
TALLINN UNIVERSITY OF TECHNOLOGY 

School of Information Technologies 

Maksim Maksimov 121088IAPB

DEVELOPMENT OF CONTROL AND
MONITORING SOFTWARE FOR ROBOTS
OPERATING IN A DISTRIBUTED SYSTEM

Bachelor's thesis 

Supervisor: Martin Rebane

MSc

Tallinn 2021



TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Maksim Maksimov 121088IAPB

JUHTIMIS- JA
MONITOORINGUTARKVARA ARENDUS

HAJUSSÜSTEEMIS TOIMIVATELE
ROBOTITELE

Bakalaureusetöö

Juhendaja: Martin Rebane

MSc

Tallinn 2021



Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else. 

Author: Maksim Maksimov

18.05.2021

3



Abstract

The main focus of this thesis is to create a user interface based on modular and reusable

components, as well as to create an prototype for controlling one or more robots.

The aim of this project is to create a robot, whose main task is to transport goods and

medicine  equipment  between  hospital  floors  and  wards.  This  topic  is  especially

important today during the pandemic, because it helps to reduce people's contact with

other surfaces and eliminates the need for humans to move between different wards,

thus making less chance for a person to become infected with the virus. 

This is a group work of about 10 people in which my assignment is to make a working

prototype of an application for controlling robots: a simple version that is needed to

control only one robot directly from a tablet attached to it, and a more complex version

for administering several robots from one place.

Since the project is at an active stage of development, many of the initial solutions were

changed in favor of better ones after more detailed discussions with the team and new

requirements, taking into account the security, user experience and extensibility of the

future product.

The paper describes the complete development process for this solution, as well as the

complexity and technological diversity of the project.

This thesis  is  written in  English and is  44 pages long,  including  5 chapters  and  20

figures.

4



Annotatsioon

Juhtimis- ja monitooringutarkvara arendus hajussüsteemis

toimivatele robotitele

Selle lõputöö põhirõhk on moodulitel ja korduvkasutatavatel komponentidel põhineva

kasutajaliidese loomine ning prototüübi loomine ühe või mitme roboti juhtimiseks.

Selle  projekti  eesmärk  on  luua  robot,  mille  peamine  ülesanne  on  kaupade  ja

meditsiinitehnika transport haigla korruste ja palatite vahel. See teema on tänapäeval

eriti oluline pandeemia ajal, sest see aitab vähendada inimeste kontakti teiste pindadega

ja välistab inimese vajaduse liikuda erinevate palatite vahel, võimaldades seega inimesel

vähem võimalusi viirusesse nakatuda.

See on umbes 10 inimesest koosnev grupitöö,  kus minu ülesandeks on teha robotite

juhtimiseks  rakenduse  toimiv  prototüüp:  lihtne  versioon,  mis  on  vajalik  ainult  ühe

roboti juhtimiseks otse sellele lisatud tahvelarvutist, ja keerukam versioon mitme roboti

ühest kohast haldamiseks.

Kuna projekt on aktiivses arengujärgus, muudeti paljusid esialgseid lahendusi paremate

kasuks pärast üksikasjalikumaid arutelusid meeskonnaga ja uusi nõudeid, võttes arvesse

tulevase toote turvalisust, kasutajakogemust ja laiendatavust.

Artiklis  kirjeldatakse  selle  lahenduse  täielikku  arendusprotsessi,  samuti  projekti

keerukust ja tehnoloogilist mitmekesisust.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 44 leheküljel, 5 peatükki ja 20

joonist.

5



List of abbreviations and terms

API Application Programming Interface - a set of definitions and

protocols for building and integration application software

CSS Cascading Style Sheets

DOM Document Object Model - object model for HTML

HTTP Hypertext Transfer Protocol

JavaScript The programming language for the Web

LESS Dynamic preprocessor style sheet language that can be 
compiled into CSS

MJPEG Motion JPEG

MQTT Message Queuing Telemetry Transport

ROS Robot Operating System

RPC Remote procedure call

TypeScript A typed superset of JavaScript that compiles to plain JavaScript

UI User Interface

Stencil Frontend framework for building Web Components

Vue Model–view–viewmodel frontend JavaScript framework

Web Components Set of features allowing for encapsulation and interoperability 
of individual HTML elements

WebSocket Two-way connection channel between client and server.

6

https://en.wikipedia.org/wiki/Preprocessor
https://en.wikipedia.org/wiki/HTML_element
https://en.wikipedia.org/wiki/Interoperability
https://en.wikipedia.org/wiki/Encapsulation_(object-oriented_programming)
https://en.wikipedia.org/wiki/Style_sheet_language


Table of Contents

1  Introduction.................................................................................................................10

2  Project overview..........................................................................................................12

2.1  Distributed systems...............................................................................................13

2.2  Robot Operating System.......................................................................................14

2.3  Hardware...............................................................................................................15

2.3.1  Elevator..........................................................................................................15

2.4  Requirements........................................................................................................16

2.5  Technologies.........................................................................................................17

3  User interface development.........................................................................................18

3.1  Design of the interface..........................................................................................18

3.2  First prototype.......................................................................................................20

3.3  Using Web Components for future compatibility.................................................20

3.4  Android application..............................................................................................22

4  Providing near real-time performance.........................................................................23

4.1  Mock server..........................................................................................................23

4.2  General architecture..............................................................................................24

4.3  Server for communicating with the application....................................................25

4.3.1  Real-time communication..............................................................................26

4.3.2  Request flow..................................................................................................27

4.3.3  Database.........................................................................................................28

