
Tallinn 2023

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Vladislav Sidorenko 192896IVSB

A Method for Bypassing the Valve Anti-Cheat

System in Video Games

Bachelor's thesis

Supervisor: Kaido Kikkas

 Doctor of Philosophy

(Ph.D.) in Engineering

Tallinn 2023

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Vladislav Sidorenko 192896IVSB

Meetod Valve Anti-Cheat kaitsesüsteemist

möödapääsemiseks videomängudes

Bakalaureusetöö

Juhendaja: Kaido Kikkas

 Tehnikateaduste

doktor

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature, and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Vladislav Sidorenko

24.12.2022

4

Abstract

Game cheats have existed in almost all of video game history, and the attitude towards

them nowadays is very controversial. Cheats are developed by hackers and could be used

to gain unfair advantage in games. This thesis paper aims to show a method for bypassing

Valve Anti-Cheat system in video games that are based on Valve’s “Source” game

engine, show how to create both external and an internal exploit for a video game, create

dynamic link library manual mapping injector to use with the internal exploit,

differentiate between cheat types. The thesis paper shows the usage of such important

game-hacking tools as Cheat Engine, ReClass.NET, and IDA Pro.

This thesis is written in English and is 37 pages long, including 6 chapters, 36 figures,

and 1 table.

5

Annotatsioon

Mänguhäkid on olemas olnud peaaegu kõigi videomängude ajaloos ja nende kohta on

tänapäeval väga vastakaid arvamusi. Häkke arendavad välja mänguhäkkerid ja neid

võidakse kasutada mängudes eeliste saamiseks.

Selle töö eesmärk on pakkuda välja meetod Valve Anti-Cheat kaitsesüsteemist

möödapääsemiseks videomängudes, mis põhinevad Valve "Source" mängumootoril.

Näidatakse, kuidas teha mängusiseseid ja -väliseid ründeid, luua mängusisese ründe

käivitamiseks vajalikku DLL -teeki ning eristada erinevaid mänguhäkkide tüüpe. Töös

näidatakse ka mitmete oluliste mänguhäkkimisvahendite (Cheat Engine, ReClass.NET ja

IDA Pro) kasutamist.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 37 leheküljel, 6 peatükki, 36

joonist, 1 tabelit.

6

List of abbreviations and terms

AC Software An Anti-Cheating software that prevents hackers from using

cheats

Aimbot A type of game cheat that moves the cursor to the correct position

(e.g., the head of an enemy)

Autonomous bot A type of game bot that is playing the game independently

C# A high-level programming language of the C family

C++ A high-level programming language of the C family

Cave bot A type of autonomous bot that explores locations and brings loot

Cheat With “hack” and “game exploit” — usually means either an

external or internal program that is capable of giving an

advantage to the person that uses it

Cheat Engine A memory scanner

Cheating tool A tool for hackers such as Cheat Engine or IDA Pro

CS: GO Counter-Strike: Global Offensive, Valve Software game

DLL A Dynamic Link Library

DLL injection A four-step attack that allows a hacker to execute code inside the

target process

ESP A type of game cheat that usually can draw overlay such as boxes

that will display the entity’s location, health bar, other

information

eSports Electronic sports, video games competition

External exploit Software that creates a process on the hacker's device, which

manipulates values in the target process. It usually uses Windows

API

Flash games Web-Browser games

FPS First-person shooter

Game exploit See “Cheat”

Hack See “Cheat”

HEX Hexadecimal, a number with a radix of 16

IDA Pro An interactive disassembler

7

Injector A tool that is used to insert an internal exploit code into a game's

memory or any other process's memory

Internal exploit Hacking a game internally involves inserting DLL (dynamic link

library) files into the game process, which allows the hacker to

directly access the process's memory for faster and easier

performance

IT Internet Technologies

Java A high-level programming language

JNA A Java library that allows to access process memory

MMORPG Massively multiplayer online role-playing game

ReClass.NET Ported to .NET ReClass memory scanner

Triggerbot A type of game cheat that toggles if some trigger was received

(e.g., the enemy is close)

VAC Valve Anti-Cheat

Wallhack A type of game cheat that allows a cheater to see through other

objects

War bot A type of autonomous bot that fights

White hat hacker (also ethical hacker) A security specialist who aims to identify

vulnerabilities in a system and fix them

8

Table of contents

Author’s declaration of originality ... 3

Abstract ... 4

Annotatsioon ... 5

List of abbreviations and terms .. 6

Table of contents .. 8

List of Figures ... 10

1 Introduction ... 12

1.1 Problem Declaration ... 12

1.2 Goal of the thesis .. 12

2 Methodology .. 13

2.1 Main Sources .. 13

2.2 Cheat Engine... 13

2.3 Programming languages to create a cheat .. 13

2.4 ReClass.NET .. 14

2.5 IDA Pro... 14

3 Background .. 14

3.1 History of game hacking... 14

3.2 Game Hacking and Cracking difference .. 15

3.3 Technology ... 16

3.4 Cheat types ... 16

3.4.1 ESP hacks .. 17

3.4.2 Aimbots ... 17

3.4.3 Triggerbots .. 17

3.4.4 Aim assist .. 18

3.4.5 Autonomous bots ... 18

3.5 Advanced hacking .. 18

3.5.1 Reverse engineering .. 18

3.5.2 DLL Injection .. 20

9

3.5.3 Confidentiality, Integrity, and Accessibility violation 20

3.6 Anti-Cheating Software .. 21

3.7 Hackers and Market .. 22

4 Analysis ... 23

4.1 AssaultCube .. 23

4.1.1 Memory Scanning: Theory .. 23

4.1.2 Memory Scanning: Practice in AssaultCube ... 24

4.1.3 Pointer Scanning: Theory .. 27

4.1.4 Pointer Scanning: Practice in Assault Cube .. 28

4.1.5 Creating Assault Cube Exploit using C# ... 29

4.2 Counter-Strike: Global Offensive ... 33

4.2.1 Scanning for Entity Object .. 33

4.2.2 Using ReClass.NET to Reverse CS: GO Entity List 38

4.2.3 Disassembling Binaries and Finding Network Variables Offsets with IDA Pro

 .. 42

5 Solution .. 44

5.1 External Exploit .. 45

5.2 Internal Exploit ... 46

5.3 DLL Injector ... 47

5.4 How Long Can Hackers Stay Undetected? .. 48

5.5 Observation ... 48

5.6 White Hat Point of View .. 48

6 Summary .. 49

References .. 50

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 56

Appendix 2 – Getting Entity List ... 57

Appendix 3 – Show Entity Health DLL Hack .. 60

Appendix 4 – Setting Up IDA Pro ... 63

Appendix 5 – Memory Read and Write ... 65

10

List of Figures

Figure 1 Wallhack .. 17

Figure 2 IDA Pro looks .. 20

Figure 3 Cheat Engine main screen .. 25

Figure 4 Select AssaultCube process.. 26

Figure 5 Memory address list ... 26

Figure 6 Narrowed down to two addresses .. 27

Figure 7 Pointers ... 28

Figure 8 Selected pointers in the cheating table pane .. 29

Figure 9 Pointer and its offset .. 29

Figure 10 Visual Studio "Create a new project" page .. 30

Figure 11 Visual Studio created form... 30

Figure 12 Add memory.dll package ... 31

Figure 13 Add application manifest file ... 32

Figure 14 Activate infinite ammo ... 33

Figure 15 Scan for health value .. 34

Figure 16 Remaining addresses .. 35

Figure 17 See what accesses memory address ... 35

Figure 18 Assembly instructions that access address ... 36

Figure 19 Find out static addresses... 36

Figure 20 assembly instructions at 70F4F850 .. 37

Figure 21 Entity health address .. 37

Figure 22 Attach process in ReClass.Net ... 38

Figure 23 Insert correct memory address ... 39

Figure 24 Pointer to player object .. 39

Figure 25 Entity information object ... 39

Figure 26 Offset 0x100 health .. 40

Figure 27 Fully reversed structure .. 40

Figure 28 Generated C++ code ... 41

11

Figure 29 Show health hack ... 41

Figure 30 Search in IDA Pro .. 42

Figure 31 Network variables .. 42

Figure 32 Jump to cross-reference operand .. 43

Figure 33 Offset of “m_iHealth” variable .. 43

Figure 34 Offset of "m_ArmorValue" variable .. 44

Figure 35 Added armor offset to local player entity .. 44

Figure 36 Glow hack .. 45

12

1 Introduction

Game cheats have existed in almost all of video game history, and the attitude towards

them nowadays is very controversial. This thesis paper aims to tell about cheating in video

games, create an open-source video game cheating tool, explain the technology behind

cheating, show how easy it is to create such a tool, and show who is benefitting dealing

with cheats and what might be the reasons for someone cheating.

