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INTRODUCTION

Real world engineering design problems contain several complexities like real,
integer and discrete variables, local extremes, and multiple optimality criteria. In
the latter case, the conventional design approaches based on traditional gradient
techniques fail or perform poorly. Furthermore, other kinds of complexities occur
here, such as large plastic deformations, geometric and physical nonlinearities,
impact loading, elastic and plastic anisotropy, contact modeling, and handling
processes that make the design extremely resource consuming.

The approach proposed in this study is based on integrated use of meta-modeling
and global optimization algorithms. Meta-modeling techniques allow us to reduce
expensive function evaluations, i.e., overcome complexities related to the cost and
time of experiments and/or computations. Global optimization algorithms allow
handling several local extremes, mixed integer and discrete variables. Thus,
combining of meta-modeling and global optimization techniques together forms
prerequisites for successful optimization problem solution.

A number of methods and tools have been developed for building meta-models:
regression methods [1, 2], artificial neural network techniques [3-5], kriging
models [6 ,7], cubic splines [8, 9] and other tools. The accuracy of the result is a
major risk involved in using meta-models to replace actual function evaluation [4,
10]. In the current study the back-propagation artificial neural network methods
were selected due to their high accuracy and simplicity.

However, the response modeling techniques can give trustable results only in the
cases where the design space is well covered by design data. For that reason extra
attention is paid to the design of the experiment. The Taguchi method and full
factorial design techniques are employed [11, 12].

The global optimization technique employed in the following is genetic algorithms
(GA). During last decades the efficiency of different architectures of evolutionary
algorithms (EA) in comparison to other heuristic techniques has been tested in
various engineering design problems [13-18]. The evolutionary algorithms
emerged as a revolutionary approach compared to classical approaches for solving
search and optimization problems involving multiple conflicting objectives. The
genetic algorithms are the most widely used EA employed for solving engineering
design problems [19].

One of the drawbacks of the traditional GA is also a ratchet effect (crossover
cannot introduce new gene values). In order to overcome the drawbacks of the
traditional GA numerous improvements are provided including adaptive GA [20],
niche GA and hybrid GA [21, 22]. In order to achieve higher accuracy, the real-
coded GA operators are used in engineering design instead of traditional binary
operators [15, 17, 23, 24]. Development of evolutionary algorithms for multi-
objective optimization problems [25, 26] is another topical issue in engineering
design. In order to achieve higher accuracy and convergence rate the hybrid GA is
employed herein [21 , 22].



The main aim of the current study is to develop a methodology for solving practical
engineering design problems with particular focus on sheet metal and glass
structures.

Chapter 3 describes only problem formulations and main results, all the
details including the solution procedure, results, discussion are described in Papers
1, 2 and 3, supplemented in the Appendix.

The current PhD thesis is based on four academic papers presented in the list of
publications and referred to in the text as “Paper 17, “Paper 27, “Paper 3”, and
“Paper 4”.
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1 THEORETHICAL BACKGROUND

1.1 Design of experiment

Strategies of the design of experiment (DOE) were originally developed for the
model fitting of physical experiments, but can also be applied to numerical
experiments. The general objective of the DOE is to select the points where the
response should be evaluated. Design of an experiment is commonly used to define
datasets necessary for composing mathematical models that describe different
engineering problems. DOE allows us to investigate simultaneously the effect of a
set of variables on a response in a cost effective manner. DOE is superior to the
traditional one-variable-at-a-time method that fails to consider possible interaction
between the factors.

In the current study the DOE strategies and methods are employed for solving
several engineering problems, including a double-curved surface formation, design
of a point supported glass canopy panel, and design of a vehicle protection system.
DOE strategies are applied for experiment design, but also for dataset design for
numerical simulations. We lack a unique DOE technique most suitable for solving
different engineering problems. In the following, a short literature review of the
DOE techniques is given and the techniques selected for solving the engineering
problems considered here are described in more detail.

1.1.1 DOE techniques selection

The DOE based statistical methods are introduced for describing real life problems
in the 1920s by R.Fisher (agricultural experiments), followed by G.Box in the
1950s who applied the DOE for modeling chemical experiments [27]. Today’s
DOE based statistical methods are used widely in various engineering applications,
production planning, education and service systems and in other areas.
The main goal of the DOE methods and techniques is to extract as much
information as possible from a limited set of experimental study or computer
simulations.
A huge number of DOE methods are available in literature and selection of the
most suitable method is not the simplest task. However, in order to select an
appropriate DOE method and/or technique for a particular problem, some
preparatory activities should be performed [11]:

— formulation of the problem to be modeled by the DOE,

— selection of the response variable(s),

— choice of factors (design variables) and determining ranges for these

variables.

If this preliminary analysis is a success, it is easier to select the suitable DOE
method. Frequently, the selection of the levels of factors is also classified as
preliminary work [11].
In the current study the following two DOE methods have been selected and
applied in the case studies:

— the Taguchi methods;
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— full factorial design.

The first method considered herein (the Taguchi design) allows us to obtain a
preliminary robust design with a small number of experiments and it is most often
applied at early stages of process development or used as initial design. The second
approach is resource consuming, but it leads to more accurate results.

Note that the Taguchi design can be obtained from the full factorial design by
omitting certain design points. In addition, there are several approaches based on
the full factorial design. For example, central composite design can be obtained
from the 2V full factorial design by including an additional centre and axial
points.

An alternate wellknown DOE technique can be outlined as the D-optimality
criterion, Latin hypercube, Van Keulen scheme or some other technique. The

D-optimality criterion is based on the maximization of the determinant ‘X X

b

where X stands for the matrix of the design variables. Application of the D
optimality criterion yields a minimum of the maximum variance of predicted
responses (the errors of the model parameters are minimized). The Latin
hypercube design maximizes the minimum distance between the design
points, but requires even spacing of the levels of each factor [12]. The van
Keulen’s scheme is useful in cases where the model building is to be
repeated within an iterative scheme, since it adds points to an existing plan
[12].

1.1.2 The Taguchi method

The Taguchi approach is more effective than the traditional design of experiment
methods, such as factorial design, which is resource and time consuming. For
example, a process with 8 variables, each with 3 states, would require 3*=6561
experiments to test all variables (full factorial design). However, using Taguchi's
orthogonal arrays, only 18 experiments are necessary, or less than 0.3% of the
original number of experiments.
It is appropriate here to point out limitations of the Taguchi method. The most
critical drawback of the Taguchi method is that it disregards higher order
interactions between design parameters. Only main effects and two factor
interactions are considered.
Taguchi’s methods developed by Dr. Genichi Taguchi are based on the following
two ideas:

— quality should be measured by the deviation from a specified target value

rather than by conformance to preset tolerance limits;
— quality cannot be ensured through inspection and rework, but must be built
in through the appropriate design of the process and product.

In the Taguchi method, two factors, such as the control factor and the noise factor
are considered to study the influence of output parameters. The controlling factors
are used to select the best conditions for a manufacturing process, whereas the
noise factors denote all factors that cause variation. The signal-to-noise (SN) ratio
is used to find the best set of design variables. Usually, the SN ratio is calculated to
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find the individual and combined effect of the factors and the large value is
considered as the optimal [28-30]. According to the performance characteristics
analysis, the Taguchi approach is classified into three categories:

— Nominal-the-Better (NB),

— Higher-the-Better (HB),

— Lower-the-Better (LB).
Here the Lower-the-Better (LB) approach is employed to minimize the objective
functions. The SN ratio is calculated as follows:

N, .2
SN, =—1010g(23:]—k], (1)

k=1 i
where i,k , N, stand for the experiment number, the trial number and the number of

trials for the experiment i, respectively.

The results obtained from the Taguchi method can (should) be validated by the
confirmation tests. The wvalidation process is performed by conducting the
experiments with a specific combination of the factors and levels not considered in
initial design data.

1.1.3  Full factorial design

In order to overcome shortcomings of the Taguchi methods the full factorial design
can be applied [11]. This approach captures interactions between design variables,
including all possible combinations. According to the full factorial design strategy,
the design variables are varied together, instead of one at a time. First, the lower
and upper bounds of each of the design variables are determined (estimated values
used if exact values are unknown). Next, the design space is discretized by
selecting level values for each design variable. In the latter case, the experimental
design is classified in the following manner [11]:
1. 2N full factorial design - each design variable is defined at the lower and
upper bounds (two levels) only;
2. 3" full factorial design - each design variable is defined at the lower and
upper bounds and also in the midpoints (three levels);
In the case of N=3 the 3", full factorial design contains 27 design points shown in
Fig. 1 [31].
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Figure 1 3N full factorial design [11, 31]

The full factorial design considered includes all possible combinations of design
variables and can be presented in the form of general second-order polynomial as

N N N
_ 2
y=c,+ Zcixi + Zcﬁxi + ch.jxixj . (2)
i=l1 i=l1

i,j=1;j<i

In (2) x; and x; stand for the design variables and ¢, ,c; are model parameters.

It should be noted that the second order polynomial based mathematical model
given by formula (2) is just one possibility for response modeling. This model is
used widely due to its simplicity. In the current study, the full factorial design is
used to determine datasets where the response should be evaluated, but instead of
(2) artificial neural networks are employed for response modeling.

Evidently, the number of experiments grows exponentially in the case of 3" full
factorial design (also for 2"). Thus, such an approach becomes impractical at a
large number of design variables. A full factorial design typically is used for five or
fewer variables [11].

At a large number of design variables, a fraction of a full factorial design is most
commonly used, considering only a few combinations between the variables [11].
The one-third fractions for a 3° factorial design are depicted in Fig. 2 [11].

Figure 2 One-third fractions for a 3* full factorial design [11, 31]

Thus, in the latter case the number of experiments is reduced to one third in
comparison with 3° full factorial designs (from 27 to 9). The cost of such an
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simplification is in the fact that only a few combinations between the variables
are considered.

1.2 Response modeling

Response modeling (RM) is a widely used technique in engineering design. Most
commonly the response modeling is used to compose a mathematical model
describing the relation between the input data and the objective functions. In
general, such an approach can be applied in the case of a time consuming and
expensive experimental study, but also for modeling complex numerical
simulations. The mathematical model is composed on the basis of “learning data”
and can be used for evaluating objective function(s) for any set of input data in the
design space considered. Some special cases can also be pointed out where it is
reasonable to apply response modeling:

— Experimental study is not expensive or time consuming but it cannot be
performed in a certain sub-domain of the design space (e.g., technological
limitations);

— Numerical simulations are neither expensive nor time consuming but
singularities in a certain sub-domain of the design space are the case here.

The RM techniques are used commonly for describing objective functions, but
actually can also be applied successfully to describe constraint functions
(principally any functions).

In the current study, the RM techniques are applied for modeling:

— FE simulations of the glass canopy panel. The mathematical model is
composed for objective functions (maximal deflection, maximal stress,
cost).

— Experimental study covering the double-curved surface forming. The
precision of the reflector panel reflective surface estimated by the root
mean square (RMS) value is evaluated by the response model (objective
function).

— FE analysis of the car frontal protection system. Two objective functions
are modeled: peak force and difference between the maximal and the
minimal force.

— Experimental study covering displacement measurements of the car frontal
protection system (in directions perpendicular to the moving direction).
Note that this model is composed to describe the constraint function.

A huge number of meta-modeling techniques are available here, from classical to
modern, such as regression, splines, higher order polynomials, kriging, neural
networks. In the current thesis the artificial neural networks (ANN) techniques
have been selected for that purpose. It has been shown in [32, 33] that relatively
simple ANN containing one hidden layer can approximate accurately any
differentiable function, provided the number of perceptrons in the hidden layer is
unlimited. The multiple regression technique has also been tested on some sample
problems but ANN is preferred due to the higher accuracy obtained.
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Finally, it is appropriate to highlight that in some special situations the use of ANN
or other meta-modeling techniques may not be successful:

— Design space is poorly covered by “learning data” (data used in DOE).
There are too few results or the results are non-uniformly distributed and
some sub-domains are not covered.

— Initial design space is well covered by the DOE data, but there is a need to
evaluate functions values outside the initial design space.

In the latter cases the DOE data should be completed in order to obtain trustable
results.

1.2.1 Artificial neural networks (ANN)

An Artificial Neural Network (ANN) is an information processing paradigm
inspired by the human brain. ANNs consist of a large number of highly
interconnected neurons working altogether for solving particular problems. Each
particular ANN is designed, configured for solving a certain class of problems like
data classification, function approximation, pattern recognition through a learning
process. In the current thesis the ANNs designed for function approximation (i.e.,
response modelling) are considered.
The following historical overview of the ANN is based on [3, 34]. The theoretical
concepts of the ANN were introduced in the 1940s and the first neural model was
proposed by McCulloch and Pitts in 1943 using a simple neuron (the values of the
input, output and weights were restricted to values *1, etc). Significant progress
in the ANN development was achieved by Rosenblatt who introduced the one-layer
perceptron and neurocomputer (Mark I Perceptron) in 1957. A multi-layer
perceptron (MLP) model was taken into use in 1960. The learning algorithm
(backpropagation algorithm) for the three-layer perceptron was proposed by
Werbos in 1974. The MLP becomes popular after 1986 when Rummelhart and
Mclelland generalized the backpropagation algorithm for MLP. Radial Basis
Function (RBF) networks were first introduced by Broomhead & Lowe in 1988
and Self-Organizing Map (SOM) network model by Kohonen in 1982.
In this thesis the response modeling is performed by use of two-layer (without
counting input layer) feedforward neural networks (i.e., forward-only flow is
available) and backpropagation learning algorithms. This is the most popular
approach in recent engineering design (Eng. Opt. conf.), since it is relatively simple
and provides high accuracy. Briefly, the mathematical model of the network can be
obtained by:

— summarizing the inputs multiplied by the weights of the input layer, adding

bias (for each neuron of the second, i.e., hidden layer);
— applying the transfer function of the hidden layer (for each neuron);
— summarizing the obtained results multiplied by the weights of the hidden
layer, adding bias (for each neuron of the output layer);

— applying the transfer function of the third layer (output layer).
The radial bases and linear transfer functions are used, purelin neurons in the
hidden and output layers, respectively. The architecture of the ANN considered is
shown in Fig. 3.
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Figure 3 Architecture of the two-layer feedforward neural network

It is appropriate to note that in literature the input layer is commonly not counted
and the ANN shown in Fig.3 is considered as a two-layer network (input layer has
no transfer function, but input data and weights do).

In the case studies considered in this thesis, the number of neurons in the output
layer is 1-2, but the number of neurons in the hidden layer should be determined
separately for each particular problem (network configuration).

The most commonly used backpropagation learning algorithm is the steepest
descent method (one of the gradient methods). However, the shortcoming of this
method is its slow convergence. The Newton method has good convergence rate
(quadratic), but it is sensitive with respect to initial data. For that reason, we used
the Levenberg—Marquardt learning algorithm, which has second-order convergence
rate [35]. The update rule of the Levenberg—Marquardt algorithm is a blend of the
simple gradient descent and Gauss-Newton methods and is given as

X, =X, —(H + Adiag[H]) " Af (x,). 3)

where H is the Hessian matrix evaluated at x,, 4 and Af stand for the scaling

coefficient and gradient vector, respectively. The Levenberg—Marquardt algorithm
is faster than the pure gradient method and is less sensitive with respect to starting
point selection than the Gauss-Newton method.

ANNSs are widely used for modeling and predicting different processes, optimal
design of product parameters and other tasks. Okuyucu et al. [36] modeled the
mechanical welding process. In [36] the relation between the FSW parameters of
the Al plates and mechanical properties is described by use of the ANN. In [37] an
ANN-based model is developed to predict the laser transmission weld quality in
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terms of lap-shear strength and weld-seam width. In [38] a knowledge base is
established through numerous designs of experiments on beam elements, based on
a validated finite element model of a reference vehicle and then ANN is applied to
extract the correlation between the beam element features and crash dynamic
characteristics. In [39] the ANN is developed in order to predict the flank wear of
high speed steel drill bits for drilling holes on a copper work piece.

A workgroup of the Department of Machinery of Tallinn University of Technology
(TUT) has successfully applied the ANN technique to solve various engineering
design problems. In [9, 40] a numerical algorithm for the modeling of the density
of the polymethylmetacrylate (PMMA) powder is developed based on the shape
and size property analysis of the milled powder particles. The relation between the
density of the filler material and the fractions of the PMMA powder is modeled on
the basis of the experimental data. In [41] the response surfaces (RS) are
constructed for objective functions (cost and time) for a concurrent set of values of
the design variables. However, the latter task is time consuming, since the
evaluation of the objective functions includes free size optimization performed by
use of the FEA and the optimization package HyperWorks [42]. The main aim of
the analysis is to determine optimal thickness distribution of the reinforcement
layer. The surface constructed by the use of the ANN technique does not normally
contain the given response values (similarity with the least-squares method in this
respect).

