IPDPSW.2013.215.

95. Oteafy, S.M.; Hassanein, H.S. Resilient Sensor Networks utilizing dynamic resource reuse: A novel paradigm towards fault-
tolerant wireless sensing. In Proceedings of the 2014 International Conference on Computing, Management and Telecommunica-
tions (ComManTel), Da Nang, Vietnam, 27–29 April 2014; pp. 217–222, doi:10.1109/ComManTel.2014.6825607.

96. Rault, T.; Bouabdallah, A.; Challal, Y. Energy efficiency in wireless sensor networks: A top-down survey. Comput. Netw. 2014,
67, 104–122, doi:10.1016/j.comnet.2014.03.027.

97. Kuila, P.; Jana, P.K. Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization
approach. Eng. Appl. Artif. Intell. 2014, 33, 127–140, doi:10.1016/j.engappai.2014.04.009.

98. Zhu, Y.; Lu, X.; Pu, L.; Su, Y.; Martin, R.; Zuba, M.; Peng, Z.; Cui, J.H. Aqua-Sim: An NS-2 Based Simulator for Underwater Sensor
Networks. In OCEANS 2009; IEEE: Biloxi, MS, USA , 2014; p. 2014, doi:10.23919/OCEANS.2009.5422081.

99. Rossi, P.S.; Member, S.; Ciuonzo, D. Energy Detection for MIMO Decision Fusion in Underwater Sensor Networks. IEEE Sens. J.
2015, 15, 1630–1640.

100. Bauer, L.; Henkel, J.; Herkersdorf, A.; Kochte, M.A.; Kühn, J.M.; Rosenstiel, W.; Schweizer, T.; Wallentowitz, S.; Wenzel,
V.; Wild, T.; et al. Adaptive multi-layer techniques for increased system dependability. It-Inf. Technol. 2015, 57, 149–158,
doi:10.1515/itit-2014-1082.

101. Benson, K. Enabling resilience in the Internet of Things. In Proceedings of the 2015 IEEE International Conference on Pervasive
Computing and Communication Workshops (PerCom Workshops), St. Louis, MO, USA, 23–27 March 2015; pp. 230–232,
doi:10.1109/PERCOMW.2015.7134032.

102. Zhehao, W.; Xia, L. An Improved Underwater Acoustic Network Localization Algorithm. China Commun. 2015, 12, 77 – 83.
103. Han, G.; Zhang, C.; Shu, L.; Rodrigues, J.J.P.C. Impacts of Deployment Strategies on Localization Performance in Underwater

Acoustic Sensor Networks. IEEE Trans. Ind. Electron. 2015, 62, 1725–1733, doi:10.1109/TIE.2014.2362731.



Sensors 2021, 21, 3264 21 of 22

104. Valerio, V.D.; Petrioli, C.; Pescosolido, L.; Van Der Shaar, M. A reinforcement learning-based data-link protocol for underwater
acoustic communications. In Proceedings of the 10th International Conference on Underwater Networks & Systems, Arlington,
VA, USA, 22–24 October 2015; pp. 1–5, doi:10.1145/2831296.2831338.

105. Rehman, S.; Chen, K.H.; Kriebel, F.; Toma, A.; Shafique, M.; Chen, J.J.; Henkel, J. Cross-Layer Software Dependability on
Unreliable Hardware. IEEE Trans. Comput. 2016, 65, 80–94, doi:10.1109/TC.2015.2417554.

106. Sahoo, S.S.; Veeravalli, B.; Kumar, A. Cross-layer fault-tolerant design of real-time systems. In Proceedings of the 2016 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Storrs, CT, USA, 19–20
September 2016; pp. 63–68, doi:10.1109/DFT.2016.7684071.

107. Li, J.; Gao, H.; Zhang, S.; Chang, S.; Chen, J.; Liu, Z. Self-localization of autonomous underwater vehicles with accurate sound
travel time solution. Comput. Electr. Eng. 2016, 50, 26–38, doi:10.1016/j.compeleceng.2015.11.018.

108. Liu, J.; Wang, Z.; Cui, J.H.; Zhou, S.; Yang, B. A Joint Time Synchronization and Localization Design for Mobile Underwater
Sensor Networks. IEEE Trans. Mob. Comput. 2016, 15, 530–543, doi:10.1109/TMC.2015.2410777.

109. Khan, J.U.; Cho, H.S. A multihop data-gathering scheme using multiple AUVs in hierarchical underwater sensor networks. Int.
Conf. Inf. Netw. 2016, 265–267, doi:10.1109/ICOIN.2016.7427074.

110. Koraz, Y.; Gabbar, H.A. Bayesian-neuro-fuzzy network based online condition monitoring system for resilient micro energy grid
using FPGA. In Proceedings of the 2017 IEEE 7th International Conference on Power and Energy Systems (ICPES), Toronto, ON,
Canada, 1–3 November 2017; pp. 85–89, doi:10.1109/ICPESYS.2017.8215926.

111. Suvarna, M.; Patil, A.; Mishra, M.P. Improved Mobicast Routing Protocol to Minimize Energy Consumption for Underwater
Sensor Networks. Int. J. Res. Sci. Eng. 2017, 3, 201.

112. Cario, G.; Casavola, A.; Gjanci, P.; Lupia, M.; Petrioli, C.; Spaccini, D. Long lasting underwater wireless sensors net-
work for water quality monitoring in fish farms. In OCEANS 2017—Aberdeen, IEEE: Aberdeen, UK; 2017; pp. 1–6,
doi:10.1109/OCEANSE.2017.8084777.

113. Dong, Y.; Wang, R.; Li, Z.; Cheng, C.; Zhang, K. Poster abstract: Improved reverse localization schemes for underwater wireless
sensor networks. In Proceedings of the 2017 16th ACM/IEEE International Conference on Information Processing in Sensor
Networks, Pittsburgh, PA, USA, 18–21 April 2017; Volume 1, pp. 323–324, doi:10.1145/3055031.3055070.

114. Kao, C.C.; Lin, Y.S.; Wu, G.D.; Huang, C.J. A Comprehensive Study on the Internet of Underwater Things: Applications,
Challenges, and Channel Models. Sensors 2017, 17, 1477, doi:10.3390/s17071477.

115. Mortazavi, E.; Javidan, R.; Dehghani, M.J.; Kavoosi, V. A robust method for underwater wireless sensor joint localization and
synchronization. Ocean Eng. 2017, 137, 276–286, doi:10.1016/j.oceaneng.2017.04.006.

116. Seto, M.L.; Bashir, A.Z. Fault tolerance considerations for long endurance AUVs. Proc. Annu. Reliab. Maintainab. Symp. 2017,
doi:10.1109/RAM.2017.7889661.

117. Azad, S.P. Cross-Layer Dependability Management in Network on Chip Based System on Chip. Ph.D. Thesis, Tallinn Technical
University, Tallinn, Estonia, 13 March 2018.

118. Sahu, B.; Sahu, P.; Dash, P. Fault tolerant dynamic multi-hop clustering in under water sensor network. In Proceedings of
the 2018 International Conference on Information Technology (ICIT), Bhubaneswar, India, 19–21 December 2018; pp. 101–105,
doi:10.1109/ICIT.2018.00031.

119. Dala, A.; Adetomi, A.; Enemali, G.; Arslan, T. RR4DSN: Reconfigurable Receiver for Deepwater Sensor Nodes. In Proceedings of
the 2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Edinburgh, UK, 6–9 August 2018; pp. 280–284,
doi:10.1109/AHS.2018.8541455.

120. Tang, Y.; Chen, Y.; Yu, W.; Xu, X. Emergency communication schemes for muliti-hop underwater acoustic cooperartive networks.
In Proceedings of the 2018 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC),
Qingdao, China, 14–16 September 2018; doi:10.1109/ICSPCC.2018.8567788.

121. Yanmaz, E.; Yahyanejad, S.; Rinner, B.; Hellwagner, H.; Bettstetter, C. Drone networks: Communications, coordination, and
sensing. Ad Hoc Netw. 2018, 68, 1–15, doi:10.1016/j.adhoc.2017.09.001.

122. Han, Y.; Zhang, J.; Sun, D. Error control and adjustment method for underwater wireless sensor network localization. Appl.
Acoust. 2018, 130, 293–299, doi:10.1016/j.apacoust.2017.08.007.

123. Shah, M.; Wadud, Z.; Sher, A.; Ashraf, M.; Khan, Z.A.; Javaid, N. Position adjustment-based location error-resilient geo-
opportunistic routing for void hole avoidance in underwater sensor networks. Concurr. Comput. 2018, 1–18, doi:10.1002/cpe.4772.

124. Caporuscio, M.; Flammini, F.; Khakpour, N.; Singh, P.; Thornadtsson, J. Smart-troubleshooting connected devices: Concept,
challenges and opportunities. Futur. Gener. Comput. Syst. 2020, 111, 681–697, doi:10.1016/j.future.2019.09.004.

125. Desai, N.; Punnekkat, S. Enhancing fault detection in time sensitive networks using machine learning. In Proceedings of the
2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, 7–11 January 2020;
pp. 714–719, doi:10.1109/COMSNETS48256.2020.9027357.

126. Jin, Z.; Zhao, Q.; Luo, Y. Routing Void Prediction and Repairing in AUV-Assisted Underwater Acoustic Sensor Networks.
IEEE Access 2020, 8, 54200–54212, doi:10.1109/ACCESS.2020.2980043.

127. Prasanth, A. Certain Investigations on Energy-Efficient Fault Detection and Recovery Management in Underwater Wireless
Sensor Networks. J. Circuits Syst. Comput. 2020, doi:10.1142/S0218126621501371.



Sensors 2021, 21, 3264 22 of 22

128. Xu, J.; Chen, S.; Kalbarczyk, Z.; Iyer, R.K. An experimental study of security vulnerabilities caused by errors. Proc. Int. Conf.
Dependable Syst. Netw. 2001, 421–430, doi:10.1109/DSN.2001.941426.

129. Safara, F.; Souri, A.; Baker, T.; Al Ridhawi, I.; Aloqaily, M. PriNergy: A priority-based energy-efficient routing method for IoT
systems. J. Supercomput. 2020, 76, 8609–8626, doi:10.1007/s11227-020-03147-8.



Appendix 3

III

L. Vihman, T. M. Parts, H. K. Aljas, M. Thalfeldt, and J. Raik. Algorithms foronline CO2 baseline correction in intermittently occupied rooms. In 18th
Heal. Build. Eur. Conf., Aachen, Germany, 2023. Emerald

107





18th Healthy Buildings Europe Conference,  
11th – 14th June 2023, Aachen, Germany 

 

1 

Algorithms for online CO2 baseline correction in intermittently 

occupied rooms 

Lauri Vihman a,b, Tuule Mall Parts a,c, Hans Kristjan Aljas a,c, Martin Thalfeldt a,c, Jaan Raik a,b 

a FinEst Centre for Smart Cities (Finest Centre), Tallinn University of Technology, Tallinn, Estonia, 
tuule.parts@taltech.ee. 

b Centre for Dependable Computing Systems, Department of Computing Systems, Tallinn University of Technology, 
Estonia., lauri.vihman@taltech.ee. 

c Department of Civil Engineering and Architecture, Tallinn University of Technology, Tallinn, Estonia. 