This thesis will strive to create an open-source video game cheating tool. Show various

ways of exploiting a game.

The relevance of the topic is driven by the latter growth of game cheats and hackers.

Gaming is a big industry, and the market behind developing and selling cheats is growing

with this industry.

1.1 Problem Declaration

Anti-Cheating systems in many games are not strong enough, a tech-savvy person with

no background in hacking can bypass them by studying game hacking over some time.

According to the old game hacking web forum “UnKnoWnCheaTs”, a big number of

Valve's games are hackable.[46] One of the reasons for that is the public code of their

game engine, “Source”. As will be demonstrated in the practical part of this thesis, one

studying the Source engine’s public code can develop a game hack that will bypass the

Valve Anti-Cheat system. This affects players’ experience in Valve’s online games.

1.2 Goal of the thesis

This thesis aims to show a method to bypass the Valve Anti-Cheat system. Describe in

practice the ways for making a cheating exploit on the example of Counter-Strike: Global

Offensive, and compare C++, C#, and Java for creating such an exploit.

13

2 Methodology

The methodology part will describe chosen literature, and tools, and explain the

difference between C++, C#, and Java for hacking.

2.1 Main Sources

The author of this thesis has chosen various books that describe: the topic background,

and general game hacking ways:

• Mark J. P. Wolf and Bernard Perron. 2014. The Routledge Companion to Video

Game Studies

• Cano, Nick. 2016. Game Hacking: Developing Autonomous Bots for Online

Games.

• Consalvo, Mia, 2007. Cheating: Gaining Advantage in Videogames

• McGraw, Gary and Hoglund, Greg. 2006. Cheating Online Games.

Besides, the author studied a closed web forum GuidedHacking that the author gained

access to by buying a subscription, and the oldest game hacking web forum. Forum has

hundreds of users, including game hackers with many years of experience in this area:

• https://guidedhacking.com

• https://www.unknowncheats.me

2.2 Cheat Engine

The main tool for creating game hacks is the Cheat Engine memory scanner. Cheat Engine

is a tool that helps to figure out how a game/application works and make modifications

to it. The scripting tools of Cheat Engine can create an exploit for many games without

using any additional software.

2.3 Programming languages to create a cheat

For making a cheat it is necessary to access the game’s memory, such languages as C++,

C#, and Java programming languages are all capable of game hack development.

https://guidedhacking.com/

14

For manipulating game memory, lower-level languages like C++ and C# are better, as

they provide direct memory access, and no additional libraries are needed, unlike Java

which needs the JNA library.

2.4 ReClass.NET

ReClass is a tool for reversing the structure of classes, intending to make it easier to

understand and analyze memory, define data types, and assign variable names. It is

particularly helpful when examining player classes and other objects.

2.5 IDA Pro

IDA, also called IDA Pro, is a tool that helps to understand compiled programs by

breaking them down into more easily readable forms. IT professionals and security

experts often use it to analyze software and is a favorite among elite game hackers. IDA

Pro is a disassembler that converts complex data types and binary instructions into simpler

code for analysis and investigation. It can also create maps of execution to show the

instructions in a more human-readable form and can be used to analyze software on

multiple architectures.

3 Background

The background part will cover the roots of game hacking, show various game cheat

types, and describe game hacking tools.

3.1 History of game hacking

The earliest game cheats appeared a very long time ago when the game industry started

to develop. At first, game developers created and used them in the form of “cheat codes”.

These codes were secret passwords or a combination of controller buttons pressed in a

15

particular order. Codes were a normal part of a game environment, as they allowed

developers to skip levels, and rooms, delete monsters or add weapons. This way it was

easier to check a game for bugs and glitches.[1] In the year 1981 the game called

“Wizardry: Proving Grounds of the Mad Overlord” came into the light, and it quickly

became one of the most popular games for Apple II computers.[2] Soon after the game's

release, third-party vendors started to offer programs that could alter characters’ statistics

and rescue dead characters left in the dungeon. Such programs were so popular, that when

the second game from the Wizardry series was released, the Sir-tech1 inserted a sheet into

the game boxes, contents of this sheet were the following:

[It has come to our attention that some software vendors are marketing so-called “cheat

programs.” These programs allow you to create characters of arbitrary strength and

ability. While it may seem appealing to use these products, we urge you not to succumb

to the temptation. It took more than four years of careful adjustment to properly balance

Wizardry. These products tend to interfere with this subtle balance and may substantially

reduce your playing pleasure. …][2]

Such commercialized cheat programs were then sometimes advertised in computer games

magazines.[3] TV shows such as “Cheat!” appeared, and the show description was

saying: [Cheat! keeps gamers ahead of the game with strategies, secrets, and cheats for

their favorite video games.][4] The community of cheaters started to grow and develop.

3.2 Game Hacking and Cracking difference

Speaking about the difference between game hacking and game cracking, the main

difference is that crackers are not willing to get any advantage in a game, both hackers

and crackers indeed use similar tools for doing their job, however, whilst hackers try to

find specific values, disassemble them and understand how to get an advantage using their

code, crackers try to get through a license authentication process. Thus, crackers are

1 Sir-tech Software, Inc. - video game developer and publisher founded by Norman Sirotek and Robert

Woodhead.[2]

16

trying to get a game for free. However, white hat hackers and cracker reports found

vulnerabilities in the software owner and often get bounties for that.[47]

3.3 Technology

Games consist of thousands of lines of code, which consist of sets of functions and

variables carrying values. Some of them represent a player’s health, other ones are

responsible for in-game currency. It depends on the game and how secure it is. Basically,

for Flash games,1 it is only a deal of installing special software like Cheat Engine2 and

changing specific values. The Internet has plenty of tutorials for these kinds of games.[5]

The situation for more advanced game types is slightly different, professional game

hackers spend hundreds of hours trying to find the vulnerabilities and develop game

cheats.[6]

3.4 Cheat types

Advanced game cheats include different kinds of extrasensory perception (ESP) hacks,

which give the advantage to see enemies before they see a player e.g., wallhacks (seeing

enemy through the wall), radar hacks (seeing enemy on minimap or radar when he is

supposed to be hidden), etc. The second important side of hacks are responsive hacks,

which react to in-game events or help a cheater to react to them, they include e.g., aim

assists (similar to console games aim assist), aimbots (hacks that aim for the player (and

sometimes even attack)), trigger bots (attack when an enemy is at gunpoint), etc. On top

of that, there are also autonomous bots, usually, it is a piece of software that pretends to

be real gamer and performs tasks depending on the settings (e.g., farming gold, going to

the dungeon, completing quests, etc.). These bots can either work with other types of

hacks (ESPs, responsive hacks) or behave like a legit gamer.

1 Flash games - web browser games, usually they have from little to no cheat protection.

2 Cheat Engine - a game memory scanner that searches for values like player’s health, level, in-game money,

etc.