1.2.2 Sensitivity analysis for ANN models

Impact of the input parameters on the values of the objective functions enables us
to evaluate the optimal designs determined. Here the ANN model outputs are used
as objective functions of the optimization problem. The sensitivity analysis applied
on the trained neural network model allows identifying all relevant and critical
parameters from a total set of input parameters. Special attention should be paid to
the calculation of sensitivities in the points corresponding to an optimal design.

The output of the above described three-layer perceptron network can be
computed as

Y =G*(W,G'(W.X +©)+6,), @

where
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In (4)-(5) X - input vector, Y - output vector, w, W, and 91 ,@2 stand
for weight matrices and bias vectors, respectively. The transfer functions of the
hidden and output layers are denoted by G; and G, , respectively. Note that layer
number 1 corresponds to the hidden layer, 2 — to the output layer (input layer has
number 0). In (5) the upper index identifies the number of the layer, the first and
the second lower indexes denote the number of the input and the number of the
perceptron in each layer, respectively.

The sensitivity matrix S can be computed as a gradient of the output vector ¥
as
LY R, OF

X 3z, ‘oz, ! ©

where Z, and Z, stand for arguments of the transfer functions of the hidden and

S=VY

output layers, respectively
1
Z,=WX+0,, Z,=W,G(Z))+06,. (7
Obviously, the sensitivity results (6)-(7) given for the three-layer perceptron

network can be extended without restrictions to a multiple-layer perceptron (MLP)

network with NV layers as

oY _9Fy OF, ., OF,

S = = ——=
MLP ox oz, 0z, ‘oz, ®

Z,=WX+6,,2,=W,G"(2)+0,,Zy =W,G"(Z, ) +©,.¢9)

The matrix notation used allows us to present sensitivity results for a general
feedforward MLP neural network in a compact form ((8)-(9)).
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The sensitivity analysis showed that the objective functions F,(x) (elongation at
break) and F,(¥) (tensile strength) are most sensitive in terms of the mixing ratio
of resin and powder.

1.3 Multicriteria optimization

In the following, the multicriteria optimization problem is formulated in a general
form covering different particular engineering applications (case studies)
considered in the current thesis. Next, some general principles for the analysis of
the optimality criteria are proposed by the author and applied for practical
engineering problem solution. Finally, the multicriteria optimization techniques
and strategies utilized for solving the optimization problems are discussed.

1.3.1 Formulation of the multicriteria optimization problem

Practical engineering problems often include several objectives (strength, stiffness
characteristics, cost, time) as well as different technological and geometric
constraints and limitations of resources. Thus, the multicriteria optimization
problem can be formulated as [18, 43, 44]

F(X)=min( F,(X), F,(X),.., F,(X)), (10)
X <X/, -X,£X. . i=l..,n, (11)
G (X)<0, J=L..,m. (12)

In (10)-(12) F(X) ,..., F,(X) stand for the objective functions (describing

stiffness/strength, electrical properties, cost and other properties) and Xis an-
dimensional vector of design variables. The upper and lower bounds of the design

variables are denoted by X, and X,., respectively. The functions G - stand for

constraint functions including both linear and nonlinear constraints. Note that the
equality constraints can be converted into inequality constraints covered by (11).
The n-dimensional design space is defined with lower and upper bounds of the
design variables.

It is appropriate to note that the objectives should be given in a normalized form
since the magnitudes and the units used to measure the objectives may differ. The
objective functions subjected to maximum and minimum can be normalized by
Egs. (13) and (14), respectively [45].

maxF, (%)~ F, (%)

, (13)
max/F (X)—minF, (x)

f,(x)=
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£ (X) —minF{(x)

1O s ()~ minF, () %

Obviously, after normalization with (13)-(14), both functions should be subjected
to minimization. In (13) difference of the maximum and current values of the
objective function are minimized, in (14) the difference of the current and
minimum values of the objective function are minimized. It should be pointed out
that the values of the normalized objective functions are not necessarily in interval
[0;1], since the maximal and minimal values of the objective functions used in
(13)-(14) are the estimated values. In non-dimensional terms the multicriteria
optimization problem can be reformulated as

J (%) = min(f,(x), f5(x),.... £, (X)) (15)

subjected to constraints

%<l X, <X, i=lo.n, (16)

In (15)-(17) it is assumed that design variables are normalized so that x,. =0, i.e.,

the new values are determined in the range [0; 1]. According to an alternate
commonly used approach, the new values of the design variables are converted to
the range

[-1; 1]ie x.=—1.

1.3.2 Analysis of the optimality criteria

Based on the experience gained from solving engineering design problems, the
author can conclude that in the case of multi-objective optimization problem:

— an analysis of the optimality criteria is extremely important;

— an analysis of the optimality criteria should be performed before the
selection of the solution techniques and strategies for numerical solution of
the problem.

These two simple principles remain often without necessary attention. Typical
mismatches can be outlined as:

— Underestimated approach.

The simplest weighted summation technique (or some other technique
based on combining of objectives) is applied to conflicting objectives. In
this situation the optimal solution is actually not uniquely defined, but such
simplifications lead to merely one possible optimal solution. In the case of
two objectives, the optimal solutions are determined by the pints of the
curve and in the case of n-objectives by an n-dimensional surface.

— Opverestimated approach.
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Pareto optimality concept is applied to objective functions that are non-
conflicting. As result, the Pareto frontier obtained contains merely a single
point or several close-located points.

In the current study the optimality criteria have been analyzed for each particular
optimization problem before its numerical solution. Basic activities of the analysis
can be summarized as follows:

1.3.3

Finding out objectives to be considered and those that can be omitted in the
case of a particular problem. For example, in the case of car frontal
protection system design (detailed description in section 5.4), the objective
“cost” has been omitted since the cost of the component designed was
relatively low and very similar (practically the same) for different
configurations of the component.

Finding out objectives conflicting with each other and those non-
conflicting. Preliminary pair-wise comparison — analysis of functions of
the objectives. For example, in the case of glass canopy panel design, the
two objectives describing mechanical characteristics (maximal deflection
and maximal stress) appear to be non-conflicting, both appear to be
conflicting with the third objective - the cost of the panel.

Combining objectives which appear to be non-conflicting with each other.
For example, in the case of glass canopy panel, the two objectives
describing mechanical characteristics (maximal deflection and maximal
stress) were combined into one by use of physical programming
techniques.

Thus, the total number of objectives is reduced.

Determining weights of the objectives which will be combined into one
objective (based on the importance of the objectives in a particular
problem).

Applying the Pareto optimality concept for the remaining conflicting
objectives. For example, in the case of glass canopy panel, the Pareto
frontier has been composed for combined objectives and cost.

Physical programming

According to the previous section, the solution techniques should be employed
after the analysis of the optimality criteria. Furthermore, it was pointed out that in
the current study the physical programming techniques will be applied for non-
conflicting objectives [46-48].

According to the weighted summation technique, first, the optimality criteria are
scaled, then multiplied by weights and summed into the new objective S 8S

fWS

m
- X wf;s (18)
i=1

where 71 is the number of the optimality criteria used, w, is the weight of the 1 -

th criterion and
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m
> ow. =1, O<w; <1. (19)

In the case of glass canopy panel design, the maximal deflection and maximal
stress are combined into one objective, thus 7m =2 . The weighted summation
technique cannot cover cases where the criteria transformations are nonlinear. For
this reason, the compromise programming technique was introduced.

According to the compromise programming technique, the combined objective
is defined as the family of distance functions [49]

/¢
£, {Z (wd, )C} : (20)

i=1

where W, weighs the importance of the discrepancy between the I -th objective and

its ideal value and c reflects the importance of maximal deviation from the ideal
solution. Obviously, if ¢ = 1, Eq. (20) reduces to Eq. (18), i.e., the compromise
programming includes the weighted summation technique as a special case. If ¢ >1,
then the larger distances from an ideal solution are penalized more than smaller
distances.

Note that there is no unique rule for selecting weights of the objective functions.
This is an essential limitation of the physical programming techniques. In the
current study the physical programming techniques are employed to design the
glass canopy panel (for two selected criteria) and the car frontal protection system.
In the case of both of the problems, the distance between optimal and critical
values of the objective function is used as a characteristic value for evaluating
weights of the objectives.

1.3.4 Pareto optimality concept

As pointed out above, the use of the Pareto optimality concept is justified in the
cases when contradictory behavior can be perceived between the objective
functions [50-51]. The physical programming techniques discussed above are
based on combining multiple objectives into one objective and solving the latter
problem as a single objective optimization problem. Independent of the techniques
used for combining objectives, some drawbacks exist [52]. For most of the
problems, the relative importance of the objectives is unknown and the
determination of the weights is complicated. The Pareto optimality concept,
according to which all solutions on the Pareto front are optimal, provides an
alternate powerful tool for solving optimal design problems. The Pareto front may
be continuous (Fig. 4) or discontinuous (Fig. 5).
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Figure 5 Discontinuous Pareto front [45]

In Fig. 5 the three parts of the Pareto front correspond to sandwich structures with
different core materials. Normalization of the objective functions by use of Egs.
(13)-(14) provides that all normalized objectives are subjected to minimization.

The Pareto front of the objective functions provides much more information than
the physical programming approaches discussed above. However, the selection of
the optimal solution is a complicated task even from the Pareto front and it depends
on the particular problem considered [53, 54].

Selecting optimal solutions in the points preceding the rapid ascent of the curve
seems reasonable, but not all Pareto curves contain such points (Fig. 4).
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2 OPTIMIZATION PROCEDURE

In the following, an optimization procedure is proposed for solving engineering
design problems. Main attention is paid to the design of sheet metal and glass
structures, at the same time, the algorithm is kept as general as possible.

Modern optimization algorithms are typically iterative (to cover nonlinearity),
include a combination of several methods and techniques. In advanced engineering
software packages (e.g., LS-DYNA), the optimization algorithms are integrated
with response modeling and/or design of experiment methods and techniques. The
above features are common also for the optimization procedure proposed in the
current thesis. Particularly, the hybrid genetic algorithm, artificial neural networks
and the DOE (full factorial design or the Taguchi method) are integrated in an
iterative optimization procedure. In the current approach, special attention is paid
to preliminary analysis of optimality criteria and constraint functions. Commonly,
the latter aspects are not well covered by the optimization algorithms since most of
the algorithms are restricted to finding out the extreme value of a single objective.
Several multicriteria optimization approaches can be found in literature and a large
number of engineering design problems have been successfully solved. However,
typically, the number of optimality criteria is limited to 2-3 and the weighted
summation technique or the Pareto optimality concept is applied. No general
approach to handling optimality criteria seems to be available in literature. This is
the main reason why in the current approach focus is on the analysis of the
optimality criteria. The optimization approach proposed for solving engineering
design problems is based on the following basic steps.

Preliminary analysis of the optimality criteria
1. Conlflicting vs. non-conflicting criteria (pairwise analysis)
2. Optimality criteria vs. constraints

Il

Preliminary analysis of the constraints
1. Check for a possibility to reduce the design space, by
eliminating certain design variables. These variables can be
evaluated after solving reduced order model.
2. Analysis of the optimization problem in regard to
decomposition into simpler sub-problems

L
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J L

Formulation of the optimization problem
Objectives, constraints, design variables, design space

J L

Design of experiments block: selection of the DOE method
1. Selections criteria vs. DOE methods
2. Selection of levels for design variables

\7

Results of exneriments and/or simulations

\7

Estimation of accuracy and computational cost in regard to the
optimization problem

J L J L

Computationally cheap or extra Computationally expensive

requirements for accuracy
Response modeling block
1. Method selection. Selection criteria vs. response modeling
methods

2. Configuration of the model, the method (ANN) for particular
problems considered, adaption.

J L

A

Validation of response surface Accuracy unsatisfactory
1. New test data
2. [Initial test data

\ 4

JL %

A 4

Dataset Dataset

Accuracy satisfactory unsatisfact satisfactor

L
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Jl

Final analysis of optimality criteria
1. Conlflicting vs. non-conflicting criteria (pairwise analysis)

2. Optimality criteria vs. constraints
Optimization block

1. Method selection

Selection criteria vs. optimization methods
2. Configuration of the method (HGA) for particular problems
considered, adaption.
Defining GA parameters (population size, no of epochs,
mutation rate, etc.)
Defining, adoption of GA operators (elitism, selection
operator, coding type and rules, crossover)

J L

Estimation of the obtained solution
1. Check for constraints
2. Check of necessary optimality conditions
3. Sensitivity analysis for an optimal solution

I
v v

Satisfactory Unsatisfactory

A

J L

Final results:
Set of design variables and corresponding values of objective

Figure 6 Basic steps of the optimization procedure
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Optimization of complex multicriteria engineering design problems can be
formulated in several ways. For that reason, the optimality criteria and constraint
issues should be clarified. An experience obtained by solving a number of
engineering design problems allows us to conclude that the earlier this problem is
solved the better. Fixing objective functions and constraints without a preliminary
analysis may cause higher complexity of the optimization problem. An analysis of
the optimality criteria and constraints according to the principles and rules
proposed in section 1.3.2 may lead to a reduced order model with a lower number
of objective functions and reduced design space.




The design of the experiment block contains selection of the DOE methods
according to the optimality criteria shown in the following table.

Table 1 DOE methods vs. selection criteria

Number of Interaction Limitations When used
experiments | between design
needed variables
Taguchi Extremely Poorly Consider poorly | At the
method low (L9) estimated nonlinear effect | beginning of
and interactions | a project,
between initial design
variables (mostly)
Full High Well Expensive. Final design
factorial 27 estimated Comes
design impractical for

large number of
variables (>5)

Fractional | Low- Depend on Smaller fractions | Final design
factorial Medium fraction —less
design © information

1/3 fraction)
Central Medium Relatively well | Expensive Final design
composite | 15 estimated
design

Table 1 compares the four DOE methods used most commonly in engineering
design. Since the engineering design problems considered contain up to five design
variables and based on the results in Table 1, the full factorial design was selected
to perform the final design. The Taguchi method was selected for initial design as
the cheapest in regard to the number of experiments needed. The distribution of the
design points in the design space was determined by the DOE method used, but the
number of levels for each design variable should be preset (determined for each
particular problem, so that the number of experiments remains in a tolerable limit).
The first task in the response modeling block is to select the suitable method. Here
the ANN and regression models are compared. The multilevel hierarchical
structure and higher accuracy achieved for an equal number of configuration
parameters in comparison with the nonlinear regression method are the advantages
of the selected ANN method. Furthermore, the ANN method is more flexible
where new test data (simulation data) should be included in the model (just
additional learning can be performed, no need for rebuilding the model). The
second task of the response modeling block is to configure the ANN model,
including selection of the number of hidden layers, determination of the number of
neurons in the hidden layer(s), selection of the transfer function for each layer. One
hidden layer appears sufficient for all the engineering design problems considered.
The radial bases and linear transfer functions are used in the hidden and output
layers, respectively.

Optimality criteria were analyzed for a second time before the optimization block
since the initial analysis may contains some inaccuracies due to limited information
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available at the initial stage of the solution procedure. The first task of the
optimization block was to select the optimization method. The stochastic
optimization methods should be used due to limitations of the traditional gradient
based methods (convergence to nearest extreme, cannot handle integer and discrete
variables). The GA was selected as the most widely used evolutionary algorithm in
engineering design. Table 2 gives a brief comparison of the GA, HGA and gradient
methods.

Table 2 Optimization methods

Traditional GA HGA

gradient methods
Discrete and | No Yes Yes (in general)
integer variables may not support
supported if GA is

combined  with
gradient method

Convergence  to | Generally Yes, Yes

global extreme convergence to the | (expected, not | (expected, not
nearest  extreme | guaranteed) guaranteed)
(which may be
local)

Computational Cheap Expensive Medium,

cost expensive in first

stage and cheap
in second stage

Capability to | Yes No yes

determine extreme May remain to

with high accuracy oscillate near
extreme, due to
mutations

Obviously, the capabilities of the HGA overperform the corresponding capabilities
of the GA and the gradient method. However, no unique approach is available how
to generate the HGA method. Most commonly, the GA is combined with the
gradient method (if functions are differentiable) or hill climbing / branch and
bound, and other algorithms (if functions are non-differentiable). The latter
selection can be considered as a configuration of the HGA method for a particular
problem. Similarly, HGA adoption, configuration of the GA for a particular
problem include the determination of the values of a number of parameters like the
mutation rate, the number of epochs, population size as well as defining GA
operators (selection rules used, elitism used or not, coding type and rules,
crossover).

