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1 Introduction
We live in an interconnectedworld. The internet has been a disruptive technology that hasenabled the interconnection and intercommunication of people and computers world-wide. However, the tremendous advances on data-based communication have generatednew threats and security challenges for individuals and organizations. Malicious software,shortened as malware, is one of the most prominent threats. This dissertation exploresthe application of machine learning techniques to tackle relevant cyber security issues re-lated to two highly targeted systems by malware, namely, mobile devices and internet-of-things devices. In the mobile domain, malware has been used to infiltrate mobile phoneswith the intention of stealing, hijacking, or corrupting the wealth of sensitive data thatthese devices store to provide immediate financial gain for the attackers (e.g., sendingpremium SMS messages). In the Internet of Things (IoT) domain, malware has been usedto compromise IoT devices with the primary objective of using them to perpetrate large-scale cyber attacks (e.g., the record-breaking distributed denial-of-service (DDoS) attackof 3.47 Tbps targeting an Azure customer in Asia [95]). In both cases, the attackers exploitthe systems’ capabilities for their benefit, generating direct revenue for them or substan-tial losses for the targeted entity.

Due to the constant evolution of the threat landscape, the traditional countermea-sures against malware, such as signature-based detection systems, have become inef-fective, unable to catch up with malware developments, especially with zero-day, obfus-cated, and evolved malware. To address this issue, machine learning techniques havebeen explored in both cyber domains with remarkable success.
Mobile malware focuses mainly on Android devices due to the open nature of thesystem and the large target audience who use Android devices. In this regard, ML-basedmalware detection solutions for mobile devices have been proposed since the initial de-velopment of the Android OS. Using a wide variety of techniques, the vast majority ofthese detection models are induced with static snapshots of historical data aiming to de-tect future malware. These static models assume that the underlying properties of thedata distribution do not change over time. However, the threat landscape targeting An-droid devices is dynamic, and ever-evolving since the early days of the popular mobileoperating system. Malware families evolve in a constant spiral of sophistication, revolvingaround the large attack surface exposed by mobile devices. This shift in the threat land-scape presents detection models with an expiration date, and they may become obsoleteover time should adaptive actions not be taken to address the underlying data changes,a phenomenon called concept drift. Despite this fact, most proposed solutions neglectconcept drift and its degenerative impact on the learning models over time. Addressingthis significant research gap, concept drift handling and its characterization for effectivelong-time detection performance of Android malware are the main issues tackled in thisdissertation. Besides, the small proportion of studies that addressed concept drift issuesin Android malware detection, did not investigate the impact of different timestamps onthe data modeling and the overall performance of the learning models over time. Times-tamp selection, a critical component for effective data modeling and concept drift han-dling, that has not previously been addressed in the related research, is comprehensivelyexamined in this dissertation. Lastly, Androidmalware research using behavioral data (i.e.,dynamic features) is based on the assumption that the behavior of the apps is consistentacross devices, thus explaining the heterogeneity of different configurations of devicesand operating system versions found in research studies and enabling the generalizationof their systems to any Android device data. Simply put, it is assumed that the natureof the devices (i.e., real device or emulator) and the OS versions used do not matter and
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that the logged data is consistent across device configurations, allowing effective cross-device malware detection. However, the results of [3] that considered different kinds ofdevices in the same setting challenge this assumption. In this regard, the validity of thecross-device behavioral consistency and its impact on the ML-based detection models isexplored in this dissertation for system calls, the most commonly used dynamic featureset in Android detection systems [70].
On the other hand, IoT malware is characterized by using more simplistic yet effec-tive attack vectors. Due to the lack of security measures and proper management thatcharacterize IoT devices, their compromise is usually achieved through the exploitationof well-known but not patched vulnerabilities or the usage of default admin credentials.Once compromised, the bot is used to amplify cyber attacks over the network which maycause significant financial and reputation losses. ML-based intrusion detection systemshave been proposed to detect andmitigate the generated attacks. However, despite theireffectiveness, these reactive measures can still yield significant losses for the targetedsystem. Early identification of botnet formation prior to attack delivery (i.e., spreadingand C&C communication) and awareness of the main attack aspects could be valuable inthis respect to improve the detection models employed in such resource-constrained de-vices and prevent attacks from occurring. These research gaps and areas not thoroughlyexplored in the related IoT botnet literature are addressed in this dissertation.
The objectives of this doctoral dissertation and its main contributions to the field areprovided in the following sections.

1.1 Research objectives
This thesis is composed of two parts with different but related research objectives. Inboth cases, for Android malware detection, as well as for IoT botnet detection, the un-derlying research objective is to enhance the effectiveness and efficiency of the machinelearning-based detection systems designed for such tasks. However, specific research ob-jectives are defined for each application domain. They are described in the subsequentparagraphs.
1.1.1 Mobile malware detection objectives
The specific research objectives related tomobilemalware detection tackled by this thesisare defined as follows:

• RO1: Generation of a data set suitable for concept drift and cross-device detectionissues exploration.
• RO2: Demonstration and characterization of concept drift in Android data dynamic(system calls) and static (permissions) feature spaces.
• RO3: Application of an ML-based solution to handle effectively concept drift forAndroid malware detection.
• RO4: Evaluation of different timestamps for effective concept drift handling andmodeling.
• RO5: Assessment of the validity of the cross-device postulate and its implicationsfor effective detection.
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1.1.2 IoT botnet detection objectivesThe specific research objectives related to IoT botnet detection guiding the work per-formed in this thesis are defined as follows:
• RO6: Evaluation of feature selection techniques and post-hoc interpretation meth-ods for enhanced attack detection.
• RO7: Application of supervised and unsupervised ML-based methods for early IoTbotnet detection.
• RO8: Evaluation of active learning strategies for early IoT botnet detection.

1.2 Contribution to the field
This thesis is based on a collection of peer-reviewed scientific publications published inreputed scientific journals and international conferences. The primary objective of thisthesis is to enhance the performance in terms of effectiveness and efficiency of the ma-chine learning-based detection systems designed for Android malware detection and IoTbotnet detection tasks. In this regard, the main contributions of this dissertation to thecyber security field are:

1. The generation of KronoDroid, a novel, and publicly available data set that enablesthe exploration of concept drift and cross-device detection issues for Android mal-ware detection for the whole Android historical timeline (i.e., since 2008).
2. The thorough statistical analysis of the differential features and discriminatory fac-tors between benign and malware Android applications.
3. The demonstration and characterization of concept drift in Android malware detec-tion for distinct feature spaces (i.e., system calls, permissions and static API calls).
4. The comparison and thorough evaluation of the impact of timestamps as key factorsto model and handle concept drift effectively.
5. The demonstration that cross-device behavioral consistency can not be assumedfor system calls-based Android applications data.
6. The enhancement of an automated method to handle concept drift effectively forAndroid malware detection in different feature spaces, yielding long-term high de-tection performance and robustness against concept drift and imbalanced data is-sues.
7. The application and demonstration of the benefits of the active learning approachto concept drift handling for efficient and effective Android malware detection.
8. The generation of guidelines and recommendations to design enhanced Androidmalware detection systems.
9. The application of feature selection techniques and interpretation methods for abetter understanding of the phenomenon and induction of enhanced ML-basedmodels for attack detection in the IoT botnet domain.
10. The demonstration that MedBIoT data set can be used to detect IoT botnet for-mation at early stages of botnet deployment, thus preventing the nefarious conse-quences of IoT-based attacks.
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11. The application and demonstration of the benefits of the active learning approachfor early IoT botnet detection in SOC environments.
For the sake of clarity, Table 1 provides the mapping of the chapters of this documentto the corresponding research objectives, publications, and contributions of this disserta-tion.

Table 1: Mapping among thesis chapters, research objectives, publications, and contributions to thefield of this doctoral dissertation
Chapter Research Objectives Publications Contributions5 RO1 I, II, III, IV 1, 26 RO2, RO3, RO4 V 3, 4, 67 RO2, RO3, RO5 VI 5, 88 RO5 VII 59 RO2, RO4 VIII 3, 410 RO4 IX 3, 411 RO3 X 712 RO6 XI, XII 913 RO7, RO8 XIII, XIV, XV 10, 11

1.3 Thesis structure
This thesis is divided into 14 chapters and split into two parts, i.e., Part I and Part II, cover-ing 2 research topics. Briefly summarized, after four general introductory chapters, Part I,about Android malware detection, encompasses Chapters 5 to 11, whereas Part II, aboutIoT botnet detection, includes Chapters 12 and 13. Chapter 14 summarizes the main con-clusions and provides future work.A brief description of the content of each chapter is provided as follows.

• Chapter 1, Introduction, provides a brief overview of the problem statement, theresearch objectives and the main contributions of this research work.
• Chapter 2, Learning under concept drift, provides background information aboutthe impact of concept drift in learning models, its formal definition and main ty-pologies.
• Chapter 3, Dissecting Android malware detection, provides themain characteristicsof Android malware detection research in the context of observed research gapsand related works.
• Chapter 4, A brief on IoT botnet detection, provides background information aboutIoT botnets and a summary of related works in the IoT botnet detection literature.
Part I, About Android Malware Detection.

• Chapter 5, KronoDroid: a historical Android data set, describes the content of theworks that lead to the generation of KronoDroid and the main features, method-ological workflow and analysis of the KronoDroid data set.
• Chapter 6, Concept drift on behavioral data: detection, handling, and characteri-zation, demonstrates and characterizes concept drift for Android behavioral data(i.e., system calls) and proposes a method to handle it effectively.
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• Chapter 7, Concept drift and cross-device behavior: Implications for effective de-tection, explores the combination of two of the main challenges for effectivelong-term Android malware detection, namely, concept drift and cross-devicebehavioral detection.
• Chapter 8, Cross-device behavioral consistency: Benchmarking and implicationsfor effective detection, describes and reports the results of the benchmarkingsetup that enabled the testing of the cross-device behavioral consistency postu-late on a varied set of Android devices.
• Chapter 9, Leveraging the first line of defense against malware: Android securitypermissions, tackles and characterizes concept drift and malware family evolu-tion in the permissions feature space.
• Chapter 10, On the relativity of time: A study of timestamps for effective Androidconcept drift handling, compares and describes the impact of different times-tamps on Android malware detection under concept drift constraints.
• Chapter 11, Applying active learning to handle data evolution in Androidmalwaredetection, explores the usage of the active learning approach to deal with con-cept drift for long-term effective Android malware detection.

Part II, About IoT Botnet Detection.
• Chapter 12, IoT botnet attack detection, evaluates the usage of feature selectiontechniques and interpretation methods to enhance IoT botnet attack detectionsystems.
• Chapter 13, IoT botnet attack prevention, explores the usage ofMedBioT data setfor early stage IoT botnet detection and the active learning approach as a meansto prevent IoT botnet-based attacks.

• Chapter 14, Conclusions and future work, provides the main conclusions and out-lines future work.
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2 Learning under concept drift
This section provides background information about concept drift, its formal definition,and its main typologies.
2.1 Static models for a dynamic world
The vast majority of learningmodels are static. That is, they are constructed under the as-sumption that the input data is steady and consistent over time (i.e., stationary data); asa result, learning models are constructed using previous data with the goal of effectivelycoping with future data. These models are generated to reflect the problem domain asit was then the model was formed, and not expecting significant changes or variabilityover time [102]. However, the world is dynamic, and non-stationary data distributionscan be found in many problem domains. The evolution of data over time adds additionalcomplexity to the data modeling process that, if not addressed, might impact the gener-alization capabilities of the models induced and their performance on future data. Thecritical impact of the temporal dimension on the learning models can lead to model ob-solescence over time. Due to the dynamic development of cyber attacks brought on bythe continuous conflict between attackers and defenders, the corresponding detectionmodels are susceptible to concept drift issues.
2.2 Concept drift definition
Concept drift is the phenomenon in which the statistical properties of relevant data in aproblem domain change over time in an unforeseeable way [71]. Formally, concept driftcan be defined as follows:Given a time period [t0, t1] and a set of data instances belonging to that period St0,t1 =
{dt0 , ...,dt1}, where di = (xi,yi) is a single observation, xi = (x1

i ,x
2
i , . . . ,x

n
i ) ∈ X is the fea-ture vector, yi ∈ Y is the target label, and St0,t1 follows a certain distribution Ft0,t1(X,Y).In this setting, concept drift is observed at t2 if Ft0,t1(X,Y) ̸= Ft2,∞(X,Y), and denoted as

∃t : Pt(X,Y) ̸= Pt+1(X,Y) [71].Based on this definition, concept drift at time period ti can be equated as the change inthe joint probability of X and Y at time ti, expressed as Pti(X,Y). As the joint probabilitycan be decomposed in two components, Pti(X,Y) = Pti(X)×Pti(Y |X), concept drift canbe originated from three sources [71]:
1. Pt(X) ̸= Pt+1(X) and Pt(Y | X) = Pt+1(Y | X). In this case, there is a shift in thedata distribution, Pt(X), that has no impact on the posterior probability, Pt(Y | X),thus not affecting the decision boundary of the model. This phenomenon is namedvirtual concept drift and it is depicted as case 1 in Figure 1.
2. Pt(X) = Pt+1(X) and Pt(Y | X) ̸= Pt+1(Y | X). In this case, the data distributionremains unchanged but the drift in the posterior probabilitywill change the decisionboundary and lead to a decrease in learning accuracy. This phenomenon is namedreal concept drift and it is depicted as case 2 in Figure 1.
3. Pt(X) ̸= Pt+1(X) and Pt(Y | X) ̸= Pt+1(Y | X). In this case, the change in the datadistribution (i.e., virtual concept drift) coexists with a change in the decision bound-ary (i.e., real concept drift). As these changes affects the decision boundary, thisphenomenon is also reflected as real concept drift and it is depicted as case 3 inFigure 1.
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Figure 1: Sources of concept drift

As can be observed in Figure 1, only the real concept drift changes the decision bound-ary of the learningmodel provoking the obsolescence of the previousmodel. Real conceptdrift refer to changes in P(Y | X), which may happen with or without a change in P(X)[32]. In virtual concept drift, also called feature space drift or covariate shift, the under-lying data distribution is changed without affecting P(Y | X). From a predictive perspec-tive, only the shift that affects the decision boundary, i.e., prediction decision, requiresthe adoption of adaptive measures [32].
2.3 Types of concept drift
The changes in data distribution leading to concept drift can occur in different forms andspeeds over time. Figure 2 illustrates in a one-dimensional toy example the four maintypologies of concept drift [71] and the outliers case (i.e., blips), which is usually not con-sidered true concept drift but can present a remarkable challenge for proper concept drifthandling [32, 83].

Figure 2: Types of concept drift patterns and the outliers case, based on [32, 71, 83]

The basic concept drift typologies, depicted in Figure 2, are briefly described in the
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following points.
• Sudden drift: the switch to a new concept occurs abruptly, within a short period oftime.
• Incremental drift: an old concept changes slowly over time through many interme-diate concepts before reaching a new concept.
• Gradual drift: a new concept gradually replaces an old one over a period of time.In the transition phase both concepts coexist.
• Reocurring concepts: historical, previously seen concepts may reoccur after sometime.
• Blips: singular random deviations or outlier cases appear in the data distribution.
A combination of concept drift typologies is frequently observed in practice, evenwhile adaptive learning solutions designed to address concept drift issuesmay explicitly orimplicitly specialize in particular subsets of concept drift, such as sudden non-reoccurringdrifts [32]. Additionally, concept drift might last for an extended period andmay not occurat a particularmoment. In this case, intermediate conceptsmay arise during the transitionbetween the old concept and the new concept. The intermediate concept can be inter-preted as a mixture of both concepts, like in the incremental drift, or one of the old orthe new concept, as in the gradual drift [71]. In general, blips are not considered conceptdrift, thus no adaptive measures should be taken to address such cases [32].

2.4 The impact of concept drift
Predictive models under concept drift influence require the implementation of adaptivesolutions to detect and react to the changing environment, otherwise, their performancewill degrade over time. As time goes on, the knowledge of the decision model mightneed to be updated including the new data, or be completely replaced to address thenew scenario [32]. If no adaptive measure is taken, the model might become obsolete,and completely ineffective in dealing with the new incoming data.In general, concept driftmethods should be able to detect concept drift as it occurs andperform an adaptive change according to the severity and region of the drift to handle thenew concept properly [71]. Detecting and understanding concept drift, including knowingwhere, how, and where the drift occurred is essential information that is used as input toimplement drift adaptation solutions that extend the life of the machine learning-basedsolution. In this regard, the generation of a new model to substitute an obsolete modelwhen global drift is detected (i.e., concept drift affecting most of the feature space), theusage of a model ensemble for recurring concept drifts, and the adjustment of existingmodels to address regional drift (i.e., concept drift is localized only in a limited area of thewhole feature space) are common approaches to handle emerging concept drift [71].
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3 Dissecting Android malware detection
Machine learning-based Android malware detection models are built using static and dy-namic features extracted from Android applications (i.e., apk files) [70].

Static features are acquired without executing the app, generally extracted from thesource code or the apk bundle. Features such as security permissions, API calls, intents,and activities, which can be collected using static analysis tools, fall within this category.In general, static features are swift and easy to collect in an automated fashion. However,the detection systems built based on these features are prone to be bypassed by zero-dayand sophisticated malware, especially when obfuscation and encryption techniques areused.
The extraction of the so-called dynamic features requires the app to be installed andexecuted, enabling the capture of the real behavior of the running app in a live environ-ment. Features such as system calls and network flow data are collected using this ap-proach. In general, the acquisition of dynamic features is a time-consuming and challeng-ing task. However, they tend to generate more robust and effective detection systems.
There exists a large body of research related to Android malware detection [70]. Amyriad ofmethods, ranging from formal verificationmethods to deep learning, have beenproposed to generate robust and effective detection systems. The related literature in thefield reports high performance metrics to support the suitability of their approaches totackle the Android malware detection task effectively. Therefore, from a broad perspec-tive, the Android malware detection task may seem an already solved issue from the ma-chine learning challenge point of view. However, a closer inspection of the state-of-the-arttechniques evidences remarkable research gaps. These issues are briefly explained in thefollowing sections and constitute the core research performed leading to this dissertation.

3.1 Neglecting the impact of time: concept drift
The vast majority of ML-based Android malware detection solutions proposed in the re-lated literature are static models built using snapshots of data from the Android histori-cal timeline, usually using the same data sets. MalGenome [113] and Drebin [11] are themost used data sets for Android malware research. Despite their small size and contain-ing outdated data (i.e., both were collected before 2013), they have been utilized as themain sources of malware samples in the related literature, and even in recent publica-tions. Even though some studies complemented these data with more recent and largerdata sets, such as Android Malware Dataset (AMD) [103], to mitigate data-related issues[54] and increase the representativeness of the data set, they still relied on incomplete,relatively old, and short snapshots of malware data from the entire Android historicaltimeline, which ranges from 2008 to the present date. In addition to the static data is-sue, the common practice used in machine learning to handle data sets that consists ofmixing all the data and splitting them into two randomly selected disjoint data sets (i.e.,training/testing sets), thus disregarding apps’ historical location in the Android timeline,undermines historical coherence and yields significantly biased and historically incoherentresults [2, 82]. For instance, this happens when the testing set contains past data with re-spect to the training set or when the training setmay contain future data also representedin the testing set. Only a very limited quantity of studies in the relevant literature haveconsidered the usage of distinct and historically coherent snapshots of Android historyfor the training/testing split. However, they show significant time gaps between them orother temporal inconsistencies (e.g., malware and benign samples do not belong to thesame historical time frame).
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Consequently, even though most of the proposed detection systems in the literaturesupport their detection methods with great performance metrics, the aforementioned is-sues pose serious doubts about the generalization capabilities and effectiveness of thesesolutions to detect evolved and recent malware for a long time. In conclusion, the ma-jority of the literature regarding Android malware detection neglect concept drift and itsdegenerative impact on the proposed detection models.
The impact of the time variable on data and malware family evolution has been ig-nored in the vast majority of Android malware research studies. Just a few studies dealingwith Android malware detection have considered the concept drift issue and proposedmachine-learning solutions that adapt to changes in the data and are able to minimizeits detrimental effect over time. In this regard, even though several general approacheshave been proposed to detect data drift [58, 16, 82], all the specific proposed solutionsdealt with API calls [78, 80, 22, 108, 112, 65, 21], an inherently static feature that can alsobe acquired dynamically. None of the concept drift-related studies considered dynamicfeatures such as system calls, which may enable the induction of more robust systems, asthey are relatively immune to obfuscation and encryption techniques that canmore easilybypass static API-based detection systems.
A direct consequence of neglecting concept drift is the absence of timestamped datasets available for Android malware research. None of the available data sets in the re-search domain provide information about the specific historical context to which the sam-ples belong, which might be distinct from the one in which they were collected.
Timestamps are the central elements behind concept drift handling and its properanalysis as they enable the temporal placement of the sample, aiming to provide a reliabletemporal context.
In this regard, even though some concept drift-related studies did not disclose thetimestamp approach used [80], two approaches are observed in the literature: the com-pilation time and VirusTotal’s first seen. The former is an internal timestamp that relatesthe app to the creation or compilation time of the apk bundle. Despite being appointed asthe most reliable timestamp in the past [82], and used in related research [82, 16, 108, 21]it has become a non-usable approach as themajority of the apps released nowadays havethis timestamp set at 1980 [27]. Even though internal timestamps could be deemed accu-rate, they are prone to third-party manipulation, which could lead to temporal misplace-ment. To prevent timestamp tampering, robust temporal approaches can be achievedusing external timestamps. Virustotal’s first seen, also referred to as appearance or sub-mission time in the literature, dates the application with the datetime it was first receivedby the VirusTotal scanning service. This timestamp has been used in the related literature[65, 112, 22] because of its robustness and easy acquisition. However, it is prone to signif-icant delay and temporal misplacement due to the required proactive behavior from theuser to generate the timestamp for the app (i.e., submission of the file).
Besides, despite the importance of timestamp selection to handle concept drift ef-fectively, a related issue in the literature is the absence of research studies exploring theimpact of timestamps alternatives or timestamp selection in the effectiveness of the de-tection models to handle concept drift. The concept drift-related studies in the field didnot assess or considered timestamp selection issues nor any alternative to a single times-tamp, thus neglecting its impact and essential role in the success of the detection systemto adapt to emerging concept drift.
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3.2 Explainability: aiming for a better understanding
Explainability or interpretability methods have been used to comprehend the decisionprocesses used by the ML-based detection systems on their predictions (i.e., XAI). Under-standing the rationale behind the model’s decisions aims to enhance the trust of expertsin the decision systems (i.e., establishing why a prediction was made or detecting modelbias), and meet potential legal requirements regarding algorithmic outcomes for certainuse-cases (e.g., medical practice); however, it has also been found useful to improve exist-ing detection systems, for instance, in ransomware detection [86]. The revision of modeloutputs can help to enhance detection by understanding the underlying processes in thedata. Despite the vast body of research on the application ofmachine learning techniquesto Android malware detection, there is an absence of research regarding the usage of ex-plainability methods to assess and understand the predictions made by Android malwaredetection systems [61]. The majority of the focus in the related research concerns perfor-mance, disregarding the reasons behind the model’s output. Even though some recentstudies are found in the field [60, 52], none of them used XAI methods to explain, inter-pret or describe the evolution ofmobilemalware over time and the related phenomenon,concept drift.
3.3 Consistent cross-device behavior
The usage of dynamic features to describe Android apps requires the execution of thesample in a sandboxed environment. Considering the plethora of real devices, Androidemulators, and operating system versions that coexist at any given moment, locating arepresentative combination of device and OS version to conduct the data acquisition is anarduous task.System calls are the most commonly used dynamic features for Android malware de-tection [70]. System calls are the mechanism used by running software to request a ser-vice from the OS kernel. In Android platforms, system calls enable the collection of thereal behavior of the running app by capturing the information flow among the OS layers[24]. System calls are an example of pure dynamic features, meaning that its acquisitioncan only be achieved through the execution of the app in a live Android environment. Forthis purpose, real devices and emulators might be used as acquisition platforms. A realdevice is an actual physical phone running an Android OS version, whereas an emulator isa software running on a host computer that simulates almost all the capabilities of a realdevice [7]. Both types of devices have been employed for collecting data in the related lit-erature, with no one execution platform having a distinctly dominant position. The varietyof collection devices observed ranges from the usage of a single [107, 6, 85] or multiplereal devices [5, 104, 100] to the exclusive usage of emulators, using either specialized An-droid sandboxes [31, 51] or general-purpose Android emulators [24, 111, 97, 23, 94, 55].Even thoughmany different combinations of data sources (i.e., acquisition platforms), dy-namic features and algorithms, have yielded significant success in the Android malwarediscrimination task, the single usage of any of the approaches shows advantages and lim-itations. They are briefly described as follows:

• Emulators are easy to deploy, manage, and they fit perfectly in automated analy-sis and detection systems [24], enabling for the mimicking of almost all real devicecapabilities in a wide variety of virtual devices and Android versions without ac-tually having each real device [7]. However, malware with anti-sandbox evasioncapabilities can deceive them by not triggering malicious actions if an emulated en-vironment is detected [68]. Although some solutions provide enhancements on this
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issue [97], they generally provide limited interaction (i.e., specific triggering eventsmight not be possible such as SMS messages or SIM card detection [31]) and fail toinstall apps that do not support x86 or x86-64 architecture libraries.
• Real devices aremore difficult tomanage and integrate into automated systems. Forinstance, restarting the device to run every sample in a clean device can be time-consuming, rooting can brick the device, and ensure the same exact conditions forall tests might not be possible [67]. However, they provide full interaction with theapp, they are inherently immune to anti-sandbox techniques, and showmuch fewerincompatibility issues.
The numerous acquisition platforms, operating system versions, and configurationsdescribed in the related literature demonstrate the presence of an underlying assumptionconcerning dynamic data. These studies axiomatically conceive the dynamic behavior ofan app as fully consistent across devices [67] and Android versions [20, 96], even explicitlystated, and, consequently, that the nature of the devices (i.e., emulators or real devices)and theOS version usedmake no difference to the app’s collected behavior. This axiomaticcross-device behavioral consistency explains the heterogeneity observed regarding An-droid platforms and OS versions used in the related research and the lack of commonselection criteria in the experimental setups.However, the results of the studies that have experimented with both kinds of deviceschallenge the validity of the cross-device behavioral consistency postulate. For instance, in[4], when API calls and intents, usually analyzed as static features, were captured dynam-ically, real devices were found to provide more reliable and stable features for malwaredetection than emulators, thus leading to a more effective detection outcome.

3.4 Android malware: a complex and ever-evolving threat landscape
The standard Android malware detection research study proposes a novel method in-duced and validated using a static and limited snapshot of Android data. If dynamic fea-tures are used, they are collected from a single acquisition device. Then the data aremixed and randomly split to train and validate the model. Usually, a high-performancemetric is reported (e.g., over 90% accuracy) to support the effectiveness of the methodof detecting Android malware and validate the novel work. However, these results onlydemonstrate the effectiveness of the proposed method to detect Android malware in alimited and likely unrepresentative data set. Staticmodels could work well if the data fea-tures remain constant; however, they are prone to degenerative performance when theyare applied to dynamic data scenarios. Android data are dynamic, the threat landscapehas been consistently changing since the inception of Android andwill continue to changedue to the constant battle between attackers and defenders, the large attack surface ex-hibited by these devices, and the constant change of features performed in every officialAPI release. Consequently, neglecting concept drift, timestamps, historical coherence, andcross-device behavior related issues poses severe concerns regarding the generalization ofsuch proposed methods to future and evolved data. This complex, dynamic world cannotbe captured properly using static methods, and adaptation is required to achieve long-lifeeffective Android malware detection methods. The exploration of the aforementionedissues constitutes the core part of this dissertation (i.e., Part I, About Android MalwareDetection).
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4 A brief on IoT botnet detection
An IoT botnet is a specific type of computer botnet in which the compromised devicesare Internet of Things devices, thus presenting analogous schemes and dynamics as com-puter botnets. In this regard, when a device has its vulnerabilities exploited, thus beingcompromised, it becomes a bot. Bots are grouped in a large community of compromiseddevices, called a botnet. A botnet is typically under the control of a malicious actor, thebotmaster. The botmaster controls remotely the bots over the Internet, using command& control (C&C) servers [93]. This privileged access and control are unauthorized, as thereis no consent or awareness from the real owner of the compromised device.IoT botnets are used to perpetrate a wide range of network-based cyber attacks, frommassive SPAM and phishing campaigns to distributed denial-of-service (DDoS), the mostcommon use case of botnets. A DDoS attack targets the availability of online resources,such as websites or services. It seeks to deplete the resource by saturating the targetedserver or network. As a result, the crashedmachine or network may become unavailableand unresponsive to legitimate users requests for an extended period of time until theincident is resolved or the attack stops [105]. The attack can cause not only significantfinancial losses to companies and individuals but also severe loss of trust and reputation[101].Due to the serious effects of botnet attacks, research studies in the field have con-centrated on improving intrusion detection capabilities for IoT devices, seeking to over-come the devices’ limited hardware and software resources and security-related capabil-ities [110]. Machine learning-based solutions and methods have been proposed for sucha purpose with remarkable success for multiple botnet attacks [76, 92], but with the ma-jor focus on the Mirai botnet [74, 25]. Feature selection and dimensionality reductiontechniques have also been used to optimize the feature sets, mainly using filter featureselection methods [79, 15].In consonance with the attack focus by research studies, all the available data setsused to build and test ML-based IoT intrusion detection systems simulate attack scenarioswhere the malicious label is represented by attack data and the benign label with normalIoT traffic. With minor exceptions [64], all the publicly available data sets for IoT botnetresearch [76, 81, 17, 59] reproduce Mirai, the most prominent IoT botnet and perpetra-tor of record-breaking attacks [8], and its antecessor BashLite [73]. The related data setssimulate different attacks that botnets can perform and also the scanning attack for therecruitment of newmembers, as part of the post-attack stage. Besides, the available datasets share additional characteristics such as only deploying a small number of IoT devices,either real or emulated, in a small-sized network.As a result, the research efforts in the IoT botnet detection field have focused on the at-tack and post-attack phases for well-known IoT malware (e.g.,Mirai and its variants [63]).Therefore, the early detection of the threat, that is, the detection of botnet components atthe early stages of botnet deployment (i.e., initial infection and C&C communication) hasnot been explored in the research or addressed in the available data sets. However, earlybotnet detection arises as a key element to prevent botnet formation and, consequently,to prevent attacks.The second part of this dissertation (i.e., Part II, About IoT Botnet Detection) focuseson the investigation of aspects aiming to enhance IoT botnet detection at the early stagesof its formation, which may help to prevent botnet attacks, and explores the usage of fea-ture selection and interpretation methods to enhance and comprehend relevant aspectsrelated to attack detection.
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5 KronoDroid: a historical Android data set
This chapter introduces KronoDroid, a novel, timestamped data set that provides labeledAndroid samples encompassing the Android historical timeline from 2008 to 2020, thusenabling the study of concept drift and cross-device detection issues. This chapter alsosummarizes the main findings of the studies that lead and determined the workflow andcharacteristics of the KronoDroid data set.
5.1 The path leading to KronoDroid
The vast majority of Android malware detection-related research has been optimized forMalGenome and Drebin data sets. These data sets, collected before 2013, are used asthe primary malware source of malware samples in recent studies, a decade after theirgeneration. These widely used data sets are representative of a limited time frame of theAndroid historical timeline; however, they are not representative of the present malwarethreat landscape for Android users. The Android malware landscape is characterized byconstant evolution, which is the outcome of the constant battle between attackers anddefenders in the cyberspace. As a result, a solution tailored for a specific time frame maynot be able to generalize well to posterior data where the relevant features for effectivemalware detection may have changed, a phenomenon called concept drift. Therefore,an effective solution for Android malware detection should be to detect and adapt overtime, modeling and reacting to the changes in the threat landscape. If this dynamism isneglected, the effects of concept drift result in the detection model becoming obsoletedue to degenerative performance over time.

Given the ever-evolving nature of the phenomenon, the actual effectiveness of a pro-posed detection systemmust be tested in scenarioswhere the solution faces realistic chal-lenges such as concept drift and data imbalance issues. At the time of this research, noneof the existing data sets were representative of the dynamic threat landscape of Androidmalware in a relatively wide time frame, being limited to reduced snapshots within theextended Android history, i.e., 2008–2022. Consequently, to address and study conceptdrift issues related to Android malware detection, the generation of a data set encom-passing the widest possible time frame of the Android historical timeline was required.
The initial stage of a data set generation involves the exploration of methodologicaland feasibility issues. In this regard, Publications I to III covermethodological nuances andfeasibility approaches related to dynamic and static data collection from Android devices.The related findings were applied in the data collection phase of the data set generation,which is detailed in Publication IV, and materialized in the KronoDroid data set.
Publication I is the seed of the posterior work addressed in this dissertation, providinginitial insights about the existence of concept drift and other challenges for effective andsustained Android malware detection over time. In this seminal study, the focus was onthe analysis of relevant dynamic (i.e., system calls) and static (i.e., permissions) features ontwo distinct historical time frames of Android malware history. Malware data belongingto different Android time frames (i.e., 2010–2012 and 2016–2018, named as old and newmalware respectively) and benign data, belonging to the 2016–2018 time frame, wereused. As a result, two distinct data sets were used combining the old malware data andbenign data (i.e., L/O), and the new malware data with the benign data (i.e., L/N). Thesame features were used to characterize each data set. The system calls feature set wascomposed of 212 features with numeric values reflecting the absolute frequency of eachfeature for the first 2,000 system calls invoked by the app. The permissions feature setwas composed of 147 features containing categorical values (i.e., binary) that indicate the
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presence of the permissions for the specific app.Before inducing machine learning-based classification models, a two-step feature se-lection procedure was applied to select and rank the relevant features for each data set.In the first step, statistical hypothesis testing was applied to select the features that signif-icantly differ between the classes for each data set. Welch’s Test was used for the numericfeatures and χ2 for the categorical features with statistical significance level α = 0.05. Inthe second step, Fisher’s score and Gini Index values computed for the numeric and cat-egorical features, respectively, were used to rank the selected features according to theirdiscriminatory power. The feature rankings are provided in Table 2 and Table 3.
Table 2: System calls ranked by Fisher’s score [46]

System call name L/O L/Nclock_gettime 0.84 1.11munmap 0.75 0.57readlinkat 0.69 0.59connect 0.67 0.52mmap2 0.63 0.47prctl 0.61 0.53madvise 0.54 0.48ppoll 0.31 0.25sigaction 0.29 0.30sigaltstack 0.23 0.21openat 0.22 0.16mprotect 0.15< 0.19futex 0.30 0.15<rt_sigprocmask 0.24 0.15<epoll_create1 0.23 0.15<eventfd2 0.22 0.15<getppid 0.22 0.15<clone 0.21 0.15<sendto 0.19 0.15<recvfrom 0.18 0.15<close 0.17 0.15<getdents64 0.15 0.15<

Table 3: Permissions ranked by Gini index [46]
Permission name L/O L/NACCESS_NETWORK_STATE 0.46 0.41WAKE_LOCK 0.45 0.39INSTALL_PACKAGES 0.42 0.41READ_PHONE_STATE 0.32 0.45GET_ACCOUNTS >0.47 0.47SYSTEM_ALERT_WINDOW >0.47 0.46GET_TASKS >0.47 0.45MOUNT_UNMOUNT_FILESYSTEMS >0.47 0.44VIBRATE >0.47 0.44ACCESS_FINE_LOCATION 0.47 >0.47BIND_REMOTEVIEWS 0.47 >0.47USE_FINGERPRINT 0.47 >0.47CAMERA 0.47 >0.47BLUETOOTH 0.46 >0.47READ_LOGS 0.44 >0.47SEND_SMS 0.43 >0.47READ_CONTACTS 0.43 >0.47READ_EXTERNAL_STORAGE 0.33 >0.47

The results showed that the relevant subset of features differed significantly betweenthe data sets, and, more importantly, in the ranking according to discriminatory power. Inthis regard, the ranked features showed significant deviations between the studied timeframeswith the only exception of themost discriminatory feature, whichwas common forboth feature sets (i.e., clock_gettime). System calls results revealed that, over time, thebehavior of legitimate and malicious apps became more similar, with new characteristicsbecoming more crucial and others losing their discriminatory abilities. An analogous butgreater shift was observed for permissions, implying the development of a new characterin the data. The classification results, using subsets of common features between timeframes, indicated that the observed changes in discriminatory power of features led tochanges in prediction performance, suggesting the existence of concept drift and moti-vating further exploration.The behavioral data used in Publication I was collected from an emulated device. Eventhough Android emulators are capable of simulating most of the capabilities of real An-droid devices, they suffer from limitations at the software and hardware level, whichmay have led to the observed differences in the case of the system calls feature set. Be-sides, some of the Android malware included in the experimentation could have had anti-sandbox capabilities which may have been able to detect the emulated environment andhide or inactivate the malicious behavior. Therefore, Publication II explored the impact ofthe collection platform on the acquired behavior from the apps and its implications forcross-device malware detection performance.Publication II focuses on the comparison of the acquired behavioral data from dis-
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tinct device types (i.e., emulators and real devices). For this purpose, an emulator and areal Android device were used, running the same Android OS version and mimicking theinternal configurations of both devices to the greatest possible extent. The same dataset, composed of 220 Android applications (i.e., 110 malware and 110 benign), was exe-cuted on both collection platforms for 60 seconds. The rational behind this specific time-constraint is based on the findings of Publication III. The behavioral profile (i.e., invokedsystem calls trace) during the execution time of each Android app on both platforms waslogged and further analyzed. Table 4 provides descriptive statistics (i.e., mean, median,standard deviation, range, and interquartile range) calculated for the acquired data perclass and device type. The statistics revealed inconsistent behavior across classes and de-vice types, as can be observed. In general, the real device data showed more dispersionthan the emulator data (i.e., a greater standard deviation and range). More importantly,for the real device, a consistent invocation of system calls not defined in the standard Clibrary for the Linux kernel (i.e., Bionic library) used in Android OS was observed. Thesesystem calls were anecdotic in the emulator.
Table 4: Descriptive statistics of the acquired data [39]

Real Device EmulatorBenign Malware Benign Malware
χ̄b 12,993 11,610 12,601 12,010
sb 30,357 29,496 15,899 19,853range [36, 289,715] [368, 265,746] [1,121, 106,076] [28, 101,867]
x̃b 6,213 4,033 7,561 4,343

IQRb 9,245 5,300 9,632 6,174
χ̄nb 1,469 1,367 0 1
snb 3,641 3,575 1 2range [7, 34,281] [24, 33,032] [0, 11] [0, 11]
x̃nb 618 410 0 0

IQRnb 951 532 0 0

To further investigate these initial differences, the exploration focused on the Bionicsystem calls. In this regard, Pearson’s linear correlation coefficient (ρ) and Fisher’s scorewere calculated feature-wise per data set to analyze statistical correlation and select themost discriminatory features, respectively. The correlation results show that≈ 63% of thefeatures in the emulator were highly correlated with some other feature (i.e., |ρ| ≥ 0.80),whereas in the case of the real device,≈ 46% of the features showed this characteristic.Fisher’s score was used to rank the features according to their discriminatory power. Ingeneral, Fisher’s scores for the real device were lower than for the emulator, and withcompletely different orderings. These results enabled us to confirm that the behavior ofthe same set of apps on different Android devices is not consistent. Additional supportfor these findings was provided by the binary cross-data set classificationmodels induced,which showed that emulator data could be discriminated relatively accurately by modelstrained on the real device data but not otherwise, and the fact that amulti-class classifica-tion model could be trained to effectively discriminate any class from the generated datasets, i.e., 86% accuracy. This latter fact emphasizes the possibility of building a classifiercapable of accurately predicting the class and device of an application based just on the1-minute data behavioral profile.
As aforementioned, Publication III provided the time-constraints applied in PublicationII and Publication IV. More specifically, Publication III performs an analysis of the impactof collection windows for effective Android malware discrimination. Using the same de-vices as in Publication II, but with an extended data set composed of 330 samples splitinto 110 samples among old malware, new malware and benign data, each application
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was executed and let run freely (i.e., no user interaction) for 15 minutes. This simulates arealistic scenario where an antivirus solution performs on-device collection for posteriorclass prediction. After each app was processed, the 15-minute-long system call trace wasfurther analyzed. The syscalls traces were analyzed from two perspectives, namely time-specific system call frequency analysis and time-cumulative discriminatory power featureanalysis. In the former, a minute-based histogram is generated per application, reflect-ing the number of system calls invoked per time-unit (i.e., minute). In the latter, Fisher’sscore was calculated feature-wise per cumulative time-unit, providing a measure of thediscriminatory power evolution of the feature over time.The application-wise analysis evidenced that, in both Android platforms, the major-ity of the apps invoked the largest proportion of the system calls of the total collectiontime during the first minute, referenced as a 1st-minute spike in Publication III. More pre-cisely, over 88% of the applications analyzed issued the maximum number of system callsin the first minute, invoking less in the subsequent minutes, or remaining inactive. Con-sequently, from this perspective, the first minute after the boot-up was consistently themost productive in terms of system call invocation across classes and devices.The feature-wise discriminatory power evolution analysis used Fisher’s score as amea-sure of discriminatory power, thus requiring positive and negative class data. Therefore,two data sets were generated merging the benign data (L) with the old (O) malware andthe new (N) malware data, referenced as L/O and L/N, respectively, and for each device(i.e., emulator and real device), resulting in four possible combinations. The cumulativeanalysis refers to the fact that the data used to calculate the Fisher’s score value for thei-th minute contains all data up to that specific minute, as opposed to the previous anal-ysis that only included the data issued within the specific minute. The results, providedin Figure 3 for distinct Random Forest models induced using distinct feature sets, showedthat in most cases and disregarding the device type, the discriminatory power of the fea-tures decreases over time (i.e., lower Fisher’s score value), achieving the global maximain the first minute and decreasing almostmonotonically for the subsequent time frames.In the cases where the decrease was not monotonic, lower peaks or a relatively flat linegraph was observed.

Figure 3: Random Forest models’ accuracy [47]

As a result, both analytical approaches converged towards the selection of the first-minute time frame as the optimal time frame to obtain an effective and efficient trade-off between data quantity and discriminatory power. The classification models induced
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provided additional support showing that, in general, the accuracy obtained using thefirst-minute data provided better or similar accuracy than longer time frames.The main methodological findings of Publication I (i.e., concept drift), Publication II(i.e., behavioral differences across devices), andPublication III (i.e., optimal collection timewindow), were used as the basis to perform a large data collection effort which material-ization is the KronoDroid data set, detailed in Publication IV. At the time of this research,the KronoDroid data set is the only Android malware data set conceived with a conceptdrift mindset and suitable for Android malware concept drift exploration. Timestampsare the central element in concept drift analysis as they provide a notion of the tempo-ral context of the application within the historical timeline. In this regard, the inclusionof timestamps as features to describe the data set samples is a distinctive characteristicof the KronoDroid data set as timestamp features are not included in any other publiclyavailable Android data set.
5.2 KronoDroid: time-based Android data set
This subsection explains the methodology used to acquire and generate KronoDroid dataset, and its main characteristics in the form of statistical analysis.
5.2.1 Data set generation
The central concept introduced in the KronoDroid data set is the inclusion of the temporaldimension as a sample descriptor. The naming of the data set emphasizes this focus byreferencing Chronos, the god of time in Greek mythology. The spelling as Kronos waspreferred as a tribute to Estonia, the physical location where the data set was conceived,and attending to the particularities of the Estonian language.KronoDroid data set is the cornerstone of this dissertation as it is the catalyst of thesubsequent research performed in the field of Android malware detection contained inthis thesis, i.e., from Publication IV to Publication X, and the upshot of the previously de-tailed studies, i.e., Publication I, Publication II, and Publication III. This relation is conveyedgraphically by the diagram depicted in Figure 4.

Figure 4: Graphical depiction of the relation among the publications (i.e., Publications I-X)
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KronoDroid data collection methodology includes singular aspects to overcome thelimitations of the available data sets for Androidmalware detection, which donot considerthe time dimension into the data collection loop nor the behavioral differences caused bythe collection platforms in the case of dynamic data. The workflow of the data collectionprocess is summarized in Figure 5.

Figure 5: KronoDroid generation workflow [41]

The full workflowwas composed of 5 sequential stages that run in parallel for both An-droid collection platforms (i.e., emulator and real device). They are explained as follows:
1. Initial data set collection: A total of 93,894 Android app samples were collectedfrom various malware sources and repositories. As depicted in Figure 6, the over-lap of the time frames of each data sample according to the specific data sourceenabled us to encompass the whole Android historical timeline at the time of theresearch, i.e., 2008–2020. In Figure 6, the length of the boxes indicates the tempo-ral range encompassed by the data gathered from each specific data source whilethe source data set name and the number of samples acquired are indicated insidethe box. The red and green colors indicate the class of the samples, i.e., green forbenign apps and red for malware apps. As reported in Figure 6, the malware dataset was acquired from four distinct sources [10, 12, 98, 99], totaling 54,834 datasamples. The benign data set was collected from three main sources [9, 28, 68],summing up to 39,060 Android apps.

Figure 6: Initial data set timeline and class composition

2. Dynamic analysis: Every application within the initial data set was attempted tobe installed and executed in both a real and an emulated Android device. Uponsuccessful installation and execution, apps’ system call traces were acquired for a1-minute run-time suggested as the optimal time frame for data collection in Pub-lication III. This procedure was automated using a bash script, leveraging AndroidDebug Bridge (ADB) for computer-device communication and strace debugging tool
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for behavioral trace retrieval, attaching the tool to the app’s main process. Monkeytool was used to boot-up the application, and no further interactionwas performed.As a result, for each device and application within the data set a behavioral profilebased on the system calls trace was generated. It was not feasible to install as manyapps in the emulator as on the real device due to some applications’ intrinsic in-compatibility with particular hardware architectures. Consequently, two data setswere generated containing the dynamic profile of each app on each device. In orderto ensure the same conditions on both devices, the same Android OS version (i.e.,Android 8.0 Oreo) and user settings were implemented.
As can be observed in Figure 5, if an application was not successfully installed andexecuted, it was discarded and was not further processed for the specific device-relatedworkflow. This requirement ensured the collection of dynamic data for eachincluded sample and that the final data sets provided hybrid data for the includeddata samples (i.e., system calls and relevant static data collected in posterior stepsas app’s descriptors). Therefore, this step acted as a filter stage, determining theapplications from the initial data set that composed each of the final device-relateddata sets. The composition of the final data sets is summarized in Table 5.