4.3.4  Streaming images from a camera..................................................................29

4.3.5  Administration...............................................................................................31

4.3.6  Deployment...................................................................................................35

5  Conclusion...................................................................................................................38

5.1  The future of the project.......................................................................................39

 References......................................................................................................................40

 Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation 

thesis................................................................................................................................42

7



 Appendix 2 – Source code of app-root component........................................................43

 Appendix 3 – Snippet of code from package.scripts.js file............................................44

8



List of Figures

Figure 1: Autonomous mesh carrier robot.......................................................................11

Figure 2: PERH environment example photo..................................................................12

Figure 3: Robot prototype and mesh carrier....................................................................13

Figure 4: Message and topics in ROS.............................................................................14

Figure 5: Robot UI designed using Bootstrap.................................................................19

Figure 6: Robot UI designed using Tailwind..................................................................20

Figure 7: Component structure in Web UI application...................................................21

Figure 8: General architecture.........................................................................................24

Figure 9: Controller-Service-Repository architecture.....................................................25

Figure 10: Robot movement sequence diagram..............................................................26

Figure 11: Application API requests flow.......................................................................27

Figure 12: Database schema for frontend application.....................................................28

Figure 13: Image streaming sequence diagram...............................................................30

Figure 14: Robot UI image stream..................................................................................30

Figure 15: All robots overview page...............................................................................32

Figure 16: Robot detail page...........................................................................................32

Figure 17: Robot detail page with image stream.............................................................33

Figure 18: Debug console on the robot detail page.........................................................34

Figure 19: Infrastructure overview screen.......................................................................34

Figure 20: Production microservice arhitecture..............................................................36

9



1 Introduction

The idea of creating this kind of project came from the North Estonia Medical Centre.

The North Estonia Medical Centre is one of the top healthcare providers in the country.

As  a  regional  hospital,  it  has  the  highest-level  competence  to  provide  specialised

medical care. 

The main goal of this project, launched in September 2020, is to create a robot that will

move medicines,  as well  as any other  necessary  goods between different  floors and

wards of the hospital without human assistance. The use of such a robot eliminates the

need to move people from one part of the hospital to another, which in turn reduces the

risk of spreading viruses and diseases. This topic is especially relevant today, during a

pandemic. Also, this solution reduces the workload on staff. 

My main goal in this project will be to create a user-friendly  software for controlling

and monitoring  robots.  The requirements  that  need to  be achieved  in  this  work are

described in more detail in Section 2.4. Writing of this work will affect many aspects of

the development of various types, ranging from the design of the application interface to

designing  the  architecture  and  database,  making  Android  application.  For  more

information about the technologies in favor of which solutions were chosen, see Section

2.5.

10



Figure 1 shows what an autonomous robot would

roughly  look  like,  to  which  a  standard  hospital

mesh carrier is attached.

The main goal of the project is to create an initial

prototype  of  a  transport  robot  that  meets  the

requirements of the hospital in collaboration with

TalTech  and  PERH.  As  a  result  of  the

implementation of the project,  it  is expected that

the autonomous transport robot will pass tests and

work successfully, as well as be useful in practice

in a regional hospital in Northern Estonia.

11

Figure 1: Autonomous mesh
carrier robot



2 Project overview

The robots have the ability to exchange information with elevators, automatic doors,

other robots, as well as with a central server. When moving around the hospital, the

robot will use a line specially marked on the floor for it. Thus, it will always be clear to

others which trajectory will be chosen.

One of the main things to do in the entire hospital is to mark lines on the floor for the

robots to move.  Figure 2 shows automatic doors, as well as an example of the room

itself where robots will move.

12

Figure 2: PERH environment example photo



The initial prototype of the robot is equipped with:

 Four electric motors

 Two electric motor controllers

 Lithium-ion Power Battery 36V 4.4Ah

 Omni-wheels for 360 degrees maneuverability

 Attached Android-powered tablet to control the robot

 Barebone Intel NUC PC with processor i7-10710U 1.1 GHz

 Intel RealSense Depth Сamera D435

The  maximum  load  for  the

robot  is  about  500 kilograms,

sufficient  to  transport

completely  different  goods.

Figure  3 shows  one  of  the

stages  of  the  development  of

the robot. Nearby is a standard

mesh  carrier  that  is  used  in

hospitals.

2.1 Distributed systems

A distributed system is a system whose components are located on different networked

computers, which communicate and coordinate their actions by passing messages to one

another from any system. The components interact with one another in order to achieve

a common goal. Three significant characteristics of distributed systems are: concurrency

of components, lack of a global clock, and independent failure of components [1] .

There are many different types of implementations for the message passing mechanism,

including pure HTTP, RPC-like connectors and message queues [2] . The system used

13

Figure 3: Robot prototype and mesh carrier

https://en.wikipedia.org/wiki/Clock_synchronization
https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Computer_network


in this work uses the message queuing mechanism, the principle of which is described

in more detail in Section 4.2.

2.2 Robot Operating System

ROS is used as the software installed on the robot.  Robot Operating System (ROS or

ros) is an open source, meta-operating system for your robot. It provides the services

you would expect from an operating system, including hardware abstraction, low-level

device  control,  implementation  of  commonly-used  functionality,  message-passing

between processes, and package management. The ROS runtime "graph" is a peer-to-

peer  network  of  processes  (potentially  distributed  across  machines)  that  are  loosely

coupled  using  the  ROS  communication  infrastructure.  ROS  implements  several

different  styles  of  communication,  including synchronous RPC-style  communication

over  services, asynchronous streaming of data over  topics, and storage of data on a

Parameter Server [3]  .  Processing takes place in nodes that can receive, publish, and

multiplex data from sensors, control, state, scheduling, actuator, and other messages. In

this project, for the most part, asynchronous data streaming over the topics was used,

the principle of which you can see in Figure 4.

