
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Software Science

TUT Centre for Digital Forensics and Cyber Security

Tallinn 2018

ITC70LT

Amirhossein Akbari 156312IVCM

A NOVEL APPROACH FOR SECURING

HTML5 CLIENT-SIDE DATABASE,

INDEXEDDB

 Master thesis

 Olaf M. Maennel

PhD

Professor at Tallinn University of Technology

2

Author’s declaration of originality

Author’s declaration of originality is an essential and compulsory part of every thesis. It

always follows the title page. The statement of author’s declaration of originality is

presented as follows:

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Amirhossein Akbari

05.05.18

3

Abstract

In recent years, call for killing the browser extensions is arising. Many of the client-based

software are immigrating to the web applications. HTML5 is not only a simple markup

language anymore. It is regularly developing and bringing new marvelous features. One

of this new feature is client-side database IndexedDB. It is a powerful database

technology which has brilliant expandability and can handle a significant amount of data

within the browser. IndexedDB is plain text. Therefore, it is vulnerable to unauthorized

access to its content.

This thesis proposes a method for securely saving IndexedDB database contents. The

solution focuses on three different abilities. First the use of the offline and the online

mode, second being a cross-browser and third being only a native web (Pure JavaScript)

without installation of any third-party extension. IndexedDB is a quite young API, and

just a few studies have been done about its security (none of them is available now). This

research, first, opens the initial discussion by pointing out the problems and giving an

overview of other client-side databases. Then, reviewing the earlier research around

IndexedDB and address the security problems. After that showing the design concepts by

UML security extension and implementing the security framework with verification by

illustrating the result. Finally, checking the proposed solution performance and discuss

the future of the research.

This thesis is written in English and is 63 pages long, including 5 chapters, 28 figures and

3 tables.

Keywords: HTML5, JavaScript, web, security, client-side database, IndexedDB,

NoSQL, encryption

4

Annotatsioon

Uuenduslik lähenemine HTML5 kliendipoolse andmebaasi (IndexedDB) turvalisuse

tagamiseks.

Viimastel aastatel on brauseri laienduste kasutamine suurenenud. Paljud kliendipoolsed

tarkvarad on sisenenud veebirakendustesse. HTML5 pole enam ainult lihtne

märgistussüsteem. See on pidevas arengus ning toob uusi imelisi funktsioone. Üheks neist

on kliendipoolne andmebaas IndexedDB. See on võimas andmebaasi tehnoloogia, mida

saab suurepäraselt laiendada ja mis suudab brauseris hallata märkimisväärset mahtu

andmeid. IndexedDB on kõigest tekst, seetõttu on selle sisu haavatav volitusteta

juurdepääsu puhul.

Käesolev magistritöö pakub välja meetodi turvaliselt salvestada IndexedDB andmebaasi

sisu. Lahendus keskendub kolmele erinevale oskusele. Esiteks offline ja online režiimi

kasutamine, teiseks cross-browseri funktsioon ning kolmandaks olemaks lisanditeta veeb

(Pure JavaScript), millele pole installeeritud kolmanda osapoole poolt laiendusi.

IndexedDB on küllaltki noor API ning seetõttu on selle turvalisusest tehtud vaid mõned

uurimistööd (ükski neist pole praegu saadaval). Käesolev töö algab esialgse aruteluga

tuues välja probleemid ning andes ülevaate teistest kliendipoolsetest andmebaasidest.

Seejärel antakse ülevaade varasematest uuringutest, mille keskmeks on IndexedDB, ning

tuuakse välja turvalisuse probleemid. Järgnevalt keskendub magistritöö disaini

kontseptsioonidele UML turvalisuse laiendamise abil, teostatakse turvalisuse raamistik

koos tõestusega. Lõpetuseks kontrollitakse välja pakutud lahenduse teostumist ning

arutletakse magistritöö tuleviku üle.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 63 leheküljel, 5 peatükki, 28

joonist, 3 tabelit.

5

Table of abbreviations and terms

2FA Two-Factor Authentication

ACID Atomic, Consistent, Isolated, Durable of the database

API Application Programming Interface

CORS Cross-Origin Resource Sharing

CRUD create, read, update, and delete

CS Computer Science

DNS Domain Name System

DOM Document Object Model

eID Electronic Identity

HTML Hypertext Markup Language

iOS iPhone Operating System (Apple mobile operating system)

IoT Internet of Things

JS JavaScript

LAN Local Area Network

MFA Multi-Factor Authentication

MITM Man-in-the-middle attack

ms milliseconds

NoSQL non- SQL or non- relational

OpenSSL a Toolkit for the Secure Sockets Layer(SSL) and TLS

PGP Pretty Good Privacy cryptography

RDBMS Relational Database Management System

SHA Secure Hash Algorithms

sjcl Stanford JavaScript Crypto Library

SOP Same-Origin Policy

SQL Structured Query Language

W3C The World Wide Web Consortium

WAN Wide Area Network

XSS Cross-Site Scripting

6

Table of contents

1. Introduction .. 11

1.1. Research context .. 12

1.2. Motivation .. 14

1.3. Scope .. 15

2. Related work ... 17

2.1. HTML, the WEB’s core language ... 17

2.2. Database ... 18

2.2.1. SQL and NoSQL database .. 19

2.2.2. Server-side and client-side database ... 20

2.2.3. Overview of the client-side databases .. 20

2.3. Indexed Database API 2.0 ... 24

2.3.1. IndexedDB basic pattern .. 25

2.3.2. IndexedDB security .. 26

2.3.3. IndexedDB potential attacks:.. 27

2.3.4. IndexedDB security proposed solutions ... 29

3. Solution (proof of concept)... 31

3.1. Design concepts ... 31

3.2. JavaScript crypto libraries and input validation .. 36

3.2.1. JavaScript encryption libraries ... 36

3.2.2. Input validation ... 39

4. Experiment and performance.. 40

4.1. Experiment ... 40

4.2. Analyzing the performance .. 42

5. Final discussion .. 45

5.1. Conclusion ... 45

5.2. Future work .. 46

7

References .. 47

Appendix I – Assay on HTML5 IndexedDB API .. 55

Appendix II – sjcl demo source code [59] .. 59

Appendix III – AES sample.. 67

8

List of figures

Figure 1: Mobile and tablet Internet usage, worldwide. [8] ... 15

Figure 2: A simple HTML document [10] .. 17

Figure 3: Most popular databases in 2018 according to Stack Overflow survey [15] ... 19

Figure 4: An example of EU commission Cookie information to the user [20] 21

Figure 5: File API example [31] ... 22

Figure 6: File API source code [31] ... 23

Figure 7: sessionStorage example, counting user’s clicks on the button in the current

session [32] ... 23

Figure 8: localStorage example, creating and retrieving name/value pair [32].............. 24

Figure 9: IndexedDB browser support: supported, not supported, and Partial support

[35] ... 24

Figure 10: IndexedDB prefixes of implementation [37] .. 25

Figure 11: Sample Data [37] .. 25

Figure 12: Open the database, create, and add table [37] ... 26

Figure 13: The CORS mechanism [41] .. 28

Figure 14: Proposed encryption library [52] .. 30

Figure 15: The CIA triad [53] .. 31

Figure 16: Typical attacks on the client-side .. 32

Figure 17: “Graphical Misuse case constructs.” [57] ... 33

Figure 18: Misuse case diagram of the framework .. 34

Figure 19: Flowchart of the implemented security framework 35

Figure 20: Stanford JS Crypto library demo page [59] .. 38

Figure 21: Stanford JS Crypto library browser test (left Firefox 59.0.2, right Chrome

66.0.3359.117) [60] .. 38

Figure 22: A simple input validation example [63] .. 39

Figure 23: IndexedDB database plain text contents ... 40

Figure 24: XSS simple example attack scenario ... 41

9

Figure 25: IndexedDB database key and values after encryption (same data) 41

Figure 26: Summary of the page load left plain text entries, right encrypted entries 42

Figure 27: Top 10 Bottom-UP in the performance test, left plain text entries, right

encrypted entries ... 43

Figure 28: Top 10 Call Tree in the performance test, left plain text entries, right

encrypted entries ... 43

Figure 29: Data write and read performance benchmark ... 44

10

List of tables

Table 1: HTML versions [10] ... 18

Table 2: Database table example [12] .. 19

Table 3: JavaScript encryption libraries ... 37

Table 4: Write and read records time in milliseconds .. 44

11

1. Introduction

Hypertext Markup Language, HTML is the “Web’s core language for creating content

for everyone to use anywhere. “ [1]. From 1989 when Tim Berners-Lee1 since now, 2018

HTML is developing and changing drastically, and it has never been that reach to handle

most of the user dynamic and static needs in web pages.