Table 5: Initial and final data sets class composition [41]
Class Initial Emulator Real Device
Malware 54,834 28,745 41,382Benign 39,060 35,246 36,755
Total 93,894 63,991 78,137

As can be observed, after the removal of duplicated samples (performed in thedata processing stage), 63,991 samples were included in the emulator data set, and78,137 in the real device data set, which corresponds to 68.2% and 83.2% of theinitial data set samples, respectively. Most of the apps that failed to run in theemulator were due to incompatibility issues upon installation (i.e., non-compatiblearchitecture) as the emulator inherits the architecture of the host device (i.e., x86)thus causing issues for ARM-specific samples. This fact evidences that due to theseincompatibilities, mobile malware detection and analysis can be more challengingin virtual devices.
3. Static analysis I: Every application thatwas successfully executed in either of the col-lection devices, was further processed and relevant static features were acquired intwo different stages. In the first step, static data was extracted from the apk archiveand the AndroidManifest.xml file involving the usage of data extraction tools suchas Androguard, Android Assest Packaging tool (aapt) and ExifTool. From the apkarchive, metadata such as internal timestamps, filesize, and SHA-256 hash were re-trieved. Security permissions, intent filters, hardware features requested and otherrelevant static data were extracted from the Android manifest.
4. Static analysis II: After the extraction of the internal data from the app container,the file was submitted to VirusTotal antivirus engine for scanning. A detection re-port was received for each sample from the scanning service. This stage enabled usto acquire other relevant static data such as detection-related (i.e., external) times-tamps, and the verification of the class label (i.e., whether the sample was detectedas malware or benign) and extraction of the malware family in the case of malwaresamples.
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5. Data Processing: All the data gathered in the previous stages were processed, anddata features were manually engineered from the raw files and logs. A total of 489features were crafted as descriptors or attributes for every data sample on bothdata sets. Of the data descriptors, 289 refer to dynamic data (i.e., system calls), and200 to static properties such as security permissions (i.e., 166 features), timestamps(i.e., 4 features) and class labels. Redundant data samples were identified based onhash value and removed keeping just one randomly selected instance.
5.2.2 Data set analysis and main resultsDue to compatibility issues that may hinder or impede the malware analysis task (e.g.,not including libraries supporting the architecture or the OS version requirements), thedata collection process for the data set showed that malware detection and analysis isa more difficult task when using dynamic features in virtual environments than in realdevice platforms. As a result, the emulator data set size is smaller than the real devicedata set, especially in the case of malware.Initially the samples were labeled according to the data source. Thus, if a sample be-longed to a malware repository, it was labeled as malware. However, when this classlabel was contrasted with the detection report results, inconsistencies were found. Forinstance, several benign samples were detected as malware by the scanning service, anda small number of malware apps were not detected by any AV or a significant proportionof them. This generated the suspicion of data misclassification issues. As a result, twolabels were generated, namely, soft and hard label. The soft label reflects whether thesample was acquired from a benign or a malware data source. Therefore, the possiblesoft label values are contained in the set {0, 1}. The hard label applies a set of additionalconditions to impute the class label which aims to provide additional evidence or certaintytowards the samples class. In this case, the possible labels are {-1, 0, 1} which are definedapplying the following rules:

• 0 or benign class: refers to a sample with a zero-valuedmalware detection ratio andit belongs to a benign data source.
• 1 ormalware class: refers to a sample with a non-zero malware detection ratio andit belongs to amalware repository and amalware family is identified for the sample.
• -1 or indefinite class: any mismatch with the two previous conditions. It indicatesthat inconsistencies are identified and that further inspection is needed to preventmisclassification issues.
Based on this categorization, the following data sets are defined:

Table 6: Data sets class label composition [41]
Emulator Real deviceHard label Hard labelClass Soft label Indefinite Definite Soft label Indefinite Definite

Malware 28,745 91 28,654 41,382 165 41,217Benign 35,246 4,437 30,809 36,755 4,856 31,899
Total 63,991 4,528 59,463 78,137 5,021 73,116

As can be observed in Table 6, the indefinite category found more inconsistencies forthe benign data. However, theymight be false positives due to the strict hard labeling rulesimplemented. For example, the soft labeling approach would classify a benign sample asbenign even if an AVdetected it asmalware, whereas the hard labeling ruleswould classify
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it as indefinite. The use of either label may result in effective malware detection systems,and according to the analysis, the majority of the indefinite class may correspond to falsepositives. However, for tasks where label certainty is essential, the hard label offers anadditional degree of trust certainty towards the sample class. The accurate analysis ofconcept drift might be one of such tasks.
Besides the importance of class certainty, a central element in concept drift analysisis the timestamp used to locate the data samples within the historical timeline. In this re-gard, there is no single timestamp approach deemed as completely accurate and reliablein all cases. Thus, distinct timestamps may provide distinct historical locations of the appswithin the Android timeline, which, in turn, could provide different concept drift model-ing. In general, the more accurate the timestamp, the better the concept drift model andthemore precise the data evolution analysis. For this purpose, timestamp acquisition wasincluded in the data collection workflow. Kronodroid provides four possible timestampsper sample: two internal timestamps and two external timestamps. An internal times-tamp is retrieved from the internal files of the application, whereas an external times-tamp is determined by a third-party based on different parameters. The earliest modi-fication and the last modification are the internal timestamps provided by Kronodroid,which correspond with the earliest and last modification datetime retrieved from any fileinside the apk archive, respectively. The external timestamps are based on VirusTotal’sdetection report, defined as first seen and first seen in the wild. The former provides thedate and time of the first submission of the file to the scanning service, whereas the lat-ter, reports the first time the application was seen anywhere on the Internet. Either ofthe approaches shows advantages and disadvantages. The internal timestamps are proneto manipulation by malicious actors; thus deliberate manipulation can cause data mis-placement. Nevertheless, when not tampered with, they may locate the sample moreaccurately than the external timestamps, especially the last modification timestamp. Theexternal timestamps cannot bemanipulated by attackers; however, due to their proactivenature (i.e., depending on users’ submission time) they are prone to delay and generatetemporal displacement. Amore detailed inspection of the distinct timestamp approachesand their suitability for concept drift purposes is provided in Publication IX.
The hard labeling rules required that to impute a sample as malware, a malware fam-ily attribution could be retrieved from the detection report. Malware family attributionis a controversial issue in the cybersecurity domain. Despite the existence of well-knownmalware families and amyriad ofmalware variants, there is no consensus nor naming con-vention onmalware family denomination and identification across AV vendors ormalwareanalysts. For instance, a sample detected as malware by the scanning engine was namedin eight different ways, including vendor-specific cryptic denominations and well-knownnames. Therefore, family name attribution becomes a challenging task in a large data col-lection study. In order to provide a malware family for each KronoDroidmalware sample,a heuristic approach was implemented. Firstly, a database of malware family names wasgenerated frommalware databases and research studies. When different denominationsfor the same family existed, they were abstracted into the same name separated by "/"(i.e., Airpush/StopSMS family). Secondly, all the detection reports (i.e., including benignsamples) were parsed and all the positive scanner results, which might identify the sam-ple with a family name, were compared with the abstractions in the database. After this,a family name from the database was imputed to every sample based on the majority ofthe vote towards a family name from all the positive detection outputs. In the case ofa positive detection but no malware family was imputed (e.g., the malware family wasunknown or it was not included in the database), the sample’s report was manually in-
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Table 7: Top-15 malware families in the final data sets [41]
Emulator Real Device

Family Total % Family Total %
Airpush 6,521 27 Airpush 7,775 22Boxer 3,557 15 SMSreg 5,019 15Malap 2,574 11 Malap 4,055 12FakeInst 2,158 9 Boxer 3,597 10Agent 1,837 8 Agent 2,934 9SLocker 1,822 8 FakeInst 2,384 7BankBot 1,241 5 SLocker 1,846 5FakeApp 1,064 4 BankBot 1,297 4Dowgin 772 3 Dowgin 1,145 3GinMaster 595 2 FakeApp 994 3Kuguo 513 2 DroidKungFu 990 3SMSreg 497 2 Kuguo 843 2Youmi 447 2 GinMaster 827 2DroidKungFu 269 1 Youmi 628 2Simhosy 232 1 Simhosy 399 1
Total 24,099 100 Total 34,733 100

spected and a family name was imputed (if applicable). The new malware family namewas included in the database and the process was repeated for all the samples aiming forresults consistency.
This heuristic procedure yielded a malware family imputation for 99.7% of the mal-ware samples within the data sets. This translates into 209 different malware familiesincluded in the emulator data set and 240 in the real device data set. The difference maybe expected as a result of the significantly distinct number of malware samples on bothdata sets, as shown in Table 5. However, it evidences that certain malware families mightbe specially tailored for ARM-based systems (i.e., real devices) and incapable of running orbeing analyzed in x86-based emulators. The inadequacy of emulators to deal with thosespecific malware families limits the capabilities of Android emulators to perform forensicsanalysis and be used as reliable detection platforms.
Despite the different number of malware families and samples, the top-15 malwarefamilies are, with varying proportions, the same for both data sets, grouping approxi-mately 84% of the total malware samples. They are summarized in Table 7. Furthermore,these most prevalent malware families can be embedded into four major malware cat-egories: adware, fraudware, spyware and ransomware. The colors of the table reflectthis higher level of abstraction, indicating the degree of threat they pose for the end-user.Adware trojans (i.e., Airpush, Agent, FakeApp, Kuguo, Dowgin and Youmi) are the mostprevalent malware families in the data sets, and they are indicated with the lightest colorin the table. The greatest the color intensity, the more dangerous the threat. Thus cor-responding in increasing order to fraudware samples (i.e., Boxer, FakeInst, and SMSReg),ransomware (i.e., SLocker), and spyware families (i.e., DroidKungFu, GinMaster, BankBot,Simhosy, and Malap).
The usage of timestamps to locate malware families along the Android historical time-line provides different distributions and data trends that can help to exploremalware out-breaks and assess to some extent the reliability of timestamps. The combination of tem-poral aspects with other data attributes such as malware family distribution is sketchedin Publication IV, and further explored in Publication VIII and Publication IX.
The dynamic data collected from malware and benign samples evidence different be-havioral profiles on each platform. The descriptive statistics computed and provided inTable 8 emphasize the existence of behavioral differences across Android platforms.
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Table 8: Descriptive statistics of system calls [41]
Device Class Label StatisticMean Median Std. dev. Sample size
Emulator Malware Soft 7,711 2,363 27,893 28,745Hard 7,694 2,361 27,911 28,654

Benign Soft 8,755 2,959 20,995 35,246Hard 8,664 2,890 20,771 30,809
RealDevice

Malware Soft 10,390 3,258 26,232 41,382Hard 10,410 3,267 26,272 41,217
Benign Soft 2,878 1,148 13,386 36,755Hard 2,792 1,134 12,860 31,898

Table 9: System calls sets and usage statistics [41]
Device Class Label

Syscalls
set (%) Most usedsyscalls Most issuedsyscalls Totalsyscalls

Emulator Malware Soft 34.4 221,659,298Hard 34.4 ioctl, getuid32,mmap2, futex, close read, getuid32, write,epoll_pwait, ioctl 220,454,507
Benign Soft 42.4 308,595,229Hard 41.7 ioctl, getuid32, mmap2,close, futex read, write, ioctl,recvfrom, epoll_pwait 266,918,501

RealDevice
Malware Soft 39.2 429,999,343Hard 38.9 clock_gettime, getuid32,ioctl, futex, mmap2 clock_gettime, ioctl,getuid32, mprotect, SYS_329 429,069,377
Benign Soft 44.4 105,779,886Hard 43.8 clock_gettime, getuid32,ioctl, writev, read clock_gettime, getuid32,ioctl, SYS_329, mprotect 89,051,861

In this regard, even though the data set size might be different for malware samples,the results show inconsistencies in the behavioral averages for the classes between de-vices. More interestingly, this is especially significant in the case of benign samples, whichshow significantly different statistics across devices with similar data set sizes. In general,the results show that benign apps invokedmore system calls in the emulator environmentthan in the real device, whereas the opposite is true for malware. These differences arefurther emphasizedwhen the other statistical figures are compared. Table 9 provides fouradditional comparative items for a thorough behavioral comparison. The syscalls set (%)column provides the proportion of system calls from the system calls set that were usedby the apps in that specific data set at least once. Themost used syscalls andmost issuedsyscalls provide the top-5 syscall set used by the applications in the specific data set, andthe top-5 of most issued system calls concerning the total number of system calls issuedon each data set, respectively. Lastly, the total syscalls column provides the sum of allindividual syscalls invoked by all the applications in each data set.
Themost frequently used and issued system call sets vary between classes within thesame device, althoughmainly between devices, as demonstrated in Table 9. For example,the top five system calls for the emulator do not contain clock_gettime, the system callthat is issued and utilized themost on the real device. Besides, the figures for total syscallsconfirm the greater verbosity of the benign apps in the emulator compared to the realdevice, even though a similar proportion of syscall features from the whole syscalls setis used. In this regard, it is worth noticing the difference between classes in the syscallsset usage. Benign apps use consistently a wider range of system calls across devices thanmalware, especially in the emulator case. Even though at first glance may appear thata larger proportion of syscalls are used in the real device compared to the emulator, adetailed analysis suggests the opposite. The whole system calls feature set includes x86-architecture specific syscall features, defined for the emulator and real device (i.e., 212),and additional features just defined for the real device (i.e., 76), thus totaling 288 features.The same feature set was used for both devices for the sake of consistency for the datafeatures. Thus, when the common feature set is considered, the proportion of system calls
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Table 10: Descriptive statistics of permissions [41]
Class Perm Label Permissions statistics Customusage (%) Most usedpermission set (% apps) Permset (%)Mode Mean Median S.D.

Malware
Std Soft

≈ 42

Internet (97.7)Read_Phone_State (91.6)Access_Network_State (84.9)Write_External_Storage (81.0)
Access_Wifi_State (66.3)

≈ 78

Hard 12 13.4 11 9.1
Custom SoftHard 1 4.3 2 4.7

All SoftHard 9 15.2 11 12.4

Benign
Std Soft 4.2 4.2

≈ 14
Internet (81.7)Access_Network_State (51.3)Write_External_Storage (36.8)

Read_Phone_State (27.4)Access_Coarse_Location (20.1)
≈ 87

Hard 2 3.9 3 3.9
Custom Soft 1.8 1.8Hard 1 1.7 1 1.4

All Soft 4.4 4.9Hard 2 4.2 3 4.4

from this restricted feature set (i.e., 212) used by the emulator grows to 46.7% and 57.5%for malware and benign data, respectively. As a result, benign apps show a distinct, moreactive behavior in the emulator than in the real device, a fact that cannot be confirmed forthe malware set. These results provide additional support to the behavioral differencesspotted in Publication II and Publication III.
The analysis of security permissions, the most used static feature set in Android mal-ware studies [70], provided supplemental insights about the differences between benignand malware applications. Publication IV provides a thorough comparison between bothdata sets despite the fact that static features are immutable features of the applications,i.e., they do not change across devices, as opposed to dynamic features. This is becausethe two data sets are comprised of distinct numbers of samples, which affects the descrip-tive statistics that summarize them and provide relevant comparative statistics. Notwith-standing that, the main differences between classes can be broadly grasped by focusingon the characteristics observed for the real device data set due to its larger data size. Forthis reason, it is provided as an illustrative example. Table 10 provides summary statisticsfor standard, custom and all permissions (i.e., sum of standard and custom) in the first8 columns. The custom (%) column provides the proportion of each class that definedcustom permissions. Themost used permission set is provided in the subsequent columnwith the percentage of apps that defined each permission in parenthesis. The last columnreports the coverage of the whole permissions set per class.
Based on the data reported in Table 10, notable differences can be observed in the us-age and definition of permissions betweenmalware and legitimate applications. Malwareapplications request significantly more permissions and define more custom permissionsthan benign apps. Furthermore, the definition of custom permissions is three times morefor malware apps than benign apps. Although benign apps often request fewer permis-sions than malicious apps, they cover a larger spectrum of the permissions set. The pro-portion of applications that requested them is substantially lower for the innocuous class,which is consistent with the lower average number of permissions required by this class ofapps, despite the fact that the most used permissions sets are comparable. Therefore, ingeneral, malware apps requestmore permissions than legitimate apps, both standard andcustom, thus requesting over-privileges to the user on the system. Besides, malware per-missions requests prioritize more than legitimate apps the access to internet connectivity(by any means) and the access to sensitive user data.
The distinctive request in permissions between classes is also confirmed by the fre-quency distributions of requested permissions depicted in Figure 7. As can be seen inFigure 7, the shape of malware and legitimate distributions are remarkably different re-
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garding the number of requested permissions, with a minor overlap between the distri-butions below 20 requested permissions (i.e., shady area). Based on these graphs, themajority of legitimate apps request less than five permissions, whereas most malwareapps request over five permissions.

Figure 7: Frequency distributions of requested permissions per class and label [41]

The statistical analysis of KronoDroid data has displayed relevant insights concerningAndroid malware and benign data that can help to build better detection systems usingstatic, dynamic, or hybrid features. However, the distinctive point of the KronoDroid dataset is its focus on time. KronoDroid is the first Android data set that incorporates times-tamps as features, thus enabling the consideration of data evolution, a variable that hasbeen neglected by the vast majority of Android research studies which are optimized forstatic snapshots of malware data. Even though KronoDroid could be utilized for distinctpurposes such as family analysis and class-based differential exploration, as shown before,its main aim is to help in Android data concept drift modeling and analysis with the objec-tive of developing more robust and long-term effective detection systems. The data set isthe cornerstone of the subsequent research performed and detailed in the next chaptersof this dissertation.
5.3 Chapter summary
This chapter presented the seminal works that led to the design and generation of theKronoDroid data set. KronoDroid is a novel, labeled, timestamped, and hybrid-featuredAndroid data set tailored for Android malware research that enables the study of conceptdrift, malware family evolution, data imbalance, and cross-device detection challenges. Ifthey are not addressed, these problems will be encountered by detection systems in pro-duction environments, decreasing their effectiveness over time and impeding the long-term detection of Android malware. None of the publicly available Android malware datasets enabled the study of such detection challenges prior to KronoDroid.
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6 Concept drift on behavioral data: detection, handling and
characterization

KronoDroid data set enabled us to study the evolution of Android data, and, consequently,concept drift-related issues from different perspectives. The following chapter deals withthe emergence of concept drift on behavioral data. It proposes a solution to handleit, which can also be used to characterize it, leading to a better comprehension of thechanges. The present chapter focuses on the main contributions and findings of Publica-tion V.
6.1 Workflow overview

This study focused on the analysis of concept drift in Android apps from a dynamic per-spective (i.e., system calls). Due to the larger size of KronoDroid’s real device sub-dataset it was preferred for this exploration, providing more applications than the emulatordata set for the same period of time (i.e., 2008–2020). Therefore, KronoDroid’s real de-vice dynamic features were utilized (i.e., 288) along with the hard label and timestamps.The hard label was preferred as it increases the certainty of the app class, thereby gen-erating further confidence in the concept drift analysis. Of the four timestamps providedby KronoDroid, the last modification and first seen were used. These timestamps werepreferred over the other options as they provide wide timeline coverage, reliability, andrelatively accurate location of the apps within the Android historical timeline. In this re-gard, a more thorough exploration of these aspects was performed in Publication IX. Asa result, 78,137 Android apps described by 288 system call features, the label, and twodistinct timestamps were used as input data.
The methodology to explore concept drift-related issues and effective handling wassplit into three sequential stages, namely, detection, handling and characterization. Theseconsecutive steps enabled us to demonstrate, address and visualize concept drift in be-havioral Android data, respectively. The rationale behind the successive steps is that theprevious one justifies the following one. For example, only if concept drift exists there isan actual need to address it. Figure 8 details the purpose and flow of these sequentialstages which are detailed in the following sections.

Figure 8: Concept drift detection, handling and characterization workflow

6.2 Concept drift detection

The concept drift detection phase aims to demonstrate the existence of concept drift inAndroid historical data. This phasewas composed of three sequential stages, namely datapre-processing, feature selection, and drift detection. The whole process is schematizedin Figure 9 and explicated in the following paragraphs.
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Figure 9: Concept drift detection workflow [42]

6.2.1 Data pre-processing
The initial set of features (i.e., 288) was pre-processed using a sequential procedure thataimed to remove irrelevant and redundant features. The outcome of this stage was arefined set of features obtained after performing the steps described as follows:

1. Variance analysis: homogeneous and null-valued features were removed.
2. Correlation analysis: Pearson’s linear correlation coefficient (r) was calculated pair-wise for all data features. Highly correlated features (i.e., r > 0.80) were removed.
3. Distribution analysis: the adherence to the normal distribution of the remainingfeatures was assessed using statistical tests.
The results of the application of the first two steps resulted in a refined set of 97 fea-tures out of the initial set of 288. The statistical normality tests performed confirmedthat none of the features were normally distributed, as evidenced by Figure 10, whichprevented the application of parametricmethods for concept drift detection.

Figure 10: Feature distributions [42]
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6.2.2 Feature selection
To assess the existence of concept drift, the data set was ordered chronologically anddivided into disjoint consecutive time periods. For n periods, two series of data subsetswere generated. In the first series, the set Mi consisted of malware samples labeled withthe timestamp (i.e., last modification or first seen) and located on the i-th period. The set
Li, defined for the second series, was treated analogously and composed just by benignsamples. Next, the most important discriminators were selected for the first period (i.e.,
i = 1), taken as the initial or baseline period (i.e., feature selection). More specifically,the permutation feature importance technique (detailed in Section 6.4) was applied to aclassifiermodel inducedusingM1∪L1, thereby enabling the selection of themost relevantfeatures for this baseline classifier.

As the initial period classification model provided high performance (i.e., over 95%accuracy), the logical derivation is that the selected featureswere able to recognize classes
L1 andM1 effectively. A concept drift-related question is whether the same features couldbe successfully used to recognize classes Li and Mi for n≥ i > 1.
6.2.3 Concept drift detection
To address the previous issue, One-Class Drift Detectionmodels (OCDD) [34] were used toanalyze the impact of concept drift in the generated series. Based on the fact that the se-lected important features were used successfully for the classification task on the M1∪L1data set, one-class anomaly detectors (OCDD) were induced using L1 and M1 separately,to assess data drift. This approach enabled us to analyze concept drift for malware andbenign data in a more controlled way, eliminating the class relations influence. The in-duced models were tested separately with the data belonging to the same class in thesubsequent time periods (i.e., Li and Mi sets, where n≥ i > 1, described by the selectedfeature set). The ratio of samples recognized by the initial models for each period was re-trieved (i.e., negative detection rate for each class). These ratios enabled us to assess anddetect concept drift on the data over time. More specifically, if the important features forthe first period were not able to describe the modeled class effectively in a posterior timeframe, the ratio dropped, thus suggesting data drift. As the ratio of correctly recognizedsamples declines, the shift impacts the classification results, qualifying the performancedrops as concept drift.
6.2.4 Experimental results
Due to data constraints andmodel-building requirements (i.e., highly accurate models forboth timestamps), the initial period selected for concept drift detection was the secondsemester of 2011. Of the initial set of features (i.e., 97), the feature selection procedureapplied to the initial period data set yielded different subsets of important features foreach timestamp. More specifically, 32 features were found to be important for the lastmodification timestamp and 17 for the first seen timestamp.

These feature sets were used to build the one-class anomaly detection models. Asa result, for each class (i.e., malware and benign) in each timestamp-based data set, aone-class anomaly model was generated, using the corresponding feature set as modelfeatures. Then, themalware andbenign data belonging toposterior time frameswere splitinto six-month periods (i.e., from2012 to 2020) and used as test sets for the correspondingtimestamp-class model. Besides, for each timestamp-class combination, three anomalymodels were induced using distinct subsets of features from the important feature sets(i.e., best five features, best 10 features, and all features).
The results are provided in Figure 18 where the models’ accuracy performance is re-
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ported. The line graph on the left shows the results related to the last modification times-tamp, whereas the line graph on the right provides the data related to the first seen times-tamp. The six anomaly models generated for each timestamp are reported with differentcolors and line styles. The color relates to the data class (i.e., red for malware and greenfor benign apps). The line style informs about the subset of features that was used tobuild and test each specific anomaly model. The horizontal axis provides the testing pe-riod, whereas the vertical axis provides the accuracy value retrieved for each 6-monthperiod. The .1 value attached to the year number informs about data belonging to thefirst semester of that year (e.g., 2012.1), whereas .2 reflects the data located in the secondsemester (e.g., 2012.2). As a result, six anomaly detection models were built and testedper timestamp (i.e., three per class) encompassing the whole 2012–2020 time frame.

Figure 11: One-class anomaly detection models performance - real device data [42]

The results provided in Figure 11 demonstrate the existence of concept drift in the data.The irregular and overly fluctuating scores prove that the same set of features and valuesare not useful in all time frames to discriminate either of the classes.
In benign applications, an incremental drift dominates. The number of recognized ob-servations slightly goes down over time to dip in the last period in a sudden drift. However,the etiology of the last dip might be extraneous due to the scarcity of benign data for thatperiod.
Concept drift is especially evident for malware data. In all cases, the models displayremarkably distinct accuracy scores from period to period, indicating concept drift andimplying that the significance of the initial features for the classification models changeddramatically. Both timestamps provide a similar scenario, with the initial models perform-ing well on data from closer periods and losing discriminatory power over time. The initialset of important features appears relevant again in 2016.1 and 2019.1, attaining high accu-racy scores, but loses significance in the following periods, resulting in data drift and poordiscrimination performance. Such behavior is similar to blips in the concept drift typology.However, it could be related to a recurrent threat from the initial period, emerging again2016.1 and 2019.1 periods.
Figure 11 evidences the presence of concept drift in Android historical data, which isespecially pronounced in the malware case. The emergence of concept drift in the datarequires the implementation of an adaptive detection solution capable of handling it ef-fectively. This issue is addressed next.
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6.3 Concept drift handling
To build long-lasting and robust Android malware detection solutions, the detection sys-tems must be capable of adapting and learning from the changes in the data to maintainhigh and stable performance over time.
6.3.1 The proposed solution
A data stream can be defined as a countably infinite sequence of elements that becomeavailable over time [72]. They are characterized by a cumulative, continuous, rapid, andevolving nature, and pose a variety of challenges such as one-pass constraints, conceptdrift, resource restrictions, and massive-valued features [1]. Even if it does not present allof these difficulties, Androidmalware detectionmay be considered a data streambecauseit exhibits high data volume, ongoing app release, and constantly changing data. Conse-quently, Android malware concept drift may be efficiently managed when approachedfrom a data stream viewpoint.The proposed solution to handle concept drift in Android malware data is a modifica-tion of the algorithm proposed by Zyblewski at el. [114] to deal with concept drift issuesfor imbalanced data streams. The modifications and simplifications performed addressAndroid concept drift particularities, boosting the detection performance on the applica-tion domain. Publication V is devoted to the implementation of the proposed solutionand provides the experimental results.A schematic diagram of the solution used to handle Android concept drift is depictedin Figure 12. Based on this diagram, the following paragraphs explain the innerworkings ofthe proposed solution, emphasizing the modifications suggested to handle Android datacharacteristics.

Figure 12: Scheme of the proposed solution for Android concept drift handling

In Figure 12, the green line and related boxes refer to the special treatment of the initialchunk based on the modifications proposed. The red and blue lines and boxes follow the
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workflow of the training and prediction phases, respectively, for each subsequent datachunk in the stream of Android data. The training and prediction phases are provided inpseudo-code in Algorithm 1 and Algorithm 2, respectively.
Algorithm 1: Training phase of the proposed framework

Input: Stream - Data streamS - Fixed size of the classifier pool
Π← /0 - Pool of classifiers (initially empty)
λ ←−1 - Sample size of the anomaly detector

Symbols: DSk - Data chunk
Ψk - Bagging classifier
Lk - Legitimate data portion of the data chunk
Φk - Anomaly detector

1 foreach k, DS in Stream do
2 if k == 0 then // first data chunk
3 IDS← splitInitialDataset(DSk , |π|) // split data chunk
4 for i← 0 to S−1 do
5 Ψk ← trainClassi f ier(IDSi) // train classifier
6 Π←Ψk // add classifier to the pool
7 end
8 Φk ← trainAnomalyDetector(Lk ,λ ) // train anomaly
9 else // rest of the data
10 Π← pruneWorstClassi f ier(Π) // purge pool
11 Ψk ← trainClassi f ier(DSk)
12 Π←Ψk
13 Φk ← trainAnomalyDetector(Lk ,λ )

14 end
15 end

Algorithm 2: Prediction phase of the proposed framework
Input: Stream - Data stream

Π - Pool of classifiers
Φk - Anomaly detector

Symbols: DSk - Data chunk
yk pred - Predicted labels for the samples in the current chunk
ΠDk - Ensemble of classifiers selected using a DES algorithm
DSEL - Dynamic ensemble selection data set

1 foreach k, DS in Stream do
2 if k == 0 then // first data chunk
3 DSEL← preprocess(DSk) // store DSEL for next step
4 else // rest of data chunks
5 ΠDk ← dynamicSelection(Π,DSEL,DSk) // DES step
6 yk pred ← predict(DSk ,ΠDk) // prediction step
7 yk pred ← anomalyDetector(yk pred ,Φk) // refinement step
8 DSEL← preprocess(DSk)

9 end
10 end

The proposed solution works as follows: when the first data chunk is received (i.e., k =
0), the whole chunk is processed, splitting its n elements into S ordered and equal-sizeddata chunks. Each data subset is used to train a new classifier which is added to the poolof classifiers. As a result, a full pool of classifiers is generated after the processing of thefirst chunk, thus the full pool is available for the testing phase of all the subsequent datachunks. Besides, the set of legitimate samples from the initial data chunk is used to inducean anomaly detection model. The last processing step of the initial chunk ińvolves thestorage of the whole initial chunk as the dynamic ensemble selection data set (DSEL) forthe next chunk. The DSEL is used to select the best classifier ensemble from the classifier

49



pool for each data sample in the new data chunk.This concludes the processing of the initial data chunk, used for initialization purposes,being the only one with distinct processing steps in our proposed solution. For all subse-quent data chunks, the same testing-then-training procedure is applied. This procedureis explained as follows.After the first chunk is processed, when a new data chunk is received, the predic-tion/testing phase is applied first. Thus, upon the arrival of the new data chunk, a dy-namic ensemble selection algorithm is fit with the previously stored DSEL, the classifierspool, and the new data chunk. This step aims to select the best ensemble of classifiers topredict the labels for each sample in the new data chunk. The fitted dynamic ensemblemodel is used to forecast the class label of the n elements of the data chunk, generatingthe initial set of predictions. These initially assigned labels are then refined, based oncustom-generated rules using the forecast of the anomaly detector for each sample. Theoutcome of this step is the final prediction for all the samples of the new data chunk. Theanomaly detector helps to support or challenge the class prediction by the classifier inborderline cases where the anomaly model may provide more reliable results. Finally, thenew data chunk is stored as the DSEL for the next chunk. This concludes the first process-ing step of the new data chunk, the prediction phase, detailed in Algorithm 2 and depictedby the red line flow in Figure 12.The next step for the new chunk is the training phase, described in Algorithm 1.The training phase uses the whole new data chunk and the outcome of the previ-ous phase to update the pool of classifiers and generate a new anomaly detector. Morespecifically, the worst-performing classifier on the new data chunk is removed from theclassifier pool. Then, a new classifier is trained using the samples from the new chunk andtheir predicted labels. The new classifier is added to the pool, which is again composedof S classifiers. Removing an aging classifier and inserting a new classifier keeps the poolat the specified size while updating its capabilities to accurately forecast new data, thusbeing able to adapt and react to emerging concept drift. The legitimate portion of thenew data (i.e., Lk) is used to generate a new anomaly detector that will be used in thepredictive step of the next data chunk. This last step concludes the processing of the datachunk.This testing-then-training cycle is repeated for all the subsequent data chunks in thedata stream ad-infinitum, enabling the system to address concept drift issues effectivelyand efficiently without needing operational changes in the system.It is worth noticing that the system is governed by hyper-parameters that have notbeen discussed. Publication V provides further details and acts as a reference for thisdiscussion. It also provides a detailed explanation of the modifications performed to theoriginal algorithm which can be summarized as:
• The induction of a complete pool of classifiers available from the initialization stage(i.e., chunk 0).
• The addition of a refinement step for the predictions using a supportive anomalydetection model.
• The overall simplification of the stages and removal of special chunk treatments(i.e., with the exception of the initial chunk).

6.3.2 Experimental resultsThe proposed solution was used to address KronoDroid data concept drift. As the dataset is not a real data stream and encompasses a long period of time, the timestamps
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were used to locate the data within the Android historical timeline and the data was di-vided into time-constrained consecutive data chunks. Due to data constraints and systemhyper-parameters selection, thoroughly explained in Publication V, the data for the ex-perimental setup was partitioned into three-month data chunks encompassing the yearsfrom the third quarter of 2011 to the second quarter of 2018. The last modification andfirst seen timestamps were used, thus two concept drift-handling detection models wereinduced.The F1 score performance of the system using the last modification timestamp is pro-vided in Figure 13, while Figure 14 reports about the results when the first seen timestampwas used. In both cases, the performance of the models using the proposed solution arecompared with two naive solutions and the original algorithm [114]. The two naive so-lutions correspond to two different static models, one induced using the data from theinitial period and another one using the data of the second time period. These staticmodels were never updated and they were tested with all subsequent data chunks.

Figure 13: Performance of the proposed solution using the last modification timestamp [42]

Figure 14: Performance of the proposed solution using the first seen timestamp [42]
As can be observed in both figures, the proposed solution outperforms the naive so-lutions and the original algorithm. The modifications proposed and implemented, even
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though no hyper-parameter optimization was performed, enabled the proposed solutionto overcome the limitations of the cold-start in the initial stages (i.e., up to +10%) and im-prove the detection quality of the base algorithm inmost of the data chunks (i.e., between+1% and +4%). More interestingly, the proposed solution shows great adaptation capabil-ities and concept drift handling performance over an extended period of time, especiallywhen the last modification timestamp is used (i.e., F1 detection performance over 90% inalmost all periods). Although thefirst seen timestampprovided goodoverall performance,the detection performance is not as smooth and stable as in the last modification case.Thus, it is a less reliable timestamp to deal with concept drift in Android data. A furtherexploration of timestamps’ properties and their related issues is performed in PublicationVI and Publication IX.The proposed solution, using the last modification timestamp, averaged 94.65% F1score, 91.17% precision, 94.14% recall, and 80.49% specificity performance metrics in the7-year-long case study, proving the goodness of the solution to adapt and react to Androidmalware detection concept drift challenges under imbalanced data conditions. Besides,it outperformed the state-of-the-art solutions MaMaDroid [80] and DroidEvolver [108],as shown in Figure 15. More specifically, when the training period is excluded (i.e., 2011),the proposed solution averaged 94.05% F1 score in the 2012–2016 time frame, whereasDroidEvolver reported an average of 89.56% for the same time window. However, it isworth noticing that the features and data sets used by these approaches are different.Thus, the comparison is provided to contextualize the goodness of the proposed solutionin relation to the state-of-the-art solutions as, due to the different data used, the directcomparison among the approaches is hindered.

Figure 15: Comparative performance of the proposed solution with state-of-the-art solutions [42]

The proposed solution showed adaptive capabilities to effectively deal with conceptdrift in Android data using a data stream perspective. Furthermore, when the classifiersdynamics are explored, the proposed methodology can provide relevant insights aboutthe concept drift character and enhance the understanding of the phenomenon. The char-acterization of concept drift using the proposed solution is explored in the next section.
6.4 Concept drift characterization
The proposed solution can be leveraged to explore thoroughly the phenomenon of con-cept drift by analyzing the influence of data changes on classification quality measures invarious time horizons.
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6.4.1 Characterization methodology
For concept drift characterization, the permutation feature importance technique [18]wasutilized. This method is model-agnostic and applicable in the binary classification caseposed by malware detection which can be evaluated by quality measures related to theclassification results. The analysis of permutation feature importance scores of chrono-logically arranged data chunks allows the exploration of changes and observation of theevolution of relevant features in the data, which enable the identification of trends andthe characterization of emerging concept drift. The permutation feature importance tech-nique is explained as follows.For a matrix of feature values X with rows xi given each of N observations and corre-sponding response yi, xπ, j

i is a vector achieved by randomly permuting (π) the j-th columnof X. Given a loss function L, the importanceV I j of the j-th feature is defined as the dif-ference between the loss calculated using pseudo-random values and the original data,as it is expressed by the following equation:
V Iπ
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To analyze the relevant features for concept drift analysis, the permutation featureimportance technique was applied to the test data.The concept drift characterization method used in this study adopts Eq. (1) by the cre-ation of the classification function ft using data Xt from period Pt . Then, observations Xare taken from the set ⋓l+h
l=t+1X j, where h declares an analysis time horizon. For instance,short term (i.e., three months),mid-term (i.e., six months) and long-term (i.e., 12 months)horizons were analyzed in Publication V. The usage of several time horizons enables bet-ter characterization of the changes in importance of features. The whole procedure issummarized by the following equation:
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The procedure can be used to evaluate the influence of features on various qualityfunctions Q(.) = 1−L(.) such as F1 score, specificity (true negative rate), and recall (truepositive rate), which are relevant performance metrics on imbalanced data scenarios.
6.4.2 Experimental results
The concept drift characterization technique described above enabled us to analyze rel-evant issues regarding the evolution of important features (i.e., concept drift), and alsounderstand and compare the system dynamics under each specific timestamp used. Adetailed analysis of the latter, which evidenced significantly different classifier dynamicsfor the timestamps and that the first seen timestamp was prone to show temporal delay,affecting the capabilities to deal with emerging concept drift, can be found in PublicationV. Publication VI also explores the differences between the timestamps for concept drifthandling and characterization, but focusing the analysis on cross-device detection perfor-mance. Due to these differences and better suitability of the last modification timestamp,the analysis of the evolution of important features was only performed for the last modi-fication timestamp. The process is summarized in the following paragraphs.For each period Pi, the best classifier was selected. The permutation feature impor-tance technique was applied to the classifier using Eq. (2) with F1 score as loss function.
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The importance was calculated separately for three test sets (i.e., time horizons). Thefirst set was the subsequent period to Pi, thus Pi+1. The second set consisted of the twosuccessive periods, ⋓i+2
j=i+1Pj and the third set contained the four subsequent periods,

⋓i+4
j=i+1Pj. As defined, the sets were built incrementally, thus corresponding to three, six,and twelve months data horizons.
The usage of the three incremental test sets enabled us to observe the variation of theimportance of features on different time spans. The analysis and related plots, included inPublication V, enabled us to conclude that no feature was found useful or important in allperiods. A fact that stresses the existence of concept drift in the data. More interestingly,based on these results three types of features were distinguished.
The first type includes those features that are not useful in any time horizon like get-gid32 or restart_syscall. Their influence is anecdotic and likely due to the stochasticity ofthe technique.
The second type of features groups features that are more important in longer timeframes (i.e., medium and long term) than in the short-term. These features are not verygood at recognizing sporadic threats, but they constitute a solid base in a long-time threatdetection system. Features like clock_gettime and flock, which lie inside this category,show a relatively stable discriminatory power over time.
The third type of features presents the opposite situation. The feature is a relativelygood discriminator in the short term but is not as useful in longer time frames. Thesefeatures are less beneficial for overall discrimination than in the short time frame, whena smaller variety of threats is present, because a greater number of unique threats arepresent in longer time frames (i.e., more families and malware variants). Consequently,these features might work well to distinguish specific malware families. System calls suchas write or SYS_317 are included in this category.
To perform a deeper analysis of the importance of features for specific recognitiontasks, the permutation feature importance was calculated using specificity and recall asloss functions. The results for specificity provide information about important features torecognize benign software, whereas for recall, also called sensitivity, they inform aboutthe important features for the malware detection task.
The obtained results are depicted in Figure 16, showing the evolution of important fea-tures for the goodware and malware recognition tasks, referred to as specificity and re-call, respectively. The horizontal axis provides the timeline, split into quarters or periods.Regarding the vertical axis, the color relates to specific features, while the colored areas(i.e., vertical range) in each bar provide the importance score of each specific feature inrelation to the total importance of each specific period of time (i.e., the total importanceof a period is the sum of the importance scores of all the important features in that pe-riod). Consequently, the larger the vertical range or area spanned by a feature in a bar,the greater the importance of the feature in the specific period.
In the case of the benign software recognition task, presented in Figure 16a, the im-portance of features appears to be locally stable. Several features like read andmprotect,depictedwith light red and brown colors, respectively, have similar influence for extendedperiods of time. Besides, quarters with clearly dominant features are rare (e.g., 2011-Q4,2017-Q2). Despite that some trends can be spotted, with some features gaining impor-tance over time and others losing importance in some periods, the overall picture showsstability and that the same set of features is relevant in all time frames with no distinctivechanges in relative influence and with no new clearly dominant features emerging overtime.
The results are drastically different for themalware recognition task. Figure 16b shows
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(a) Specificity

(b) Recall
Figure 16: Quarterly feature importance scores for recall and specificity [42]
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the changes in feature importance calculated for the recall function. As can be noticed, for the majority of quarters, the dependencies observed in a specific period are not repeated in the following periods. Besides, even when a feature shows extremely high importance in one period (e.g., pread in 2014-Q2), no consistency is observed and the importance of the feature decreases dramatically in the following periods. The only remarkable exception to this observation is clock_gettime, which is a very important discriminatory variable for several years. However, even in this case, there are quarters in this extended time frame where the feature loses completely its discriminatory power for malware detection.Another issue observed in the malware recognition case is the existence of periods where the total importance of the features included in the bar is far from reaching the top (i.e., 2014-Q4, 2018-Q2). In those periods, none (e.g., 2014-Q4) or few of the included features (e.g., 2018-Q2) were found important for the malware recognition task. In the former case, it suggests that the set of features was not large enough to model all malware types observed in the data, whereas in the latter case, new features emerged as important.Finally, even though important features seem to vary dramatically among quarters for the malware recognition task, some general patterns can be spotted. For instance, as mentioned before, clock_gettime is critically important from 2012-Q2 until 2015-Q2 but not so much after (i.e., more recent years). The internet-related system calls (i.e., socket-pair recvfrom, setsockopt and getsockopt) appear to have more importance for the recent years, from 2015-Q4 to 2017-Q3. More interestingly, the bars from 2012-Q1 to 2016-Q1 show clear dominance of small subsets of features (i.e., mainly clock_gettime), whereas in the latter years, the bars are composed of more features, looking more similar to the bars of the benign recognition task.It is worth noting that, when comparing Figure 16a with Figure 16b, the segmentation of the bars is a major difference between them. For the benign recognition task, the bars are dense, composed of many features, and show stability. On the contrary, the bars for the malware recognition task are mostly composed of a small subset of features, showing clear dominance of some of them over the rest. Consequently, the malware recognition task appears to be significantly more complex and rapidly changing than the benign software recognition task.The characterization results may aid malware analysts in comprehending the overall evolution of benign and malicious samples and the causes of concept drifts, increasing experts’ confidence in learning models. However, despite the goodness shown by system calls to generate an effective detection model, an expert may not derive a clear comprehension of what type of app behavior is induced by each feature as a particular system call can be associated with different system functions. Static features such as permissions or API calls can benefit more from our characterization approach due to a more comprehensible mapping between these features and the application behavior. In this regard, Publication VIII applies the proposed methodology to Android permissions.
6.5 Chapter summary
The evolving nature of Android malware has been neglected by the majority of ML-based detection methods proposed in the related literature, thus disregarding the degenera-tive impact of feature changes over time in the performance of the detection models (i.e., concept drift). This chapter presented a data stream-based approach to detecting, 

56



handling and characterizing Android malware concept drift effectively. The proposed 
solution adapts to emerging concept drift, enabling long-term effective Android malware 
detection. Besides, the presented approach allows the characterization of concept 
driftwhich can be used to comprehend the nature of the changes by security analysts, increase malware-related knowledge and enhance detection.
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7 Concept drift and cross-device behavior: implications for 
effective detection

7.1 The postulate of cross-device consistency
KronoDroid data set provides data collected on two types of devices (i.e., emulator and real device). Both device types have been widely used in behavioral-based Android malware-related research, almost indistinctly. The usage of an Android emulator or a real device usually depends on the access to specific resources and the scale of the study. For example, large-scale studies tend to use emulators as they are easy to deploy, clean and restart, and integrate in automated systems. However, they are prone to be bypassed by anti-sandbox techniques, suffer from hardware-related compatibility issues and can be fairly limited regarding user interaction and overall phone simulation capabilities (e.g., SIM card). On the other hand, real devices provide full phone operability and user interaction, are immune to anti-sandbox techniques, and provide close to null hardware-related incompatibilities. However, they are more difficult to deploy, maintain and integrate into automated workflows. Therefore, the selection of the collection device is mainly justified based on purpose, accessibility, or scale matters.

The underlying assumption that enables this freedom of choice is the implicit postu-late of cross-device consistency. It implies that the behavior of applications is consistent across Android operating systems and device versions, which suggests that the types of devices (i.e., emulators or real devices) and OS versions used do not affect the behavioral profile gathered. Notwithstanding that, this axiomatic cross-device consistency has been challenged by the few studies that worked with data acquired from both kinds of devices.
By design, KronoDroid data set is especially suited to assess not only concept drift issues but also cross-device behavioral consistency. This is the focus of Publication VI where the KronoDroid data set and the concept drift handling methodology described in Publication V and outlined in Chapter 6 were leveraged to analyze both issues.

7.2 Cross-device behavior and concept drift handling
KronoDroid provides dynamic data collected from the same set of initial applications on two different devices. A simple comparison of the data would be biased and inevitably produce erroneous findings since, as was explained in Section 5.2, the final composition of the two data sets was not the same. For sound experimental comparison, the intersection of the data sets — selected by matching hash value, was employed. Therefore, the final device-related data sets utilized consisted of 34,981 benign apps and 28,343 malware samples.

For the experimental setup, every app within the data sets was described by 288 dynamic features (i.e., system calls count). Even though the available system call set for the emulator is smaller (i.e., 212, named reduced feature set), the usage of the whole feature set included in KronoDroid, corresponding to the real device which includes 76 additional system calls (i.e., named extended feature set), was preferred to perform a sound comparison of the impact of the distinct feature sets sizes on the detection performance. Thus, for the 76 system calls not present in the emulator data, a zero value was imputed for each of these system calls in all emulator apps.
Regarding the timestamps, the last modification and first seen timestamps were used due to their extensive data coverage and high prevalence among the data samples.
To assess the impact of concept drift in cross-device detection, the methodology detailed in Chapter 6 and summarized in Figure 17 was applied to both feature sets.
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Figure 17: Concept drift detection, handling and characterization scheme [43]

The data pre-processing steps applied to each device-related data set resulted in a dif-ferent subset of features included in the final feature sets for each specific device (i.e.,after correlated features were removed). Even though the normality tests confirmed thatnone of the features was normally distributed for any data set, the distribution plots ev-idenced distinct data distributions for the same system call on each device. As the sam-ples composing each data set were the same, these differences provided initial supportto challenge the assumption of cross-device consistent behavior.The concept drift detection stage evidenced the existence of concept drift on bothdata sets. More specifically, the selection of the most important features for each initialclassifier, reported distinct sets of important features for each data set and timestampused, as can be seen in Table 11. In this table, the top-10 of most important features foreach device and timestamp are provided. The common features in all the approaches arehighlighted in blue, whereas the feature sets generated by each specific timestamp areprovided with different backgrounds (i.e., grey for the last modification and white for thefirst seen).
Table 11: Ranking of the most important features per each data set and timestamp combination [43]

Emulator Real DeviceLast Mod First Seen Last Mod First Seen
rt_sigprocmask rt_sigprocmask epoll_ctl clock_gettimefcntl64 getuid32 futex SYS_329futex ioctl SYS_329 writevgetuid32 recvfrom clock_gettime epoll_ctlioctl read writev getuid32write futex ioctl writeread write write closewritev fcntl64 getuid32 gettimeofdayrecvfrom prctl munmap ioctlpread64 fstatat64 read connect

As can be observed in Table 11, the important features for each timestamp on eachspecific data set are similar but show different orders. However, when the devices arecompared, the feature sets are significantly distinct, with the exception of the 3 commonfeatures (i.e., getuid32, ioctl, and write), including architecture-related features in highpositions on the list (i.e., fcntl64 for the emulator, and SYS_329 for the real device). This
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suggested that the timestamp selectedmight cause differences in the relevant feature setbut, more importantly, that the data source can have a critical impact on the definition ofthe important feature sets.These initial feature setswere used to induce and test the one-class anomaly detectionmodels in the concept drift detection phase, as depicted in Figure 17. The results for theemulator data set for both timestamps, provided in Figure 18 evidence the existence ofconcept drift. Even though the results are similar to the ones for the real device data (seeFigure 11 in Section 6.2.4), the performance dips for the real device data are deeper thanfor the emulator data. However, the emulator malware data show more dips. In bothcases, the last modification timestamp generates fewer and shallower dips than the firstseen timestamp.

Figure 18: One-class anomaly detection models performance - emulator data [43]

The existence of concept drift on both data sources manifests the need for a handlingsolution. The solution explicated in Section 6, used to handle concept drift effectively,was used to explore the phenomenon of cross-device detection performance under thepresence of concept drift.For this purpose, the concept drift handling solution was applied using all possiblecombinations of training and testing sets described using both feature sets (i.e., reducedand extended feature sets). This enabled us to test the same device (e.g., training andtesting with emulator data) and cross-device detection performance (e.g., training withemulator and testing with real device data) using distinct feature set sizes. Besides, themodels were induced using both timestamps. This multi-testing scenario allowed us toanalyze the cross-device detection performance under concept drift constraints from allpossible perspectives. For example, when the emulator data was used as training set us-ing the last modification timestamp, four different combinations were tested by using thetwo possible feature sets (i.e., reduced and extended) as data descriptors and the twodata sources as testing sets (i.e., emulator data for same device detection, and real devicedata for cross-device detection). The performance results for this scenario on the fourdistinct testing cases are provided in Figure 19a. Figure 19b provides the performance ofthe testing scenarios when the training set is from the real device data and the temporalordering is provided by the last modification timestamp. Figure 20 provides analogousscenarios when the first seen timestamp is used instead of the last modification times-tamp to locate the data samples along the Android historical timeline. More precisely,Figure 20a provides the scenario of training data belonging to the emulator, while Figure20b provides the results for the real device data as training set. As can be observed in all
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graphs of Figure 19 and Figure 20, four possible combinations of data are tested, which,depending on the training data used, conveys the performance on the same device datausing different feature sets or cross-device performance for both feature sets (i.e., re-duced and extended). For the sake of consistency, disregarding the source of the trainingdata (i.e., specified in the title and caption), in all graphs, the color of the lines relates toa specific device data (i.e., blue for emulator, yellow for real device), and the line styleinforms about the feature set used (i.e., solid for the extended/real device-related featureset, and dashed for the reduced/emulator-related feature set).