14

Figure 4: Message and topics in ROS

http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/Topics
http://wiki.ros.org/Services
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Hardware_abstraction


2.3 Hardware

In order for the robot to be able to move freely around the hospital, it needs to be able to

communicate with different types of blocking obstacles, such as doors and elevators.

The base component  for  all  electronics  used  as door  and elevator  controllers is  the

ESP32 [4] . It is a series of low cost, low power consumption microcontrollers. They are

a system-on-a-chip with integrated Wi-Fi and Bluetooth connectivity.

In the hospital itself, there are doors of various types, some are of a new type and the

ability to open / close is already present through the security system and is performed by

a simple API request, and some are of the old type and for which you have to create

your  own  controllers  to  achieve  this  functionality.  With  elevators,  the  situation  is

different, and such an opportunity exists for no one.  See more detailed explanation in

Section 2.3.1.

2.3.1 Elevator

In order for the robot to be able to ride the elevators, several modifications must be

made. The first is to be able to control them - go to different floors, open / close doors.

The second is the ability  to track the actions  of the robot to control and correct  its

movements, as well as track people in the elevator. To cope with this task, a suitable

device has been designed. It consists of a thermal sensor and a passive infrared sensor

(PIR sensor). The sensor enclosure,  shown in  Figure 5 uses custom design and is 3D

printed with PLA material. The elevator controller communicates with the backend API

via MQTT, which allows for fast information exchange.

15



2.4 Requirements

When creating a control and monitoring system, many requirements must be met.

Business requirements:

 Develop a web-based user interface by using nowadays technologies

 Application interface must be built on reusable web components

 The designed system must be secure

Functional:

 There should be a page to track the status of one robot

 The ability to see the streaming image from the robot

 Ability to move the robot to its destination

 The ability to see the status of each robot in real-time

16

Figure 5: Elevator sensor isometric view



 Ability to see events from robots

Non-functional:

 The application interface should be simple and straightforward

 Workers should be able to easily control the robot

2.5 Technologies

Variability  of the stack and an abundance of technology used in this project  a little

striking. For writing everything related to hardware, the C++ language was mainly used

and ESP32 as the electronics platform. The backend server was written in Python. The

robot  itself  contains  ROS with  written  modules (nodelets)  that  also use  the  Python

language. The frontend uses mainly Typescript, which in turn compiles to JavaScript.

Interface styling is done in LESS language, which is also compiled, into CSS.  Stencil

was  chosen  among  the  frameworks  for  the  frontend.  Vue  was  also  tried  as  an

alternative, but it did not satisfy the requirement to use reusable web components, this is

also described in Section 3.3. The project also slightly touched on the development of

an Android application, a small part of which was written in Java.  Stencil to Android

conversion was achieved using the Capacitor library.

Various options were considered for transferring data between devices in a distributed

system: XMPP, Kafka, AMQP, MQTT. The choice was made in favor of MQTT which

is standard protocol for the Internet of Things (IoT). For communication between the

user interface and the frontend server, HTTP was used as a channel for making requests

to  the  server  and  WebSocket  for  sending  data  from  the  server. Two  database

management systems for the frontend - Redis and MySQL and one for the backend -

SQLite.  Containerization is  achieved  via Docker using docker-compose and HTTP /

WebSocket traffic proxying is done with Nginx –  detailed in Section 4.2. And of course

some bash scripts for deployment and Node.js with Yarn for frontend development. As

the main  IDE -  VSCodium was used,  the  rest  of  the things  related  to  the  Android

application - Android Studio.

17



3 User interface development

The creation of the user interface took most of the development because it should be

simple and user-friendly, and also based on modular and reusable components. This part

goes  through a  lot  of  trial  and error,  ranging from using  CSS frameworks  such as

Bootstrap and Tailwind, to functional frameworks for developing interfaces,  like  Vue

and Stencil.  In Section 3.4 describes the experience of migrating the entire application

to the Android platform.

3.1 Design of the interface

When planning the interface, it was necessary to take into account the fact that it had to

work both on a tablet and on a standard computer screen. It should be responsive as well

as user friendly and understandable for the average user. There should also be a separate

adapted page for the tablet.

The system design consisted of 4 main screens, which in turn split the applications into

two separate applications: the robot user interface and the administrator user interface.

• Separate robot tablet page - Robot UI (see Figure 7)

• All robots overview (see Figure 16)

• Robot detail page (see Figure 17)

• Infrastructure overview (see Figure 20)

Since it would have taken a long time to work in Adobe Photoshop or other graphics

editor alternative, it was easier to lay out the basics of HTML and CSS to coordinate

and  select  the  initial  design.  Bootstrap  was  chosen  as  the  basis  for  UI  and  Font

Awesome  as  the font  and  icon  toolkit.  Bootstrap  is  a  free  and  open-source  CSS

framework directed at responsive, mobile-first frontend web development. It contains

18



CSS- and JavaScript-based design templates for typography, forms, buttons, navigation,

and other interface components.

After  initial  sketches  and  approval  of  the  main  components  of  the  system,  it  was

decided to move to using Tailwind, another more suitable framework. Tailwind [6]  is a

feature-oriented  CSS framework containing  useful  classes  that  you can  compose  to

create  any  design  right  in  the  markup.  Utility  classes  help  you  work  within  the

constraints of the system instead of cluttering your style sheets with arbitrary values.