 

Abstract. CO2 sensor data is often applied for Demand Controlled Ventilation (DCV), Indoor Air 

Quality (IAQ) assessment, and occupancy detection. In room controllers, the auto-calibration 

function shifts the zero level so that the measurements would not drift off. However, this creates 

jumps in data and sometimes values below outdoor CO2 level. If the data is further used, 

occupancy is detected differently, the ventilation would not function as designed, and the 

assessment would result in different IAQ class certificates. Therefore, in this work, a statistical 

method to correct the CO2 baseline automatically in real time was developed based on 

measurements from a school building in Estonia in 56 different rooms. The school had balanced 

heat recovery ventilation that assured adequate ventilation. During the process, the 

performance of different algorithms and parameters for the correction were compared. The CO2 

concentration baseline correction algorithm was realised using the 1% percentile and 10-hour 

sliding time window as an optimal compromise to correct the base level to 400 ppm and the 

algorithm performed well based on qualitative assessment. The impact of the algorithm was 

significant when comparing the initially logged and corrected values against CO2 concentration 

thresholds 550, 800, and 1000 ppm. 

 
Keywords. Sensor auto-calibration, indoor air quality, data quality, CO2 sensors, CO2 
monitoring 
 

1. Introduction 

Latest proposal for revising Energy Performance of 

Buildings Directive (EPBD) (European Commission, 

2021) states that Member States shall require zero-

emission buildings to be equipped with measuring 

and control devices for the monitoring and regulation 

of Indoor Air Quality (IAQ). In existing buildings, 

installation of such devices shall be required, where 

technically and economically feasible, when a building 

undergoes a major renovation. There has been 

discussion about which building types to include and 

if monitoring requirement is justified, but 

nevertheless carbon dioxide (CO2) sensors are needed 

for regulation of IAQ and they are installed in an 

increasing number of new and deeply renovated non-

residential buildings. 

Measuring concentration of gases is technically 

complicated and in practice the quality of raw data 

from CO2 sensors should be verified and post-

processed if needed for further analysis. Mylonas et al. 

(Mylonas, Kazanci, Andersen, & Olesen, 2019) 

measured accuracy of temperature, relative humidity 

and CO2 sensors from 6 producers in laboratory 

conditions. The measurement errors of CO2 sensors 

ranged between -413 and +4589 ppm and in case of 

some sensor the measurement error strongly 

correlated with the air temperature. The authors 

concluded that significant improvement on CO2 

measurement capabilities are required, before these 

types of sensors can be installed in buildings for CO2 

concentration control. Nevertheless, CO2 sensors are 

increasingly often used in buildings and it is currently 

difficult to assure the quality of sensors. This can often 

lead to inadequate IAQ regulation and assessment.  

The aim of this study is to develop a data-driven 

method for post-processing of raw data from CO2 

sensors to improve the quality of ventilation control 

and IAQ assessment. Data collected by 56 CO2 sensors 

from a school building with a balanced heat recovery 

ventilation in Estonia was analysed and methods for 

correcting the base level of CO2 concentration and 

data cleaning were developed. Additionally, the 

temperature dependency of measured CO2 

concentrations from room temperatures were 

analysed. The developed methods can be 

implemented in existing building management and 

IAQ analysis tools with reasonable computational 

cost. 
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The study was overall conducted in the following 

steps:  

 Data collection 

 Initial expert assessment of data and 

classification of typical patterns 

 CO2 baseline correction method development: 

o Initial comparison of methods for baseline 

correction 

o In-depth analysis of promising methods 

and parameter tuning 

 Expert assessment of selected method for 

baseline correction results 

Sections 2 describes the case study building, data 

collection and expert assessment principles of raw 

and processed data. The CO2 data correction method 

development is described in Section 3. 

2. Data collection, occupancy 

detection and expert assessment 

2.1 Building description and data 

collection 

The data was collected from 56 rooms of a high school 

building from September 1st, 2020 until March 3rd, 

2021. Air temperature, relative humidity, and CO2 

level was measured every 5 minutes. The measuring 

period includes both normal operation and periods 

when the building was not used, so different patterns 

can be observed. The school building had a balanced 

heat recovery ventilation system installed that was 

also used during the measurement period. 

Commercial indoor air quality sensors SMT-IAQ3 

(“Indoor Air Quality Monitor,” 2020) were used. The 

producer claims temperature sensor accuracy to be 

+/- 0.5°C at 25°C (operating range –5 to 50°C), and 

relative humidity (RH) sensor accuracy to be +/- 5% 

at 25°C and 30% to 80% RH (range 0 to 95 % RH). The 

CO2 sensor is a non-dispersive infrared sensor with 

+/- 30ppm accuracy at 25°C, and the operating range 

is 0-2000 ppm. The sensor applies auto-calibration as 

the manual (“Indoor Air Quality Monitor,” 2020) 

states that – “The CO2 sensor within the SMT-IAQ3 has 

an advanced learning self-calibrating function. This 

calibration process takes place over an 8-day period.” 

2.2 Expert assessment 

The initial expert assessment of collected data was 

conducted to identify the occurrence of outliers and 

unexpected patterns. The logged CO2 concentration 

time series were plotted and qualitatively assessed. 

The expected behaviour of CO2 concentration in 

rooms was values fluctuating around 800±300 ppm 

during expected occupancy hours of 8:00-16:00 on 

workdays and values fluctuating around 400±50 ppm 

outside occupancy hours (see Figure 1). 

Figure 1. Expected behaviour of CO2 concentration

 

The following typical cases of deviation from the 

expected behaviour were identified and were subject 

for further analysis and algorithm development: 

- Outliers were identified as sudden change of the 

logged CO2 concentration, which was followed 

by a sudden change of the same magnitude in the 

opposite direction. 

- Incorrect baseline was identified as a 

significant difference of CO2 concentration 

from the outdoor concentration of 400 ppm. 

- Auto-calibration of the indoor climate 

sensor controller was identified as a sudden 

change in the logged CO2 concentration to 

approximately 400 ppm with no change in 

the opposite direction afterwards. 

- Potentially inadequate placement of CO2 

sensor was identified as sudden changes in the 

CO2 concentration at reoccurring times of 

workdays when the ventilation system is either 

turned on or off. This could be caused by non-

uniform distribution of CO2 in the room air 

caused by the air distribution solution. 

- CO2 concentration’s dependency on the air 

temperature was identified as unexplainable 

CO2 concentration fluctuation during 

unoccupied hours that had negative correlation 

with the air temperature fluctuation. 

The typical examples of expected behaviour are 

illustrated in Section 4.1. 

2.3 Occupancy detection 

The expert assessment was carried for both 

unoccupied and occupied periods of classrooms and 

for that an automated process for occupancy 

detection was implemented. The occupancy detection 

algorithm is an adaptation of Pedersen et al. method, 

which is based on CO2 concentration trajectory in 

rooms (Pedersen, Nielsen, & Petersen, 2017). 

However, due to a lower sampling frequency in the 

current case study and performance related 

implementation difficulties, an alternative method 

was developed based on the existing one. 
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The method uses a combination of bilateral filtering 

(Thompson, 2014) and dynamic gradient-based signal 

trajectory classification. Bilateral filter preserves the 

transients, while removing unwanted sensor noise. 

The filtered signal is then classified into three 

categories: rising, stalling and decreasing, based on 

the gradient. Rising signal or rising stalling signal after 

rising signal represent occupancy. However, the 

gradient thresholds for this classification change 

dynamically between manually calibrated boundaries 

as a piecewise linear function of absolute CO2 level at 

a given timestep. The calibration of these thresholds 

depends also on data timestep size, since the 

gradients in data with lower resolution also tend to be 

lower. When the level is near the baseline, greater rise 

and smaller decrease gradients are expected to trigger 

their respective states. At CO2 levels above 700ppm, 

smaller rise and greater decrease are required. This 

allows to preserve more details in the bilateral 

filtering stage, without triggering false positives due 

to remaining noise. Less filtered signal, smaller rise 

and greater decrease thresholds are important to 

avoid false negatives during elevated CO2 levels. Since 

the method uses absolute CO2 values for this task, it is 

important that the CO2 baseline correction is always 

performed before occupancy detection. 

3. Method development  

3.1 Initial comparison of methods 

Although it would be better to correct CO2 baseline in 

the source and having correct data through all the 

data lifecycle i.e. inside the sensor where it is 

measured, many of the used sensors are commercial 

with precisely unknown compensation mechanisms 

and faults and accessing or updating their internals is 

impossible. Thus, we are offering to fix the data at 

later processing stages while still retaining the 

possibility of doing it in real-time. 

CO2 value cannot be significantly lower than outdoors 

CO2. When room is occupied the CO2 level can rise but 

should return gradually to outdoor base level when 

unoccupied due to ventilation systems and natural air 

exchange. Thus, taking above consideration into 

account we tried to use the minimal value of a sliding 

time window to correct shifting baseline. However, 

there could be some outlier measurements occurring 

that reach unrealistically low values which make 

baseline correction using this method erroneous.  

CO2 measurements from a school classroom is shown 

on Figure 2 and additionally, baselines calculated 

using 10 hour sliding window timeframe. It can be 

seen that one outlier measurement reaches 

approximately 200 ppm which is unrealistic value and 

calculated baseline using minimal value of sliding time 

window moving also to unrealistic value. These low 

peak outliers occur seldom in our data, but they exist. 

In case of occurring, there is usually only one outlier 

value, neighbouring values are assumed to be correct. 

To overcome this problem, data pruning or smoothing 

methods can be used to remove the outlier data before 

using minimal value. There is also possibility of using 

a low quantile method (Hyndman & Fan, 1996). The 

reasoning behind using quantile is that most rooms 

are unoccupied some of the time (e.g. at night) 

returning to base value. If none or very few of the 

measurements in a certain time interval have been 

less than a certain value, then this can be considered 

as current base value.  

It is possible to distinguish online (sequential) and 

offline (retrospective) change point detection 

(Kovács, Bühlmann, Li, & Munk, 2022). Low quantile 

method has input of sliding time window of past 

measurements, making it online change point 

detection method and enabling its use for real-time 

applications. Low quantile method to detect and 

compensate indoor CO2 baseline can also eliminate 

low outlier data. Thus, the quantile method was 

selected for CO2 baseline correction. In the following 

subsection, parameters of the method are discussed.  

Figure 2. Example of measured CO2 concentration 

with an outlier and baseline identified based on 

minimum and quantile values 

 

3.2 In depth analysis of parameters of the 

quantile method 

Consider a time series  
𝑋  =  (𝑥𝑡;  𝑡  ∈ 𝑇), 

where 𝑇  is the index set. Consider a window of size 

𝑤   and let  

𝑋𝑤 = (𝑋𝑡 , …𝑋𝑡+𝑤),  𝑡 ∈ 𝑇 

The formal definition of quantile is given by 

Hyndman & Fan (Hyndman & Fan, 1996) as 

𝑄(𝑝)  =  𝐹−1(𝑝)  =   inf{𝑥: 𝐹(𝑥) ≥ 𝑝}  ,  0  <  𝑝  ≤ 1,  

where 𝐹(𝑥) is the distribution of data 𝑥  ∈ 𝑋𝑤 and 𝑝  

is the quantile.



   
 

   
 

Figure 3. CO2 baseline estimation with different sliding time window length

There exists multiple definition of sample quantiles 

(Hyndman & Fan, 1996) in regards of interpolating 

midpoints. We tried continuous methods where the 

value is from the real datapoints and not created. 

Experimenting on collected data and synthesized 

scenarios with injected outlier data we found that 

dividing the distribution into 100 partitions was 

enough for our purposes, so the quantiles that we 

used were percentiles. Specifically we were interested 

in 1st and 2nd percentile and calculating baseline as 

shown in the following. 