The last version of it is 5.2 (fifth major version and second minor version) which released

by the end of 2017. HTML 5 introduces great new features which make HTML not only

a simple markup language to work with text. New elements and features which either

bring new functionality to HTML or improve it for making different, dynamic and robust

websites without using extra plugins. New features in semantics which specify precisely

what is the content of the website. MathML is one of the examples of HTML5 new

semantics’ feature which helps to work directly with mathematical formulas. In

connectivity, Web Socket and WebRTC announced to work with non-HTML data with

the server and having real-time communications and video calls. Furthermore,

multimedia on the web is more capable and advanced than ever by using new elements

such as Camera API and track elements which enables to work with subtitles and chapters.

The canvas element is supporting to illustrate graphs and other objects. Performance and

integration. Web-based protocol handlers and online and offline events are optimizing the

use of hardware and make the websites respond faster. Features such as Geolocation and

device orientation are granting the use of different devices and their functionalities. [2]

There are many other new features which have been provided, or they are under

development by W3C. However, client-side storages, in particular, IndexedDB which can

handle more complex data and has higher performance and abilities than any other client-

based database is the focus of this research.

 This research starts with introductory topics about the importance of HTML5 and its

current key role in the web. After this, it covers the different type of databases such as

client-side, server-side, SQL and NO-SQL databases. Henceforward, it would review

IndexedDB in detail. Which browsers are supporting this new API and how is it is

1 Tim Berners-Lee: https://www.w3.org/People/Berners-Lee/

12

possible to store data by IndexedDB. Following it will examine the security of

IndexedDB, and there will be a comparison with all other client-based databases. Above

all, the proposed security framework and different options for doing encryption will be

covered. Finally, verification of the implemented method and the effects on the

performance of storing data securely with all results will be shown.

1.1. Research context

“Science is an organized or systematic body of knowledge.” [3] There has been endless

discussion about Computer Science itself. Is it a science or just an “empirical discipline”?

[4] It is still indeed an ambiguous area to do research especially for junior researchers.

When junior researcher starts to find, develop, and do the real research area, there are

many confusions in the research procedure, especially for more practical approaches.

Researching computer science is more challenging than other areas, not only because

many enterprise companies are investing huge amount money and doing constant

research in this field but also the nature of computer science itself. It is tightly connected

to other sciences, and often researcher should combine different research approaches to

achieve the goals. As this research is in the more practical computer science field, it does

not consider as a classical way of doing research. However, it tries to identify the

problems and solve them by combining the robust theory and action.

A methodology is “a system of principles, practices, and procedures applied to a specific

branch of knowledge.” It is a “scientific approach that investigates, compares, contrasts,

and explains” the diverse ways that research could be conducted. This happens alongside

different methods that could be used in these processes. Whereas method is as an

“approach, procedure, and guidelines that are used in conducting research. A method

might require different tools, instruments, equipment, and such.” [5] [6]

In this research, a methodology is identifying the weaknesses by the systematic approach

and develop an experimental a proof of concept. One of the best ways to demonstrate the

mitigation of security flaws is to show the applied proof of concept solution on the

existing vulnerable system before and after the solution.

13

Research problem: Since IndexedDB is one of the newest recommended APIs of W3C,

just a little research has been done in this field. Besides, the only developed tool as a

browser extension is not available. [7] The nature of the web application in the client-side

makes everything transparent to everyone. For this reason, it is impossible to entirely

protect the front-end code as the back-end. Even by using the obfuscation and encoding

of the code, still, it is possible to abuse the client-side by understanding its functionality.

The HTML5 client-side database, IndexedDB is saving the data in plain text.

Hence, it is vulnerable to unauthorized access to the client’s storage.

The primary research question is:

How to protect the user’s information in the IndexedDB API, against a different

type of attacks which triggers to access to the user’s data in plain-text which ends

with sensitive data exposure?

A possible answer would be to have a full disk or storage encryption. Yes, it can be the

answer but just for the third-party application access, not those flaws or attack vector

which is inside the browser. Also, most of the typical users do not have any tendency to

apply any cryptography on their device’s storage, especially on mobile devices. The next

solution would be applying the encryption on database records, which would discuss in

this research in detail. The next challenge is (minor questions):

What kind of cryptography should be used for the development of the solution?

In case of using the asymmetrical cryptography, where should the private and

public keys store?

Is there any other security measure which can help to add an extra layer of

security to insure the valid input into the database?

Also:

How to apply the proposed solution on the complete offline web application which

is using IndexedDB for saving data?

14

These Hypotheses follow the earlier questions:

What kind of risk remains unsolved even after applying the solution?

Are there any new risks which appear after applying the implemented method?

Finding the security vulnerabilities with automatic scanners like Acunetix1, Nessus2 and

more advanced one like Burp Suite3 on the client-side is a very challenging task. It needs

a manual double check due to the false positive findings. Correspondingly there is no way

to have an automatic or versatile method to secure the client-side application. The only

way is just following the best practices based on the knowledge and experiences to

prevent the security problems.

It should be clarified that sometimes correlation of the leaked information could help an

attacker to meet the desired goal, not only the leaked information itself.

1.2. Motivation

The role of the client-side data storages is getting increasingly vital, especially when there

is a need to save various and complex data such as different media, video and any other

more complex data than text. Having offline storage within the browser also would help

developers to focus on the web platform of their product instead of developing for

different platforms.

Furthermore, most of the browser vendors as well as browser users, who has the website

or who uses it, all of them are desperate for having none or free plugin browsing.

Currently, when someone wants to use plugins such Adobe player or Java in the browser,

either they are not supported by the browser at all or the security warning will pop up to

inform the user the risk of using it.

The other primary reason is the significant increase of browsing the Internet on gadgets.

In October 2016, browsing the Internet on mobile devices become more than desktop

1 https://www.acunetix.com/

2 https://www.tenable.com/products/nessus/nessus-professional

3 https://portswigger.net/burp

15

usage for the first time. Therefore, any solution which is connected to the browsers should

support most of the current web browsing on the mobile devices.

Figure 1: Mobile and tablet Internet usage, worldwide. [8]

1.3. Scope

The idea of this research is implementing the solution for saving data in IndexedDB in a

secure way. The solution focuses on usability and compatibility on different well-known

platforms such as Windows, Linux, iOS, and Android without installing any extension or

add-ons.

The scope narrowed down to the possibility to have unauthorized access to the user’s

storage which is in plain text. Technical attacks such as code injections, Cross-origin

resource sharing (CORS), Cross-site scripting(XSS) as well as social engineering attacks

and unauthorized physical access to the user machine or device storage, which tends to

have illegitimate access to the user’s data.

Vulnerabilities on the server side including protection of private key are out of the scope

of this research. This includes all miss-configured and mistakes which have been done by

the developer. Moreover, all other types of attacks, such as brute force attack, cross-

directly attacks, DNS spoofing, and MITM attacks to steal the private key are not covered

by this research.