The obtained solution should be estimated since in the case of nonlinear problems
convergence to optimal solutions is not guaranteed. The Karush-Kahn-Trucker
optimality conditions hold well if the functions are differentiable. If several ”black
box*“ type software is used (e.g., FEA), this additional check is justified.

The last step of the procedure — the sensitivity analysis allows us to estimate the
influence of the design variables on the objective functions. The optimal solution is
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ready for practical use if small changes in the design variables do not incur
significant changes in the values of objective functions. Also, the most critical
design variables can be determined.

29



3 RESULTS AND DISCUSSION

In the following, the techniques and methods described above are applied to solve
different engineering design problems. The optimization procedure is validated by
three practical applications considered as case studies.

3.1 Point supported glass canopy panel

The case study is described in detail in Paper 2.
Problem formulation

Main goal of the current case study is to apply an optimization method to
determine an optimal configuration of a glass canopy panel. The design parameters
are: the thickness of the glass panel, the diameter and the location coordinates of
the fixing holes. Among output parameters the deflection and the stresses are
considered.

Design of the glass canopy panel is a challenging task because of the material
behavior of glass. Additionally, maximum stresses are expected to concentrate
around the fixing holes and the only way to analyze stresses satisfactorily is to
apply the three-dimensional FEM software. Geometrical nonlinearity is considered
since the maximum deflections may exceed the thickness of the glass panel. The
length and width of the glass panel are given by the manufacturer (2000 mm and
1700 mm, respectively). Five design variables with four levels each were
considered (see Fig. 7).

Figure 7 Design variables of the glass panel (X1,...,X5)

Initial values of the design variables were assigned according to manufacturer’s
suggestions and structural limitations. The Taguchi’s L16 orthogonal array DOE
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was applied to obtain preliminary results with low computational cost. Later, the
full factorial design of experiments was performed to improve the accuracy of the
solution. Five design variables with four levels each in the case of the full factorial
make a total of 4=1024 experiments. To reduce the number of experiments the
level of variables was reduced from four to three. This resulted in 3°=243
simulations.

The FEM simulations (computational experiments) were performed for two load
cases. In the first load case the constant pressure was equal to 2 kN/m” and the
second, with a variable intensity pressure, was loaded by snow. The characteristic
of load case two is shown in Fig.8§.

Graph R Tabular Data 1
27673 Y [mm] ‘V Pressure [MI
3,3 1]-850, 0,
2|-450, 15e-003
EZ,“EE 3[200, 3,003
S 2,3 4[550, 2,003
B16e3 5850, 0,
71,23 =
o Ged
404
0,
1105, 800, 400, 0, 400, 300, 1105,
Y [mm]
Messages | Graphics Annotations. Graph ] il 3

Figure 8 Load case 2 representing loading by snow

For both load cases the gravity was applied.
The above multicriteria optimization problem can be formulated as

J(x)=min(f,(x), /,(X), /(X)) (21)
subjected to linear constraints

x, <x,, —X; S Xy, i=l...n, (22)

1

In 21) £,(X), fo(¥) and f;(X)stand for the normalized maximum stress,

deflection and cost of the glass panel, respectively. In (22) x; and X« stand for the
upper and lower limit of the i-th design variable, respectively.

Results and discussion

The structural analysis of the glass canopy panel was performed by employing the
FEA software package ANSYS Workbench. Large deflections were considered in
the FEA. The computations were performed for both load cases according to the
DOE plan, i.e., 16 and 243 simulations for initial robust and final solutions,
respectively. The artificial neural networks were used to predict the values of the
maximal stresses and deflections.The ANN employed was comprised of three

31



layers: input, hidden and output. The model was trained by use of the Levenberg-
Marquardt learning algorithm (combination of Gauss-Newton and gradient
methods). The optimization was performed by use of the GA and later improved by
use of the hybrid GA (HGA). The GA was combined with the gradient method in
the HGA since the design variables contained no integers (in the latter case, for
example, the leap frog algorithm can be applied). The optimization process was
decomposed into two tasks based on the analysis of the behavior of objective
functions. In the first stage, the optimization was performed combining the first
two objectives by use of the weighted summation technique and ignoring the cost
of the structure as an objective function. In the second, the Pareto optimality
concept was applied to the combined objectives and the cost of the structure.

Load case 1: Constant pressure equal to 2 kN/m”.

As can been seen from Figs. 9 and 10, the maximal stresses occured around the
fixing holes and maximal deflections occured in the middle of the panel.

Y

x‘\T/z

(10 swi 100,00 ()
T .

000 50,00

Figure 9 Equivalent (von-Mises) stress Figure 10 Total deformations

The optimal configuration of the neural network was determined by selecting the
number of neurons in the hidden layer. The best results were obtained for 15
neurons. The best validation performance was reached at the 12th epoch (see Fig.
11).

32



OBest Validation Performance is 0.00045429 at epoch 12
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Figure 11 Mean square error of the model vs. number of epoch

Table 3 presents the optimal values of the design variables obtained by applying
the GA and the HGA.

Table 3 Optimal values of design variables in non-dimensional terms (load case 1)

x1 x2 x3 x4 x5

GA: 0.3608 0.9997 0.9989 0.9990 1.0000

HGA (GA + Gradient): | 0.3688 1.0000 1.0000 1.0000 1.0000

The results are given in non-dimensional variables and correspond to the first stage
of the optimization (the cost is ignored). As can be expected, the solution
converges near the optimum but not to the exact optimum in the case of standard
GA approach. The HGA approach provides convergence to the optimum and needs
less computing time, since the gradient method needs only one function evaluation
in each iteration step (in the GA the population size 50 was used). Additionally,
four design variables reached an upper limit value.

Load case 2: Variable intensity pressure representing loading by snow.

Similarly to load case 1, the optimal configuration of the neural network appears
with 15 neurons in the hidden layer, but the best validation performance was
reached with a significantly larger number of epochs (31).

Table 4 presents the optimal values of the design variables obtained by applying
the GA and the HGA.

Table 4 Optimal values of design variables in non-dimensional terms (load case 2)

x1 x2 x3 x4 x5

GA: 0.3640 0.9987 0.9995 0.9989 1.0000

HGA (GA + Gradient): | 0.3623 1.0000 1.0000 1.0000 1.0000

Here again, the results are given in non-dimensional variables and correspond to
the first stage of the optimization (the cost is ignored). Surprisingly, the results
corresponding to load cases 1 and 2 are a quite similar. However, this is good news
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since in practice both of the load cases should be considered. Also, it is obvious
that without introducing the cost of the panel the thickness reaches the upper limit
value in the case of all load cases.

The results based on the analysis of the three optimality criteria in the first stage
show contradictiory behavior between the maximal deflection and the cost, the
same between the maximal stress and the cost. The maximal deflection and the
maximal stress behave similarly.

Resulting from previous conclusions, the maximal deflection and the maximal
stress are combined into one objective employing the physical programming
technique (weighted summation). The relationship between the two combined
criteria and the cost (third criteria) is clarified by use of the Pareto optimality
concept (Fig. 12).
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0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

c*(f1+f2)

Cost

Figure 12 Combined optimality criteria vs. cost

The results given in Fig. 12 correspond to load case 2. All points on the line in Fig.
12 are optimal solutions in terms of Pareto optimality. In practice, the final
selection can be made on the basis of financial or some additional considerations.

3.2 Double-curved surface forming

This section reviews the problem formulation and the results. Detailed account of
the results and discussion is presented in Paper 1.
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Problem formulation

The main goal is to increase the accuracy of the double-curved surface forming. An
example of a double-curved surface is depicted in Fig. 13.

The forming method considered in the current application uses a special forming
tool which has an adjustable forming surface. This allows the tooling surface to be
adjusted in the normal direction on certain locations. Until now adjustment values
were determined by a process operator, based on experience and skills. The main
problem is that the method has reached the limit and it is not possible to achieve
further increase in accuracy.

a)

Figure 13 Double-curved surface (a) is a segment of a parabolic antenna reflector (b)
To achieve the main goal, i.e. to increase the accuracy of the forming process the
problem should be decomposed into the following simpler subtasks:

a) deviation measuring in the given points

b) response surface modeling

c) computing coordinates corresponding to minimal deviation of the

reflective surface
d) coordinate correction for adjustment points

Root mean square (RMS) value is used to characterize the precision of the surface.
The RMS of the deviations of the parabolic reflective surface of satellite
communication earth-station antenna reflectors is subjected to minimization

F :lzn:(zl’" —Z?)Z — min (23)
=

where z and z are the values of the coordinates of the reflective surface

corresponding to measurement results and zero deviation, respectively.
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Results and discussion

In order to increase the accuracy of the double-curved surface forming process the
procedure for determining the coordinates of the adjustment points has been
developed based on the subtasks introduced in problem formulation section (see
Fig. 14).

Forming of the first panel

v

Measuring deviation of
the reflective surface

v

Coordinate correction
based on experience

v

Forming of the second panel

!

Measuring deviation of
the reflective surface

v
BMS evaluation
¥ “u
BMS=¢ EMS=¢
v v
END Response modeling
v

Optimization algorithm,
BEMS minimization

¥
Forming of the i-th panel ——

Figure 14 Coordinate correction procedure

This procedure is necessary for each panel formed until the needed accuracy is
reached, but also during the whole forming procedure to ensure the stability of
accuracy. Because the response model cannot be built on one input and output
dataset, operator experience is needed to determine adjustment values. Due to the
limited dataset for response modeling at the beginning of the new type panel
forming, the problem is regarded as specific. After forming two panels, the dataset
is still poor for modeling response between the values of the coordinates of

the adjustment points and the deviations of the measuring points, but principally it
can be employed. The dataset efficiency for modeling will increase
correspondingly the number of the panels formed.

Response surface method (RSM) is employed. The coordinate corrections for
adjustment points are treated as input values and the data obtained from the
measurement of the deviation of the reflective surface are treated as output values.
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In order to determine the minimal value of the objective function (23) the genetic
algorithm (GA) was applied.

The deviation of the reflective surface has been minimized. However, zero
deviations were not achieved due to measuring, modeling, and other errors. The
procedure of the coordinate correction proposed allows us to reduce deviations
significantly and the number of experiments performed (panels formed) up to a
required accuracy.

3.3 Optimal design of car frontal protection system

The design of the car frontal protection system is described in detail in Paper 3. In
the following, the problem formulation and the results are reviewed.

Problem formulation

The main goal of the current case study was to design an extra frontal protection
system of a vehicle consisting of tubular parts and the brackets. The frontal
protection system is treated as an additional impact energy absorbing element [55-
59].

Main attention was paid to the design of the mounting brackets. The stiffness of the
brackets is limited by the safety of pedestrians and required structural stiffness of
the car accessories. To obtain maximum energy absorption that is smooth enough,
an optimal configuration of support components of the structure was searched for.
An example of the energy absorbing fastener is given in Fig. 15.

The optimal design problem posed involves several complexities, like large plastic
deformations, impact loading, contact modelling. Initial design of the fastener was
given by the manufacturer. Thus, the topology was predefined to a certain extent
and the main task was to search optimal values of the design variables (a, b, ¢, d
and e) to make maximum energy absorption smooth enough.

The practical objective of the posed problem was to minimize the peak force and
also a sudden change in the following forces.

Figure 15 Energy absorbing structure
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The corresponding multicriteria optimization problem is formulated as
min(F, (%), F; (%)), (24)

where F)(x) and F,(x) stand for peak force and difference between the maximal
and the minimal force, respectively

E()'c)=mtaxF(t,)_c), F (%) =maxF{(£,%) —minF (., X). (25)

In (25) ¢t and X =(x,,X,,....,x,) stand for time and a vector of independent design

variables, respectively. The design variables and displacements are subjected to the
constraints

X, Sx;, —x,<—x, Jul+ul<u’, (i=1..n) (26)

In (26) u, and u; in stand for the displacements in the ) and Z direction,
respectively, u'is a given limit value. These values of the displacements ,

and #; were measured experimentally. Actually, the constraint on stiffness is
described by means of displacements in the y — z plane. The protection system of a

vehicle designed should satisfy two requirements simultaneously:
— must be a good energy absorber,
— must have high stiffness characteristics in the directions perpendicular to
the moving direction.
The first goal is achieved by the minimization of objective functions and the
second by satisfying the constraints (26).

Results and discussion

The finite element analysis was performed using the software package LS-DYNA
and fully integrated shell elements. Two kinds of the FEA were realized:

— dynamic analysis - crash simulation,

— static analysis - stiffness evaluation.
The FEA model was validated against the results obtained from the experimental
study. The brackets with different configurations were tested. Changes in the
topology of the bracket may change also the number of design variables (from 4 up
to 8). The compression tests performed allowed us to obtain initial values of the
force components and deformation modes. The sensitivity of the reaction force
appears to be highest with respect to thickness and lowest with respect to the upper
fold.
The results of the FEA and experimental tests are shown in Fig. 16, where
a=1.6mm, b=12mm, c=6mm and d=/0mm. Note that it is assumed here that the
shape of the fold is triangular and the bend angle is used instead of the design
parameter e.
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Figure 16 Load-displacement relation: FEA vs. experimental study

It can be seen from Fig. 16 that the results of the FEA and the experimental study
are in good agreement. The optimization of the bracket was performed by use of
the hybrid genetic algorithm. The two objective functions used are non-conflicting,
therefore it is not necessary to apply the Pareto front. The reaction force appears to
be the most critical in terms of pedestrian safety. The reaction force versus time
relation is given in Fig. 17. The solid and dashed lines in the figure correspond to
the initial and optimal solutions, respectively. The stiffness of the bracket with an
optimal design in the moving direction of the vehicle is much lower than that of the
reference bracket with initial design.
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Figure 17 Reaction force vs. time for initial and optimal solution
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The solution of the posed optimization problem allows reducing the value of the
reaction force more than four times in comparison with the reference value.

The current study shows that changes in design parameters and the topology of the
bracket affect the reaction force significantly. Therefore, the optimization
methodology developed and applied has been successful to solve the current
engineering problem. Additionally, the final design of the bracket is simple to
fabricate and has low fabrication costs.
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CONCLUSIONS

The following conclusions apply to all case studies.
General conclusions:

1.

The methodology proposed for solving engineering design problems is based

on adaptation, tuning of the optimization procedure (chapter 2) for particular

problems and appears suitable for solving real world engineering design

problems containing several complexities like real, integer and discrete

variables, local extremes and multiple optimality criteria, geometrical

nonlinearity, large plastic deformations and other complexities..

Main features of the optimization procedure developed:

2.1 Multicriteria optimization algorithms, DOE and response modeling are
integrated into a unique iterative procedure.

2.2 Special attention was paid to the analysis of the optimality criteria.

Commonly the weighted summation or the Pareto optimality concept is

applied for solving multicriteria engineering design problems. According to

the current approach, the rules/principles for handling optimality criteria are
proposed (see details in section 1.3.2).

2.3 Special attention was paid to the analysis of constraints. Equality

constraints were analyzed and if possible, some design variables were

eliminated (analytically, symbolic computation may be used).

An analysis of the optimality criteria and constraints performed may lead to

reduced order model (lower number of optimality criteria or design variables),

i.e., reduce complexity of the engineering design problem.

The methodology proposed for the design of sheet metal and glass structures

can be extended for solving a wider class of engineering design problems,

since the optimization procedure does not contain specific limitations.

However, validation should be performed with corresponding case studies and

some improvements may be needed.

The performance of global optimization techniques can be improved

substantially by introducing hybrid algorithms (e.g., combining the GA with

the gradient method or hill climbing),

ANN and global optimization techniques need certain tuning for each

particular engineering design problem (in classical techniques not required).

The conclusions concerning each of the three particular case studies can be
outlined as:

Point supported glass canopy panel:

Contradictiory behavior can be perceived between the maximal deflection
and the cost.

Contradictiory behavior can be perceived between the maximal stress and the
cost.
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The maximal deflection and the maximal stress behave similarly. These two
objectives are combined into one using a weighted summation technique.
Thus, the initial problem is simplified significantly.

Double-curved surface forming:

The problem considered is specific due to the limited dataset for response
modeling at the beginning of the new type panel forming.