In  𝑚 = 𝑝1  ⋅  𝑤  sample in the ordered statistics 

𝑋
𝑤
 𝑜𝑓 𝑋𝑤 , if m is an integer, we take the m-th value in 

the set 𝑋
𝑤

. If m is not an integer, we use the nearest 

integer value. More formally: 

, 

where [.] notes integer rounding function. With more 

outlier data ceiling function instead of rounding gave 

also good results.  1st percentile of described method 

gave the most precise results when there were no or 

up to 1% outlier in used time window. In our collected 

data outlier amount did never exceed 1% making it 

safe to use 1st percentile.  In synthetic scenarios where 

we had more outlier data then 2nd percentile of the 

described method gave better results as 1st percentile 

was trapped by outlier data. 

For CO2 baseline detection we use sliding window of 

past measurement data. After detecting baseline we 

corrected the data using following operation: 

𝑐𝑡  =  𝑣𝑡   − 𝑏𝑡 + 𝑅 

Where c is corrected value in time t, vt is measured 

value, bt is baseline value and R is agreed baseline 

value constant (400 ppm). It should be noted that due 

to the baseline algorithm’s online nature, it introduces 

latency that can be seen in correcting values 

abovementioned way. Further processing steps to 

remove outlier data may be necessary. The base value 

was assumed constant, because the indoor air quality 

assessment methods provide threshold values for CO2 

concentration excess over outdoor concentration, 

which is roughly 400 ppm. Ideally, the measured 

outdoor CO2 concentration could be used as the base 

value, but this is difficult to realize as these are not 

installed in buildings and they should be reliable. 

Figure 3 shows a CO2 level in a room during time 

period where sensor measurements are rapidly 

shifting down more than 200ppm and up again after 

approximately a week. There are dashed lines 

estimating baseline with different sliding time 

window lengths. Dashed lines on upper part of the 

figure show detected baseline and lower part 

corrected values. It can be seen from the figure that 

smaller time window causes much noise trying to 

move baseline even when it should not move. Due to 

the algorithm’s design baseline moving up has latency 

of the time window size. Longer time windows are 

more stable but compensating baseline shift takes 

longer time. On our data the satisfactory time window 

was 10 hours or more depending on requirement of 

responsiveness of data. 

The proposed method is online, can be used in real-

time applications and is utilising sequential historical 

measurements in sliding time window. The proposed 

method is usable for baseline detection and does not 

correct the outlier values. Further smoothing peak 

values can be done as a post-processing step. The 

compensation of baseline moving to higher level is 

delayed and the delay is dependent on used sliding 

time window size while the shorter time window is 

less stable. 

4. CO2 concentration correction 

results 

4.1 Typical unexpected CO2 patterns and 

the corrections 

Typical unexpected patterns described in Section 2.3 

and corrected CO2 values are presented in Figures 4-7 

together with data corrected with the developed 

algorithm. Figure 4 illustrates two outliers, where two 

initially logged CO2 values near 0 ppm occurred within 

two weeks and the corrected CO2 values. Although, the 

algorithm presented here does not remove outliers, 

they did not influence the base level detection. Further 

development is needed for automated removal of 

outliers from processed data. 
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Figure 4. Initial CO2 concentration values with 

outliers and corrected data

 

Figure 5. Initial CO2 concentration with incorrect 

baseline value and auto-calibration and corrected 

data

 

Figure 6. Initial CO2 concentration with potentially 

inadequate sensor placement and corrected data

 

Figure 7. Initial CO2 concentration and temperature 

with CO2 temperature dependency

 

 

 

Figure 5 illustrates logged and corrected CO2 values 

from a room, where the initial baseline of CO2 

concentration was 700 ppm, which was auto-

calibrated to 450 ppm by the measurement device. 

The corrected values have baseline value 400 ppm. 

Figure 6 illustrates logged and corrected CO2 values 

from a room, where every school day exponential CO2 

value decay is seen at the presumable end of room 

occupancy. However, there occurred slight increase in 

logged value around 19 p.m. on each school day, which 

then continued to gradually decrease. Our hypothesis 

is that due to the impact of supply air jet on the sensor, 

the logged value is lower than the average CO2 

concentration in the room when ventilation system 

operates. This would mean that the IAQ assessment 

and ventilation control is inadequate. We have 

observed this behaviour in other cases also and 

further field studies and data analysis is needed to 

potentially develop a method for data-driven 

identification of such inadequate sensor placement 

and potential correction of measured CO2 values. This 

figure also illustrates that sliding time window length 

of 10 hours was slightly too short and further 

development is needed to automatically choose an 

optimal window length. 

7 illustrates logged and corrected CO2 values and 

room temperature from a room, where temperature 

fluctuated significantly between 20 and 24 °C 

presumably due to solar and internal heat gains and 

temperature reduction during unoccupied hours. It 

can be observed that during unoccupied hours, the 

CO2 values are negatively correlated with the air 

temperature. Potential temperature dependency of 

CO2 sensors has been identified by Mylonas et al. in 

laboratory experiments (Mylonas et al., 2019). 

Further field studies and data analysis is needed to 

potentially develop a method for data-driven 

identification of such behaviour and potential 

correction of measured CO2 values. 

4.2 Qualitative assessment of CO2 value 

correction 

The performance of used CO2 base value correction 

algorithm was assessed qualitatively by comparing 

initially logged and corrected CO2 level 

concentrations. Figure 8 illustrates the respective CO2 

concentrations during 5 weeks in all rooms of the 

school. The initially logged CO2 concentration outside 

expected occupied hours varied constantly over 100 

ppm and were typically above 400 ppm. This 

highlights the need for further post-processing of 

logged data of the installed sensors despite the in-

built auto-calibration function. The corrected values 

reflect the expected behaviour described in Section 

2.2. However, there still were some outliers with 

values significantly below 400 ppm due to the chosen 

quantile method, which should be removed by further 
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developing the data-processing methods before 

applied for IAQ assessment or ventilation control. 

The performance of the base level correction method 

was additionally assessed by comparing the duration 

curves of initially logged and corrected data. An 

example based on a classroom is provided in Figure 9 

and the results of all rooms with CO2 sensors are given 

in Figure 10. Visually, the largest difference appears 

during periods when the CO2 values are near outdoor 

level. 

However, to quantify the impact of the baseline level 

correction algorithm during occupied period, the 

initially logged and corrected values were corrected 

by comparing them to the recommendations in the 

REHVA COVID-19 guidance. In the beginning of 2023, 

the guidance recommends 550 ppm as setpoint for 

demand-controlled ventilation systems (REHVA, 

2021). In 2020, the suggestion was: “During an 

epidemic it is recommended to temporarily change the 

default settings of the traffic light indicator so that the 

yellow/orange light (or warning) is set to 800 ppm and 

the red light (or alarm) up to 1000 ppm in order trigger 

prompt action to achieve sufficient ventilation even in 

situations with reduced occupancy.” (REHVA, 2020).  

Figure 8. Example of CO2 concentration of all rooms during 5 weeks with initially logged (above) and corrected (below) 

baseline values 

 

Figure 9. Example of cumulative distribution of initially logged and corrected CO2 concentration in one classroom during 

6-month period. 



   
 

   
 

Table 1 shows the impact of baseline level correction 

of comparing logged values against different CO2 

concentration levels. The pandemic situation 

recommended ventilation control setpoint 550 ppm 

for was exceeded during 89.1 and 74.4% of occupied 

period with initially logged and corrected data 

respectively. Therefore, the impact of baseline level 

correction would have been significant if the school 

had demand-controlled ventilation and the 

recommendations followed. The differences in 

exceedances of the 800 and 1000 ppm were even 

more significant. As initially logged CO2 

concentrations were generally higher than the 

corrected values, then the initially logged values 

would have prompted unnecessary disturbances in 

school work due to opening windows during classes 

or even stopping schoolwork due to increased 

infection-risk. Thus, the practical implication of CO2 

concentration level correction needs to be further 

studied to develop the more robust methods for IAQ 

assessment. 

Figure 10. Cumulative CO2 of all rooms in the same 

timeframe as previous figure

 

Table 1. The impact of baseline level correction of 

comparing logged values against different CO2 

concentration levels 

 Time of occupied period above 
respective CO2 level, % 

 550 ppm 800 ppm 1000 ppm 

Initial 89.1 46.2 18.2 

Corrected 74.4 27.7 5.9 

 

4.3. Limitations and future work 

The subsequently presented method for CO2 base 

level correction was developed based on measured 

data from an adequately ventilated school. It is 

unknown, how would the method perform in poorly 

ventilated or constantly operated rooms, where the 

CO2 concentrations might not reach the base level. 

Therefore, the proposed sliding time window length 

of 10 hours needs to be carefully assessed when 

applying the method in building with different 

ventilation principles of duration of occupancy. 

Additionally, with worse quality data that contains 

more outliers, 2% or higher percentile values should 

be used for adequate results. 

Additionally, no reference measurements with 

calibrated CO2 sensors were conducted and it is 

unknown, how adequate were the CO2 levels during 

occupied hours of both initially logged and corrected 

data. Hypothetically, some logged values depended on 

room temperature and unexplainable jumps in logged 

values were observed. Further studies are needed to 

investigate the possibilities of further development of 

data-driven assessment of CO2 concentration. 

The currently method was developed for correction of 

CO2 concentrations in real-time without knowing 

future values. Therefore, the current implementation 

is more effective capturing the downward jumps of 

CO2 base level. The baseline correction method can be 

implemented also for regular IAQ assessment e.g. with 

weekly or monthly frequency and for such application 

the method should be developed further to also 

capture effectively the upward jumps, which is 

currently delayed. 

5. Conclusion 

Indoor air quality assessment based on CO2 sensors is 

more frequently used, however the logged data is 

often flawed and needs to be further processed for 

adequate application in ventilation control or indoor 

climate assessment. This study developed algorithm 

for CO2 base level correction in real-time based on the 

assumption that CO2 concentration reaches 400 ppm. 

The algorithm was developed based on CO2 data 

logged during 6 months from 56 rooms of a well-

ventilated school building in Estonia. The algorithm 

performance was assessed qualitatively. 

The algorithm used percentile values from a sliding 

time window to identify the base level and 

subsequently the data was corrected so that the base 

level would be 400 ppm. The best compromise 

between accuracy and delay in data correction was 

reached by using 1% percentile values in a 10 hour 

sliding time window. The impact of the algorithm was 

significant when comparing the initially logged and 

corrected values against CO2 concentration 

thresholds 550, 800 and 1000 ppm. 

The developed method needs to be further tested 

based on data from inadequately ventilated buildings, 

building with different occupancy patterns and 

sensors that might provide worse quality data that 

contains more outliers. Additionally, the post-

processed CO2 concentration needs comparison with 

more detailed measurements with calibrated sensors 

for further validation and development. Finally, the 

current implementation of the algorithm effectively 

captures downward shifts in the logged data, but 

future development is needed to capture upward 

shifts with smaller delay. 
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Abstract—Sensor Networks in harsh underwater environments
are prone to faults and anomalies that may lead to deteriorated
data quality or even failures. This paper proposes a fault-resilient
underwater sensor network based on sensor data aggregation by
updating the measurement error matrix of an adaptive Kalman
filter, where the error matrix is updated using adjusted measured
value difference from the predicted value as well as the age of the
latest measurement (i.e. latency). A case study on a real-world
harbor water flow monitoring use-case shows the advantages of
the proposed method. The experiments indicate that the adaptive
and difference based Kalman filter aggregation provides for a
significantly smoother aggregation in case of high fault rates in
sensors’ readings when compared to traditional Kalman filter
and median value based aggregation techniques.