The focus of the current research is to make sure that the valid data in client side is storing

in not plain text mode and to bring essential security for saving these data with encryption.

16

This research uses one of the existence JavaScript encryption libraries, and

implementation of a new encryption method is out of the scope.

17

2. Related work

A network is the construction of information and services which are shared among

devices so-called nodes or hosts. These hosts can send and receive data, the one which is

giving a service named as a server and the other one which using those services called

client. Networks are divided into different classes based on the distance and number of

devices which can handle them. On the top of all networks, local area network or LAN,

and wide area network exists. The latter refers to coverage for the wider area. The ultimate

WAN is the Internet which connects incalculable devices such as computers, servers, all

kind of gadgets including smartphones, and the Internet of things or IoTs. [9]

2.1. HTML, the WEB’s core language

The story of HTML is stared when Tim Berners-Lee and other researchers were looking

for a solution of the problem of information accessibility and sharing at the CERN nuclear

research facility, Geneva, Switzerland in 1989. They introduced hypertext which can

enable connection among diverse sources with hyperlinks. After a while, this method

became popular among other researchers in the world and the whole connection among

these pages on the Internet named as World Wide Web. [9]

 HTML structure is based on the elements which are represented by tags.

Figure 2: A simple HTML document [10]

In the above picture, <HTML>, <head>, <title>, and <head> are the tags which

normally appear in pairs [10]

18

Since the invention of the WEB, there have been different versions of HTML:

Table 1: HTML versions [10]

2.2. Database

“Database is a collection of data.” [11] In general, there is a various form of databases

available such as rational databases, object, and object-rational databases, etc...

Based on the usage and the type of data, we need to use different databases. This research

cannot afford to discuss all of them. Silberschatz gave a comprehensive overview of

databases concepts.1 However, before going further, we need to understand two different

main type of databases in General: SQL and NoSQL.

1 - Abraham Silberschatz, Henry F. Korth, S. Sudarshan, Database System Concepts, 6th Edition, 2011,

McGraw-Hill Education

19

2.2.1. SQL and NoSQL database

SQL or structured query language is a programming language which has been designed

for working with relational database management system or RDBMS. SQL structure

consists of tables and “tables are divided into rows and columns.” [12]

Table 2: Database table example [12]

NoSQL or non- SQL is a database which enables saving and retrieving data not only with

tables, it could also refer to Not only SQL meaning that it may have similar queries which

are using in SQL. NoSQL is playing a leading role in the database systems when high

scalability and working with big data is demanding. [13] NoSQL databases are using

different methods for saving and retrieving the data. One of them is key/value pairs. It is

unstructured, non-rational and non- object-oriented. The key is the attribute for the data,

and the value could be the data or pointer to any file itself or its address. [14]

Based on the Stack Overflow’s 2018 survey about databases, RDBMS are still the most

common than NoSQL databases such as MongoDB. [15]

Figure 3: Most popular databases in 2018 according to Stack Overflow survey [15]

20

However, NoSQL databases are emerging significantly because they can provide

impressive performance in the speed and the size. This “high availability” has an adverse

effect on ACID (Atomic, Consistent, Isolated, Durable) of the database. [16]

Furthermore, when large transactions are needed considering enterprise companies such

as Google, Amazon, Microsoft, and Facebook, it is also the first choice of saving data.

Being suitable for small and enterprise companies with no worries for the design and the

type of the data which will be saved are other exciting points to use NoSQL instead of

SQL database. [17]

 Some of the popular NoSQL databases are MongoDB, Google’s Big Table, CouchDB,

and Cassandra. Considering the drawbacks of NoSQL database over Rational one,

immaturity, no availability of standard query language, “no standard interface” and

challenging maintenance should be mentioned. [18]

2.2.2. Server-side and client-side database

The WEB’s databases are divided into two main categories: server-side and client-side.

Server-side which is the processing and storing data occurs on the server, and client-side

is the opposite, meaning that it happens on the user’s machine. The other way to classify

the web’s databases are online (mostly as a server-side) and offline ones (often as a client-

side). The former needs a connection to the Internet, and the latter can be accessed without

any connection.

2.2.3. Overview of the client-side databases

As mentioned before, based on the usage and the data type we can choose which database

to use. There are many reasons to consider a client-side database such as:

• They are more responsive than server-side. It will be quicker to access and save

the data locally. Hence it is helpful to increase the performance in comparison

with the server-side.

• They can be used in an offline mode. It will also make the web application useful

when there is a weak connection, accessibility and availability improvement.

• They will reduce the server load as well as bandwidth usage.

21

• They give us a chance for saving previous activity of the user on the website and

customization of the website such a widgets and color scheme or font size. [19]

HTTP Cookie is the most popular client-side database. It uses the stateful session to

connect the server and the client for their needs. Each Cookie is 4 KB, and it stores in a

user’s browser.

 Although, it is a simple and well-supported mechanism; it is lack of basic privacy and

security requirements. The European Commission has defined some basics to how to use

Cookies. [20]

Figure 4: An example of EU commission Cookie information to the user [20]

Cookie poisoning and cookie injection are some examples of security issues. The former

is a type of attack which attacker manipulate the cookie contents and bypass the security

system. The latter happens if an attacker can inject code or string to HTTP header to

execute the commands on the server. [21] [22]

 The productivity and flexibility are too weak in comparison with other competitors. It

also has extra overhead since it should react by each HTTP requests between server and

client. [23] [24]

Flash Cookie is a type of cookie which is no longer in use due to plugin-installation. As

mentioned in an Introduction part, most of the browsers already stopped to support Flash

plugins or just give limit access to them. [25]

22

 Google Gears is another type which Google stopped its development to focus more on

HTML5 APIs such as IndexedDB, File API. [26]

Web SQL Database is no longer in maintenance by Web Application Working Group,

and they recommend using Web Storage and IndexedDB. [27]

JavaScript Variables considered as a most simple choice of storing data on the client-

side. However, it has not enough features with too many limitations to consider as a

proper database. This story applies to windows.name property too. [28]

File API is currently a W3C Working Draft. It presents File interface which “provides

information about files and allows JavaScript in a web page to access their content. “ [29]

The Blob (Binary Large Object) interface is an „immutable “raw data. File and Blob both

should occur asynchronously; this prevents web applications blocking and freezing. [30]

Figure 5: File API example [31]

23

var holder = document.getElementById('holder'),
 state = document.getElementById('status');

if (typeof window.FileReader === 'undefined') {
 state.className = 'fail';
} else {
 state.className = 'success';
 state.innerHTML = 'File API & FileReader available';
}

holder.ondragover = function () { this.className = 'hover'; return false; };
holder.ondragend = function () { this.className = ''; return false; };
holder.ondrop = function (e) {
 this.className = '';
 e.preventDefault();

 var file = e.dataTransfer.files[0],
 reader = new FileReader();
 reader.onload = function (event) {
 console.log(event.target);
 holder.style.background = 'url(' + event.target.result + ') no-repeat
center';
 };
 console.log(file);
 reader.readAsDataURL(file);

 return false;
};
</script>

Figure 6: File API source code [31]

Web storage API is W3C recommendation which represents two similar mechanisms as

HTTP session cookies.

▪ sessionStorage saves data for just one session, and after closing the browser tab,

data is lost.

if (sessionStorage.clickcount) {
 sessionStorage.clickcount =
Number(sessionStorage.clickcount) + 1;
} else {
 sessionStorage.clickcount = 1;
}
document.getElementById("result").innerHTML = "
Number of the clicks on the button is " +
sessionStorage.clickcount + " time(s) in this
session.";

Figure 7: sessionStorage example, counting user’s clicks on the button in the current session [32]

24

localStorage stores data without expiry even if the user closes the tab.