The procedure developed allows reducing deviations significantly, the
required accuracy has been achieved, the zero deviations cannot be achieved
due to measuring, modeling and other. errors.

Optimal design of the car frontal protection system:

The two objective functions used are non-conflicting and can be combined
into one by use of a weighted summation technique. Thus, the initial problem
is simplified significantly.

The sensitivity of the reaction force appears to be highest with respect to
thickness and lowest with respect to the upper fold.

The values of the reaction force may change several times due to changes in
the design parameters and the topology of the bracket.

The nonlinear constraint (26) deploys substantial restrictions on the original
design space.

The bracket designed is characterized by its low cost and simplicity of
fabrication.

Finally, the proposed optimization procedure has been successfully implemented in
the case of all three practical engineering design problems.
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Abstract

The PhD thesis is based on the published articles. The main aim of the current
study is to develop a methodology for solving practical engineering design
problems with particular focus on sheet metal and glass structures.

To validate the proposed methodology real world engineering design problems
were solved. Such problems contain often several complexities like mixed integer
and/or discrete variables, a number of local extremes, multiple optimality criteria.
In the latter case the traditional design approaches based on traditional gradient
based techniques fail or perform poorly.

The methodology proposed in this study is based on an integrated use of
metamodeling and global optimization algorithms. In the following, the basic steps
of the practical solution procedure are outlined. First, the initial mathematical
formulation of the engineering design problem is given. Next, the optimality
criteria are analyzed and non-conflicting criteria are combined into one criterion. In
the following steps, the DOE is performed, followed by the structural analysis
(FEM), response modeling (ANN), model validation and optimization (GA).
Finally, the sensitivity analysis is performed. The basic steps of the solution
procedure may be repeated iteratively starting from the DOE if the accuracy
achieved is not high enough. The response modeling may be executed on the
results obtained from the experimental study and/or computer simulations.

The key results of the thesis are:

e The methodology proposed for solving engineering design problems
covering sheet metal and glass structures.

o The optimization procedure proposed is based on an integrated use
of the DOE, ANN and GA (chapter 2),

o Rules and suggestions for handling multiple optimality criteria are
proposed (section 1.3.2)

e An analysis of the optimality criteria and constraints performed may lead
to reduced order model (lower number of optimality criteria or design
variables), i.e., reduced complexity of the engineering design problem.

e Solution of three real world engineering design problems as case studies:

o design of a point supported glass canopy panel,

o improving the forming process of double-curved surface forming,

o design of the car frontal protection system according to the
requirements of the Directive 2005/66/EC of the European
Parliament and of the Council.

The results of the thesis have been presented in three international conferences and

published in four scientific papers, one of them in journal indexed by ISI WEB of
Science.

47



Kokkuvote

Kéesolev doktoritod on esitatud kokkuvdtva iilevaateartiklina, mis on Tihtse
kogumina vormistatud publikatsioonide seeriana.
Eesmaérgiks on vilja arendada metoodika teatud kindlate lehtmetallist ja klaasist
konstruktsioonide analiiiisiks ja optimeerimiseks.
T66 fookuseks on praktiliste insenerirakenduste realiseerimine. Vaadeldakse
iilesandeid, mis sisaldavad optimaalset projekteerimist. Selliste insenerirakendus-
tega kaasnevad enamasti ka teatud keerukused, nagu tdisarvuliste ja/voi
diskreetsete vairtustega muutujate kasutamine, mitmed lokaalsed ekstreemumid ja
hulk optimaalsuse kriteeriume. Traditsioonilised gradiendi kasutamisel pdhinevad
algoritmid iildjuhul selliste {ilesannete lahendamiseks ei sobi.

Kéesolevas to6s viljapakutud ldhenemine pohineb vastavusepindade ja globaalse

optimeerimise tehnikate kombineerimises. Jargnevalt on lihidalt vélja toodud

praktilise lahendusalgoritmi peamised etapid. Kdigepealt teisendatakse praktiline
insenerirakendus matemaatilisele kujule ehk esitatakse optimeerimisiilesande
esialgne matemaatiline piistitus. Jargnevalt analiilisitakse optimaalsuse kriteeriume
ja kombineeritakse mittevastuolulised kriteeriumid tiheks liitkriteeriumiks. Jéarele-
jaénud vastuolulistele kriteeriumidele rakendatakse Pareto optimaalsuse kontsept-
siooni. Seejirel teostatakse katsete planeerimine, millele jargneb struktuurianaliiiis

(Ioplike elementide meetodi abil), vastavusepinna koostamine (tehisnirvivorkude

abil), mudeli valideerimine ja optimeerimine (geneetilisi algoritme kasutades).

Lahendusalgoritmi pohisamme voib ldbida iteratiivselt alustades katsete planeeri-

misest, juhul kui eelnevalt ei saavutatud piisavat tdpsust. Vastavusepinna

koostamisel vdivad olla ldhteandmeteks kas eksperimentide ja/vdi numbriliste
simulatsioonide tulemused.

T66 pohitulemused:

1. Praktiliste inseneriiilesannete lahendamiseks véljatdotatud metodoloogia, mis
on fokuseeritud peamiselt metall- ja klaaskonstruktsioonidele ning pdhineb
peatiikis 2 toodud optimeerimisprotseduuri realiseerimisel.

2. Koostatud optimeerimisprotseduuri peamised isedrasused on jargmised:

2.1. multikriteriaalse optimeerimise algoritmid, katsete plaaneerimine ja vasta-
vuse pinna modelleerimine on integreeritud terviklikuks iteratiivseks
protseduuriks;

2.2.enne probleemi lahendama asumist teostatakse optimeerimiskriteeriumide
detailne analiiiis;

2.3.t60s on pakutud vélja reeglid/printsiibid optimeerimiskriteeriumide kasitle-
miseks.

3. Teostatud optimeerimiskriteeriumide ja kitsenduste analiiiis voivad viia lihtsus-
tatud mudelini, mis sisaldab vihem sihifunktsioone voi muutujaid.

4. Toos arendatud metodoloogiat voib laiendada erinevate insenerirakendustes
sisalduvate optimeerimisiilesannete lahendamiseks, kuna kasutatud protseduur
ei sisalda otseselt probleemispetsiifilisi mooduleid. Samas on kindlasti vajalik
metoodika valideerimine konkreetsele iileanneteklassile vastavate praktiliste
ndidetega ning vdimalik, et ka tdiustamine.
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To606s lahendatud praktilised inseneriiilesanded:
1. Klaaspaneeli optimaalne projekteerimine:

1.1. optimeerimise kriteeriumid: maksimaalsed pinged ja ldbipaine ning
maksumus;

1.2. optimeerimise parameetrid: paneeli paksus, kinnitusavade asukoha koordi-
naadid ning ava 1abimdot, kokku viis parameetrit;

1.3. tulemused/jareldused: maksimaalsed pinged koonduvad kinnitusava serva-
del, maksimaalne l4bipaine paneeli keskosas; optimaalsuse kriteeriumitest
maksimaalne pinge ja ldbipaine kdituvad sarnaselt, kuid maksumus on
molemaga vastuolus; viimase lahendamiseks on esiteks pinged ja ldbi-
paine kombineeritud iiheks kriteeriumiks, kasutades kaalude summeeri-
mise tehnikat, ning teiseks on rakendatud Pareto optimaalsuse printsiipi
leidmaks optimum kombineeritud kriteeriumi ning maksumuse vahel.

2. Topeltkumerusega pindade vormimisprotsessi tdiustamine:

2.1. optimeerimise kriteeriumid: satelliitsidemaajaama antenni reflektorpaneeli
peegelpinna tépsus;

2.2. optimeerimise parameetrid: reflektorpaneeli vormimisprotsessis kasutatava
spetsiaalse reguleeritava vormi pinna reguleerimise vaartuste suurused;

2.3.tulemused/jareldused: vilja tdootatud meetod, mis voimaldab paneeli
peegelpinna korvalekallet mérgatavalt vdhendada ning ndutud tdpsust
saavutada; iilesande muudab eriliseks uut tiilipi paneeli vormimise alusta-
misel vastavusepinna modelleerimine limiteeritud andmete hulgaga.

3. Auto kaitseraua optimaalne projekteerimine:

3.1.optimeerimise kriteeriumid: kronsteinile mojuv reaktsioonijoud ning selle
jarsk muutus;

3.2.optimeerimise parameetrid: kronsteini mddtmed, erinevate variantide
puhul 4 kuni 8 parameetrit;

3.3.tulemused/jareldused: projekteeritud kronsteini saab kirjeldada madala
hinna ning valmistamise lihtsusega; reaktsioonijou véirtus voib muutuda
kordades tulenevalt parameetrite ning topoloogia muutusest, antud iilesan-
de puhul vdhenes optimeerimise meetodi rakendamise tulemusena
esialgne reaktsioonijoud neli korda.

Viljatootatud optimeerimisprotseduur osutus sobivaks koigi kolme praktilise
inseneriiilesande lahendamiseks.

Kéesolev doktoritdd on iiles ehitatud jargnevalt. T66 koosneb kahest peatiikist ning
kokkuvottest.

Esimene peatiikk sisaldab teooria {ilevaadet. Kolmes alapeatiikis antakse liihi-
iilevaade katsete planeerimise tehnikatest (DOE), vastavusepinna modelleerimise
tehnikatest ning mitmekriteriaalse optimeerimise strateegiatest. Antud alapeatiikid
on fokusseeritud tehnikate ja strateegiate valiku kirjeldusele ning tehtud valikute
pohjendustele. Katsete planeerimise meetoditest leiavad késitlust Taguchi meetod
ja téisarvuline katsete planeerimine. Vastavusepinna modelleerimise meetoditest on
lithitilevaade antud tehisndrvivorkude meetodist (ANN) ning kisitletud on ka antud
mudelite tundlikkuse analiiiisi. Mitmekriteriaalse optimeerimise strateegiate puhul
on kirjeldatud optimeerimisiilesande piistitust, optimeerimise kriteeriumite analiiii-
si, mitme funktsiooni kombineerimise meetodeid (Physical programming) ning
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Pareto optimaalsuse meetodit. Kusjuures alapeatiikk 1.3.2 optimeerimise kritee-
riumite analiiiis sisaldab peamiselt antud t66 autori analiiiisi ja jareldusi.

Teine peatiikk sisaldab iildist lahendusalgoritmi, mis on esitatud protseduuri kujul,
ja praktiliste inseneriiilesannete lahendusi. Kirjeldatakse juba eespool nimetatud
kolme praktilise inseneriiilesande tulemusi, mida kasutatakse t60s esitatud metoo-
dika valideerimiseks. T66 viimases osas on toodud peamised jareldused.

To66 tulemused on esitatud kolmel rahvusvahelisel konverentsil ja avaldatud neljas
ajakirjas, millest iiks on indekseeritud ISI WEB Science poolt ja kaks ISI WEB of
Proceedings poolt. Publikatsioonid on esitatud antud t66 lisades.
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Publications

PAPER 1

T. Velsker, J. Majak, M. Eerme, M. Pohlak. Double-curved surface forming
process modeling. In: Proceedings of the 7th International Conference of DAAAM
Baltic Industrial engineering : 22-24th April 2010, Tallinn, Estonia, p 256 — 262.
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7th International DAAAM Baltic Conference

“INDUSTRIAL ENGINEERING”
22-24 April 2010, Tallinn, Estonia

DOUBLE-CURVED SURFACE FORMING PROCESS MODELING

Velsker, T.; Majak, J.; Eerme, M.; Pohlak, M.

Abstract: The forming process of earth-
station antennas reflector panel is studied.
The paper is focused on improvement of
the accuracy of panels formed in order to
meet the increasing quality requirements.
The coordinate correction procedure,
based on use of response modelling and
optimisation, has been developed. The
numerical algorithm has been implemented
in MATLAB code.

Key words: satellite antennas, surface
forming, response modelling, optimisation.

1. INTRODUCTION
There are several industries where
increasingly higher surface accuracy

requirements are posed for double-curved

Fig. 1. 35m diameter antenna [ |.

surfaces. One industrial application is
satellitecommunication earth-station
antennas.(see Fig.1)

The main goal of the current study is to
increase an accuracy of the double-curved
surface forming process. The forming
method considered below is based on use
of the adjustable forming surface which
supports reflective surface. Adjustments of
the surface are available in fixed set of
points and in directions normal to the
surface only.

The response surface method (RSM) is
employed in order to model relation
between input and output data. In the
current paper, the generalized regression
neural networks (NN) are used for the
surface fitting. An approach proposed is
based on the use of the MATLAB neural
network toolbox.

The deviation of the reflective surface has
been minimized by use of hybrid genetic
algorithm. Traditional gradient based
optimization methods have a trend to
converge to the nearest optimum (which
may appear to be local), also computation
of the first order derivatives of the
objective function f(x) and the constraints

function g(x) with respect to the design

variablesx is necessary. In that reason a

genetic algorithm is employed for solving

the optimization problem posed. The

advantages of the GA over traditional

gradient based techniques can be outlined

as follows:

- in general, the convergence to global
extreme can be expected;

- integer type design parameters can be
used;



- computation of derivatives of objective
and constraints functions is not
required.

However, there are also

disadvantages common to GA:

- convergence to the solution close to
global optimum (not exactly optimum);

- relatively long computing time.

In order to overcome the above mentioned

drawbacks, several refined GA approaches

are proposed in literature [*°] Henz et al.

(2007) present a global-local approach for

the optimization of injection gate locations

in liquid composite molding process
simulations [*]. The hybrid approach used
provides a global search with the GA and

was subsequently further refined with a

gradient-based search via the CSE

(continuous sensitivity equations). In [’]

stochastic hybrid genetic algorithm is

developed for survivable resilient networks
design. The specialized crossover and local
search operators are introduced in the GA
algorithm. In Zhu et al. 2007 a novel GA,

some

particularly suited to hardware
implementation, is introduced. The optimal
individual monogenetic algorithm

(OIMGA) is treated, which includes global
and local searches that interact in a
hierarchical manner.

In [*°] a similar two layer network was
applied by the authors for modeling

different engineering problems (design of
large composite parts, design of car
protection  system, modeling  new
composite material etc.).

2. PROBLEM FORMULATION

In order to achieve the main goal- increase
an accuracy of the double-curved surface
forming process the procedure for
determining the coordinates of the
adjustment points has been developed. The
two main subtasks of the procedure can be
outlines as:

a) deviation measuring in given points,

b) response surface modelling,

¢) computing coordinates corresponding to
minimal deviation of reflective surface,

d) coordinate correction for adjustment
points. (see Fig. 2)

Root mean square (RMS) value is used in
order to characterise the precision of the
surface. Irrespective of measuring method
a certain number of measuring points
deviation on the surface is needed for
calculating RMS.

In real adjustment process the coordinates
in normal directions are considered as
input data and the deviations of the
reflective surface points as output data
(results).

Faneeli varmi Ulemine pool

o Silinder

K —JH;-ﬂ
i =
1 i /

“— Fanezli vormi alumine pool

Fig. 2. Forming tool with adjustable surface [].



3. COORDINATE CORRECTION
PROCEDURE

First note, that the coordinate correction
procedure is time consuming, since besides
numerical algorithm it contains also earth-
station antennas reflector panel forming
process. The coordinate corrections are
necessary for each panel formed until
needed accuracy have been reached.
However, at the beginning of the forming
process of a new type of panel there is not
preliminary model data (measurement
results) for predicting the coordinates of
the adjustment points. First measurement
data are obtained after forming first panel
of a given type. The corrections done
before forming second panel are based on

Forming of the first panel

v

Measuring deviation of
the reflective surface

v

Coordinate correction
based on experience

v

Forming of the second panel

v

Measuring deviation of
the reflective surface

v
RMS evaluation
"4 N
RMS<¢g RMS>¢
¥ v
END Response modeling

v

Otimization algorithm,
RMS minimization

v

Forming of the i-th panel

Fig 3. Coordinate corrections procedure

experience of operators, because the
response model cannot be built on one
input and output dataset. After forming two
panels of a given type the dataset is still
poor for modelling response between
values of the coordinates of adjustment
points and deviations of measuring points,
but principally the coordinate correction
module can be employed. Two main
subtasks of the coordinate correction
module are the response modelling and
optimisation. Detailed scheme of the
coordinate corrections procedure is given
in Fig.3

Note that the coordinate corrections less
than given constant (0.08 mm) are omitted
due to fact that the errors, caused by
performing coordinate changes, may
exceed the correction value.