I. INTRODUCTION

Data Aggregation methods are widely used to conserve
energy and communication bandwidth in sensor networks [1]–
[5]. When sensor nodes have limited energy, it is reasonable
not to send all the data to the receiving sink. Data aggregation
is referred as amongst the most important energy-saving
analysis processes [3]. In recent years, research has been done
on aggregation methods that are best applicable for underwater
environments [1], [2]. In addition, aggregation techniques
have been used to address security concerns (compromised
nodes), data integrity and redundancy as well as the lifetime
of sensor networks [4].

Methods of data aggregation for network communication
can be distinguished by structure - flat methods, where all
the sensors are playing the same role, clustering-based, tree-
based and hybrid methods [2] and by functional approach like
aggregation by feedback control, quantile digest, distributed
source coding [5].

The Kalman Filter (KF) is one of the most popular math-
ematical state estimation tools [6] that includes multiple vari-
ants and is extensively used in robotics [7]–[11] and combined
to fuzzy logic [9], [10] and sensor fusion [7], [9]–[13]
techniques.

An Extended Kalman Filter has been applied to estimate gas
leaks in pipelines [6] and to overcome signal noise as well as
limitations of different kinds of sensors [12].

For sensor data aggregation, Kalman Filters have been used
as a security tool to detect false data injection attacks in sensor
networks [14] and also for noise elimination from signals with
ordered weight averaging [15] and in wireless sensor networks
to achieve a distributed consensus [16].

While above-mentioned works on Kalman Filters did not
address hardware faults, the following works focus also on that
aspect. A generic detection and compensation of occurrence
of transient and permanent faults was described [13] using
Kalman Filter and correspondingly registering TFault and
PFault variables, respectively, when values were exceeding a
defined threshold. However, it relied on a difference between
measured and predicted values compared to a defined threshold
and did not consider signal latency nor sensor outage. Kalman
filter based fault diagnosis and accommodation has been
studied in [8] limited to robot wheel actuators and optical
encoders. A more recent study using a Kalman Filter for
robot localization can overcome faults including sensor outage
and data corruption of IMU sensors [11]. However, no sensor
signal latency is considered and the prediction weights are
linear.

While previous works have applied Kalman filters in fault-
tolerant applications to the best of the authors’ knowing this
is the first work to propose a KF that includes different
uncertainty sources and applies the adaptive KF based data
aggregation in USNs.

Contributions of this work are as follows:
• Incorporating different sources of sensor uncertainty by

including the time series measurements’ difference and
age/latency uncertainty for adapting a KF to compensate
incorrect readings for avmore efficient state prediction.

• Proposing nonlinear, parabolic and sigmoid, sensor uncer-
tainty functions from the residual difference for the la-
tency and difference based Adaptive Kalman techniques,
respectively.

• Applying and evaluating the proposed adaptive KF based
data aggregation techniques in a harbor Underwater Sen-
sor Network (USN) with extremely unreliable sensor
readings.

II. UNDERWATER SENSOR NETWORK APPLICATION

In this Section, we introduce the layered data architecture
and installation of the sensor network in the application
scenario of a harbor monitoring use case.

A. Sensor Network Installation

The underwater sensor network considered in this paper
is for monitoring sea currents in the harbor. The Sensor
Nodes S = {si} of the network are installed to the harbor
infrastructure to notify approaching ships about the water979-8-3503-3959-8/23/$31.00 ©2023 IEEE
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flow around the piers. The goal is that berthing ships get
information about the flow and turbulence from Sensor Nodes
installed on the pillars of the pier. The Sensor Nodes are
connected to the Sensor Gateway with underwater cables over
RS-485 serial communication, thus the configuration of the
underwater sensor network is fixed.

The Sensor Node applied in the case study is shown in
Figure 1.A and its detailed description is given in [17].
The Sensor Nodes measure the flow magnitude and direction
from the stem vibrating in the flow. An IMU (Inertial Mea-
surement Unit) embedded into the Sensor Node calculates the
accelerations of the stem in x and y directions. In the current
implementation, to estimate the flow magnitude from the IMU
data, a 15s series of IMU raw data is transformed with FFT
(Fast Fourier Transform) into a frequency domain in 120s
intervals and the PSD (Power Spectral Density) is used to
find the flow magnitude using calibrations described in [17].
All the Sensor Nodes are wired to the Sensor Gateway in a
star network topology.

The Sensor Nodes {si} are installed around the pillars at
two different depths so that at both depths 4 Sensor Nodes are
attached around the pillar at 90 degrees angle from each other
forming a logical Sensor Group G = {gj}. This is necessary
because depending on the direction of the flow, the pillar itself
always obstructs some of the Sensors Nodes from the flow.
Therefore each aggregation of 4 Sensor Nodes (Sensor Group)
is used to estimate the flow at each point.

In total the installation has 16 Sensor Nodes, grouped into
4 aggregations (Sensor Groups) of 4 sensors each as shown in
Figure 1.B.

B. Layered data model implementation

Table I presents the data-driven layers of the sensor network
architecture. There are three data layers - raw, processed and
aggregated that correspond to different functionalities that can
be loosely mapped to IoT layers as shown in Table I.

At the Raw data layer is data that is measured and
transferred by the set of Sensor Nodes S = {si}. The Sensor
Nodes measure and send values periodically and the event
of receiving a valid test packet at the Raw Data Layer by

TABLE I
DATA LAYERS AND THEIR MAPPING TO IOT LAYERS

Data Layer State IoT Layers
Raw direct data from sensors Edge
Processed pre-processed data from sensors Edge/Fog
Aggregated data combined to sensor groups Cloud

sensor si at a discrete time instance t is ρ(i, t). The raw
measurement value ρ(i, t) of the sensor node si at time t is a
vector containing values such as Inertial Measurement Unit’s
XYZ positions, temperature and pressure.

All the valid ρ(i, t) measurement values received during a
time interval T , containing n time instances, are pushed into
the raw data queue of length n, which acts as a First-In-First-
Out (FIFO) data buffer F = {f1, f2, ..., fn}, where f1, ..., fn
represent n latest valid ρ(i, t) measurement values. There is a
separate queue Fi for each sensor node si.

Processed data layer is used to obtain the processed data.
At the predefined time intervals the data in F are processed
by a signal processing function Ψ to obtain the processed data
value of σ(i, t), i.e. σ(i, t) = Ψ(F )

Initially Ψ transforms the raw values ρ(i, t) from Fi into an
intermediate processed values σ′(i, t). σ′(i, t) contains values
that are in a linear relation to quantities required by the end
user.

Next, the processing function Ψ converts values from
σ′(i, t), using predefined calibration and offset constants that
are specific for the installation and concrete sensor instance,
to quantities required by the end user of the harbor water flow
monitoring application (e.g. velocity).

Aggregated data is generated for the Sensor Groups G =
{gj} from the processed data σ of the Sensor Nodes {si}.
The purpose of the aggregation process is to provide transition
from single Sensor Nodes’ data to Sensor Groups’ data. Subse-
quently, the aggregated value α(j, t) of the sensor group gj at
Aggregated data layer is calculated by an aggregation function
Ω on converted values σ(i, t) of the sensor nodes si that belong
to the sensor group gj , i.e. α(j, t) = Ω({σ(i, t)|si ∈ gj}).

III. FAULT-RESILIENT DATA AGGREGATION

In the current Section, we propose an implementation of the
data aggregation function Ω introduced in the previous section.
Input values for the aggregation function are the processed
values σ(i, t) and output values are α(j, t), respectively.

A. Adaptive Kalman filter for data aggregation

Kalman Filter (KF) is a widely used technique for data anal-
ysis, such as filtering, smoothing, initialization, forecasting,
assimilation and aggregation [18]. In our case, due to physical
limitations, harsh underwater environment and possibility of
occurrence of both, persistent and intermittent faults, the
sensors vary from correct measurements. To cope with that
issue, we rely on a Sensor Group gj (see II-B) to generate
data fusion for univariate measurements - that is multiple
sensors simultaneously measure similar physical entity. We are



applying KF in the Aggregation Data layer (see II-B) after
an initial signal processing is done.

We are using adaptive KF for data fusion to compute ag-
gregated data and get the filtered estimate that is more reliable
than the sources. Sensor values are read and transformed to
velocity values simultaneously after a predefined constant time
interval. To calculate aggregated values of the 4-sensor groups,
adaptive KF is used. The KF is implemented as follows:

Xt|t−1 = AXt−1|t−1

Vt = Yt −Xt|t−1H

Pt|t−1 = APt−1|t−1A
T +Q

St = HPt|t−1H
T +Rt

Kt = Pt|t−1H
TS−1

t

Xt|t = Xt|t−1 +KtVt

Pt|t = Pt|t−1 −KtStK
T
t

where t ∈ N is discrete time, Y ∈ R4 is the measurement
vector containing σi values of the current sensor group, X ∈ R
is the state estimate scalar, Q ∈ R is process noise scalar
constant, H ∈ R4 is the observation vector constant, V ∈ R4

is the calculated innovation residual vector, A ∈ R is state
matrix constant, P ∈ R is the updated estimate covariance
scalar, R ∈ R4×4 is the sensor uncertainty co-variance matrix,
S ∈ R4×4 is the innovation co-variance matrix and K ∈ R4

is the Kalman gain vector.
The sensor uncertainty covariance matrix R is updated using

Li and Di weights (see III-B) in different configurations as
explained next.

In case of Kalman Static, sensor uncertainty R is not
updated during the filter’s execution.

In case of Kalman Difference aggregation, sensor uncer-
tainty matrix R is set to n(Di) × J4, where J4 is the unit
matrix and n is the normalization function explained in III-B.

In case of Kalman Latency aggregation, sensor uncertainty
R is set to n(Li)× J4.

In case of Kalman Adaptive aggregation, sensor uncertainty
R is set to (n(Li) + n(Di))× J4.

The output value of the aggregation function Ω, i.e. αj of
the sensor group gj at time t receives its value from Xt|t.

The calculation is iterative over time t and for aggregation,
the values Xt are used. To make KF adaptive, the covariance
matrix Rt is externally updated increasing sensors’ uncertain-
ties with increasing difference from aggregated Xt value and
measurement latency, indicating outliers and probable sensor
faults.

B. Uncertainty from the difference of measurement and esti-
mation

When detecting outlier values based on the difference
between estimation and measurement, we argue that this
should not be linear - small differences in velocity should
be proportionally more tolerated than larger differences. The
uncertainty value based on the difference does not have to have

0 200 400 600
Latency in s

0.0

0.2

0.4

0.6

0.8

1.0

Un
ce

rta
in

ty

0.0 0.5 1.0 1.5 2.0
Difference in m/s

0.0

0.2

0.4

0.6

0.8

1.0

Un
ce

rta
in

ty

Fig. 2. Normalized sensor uncertainty from measurement and prediction
difference (residual) and the latest measurement latency

an upper limit, since the type of the sensors used that have a
defined measurement range - frequencies beyond this range are
not reported and thus cannot affect the uncertainty value of the
sensor. For adaptive weights we applied the following function
Di = c(σ(i) − x)2, where σ(i) is the processed value of the
sensor si, x is the predicted value of KF, thus σ(i)− x is the
residual, and c is a constant 1.5 that was chosen empirically.
The normalized graph of the function is shown in Figure 2
right.

For uncertainty caused by measurement latency we applied
the following sigmoid function. Li = 1

1+e
−ti
m

+h
, where m

= 60 and h = 7 and ti is the latency of the latest valid
measurement of the i-th sensor si in seconds. Normalized
uncertainty values based on latency are presented in Figure
2 left.

The normalization is performed to be able to compare the
uncertainty function values and give them weights to calculate
the sensor uncertainty co-variance matrix using the following
normalization function n(v) = v−min(V )

max(V )−min(V ) , where v is a
value from a vector of values V to be normalized.