(a) Training with emulator data (b) Training with real device data
Figure 19: Last modification timestamp-based detection models performance [43]

(a) Training with emulator data (b) Training with real device data
Figure 20: First seen timestamp-based detection models performance [43]

Asmentioned before, in the cases where the testing data source differs from the train-ing data source, it enables us to test cross-device performance. The usage of differentfeature sets provides information about the discriminatory capabilities of a larger featureset versus a reduced feature set.As can be observed in Figure 19, the performance of the proposed solution is rela-tively stable (i.e., over 0.80 F1 score in the plotted time frame) when the last modificationtimestamp is used, and especially when the testing data is from the same data source asthe training set. Besides, with just a few exceptions, the results obtained using different
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feature sets as data descriptors are very similar. The worst results are obtained for cross-device detection. As a result, this timestamp provides a relatively stable performance,using either feature set, especially for same device data detection. Therefore, the datasource has a significant impact on the detection performance of the model, showing thatcross-device detection provides poorer and less reliable performance. However, the fea-ture set does not show a significant impact on performance.When the first seen timestamp is used to locate the same set of apps along the his-torical timeline, the performance and outcomes of the proposed solution change dramat-ically, as can be observed in Figure 20. This timestamp provided a different data distri-bution across the timeline, concentrating a significantly larger number of samples in the2012–2013 period. The cross-device detection performance is significantly inferior to thesame-device detection performance, sometimes even approaching null values, with theexception of a specific time frame (i.e., mid-2013–2016). Regarding the feature set, the re-sults show that it impacts the detection performance and that better results are obtainedwhen the natural feature set is used, that is, when the feature set is the one related tothe training device. The relative smoothness of the performance when the last modifi-cation timestamp is utilized is not observed on the first seen performance graphs, whichare characterized by abrupt changes from quarter to quarter. This fact may indicate thepresence of artificial concept drift that, contrary to the gradual data drift, expected fromthe natural changes in the threat landscape, can be hardly modeled and, consequently,cannot be handled effectively using previous knowledge.The observation of the artificial drift caused by the first seen timestamp could havebeen caused by the generation of historically incoherent data, that is, themisplacement ofdata samples across the historical timeline. Historical incoherence occurs when data orig-inally belonging to different time frames are blended together and, consequently, gener-ate a not naturally occurring data set. This is opposed to the overall smooth performanceobserved when the last modification timestamp is used, indicating the emergence of amore naturally occurring drift in the data. Based on these observations, the analysis ofthe differences between the timestamps to locate the data samples was well-motivatedfor further inspection. This divergence was further explored in Publication IX.
7.3 Characterization of behavioral concept drift across devices
As in Chapter 6, were the concept drift handling methodology was introduced, the pro-posed solution to handle concept drift effectivelywas leveraged to characterize the single-device learning models, that is, to describe the important features of the models that usethe same testing and training data per analyzed time period (i.e., quarter) using the lastmodification timestamp as sample context. The last modification was preferred due tothe more natural emergence of concept drift observed. Permutation feature importancewas calculated using specificity and recall as quality functions for both data sources (i.e.,emulator, and real device). Figure 21a and Figure 21b depict the important features forthe specificity task (i.e., benign software recognition task) for the emulator and real de-vice data, respectively, whereas Figure 22a and Figure 22b convey the same informationfor the recall task for the emulator and real device data, respectively. For comparison, thesame set of features is depicted in the four graphs with the same colors.As can be observed in Figure 21 for the specificity task, even though the bars for bothdevices (i.e., quarterly important features) may look relatively similar, as they are denselypopulated by awide variety of features in both cases, the comparative analysis shows thata different set of features is important for each device. For example, in the real device,clock_gettime (i.e., pink colored) has a greater relative importance than in the emulator
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for the last periods. The green areas (e.g., features such as openat, readlinkat, etc.) arelarge in the emulator. In contrast, they are negligible in the real device data. For the realdevice, the brownish features are more important (e.g.,mprotect), especially in the initialtime frames. This fact evidences that, even though the benign data samples use a wideand similar set of features on both devices, the most important features are significantlydifferent across devices.Regarding the recall task, depicted in Figure 22, a completely different situation is ob-served. The bars on both devices show a low density of features (i.e., a few features perbar) with clearly dominant features, which are significantly different across devices. Forexample, clock_gettime has a large relative importance in most quarters for the real de-vice, whereas its importance is negligible for the emulator data. In the emulator,mprotectand the greenish features provide the majority of the importance in almost all the quar-ters. For the real device, these greenish features are not significant. As a result, the keyfeatures for the malware recognition task change notably between devices across the ex-amined time frame.

(a) Emulator (b) Real Device
Figure 21: Important features for the specificity task [43]

(a) Emulator (b) Real Device
Figure 22: Important features for the recall task [43]

Finally, when the graphs are compared for the same device (e.g., Figure 21awith Figure22a), it can be observed that even though the composition of the bars is relatively different(i.e., different distribution of features), the set of most important features is remarkablysimilar for both tasks, with the predominance of a similar set of features (i.e., similar colortones), but with an extreme polarization towards a smaller set of features for the recalltask, in both cases.
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The observed differences evidence different behavioral profiles of apps on differentcollection devices and along the historical timeline, which strongly suggests that the ax-iomatic cross-device consistency cannot be assumed. Further exploration of the issuewithstatistical significance analysis of the important features between the devices was per-formed. This statistical analysis is detailed in Publication VI.The device-based differences in behavioral profiles described in Publication VI, set theground for a deeper and more fine-grained inspection of the cross-device consistency is-sue. This exploration was performed in Publication VII using a smaller data set but a widerrange of collection devices and Android OS versions.
7.4 Chapter summary
This chapter combined and analyzed the implications of two of the main challenges re-lated to Android malware detection: concept drift and cross-device detection issues. Theresults of the statistical analysis show that data collected on different Android platforms(i.e., real devices and emulators) cannot be detected effectively using cross-device mod-els, as the behavioral profiles for the same set of apps are significantly different. Fur-thermore, the emergence of concept drift, even when an effective solution to address itis used, magnifies the challenge and greatly impacts the performance of the detectionsystem over time.
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8 Cross-device behavioral consistency: benchmarking and 
implications for effective detection

The behavioral differences observed in Publication VI were further explored in a bench-marking study, described in Publication VII. The objective of this benchmarking was toassess the validity of the cross-device behavioral consistency in a larger set of Android de-vices. Due to the significant number of variables affecting the behavior of apps at execu-tion time in Android devices (e.g., user interaction, Android kernel, software version) theelucidation of the exact etiology of such differences was out of the scope of the study. Themain purpose of this study was to analyze and compare the behavioral profiles acquiredfor the same set of applications in a large and representative set of Android devices, in-cluding different operating system versions.The generation of effective ML-based detection models requires the usage of a largeamount of data. However, for a sound assessment of the validity of the cross-device be-havioral consistency, the focus must be placed on the usage of a wide set of collectiondevices and Android OS versions rather than on the data set size. Besides, the increasein the number of devices and OS versions also increases the likelihood of incompatibilityissues which poses an additional challenge for the data set size. The wider the varietyof devices (i.e., architectures) and OS versions (i.e., Android API levels), the greater thechallenge of finding applications that can successfully be installed and executed on allthe devices (i.e., cross-device compatibility), which is a foundational requirement for thesoundness and representativeness of the benchmarking setup. As a result, priming dataquality over quantity, the data set used in this research was composed of 16 Android apps(i.e., 8 malware and 8 benign samples). The final set of samples was formed iteratively,after the successful installation of samples collected from well-known Android data setsand repositories on all the collection devices. A detailed description of the data samplesused in this benchmarking is provided in Publication VII.A complete testbed of Android devices has to include real and virtual collection plat-forms, as they are both widely used for research purposes. In addition, to analyze thepossible differences in system calls on different Android platforms, distinct versions of theOS should be tested and controlled as a possible confounding variable. Therefore, for theexperimental setup, three realmobile handsets running two different Android OS versions(i.e., Android 9 and 10) were selected as benchmarking devices. The same phone mod-els were also virtualized as accurately as possible using Android Studio’s Android VirtualDevice (AVD)Manager andGenyMotion Desktop emulators. The virtual devices were con-figured to resemble the real devices’ properties and settings as close as possible using theavailable options in the corresponding emulator software. The real devices were identi-fiedwith sequential numbering after the R prefix (e.g., R3). Their corresponding emulatedcounterparts were identified with the same number but using a different prefix accord-ing to the emulator software used (e.g., A3 for the Android Studio instance emulating thereal device 3, andG3 for theGenyMotion instance emulating the real device 3). A detaileddescription of the devices used is provided in Publication VII.The workflow of the experimental setup is provided in Figure 23. As depicted, eachof the samples composing the data set was installed and executed in all the test devicesusing two modes of execution. The first mode of execution installed the application, ex-ecuted it, and let it run freely for five minutes, with no other interaction (i.e., named as1-event execution or 1E). The secondmode of execution involved the same initial steps butadded simulated user interaction in the execution phase. More specifically, 50 pseudo-random events were injected during the run-time (i.e., named as 50-event execution or50E. The behavior of the application (i.e., system call traces) was monitored and logged.
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Figure 23: Benchmarking workflow [49]

Therefore, as 16 samples were used in the experimental setup and run on two modes ofexecution on nine devices, the result of the workflow depicted in Figure 23 yielded 288behavioral traces. These syscalls traces were further analyzed, being compared for simi-larity using statistical measures, and used as input for ML models to evaluate the impactof the observed divergences in cross-device and same-device class recognition tasks atsmall scale.
8.1 Cross-device behavioral comparison
The initial exploration of the raw data logs evidenced differences, with varying propor-tions, in the length of collected sequences and the number of different system calls in-voked by each app during the run-time, for all logs. Even though this observation is ex-pected for distinct data samples, as distinct apps show different behavior (i.e., invoke dif-ferent sequences and number of syscalls), no significant deviation should be expected fordifferent executions of the same app in distinct devices for the same execution mode ifcross-device consistency exists. However, the latter was not confirmed and substantial dif-ferences were found in the data logs regarding the behavior of the same app on differentdevices, for all apps on all devices.As the data set was composed of 16 distinct apps, 16 distinct behavioral profiles regard-ing system calls usagewere expected since every app differs from the others in its functionand nature. To examine the similarity of behaviors of individual apps across devices, thecollected data were analyzed for consistency and similarity across devices. In this regard,feature engineering was used to extract data from the logs and generate meaningful dataattributes for comparison. More specifically, the total number of system calls invoked bythe application and the number of unique system calls used were retrieved. Based onthese two data features, a more fine-grained comparison of the behaviors was performedusing two statistical measures as scoring metrics for each data attribute.For the total syscalls attribute, the ratio of increase between the number of systemcalls produced by the same app on two different devices was calculated. All the calcu-lations were performed pairwise, where the smallest value was always subtracted fromthe largest. Therefore, the minimum value was 1, implying that an equal number of totalsyscalls was invoked on both devices (i.e., no difference).For the number of unique syscalls data, the system call name was used instead of asummary numeric value (e.g., clock_gettime). All the comparisons were performed pair-
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wise, where the overlap between the unique syscalls sets (i.e., invoked on both execu-tions) was used to calculate the Jaccard coefficient. The Jaccard coefficient is a measureof similarity between sets calculated as the size of the intersection (i.e., overlap) over thesize of the union of the sets, as expressed in equation 3. It ranges from 0 to 1, and thelarger the value, the more similarity between the sets.
J(S1,S2) =

| S1∩S2 |
| S1∪S2 |

=
| S1∩S2 |

| S1 |+ | S2 | − | S1∩S2 |
(3)

The calculation of these scores resulted in two similarity indexes/scores per sample foreach pair of compared devices. For the sake of interpretation, similarity thresholds wereestablished to qualify behaviors as similar between devices. The similarity threshold wasset to 0.75 for both comparative scores. So that the behavior of a specific app on twodifferent platforms was qualified as similar if the total syscalls ratio did not exceed 1.25and the Jaccard coefficient did not fall below 0.75.To establish a comprehensible scope, the real devices were employed as the basis for4 distinct device comparison subgroups. Such division provided distinctive sets of data forcomparison. The generated subgroups were coded as A, B, C, and D. Subgroup A concen-trates exclusively on behavioral differences among real devices, while subgroups B, C, andD assess the differences between each real device and its corresponding virtualizations.Furthermore, since data acquisition was performed on each device using two classes ofapps and two modes of execution, it implied that there were 4 different perspectives toexamine the potential contrasts within each subgroup.

Figure 24: General overview of the comparative results [49]

The general overview of the results, covering the full spectrum of comparison sets andexecutionmodes, is reported in Figure 24. For the sake of the interpretation of the results,
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the numeric scores have been omitted, thus providing better visualization and compari-son of the observed similarities. The light green colored cells report those devices wherethe similarity score for the specific app was above the similarity threshold (i.e., good simi-larity). The apps/devices where the sets displayed an outstanding similarity (i.e., the ratioof total syscalls below 1.10 and a Jaccard coefficient greater than 0.90) are distinguishedwith darker green color.The results shown in Figure 24 support that, in general, it can be concluded that thebehavior of apps is significantly dissimilar across distinct real devices and OS versions.Even though the real devices show similarities for some apps and platforms (i.e., R1 andR2, which belong to the same Android OEM), there is no consistency. The comparativesamong real devices and their emulated versions (i.e., subgroups B, C, and D) show re-markably inconsistent results. This fact evidences that the behavioral profiles of the appsin real devices and their emulated versions, even when the virtual devices fully mimic thesettings and properties of the real devices, are significantly different.In general, although some exceptionally similar behaviors were spotted, inconsistentsimilarity patterns were observed for the vast majority of the analyzed sets under any ofthe execution modes and both app classes.
8.2 Impact on ML-based detection models
The data acquired in the collection stage were processed to build and evaluate distinctML-based classification models. More specifically, feature engineering was performed onthe acquired data and the absolute frequency (i.e., count) of each individual system callissued by the apps during the collection time was used to describe each application.Asmachine learningmodels are sensitive to data quantity, themain aim of this experi-mentationwas not the induction of effective forecastingmodels but the usage ofmachinelearningmodels to assess the similarity between distinct acquisitions of the same applica-tion on different platforms and evaluate the implications of collecting distinct behavioralprofiles for the same application in simple detection models. For the sake of consistency,the same classification algorithm and hyper-parameters were used to induce all the ML-based detection models. The models’ performances were evaluated using the accuracyperformance metric.The underlying concept behind the usage of these detection models was to leveragethe model’s overfitting capabilities to evaluate the similarities between the training andtesting set, both composed of 16 instances. In general, an ML classifier model is said tooverfit the training data when it is trained with limited data, and the resulting model fitstoo closely or exactly the training data, thus, it does not generalize accurately to unknownor new data [53]. This is an undesirable situation when building ML models that is usuallyaddressed by using more data or regularization techniques. However, in our case, it isleveraged to provide a notion of similarity between the training and testing sets, whichare composed of exactly the same samples and described with the same features but col-lected on distinct platforms. In general, a high-performance ML model should recognizethe training data almost perfectly when used as testing data (i.e., training set accuracy). Inour case, as the data set is small, it should be perfectly recognizable (i.e., 100% accuracy).Therefore, if an accuracy distinct of 100% is reported, then behavioral inconsistencies canbe implied as all the training/testing sets are composed of exactly the same data samples,and the only difference is the collection device, which defines the behavioral profile col-lected. More precisely, the lower the testing accuracy, the more dissimilar or inconsistentthe behavior of the apps on the training device concerning the testing device.The bar charts displayed in Figure 25a and Figure 25b provide the results for cross-
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device detection accuracy for different training and testing sets. The vertical axis providesthe accuracy score, whereas the horizontal axis informs about the source of the testingdata (i.e., device). Thus, each bar reports the testing set accuracy for each trained de-tection model. The color of the bars informs about the training data used to build thedetection model, as specified in the legend. For each execution mode, 9 detection mod-els were induced, trained with each device data, and referenced with the distinct colorof the bars. All the trained models were tested separately with the data from all 9 de-vices, including the training set, and the accuracy performance was retrieved. It is worthremembering that the training and testing sets were composed of the same instances inall cases, the only difference was in the feature values describing each sample which cor-responded to the behavior collected on each particular device. The only exception to thisfact occurred when the training and testing data belonged to the same device. In such acase, the training and the testing data feature values were identical.Given the reduced size of the data set and the inherent randomness of the classifieralgorithm used (i.e., Random Forest), to achieve a representative measure of the perfor-mance, each model training/testing was repeated 100 times. Therefore, Figure 25a andFigure 25b report the average accuracy performance of all models.

(a) Execution-only (1E) data (b) 50 pseudo-random events (50E) data
Figure 25: Accuracy of cross-detection models [49]

Asmentionedbefore, in our case, the greater the accuracy, themore similar the behav-ior of the apps across devices and, consequently, the better the discriminatory capabilityof the model to cross-device data. The lower the accuracy, the more dissimilar the be-havior of the apps across devices and the worse class-based discrimination by the model.Note that the discrimination of the training data (i.e., when used for testing) by themodelshould be close to perfect accuracy to make such implications, that is, the classificationmodel must be able to classify the training data effectively.As can be seen in Figure 25a and Figure 25b, the accuracy never reaches the maxi-mum score, except when the testing data are the same as the training data. This confirmsthe goodness of the induced models to perfectly discriminate their own data, but not anyother test data, which corresponds to the same data set but is described by the behaviorcollected on other devices. This demonstrates that even if the samples on the training andtesting sets are the same, the data collecting device has an effect on the performance ofthe induced systems since even in this straightforward scenario, class-based discrimina-tion degrades significantly. With the exception of G2 and G3 in execution-only mode, allcross-device models decrease their performance significantly, showing that the behaviorof apps in distinct devices is not consistent, thus confusing the classifiers induced withone device data to generalize effectively to data collected in other Android devices.In summary, when all models are considered, the cross-device average accuracy forexecution-only data is 0.80 (out of 1) with a standard deviation of 0.11, whereas for 50
69



events is 0.81 with a standard deviation of 0.07. Thus, even though when more eventsare injected the overall performance does not change significantly, the behavior appearsto be slightly more consistent across devices, showing lower variability. Therefore, thebehavioral differences captured on the testing sets with regard to the training set impactthe model’s performance significantly.
In conclusion, the classifiers’ cross-device detection performance is significantly infe-rior to same-device data detection performance because of behavioral variations amongdevices.
To further explore the implications of mixing behavioral profiles from distinct collec-tion platforms,mixedmodels were induced using training sets constructed using randomcombinations of data from distinct devices. In this scenario, the benign and malware datawere independently and randomly selected from one of the nine data sources, which en-sured that the data set was always composed of the 16 different samples. The trainedmodel was tested, as in the previous case, with data collected from all devices. There-fore, the training sets included class samples from randomly selected devices, whereasthe testing data always belonged to a single device.

Figure 26: Mixedmodels performance results [49]

For this experiment, a total of 10,000 models were induced. The average accuracyresults are provided in Figure 26 for both executionmodes (i.e., orange for execution-onlyand blue for 50 events). The height of the bars reports the average accuracy value, whilethe standard deviation is depicted as extended grey lines below and above the averagevalue. As the horizontal axis reports the source of the testing data set, the accuracy scoreinforms about the discriminatory properties of each data source for mixed data models.
As shown in Figure 26, the performance of themodels where the training data ismixedis remarkably lower than for the models induced in Figure 25a and Figure 25b, wherethe data for both classes were collected from the same device. More specifically, for theexecution-only mode, an average accuracy of 0.72 is achieved with a standard deviationof 0.044 whereas in the 50 events mode an average accuracy of 0.75 is reported and astandard deviation of 0.038. More interestingly, the data collected on the Genymotionemulator (i.e., GX) emerge as the most easily recognizable by the mixed models, whereasthe data collected in the real devices are the most challenging and report the worst per-formance of all mixed models. In this case, 50 events data are easier to discriminate thanexecution-only data. This may suggest that more events would tend to make the behav-iors more similar across devices and that, consequently, are easier to discriminate by themixed models.
In any case, despite the existence of some limitations, described in Publication VII,these results evidence that cross-device consistent behavior cannot be assumed and that

70



the data source must be considered in the design and data pipelines of any robust ML-based Androidmalware detection system. Furthermore, mixing data fromdistinct sourcesin both training and testing sets seems to impact notably the performance of the classi-fiers. Our results show that on average, in simple models and easy data sets, the cross-device accuracy of single-source trained models might be ≈ 20% lower than the same-device testing accuracy and≈ 30% lower in the mixed models case.
8.3 Chapter summary
Most of the research regarding Android malware detection assumes some form of be-havioral consistency of applications across Android devices. Consequently, the impact ofthe nature of the devices and operating system versions used in the collected behavioralprofiles has not been considered. In this chapter, the cross-device consistency issue, in-troduced in Chapter 7, was deeply explored by performing a thorough benchmarking ofAndroid apps in a wide set of Android devices. The results confirm that cross-device be-havioral consistency cannot be assumed as the collected behavior of the same set of appsin different Android platforms and OS versions differed significantly. Neglecting this is-sue may lead to a severe decrease in the performance of the detection models designedfor specific platforms when facing data collected on a different platform. Cross-devicedetection is a challenge that must be considered and cannot be assumed on the basis ofbehavioral consistency across platforms when system calls are used as detection features.
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9 Leveraging thefirst line of defense againstmalware: Android
security permissions

The previous chapter and related publications dealt with behavioral attributes of Androidapps (i.e., system calls). Dynamic analysis of Android applications is a time-consuming andspecialized task. It requires setting up a sandbox environment, using a sophisticated anal-ysis toolkit, and running the application for a specific amount of time. As compensation,these features are relatively immune to obfuscation and encryption attacks which tend tobypass static approaches. Despite that, most of the Android detection systems proposedin the literature are built on static attributes. In general, these attributes are easy and fastto collect and may enable on-device detection. Permissions, API calls, and intent filtersare widely used static input features for Android malware detectors.The data collected for KronoDroid data set, described in Chapter 5.2, includes, amongother static attributes, features related to Android security permissions. Permissions arethe most widely used static attributes in Android malware detection research. Besides,permissions are a built-in security feature, based on the Linux kernel, that constitutes thefirst line of defense against malicious threats on Android devices.
9.1 Permissions evolution and concept drift handling
Publication VIII explores the application of the proposed methodology to handle conceptdrift in Section 6.3.1 to the feature space defined by the permissions feature set. Contraryto the system calls feature set, which has remained relatively stable over time, the per-missions feature set has evolved significantly over time, as permissions have been addedor deprecated in almost every new Android API release.

Figure 27: Android permissions timeline evolution [38]

The changing nature of the permissions feature set is depicted in Figure 27. The initialset of standard permissions was composed of 74 permissions (i.e., Android 1.0, API level1, released in 2008). Since then, the permissions set has evolved to contain 157 availablepermissions in 2020 (i.e., Android 11, API level 30). However, a total of 166 permissionswere defined and available at some point, with 9 of them deprecated along the process,thus not supported by the release of Android 11. Not only the addition and deprecation ofpermissions makes the feature set dynamic, and constantly changing, also the changes intrends and behavior of apps over time cause an impact on their prevalence, and, conse-
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quently, in their usefulness as discriminatory features. As a consequence, the detectionmodels based on permissions are prone to concept drift issues, thus requiring to handleeffectively the emerging drift to maintain high detection performance over time.
9.2 Experimental results
The concept drift handling method and workflow proposed in Section 6.3.1 was appliedanalogously for categorical input data (i.e., permissions) as for numeric data features (i.e.,system calls). The only differential steps were performed in the data pre-processing stageregarding the data set and the feature selection method used. The methodological nu-ances regarding the pre-processing stage, and the overall results for concept drift han-dling and characterization using permissions as input features, covered in Publication VIII,are summarized in the following sections.
9.2.1 Data set and feature sets
KronoDroid data set provides a different number of samples per sub-dataset, accordingto the dynamic data source. As permissions are static features, their values do not differbetween collection platforms. For that reason, to use the largest data set possible, bothKronoDroid sub-datasets (i.e., real device data and emulator) were merged. After theremoval of duplicated samples, the resulting data set was composed of 78,804 Androidapps, i.e., 37,020 benign samples and 41,784 malware.Regarding the features used to describe the apps, the permission-related indicators(i.e., binary features) were retrieved. As depicted in Figure 27, until API level 30, 166 per-missions were defined. Therefore, each app within the data set was described by 166categorical features related to permissions attributes, a timestamp, and the class label.The pre-processing steps applied to the input features, as described in Section 6.3.1,showed that 26 permissions from the initial feature set had null variance and 18 werestrongly correlated with another feature (i.e., Kendall’s τ > 0.80). Therefore, the resultingfeature set was composed of 122 permissions. This feature set was named as full featureset. In order to test the bias of zero-filled values for non-available permissions at spe-cific times and the impact of permissions evolution, a reduced feature set was formedby applying the pre-processing steps to the set of permissions defined in API level 1. Thereduced feature set was composed of 60 permissions.
9.2.2 Concept drift handling
The performance results of the proposed solution to handle concept drift as detailed inSection 6.3.1 using permissions as input features are provided in Figure 28. For the sake ofcomparison, recall, specificity and F1 performance metrics are reported in Figure 28, anddetailed in red, green, and blue color, respectively.As can be observed, the detection system provided over 0.91 F1 scores in almost allquarters, averaging 0.93 F1 score in the analyzed time frame using both feature sets. Nosignificant differences were found in the performance metrics using both feature sets,thus proving the goodness of the reduced or initial feature set to discriminate effectivelyAndroid apps over time. Therefore, in the analyzed time frame, spanning 7 years of An-droid history, the usage of more features did not enhance the results. The added per-missions in later Android OS releases (i.e., API levels) do not seem to significantly impactthe performance of the model. In this regard, an in-depth analysis of the evolution of theimportance of the features over time is performed in Publication VIII, and summarized inSection 9.2.3.The specificity metric of the detection system remained relatively stable for the whole
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Figure 28: Performance of the proposed solution using permissions as input features [38]

time frame (i.e., over 0.80), whereas the recall performance dipped significantly in threequarters (i.e., 2011-Q3, 2015-Q4, and 2016-Q3). Even though the average of both metricsis high for the whole period (i.e., over 0.90 in both cases), it is worth noticing that the de-tection performance varies between feature sets for class-based detection. For example,the reduced set provides better performance than the full feature set to detect malware(i.e., recall), whereas, the full vector yields better detection performance than the smallersubset for benign software detection. The characterization of concept drift provided nextenabled us to explore the reasoning behind these observations.
9.2.3 Concept drift characterization
The analysis of the evolution of the importance of permissions enabled us to explore thereasons behind the recall drops and the class-related performance differences betweenthe feature sets observed in Figure 28. The results and main findings, explicated in Publi-cation VIII, are briefly summarized in the following paragraphs.The feature importance evolution analysis was performed independently for the fulland reduced feature sets. The latter enabled us to analyze the impact of the initial set ofpermissions per quarter along the whole timeline, whereas, the former, the significanceof the later additions in the updated detection models. For the sake of brevity, only theresults regarding the full feature set are provided for the benign software recognition taskand themalware recognition task in Figure 29 and Figure 30, respectively. In these figures,the relative feature importance (i.e., the share of the total importance of the chunk pro-vided by each specific feature) is depicted per quarter in vertical bars. The colored areasin each bar are associated with specific permissions. Finally, the white overlay line pro-vides the maximum importance value, provided by the most important feature, in eachquarter chunk. For the sake of interpretation, Figure 29 and Figure 30 only depict the per-missions included in the reduced set with colors. The permissions added in later stages,thus belonging only to the full feature set, are masked in grey for each quarter.Relatively mild and gradual concept drift is observed for specificity, with the featuresvarying in importance over time, especially for the last years, as can be observed in Figure29. More interestingly, the same set of features belonging to the reduced feature sethas retained most of the importance over time. The later additions show a limited localimpact in specific quarters as depicted by the small grey areas. The dominance of thereduced feature set is further emphasized by the large importance value shown by themost important feature per quarter, always belonging to the reduced feature set, reportedby the overlay white line.
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Figure 29: Quarterly feature importance for specificity [38]

For recall, depicted in Figure 30, the situation is dramatically different. This recogni-tion task is characterized by sudden concept drifts, more important features per quarter,and remarkably distinct important features for the last quarters than in the early ones. Be-sides, the importance of the later added permissions is very significant in some quarters,explaining over 50% of the overall importance and even becoming the most importantfeature (see Publication VIII). A fact that is not observed for the specificity task. Lastly, themaximum importance per quarter is always small, rarely over-passing the 8%.
Based on the spotted differences between both tasks, the recall task’s complexity isdeemed more challenging and varied, less stable over time, and more susceptible to sud-den concept drift. The observed changes in the last periods demonstrate that malware ismore unpredictable than benign software in permissions usage.
In summary, the characterization and analysis performed evidenced the critical im-portance of the initial set of permissions to build an effective recognition system and thelower relevancy for such a purpose of the later added permissions. Even though conceptdrift issues were found in benign and malware data, the former shows relative stabilitywith gradual changes, being relatively easy to address, whereas the latter is characterizedby more sudden, and complex concept drifts dominated by specific features, making ita challenging task. Besides, the set and degree of importance of features differ for bothtasks. Therefore, the analysis performed evidences the dynamism and constantly evolvingnature of the malware threat landscape, and emphasizes the critical requirement to ad-dress concept drift for any solution aiming to provide long-lasting effectivemalware detec-tion. The detection solution must have the ability to adapt, updating its knowledge, in anever-evolving landscape. A constant change that has been overlooked by the permissions-based solutions in the related literature.
A thorough analysis of the class-based recognition performance, that is recall and
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Figure 30: Quarterly feature importance for recall [38]

specificity metrics per quarter, as depicted by the red and green lines in Figure 28, evi-denced that the detection system provided high specificity consistently (i.e., over 0.8 inall quarters) using either of the feature sets. This fact emphasizes the goodness of thepermissions-based model to recognize benign apps effectively over time and is consistentwith the smooth concept drift that characterized these data. However, the situation isnotably different for recall. Even though the average recall performance of the systemshows an accuracy over 0.90, even reaching 0.99 in eight periods, the malware recogni-tion performance dips significantly in three specific time frames. The algorithm could notaccurately identify new malware samples in those quarters while maintaining high speci-ficity. Figure 28 demonstrates that the reduced feature set is superior to the completefeature set for long-term accurate malware detection since the full feature set’s averageperformance line is lower than the reduced feature set’s average line (i.e., a differenceof 1.8%). Besides, the third dip was less severe for the model that used the reduced fea-ture set. Therefore, for malware detection purposes the reduced feature set is preferred.The opposite situation happens in the case of benign software recognition, where the fullfeature set provides better average performance than the reduced feature set (i.e., a dif-ference of 1.5%). This observation is consistent with the results of Publication IV wherebenign data samples were found to use a smaller but more varied set of permissions thanmalware apps. Consequently, the extended feature set, as it includes more permissions,provides better overall performance for this task.
Despite the overall high performance of the detection system on both tasks, the sys-temprovideddiminishedmalware detection performance, with different degrees of sever-ity, at three specific time frames, namely, 2011-Q3 (initial period), 2015-Q4, and 2016-Q3,as shown by the red line in Figure 28. Publication VIII explores with great detail the etiol-ogy behind these dips. The main findings are summarized in the following paragraphs.
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The first dip happens in the initial period, 2011-Q3. Even though this should not beconsidered a dip in performance, it is worth analyzing its cause. In the initialization phaseof the system, where the model has access to a limited amount of data, the performanceof the system strictly depends on the generalization capabilities of the initial data chunkconcerning the following quarters. Therefore this dip does not relate to the learning ca-pabilities of the system as there is no previous reference of detection performance. In ourcase, the initial chunk was split into n ordered data chunks, where n refers to the num-ber of classifiers in the pool of classifiers. The system was initialized in this initial quarter,building a distinct model with each data chunk and incorporating it into the pool. As aresult, the lower initial performance is likely caused by an insufficient variety of data tocapture the phenomenon properly. Despite that, the malware detection performance in-creased in the subsequent quarters, demonstrating the capabilities of the model to learnand adapt over time, even when a distinct combination of features emerged as importantin closer quarters (e.g., 2012-Q2).The second and third dips correspond to actual sudden concept drift. The relation be-tween these dips and the characterization graphs (i.e., Figure 29 and Figure 30), is sum-marized as follows.The second dip (i.e., 2015-Q4), which is less severe than the third dip, was caused by asudden malware shift (i.e., new features emerge as important, changing the distributionof the important features significantly, and the previous important features see their in-fluence diminished) coincidental with an increase in the specificity score. Despite theselearning challenges, the F1 score of the system showed an acceptable performance (i.e.,over 0.80), improving in the subsequent chunks.

Figure 31: Malware family distribution per period [38]

The third dip (i.e., 2016-Q3) is themajor performance drop in the analyzed time frame.For recall, the feature importance distribution shows a remarkably different character
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than in the previous quarters (i.e., more features becoming important), with the previ-ously most important feature having a marginal role and the emergence of three newfeatures as important (i.e., ACCESS_NETWORK_STATE and ACCESS_WIFI_STATE from thereduced feature set and READ_EXTERNAL_STORAGE from the extended feature set). Thiscorrelated with the maximum value in the absolute importance line. A similar situation isobserved for specificity, with old features losing importance and new features emergingas critically important. These sudden and significant unforeseen changes in importancefrom previous patterns did not enable the pool to deal properly with the new data char-acteristics. However, after this dramatic decrease in recall performance, where the sys-tem still kept acceptable benign software recognition capabilities, the pool adapted andlearned from the new data, improving and rapidly recovering past performance levels inthe subsequent chunks. Despite that, this dramatic decrease in recall deserved furtherexploration. This investigation was performed via malware family evolution analysis. Inthis regard, Figure 31 shows the distribution of the top 10 malware families per quarter inthe analyzed time frame. The graph shows the proportion and prevalence of 54 malwarefamilies over time. It also reports the number of malware families per period (i.e., whitestars in the middle of each bar). Besides, the F1 score of the detection system is providedas a reference in an overlay white dashed line.

Figure 32: One-family anomaly detection models performance [38]

As can be noticed, the major dip occurs in a quarter dominated by the Slocker mal-ware family (i.e., the first and most relevant Android ransomware). This suggests that thedip was likely caused by a diminished ransomware detection capabilities of the system.However, this malware family was also dominant in 2015-Q3 and the detection systemreported 99% recall. This motivated the exploration of intra-family evolution. One-classanomalymodels were used for such a purpose in which themalware family was leveragedas the class concept. These models enabled us to analyze malware family changes overtime from an initial or breakout quarter. More precisely, the decrease in performance ofthese anomaly detection models indicates a shift in the characteristics of malware familysamples (i.e., changes from the initial data used to induce the anomaly model).Figure 32 provides the one-family anomaly detectionmodels for 12 predominant fami-lies in the time frame from 2011-Q3 to 2018-Q2. The initial models for eachmalware familywere induced in distinct quarters when themalware family produced an outbreak or theirprevalencewas significant, and theywere testedwith data from subsequent quarters untilsamples belonging to the malware family vanished. This figure provides relevant insights
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about malware families’ evolution that are directly linked to the performance dips andobserved concept drifts. Firstly, most of the malware families showed similar or the samecharacter over time (i.e., high detection accuracy per quarter). This implies thatmostmal-ware families did not change much regarding permissions over time, thus making thesefeatures powerful discriminators. Secondly, the Slocker family did not follow that pattern.The initial model built for the Slocker family dips significantly in 2016-Q3, suggesting a dra-matic and sudden change in characteristics concerning the initial model’s samples. Thisexperimental finding was confirmed by reports from threat intelligence sources [87, 106],stating that in the second half of 2016 over thrice Slocker variants were detected in com-parison with the same period in 2015, and the occurrence of a recursive ransomware out-break characterized by its evolution into amore sophisticated and diversemalware family.This last factwas also suggested by themore complex and diverse quarter characterizationdepicted in Figure 30.

(a) 2015-Q3 Slocker predictions decision paths (b) 2016-Q3 Slocker predictions decision paths
Figure 33: Slocker family 2015-Q3 and 2016-Q3 predictions decision paths [38]

Additional evidence of this diversification of the Slocker ransomware family is providedin Figure 33. In this figure, Shapley valueswere used as local interpretationmethod to plotand analyze the individual decision paths leading to prediction outcomes by the model.The decision paths enable the understanding of the importance of features in the decisiontaken by the model with respect to specific samples (i.e., malware or not malware). Moreprecisely, for each sample, a decision path is generated that starts in an initial feature (i.e.,bottom of the graph) and an initial probability of≈ 0.5 to belong to themalware categoryand ends in the upper part of the graph with the last feature and providing the malwareclass probability assigned by the model to each specific sample. The line or decision pathleading from the bottom to the upper part of the graph, moving along the features placedin the Y-axis ordered by importance, depicts graphically the impact of the features onthe decision probability along the path (i.e., increasing or decreasing it) until the finalprobability is reached.In this regard, Figure 33 compares two relevant quarters dominated by ransomwaresamples (i.e., 2015-Q3 and 2016-Q3) and the model decisions for the ransomware sam-
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ples in each specific quarter. As can be seen in Figure 33a, all ransomware samples werecorrectly classified by the model and the decision explanations are similar for all sam-ples with just six decision paths explaining all of them. The ransomware samples in thisquarter thus exhibit similar traits, and as a result, similar attributes are utilized to classifythem. On the contrary, Figure 33b shows numerous decision paths used to classify theransomware samples, with varying features importance, and many misclassified samplesreaching the no malware outcome (i.e., blue paths). Therefore, the Slocker samples from2015-Q3 are significantly distinct from the 2016-Q3 samples, both in variety and charac-teristics. A deeper analysis can be found in Publication VIII for the Slocker family, whichexplains the performance dip in 2016-Q3, and also for the FakeApp family which is relatedto the lighter dip observed in 2015-Q4, as suggested by the performance of the one-familymodels for this family in Figure 32.
9.3 Chapter summary
This chapter presented the results of the application of the concept drift-handlingmethod-ology proposed in Chapter 6 to the permissions feature set. Permissions are first-line se-curity constructs in Android OS, inherited from the Linux kernel. The analysis of their evo-lution and usage can provide relevant insights into the dynamics of the malware threatlandscape. Permissions are usually mixed with other static or dynamic features as inputfeatures in the detection systems proposed in the literature. Our findings show and char-acterize the concept drift that exists in the permissions feature space, but more interest-ingly, they show that when concept drift is addressed, a limited set of permissions thatwere established in the early days of Android can still be used by themselves for reliablemalware detection over time.
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10 On the relativity of time: a study of timestamps for 
effective Android concept drift handling

The essential constructs underlying effective concept drift handling are timestamps. Times-tamps enable the temporal location of apps, aiming to provide a reliable temporal contextwithin the Android historical timeline. The reliability of many produced timestamps canbe questioned, however, because of how malware is created and discovered and the lackof a clear method that can guarantee absolute precision and accuracy.
Publication IX thoroughly explores the usage of distinct timestamping approaches foreffective Android concept drift handling in different feature spaces (i.e., system calls, per-missions, and API calls). The timestamps analyzed are compared using distinct statisti-cal measures and the detection performance yielded using the methodology proposed inPublication V for concept drift handling.

10.1 Data set: timestamps and feature spaces

The base data set used for this studywas KronoDroid. It provides four timestamps and twocommonly used feature spaces (i.e., system calls and permissions). For this benchmarkingstudy, the real device data set was used, composed of 41,382malware samples and 36,755benign samples. Additionally, for all the samples in the data set, two timestamps (i.e., dexdate andmanifest date) and the API calls defined in the source code (i.e., static features)were collected for the exploration and benchmarking performed in this study. PublicationIX provides detailed information on the methodology used for the acquisition and gener-ation of these data features. The timestamps used, their acronym, and brief definition areprovided in Table 12. The name of the feature spaces investigated along with their typeand dimensionality are reported in Table 13.
Table 12: Summary of the timestamping approaches analyzed [37]

Timestamp name Acronym Description
Last modification LM The most recent timestamp retrieved from any file inside the apk archiveEarliest modification EM The oldest timestamp retrieved from any file inside the apk archiveFirst seen FS Date and time of the first submission of the sample to VirusTotalFirst seen in the wild FSW Date and time of the first time the sample was seen anywhere on internetDex date DD Timestamp retrieved from the classes.dex file (i.e., apk compilation time)Manifest date MD Timestamp retrieved from the AndroidManifest.xml file inside the apk

Table 13: Summary of the feature spaces explored [37]
Feature space Dimensions Type
System calls 288 NumericPermissions 166 BinaryAPI calls 53,523 Binary

The feature spaces analyzed in this research for the same data set are representativeof the most common attributes used for Android malware detection [90] and providecomplementary perspectives for the concept drift phenomenon in varying dimensionsand feature types. In addition to that, the temporal dimensions segment and transformthemulti-dimensional feature spaces distinctively, thus providing an extensive explorationof the suitability of the timestamps for effective concept drift handling.
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10.2 Timestamps statistical analysis
The main focus of this study is on the temporal dimension of the data and its impact onconcept drift representation, analysis, and handling. Therefore, the initial step was toperform a comparative analysis of the six timestamps using statistical metrics.The usage of a timestamp to locate applications along the Android historical timelineis subject to availability and reliability issues. The first pertains to the timestamp’s ac-cessibility, while the second concerns the timestamp’s temporal accuracy concerning theapp’s actual position within the historical timeline. As the ground-truth temporal loca-tion is hardly achievable in the vast majority of cases (i.e., it is not possible to know withabsolute certainty when the sample was released), the main aim of the timestamping ap-proaches is to provide a good approximation to the explored phenomenon in the absenceof ground-truth data. In our case, a good approximation would minimize the amount oferror for the majority of the samples and enable concept drift handling effectively. In thisregard, due to the absence of a ground-truth temporal reference, our assumption is that aconcept drift effective handling solutionmay provide relatively more stable and smootherperformance over timewhen using an accurate timestamp than with an inaccurate times-tamp, as data evolution may, in general, occur by shifting gradually over time introducingnewelements and discarding others in a relatively smooth transition (i.e., gradualor incre-mental concept drifts). Sudden concept drifts may happen over time but their prevalenceshould not be significant (e.g., completely new malware outbreaks); otherwise, conceptdrift could be hardly modeled, and keeping high performance over time would be an in-tractable task.
10.2.1 A deep comparison of timestamps
The sequential steps andmetrics used for the comparative analysis of the timestamps aredescribed as follows:

1. Prevalence: the prevalence of timestamps is a term related to availability whichinforms about the accessibility of the timestamp, that is, if the timestamp can besuccessfully collected or retrieved from the samples. For each timestamp, the num-ber of set timestamps (i.e., properly defined) and not set timestamps (i.e., missingor undefined) for the whole data set was retrieved.
2. Validity: the validity of a timestamp is an indicator of whether the timestamp iscomprised in the Android historical time frame (i.e., from the 22nd of October 2008[33] to the present day). It is not an indicator of accuracy; however, it discards allthe timestamps not comprised in the valid Android timeline range (i.e., before 22ndof October 2008 or in the future).
3. Suitability: the suitability of a timestamp combines the previous approaches in apositive way. Thus, a suitable timestamp is available/prevalent and is also valid.Consequently, a non-suitable timestamp is attributed to a timestamp that is avail-able but invalid.
4. Distribution and statistical analysis: data distributions for each timestamp andfor each class were analyzed and compared using statistical measures. Histogramswere used to visualize the data distributions and as input to statistical tests andtechniques for similarity assessment. Two statistical methods for measuring thesimilarity between data distributions were used:
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• Jensen–Shannon distance: a distance metric that is calculated as the squareroot of the Jensen–Shannondivergence. The Jensen–Shannondivergence (JSD)is computed as:
JSD(P||Q) = DKL(P||M)

2 + DKL(Q||M)
2

whereP andQ refer to two probability distributions,M is the point-wisemeanof P and Q calculated as 1
2 (P+Q) and DKL refers to the Kullback-Leibler (KL)divergence calculated for each pair of distributions. The KL divergence or rela-tive entropy, which is used to quantify the difference between two probabilitydistributions, is calculated as:

DKL(P||Q) = ∑x∈X P(x) log( P(x)
Q(x) )

Based on these definitions, the distancemetric provided by the square root ofthe JSD enables us to measure the similarity between two probability distri-butions. The JSD distance for two probability distributions is bounded in [0, 1]when the base 2 logarithm is used for computations. The general interpreta-tion is that the larger the value (i.e., closer to one) the greater the differencebetween the distributions.
• Kolmogorov-Smirnov two-sample test: a non-parametric statistical hypothe-sis test to assess the equality of one-dimensional probability distributions. Itenables us to assess the probability that two collections of samples (i.e., F(x)and G(x)) could have been drawn from the same probability distribution, thatis, if they are statistically similar. The null hypothesis H0 for the test is that thetwo distributions are identical (i.e., F(x) = G(x),∀x), whereas the alternativehypothesisH1 is that they are not identical. The Kolmogorov-Smirnov (KS) testanswers the hypothesis by analyzing the maximum difference between thetwo experimental cumulative frequency distribution functions. The KS statis-tic is calculated as:

Dm,n = sup
x
| Fn(x)−Gm(x) |

whereFn(x) andGm(x) refer to the empirical distribution functions of the twodata samples, of sizem and n respectively, and sup is the supremum function.For large samples, the null hypothesis is rejected at significance level α if
Dm,n > c(α)

√
m+n
mn

where m and n are the sizes of the distributions and the value of c(α) is a
parameter calculated as c(α) =

√
−ln(α

2 )
1
2 .

The similarity of distinct combinations of data distributions based on the times-tamps was analyzed using the described metrics. As these metrics evaluate simi-larity of distributions using different approaches, the usage of both techniques pro-vides a better overall perspective of the differences between the analyzed sets.
5. Accuracy: an approximation of the accuracy of the timestamps was explored to as-sess their reliability. The evaluation of timestamp accuracy is a significant challengedue to the absence of an exact ground-truth timestamp. For this purpose, open-source intelligence feeds such asmalware family discovery news of specificmalware
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families by antivirus vendors and media sources were used to establish an approxi-mation of the discovery date of a specific malware family. After that, a time framearound the datewas established (i.e., ± 6months) and statistics were retrieved fromeach timestamp data distribution for each family. The rationale is that, if the times-tamp is accurate, it would place the samples around that time frame (i.e., discoverytime ± 6 months) and also after it, implying that the malware family might be lo-cated accurately and also its evolution. If a significant number of samples is placedoutside of this time frame, the timestamp could be deemed relatively inaccurate.Despite the limitations of this approach, the experimental results proved that it pro-vides a good notion of the accuracy of the timestamps, especially when the resultsamong timestamps are compared.
10.2.2 Experimental results
It is worth noticing that from the set of six timestamps analyzed, two correspond to exter-nal timestamps, set in this case by VirusTotal scanning reports, thus not extracted from theapk archive metadata. These timestamps are the first seen and the first seen in the wild.An external timestamp is less prone to be manipulated by perpetrators as it is not in theimmediate scope of the attacker. However, they can be prone to delays, as they dependon users’ proactive behavior (i.e., user submission to VirusTotal’s service), and processingerrors. Besides, the first seen in the wild, defined as the first time the app was observedanywhere across the internet, might be not set for benign applications. The remainingfour timestamps are internal timestamps, collected from the inner files of the app archivedata. Thus they can be manipulated or removed by a motivated attacker.The following sections describe and provide a comparative analysis of the timestampsfrom different perspectives in relation to availability and reliability measures.

1. Prevalence: provides a notion of the data availability, which is critical to build effec-tive learning systems. If the timestamp cannot be retrieved, the sample cannot belocated in the historical timeline and, consequently, the sample is unusable. Figure34 conveys graphically the prevalence or availability property for each timestamp inthewhole data set. The horizontal axis provides the timestamps, referenced in theirabbreviated form. For each timestamp, two vertical bars are defined, which reportthe relative frequency or percentage of data samples that had the timestamp avail-able. The colored areas refer to class-wise proportions (i.e., red for malware, greenfor benign apps), while the grey areas indicate the proportion of data samples thatdid not have the specific timestamp available.
As can be observed from Figure 34, the majority of the timestamps are available forall data samples, as most of the bars reach beyond 97% prevalence. Furthermore,the first seenwas defined for all data samples. This was expected as to retrieve thereport for the first time the timestamp is always set by the scanning service. Theinternal timestamps aremostly available, especially formalware instances. Interest-ingly, a larger proportion of null-valued timestamps was found on legitimate apps,a fact that could appear counter-intuitive, but that was also highlighted by [27].An exception to the high availability of the timestamps is the first seen in the wildtimestamp. The majority of the reports retrieved did not provide information forthis feature, thus it is missing for most of the apps, especially for benign apps (i.e.,0.6%). This is logical as the objective of the scanning service is to detect malwarethreats (i.e., positive detection) thus the first seen in the wild location for benigninstances is not a priority as it is usually irrelevant.
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Figure 34: Availability [37] Figure 35: Validity [37] Figure 36: Suitability [37]

2. Validity: The timestamp for any Android app sample should be located within theAndroid historical timeline, which encompasses from the 22nd of October 2008(i.e., AndroidGoogleMarket public release) to the present day. A timestamp locatedwithin this time frame is deemed as valid. Timestamps located in the future (e.g.,2107) or in the past (e.g., 1997), which were found within the data, are impossibleconfigurations, suggesting tampering, and were consequently labeled as not valid.Figure 35 reports the validity property for each timestamp in the whole data set.Similarly to Figure 34, the horizontal axis provides the timestamps, referenced inabbreviated form. The vertical bars report the proportion of valid timestamps foreach class with green/red color and the not valid as shaded areas.
Figure 35 reports similar values to the ones in Figure 34 for FS and FSW timestamps.However, for the EM, LM, DD andMD timestamps, the bars reach lower figures, es-pecially for the EM timestamp. This indicates that this timestamp is the one thatcontains more non-valid values, followed by DD and MD timestamps. In all cases,with the exception of EM, malware samples reach higher values than benign sam-ples, which, again, seems counter-intuitive. However, this fact may only reflect ageneral disregard for timestamps by benign app developers but does not provideany hint about the accuracy of the timestamp.