// Store
localStorage.setItem("lastname", "Smith");
// Retrieve
document.getElementById("result").innerHTML =
localStorage.getItem("lastname");

Figure 8: localStorage example, creating and retrieving name/value pair [32]

2.3. Indexed Database API 2.0

Indexed Database API 2.0 or IndexedDB is the most exciting recommended candidate

among all the databases, when it comes to large-scale data, without limitation. It enables

the developer to build web applications with powerful query capabilities. IndexedDB is

suitable for storing a considerable amount of data such as online labs, libraries, or any use

of a web application without the need for permanent internet connection like widget, to-

do lists. [33]

IndexedDB uses many transactions for to store and retrieve data. It is an object-oriented

JavaScript database. The objects which support by IndexedDB are all structured close

algorithm objects including All primitive types, Boolean object, String object, Date, Blob,

File, FileList, ImageData, Array, ObjectMap, etc. „The structured clone algorithm is an

algorithm defined by the HTML5 specification for copying complex JavaScript objects.

“ [34] Furthermore the efficiency of saving data in IndexedDB is the same as storing the

file in the OS. [21]

Browser support of two different version of IndexedDB could be found in the following

reference, here is the summary:

Figure 9: IndexedDB browser support: supported, not supported, and Partial support [35]

25

2.3.1. IndexedDB basic pattern

The IndexedDB basic pattern is:

1. Open a database.

2. Create an Object Store in the database.

3. Start a transaction and request a database operation, like add or retrieve.

4. Waiting for the completion of the operation by listening to the DOM event.

5. Do something with the results. [36]

First, we need to add the following prefixes:

var indexedDB = window.indexedDB ||
window.mozIndexedDB || window.webkitIndexedDB ||
window.msIndexedDB;

//prefixes of window.IDB objects

var IDBTransaction = window.IDBTransaction ||
window.webkitIDBTransaction ||
window.msIDBTransaction;

var IDBKeyRange = window.IDBKeyRange ||
window.webkitIDBKeyRange || window.msIDBKeyRange

if (!indexedDB) {

 alert("Your browser does’nt support a stable
version of IndexedDB.")

}

Figure 10: IndexedDB prefixes of implementation [37]

var userData = [

 { id: "1", name: "Tapas", age: 33, email:
"tapas@example.com" },

 { id: "2", name: "Bidulata", age: 55, email:
"bidu@home.com" }

];

Figure 11: Sample Data [37]

26

Then Open the database, and after that create and add the data to the table:

var db;

var request = indexedDB.open("databaseName", 1);

request.onerror = function(e) {

 console.log("error: ", e);

};

request.onsuccess = function(e) {

 db = request.result;

 console.log("success: "+ db);

};

request.onupgradeneeded = function(e) {

}

request.onupgradeneeded = function(event) {

 var objectStore =
event.target.result.createObjectStore("users",
{keyPath: "id"});

 for (var i in userData) {

 objectStore.add(userData[i]);

 }

}

Figure 12: Open the database, create, and add table [37]

2.3.2. IndexedDB security

Each browser saves the local databases in different directories, but the critical problem is

even after deleting the browsers cash, it is possible to recover the database file itself and

have access to its data.

W3C has already defined some privacy and security requirements and information in

IndexedDB API 2.0 documentation:

▪ User tracking: By blocking third-party storage, expiring stored data, treating

persistent storage as cookies, site-specific safe-listing of access to databases,

Origin-tracking of stored data, and shard blocklist.

27

▪ Cookie resurrection: IndexedDB should consider separately from HTTP

session cookies, which enables the use of both features as an extra backup for each

other.

▪ The sensitivity of data: All stored data should consider as a sensitive data.

Information such as emails, appointments in the calendar, to-do lists, „health

records or other confidential documents” could be possibly saved on the user

machine by this API.

▪ DNS spoofing attacks: By using Transport Layer Security or TLS certificates it

is possible to mitigate this type of attacks to make sure about the domain of the

host.

▪ Cross-directory attacks: „There is no feature to restrict the access by pathname

even if a path-restriction feature was made available “

▪ Implementation risks: Allowing third-party website to read and write the data

could cause information leakage, and spoofing correspondingly. Hence W3C is

highly recommended to follow the original model which not lets adversary access

to the user’s information. [38]

IndexedDB is based on same-origin policy or SOP. SOP forces origins (port and host) of

document or script to have a connection with a specific domain, hence the data is not

accessible by other sources. [39]

2.3.3. IndexedDB potential attacks:

Any attack on the client-side which triggers to get access to the user’s storage considers

as a potential attack since IndexedDB is saving the data in plain text without any

encryption. Therefore, it is necessary to add an extra security layer on it.

Examples of attacks which may lead to information leakage or data disclosure in

IndexedDB mentioned by Kimak such as Cross-origin resource sharing or CORS, Cross-

site scripting or XSS, social engineering, and physical access. [40]

Cross-origin resource sharing or CORS is a method which adds extra information to

HTTP headers to permit the user to access to different origins (domain) which currently

is in use. [41] It is regularly forbidden to interact with cross-domain requests than same-

28

origin requests. However, this feature allows handling of different origins (cross-domain

requests) between the client and the server.

Figure 13: The CORS mechanism [41]

An attacker could change the value of requested HTTP header Origin and gain

unauthorized access to the web client. [42]

Cross-site scripting or XSS is a type of code or script injection to the web applications.

Three common types of these attacks are stored XSS, reflected XSS and DOM-based1

XSS. Stored XSS is an injected malicious code which is “permanently stored on the target

servers.” Reflected XSS needs user interaction such as responding to the error message

or any other response from the user to input to the server. DOM-based XSS which “is

executed because of modifying the DOM environment.”, meaning that attacker could

manipulate any objects in the DOM to execute his malicious script in the user’s browser.

[43] [44] [45]

Social engineering attack where attacker tried to deceive the target to achieve his goal

and finally gain unauthorized access to the system. It could accomplish by technical or

1 Document Object Model or DOM. “When a web page is loaded, the browser creates a Document Object

Model of the page.” [67]

29

non-technical ways. Sending phishing email, calling by phone, real-life chats are most

common examples of social engineering attacks.

Physical access attack could be stolen user’s machine such as a laptop, mobile phones,

or other any gadget, unattended logged in the machine.

Browser and third-party application zero-day attacks: zero-days are unrevealed

vulnerabilities which can be abused by an attacker. In the browsers, there have always

been some zero-days since they are the primary bridge between user’s machine or device

and the Internet. Some vendors already understood the criticality of the zero-days. Thus,

they proposed bug bounties. Giving the example of one of the freshest zero-day was

LinkedIn Autofill1 feature bug. [46]

2.3.4. IndexedDB security proposed solutions

There has been very little research about IndexedDB until now. This section reviews those

available ones to the public.