IV. EXPERIMENTS

Experiments in two different underwater environments were
conducted. The Flow Obstuction experiment was a short time
experiment that took place in freshwater in a river on February
2, 2023. For this experiment, in addition to the hydromast
sensors, ADV (Acoustic Doppler Velocimeter) measurements
were also used as reference values. The sensor network was
installed to a river bed (See IV-A) and the water flow was
manually disturbed and interfered.

The Harbor Experiment was a long-time experiment active
from April to August 2020. The sensor network was installed
into sea water by a harbor for measuring underwater currents
(See II-A). For this experiment we did not have a reference
device. The sensors were not disturbed nor interfered manu-
ally, the collected data was naturally occurring. Most of the
time during that period the water flow was too slow to be
measurable with sensors due to non-windy weather conditions.
However, there were a couple of time intervals with a stronger
water movement.



A. Flow obstruction experiment

The hydromast sensors were attached on a metal bar at
20cm intervals. Perpendicular to the centre of the hydromast
was another bar with attached ADV (Acoustic Doppler Ve-
locimeter, Nortek Vectrino Profiler) approximately 50cm from
the hydromast metal bar. The construction was installed to
a river bottom around 1m depth with the ADV facing the
flow and hydromasts side by side behind it. The order of the
hydromasts from the shore was H24, H25, H26, H27. The
unobstructed water velocity appeared similar at all hydromasts.
The hydromast offset coefficients are calibrated after installa-
tion to correspond to ADV beams mean value magnitude. The
velocity is calculated using the magnitude of median x and y
axis angles of 1 sec time frame of 50hz measurements.

Figure 3 shows the obstruction experiment.
• Sensor measurements are shown as dots. Aggregate dif-

ferent Kalman filters are shown as lines.
• A human was obstructing the flow by standing in the

water for every hydromast for 30 sec in the following
order - 1st H24, 2nd H25, 3rd H26, 4th H27

• It can be seen that the obstruction changed the hydromast
angles correspondingly as the dots representing single
measurements move downwards at specific times.

• H25 obstruction is less clear, but happened also while
obstructing H24 and H26, thus standing near the 1st
and 3rd hydromast obstructed the flow also at the 2nd
hydromast.

It can also be seen from Fig. 3 that the sensors’ water flow
measurement is consistent and adequately reacts to changes in
the water flow. From the Figure, it can be seen that Kalman
difference is the most optimal aggregation method for this
case, as it is accurately filtering out disturbances at individual
sensors. It was followed by median and Kalman adaptive
aggregation. However, Kalman latency and Kalman static were
far more tolerant to disturbances at individual sensors.

B. Harbor experiment

Finally an experiment was carried out on naturally occurring
data from the actual use case. From the data collected during
the five-month period we selected an interval on May 7th,
2020 where all of the sensors in the sensor group were active
and there was enough flow to measure velocity and direction.
The flow is in a measurable range from approximately 6:30
to 20:00 when it begins to fade. The day is characteristic
for representing the harshness of the environment as there
are multiple gaps and outliers in the readings and one of the
sensors (H3) stops providing new measurements around 13:20.

In this harsh, real-world environment Kalman difference and
Kalman adaptive are performing equally efficiently, while the
aggregation provided by Median and Kalman latency methods
is far too unstable. The weakest performance is obtained by
Kalman static that is consistently overestimating the water
current flow.

As the result of the experiments, the most robust and
stable aggregation performance was achieved by the Kalman
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Fig. 3. Comparison of the aggregation methods in the obstruction experiment
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Fig. 4. Aggregation methods and processed values for velocity measurement
in the harbor experiment

difference method that took into account the difference of the
measurement value at the sensor from the estimated value.
This method performed well in a stable current as well as in
case of disturbances and also in very harsh conditions, where
there were gaps and outliers.

Kalman adaptive was slightly less accurate with faulty
sensor reading but became more robust and equal to Kalman
difference in case of more frequent gaps in readings. It might
become the preferred option when conditions are extremely
harsh and become even more dominated by gaps.

V. CONCLUSION

A fault-resilient underwater sensor network based on sensor
data aggregation by updating the measurement error matrix
of an adaptive Kalman filter was proposed. A case study on
a real-world harbor water flow monitoring use-case showed
that the adaptive and difference based technique allowed for a
significantly smoother aggregation in case of high fault rates in
sensors’ readings when compared to traditional Kalman filter
and median value based aggregation techniques.
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Hall Effect Sensor-Based Low-Cost Flow
Monitoring Device: Design and Validation

Margit Egerer, Asko Ristolainen, Laura Piho, Lauri Vihman, Maarja Kruusmaa

Abstract— Monitoring and assessment of coastal and river velocities plays
a key role in both scientific and industry applications. Field measurements
are key for decision making for resource management and protection, as
well as for validation of numerical models and climate change studies. In
this paper, a Hall effect sensor-based cost effective novel device is proposed
for measuring velocities and direction of near-bed currents, and water-level.
This device, called the Hydromast, provides instantaneous measurements
in real-world conditions, and is equipped with communication capabilities
to allow near real-time data transfer and monitoring. The validation of the
device is performed in real-world steady and unsteady flow conditions.
Within the device measurement range it is shown that the root-mean-square-
error of the time averaged flow measurements is under 0.1m/s.

Index Terms— Water current measurements, remote data transmission, flow direction, flow velocity, near-bed measure-
ments

I. INTRODUCTION

M easuring flow velocity in the field conditions plays a
significant role in many scientific and industry appli-

cations. For example in hydrological studies [1], sediment
transport investigations [3]–[5], the determination of aquatic
habitats [6], [7] in rivers, estuaries and coastal waters, and
flood warning systems [8]. Near-bed velocity estimates are
key metrics in sediment transport and river habitat studies [9],
[10].

Popular in-situ field measurement devices for flow velocity
are propeller velocity flowmeters, acoustic Doppler velocime-
ters (ADV) and acoustic Doppler current profilers (ADCP). In
addition, there have been efforts to develop remote sensing
methods, from the use of radars for estimating surface veloc-
ities to satellite imagery for river discharge estimation [11],
[12]. However, the aforementioned methods have either good
temporal resolution or good spatial resolution, not both. The
acoustic measuring devices (ADV and ADCP) have a good
temporal resolution of 50Hz, whereas the spatial resolution
depends on the number of devices. Due to the high cost, in
general, not many of these devices are used together, espe-
cially over long periods of time and in extreme environments
where the chances of recovering the instruments goes down.
Satellite models e.g., Planet Labs satelite SkySat [13], [14] has
good spatial resolution (aboutˇ0.5m). However, the temporal
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resolution of SkySat is 4-5 days [13], [14].
Further problems can arise when measuring near-seabed or

near-surface velocity, as local wake features can affect the
measurements near the bed and air entertainment, secondary
currents, and velocity tip effect can influence near surface
measurements [15]. In addition, remote sensing methods are
restricted to estimating water surface velocity [16]–[18]. In
[19], it is shown that to obtain reliable average velocities in
a flow affected by natural turbulence and instrument noise,
sampling duration of 90 and 150 s are found to be sufficient
for ADV and ADCP, respectively. For long-term behavior and
large scale spectral analysis, when many sources of flow vari-
ability are present, longer sampling duration is needed. This
means that for reliable estimation of near-surface velocities
ADV and ADCP temporal resolution also decreases.

Despite the challenges, for many applications, continuous
instantaneous flow measurements are extremely important.
Sediment motion depends on momentary flow features [20],
flow type characterization [21] and feature detection in flows
(e.g., ship detection [22]) require high temporal resolution,
studying stresses on submerged structural elements benefit
from long-term continuous monitoring [23]. Therefore, there
is a need for cost effective methods providing continuous,
reliable and distributed data of the near-bed velocities.

Motivated by the changing hydrological conditions imposed
by climate crisis and the need for near-bed continuous mea-
surements, a method for in-situ observations of flow velocity
was proposed by Ristolainen et.al [24]. A bimodal flow
sensing device using accelerometers was designed and used to
automatically classify river hydromorphology [25], and new
methods for near-bed velocity measurement were developed
[26]. Unfortunately, this device, the original Hydromast, had
several drawbacks: it had a limited flow velocity range; it



2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2023

could only estimate the average mean flow velocity; and it
was not capable of real-time data output. The lower end
of the measurement range was too high for many near-
bed applications, allowing only measurements in constantly
fast flows. Additionally, no measurements were possible in
wave-driven coastal applications, with regularly changing flow
direction and only local storage was possible, allowing data
processing and output only after the recovery of the devices.

To address the described limitations, a novel design of the
Hydromast based on a Hall effect sensor has been proposed
and a cloud based communication set-up has been designed,
granting near real-time (latency couple of seconds) data trans-
fer and observations by the user. The upgraded device, from
now on referred to as the Hydromast, uses magnetic field
sensing at the base to instantaneously detect the exact tilt
and direction of the sensing element. This allows simpler
and faster estimation of flow velocity and additionally allows
to measure the direction of the flow. Changing length of
the sensing element allows varying the velocity measurement
range according to the application. Moreover, the new design
allows for instantaneous flow estimates, and opens up a new
application range of unsteady flow measurements in rapidly
changing environments. The device has been validated in
various flow fields together with a baseline measurement for
determining the behavior, robustness and durability in real-life
environments, and demonstrating possible applications. This
leads to an accurate, robust, and cost efficient way to measure
continuous near-bed current velocity.

The organization of this work is as follows; Section II
introduces the working principle, device design and upgrades.
Section III describes the calibration methods and results.
Section IV provides the description and results of the field
validations in both steady and unsteady flow. Sections V
and VI discuss the results and performance of the device
presented in the paper and bring out the potential applications,
strengths and weaknesses of continuous instantaneous velocity
estimation with the Hydromast.

II. HYDROMAST DESIGN AND WORKING PRINCIPLE

The Hydromast is inspired by the neuromast, which is the
major unit of functionality of the biological lateral line. A
neuromast, being a mechanoreceptive organ of fish, is respon-
sible for the sensing of mechanical changes in the surrounding
flow field [2]. The Hydromast consists of a rigid mast that is
fixed to the base with a flexible membrane, resembling an
up-scaled version of a neuromast. The bulk flow velocity over
the mast generates vortex induced vibrations (VIV) of the mast
which dominate over the random forcing due to turbulent flow
conditions.

A. Hydromast Design
In the previous Hydromast designs by [24] and [26] the

mast motion was recorded with a micromechanical inertial
measuring unit (IMU). Our upgraded Hydromast design uses a
3D Hall effect sensor (TLV493D-A1B6, Infineon Technologies
AG) to track the mast movement. The Hall effect sensor,
located in the Hydromast base, detects the strength of the

Fig. 1: Hydromast overview: (a) Hydromast exploded view;
(b) Assembled Hydromast with axis x, y and z, mast tilt angle
θ and direction ϕ, mast length L and diameter D.

magnetic field from a 5x5 mm neodymium cylindrical magnet
installed at the base of the mast inside the flexible membrane.
A main benefit of implementing the magnetic field sensing
is the instantaneous position estimation of the mast for in-
stantaneous tilt angle and direction measurements. Also, the
contactless sensing of magnetic fields improves the robustness
of the device, as no cables are connected to and affecting
the vibrating mast. This also simplifies and reduces the cost
of the manufacturing. Similarly to the previous design, the
Hydromast can be equipped with an external IMU (MinIMU-9,
Pololu Corporation) to detect the installation angle and device
base movements in unsupervised installations onto sea bead.