Let us assume that after forming n-th panel
the required accuracy has been achieved
(RMS<g¢) and here is no need for
coordinate  correction. However, the
measurement of the deviation of reflective
surface and RMS evaluation should be
continued in order to guarantee the quality
of the product. It may appear that after
forming certain number of panels, the
accuracy requirement will be violated in
some local region or globally (different
affectors). In latter case the coordinate
correction procedure should by “switched

E2]

on”.
4. RESPONSE SURFACE MODELING

Using  surrogate  models for  the
approximation of the objective and
constraint functions is a common technique
for reducing computational cost of
engineering design problems. In the
following, the coordinate corrections for
adjustment points are treated as input
values and the data obtained from
measurement of the deviation of reflective
surface are treated as output values. In
order to characterize the precision of the
surface the root mean square value has
been computed (response).



The generalized regression neural networks
(NNs) are used for the surface fitting. The
surface constructed by the use of NNs does
not normally contain the given response
values (similarity with the least-squares
method in this respect). An approach
proposed in this paper is based on the use
of the MATLAB neural network toolbox.
A two-layer network is generated. General
scheme of the multilayer NN can be found
in [8]. In Fig. 4 the architecture of two
layer NN is given, where P , @ W B and
f  stand for input vector, output vector,
weight matrix (SxR), bias vector and
transfer functions, respectively. The first
layer has radbas neurons and the second
layer has purelin neurons. The dimensions
of the weight matrix S and R are
determined by number of elements in input
(layer) vector and number of neurons in
layer.

The neural network architecture, depicted
in Fig. 4, is covered by a quite simple
mathematical formula

a? =f2[LW2'1f1{IW1'1p+b1 :l], (1)

where IW** and LW** stand for wieght
matrices of the input and second layer,

respectively, F* is a linear and f* radial

Inputs Layer 1

bases function. The neural network model,
built in MATLAB, can be exported to
different computing environments using
the relation (1).

In order to calculate outputs for a
concurrent set of values of the design
variables, a network simulation function
sim was used.

5. MINIMIZATION OF THE
DEVIATION OF REFLECTIVE
SURFACE

The root mean square value of the
deviations of the parabolic reflective
surface of satellite communication earth-
station antennas reflectors is subjected to
minimization

1 n
F= —Z:(z:;" —zp) - min

nl

—a

, 2

where 2" and Z are the values of the
coordinates ~ of  reflective  surface
corresponding to measurement results and
zero deviation, respectively. As described
above, each value of the function F
corresponds to one panel formed. Thus, the
experimental data, gathered at the
beginning of the forming process of new

Layer 2

/N J

N

Fig. 4. Architecture of the two layer feedforward neural network.



type of panels is limited and response
modeling necessary.

Let us proceed from the surface modeled
by the use of neural networks (see section
4). In order to determine the minimal value
of the objective function (2) the genetic
algorithm has been applied. In order to
achieve higher accuracy the real-coded
approach of the genetic algorithm is
considered. As it can be expected,
optimization via genetic algorithms (GA)
uses natural selection as a tool of search for
the optimal solution in the global domain,
the computed solution is not the global
extreme, and rather it is a value close to it.
Thus, further refinement of the design is
still necessary. An approach considered for
design improvement herein is employing
hybrid GA. This algorithm consists from a
global search and one or more local
searches. The global search is performed
by the GA, but the steepest decent method
is applied for the local search using the
following domain

Ibli]= x5 -5,
ub[i] =xf+0,, (3)
(i=1,.,m),

where xf stands for the value of the design

variable obtained from the global search
and J; is a given deviation for the i—th
variable. The hybrid GA converges faster
in comparison with GA and results higher
accuracy.

6. RESULTS

The deviation of the reflective surface has
been minimized. However, the zero
deviations are not achieved due to
measuring, modeling, etc. errors. Employ-
ing the coordinate correction algorithm
proposed, allows to reduce the number of
experiments performed (panels formed) up
to required accuracy has been achieved.
The problem considered is specific due to
limited dataset for response modeling at

the beginning of the new type panel
forming.

7. CONCLUSION

The main goal of the current study has
been achieved, the accuracy of the double-
curved surface forming process has been
improved. The artificial neural networks
and global optimization techniques are
combined for solving the engineering
problem posed above.
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DESIGN OF GLASS CANOPY PANEL

Velsker, T. Lend, H. Maarjus, Kirs.

Abstract: The main objective of the
current study is to design point supported
glass panel with prescribed stiffness/
strength properties.The maximal deflection
of glass panel and maximum stress around
fixing holes are two objectives considered
above.

Structural analysis of the point supported
glass panel is performed by applying FEM
(geometrically nonlinear plate theory).
Based on FEA results the mathematical
model is composed using artificial neural
networks (ANN). Optimal set of design
variables is determined by employing
evolotionary algorithms.

Key words: design of glass canopy,
Taguchi  DOE, FEA,  evolutionary
algorithms.

1. INTRODUCTION

Over a last couple of decades, glass as a
building material has undergone a
transformation from being used as a
building envelope to also being used as
part of the load-carrying structure and
elements [1-2]. For example glass floors,
roofs, canopies etc. Application of the
point supported glass and FEM analysis
have been the main reason of the rapid
progress in this area. Safety, failure issues
of the concerning glass panel structures are
studied in [3-5].

The point supported glass canopy panel
design considered involve large and
relatively thin lites of glass with certain
amount of bolt holes. The critical problems
are high stresses around fixing holes and
large deflection of the panel. In the current
study behaviour of these quantities is

characterised by introducing ANN based
mathematical model.

Artificial neural network (ANN) modeling
is inspired by the biological nerve system
and is being used to solve a wide variety
engineering problems. [6,7].

ANN approach is known as a successful
analytical tool for response modeling and
is used by many researchers to predict the
mechanical, thermal and electrical
properties of materials and structures [8-
10].

The main goal of the current study is to
determine optimal canopy panel thickness
and also locations and dimensions of the
fixing holes to minimize maximal
deflection and maximum stress. The posed
problem can be solved by use of multi-
criteria optimization approach described in
[11-13]. An analysis of the objective
functions has been performed and based on
In order to manage local extremes and the
design variables with discrete values the
hybrid genetic algorithm is applied [14-
15].

2. PROBLEM FORMULATION

The current paper is concentrated on
design of point supported glass panel for
canopy (see Figure 1). Designing of glass
constructions is a special challenge because
of the material behavior of glass. Main
criteria considered herein are maximum
stress around fixing holes and deflection of
glass panel. These criteria are depending
on the glass panel thickness, fixing holes
location and diameter.



Fig. 1.
supports.

Glass canopy with four point

Width and length of the panel are given by
the manufacturer, which are 1700 mm and
2000 mm accordingly. Main task is to
search for an optimal set of design
variables X1, X2, X3, X4 and X5 (see
Figure 2) determining geometry of the
supports. Panel is made of structural glass.
In the current study it is assumed to be
monolithic solid glass panel.

Panel is loaded by gravity and design load
caused by snow (up to 2 kN/m?).

Fig. 2. Glass panel (X1, X2, X3, X4 and
X5 are design variables).

Thus, X1,X2 and X3 stand for coordinates
of the holes, X4 is diameter of the hole and
XS5 is thickness of the panel.

3. FINITE ELEMENT ANALYSIS

The only way to analyse a glass plate with
point-bearings in a satisfying manner is by
means of a threedimensional-FEM
software system [1]. When glass panel
subjected to the snow or wind load, it

usually deforms more than its thickness.
Under this situation, its behavior cannot be
modeled accurately by linear theory[2].
Therefore a non-linear plate theory is
employed.The stress-strain state of the
glass panel is analysed by use of FEA
(ANSYS). The FEA model with solid
elements for analysis of the glass lite has
been developed.

Because of the glass panel relatively large
dimensions FE model general mesh
elements size is 20 mm to avoid long
calculation time. Maximum stresses are
concentrated around the fixing holes.
Therefore to get precise results of

maximum stresses in mentioned locations,
elements size is reduced to 3 mm. This is
applied in 40 mm diameter sphere around
the holes (see Figure 3).

Five design variables have been used for
analysis of the panel. In order to reduce the
computational cost the design of
experiment (DOE) is performed.

First values for every variable were
assigned according to manufacturing and
structural limitations (see Table 1). Four
level for each variable are considered.

Independent Levels

variable 1 2 3 4
X1 300 | 350 | 400 | 450
X2 300 | 350 | 400 | 450
X3 65 75 80 85
X4 18 24 30 36
X5 12 14 16 20

Table. 1. Levels of design variables




N Design variable values Results
X1 | X2 | X3 | X4 | X5 | Max. | Max.
Str., | Def.,
Mpa | mm
1 [300]300] 65|18 | 12 |2862| 7,6
2 [300[350] 75 |24 |14 [1563| 3,3
3 [300]400| 80 |30 | 16 [ 102,6 | 1,6
4 [300]450| 85 | 36|20 1102 14
5 |350]300] 75 |30 | 201610 44
6 350|350 | 65|36 |16 |160,8 | 44
7 [350]400 |85 |18 | 14| 783 | 1,0
8 35045080 |24 |12 |117,6| 2,6
9 |400 ]300 80 | 36 | 14 |100,9 | 2,7
10400350 |8 |30 | 12] 82,7 | 1,5
11 400|400 | 65 |24 |20 |1475| 42
121400450 | 75 | 18 [ 16 | 92,2 | 23
131450300 |85 |24 16| 59,1 | 14
14450350 | 80 | 18 | 20 | 78,6 | 24
151450400 | 75 | 36 | 12 | 1058 | 3,0
16 450 450 | 65 | 30 | 14 | 1188 | 4,0

Table. 2. Taguchi DOE, L16 orthogonal
array

Parametrical model according to variables
(X1, X2, X3, X4 and X5) was created in
ANSYS Workbench.

The Taguchi’s design of experiments
(DOE) is applied in order to reduce the

number of computational experiments
(computational time). Taguchi’s L16
ortogonal array is employed and

corrsponding values of the design variables
as well as objective functions considered
are given in Table 2.

The distribution of the maximal stress near
fixing hole is depicted in Figure 4.

Fig. 4. Max. stress distribution around
fixing hole

In can be seen from Figure 4 that the
maximal stress near fixing hole is not
symmetric and has values up to 300 Mpa.
The distribution of the deflection of glass
panel is depicted in Figure 5.

(1] L) 1488 frm)
[ Ee—  SS—

Fig. 5. Distributi(‘)ﬁ of the deflection of
glass panel

It can be seen from Figure 5, that the
distribution of the deflection can be
characterized by symmetry and has values
up to 8mm.

4. MATHEMATICAL MODEL

In the current study, the artificial neural
networks (ANN) technique was used for
prediction the values of the maximal
deflection and maximum stress. The inputs
to the network are geometrical parameters
describing locations of the fixing holes,
holes diameter and thickness of the panel.
The output data sets of the ANN are
formed using values of the maximal
deflection and maximum stress obtained
from series of FEA simulations (structural
analysis of the panel).

Data pre-processing has been applied for
both input and output data of the ANN
model since the range and unit in one
sequence may differ from the others. The
original input and output sequences can be
normalized by use of formulas (1) and (2),
respectively.



X, —min X, . :

X = ] —
" maxX,-minX,’ i=L.n, (1)
F;(x)—min F; (x)

" max F,(¥)-min F, (¥)

/;(X) =Lk (2)

In (1) Xx,and x, stand for original and
normalised input sequences (design
variables), respectively. In (2) F,(x)and

f;(x) stand for original and normalised

output sequences (objective functions),

respectively and Xis vector of input
variables. As result the values of the both,
both input and output sequences remains in
interval [0,1]. The ANN employed
comprise of three layers: input, hidden and
output layers. The number of neurons in
hidden layer is determined from simulation
results. The transfer functions applied in
hidden and output layers are radial basis
and linear functions, respectively. The back
propagation learning-algorithm is used.
The model was trained with Levenberg—
Marquardt learning algorithm which has
second-order converging speed [18]. The
update rule of the Levenberg—Marquardt
algorithm is a blend of the simple gradient
descent and Gauss-Newton methods and is
given as

=x, —(H + Mdiag[H) " 47 (x,).  (3)

Xisl

where H is the Hessian matrix evaluated at

X;, Aand 4 stand for the scaling coe-

ficient and gradient vector, respectively.
the Levenberg—Marquardt algorithm is
faster than pure gardient method and is less
sensitive with respect to starting point
selection in comparison with Gauss-
Newton method.

5. MULTICRITERIA OPTIMISATION

For above posed multicriteria optimisation
problem can be formulated as

S () =min(f,(x), /,(x)), “

subjected to linear constraints

. .
X, <x;, =X; $Xp, , i=L.,n, (5)

In (4 f(&) and f,(x) stand for the

normalised maximum stress and deflection
of glass panel, respectively (see formula
(2)). In (5) x; and X, stand for the upper
nad lower limit of the i-th design variable,
respectively.

In the case of multicriteria optimization
problem with conflicting objectives the
Pareto  optimality concept can be
considered as one of the most powerful and
general approach. However, an analysis
performed in the case of posed problem
shows that the objectives considered are
not conflicting. Such an result is not
surprising, since both objectives are related
to stiffness/strength of the structure [12-

13].
As result, the wuse of the simpler
multicriteria  optimisation strategy s

reasonable. Mostly these strategies are
based on combining objectives into one
objective function and solving latter
problem as a single criterion optimization
problem.

In the following the weighted summation
technique is employed. According to this
technique the optimality criteria given by
(2) are multiplied by weights and summed
into general objective f, as

=% wf. (6)

where m is the number of optimality
criteria used, w; is weight of the i-th
criteria and

O<w, <1. @)

The constrained optimization problem has
been solved by use of hybrid GA algorithm
[14-15]. An advantage of the hybrid GA



with respect to GA is higher convergence
speed and reduced computing time [19].

6. DISCUSSION

The main conclusions can be outlined as

— The objectives considered are not
conflicting, thus use of physical
programming techniques is justified;

— In the case of considered objective
functions the optimal thickness of the
plate is equal to upper limit and can be
fixed (not considered as a design
variable). The situation will be changed
when  problem  formulation is
completed with third objective function
— cost of the panel (planned as future
study).

— The initial robust optimal design is
determined by row of Taguchi dataset
with best value of the objective
function (6)

— The initial robust optimal design can be
improved in range of 20-30% (decrease
of objective function) depending on
design space used.

— Larger data set is needed in order to
improve ANN model (future study).
The dataset based on Taguchi’s DOE
technique does not consider complex
interactions between design variables.

7. CONCLUSION

The Taguchi’s DOE method has been
applied for design of data sets for structural
analysis of the glass canopy panel. Based
on FEA results the mathematical model for
prediction of the values of objective
functions is developed. The artificial neural
network and evolutionary algorithms are
employed for response modeling and
search for optimal design. Finally, the
sensitivity analysis has been performed.
The objective function (6) appears most
sensitive with respect to the thickness of
the glass panel. However, in the case of
objective function (6) the thickness
corresponding to optimal solution reaches
the upper value (boundary of the design

domain) and thus can be fixed. This result
can be expected, since glass panel with
maximal thickness has highest stiffness/
strength properties. As mentioned in
section 6, the situation can be changed by
introducing new additional objective — cost
of the panel.
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1. Introduction

In general, the car frontal protection systems are
designed with an aim to protect vehicles. However, the use
of traditional vehicle protection systems may cause certain
risk to pedestrian safety. There are two principally
different types of the car frontal protection systems: origi-
nal equipment and separate technical units.

The aim of this study is to design separate tech-
nical units of a vehicle which basic components include
tubular parts and the brackets. The final product designed
had to satisfy the requirements of the Directive
2005/66/EC of the European Parliament and of the Council
[1]. In the following, the car frontal protection system is
considered as a complementary energy absorbing structure.

A large number of papers covering different im-
pact energy absorbing problems can be found in literature
[2-6]. Al Galib et al. 2004 [2] have studied experimentally
and numerically the energy absorption in axially loaded
circular aluminium tubes (compressive loading). Static and
dynamic analysis of the circular thin-walled tubes with
various mass and impact velocity has been performed. FE
analysis results are found to be in good agreement with test
results. Alghamdi 2001 [3] has studied different defor-
mation modes (axial crushing, lateral indentation) of ener-
gy absorbing structures such as circular and square tubes,
honeycombs, sandwich plates, etc. Gupta 2001 [4] has
studied the applicability of structural foam in car protec-
tion system design. The potential areas where the steel
structures can be replaced with structural foam were found
out. An aim of such replacement is to provide light weight
design and advanced energy absorption properties. The
frontal crash of vehicles is studied by Griskevicius et al.
2003 [5]. Dependence of energy absorption capabilities on
age of the vehicle has been detected. It is pointed out that
modern AVC longeron columns may absorb several times
more energy than corroded longeron columns in old vehi-
cles. De Kanter 2006 [6] has performed experimental and
numerical analysis of energy absorbing structures designed
using multi-materials. The crushing behaviour of the me-
tallic and plastic cylinders has been analysed. It has been
observed that both metallic and composite characteristics
are common to the multi-material elements in the crashing
behaviour. The techniques for integrating metal and poly-
mer materials were discussed.