They make it easy to be consistent with color choices, typography, shadows, spacing,

and  everything  else  that  makes  up  a  well-engineered  design  system.  Using  this

framework will save time and be ready for quick changes without much need to rewrite

styles.

The interface for the Robot UI is pretty simple (see Figure 7). It consists of two fixed

panels at the top and bottom, with content area in between. In the bottom panel there are

two buttons for control and an indicator showing the state of completion of the route

above them. The destination is highlighted in the content area.

19

Figure 6: Robot UI designed using
Bootstrap



3.2 First prototype 

Vue  [7]  was taken as the main framework for the initial  prototype.  One of the key

features  of  Vue  is  the  ability  to  build  into  web  components.  However,  Vue  is

externalized, which means that in order for the created components to work, it must be

globally available on the host page. When creating this solution, Typescript and LESS

were used. Also at this stage, a  mock server was written with support for exchanging

information with the client in near real-time, which is described in Section 4.1.

3.3 Using Web Components for future compatibility

Web Components is a suite of different technologies allowing you to create reusable

custom elements - with their functionality encapsulated away from the rest of your code

-  and  utilize  them  in  your  web  apps  [8]  .  The  problem  with  using  Vue  in  web

components was that the components couldn't work without including this framework in

the host page, meaning there was still a dependency on the framework. It was decided to

try a new better alternative framework called Stencil. 

Stencil is  a  compiler  that  generates  Web  Components  (more  specifically,  Custom

Elements) and builds high performance web apps. Stencil combines the best concepts of

the  most  popular  frameworks into  a  simple  build-time  tool.  Since  Stencil generates

20

Figure 7: Robot UI designed using Tailwind



standards-compliant web components, they can work with many popular frameworks

right out of the box, and can be used without a framework because they are just web

components. APIs like Virtual DOM, JSX, and async rendering make fast, powerful

components  easy  to  create,  while  still  maintaining  100%  compatibility  with  Web

Components [5] .

Figure 8 describes architecture of the frontend application, where each node is a web

component. Routes are defined in app-root using core components prefixed with stencil

keyword. The components marked in green are essentially controllers in which all data

manipulations  take place,  which are sent through properties to child components.  In

addition, these components are responsible for binding and listening for events from the

event emitter. In addition to using Stencil's standard event approaches, there was also a

third-party library event-emitter3 for more complex event operations. Every component

uses Shadow DOM [11] which involves cutting the desired styles from Tailwind. Using

the tailwind.config.js config file, it was quite easy to do this by specifying an array of

files to look up the class names in the purge property. In addition, a lightweight shared

state library called Store from Stencil core was used to display the notification queue.

The abbreviation for hospital robot - hrob was chosen as the prefix for the reusable web

components used in Robot UI, hroba for Admin UI. How routing looks from the code

side in the app-root component can be seen in Appendix 2. The total size of the entire

21

Figure 8: Component structure in Web UI application



application, including the admin part, which will be discussed in Section 4.3.5, is about

675 kilobytes.

3.4 Android application

Nowadays, in order to develop an Android application, it is not necessary to write it in

such  native  languages  as  Java  or  Kotlin.  You  can  simply  convert  an  existing  web

application  using  the  latest  advances  in  this  area.  There  are  many  solutions  on  the

market to achieve these goals:  React Native, NativeScript, Apache Cordova, Capacitor

and so on. Our choice fell in favor of Capacitor. Capacitor is a cross-platform API and

code  execution  layer  that  makes  it  easy  to  call  Native  SDKs from web  code.  The

advantage of using it is that you can write custom native plugins that your application

may need or use existing ones written specifically for Apache Cordova, which in turn

expands the possibilities of using this tool.

In order for the application to be safely used within the walls of the hospital, several

problems had to be solved:

 Should always be used by the only application without the ability to exit it or go

to the settings

 Impossibility of switching applications

 The application should start when the device boots

 The device must always be in an active state so that the user does not have to

look for the power button

 The application must run in full screen mode

By implementing them in the application,  in  fact,  we will  turn it  into a COSU app

(Corporate Owned Single Use application) [12] or a Single-Use device. To accomplish

this  task,  Java  code was  written and  some configurations  were  added to  make our

application a device administrator.

The final size of the compiled application on a tablet is about 9 megabytes.

22



4 Providing near real-time performance

In order to add the ability to transfer data from the web server about the robot to the

client, it was decided to use WebSockets. WebSocket [8]  is a computer communication

protocol  that  provides  full  duplex  communication  channels  over  a  single  TCP

connection. Using this technology creates less overhead than half-duplex alternatives

such as HTTP polling, making it easier to transfer data in real-time to and from the

server.

4.1 Mock server

To simulate the actions and more clearly imagine how the system will work as a whole,

it was decided to use the mock server first. It was written in Node.js using JavaScript.

Node.js  is  an  cross-platform backend  JavaScript  runtime  environment  that  executes

JavaScript code outside a web browser. 

To create the application,  was used Express, a web server application framework for

Node.js. The endpoints are described in more detail in the Section 4.3.

23



4.2 General architecture

In Figure 9, you can see the overall architecture of the project. MQTT connections are

marked in blue and all IoT devices communicate through it. WebSocket Secure (WSS)

and Hypertext Transfer Protocol Secure (HTTPS) are used to denote secure protocols.