First, the research includes of reviewing the role of IndexedDB in the past, present and

future. It States the role of Cookies, eCommerce, and mobile eCommerce as a motivation

for the development of IndexedDB in the past. Current situation of IndexedDB has been

analyzed by a different point of views such as Improving “Cookies functionality,” usage

in mobile devices and offline-usage. The future of IndexedDB showed as not a suitable

storage for storing personal information. Besides of encryption using multifactor

authentication (MFA) or two-factor authentication (2FA) proposed as solutions. [21]

Second, the proposed security model consists different layers which means even if

“authentication process comprised” it is not possible to intercept and read the data. The

model is using hashing and encryption by Stanford JavaScript Library as an extension of

the browser. [47] It gets a secure login, encrypt the data, store the public key on both

client and server side and private key in the server, decryption of data, and finally secure

deletion. Evaluation of security model had done by performing XSS attack scenario

before and after adding security model. [40]

1 https://www.linkedin.com/help/lms/answer/65688/linkedin-autofill-setup-guide?lang=en

30

The solution is a theoretical framework proposed in the development of IndexedDB. It

divides into distinct parts such as:

▪ Client-side data encryption

▪ Code analysis

▪ Input validation

▪ SOP (same-origin policy)

The framework is a browser extension. Using JavaScript encryption which is based on

EAS or SHA-256 with verification hash. [48] Code Analysis consist of static and dynamic

analysis. “Input and output validation” have done with taking strings and returning the

proper value. [40]

Third, the solution consists of two parts, writing and reading. Authentication has done

by using OAuth [49], OpenSSL [50] , Crypto++ [51] crypto libraries for encryption. [52]

 In the writing phase, ensuring that the secure connection is established, open a connection

to the database, encryption with a library which generates a public key (on both sides),

and a private key on the server side, and finally saving the file and closing the connection.

In the reading phase, checking user credentials, get the public key from a user and do the

key pairing, decrypt the data, show the data, and close the connection. [52]

Figure 14: Proposed encryption library [52]

31

3. Solution (proof of concept)

This section explains how the solution is defined and designed. After that have an

overview of JavaScript cryptography solution and input validation on the client-side.

3.1. Design concepts

Confidentiality (Just authorized users can access to the information), integrity (Preventing

authorized changes and manipulation), and availability (assuring that the services are

available and users have access to their information) are three principal concepts in

information security.

Figure 15: The CIA triad [53]

Since this research is based on the client-side database, the CIA triad impact would be:

- Confidentiality: Information disclosure from the user’s device. It could be the

browsers history, clipboard, cookies, files, social engineering and finally all plain-

text client-side databases.

- Availability: Any attacks or security flaw which leads to lack of access to the

information by an authorized user for legitimate access, such as taking advantage

of browser vulneraries, popup floods, spam pages.

- Integrity: Integrity could threaten by any attacks which lead to inject any code

on the user’s browser or manipulate the data. XSS, CORS and all type of injection

in client-side could consider as a negative impact on integrity.

32

The framework would cover the confidentiality impact; however as shown in (figure 15),

(the CIA triad), they are overlapping in some areas.

The attack in information security is defined as “attempt to destroy, expose, alter, disable,

steal or gain unauthorized access to or make unauthorized use of an asset (anything

valuable for an organization).” [54]

OWASP has an extensive list of the different attack scenarios. 1 Most of the references

divide them into two main categories, active and passive. However, one conceivable way

to categorize the web attack scenarios is to divide them into to category: server-side and

client-side.

Client-side Server-side

Attacker

Code injection (SQL injection & XSS)

Content spoofing

Plain-text storage

CORS

Social engineering

Content manipulation

Browser vulnerabilities

ClickJacking
CSRF

OS vulnerabilities

Figure 16: Typical attacks on the client-side

(Figure 16) Shows the common attacks on the client-side. Storing sensitive information

on the client side is not recommended at all, however correlation of information can help

an attacker to establish the attack. The simple example of this type of attacks is when the

attacker had already some specific information about the victim or targeted system, and

1 https://www.owasp.org/index.php/Category:Attack

33

getting access to the insensitive information can help to have a better estimate about other

information or vice versa.

As it is explicitly highlighted in the (figure 16), the purpose of this research is mitigation

against unauthorized access to the plain-text storage client-side database, IndexedDB.

However, the other type of technical and non-technical ones such as code injections,

contents manipulation and even device theft which also can trigger to have illegitimate

access to the data on the client storage could be mitigated by this solution.

There are also some risks which remain without any solution. These types of residual

risks are inevitable due to the nature of the client-side. The best example is cross-directory

attacks and DNS spoofing attacks. About the latter, even the solution checks the secure

connection no one can “guarantee that a host claiming to be in a certain domain really is

from that domain.” [38]

Use cases are used to show the “functional requirements” in software development and

design. It helps to clearly define and demonstrate the communication between so-called

actors, which are the roles or users of the system. [55] “A Misuse case is the inverse of a

use case.” [56]

Figure 17: “Graphical Misuse case constructs.” [57]

34

The system is a proof of concept security framework, the misuse case diagram is:

Figure 18: Misuse case diagram of the framework

▪ The actor is the user of the browser.

▪ The misactor is an attacker who is abusing the vulnerability.

▪ The vulnerability is saving plain text data in client browsers’ database.

▪ The use case is the transactions in IndexedDB.1

▪ The misuse cases Illegitimate physical access, social engineering, and technical

attacks.

▪ The security criterion is the confidentiality of the user data.

▪ The security use cases are validation the input and applying cryptography.

▪ The impact is a negation of the confidentiality of the user data.

▪ 1 (As explained previously in 2.3.1 any interaction with IndexedDB needs

transactions, so it is not the database transaction)

35

Figure 19: Flowchart of the implemented security framework

(Figure 19) shows the encryption phase of the security framework. In decryption phase,

everything is the opposite of the flowchart. Since one of the important advantages of

IndexedDB is running in offline mode, therefore the framework is supporting both online

and offline mode. However, in the offline mode user needs to input the passphrase

because saving the private key in the client-side is not secure.

36

3.2. JavaScript crypto libraries and input validation

This section discusses different options of JavaScript cryptography. Following that the

input validation in the client-side will be explained.

3.2.1. JavaScript encryption libraries

The next challenge is choosing among different JavaScript encryption libraries. Most of

the JavaScript encryption libraries are not up to date. Therefore, they have not mentioned

in the list above.

Comparing several aspects of various client-side encryption libraries such as

performance, flexibility, and reliability needs another research to be done. Furthermore,

even trying each of them takes considerable time and often it is unsuccessful due to not

being up to date.

Below there is a list of the most well-known ones among developers with the brief

description:

37

Table 3: JavaScript encryption libraries

JavaScript Encryption library name Description

Web Cryptography API

JavaScript API which handles basic cryptographic operations.

However, it cannot handle electronic identity (eID) or online

banking which are using specific certificates and hardware

cryptography.

https://www.w3.org/TR/WebCryptoAPI/

(sjcl) Stanford JavaScript Crypto

Library

JavaScript Crypto library introduced by Stanford Computer

Security Lab. It is designed for having a rapid, robust, easy and

cross-platform library.

https://bitwiseshiftleft.github.io/sjcl/

crypto-js

The simple interface of JavaScript cryptographic

implementation. Not up to date anymore, recommends forge.

https://code.google.com/archive/p/crypto-js/

Forge
An implementation of TLS in JavaScript.

https://github.com/digitalbazaar/forge

Ohdave
Complete RSA in JavaScript.

http://ohdave.com/

OpenPGP in JavaScript
Public key encryption in JavaScript.

https://www.hanewin.net/encrypt/

jsbin
RSA and ECC in pure JavaScript.

http://www-cs-students.stanford.edu/%7Etjw/jsbn/

js-nacl

JavaScript high-level API wrapper based on NaCL.1

https://github.com/tonyg/js-nacl

https://cr.yp.to/highspeed/coolnacl-20120725.pdf

Considering the speed, flexibility, and ease of use of sjcl Stanford JavaScript Crypto

library, this framework is based on sjcl or Stanford JavaScript Crypto library. It is

optimized and compressed to under 6.4 KB with remarkable performance. The industry-

standard AES algorithm is used at 128, 192 or 256 bits; the hash function is SHA256; the

authentication code is HMAC; the authentication code is PBKDF2, and the authenticated-

encryption modes are CCM and OCB. [58] The library also has a demo and the browser

test:

1 Networking and Cryptography library, http://nacl.cr.yp.to/

38

Figure 20: Stanford JS Crypto library demo page [59]

Figure 21: Stanford JS Crypto library browser test (left Firefox 59.0.2, right Chrome 66.0.3359.117) [60]