Due to new regulations (more strict requirements
constituted by the Directive 2005/66/EC) the frontal pro-
tection systems of a vehicle should be redesigned in order
to improve their energy absorption (softer) in the case of

car-pedestrian accidents [7-10]. Du Bois et al. 2004 [7]
provide an overview of the vehicle design safety problems.
In [8] the brake assist system is analysed and its ad-
vantages are pointed out. In Matsui [9] the lower extremity
injury is investigated. The influence of some key factors -
vehicle bumper height and impact velocity is discussed. It
appears that in the case of impact velocity in range 20-
30 km/h the basic injury is knee ligament, but in the case
of impact velocity near 40 km/h the injury is a fracture of
the lower extremities. The cushioning methods and new
trends in bumper design (lower stiffeners, beam face fea-
tures, etc) are reviewed by Schuster 2006 [10]. In [10] spe-
cial attention is paid to techniques allowing reducing the
lower limb impacts of pedestrian.

The design of frontal protection system of a vehi-
cle is commonly based on application of optimisation
techniques [11, 12]. In [11] the crashworthiness analysis is
performed by use of software package LS-OPT. In order to
save recourses the meta-modelling techniques are em-
ployed.

Optimal design of a crash box is investigated by
Wang [12] considering the difference between maximum
and minimum force values as objective function. Such an
approach allows obtaining more smooth distribution of the
force values. Main attention is paid to shape optimization
of a crash box.

This paper studies the possibilities of increasing
the safety of pedestrians in the case of traffic accidents.
The frontal protection system, consisting of tubular parts
and the brackets, is clamped to a vehicle. Latter amplifica-
tion is performed without structural changes of the vehicle.
Thus, the energy absorbing structures of the vehicle holds
good. The study is focused to the design of the brackets.
The key factors need to be considered in design of the
brackets are the safety of the pedestrians and mechanical
properties of the car accessories. There are two opposite
kind of constraints on design of the brackets. Firstly, the
car protection system must be flexible enough in order to
evade extreme accelerations of human body in case of the
traffic accident. Secondly, the car protection system must
be stiff enough in order to withstand to the accelerations of
the car. This allows using extra lights fastened to car pro-
tection system.

The size, shape and topology of the fastening
components are subjected to optimization in order to
achieve maximum energy absorption. The optimal design
problem posed involves several complexities, like large
plastic deformations, geometric and physical nonlinearities
(studied by the authors in [13, 14]), impact loading, contact



modelling and quite strict limitations on the design space
accrue from the geometry of the brackets (small dimen-
sions), the requirements set by the manufacturer and the
EU directive [1].

In this study the FE software package LS-DYNA
is used for the car-pedestrian crash situation analysis. The
approximation of the objective and constraint functions is
modelled by use of a neural network and search for an op-
timal design is accomplished by applying genetic algo-
rithm. The real-coded genetic algorithm is employed,
which allows to provide higher accuracy. However, in a
standard formulation the genetic algorithm may converge
close to an optimal solution. The refined algorithms are
proposed for design improvement. The function approxi-
mation and optimization modules are realized in MATLAB
and C++ programming environment.

Due to high safety requirements (safety of pedes-
trian) two alternate solutions are developed and compared
(first approach is introduced in [15], where the solution is
treated by the use of optimization software package LS-
OPT). A theoretical estimate on the deformation energy is
given.

2. Estimate on deformation energy

In the following it is assumed that the velocity v

of the legform coincide with that of the car protection sys-
tem. In the case of simplified model the kinetic energy can
be given as

2
, ED:(M+m)V7° (1

where the indexes Ep and E), correspond to the kinetic en-
ergy before and during crash and v is initial velocity of
the legform. The masses of the legform and the car protec-
tion system are denoted by m and M, respectively. The
formula of the deformation energy of the bracket Dp can
be expressed as

D, =E,-E, @
Computing the deformation energy as an integral

of the
E,=[Fds or E,=|[Fd 3)

Latter formulas describe dependence of the reac-
tion force F on the velocity v.

3. Testing procedures

The Directive 2005/66/EC defines several differ-
ent tests for the frontal protection system (Directive 2005).
The tubular accessories fastened to the front of the car may
worse considerably the situation for a pedestrian in case of
an accident, so only minimum requirements can be met
without adding sophisticated systems (like airbags, etc). A
minimum test is the lower legform impact test. The car
frontal protection systems with a height of over 500 mm
need for the upper legform impact test.

In the current study, the height of the car frontal
protection system is limited up to 500 mm and the safety
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requirements corresponding to upper legform test can be
omitted (Fig. 1).

> \/

b

a

Fig. 1 Lower legform impact test

The legform ‘a’ was shot at the speed v at the car
frontal protection system ‘b’ ( v =11.1 m/s). The follow-
ing sensors were installed in legform impact or: an acceler-
ation sensor; a bending angle sensor; shear displacement
sensor. The directive 2005/66/EC [1] requires that

a <21° y <6 mm, a, <200g, (g =9.81 Ez) @
S

where a, y and a,, stand for the maximum dynamic knee
bending angle, maximum dynamic knee shearing dis-
placement and the acceleration measured at the upper end
of the tibia, respectively. The constraints (4) hold good for
the vehicles with total permissible mass less than 2500 kg.
For more weighty vehicles the values of the parameters a,
y and a,, are 26.0°, 7.5 mm and 250 g, respectively. The
most complicated task is handling of the constraint sub-
jected to acceleration.

An overview on energy absorbing structures in-
cluding laminates, honeycombs and rings is given in
[3, 6, 16]. Various materials (solid metals, composites,
multi-materials) are utilized in these structures. The energy
absorption structures can be categorized into two main
types characterized by (Fig. 2):

—high peak of reaction force (type I);
—flat load-displacement curve (type II).

—Type | =—— Type ll

o

&

, KN

w

N

Reaction Force.

=

o

1 5 6

o

. 3 4
Displacement, mm

Fig. 2 Force-displacement relationship: 2 types of energy
absorbing structures

Obviously, it is desirable that the reaction force
will increase steadily to certain given level and then remain
unchanged [16]. In this study the energy absorbing struc-
ture of type I (bracket) was redesigned by changing the



geometry, adding cutouts, folds and performing parameter
design. The resulting bracket belongs to the energy absorb-
ing structure of type II.

The acceleration can be decreased by employing
optimal design techniques for determining optimal config-
uration of the frontal protection system. Let us return to the
lower legform impact test described in Fig. 1. Correspond-
ing acceleration distribution is depicted in Fig. 3. Obvious-
ly, the constraints imposed on the acceleration are not sat-
isfied in the case of tubular parts and the bracket used by
the producer originally (Fig. 3). Thus, it can be concluded
that the car frontal protection system in its original config-
uration is too stiff.

Acceleration CFC 180 [g]

30 40
Time [s]

Fig. 3 Acceleration diagram: lower legform impact test

In the current study the main attention is paid to
design of the fastening components as energy absorbers. In
Fig. 4 is shown initial design of the bracket suggested by
the manufacturer. The main aim is to determine the opti-
mal values of the design variables a, b, ¢, d and e shown in
Fig. 4. Initial topology of the bracket is given by manufac-
turer, but certain changes in topology are allowed (the fold:
form, location; etc.).

Fig. 4 Energy absorbing structure

The properties of the tubular components were
determined by applying robust design and technological
constraints.

4. Objective and constraint functions

Obviously, one of the most realistic and practical
objective for posed problem is minimization of the peak
force (acceleration). However, not only the first peak force,
but also a sudden change in the force (following unload-
ing) constitutes a potential risk for the pedestrian. For that
reason the above posed problem is considered as mul-
ticriteria optimization problem and formulated as
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min(F, (x),F,(x)) ©®)

Subjected to linear and nonlinear constraints giv-
en as

o

u, =Jul+u <u’, (i=1..n) (6)

In Eq. (5) X=(x,,x,,...,x,) is a vector of inde-

—X

i

pendent design variables. The objectives Fj(x) and F,(X)

stand for peak force and difference between the maximal
and the minimal force, respectively

K ()?) = m’axF(t,)?)
@)

F,

5 (f) = mtcsz(t,f)—mtinF(t,f)

In Eq. (7) F(t,x) stands for axial (frontal) force

component and # is a time. Nonlinear constraint (6) is set
on the displacements in the y — z plane. The protection sys-
tem of a vehicle designed should satisfy two requirements
simultaneously:
— must be a good energy absorber;
— must have high stiffness characteristics in the di-
rections perpendicular to the moving direction.
The weight of the car frontal protection system is
assumed as an acting load. The stiffness of the car frontal
protection system as a whole is determined experimentally
by measuring the displacements in the y and z direction
denoted by u, and u; in Eq. (6), respectively. The con-
straint on stiffness is described by Eq. (6), where u” is a
given limit value. Thus, in normal car exploitation condi-
tions the Eq. (6) must be satisfied.

5. Solution algorithm

The weighted summation is the simplest and most
commonly used technique employed for solving multi-
objective optimization problems. The Pareto optimality
concept can be considered as a most general approach for
solving multicriteria optimization problems. However, an
analysis done for the current problem allows to conclude
that the objectives considered are not in contradiction.
Thus, there is no reason to apply the Pareto optimality
based approach. The two optimization techniques consid-
ered in the following are: the weighted summation, com-
promise programming.

The approaches used for the Genetic algorithms
(GA) improvement: two stage GA and the hybrid GA.
These techniques are discussed in more detail above (de-
sign improvement). Basic steps of the design procedure
proposed are given in Fig. 5. The experimental validation
of the computer simulation is included in the algorithm in
order to describe the full design process. Actually, the im-
pact tests are performed in TUV Rheinland (Germany).
The static compression tests of the fastening components
are executed in TUT (Tallinn University of Technology).
The topology of the bracket has been modified based on
experimental data.

The major modules of the algorithm are described
in detail in the following sections.
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Fig. 5 Basic steps of the design procedure
6. Numerical analysis

In the following the finite element analysis soft-
ware package LS-DYNA is employed and fully integrated
shell elements are considered [17]. The multi-linear rela-
tionship is assumed for describing the stress-strain behav-
ior. The plastic anisotropy is modeled by use Hill’s yield
criterion. Two kind of FEA is realized:

—dynamic analysis - crash simulation;
— static analysis - stiffness evaluation.

It can be seen from Fig. 5 that the values of the
input data for FEM analysis (i.e. the design variables
shown in Fig. 4) are determined by design of experiment
and the values of the output data obtained (i.e. maximal
reaction force, difference between maximal and minimal
reaction force, maximal displacements during static load-
ing) are utilized for response modeling.

The FEA model proposed is validated against re-
sults obtained from experimental study. The brackets with
different configurations were tested. Changes in topology
of the bracket may change also the number of design vari-
ables (from 4 up to 8). The compression tests performed
allows obtaining initial values of the force components and
deformation modes. The results of the FEA and experi-
mental tests are shown in Fig. 6, where a = 1.6 mm,
b=12mm, ¢c =6 mm and d = 10 mm. Note that here is
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assumed that the shape of the fold is triangular and the
design parameter ¢ is omitted (bend angle is used instead
of design parameter ¢).

25

N
-'\
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= = Experimental
FEA

—

Reaction Force, KN
-
n

=]
'JI

=
n

Digplacement, mm

Fig. 6 Load-displacement relation

The FEA results appear to be close to correspond-
ing experimental results (see Fig. 6). Remarkable differ-
ences in values of the reaction force are observed in the
case of brackets with inner folds, where the folded parts of
the bracket move into contact. Actually here take place
sliding between the contacting surfaces. Occurrence of the
sliding can be confirmed experimentally, since the sym-
metry conditions are not fulfilled ideally in an experi-
mental test, but not numerically. Even in this exceptional
case, good agreement between numerical and experimental
results can be found in the range of small deformations
corresponding to peak force. Remarkable differences in the
values of reaction force can be observed in the case of
large deformations (caused by contact between the folded
surfaces). Obviously, the first peak of reaction force is the
most significant in regard to pedestrian safety.

The dependence of the reaction force on design
parameters a, b, c, e is illustrated in Fig. 7.

Fig. 7 The influence of design parameters a, b, ¢, e and
their interactions on the value of the reaction force

The sensitivity of the reaction force is highest
with respect to thickness and lowest with respect to the
upper fold. Note that the results given in Fig. 7 depend on
the selection of the design space. The values of the reaction
force may change more than 10 times due to changes in
design parameters and the topology of the bracket. Also,
the nonlinear constraint Eq. (6) deploys substantial re-
strictions on original design space.



7. Surrogate models

The evaluation of the objective and constraint
functions described above includes time consuming FE
simulations.

In the following the FE analysis results are used
as response values, corresponding to the data set of design
variables. The artificial neural networks (ANN) are used
for the response modeling. The ANN based approximation
of the objective and constraint functions is realized by the
authors in software package MATLAB and C++ pro-
gramming environment. Levenberg-Marquardt algorithm
was used to train the ANN model. It is a compromise be-
tween the gradient descent and Gauss-Newton optimiza-
tion methods used widely in engineering applications 20].
In the first and second layer of the ANN the radial bases
and linear transfer functions are employed, respectively. In
[15] the posed optimization problem is realized by use of
software packages LS-OPT (combined with LS-DYNA).
The solution is analogous to the current approach.

8. Optimization

In this section, the optimization modules are
discussed in detail.

8.1. Why GA?

GA were first developed by Holland [18]. Tradi-
tional gradient based optimization methods have a trend to
converge to the nearest optimum (which may appear to be
local), also here is need for computation of the derivatives
of the objective and constraint functions with respect to the
design variables. In the following, a genetic algorithm is
employed for solving the optimization problem posed. The
GA has the following advantages over traditional gradient
based techniques:

—in general, the convergence to global extreme can
be expected;

—integer type design parameters can be used,

—computation of derivatives of objective and con-
straints functions is not required.

However, there are also some disadvantages
common to GA:

—convergence to the solution close to global optimum

(not exactly optimum);

—relatively long computing time.

In order to overcome the above mentioned draw-
backs, several refined GA approaches are proposed in lit-
erature [19]. Henz et al. [19] studied optimization of injec-
tion gate locations in liquid composite molding process
and presented a global-local search approach. The hybrid
search approach used include a global search performed by
use of GA and was improved with a gradient search (con-
tinuous sensitivity equations). In [20-22] multilevel opti-
mization strategy has been developed and validated by
solving different engineering design problems (design of
large composite structures, design of sandwich panels, etc).
In [23] a novel GA, particularly suited to hardware imple-
mentation, is introduced. The optimal individual monoge-
netic algorithm (OIMGA) is treated, which includes global
and local searches with hierarchical structure.
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8.2. Search for an optimal solution

As mentioned above the objectives considered are
not in contradiction and the Pareto optimality concept is
not employed. First the two objectives given by Eq. (7) are
normalized

o B(x)-minF (x)

f( ) maxF(X) minFl(X) ®)
(x) minF( )

fZ(x)_maxF (x)—minF, (x)

Next the following multicriteria optimization
techniques are employed:
— weighted summation (Eq. (9));
— compromise programming (Eq. (10)).

Sum 3, ©)

s

In Egs. (9) and (10) m stand for the number of ob-
jectives (m =2) and w; for weights of the objectives. The
combined objective function has been minimized by use of
genetic algorithm.

In optimization algorithm the values of the reac-
tion force in moving direction and the y —z displacement
are determined from corresponding response surfaces in-
troduced above. The response surfaces built by use of
ANN are given by analytical formulas. Thus, the evalua-
tion of the objective function in optimization algorithm is
computationally relatively cheap operation. In this study
the MATLAB Genetic algorithm and Direct Search
Toolbox is employed for minimization of the objectives (9)
and (10). In order to achieve higher accuracy the real-
coded approach of the genetic algorithm is considered. It
was not surprising that combined use of ANN and standard
GA lead to the solution close to global extreme, but does
not provide convergence to global extreme (remains to
bend near global extreme). Thus, certain improvement of
the algorithm seems reasonable.