The Message Queuing Telemetry Transport (MQTT) is a lightweight, publish-subscribe

network protocol that transports messages between devices. The protocol usually runs

over  TCP/IP;  however,  any  network  protocol  that  provides  ordered,  lossless,  bi-

directional connections can support MQTT [9] . The Backend Server can subscribe and

publish messages to the MQTT broker, however the Frontend Server can only subscribe

to MQTT topics which is necessary to obtain a stream of images and other metrics of

the robot arriving in real-time without having to proxy it from the Backend Server. With

MQTT broker architecture, the devices and application becomes decoupled and more

secure.  Frontend  Server topic  restrictions  is  done in  a  Mosquitto  access  control  list

(ACL)  file  via  mosquitto.conf  [10]  on  the  broker  which  prevents  unauthorized

publishing and subscribing to restricted topics.

The robot, as well as the control tablet attached to it, are connected to the local network

separately from each other, via Wi-Fi. Using the Admin UI is possible from any device

in this local network.

24

Figure 9: General architecture

https://en.wikipedia.org/wiki/Lossless_compression
https://en.wikipedia.org/wiki/TCP/IP
https://en.wikipedia.org/wiki/Communication_protocol
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern


4.3 Server for communicating with the application

Several endpoints have been created for the API:

• GET /robot/:id - returns data about the robot

• POST /robot/:id/move - is used to launch the robot to a specific location and

triggers the transmission of the robot's status via a WebSocket.

• POST /robot/:id/status -  changing the status of the robot. Used for pause and

stop

• GET /robot/:id/stream –  returns  default  robot  MJPEG  image  stream  (see

Section 4.3.4)

• GET /place - returns the places available for visiting by the robot

• POST /auth – authentication method, session cookie will be added after success

To identify the robot, the Robot-Secret header is sent with every HTTP request from the

Robot UI. The value for this field will be contained in the robot control tablet.

Controller-Service-Repository architecture was chosen to build the backend application.

It is a great approach for breaking up the business layer of the app into two distinct

layers.  This  pattern  relies  on  dependency  injection  to  work  properly.  Dependency

Injection (DI)  [13]  is a practice where objects  are designed in a manner where they

25

Figure 10: Controller-Service-Repository architecture



receive instances of the objects from other pieces of code, instead of constructing them

internally. TypeDI package was chosen as the dependency injection tool. 

4.3.1 Real-time communication

WebSockets are used to send real-time events from the frontend server to the frontend

application.  While  the robot is moving, it  gives a  moveRobot message to the client.

When stopped and finished, the corresponding robotStop and robotFinish events will be

dispatched. The sequence diagram in Figure 11 describes the process of launching the

robot to its destination. It shows how the entire system works, how data is transmitted

and through which channels. In the figure, there is also a repeated event loop that occurs

until  the  Backend  Server checks  for  the  condition  that  the  robot  has  reached  its

destination, after which the event about the end of the movement is transmitted to the

frontend.

26

Figure 11: Robot movement sequence diagram



4.3.2 Request flow

Middleware is used to handle requests before and after controllers.  Sessions, logging,

authorization  and  others  are  implemented  through  middleware.  The  WebSocket

middleware  works  mostly on opening connections,  the main logic  for the messages

themselves  is  in  the  RobotSocket service.  Authentication  middleware  uses  an

authentication  service to  provide  the  required  functionality,  which  is  accomplished

through dependency injection.

Subscribers are used for sending messages to WebSocket clients from anywhere in the

application without the need to include service.

27

Figure 12: Application API requests flow



Sessions are used for all API requests. Since a solution based on socket.io was chosen

for WebSocket connections,  a session expiration check was added to each  ping and

pong request on the server  side.  Redis was used as a  rate limiter and  session storage.

Redis (Remote Dictionary Server) is a fast in-memory key-value data store for use as a

database [15] .

4.3.3 Database

In  Figure 13 the database schema for frontend application can be seen. FK - means

foreign key, U - unique key. For clarity of writing, the names of the tables are written in

an easy-to-read format, in fact, the  snake case is used. A list of all places, elevators,

doors are contained in the Place table,  where the attribute  type determines the type of

28

Figure 13: Database schema for frontend application



place. Events for all robots can be found in the Robot Event table, the types of events

used are in the Event table. These tables are needed to display the list of events on the

detailed page of the robot (Figure 17). For the functionality of the routes and the output

of the necessary checkpoints in the future, the Route and Place Route tables are used,

where the  index attribute is the ordinal number of the place to compose a complete

route. 

Also, the project uses data seeding. This is the process of filling the database with initial

data, for example, roles for users, this in turn happens through factories using typeorm-

seeding package. Since the project has an admin panel, the administrator role is needed

for such cases. Database migrations are done with typeorm itself.

4.3.4 Streaming images from a camera

The application should have a image stream from the robot in an amicable way, so that

you  can  observe  in  real  time  what  it  sees  and  how  it  behaves,  catch  problems  if

necessary and resolve them in a timely manner. To test the required functionality, I was

lent an Intel RealSense Depth Сamera D435 [16] , essentially the same that will be used

on  working robots.

In order for the application to receive frames from the camera, it was first necessary to

transmit them from the robot itself.  For this, a Python script was written along with a

launch file to use it as a ROS nodelet. Nodelets are designed to provide a way to run

multiple algorithms on a single machine, in a single process, without incurring copy

costs when passing messages intraprocess. roscpp has optimizations to do zero copy

pointer passing between publish and subscribe calls within the same node  [17]  . The

script consist of class  that listens to the desired ROS topics with a image streams and

sends them to the MQTT topics as a Base64 [14] encoded string. The script itself also

has some arguments: host, port, username, password, ca_file.