3. Suitability: in this analysis, the concept of suitability provides a notion about themost usable timestamps, that is, they are available and valid. Figure 36 reports thesuitability proportion per timestamp and class. In this case, the colored areas referto class-wise timestamps that are both available and valid. The grey areas reportthe proportion of samples that have available but invalid timestamps.
Figure 36 conveys that, FS, FSW and LM are the most suitable timestamps, with alarge proportion (i.e., 100% for FS and FSW) of available data that lie inside the validtime frame. However, despite the high suitability of FSW, its low prevalence makesit a worse option than FS and LM if data quantity is a requirement. EM, DD andMD timestamps show values ranging from 87% to 93% thus deemed as the leastsuitable options.

4. Distribution and statistical analysis: The probability distribution of each individualtimestamp is provided in Figure 37. For each graph, the color of the bars refers tothe class distribution (i.e., green for benign software, and red for malware). TheX-axis provides the year range of the bar data, while the Y-axis provides the relativefrequency for each year. The horizontal range is adjusted to the valid time frame forthose timestamps that only provided valid data and the LM timestamp. This was
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(a) EM probability distribution (b) LM probability distribution (c) FS probability distribution

(d) FSW probability distribution (e) DD probability distribution (f) MD probability distribution
Figure 37: Probability distribution for each timestamp [37]

preferred given the negligible proportion of invalid values of this timestamp andalso to provide an enhanced visual comparison between LM and FS (i.e., the mostsuitable timestamps) which is enabled when just the valid range is plotted.
As can be observed in the graphs of Figure 37, the internal timestamps (i.e., EM,LM, DD,MD), show similar data distributions. The LM, however, does not show thelarge proportion of data points (i.e., around 10%) located in 1980 that the otherexternal distributions have, but the distributions in the valid range are relativelysimilar, especially when compared with DD,MD. The FSW data distribution is rad-ically different to the other distributions, showing malware data concentrated inthe 2008–2016 range and legitimate data in the 2014-2019 range and also in 2010.When LM and FS are compared, the two distributions seem relatively similar forlegitimate data, peaking in one year and relatively low in the other years. However,the peak occur in 2011 for LM and 2012 for FS. In the case of malware, the three con-secutive bars around 0.2 probability value occur in both distributions in the range2012–2014. Despite that, the distribution of data surrounding the 2012–2014 timeframe is different, withmany samples in the years before this time frame for the LMbut not for the FS, which concentrates most of the samples in the years after thisrange, especially in 2018. These observationsmay suggest that the relatively similarbut shifted shapes might have been caused by recurring delay in FS with respect toLM. Further exploration of this hypothesis is addressed in Section 10.3.
The statistical analysis of timestamps distributions enables the assessment of theirsimilarity, which provides a notion of the degree of variability among them. For thispurpose, Jensen-Shannon distance (i.e., JS) and Kolmogorov-Smirnov 2-sample test(i.e., KS) were used. The former uses the notion of distance between distributionsto provide a similarity score, bounded in the [0, 1] interval, where higher valuesreport greater dissimilarity, while the latter uses the concept of p-value to assessthe statistical significance of the results by accepting or rejecting the null hypothesis
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(i.e., the distributions are equal) at a specific confidence level α . Thus enabling theassessment of the similarity between the distributions. Small p-values indicate ahigh probability that the distributions come from the same population, suggestinga greater similarity between the timestamps.

Figure 38: JSD-KS matrix forbenign data [37] Figure 39: JSD-KS matrix formalware data [37] Figure 40: JSD-KS matrix forinter-class data [37]
The matrix in Figure 38 provides the comparison among all pairs of timestamp dis-tributions for the benign data. Given the symmetry of the calculatedmeasures, theyenable us to provide the computed values for both similarity measures in the formof a matrix where the main diagonal is left blank to separate the values. The valuesabove the diagonal of the matrix provide the values for KS computations, while thevalues below the diagonal provide the obtained JSD values.
As can be observed in Figure 38, all the timestamps seem to provide distinct distri-butions for the samples. The only exception is for DD andMDwhich have an almost0 distance (i.e., almost perfect similarity) and a p-value of 1. These values indicatethat these two distributions are roughly the same. A fact that was also spotted inthe graphical visualization in Figure 37. Further, DD andMD have a high degree ofsimilarity (i.e., they have small distance and high KS value) with LM and in less de-greewith EM. This fact shows the relatively close distance between the distributionsbased on internal timestamps, which also confirms the spotted similarities on theplots. Despite that, LM is preferred as it providedmore suitable timestamps thanDDandMD. Regarding the external timestamps, FS and FSW, they show unique distri-butions, as evidenced by the large distance values and small p-valueswith almost allthe other distributions. When the most suitable timestamps are compared, FS andLM, they are seen to have large dissimilarity (i.e., 0.77; therefore, they locate thesamples distinctly) but relatively low p-value (i.e., 0.21), which confirms the inter-esting observation from the graphs. Their cumulative functions are close enough tobe found relatively similar using the KS-test but different when the distance-basedsimilarity is used.
The matrix in Figure 39 provides the comparison between all pairs of timestampdistributions for the malware data. Again, the area above the diagonal provides KSp-values, while the area below the diagonal provides the JSD values.
As can be seen in Figure 39, the overall picture is similar to the benign case. The in-ternal timestamps have high similarity. The external timestamps differ significantly,more than in the benign case. An exception to the overall similar observations tothe benign case emerges when comparing FS and LM. For the malware case, thesetwo distributions have a smaller distance but a significantly higher p-value. This factshows that the range and overall shape of the distributions are similar but that thecumulative function of the values is significantly distinct. These results support the
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hypothesis of the delay between them, and the greater concentration of data in theearly years for LM and for the latter years of the valid range for FS.
The previous statistical analysis compared thedistribution of data according to times-tamps for the same class (i.e., benign and malware). An interesting comparison isalso the analysis of the similarity of class distributions within a given timestamp.The results of this comparison are reported in Figure 40, where the columns pro-vide information about the specific timestamp and the horizontal rows about thestatistical value computed when comparing the benign and malware distributionfor each specific timestamp. The upper rows in the figure provide the comparativeresults of JSD and KS for the whole distributions, whereas the lower rows providethe same information but just for the distributions in the valid time frame, indicatedas JSD-v and KS-v.
The overall interpretation of Figure 40 is that the valid time frame emphasizes thedifferences among class distributions. The values of distance increase and p-valuesdiminish in the lower rows (i.e., valid range) when compared with the upper rows(i.e., whole range). The only exception to this are FS and FSW timestamps whichhave the same values on both pairs of rows as they are always valid. Therefore, theclass-based distributions are significantly different across all timestamps.

5. Accuracy: due to the absenceof ground-truth timestamps, the assessment of times-tamp accuracy and reliability is hindered and can only be approximated using opensource intelligence sources which might be relatively delayed and not fully precise.In this research, the first publicly available report for specific malware families wasused to approximately contextualize the malware family within the historical time-line. Table 14 shows 10 malware families (i.e., one per row) and the date used as areference of the discovery time frame based on reports taken from reliable sourcesand contrasted with other sources (i.e., month/year). The data sources are pro-vided in square brackets. The following six columns are split into three sub-columnswhich are referred as ±6, > 6, and NV . For the sake of interpretation of the table,these columns have been colored in green, yellow, and grey, respectively. Thesecolumns provide the proportion of data samples (i.e., percentages) of the data set,dated with each specific timestamp, that lie within the reference value ±6 months(i.e., ±6 column), beyond the reference value + 6 months (i.e.,> 6 column), or thathave a invalid location (i.e., NV column). As mentioned before, a precise timestampshould locate most of the samples of a specific malware family between the ±6 and
> 6 range. The proportion of NV values and samples located before the valid rangeshould be minimal. A higher proportion of values within the > 6 range may implya delay in the timestamp or family evolution. The ±6 range gives a notion of thenumber of samples within this range but due to family evolution, it can only be in-terpreted in comparison with the other values, as the data set may contain feweroriginal samples than evolved samples. Furthermore, themalware family naming isinconsistent among AV vendors or even analysts thus being a handicap for any mal-ware family analysis. In our study, we assume that most of the labels are certainwhich provides a relative degree of flexibility to interpret the results. The last rowof the table provides the average value of each column for each specific timestamp.The difference between the sum of the three values (i.e., ±6,> 6, and NV) and 100is attributed to the proportion of timestamps dating the sample in the valid rangebut before the reference value - 6 months.
As can be observed in Table 14, the individual proportions for specific malware fam-
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ilies greatly vary among timestamps. A better general picture is provided by thetotal values. Even though outlier values may cause the average to be skewed, it stillserves as a reliable indicator of the general trend. The LM timestamp offers thebest suitable accuracy characteristics according to the interpretation of the totalvalues. It has a very low ratio of invalid values and a high proportion of timestampswithin the valid time frame. The average values also confirm that the internal times-tamps show similar statistics/distributions, with all of them showing similar propor-tions but with significantly lesser invalid values for the LM timestamp. The externaltimestamps show completely different pictures. The FS is characterized by provid-ing always valid values, whereas the FSW shows a large proportion of invalid, whichcorrespond to missing data in this case. Finally, when the FS and LM timestampsare compared, the average values show that FS captures most of the data beyondthe reference + 6 months (i.e.,> 6) timestamp, whereas the LM timestamp does itin similar proportions on both valid ranges. This supports the delayed nature of FSto capture malware outbreaks and the goodness of LM to locate most of the datasamples with improved precision.
Table 14: Accuracy of timestamps for malware families [37]

Family Reference EM LM FS FSIW DD MD±6 >6 NV ±6 >6 NV ±6 >6 NV ±6 >6 NV ±6 >6 NV ±6 >6 NV
Geinimi 11/10 [30] 31.3 43.8 6.3 56.3 43.7 0 12.5 87.5 0 18.8 0 56.3 56.3 43.7 0 56.3 43.7 0DroidDream 03/11 [29] 65.9 19.8 0 67 28.6 0 14.3 85.7 0 16.5 4.4 61.5 67 28.6 0 67 28.6 0DroidKungFu 06/11 [56] 66.2 13.1 11.9 68 31.6 0.3 7.6 92.4 0 2.5 16.5 54 68.3 31.4 0.3 68.3 31.4 0.3Plankton 06/11 [91] 23.8 71.4 1.6 22.2 77.8 0 6.3 93.7 0 0 1.6 92.1 22.2 77.8 0 22.2 77.8 0
GinMaster 08/11[109] 21.2 70.4 6.6 17.6 81.5 0.2 0.7 98.9 0 5.2 3.9 69.8 18.4 80.7 0.2 18.4 80.7 0.2
AnserverBot 09/11 [56] 96.3 0 1.0 99.7 0 0 42.1 57.9 0 0.3 47.2 39.1 99.7 0 0 99.7 0 0Slocker 05/14 [69] 23.2 50.3 25.8 23.1 57.9 18.4 1.1 98.5 0 0.1 1.1 93.9 23.2 55.1 21.1 23.3 54.4 21.7MobiDash 01/15 [62] 3.3 60.1 36.7 3.3 90.2 6.5 0.7 99.3 0 0.7 1.3 96.7 3.3 60.8 35.9 3.3 60.1 36.6BankBot 01/16 [26] 60.4 17.3 12.3 60.5 20.4 9.2 71.3 27 0 4 0.2 76 60.5 20.2 9.4 60.5 19.6 10Triada 03/16 [19] 41.7 0 58.3 41.7 16.7 41.6 41.7 58.3 0 41.7 8.3 50 41.7 16.7 41.6 41.7 16.7 41.6
Total - 43.3 34.6 16.1 45.9 44.9 7.6 19.8 80 0 9 8.5 69 46 41.5 10.9 46 41.3 11

10.3 Last modification vs. first seen: a comparative analysis
The results from Table 14 and the previous analysis suggest that FS and LM are significantlybetter timestamps than the other analyzed approaches in terms of suitability, statisticalproperties, and accuracy. To explore their relation deeply, the next paragraphs analyzestatistically the differences between them and their delayed relation over time.Figure 41 and Figure 42 provide the differences between both timestamps, computedfor each data sample, separately for benign and malware data. The base unit is days andthe base timestamp used is the last modification, so that the differences can be expressedin positive terms (e.g., +8 days). The assumption for this is that the lastmodification times-tamp would place the sample more accurately in the historical timeline, earlier in timewith respect to the first seen timestamp. Therefore, it was chosen as the reference time.These graphs report relevant descriptive statistics regarding the temporal differences (i.e.,Y-axis) for the samples in the data set, located in a specific time period (i.e., six monthschunks) using the last modification timestamp (i.e., X-axis), with respect to the first seentimestamp. The data are split into chunks of six months data (i.e., period) for better in-terpretation of the results and deeper exploration of the differences. Just the valid timeframe is plotted (i.e., from 2009 to 2020). The semesters are referenced as appended suf-fixes to the year figure (e.g., 2009.1 reflects the first six months of 2009). The differenceswere calculated individually per data sample and grouped into data periods based on thelast modification timestamp. Descriptive statistics are calculated per period: mean, me-dian, minimum difference, and standard deviation. The blue solid line reports the average
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value for each period, while the blue dashed line provides the median. These two centraltendencymeasures report the average value of displacement of a sample for each period.The green line provides the minimum difference value found in that period. The standarddeviation, plotted as a blue area, conveys the average spread of the differences aroundthe mean for the data samples located in each specific chunk.

Figure 41: Differences between LM-FS times-tamps for benign data [37] Figure 42: Differences between LM-FS times-tamps for malware data [37]

For both classes, a positive difference between both timestamps is observed. This evi-dences that the first seen timestamp locates the samples later in time, thus delayed, withrespect to the last modification timestamp. This fact is especially pronounced in the earlyyears of Android history, with average differences of around 1,500 days (i.e., four years)for both malware and benign applications. This means that an instance located in 2009.1(i.e., the first semester of 2009) by the last modification timestamp might be located bythe first seen timestamp in 2013.1 (i.e., the first semester of 2013). This significant dif-ference might impact the performance and adaptation capabilities of a trained classifierto deal with concept drift as the first seen may generate artificial drift by misplacing thedata, which might bemore complex to model effectively than real concept drift, generallysmoother.However, as can be observed in Figure 41 and Figure 42, the differences between thesetimestamps have been reducing over time, as evidenced by the monotonically decreas-ing mean value for benign instances and the significant decrease occurred in the case ofmalware instances, especially for the recent years. This fact makes the timestamps moresynchronized and closer over time, even equivalent for the 2019–2020 time frame. Forinstance, 2020.1 and 2020.2 periods have mean values of 4.88 and 12.37 days andmedianvalues of 2 and 3 days, respectively, for benign samples, and average values of 15.9 and16.45 days and medians of 5 and 11 days, respectively, in the case of malware samples.This is a dramatic change when compared to 2010.1 statistics, which show a mean valueof 728.4 days and a median of 747 days for malware and an average of 774.3 days, and amedian of 821 days for benign data. As a result, the gap between both timestamps to datesamples has significantly decreased over time making them converge and, consequently,increasing the reliability and accuracy of the first seen timestamp in the recent years (i.e.,2019–2020).The convergence of both timestamps supports the hypothesis that the last modifica-tion timestamp is accurate and that is rarely tampered by attackers. Consequently, if thesystem has to learn from past data and predict past samples, it might be safer to use thelast modification, whereas if the system uses mainly recent data, the convergence of the
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timestamps implies that both should be appropriate and perform relatively well againstdata drift. Furthermore, if data tampering is a major concern, the usage of the first seenensures that the data have not been tampered with, even though a minimal delay shouldalways be assumed.
10.4 Timestamp performance analysis for concept drift handling
The main objective of the experimental scenario was to evaluate the goodness of theanalyzed timestamps to deal with concept drift when the detection model is induced indifferent feature spaces. The concept drift handling method proposed in Section 6.3.1was used as a continuous detection model. Due to the characteristics of KronoDroid dataand the demands of machine learning models, the experimental setup was restricted tothe period encompassing the second semester of 2011 until the first semester of 2018.This time frame spans seven years of Android history, including the most active years inAndroid malware development [13, 57].The available data per timestamp for the selected time period (i.e., from 2011.2 to2018.1) are provided in Table 15.

Table 15: Sample size per timestamp from 2011.2 to 2018.1 [37]
Timestamp Malware Benign Total

EM 33,346 7,602 40,948LM 38,496 13,456 51,952FS 40,376 32,870 73,246FSW 2,137 116 2,253DD 36,805 11,555 48,360MD 36,810 11,500 48,310

As can be noticed in Table 15, FS provides most of its data within this range, whereasthe external timestamps provide a smaller number of samples. As expected, the data isimbalanced towards the malware data, thus justifying the usage of a data set balancingtechnique to avoid any class bias from the classifier. Finally, as the data provided by theFSW timestamp is not enough to build a single classifier, this timestamp was discardedand not used in the following experimental setups.Three experimental scenarios were induced to explore the different feature spacesseparately using the timestamps. The F1 score performance metric was retrieved. Thegraphs provided in the following sections report each model’s performance with differentcolors and/or line styles. More precisely, EM, DD andMD are provided in green color andwith solid, dashed, and dotted line style, respectively. LM is reportedwith a blue solid line,while FS with a red solid line. As the most suitable options were LM and FS, their averageperformance for the whole analyzed time frame is reported with a horizontal line, in solidblue color for LM and in solid red color for FS.
10.4.1 Permissions feature space
Figure 43 shows the performance outcomes of the models created for the permissionsfeature space and the unique timestamps. The permissions feature space is categoricaland the smallest of the analyzed ones. As can be observed, despite suffering two sud-den drops (and consequent recovery), the smoothest line is provided by the LM times-tamp. The other internal timestamps provide similar performance but describe a roughersurface. The FS timestamp performance is not smooth, characterized by several suddenpeaks and bottoms in neighboring quarters, especially at the beginning and the end of theanalyzed time frame (i.e., bumpy red line). Furthermore, it has the lowest average perfor-
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mance in the analyzed period. Despite that, the overall performance of all models is over0.90 F1, which reflects the goodness of the system to deal with concept drift, especiallythe natural data drift, which is better captured by the internal timestamps.

Figure 43: Timestamps F1 performance on thepermissions feature space [37] Figure 44: Timestamps F1 performance on thesystem calls feature space [37]

Figure 45: Timestamps F1 performance on the API calls feature space [37]

10.4.2 System calls feature spaceFigure 44 shows the performance of the models built for the system calls feature space.The system calls feature space is numeric and larger than the permissions space. Similar toFigure 43, the internal timestamps provide smoother performance lines, and, again, theLM timestamp seems to provide the best performance. It enables the model to capturebetter the natural data drift, showing steady recovery after sudden data drifts. However,in this case, EM achieves similar performance over the whole range but shows a morenoisy performance line. As in the permissions case, FS provides the worst performanceand is characterized by sudden dips and peaks, which are likely to be caused by the ar-tificial data drift. An interesting fact in this plot is that from 13-Q3 to 16-Q3, LM and FSseem to perform synchronously. The FS performance line is relatively similar but delayed
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one quarter with respect to LM and reaches more extreme values. This goes in line withthe median differences observed in this time frame in Figure 41 and Figure 42 (i.e., below90 days for both classes). Lastly, in this case, the difference between FS and LM averageperformance is significantly greater, with the average performance of LM around 0.93 andat the 0.87 level for FS.
10.4.3 API calls feature spaceThe performance of the models built for the API calls feature space are provided in Figure45. The API calls feature space is the largest feature space, with over 53,523 features.Similar to the other feature spaces, the performance of the internal timestamps is similarand over the performance of FS. However, in this case, two large dips are observed for theinternal timestamps that are not observed in the case of FS. It is worth noticing that, in thecase of high-dimensional spaces, the quantity of data is critical to build effective models(i.e., data density is needed to build precise classification boundaries), a phenomenoncalled curse of dimensionality. As reflected in Table 15, the data sets available for theinternal timestamps are smaller in general, and significantly reduced on these specificdata periods; therefore, the reduced performance could be the result of insufficient datato cover the feature space and build an effective model. However, despite the large dipsin those specific periods, the average performance of LM still outperforms FS.
10.5 Chapter summary
Only a tiny proportion of the research regarding Android malware detection has consid-ered concept drift in their design or experimental setup. In this regard, timestamps, a cen-tral element for concept drift handling, have not received the needed attention as noneof the concept drift-related studies considered more than a single timestamp in their pro-posal. This chapter presented an extensive benchmarking about timestamp options andtheir capabilities to deal with concept drift effectively in distinct feature spaces. The re-sults show that timestamp selection is a critical decision and that the last modificationand first seen timestamps are the best options to build effective long-lasting ML modelsfor Android malware detection under data evolution constraints.
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11 Applying active learning to handle data evolution inAndroid
malware detection

Themethodology proposed in Chapter 6 enables concept drift handling using a data streamapproach and a pool of classifiers to update and refine the knowledge of the detection sys-tem over time. Despite the remarkable benefit of the described approach and others inthe related literature,model retraining is themost common approach to handling conceptdrift. This simple approach proposes the update of the model by retraining it with a newset of data when drifting is observed (e.g., a drift detector is used to signal concept drift)or periodically to keep the model knowledge updated with recent data samples. In eithercase, most of the approaches in the literature assume that the ground-truth label is avail-able [71]. This implies that the data must be labeled by experts prior to their usage to up-date the model. In this regard, data labeling can become expensive and time-consumingwhen the process demands significant expert knowledge to be performed (e.g., malwareanalysts). Additionally, according to statistics, thousands of Android malware samples arefound each month, necessitating enormous effort from companies and teams of malwareexperts to evaluate all the incoming samples [14].The active learning approach can be used to minimize data labeling efforts while aim-ing for high-performance metrics. In our study, we investigated the suitability of the ac-tive learning approach to minimize the data labeling cost in those environments where awealth of unlabeled data is available, and its usefulness to enhance model retraining in anon-stationary data environment. The tested scenarios simulate the data processing andadaptation to concept drift needed in the case of a malware scanner company/servicewhere a wealth of unlabeled data is available and the necessary skills for proper labelingmake the analysis of the whole data received costly and infeasible.The work explained in this chapter is based on Publication X which is currently under-going a peer-review process. This work has been included in the thesis to support therelated research and make a more complete narrative of the whole research performed.
11.1 A brief on active learning
Active learning is a form of semi-supervised learning based on the assumption that anML algorithm can yield better performance with fewer training iterations (i.e., less data)if it is allowed to select the data from which it learns [88]. In the usual active learningscenarios, a supervised model, trained with a small quantity of labeled data, is allowedto request the labeling of specific instances from a collection of unlabeled data samplesby an oracle (i.e., human expert). The main objective of the active learning approach isto achieve high-performance models using as few labeled samples as possible, therebyminimizing the cost of the data labeling process.The selection of the specific instance for labeling (i.e., query instance) at each train-ing iteration is based on an informativeness assessment of the whole set of unlabeledinstances performed by the active learner using a query strategy [89]. The pool-basedframework, depicted in Figure 46, is the most common active learning approach. Thisapproach assumes the existence of a small set of labeled data, which is used to inducethe initial model, and the availability of a large pool of unlabeled samples [88]. Query in-stances are selected by the classifier itself from the unlabeled pool for expert annotation.Once annotated, the labeled data are included in the labeled training set which is used toupdate the knowledge of the supervised model.Different query strategies have been developed to select the most informative in-stance from the whole set of unlabeled instances [89]. The most commonly used ap-
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Figure 46: Pool-based active learning framework

proach is uncertainty sampling, where the query instance is selected based on the as-sessment of how certain is the learner about the class of the unlabeled samples. In theclassification uncertainty scoring strategy, the learner selects for labeling the instance (x)forwhich it is least certain about how to label (i.e., greatest uncertainty). The classificationuncertainty metric is based on a least confidence score (U) computed as:
U(x) = 1−P(y∗|x) (4)

where x is a specific instance and y∗ is the most likely prediction for that instance.
11.2 Testing scenarios
The data set used for the experimental tests was the real device KronoDroid data set. Thefirst seen timestamp was used to order the data samples along the historical timeline andsimulate a realistic scenario of the existence of an incoming data stream. Wewere able topose as a malware scanner firm dealing with an Android malware detection system thatwas prone to concept drift issues by using this timestamp to replicate the continuous flowof user-submitted data samples to a scanning service.For detection model induction, three sets of input features were used to describe theapps, namely, static (permissions), dynamic (system calls), and hybrid (system calls andpermissions) with lengths 166, 288, and 454, respectively. The same initial classificationmodel was used in all the experimental scenarios. This initial model was a Random For-est instance trained with data belonging to July and August 2011. This initial time framewas selected as it provided enough data to generate a high-performance initial detectionmodel. However, as this initial training data set was not balanced, a data balancing tech-nique was applied to generate a balanced training set for initial model training. In thisregard, two data balancing methods were used (i.e., random undersampling and randomoversampling) and their impact was evaluated. The remaining ordered data samples weresplit into consecutive data chunks using temporal and data set size constraints. Based onexperimental tests, the maximum temporal constraint or time window was set at 60 daysand the maximum data pool size set to 4,000 (i.e., unlabeled data). The time period an-alyzed encompasses seven years of the Android history, from the initial time frame (i.e.,July–August 2011) to May–June 2018.In the testing scenarios, the initial classifier was retrained using different concept drift-handling strategies. The strategies evaluated to handle concept drift using model retrain-ing are described as follows.

• Batch retraining: this strategy updates the detection model by retraining the classi-
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fier using the whole amount of data available in each specific chunk. The retrainedmodel is used to forecast the labels for each subsequent period. Therefore, at time
t all data from previous time periods (i.e., s0, ..,st−1, where s identifies a data setbelonging to a specific time period t) was used to update the model, and forecastthe labels of st+1 data. Next, the whole data set belonging to t +1 was used to up-date the model and forecast labels for st+2. This cycle was repeated for each datachunk until the end of the analysis period. This batch retraining approach is the fre-quent solution used for concept drift adaptation and was used as a baseline in ourexperimentation.

• Active learning: this strategy updated the detection model by selecting the mostinformative instances for each data chunk, one at a time until a predefined perfor-mance threshold was reached (i.e., 0.95≥ F1). The classification uncertainty scorewas used to rank and select one instance at a time from the unlabeled pool of in-stances (i.e., whole data chunk). The selected instance was labeled by the oracleand used to retrain the model. The rest of the data chunk was used to evaluate theperformance increase/decrease after the single retraining step. The training cycle,as depicted in Figure 46, was repeated until the threshold of 0.95 F1 was achieved.The remaining data, not used in the iterative training steps were discarded and thetrained model, as in batch retraining, was used to forecast all the samples for thenext period. If the performance retrieved processing all the data chunk was lowerthan the established threshold, the model was rolled back to its best performerconfiguration and used to forecast the data from the following period.
• Random sample selection retraining: this strategy uses the same iterative trainingsteps as the active learning approach but, in this case, no score is used to selectthe most informative instances from the unlabeled pool of samples. Random sam-ple selection was utilized instead. We were able to recreate the scenario where alarge amount of unlabeled data was available, but no special criteria were utilizedto choose the examples; thus, they were selected randomly. This model offers abaseline for evaluating the sample selection method’s efficacy in minimizing datalabeling.
The performance of the induced models using the different sets of features for all thestrategies was retrieved and compared. In all cases, the model trained using data fromperiod t was used to forecast the labels of the data belonging to the subsequent period,

st+1. The main difference among the approaches lies in the strategy used to select thesamples for model updating to handle concept drift (i.e., all data, random selection, oruncertainty score).The performance of the detection models using the described retraining strategies tohandle concept drift was evaluated using two relevant binary classification performancemetrics: accuracy andF1 scoremetrics. Given the randomness of the sampling techniquesand the base algorithm used, all the scenarios were repeated 30 times.
11.3 Experimental results
Table 16 provides the obtained results using all the described concept drift-handling ap-proaches. More specifically, the feature set column describes the input features used byeach specific model tested and the balancing method reports the technique used to bal-ance the initial data set, in the case of the two query strategies used (i.e., random and un-certainty), and in all data chunks for the batch approach (i.e., to avoid that the imbalanced
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data chunks generated biased RF models). For each combination of the feature sets andbalancing methods, three strategies to handle concept drift were used and referenced inthe query strategy column. The remaining columns report the performance metrics thatenabled us to analyze and compare all the approaches evaluated. The labeled samplescolumn informs about the average number of samples processed by each model (i.e., , x),that is, the number of instances labeled to reach the performance threshold in the caseof the query strategies, F1 ≥ 95%. The columns F1 score and accuracy provide the aver-age performance of the trained models in all time windows in the analyzed time frame(e.g., 45 data chunks spanning between September–October 2011 and May–June 2018).The reported values for labeled samples and the performance metrics are the averagevalues of the 30 tests performed for each specific scenario. The standard deviation (i.e.,
s) is reported to better contextualize the mean value as a data descriptor. Additionally, forthe labeled samples, the proportion of the average number of labeled samples reportedin relation to the total data available in the analyzed period is reflected by the % column.

Table 16: Results of the testing scenarios [36]
Feature set Balancing method Query strategy Labeled samples F1 score Accuracy

x s % x s x s

Permissions
Oversampling Batch 67,068 0 100 91.2 0.4 92.5 0.4Random 30,100.4 129.8 44.9 89.4 1.0 90.3 1.0Uncertainty 11,845.6 41.7 17.7 89.4 0.6 90.4 0.6
Undersampling Batch 67,068 0 100 90.9 0.8 92.4 0.8Random 29,409.9 113.5 43.9 89.5 1.1 90.3 1.1Uncertainty 9,281.4 35.5 13.8 89.6 0.7 90.5 0.6

Syscalls
Oversampling Batch 67,068 0 100 85.1 0.8 86.1 0.7Random 45,028.9 127.8 67.1 84.1 0.9 84.9 0.9Uncertainty 13,098.8 38.6 19.5 84.5 0.9 85.3 0.8
Undersampling Batch 67,068 0 100 82.7 1.2 83.3 1.2Random 45,378.7 118.5 67.7 84.5 0.9 85.0 1.0Uncertainty 12,748.3 52.3 19.0 85.1 1.0 85.5 1.0

Hybrid
Oversampling Batch 67,068 0 100 92.8 0.5 93.5 0.4Random 22,057.2 121.5 32.9 90.9 1.0 91.2 1.0Uncertainty 1,991.9 8.9 3.0 91.6 1.2 91.9 1.2
Undersampling Batch 67,068 0 100 92.5 0.6 93.1 0.6Random 20,978.4 116.1 31.3 91.0 1.1 91.1 1.1Uncertainty 1,459.4 6.3 2.2 91.7 1.4 91.9 1.4

Table 16 displays that when the permissions feature set is used, the active learningapproach provides similar performance as the baseline model (i.e., batch, using all data),but requires the smallest quantity of data among the tested strategies. More precisely, theuncertainty-based active learning approach minimizes the data labeling needs to achievesimilar performance as the other two approaches, using either of the balancing tech-niques. The batch approach, which requires the labeling of all the data samples showsslightly better performance than the active learning and random approaches, but theseshow significantly lower data labeling requirements. In this regard, the uncertainty-basedactive learning approach outperforms the random selection approach by using less than18% of the total data available in the analyzed time frame (i.e., 67,068 data samples), inboth cases. Even though both single query-based retraining approaches show benefitsover the batch approach, the active learning approach requires three times fewer datathan the random instance selection to achieve the same performance metrics. This factevidences that, in the permissions case, the single query-based gradual modification ofthe classifier decision boundary shows benefits when compared to the baseline modelwhich uses batch processing, that is, all data. The random approach shows slightly lowerperformance than the baseline model, but with less data labeling needs. This shows thatall data may not be essential to manage concept drift successfully, but more crucially, that
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progressive retraining of the model based on a single instance may be more advantageous to managing concept drift. Even though there are no major differences in performance for both balancing methods, the undersampling approach provides similar performance met-rics to the oversampling method with significantly fewer data in the active learning case (i.e., 28% more data, on average, for the oversampling case than for the undersampling scenario).
The system calls feature set yielded the worst performance models among all tested models in both evaluated metrics, the number of labeled samples needed and perfor-mance achieved (i.e., below 85%). However, when the single instance query strategy is utilized, and more especially, when the uncertainty-based active learning approach is ap-plied, the model is significantly improved, achieving equivalent performance to the base-line model, and even outperforming it when undersampling is employed. Despite that, the labeling needs for the uncertainty-based active learning, which, again, minimizes the labeling cost, is superior than for the permissions case for both balancing techniques (i.e., a minimum of 19% of the data has to be labeled by the oracle). Random selection reaches similar performance as the uncertainty-based strategy but requires, in both cases, over 66.7% of the whole data to be labeled.
The hybrid feature set, which combines the permissions and system calls sets, pro-vided the best overall models, in all cases. The active learning approach using the uncer-tainty criterion reaches a slightly lower performance than the baseline performance using the batch approach. However, in this case, the benefits of the active learning approach are especially evident for both balancing techniques. The labeling needs are significantly reduced, not over-passing the 9% of the whole data available. As a result, they provide the best performance-labeling trade-off results among all the test scenarios. In this regard, the best model of all the tested scenarios is obtained using the active learning approach combined with undersampling, yielding an average 91.7% F1 score and 91.6% accuracy using, on average, only 1,460 samples (i.e., ≈ 2.2% of the total data) to provide effective detection in the seven-year-long study period. Comparatively, the uncertainty-based active learning approach for the hybrid-featured models requires 10–15 times fewer data than the random query approach to achieve better performance results and 50 times fewer data to reach similar detection performance than the baseline models. These results show that the hybrid feature set generates better discriminatory models which benefit notably from the active learning approach, being able to handle concept drift with a very reduced quantity of labeled data belonging to specific time frames along a seven-year-long time span (i.e., from September–October 2011 to May–June 2018).To further explore the results, the summary values reported in Table 16 are provided in a more fine-grained detail over the whole analyzed historical timeline in Fig. 47, 48, 49, 50. In these figures, the X-axis reports the time frame of the specific data chunk, encompass-ing, at maximum, 2 months of data. The labels provide the year and month separated by a slash (e.g., 2011/9-10 reports data comprised between September and October 2011). The left Y-axis reports the number of samples included in every data chunk (i.e., grey color), thus composing the unlabeled pool of samples for the active learning approaches, that were actually labeled by the oracle (i.e., blue color). The reported values for the number of labeled samples (i.e., blue area on the bars) are mean values with the confidence interval of the mean estimation reported by the white whiskers that extend above and below the mean (i.e., 95% confidence level) due to the degree of randomness of the approaches used. The average performance scores obtained on each data chunk are reported by the yellow (i.e., accuracy) and blue (i.e., F1 score) lines placed on top of the bar chart, and 
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Figure 47: Active learning results for permissionsand undersampling [36] Figure 48: Active learning results for system callsand undersampling [36]

Figure 49: Active learning results for hybrid fea-tures and undersampling [36] Figure 50: Random selection strategy results forhybrid features and undersampling [36]
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ranging from 0 to 1 (i.e., right Y-axis). The standard deviation of these performance met-rics is provided by the colored ribbons surrounding the average lines. Fig. 47 provides the average results for the uncertainty-based active learning approach when undersampling and the permissions set were used. Fig. 48 reports the same information when the system calls set was used, while Fig. 49 provides the hybrid feature set-related information. These figures enable us to compare the impact of the feature set under the same conditions (i.e., uncertainty-based active learning approach using undersampling). Lastly, Fig. 50 enables the comparison between the best active learning model (depicted in Fig. 49) and the random query strategy for the same feature set and sampling technique.
As can be observed in Figure 47, the permissions feature set enabled the handling of concept drift using significantly less labeled data than the system calls feature set, de-picted in Figure 48. With minor exceptions (e.g., 11-12/2012), the permissions feature set required fewer labeled data per chunk to sustain the training target of 95% F1 score, over-passing this score in many chunks, thus no data was labeled for training purposes (e.g., 10-11/2013, 11-12/2013, 1-2/2014, 3-4/2014, and 5-6/2014). Despite the effectiveness shown by the permissions feature set to handle concept drift using the active learning approach, these results are significantly outperformed by the hybrid feature set, which combines the system calls and permissions feature set. In this case, a reduced proportion of the chunk data is labeled in every chunk to achieve high-performance metrics (e.g., 9-10/2011, 11-12/2011) with extended periods of no new labeled data needs (e.g., from 4-6/2013 to 7-8/2015). Therefore, the high-dimensional feature space created by combining the two feature sets allowed concept drift to be handled better than with any other approach while maintaining high-performance metrics with few samples labeled per chunk. Even though this feature set reduces the data needs in all approaches and strategies, the uncertainty-based query strategy shows significant improvement with respect to the ran-dom query selection, as can be seen in Fig. 50. The random query strategy requires significantly more labeled data per data chunk to sustain performance and address concept drift, evidencing the superiority of the uncertainty-based selection over random query selection.
The obtained results show that the active learning approach, in its most basic form (i.e., uncertainty sampling) can be effectively used to handle concept drift, keeping high-performance metrics while minimizing the data labeling efforts (i.e., the quantity of labeled data needed to keep high performance). As a result, active learning might be an efficient and effective solution to handle concept drift in environments where a large quantity of unlabeled data is available but with high labeling cost. The active learning strategy allows focusing the labeling effort on the relevant data to improve the model and discard the irrelevant data samples that may not provide any benefit to the model. The comparative performance metrics obtained demonstrate that the gradual modification of the decision boundary caused by the addition of a single relevant sample to the training data set can yield high-performance models using significantly fewer data samples than the batch retraining approach. Compared to the batch retraining approach, random instance selection enhances the labeling requirements. Still, the active learning approach greatly outperforms both of them. Random selection requires consistently more data to achieve roughly the same (but not better) performance metrics than the uncertainty sampling approach. This fact evidences the goodness of the active learning approach to induce great performance models with significantly fewer data needs.
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      Finally, regarding the impact of the balancing technique used, it can be argued that 
even though both approaches worked similarly for random and batch strategies, the un-
dersampling approach provided distinctive benefits using the active learning approach 
when the permissions and hybrid feature sets were used. This technique minimized the data labeling efforts significantly while producing great discriminatory results.
11.4 Chapter summary
To the best of our knowledge, this was the first study that leveraged active learning to handle concept drift in Android malware detection. Our results show that the active learning approach, in its most basic form, enables effective concept drift handling in Android malware detection and significantly reduces the data labeling needs. Consequently, it becomes an interesting option to enhance the ML-based detection systems in cybersecurity environments (e.g., malware protection companies, SOCs dealing with Android malware detection), where a large body of unlabeled data is constantly available but the high label-ing cost associated makes the task infeasible and prohibitive, thus affecting the detection capabilities of the system.
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Part II
About IoT Botnet Detection
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12 IoT botnet attack detection
This chapter summarizes the contributions of this dissertation regarding IoT botnet attackdetection research and contextualizes the relation among Publication XI, Publication XII,Publication XIII, Publication XIV, and Publication XV. More precisely, it describes the IoTbotnet life cycle as a time-dependent cyclic process where IoT botnet evolution occursand how the aforementioned publications relate to it.
12.1 The IoT botnet life cycle
The ubiquity and poor security measures of IoT devices make them an enticing targetfor cyber attackers. Once vulnerable devices are compromised, they become part of abotnet. Large IoT botnets are used to perpetrate massive cyber attacks, from massiveSPAM campaigns to DDoS attacks, that can cause massive financial losses for companiesby disrupting the availability of targeted servers, services or networks for lengthy periodsof time. As a result, the vast majority of IoT botnet-related research focuses on attackdetection, a late but a critical phase in the botnet life cycle.An IoT botnet is just a particular type of botnet where the members of the botnet areinternet of things devices, instead of computers as in regular botnets. Any type of botnetshows a similar set of phases during its existence, which are referred to with the term bot-net lifetime cycle or life-cycle [50]. In this regard, the botnet lifetime cycle encompassesfour stages: formation, command and control (C&C), attack, and post-attack [66]. Theyare briefly described as follows [50, 66]:

1. Formation: A vulnerable device is compromised and infected by a master, thus be-coming a member of a botnet under the control of a botmaster. Also referenced asthe spreading or injection phase.
2. Command & Control (C&C): A C&C channel is used by the botmaster to establishcommunicationwith the bots. The channel is implementedusing different protocolsand applications such as HTTP, P2P, or IRC. Commands are sent to instruct the botsabout required actions, such as launch attacks.
3. Attack: After the reception of an instruction, the perpetration of the attack by thebotnet members is performed. The main objective of a botnet is to launchmassivedistributed attacks. This phase is also referenced as the application phase.
4. Post-attack: After the attack and exposure to the defender, some bots might becleaned from the infection (e.g., patched vulnerability). Therefore, the recruitmentof more members is needed in order to keep or increase the size and capabilitiesof the botnet. For such a purpose, scanning attacks are performed. The newly re-cruited bots might be merged with the non-exposed bots and the still operationalbots to create a new botnet. This new botnet will then receive new instructions toperform attacks via the C&C channel and the cycle will repeat.
The first three steps can be understood as the core components of the botnet lifetimecycle, whereas the last step re-initiates the formation step with the objective of overcom-ing the eventualities that occurred after the attack phase thus enhancing the botnet’spopulation.Due to the nefarious and massive consequences of IoT botnet-based attacks, most ofthe related research focuses on attack detection as it is the first step for attack mitigation.In this regard, Publication XI and Publication XII, address relevant aspects for the genera-tion of more effective attack detection models. Publication XI analyzes the application of
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hybrid feature selection models to enhance the detection capabilities of the model whilereducing the computational needs and increasing the model’s interpretability, whereasPublication XII deals with the model’s interpretation as an essential means to increaseexperts’ understanding of the model’s output and effective attack detection.
12.2 Hybrid feature selection for enhanced IoT botnet attack detection
Feature selection is an integral and important step in the machine learning workflow[1]. By reducing data dimensionality and selecting the most discriminatory subset of fea-tures, the classification performance can be boostedwhile reducing computational needs,avoiding issues related to the curse of dimensionality, and increasing the model’s explain-ability (i.e., reducing the model’s complexity). Besides, it enables faster training and helpsto reduce overfitting issues. Filter methods are usually the preferred techniques for per-forming feature selection. However, most of these methods focus on individual scoresof data features without considering the relation between them. In this regard, wrappermethods, which involve the usage of a specific subset of features tailored to the machinelearning algorithm used to induce the model, can help to enhance the model’s perfor-mance significantly. However, as the feature selection process is reduced to a search prob-lem of the optimal subset of features, it can be computationally expensive. As a trade-offbetween both approaches, the combination of filter techniques with wrapper methods(i.e., hybrid methods) may constitute a significant improvement.Publication XI focuses on the analysis of the impact of filter, wrapper, and hybrid fea-ture selection techniques on the detection accuracy of ML models for IoT botnet attackdetection.The data set used in this research was N-BaIoT which contains normal and maliciousIoT traffic from 9 IoT devices, gathered simulating distinct attacks using Mirai and Bash-Lite malware [76]. The data points for each data category were randomly selected andnormalized. The data set was balanced, so that each of the three class labels (i.e., normal,Mirai and BashLite) were represented in the same proportion. The data set was split intothree folds. Two folds were used in the feature selection phase (i.e., development folds)and one fold as a test set in the final stage.The impact of each feature selection technique used was analyzed for multi-class de-tection models using cross-validation and macro-averaged F1 score performance metric.The final models were tested on unseen data (i.e., testing set) and the accuracy perfor-mance metric was reported. The following feature selection techniques were applied in-dependently and compared:

• Filter methods: Fisher’s score and Pearson’s linear correlation coefficient (ρ).
• Wrappermethods: Sequential Forward Feature Selection (SFFS) and Sequential Back-ward Feature Elimination (SBFE).
• Hybridmethods: a two-step feature selection procedurewhere the output of a filtermethod is used as input for a wrapper method. Both filter methods were combinedwith both wrapper methods, resulting in four possible cases.
As wrapper-based feature selection may vary according to the classification algorithmused, two widely used multi-class classification algorithms were evaluated: k-NearestNeighbors (k-NN) and Random Forest (RF).A detailed report of the subset of features selected by each feature selection tech-nique and the F1 score performance yielded by the related models using cross-validation
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in the development folds are provided in Publication XI. The testing fold accuracy resultsare reported in Table 17. The first two columns specify the filter and wrapper methodused (i.e., specified as - if none). In the case of the wrapper and hybrid methods, theselected subset was tested using the two classifier algorithms, not just on the specific al-gorithm used in the feature selection method step to obtain the corresponding subset(i.e., cross-classifier tests). The source of the wrapper subset is provided after the nameof the wrapper method utilized (e.g., SFFS k-NN). The k-NN and Random Forest columnsprovide the accuracy performance on the testing set of each classification algorithm usingthe selected subsets by each of the feature selection techniques used.
Table 17: Accuracy comparison of all models in the testing set [36]
Filter method Wrapper method k-NN Random Forest
- - 0.9536 0.9985FS - 0.9968 0.9990
ρ - 0.9224 0.9852- SFFS k-NN 0.9982 0.9608- SFFS RF 0.9986 0.9988- SBFE k-NN 0.9984 0.9788- SBFE RF 0.9974 0.9992
FS

SFFS k-NN 0.9994 0.9992SFFS RF 0.9938 0.9994SBFE k-NN 0.9990 0.9992SBFE RF 0.9992 0.9992
ρ

SFFS k-NN 0.9912 0.8475SFFS RF 0.9622 0.9972SBFE k-NN 0.9906 0.9958SBFE RF 0.9013 0.9970

As can be observed in Table 17, high accuracy values (i.e., over 98.00% in most cases)were obtained using filter methods and wrapper methods alone, supporting the good-ness of feature selection methods to achieve high-performance metrics with reduced in-put data. However, the highest accuracy values were obtained using the combination offilter and wrapper methods, the so-called hybrid techniques. More specifically, the useof Fisher’s score with any of the wrapper methods and classifiers, provided the best per-formances in almost all cases, yielding over 99.90% accuracy, even in the cross-classifiertests. In this regard, the best results were achieved using the RF as a classifier except inthe cases in which SFFS is utilized in combination with k-NN as a wrapper model.The hybrid feature selection techniquemaybe seen as a trade-offbetween the simplic-ity of the filter methods and the more computationally demanding wrapper techniques.The experimentation demonstrated that hybrid feature selection allows for reducing thecomputational load of the wrapper techniques without any significant loss in detectionrates of the machine learning classifiers.
12.3 Understanding the decision: building trust and enhancing detection
The priority of the ML-based studies in the cyber security domain focus on the optimiza-tion of the detection model’s accuracy. Generally, the ML model is treated as a black boxwhere the hyper-parameters and input data are fine-tuned aiming for the maximum per-formance possible. While this is the most desirable output and unique goal for many MLapplications, some fields may require that the humans understand the rationale behindthe decision in order to take appropriate subsequent actions (e.g., health decision, inci-dent investigation). In these latter cases, model explainability is crucial to enhance thetrust of the experts in the system and the overall success of the system. Intrusion detec-tion is one of these fields where the enrolment of the expert in theML workflow is critical
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for the investigation of relevant incidents and overall success of the human-machine de-tection system.
Although feature selection methods can make the models more interpretable, it doesnot guarantee their acceptability in all cases (i.e., experts may not trust over-simplisticmodels in some situations). In this regard, local interpretation methods are specially de-signed to provide the reasoning behind individual predictions in compelling ways, whichmay boost the confidence of the expert in the system output.
In general, the application of the classical machine learning techniques presumes thatfeature selection was conducted. Model-agnostic and post-hoc local interpretationmeth-ods are applied to the outputs of the learning models. In this regard, feature selection isa prior step and local interpretation is a posterior step after model generation. As a re-sult, even though they occur in different stages, feature selection and local interpretationmay interplay in the whole machine learning workflow, which can have an impact on thequality of the interpretation.
Publication XII analyzed the impact of feature selection on the detection accuracy andthe quality of the interpretation. In the first stage, the impact of hyper-parameters andfeature selection on data accuracy was explored. In the second stage, the impact of fea-ture selection on the interpretation results was evaluated. Here, we introduced a qualitymetric for the interpretation results from the cyber security analyst perspective, basedon the entropy notion, which assumes that an ideal explanation should be used as anexplanation for only one category, as more than one could create confusion for the ana-lyst. Model decisions’ explanations were obtained using the Local Interpretable Model-agnostic Explanation (LIME) method [84].
As in Publication XI, the data set used for this research was N-BaIoT, composed of la-beled IoT botnet attacks and normal network traffic data. The attack data encompassesattack and post-exploitation activities of the botnet life-cycle. The features were orderedaccording to Fisher’s score value and used to find the optimal subset and model hyper-parameters for k-Nearest Neighbors, Decision Tree, and Random Forest algorithms. Theoptimal performance for all classification algorithms was achieved using the top 10-15 fea-tures. A more detailed explanation of the feature selection process, the hyper-parameteroptimization performed, and their results are provided in Publication XII. The followingparagraphs focus on the interplay between the feature selection and interpretation qual-ity.
The application of LIME to 50 randomly selected instances for each class showed thatwhen a small subset of features was used (e.g., 3 features), the same explanations, ex-pressed in the form of inequalities as shown in Table 18 (i.e., x1, x2, x3 refer to three inputfeatures), were used to explain different categories. This fact was observed for all theclassifiers used.