17

3.4.1 ESP hacks

ESP (Extra Sensory Perception) hacks give players an advantage by intensifying their

ability to percept the game world. For example, cheaters can see enemies before they see

cheaters, here’s an example:

Figure 1 Wallhack

Figure 1 shows that a player sees other players through the object. More advanced ESP

hacks can also help find items & loot, the enemy's health, and other tactical information.

3.4.2 Aimbots

An aimbot is a piece of software that locks a player's cursor on the enemy. It helps to

maximize the damage, it can, for example, instantly move a cursor to the enemy's head

or any other vulnerable spot. Aimbots rely on accessing the game memory to detect

information such as the position or visibility of other players to function. [11]

3.4.3 Triggerbots

Triggerbot is a similar software to aimbot, however, instead of moving and locking the

player’s cursor on the enemy, it triggers some actions, when the player on one’s own

places the cursor on a desired spot. Example: the player moves a cursor on the enemy,

triggerbot clicks a fire button.[37]

18

3.4.4 Aim assist

Gamers are arguing about this type of cheat, from one hand – aim assists legally exist for

the controller players, since it may take years of practice to make precise movements

using controller thumb sticks. On the other hand – to a lot of players, it gives people an

unfair advantage. According to game developers, this goal assist is not cheating.

However, aimbots for keyboard and mouse players can be configured to act exactly as

aim assist for controllers. Properly configured, this type of cheat is hard to detect.

In the ESports scene pro players from time to time get caught using this type of cheat,

since there’s big prize money in the tournaments, for some, it is tempting to use it.[36]

3.4.5 Autonomous bots

This type is often used in MMORPG games, such as World of Warcraft, RuneScape, or

Lineage – these games consume a lot of gamers’ time to achieve goals. MMORPG games

require players to gain in-game values, like gold, treasures, supplies, clothes, etc.

Bots are configured to automatically play games for hours on end, they are usually

separated into two groups:

1. Cavebots, which can explore caves and bring home the loot

2. Warbots, which fight enemies

3.5 Advanced hacking

Making a hack is not only limited to searching for some address in memory and changing

it, advanced hacking techniques require reverse engineering skills[8], being able to code

a DLL (dynamic link library) injector, and bypassing anti-cheating software.

3.5.1 Reverse engineering

By itself, reverse engineering means understanding how something works. In the case of

software, a reverse engineer should have experience in reading and write in both high-

level and low-level languages, where high-level means any programming language that

is considered for software developers (C#, Ruby, Python, Java, etc.), and low-level

usually means machine code or assembly language.

19

Whilst manipulating game memory is not by itself an illegal action, but more than often

is just a violation against “Terms of Service”, reverse engineering software might have

some serious legal consequences, because it allows not only to manipulate game code and

get a fancy gun but also to defeat copy protection or digital rights management

schemes.[9](see 3.2)

When it comes to reverse engineering a game, more often than not the following tools are

being used:

1. IDA

2. x64dbg

3. Ghidra

4. OllyDbg (for 32-bit games)

Out of these tools, IDA has the most powerful functionality – it has a disassembler,

debugger, and, as an additional plugin, a decompiler.

20

Figure 2 IDA Pro look

3.5.2 DLL Injection

DLL injection is a four-step attack:

1. Attach to the process

2. Allocate Memory within the process

3. Copy the DLL into the process’s memory

4. Instruct the process to execute DLL

DLL files may contain any malware code in them.

3.5.3 Confidentiality, Integrity, and Accessibility violation

Looking carefully, it is obvious that a hacker can, and actually, many of them do violate

confidentiality, integrity, and accessibility.

Using tools that were described earlier (like Cheat Engine or more like Wireshark), it is

possible to find the server's address and player’s IP addresses, which can allow a hacker

21

to determine the geolocation of a player, its client properties, etc. Also, it can be a target

for DDoS Botnet attacks.[35] This is a violation of accessibility and confidentiality.

Perhaps the easiest in implementation, though a dangerous spam bot can also be made

using a chat message game address and writing there basically anything, including fishing

websites, which are dangerous in terms of all CIA principles.

3.6 Anti-Cheating Software

If before cheats were something new, even something that was advertised in newspapers

and on TV, then now the majority of people condemn cheating and big game companies

like Valve or Electronic Arts focus on taking some measures against cheating and

developing sophisticated detection suites called anti-cheat software. The purpose of these

anti-cheats is to detect cheats and prevent gamers from utilizing cheats, usually punishing

them by using a banhammer, sometimes for a lifetime.[10]

The concept of anti-cheat technology is developing, some older AC software were

performing quite simple tasks, e.g., Intel anti-cheat technology as of 2007 was working

like this – chipset records all input from the keyboard and mouse, and the game does the

same. If they don’t match, and something is manipulated within in-game values, then a

cheater is caught.

Some of the notable modern AC software are BattleEye, GameGuard, PunkBuster, VAC

(Valve Anti-Cheat), and EasyAntiCheat.

For example, the VAC system scans a player's computer in the background for cheats

while the game is running. In this sense it works similarly to anti-virus software, it has a

database of known cheats to detect, and it also detects game file modifications and

dynamic link libraries.[16]

22

In the real world, bypassing anti-cheating software is relatively easy to do. First and the

most important rule – do not be a “script kiddie”1 and write a hack code manually. There

are a ton of cheats on the Internet, however using own, the personal cheat will already

help to avoid 99% of bans.

There are different ways of bypassing anti-cheat, however, if speaking more modern anti-

cheats, everything comes to mapping a cheating driver before the anti-cheat loads.[17]

3.7 Hackers and Market

However, whilst getting a few extra gold coins in a flash game is like fun, making

advanced game cheats usually has other purposes and intentions.

Gaming is a big industry, with a revenue of $131 billion (in 2018)[8] and 2.6 billion video

gamers around the world.[9] In such a big money pit there are a variety of opportunities

to earn money. Game studios sell their games, gamers record themselves playing them,

some of them even making a decent living participating and winning in global eSports

tournaments,[10] and some are making a pretty penny developing and selling cheats.[6]

 Let's take MMORPG games as an example. These types of games usually have in-game

currency (e.g., golden coins) and/or items, and to obtain them, players have to spend

hours, days, and weeks farming. The gamer communities often have an interest in buying

gold or items (e.g., because of the item statistics or item rarity). This is why hackers can

either use their software to farm themselves and then sell their in-game profits or sell their

software to players who wish to seamlessly obtain levels or farm gold and items with

minimal interference. Due to the massive communities surrounding popular MMORPGs,

these game hackers can make between six and seven figures annually.[6]

If speaking about competitive types of games, then it is even more clear, as many of them

have eSports tournaments, a prize pool which is increasing from year to year and

1 Usually a “script kiddie” is a person who is using already existing solutions/software/scripts to perform a

hacking attack.

23

sometimes can reach as much as millions of USD.[11] Taking that into consideration, the

price eSports players can pay to get private, timely updated, undetected hacks to win

tournaments can be very high.

One more example is Twitch streamers and YouTubers that lure an audience by showing

how “skillful” they are. Live streamers and video content creators gain popularity not

only because of how fun they are but also because of their skills. Professional gamers (not

necessarily eSports players) are known to become popular and get some donations from

viewers for being good at games, and some of them resort to cheating to achieve that

popularity (sometimes achieving a ban).[12]

4 Analysis

The analysis part will describe game hacking, first in Assault Cube, a common game to

start practicing game hacking, it does not have any anti-cheating software, then in

Counter-Strike: Global Offensive, which is protected by Valve Anti-Cheat.

The Assault Cube part is a brief example of scanning memory and looking for pointers,

creating an external trainer.[22] The CS: GO part is thorough, where besides Cheat

Engine the author will use an Ida Pro disassembler, and ReClass memory scanner.