The device consists of a CNC machined polyoxymethylene
(POM) base, a flexible membrane and the mast. The mast is
a hollow polycarbonate (PC) tube, closed at both ends and
mounted to a flexible silicon membrane (Elite Double 22,
Zhermak SpA). The mast has air inside that makes it positively
buoyant and a higher natural frequency fN compared to the
water filled mast. Air filled mast is more sensitive to the
flow and is therefore the preferred setup, as described later.
The mast is covered with a 0.06mm thin layer of copper
to minimize biofouling during longer deployment periods.
The standard diameter of the mast used in this work is D
= 15mm, but the dimensions can easily be altered for specific
applications. The length of the mast L can be varied depending
on the needed measurement range.

The base housing incorporates PCBs of the microcontroller
(Adafruit Feather with Atmel ATSAMD21 Cortex M0 pro-
cessor), power, serial communication and pressure sensor. An
absolute pressure sensor records the water height (86-030A-
R, TE Connectivity) with the pressure port integrated into the
POM casing (with range of 0-2 bar). The Hydromast can be
connected directly over RS485 serial connection to PC or to
a communication module with a raw data sampling rate of
50Hz. The Hydromast power consumption is approximately
0.15W (at 5V supply voltage). The cost of the Hydromast
components is about 500C at the time of writing this paper.
The design of the Hydromast is shown in Fig.1a.
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B. Working Principle
The Hydromast measures the mast location in x, y and z

direction using magnetic field, with Hall sensor outputs X , Y
and Z (in mT) accordingly. The coordinate system of the mast
is shown in Fig. 1b. The magnitude

MXY Z =
√

X2 + Y 2 + Z2

reading is observed to be linearly correlated to the tilt angle θ
of the device, whereas the components X and Y correlate to
the mast location in the x− y plane and indicate the direction
of the flow, noted as ϕ̄. Two different methods of flow velocity
estimation can be introduced - (1) velocity estimate Vf based
on the dominant frequencies fd of the mast vibration (time-
averaged estimate); (2) velocity estimate Vθ based on the tilt
θ of the mast (instantaneous estimate).

Fluid-body forces govern the interactions between the mast
due to VIV. Each Hydromast has it’s own natural frequency
fN , that is the frequency the mast oscillates with, when dis-
turbed and no forcing (i.e. flow) is present. When a cylindrical
rod is put in a cross-flow, it generates vortexes with a vortex
shedding frequency f0. First velocity estimation method of
the Hydromast is based on the vibrations of the elastically
supported rigid mast as a VIV resonator. In [24], the design
of the device was tuned so that the lightly damped cylinder
would oscillate with frequency f as close as possible to the
vortex shedding frequency f0. It was shown that the time-
averaged velocity can be estimated using the mean frequency
spectral amplitude after taking the Fast Fourier Transform
(FFT) of the mast vibrations (for more details refer to [26]).
When the cylinder vortex shedding frequency is close to the
natural frequency f0 ≈ fN , an important lock-in phenomenon
occurs: f0/fN = 1. In such cases, the shedding becomes
controlled by the natural frequency, even if small fluctuations
in the flow velocity occur. This and other resonance points of a
lightly damped cylinder are related to the bulk flow by reduced
velocity Vr = V/(fND) where V is the velocity of the bulk
flow and D the diameter of the cylinder [27]. For frequency
based velocity estimate Vf , a relation based on the Strouhal
number can be introduced, St = f0D/V . For the Hydromast,
the relation between dominant frequency fd(MXY Z) and flow
speed can be written as

Vf =
D

St
fd + C0, (1)

where C0 is a constant taking into account the end-effects
(of the mast tip) and other artifacts of the specific device
setup. For a stationary smooth circular cylinder for Reynolds
numbers ranging from 103 to 105, the Strouhal number of
vortex shedding is St ≈ 0.2 [28]. Using St = 0.2 reduces
Equation (1) to Vf = D

0.2fd +C0, where only C0 needs to be
empirically determined.

In [26], a 100 mm long neutrally buoyant mast was used,
which provided a working range from 0.5m/s to 1.4m/s.
One of the goals of this study was to extend the working
range of the Hydromast, especially decrease the lower limit.
This is done by choosing the mast with a correct natural
frequency, based on the needed measurement range. Response
to the cross-flow of a lightly damped circular cylinder is

Fig. 2: Schematic response of lightly damped cylinder in
crossflow (adapted from [27]).

thoroughly described in [27]. If a cylinder is free to vibrate
in any direction perpendicular to its axis, many modes of
vortex shedding can occur. The most important excitation
occurs from resonance when vibration frequency f becomes
equal to natural vortex frequency fN , where the vibration
amplitude drastically increases and lock-in at the high ampli-
tude vibrations is observed. This response mode starts around
f/fN ≈ 1 and can at most last down to f/fN = 1/3, in the
range of reduced velocity of 5 < Vr < 15, as schematically
shown in Fig.2. This is also the range where the Hydromast
vibrations occur and flow velocity can thus be determined,
defining the measurement range for the Hydromast. Minimum
and maximum velocities are found as

Vfmin = 5DfN , (2)

and
Vfmax = 15DfN , (3)

where fN is the natural frequency in water.
For the second velocity estimate, Vθ, the exact position

of the mast in time is determined using the Hall effect
sensor outputs. This allows measuring tilt angle θ, nearly
instantaneous flow speed Vθ as a function of θ, and flow
direction ϕ̄. The tilt angle is assumed to be in linear correlation
with the Hall sensor measurements, and can be calculated as
θ = p1MXY Z + p2, where p1 and p2 are empirically detected
calibration constants.

Mast tilt angle θ is linearly dependent on the magnitude
of the magnetic field and therefore velocity can simply be
correlated to MXY Z as

Vθ = C1MXY Z + C2, (4)

where constants C1 and C2 are found through calibration.
Magnitude itself is used here, instead of θ in order to avoid
introducing unnecessary extra uncertainty, as θ itself is also
determined using calibration fit. It is important to note that
this instantaneous velocity measurement based on mast tilt Vθ

is independent from the frequency based measurement Vf and
can therefore be used as separate measurement quantity.
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Fig. 3: Communication framework overview.

The flow direction ϕ̄ can be found directly using Hall effect
sensor outputs X and Y as instantaneous mast direction ϕ =
atan2(X,−Y ) which represents the mast location. To find
the flow direction, an average over several vibrations must be
calculated, taking the median value over some time, denoted
with ϕ̄.

Additional to flow measurements, the Hydromast can also
be used to measure the water level changes. The device is
equipped with a pressure sensor enabling continuous measure-
ment of the water level above.

C. Communications

In addition to modifying the sensing methods and hardware,
the Hydromast now incorporates communication capabilities,
enabling near real-time flow monitoring and device failure
detection [30], [31]. These enhancements have expanded the
range of potential applications for the device. To achieve this,
a sensor hub based on Raspberry Pi3 is utilized (we have also
tested Beaglebone, and it is possible to use another ARM-
based single-board computers). Fig.3 shows the overview of
the communication framework. The sensor hub stores data
locally and transmits it to Amazon Cloud IoT Core using
the MQTT protocol. In addition, the sensor hub can receive
configuration updates from MQTT, specifically the connected
mast types and calibration constants (see III). Infrastructure as
code (IaC), specifically AWS Cloud Development Kit (CDK),
is employed for configuring and managing AWS services,
which allows consistent configurations and stronger security.
The source code for both self-developed components and IaC
is maintained in GIT repositories. Python 3.9 and ReactJS
are used for programming the self-developed components,
including the web interface.

The sensor hubs operate on self-developed application in
Docker container running on BalenaOS, and their management
is facilitated through BalenaCloud servers. For communication
with the Amazon Cloud, various options are available, includ-
ing the use of GSM network, LoRaWAN radio connection, and
Ethernet communication. The proposed networking framework
makes the Hydromast deployment both secure and scalable
but also efficiently manageable from the sensors fleet point of
view.

III. CALIBRATION AND CHARACTERISATION

In order to demonstrate the behavior and characteristics of
the device, characterisation was first performed in lab, after
which the field tests were done for calibrating the device.

A. Natural frequencies and measurement range

For simple measurement range estimation, the mast’s natural
frequency dependence on the length was characterized. Natural
frequencies in water and in air for masts with varying length
and mass were measured. The relation between L and fN
in water was represented by a power fit fN ∼ La, where
a is a constant, whereas the ratio of natural frequencies was
found to be fNair/fNwater ≈ 1.4. The natural frequencies
and corresponding sensor measurement limits Vfmin and
Vfmax are shown in Table I. Using these estimated ranges,
the mast length can be chosen based on the measurement
range needed in each specific application. For an extended
measurement range, a setup with multiple Hydromasts can
also be used, so that depending on the flow velocity, data from
correct device is acquired. It was chosen to continue with a
positively buoyant mast due to it’s higher natural frequencies
and faster response to the flow changes, to better capture
unsteady flow phenomena. It must be noted that the tension
restraint force to counteract buoyancy is larger for longer masts
(due to larger volume) which can also change the performance
characteristics.

For validation purposes, two masts were chosen: HM300
with L=300 mm and HM200 with L=200 mm length, both
highlighted in Table I. These two masts together cover a range
from V = 0.1 to 0.7 m/s being sufficient for many applications
and they also have a wide enough range overlap to make
comparisons.

B. Tilt angle calibration

Tilt angle was expected to be linearly correlated to the Hall
sensor’s output magnitude MXY Z . A table-top calibration was
performed, in order to determine the calibration coefficients.
The mast was tilted at 11 different angles from 0 < θ < 30 deg
in 8 different directions with 45 degree increments. The mast
tilt was recorded using a Go-Pro camera and the tilt angle
was calculated from the image. The angle showed a very good
linear correlation with the output magnitude MXY Z , as shown
in Fig.4. The calibration constants were found to be p1=1.2
and p2=1.13, with a coefficient of determination R2 of 0.98.

C. In-flow Velocity Calibration

The Hydromast velocity calibrations need to be determined
in real flow conditions, where the turbulence levels, velocity
profile and set-up are similar to the planned field applications.
The Hydromasts were first tested in a small lab-scale flow-
channel. However, as the channel was too small for these
devices and flow conditions were significantly different from
real flow, this proved to be too unreliable and inaccurate for
calibration purposes. Therefore, all calibrations characteriza-
tion were performed in a natural river flow.
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TABLE I: Characteristics of Hydromasts based on mast length

Mast L [mm] mass m [g] Buoyancy fN water [Hz] fN air [Hz] Vfmin [m/s] Vfmax [m/s]
HM50 50 9.4 positive 17.3 25.0 1.30 3.90
HM100 100 13.1 positive 7.5 12.2 0.56 1.69
HM100NB1 100 20.6 neutral 6.9 9.1 0.52 1.55
HM150 150 21.9 positive 4.9 6.5 0.37 1.10
HM150NB1 150 30.3 neutral 3.7 5.0 0.27 0.82
Gray HM200 200 27.5 positive 3.1 4.2 0.23 0.69
Gray HM300 300 39.4 positive 1.7 2.2 0.13 0.39
1 NB - neutrally buoyant mast
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Fig. 4: Hydromast tilt angle calibration. Output magnitude
MXY Z for varying tilt angle θ with the linear fit. Measure-
ments shown for 8 different directions from ϕ = 0 to ϕ = 315.