Table 18: Class distribution for each explanation - k-NN model [40]
Explanation Rule Benign Bashlite Mirai

x1,x2 ≤ 277.96 and x3 ≤ 112.94 50 7 7
x1,x2 > 679.91 and 193.25 < x3 ≤ 246.09 0 4 0

x1,x2 > 679.91 and x3 > 246.09 0 26 7
x1,x2 ≤ 277.96 and x3 ≤ 193.25 0 1 0

277.96 < x1,x2 ≤ 595.68 and 112.94≤ x3 ≤ 193.25 0 1 12
277.96 < x1,x2 ≤ 595.68 and 193.25 < x3 ≤ 246.09 0 0 4
595.68 < x1,x2 ≤ 679.91 and 193.25 < x3 ≤ 246.09 0 0 12
595.68 < x1,x2 ≤ 679.91 and 112.94 < x3 ≤ 193.25 0 0 3

x1,x2 ≤ 277.96 and 112.94 < x3 ≤ 193.25 0 0 1
277.96 < x1,x2 ≤ 595.68 and x3 ≤ 112.94 0 0 1
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As can be observed in Table 18, certain explanations overlap between categories, thatis, the same explanation is provided to explain different class predictions. For instance,the same rule (i.e., x1,x2≤ 277.96 and x3≤ 112.94) explains all benign predicted samples,but also explains 7 decisions for each of the malware categories. Thus, in this case, thesame inequality rule may explain the three categories. On the other side, the secondrule, x1,x2 > 679.91 and 193.25 < x3 ≤ 246.09 explains 4 Bashlite instances and no othercategory, thus no overlapping occured. The usage of the same explanations to explaindifferent class predictions would create confusion among security analysts even with ahighly accurate model. In this regard, hyper-parameter selection, including the numberof selected features, applied at each step before the post-hoc interpretation has an impacton the overlaps of the local explanations. In this study, the implications of these choiceswere analyzed rather than the decision quality of the interpretation method itself.We introduced an interpretation qualitymetric, provided in Eq. 5, which computes thedegree of explanation overlap by using the entropy notion. Let ei be the i-th explanation inan explanation set E, where K is the number of categories and pk is the ratio of instanceslabeled by category k to all the instances described by ei.
ei =

K

∑
k=1
−pk · log2 pk (5)

The value of pk · log2 pk is considered as zero when pk is zero. Eq. 5 gets the lowestvalue (i.e., zero) when all instances explained by one inequality rule belong to the samecategory (i.e., explanation overlap is zero) and provides the highest value when the ex-plained instances are equally distributed among the categories. Therefore, the first, third,and fifth rows in Table 18 show entropy values distinct to zero, whereas all others, areexactly zero.Let’s assume that we have N instances and we apply LIME to provide an explanationfor each instance. The explanation overlap, EO, of an entire explanation set having Nelements is computed as follows:
EO =

N

∑
i=1

ei (6)
where ei is computed as in Eq. 5.Figure 51 shows the explanation overlap (EO) of a randomly selected balanced instanceset, explained using LIME for decisions taken by learningmodels createdwithDT, k-NN andRF algorithms and a varying number of features. The X-axis of the graph gives the numberof features used to create the model, ordered according to the Fisher’s score, and theY-axis demonstrates the value of explanation overlap obtained according to the chosennumber of features (i.e., using Equation 6). Figure 52 provides the accuracy performance(i.e., y-axis) based on the number of ranked features used.The results show that all ML algorithms reached the zero value for EO between 13–17features, meaning that, at the post-hoc interpretation step, LIME requires at least suchnumber of features to assign one explanation to just only one category. If the machinelearning model utilizes fewer features, the explanations may confuse the analysts as oneinequality set may explain more than one category. However, even though the modelsreached the zero overlap value in the 13–17 features range some fluctuations exist for themodels after this range, especially for k−NN and RF algorithms. Despite that, as the mod-els reached optimal accuracy using 10–15 features, in our case, it is possible to have a clearexplanation rule set and optimal accuracy with 13–17 features. However, such a numberof features might not be comprehensible by the experts as the feature set may have too
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Figure 51: EO using Fisher’s score ranking [40] Figure 52: Accuracy using ranked features [40]

many inequalities. Miller’s psychological theory states that humans can handle 7±2 ab-stract entities at the same time [77]. Therefore, 13–17 features may not be suitable forexpert understanding despite the high detection accuracy rates. Additionally, the similar-ity of the data features in the data set used, and reflected in the Fisher’s score ranking,may generate additional comprehensibility issues. In this regard, wrapper, hybrid or em-bedded feature selection methods may yield better accuracy rates with less number offeatures, as demonstrated in Publication XI. Even though the comprehensive analysis offeature selection methods was out of the scope of the paper, an additional experimentwas conducted to see the results using a customized feature set which we selected as fol-lows. We traversed the list ranked by Fisher’s score value and selected 20 features thatbelonged to different feature categories. This selection proceduremeant that the final listwas more varied but that included features with lower Fisher’s score value.

Figure 53: EO using the custom feature sets[40] Figure 54: Accuracy using the custom featuresets [40]

The explanation overlap and accuracy results for the custom feature set are given in Figure 53 and Figure 54. It is worth highlighting that the EO of all models reached zero value with only six features, and no fluctuations were observed after it. The accuracy val-ues shown in Figure 54 demonstrate that optimal detection accuracy was reached with 5 features, showing similar performance as when Fisher’s score ranking was used. How-ever, in this case, the number of selected features is within the range of human capabilities stated in Miller’s theory. Besides, as the features in the custom feature set belong to dif-ferent categories, it can be argued that the security analysts could perceive better the 
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interpretation rules and grasp the distinctions between benign and malware data more easily.
Although we did not investigate more feature selection techniques, the size reductionof the optimal feature set from the accuracy point of view could be attributed to possibledependencies among features or it could be argued that a filter method, which is compu-tationally cheap, was not enough. In any case, the quality metric proposed in this study,i.e., explanation overlap, supported the interpretability analysis of the selected features.

12.4 Chapter summary
This chapter presented the usage of feature selectionmethods to induce bettermodels forIoT-based attack detection and the usage of post-hoc interpretation techniques to under-stand the rationale behind the classifier decisions as a means to build trust and enhancedetection. Besides, an entropy-based metric was proposed to evaluate the explanationoverlap and enable the assessment of the impact of the feature selection technique usedon the quality of the explanations obtained in the post-hoc interpretation phase and thedetection performance.
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13 IoT botnet attack prevention
The mitigation of IoT botnet attacks, which may create havoc and severe financial lossesfor companies and individuals, is a priority and the focus of the related research. However,little to no attention has been brought to attack prevention, that is, early detection ofIoT botnet formation. The vast majority of the research in the problem domain and theavailable data sets are centered around the attack and post-attack stages; however, toprevent attacks, effective detection should be performed in the early stages of the botnetlife cycle (i.e., infection and C&C stages, as described in Section 12.1).

Publication XIII, Publication XIV, and Publication XV revolve around the concept of IoTbotnet attack prevention by focusing attention on the early stages of botnet deployment.More specifically, as most of the data sets available are centered around the attack phase,Publication XIII and Publication XIV introduce and describe the generation ofMedBIoT, anovel IoT data set focused on the early stages of the IoT botnet life cycle, and its usage toinduce ML-based detection models that can effectively detect and discriminate betweennormal and malicious IoT network traffic. Publication XV combinesMedBIoT and the ac-tive learning approach to improve the learning process and generate more efficient andeffective detection systems by including a human oracle in the process.
13.1 MedBIoT: early stage IoT botnet data set

The available data sets for IoT botnet detection show similar characteristics. Namely, theyare collected in small-sized IoT networks, focus on attack simulation, and use a small va-riety of either real or emulated IoT devices. This makes the induced models very specificand precise to detect attacks but not to prevent them or detect botnet formation. As ma-chine learning models rely on data quality and quantity, using only attack data limits whatthe models can learn and detect. Therefore, if early detection is the objective, a distinctdata type must be used for such a purpose. MedBIoT data set addresses these issues andthe existing research gap by providing a data set that enables the generation of learningmodels for enhanced intrusion detection systems (IDS) capable of detecting IoT botnetsat early stages and, consequently, preventing IoT botnet attacks.
The experimental setup and generation of malicious behavioral data sets were car-ried out in [75] as the main contribution and work of the thesis. Detailed informationabout the network topology, experimental setup and emulated behaviors is provided in[75], Publication XIII and Publication XIV. Based on the generated behaviors, PublicationXIII introduces MedBIoT, a novel IoT botnet data set that includes malicious and normalnetwork traffic data and addresses the research gaps of the existing IoT data sets. Morespecifically, MedBIoT was acquired on a medium-sized IoT network architecture (i.e., 83devices), where real and emulated IoT devices were deployed and infected with threeprominent IoT botnets (i.e., Mirai, BashLite, and Torii). The extended size of the IoT net-work used to collectMedBIoT data set enabled the capture ofmalware spreading patternsand interactions that cannot be observed in small-sized networks, providing a more real-istic environment. Furthermore, none of the previous data sets used the combinationof emulated and real devices in the same network. Additionally, this data set includesthe behavior of Torii botnet malware, being the first publicly available data set to deployit. Lastly, as this data set focuses on malware infection, propagation and communicationwith C&C server phases, the first stages of botnet deployment, it can be seen as a com-plement of the already available data sets, focused on attack data, to build an integral andenhanced IDS for IoT networks. In this regard, the data set is provided in structured andraw format. The structured format provides extracted features from the network traffic
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captured, in tabular data format, like the ones generated in other data sets (i.e., N-BaIoTand Bot-IoT features), which enables the comparison and immediate usage of the datasets together in an integral approach to the IoT botnet life cycle. The raw format providesthe captured network packets (i.e., pcap files) for further manipulation and generation ofcustom data features by the users. Besides, the data set is provided in bulk format (i.e., allpackets of the same class label are included together in the same file) and in fine-grainedformat (i.e., the data are provided in separated files for each data source, life-cycle phase,and device type).Publication XIV is an extension of Publication XIII. It provides further experimentationon the usage ofMedBIoT data set to build effective ML-based IDS.A brief summary of the data set features and the machine learning-based experimen-tal results, further detailed in Publication XIII and Publication XIV, are presented in thefollowing paragraphs.
13.1.1 Data set features
The distribution of the network data that composeMedBIoT is reported in Table 19. Thetotal size of the data set is 17,845,567 network packets. The majority of the traffic thatcompose the data set corresponds to benign or normal IoT traffic (i.e., 70.27%), whereasthe majority of the malware traffic corresponds to BashLite.

Table 19: Data set composition [48]
Data category Devices Nr. of packets Proportion

Normal 83 12,540,478 70.27%BashLite 40 4,143,276 23.22%Mirai 25 842,674 4.72%Torii 12 319,139 1.79%
All All 17,845,567 100%

A detailed analysis of the captured data showed that 32% of the normal network trafficwas related to system updates, 53% to device communication (i.e., MQTT protocol), and15% to other network data (e.g., TLS errors, ping, etc). Regarding the malicious data, 68%of the traffic was related to malware propagation actions, whereas the remaining 32% todirect communication between the bots and the C&C servers that were deployed in theexperimental setup.
13.1.2 Early IoT malicious behavior detection
In order to test the goodness of the data set to induce effective intrusion detection sys-tems for early IoT botnet detection, four different scenarios were tested. Two scenariosinvolved typical supervised learning approaches and twoused unsupervised learningmod-els. The experimentation performed is explained as follows.

• Supervised learning: binary andmulti-class classification models were induced us-ing randomly selected data points from the source data set to generate a reducedbalanced data set. k-Nearest Neighbors, Decision Tree, Support Vector Machines,and Random Forest algorithms were used as classifiers. Cross-validation was usedto assess the performance of the models. Relevant performance metrics were re-trieved.
– Binary classification: the classification task involved the discrimination be-tween normal and malware data. The malware category was composed of
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an equal number of instances from the three malware categories. The resultsof the binary classification models are reported in Table 20.
Table 20: Binary classification models’ performance [44]

Model Accuracy Precision Recall F1 score
k-NN 0.8871 0.9034 0.8871 0.8842DT 0.9541 0.9582 0.9541 0.9538RF 0.9702 0.9731 0.9702 0.9700

As shown in Table 20, the RFmodel provided the best discrimination accuracy,classifying correctly over 97% of the network traffic. k-NN and decision treemodels showed lower discriminatory capabilities. Linear SVM results are notreported as they provided a poor performance on all metrics. This fact maysuggest that the data is not linearly separable; thus, linear classifiers such asSVMwith linear kernelor Logistic Regressionmay not be suitable for the binaryclassification task using this data set. Nevertheless, the results obtained usingthe other algorithms evidence the effective capabilities of ML approaches todetect botnet malware traffic in the initial stages (i.e., infection, propagationand communicationwith the C&C server stages) and disregarding themalwaretype. Furthermore, it was demonstrated thatMedBIoT is suitable to be usedas amedium-sized realistic IoT data set for IoT botnet detection scenarios, andIDS training and testing purposes.
– Multi-class classification: this classification task involved the recognition ofthe four class types; thus, the data set was divided into four classes or labelsaccording to the data source: normal, Mirai, BashLite, and Torii. Four-classor multi-class classification models were induced, and 10-fold cross-validatedusing the same algorithms as in the binary task. An equal number of datasamples were used for all categories. The purpose of this task was not only totest the classification capabilities of legitimate and malware classes but alsothe recognition of the specific malware source. Table 21 shows the results ob-tained for this task. Like in the binary approach, SVMalgorithm is not reported,as it showed a poor performance in all metrics.

Table 21: Multi-class classification models’ performance [44]
Model Accuracy Precision Recall F1 score
k-NN 0.8990 0.9073 0.8990 0.8958DT 0.9379 0.9478 0.9379 0.9347RF 0.9617 0.9692 0.9617 0.9602

As can be observed in Table 21, in a similar fashion as in the binarymodels, theRandom Forestmodel outperformedDecision Tree and k-NN algorithms in themulti-class classification setting. RF algorithm provides similar performancefor the multi-class task as in the binary task, reporting over 96% accuracy inall metrics. The analysis of the RF model’s confusion matrix evidenced thatthe classification errorwas not significantly biased towards any of the classes.These results suggest that network traffic sources can be effectively discrim-inated, even in the earliest stages of botnet infection. It also demonstratesthat the learning capabilities of ML-based detection methods can be accurateboth in the binary detection task and in the detection of different sources ofmalicious traffic in medium-sized IoT networks.
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• Unsupervised learning: this task involved the identification of abnormal or unusualobservations (i.e., anomalies) in the input data distribution. For this task, malwareactivity was considered anomalous as it does not represent the normal behavior ofthe IoT devices. Two novelty detection tasks were generated for this learning type.For this task, it is assumed that the training data set does not contain outliers (i.e.,contains only normal) and the goal is, given a new observation, to detect whetherit can be categorized as an outlier/novelty (i.e., malware) or an inlier (i.e., normal).The anomaly detection algorithm used was Local Outlier Factor (LOF), which is ca-pable to perform both novelty and outlier detection tasks. Themodels were trainedonly with normal data and tested against normal and malicious data. The data setwas standardized and the data dimensionality was reduced using Principal Compo-nent Analysis (i.e., 10–30 Principal components) prior to model induction.
– Novelty detection - first scenario: in this scenario, the normal data capturedduring the time framewhere a specificmalwarewas runningwas used to buildthemodels. The testing sets correspond to hold-out normal data andmalwaredata from that specific collection time frame. For example, in the first row ofTable 22, the training data corresponds to normal data captured during thedeployment of BashLite malware. The testing samples correspond to normaldata from the same period of time and BashLitemalware-generated data. Thedetection performances for this first scenario are provided in Table 22. Thecolumn training, specifies the source of the normal data used to build thecorresponding model, whereas the test malware and test normal refer to thesource of data used for testing purposes. Themixed total column provides theaverage of the previous two columns. The all value refers to a stratified mix ofthe normal data. The performance metric reported is accuracy.

Table 22: Novelty detection - first scenario accuracy performance [44]
Training Test Normal Test malware Mixed Total
BashLite 0.9486 0.9628 0.9557Mirai 0.9331 0.8552 0.8942Torii 0.9433 0.9515 0.9474All 0.9444 0.9129 0.9286

As can be observed in Table 22, the models built with BashLite, Torii and com-bined legitimate data provide detection performances of over 91%onmalwareand over 93% on normal data. Normal data belonging to Mirai deploymentprovides less accuracy on the malware data and normal test data, suggestingthat this malware traffic is more similar to legitimate traffic but prone to bediscriminated effectively. According to the results, BashLite malware providesa differentiated profile from normal traffic that makes the models more effec-tive in the detection of this specific malware. Torii and the mixed model (i.e.,using stratified randomly sampled legitimate data from the three data sets)provide high accuracy ratios for malware detection. In any case, these resultsevidence that IoT malware traffic can be discriminated from legitimate trafficand effectively detected using anomaly-based detection models in the earlystages of a botnet deployment, prior to the attack phase.
– Novelty detection - second scenario: for this second scenario, the samemodelsbuilt on the first scenario were tested against other testing sets belonging todifferent malware data. For example, in the first row of Table 23, the training
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data corresponds to legitimate data acquired during the deployment of Bash-Lite malware. The testing set corresponds to data acquired in the same timeframe, thus BashLite-generated data, but also other testing sets are used suchas malicious data belonging to the deployments of Torii and Mirai malware.This setting allows testing the goodness of the anomaly detection models todetect different types of malware. The performance results are provided inTable 23. In this table, the column training specifies the source of the normaldata used to build the corresponding model, whereas the rest of the columnsspecify the source of the malware data that was tested. The test mixed col-umn provides the performance of the model on a mixed and balanced dataset containing the three malware data. The performance metric reported isaccuracy.
Table 23: Novelty detection - second scenario accuracy performance [44]

Training Test Mirai Test Torii Test BashLite Test Mixed
BashLite 0.9066 0.9842 0.9628 0.9536Mirai 0.8552 0.9665 0.9643 0.9262Torii 0.8839 0.9515 0.9618 0.9120All 0.8407 0.9594 0.9615 0.9074

The results provided in Table 23 suggest that the anomaly-based detectionmodels built in the first scenario are capable to detect effectively not onlyits related malware but also the other sources of malware. With the excep-tion of the detection of Mirai malware, which is slightly worse than for theother malware, the detection ratios are over 91% in all models, disregardingthe data source used. These results emphasize the goodness of the anomaly-based models to detect malware effectively and the goodness of the gener-ated data set to build effective anomaly-based IoT malware detection modelsin the early stages of botnet deployment.
13.2 Active learning for early IoT botnet detection
Active learning is well-suited to problem domains in which collecting data is easy andcheap, but data labeling is expensive. Intrusion detection could be considered one ofthese domains as it is easy to collect raw network or host data from the systems and con-vert it to a suitable format for learning tasks. However, assigning the relevant resources tothe labeling tasks is difficult due to the limited number of human experts with sufficientsecurity skills to perform the task. Besides, confidentiality concerns usually prevent orga-nizations to share any data, be it raw or labeled, with others, exacerbating the problem.The active learning approach was already introduced in Section 11.1. In the study de-scribed in Chapter 11 the active learning approach was leveraged to deal efficiently withconcept drift in Android malware detection. Intrusion detection is another problem do-main that can benefit from active learning.The work explained in this chapter is based on Publication XV, which is currently un-dergoing a peer-review process. This work has been included in the thesis to support therelated research and make a more complete narrative of the whole research performed.Publication XV explores the application of active learning to the intrusion detectiondomain by simulating a realistic scenario in a SOC where human experts are available toact as oracles and the wealth of data processedmakes it unfeasible to allocate the neededresources to label all the incoming data. More precisely, the predictive performance ofthe active learning approach is evaluated by assessing the impact of the quality of the
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instance selection process (i.e., query strategy), the size of the unlabeled data pool, thenumber of labeled instances used to create the initial model, and the accuracy of theexpert decisions.The usage of the MedBIoT data set enabled us to test the application of the activelearning approach to early IoT botnet detection whichmight be of special interest for SOCenvironments aiming for attack prevention. Redundant features were removed and bi-nary classification models were induced. After the generation of the baseline classifiermodel using different subsets of data (i.e., passive approach), used as a reference for theactive learning approach, different scenarios were designed to evaluate the impact of dis-tinct variables on the success of the active learning implementation. The baseline model,the description of the scenarios and the main results are described in the following para-graphs.
13.2.1 Baseline model: the passive approach
The baseline classification algorithm, Random Forest, which outperformed other algo-rithms in initial tests, was used to build classification models using training sets of differ-ent sizes. For this purpose, training subsets of different sizes were sampled randomly fromthe whole training set, without replacement. For every training set size used, 50 modelswere induced and the results were averaged usingmean and standard deviation. The test-ing set was the same in all cases. The results are provided in Figure 55. In this graph, thehorizontal axis provides the training data set size and the vertical axis the accuracy per-formance obtained on the testing set. The blue line provides the average accuracy value,while the standard deviation is reported by the surrounding ribbons.

Figure 55: Performance of the baseline model using different training subsets [45]

As shown in Figure 55, in general, the larger the training set size, the greater the ac-curacy retrieved and the lower the variability observed among iterations. Furthermore,the performance line is steepest for the smaller data sets, suggesting that the model iscapable to learn effectively from small training sets and improve its knowledge rapidlywith additional data samples. For instance, from 10 to 40 data samples, the performanceincreases from 0.58 to 0.73, whereas from 10,000 to 40,000 the increase is barely 0.01points, from 0.97 to 0.98. The greatest performance obtained is 0.988 with 100,000samples, that is, using the whole training set. The 0.90 accuracy performance is achievedwith 500 samples, whereas 0.95 and 0.97 accuracy values are achieved using data sets
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containing 3,000 and 10,000 samples, respectively.The baseline models are static models, that is, they are trained using a large amountof data and they are not re-trained after their generation. The baseline models were usedas a reference to assess the performance and benefits of the active learning approach.
13.2.2 Active learning scenarios
The most common active learning approach is the pool-based framework, introduced inSection 11.1. We performed a benchmarking of pool-based strategies for active learning.The pool-based active learning framework assumes the existence of a small set of labeleddata (L) and the availability of a large collection (pool) of unlabeled data (U) [88]. Instancesare selected by the classifier from the unlabeled pool of instances for expert annotation.The labeled sample is then incorporated into the labeled training set which is used to up-date the knowledge of the learning model (i.e., model retraining). The instances are usu-ally selected greedily based on an informativeness score used to evaluate all the instancesof the unlabeled pool [89]. Three query strategies were tested in the active learning sce-narios. Uncertainty sampling, query by committee, and ranked batch-mode sampling ap-proaches were evaluated using different parameters and informativeness criteria. Thefollowing paragraphs summarize the scenarios and provide the main results. A detaileddescription and further explanation of the query strategies and the informativeness cri-teria used are provided in Publication XV. All the models evaluated in all the scenarios,including active learning and passive approaches (i.e., static models), were tested on thesame testing set. Besides, as all the scenarios involved some degree of randomization, 50iterations were performed per model in each testing scenario. Therefore, the reportedperformance was the average accuracy score of all iterations. The following items sum-marize the scenarios and their main results.

• Uncertainty sampling: a single classifier was used to generate an initial detectionmodel that used the active learning approach to update its knowledge based on dif-ferent query strategies. The query strategies tested were classification uncertainty,classification margin, and classification entropy. A total of 1,000 queries were per-formed and the accuracy performance of themodels was retrieved. In addition, theimpact of two variables on the active learner performance was evaluated: the sizeof the initial data set (i.e., seed size), and the size of the unlabeled pool of instances.In all cases, random selectionwas used to generate the initial training set (i.e., seed)and the unlabeled pool samples.
The results for themodels using classification uncertainty as query strategy are pro-vided in Figure 56. As can be seen, for any seed size, the maximum accuracy per-formance is reached with an unlabeled pool of about 7,000 instances (i.e., the redline). The graphs evidence that when the unlabeled pool is too small (i.e., the light-est green line) or too big (i.e., the darkest blue line), the learning is hindered. Therationale behind these observations might be found in the lack of representative-ness of the samples in the former case, whereas, in the latter case, an excess ofsimilar data samples (i.e., with the same informativeness value) might cause sub-optimal instance selection and, consequently, slow down the learning.
Regarding the seed size, it is worth noticing that all models’ performance is over0.97, thus disregarding the initial training data set used, the active learners achievedthe same high-performance score. The only substantial difference observed amongthemodels is the shape of the curve leading from the initial model to the last query.In this regard, with the exception of themodelwith an initial seed of 2 instances (i.e.,

118



Figure 56: Uncertainty sampling: classification uncertainty score results [45]

top-left graph), the models suffer from an initial decrease in performance, that iscorrected later with a boost in performance. This correction takes more time (i.e.,queries) for the models induced with more data, that is, a larger initial seed size.This initial decrease may have been brought on by the bias that the initial classi-fiers introduced, selecting sub-optimal samples for the first queries that possiblyresponded to the bias in the model but were less capable of generalization. In anycase, all the active learning models recover from the initial draw-down and surpassthe 0.95 performance in about 600 queries and achieve 0.97 accuracy around 800queries. Comparatively, the baseline model, depicted in Figure 55), achieved 0.95and 0.97 accuracy scores when 3,000 and 10,000 samples were used, respectively.This shows that the active learner can achieve similar performance to the passivemodel using 10 to 12 times less labeled data. Besides, the active learning approachseems to provide additional benefitswhen the initial seed is small, as no initial draw-down in performance is observed in that case. However, the initial accuracy is lowerwhen the initial seed is smaller.
The three query strategies for uncertainty sampling evaluated produced similar re-sults. A comparison of the three query strategies with the pool size of 7,000 and thefour initial seed sizes is provided in Figure 57. In this figure, the performance of therandom selection approach, in which the query sample is selected randomly fromthe unlabeled pool, is provided as a comparative baseline to evaluate the effective-ness of the different query strategies. Based on Figure 57, the random approachseems to provide better performance than the active learning approaches in theinitial stages. However, as the number of queries increases, the active learner is ca-
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Figure 57: Comparison among the uncertainty sampling strategies and random query selection [45]

pable of learning better and faster using the uncertainty query strategies than usingthe random query selection. All the active learning approaches, for any seed size,outperform the random query selection strategy after ≈ 500 queries. Besides, themaximum performance of the random approach is lower and plateaus faster thanany of the active learning query strategies. More precisely, the bestmodel using therandom approach achieved a maximum of 0.93 accuracy score after 1,000 queries,whereas this performance was reached bymost of the active learner models in 500queries, reaching over 0.97 accuracy score after 1,000 queries.
• Ranked batch-mode sampling: the same scenario as for the uncertainty samplingwas implemented but the query strategy used was ranked batch-mode. This strat-egy enables the learner to request for labeling more than one instance per query.Besides, this strategy enhances the informativeness score using an additional scor-ing metric based on similarity measures to improve query selection. In the test-ing scenarios, the impact of the batch size (i.e., number of instances queried atonce), the pool size and the size of the initial seed were evaluated. Similar to theuncertainty scenario, a total of 1,000 instances were queried in a variable numberof queries per model, depending on the batch size. The models’ accuracy was re-trieved.
The results obtained using this approach did not show any additional improvementto the uncertainty strategy. More precisely, the ranked batch-mode strategy did notperform better than the uncertainty sampling approach. As a reference, Figure 58provides the performance results for the batch size of 2 instances (i.e., 500 queries),and different combinations of seed and pool sizes.
However, an interesting result from the ranked batch-mode testing scenarios is thatthe best performancewas achievedwith a smaller pool size than for the uncertaintysampling approach, reaching the maximum performance of 0.95 accuracy with anunlabeled pool of 3,000 instances. As can be seen in Figure 58, the pool of 7,000unlabeled instances provided significantly worse results. Even though the rankedbatch-mode models did not provide improved performance concerning the singlequery mode (i.e., uncertainty mode), none of the models in Figure 58 show theinitial decrease in performance observed for the uncertainty sampling strategies.
These results suggest that a hybrid approach, using uncertainty-based active learn-ers combined with initial random selection or ranked-batch mode (i.e., just for the
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Figure 58: Ranked batch-mode sampling performance for the batch size of 2 [45]

initial queries), may help to avoid the initial dips in performance and overcome theinitial bias evidenced by the uncertainty sampling models.
• Query by committee: a group of classifiers was generated and the query by commit-tee approach was used to update their knowledge based on different query strate-gies. The query strategies tested were vote entropy, consensus entropy, and maxi-mum disagreement. The best pool size for the uncertainty sampling scenarios wasused for simplicity and similarity. The impact of the initial seed size and the sizeof the committee (i.e., number of members) were evaluated. As in the uncertaintysampling scenarios, 1,000 queries were performed, and the accuracywas retrieved.
The results for the consensus entropy query strategy are provided in Figure 59. Sim-ilar to Figure 56, each graph in Figure 59 shows the performance of themodels builtwith different initial seeds. For each model, distinct committee sizes were tested,indicated as CE in the graph legend. For the sake of comparison, the best modelfor maximum disagreement (MD) and vote entropy (VE) query strategies are pro-vided with red color and different line styles. MD and VE query strategies providedsignificantly lower performance than the CE strategy.
As can be observed in Figure 59, the larger the committee size, the better the re-sults. The largest committee shows the steepest learning curve in all cases (i.e.,faster learning). Besides, a large committee size tends to avoid the decrease in per-formance on the initial queries. It provides improved learning from the early stagesof the active learning process. However, a larger committee implies the retrainingof more models after the labeling process, which might be more time-consuming,and demand more resources. In any case, using the CE query strategy and any ini-tial seed size, 0.95 accuracy is achieved before 600 queries and 0.97 before 800queries. After 800–900 queries, all models seem to converge providing the sameperformance after 1,000 queries.
The MD and VE query strategies showed sub-optimal performance, especially inthe case of the MD query strategy where the best model, using a committee of 10members, did not even achieve 0.95 accuracy performance after 1,000 queries. Thebest VE model, built with 10 committee members, reached 0.97 performance after1,000 queries but its learning curve is worse than the CE strategy with a committeeof 5members, for any initial seed sizes. Besides, in all cases, the VE strategy suffered
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Figure 59: Query by committee performance results [45]

from a pronounced decrease in performance for the initial queries.
Given the similarities between the uncertainty sampling approach and the query bycommittee (QBC) approach, a direct comparison is well-motivated. The comparisonis provided in Figure 60 for different initial seeds. The best uncertainty model andtwo QBC models (i.e., with 3 and 10 members) are compared in the graph.
As can be observed in Figure 60, both active learning approaches converge to 0.97performance after 1,000 queries, which shows the goodness of either of the activelearning approaches to achieve high performance with a small fraction of the dataneeded by the passive learning approach to achieve the same results (see Figure55). However, the learning curves are notably different for both approaches, espe-cially for small initial seed sizes (i.e., greater separation between the curves). TheQBC strategywith a committee of 10 classifiers provides the steepest learning curve,achieving high-performancemetrics faster than the other approaches. Besides, theinitial models for the QBC approach start at a higher accuracy score than the un-certainty sampling models. The ensemble of classifiers that form the committeeprovides improved performance from the initial step, emphasizing the goodness ofcombining several classifiers for enhanced learning. However, asmentioned before,implementing committee-based approaches requires more resources and may im-ply longer retraining schedules, especially when the committee size is large. For thisreason, the QBC with a committee size of 3 members is a good trade-off betweenthe best QBC model, composed of 10 members, and the best uncertainty model.
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Figure 60: Query by committee vs. uncertainty sampling [45]

13.2.3 Wrong labeling impact

In all the previous scenarios it was assumed that the oracle labeling the queries provided a100%accuracy on class identification, that is, a 0%error in data class imputation. Althoughhighly desirable, this scenario is relatively unrealistic. For example, in SOC environments,a diversity of analysts with different degrees of experience and expertise may coexist.Therefore, a high degree of accuracy can be expected, but a non-null probability of wronglabeling cannot be ruled out. Consequently, the last kind of simulated scenario consideredthe possibility of mistakes or wrong labeling in the active learning implementation.
To implement the wrong labeling scenarios, the best models from the previous threescenarios were selected and distinct wrong labeling probability values were evaluated(i.e., 5%, 15%, and 25%). This implied that based on the outcome of a random numbergenerator function, a specific mislabeling probability was applied to each query instance.Furthermore, the baseline models, built using the passive learning approach, were alsoinduced applying the wrong labeling approach to the training set.
Figure 61 displays the outcomes for the best QBC, best ranked batch-mode, and bestuncertainty sampling models when various initial seed sizes and wrong labeling probabili-ties are applied. As can be observed, the active learners with the smallest initial seeds arethe ones affected the most by the wrong labels. This is expected as for the active learn-ers, the wrong labeling is applied to the instance selected by the classifier as optimal forlearning, thus themost informative among the instances in the unlabeled pool. The incor-rect labeling of these critical samples may produce a notable bias in the learning model,thus affecting the end results significantly. However, despite that, the active learners stillshow significant improvement and good learning output even in the extreme case of the25% wrong labeled samples. More interestingly, the graphs show that when the seed sizeis relatively large, the models are remarkably resilient to the 5% wrong label probability,being able to provide similar results to the 0% error labeling approach after 1000 queries.Based on these graphs, the impact of a wrong labeling probability below 15% might betolerable and yield good performance over time. A higher probability of mistakes (e.g.,25%) may affect significantly the performance of the active learners and passive models.
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Figure 61: Wrong labeling impact [45]

13.3 Chapter summary
This chapter evaluated differentML-based approaches for early IoT botnet detection usingMedBIoT data set. Supervised and unsupervisedMLmodelswere induced, reporting high-performance metrics. Besides, the active learning approach was evaluated using differ-ent strategies and scenarios. The active learners were able to provide high-performancemetrics with significantly fewer labeled data than the passive approaches. The reportedresults evidence the benefits of the active learning approach tominimize the labeling costfor those environments, such as SOCs, where a wealth of data is available, but data label-ing is expensive and time-consuming.
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14 Conclusions and future work
This doctoral dissertation tackles existing challenges and research gaps related to thedesign and effectiveness of machine learning-based Android malware detection systemssuch as concept drift and cross-device detection issues. Besides, it addresses the impact offeature selection methods on IoT botnet attack detection models and explores the gener-ation of ML-based early IoT botnet detection systems for the prevention of cyber attacks.Challenges that have been overlooked by specialized research. The following subsectionsdetail the main contributions and novelty of this doctoral thesis in the light of the initialresearch objectives (RO).
14.1 Android malware detection

Android users are under siege as the popular OS is the most targeted mobile platform bymalicious actors. The open-source nature of the OS and large target audience make thepopular OS an enticing objective for cyber attackers whose most common motivation isfinancial revenue. However, when a piece of malware infects an Android device, it can beused not only for such a direct economic purpose (e.g., sending premium SMS) but alsoto steal, hijack, or corrupt the wealth of sensitive data stored in these portable devices.Aiming to protect vulnerable end-users, Android malware detection research has focusedon the application of machine learning methods as a means to overcome the limitationof the traditional AV approaches in the mobile platform. Part I of this dissertation tacklesissues related to Android malware detection research.
In this regard, one of the major contributions of this work to the Android malwareresearch domain is the generation of KronoDroid, a novel, publicly available data set thatenables the study of concept drift and cross-device detection issues (RO1). KronoDroiddata set is the cornerstone of this research as it enabled all the subsequent investigationsperformed. More specifically, KronoDroidmain featureswere leveraged to performa thor-ough exploration of concept drift issues in two of themost commonly used feature spacesfor Android research, system calls and permissions (RO2), and propose a method basedon a data stream approach to handle concept drift effectively andmaintain high detectionperformance metrics over time (RO3). Further, the inner workings of the adaptive solu-tion proposed to handle concept drift were leveraged to characterize the phenomenon incombination with interpretation techniques (RO2). The proposed solution was then usedto explore the impact of the timestamps provided by KronoDroid in concept drift model-ing and handling (RO4). A typical approach to update the detectionmodel knowledge andaddress data evolution issues in production setups is model retraining. In this regard, theactive learning approach was explored as an alternative means to address concept driftwhile minimizing the data labeling needs for model retraining (RO3). In addition to thetemporal dimension, KronoDroid includes the data source perspective, enabling the studyof behavioral differences among Android platforms (i.e., real devices and emulators). Inthis regard, it enabled us to explore cross-device detection issues under data evolutionconstraints (RO5). Finally, the design and implementation of a thorough benchmarkingenabled us to assess the validity of the cross-device behavioral postulate (RO5).
As a result, the research outcomes and main findings of Part I of this thesis, detailedin each chapter, address existing challenges in Android malware detection overlooked bythe specialized research and contribute to enhancing the effectiveness and efficiency ofthe ML-based Android detection systems. Even though the research is far from completeand the aspects investigated in this work may still be understood as open challenges, theauthor of this thesis would be pleased if the work performed in this problem domain can
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inspire or help others to consider and address these issues in the design and implemen-tation of better detection systems, and make the digital world safer.
14.2 IoT botnet detection
IoT botnet attacks can have nefarious consequences for individuals and companies. Fromfinancial losses to a severe impact on the reputation and consequent loss of trust fromcurrent and potential customers, these massive-scale attacks constitute a potentially dev-astating threat. As a result, most IoT botnet detection-related research has focused onattack detection. In this context, the first chapter of Part II of this dissertation explores thebenefits of feature selection techniques to induce better attack detection systems (RO6).Besides, the relation between these dimensionality reduction techniques and post-hocinterpretation methods in the generation of decision explanations, which can help theexperts to understand the attacks, is investigated (RO6).

However, even though an enhanced attack detection can help to mitigate the con-sequences of large-scale attacks; a more interesting issue is attack prevention. In thisrespect, early IoT botnet detection can potentially help to dismantle the botnet forma-tion efforts and prevent the generation of the attacks. The second chapter of Part II ofthis thesis explores this topic. More specifically, MedBIoT data set is used to induce ef-fective supervised and unsupervised ML-based detection models that can discriminateeffectively between malicious and benign IoT botnet traffic in the early stages of botnetformation (RO7). For the same purpose, the active learning approach is evaluated in thecontext of SOCs, where this learning strategy can help to induce effective detection mod-els that minimize the data labeling needs and, consequently, reduce the expensive costassociated with the labeling effort (RO8).
The main findings of Part II of this thesis, detailed in each chapter, tackled relevantaspects to enhance the effectiveness and efficiency of the machine learning-based IoTbotnet detection systems. Currently, there are many excellent researchers focused onthis task in this complex and evolving field, thus our work can be understood as a smallcontribution to the problem domain. Our aim will be fulfilled if our results are consideredin the design and induction of IoT botnet detection systems.

14.3 Limitations and threats to validity
Machine learning-based systems rely on data quantity and, most importantly, data qual-ity for their success at a given task (e.g., malware detection). Besides, the methodologyfollowed and techniques and algorithms used can significantly impact the obtained out-comes. Consequently, the threats to the validity of our results and the limitations of thisresearch arise from two main sources: the data used and the approaches and techniquesemployed.

The representativeness of the data is a central element for machine learning-basedsystems and data analysis. This dissertation is based on two data sets: KronoDroid andMedBIoT. Regarding KronoDroid, despite being one of the largest publicly available An-droid data sets and providing samples for an extended historical period, the represen-tativeness of the data set is not guaranteed. The Android threat landscape is complexand ever-evolving, with thousand of malicious applications discovered monthly. There-fore, only sampling-based approximations of the dynamic malware threat landscape ata specific period can be achieved. In this regard, given the large size of KronoDroid andthe combination of data sources, the representativeness of the data set is maximized butnot ensured. In this regard, KronoDroid could benefit from integrating more data samples
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(i.e., especially from recent years) that could enlarge the representativeness of the dataset and, consequently, increase the internal validity of the results. The same reasoningapplies to theMedBIoT data set.The techniques and algorithms employed for data analysis, concept drift handling, andcharacterization are also not free from limitations and assumptions. For example, the datastream approach for concept drift handling assumes that timestamps are accessible andvalid for managing the phenomenon effectively. However, as demonstrated, timestampsmight not always be accessible or valid. A larger data set couldmitigate this issue. Besides,the algorithms used to induce the classification models can have a significant impact onthe detection performance. Our methodology included testing several classification algo-rithms to select the best performer for our solution. However, algorithmic enhancementof our solution cannot be discarded, given the fast pace of development of new algo-rithms and improvement of the existing ones by the machine learning community. Thecharacterization techniques employed and data analysis tools utilized in this research (i.e.,feature selection methods and statistical metrics and tests) are widely used and acceptedscientific methods. However, they usually make assumptions about the data that may im-pact the analysis and outcomes. For that purpose, different techniques have been usedin this research, enabling the exploration of the phenomenon from different viewpoints(e.g., Shapley values, permutation feature importance, Fisher’s score) and providing com-plementary analytical approaches to the studied phenomenon (e.g., important featuresfor concept drift). The consistency of the results obtained using the different techniquesindicates that the results are solid. However, the usage of additional approaches and tech-niques may enrich the analysis and also contrast the obtained results.
14.4 Future work
The research presented in this doctoral dissertation explored two application domainswhere machine learning can help significantly to address complex challenges in ever-evolving data scenarios. Consequently, the work tackled in this research is far from com-plete and most probably, will never be. However, there are several aspects that could beimproved and explored further in future research.For instance, the generation of KronoDroid-like data sets, thus including temporal anddevice-related aspects, could not only be used to contrast the findings of this work butalso to complement it. The inclusion of more recent samples, different timestamps, datafrommore devices, etc., could assist in devising enhanced detection systems for malwaredetection. This would also enable further exploration of the issues introduced in this the-sis such as concept drift and cross-device data detection, but also other topics that werebriefly surfaced such as malware family evolution and multi-class detection.The adaptive solution proposed in this work was capable of handling concept drifteffectively in the analyzed period. However, as with any algorithm, it might be subjectto improvements, especially to become more robust against adversarial drift attacks. Inthese attacks, the attacker induces an artificial drift in the data to fool the classifier, thusprovoking adaptation to false data and harming the detection capabilities of the classifier.Consequently, the exploration of adversarial drift is one of our future research paths inthe domain.This work also opened the path of early IoT botnet detection that may assist in attackprevention. Our work and its related data set MedBIoT may be seen as an initial explo-ration of the phenomenon that may foster future research in this direction.Data quality and quantity are critical factors that empower machine learning systemsto excel in recognition tasks. Consequently, the focus on data set generation can open
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significant research paths and lead to substantial enhancements in the related detectionsystems for the years to come. Besides, the exploration of algorithmic improvements toexisting methods and application of new machine learning or deep learning approachescan be of great benefit to foster research and, ultimately, contribute to a safer digitalfuture.
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Abstract
Machine Learning-Based Detection and Characterization of 
Evolving Threats in Mobile and IoT Systems
This dissertation explores the application of machine learning methods to overcome the present challenges that affect two significant research areas in the cyber security domain: Android malware detection and Internet of Things (IoT) botnet detection.The majority of Android malware detection solutions neglect the impact of concept drift on the performance of the detection models over time. This dissertation explores the phenomenon by demonstrating, addressing and characterizing concept drift in the most commonly used Android feature spaces to induce detection models (i.e., system calls, permissions and API calls). Furthermore, the impact of timestamping approaches in the data modeling and effectiveness of the models is analyzed. Cross-device detection, another challenge for the development of effective detection systems, is comprehensively investigated by examining the validity of the cross-device consistent behavior postulate among Android platforms, which is often assumed in research setups, and its impact on the learning models. The research outcomes, such as the KronoDroid data set and the proposed solution to handle concept drift, and main findings of the experimentation performed enable the design of more robust models to ageing challenges and the enhancement of Android detection models.In the IoT domain, the majority of the research studies in the cyber security field focus on attack detection. This doctoral dissertation explores the impact of feature selection on the detection performance and the enhancement of the detection models. Besides, attack prevention, as a means of avoiding the nefarious consequences of IoT-based attacks, is thoroughly explored using supervised and unsupervised machine learning models and the active learning approach. The research outcomes in this domain enable the generation of enhanced detection systems that might be capable of preventing IoT-based attacks and their consequences.
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Kokkuvõte
Masinõppepõhine arenevate ohtude tuvastamine ning 
kirjeldamine mobiilseadmete ja värkvõrkude jaoks
Käesolev väitekiri keskendub masinõppe meetodite kasutamisele, et ületada probleeme kahes olulises küberturvalisuse valdkonnas: Androidi pahavara tuvastamine ja värkvõrgu-põhiste botnetide tuvastamine.Enamik Androidi pahavara tuvastamise lahendustest ei arvesta kontseptuaalse triivi aja jooksul ilmnevat mõju tuvastusmudelite täpsusele. Väitekiri uurib seda nähtust, kirjeldades kontseptuaalset triivi ning pakkudes lahendusi sellega toimetulekuks levinud Androidi tunnusruumide põhjal loodud tuvastusmudelites (süsteemi- ja rakendusliidese funktsioonide väljakutsete ning Androidi õiguste põhised mudelid). Samuti analüüsib väitekiri erinevate ajatembelduse meetodite mõju andmemudelitele ning mudelite efektiivsust. Väitekiri keskendub ka pahavara seadmeülesele tuvastamisele, mis on efektiivsete tuvastussüsteemide loomisel oluline probleem. Väitekirjas käsitletakse pahavara käitumist erinevatel Androidi platvormidel ja varasemates töödes tihti esinevat postulaati, et pahavara käitumine ei sõltu platvormist, ning uuritakse selle mõju masinõppe mudelitele. Uurimistöö tulemused nagu KronoDroid andmekogu, lahendused kontseptuaalse triiviga toimetulekuks ning teised eksperimentide käigus saadud tulemused võimaldavad luua töökindlamaid masinõppe mudeleid.Varasemad värkvõrkude küberturvalisuse valdkonnas tehtud uurimistööd käsitlevad peamiselt rünnete tuvastamist. Käesolev doktoritöö keskendub tuvastusmudelite tõhustamisele ning sellele, kuidas tunnuste valik mõjutab tuvastuse täpsust. Doktoritöö uurib samuti värkvõrkude vastaste rünnete tõkestamist juhendatud ning juhendamata masinõppe mudelite abil, käsitledes ka aktiivõppe meetodeid. Uurimistöö tulemused võimaldavad luua täiustatud värkvõrkude vastaste rünnete tuvastamise süsteeme, millel on rünnete tõkestamise võimekus, et hoida ära rünnete tekitatud kahju.
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Abstract: New malware detection techniques are highly needed due to the increasing threat posed by mobile malware.
Machine learning techniques have provided promising results in this problem domain. However, feature selec-
tion, which is an essential instrument to overcome the curse of dimensionality, presenting higher interpretable
results and optimizing the utilization of computational resources, requires more attention in order to induce
better learning models for mobile malware detection. In this paper, in order to find out the minimum feature
set that provides higher accuracy and analyze the discriminatory powers of different features, we employed
feature selection and ranking methods to datasets characterized by system calls and permissions. These fea-
tures were extracted from malware application samples belonging to two different time-frames (2010-2012
and 2017-2018) and benign applications. We demonstrated that selected feature sets with small sizes, in both
feature categories, are able to provide high accuracy results. However, we identified a decline in the discrim-
inatory power of the selected features in both categories when the dataset is induced by the recent malware
samples instead of old ones, indicating a concept drift. Although we plan to model the concept drift in our
future studies, the feature selection results presented in this study give a valuable insight regarding the change
occurred in the best discriminating features during the evolvement of mobile malware over time.

1 INTRODUCTION

Mobile phone users are increasingly facing the risks
of malware. McAfee stated that “2018 could be the
year of mobile malware” as they detected 16 million
infections in the third quarter of 2017 alone, twice the
figure in 2016 (McAfee, 2018). This enormous in-
crease was also confirmed by Kaspersky who identi-
fied an 80% rise in mobile malware attacks (Unuchek,
2018). In addition to these spikes, malware detection
software has been proved to be inefficient in tackling
this threat (Fedler et al., 2013).

Traditional detection approaches based on signa-
tures fail to detect unknown malware due to the im-
proved obfuscation or stealth techniques employed
by malware creators (Fedler et al., 2013). On the
other side, machine learning techniques have been
perceived as a promising approach for detecting pre-
viously unseen malware samples and many studies
have shown that they could provide high detection ac-
curacy (Sahs and Khan, 2012; Yuan et al., 2014; Arp
et al., 2014). These studies created learning models
using dynamic, static or both (namely hybrid) fea-
tures extracted from legitimate applications and mal-
ware samples. Static features such as permissions,

java codes or intent filters, are extracted directly from
APK files whereas dynamic features, e.g. system calls
or network traffic patterns, are derived from the in-
teraction of programs with OS or network (Feizollah
et al., 2015).

Feature selection, eliminating irrelevant or redun-
dant features that do not improve the classification
performance, is an essential step of machine learning
workflow due to three reasons: (1) Representing the
problem domain with high dimensions requires more
data for learning (commonly known as the curse of
dimensionality) and may disturb the accuracy of the
classifier, (2) Models using higher dimensions cannot
be easily interpreted by the experts, which may create
enormous problems in detecting falsely classified in-
stances or profoundly investigating a cyber incident,
(3) Higher dimensional data requires more computa-
tional resources for constructing and using the learn-
ing model on a mobile device. On the other side,
feature selection could be more complicated in prob-
lem domains where the behaviour of the subjects may
vary in time, i.e., a selected feature set may no longer
have its discriminatory power, which may be one of
the main concerns in malware detection.