4.1 AssaultCube

AssaultCube is a free multiplayer FPS game, it can be downloaded from the original

website.[18] Assault Cube is a recommended game to start learning game hacking. In this

paper, the author uses the 1.2.0.2 version of the game.

4.1.1 Memory Scanning: Theory

Unlike humans, the software cannot determine a game's state just by looking at the screen.

Games are built using code, our computers “perceive” it as thousands of lines of zeros

and ones.[19] Our computers can understand numeric representation of a game’s state,

24

thus when a hacker wants to know which piece of code represents our game health, ammo,

or character moving speed, they need to use memory scanners.[6]

Memory scanning can help hackers with creating a cheating exploit, for example, if they

were playing a game with shooting mechanics, perhaps they would first seek for ammo

value location in the game's memory using a memory scanner, then create software to

change this value according to their needs. Take a look at the next pseudocode:

ammo = readMemory(game, Ammo_Location);

loop (true)

if (Infinite_Ammo_Checkbox == true)

 WriteMemory(ammo, 8000);

 Wait(2);

In the pseudocode above, the hacker first writes read memory of ammo in a game, then

they create a loop, which rewrites the value into this part of memory.[6]

4.1.2 Memory Scanning: Practice in AssaultCube

For the practice part, the author is going to use Cheat Engine version 7.4 as a memory

scanner, and AssaultCube as a game to be hacked.

Cheat Engine is freeware and can be easily downloaded and installed from the original

website.[20] Let’s take a look at this software’s main screen.

25

Figure 3 Cheat Engine main screen

26

Figure 4 Select the AssaultCube process

As can be seen in Figure 4., the author has 100 health points and 20 bullets of ammo

loaded. Then the author created a new scan for ammo value, thus scanning the game

process for value “20”.[21]

Figure 5 Memory address list

27

Initially, the author got 5,445 addresses with the same value. Now one would want to

narrow down the amount of these addresses. The author spent some ammo and created a

next scan for an updated value. The author has to perform this action until as few

addresses as possible.

Figure 6 Narrowed down to two addresses

After several scans, the author got two addresses, which could possibly represent the

ammo. Let’s add both of these values to our cheat table pane by double-clicking them.

Next, a hacker wants to perform some actions with these values, so they would know

which value is the ammo value. This can be simply done by modifying the value number

or freezing this value by clicking the “Active” checkbox. Now in-game ammo quantity is

either updated or frozen, depending on the actions performed.

At this point, the memory value is already modified.

4.1.3 Pointer Scanning: Theory

Games often store values in dynamically allocated memory, before this paper was dealing

with static memory, which by itself is not beneficial, since one would need to scan a game

for static address after every game restart. To make a working cheating tool, one needs to

get a dynamic memory address of the desired game value.

The static address always points to another static address, which points to another static

address and so further on.[22] This is called a chain of offsets (or a pointer chain).

28

4.1.4 Pointer Scanning: Practice in Assault Cube

Cheat Engine has the functionality to scan pointers. To do this, one would need to right-

click on the ammo address and then on “Pointer scan for this address”.[23]

Figure 7 Pointers

A lot of pointers are shown, which point to the ammo memory address. Again, one would

need to narrow down the number of results. For this, restart the game and find the ammo

memory address once again.

The next step is to rescan the pointers list (Pointer scanner => Rescan pointer list) with

the new value, this will throw away wrong pointers. Ideally, this step should be redone a

few times, so one would get not more than twenty pointers.

29

When this step is done, one would want to get some addresses into the cheating table

pane and reset the game again. Test the pointers like the author did previously with an

ammo memory address by clicking the “Active” checkbox.

Figure 8 Selected pointers in the cheating table pane

It is necessary to check every pointer until the right one is found.

Figure 9 Pointer and its offset

Write down pointer (2) and its offset (1), it is needed to create the exploit.[21]

4.1.5 Creating Assault Cube Exploit using C#

This paper will show an example of creating an exploit application based on .NET

Windows Forms.

30

Figure 10 Visual Studio "Create a new project" page

The author has created a window for the exploit, added a checkbox, and named it “Infinite

Ammo”.

Figure 11 Visual Studio created form

In the load method of the form, the author made a string “Infinite ammo” and gave it a

value of the pointer and its offset.

public static string InfiniteAmmo = “ac_client.exe+0x0017E0A8,140”;

31

Add memory.dll class from the NuGet packages repository. It’s needed to write to a

memory address.

Figure 12 Add memory.dll package

Initialise class:

Mem memory = new Mem();

In the form load method check if the game is already opened, if it is – start a new thread

for the write method and let it run in the background.

private void Form1_Load(object sender, EventArgs e)
 {
 int ProcessID = memory.GetProcIdFromName("ac_client");
 if (ProcessID > 0)
 {
 memory.OpenProcess(ProcessID);
 Thread WA = new Thread(WriteAmmo) { IsBackground = true
};
 WA.Start();
 }
 }

Write method:

private void WriteAmmo()
 {
 while (true)
 {
 if (checkBox1.Checked)
 {
 memory.WriteMemory(InfiniteAmmo, "int", "8888");
 Thread.Sleep(100);
 }
 Thread.Sleep(100);
 }
 }

The last step is to add an app manifest file to the solution:

32

Figure 13 Add application manifest file

Inside the application manifest file, edit the next line from:

 <requestedExecutionLevel level="asInvoker" uiAccess="false" />

To:

<requestedExecutionLevel level="requireAdministrator" uiAccess="false"
/>

33

Figure 14 Activate infinite ammo

Exploit now sets ammo at 8888 every 100 milliseconds.[24]

4.2 Counter-Strike: Global Offensive

CS: GO is one of Valve’s games that can be hacked. Since the game is running under the

Source game engine, the methods are applicable (and sometimes similar) for other Source

engine games, like Team Fortress 2, Counter-Strike: Source, Half-Life, etc.

4.2.1 Scanning for Entity Object

Before any scanning/memory manipulation, the game has to be started without the VAC

module by providing an -insecure startup setting.[25]

In the game entity object means class, like a class in programming.[26] To start, in CS:

GO a hacker needs to find a static entity list memory pointer. They do so by finding entity

health dynamic addresses in the Cheat Engine. Then they will create a hypothesis, where

they could find static entity object and static health address.

34

It is obvious that entities start health is 100, thus in Cheat Engine attach the “csgo.exe”

process and scan for the exact value 100, 4 Bytes type.

Figure 15 Scan for health value

A quite huge number of results will be shown. To narrow it down, the enemy can be shot

at, then the next scan for the exact value is performed. The process should be repeated

until the minimum number of dynamic addresses is left.[6] They all are related to health,

if modified, some of them (server-side addresses) can change entity health if the server is

hosted by a player. Add all remaining addresses to the address list.

35

Figure 16 Remaining addresses

The next step is to check what accesses these addresses by right-clicking on them and

choosing “Find out what accesses this address”. There is not a straightforward simple way

to find the needed address, however more often than not it is intuitive, most likely

following game logic.[27]

Figure 17 See what accesses the memory address

36

Figure 18 Assembly instructions that access address

These assembly instructions say that something happens at pointers [ecx+00000230],

[edi+00000230], [esi+00000230]. Below, are the addresses of these ECX, EDI, and ESI

registers, they are all the same. Now, let’s scan for the Hex address 77AA8140.

Figure 19 Find out static addresses

Green address in Cheat Engine means static address.[28] The static address will not

change after the game restart. However, this static address is from the “server.dll” game

37

module. This game module will change only server-sided values, which is irrelevant in

case one would want a cheat to work online.

So, repeat the process with the next dynamic address (70F4F850).

Figure 20 assembly instructions at 70F4F850

Again, it shows, that something happens at [E** + offset] pointer. ECX is 70F4F750. Hex

scan this address, and the output is nearly 200 results of dynamic addresses, however,

there is one static address “client.dll+4DFCE84”, which is a static address of the bot entity

object. Now, from the above figure take offset and add a pointer manually.