The calibrations for flow velocity were conducted in Keila
river (latitude 59.394537 N, longitude 24.294915 E; closest ad-
dress Posti 1, Keila-Joa, 76701 Harjumaa, Estonia) with aver-
age water level of 102 cm measured at Keila river hydrological
station [32]. The aim was to calibrate the Hydromast against
ADV measurements (Vectrino Profiler, Nortek, Norway) in
real-world conditions. ADV was chosen as reference because
it is commercially available standard device for this type of
flow measurements. An overview of the calibration setup is
shown in Fig.5. One Hydromast was deployed together with
an ADV for reference measurements. Samples with a duration
of 60 seconds were taken at 47 locations for HM300 and 29
locations for HM200. The Hydromast and ADV measurements
were synchronized by using the sync signal from the ADV to
trigger the recording of the Hydromast data logger (based on
a Raspberry Pi 3, Raspberry Pi Foundation in association with
Broadcom).

For all calibration and steady flow experiments, the Hydro-
mast data acquisition rate was 50Hz. When calculating Vf ,
no pre-processing of the data was done, the average velocity
estimate was based on the frequency spectrum of the raw data
over the duration of the sample. For calibration, 60 s long
samples were first recorded and by looking at the convergence
it was determined that at least 20 s sample is needed for
an accurate dominant frequency estimate. Based on this, the
calibration and validation sample length was chosen to be 30 s.
Similarly, the tilt based velocity estimates, Vθ, were first done
based on raw data. As the interest lied in the time-averaged

velocities, and average Vθ was calculated over the duration of
the sample using Ṽθ = median(Vθ).

In the calibration as well as steady flow validation experi-
ments, the ADV data acquisition rate was 25Hz and the ADV
data processing was kept minimal. All steady flow experiments
were done in real conditions and close to the surface. Hence,
to reduce the noise in the averages due different natural and
device caused phenomenon (more details about ADV noise
sources can be found in [29]), the median ADV velocity was
also calculated over the duration of the 30 s sample.

Fig. 5: Setup for the in-flow velocity calibration in a river. (a)
Side view
and (b) front view with the ADV and Hydromast (HM300)

placement; (c) assembled setup in the field.

Fig.6a shows the calibration data for HM300 and HM200
together with the calibration curves for the dominant frequency
based velocity estimate Vf . It can be seen, that a linear fit
with constant slope D/St and calibration constant C0 is a
good approximation and describes well the relation between
flow velocity and mast vibration, with R2 = 0.87 for HM300
and R2 = 0.96 for HM200. For calibration, all data was
used, where a clear energy peak in the frequency spectrum
could be determined. For HM300, peaks were detected for
velocities from 0.15 to 0.50 m/s and for HM200 the range
was from 0.27 to 0.70 m/s. These ranges agree well with the
theoretical estimates from Table I, according to which HM300
should work from 0.13 to 0.39 m/s and HM200 from 0.23
to 0.69 m/s. These calibrations results agree well with the
analysis described in Section II-B and support the theoretical
assumptions. This calibration shows that dominant frequency
can be used for flow velocity estimation and also, if needed,
several devices with different ranges can be used for extending
measurement range.

Another method of determining velocity is using the tilt
angle θ. Calibration data and linear fits for this method with
both Hydromasts are shown in Fig.6b. Here, all calibration
points are shown (averaged over 30 seconds) and it can be seen
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Fig. 6: Velocity calibrations of 200mm and 300mm masts: (a) Dominant frequency based velocity Vf calibration. (b) Tilt based
velocity Vθ calibration. Calibration fit shown as solid line, theoretical velocity limits Vfmin and Vfmax are shown as dotted
line.

that both HM300 and HM200 have a linear dependence on the
magnitude MXY Z , with R2 =0.96 for HM300 and R2 =0.96
for HM200. The lowest speeds, at which the velocity can
be measured, are 0.15 and 0.22 m/s for HM300 and HM200
respectively, being similar to the lowest limit where Vf can
be used. HM200 has a higher slope, making it more sensitive
to velocity changes, whereas HM300 has a slightly lower
sensitivity. The tension restraint force to counteract buoyancy
is almost double for HM300 mast compared to HM200 and
this seems to make the longer mast HM300 less sensitive to tilt
due to flow velocity. This lower sensitivity constitutes a close
to a five times bigger measurement range for the HM300, with
new range spanning from 0.15 m/s up to nearly 1 m/s. This
is a large increase in range of the velocity measurement for
HM300 compared to the working range for Vf (which was
up to 0.39 m/s), expanding the applicability of the Hydromast
significantly. Hence, the tilt provides an accurate estimate for
flow velocity with extra benefit of having a wider measurement
range compared to the frequency based estimate for HM300.
It must be noted, that the membrane of each Hydromast is
currently hand-made and therefore the tilt calibration can also
be slightly affected by the membrane properties. Therefore
sometimes it can be useful to check with Vf the validity of
the Vθ calibration, if devices with new membranes are used.

In order to have independent measurements with the Hy-
dromast, it is important for the device to detect when the
measurements are in the working range, and recognize and
remove outputs when the Hydromast is out of range pro-
viding unreliable data. For Vf this ’out of range’ criterion
is defined by setting a minimum limit for spectral amplitude
level at dominant frequency, so that only distinct high energy
peaks are detected. For the Hydromast analysis, two dominant
frequency peaks are detected in the spectrum (due to the 8-
shaped movement of the mast) and the second one, at higher
frequency, representing the cross-flow vibrations, is chosen to
be the estimate. This criterion depends on the length of the
Hydromast and is determined based on the calibration data.
For tilt angle based estimate Vθ the ’out of range’ criterion is

simply the minimum and maximum values for the magnitude
MXY Z , also determined based on the calibration results.

IV. VALIDATION

The validation of the Hydromast velocity estimations was
performed in three stages. First, validation was performed in
steady flow conditions in a river, with many 30 s measure-
ments. In the second stage, two devices were installed for a
long period in steady flow in a river, to show long-term data
and validate communication capabilities. This flow is steady
in short-term but has variations over longer time. Finally, the
validation was performed in unsteady flow conditions on the
coastline to demonstrate and validate the capability of the
Hydromast measuring unsteady flows.

A. Steady flow, short-term tests
The short-term validation tests were performed on the same

site as used for calibration, but at different flow conditions.
Measurements were taken in many locations in the river to
show the performance of the device with the same setup at
many different flow speeds. Measurement points were chosen
taking into account the working ranges of the Hydromasts and
steady flow conditions.

A setup with two Hydromasts, HM300 and HM200, to-
gether with the ADV (Vectrino Profiler) was assembled as
shown in Fig.7. The validation was performed in Keila river
on the same location as the calibration experiments described
in section III, with a higher water level (water level of 112
cm measured at Keila water level station [32]) which allowed
finding locations with a wide range of flow velocities. A total
of 139 samples were collected over a range of velocities from
0.01 to 1.05 m/s.

The results of the velocity estimations based on the mast
vibrations are shown in Fig.8a and Fig.8b for HM300 and
HM200 respectively. ADV measurement serves as our refer-
ence velocity. It must be noted that also these measurements
have uncertainty and to visualize that, the ADV measurements
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Fig. 7: Setup for steady flow validation tests in a river. (a)
Side view and (b) front view with the ADV and Hydromast
(HM300 and HM200) placement; (c) assembled setup in the
field.

are shown with standard deviation (SD) (shaded in grey),
which can be considered as the uncertainty of the reference
measurement. Points, which according to ADV have high
turbulence intensity (TI) levels, above 40%, are indicated with
pink in the figures.

Comparison of the Vf from the longer HM300 with ADV
is shown in Fig.8a. Hydromast data agrees well with the
reference ADV, having root-mean-square-error (RMSE) of
0.065m/s and all velocities detected lay within the estimated
measurement range, between Vfmin and Vfmax, indicated
as a shaded box in the figure. In this case the majority
of the data detected lies within the theoretical measurement
range, supporting the theoretical model. The used criteria of
minimum energy level at dominant frequency works well for
peak detection, only showing data that is within the theoretical
range. Turbulent measurements have a slightly higher variation
but overall there is also a good agreement to the reference
measurement, showing that no significant change in data
quality is introduced.

In Fig.8b the Hydromast HM200 data is shown for Vf . The
measurements agree well with the ADV within the estimated
measurement range. Above 0.6 m/s dominant frequencies are
still detected but seem to drift away from the reference value.
This change is probably due to a mode shift in vibration
occurring near Vr = 15. It was seen that above this value
also tilt does not change anymore, the vibration is somewhat
altered and does not represent velocity changes well, even
though peaks in the energy spectrum are still present. As
there was no good indicator found in the spectra to filter the
’out of range’ data, Vθ could be used as an indicator of the
velocity range, so that if Vθ is out of its measurement range,
no output of Vf is provided. Points with this criteria applied
are indicated in Fig.8b as empty symbols. For all the data, the
RMSE value is 0.113m/s, whereas the data with Vθ based
criteria (filled symbols) has RMSE 0.03m/s. Alternatively,
an empirical calibration fit could be used on the data, which
follows the higher end frequencies better and accounts for that
mode change. But with this approach there is the downside that
each membrane needs an extended calibration in similar flow
conditions as the application.

Tilt based velocities from HM300 are shown in Fig.9a.
Below 0.15m/s, which is the lower theoretical measurement
limit, the measurements have a constant value and are not
usable (empty symbols indicate ’out of range’ data). There is

an agreement between ADV and Hydromast from 0.15m/s
up to even 1.0m/s, with RMSE of 0.047m/s excluding
turbulent and out of range points (RMSE is 0.093m/s in-
cluding all points). The measurement range is higher than
the one achieved in calibration, but seems that the lower
sensitivity to flow velocity (as discussed above in section
III) allows much wider measurement range. This demonstrates
that the HM300 can be used on its own for a wide range of
velocity measurements from 0.1 to 1.0m/s, compared to Vf

measurement range being only one third of it. Only some of
the high turbulence data at higher velocities is not following
the trend, therefore care needs to be taken at very turbulent
conditions at high flow speeds (higher than Vf range).

Fig.9b shows results for tilt based Vθ for HM200. At low
velocities the ’out of range’ data is again constant as for the
other mast (hollow symbols). Above that there is an excelent
agreement between ADV and Hydromast measurements be-
tween 0.3m/s and 0.7m/s, where in-range data is marked
with filled symbols and having RMSE of 0.03m/s. Above
that the HM200 has reached its maximum tilt angle and does
not capture flow velocities above 0.7m/s. Out of range data
based on magnitude limits is shown with empty symbols and it
can be seen that this criterion works well for these velocities,
filtering out data which does not represent correct velocities.
For HM200, the working range of Vθ is the same as the
theoretical range of Vf in Table I.

Overall, both velocity estimates agree well with the refer-
ence measurements. Some of the high turbulent data do not
follow general trends, but there seems not to be any systematic
impact. In high turbulence conditions and high speeds the data
has lower accuracy and could overestimate the flow speed,
whereas at lower speeds high turbulence intensity does not
seem to affect the results.

A set of measurements were also performed to evaluate the
flow direction. For direction, no calibration is needed, as the
direction ϕ̄ can be calculated directly from the Hall sensor
output. For this, the full experimental setup was rotated by
45 degree increments and measurements from Hydromast and
ADV were compared. This was done with both devices, at
several flow speeds, to test the sensitivity at slow, medium
and high velocities. The measured angles compared with the
ADV reference are shown in Fig.10. Both Hydromasts show
a very good direction estimate, having RMSE of 3.46°. The
variaton is bigger in places where also ADV had higher RMS,
showing that there was higher variability in flow, resulting in
less reliable results.

B. Steady flow, long-term tests

A long-term river test was performed in order to verify the
Hydromast durability and performance, as well as demonstrate
the near real-time flow monitoring. Two devices were de-
ployed, in the same configuration as shown in Fig.7. Validation
measurements were taken with an ADV (Vectrino Profiler,
Nortek AS, Norway) every second day over a two week testing
period. The validation test was carried out in Vääna river
(latitude:59.292888 N, longitude 24.739287 E; closest address
Otto tee, Lokuti, 75514 Harjumaa, Estonia).
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(a) (b)

Fig. 8: Steady flow short-term validation data for frequency based velocity estimate Vf .(a) 300mm mast; (b) 200mm mast.
Filled symbols denote the data in range, empty symbols out of range. SD ranges from ADV measurements are shaded in grey.
The blue box indicates the theoretical measurement range.