39

3.2.2. Input validation

Input validation is a mechanism which helps to guarantee the input of the proper form of

data in the information system. It is highly recommended to confirm the input in the first

steps by input validation technics exactly after the system received any data (received any

input). However, it should not be the main security consideration for code injections and

other types of attack which are used by inputting invalid data into the system. In web

applications, all of the non-trustworthy inputs should handle the input validation such as

HTTP and XML requests, HTTP POST, and database queries. Input validation could be

a simple string check, enforcing regular expressions, whitelisting and JavaScript input

validation which happens in the client-side. [61] [62] For instance, it could be checking

the input for a proper pattern such as a date, email, and … below there is a simple input

validation which requires entering a username between 4 to 8 characters:

<form>

 <div>

 <label for="uname">Choose a username:
</label>

 <input type="text" id="uname" name="name"
required size="10"

 placeholder="Username"

 minlength="4" maxlength="8">

 </div>

 <div>

 <button>Submit</button>

 </div>

</form>

Figure 22: A simple input validation example [63]

Must be noted there is no such a general input validation which can validate all type of

inputs. Thus, it is a part of the front-end developer responsibility to confirm the input

before allowing the user to input any data into the system.

The server-side input validation applies to the server-side which is not the focus of this

research.

40

4. Experiment and performance

This section shows the results of the applied framework. Before going into details and

starting this research, the idea was to use Intel XDK 1 as an IDE and environment to

develop the code. However, the idea of not using anything than the browser and text editor

became more interesting. For testing the compatibility of the code, the code ran on

different browsers. Finally, Google Chrome, Mozilla Firefox, Opera, and Safari have

been chosen for the compatibility test. The test environment is the latest Chrome browser

(Version 66.0.3359.117) hosting by windows 10 machine. The machine is Lenovo T460S

with Intel i5 5300, 8 Gigabyte DDR4 RAM and TOSHIBA THNSFJ256GDNU A SSD

hard disk. The server simulation is simple npm http-server. 2 However, the testing and the

performance check is just on the client-side to omit the effect of the server and network

latency.

4.1. Experiment

The experiment runs the small script3 by dexie.js. It is a minimalistic, lightweight wrapper

for IndexedDB which has near-native performance. [64] The first script stores the data in

a standard way without encryption.

Figure 23: IndexedDB database plain text contents

1 https://software.intel.com/en-us/xdk/docs/release-notes-information-intel-xdk

2 https://www.npmjs.com/package/http-server

3 https://github.com/amirgole6

41

The attack vector can be any mentioned attack scenarios, however for having clearer

snapshot the XSS in IndexedDB which does not have a proper input validation consider

as follow:

function user(){

var resource = location.hash.substring(1);

db.users.get("user",resource);

example = db.users.get("user");

document.getElementById("div1").innerHTML=user;

}

</script>

<body onload="action()">

<div id="div1"></div>

</body>

Figure 24: XSS simple example attack scenario 1

The same username and password have been stored with encryption (Appendix III). It

should be noted that this is just an example and saving credentials on the client-side is

against the security considerations, however, in some cases if the developer does not have

any other option (complete offline application) it might be used.

Figure 25: IndexedDB database key and values after encryption (same data)

1 The idea is from OWASP local storage testing.

42

It is also possible to see the tables and its entries (even after deleting them and recover

back) with third party application such as SQLite manager. A possible solution for

mitigating this risk would be using the full disk encryption. However, the database content

is readable and accessible by the browser itself, therefore, even after full disk encryption,

the risk of attacks from the browser side like code injections remains. However, after

applying this solution on the database keys and values, the risk of illegitimate access

inside the browser is mitigated too.

4.2. Analyzing the performance

Performance check cannot be done by just showing the result of inserting and reading

data into the database. The running and parsing the script itself also should consider in

performance analysis. Therefore, the best way of doing it is checking the performance by

the browser. Almost all the current browsers have recording the performance option in

DevTools (Inspect Element). Using Incognito Mode (Private Browsing) is ensuring the

clean run without extra load of any extension or script. The experiment runs without any

user interaction. Hence the database entries are reading by JavaScript and put in the table

and read it as an output of the console (console.log). All used libraries run locally on the

machine too. The reference which is used in this research is based on Performance

Analysis Reference by Google. [65]

Figure 26: Summary of the page load left plain text entries, right encrypted entries

As shown in (figure 26) applying the encryption puts an extra 56 ms load in the whole

process of storing and reading database entry plus the parsing and running the whole

script.

43

Figure 27: Top 10 Bottom-UP in the performance test, left plain text entries, right encrypted entries

The Bottom-Up tab shows those activities “where the most time was directly spent.” [65]

Figure 28: Top 10 Call Tree in the performance test, left plain text entries, right encrypted entries

The Call Tree tab illustrates “the root activities that cause the most work.” Root activities

are those makes the browser to do something such as execution of the handler. [65]

Most of the performance checks and benchmarks concepts are applicable to SQL

databases. One of the most famous ones is checking the performance of the CRUD

(create, read, update, and delete) on the database. IndexedDB is a NoSQL database, and

it has its own way of doing the database transactions, therefore, performing the CRUD

and checking the performance was not possible. Furthermore, performance analysis in

details needs another research to be done.

The performance check of the proposed solution is a bit challenging because not only the

speed of database transaction should be monitored but also the script running time.

Therefore, the performance experiment is based on writing and reading the database

entries in a loop. The time has been measured before starting and after finishing the loop.

44

The sample entries are including “User + i” and “Password + i” which i is the counter of

the loop.

Table 4: Write and read records time in milliseconds

Test

No. Number of

the records

Plain text

(ms)

Proposed

solution

(ms)

1 1 2 5

2 100 5 53

3 500 14 109

4 1000 21 202

5 5000 87 515

6 10000 126 1185

7 50000 554 4760

8 100000 956 9008

9 500000 6350 66187

Figure 29: Data write and read performance benchmark

As it was anticipated, the proposed solution has an extra overhead on database

transactions. However, the question of how optimized is this solution remains

unanswered since comparing the performance with other solutions is not possible due to

unavailability of them.

45

5. Final discussion

This part discusses the last thoughts and future ideas.

5.1. Conclusion

There is no general answer to the primary question “How to protect the user’s information

in the IndexedDB API, against a different type of attacks which triggers to access to the

user’s data in plain-text which ends with sensitive data exposure?”. However. This

research has shown with the help of applying an extra layer of security such as validating

the input, checking the secure connection and applying the cryptography, it is possible to

add extra security to IndexedDB. The research had plenty options for applying

cryptography, but most of the options can be used in the server-side and not the client-

side. For online application it uses private and public key pairing way. The private key is

stored on the server side and each time user logins it fetches the key from the server. For

offline application generating the key based on the passphrase or only using the

passphrase being used. Even though the W3C recommendation is to store the keys in

IndexedDB, the risk of the data loss remains unanswered if user or developer decides to

remove the database which key has been stored there. [66]

The idea behind of the research was to understand whether it is possible to protect the

user’s data in client-side storage IndexedDB and how it could be accomplished to protect

the user’s information against technical and non-technical attacks which leads to illegal

access to the sensitive or insensitive information. Even accessing the insensitive

information could help an adversary to correlate exposed information to establish more

complex attacks.

 The only earlier work did not focus on the cross-platform (cross-browser) without

installation of any extension and also did not support both offline and online applications.