The Node.js app server then listens on the MQTT topics and decodes the Base64 string

into  an  MJPEG image  streams.  The  image  stream is  delivered  until  the  session  is

terminated. How the data exchange takes place can be seen in more detail in Figure 14.

29



The application uses a link of the form /api/robot/{id}/stream/{type}, where  id is the

robot id and  type is a  stream type. For Robot UI  type is not used, the default image

stream will be used instead.

30

Figure 15: Robot UI image stream

Figure 14: Image streaming sequence diagram



In the robot's user interface (Figure 15), the image stream appears on the top fixed panel

that appears over the content area when you click on the corresponding camera icon.

What the streaming image looks like in the admin panel is shown in Figure 18.

4.3.5 Administration

Another part of the application that also had to be worked on is the administration page.

In addition to the endpoints described in Section 4.3, a few more have been added:

• GET /robot/:id/event - returns data about robot events

• GET /robot/:id/debug - helper endpoint for debug console (see Figure 19)

• GET /robot/:id/stream/:type – returns the type-specified MJPEG robot image

stream (see Section 4.3.4)

The first screen is an overview screen that shows the states of all robots, which can be

seen in  Figure 16. In admin mode, the WebSocket connection sends events from all

robots at once, which allows you to see the picture in real time. Unlike Robot UI, there

is navigation in the admin panel in the top fixed menu. Now there are only two main

screens: Robots - a screen with all robots (Figure 16) and Places - an overview of the

infrastructure (Figure 20).

31



To get to the detailed page of the robot, you need to click on the id of the robot. For

better memorization, animal names are used as a prefix for each robot id.

32

Figure 16: All robots overview page

Figure 17: Robot detail page



The detailed page of the robot, which can be seen in  Figure 17, contains a table with

events. Clicking on the camera-shaped icon displays a streaming image with the option

to select the desired image stream above (Figure 18).

The debug console  is  located  at  the  bottom of  the  page.  With  its  help,  it  becomes

possible to send requests to the backend and directly to MQTT. It is also possible to

subscribe to the desired MQTT topics and see events in real time. All  of this can be

done directly from the web page, which makes debugging very easy, see Figure 19.

33

Figure 18: Robot detail page with image stream



By clicking on  Places in the navigation menu, you will be taken to the infrastructure

page. Figure 20 shows that there are main objects that robots interact with, divided into

3 main groups: places, elevators and doors.

34

Figure 20: Infrastructure overview screen

Figure 19: Debug console on the robot detail page 



4.3.6 Deployment

As a containerization platform Docker was used. Docker is a set of platform as a service

(PaaS) products that use OS-level virtualization to deliver software in packages called

containers.  Containers are isolated from one another and bundle their  own software,

libraries and configuration files; they can communicate with each other through well-

defined channels. Docker can package an application and its dependencies in a virtual

container that can run on any Linux, Windows, or macOS computer [19] .

A multi-stage build was used to create a docker image with a minimal size. For builder

stage node:slim image was used and node:alpine for production. This approach reduced

the final size by 50% compared to using only the node:alpine image. Inside the docker

container,  the PM2 package was globally installed,  which was used as a production

process manager.  PM2 is a daemon process manager that will help you manage and

keep your application online 24/7. To put everything together, and indeed to keep all

containers in one configuration file, docker-compose.yml was used.

A reverse proxy was required for traffic routing and HTTPS availability.  Nginx [20]  

was the best choice for this. It is a web server that can also be used as a reverse proxy,

load  balancer,  mail  proxy  and  HTTP  cache.  For  debugging  and  quick  database

management, used phpMyAdmin on /pma endpoint with HTTP authentication for more

security. How proxying is made can be seen in Figure 21.

35

https://en.wikipedia.org/wiki/HTTP_cache
https://en.wikipedia.org/wiki/Load_balancer
https://en.wikipedia.org/wiki/Reverse_proxy
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/OS-level_virtualization
https://en.wikipedia.org/wiki/Platform_as_a_service


All application file paths are configurable via environment variables:

• CONTROLLERS – controller files

• WS_CONTROLLERS – WebSocket controller files

• MIDDLEWARES – middleware files

• WS_MIDDLEWARES – WebSocket middleware files

• SUBSCRIBERS – subscriber files

• TYPEORM_MIGRATIONS – migration files

• TYPEORM_MIGRATIONS_DIR – migrations directory

• TYPEORM_ENTITIES – database model files

The use of such configurations is necessary for a containerized application, since the

path  changes  along  with  the  file  extension  after  compilation  from  Typescript  to

JavaScript.

36

Figure 21:  Production microservice arhitecture



Since  the  project  uses  a  lot  of  auxiliary  scripts  for  development,  build,  linting,

configurations, cleaning, working with the database and docker, a solution was needed

that allows to keep package.json maintainable. nps is a package that solves this problem

by allowing  to  move scripts  to  a  package-scripts.js  file.  And because  this  file  is  a

JavaScript file, you can do a lot more with project scripts, an example of which can be

seen in Appendix 3.

37



5 Conclusion

My main goal in this project was to create a user-friendly software for controlling and

monitoring robots in the distributed system. The requirements that had to be achieved in

this work are described in more detail in Section 2.4.