It now leads to a static bot health address.

Figure 21 Entity health address

38

Performing similar manipulations with the local entity (player) will be helpful to find the

entity list (see Appendix 2 – Getting Entity List).[29]

4.2.2 Using ReClass.NET to Reverse CS: GO Entity List

ReClass.NET is a powerful game-hacking tool that allows users to easily view and modify

variables in video games. It ranks as the third most important tool of its kind, behind

Cheat Engine and IDA Pro. One of its key features is the ability to display variables in

various formats, such as 32-bit hexadecimal, integer, and float, which makes it easy to

identify the variables associated with the player's in-game entity. Additionally,

ReClass.NET can generate classes with padding that can be copied and pasted into hack

source code, allowing users to access variables using class object pointers rather than

offsets.[30]

After attaching ReClass.NET to CS: GO process (File -> Attach to Process…), the entity

list static address (<client.dll>+4DFFF04) can be passed in, which will then show a

memory region.

Figure 22 Attach process in ReClass.Net

39

Figure 23 Insert correct memory address

Investigating Source Engine public code, it is obvious that the entity list is a linked

list.[31][32] Entity info object has the following structure:

class CEntInfo{
IHandleEntity *entityPtr // 0x0
int serial_number // 0x4
CEntInfo *previousEntityPtr // 0x8
CEntInfo *nextEntityPtr // 0xC

}; // 0x10

It is also obvious, that some pointers point to in-game entities, which can be proven by

adding or kicking players (bots) from the session since the pointers will also appear and

disappear.

Figure 24 Pointer to the player object

Changing values according to previously acknowledged entity info object structure,

Figure 25 Entity Information object

40

it is now possible to dissect into entity class, where 0x100 offset will show entity health.

Figure 26 Offset 0x100 health

Now, changing the instance type to an array of entity info objects will allow going back

and forth in that linked list.

The reversed structure looks like this:

Figure 27 Fully reversed structure

And the generated C++ code:

41

Figure 28 Generated C++ code

This code could be pasted into Visual Studio IDE (see Appendix 3 – Show Entity Health

DLL Hack), and after some coding and injecting, the following result will be shown:

Figure 29 Show a health hack

This is a simple hack that shows entities’ health.

42

4.2.3 Disassembling Binaries and Finding Network Variables Offsets with IDA Pro

To properly display an entity on a client, it is necessary to have certain variables, such as

position, angle, or health, transmitted over a network. These variables, known as

networked variables, represent the essential properties of the entity.[33]

IDA Pro provides functionality to find offsets of these variables by attaching the

“client.dll” game module (see Appendix 4 – Setting Up IDA Pro) and searching for

strings.

In the IDA Pro window, the “SHIFT + F12” button combination will generate a list of

strings, which can be used to find network variables by pressing “CTRL+F”.

List of CS: GO network variables is available online; as a proof of concept the author

has decided to find health and armor variables.[34]

Figure 30 Search in IDA Pro

Figure 31 Network variables

Now, jumping to cross-reference to operand will lead to exact instruction and variable

offset.

43

Figure 32 Jump to cross-reference operand

Figure 33 Offset of “m_iHealth” variable

The same can be done with other variables:

44

Figure 34 Offset of "m_ArmorValue" variable

Offsets can be proven by adding them to the local entity address base

(client.dll+4DFFF14 + 117CC), it will show armor value.

Figure 35 Added armor offset to local player entity

5 Solution

Valve Software made the source code for the Source Engine and other information

publicly available, which allows hackers to use special tools and techniques such as

reverse engineering to gain an unfair advantage in the game by accessing and

manipulating the game's memory structure.[38]

45

5.1 External Exploit

C++ programming language provides all the necessary features to access the game’s

memory and change its values. External hacks interact with the game process's memory

by using WriteProcessMemory (WPM) and ReadProcessMemory (RPM). To use these

functions, hackers must obtain a handle to the process by requesting access through the

kernel with OpenProcess and the necessary Process Access Rights, usually

PROCESS_ALL_ACCESS. This handle is necessary for RPM and WPM. See “Appendix

5 – Memory Read and Write”.

Since CS: GO has an entity glowing effect inside the game, to create a “wallhack” cheat,

a hacker could use in-game variables like team number, glow object manager, glow index,

local player, and previously reversed entity list.

After getting the handle to the process, the author assigned memory addresses to the

abovementioned variables changed the Boolean value of the glowing effect turned it on,

and set RGB values depending on the entity team (red or blue).[43]

Figure 36 Glow hack

46

5.2 Internal Exploit

Internal hacks involve injecting a DLL into the game process, which gives direct access

to the process's memory for fast and easy manipulation. To make these injected DLLs

harder to detect by VAC, hackers can use various injection methods, such as manual

mapping.[39]

Although everything done by making an internal hack is achievable by external hacks, an

internal hack’s main advantage is its performance.

The author's internal exploit, besides the glow hack, has a “bunny hop” hack, which forces

a player to jump at the exact moment of hitting the ground. This allows a player to gain

more moving speed than usual. “Bunny hop” hack required such variables as m_fFlags

to check whether the player is staying on the ground, ducking, jumping out of the water,

etc., and dwForceJump which is a force jump variable specifically.

These flags can be seen in the “Source” Engine’s public code [40]:

FL_ONGROUND (1<<0) // At rest / on the ground

FL_DUCKING (1<<1) // Player is fully crouched

FL_WATERJUMP (1<<2) // Player jumping out of water

FL_ONTRAIN (1<<3) // Player is _controlling_ a train,

so movement commands should be ignored by the client during prediction.

FL_INRAIN (1<<4) // Indicates the entity is standing

in rain

FL_FROZEN (1<<5) // Player is frozen for 3rd person

camera

The “bunny hop” code:

val.flag = *(BYTE*)(val.localP + offsets.m_fFlags);

 if (GetAsyncKeyState(VK_SPACE) && val.flag & (1 << 0))
 {
 (DWORD)(val.csgoModule + offsets.dwForceJump) = 6; //
force jump is 6 (0110 in binary)
 }

47

The “bunny hop” is activated when the “space” button is being held, and as it can be seen

from the abovementioned flags, “val.flag & (1 << 0)” checks whether bit 0 is set, which

means player touches the ground, and force jumps if so.[41]

The solution can be found in the official V. Sidorenko GitLab repository.[44]

5.3 DLL Injector

DLL injection is a method of running code within the memory space of another process

by forcing it to load a dynamic library. This technique is often used by external programs

to alter the behavior of the target program in unexpected ways, such as by intercepting

function calls or copying data variables. A program that injects code into processes is

called a DLL injector. DLL injectors are used to inject internal hacks into the target

process.

Manual mapping is a technique used to load and execute a dynamic-link library (DLL)

within the memory of another process. It involves emulating the LoadLibrary function

and performing a series of steps:

• Map sections into the target process

• Inject shellcode

• Do relocations

• Fix imports

• Do TLS callbacks

• Call Dll main function

In this thesis, the paper author has created a DLL injector using manual mapping

injecting. Manual mapping is often used for bypassing anti-cheat measures because it

allows the DLL to be loaded without being visible to ToolHelp32Snapshot or other

methods for enumerating loaded modules, such as walking the module linked list in the

process environment block (PEB) or using NtQueryVirtualMemory.

The author's manual mapping injector can be found on the project’s GitLab page.[42]

48

5.4 How Long Can Hackers Stay Undetected?

In CS: GO, when a hacker is coding their hack, and they have done everything the right

way, meaning a hacker is not executing memory scanners and disassemblers while VAC

is running in the background, they are very safe. 100% safety is never achievable since

VAC can update anytime. Game updates will not lead to a ban; however, a hacker would

have to freshen up their memory address offsets.