This research would be a significant solution which can support different browsers and

both offline and online usage. In verification part, it has been shown that the database

contents are storing in the user’s machine in a secure way. Often applying security leads

to having an overload on the existing system. However, by using the proposed security

platform, securing the database entries happened with a little overload on the

performance. Due to nature of the client-side application, there are still some risks which

46

cannot be mitigated by not only this framework but also any other available solutions,

such as abusing the pathname to get unauthorized access to the database contents. The

ideal situation for all data which stored on the client-side would be applying complete

security layer on it, giving the example of how https (HTTP secure over TLS or SSL) was

first an option but nowadays it is a must for the websites. In the final word, every single

effort matters when there is no standard way to protect user’s data in this database. This

work could consider as an example for developers as well as other researchers to get some

ideas, use it, expand it, and finally have better security in their applications.

5.2. Future work

The future work for the proposed solution is to write a complete security wrapper library

for IndexedDB which can handle different JavaScript crypto libraries. Considering use of

other types of authentication and security elements such as eID (the best example would

be Estonian ID card) could be another possibility for further research. In the end,

considering the optimization, the solution could use different JavaScript crypto libraries

and compare the results. A current active research which can consider as future work is

writing a script as an extension for Burp Suite1 to evaluate IndexedDB security by this

scanner.

1 https://portswigger.net/burp

47

References

[1] "W3C," [Online]. Available: https://www.w3.org/html/. [Accessed March

2018].

[2] "HTML5," Mozilla MSN Web Docs, [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5.

[Accessed March 2018].

[3] R. K. Jain and H. C. Triandis, Management of research and development

organizations: managing the unmanageable, vol. 27, John Wiley & Sons, 1997.

[4] A. Newell and H. A. Simon, Computer science as empirical inquiry: Symbols

and search, ACM, 2007.

[5] H. Hassani, "Research Methods in Computer Science: The Challenges and

Issues," arXiv preprint arXiv:1703.04080, 2017.

[6] T. X. Bui, "Decision support systems for sustainable development," in Decision

Support Systems for Sustainable Development, Springer, 2002, pp. 1-10.

[7] "IDB-Encryption," Github, 25 October 2016. [Online]. Available:

https://github.com/stefankim/IDB-Encryption/blob/master/README.md.

[Accessed April 2018].

[8] "Mobile and tablet internet usage exceeds desktop for first time worldwide,"

StatCounter GlobalStats, 1 November 2016. [Online]. Available:

http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-

desktop-for-first-time-worldwide. [Accessed March 2018].

[9] P. M. Carey, New Perspectives HTML5 and CSS3 7th edition, Boston:

Cengage Learning, 2017.

[10] W3C, "HTML Introduction," W3C, [Online]. Available:

https://www.w3schools.com/html/html_intro.asp. [Accessed March 2018].

48

[11] S. Kedar, Database Management Systems, Technical Publications, 2009.

[12] "Tables, rows, and columns," IBM, [Online]. Available:

https://www.ibm.com/support/knowledgecenter/SSPK3V_6.3.0/com.ibm.swg.i

m.soliddb.sql.doc/doc/tables.rows.and.columns.html. [Accessed April 2018].

[13] J. Lourenço, B. Cabral, J. Bernardino and M. Vieira, "Comparing NoSQL

Databases with a Relational Database: Performance and Space," vol. 2, pp. 1-

14, 9 2015.

[14] P. Atzeni, F. Bugiotti and L. Rossi, "Uniform access to NoSQL systems,"

Information Systems, vol. 43, pp. 117-133, 2014.

[15] E. Team, "Most popular databases in 2017 according to StackOverflow survey,"

EverSQL, 26 June 2017. [Online]. Available: https://www.eversql.com/most-

popular-databases-in-2017-according-to-stackoverflow-survey/. [Accessed

March 2018].

[16] B. G. Tudorica and B. Cristian, A comparison between several NoSQL

databases with comments and notes, 2011, pp. 1-5.

[17] P. Emmons, "5 Reasons to Switch to a NoSQL Database," DragonSpears, 25

May 2016. [Online]. Available: https://www.dragonspears.com/blog/5-reasons-

to-switch-to-a-nosql-database. [Accessed March 2018].

[18] A. Nayak, A. Poriya and D. Poojary, "Type of NOSQL databases and its

comparison with relational databases," International Journal of Applied

Information Systems, vol. 5, pp. 16-19, 2013.

[19] "Client-side storage," Mozilla, [Online]. Available:

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-

side_web_APIs/Client-side_storage. [Accessed March 2018].

[20] E. Commission, "Cookies," European Commission, [Online]. Available:

http://ec.europa.eu/ipg/basics/legal/cookies/index_en.htm. [Accessed April

2018].

49

[21] S. Kimak and J. Ellman, "The role of HTML5 IndexedDB, the past, present and

future," in Internet Technology and Secured Transactions (ICITST), 2015 10th

International Conference for, 2015.

[22] G. Buja, K. B. A. Jalil, F. B. H. M. Ali and T. F. A. Rahman, "Detection model

for SQL injection attack: An approach for preventing a web application from

the SQL injection attack," in Computer Applications and Industrial Electronics

(ISCAIE), 2014 IEEE Symposium on, 2014.

[23] Z. Kessin, Programming HTML5 Applications: Building Powerful Cross-

Platform Environments in JavaScript, O’Reilly Media, 2011.

[24] M. MacDonald, HTML5: The Missing Manual (1st ed.), O’Reilly Media, 2011.

[25] G. Keizer, "How Apple, Google, Microsoft and Mozilla will eliminate Adobe

Flash," Computerworld, 31 July 2017. [Online]. Available:

https://www.computerworld.com/article/3211437/web-browsers/faq-how-

apple-google-microsoft-and-mozilla-will-eliminate-adobe-flash.html.

[Accessed April 2018].

[26] A. Boodman, "Stopping the Gears," Google, 03 11 2011. [Online]. Available:

http://gearsblog.blogspot.de/2011/03/stopping-gears.html. [Accessed April

2018].

[27] W3C, "Web SQL Database," W3C, 18 November 2018. [Online]. Available:

https://www.w3.org/TR/webdatabase/. [Accessed April 2018].

[28] C. Buckler, "HTML5 Browser Storage: the Past, Present and Future," SitePoint,

09 October 2013. [Online]. Available: https://www.sitepoint.com/html5-

browser-storage-past-present-future/. [Accessed April 2018].

[29] sideshowbarker, "File," Mozilla, 02 March 2018. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/File. [Accessed April

2018].

[30] W. W. Draft, "File API," W3C, 26 October 2017. [Online]. Available:

https://www.w3.org/TR/FileAPI/#intro. [Accessed April 2018].

50

[31] H. demos, "File API," HTML5 demos, [Online]. Available:

https://html5demos.com/file-api/. [Accessed April 2018].

[32] W3schools, "HTML5 Web Storage," W3C, [Online]. Available:

https://www.w3schools.com/html/html5_webstorage.asp. [Accessed April

2018].

[33] M. W. Docs, "IndexedDB API Basic concepts," Mozilla, [Online]. Available:

https://developer.mozilla.org/en-

US/docs/Web/API/IndexedDB_API/Basic_Concepts_Behind_IndexedDB.

[Accessed April 2018].

[34] MDN, "The structured clone algorithm," Mozilla, [Online]. Available:

https://developer.mozilla.org/en-

US/docs/Web/API/Web_Workers_API/Structured_clone_algorithm. [Accessed

April 2018].

[35] C. I. use, "Can I use IndexedDB," Can I use, [Online]. Available:

https://caniuse.com/#search=indexedb. [Accessed April 2018].

[36] M. Contributors, "Using IndexedDB," Mozilla, [Online]. Available:

https://developer.mozilla.org/en-

US/docs/Web/API/IndexedDB_API/Using_IndexedDB. [Accessed April 2018].

[37] M. K. Swain, "Html5 IndexedDB," The Code Project, [Online]. Available:

https://www.codeproject.com/Articles/757939/Html-IndexedDB. [Accessed

April 2018].