In [15] the leap-frog algorithm is applied and the
solution of the optimization problem is realized by the use
of software package LS-OPT. In the following different
approach is used.

2

i=1

(w 1) } (10)

8.3. Design improvement (refined algorithm)

As mentioned above, two different approaches are
considered for design improvement — the two stage GA
and the hybrid GA. Both algorithms consist from a global
search and one or more local searches. In the case of the
two stage GA, the genetic algorithm is employed for
search in both levels (global and local). The domain for the
local search is given as

xf =0, <x, <xf 49,

(i=1..,n) (11)



where x{ is a value of the design variable corresponding to
global search and o, describes the deviation. The lower
and upper bound vectors of the design variables are rede-

fined as

lb[i]:xf -9, ub[i]:xf’ +9,

- (i :1,...,n)

Obviously, the numerical results obtained using
sub sequential runs of the GA code may differ, since the
GA is based on a stochastic search method. Furthermore, if
several equal or close minimal values of the fitness func-
tion exist in the global design space, then the optimal solu-
tions corresponding to different subsequent runs of the
code may differ significantly (i.e. the values of design var-
iables differ significantly, but the corresponding values of
the fitness function are close). In the latter case the design
space (11) should be specified and the local search per-
formed for a set of solutions is obtained by applying the
global search. The solutions are given in matrix population
and the corresponding values of the fitness function in ar-
ray scores.

The hybrid GA considered herein, include GA
and the steepest decent methods applied in global and local
level of the optimization algorithm, respectively. The best
individual of the population generated by the GA is used as
an initial value of the gradient method. In the cases where
elite population (set of solutions obtained by fitness-based
selection rule) contains individuals, which chromosomes
(parameters) differ substantially, it is reasonable to per-
form local search for all these individuals. Thus, the num-
ber of local searches necessary depends on the result of the
global search. The local search may be interpreted as a
design improvement. To reach the final solution the results
of all local searches are to be compared (selection is based
on the value of the fitness function). Note that the 2D ar-
ray population should be sorted using the values of the
fitness function given in array scores before the selection
of the elite population (initially not sorted).

It was observed that the hybrid GA converges
faster and exactly to the extreme value of the objective
function in comparison with two stage GA. However, the
two stage GA may appear more effective in particular cas-
es when several extreme values of the objective function
are expected in the local search domain.

(12)

8.4. Freeware based solution

Obviously, the FEA performed above is a prob-
lem specific, but the approximations of the objective (con-
straint) functions as well as optimization are the tasks of
more general character. Thus, the solution algorithm treat-
ed to solve the latter problems can be applied to solve wid-
er class of similar optimization problems.

For that reason a freeware based solution covering
function approximation and optimization tasks in C++
code is developed. Another consideration for the develop-
ment of C++ code was the fact that the MATLAB GA
toolbox has been developed in parallel with the solution of
the posed optimization problem (first versions of
MATLAB GA algorithm does not support the constrained
optimization).

Due to the similar main algorithms used, the nu-
merical results obtained by the use of freeware and
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MATLAB based solutions coincide or are close.

The main advantages of the commercial software
MATLAB based solution in comparison with the freeware
based solution is the presence of advanced tools for
graphics.

9. Numerical and experimental results

Satisfaction of the constraints imposed on accel-
eration is most complicated task. Furthermore, huge accel-
eration (or corresponding reaction force) is most critical
also in terms of pedestrian safety. Thus, the objective f; in
Egs. (9) and (10) has higher priority in comparison with
objective f,. The solution of the posed optimization prob-
lem allows reducing the value of the reaction force more
than 4 times in comparison with the reference value. The
reference solution was chosen with a reserve since the pre-
dicting of the value of the y-z displacement .. (constraint)
corresponding to a certain set of design variables is ex-
tremely complicated (detailed description is given in sec-
tion 5). The reaction force versus time relation is given in
Fig. 8. The solid and dashed lines in Fig. 8 correspond to
the initial and optimal solutions, respectively. The con-
straints (6) are satisfied in the case of both solutions. The
stiffness of the bracket with initial design in the moving
direction of the vehicle is much higher than that of opti-
mized bracket. Thus, the total energy absorption is higher
in the case of reference solution.

5
4 P
Beference zolution
= = Optimal design
Z 3
Lh
2
LE 2 l \
1 —————
7 i
7/
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0.0000 0.,0005 0.0010 0.0015 0.0020
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Fig. 8 Force vs. time diagram: reference solution and the
optimal design

Obviously, the character of the reaction force
curve corresponding to the optimal solution and the char-
acter of the curve corresponding to the energy absorber of
type I, shown in Fig. 2, are close (Fig. 8). In Table the
optimal values of the reaction force components, thick-
nesses of the metal sheet and also nonlinear constraints
corresponding to the optimization algorithms introduced in
the current paper and in [15] are compared.

Based on results shown in Table, it can be con-
cluded that the values of the reaction force corresponding
to GA, the two stage GA and the hybrid GA algorithms are
close to each other. However, certain differences between
the latter solutions and the solution, obtained by applying
software package LS-OPT [15], can be observed. It should
be noted that in the case of first three methods the response
surface is considered to be “static” i.e. it is not modified
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Table
The values of the frontal force components, thicknesses
and nonlinear constraints correspond to the optimization
algorithms introduced in the current paper and in [15]

Optimization GA Two stage | Hybrid | LS-OPT
algorithm GA GA
Frontal force |5 1134 1125 1067
component, N
Thickness of
the sheet, mm 1.74 1.72 1.71 1.7
Nonlinear
constraint, mm|  0.007 0.0073 0.0073 0.0073

during optimization process. In the case of forth solution
method (LS-OPT based) the response surface is considered
to be dynamic i.e. it is updated in each iteration step. Since
the software packages LS-DYNA and LS-OPT are compa-
tible, the sequential executing of explicit and implicit sol-
vers can be realized by introducing a special user defined
script. Combining MATLAB with FE solvers is more
cumbersome (several restrictions exist on what kind of
standalone executable MATLAB code can be compiled
with the MATLAB compiler).

The nonlinear constraints have an inequality form
in the case of simple GA algorithm and turn to an equality
form in the case of all other methods. The optimal design
appears most sensitive with respect to the thickness of the
bracket (discussed in more detail in section 6). The number
of function calls performed by the GA method (global and
local level) depends on random values and is not deter-
mined uniquely. However, approximately 10-100 times
more function calls were observed in the case of the pro-
posed optimization algorithm in comparison with the gra-
dient method.

The two stage GA and the hybrid GA algorithms
are discussed above, the solution treated by the use of
software package LS-OPT is described in detail in [15]. It
is correct to note that the numerical methods used in the
software package LS-OPT for optimization differ from
those used in the MATLAB and C++ algorithms described
above. The LS-OPT version 3.1 features Monte Carlo
based point selection schemes. The sub-problem is opti-
mized by the dynamic leap-frog method.

10. Conclusions

1. The design procedure for optimization of the
frontal protection system of a vehicle has been proposed.
The results obtained in the current study are compared with
the results given in [15].

2. The results obtained from experimental study
and FE simulations were found to be close to each other
(see section 6 for details). The influences of the different
design parameters on the final results are estimated. A
simple theoretical estimate on deformation energy is given.

3. The energy absorbing component (bracket) de-
signed is characterized by its low cost and simplicity of
fabrication.

4. The frontal protection system has been de-
signed according to the Directive 2005/66/EC. As a result,
the EU patent application no 07108163 “Mounting bracket
for frontal protection system” was submitted. Nine prod-
ucts have passed through the type improvement test.
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AUTOMOBILIO PRIEKIO APSAUGOS SISTEMOS
PROJEKTAVIMAS NAUDOJANT NEURONIN]
TINKLA IR GENETIN] ALGORITMA

Reziumé

Sudarytas optimalus automobilio priekio apsau-
gos sistemos projektas. Sis straipsnis yra skirtas jungiamy-
ju komponenty projektavimui apraSyti. Automobilio ir pés-
¢iojo susidirimo situacija buvo analizuojama naudojant
tiksly sprendinj LS-DYNA. Tikslo ir jégy rysio funkcijoms
modeliuoti panaudotas dirbtinis neuroninis tinklas, o opti-
malus variantas nustatytas naudojant genetinj algoritmg.
Gauti skaitiniai rezultatai patvirtinti eksperimentiskai.

J. Majak, M. Pohlak, M. Eerme, T. Velsker

DESIGN OF CAR FRONTAL PROTECTION SYSTEM
USING NEURAL NETWORK AND GENETIC
ALGORITHM

Summary

Optimal design of the frontal protection system of
a car is considered. The study is focused on design of the
fastening components. A simple theoretical estimate on
deformation energy is given. The car-pedestrian collision
situation is analyzed by use of the LS-DYNA explicit solv-
er. Corresponding stiffness analysis is performed by use of
the LS-DYNA implicit solver. The approximation of the
objective and constraint functions is modeled by use of
artificial neural network (NN) and search for an optimal
design is performed by use of a genetic algorithm (GA).
The obtained numerical results are validated against exper-
imental test results.

Keywords: design, car frontal protection system, neural
network, genetic algorithm.
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ABSTRACT

Purpose: Purpose of this paper is investigation of optimization strategies eligible for solving complex
engineering design problems. An aim is to develop numerical algorithms for solving optimal design problems
which may contain real and integer variables, a number of local extremes, linear- and non-linear constraints and
multiple optimality criteria.

Design/methodology/approach: The methodology proposed for solving optimal design problems is based on
integrated use of meta-modeling techniques and global optimization algorithms. Design of the complex and
safety critical products is validated experimentally.

Findings: Hierarchically decomposed multistage optimization strategy for solving complex engineering
design problems is developed. A number of different non-gradient methods and meta-modeling techniques has
been evaluated and compared for certain class of engineering design problems. The developed optimization
algorithms allows to predict the performance of the product (structure) for different design and configurations
parameters as well as loading conditions.

Research limitations/implications: The results obtained can be applied for solving certain class of engineering
design problems. The nano- and microstructure design of materials is not considered in current approach.
Practical implications: The methodology proposed is employed successfully for solving a number of practical
problems arising from Estonian industry: design of car frontal protection system, double-curved surface forming
process modeling, fixings for frameless glazed structures, optimal design of composite bathtub (large composite
plastics), etc.

Originality/value: Developed numerical algorithms can be utilised for solving a wide class of complex
optimization problems.

Keywords: Global optimization techniques; Response surface modeling; FEA

Reference to this paper should be given in the following way:
T. Velsker, M. Eerme, J. Majak, M. Pohlak, K. Karjust, Artificial neural networks and evolutionary algorithms in
engineering design, Journal of Achievements in Materials and Manufacturing Engineering 44/1 (2011) 88-95.

1. Introduction o effective CAE tools for fast and accurate structural analysis
and improvement of assessments,

standards for geometry and process technology with the
objective to transfer knowledge and experiences from the
older projects to new projects.

Engineering product (structure) optimization process consists
of three major supportive components:
e fast CAD tools for creation of geometry proposals,
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The problems of product optimization discussed below could
be summarized under term structural optimization and classified
into topology, shape and sizing optimization [1,2].

Multilevel strategies and their variants address the
multidiscipli-nary design optimization through a formal treatment
of interdisciplinary couplings [3,4]. However, these techniques
are issues of intensive research, the problems of convergence and
effective application are yet not fully resolved. Haftka [5]
proposed a quasi-separable bi-level optimization approach. The
objective function in this approach of a system level is a synthesis
or a composition of the optimal subsystem responses. Important
task of subsystems in such an approach is the representation of
optimal subsystem responses at the system level by surrogate
models.

In the case of the several contradictionary objectives the most
general approach is application of the Pareto optimality concept,
according to which all solutions on the Pareto front are optimal
(the Pareto front represents the set of all “non-dominated” points).
The shape of the Pareto front provides valuable information.
However, the selection of an optimal solution is still complicated
and depends on a number of factors, like the specific problem
considered, additional information available, etc. [6-8].

An alternate approach for solving multiple criteria analysis
problems are physical programming techniques, according to
which multiple objectives are combined into one objective and
latter problem is solved as single objective optimization problem.
Independent on methodology how the objective functions are
combined into one objective (weighted summation, compromise
programming, etc.), such an approach has some drawbacks.
Namely, the relative importance of the objectives is not known in
most of cases and the evaluation of the weights is complicated.

Current study is focused on solving engineering optimization
problems, which contain often real and integer variables, a
number of local extremes, multiple optimality criteria. In latter
case, the conventional approaches based on traditional gradient
technique fail or perform poorly. In the following, an optimization
approach that integrates meta-modeling and evolutionary
algorithms is developed.

Evolutionary algorithms are population-based stochastic
search techniques simulating mechanisms of natural selection,
genetics and evolution. The literature overview on evolutionary
computing (EC) techniques in structural engineering can be found
in [9-12], where different features of evolutionary algorithms
(EA-s) are discussed and historical perspectives of EC are
outlined. Historically, the GA-s, evolution strategies (ES) and
evolutionary programming (EP) are three developed general
approaches. The approaches differ in the types of generation - to -
generation alterations and on computer representation of
population. The fourth general approach - genetic programming
(GP) is a method for automated creating of a computer program
[9]. GP represents individuals as executable trees of code.

The engineering design problems as rule contain finding the
global optimum in the space with many local optima.
Evolutionary algorithms including GA have property to escape
the local extreme and have a better global perspective than the
traditional gradient based methods [10]. A certain class of optimal
design problems contains multiple global extremes i.e several
solutions correspond to the same value of the objective function.
Desirably all or as many as possible global extremes should be
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found. Obviously, in latter case the algorithms manipulating with
population instead of single solution are preferred.

However, manipulating with population instead of single
solution has also some drawback - numerous evaluations of
candidate solutions are necessary. For complex engineering
problems, such evaluations are time consuming (capacious FEA,
tests, etc.). The latter problem is solved most commonly by using
meta-models. Various techniques including regression and
interpolation tools (splines, least square regression, artificial
neural network, kriging, etc) can be utilized for building surrogate
models [13,14]. An accuracy and computational cost are basic
characteristics, which must be considered in selection of the
appropriate meta-models [14].

GA-s have been developed rapidly during last decades as an
effective and simple optimization technique. One of the
drawbacks of the traditional GA is also a ratchet effect (crossover
cannot introduce new gene values). In order to overcome the
drawbacks of the traditional GA a large number of improvements
is provided (CHC GA, adaptive GA [15], niche GA and hybrid
GA [16-17], etc.). In order to achieve higher accuracy, the real-
coded GA operators are used in engineering design instead of
traditional binary operators (more efficient for operating with real
numbers, the chromosome is implemented by a vector of floating-
point numbers) [18-19]. The development of evolutionary
algorithms for multi-objective optimization problems [20-21] is
another actual topic in engineering design.

In the current study Artificial Neural Networks (ANN) and real-
coded GA are used for performing meta-modeling and search for a
global extreme, respectively. Thus, the number of function
evaluations is reduced and convergence to the global extreme can
be expected. In order to speed up algorithm, the real-coded GA is
combined with gradient method (steepest descent). In this hybrid
GA the global search is performed by the use of real-coded GA and
local search by the use of gradient method. Some modifications to
hybrid GA are mode depending on the character of particular
optimization problem solved. The structural analysis of the car
frontal protection system (case study 1) and composite bathtub
(case study 2) is performed by the use of FEM software packages
LS-DYNA and HyperWorks, respectively. The multistage
optimization procedure has been developed. In the case of first
problem considered (design of car frontal protection system) an
alternative numerical approach is developed by the use of finite
element optimization package LS-OPT and the obtained numerical
results are validated against experimental test results [8,22].

2. Multi stage optimization
model

In general the considered engineering optimization problems can
be divided into the following subtasks (stages):
e evaluation of the objective functions for given vector of design
variables x (includes FEA);
e response surface modeling (meta-modeling);
e global optimization using multiple criteria analysis techniques
discussed in details below.
Note, that the first stage: evaluation of the objective functions may
include structural analysis and optimization, topology, shape and size
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optimization, etc. For example in the case of composite bathtub, the
first stage contains free-size optimization for a given set of input data.
In response surface method (RSM) the design surface is fitted to
the response values using regression analysis. Least squares
approximations are used for this purpose most commonly. In the
current paper, the generalized regression neural networks (NN) are
used for the surface fitting. In the case of car frontal protection system
and composite bathtub the output data obtained from FE analysis are
treated as response values, since in the case of double-curved surface
forming process modeling the response values for meta-model are
obtained from experiments. Let us proceed from the predetermined
set of designs. The surface constructed by the use of NN does not
normally contain the given response values (similarity with least-
squares method in this respect). An approach proposed is based on the
use of the MATLAB neural network toolbox and authors written C++
code. A generated two-layer network has radial basis transfer function
neurons in the first and the linear transfer function neurons in the
second layer. Similar two-layer (one hidden layer) network is
generated also in FE software package LS-OPT for composing
response surface. The response surface values are generated
simultaneously for all response quantities.
Note that in the current study the meta-modeling technique is applied
not only for building objective (fitness) functions, but also for
building some constraint functions (needed to be evaluated from FEA
or experiments). It should also be mentioned that the implementation
of the neural network based model was much simpler and more
flexible than the alternative solution based on use of B-splines.