In this study, our primary objectives are to iden-

274
Guerra-Manzanares, A., Nõmm, S. and Bahsi, H.
In-depth Feature Selection and Ranking for Automated Detection of Mobile Malware.
DOI: 10.5220/0007349602740283
In Proceedings of the 5th International Conference on Information Systems Security and Privacy (ICISSP 2019), pages 274-283
ISBN: 978-989-758-359-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



tify the minimum feature set that provides higher ac-
curacy, compare the discriminatory powers of feature
categories and analyze the results of models induced
by datasets belonging to different time-frames. For
these purposes, we applied a two-step procedure to
the dataset that is composed by system calls (i.e., a
dynamic behaviour) and permissions (i.e., a static be-
haviour), extracted from malware samples and legit-
imate applications. In the first step, we used statis-
tical hypothesis testing methods to identify the fea-
ture set that may have a significant contribution to
the classification. In the second step, we employed
Fisher’s Score and Gini Index which enabled to rank
the selected features according to their discrimina-
tory power. We in turn induced machine learning
models with different combinations of datasets with
varying feature sets. As Android is the most used
mobile operating system worldwide, we focused on
detection of Android malware (Statista, 2018). For
this research, we formed two malware datasets. ”Old
dataset” which consists of randomly selected apps
from Drebin malware dataset, collected between 2010
and 2012 (Arp et al., 2014).”New dataset” formed by
randomly choosing samples, belonging to years 2017
and 2018, from VirusTotal Academic malware dataset
(VirusTotal, 2018). Third one is called ”legitimate
dataset” which is composed by benign applications.
We utilized various combinations of these datasets for
inducing learning models.

This study shows that feature selection and rank-
ing process can significantly reduce the number of
features required in a classifier that provides high ac-
curacy for the detection of mobile malware. We found
that features possessing most discriminatory power in
classification may differ as new malware types evolve
over time, indicating a concept drift. Results suggest
that behaviour of mobile malware in terms of system
calls and permissions has become more similar to le-
gitimate apps over time although there are some vari-
ations among the extent of this evolvement in both
feature categories.

Our main contribution is a detailed analysis and
comparison of feature selection and ranking results
obtained for two types of feature categories. One of
the distinctive properties of the present paper is that,
in addition to the optimization of number of predic-
tors, we analyzed the change in selected features that
has occurred due to the evolvement of malware over
time.

This paper is organized as follows: Section 2
presents a review of related literature. Method em-
ployed in the study is described in Section 3. Re-
sults of our experiments are presented and discussed
in Section 4 whereas Section 5 concludes the study.

2 LITERATURE REVIEW

Feature selection and ranking methods have been
used in various machine learning-based malware de-
tection studies. In Yan et al. (2013) discriminatory
power of malware features such as hexdump of bina-
ries, disassembly codes, PE header and system calls
are measured by three filter methods, i.e., ReliefF,
Chi-squared, F-statistics, and two embedded meth-
ods, i.e., L1 regularized methods, L1-logreg and L1-
SVC. In this study, it is identified that PE header
and system calls are very beneficial to discern mal-
ware from legitimate software, and that L1 regular-
ized methods with 100 features provided higher de-
tection rates (Yan et al., 2013). In Ahmadi et al.
(2016) discriminatory powers of various static feature
categories are measured and compared by using mean
decrease impurity notion and random forest classifier
in a multi-class malware family classification.

Utilization of feature ranking methods is consid-
erably less common in those studies which provide
classifiers specifically for mobile malware detection
(Feizollah et al., 2015). Lindorfer et al. (2015) ap-
plied Fisher’s Score to evaluate the discriminatory
power of dynamic and static feature categories. This
study found out that required permissions and some
dynamic features related to SMS sending and dy-
namic loading of code have higher discriminatory
powers (Lindorfer et al., 2015). Cen et al. (2015),
created a classifier using Regularized Logistic Re-
gression with Lasso Norm for source code features
(java package, class and function levels). Information
Gain, Chi-Square and an embedded method of logis-
tic regression were utilized for feature selection. It
was found that 10% of the features selected by Infor-
mation Gain or Chi-Square are sufficient for high de-
tection rates (Cen et al., 2015). Similarly, in Shabtai et
al. (2012) filter methods such as Chi-Square, Fisher’s
Score and Information Gain were applied to some
system metric features (e.g., CPU consumption, num-
ber of running processes, battery level) in the early
times of Android.

Pehlivan et al. (2014) applied feature selection
methods such as Information Gain, ReliefF, Correla-
tion Feature Selection (CFS) and consistency-based
selection to permissions with different classification
models. Random forest classifier that selected 25 per-
mission features with CFS provided the best accuracy.
In a similar study by Nezhadkamali et al. (2017),
three feature selection methods, L1-based feature se-
lection, Information Gain and Gini Impurity, were
used with permissions. All three methods were tested
using different machine learning algorithms, such as
decision tree, SVM and Random forest. Best results
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were obtained using Random Forest as classification
algorithm and Information Gain as feature selection
method (Nezhadkamali et al., 2017).

Sing and Hofmann (2017) used three feature se-
lection methods (Chi-Square, Information gain, and
correlation analysis) to select variables and form sys-
tem calls vector. In Ferrante et al. (2016), an embed-
ded feature selection method was used for classifying
the dataset that consisted of features such as system
calls, memory usage and CPU usage. Kim and Choi
(2014) used Linux kernel features related to mem-
ory, CPU and network (summing up to 59 features)
to perform malware detection. This study used an
embedded model to perform feature selection, ending
up eliminating 23 features and using 36 features for
their detection system (Kim and Choi, 2014). In Qiao
et al. (2016) combined API calls and permissions
were processed by two feature selection methods,
one-way analysis of variance (ANOVA) (i.e., a fil-
ter method) and Support Vector Machine—Recursive
Feature Elimination (i.e., a wrapper method). They
ended up with top 300 features from API set and 80
from permissions set (Qiao et al., 2016).

Although previously mentioned studies applied
feature selection methods and some of them provided
considerably detailed analysis about discriminatory
powers of used features, none of them analyses the
character change and its impact on feature selection.

In Hu et al. (2017) concept drift of mobile mal-
ware was modelled with an ensemble learning model
in which the feature selection is based on Information
Gain. In Jordaney et al. (2017) a concept drift detec-
tion method that was based on conformal evaluator is
applied to two cases, a binary classification for mobile
malware and a multi-class classification for malware.
These studies focus on enhancing the detection per-
formance of classifiers with concept drift. However,
they do not provide an in-depth analysis of discrimi-
natory powers of feature categories and their impact
on concept drift.

3 METHOD

We formulated mobile malware detection as a binary
classification problem that requires the discrimination
of benign mobile applications from mobile malware
samples. As we were able to obtain labelled data,
supervised machine learning methods were applied.
We followed machine learning workflow, that mainly
involves five steps: (1) Data Acquisition, (2) Data
Cleaning and Preparation, (3) Feature Selection, (4)
Classifier training and Evaluation, (5) Interpretation
(Robert, 2014). Sometimes tuning could be applied to

the trained classifier, but within the framework of the
present study, this step was omitted as it was deemed
as unnecessary.

We tested k-nearest neighbours (kNN), logistic re-
gression, decision tree, and support vector machines
(SVM) for building the classifiers, and used Python
programming language and Sci-kit learn library in
our implementation. Data acquisition and feature se-
lection stages are detailed in Sections 3.1 and 3.2.
We covered two types of feature categories in our
datasets: absolute frequency of system calls (numeri-
cal features) encountered during the execution of the
applications and requested Android standard permis-
sions (categorical features).

3.1 Data Acquisition

In this study, we collected 3000 Android x86 architec-
ture compatible applications as the details are given
below:

• 1000 benign applications which were randomly
downloaded by the authors from APKMirror
repository. They were verified as malware free ap-
plications with VirusTotal AntiVirus engine. Le-
gitimate applications date between April 2017 and
February 2018. Named as ”legitimate dataset” in
this research.

• 1000 malware applications which were randomly
selected from Drebin malware dataset. These
samples date between August 2010 and October
2012 (Arp et al., 2014). We named this dataset as
”old malware dataset”, and refer to each element
in the set as ”old malware”.

• 1000 malware applications which were ran-
domly selected from VirusTotal Academic mal-
ware dataset. This dataset, shared by VirusTo-
tal, dates between the end of 2016 and beginning
2018 (VirusTotal, 2018). We named this dataset
as ”new malware dataset”, and refer to each ele-
ment in the set as ”new malware”.

Android requested permissions were directly ex-
tracted from AndroidManifest.xml file, included in
every application APK file, using Android Asset
Packaging Tool (aapt). The recent Android distribu-
tion, Android 8.0, defines 147 Android standard per-
missions. A permission profile vector that is com-
posed of the data regarding the presence/absence of
each Android standard permission was created for
each application.

As the collection of system calls requires to run
the application itself, we used an Android emulation
environment and Android Debug Bridge (ADB) to in-
stall, execute, monitor, log and uninstall each applica-
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tion. During the execution, strace tool was attached to
the main process to obtain the first 2000 system calls.
212 distinct system calls are defined in Bionic x86
library. A frequency vector that included the num-
ber of each system call made by the application was
formed from the logged data. Prior research have
demonstrated that malware could be effectively dis-
criminated with a reduced amount of system calls ac-
quired during the application’s boot up and that acqui-
sition of the first 2000 system calls provided the best
detection results (Vidal et al., 2017).

Although we selected malware samples from two
different time-frames, composing two different mal-
ware datasets, we used only one benign dataset com-
prised of recent applications. In this study, we fo-
cused on the analysis of change in selected features
according to the evolvement of malware with respect
to recent benign applications. This approach is in
line with malware detection practices happening in
the field as mobile phones are usually not compat-
ible with older applications due to frequent operat-
ing system and hardware changes and also changes
in applications’ installation requirements but the de-
tection systems usually include signatures of all mal-
ware samples including the old ones. The impact of
the evolvement in benign applications will also be an-
alyzed in the context of concept drift within our future
studies.

3.2 Feature Selection and Ranking

We employed a two-step procedure that consists of
conducting statistical hypothesis testing for feature
selection and applying feature ranking method. The
former one chooses the features which significantly
differ between the two classes (i.e., legitimate and
malware), and the latter one orders the features ac-
cording to their discriminatory power. Order provided
in this step is necessary to optimize the number of
features used as predictors and describe behavioural
evolvement of malware belonging to different time-
frames.

There are three feature selection techniques that
can be widely utilized in identifying the features (Ag-
garwal, 2015). Filter techniques evaluate the suit-
ability of a feature by using a statistical criterion
which can be applied irrespective of the classification
method used. Wrapper techniques iteratively extend
the feature set and evaluate the accuracy of each iden-
tified set in a classification model. Embedded tech-
niques also evaluate suitability of the feature set with
respect to a particular classification model, but unlike
the wrapper one, they attempt to prune the features
within the classification process itself. Since wrapper

and embedded techniques have higher computational
complexity, we utilized filter techniques in the second
step.

It is important to emphasize that feature categories
used in this study, system calls and permissions, do
not have the same data type. System calls are nu-
meric values (i.e., amount of calls issued for each sys-
tem call) and permissions are categorical (i.e., permis-
sion request was present/absent for each standard per-
mission). In both steps, we employed different tech-
niques that are more appropriate for each feature cat-
egory and its data type. The procedure was performed
as follows:

• Step 1: Feature selection by statistical hypothesis
testing

– System Calls. System calls which differ be-
tween malicious and legitimate applications in
terms of mean values were selected. To per-
form statistical hypothesis testing Welch’s Test
was used. This test provides more reliable re-
sults for the cases of unequal variances (Welch,
1947). The statement of the null (base) hypoth-
esis Ho is that mean values of for the number
of system calls among first 2000 calls are the
same for legitimate µL and malicious µM appli-
cations, and the statement of the alternative hy-
pothesis H1 is that mean values are different.

H0 : µL = µM

H1 : µL 6= µM

– Permissions. As these features are categor-
ical, we employed χ2 (chi-squared indepen-
dence test) which can answer the question if
two categorical variables are related or not. The
statement of the null hypothesis is that there is
no relation between the particular permission
and class of the application. The statement of
the alternative hypothesis is that there is a rela-
tion between particular permission and class.

• Step 2. Feature ranking by Fisher’s Score and
Gini Index

– System Calls. Fisher’s Scores of system calls
with mean values that differ significantly be-
tween malicious and legitimate applications
were computed (i.e., higher Fisher’s score val-
ues indicate higher discriminatory power).

– Permissions. As permissions are categorical,
Gini Index suited better for ordering these fea-
tures (i.e., lower values of the Gini Index indi-
cate higher discriminatory power).

At first glance, a two step procedure may seem un-
necessary. One may suggest ordering features with re-
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spect to only their p-values, computed during the hy-
pothesis testing step. It should be noted here that lin-
ear relationship between the values of Fisher’s Score
and p-values is not strong enough to lead exactly to
the same feature orderings. Simulations performed
by the authors demonstrated that for numeric values
Fisher’s Score based selection led to better orderings
with respect to classifier accuracy. This fact justi-
fies a two-step feature selection procedure for system
calls. Regarding permissions, p-values and Gini In-
dex based selection procedures did not lead to suffi-
cient difference in detection accuracy. Nevertheless,
a two-step selection procedure was used for the sake
of method coherence.

In relation to classifier training, one has to choose
desired number of predictors either on the basis of
Fisher’s Score values or Gini Index values. Note
that there are no universal or generic valid thresh-
olds for Fisher’s Score and Gini Index values indicat-
ing suitability or unsuitability of a particular feature.
Based on the outcomes of the feature selection pro-
cess, we provided our expert judgement to determine
the thresholds, selected the sets and verified their pre-
diction performance by creating and testing the learn-
ing model.

4 RESULTS & DISCUSSION

4.1 Results of Feature Selection and
Ranking

We applied feature selection and classification meth-
ods to two different compound datasets: First one
(namely L/O) includes 1000 legitimate and 1000 old
malware samples, and second one (namely L/N) is
composed by 1000 legitimate and 1000 new malware
samples. Let us remind that each particular system
call was treated as a numeric feature which results
in 212 numeric features. Each particular permission
was treated as a categorical feature (set or unset),
which leads to 147 categorical features. Following
the feature selection procedure described in Section
3.2, Welch’s test demonstrated that for L/O dataset,
38 numeric features differed significantly between the
legitimate and malicious applications for level of sig-
nificance α = 0.05, whereas this number was 43 for
L/N dataset. In a similar manner, for the same level
of significance, χ2 filtered out 85 permissions for L/O
dataset and 79 permissions for L/N dataset.

In the feature ranking step, Fisher’s Score and
Gini Index values were computed for numeric and
categorical features respectively. This allowed or-

Figure 1: Scatter plot munmap vs clock gettime.

Figure 2: Scatter plot prctl vs mmap2.

Figure 3: Scatter plot futex vs mprotect.

dering the features with respect to their discrimina-
tory power. As mentioned before, there is no specific
threshold on any of the methods performed to select
or discard any particular feature, only data knowl-
edge and expertise helps in this selection step. As all
Fisher’s Score (F) values were relatively low, we se-
lected those system calls having F > 0.15. Regarding
permissions, all Gini Index (G) values were relatively
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Table 1: System Calls and Fisher’s Score Values.

System Call L/O L/N
clock gettime 0.84 1.11
munmap 0.75 0.57
readlinkat 0.69 0.59
connect 0.67 0.52
mmap2 0.63 0.47
prctl 0.61 0.53
madvise 0.54 0.48
ppoll 0.31 0.25
sigaction 0.29 0.30
sigaltstack 0.23 0.21
openat 0.22 0.16
mprotect 0.15< 0.19
futex 0.30 0.15<
rt sigprocmask 0.24 0.15<
epoll create1 0.23 0.15<
eventfd2 0.22 0.15<
getppid 0.22 0.15<
clone 0.21 0.15<
sendto 0.19 0.15<
recvfrom 0.18 0.15<
close 0.17 0.15<
getdents64 0.15 0.15<

Table 2: Permissions and Gini Index Values.

Permission L/O L/N
access network state 0.46 0.41
wake lock 0.45 0.39
install packages 0.42 0.41
read phone state 0.32 0.45
get accounts >0.47 0.47
system alert window >0.47 0.46
get tasks >0.47 0.45
mount unmount file systems >0.47 0.44
vibrate >0.47 0.44
access fine location 0.47 >0.47
bind remoteviews 0.47 >0.47
use fingerprint 0.47 >0.47
camera 0.47 >0.47
bluetooth 0.46 >0.47
read logs 0.44 >0.47
send sms 0.43 >0.47
read contacts 0.43 >0.47
read external storage 0.33 >0.47

high so we selected those with G < 0.47. System calls
possessing higher discriminatory power are listed, to-
gether with their Fisher’s Score values, in Table 1.
Similarly, Table 2 gives the selected permissions with
their Gini Index values.

As a result of the second step, 21 features were se-
lected for L/O dataset and 12 for L/N dataset among

the system calls (11 of them were common in both
datasets). All common system calls in L/N except
clock_gettime have lower Fisher’s Score values.
Furthermore, there is only one additional discrimi-
natory system call, mprotect, which has a relatively
low score, that has been developed in the course of
time (appears as potentially discriminatory feature in
L/N dataset but not in L/O dataset). Based on that,
it can be argued that separability between legitimate
and new malware is less obvious, meaning that system
call behaviour of malware has become more similar
to legitimate as time has passed. Additionally, it can
also be argued that beyond this separability fact, new
malware has not developed a robust novel character.

Scatter plot graph given in Figure 1 shows an eas-
ily recognizable well-defined decision boundary that
is formed by two of the most discriminatory system
calls, clock_gettime and munmap2. As shown, old
malware is gathered in a cluster which is located be-
tween legitimate and new malware regions. On the
other side, decreased separability formed by system
calls with relatively less Fisher’s Score values, such
as prctl and mmap2, is demonstrated in Figure 2. Al-
though most of legitimate and new malware samples
form their own clusters which can be separable from
each other, boundaries are not so clear when com-
pared to the graph given in Figure 1. Figure 3 shows
the graph for two system calls having lower scores
such as futex and mprotect. It is observed that de-
spite some condensed regions occupied by one class,
boundaries between old malware, new malware and
legitimate apps mostly disappear.

According to Fisher’s Score values, it can be de-
rived that system calls that possess best discrimina-
tory power are related to socket connection, process
management or file operations. However, best pre-
dictor is the one which is related with clock time,
showing the most different behaviour between mal-
ware and legitimate applications.

Based on Gini Index values (see Table 2)
and the established threshold value, we identi-
fied that 13 permissions in L/O possess greater
discriminatory power whereas 9 permissions have
greater power in L/N (among the 147 permis-
sions in total). New malware gained more
separability from legitimate applications in fea-
tures such as wake_lock, access_network_state,
install_packages. They exceeded the threshold
value in an additional five features which were below
that value in old malware. On the other side, it has
become closer to legitimate apps in 10 features (for
instance, read_phone_state, camera, send_sms, or
read_contacts). It can be argued that total discrimi-
natory power of new malware has diminished to some
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extent due to a reduction in the number of selected
features, but in contrast to system calls, it gained new
character.

Android OS has mainly three protection levels that
determine policies for granting permissions to mobile
apps: (1) Normal permissions which are automati-
cally given to applications without explicit consent of
the user, (2) Dangerous permissions that require ex-
plicit consent of the users to be granted, (3) Signa-
ture permissions which require that the app that uses
the permission must have the same certificate as the
app that defines the permission (Google, 2018). Fea-
tures with greater discriminatory capabilities, which
are identified by Gini Index in our study, do not be-
long to a single level. Among the 18 listed features
in Table 2, only 7 of them belong to the dangerous
level. This result indicates that malware and legiti-
mate apps can also differ in permissions which do not
seem risky.

It is important to note that, in our context, gain-
ing character or having more discriminatory power
means that the referenced dataset can better discrimi-
nate malware from legitimate apps by using the corre-
sponding feature. It does not show that, for instance,
malware uses that specific system call or permission
more (or less) frequently than a legitimate app. How-
ever, as we utilized the same legitimate dataset, it is
evident that the change in discrimination capabilities
relies on the change of malware behaviour over time.

Table 3: Classification with System Calls.

# of features L/O L/N
accuracy accuracy

Single Best Feature 1 0.87 0.89
3 Best Common Features 2 0.90 0.88
6 Best Common Features 3 0.91 0.89
All 11 Common Features
selected in both datasets 4 0.93 0.89
All 22 Selected Features 0.97 0.91
All 212 Features 0.97 0.93

4.2 Verification of Selected Features
with Classifiers

In order to verify the results obtained in Section 4.1,
we built and tested classifiers with selected feature

1clock gettime
2clock gettime, readlinkat, and munmap
3clock gettime, readlinkat, munmap, connect, prctl and

mmap2
4clock gettime, readlinkat, munmap, connect, prctl,

mmap2, madvise, ppoll, sigaction, sigaltstack, openat

sets, grouping them in varied sizes. Recall that the fil-
ter methods that we use in this study treat each feature
separately while measuring its discriminatory power,
meaning that these sets do not guarantee higher accu-
racy due to, for instance, possible correlations among
the selected features. This verification study is needed
to show the validity of our findings.

We trained and tested k- Nearest Neighbours
(kNN), Logistic Regression, Decision Tree, and Sup-
port Vector Machines (SVM) machine learning algo-
rithms to the datasets. Among these methods, deci-
sion tree model demonstrated best accuracy results,
therefore, this method was chosen for further analy-
sis. Then decision tree model was applied to L/O and
L/N datasets. As shown in Table 3, we computed ac-
curacy value for different decision tree classifiers as
a performance metric (i.e., accuracy is computed as
the ratio of correctly classified samples to the total
samples), using 5-fold cross-validation with varying
feature set sizes for system calls. Corresponding con-
fusion matrix of each classifier is given summarized
in Table 4.

Table 4: Confusion Matrices for the Classification of Sys-
tem Calls.

# of features Actual(L)/ Actual(M)/ Actual(L)/ Actual(M)/
Pred(L) Pred(M) Pred(M) Pred(L)

Single Best L/O 265 265 29 41
3 Best L/O 261 279 31 29
6 Best L/O 293 259 25 23
11 Common L/O 299 262 24 15
22 Selected L/O 303 276 10 11
All (212) L/O 295 290 8 7
Single Best L/N 300 234 27 39
3 Best L/N 263 266 39 32
6 Best L/N 259 269 37 35
11 Common L/N 282 254 32 32
22 Selected L/N 272 268 36 24
All (212) L/N 279 281 19 21

Results of decision tree classifier model regard-
ing system calls show that just a single feature,
clock_gettime (highest Fisher’s score value), was
capable of discriminating malware from legitimate
apps (in both L/O and L/N datasets) with an accu-
racy over 87 %. However, this feature provided better
classification in L/N, which is in line with the higher
Fisher’s Score value of this feature in this dataset. In
all other classifier models built, selected features pro-
vided better outcomes in L/O dataset, justifying that
similarity of system calls behaviour between a legit-
imate app and malware is getting less obvious over
time.

Accuracy results of classifiers increase as bigger
feature set is covered in both datasets. Just the 22 se-
lected features are enough to give the same accuracy
performance than using all system calls (212) in L/O
dataset. However, a similar point is not achieved in
L/N dataset, indicating a decrease in the discrimina-
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tory power of the selected features. It can be derived
from the confusion matrices given in Table 4 that clas-
sifiers are, in general, well-balanced in terms of false
positive and false negative results, which are repre-
sented in the table as ”Actual(L)/Predicted(M)” and
”Actual(M)/Predicted(L)” respectively. Note that L
refers to legitimate whereas M means malware. How-
ever, results of the best feature in L/O and L/N are
slightly more skewed to false negatives whereas the
classifiers with all 11 common features in L/O and all
22 selected features in L/N are more inclined to false
positives.

Results regarding the application of decision tree
classifier model to permissions are given in Table 5.
Best feature provided accuracy values, 0.79 and 0.73,
in L/O and L/N datasets respectively. These values
are lower compared to the detection performance of
best system call predictor. As shown, accuracy value
in L/O was greater than in L/N. This fact was ex-
pected as the Gini Index score of the best feature in
L/O dataset has a lower value than in L/N dataset,
i.e. that it has more discriminatory power. Accu-
racy of the classifier that uses all selected features, in
both datasets, reaches almost the same value obtained
when all permissions are used, showing the effective-
ness of feature selection in permissions.

Table 5: Classification with Permissions.

# of features L/O L/N
accuracy accuracy

Single Best Feature 5 0.79 0.73
4 Common Selected
Features in both datasets 6 0.86 0.85
All 18 Selected Features 0.94 0.92
All 147 features 0.95 0.92

Accuracy values of L/N were slightly lower than
values of L/O when common or all selected permis-
sions were used. This result suggests that as time has
passed, separability between malware and legitimate
applications has partly decreased regarding permis-
sions.

Confusion matrices of classifiers built for permis-
sions are summarized in Table 6. It can be extracted
that most of classifiers are not well-balanced com-
pared to the ones built on the basis of system calls.
Results of the best and four common features in L/O
are skewed to false negatives, but remaining ones are
more balanced. L/N dataset provided unbalanced out-
comes in each classifier. Best feature in L/N gave
more false positives and remaining ones were inclined

5read phone state for L/O and wake lock for L/N
6access network state, wake lock, install packages and

read phone state for L/O and L/N

to false negatives.

Table 6: Confusion Matrices for the Classification of Per-
missions.

# of features Actual(L)/ Actual(M)/ Actual(L)/ Actual(M)/
Pred(L) Pred(M) Pred(M) Pred(L)

Single Best L/O 271 201 30 98
4 Common L/O 262 248 23 67
18 Selected L/O 284 280 19 17
All (147) L/O 281 290 14 15
Single Best L/N 186 253 117 44
4 Common L/N 281 227 29 63
18 Selected L/N 274 274 19 33
All (147) L/N 284 268 20 28

When outcomes of system calls and permissions
are compared, it can be argued that their amount of
loss regarding discriminatory power in L/N is differ-
ent. All selected system calls in L/N gave an accuracy
value of 0.91, showing a decline from 0.97 which was
obtained in L/O. This value, 0.91, is below the accu-
racy result, 0.93, which was obtained in L/N when all
system calls were used for the classification. On the
other side, accuracy value declines from 0.94 to 0.92
for all selected permissions, which indicates a lower
amount of loss than selected system calls. Accuracy
value of 0.92, is equal to the result obtained by all
permissions in L/N. Recall that, in Section 4.1, we
identified a decrease from 21 to 12 in the number of
system calls which exceeded the selection threshold
in L/O and L/N datasets. Out of 12 system calls, just
only two of them have higher Fisher’s score in L/N.
Contrarily, decline in permissions goes from 13 to 9,
and more features, 5 of them, have higher discrim-
ination capability in L/N. These findings support the
results obtained in Section 4.1 so that system calls and
permissions lost part of their discriminatory power in
L/N, being the loss in system calls greater than the
loss in permissions.

It is important to highlight here that our results re-
garding the change in selected feature sets indicate a
concept drift. Comparison between system calls and
permissions given above provides initial insights into
the extent of this phenomenon. However, more com-
plete derivations can be drawn with modelling the
drift in the classifier. As we focus on feature selec-
tion and ranking in this paper, we postponed this mod-
elling effort to our future work.

Table 7 demonstrates detection performance of a
mixture of system calls and permissions (hybrid de-
tection approach). Classifier was constructed using
decision tree model within a 5-fold cross-validation
setting. As can be seen, in both datasets, detection
rates were higher compared to their previously built
respective single type classifiers, using only static or
only dynamic features.

7clock gettime and read phone state for L/O and
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Table 7: Classification with System Calls and Permissions
(Hybrid).

# of features L/O L/N
accuracy accuracy

Best Two Features 7 0.90 0.89
4+11 Common Selected
Features in both datasets 0.95 0.92
18+22 Selected Features 0.97 0.94
All Features (212+147) 0.98 0.94

5 CONCLUSION & FUTURE
WORK

Detection of mobile malware remains a significant
challenge due to the rapidly evolving nature of the
threat. Machine learning techniques have provided
solutions to handle this problem. Although they have
provided promising results, there is a room for im-
provement of the classifiers by the utilization of fea-
ture selection to obtain better classification accuracy,
present the results in a more interpretable way and re-
duce required computational resources.

In this paper, we applied a feature selection and
ranking procedure that consists of two consecutive
steps, statistical hypothesis testing and filter feature
selection method. The former enables us to select the
features while the latter ranks them according to their
discriminatory power. We used system calls and per-
missions as the feature categories due to their proven
success in various research studies. Detection perfor-
mance of selected features was evaluated in decision
tree based classifiers. In order to analyze the impact of
the changing behaviour on feature selection process,
we induced classifiers with malware samples belong-
ing to different time frames.

This study shows that a small number of selected
features, such as 3-6 features, provide relatively high
accuracy results. Even a single system call, the
one possessing best Fisher’s Score value in our fea-
ture domain, clock_gettime, provided accuracy val-
ues over 87%. We identified that 10-12% of the
features are able to provide a discriminatory power
which is very close to the power of using all features
in both feature categories (system calls and permis-
sions). Moreover, we identified that system calls and
permissions of new malware samples are more sim-
ilar to legitimate apps than the old ones. This result
suggests a concept drift in these features. Addition-
ally, feature rankings and classifier outputs indicate
that system calls have lost more discriminatory power

clock gettime and wake lock for L/N

over time compared to permissions.
In this paper, we concentrated on feature selection

and its implications on accuracy of machine learn-
ing classifiers. Findings regarding concept drift can
be better explored and enhanced by precisely mod-
elling this learning aspect in the classifier itself. Fea-
ture sets used in the classifiers could be enhanced by
adding other static or dynamic categories. Also, re-
quired length of collection’s time period for dynamic
attributes such as system calls could be further inves-
tigated.
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Abstract— Behavioral data extracted from emulators or real
devices, such as system calls, are utilized in research studies
where machine learning models have been employed for mobile
malware detection. However, these studies do not explore
whether the selection of data source may have an impact on the
performance of the models, assuming that both data sources
generate similar outputs. We provide a comparative analysis
of the data sets obtained from both sources by using statistical
techniques, inducing learning models and demonstrating the im-
pact of data source selection on detection models’ performance.
Our study shows that emulators generate more distinguishable
data than real devices, meaning that designers of detection
models should pay attention to the data sources utilized in
the various steps of the machine learning workflow.

Index Terms— mobile malware detection, machine learning,
android malware, dynamic analysis, system call

I. INTRODUCTION

Mobile malware is a major threat to mobile phone users.
After the significant spike of mobile malware in 2018 [1],
the threat is still posing a high risk to end users, evolving
in complexity and scope [2], [3]. Malware authors focus
their efforts on Android, the most popular mobile operating
system, which dominates over 75% of the market share [3],
[4]. Although recent versions of Android have improved
its security capabilities, the majority of Android users still
use old and not updated versions which increase even more
their risk of being compromised [5]. In addition, the proved
inefficient capabilities of malware detection software place
Android users in a risky situation [6].

Aiming to overcome these limitations, machine learning
(ML) models have been used to improve mobile malware
detection capabilities with remarkable success [7]. The data
needed by the ML algorithms are collected from Android
applications in different ways, either running the applica-
tion (dynamic analysis) or from the application apk file
itself (static analysis) [8]. More specifically, static features,
such as permissions or metadata, are extracted from apk
files or source code directly, without actually running the
application. Dynamic features, such as system calls and
network flow, are collected when running application, thus
they could be prone to change depending on the platform that
executes the application (real or emulated device). Emulators
are a cheap, easy to deploy and flexible approach to run
applications, being the preferred approach in some of the
research. The results based on emulators’ tests are usually
generalized to all Android devices (either real or emulated).

Thus, if the behavior in emulators and real devices produce
significant variations for the same app, using both data
sources interchangeably with no caution could undermine
the detection performance of the machine learning models.

In general, when dynamic analysis is compared to static
analysis, the former is considered more reliable and less
prone to be bypassed by malware [9] although both of them
could be subject to various evasion and obfuscation tech-
niques. Malware authors mostly target the manipulation of
data extraction process to diminish the outcome of dynamic
analysis whereas misguiding the analysis of extracted data is
the main focus to defeat static analysis. In addition to the eva-
sion techniques employed for data extraction, the behavioral
differences obtained from emulators and real devices might
be an additional factor that weakens the practical advantage
of using dynamic features over static ones on ML models.

In this research, we analyzed the behavioral differences
between Android emulation and real devices and their impact
on ML based mobile malware detection models. We ex-
tracted the system calls triggered by malware and legitimate
mobile app samples in emulator and real device and created
a separate data set for each environment. We employed
statistical methods to identify the features having higher
discriminatory power and deduce the correlations between
feature pairs in both data sets. Then, we created learning
models that address to solve binary classification problems.
Additionally, we conducted some experiments in a multi-
class formulation in which device type and being mali-
cious/legitimate constitute the different classes. This study
is distinguished as, to the best of our knowledge, prior
research has not provided a comprehensive analysis of such
environments in the context of their impact on ML models.

This paper is structured as follows: Section II provides
background information and a review of related literature
while Section III describes the method followed in this study.
Results of our experiments are presented in Section IV.
Lastly, Section V concludes the study and states future work.

II. BACKGROUND AND LITERATURE REVIEW

The literature regarding behavioral-based malware detec-
tion is split into two in terms of data source: real device-
based data, where the behavior of the application is mon-
itored and logged using a real device, and emulator-based
data, where the device is virtualized on a computer using a
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virtualization software environment, the emulator, that aims
to reproduce the behavior of a real device.

Some of the studies preferred real devices as a data source.
Crowdroid [10] is a behavior-based malware detection sys-

tem in which a real device acquires the app’s system calls and
sends them to a central server that runs a clustering algorithm
to discriminate between benign and malware applications.
MADAM [11] is a multi-level and behavior-based malware
detection method in which the data collection was performed
using a Samsung Galaxy Nexus running Android 4.3. In [12]
30 real devices with distinct versions of Android were used
to perform malware detection. The authors of this study state
that, in their context, using different versions of the OS, the
nature of the Android kernel did not impact the performance
of the detection method proposed. Other research conducted
using real devices are [13], [14], [15], [16], [17], [18].

Droid-sec [19] is a malware detection system which com-
bines static and dynamic features using deep learning tech-
niques. Applications were run in DroidBox [20], a sandbox
which emulates the Android environment and allows the
dynamic analysis of Android applications. MALINE [21] is a
dynamic Android malware detection technique that acquires
behavioral data of applications, such as system calls, by
running them on a customized build of the Android Software
Development Kit, which includes Android Emulator [22], a
virtual machine that emulates Android operating system. In
[23], the authors used an Android 2.1 emulator to test their
detection method stating that according their experience on
the detection of some malware applications, the results using
a real device and an emulator fully matched, thus the results
on an emulator should be cogent. Other research studies
using emulated devices are [24], [25], [26], [27], [28], [29].

As can be noticed, the referenced research on Android
malware detection does not converge on the usage of any
particular type of devices, either real or emulators, using a
wide variety of approaches even in the studies belonging to
each specific group. For example, among studies that use real
devices, some conduct all the research on a single real device
while others on different real devices (running different
versions of Android). There is also no clear preference on
the emulator platform used on the studies, ranging from the
official Android emulator to customized Android malware
detection sandboxes. To the best of our knowledge, the
possible behavioral differences caused by the data collection
environment have not been investigated. By not taking this
fact into consideration, the generalization of the induced
learning models’ results appears to be questionable.

III. METHOD

In this research, ML based malware detection is performed
on the basis of system calls, issued by malware and legitimate
applications. Network traffic is another behavioral compo-
nent but it describes the behavior of the application partially
and is out of scope of the present paper. For each dataset,
we conducted the analysis including the following items:

• Descriptive statistics
• Correlations between features

• Feature selection (identifying the discriminatory power
of the features)

• Accuracy of ML classifier models in which training and
testing are conducted with the same data set (named as
single data set approach)

• Accuracy of ML classifier models in which testing is
conducted with another data set (named as cross-data
set approach)

The data set used in this research is composed of 220
Android applications, distributed evenly as follows:

• 110 benign applications collected randomly from AP-
KMirror repository between 2017 and 2018. Tested to
be malware-free using VirusTotal detection engine.

• 110 randomly selected malware applications from
VirusTotal academic malware data set, belonging to the
same period of time as the legitimate applications.

Data set samples were installed and executed during 1
minute in a real device and an emulator. The details of the
real device and emulator device are described as follows:

• Real device → Samsung Galaxy A6 with Android 8.0.
• Emulated device → Samsung Galaxy S8 with Android

8.0, using GenyMotion emulation environment.
Android Debug Bridge (ADB) was used to install, execute,
monitor, log and uninstall each application. The system calls
issued by the main process of each application during the
running time were logged and collected using strace. No
interaction was performed with the applications aside from
booting them up using monkey tool for Android. On both
devices the same basic Android 8.0 configuration was setup:
security measures were disabled, Wi-Fi connection enabled,
SD card, Google Play installed and no SIM card.

The following subsections give the details of each analysis
item.

A. Data Preparation and Descriptive Statistics

212 system calls are defined in the standard C library for
Linux kernel, called Bionic library, used in Android OS. For
each application, a frequency vector that reflected the ratio of
each system call issued was formed using the application’s
logged data.

Descriptive statistics were calculated for the whole ac-
quired data set, dividing them according to application type
(benign or malware) and collection source (real or emulated).
In this step, raw data were used, so all the syscalls collected
were processed, even those not defined in the Bionic library.
Table I shows the measures of central tendency calculated:
mean (χ̄) and median (x̃), and the measures of dispersion:
range, standard deviation (s) and inter-quartile range (IQR)
for both kind of system calls, the ones included in the Bionic
library (referenced with subscript b, e.g., χ̄b) and the ones
not included (referenced with subscript nb, e.g., χ̄nb).

We identified that emulator data included just 95 system
calls out of the 212 syscalls defined in the Bionic library,
meaning that the remaining system calls were not issued.
On the other side, we captured only 71 different system calls
from the real device acquired data. As can be observed on
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TABLE I
DESCRIPTIVE STATISTICS ON ACQUIRED DATA

Real Device Emulator
Benign Malware Benign Malware

χ̄b 12993 11610 12601 12010
sb 30357 29496 15899 19853

range [36, 289715] [368, 265746] [1121, 106076] [28, 101867]
x̃b 6213 4033 7561 4343

IQRb 9245 5300 9632 6174

χ̄nb 1469 1367 0 1
snb 3641 3575 1 2
range [7, 34281] [24, 33032] [0, 11] [0, 11]
x̃nb 618 410 0 0

IQRnb 951 532 0 0

Table I, the descriptive statistics show differences on most of
the statistics computed among the devices. More specifically,
applications show more dispersion of the data in the real
device than in the emulated device, as can be confirmed
by the wider range and greater standard deviation on real
device data. Furthermore, in the emulated device, almost all
the system calls issued are found in the Bionic library while
in the real device there are much more system calls that do
not belong to this specific library. These facts suggest that
the behavior of the same applications on real and emulated
devices is different.

After this step, the data was processed, thus being nor-
malized for further use in the machine learning models. As
the amount of system calls issued by each application could
differ for the same collection time (1 minute), the acquired
data was normalized using the maximum number of system
calls issued by the specific application, thus each attribute
value reflects the proportion of each feature among the total
amount of system calls issued by the application (logically,
the sum of all proportions is equal to 1, reflecting the total
amount of system calls issued by the application). It is worth
mentioning that he collection time, 1 minute, was established
based on our experiments as the most relevant to understand
the discriminatory power of the features, thus selected as
the optimal discriminatory time-frame. Due to the space
limitation, further information is not provided in this paper.

As the outcome of this step, two data sets were created:
real data set and emulator data set. Each data set contains
exactly the same features (212) and exactly the same number
of instances (220): the same 110 benign and the same 110
malware applications. The differences rely on the features’
values obtained from real device or emulator for each specific
application.

B. Feature Correlation

Pearson’s correlation coefficient (ρ) was applied to the
normalized data sets. Pearson’s ρ is a statistical criterion that
quantifies the linear relationship between pairs of variables,
ranging from [-1, 1]. Extreme values show perfect correla-
tions (-1 for negative and +1 for positive) while a value of 0
means that no linear correlation exists between the assessed
variables. In order to analyze the correlation of system calls
for each of the data sets, Pearson’s ρ was computed for all the
212 with the rest of variables in a pair-wise fashion. Figure
1 shows the features that at least had one strong correlation
with another feature, either positive or negative, |ρ| >= 0.80,

in the real device data set while Figure 2 provides the same
information for the emulator data. Graphically, the darker the
color, the greater the correlation.

Fig. 1. Strongly correlated system calls from real device data

Fig. 2. Strongly correlated system calls from emulator device data

As can be observed on Figure 1, 33 features were found
to have at least one strong correlation with another system
calls while this value reached 60 features in the case of the
emulated device, as shown in Figure 2. 30 features were
common in both feature sets. As can be observed when
comparing both figures, more features are correlated in the
case of emulated data, suggesting that the behavior in the
emulator tends to group features together, while in the real
device this grouping is less frequent. Recall that emulator and
real device used 95 and 71 different system calls respectively,
thus it can be deduced that emulated device tends to use more
system calls and in a grouped fashion (60 out of 95 features
showed at least one strong correlation) while the real device
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uses less system calls and in a less correlated manner (33
out of 71 features showed at least one strong correlation).

C. Feature Selection

Feature selection methods, which allow data dimension-
ality reduction, help to reduce the risk of overfitting and
improve model’s performance while reducing training time.
In this study, after the data were normalized, Fisher’s score
was used to select most discriminatory features. Fisher’s
score is a filter feature selection technique that allows to
rank features according to their discriminatory power among
the different data classes (in this case, malware or benign).
More specifically, Fisher’s score is a statistical criterion that
quantifies the ratio of the average inter-class separation to
the average intra-class separation, as defined by the formula:

F =

∑k
j=1 pj(µj − µ)

2

∑k
j=1 pjσ

2
j

where µ refers to the global mean of the data for the
individual feature; µj and σj , stand for the mean and
standard deviation of the data instances belonging to j class,
and pj is the fraction of instances that belong to j class.
Based on that, greater values of Fisher’s score suggest greater
discriminatory power of the feature among the classes.

TABLE II
FISHER’S SCORE RANKING ON BOTH DATA SETS

Real Emulator
System call F System call F
setsockopt 0.21 clock gettime 0.92
socketpair 0.20 setrlimit 0.23

sysinfo 0.20 connect 0.21
setrlimit 0.20 sysinfo 0.20

getpriority 0.17 ugetrlimit 0.18
sendmsg 0.13 sigaction 0.18

prctl 0.09 setpriority 0.16
clock gettime 0.07 getuid32 0.14
sched yield 0.04 readlinkat 0.14

read 0.04 socketpair 0.13

Fisher’s score ranking of the 10 best features for each
data set and their scores (F) are provided in Table II.
As can be observed in Table II, only 4 system calls are
common on both rankings (highlighted in grey). Considering
these best features, the minimum Fisher’s score value in the
emulator dataset is 0.13 which is considerably greater than
the minimum score in the real device data set, 0.04. Among
the common ones, clock gettime is so distinguished that it
has a very high discriminatory power in emulator data set
(0.92) but the value is considerably low in the real data set.
The closest feature to clock gettime, setrlimit, has a score,
0.23, which is quite low. To sum up these findings, the top 10
Fisher’s score values on real device are lower than the values
obtained for the emulator, suggesting that the emulator data
could be more distinguishable among classes.

D. Classifier models: single and cross data set approaches

Malware detection could be considered as a binary clas-
sification problem that can be tackled using the machine
learning approach to discriminate between malware and
benign applications. In this research, we trained and eval-
uated five different traditional supervised machine learning

models used for binary classification problems: k−Nearest
Neighbors (k-NN), Logistic Regression (LR), Support Vector
Machines (SVM), Decision Tree (DT) and Random Forest
(RF) algorithms.

Binary classification models were trained and validated
using two distinct approaches:

• Single data set approach: the same data set was used
for training and validation. Different sizes of feature
sets were used to build the models. Models were cross-
validated using 5-fold cross-validation.

• Cross data set approach: the models were trained with
one data set and validated using the other data set.
Different combinations of features were used to build
the models.

After that, the best overall classifier algorithm of the
previous task was used to handle a multi-class classification
problem (i.e. four-class classification). In this regard, the two
data sets were merged, the labels were changed to distinguish
between application type coming from different sources (real
or emulated). A four-class classification problem was built
in order to discriminate the four possible options: real de-
vice malware, real device benign, emulated device malware
and emulated device real application. The purpose of this
experimental setup was to test whether a machine learning
model could be able to discriminate between malware from
benign while also identifying the data source. If so, it could
be argued that the behavior of the same application on each
device is different enough to allow the machine learning
algorithm to discriminate them as if they really were two
different applications. If that were the case, such learning
models could be utilized in the situations where the data
source is known at the training stage but unknown at testing
stage, which might help to avoid misclassifications due to
the fact of mixing data from different sources.

The performance metrics of all models built and tested are
reported. They are described as follows:

• Accuracy: ratio of correctly classified test instances
among all test instances.

• Precision: fraction of positive (malware) instances cor-
rectly classified among all the positive classified in-
stances.

• Recall: fraction of positive (malware) instances cor-
rectly classified among all the real positive instances.

IV. RESULTS AND DISCUSSION

A. Binary classification

Machine learning classification models were built and 5-
fold cross-validated. The library used to build all the models
was Python’s scikit learn library. As the purpose of this re-
search was not to reach an optimal classifier but to highlight
any differences between different real and emulated Android
devices, the hyper-parameters used for all the classifiers were
the default values provided by the library.
k-Nearest Neighbors, Support Vector Machines, Logistic

Regression, Decision Tree and Random Forest models were
trained and tested with same source data (either real or
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emulator) and different features (either all features or best 1,
5, 10 features according each data set Fisher’s score ranking).
Accuracy, precision and recall performance metrics for each
model are provided in Table III. As can be observed in

TABLE III
PERFORMANCE METRICS OF SINGLE SOURCE ML MODELS

k-Nearest Neighbors
Real Emulator

All 1 5 10 All 1 5 10
Accuracy 0.7727 0.5272 0.5136 0.7545 0.8727 0.8090 0.8090 0.8272
Precision 0.7807 0.5158 0.5075 0.7599 0.8654 0.8258 0.8258 0.8385

Recall 0.7636 0.9272 0.8818 0.7454 0.8909 0.8 0.8 0.8363
Support Vector Machines

Real Emulator
All 1 5 10 All 1 5 10

Accuracy 0.6227 0.6000 0.6181 0.6 0.8227 0.7863 0.7818 0.8045
Precision 0.6823 1.0 1.0 0.7104 0.9044 0.9178 0.9125 0.9185

Recall 0.3909 0.2000 0.2363 0.3636 0.7181 0.6272 0.6181 0.6636
Logistic Regression

Real Emulator
All 1 5 10 All 1 5 10

Accuracy 0.7090 0.6681 0.6590 0.6590 0.8227 0.8318 0.8318 0.8363
Precision 0.7386 0.7654 0.7394 0.6725 0.9044 0.9113 0.9113 0.9119

Recall 0.6636 0.4818 0.4909 0.6272 0.7181 0.7363 0.7363 0.7454
Decision Tree

Real Emulator
All 1 5 10 All 1 5 10

Accuracy 0.7818 0.6636 0.6545 0.7545 0.8227 0.7909 0.7727 0.8227
Precision 0.8063 0.8580 0.8239 0.7539 0.8390 0.8005 0.7679 0.8189

Recall 0.7636 0.3909 0.3909 0.7545 0.8 0.8 0.8 0.8454
Random Forest

Real Emulator
All 1 5 10 All 1 5 10

Accuracy 0.8272 0.6636 0.6545 0.7590 0.8727 0.7863 0.7954 0.8454
Precision 0.8420 0.8580 0.8391 0.8053 0.9358 0.8138 0.7981 0.8616

Recall 0.8 0.3818 0.3909 0.7 0.8 0.7636 0.7999 0.8363

Table III, the models built and tested based on emulator
data show better overall performances than the ones built
and tested using real device data. This fact goes in line with
the greater Fisher’s score values obtained in the previous
steps, suggesting that separability of data points among
labels on emulator is greater than in real device. Random
Forest algorithm outperformed the other classifiers in most
of the experiments, be it real device or emulator. Based
on that, Random Forest was used to build cross-source
data set models. These models are featured to be models
which are built (trained) using data from one data set and
are tested with data belonging to the other data set. The
number of estimators for the Random Forest algorithm was
established to 100 (i.e., scikit learn’s default value). Different
combinations of the best features were selected to build
the models, belonging to one data set or the other, as it is
specified in Table IV where, for the sake of easy comparison,
only the accuracy of each model is reported.