Using publicly available hacks will probably lead to a ban as soon as Valve adds exploit

signatures to their database.

Another point is that CS: GO has the “Overwatch” system, where peers check each other's

games and can report suspicious players. Thus, hackers should moderately use their

hacks. Doing so and updating exploit each time game updates will result in very high

safety rates.

5.5 Observation

The author has performed a cheat test by himself, and also cheat was given to another

person.

The author has run his cheat with both “bunny hop” and “glow” hacks. Aside from the

time for cheat development, total online game time was rough ~10 hours, during this time

and about 10 days while offline, no VAC ban was received.

The person that received a copy of the exploit, has played about ~3 hours using it, a week

after no VAC ban was received.

5.6 White Hat Point of View

Taking a side of a white hat hacker, the author would say that solution Valve Software

should come to is to port Valve online games like Counter-Strike: Global Offensive to

their new Source 2 game engine, which would increase game security. The public code

of the Source engine is one of the reasons it is possible to develop game hacks that would

bypass the Valve Anti-Cheat system.

49

6 Summary

Cheating in video games has a long-lasting history, firstly cheats were invented by game

developers, and only then hackers began to develop their own cheats. Cheating in online

games is possible because of the weaknesses in the game code, or its publicity. Due to the

publicity of the Source Engine, such games as TF2, Half-Life 2, Left 4 Dead, Counter-

Strike: Global Offensive, etc. can be hacked, VAC Anti-Cheat system is hard to stop the

kind of cheating shown in this paper, at least at the moment of writing this paper.

This paper was intended to show methods to develop hacks that could get past the Valve

Anti-Cheat system. The author of this thesis has performed manipulations with Counter-

Strike: Global Offensive game memory utilizing public Source Engine code created both

external and internal versions of the hack and coded a dynamic link library injector for

the internal hack. The author has shown the use of such hacker tools as Cheat Engine,

ReClass.NET, and IDA Pro. The goal to create cheats that work online was accomplished,

the cheats successfully bypass the Valve Anti-Cheat system and can be safely run. The

author and one more person had played the game for a total of ~13 hours, no VAC ban

was received by either of them.

50

References

[1] Wolf, Mark J. P. & Perron, Bernard. 2014. The Routledge Companion to Video Game

Studies. Routledge, New York. 518pp.

[https://books.google.ee/books?redir_esc=y&hl=ru&id=P43HBQAAQBAJ&q=cheati

ng#v=snippet&q=cheating&f=false] [last visited: 23/12/2022]

[2] Maher, Jimmy. 2012. The Wizardry Phenomenon. [https://www.filfre.net/2012/03/the-

wizardry-phenomenon/] [last visited: 19/12/2022]

[3] Computer Gaming World. Vol. 4 no. 1. February 1984. p. 15.

[http://www.cgwmuseum.org/galleries/issues/cgw_4.1.pdf] [last visited: 31/12/2022]

[4] Stafford, Brent & Malone, Michael. Cheat! Pringles Gamers Guide: Brand Integration

Case Study. 9pp. [https://brentstafford.com/wp-content/uploads/2015/10/Pringles-Case-

Study_vertical_BS_FIN.pdf] [last visited: 16/12/2022]

[5] Masood, Dawood Khan. 2019. Hacking Online Games using Cheat Engine.

[https://hackhex.com/how-to/hacking-online-games/] [last visited: 21/12/2022]

[6] N. Cano, Game Hacking. No Starch Press, 2016. 304pp.

[https://learning.oreilly.com/library/view/game-hacking/9781492017462/] [last visited:

31/12/2022]

[7] Wallhax, ESP, 2022. [https://wallhax.com/what-are-esp-cheats/mem] [last visited:

02/01/2023]

[8] Kovidomi, GitHub repository, 2020. [https://github.com/kovidomi/game-reversing] [last

visited: 23/12/2022]

https://books.google.ee/books?redir_esc=y&hl=ru&id=P43HBQAAQBAJ&q=cheati%20ng%23v=snippet&q=cheating&f=false
https://books.google.ee/books?redir_esc=y&hl=ru&id=P43HBQAAQBAJ&q=cheati%20ng%23v=snippet&q=cheating&f=false
https://www.filfre.net/2012/03/the-wizardry-phenomenon/
https://www.filfre.net/2012/03/the-wizardry-phenomenon/
http://www.cgwmuseum.org/galleries/issues/cgw_4.1.pdf
https://brentstafford.com/wp-content/uploads/2015/10/Pringles-Case-Study_vertical_BS_FIN.pdf
https://brentstafford.com/wp-content/uploads/2015/10/Pringles-Case-Study_vertical_BS_FIN.pdf
https://hackhex.com/how-to/hacking-online-games/
https://learning.oreilly.com/library/view/game-hacking/9781492017462/
https://wallhax.com/what-are-esp-cheats/mem
https://github.com/kovidomi/game-reversing

51

[9] GamingSection, Are game hacks illegal? 2019. [https://gamingsection.net/news/are-

game-hacks-

illegal/#:~:text=It%20is%20illegal.,as%20COD%20etc%20is%20copyrighted] [last

visited: 22/12/2022]

[10] Elizabeth Wolfe and Brian Ries, 2019. A Fortnite superstar has been banned for

life for cheating. [https://edition.cnn.com/2019/11/06/entertainment/faze-jarvis-fortnite-

ban-trnd/index.html] [last visited: 31/12/2022]

[11] Wallhax, Aimbots, 2022. [https://wallhax.com/aimbots/] [last visited:

16/12/2022]

[12] Video from YouTube. 2017. Girl live streaming catch cheating in CS: GO.

Available at: [https://www.youtube.com/watch?v=mA5NUOTuRFo] [last visited:

29/12/2022]

[13] Gaming Section, 2021. What is a Triggerbot?

[https://gamingsection.net/news/what-is-a-triggerbot/] [last visited: 21/12/2022]

[14] Josse Van Dessel, 2021. These are the most infamous VAC-banned CSGO pros

[https://win.gg/news/these-are-the-most-infamous-vac-banned-csgo-pros/] [last visited:

21/12/2022]

[15] Ron, GameNews24, 2021 [https://game-news24.com/2021/09/25/what-is-aim-

assist-and-is-it-cheating/] [last visited: 28/12/2022]

[16] Steam Docs. Valve Anti-Cheat (VAC) System

[https://help.steampowered.com/en/faqs/view/571A-97DA-70E9-FF74] [last visited:

31/12/2022]

[17] Sa1fu, 2022. How to bypass EAC [https://hackvshack.net/threads/how-to-

bypass-eac.733/] [last visited: 19/12/2022]

https://gamingsection.net/news/are-game-hacks-illegal/#:~:text=It%20is%20illegal.,as%20COD%20etc%20is%20copyrighted
https://gamingsection.net/news/are-game-hacks-illegal/#:~:text=It%20is%20illegal.,as%20COD%20etc%20is%20copyrighted
https://gamingsection.net/news/are-game-hacks-illegal/#:~:text=It%20is%20illegal.,as%20COD%20etc%20is%20copyrighted
https://edition.cnn.com/2019/11/06/entertainment/faze-jarvis-fortnite-ban-trnd/index.html
https://edition.cnn.com/2019/11/06/entertainment/faze-jarvis-fortnite-ban-trnd/index.html
https://wallhax.com/aimbots/
https://www.youtube.com/watch?v=mA5NUOTuRFo
https://gamingsection.net/news/what-is-a-triggerbot/
https://win.gg/news/these-are-the-most-infamous-vac-banned-csgo-pros/
https://game-news24.com/2021/09/25/what-is-aim-assist-and-is-it-cheating/
https://game-news24.com/2021/09/25/what-is-aim-assist-and-is-it-cheating/
https://help.steampowered.com/en/faqs/view/571A-97DA-70E9-FF74
https://hackvshack.net/threads/how-to-bypass-eac.733/
https://hackvshack.net/threads/how-to-bypass-eac.733/

52

[18] AssaultCube, Official Website [https://assault.cubers.net] [last visited:

19/12/2022]

[19] Timothy Edward Downs and Ron White, How Computers Work, Ninth Edition.