(a) (b)

Fig. 9: Steady flow short-term validation data for tilt based velocity estimate Vθ .(a) 300mm mast; (b) 200mm mast. Filled
symbols denote the data in range, empty symbols out of range. SD ranges from ADV measurements are shaded in grey. The
blue box indicates the theoretical measurement range.

In this experimental setup, the devices were streaming data
online with the framework described in section II-C. The 2
Hydromasts were connected to a Raspberry Pi 3 (Raspberry
Pi Foundation in association with Broadcom) microcomputer
running Balena OS, that was battery and solar panel powered
over the whole testing period. The live data stream monitoring
over GSM network allowed to evaluate the Hydromast per-
formance as well as detect faults in the measurements. This
allowed near real-time monitoring (about 3s latency) of river
flow velocity, water level and also direction.

The average velocities throughout the two-week tests for
both HM200 and HM300 are shown in Fig.11a. The frequency
based velocity Vf was estimated for 30s intervals and averaged
over 30 minute periods. The tilt based Vθ has been calculated
as instantaneous velocity and averaged over 30 minute periods.
These tests were ran during spring entering into the dry season,
hence, the river water flow velocity decreases in time. Both Vθ

and Vf show a steady decrease in flow velocity from 0.37 to
0.2 m/s and agree well with the ADV reference measurements
taken. For tilt based Vθ from HM300, higher variations in
speed are captured compared to Vf . For higher speeds during
first days Vθ seems to overestimate compared to the reference
velocities, but both measurements are within the ADV standard
deviation range. After 4th of April, where speeds are lower, the
agreement with ADV reference measurements becomes very
good for both of the velocity estimates.

As for HM200, Vθ and Vf measure continuously during
the first days and agree very well with each other and with
reference ADV measurements. After 4th April 2023 flow
velocity started to fall below the measurement range of the
HM200 and it does not give an accurate estimate anymore.
For Vθ, MXY Z goes below minimum limit defined earlier
(data marked as light grey) and for Vf , fewer high energy
peaks are detected.
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Fig. 10: Flow direction validation data. The direction mea-
surements were done in varying flow conditions slow (up
to 0.22m/s), medium (up to 0.61m/s) and fast (up to
0.85m/s)).

In addition, flow direction was estimated for the same
experiments, and the results are shown together with the
ADV direction in Fig.11b. As there was no specific device
orientation reference taken at the test site, comparison with
ADV was made using the first measurement point. Based on
that, a constant offset of 5° was removed from the Hydromast
data.

In Fig.11c the depth estimates using the Hydromast are
shown. Tallinn-Harku weather station data [33] was used as
the atmospheric pressure reference and manual measurements
were taken for comparison during ADV measurements. Both
Hydromasts behave similarly well and agree with the measure-
ment points, all estimates varying within 10 cm range. HM200
does not follow the trend during the last two days and this is
due to a failure of the pressure sensor, which was determined
after the tests.

C. Unsteady flow
Several tests were conducted in the sea, near the coast, to

validate the behavior of the Hydromast in unsteady waves with
varying flow direction and magnitude. Measurements were
done for 10 minute time periods, in order to allow long enough
data sets for spectral analysis with acquisition rate of 50 Hz.
A commercial ADV (Vector, Nortek AS, Norway) was used
as the reference measurement device, with acquisition rate of
8 Hz. Two Hydromasts, HM200 and HM300, together with
the ADV probe in between were installed on a solid frame
and immersed in sea on a sandy flat surface, at about 0.9 m
depth. The experimental setup of this test is shown in Fig.12.

To validate the unsteady velocity estimations, measurements
were taken simultaneously for the two Hydromasts and ADV.
The experiments were done on two days: on 4.May 2023
in Pikakari beach (lat:59°28’26.2”N long:24°43’27.4”E) and
on 18. May 2023 at Vääna beach (lat:59°25’29.0”N long:
24°20’19.1”E). Locations and days were chosen to test devices
at different flow conditions. For both, the Hydromast and the
ADV, the first velocity estimations were done on raw data.
The resulting velocity estimations were then passed through a
lowpass filter with cutoff frequency 2Hz for consistency and
better comparisson.

On the 4th of May, the conditions were very calm, the
maximum velocity reached was 0.3 m/s. These velocities were
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Fig. 11: Steady flow long-term validation data in Vääna river.
Results averaged over 30 minutes. (a) Frequency and tilt based
velocity estimates; (b) Flow direction ϕ; (c) Water level height.

below HM200 measurement range, therefore only HM300 data
is analysed and shown. Figure 13 shows 5 minutes of the
measurements of ADV and HM300. It can be seen that the
Hydromast shows similar behavior in velocity magnitude as
the reference ADV. It can clearly be seen that HM300 follows
nicely the same trend as the reference measurement for higher
flow speeds, demonstrating the capability of the Hydromast to
estimate instantaneous flow velocities in unsteady flow.

The unsteady measurements on 18.May 2023 are shown in
figures 14a and 14b, for HM300 and HM200, respectively.
In this case the velocity was within the measurement range
for both devices. HM300 shows a very good correlation
throughout the data, following all the ADV peaks closely,
especially well seen at the zoom-in. HM200 in Fig.14b shows
agreement with ADV at higher speeds but is cutting off
the lower velocities, as it is not sensitive enough at low
speeds. At speeds above the minimum theoretical range a
very good correlation with the reference measurement can be
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Fig. 12: Setup for unsteady flow validation tests in the sea (a)
Side view and (b) front view with the ADV and Hydromast
placement; (c) assembled setup in the field.
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Fig. 13: Unsteady flow tilt based velocity validation test
Pikakari beach, 4.May 2023, 300mm mast.

observed. The root-mean-square deviation from ADV data was
0.095m/s for HM200 and 0.101m/s for HM300.

In addition, both HM200 and HM300 were used to estimate
the flow directions during the 18th May experiments when the
flow speed was high enough to work with both masts. A short
1 minute segment of the directions is shown in Figure 14c. The
direction varies a lot as the flow near coast have short waves
due to wind and swell. Direction estimations from both devices
show very good agreement when compared to the ADV, having
equally fast reaction to the change of the direction.

V. DISCUSSION

The characterization and validation of the Hydromast with
the Hall effect sensor has been performed. Both velocity esti-
mates, the frequency based velocity Vf and the tilt based Vθ,
perform well in measuring flow velocities in various setups.
For Vf , the functional dependency as well as the working
range agree well with the described theoretical framework.
Further, the longer mast HM300 resolves well lower velocities
and can be easily used as an independent measurement. For
the shorter mast HM200, the velocity range is wider, but an
extra range criteria based on Vθ needs to be used to detect
the measurement range and allow accurate velocity estimates.
However, HM200 measurements are more robust, whereas
overlap for HM300 is relatively small for Vf and Vθ.

When calculating average flow speeds over longer periods
of time using HM200, care needs to be taken interpreting the
low velocity data. Around the lower limit of the measurement
range frequency based estimations only occur for higher
velocities for HM200 and not for lower, which can lead to
biased results. One option would be using estimate from tilt
as an indicator, if Vf is reliable, similar to what was suggested
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Fig. 14: Unsteady flow validation tests, Vääna beach, 18.May
2023. (a) tilt based velocity, 300mm mast; (b) tilt based
velocity, 200mm mast; (c) direction ϕ, 200mm and 300mm
mast.

for upper velocities in the short validation tests. Further, a
minimum number of samples required for the average can be
implemented.

As for the tilt based Vθ, for HM300, the measurement
range is three times larger than for Vf , allowing the device
to be used in applications with high velocity variations. For
HM200, range is comparable with Vf , giving independent and
reliable velocity estimates. Using Vθ, instantaneous velocities
in changing flow conditions can be measured, allowing mea-
surements in areas where flow direction is constantly changing,
like with the waves on the coast. Here again, HM300 seems
to perform better, capturing lower velocities than HM200 and
both sensors seem to capture higher velocities.

In unsteady flow, the ADV velocity and the Hydromast
velocity showed good correlation. However, the measurements
were taken in not ideal conditions for the ADV, namely the
experiments were done in shallow water (i.e., ADV was both
close to the bottom and near the surface). For more robust
unsteady flow characterisation, additional work is needed to
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TABLE II: Uncertainty estimates (95% confidence level).

Mast Vf

[m/s] Vθ [m/s] ϕ̄ [deg]
Water
level
[m]

HM200 0.096 0.050 12.10 0.004
HM300 0.049 0.094 12.02 0.003
ADV 0.129 0.129 36.45 N/A

accurately describe the Hydromast reaction time for instanta-
neous measurements.

Direction estimate and water column height measurements
were done against reference measurements in different flows.
The estimates agreed between devices as well as with the
references, showing that they are reliable extra measurements
that can be taken during testing. In steady river flow there
was very little variation and the results just show the stability
of the direction measurement in time, which agrees with
ADV estimates within 5 degrees. The Hydromast has the
capability of a near real-time data monitoring, when a sensor
hub can be mounted above water. This is useful for long-term
measurements and is also helpful for fault detection.

Based on the validation data, the overall uncertainties of
the measurements were estimated for the 95% confidence
level, reported in Table II. Same estimates for ADV have
also been shown for comparison. As both velocity estimates
have their own pros and cons, it could be considered to
use the two independent velocity estimates in parallel and
combine them for higher accuracy. Alternatively, for higher
accuracy, calibrations can be performed before the actual tests
in similar flow conditions to capture the specific behavior.
High turbulence levels would provide rapid changes in velocity
output and that could be an indicator that caution needs to be
taken in data interpretation.

The Hydromast measurements are independent of the water
quality and surface reflections, allowing it to be used also in
locations, where acoustic methods fail. In future, more reliable
pressure sensors should be used in order to avoid drifting
and providing more reliable water depth data. Additional
research could be done on fault detection and unwanted debris
detection. Also, finding a way to estimate turbulence intensity
from the Hydromast output would be a useful feature, in order
to indicate high turbulence conditions.

The compact design and affordable price of the Hydromast
(roughly 1/10th of a commercial ADV) coupled with its
versatile communication capabilities, make it suitable for a
wide range of applications in shallow water environments. Its
low cost enables distributed sensing in various applications,
including improving safety in harbors by monitoring currents,
detecting ship traffic along coastlines, and evaluating bed
load for sediment transportation studies. Furthermore, the
distributed sensing capability allows for the application of
these devices in the aquaculture industry, as well as in the field
of renewable energy, for site monitoring and site evaluation.

VI. CONCLUSIONS

In this paper the Hall effect sensor based low-cost flow
monitoring device Hydromast has been introduced. The device
was characterized and validated against a commercial acoustic

Doppler velocimeter and shown to perform well in various
flows, with flow speeds from 0.15 to 1 m/s. With this new
device, average and instantaneous flow speed along with flow
direction and water depth can be measured, allowing the
devices to be used in both steady and fluctuating flow con-
ditions. Cloud communication functionalities were developed
so that monitoring can be done online, allowing long term
testing with live outputs and data analysis, as well as allowing
fault detection. With low cost and high reliability in near-
bed flow velocity estimations, the described device can be
used in various flow conditions for flow velocity and direction
estimation, both short as well as long-term flow monitoring,
as a single device or in a larger grid with a near real-time data
output to the user.
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