According to Table IV, when the model is trained with
real data and using at least 10 features, the detection of
emulator data is better than detection of real data, which
should be explained by the presence of clock gettime feature
in the feature set, the highest ranked feature in the emulator
data set. In any other case, training with real data, the models
show better performance detecting real data. When the model
is trained with emulator data, this pattern is also present and
it can be observed that, in general, emulator data is better
detected than real data using any feature from the feature set
selected by Fisher’s score criterion for this data set, even with
just 1 feature the model achieves 78.63% accuracy. Based on
that, it can be argued that, for the same samples, emulator
based acquired data provide better detection patterns and
capabilities than real device acquired data.

TABLE IV
ACCURACY OF CROSS-DATA SET CLASSIFICATION MODELS

Test Data
Features Real Emulator

Tr
ai

n
D

at
a

Real

All 0.8272 0.8795
Best Real 1 0.6636 0.5045
Best Real 5 0.6545 0.6340
Best Real 10 0.7590 0.8659
Best Emu 1 0.6045 0.4249
Best Emu 5 0.6954 0.6409

Best Emu 10 0.7924 0.8181

Emulator

All 0.7931 0.8727
Best Real 1 0.6045 0.4568
Best Real 5 0.6909 0.6727
Best Real 10 0.7613 0.8636
Best Emu 1 0.6022 0.7863
Best Emu 5 0.6613 0.7954

Best Emu 10 0.6636 0.8454

B. Multi-class classification

The differences highlighted in the previous paragraphs
suggested that it might be possible to train a classifier
able to discriminate between the four possible labels: legiti-
mate/malware from real device and legitimate/malware from
emulator. In order to build that model, the two binary class
data sets were merged to build a single four-class Random
Forest classifier. Feature selection was performed as in the
previous steps for the merged data set, results are shown in
Table V. The classifier performance summary using different
number of features and 5-fold cross-validations is provided
in Table VI. Macro-averaged metrics are retrieved as the test
data distribution is not imbalanced towards any of the classes.
Figure 3 shows an example of a confusion matrix extracted
from the tested model when all features are used on training
and testing stages. As can be seen in Table V, the most
discriminatory system call among these four labels (openat)
was not found in none of the individuals data sets rankings, a
fact that emphasizes the difference between each of the four
labels. According to Table VI, a model using all features is
capable of discriminate accurately 86% of the data points,
while with just 10 features, 81.59% . The confusion matrix in
Figure 3 confirms that the model, even not optimized (using
default parameters), can successfully discriminate between
data point sources showing more accurately results for the
emulator data than the real device data. This fact emphasizes
the possibility of building a classifier model able to predict
the type and source of an application.

TABLE V
TOP 10 - FISHER’S SCORE RANKING OF MERGED DATA SET

System call F
openat 0.95

clock gettime 0.76
readlinkat 0.56
fstatat64 0.49

epoll pwait 0.49
setsockopt 0.42
ugetrlimit 0.41
faccessat 0.34
mkdirat 0.25

socketpair 0.24

V. CONCLUSIONS AND FUTURE WORK

Machine learning based models which are developed for
mobile malware detection use either emulator or real de-
vice as a data source when they address the issue from
a dynamic analysis perspective. Emulators have been more
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TABLE VI
PERFORMANCE OF MULTI-CLASS RANDOM FOREST MODEL

Features
All 1 3 5 10

Accuracy 0.8613 0.5272 0.7409 0.7568 0.8159
Precision 0.8645 0.4073 0.7452 0.7630 0.8241

Recall 0.8613 0.5272 0.7409 0.7568 0.8159

Fig. 3. Normalized confusion matrix

favored during the data collection process as they can be
readily scaled to run various detection tasks by using less
computational resources. However, this choice assumes that
emulators and real devices are indistinguishable in terms of
produced data and thus model performance. Our experiments
suggest that there is an important difference in the behavioral
aspect of applications running in real or emulated devices.
These differences are emphasized by training a classifier that
allows to discriminate among the same data points collected
from different sources. These differences can hinder the
capabilities of a classifier trained on one source of data
to detect data coming from another source. In this regard,
we have shown that a four-class classification model can
be constructed to establish the source of the data with
notable accuracy. The causation behind the differences of
behavior evidenced by this study remains unclear and will
be addressed in our future work.
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Abstract—Dynamic features are frequently used in the machine
learning based approaches to detect malicious applications on
Android devices. These features are constructed by collecting
the system calls observed during a certain period of time. In
spite of the popularity of this approach, very little attention has
been paid to the analysis of the length of the collection time-
frame and its impact on the detection performance of induced
learning models, which constitutes the scope of this research.
Such analysis helps to understand the accuracy and performance
trade-off in data collection efforts taking place at the various
stages of the machine learning workflow. Our time-frame analysis
also addresses different data collection environments, emulator
and real device, and the variations in detection capabilities in
the case of detecting recent or older malware. System calls of
330 benign and malicious applications, collected on different time
periods, are monitored and logged for each minute-long interval
for a total of fifteen minutes. First, distribution of the system calls
is analysed. After, the discriminatory power of each system call
is evaluated cumulatively for each minute-long interval. Fisher’s
score is used to assess the discriminatory power of each feature.
It is revealed that the system calls observed during the first
minute possess the highest discriminatory power, whereas the
discriminatory power of the system calls observed on greater
time-frames is lower. Finally, this finding is tested by training
and evaluating traditional machine learning classifiers.

Index Terms—system calls, mobile malware, machine learning,
dynamic behavior, malware detection, time analysis

I. INTRODUCTION

Mobile malware poses a real threat to mobile devices’ users,
which has evolved in scope and complexity of the attacks
[1] [2]. Cyber attackers have directed the majority of their
efforts to compromise Android OS, the widely-used open-
source mobile operating system [3], locating its users as the
main targets of their attacks [4].

Machine learning algorithms have been tested, using several
approaches, to overcome the main weaknesses and limitations
of signature-based antivirus detection in the mobile malware
landscape [5] with remarkable success [6]. In this regard,
static and dynamic features of Android applications have been
used to create learning models to detect mobile malware with
promising results [7]. Static features are extracted directly
from the application’s source code without needing to execute
it while dynamic features are acquired when the application
is running on an Android device, either real or emulated
[8]. Whereas static features (e.g. permissions or API calls)
are usually collected in its whole at once and rarely change
on different collections from the same application, dynamic

features (e.g. system calls or network traffic) are prone to
changes and increase in volume depending on other variables
such as the collection time and user-interaction on different
collections on the same application. As machine learning
algorithms heavily rely on data quantity and data quality, the
time variable appears to be of remarkable importance in the
case of the usage of dynamic features, as it may affect to
quality of the data when increasing data quantity (e.g. adding
noise or irrelevant data) which may directly cause a remarkable
impact on machine learning algorithm’s detection ratio.

The main objective of this research is to elucidate the impact
of the collection time on data quality, and more specifically,
whether it exists a specific time-frame that may be capable of
providing optimal accuracy performance when using system
calls data to induce learning models (i.e., whether more system
calls data encompassing longer time-frame provide better
detection ratio). We also analyse the optimal data collection
time-frame for detecting malware belonging to different years.
As Android is the most widely used mobile operating system,
we address malware detection in that environment.

In order to achieve our research purpose, first, we analyse
the distribution of system calls per application in each minute.
Then, we conduct a discriminatory power analysis of the data
collected in different time-frames by using Fisher’s score.
Finally, we induce learning models to evaluate the accuracy
performance with varying feature sets.

Our contribution is unique as our time-frame analysis is
more comprehensive in terms of covering different data collec-
tion environments (i.e., emulation and real device) and testing
with new and old malware.

This paper is organized as follows: Section II provides a
literature review and background information while Section III
explains the methodology followed in this research. Section
IV shows the experimental results obtained and Section V
concludes the study and states the future work.

II. BACKGROUND INFORMATION
& LITERATURE REVIEW

Machine learning based malware detection using dynamic
features requires the need of running the applications for
a certain amount of time and/or user-interaction in order
to acquire the data. Generally, longer data collection times
provide more data, which may usually be related to better
outcomes when using machine learning models. However,
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the amount of time can also provide more noisy data thus
lowering the data quality that could harm the performance of
the learning models. The existent research literature does not
show any particular trend or common practice regarding the
collection time, although system calls are the most widely-used
feature when dynamic features are used to induce learning
models [7].

Some studies use pseudo-random or human user-interaction
as a method for the collection of the application behavior
data, being the Monkey [9] the most used tool to generate
the pseudo-random user-interactions or events. The Monkey
uses by default no delay between the events, generating them
as rapidly as possible, thus there is no guarantee about that
the data obtained can belong to the same time-frame, unless
the same seed is used for each application to generate the
same pseudo-random chain of events, like in [10] where the
tests included 1, 500, 1000, 2000 and 5000 pseudo-random
injected events. In [11], [12] and [13], 1000 pseudo-random
events were generated to obtain the behavior of the application,
500 pseudo-random events in [14] while in [15], two different
settings were used to generate and extract system call data:
2500 pseudo-random interactions and 5 minutes human inter-
actions. In [16], human user-interactions were used, ranging
from 6 to 60 interactions to detect both self-written malware
and real malware. A different approach was used in [17],
where a custom behavioral testing tool, called Component
Traversal, was used to execute all the activities and services
defined by each application. The average execution time was
41 seconds. There is also some of the literature using this
approach does not provide any information about the number
of events injected like [18], [19] or the number of human
events performed [20].

The time comparison issues that may arise from the un-
controlled pseudo-random generated events can be overcome
with the usage of time-limited collections. In this regard, in
[21], benign and malware mobile games system call data was
collected for 30 and 60 seconds. The shorter time-frame did
not provide any discriminatory differences between applica-
tions while the longer provided discriminatory patterns among
classes that could be used to detect and classify mobile gaming
applications. Different data sets were run for 10 seconds
per application in [22] and 20 seconds in [23]. In [24], 44
applications were used by a human for 10 min each whereas in
[25] the Monkey was used to mimic human interaction in a 10
min limited collection. Also some studies using this approach
do not provide any information about the acquisition time like
[26] and [27].

Finally, a third approach of the research dealt directly
with the acquisition of a specific number of system calls
or sequences. In this regard, [28] evaluated the impact of
different lengths of system calls on application’s boot up (i.e.,
500, 1000, 2000, 2500 system call sequences) while [29]
used a fixed amount of system calls per application (i.e, first
2000 system calls) to perform malware detection on different
malware data sets.

III. METHODOLOGY

A. Data set

The data set used in the experimental set-up is composed
of 330 Android x86 applications distributed as follows:

• 110 random benign applications collected from APKMir-
ror repository between 2017 and 2018. Checked as
malware-free using VirusTotal malware detection engine.
Named indistinctly as ”legitimate dataset” or ”benign
dataset” in this research.

• 110 randomly chosen malware applications from Virus-
Total academic malware data set [30], belonging to the
time frame between 2017 and 2018. Named as ”new
malware” in this research.

• 110 randomly selected malware applications from the
Drebin malware dataset [31], dating from 2010 to 2012.
Named as ”old malware” in this research.

As can be noticed, two distinct malware data sets were
selected from different time-frames but only one benign data
set was selected with more recent applications. The rationale
behind this selection is that in order to analyse the time-
evolution we have to analyze all kinds of applications we can
encounter in the wild which encompasses old and new (recent)
malware and just recent applications. This is coherent with the
mobile malware detection practices as mobile phones typically
suffer from back-compatibility issues, so that older legitimate
applications do not usually work with the recent OS, due to
changes in application requirements and constant changes in
hardware and software from new OS developments. Neverthe-
less, malware detection systems usually include signatures of
all malware samples, including old and new ones.

B. Data acquisition

This research focuses on the extraction and usage of dy-
namic features, i.e. system calls, to perform mobile malware
detection on the Android OS environment. Over 200 distinct
system calls are defined in the Bionic x86 library, the standard
C library for Android, which are monitored, extracted and
logged for this research.

All the applications are installed, executed, monitored,
logged and uninstalled on Android devices, both in a real de-
vice (Samsung Galaxy A6) and an emulated device (Samsung
Galaxy S8 emulated using GenyMotion emulation software).
The rationale behind using two different types of devices is
that the existing literature use them interchangeably, using
emulators as a cheap and scalable approach to real devices,
thus preferred in some researches [32] and taken into account
in this experimental set-up. Android 8.0, the most deployed
version of the Android OS [33], is used as the operating
system running on both devices, with identical configuration.
Each application is executed and allowed to run without any
user interaction for 15 minutes. Application’s behavioral data,
i.e. system calls issued by the application’s main process, are
logged using strace tool. Consequently, fixed-collection time
with no user-interaction is analyzed in this experimental setup
while any kind of user-interaction, either real or emulated, is
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out of the scope of this present research and will be part of
the future work.

The outcome of this step is a log file for each application
and for each device (real and emulated), which contains all the
system calls issued by each specific application for the whole
acquisition time, established in 15 minutes.

C. Data processing

Applications’ logged data is analysed from a time-frame
evolution perspective. This is performed in a two-fold
approach: time-specific system call frequency analysis and
time-cumulative discriminatory power perspective. They are
described as follows:

1) Time-specific system call frequency analysis: In this
step, the number of system calls issued by each application
for each single running minute is analyzed using histograms.
So, as the outcome of this step, a histogram is obtained for
each application logged data, providing an overview of the
absolute frequency (i.e. count) of the system calls issued by
the application over time, on a minute-long basis analysis.

2) Time-cumulative discriminatory power feature analysis:
In this step, Fisher’s score (F), which is a statistical criterion
that allows to assess the discriminatory power of numeric
features among the different classes (i.e. malware or legitimate
application), is used to evaluate the discriminatory power evo-
lution of each feature (i.e. each system call) over time among
the classes, in a time-cumulative basis. More specifically,
Fisher’s score quantifies the ratio of the average inter-class
separation to the average intra-class separation, providing a
measure of the discriminatory power of the feature. Greater
magnitudes relate with greater discriminatory powers. Fisher’s
score is calculated as follows for each feature:

F =

∑k
j=1 pj(μj − μ)

2

∑k
j=1 pjσ2

j

where μ refers to the global mean of the data on the
particular feature; μj and σj , relate to the mean and standard
deviation of the data points belonging to class j for the specific
feature respectively, and pj refers to the proportion of data
points belonging to class j. So, in this research, as the outcome
of this step, for each feature (system call) we obtain a line-
graph showing the discriminatory power evolution for each
minute which allows us to assess the discriminatory power
evolution of each feature over time.

D. Machine Learning models validation

From the data processed on the previous step, machine
learning binary classification models are built and validated.
As the main purpose of the machine learning models induced
is to evaluate empirically the previous findings and the overall
performance and trends of the classifiers, we use widely
used traditional machine learning algorithms for classification
issues to induce the malware classification models. In relation

to that, we do not perform any hyper-parameter optimization
of the machine learning algorithms, keeping the default con-
figurations that Python’s scikit learn library provides. The
models built aim to provide empirical support to the results
obtained on previous steps, thus providing a general overview
of the classifiers’ performance. In this regard, there is room
for improvement, so that the results can be enhanced by
optimizing the models’ hyper-parameters, but is out of the
scope of this present research.

Three widely used machine learning algorithms for classi-
fication problems are evaluated: Random Forest, k−Nearest
Neighbors and Support Vector Machines. All models are
validated using 5-fold cross-validation, which aims to provide
a better estimation of the predictive model’s performance
against unseen data (i.e., data that has not been used to build
the model) than the regular fixed train-test split when the data
set used is small. The performance metric reported is accuracy,
a comprehensive metric that stands for the ratio of correctly
classified test instances among all the test instances. Accuracy
range varies from 0 to 1. Greater accuracy score imply greater
classification performance.

IV. RESULTS

A. Time-specific system call frequency analysis

The absolute frequency of system calls is used in this step to
construct application-wise histograms, as shown as an example
in Figure 1. For the sake of interpretability, histogram bars
are slightly spaced resembling a bar graph. The horizontal
axis is split and numbered from 1 to 15, each corresponding
to a minute fraction while the vertical axis accounts for the
absolute frequency of system calls issued for the application
in each time slot. Figure 1 shows an example of an application
that provided data for each minute of the total collection time.
More concretely, it corresponds to a new malware data set
sample (i.e., apk’s package name: air.com.bitrhymes.bingo)
that issued approximately 10000 system calls in the first
minute and a relatively constant amount of slightly less
than 4000 each subsequent minute until the end of the data
acquisition process. As can be observed, the application issued
system calls even when no interaction was performed along
the 15 minutes run-time.

Contrarily, histograms in Figure 2 and 3 are provided as
examples of applications that did not provide data for each
minute of the whole 15-minute run-time. More specifically,
Figure 2 shows an example of an old malware application
(i.e., apk’s package name: anohito.ha.ima) that issued system
calls only for the first minute, over 7500 system calls, while
Figure 3 provides an example of a legitimate application (i.e.,
apk’s package name: com.ms.office365admin) which issued a
vast amount of system calls only for the first three minutes
with an irregular pattern, issuing more system calls on the
second minute than in the first and stopping on the third. It
can be argued that these applications stopped issuing system
calls before the ending of the acquisition time because either
it finished its boot-up before the run-time timeout established
on 15 minutes, reaching an idle state, or was blocked waiting

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 23,2022 at 12:53:59 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. System call histogram of a new malware application sample

for some input, expecting some user-interaction or data that
never happened. Examples on Figure 1, Figure 2 and Figure
3 are provided as an example of histograms obtained from
logged data analysis, but they are not representative of any
class. Such an examples of histograms can be found on all the
data sets, either malware or benign.

Fig. 2. System call histogram of an old malware application sample

A summary of the results obtained is provided in Table
I and Table II, which provide the frequency distribution of
applications (i.e., relative frequency) in relation to the maxi-
mum time they provided data on run-time, both on an emulator
and real device. Relative frequency provides information about
the occurrence of an outcome (e.g., providing data only for
one minute) among all the possible outcomes (i.e., the 15
time-frames splits on a minute basis). Table I provides an
overview and grouped data summary extracted from Figure
4 while Table II provides the same information from Figure
5. In both Figure 4 and Figure 5, the top graph (green data)
shows information about legitimate applications (referenced
as L in the corresponding tables), the center graph (blue data)
shows information about old malware applications (referenced
as O in the tables) while the bottom graph (red data) shows

Fig. 3. System call histogram of a legitimate application sample

information about new malware applications (referenced as N
in the tables) . As can be observed, there is a great number
of applications that provided data only for one minute and
got stuck while many others provided information for the
whole acquisition time. Those time-frames are the ones with
consistently higher frequency along all data sets, even when
they only encompass one minute data and not four minute
data like the other groups. The time-frame of 6-10 minutes is
consistently less frequent. These general patterns and facts are
found on all classes of applications and not specifically linked
to malware or legitimate applications.

Data distribution was also analysed regarding whether the
application issued the maximum number of system calls in
the first minute split (called 1 min spike in this research
and referenced as such in the corresponding tables) or in
any of the subsequent time-slots. In this regard, Table I and
Table II reference on their last row the relative frequency of
applications that show the 1 min spike on each data set. As can
be seen, on all data sets the vast majority of applications (at
least 88% in the worse case) issue the maximum number of
system calls in the first minute, issuing less in the subsequent
minutes, or nothing at all. So, based on the aforementioned,
the first minute of application’s boot-up appears to be the
most productive in terms of system calls issuing, consistently,
among all the different data sets and especially when a real
device is used.

TABLE I
SYSTEM CALLS STATISTICS ON EMULATOR

Observed Fact Frequency distribution
Leg Old New

1 min data 0.2631 0.2536 0.4545
2 to 5 min data 0.1929 0.1594 0.1188
6 to 10 min data 0.0614 0.0869 0.0769

11 to 14 min data 0.0350 0.1594 0.0209
15 min data 0.4474 0.3405 0.3286

1st min spike 0.9035 0.8985 0.8811
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TABLE II
SYSTEM CALLS STATISTICS ON REAL DEVICE

Observed Fact Frequency distribution
Leg Old New

1 min data 0.4166 0.3550 0.4685
2 to 5 min data 0.3166 0.1739 0.1678

6 to 10 min data 0.0166 0.0507 0.0349
11 to 14 min data 0.0083 0.0217 0.0349

15 min data 0.2416 0.3913 0.2937
1st min spike 1.0 0.9855 0.9370

Fig. 4. Emulator data set frequency distribution

Fig. 5. Real device data set frequency distribution

B. Time-cumulative discriminatory power feature analysis

In this step, the single benign data set is merged with the
two malware data sets, providing two different mixed benign-
malware data sets. These new mixed data sets are named L/O
(when benign data is mixed with old malware data set) and
L/N (when benign data is mixed with new malware data) for

each of the devices used (real or emulated). For each possible
combination device and data set (i.e. L/O data on real device,
L/N on real device, L/O on emulated device and L/N on
emulated device) Fisher’s score is calculated in a cumulative
manner for each minute (e.g., minute 3 data contains all the
data up to that minute).

Fisher’s score is used in machine learning applications as a
feature selection method as it measures the separability of the
data among classes, allowing to select the best features to train
classifiers. In this regard, the greater the value, the greater the
separability of the data, implying that the data is less mixed
and more clustered among labels.

As a result of this step, line graphs are obtained for each
minute on each of the four possible combinations, showing the
evolution of data separability regarding each possible system
call over time, as shown in the example of Figure 6. The
horizontal axis is split and numbered from 1 to 15, each
corresponding to a minute fraction while the vertical axis
accounts for the Fisher’s score value of the specific feature
in each time-slot. In this graph, dotted lines represent the
evolution of values using L/N data set, thus indicating in
the legend with the letter R the results corresponding to Real
device and with the letter E to the emulated device. Solid lines
represent the evolution of values using L/O data set, indicating
also the device source, whether R or E. As a result, line graphs
are obtained for each of the system calls showing the trend or
evolution over time in each of the four cases.

Figure 6, shows the line graph of the feature (i.e.
clock gettime) with the greatest Fisher’s score value, obtained
using L/O data set run on emulator. In this case, Fisher’s
score value is relatively stable along all the running period.
In the other three cases, the greatest Fisher’s score value is
reached in the first minute and lowering as time passes. This
latter trend is confirmed on the line graphs shown in Figure 7,
which provides the time evolution of the features that achieved
the greatest Fisher’s scores among all the evaluations. Only
19 features from over 200 defined in the Bionic x86 library
provided a Fisher’s score value over 0.10 in at least one of the
possible data set/device cases.

As can be spotted in Figure 7, the maximum value of
Fisher’s score on all features and in almost all cases is achieved
in the first minute, diminishing its initial value over time. This
fact suggests that the separability of data is greater in the first
minute, being the best source of data to perform classification
and malware detection. As time passes, the data is becoming
more mixed, thus less suitable to perform proper classification.
It can also be noticed from Figure 7 that data belonging to
emulators are, in general across the features, more clearly
separable than data obtained from real devices, providing
different results using the same data set, as suggested in [32].
As can be noticed on Figure 6 and Figure 7, L/O emulator
data is the case where there exist more prevalence of the
diminishing discriminatory trend on features among all the
possible cases.
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Fig. 6. clock gettime syscall Fisher’s score time evolution

C. Machine Learning models validation

Machine learning models are induced and 5-fold cross
validated. Random Forest, Support Vector Machines (SVM)
and k-Nearest Neighbors algorithms are tested and evaluated,
providing similar trends and results. For the sake of brevity,
only the model that provided the best accuracy performance,
outperforming the other two, is reported. In this regard,
Random Forest algorithm, which is a decision tree-based
ensemble method, provides the best performance and its results
are provided in Figure 8. The hyper-parameters used are the
default ones used by the library implementation, so that the
number of estimators parameter was set to 100.

The three graphs presented in Figure 8, show the classifier’s
performance on the four possible cases and its accuracy evolu-
tion using data from different time frames. More specifically,
the left-most graph on Figure 8 shows the models built with
data from the 18 features provided in Figure 7. In this graph,
it can be easily observed the decrease in accuracy for L/O data
(both in emulator and real device) and a more irregular pattern
with lower general accuracy value on the models built with
L/N data. The center graph in Figure 8 provides the results
when the models are induced using the previous 18 features
plus clock gettime, the one that provided the greatest overall
Fisher’s score. It can be observed that the same decrease
pattern appears as in the previous graph when using Real L/O
data and Emulator L/O stays more stable while the overall
accuracy on emulator and Real L/N data is lower. This fact
confirms the pattern highlighted in Figure 6, where emulator
data on both data sets provided great Fisher’s score values,
thus related to an increased data separability and improved
accuracy value of the classifier. On the other side, the impact
of clock gettime in accuracy increase is slightly better in each
L/N data. The right-most graph on Figure 8 shows the models
induced using all the features (over 200), with similar trends
and slightly improved accuracy values. However, the figures
between all features and 19 features are so close that the latter

Fig. 7. Best Fisher’s score syscalls time evolution
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can be a viable option considering the shortcomings of using
all features in consuming computational resources.

As can be stated from the observation of the graphs provided
in Figure 8, in general, the accuracy obtained using one-
minute data provides better or similar accuracy values when
compared to including more data in a longer time duration.
In this regard, we can observe that in some cases (specially
when using old malware), there is a decline in the accuracy
performance over time. In other cases, there is no prominent
increase or decrease in the accuracy metric. Based on the
aforementioned observations, we conclude that, in this case,
covering longer time interval than 1 minute does not constitute
a more convenient option as it does not significantly improve
the classifier’s performance, when using accuracy as perfor-
mance metric. However, it is important to note that 1 minute
is definitely a better option for the data including old malware
when feature selection is applied.

Fig. 8. Random Forest models’ accuracy

D. Threats to validity

The results of this study highlight differences in the discrim-
inatory power of features along time. The main weaknesses
for the generalization of these findings are the limited data
set size (110 benign, 110 old malware and 110 new malware
samples) and the limited number of emulator/real devices
tested (two devices, one emulator and one real device). In
this regard, a bigger data set and the additional testing in
more emulators/real devices could help to overcome this
limitations, in order elucidate whether these differences are
only between the chosen pair of emulator/real device or a
more general issue that should be take into consideration in the
behavioral machine learning-based mobile malware detection.
These threats will be tackled deeply within our future work.

V. CONCLUSIONS
& FUTURE WORK

System calls are one of the most widely used features
when dealing with dynamic analysis in machine learning based

mobile malware detection. As the acquisition of a dynamic
features, including system calls, require the execution the
application, different approaches have been used to collect
them, mainly differing in the collection time and the usage
of human or software-based user-interaction. This research
focused on the analysis of the impact of the collection time
on the separability of the data in a learning model and its
time-based evolution, when no user interaction is performed.
Applications were just executed and let run freely for the
whole acquisition time (15 minutes).

The usage of Fisher’s score in conjunction with frequency
distribution analysis has demonstrated that most applications
perform in the first minute the maximum number of sys-
tem calls (the so-called data spike in this research) and
has demonstrated that, specially in some cases (e.g., when
emulator is used and L/O data set), short-time data collection
(i.e. 1 minute) may provide greater data separability thus,
consequently, leading to greater accuracy performance metrics
on mobile malware classifiers than long-time data collection
(e.g. 15 minutes). Machine learning classifiers may accurately
be optimized for such purposes with this input data achieving
great accuracy performances. In this regard, the collection of
more data, during more time, may not lead to provide better
data. Thus, in this case, data quality, in the form of greater
separability, might be jeopardized by noisy data when the
collection lasts for a longer time.

The underlying causation of the existing differences
highlighted in this research between the data sets obtained
from the emulator and the real device remains unclear. In
this regard, the potential impact of the different environment
variables, such as kernel version and network connection
type, will be further investigated in order to obtain a deeper
understanding of the possible sources that may explain the
behavioral deviations found in this study. The explanation
and investigation of these behavioral divergences in addition
to the increase of the data set used and their test with
additional emulators and real devices will constitute part of
our future work. Finally, as already stated in Section III.B,
the influence of user-interaction will also be explored in later
stages of our future work, thus providing a complementary
perspective to the findings of this present research, where no
user-interaction was performed during the experimental set-up.
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a b s t r a c t 

Android malware evolution has been neglected by the available data sets, thus providing 

a static snapshot of a non-stationary phenomenon. The impact of the time variable has 

not had the deserved attention by the Android malware research, omitting its degenera- 

tive impact on the performance of machine learning-based classifiers (i.e., concept drift). 

Besides, the sources of dynamic data and their particularities have been overlooked (i.e., 

real devices and emulators). Critical factors to take into account when aiming to build more 

effective, robust, and long-lasting Android malware detection systems. In this research, dif- 

ferent sources of benign and malware data are merged, generating a data set encompassing 

a larger time frame and 489 static and dynamic features are collected. The particularities of 

the source of the dynamic features (i.e., system calls) are attended using an emulator and 

a real device, thus generating two equally featured sub-datasets. The main outcome of this 

research is a novel, labeled, and hybrid-featured Android dataset that provides timestamps 

for each data sample, covering all years of Android history, from 2008-2020, and considering 

the distinct dynamic data sources. The emulator data set is composed of 28,745 malicious 

apps from 209 malware families and 35,246 benign samples. The real device data set con- 

tains 41,382 malware, belonging to 240 malware families, and 36,755 benign apps. Made 

publicly available as KronoDroid , in a structured format, it is the largest hybrid-featured An- 

droid dataset and the only one providing timestamped data, considering dynamic sources’ 

particularities and including samples from over 209 Android malware families. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Android operating system (OS) has become the reference OS 
in the mobile platform ecosystem. Empowered by Google, the 
free and open-source OS has consistently dominated the mo- 
bile operating system market since 2012. From 2017, it has 
been shipped with over 70% of smartphones, showing no signs 
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(A. Guerra-Manzanares). 

of a decrease in the near future ( Statista, 2021a ). Over 99% 

of the mobile OS market share is covered when iOS devices 
are added, placing Apple’s proprietary OS as the major alter- 
native to Android OS ( Statista, 2021a ). The global dominance 
of Android OS and the wealth of data stored by smartphones 
make Android users an attractive target for cyber-attackers. 
After a massive outbreak in 2016, Android malware attacks 
have plateaued but still remain a constant and evolving threat 
for the end-users ( Chebyshev, 2019 ). New and more sophisti- 
cated malicious applications are found on a daily basis, evi- 
dencing the constant evolution of the phenomenon both in 

new malware trends (e.g., ransomware) and sophistication 

https://doi.org/10.1016/j.cose.2021.102399 
0167-4048/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
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( Microsoft 2020 ). In 2020, over 480,000 new Android malware 
samples were discovered monthly ( Statista 2021b ). However, 
these figures only reflect the detected malware, which could 

be considered as just the tip of the iceberg . Malware authors 
are always ahead in innovation, achieving sophistication lev- 
els that might let malware hide effectively, acting undetected 

( Broersma, 2020 ). 
But the situation might be even worse, as Android mal- 

ware can be and has been found anywhere, even in Google 
Play , affecting millions of users ( McGowan, 2020 ). Despite 
the remarkable efforts of Google and Android phone ven- 
dors to implement security mechanisms at software (e.g., 
Bouncer ( Oberheide and Miller, 2012 ) and Google Play Pro- 
tect ( Google 2021 )) and hardware levels (e.g., Samsung Knox 
( Samsung, 2021 )), malware authors have always found the 
way to circumvent them ( Cimpanu, 2019 ; Lakshmanan, 2020 ). 
Furthermore, traditional antivirus techniques (i.e., signa- 
ture/fingerprint) have been proved ineffective to detect zero- 
day or unknown malware in Android devices ( Fedler et al., 2013 ; 
Withwam, 2020 ). 

However, the war is not yet lost. The application of ma- 
chine learning techniques to Android malware detection has 
shown outstanding results, using a wide variety of app fea- 
tures ( Feizollah et al., 2015 ), even with zero-day, repackaged, 
and obfuscated malware ( Grace et al., 2012 ), overcoming the 
limitations of traditional detection methods ( Faruki et al., 
2013 ). Machine learning (ML) uses data properties or charac- 
teristics (i.e., features) to build effective systems that find sta- 
tistical patterns to solve the problem at hand (e.g., malware 
detection). The performance of a machine learning system 

is strictly related to data quantity, but more significantly to 
data quality ( Cortes et al., 1994 ; Sessions and Valtorta, 2006 ). 
Therefore, machine learning-based Android malware detec- 
tion systems largely depend on the quality of the data fea- 
tures to perform effectively and accurately. The Android mal- 
ware data feed into the machine learning algorithms are a 
critical element for the overall success, reliability, and gen- 
eralization capabilities of the ML-based malware detection 

system. 

1.1. Datasets for Android Malware Detection 

The phenomenon of malware detection in Android systems 
has been investigated since the early years of the popular OS, 
but with increased attention after the wide adoption of mobile 
networks, the ubiquity of smartphones, and the rise of mobile 
applications ( apps ). Roughly 3 million apps are available just 
in Google Play at the present time ( Google 2021 ), added and re- 
moved daily. With billions of downloads per year ( Iqbal, 2020 ), 
apps are the main attack vector to perpetrate attacks in An- 
droid devices and the critical component to build effective 
malware detection systems. Despite this fact and the avail- 
ability of a few newer Android data sets in the recent years, 
old malware data sets have monopolized the research. These 
datasets have been widely used as reference data to build ma- 
chine learning systems, even in recent studies. A fact that ne- 
glects malware evolution and its change over time and poses 
at severe doubt the generalization capabilities, reliability, and 

effectiveness of the models induced using old datasets to de- 
tect novel malware. 

The most popular datasets for Android malware research 

are summarized in Table 1 . For each dataset reported, the fol- 
lowing information is provided. 

• Name - denomination or acronym that uniquely identifies 
the dataset. 

• Composition - two non-negative integers separated by a 
slash symbol (”/”). The first value indicates the number 
of malware apps included in the data set and the second 

value the quantity of benign/legitimate apps if any. 
• Time-frame - reported time period where the apps com- 

posing the dataset were collected. 
• Access. - short for accessibility. It indicates whether the 

data set is publicly available. A 

√ 

indicates the dataset is 
available while X reports when it is not (i.e., project dis- 
continued). 

• APK - indicates whether the data set provides the exe- 
cutable files (i.e., .apk files). A 

√ 

indicates the dataset pro- 
vides the apk s while a X reports the negative case. 

• Features - indicates whether the data set provides col- 
lected features from the apps, in a structured format. A X 

reports no features are provided. When features are pro- 
vided the type is specified using a keyword: static , dynamic , 
or hybrid . More about this terminology in Section 2.2 . 

• Year - the year of publication of the data set’s research ar- 
ticle. 

• Ref. - short for references. Composed of a pair of refer- 
ences inside brackets. The first specifies the research ar- 
ticle where the data set was presented while the second 

refers to the data set’s website resource. 
• Citat. - short for citations. Provides the number of citations 

of the dataset’s reference article according to Google Scholar 
at the time of writing. It gives a rough measure of the usage 
of the data set for research. 

As shown in Table 1 , the vast majority of the research 

on Android malware has focused on MalGenome and Drebin 
datasets. When added together, they cover 91% of the total 
citations for the datasets included in Table 1 (i.e., 3,761 out 
of 4,134). A notable fact considering that most of the datasets 
were not published recently. However, the most recent sam- 
ples in these two popular datasets were collected in 2012, al- 
most a decade ago. A significant amount of time when techno- 
logical advances are considered, making them outdated or old 
in terms of malware evolution. Furthermore, their size is rela- 
tively small, especially in the case of MalGenome , composed 

of just 1,260 samples from 49 malware families and no le- 
gitimate samples. Drebin , collected in a similar time-frame, 
provides a more complete malware data set, composed of 
5,560 samples belonging to 179 malware families. Neverthe- 
less, Drebin may contain duplicated data ( Irolla and Dey, 2018 ), 
which makes the usable malware data set smaller and does not 
provide access to the legitimate apk s. Despite all these facts, 
both datasets have been widely used, even in recent studies, as 
the main source of malware data to build machine learning- 
based malware detection systems that aim to detect recent 
Android malware ( Wu et al., 2020 ; El Fiky, 2020 ). 

The third most referenced dataset, the Android Malware 
Dataset (AMD), is a larger and more recent dataset that spans 
a wider time-frame in the Android history but accounts for a 
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Table 1 – Most popular Android malware datasets. 

Name Composition Time-frame Access. APK Features Year Ref. Citat. 

MalGenome 1,260 / 0 2010-2011 X 

√ 

X 2013 ( Zhou and Jiang, 2012 , Zhou and 
Jiang, 2015 ) 

2282 

Drebin 5,560 / 123,453 2010-2012 
√ √ 

static 2014 ( Arp et al., 2014 , 
Braunschweig, 2020 ) 

1479 

CICAndroidBot 1,929 / 0 2010-2014 
√ √ 

X 2015 ( Kadir et al., 2015 , U. of New 

Brunswick 2020 ) 
58 

Kharon 20 / 0 2011-2015 
√ √ 

static 2016 ( Kiss et al., 2016 , Kiss et al., 2021 ) 25 
AMD 24,553 / 0 2010-2016 X 

√ 

X 2017 ( Wei et al., 2017 , ArgusLab 2020 ) 217 
CICAAGM2017 400 / 1500 2015-2016 

√ 

X dynamic 2018 ( Lashkari et al., 2017 , U. of New 

Brunswick 2020 ) 
37 

CICAndMal2017 426 / 5,065 2015-2017 
√ √ 

hybrid 2018 ( Lashkari et al., 2020 , U. of New 

Brunswick 2020 ) 
37 

CICInvesAndMal2019 2019 ( Taheri et al., 2019 , U. of New 

Brunswick 2020 ) 
19 

CICAndMal2020 200k / 200k N/A 

√ 

X static 2020 ( Rahali et al., 2020 , U. of New 

Brunswick 2020 ) 
- 

CICMalDroid2020 17,341 / 0 2017-2018 
√ √ 

hybrid 2020 ( Mahdavifar et al., 2020 , 
U. of New Brunswick 2020 ) 

- 

small fraction of the existing Android malware families. AMD 

is composed of 24,553 malware samples belonging to 71 mal- 
ware families and no benign samples. The Kharon dataset pro- 
vides advanced static analysis data for 20 samples of repre- 
sentative malware families. It is too small for machine learn- 
ing purposes, where data quantity matters. The rest of the 
datasets included in Table 1 are provided by the Canadian 

Institute of Cybersecurity (CIC). Some of the CIC datasets in- 
clude samples of other datasets, such as CICAndroidBot which 

is composed of MalGenome dataset plus additional Android 

botnet samples. With the exception of CICAndroidBot , the rest 
of the datasets provided by the CIC only include recent mal- 
ware at the time of the publication of the dataset and ex- 
cept CICAndMal2020 and CICMalDroid2020 , they are too small 
to provide complete coverage of the existing Android malware 
families. Although there is no time frame provided for CICAn- 
dMal2020 dataset, its size makes it a good option for ML-based 

malware detection systems. However, as the apk s are not pro- 
vided, the potential of this data set is limited to static feature- 
based machine learning detectors. 

The majority of the datasets in Table 1 are publicly avail- 
able or upon request and provide the original apk files, useful 
for further analysis and comparison. Nevertheless, at the time 
of writing this article, AMD and MalGenome are discontinued 

projects, making their data not accessible anymore in any for- 
mat. This fact restricts the options for old malware samples to 
Drebin dataset. 

As reported in Table 1 , the most frequently collected fea- 
tures are static , especially in the old datasets, while dynamic 
features are just provided in some more recent datasets. Static 
features are easier and faster to collect what makes them 

more appealing and suitable for large data sets, such as the CI- 
CAndMAl2020 dataset. The collection of dynamic features re- 
quires the usage of real devices or Android emulators, a deci- 
sion that may also have an impact on the quality and quantity 
of the collected data ( Guerra-Manzanares et al., 2019 ). 

As a result, based on the information contained in Table 1 , 
most of the datasets are considerably small, focused on static 

Table 2 – Android malware repositories. 

Repository Composition Date Ref. 

VirusTotal + 20,000 / 0 2014-2020 ( VirusTotal 2020 ) 
VirusShare + 40,000 / 0 2008-2020 ( VirusShare 2020 ) 
AndroZoo + 15 million? 2008-2020 ( Allix et al., 2016 , 

du Luxembourg, 2021 ) 
Contagio 
Mobile 

357 / 0 2011-2018 ( Parkour, 2019 ) 

features, and span a short time-frame, usually 1-2 years. Only 
the AMD dataset studied the malware evolution as a concept 
in a time-frame spanning 6-7 years. The rest of the data sets do 
not take the time effect into consideration, restricted to small 
time periods, thus neglecting the importance of changes and 

evolution in Android malware over time. Ignoring this fact can 

harm significantly the performance of malware detectors over 
time, as malware evolves the importance of features to dis- 
criminate them effectively using ML techniques may change, 
a phenomenon called concept drift . Furthermore, most of the 
detection methods published in recent years use old malware 
data sets to induce and test their solutions, which might dam- 
age the generalization capabilities of the proposed models to 
recent malware. 

The vast majority of the datasets provided in Table 1 pro- 
vide an obsolete (i.e., old) and partial (i.e., a small amount of 
data and just static analysis) depiction of the Android mal- 
ware phenomenon, insufficient to study the evolution of An- 
droid malware in general and malware families in particular. 
Although they remain as an important source of malware, es- 
pecially regarding old samples, all the datasets in Table 1 must 
be complemented with other datasets or sources of malware 
in order to get the largest, widest, and most complete picture 
of the Android malware history and evolution. For such pur- 
pose, Table. 2 provides accessible general malware reposito- 
ries that also contain Android malware samples. These repos- 
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itories are a remarkable source of malware that have already 
been used to complement and enrich existent datasets for re- 
search. Mainly designed as database services, they are growing 
repositories of malware samples. More specifically, VirusTotal 
and VirusShare are upon request malware repositories, Conta- 
gio is a discontinued but publicly available malware project 
and AndroZoo is a large repository of Android applications, but 
with unknown proportions of malware and benign apps. 

Lastly, as can be extracted from the summary provided in 

Table 1 , the majority of datasets just provide malicious apps, 
excluding benign samples. This fact restricts the possibilities 
of building effective machine learning-based classifiers using 
these datasets, as both types of applications are needed to 
build effective malware classifiers (i.e., supervised machine 
learning). 

1.2. Research Objective 

This research addresses the highlighted issues of existing 
datasets by merging different data sources to generate a large 
dataset with samples encompassing all years of Android his- 
tory (i.e., 2008-2020), collecting static and dynamic features, 
and being the first Android dataset attending to the particu- 
larities of distinct dynamic data sources (i.e., real devices and 

emulators). Furthermore, it is also the first data set to include 
the time variable into the Android malware detection issue. 
As Android malware is a non-stationary phenomenon, it is 
an alive and constantly evolving phenomenon that should be 
placed into its temporal context. This research aims to fill this 
important gap, neglected by the available datasets, providing 
different sources of time information (i.e., timestamps). The 
time constraint might also be important as changes in An- 
droid OS (i.e, new OS releases) can affect the behavior and fea- 
tures used by the applications (e.g., the introduction of new 

permissions or their deprecation). Even though there is no 
straightforward method to ascertain the exact date of an An- 
droid application, it can be approximated using several tech- 
niques and tools, which are explored in this study. 

1.3. Contribution and Novelty 

As the main contribution of this research, we introduce Kron- 
oDroid , an Android malware data set that merges and comple- 
ments data sources, covering an extensive period of time and 

characterizing each sample with static and dynamic features. 
KronoDroid aims to fulfill the gaps in the existing datasets and 

research, providing the following key aspects: 

1 Hybrid analysis data . The combination of static and dy- 
namic features provides more complete information about 
the applications. 

2 Distinct timestamp approaches for temporal context . Dif- 
ferent timestamp options are analyzed and proposed. As 
time is taken into consideration, it allows to learn about 
the evolution of malware and build more effective, robust, 
and long-lasting machine learning systems. 

3 Malware and benign labeled samples . Both categories of 
applications are provided, which can be used to build effec- 
tive classifiers and perform thorough application forensic 
analysis. 

4 Device-based behavioral data . Existing dynamic data dif- 
ferences were found when applications are run in real 
or emulated devices. This dataset provides both sources 
of dynamic data. KronoDroid is composed of two equally- 
featured sub-datasets (i.e., real device and emulator) which 

can be used for comparison and further investigation. 
5 Large data set . Over 28,000 samples per class on both sub- 

datasets. 

The application of machine learning to Android mal- 
ware detection is a widely-studied area. However, machine 
learning research studies still suffer various pitfalls includ- 
ing the inaccuracies related to datasets and their labeling 
( Arp et al., 2020 ), acting as a barrier to overcome real-world 

operational challenges such as adapting to evolving behavior, 
utilization of data source variations, and conducting family- 
oriented characterization. Our novel dataset has a big poten- 
tial to facilitate the research in such directions. Our study 
can be considered as a large-scale data generation effort 
based on various key findings from our previous research 

( Guerra-Manzanares et al., 2019 ; Guerra-Manzanares et al., 
2019 ; Guerra-Manzanares et al., 2019 ). We identified that the 
same dynamic or static features extracted from the apps be- 
longing to different time-frames have varying discriminatory 
power, leading us to focus on the concept drift problem and 

collecting a relevant dataset ( Guerra-Manzanares et al., 2019 ). 
We found out that the real devices and emulators may show 

variations in dynamic behavior that cause reduced detection 

performances in machine learning models if the type of data 
source is not considered ( Guerra-Manzanares et al., 2019 ). 
Thus, we generated a dataset obtained from real devices in 

addition to emulators. We determined the optimum duration 

for collecting dynamic data according to the experimental re- 
sults given in Guerra-Manzanares et al. (2019) . 

The paper structure is as follows: background information 

about Android malware analysis and literature review are pro- 
vided in Section 2 . The methodology implemented in this re- 
search is outlined in Section 4 while Section 5 shows a com- 
prehensive analysis of the main outcome of this research, a 
novel Android malware data set. Section 6 provides the dis- 
cussion points while Section 7 wraps up the study, highlights 
its major contributions, and establishes future work. 

2. Background Information 

This section provides the fundamental aspects of Android 

malware analysis and background information about the ba- 
sic structure of Android applications. 

2.1. Structure of Android Apps 

2.1.1. APK Bundle Structure 
On Android, everything the user interacts with, from the 
contacts list to games, is an app. Once compiled, apps 
are distributed as Android package (APK) files, a compressed 

ZIP archive identified by the .apk extension ( Android 2021 ). 
The APK s’ inner folders and file structures are consistent 
across applica- tions, enabling them to run in compatible 
Android devices ( Android 2021 ). The AndroidManifest.xml and 
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the classes.dex files provide most of the relevant data about 
the app. The former declares all the essen- tial information 

about the app (i.e., more in Section 2.1.3 ) while the latter con- 
tains the compiled code (i.e., Dalvik bytecode) executed by 
Dalvik/Android Runtime virtual machine at runtime. 

2.1.2. Components: APK Building Blocks 
At a lower level, applications are designed and built on four 
main building blocks or components , which are used as en- 
try points by users and the OS to interact with the app 

( Android 2021 ). Namely, activities, services, broadcast receivers 
and content providers . An activity is a single screen with a user 
interface where the interaction between the user and the app 

occurs ( Android 2021 ). A service enables to keep running the 
app in the background ( Android 2021 ). A broadcast receiver al- 
lows apps or the OS to deliver events to apps outside of the 
regular user flow ( Android 2021 ) while a content provider man- 
ages a shared set of app data, granting other apps a secure way 
to access it ( Android 2021 ). 

Activities, services, and broadcast receivers are acti- 
vated via asynchronous communication objects called intents 
( Android 2021 ), declared in the AndroidManifest.xml and han- 
dled by the OS. Content providers are activated using distinct 
mechanisms ( Android 2021 ). 

2.1.3. The AndroidManifest.xml File 
The AndroidManifest.xml is a critical and the only mandatory 
file that every Android app must include. It contains all the es- 
sential information about the app so that the OS can manage it 
properly. Among other information, it declares ( Android 2021 ; 
Android 2021 ): 

• Package name and version - which uniquely identify the 
application. 

• App components - to get the system acquainted with all 
the components of the app and enables them to be started. 

• User permissions - requested security permissions needed 

by the app to perform tasks. 
• API level - minimum API level required by the app to run 

on an Android system. 
• Hardware and software features - used or required by the 

app to perform any of its tasks. 
• API libraries - libraries needed by the application to run, 

distinct from the Android framework APIs. 

The AndroidManifest.xml file contains critical information 

about the app that is used by the OS, Google Play and Android 
build tools to get and provide information about it (e.g., com- 
patibility requirements). All this data can be collected using 
specific tools and be used for forensics analysis and malware 
detection. 

2.2. Android Malware Analysis 

There are two fundamental approaches for malware analy- 
sis: static and dynamic . Both approaches can be further catego- 
rized as basic or advanced and are briefly described as follows 
( Sikorski and Honig, 2012 ; Dunham et al., 2015 ). 

• Static - involves the analysis of the malware file without 
being executed. The basic ap- proach involves the examina- 
tion of the file without inspecting the actual code, to deter- 
mine if the file is malicious and get its basic functionali- 
ties (e.g., antivirus check) while the advanced methods re- 
quire reverse-engineering the malware internals through a 
deep examination of the malware code, thus providing ex- 
act information about the malware actions. 