In the process of working on this project, quite a lot of things have been done. It all

started with discussing and planning the interface of how the user would interact with

this robot. After that, the initial Vue framework for creating interfaces was chosen and

the very first prototype was made. Realizing that this framework is not quite suitable for

our tasks, it was decided to use a more suitable one, specifically for Web Components –

Stencil. More  details  about  usage  were  described  in  Section  3.3.  After  the  initial

skeleton of the application had already been sketched, a discussion began on how to do

this for use on a tablet attached to a robot. In view of the fact that the user should be

able to use only one application, it was decided to create an native Android application

by converting the existing code base using the Capacitor.

After the work with the frontend was completed, the more serious part of writing the

backend  began.  It  all  started  with  a  simple  mock  server  in  pure  JavaScript.  After

discussing some details with the team, I started writing an application that would be

more production ready. Since TypeScript was chosen as the language, the complexity of

this task was slightly lower than it would be written in the same Java, for example. To

build the backend application,  Controller-Service-Repository  architecture was chosen

using dependency injection. The admin area was one of the last tricky things to tinker

with, see Section 4.3.5. It was also an interesting experience developing an application

with the ability to view streaming images, especially when it comes to a decentralized

system. The final part  was system-wide integration,  creating Docker containers,  and

configuring  deployments  using  bash  scripts.  For  more  information  about  the

technologies in favor of which solutions were chosen, see Section 2.5.

38



In  general,  for  my  part,  I  can  say  that  I  am  very  fortunate  to  have  had  such  an

opportunity to take part in such an interesting project and work in such a glorious team.

I hope everything will  work out for us and the project  will  be useful in the PERH

hospital,  alleviating the workload on the staff and reducing the risk of carrying any

infections.

5.1 The future of the project

Since this work described the project only at the initial stage of development, there is

certainly still something to work on and what to add / improve. First of all, I would wish

to  improve  UX by  adding  dynamism  when  moving  the  robot,  adding  a  more

understandable  status  for  the user that  the robot  is  in  motion.  Next,  the admin part

should be completely  cut  out  of  the Android application  so that  there  would be no

mention of it. This, firstly, would reduce the size of the application, and secondly, it will

make it  significantly harder  to  inspect the device of the admin panel through reverse

engineering.

As  for  what  could  be  added,  there  are  many  options.  A screen  with  the  ability  to

administer destinations could be added to the admin panel. It  would also be a great

opportunity to see these places on the map. The next thing that would be a pretty good

feature for understanding the state of the robot is showing intermediate points on the

movement slider above the control buttons. This would make it possible to immediately

fully see the entire route of the robot's movement.

Another interesting point is to start using a more convenient and at the same time secure

authentication system. For tablets attached to the robot, it would be possible to add an

employee  card  reader,  so  that  by  swiping  this  card,  it  would  be  easy  to  authorize

employees who have the right to use this robot.

39



References

[1] Tanenbaum, Andrew S.; Steen, Maarten van. Distributed systems: principles and 
paradigms. Upper Saddle River, NJ: Pearson Prentice Hall, 2002.

[2] Magnoni, L. "Modern Messaging for Distributed Systems (sic)". Journal of Physics: 
Conference Series, 2015.

[3] "ROS-Introduction" [Online]. Available: http://wiki.ros.org/ROS/Introduction. [Accessed
12 05 2021].

[4] "ESP32 Wi-Fi & Bluetooth MCU I Espressif Systems" [Online]. Available: 
https://www.espressif.com/en/products/socs/esp32. [Accessed 18 05 2021].

[5] "Stencil - A Compiler for Web Components" [Online]. Available: 
https://stenciljs.com/docs/introduction. [Accessed 14 04 2021].

[6] "Tailwind CSS - Rapidly build modern websites without ever leaving your HTML." 
[Online]. Available: https://tailwindcss.com. [Accessed 18 05 2021].

[7] "Introduction — Vue.js" [Online]. Available: https://vuejs.org/v2/guide. [Accessed 18 05 
2021].

[8] "Web Components" [Online]. Available: 
https://developer.mozilla.org/en-US/docs/Web/Web_Components. [Accessed 14 04 
2021].

[9] "MQTT Version 5.0" [Online]. Available: 
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html. [Accessed 14 04 2021].

[10] "mosquitto.conf man page" [Online]. Available: https://mosquitto.org/man/mosquitto-
conf-5.html. [Accessed 18 05 2021].

[11] "Shadow DOM" [Online]. Available: https://javascript.info/shadow-dom. [Accessed 18 
05 2021].

[12] "What is COSU?" [Online]. Available: https://deviq.io/resources/articles/what-is-cosu. 
[Accessed 18 05 2021].

[13] "Dependency Injection" [Online]. Available: 
https://www.tutorialsteacher.com/ioc/dependency-injection. [Accessed 18 05 2021].

[14] "rfc4648" [Online]. Available: https://www.hjp.at/doc/rfc/rfc6455.html. [Accessed 18 05 
2021].

[15] "Redis" [Online]. Available: https://redis.io. [Accessed 18 05 2021].

[16] "Depth Camera D435 — Intel® RealSense™ Depth and Tracking Cameras" [Online]. 
Available: https://www.intelrealsense.com/depth-camera-d435. [Accessed 18 05 2021].

[17] "nodelet" [Online]. Available: http://wiki.ros.org/nodelet. [Accessed 12 05 2021].

40

https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://stenciljs.com/docs/introduction
https://www.distributed-systems.net/index.php/books/ds3/
https://www.distributed-systems.net/index.php/books/ds3/


[18] "Redis" [Online]. Available: https://datatracker.ietf.org/doc/html/rfc4648#section-4. 
[Accessed 18 05 2021].

[19] "Docker (software)" [Online]. Available: 
https://en.wikipedia.org/wiki/Docker_(software). [Accessed 12 05 2021].