Que, 2007. 464pp. [https://learning.oreilly.com/library/view/how-computers-

work/9780789736130/?ar=] [last visited: 25/12/2022]

[20] Cheat Engine, Official Website [https://www.cheatengine.org] [last visited:

01/01/2023] [last visited: 16/12/2022]

[21] Rake, Beginner Cheat Engine Tutorial, GuidedHacking, 2017.

[https://guidedhacking.com/threads/beginner-cheat-engine-tutorial-video-guide.9690/]

[last visited: 23/12/2022]

[22] N. Toppo and H. Dewan, Pointers in C. Apress, 2013.

[https://learning.oreilly.com/library/view/pointers-in-c/9781430259114/?ar=] [last

visited: 26/12/2022]

[23] Rake, Cheat Engine How To Pointer Scan with Pointermaps, GuidedHacking,

2017. [https://guidedhacking.com/threads/cheat-engine-how-to-pointer-scan-with-

pointermaps.9739/] [last visited: 17/12/2022]

[24] V. Sidorenko, GitHub repository, 2022. [https://gitlab.com/vlsido/thesistrainer]

[last visited: 02/01/2023]

[25] Rake, How to Bypass VAC, GuidedHacking, 2016.

[https://guidedhacking.com/threads/how-to-bypass-vac-valve-anti-cheat-info.8125/]

[last visited: 19/12/2022]

[26] M. Lee, C++ programming for the absolute beginner, 2nd ed. Boston (Mass.)

[etc.]: Course Technology/Cengage Learning, 2009.

[https://www.ester.ee/record=b2754408*eng] [last visited: 25/12/2022]

https://assault.cubers.net/
https://learning.oreilly.com/library/view/how-computers-work/9780789736130/?ar=
https://learning.oreilly.com/library/view/how-computers-work/9780789736130/?ar=
https://www.cheatengine.org/
https://guidedhacking.com/threads/beginner-cheat-engine-tutorial-video-guide.9690/
https://learning.oreilly.com/library/view/pointers-in-c/9781430259114/?ar=
https://guidedhacking.com/threads/cheat-engine-how-to-pointer-scan-with-pointermaps.9739/
https://guidedhacking.com/threads/cheat-engine-how-to-pointer-scan-with-pointermaps.9739/
https://gitlab.com/vlsido/thesistrainer
https://www.ester.ee/record=b2754408*eng

53

[27] Game Hacking Academy, A Beginner’s Guide to Understanding Game Hacking

Techniques, 2021, 511pp. [https://gamehacking.academy/GameHackingAcademy.pdf]

[last visited: 19/12/2022]

[28] G. Balakrishnan and T. Reps, “Analyzing Memory Accesses in x86

Executables,” in Compiler Construction, 2004, pp. 5–23.

[https://link.springer.com/chapter/10.1007/978-3-540-24723-4_2] [last visited:

31/12/2022]

[29] Rake, Reverse Engineering, GuidedHacking, 2019.

[https://guidedhacking.com/threads/reverse-engineering-how-to-find-the-csgo-entity-

list.13313/] [last visited: 21/12/2022]

[30] KN4CK3R, Reclass.NET GitHub repository, 2019.

[https://github.com/ReClassNET/ReClass.NET] [last visited: 29/12/2022]

[31] Valve Corporation, Source Engine SDK Entity List, 2013.

[https://github.com/ValveSoftware/source-sdk-

2013/blob/master/mp/src/game/shared/entitylist_base.h] [last visited: 22/12/2022]

[32] Microsoft, Using Singly Linked Lists, 2021. [https://learn.microsoft.com/en-

us/windows/win32/sync/using-singly-linked-lists] [last visited: 17/12/2022]

[33] Valve Corporation, Networking Entities, 2019.

[https://developer.valvesoftware.com/wiki/Networking_Entities] [last visited:

28/12/2022]

[34] Namazso & zbe, NetVar & DataProp dump, 2017.

[https://www.unknowncheats.me/forum/counterstrike-global-offensive/211333-current-

netvar-dataprop-dump-classes-header-format.html] [last visited: 28/12/2022]

https://gamehacking.academy/GameHackingAcademy.pdf
https://link.springer.com/chapter/10.1007/978-3-540-24723-4_2
https://guidedhacking.com/threads/reverse-engineering-how-to-find-the-csgo-entity-list.13313/
https://guidedhacking.com/threads/reverse-engineering-how-to-find-the-csgo-entity-list.13313/
https://github.com/ReClassNET/ReClass.NET
https://github.com/ValveSoftware/source-sdk-2013/blob/master/mp/src/game/shared/entitylist_base.h
https://github.com/ValveSoftware/source-sdk-2013/blob/master/mp/src/game/shared/entitylist_base.h
https://learn.microsoft.com/en-us/windows/win32/sync/using-singly-linked-lists
https://learn.microsoft.com/en-us/windows/win32/sync/using-singly-linked-lists
https://developer.valvesoftware.com/wiki/Networking_Entities
https://www.unknowncheats.me/forum/counterstrike-global-offensive/211333-current-netvar-dataprop-dump-classes-header-format.html
https://www.unknowncheats.me/forum/counterstrike-global-offensive/211333-current-netvar-dataprop-dump-classes-header-format.html

54

[35] Datadome, What is a botnet attack and how does it work? 2022

[https://datadome.co/learning-center/what-is-botnet-how-does-botnet-attack-work/] [last

visited: 28/12/2022]

[36] Josse Van Dessel, 2021. These are the most infamous VAC-banned CSGO pros

[https://win.gg/news/these-are-the-most-infamous-vac-banned-csgo-pros/] [last visited:

23/12/2022]

[37] Wallhax, Triggerbot, 2022. [https://wallhax.com/hacks/csgo/triggerbot/] [last

visited: 26/12/2022]

[38] Valve Corporation, Source Engine SDK 2013 edition, Github, 2013.

[https://github.com/ValveSoftware/source-sdk-2013] [last visited: 23/12/2022]

[39] UnKnoWnCheaTs, “Best resources to learn manual mapping injection?” thread,

2020. [https://www.unknowncheats.me/forum/general-programming-and-

reversing/404055-resources-learn-manual-mapping-injection.html] [last visited:

16/12/2022]

[40] Valve Corporation, Source Engine SDK Constants, Github, 2013.

[https://github.com/ValveSoftware/source-sdk-2013/blob/master/mp/src/public/const.h]

[last visited: 03/01/2023]

[41] Microsoft, C Bitwise Operators, 2022. [https://learn.microsoft.com/en-us/cpp/c-

language/c-bitwise-operators?view=msvc-170] [last visited: 25/12/2022]

[42] V. Sidorenko, Manual Mapping Injector, GitLab, 2022.

[https://gitlab.com/vlsido/manual-mapping-injector] [last visited: 05/01/2023]

[43] V. Sidorenko, External CS: GO Exploit, GitLab, 2022.

[https://gitlab.com/vlsido/external-csgo-exploit] [last visited: 05/01/2023]

https://datadome.co/learning-center/what-is-botnet-how-does-botnet-attack-work/%5d
https://win.gg/news/these-are-the-most-infamous-vac-banned-csgo-pros/
https://wallhax.com/hacks/csgo/triggerbot/
https://github.com/ValveSoftware/source-sdk-2013
https://www.unknowncheats.me/forum/general-programming-and-reversing/404055-resources-learn-manual-mapping-injection.html
https://www.unknowncheats.me/forum/general-programming-and-reversing/404055-resources-learn-manual-mapping-injection.html
https://github.com/ValveSoftware/source-sdk-2013/blob/master/mp/src/public/const.h
https://learn.microsoft.com/en-us/cpp/c-language/c-bitwise-operators?view=msvc-170
https://learn.microsoft.com/en-us/cpp/c-language/c-bitwise-operators?view=msvc-170
https://gitlab.com/vlsido/manual-mapping-injector
https://gitlab.com/vlsido/external-csgo-exploit

55

[44] V. Sidorenko, Internal CS: GO Exploit, GitLab, 2022.