[38] W3C, "Indexed Database API 2.0," W3C, [Online]. Available:

https://www.w3.org/TR/IndexedDB-2/#persistence-risks. [Accessed April

2018].

[39] MDN, "Same-origin policy," MDN, [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy.

[Accessed April 2018].

[40] S. Kimak and J. Ellman, "HTML5 IndexedDB Encryption: Prevention against

Potential Attacks," International Journal of Intelligent Computing Research,

vol. 6, pp. 621-630, 2015.

51

[41] MDN, "Cross-Origin Resource Sharing (CORS)," Mozilla, [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS. [Accessed April

2018].

[42] OWASP, "CORS OriginHeaderScrutiny," OWASP, 16 08 2016. [Online].

Available: https://www.owasp.org/index.php/CORS_OriginHeaderScrutiny.

[Accessed April 2018].

[43] OWASP, "Cross-site Scripting (XSS)," OWASP, 06 03 2018. [Online].

Available: https://www.owasp.org/index.php/Cross-site_Scripting_(XSS).

[Accessed April 2018].

[44] OWASP, "DOM Based XSS," OWASP, [Online]. Available:

https://www.owasp.org/index.php/DOM_Based_XSS. [Accessed April 2018].

[45] MDN, "Cross-site scripting," Mozilla, [Online]. Available:

https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting.

[Accessed April 2018].

[46] A. Burlacu, "LinkedIn Bug Could Have Compromised Users' Personal Data,

Including Emails And Phone Numbers," Tech Times, 21 April 2018. [Online].

Available: http://www.techtimes.com/articles/225782/20180421/linkedin-bug-

could-have-compromised-users-personal-data-including-emails-and-phone-

numbers.htm. [Accessed April 2018].

[47] S. C. S. Lab, "Stanford Javascript Crypto Library," Stanford Computer Security

Lab, [Online]. Available: https://bitwiseshiftleft.github.io/sjcl/. [Accessed April

2018].

[48] R. E. Morse, P. Nadkarni, D. A. Schoenfeld and D. M. Finkelstein, "Web-

browser encryption of personal health information," BMC medical informatics

and decision making, vol. 11, p. 70, 2011.

[49] A. Parecki, "The OAuth 2.0 authorization framework," The OAuth 2.0,

[Online]. Available: https://oauth.net/. [Accessed April 2018].

[50] O. S. Foundation, "Welcome to OpenSSL!," OpenSSL Software Foundation,

[Online]. Available: https://www.openssl.org/. [Accessed April 2018].

52

[51] W. D. a. J. Walton, "Crypto++® Library 6.1," Crypto++ community, 22 01

2018. [Online]. Available: https://www.cryptopp.com/. [Accessed April 2018].

[52] S. Kimak, J. Ellman and C. Laing, "Some potential issues with the security of

HTML5 indexedDB," 2014.

[53] J. Andress, The Basics of Information Security second edition, Syngress, 2014.

[54] I. O. f. Standardization, "ISO/IEC 27000," [Online]. Available:

http://standards.iso.org/ittf/PubliclyAvailableStandards/c041933_ISO_IEC_270

00_2009.zip. [Accessed April 2018].

[55] I. Jacobson, Object-oriented software engineering: a use case driven approach,

Pearson Education India, 1993.

[56] G. Sindre and A. L. Opdahl, "Eliciting security requirements with misuse

cases," Requirements engineering, vol. 10, pp. 34-44, 2005.

[57] R. Matulevicius, "Unpublished Draft," in Fundamentals of Secure System

Modelling, Springer International Publishing, 2017, pp. 105-116.

[58] E. Stark, M. Hamburg and D. Boneh, "Symmetric cryptography in javascript,"

in Computer Security Applications Conference, 2009. ACSAC'09. Annual,

2009.

[59] M. H. a. D. B. Emily Stark, "https://bitwiseshiftleft.github.io/sjcl/demo/,"

Stanford Computer Security Lab, [Online]. Available:

https://bitwiseshiftleft.github.io/sjcl/demo/. [Accessed April 2018].

[60] "SJCL browser test," Stanford Computer Security Lab, [Online]. Available:

https://bitwiseshiftleft.github.io/sjcl/browserTest/. [Accessed April 2018].

[61] OWASP, "Input Validation Cheat Sheet," OWASP, [Online]. Available:

https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet. [Accessed

April 2018].

[62] T. Scholte, W. Robertson, D. Balzarotti and E. Kirda, "Preventing input

validation vulnerabilities in web applications through automated type analysis,"

53

in Computer Software and Applications Conference (COMPSAC), 2012 IEEE

36th Annual, 2012.

[63] MDN, "Input value length," Mozilla, [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/text.

[Accessed April 2018].

[64] D. Fahlander, "Dexie.js," Dexie.js , [Online]. Available: http://dexie.org/.

[Accessed April 2018].

[65] K. Basques, "Tools for Web Developers - Performance Analysis Reference,"

Google, [Online]. Available: Performance Analysis Reference. [Accessed April

2018].

[66] W3C, "Key Storage," W3C, [Online]. Available:

https://www.w3.org/TR/WebCryptoAPI/. [Accessed April 2018].

[67] W3C, "JavaScript HTML DOM," W3C, [Online]. Available:

https://www.w3schools.com/js/js_htmldom.asp. [Accessed April 2018].

[68] M. Rosica, "Example of authentication between client(js) and server(php),"

[Online]. Available: http://cryptojs.altervista.org/js-php/. [Accessed April

2018].

54

55

Appendix I – Assay on HTML5 IndexedDB API security

56

57

58

59

Appendix II – sjcl demo source code [59]

60

61

62

63

64

65

66

67

Appendix III – AES sample

<!doctype html>
<html>
 <head>
 <!-- Include Dexie -->
 <script src="./dexie.js"></script>
 <script type="text/javascript" src="./cryptography.js"></script>
 <script>
 //
 // Define the database
 //
 var db = new Dexie("thesis_database");
 db.version(1).stores({
 users: 'username,passwd'
 });
 var Crypt = new Crypt(); // constructor
 //
 // Put some data into it
 //
 var ciphertext = Crypt.AES.encrypt("Amir");
 var passwdtext = Crypt.AES.encrypt("123456");
 db.users.put({username: ciphertext, passwd: passwdtext}).then (function(){
 //
 // stored and read
 //
 return db.users.get(ciphertext);
 }).then(function (user) {
 //
 // Display the result
 //
 var plaintext = Crypt.AES.decrypt(user.username);
 var passwdplain = Crypt.AES.decrypt(user.passwd);
 //alert (plaintext + " password is " + passwdplain);
 console.log (plaintext + "password is " + passwdplain);
 }).catch(function(error) {
 //
 // catch any error
 //
 alert ("Error": " + error);
 });
 </script>
 </head>

</html>

	1. Introduction
	1.1. Research context
	1.2. Motivation
	1.3. Scope

	2. Related work
	2.1. HTML, the WEB’s core language
	2.2. Database
	2.2.1. SQL and NoSQL database
	2.2.2. Server-side and client-side database
	2.2.3. Overview of the client-side databases

	2.3. Indexed Database API 2.0
	2.3.1. IndexedDB basic pattern
	2.3.2. IndexedDB security
	2.3.3. IndexedDB potential attacks:
	2.3.4. IndexedDB security proposed solutions

	3. Solution (proof of concept)
	3.1. Design concepts
	3.2. JavaScript crypto libraries and input validation
	3.2.1. JavaScript encryption libraries
	3.2.2. Input validation

	4. Experiment and performance
	4.1. Experiment
	4.2. Analyzing the performance

	5. Final discussion
	5.1. Conclusion
	5.2. Future work

	References
	Appendix I – Assay on HTML5 IndexedDB API security
	Appendix II – sjcl demo source code [59]
	Appendix III – AES sample