._—DV

b

a

Fig. 1. Lower legform impact testing (a - Legform impactor, b -
Frontal protection system, V - velocity of impactor)

Let us proceed form surface modeled by the use of neural
networks. In order to determine the minimum value of the
objective function the hybrid GA containing local and global level
search has been treated. The global and local level search has
been performed by the use of GA and steepest descent methods,
respectively. In order to achieve higher accuracy the real-coded
algorithm is used. The best individual (solution) of the population
generated by GA is used as an initial value of the gradient method
(local level search). In the cases where elite population (set of
solutions obtained by fitness-based selection rule) contains
individuals, whose chromosomes differ substantially, it is
reasonable to perform local search for all these individuals. Thus,
the number local searches necessary depend on a result of the
global search. The local search may be considered as design
improvement, since the global search realized by the use of GA
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may converge to solution close to global optimum (exact
optimum is not achieved), also the gradient method is less time
consuming. The final solution is determined by comparison of the
results of all local searches performed (selection is based on value
of objective function). The nonlinear constraints are considered
through penalty terms.

The solution is implemented in MATLAB code. Note that the

2D array population should be sorted using the values of the
fitness function given in array scores before selection of the elite
population (initially unsorted).
An alternative solution of the problem 1 (design of car frontal
protection system) is realized by the use of FE software package
LS-OPT [23]. The latter solution is based on the use of leap-frog
algorithm.

3. Case study 1: optimal
design of car frontal
protection system

Main attention is paid to optimal design of brackets. Preliminary
configuration of the bracket is given by the manufacturer. The
solution method proposed for considered optimization problem is
based on the use of FEA system. An analysis of car-pedestrian
collision situation is performed by the use of LS-DYNA explicit
solver and the stiffness analysis with LS-DYNA implicit solver.

3.1. Problem formulation

The directive 2005/66/EC defines several different tests for
frontal protection system. As it can be seen, the tubular extra
accessories that are mounted to the front of vehicle will worsen
considerably the situation for pedestrian in case of accident, so
only minimum requirements can be met without adding
sophisticated systems (like airbags, etc). Minimum test is lower
legform impact test. Upper legform test is required for systems
with height over 500mm. In the current study, it is assumed that
the height of the designed car frontal protection system is less
than 500 mm and main attention is paid to the safety requirements
proceeding from lower legform test (see Figure 1).

In the test the impactor (a in Figure 1) has been shot at the
speed of 11.1 m/s at the frontal protection system of the vehicle.
There are three types of sensors mounted inside the impactor:
acceleration sensor, bending angle sensor and shear displacement
sensor. According to the directive 2005/66/EC (Directive 2005):

e the maximum dynamic knee bending angle shall not exceed
21.0°;
e the maximum dynamic knee shearing displacement shall not

exceed 6.0 mm;

e the acceleration measured at the upper end of the tibia shall

not exceed 200 g.

It is assumed above that the total permissible mass of the
vehicle is less than 2500 kg. In the case where the total
permissible mass of the vehicle exceeds 2500 kg, the
corresponding maximum values of the knee bending angle, knee
shearing displacement and acceleration measured at the upper end
of the tibia are 26.0°, 7.5 mm and 250 g, respectively.
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With bending angle and shear displacement it is easier to fit
between the limits, with acceleration limit the situation is more
complicated.

In the literature, different kinds of energy absorbing structures
(rings, laminates, honeycombs, etc.) can be found, materials vary
from solid metals to composites and cellular materials [24-26].
Unfortunately, most of structures absorb energy in an unstable
manner. The two principal different types of energy absorbing
structures are classified as follows: type I structure with a flat-
topped load-displacement curve and type II structure with a high
peak of reaction force when impact loading starts followed by
smaller peaks or more constant level of reaction forces. More
desirable situation would be if the reaction force increased
steadily to some predefined level and would remain constant on
this level [26]. In the current study the energy absorbing structure
of type I (bracket) has been redesigned by changing geometry,
adding cutouts, folds and performing parameters design. The
resulting bracket belongs to energy absorbing structure of type II.
In order to decrease the acceleration, optimal design of tubular
parts and brackets has to be addressed.

The current study is focused on the design of brackets located
between the vehicle bamper and the tubular extra accessories that
are mounted to the front of vehicle. The model proposed consider
the car frontal protection system and applied forces only. The
bracket is designed as main energy absorbing component (see
Figure 2). Initial design of the energy absorbing component
depicted in Figure 2 is given by the manufacturer. Thus, the
topology is predefined ro a certain extent by the manufacturer and
main task is to search for an optimal set of design variables a, b, c,
d and e (see Figure 2). However, some corrections in topology are
available (for example the fold: form, location; etc.). The
properties of the tubes are selected as appropriate as
technologically possible (light structure, thin walls, etc), detailed
design of tubes is omitted.

Fig. 2. Energy absorbing component (a, b, ¢, d and e are design
variables)

In the following, two different optimality criteria are
discussed. The objective functions corresponding to these criteria
can be expressed as

a) minimization of the peak force F' (peak acceleration)

Ji(X)=max F(1,X); (1
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b) minimization of the difference between maximal and minimal
force

fo(X)=max F(t,x)—-minF(t,x). )
t t

In (1)-(2) ¢ stands for time, X = (xl,xz,...,xn) is a vector

of independent design variables and F'(?,X ) stands for axial

(frontal) force component.

In order to cover both criteria the multi-criteria optimization
problem is formulated and solved applying the weighted
summation and compromise programming analysis techniques.

3.2. Finite element analysis

LS-DYNA software was utilized for numerical analysis. Fully
integrated shell elements are considered. The stress-strain
behaviour is modeled with multi-linear approximation. In order to
consider plastic anisotropy the Hill’s second order yield criterion
is employed. The FEA is performed separately for crash
simulation and stiffness analysis. The total number of simulations
depends on number of design variables and on grid density, fixed
in the stage of simulation data design. The dynamic and static
analysis is performed with the same sets of the simulation data in
order to get complete set of output data. The output data used in
further optimization procedure contains extreme values of the
frontal force component and displacements in y-z plane obtained
from the dynamic and static FE analysis, respectively.

In order to validate the FEA models the experimental study
was carried out. Several versions of the component shown in
Figure 2 were tested (the number of design variables used in the
case of different approaches was from 4 up to 8). The preliminary
estimates of the force components and deformation modes are
obtained from the compression tests of the brackets performed on
universal testing equipment. In Figure 3 the load displacement
curves obtained from experimental tests and FEA are compared.
The design parameters values are taken as a=1.6 mm, b=12 mm,
c¢=6 mm and d=10 mm (see Figure 2). The folds with triangular
shape (instead of convex arc) are considered and instead of the
design parameter e given in Figure 2 the bend angle with the
value 5 degrees is used.
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Fig. 3. Load-displacement curves: experimental and FEA
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It can be seen from Figure 6 that the experimental and FEA
results are found to be in good agreement, the peak values of the
reaction force and also the shapes of the curves are close.

3.3. Numerical and experimental
results

The limitation on acceleration (or corresponding force
component) appears to be the most critical. For that reason the force

component f; is considered as a dominating term in an optimality
criterion. As the result of design process, the maximum value of the
frontal force component f, is reduced more than 4 times in
comparison with reference solution. The reference solution was
chosen with reserve since the predicting of the value of y-z

displacement (constraint) corresponding to a certain set of design
variables is extremely complicated. In Figure 4 the frontal force
component f;, corresponding to initial (reference) and optimal sets
of design variables, is given, respectively. All constraints are
fulfilled in the case of both designs. Note that energy absorption is
twice higher in the case of initial design. The latter fact can be
explained with reduced dimensions of the component.

5

Reference solution

4 A~ — =Optimal design

/
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Fig. 4. Force - time diagram: reference solution and the optimal
design

Fig. 5. The final assembled product

It can be seen from Figure 4 that the shape of the force curve
corresponding to the optimal design is quite similar with the shape
of a curve corresponding to energy absorber of type II, described
above.
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4. Case study 2: optimal
design of composite bathtub

The objective is the optimization of structure and
manufacturing processes of the composite plastic bathtub. The
structural analysis of the product is performed with FEA. The
optimal thickness distribution is determined with free size
optimization. The final properties of the part are determined by
minimizing the cost and production time simultaneously.

4.1. Problem statement

The current paper is concentrated on design of derivative
products. For finding out optimal technology route we have to cut
down the structure of the technology process into different
process segments, meaning that we have to solve different sub
systems, like finding out the optimal vacuum forming technology,
the technology for post-forming operations (trimming, drilling the
slots and cut-outs into the part, decoration, printing, etc),
strengthening (reinforcing) and assembly. The bathtub is
produced in two stages - in the first stage the shell is produced by
vacuum forming, and in the second stage the shell is strengthened
by adding glass-fiber-epoxy layer on the one side. Current study
is focused on strengthening of the shell by adding glass-fiber-
epoxy layer and the first stage -vacuum forming process is
described briefly.

The vacuum forming part thinning process has been analyzed
with different materials like ABS, PMMA white 2000BM 1516,
polycarbonate ICE (UV) and acrylic FF0013 plexiglass. In the
following, the acrylic FF0013 plexiglass formed at the
temperature 320-340°C is considered (heating time 6 min and
cooling time 2 min). The sample of the final assembled product is
shown in Figure 5.

In vacuum forming the thinning is a natural consequence of
the deformation conditions. The thickness variations are
potentially large for a part. Therefore, it is often important to
control the thickness variations in order to meet functional
requirements of the part. The values of thinning of the plastic
sheet in the forming operations can be determined from
experience, special tests or simulations. The experimental tests
have been performed in order to analyze the wall thickness
reduction in certain materials. The results of analysis for
plexiglass are given in Figure 6.

100 % 100 %
81,25% = 5O
75% - .
| y 43,75%
21,87% 37.5%

Fig. 6. Wall thickness reduction in a 3.2 mm thick blank

It can be seen from Figure 6 that the thickness reduction is
maximal in bottom area. Obviously, the strengthening of the shell
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is necessary and it can be performed in both stages of
manufacturing process. In the following the detailed attention is
paid to reinforcement of the shell (adding glass-fiber-epoxy layer)
since the stiffness of the reinforcement layer is significantly
higher than acrylic layer.

The reinforcement problem of the bathtub shell can be
formulated as a multi-objective optimization problem and
expressed in mathematical forms as:

min F(x) = {F€x), Fp{x}],
Fy(xy= C(X0,Xp, e 1 X}, 3)
Fp(x)=T{Xq, Xgo v, A},

subjected to linear and nonlinear constraints. In (3) C(x) and T(x)
are cost of the glass-fiber-epoxy layer and manufacturing time,
respectively and x is a vector of design variables. The linear and
nonlinear constraints proceed from technological (maximum layer
thickness), exploitation (displacement limit) and safety (stress
limit) considerations. Since the units used to measure the
objectives F;(x) and F,(x) are different (cost and time), it is
reasonable to represent the objectives in terms of relative
deviation i.e.

_ _ maxF(x)-F(x) __maxF(x)-F(x)
fi(x) T max F (x)-min £ (x) ’fZ(x) T maxF, (x)-minF, (x) ° Q)

Obviously, the objective functions f;(x) and f>(x) are defined
in interval [0,1].
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Fig. 7. Objective function (weighted summation) vs. maximum
thickness of the reinforcement layer

4.2. Results and discussion

The values of the objective function corresponding to
weighted summation technique are pointed out in Figure 7, where
dependence on maximum thickness of the reinforcement layer is
shown. The values of the weight w; corresponding to the first
criterion (cost) are varied from 0.2 to 0.8. As it can be seen from
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Figure 7, the shape of the curves describing objective function
depend on the values of the weights, but the extreme value of the
objective is reached in the case of same value of the maximum
thickness of the reinforcement layer. The objective decreases in
same range where the material volume decreases, after that the
material volume approaches to constant value, but the objective
increases significantly. The latter fact is caused due to additional
drying expenses (layer-wise covering technology is used due to
technological limits on maximum layer thickness in one-time
layer setup, thus, larger total thickness means that larger number
of sub-layers should be used). Similar values of the objective
function are obtained in the case of compromise programming
technique (omitted for conciseness sake).

The Dbathtub with optimal thickness distribution of
reinforcement layer corresponding to extreme value of the
objective function (compromise programming and weighted
summation technologies) is shown in Figure 8.

Fig. 8. The optimal thickness distribution of reinforcement

It appears that the reinforcement layer is the thickest in areas
where the local loading is applied (at the middle of the bottom
area) and bottom-wall transitional areas (see Figure 8).

5. Case study 3: double-
curved surface forming
process modeling

There are several industries where increasingly higher surface
accuracy requirements are posed for double-curved surfaces. One
industrial application is parabolic reflective surface of satellite
communication earth-station antennas reflectors. The forming
method considered below is based on use of the adjustable
forming surface which supports reflective surface. Adjustments of
the surface are available in fixed set of points and in directions
normal to the surface only.

5.1. Problem statement

In order to achieve the main goal- increase an accuracy of the
double-curved surface forming process the procedure for determining
the coordinates of the adjustment points has been developed.
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The main subtasks of the procedure can be outlines as:

e deviation measuring in given points,

e response surface modeling,

e computing coordinates corresponding to minimum deviation
of reflective surface,

e coordinate correction for adjustment points.

In real adjustment process the coordinates in normal
directions are considered as input data and the deviations of the
reflective surface points as output data (results).

The root mean square (RMS) value of the deviations of the
parabolic reflective surface of satellite communication earth-
station antennas reflectors is subjected to minimization

F=L2ERy(zF — sf)* = mn, ®)

where z[™ and zF are the values of the coordinates of reflective
surface corresponding to measurement results and zero deviation,
respectively. As described above, each value of the function F
corresponds to one panel formed. Thus, the experimental data,
gathered at the beginning of the forming process of new type of
panels is limited and response modelling necessary.

5.2. Results and discussion

The deviation of the reflective surface has been minimized.
However, the zero deviations are not achieved due to measuring,
modelling, etc. errors. The developed coordinate correction algorithm
is shown in Figure 9.

Employing the proposed coordinate correction algorithm, allows
to reduce the number of experiments performed (panels formed) up to
required accuracy has been achieved. The problem considered is
specific due to limited dataset for response modelling at the beginning
of the new type panel forming.

6. Case study 4: design of
fixings for frameless glazed
structures

Attaching the glass to the structures using bolted fittings
directly connected through holes in the glass is used widely, since it
allows to improve transparency of the connection. The point
supported structural glass designs considered involve large and
relatively thin lites of glass. The stress-strain state of the glass lite is
analysed by use of FEA (ANSYS). Non-linear plate theory is
employed, because the deflections of the glass lite may exceed half
of its thickness.

The following sub goals are considered in optimal design of
fixings:

e determination of optimal locations and dimensions of the fixing
holes (topology optimization),

e optimal design of fixing element (to guarantee elastic behaviour
of the fixing element in certain loading conditions; rigid
behaviour of the fixing element may cause failure of the glass
lite).

The FEA model for analysis of the fixing element and glass lite
structure has been developed. However, solving optimal design
tasks described above is currently in progress.
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Fig. 9. Coordinate corrections procedure

7. Conclusions

The artificial neural networks and hybrid genetic algorithm
are used together for solving a number of quite different
engineering design problems including design of car frontal
protection system, design of composite bathtub, design of double-
curved surface forming process modeling, design of fixings for
frameless glazed structures. It can be concluded that the
optimization algorithm proposed has been shown good
performance with respect to convergence to global extreme
(responsibility of the global level search, GA) and accuracy
(responsibility of the local level search, gradient method). Certain
adaption of the algorithm was necessary depending on character
of particular optimization problem considered (GA operators
used, constraint handling, parameters tuning). The algorithm has
been implemented in MATLAB and C++ code.

T. Velsker, M. Eerme, J. Majak, M. Pohlak, K. Karjust
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