[https://gitlab.com/vlsido/internal-csgo-exploit] [last visited: 05/01/2023]

[45] V. Sidorenko, External CS: GO Show Health Hack, GitLab, 2022.

[https://gitlab.com/vlsido/csgo-show-health] [last visited: 05/01/2023]

[46] UnKnoWnCheaTs, Game Hacking Web-Forum

[https://www.unknowncheats.me] [last visited: 05/01/2023]

[47] D. Georgiev, “What Is a White Hat Hacker?”, 2022.

[https://techjury.net/blog/what-is-a-white-hat-hacker] [last visited: 05/01/2023]

https://gitlab.com/vlsido/internal-csgo-exploit
https://gitlab.com/vlsido/csgo-show-health
https://www.unknowncheats.me/
https://techjury.net/blog/what-is-a-white-hat-hacker

56

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Vladislav Sidorenko

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis"A Method for Bypassing the Valve Anti-Cheat System in Video Games" ,

supervised by Kaido Kikkas

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

24.12.2022

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation thesis

that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis is based

on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her graduation thesis

consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive license shall not be

valid for the period.

57

Appendix 2 – Getting Entity List

Firstly, Cheat Engine scans the local player's 100 health, then proceed to damage the local

player and scan for new values until the minimum amount of addresses is left.

Figure 2-1 Cheat Engine health addresses

Find the most appropriate address and check what accesses it.

58

Figure 2-2 Opcodes that access address

Scan the registered HEX address, and find a static address, the right one should be almost

similar to that of the entity object, thus if the entity object is 4DFFF24, the local entity

object is most likely 4DFFF141.

1 The addresses have changed since the last game update. Now, at the moment of writing this paper, the

entity object is 4DFFF24, and the local entity object is 4DFFF14.

59

Figure 2-3 Static addresses

Choosing “Find out what accesses this address” will show the entity list static address,

which is “client.dll+4DFFF04”.

Figure 37 Entity list static address

60

Appendix 3 – Show Entity Health DLL Hack

After creating a DLL project in Visual Studio 2022 and pasting previously found code as

an “ent.h” header, under project properties following options have to be set:

Figure 3-1 DLL project settings part I

Figure 3-2 DLL project settings part II

61

Besides, the project has to be built in x86 mode, since the game is x32 bit.

#include "stdafx.h"
#include <iostream>
#include "ent.h"
#include <Windows.h>

struct vars
{
 DWORD csgoModule;
} vars;

void hack(HMODULE hModule)
{
 //Create Console
 AllocConsole();
 FILE* f;
 freopen_s(&f, "CONOUT$", "w", stdout);

 // Assign module HEX value to a variable
 vars.csgoModule = (DWORD)GetModuleHandle("client.dll");
 // Add entity list offset to csgo module
 CBaseEntityList* entityList = (CBaseEntityList*)(vars.csgoModule
+ 0x4DFFF04);

 while (true)
 {
 int x = 1;
 for (auto entity : entityList->Entities)
 {
 if (entity.EntityPtr)
 {
 if (x == 1)
 {
 std::cout << "My health:" <<
entity.EntityPtr->Health << std::endl;
 }
 else {
 std::cout << "Entity " << x << " health:
" << entity.EntityPtr->Health << std::endl;
 }

 x += 1;
 }

 }
 std::cout << "=============" << "\n";

 Sleep(1000);
 }

62

 fclose(f);
 FreeConsole();
 FreeLibraryAndExitThread(hModule, 0);
}

BOOL APIENTRY DllMain(HMODULE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 switch (ul_reason_for_call)
 {
 case DLL_PROCESS_ATTACH:
 {
 HANDLE hThread = nullptr;
 hThread = CreateThread(nullptr, 0,
(LPTHREAD_START_ROUTINE)hack, hModule, 0, nullptr);
 if (hThread)
 {
 CloseHandle(hThread);
 }
 }

 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 case DLL_PROCESS_DETACH:
 break;
 }
 return TRUE;
}

The project is available in the GitLab repository.[45]

63

Appendix 4 – Setting Up IDA Pro

In IDA, select “New” to attach the “client.dll” file, which is located under

D:\Steam\steamapps\common\Counter-Strike Global Offensive\csgo\bin\client.dll

(path may be different).

Figure 4-1 IDA Pro Quick start screen

IDA will ask for the parsifal.dll file, which is located under

D:\Steam\steamapps\common\Counter-Strike Global Offensive\bin (the path may be

different).

64

Figure 4-2 Select the "parsifal" module

After that, IDA will ask to look for another file and dismiss this confirmation window.

Figure 4-3 Dismiss this window

The preparation of IDA Pro is done.

65

Appendix 5 – Memory Read and Write

Contents of “ReadWriteMem.h” class:

#pragma once
#include <Windows.h>
#include <vector>
class ReadWriteMem
{
public:
 ReadWriteMem();
 ~ReadWriteMem();
 template <class val>
 val readMemory(uintptr_t addr)
 {
 val x;
 ReadProcessMemory(handle, (LPBYTE*)addr, &x, sizeof(x),
NULL);
 return x;
 }
 template <class val>
 val writeMemory(uintptr_t addr, val x)
 {
 WriteProcessMemory(handle, (LPBYTE*)addr, &x, sizeof(x),
NULL);
 return x;
 }

 uintptr_t getModule(uintptr_t, const wchar_t*);
 uintptr_t getProcess(const wchar_t*);
 uintptr_t getAddress(uintptr_t, std::vector<uintptr_t>);

private:
 HANDLE handle;
};

Contents of “ReadWriteMem.cpp”:

#include "ReadWriteMem.h"
#include <TlHelp32.h>
#include <iostream>
#include <iomanip>
ReadWriteMem::ReadWriteMem(){handle = NULL;}
ReadWriteMem::~ReadWriteMem()
{
 CloseHandle(handle);
}
uintptr_t ReadWriteMem::getProcess(const wchar_t* proc)
{
 HANDLE hProcessId = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS,
0);

66

 uintptr_t process;
 PROCESSENTRY32 pEntry;
 pEntry.dwSize = sizeof(pEntry);
 do
 {
 if (!_wcsicmp(pEntry.szExeFile, proc))
 {
 process = pEntry.th32ProcessID;
 CloseHandle(hProcessId);
 handle = OpenProcess(PROCESS_ALL_ACCESS, false,
process);
 }
 } while (Process32Next(hProcessId, &pEntry));
 return process;
}
uintptr_t ReadWriteMem::getModule(uintptr_t procId, const wchar_t*
modName)
{
 HANDLE hModule = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE |
TH32CS_SNAPMODULE32, procId);
 MODULEENTRY32 mEntry;
 mEntry.dwSize = sizeof(mEntry);
 do
 {
 if (!_wcsicmp(mEntry.szModule, modName))
 {
 CloseHandle(hModule);
 return (uintptr_t)mEntry.hModule;
 }
 } while (Module32Next(hModule, &mEntry));
 return 0;
}
uintptr_t ReadWriteMem::getAddress(uintptr_t addr,
std::vector<uintptr_t> vect)
{
 for (int i = 0; i < vect.size(); i++)
 {
 ReadProcessMemory(handle, (BYTE*)addr, &addr,
sizeof(addr), 0);
 addr += vect[i];
 }
 return addr;
}