[20] "Welcome to NGINX Wiki!" [Online]. Available: https://www.nginx.com/resources/wiki
[Accessed 18 05 2021].

41



Appendix 1 – Non-exclusive licence for reproduction and 

publication of a graduation thesis1

I Maksim Maksimov

1 Grant Tallinn University of Technology free licence (non-exclusive licence) for my 

thesis "Development of control and monitoring software for robots operating in a 

distributed system", supervised by Martin Rebane

1.1 to be reproduced for the purposes of preservation and electronic publication of 

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2 to be published via the web of Tallinn University of Technology, incl. to be 

entered in the digital collection of the library of Tallinn University of 

Technology until expiry of the term of copyright.

2 I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3 I confirm that granting the non-exclusive licence does not infringe other persons' 

intellectual property rights, the rights arising from the Personal Data Protection Act 

or rights arising from other legislation.

18.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's
application for restriction on access to the graduation thesis that has been signed by the school's dean, 
except in case of the university's right to reproduce the thesis for preservation purposes only. If a 
graduation thesis is based on the joint creative activity of two or more persons and the co-author(s) 
has/have not granted, by the set deadline, the student defending his/her graduation thesis consent to 
reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-
exclusive licence, the non-exclusive license shall not be valid for the period.

42



Appendix 2 – Source code of app-root component

43

import { Component, Element, h } from '@stencil/core';

@Component({
  tag: 'app-root',
  styleUrl: 'app-root.less',
  shadow: true,
})
export class AppRoot {
  @Element() el: HTMLElement;
  titleSuffix = ' - Hospital Robot Admin';

  render() {
    return (
      <main>
        <stencil-router>
          <stencil-route-switch scrollTopOffset={0}>
            <stencil-route url={['/', '/robot-ui']} component="app-robot" exact={true} />
            <stencil-route
              url="/admin"
              routeRender={() => (
                <app-admin>
                  <stencil-route url="/admin/robots/:robotId" exact={true} routeRender={data => 
<hroba-robot {...data} titleSuffix={this.titleSuffix} />} />
                  <stencil-route
                    url="/admin/robots"
                    exact={true}
                    routeRender={() => (
                      <hroba-robot-list>
                        <stencil-route-title pageTitle={`Robots${this.titleSuffix}`} />
                      </hroba-robot-list>
                    )}
                  />
                  <stencil-route
                    url="/admin/places"
                    exact={true}
                    routeRender={() => (
                      <hroba-place-list>
                        <stencil-route-title pageTitle={`Places${this.titleSuffix}`} />
                      </hroba-place-list>
                    )}
                  />
                </app-admin>
              )}
            />
          </stencil-route-switch>
        </stencil-router>
      </main>
    );
  }
}



Appendix 3 – Snippet of code from package.scripts.js file

44

const { series } = require('nps-utils');

function runFast(path) {
    return `ts-node -T -r tsconfig-paths/register ${path}`;
}

module.exports = {
    scripts: {
        ...
        /**
         * Building app into dist directory
         */
        build: {
            default: {
                script: series(
                    'nps config',
                    'nps lint',
                    'nps clean.dist',
                    'nps transpile',
                    'nps copy.tmp',
                    'nps clean.tmp',
                ),
                description: 'Builds the app into the dist directory'
            },

        },
        /**
         * Database scripts
         */
        db: {
            migrate: {
                script: runFast('./node_modules/typeorm/cli.js migration:run'),
                description: 'Migrates the database to newest version available'
            },
            seed: {
                script: runFast('./node_modules/typeorm-seeding/dist/cli.js seed'),
                description: 'Seeds generated records into the database'
            },
            drop: {
                script: runFast('./node_modules/typeorm/cli.js schema:drop'),
                description: 'Drops the schema of the database'
            },
            setup: {
                script: series(
                    'nps db.drop',
                    'nps db.migrate',
                    'nps db.seed'
                ),
                description: 'Recreates the database with seeded data'
            }
        },
        ...
    },
};


	1 Introduction 10
	2 Project overview 12
	2.1 Distributed systems 13
	2.2 Robot Operating System 14
	2.3 Hardware 15
	2.4 Requirements 16
	2.5 Technologies 17

	3 User interface development 18
	3.1 Design of the interface 18
	3.2 First prototype 20
	3.3 Using Web Components for future compatibility 20
	3.4 Android application 22

	4 Providing near real-time performance 23
	4.1 Mock server 23
	4.2 General architecture 24
	4.3 Server for communicating with the application 25

	5 Conclusion 38
	5.1 The future of the project 39

	References 40
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis 42
	Appendix 2 – Source code of app-root component 43
	Appendix 3 – Snippet of code from package.scripts.js file 44
	1 Introduction
	2 Project overview
	2.1 Distributed systems
	2.2 Robot Operating System
	2.3 Hardware
	2.3.1 Elevator

	2.4 Requirements
	2.5 Technologies

	3 User interface development
	3.1 Design of the interface
	3.2 First prototype
	3.3 Using Web Components for future compatibility
	3.4 Android application

	4 Providing near real-time performance
	4.1 Mock server
	4.2 General architecture
	4.3 Server for communicating with the application
	4.3.1 Real-time communication
	4.3.2 Request flow
	4.3.3 Database
	4.3.4 Streaming images from a camera
	4.3.5 Administration
	4.3.6 Deployment


	5 Conclusion
	5.1 The future of the project

	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis
	Appendix 2 – Source code of app-root component
	Appendix 3 – Snippet of code from package.scripts.js file