• Dynamic - the analysis is performed executing the mal- 
ware in a controlled environment. In the basic approach, 
the malware is run in a sandbox and its behavior is ob- 
served, helping to produce effective signatures to prevent 
its spread, whereas the advanced methods imply the usage 
of other tools (e.g., debuggers ) to examine the internal state 
of the running malicious file, providing detailed informa- 
tion about its behavior at runtime. 

When both approaches are combined, hybrid analysis, they 
yield a more complete analysis of the sample and retrieve im- 
portant complementary data. This is the approach used in this 
research where advanced static and dynamic techniques were 
used together to provide a better and more complete profile 
about each app behavior and functionalities. 

3. Related work 

This section provides a literature review about Android mal- 
ware detection using machine learning techniques. 

Android malware analysis approaches allow the collection 

of different types of features, used to characterize and build 

machine learning systems. Three main approaches are used, 
depending on the nature of the collected features: static, dy- 
namic, or hybrid analysis ( Feizollah et al., 2015 ). This section 

provides a concise review of the approaches and common fea- 
tures used for machine learning-based Android malware de- 
tection and introduces the concept drift related studies and 

data sets in the study field. 

3.1. Android Malware Detection 

3.1.1. Static Android Malware Detection 

Static features from Android apps are mainly collected from 

two sources: inspection of the disassembled code and data ex- 
traction from the AndroidManifest.xml file. While some stud- 
ies combine both feature sources ( Arp et al., 2014 ; Felt et al., 
2011 ; Li et al., 2018 ; Li et al., 2020 ; Peiravian and Zhu, 2013 ; 
Yerima et al., 2015 ; Wang et al., 2019 ), the majority sticks to 
a single source. In this regard, some solutions use code fea- 
tures from the disassembled code such as the program flow 

or the API function calls ( Zhu et al., 2017 ; Grace et al., 2012 ; 
Yang et al., 2021 ; Cai et al., 2021 ; Hou et al., 2017 ) while from 

the AndroidManifest.xml the most used features are permis- 
sions ( Peng et al., 2012 ; Enck et al., 2009 ; Talha et al., 2015 ; 
Liang and Du, 2014 ; Mcdonald et al., 2021 ) and intent filters 
( Feizollah et al., 2017 ), alone or combined to boost detection 

performance ( Idrees and Rajarajan, 2014 ). In brief, API calls in- 
dicate the functions called by the app in its source code, secu- 
rity permissions the degree of privilege the app requests to 
access some type of data (i.e., sensitive data) and intent filters 
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denote the actions the app is intended to perform. Static anal- 
ysis features are easy to collect and provide extensive code 
coverage but can easily avoid detection when code obfusca- 
tion techniques are used. Data encryption, update attacks, ob- 
fuscation, or polymorphic techniques are used to hide the ma- 
licious code to bypass static features-based malware detection 

systems ( Alzaylaee et al., 2020 ). 

3.1.2. Dynamic Android Malware Detection 

Dynamic features are collected when the application is in- 
teracting with the operating system or the network. System 

calls ( Burguera et al., 2011 ; Guerra-Manzanares et al., 2019 ; 
Hou et al., 2016 ; Tam et al., 2015 ; Guerra-Manzanares et al., 
2019 ) and network flow ( Lashkari et al., 2017 ; Arora et al., 
2014 ) are the most common features used ( Feizollah et al., 
2015 ). Less commonly, CPU and RAM usage, running processes, 
battery statistics, API function calls and other runtime fea- 
tures have also been used alone ( Schmidt, 2011 ; Enck et al., 
2014 ; Amos et al., 2013 ) or combined with system calls or net- 
work packets ( Dini et al., 2012 ; Shabtai et al., 2012 ). Briefly, 
system calls are used for app-OS communication while net- 
work flow is obtained from the app-network interaction. Even 

though they can be bypassed ( Petsas et al., 2014 ), dynamic 
features-based detection methods are robust to code obfusca- 
tion and encryption techniques. However, they are more time- 
consuming and difficult to collect as they require the app to be 
installed and run in a sandboxed device, either an emulator or 
a real device. Both kinds of devices have been used in the lit- 
erature, assuming that, disregarding the device influence, the 
app behavior would not reflect any change in the dynamic fea- 
tures collected. When the dynamic approach is used, greater 
code coverage can be achieved when using pseudo-random 

user-generated events ( Alzaylaee et al., 2020 ). 

3.1.3. Hybrid Android Malware Detection 

The combination of static and dynamic features collected 

from applications is used by a smaller proportion of the 
existing research ( Grace et al., 2012 ; Alzaylaee et al., 2020 ; 
Kabakus and Dogru, 2018 ; Guerra-Manzanares et al., 2019 ; 
Yuan et al., 2014 ; Bl ̈asing et al., 2010 ). However, these ap- 
proaches tend to provide more complete information about 
the malware as they collect the application’s runtime behav- 
ior complemented by relevant static features. 

As can be observed, the predominant trend in the studies 
is to use either static or dynamic approaches, thus neglecting 
the potential of their combination (i.e., hybrid approach). As a 
contribution to the field, this research focuses on the collec- 
tion of hybrid features of the generated dataset for Android 

malware detection. Hybrid analysis constitutes a smaller part 
of the existing research ( Feizollah et al., 2015 ). It is more com- 
plex and time-consuming to perform but enables to generate 
a better overall picture of the problem at hand, where the us- 
age of complementary data may yield better results ( Guerra- 
Manzanares et al., 2019 ). 

3.2. Android Malware Concept Drift 

3.2.1. Related Studies 
The vast majority of the previous studies do not take the 
time variable into account, considering malware as stationary 

data. Thus neglecting the changes in malware over time and 

their degenerative impact on the performance of the machine 
learning-based detection methods, a phenomenon called con- 
cept drift . This is also emphasized by the fact that the vast ma- 
jority of the studies published in recent years use old malware 
data sets to test and prove their findings. Their results may not 
generalize to recent malware as malware is a constantly evolv- 
ing phenomenon that must be placed into a temporal context 
to be fully comprehended. 

This approach is considered in the studies summarized 

in Table 3 , which provides a detailed overview of the recent 
works that addressed the phenomenon of concept drift in An- 
droid applications. The Time-frame attribute for each study 
(i.e., Name/Ref ) provides the temporal window of the applica- 
tions analyzed, while the size of the dataset and the malware 
source are provided in the column Dataset Size (i.e., B for be- 
nign data size, and M for malware data size) and Dataset Source 
respectively. The Features column provides information about 
what kind of data was used to characterize the samples on 

the study period. The Timestamp states how the applications 
temporal context (i.e., date) was determined while the Perfor- 
mance shows the reported performance metric of the solution. 
Finally, the Year column establishes the publication year of the 
research. 

As can be noticed, the time-frame encompassed in the 
studies included in Table 3 varies significantly. While there are 
some studies that focus on relatively narrow time-frames (i.e., 
8 months in the case of DroidOL ), the majority encompass a 
significant amount of years (i.e., an average of 6.6 years) be- 
ing AndroCT the most extended, ranging from 2010 to 2019. In 

this research, the collected dataset doubles the average time 
of these studies, providing samples from 2008 to 2020 (i.e., 13 
years data), which allows to analyze the issue in longer time- 
frames and contrast the obtained results. 

Regarding the datasets, the most prevalent dataset is An- 
droZoo, followed by Drebin, an old dataset . The legitimate sam- 
ples come mainly from Google Play. In this research, we used 

Drebin as a source of old malware data and other more recent 
well-known malware sets to constitute the body of malware 
data. The usage of well-known and established data sets (i.e., 
Drebin, AMD, VirusTotal, and VirusShare) was preferred to the 
usage of AndroZoo, which is a good source of applications in 

general (i.e., over 15 million apps) but not specifically of mal- 
ware instances, thus needing to rely exclusively on the an- 
tivirus (AV) detection report to label the apps from the repos- 
itory. We used the AV detection report as extra support for 
the label and we required the original data source to provide 
the label, as explained in Section 5.2 . The size of the datasets 
varies significantly among the studies, being the one used in 

DroidOL the largest one in terms of malware apps. Our dataset 
is composed of a similar amount of malware instances (i.e., in 

the real device case), providing a large corpus of data for mal- 
ware and similarly of legitimate apps. 

As can be observed, all the studies focus on the analysis 
of API calls in a dynamic or static analytical methodology. API 
function calls are eminently static objects which can also be 
acquired dynamically or traced when the app is executed, pro- 
viding a behavioral perspective complementary to the static 
approach. This is the approach taken by the studies marked 

by an asterisk ( ∗) in Table 3 . Function calls provide a dynamic 
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Table 3 – Recent Android malware research works that take into account the time. 

Name/Ref Time-frame Dataset Features (#) Timestamp Performance Year 

Source Size 

Google Play 
Anzhi 
AppChina 
SlideMe 
HiApk 
FDroid B: 44,347 Graph-kernel 

DroidOL ( Narayanan 
et al., 2016 ) 

2014 Angeeks M: 42,910 (1,653,496) Creation day Acc: 0.84 2016 

ENBCS ( Hu et al., 2017 ) N/S Drebin Other N/S B: 5,101 
M: 1,761 

Permissions (152) 
API calls (24) 
Actions (229) 

N/S Acc: 0.96 2017 

TRANSCEND 

( Jordaney et al., 2017 ) 
2010-2014 Drebin 

MARVIN 

B: 133,127 
M: 14,739 

Permissions 
API calls 
Other static 

Train: Drebin 
Test: MARVIN 

Prec: 0.89 
Rec: 0.76 

2017 

( Cai and Ryder, 2017 ) 
( Cai and Ryder, 2017 ) 

N/S Google Play B: 125 
M: 0 

API calls ∗

(selected, 122) 
N/S N/A 2017 

MamaDroid 
( Onwuzurike et al., 2019 ) 

Drebin B: 8,447 2016 

MamaDroid ext. 
( Mariconti et al., 2016 ) 

2010-2016 Virushare M: 35,493 API calls N/S 0.87 2019 

DroidCat ( Cai et al., 2019 ) 2009-2017 Google Play API calls ∗

(selected, 122) 
First seen VT 
(range of years) 

F1: 0.97 2018 
AndroZoo 
VirusShare 
Drebin 
MalGenome 

B: 17,365 
M: 16,978 

( Cai and Jenkins, 2018 ) 2012-2017 N/S B: 3,431 
M: 3,001 

API calls ∗

(selected, 122) 
N/S F1: 0.82-0.93 2018 

DroidEvolver ( Xu et al., 
2019 ) 

2011-2016 AndroZoo B: 33,294 
M: 34,722 

API calls Compilation time 
(dex date, year) 

F1:0.95-0.85 2019 

( Fu and Cai, 2019 ) 2010-2017 N/S B: 13,627 
M: 11,153 

API calls ∗

Other N/S 
N/S F1: 0.71 2019 

EveDroid ( Lei et al., 2019 ) 2012-2018 PlayDrone 
Google Play 
VirusShare 

B: 14,956 
M: 28,848 

API calls VT Submission 
(Year) 

0.99-0.84 2019 

TESSERACT ( Pendlebury 
et al., 2019 ) 

2014-2016 AndroZoo B: 116,993 
M: 12,735 

Permissions 
API calls 
Other static 

Compilation time 
(dex date, year) 

F1: 0.91-0.82 2019 

TRANSCENDENT 
( Barbero et al., 2020 ) 

2014-2018 AndroZoo B: 232,848 
M: 26,387 

Permissions 
API calls 
Other static 

Compilation time 
(dex date, year) 

F1: 0.90-0.70 2020 

APIGraph ( Zhang et al., 
2020 ) 

2012-2018 Google Play 
AndroZoo 
VirusShare 
VirusTotal 
AMD 

B: 290,505 
M: 32,089 

API calls Appearance (Year) F1: 0.92-0.68 2020 

( Cai et al., 2020 ) 2010-2017 Google Play 
VirusShare 
AndroZoo 

B: 15,451 
M: 15,183 

API calls ∗ Compilation time 
(dex date, year)) 

N/A 2020 

DroidSpan ( Cai, 2020 ) 2010-2017 Google Play 
VirusShare 
AndroZoo 

B: 13,627 
M: 12,755 

API calls ∗ N/S F1: 0.92-0.72 2020 

( Cai, 2020 ) 2010-2017 N/S B: 1,000 
M: 1,000 

API calls ∗ N/S N/A 2020 

( Cai and Ryder, 2020 ) 2010-2017 Google Play 
AndroZoo 

B: 3,000 
M: NA 

API calls ∗ (122) N/S N/A 2020 

AndroCT ( Wen Li and 
Cai, 2021 ) 

2010-2019 Google Play 
VirusShare 
AndroZoo 

B: 18,277 
M: 17,697 

API calls ∗(122) N/S N/A 2021 

N/A - Not applicable, the evaluation was not performed or provided N/S - Not specified 
∗ The feature was collected dynamically 
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behavioral profile of the app which is prone to changes due 
to API/libraries modifications, deletions, or additions. The ap- 
proach taken in this study focuses on the usage of a distinct 
dynamic object, kernel or system calls , which are eminently dy- 
namic objects (i.e., they cannot be traced in a static way as API 
calls) that provide a robust behavioral profile of the applica- 
tion, less subtle to drastic changes along years. This provides 
a distinct and novel approach with regard to all the studies 
in Table 3 . While API calls and system calls can both provide an 

app’s behavioral profile, they are not directly linked as they oc- 
cur in different OS regions (i.e., user vs. kernel space) and they 
are issued with distinct purposes (i.e., kernel calls are requests 
to the OS while API calls are API framework function calls to per- 
form specific tasks that may or may not trigger a kernel call ). 
As a result, API function calls and system calls provide a dis- 
tinct approach to the same study object. In addition to that, 
a novelty provided by the KronoDroid dataset is the usage of 
additional static features such as permissions, intents, etc. to 
enhance malware detection and Android app comprehension 

from a hybrid perspective. None of the studies in Table 3 com- 
bine both approaches using distinct objects for app character- 
ization. 

The temporal context approach and the usability of the 
dataset are distinctive points of KronoDroid when compared to 
the studies given in Table 1 and Table 3 . Regarding the tempo- 
ral context, the studies that consider the temporal dimension 

attach themselves to a particular timestamp, generating a sin- 
gle perspective that may be prone to temporal bias and errors 
(e.g., dex date timestamp used in many studies is no longer 
reliable as the majority of apps have it set at 1980 ( du Luxem- 
bourg, 2021 )). In order to overcome this limitation, KronoDroid 
provides 4 possible timestamps per sample, depending on the 
temporal context source, helping to provide a more exact tem- 
poral context for the studied apps. Regarding usability, Kron- 
oDroid is provided in a ready-to-use tabular format (i.e., CSV) 
which can be directly used without having to process log files 
or the raw data. However, this latter option is also provided 

for more technically experienced individuals. Therefore Kron- 
oDroid can be used by any interested researcher without the 
need of deep technical data extraction knowledge. 

In this study, for the sake of completeness, taking into ac- 
count the different dynamic malware analysis devices used 

in research, the dynamic features of this data set were col- 
lected using two devices: an emulator and a real device. In 

this regard and even though researchers tend to assume that 
the behavior of an app does not change according to the plat- 
form or device used, our experimentation and research indi- 
cate that specific dynamic features, such as system calls, may 
change significantly according to the device type where they 
are collected ( Guerra-Manzanares et al., 2019 ). As a result, this 
research aims to contribute to a deeper exploration of these 
differences by providing kernel-related dynamic features (i.e., 
system calls) collected on two different Android platforms 
(i.e., ARM and x86 devices). 

3.2.2. Related Datasets 
The datasets used in concept drift studies in Android mal- 
ware detection are provided in Table 4 . This table reflects the 
datasets made publicly available or on request by the studies 
contained in Table. 3 . This concise table specifies the name 

of the dataset (or the related study), its composition (i.e., Size 
column; B for benign data and M for malware data; E and 

R are added to specify the dataset if Emulator and Real de- 
vice datasets have different compositions), the time-frame 
they encompass (i.e., Time range ), the availability of the dataset 
and its format, the malware analysis methodology used to 
collect the dataset features (i.e., static or dynamic), the data 
source when the dynamic approach was used (i.e., emulator 
or real device), the type and number of features provided by 
the dataset and the reference to the dataset repository. 

As can be noticed, although some studies included in 

Table 3 released the hashes of the data samples they used thus 
enabling reproducibility of the results ( Zhang et al., 2020 ), just 
a minority of the studies released their data sets for public use. 

When comparing KronoDroid with the available datasets for 
concept drift research, provided in Table 4 , it can be argued 

that AndroCT ( Wen Li and Cai, 2021 ) is similar, as they are the 
only ones providing data tested on emulators and real devices. 
However, even though the features of AndroCT make it an 

interesting and useful Android dataset, KronoDroid is signif- 
icantly distinct from it in both the perspective used and its 
broad comparative metrics. Regarding the perspective, Kron- 
oDroid uses dynamic (i.e., system calls) and relevant static fea- 
tures such as permissions (i.e., 489 in total, including times- 
tamps) to characterize each application while AndroCT pro- 
vides just dynamic data (i.e., API calls). This fact makes Kro- 
noDroid usable for a wide variety of researchers and mal- 
ware detection approaches, choosing freely the focus on one 
or another perspective. When the broad comparative metrics 
are analyzed, the size and time-frame encompassed by Kron- 
oDroid are unprecedented. Composed by more than 28,000 per 
class (i.e., benign/malware), including over 200 malware fam- 
ilies, and encompassing 13 years (i.e., 2008-2020) of Android 

history make it, to the best of our knowledge, the largest, fully 
labeled and most extended timestamped Android dataset. 
Lastly, whereas AndroCT provides all log traces and collected 

data in a semi-processed format, KronoDroid is readily avail- 
able in structured tabular format (i.e., CSV file) and raw for- 
mat (i.e., not processed log files), matching the distinct types of 
technical needs and capabilities that machine learning prac- 
titioners have. 

In conclusion, the present dataset aims to address the 
aforementioned research gaps and improve the field of An- 
droid malware detection. However, this research is not free of 
limitations, weaknesses, and challenges, which are covered in 

Section 6.1 after the methodology and results are explained in 

the following sections. 

4. Methodology 

KronoDroid , the major contribution of this research, is a hybrid- 
featured Android malware dataset that introduces the time 
feature in the Android malware analysis. The acquisition of 
the hybrid features and the timestamps required the uti- 
lization of static and dynamic analysis techniques on the 
collected samples. The features collected are detailed in 

Table 7 whereas the hybrid analysis workflow is depicted in 

Fig. 1 and is thoroughly explained in the following paragraphs. 
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Table 4 – Android malware repositories. 

Name Size Time Range Availability Analysis Source Features (#) Reference 

MaMaDroid B: 8,402 
M: 34,521 

2010-2016 On request Static - API Calls (-) ( Stringhini, 2018 ) 

TraceDroid B: 15,451 
M: 15,183 

2010-2017 Public (Raw data) Dynamic Emulator API Calls (122) ( Cai, 2020 ) 

AndroCT B: 18,277 
M: 17,697 

2010-2019 Public (Raw data) Dynamic Emulator Real 
device 

API Calls (122) ( Li et al., 2021 ) 

KronoDroid BE: 35,246 2008-2020 Public Static Emulator Syscalls (289) ( Guerra-Manzanares, 2021 ) 
BR: 36,755 (Raw data Dynamic Real device Permissions (166) 
ME: 28,745 and CSV) Other static (34) 
MR: 41,382 

Fig. 1 – Data set generation workflow. 

4.1. Data Collection: The Workflow 

The first step of the data collection workflow involved the ac- 
quisition of the Android samples which composed the initial 
dataset. The initial dataset is composed of 93,894 Android ap- 
plications that were acquired from 7 different datasets and 

repositories. After the collection of the initial dataset, dy- 
namic analysis was performed using two different Android 

devices: an emulator and a real device. The rationale for 
the usage of these two devices is extracted from Guerra- 
Manzanares et al., 2019 . According to the authors, the regis- 
tered dynamic behavior of Android applications might differ 
across platforms when using system calls as features. This in- 

Table 5 – Initial malware dataset composition. 

Data set Size Time-frame 

Drebin 5,560 2010-2012 
AMD 24,553 2010-2016 
VirusTotal 21,687 2014-2020 
VirusShare 3,034 2008-2018 
Total 54,834 2008-2020 

Table 6 – Initial benign dataset composition. 

Data set Size Time-frame Ref. 

F-droid 6,919 2010-2020 ( F-droid 2020 ) 
MARVIN 29,941 2008-2014 ( Lindorfer et al., 

2015 ) 
APKMirror 2,200 2010-2020 ( APKMirror 2020 ) 
Total 39,060 2008-2020 - 

consistency may cause a great unexpected impact in the in- 
duced machine learning models (i.e., models not generaliz- 
ing to both sources of data). Thus, for the sake of complete- 
ness, as both types of devices are used in the Android malware 
detection research literature without any distinction, this re- 
search was performed using both emulator and real device 
platforms. Consequently, after the dynamic phase, two dis- 
tinct platform-based data sets were generated from the ini- 
tially collected set of applications. As malware and benign An- 
droid applications were collected, two app categories were gen- 
erated (i.e., also referenced as classes or labels ). The composi- 
tion of each initial single-class dataset is provided in Table 5 
for malware apps and Table 6 for benign applications. As can 

be observed, the overlap of the time-frames of the applica- 
tions included in both datasets encompass from 2008, when 

the first commercial Android version was released, until 2020. 
After the dynamic analysis phase, two sequential static anal- 
ysis phases, referred as static analysis I and static analysis II in 

Fig. 1 , were performed before all the collected data were pro- 
cessed and the features generated, thus conforming the two 
final platform-based datasets. The whole process is detailed in 

the following paragraphs. 
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4.1.1. The Malware Data 
The initial malware dataset is composed of applications be- 
longing to two malware datasets and two repositories, out- 
lined in Table 5 . More specifically, Drebin is a malware dataset 
collected between 2010-2012 and presented in Arp et al., 2014 , 
including 5560 samples from 179 malware families. It is the 
most used academic dataset for Android malware research 

nowadays ( Irolla and Dey, 2018 ). Cited more than a thousand 

times since its generation, it has become the replacement 
of the discontinued MalGenome Project dataset ( Zhou and 

Jiang, 2012 ). Drebin provides the older malware samples for this 
study (i.e., belonging to the early years of Android history). The 
Android Malware Dataset ( Wei et al., 2017 ), is a public dataset 
composed of 24,553 malware samples, split into 135 varieties 
among 71 malware families and collected between 2010 and 

2016. The VirusTotal Academic Malware Samples dataset is a mal- 
ware repository collected by VirusTotal using their antivirus 
engine ( VirusTotal 2020 ). It is a growing repository generated 

by VirusTotal from the positively detected files submitted for 
scanning by its users. Its collection time-frame ranges from 

2014 to 2020. At the time of this study, the repository had 

21,687 Android apps. Finally, VirusShare ( VirusShare 2020 ) is a 
repository of malware samples that provides access to live ma- 
licious samples for research and forensics purposes. For this 
study, 3,034 Android applications were randomly selected and 

downloaded from VirusShare . 
As reported in Table 5 , old malware data are covered using 

Drebin and AMD datasets while more recent malware is cov- 
ered by apps belonging to VirusTotal Academic Malware Samples 
dataset. The set of applications from VirusShare are added for 
the sake of completeness of the dataset, as they encompass 
the widest time-frame. Consequently, the malware data cov- 
ers the widest time-frame possible, from Android OS first re- 
lease, 2008, to the present time, 2020. 

4.1.2. The Benign Data 
The malware dataset is composed of 54,834 applications while 
the benign data set includes 39,060 samples. This difference 
is due to the more challenging task of collecting old benign 

applications. 
Unlike malware apps, legitimate apps are not usually 

stored or available in repositories, neither provided in the ex- 
isting malware datasets, as reported in Table. 1 . Also, as they 
are frequently updated and adapted to OS releases by their de- 
velopers, they tend to generate more compatibility issues than 

malware apps (i.e., requiring a higher minimum API level). 
Furthermore, as the legitimate alternative app markets started 

their activity some time after the release of Android, their app 

set is significantly limited for the first years of Android history. 
Therefore, due to the focus on malware and scarcity of benign 

data, the initial benign dataset was out-numbered by the initial 
malware dataset. 

The initial benign dataset was generated from three 
sources, provided in Table. 6 , two public Android app markets 
and a research dataset. In this regard, F-droid ( F-droid 2020 ) is 
a free, open-source Android repository that provides apps to 
users via a client software. It is a well-known alternative to the 
official Android apps market (i.e., Google Play ) that performs 
security checks to ensure the apps provided are malware-free. 
At the time of this research, the F-droid repository contained 

6,919 samples, ranging from 2010 to 2020. Similarly to F-droid, 
APKMirror is a larger, web-based Android alternative app store 
( Apkmirror 2020 ). Due its security checks, it is considered a 
trusted and secure source of apps ( APKMirror 2021 ). For this re- 
search, 2,200 randomly selected apps, uploaded to the app cat- 
alog between 2010 to 2020, were used. Finally, 29,941 samples 
from MARVIN benign dataset ( Lindorfer et al., 2015 ), shared by 
the authors, were used in this study. They allow covering the 
early years of Android history, from 2008 to 2014. 

Similar to the malware dataset, the overlap of the data 
sources enables complete coverage of the whole 2008-2020 pe- 
riod, as shown in Table 6 . More specifically, old benign apps 
were provided by MARVIN dataset while recent benign sam- 
ples were provided by F-droid repository. APKMirror samples 
were used for the sake of completeness and time-frame cov- 
erage, especially for the recent years. 

4.2. Phase II: Dynamic Analysis 

System or kernel calls are the most used behavioral feature 
in dynamic malware detection research and the dynamic fea- 
tures collected in this study. System calls are the fundamen- 
tal interface between the apps and the operating system ker- 
nel. They provide a level of abstraction and security, acting 
as handlers of service and resource requests from the appli- 
cations using API (i.e., user-level) to the OS (i.e., kernel-level) 
( Bovet and Cesati, 2005 ). Android OS is built on top of the Linux 
kernel, which provides more than 200 system calls, depending 
on the CPU architecture (e.g., ARM or x86). More specifically, 
kernel calls manage the requests of services and resources 
that the apps are not allowed to perform directly, related to 
process control, file management, device management, com- 
munication, etc. Therefore, system calls analysis provide dy- 
namic data about the real behavior of apps at runtime. 

The system calls collection in this study was performed 

by means of an automated script using Android Debug Bridge 
(ADB) commands. ADB is a command-line tool that enables 
the communication between a computer and a mobile device. 
The script, developed by the author, attempted to install, exe- 
cute, monitor, log, and uninstall all the applications compos- 
ing the initial datasets in each of the devices used. Two devices 
were used for this research: a Samsung A6 (i.e., real device) and 

a Nexus 5X Android SDK emulator instance (i.e., emulated de- 
vice). The same Android version (i.e., Android 8.0 Oreo ), con- 
figuration, script, initial dataset and acquisition procedure was 
in place for both devices. 

As Android applications can depend on specific libraries to 
be executed in different CPU architectures and require a mini- 
mum API level (i.e., compatibility issues), not all the apps from 

the initial dataset were successfully installed on both devices 
( Android 2020 ). For instance, if the application had only na- 
tive libraries for ARM-based devices (i.e., armeabi), it was not 
successfully installed in the emulator (i.e., x86 architecture), 
deemed as incompatible app. The set of incompatible apps for 
each device were discarded for any posterior steps, not fur- 
ther processed, and did not form part of the final dataset for 
the specific device they were not compatible with. 

Regarding the compatible apps, after their successful in- 
stallation, they were attempted to boot up by invoking the ap- 
plication main activity using the monkey tool ( Android 2021 ). 
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If this step was successful, they were allowed to run freely, 
without any further interaction, for 60 seconds. The ratio- 
nale behind this run-time constraint is based on the findings 
of Guerra-Manzanares et al., 2019 , where different run-time 
time-frames were evaluated in a similar dataset and the au- 
thors concluded that longer time-frames (i.e, up to 15 min- 
utes) did not lead to improved detection performance. During 
the run-time, the application was monitored and the system 

calls issued by the main process were logged using strace tool 
( Levin, 2021 ). The generated log file, containing the issued sys- 
tem calls by the app at run-time, was pulled into the storage 
device using ADB before the application was uninstalled from 

the device. 
As a result, only the successfully installed and executed 

applications are included in the final device- related labeled 

datasets. Therefore, the dynamic analysis acted as a filter 
stage, determining the apps that finally form part of either of 
the resulting datasets, thus ensuring the collection of hybrid 

analysis features for all the samples included. 

4.3. Phase III: Static Analysis 

After the dynamic analysis step, two sequential static analysis 
steps were performed on the remaining set of applications. 
These steps are outlined in the following paragraphs. 

4.3.1. Static Analysis I: APK Data Extraction 

The apk archive and the AndroidManifest.xml inside the apk 
container were analyzed and relevant information extracted. 

From the apk bundle, metadata such as filesize, timestamps 
(i.e., last modification, earliest modification) and SHA-256 hash 

were retrieved. 
All Android applications must include the AndroidMani- 

fest.xml file inside their apk containers. This file contains rel- 
evant data and metadata, such as the app’s package name, 
the components of the app (i.e., activities, services, broad- 
cast receivers, and content providers), the required hardware 
and software features, and the security permissions the app 

needs to access protected resources (i.e., requested permis- 
sions) ( Android 2021 ). In this first static analysis step, rele- 
vant features used by static malware detection studies were 
extracted from the AndroidManifest.xml of each processed ap- 
plication: 

• Android permissions : all the requested permissions were 
extracted. The current list of Android standard permissions 
includes 166 permissions, categorized into 3 different lev- 
els of risk, also known as protection levels : dangerous , signa- 
ture , or normal ( Android 2021 ). As Android allows to define 
custom permissions, if any was declared, it was also col- 
lected. 

• Android Intent Filters : all the intent filters data declared by 
the app were extracted. 

• Hardware & Software features : hardware features and soft- 
ware requirements defined by the application were re- 
trieved. 

• Other relevant data : such as package name, activities, and 

services declared. 

In this phase, all the collected data was retrieved using 
a script , developed by the author, by means of AndroGuard, 
Android Asset Packaging Tool (aapt) and ExifTool . More specifi- 
cally, AndroGuard ( Desnos et al., 2018 ) and aapt ( Android 2021 ) 
were used to explore the apk archive and retrieve the rele- 
vant data from the apk and AndroidManifest.xml file. ExifTool 
( Harvey, 2021 ) was used to retrieve metadata about the apk 
bundle. 

4.3.2. Static Analysis II: Detection Report 
The second step of static analysis was performed using Virus- 
Total AV engine. VirusTotal is an antivirus scanner service 
which in its basic version allows the user to upload files and 

obtain a malware detection report and other related signals 
based on over 50 antiviruses’ results ( VirusTotal 2020 ). Virus- 
Total API was used to obtain the detection report and relevant 
metadata for all the apps filtered on the dynamic phase. As 
VirusTotal terms of agreements did not allow to share their 
collected timestamp data (i.e., first seen and first seen in the 
wild) nor other raw data from the report in the public dataset, 
they were not included as features in the released dataset. 
However, anyone interested in those features, used and dis- 
cussed in this research, can collect them directly from the 
source, VirusTotal, using the SHA-256 list and the script pro- 
vided in the dataset repository.1 More information is provided 

in Table. 7 . In summary, this second static analysis step meets 
two purposes: 

1 Malware detection check - in the case of malware samples, 
it provides data about the malware family and detection 

ratio. In the case of benign samples, the detection report is 
used as an additional check of their not malicious content. 
When allegedly benign apps were detected as malware by 
some AV, their real label was questioned and reflected in 

the dataset. The same is applied in the alleged malware 
found malware-free. For that purpose, the concepts of soft 
and hard labels are defined and implemented in this study. 
A detailed overview of them and the analysis results are 
reported in Section 5.2 . 

2 Collection of relevant static data - the detection report 
provides additional static features that are used to enrich 

the quality and completeness of the dataset, such as the 
detection-related timestamps. 

4.3.3. Phase IV: Data Processing 
After all the previous steps were performed, all the gathered 

and logged data for each application were further processed 

in order to extract and construct meaningful features to char- 
acterize each application. A total amount of 489 features were 
extracted and constructed to describe apps on both datasets 
(i.e., emulator and real device data) and each app class within 

them (i.e. malware or legitimate). Table 7 provides a concise 
description of the features that characterize each app. More 
specifically, apps are characterized by the following static fea- 
tures: 

• Package N ame - application ID or identifier string that 
uniquely identifies the appli- cation. It is defined in 

1 Script link: https://github.com/aleguma/kronodroid 
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Table 7 – Data set features summary. 

Category Count Var type Brief description 

Package Name 1 Categorical Application’s package name 
System Calls 288 Numeric Absolute frequency of each syscall from the syscall set issued by the app 

at run-time. For consistency, the syscalls set is composed of 288 features 
Total system Calls 1 Numeric Total number of syscalls issued by the app at run-time 
Standard 
Permissions 

166 Categorical Binary feature that indicates whether the standard Android permissions 
was requested (i.e., 1) or not requested (i.e., 0) by the app 

Standard 
Permissions 
Categories 

3 Numeric Total number of normal, dangerous and signature permissions requested 

Total Standard 
Permissions 

1 Numeric Total number of standard permissions requested by the app 

Custom Permissions 1 Categorical Binary feature that indicates if any custom permission was declared by 
the app (i.e., 1 if any , 0 if none) 

Total Custom 

Permissions 
1 Numeric Total number of custom permissions defined by the application 

Total Permissions 1 Numeric Total number of requested permissions. Sum of standard and custom 

permissions 
SHA-256 1 Categorical SHA-256 hash value of the apk file 
Compressed Filesize 1 Numeric Compressed (apk) filesize of the app 
Uncompressed 
Filesize 

1 Numeric Not compressed size of the file (i.e., sum of the size of all the raw apk 
inner files) 

Timestamps 4 Numeric Collected timestamps (i.e., inner files earliest and last modification, 
timestamp of first seen by VirusTotal ∗ and first seen itw 

∗) 
Files 1 Numeric Number of files inside the apk container (i.e., inner files) 
Hardware & 

Software Features 
1 List List of hardware and software requested features 

Activities 1 List List of activities defined by the application 
Total Activities 1 Numeric Total number of activities defined by the application 
Intent filters (IF) List 1 List List of all the Intent filters defined by the application 
IF Activities 1 Numeric Total number of activities defined in intent filters 
IF Activities Actions 1 Numeric Total number of actions related to activities defined in intent filters 
IF Services 1 Numeric Total number of services defined in intent filters 
IF Services Actions 1 Numeric Total number of actions related to services defined in intent filters 
IF Receivers 1 Numeric Total number of receivers defined in intent filters 
IF Receivers Actions 1 Numeric Total number of actions related to receivers defined in intent filters 
Total Intent filters 1 Numeric Total number of intent filters declared by the application 
Services 1 List List of services defined by the application 
Total Services 1 Numeric Total number of services defined by the application 
Detection Ratio 1 Numeric Ratio of the AV scanners that detected the sample as malware. Value in 

the range [0,1]. 
Scan Time 1 Numeric Timestamp that indicates when the app was scanned for this research 
Malware Family 1 Categorical Most likely malware family of the sample 
Soft Label 1 Categorical Soft label for the specific app. Possible values: { 0,1 } 
Hard Label 1 Categorical Hard label defined for the specific app. Possible values: { -1, 0, 1 } 

Total Features 489 - 313 Numeric, 172 Categorical and 4 List Features 

∗ Features not provided with the dataset. More info at https://github.com/aleguma/kronodroid 

the form of a Java package name or a reversed DNS 
domain name, aiming to avoid naming collisions (e.g., 
com.company.appname) ( Android 2021 ). In this dataset, 
this single feature corresponds to the identifier string, 
which can be used to identify a particular app or differ- 
ent samples with the same package name in the whole 
dataset. 

• Standard P ermissions - permissions are a security mech- 
anism that allows Android to limit what an app can ac- 
cess (e.g., contacts list) and do (e.g., record audio). They 
can be requested by the application either at installa- 
tion time (normal permissions) or at run-time (danger- 
ous permissions). Permissions requested by the applica- 

tion are declared in the AndroidManifest.xml file using the 
syntax: android.permission.PERM , where PERM is substituted 

by the corresponding permission name. For example, an- 
droid.permission.INTERNET would be requested by the ap- 
plication to have connectivity, enabling it to open network 
sockets. A total quantity of 166 standard permissions are 
defined by the permissions API provided for Android de- 
velopers ( Android 2021 ). As a result, 166 categorical binary 
permission features were generated for each sample. The 
value for each feature can be either 0 or 1 (i.e., unset or set 
permission). A value of 0 reflects that the permission was 
not requested by the app while a value of 1 indicates a re- 
quested permission. 
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• Permission S tatistics - Android categorizes permissions ac- 
cording to the sensitive information they can access and the 
security threat they may pose. Based on that, normal, dan- 
gerous and signature permissions are defined. Custom per- 
missions can also be created and used. Consequently, 7 sta- 
tistical features were computed for each application in re- 
lation to the permissions requested. 

– Total S tandard P ermissions - total quantity of standard 
permissions re- quested by the application. 

– Total D angerous - total quantity of requested standard 
permissions that are categorized as dangerous . Indica- 
tive of permissions that request access to the user’s per- 
sonal data, which may pose a security threat. 

– Total N ormal - total quantity of requested standard per- 
missions that are categorized as normal . 

– Total S ignature - total quantity of requested standard 
permissions that are categorized as signature . 

– Custom P ermission - binary categorical feature that in- 
dicates whether any custom permission was declared 

by the application (i.e., value of 1). If no cus- tom per- 
missions were defined the value of 0 is reported. 

– Total Custom - total number of custom permissions re- 
quested by the application. 

– Total P ermissions - total number of permissions re- 
quested by the application (i.e., summation of all custom 

and standard permissions requested). 
• Compressed File s ize - integer that reflects the apk file size 

in bytes. 
• Uncompressed File s ize - integer that reflects the sum of 

the raw size of the applica- tion’s inner files in bytes. 
• Timestamps - temporal metadata about the application. 

As this information can be tam- pered or wrong , 4 distinct 
and complementary timestamps were collected, helping 
to generate the temporal context of the application. The 
4 timestamp features collected are: 

– Earliest Modification - earliest modification timestamp 

found in any of the in- ner files of the application. 
– Last Modification - latest modification timestamp 

found in any of the files that compose the application. 
– First Seen VT - timestamp that denotes when the app 

was submitted for the first time to VirusTotal (VT) scan 

service. 
– First Seen in the Wild (ITW) - timestamp that indicates 

when the app was seen anywhere, online, for the first 
time. This feature was extracted from the VT scan re- 
port. 

More specifically, Exiftool was used extract the Earliest mod- 
ification and Last Modification timestamps from the files inside 
the apk while the VirusTotal report provided the First Seen VT 

and First Seen ITW timestamps. 

• SHA-256 - hexadecimal representation of the 256-bit hash 

string of each sample, uniquely identifying them. In mal- 
ware analysis, SHA-256, a secure hash algorithm, is used to 
uniquely identify samples. It also helps to differentiate be- 
tween distinct instances of the same malware, which may 
have slight modifications but the same package name. 

• Files - numeric feature that reports the number of files 
inside the application’s compressed container (i.e., inner 
files). 

• Activities - expanded in two features. One provides the list 
of activities declared by the application (i.e., names) and 

the other provides the total number of them (i.e., count). 
• Intent F ilters (IF) - list of all the intent filters defined by the 

application. 
• Intent F ilters S tatistics - 7 summary statistics are com- 

puted for each application in relation to the intent filters 
declared. 

– Intent Activities - total number of intent filters related 

to activities. 
– Intent Activities Actions - number of defined actions in 

the intent filters related to activities. 
– Intent Services - total number of intent filters related to 

services. 
– Intent Services Actions - number of defined actions in 

the intent filters related to services. 
– Intent Receivers - total number of intent filters related 

to receivers. 
– Intent Receivers Actions - number of defined actions in 

the intent filters related to receivers. 
– Total Intent Filters - total number of intent filters de- 

clared by the applica- tion. 
• Services - expanded in two features. One provides the list 

of services declared by the application (i.e., names) and the 
other provides the total number of them (i.e., count). 

• Detection Ratio - numeric value compressed in the range 
[0,1] that reflects the amount of AV scanners that posi- 
tively detected the sample (i.e., as malware) over the to- 
tal amount of scanners. It is a constructed feature based 

on information provided by the detection report (i.e., nr. of 
positive detections / nr. of scanners). 

• Malware Family - most likely malware family of the sample 
according to the results provided by the AV scanners that 
positively detected the sample (i.e., majority of the vote). A 

detailed explanation of the procedure followed is provided 

in Section 5.4 . 
• Scan time - timestamp that reflects the time when the app 

was scanned by the VirusTotal AV engine, thus generating 
the parsed detection report. 

• Soft Label - binary feature that indicates if the application 

is malware or be- nign according to the data source. A value 
of 0 denotes a benign application while a value of 1 indi- 
cates malware. 

• Hard Label - binary feature that indicates if the application 

is malware or legitimate according to the detection report 
and its source. A value of 0 denotes a benign application, a 
value of 1 indicates malware and a value of -1 denotes a du- 
bious sample. This label is explained in detail in Section 5.2 . 

From the dynamic perspective, the following features are 
defined for each application: 

• System Calls - absolute frequency of each specific system 

call issued by the app during the run-time. As two distinct 
devices were used to collect these features, powered by dif- 
ferent CPU architectures (i.e., x86 for the emulator, ARM 

for the real device), two distinct syscalls set were retrieved. 
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Even though x86 and ARM architectures have different sys- 
tem calls set, for the sake of consistency of the datasets, 
the union of both system calls sets was used to generate 
the final system call set, composed of 288 features. More 
specifically, the x86-arch system calls set is limited to 212 
features while the ARM-arch set encompasses the whole 
288 feature set. 

• Total System Calls - total number of system calls issued by 
the application during the run-time. 

As a result of the data processing stage, 489 features were 
generated to characterize each application that composes 
each of the final device-related datasets. More specifically, 313 
numeric, 172 cat- egorical, and 4 list features are provided for 
each sample in both datasets (i.e., emulator and real device). 
Regarding the feature type, 289 are dynamic features , collected 

using advanced dynamic analysis procedures, while 200 are 
considered static features, collected using basic and advanced 
static analysis techniques. 

5. Results 

5.1. Final Datasets: Emulator vs. Real device 

The dynamic step acted as a filter step for the applications, 
just selecting for each final dataset the ones that were suc- 
cessfully installed and executed on each device. As a result, 
even though the initial dataset was formed by the same num- 
ber of apps (i.e., 93,894), split into 58.4% malware apps (i.e., 
54,834 samples) and 41.6% benign apps (i.e., 39,060 samples), 
the final datasets show different compositions, as provided in 

Table 8 and Table 9 . The Initial column is the same for both ta- 
bles, as it provides the composition of the initial dataset. The 
column Install Failed refers to the applications that were not 
successfully installed on the device. The most common rea- 
son for that was that the app was not compatible, not having 
the native libraries required for the specific architecture. That 

Table 8 – Emulator final dataset. 

Class Initial 
Install 
Failed Dynamic Analysis Final 

Failed Processed 

Mal 54,834 19,788 2,213 32,822 28,745 
Leg 39,060 2,000 1,797 35,263 35,246 

Total 93,894 21,788 4,010 68,085 63,991 

Table 9 – Real Device final dataset. 

Class Initial 
Install 
Failed Dynamic Analysis Final 

Failed Processed 

Mal 54,834 6,527 2,463 45,844 41,382 
Leg 39,060 422 1,860 36,778 36,755 

Total 93,894 6,949 4,323 82,622 78,137 

error was reported, when trying to install, as INSTALL FAILED 

NO MATCHING ABIS . 
Another reason was the lack of valid or any certificates 

inside the app, thus INSTALL PARSE FAILED NO CERTIFICATES 
message was raised. Both types of errors ended up with the 
same result, the app was not successfully installed, being dis- 
carded, and not further processed for that specific device. The 
column Dynamic Analysis is split into two subcategories: Failed 
and Processed . The subcategory Failed refers to applications 
that were successfully installed but due to either of the mon- 
key tool not being able to start the application (i.e., main ac- 
tivity not defined) or the debugger failing to attach to the pro- 
cess, the dynamic data was not possible to collect. As a re- 
sult, those applications were discarded for the next steps. The 
subcategory Processed refers to the apps that were successfully 
installed and dynamic data were able to be collected. The col- 
umn Final , provides the final dataset compositions when dupli- 
cated samples (i.e., SHA-256 collisions) are removed from the 
processed data. Therefore, the final datasets for each device are 
the applications from the initial dataset that were successfully 
installed and processed , thus the dynamic analysis was success- 
ful, and their hash value was unique. Finally, the rows in these 
tables indicate the app class , malware or benign, and the total 
values. 

The emulator final dataset composition is provided in 

Table 8 . A total of 63,991 apps compose this dataset, indicat- 
ing that 68,2% of the apps from the initial data were success- 
fully processed and found unique (i.e., 72,5% before the re- 
moval of the duplicates). About 4,3% were installed but failed 

and 23,2% directly failed to be installed. The class composi- 
tion of this final dataset is slightly unbalanced towards the 
benign class, being 44.9% malware and 55.1% benign applica- 
tions. Even though this proportion may seem reasonable, the 
initial malware dataset was larger than the benign dataset, 
meaning that a considerable amount of malware applications 
failed to be installed in the emulator. More specifically, 19,788 
malware apps directly failed to be installed, which represents 
36.1% of the initial malware dataset versus just 5.1% of the 
benign samples with respect to the initial legitimate dataset. 
As a result, 91% of the failed-to-be-installed samples are mal- 
ware apps. This fact enables to conclude that malware tends 
to not be compatible with emulators (i.e., x86 architecture), 
thus being highly constricted by the architecture of the de- 
vice. Therefore, in the case of malware, incompatibility issues 
can hamper significantly the collection of dynamic features in 

emulated environments. 
The real device final dataset composition is provided in 

Table 9 . A total of 78,137 apps compose this dataset, indicat- 
ing that 83,2% of the apps of the initial data were successfully 
processed and found unique (i.e., 88% before the removal of 
the duplicates). About 4,6% were installed but failed to be pro- 
cessed and 7,4% directly failed to be installed. The class com- 
position of the final dataset is slightly unbalanced towards the 
malware apps, with proportions closer to the initial dataset. In 

this regard, 53% of the final dataset are malware apps (58,4% 

in the original). The 12% of the initial malware dataset failed 

to be installed on the real device and just 1.1% of the benign 

applications. Furthermore, and in a similar fashion as in the 
emulated device, 94% of the failed apps belong to the malware 
dataset. These figures show that, as in the emulator, acquiring 
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dynamic data is more challenging for malware samples than 

benign applications. 
As can be inferred from Table 8 and Table 9 , the duplication 

issue was more significant in the malware sets than benign sets, 
an expected side-effect of the usage of overlapping malware 
repositories and the scarcity of data sources. 

As a result, the comparative inspection of the two final 
datasets shows that dynamic analysis of malware apps in the 
emulator is a more challenging task than in the real device. In 

both malware datasets, similar numbers and proportions of 
apps were installed but failed to be processed, thus the main 

difference lies in the incompatibility issues , when the apps could 

not be installed. Although emulators are easier to manage and 

deploy than real devices, their architecture, inherited from the 
host machine, poses challenges to dynamic malware analysis, 
as many apps might not be compatible with x86 devices. This 
fact could condition, impact, and bias the results obtained us- 
ing emulators. Consequently, the underlying CPU architecture 
appears to be an important conditional variable to be taken 

into account when performing dynamic malware analysis. 

5.2. Final Datasets: Soft vs. Hard label 

The final datasets, discussed in Section 5.1 , base their com- 
position according to the unique and successfully processed 

samples by data source, reported in Table 5 and Table 6 . Each 

sample processed was labeled, as either benign or malware, 
according to the original source of the data (i.e., benign or mal- 
ware repository), without any further analysis, defining their 
source label or soft label. 

Nevertheless, after the data processing step, the analysis of 
the detection results arouse the possibility of misclassification 
issues from the original sources. More specifically, based on 

the detection reports collected, some allegedly benign sam- 
ples, gathered from trusted benign sources, reported a non- 
zero malware detection ratio (i.e., they were detected as mal- 
ware for at least one AV). Similarly, a small number of al- 
leged malware samples, from well-known malware reposito- 
ries, were found to have zero malware detection ratios, mean- 
ing that none of the AV detected them as malware. As a re- 
sult, the suspicion of some data misclassification , from some 
sources, shaped the concept of determining a hard label . The 
hard label is based on the detection results and strictly applies 
the following rules: 

• A benign sample has a zero-valued malware detection ratio 
AND originates from a trusted legitimate source. The coded 

hard label for benign data is 0. 
• A malware sample has a non-zero malware detection AND 

belongs to a malware repository AND a malware family 
name is reported. The coded hard label for malware data 
is 1. 

• Any mismatch with the two conditions stated above is la- 
beled as -1, indefinite class. It indicates that the ground- 
truth label cannot be ensured and further inspection must 
be performed. Assigning any other label would be prone to 
misclassification issues. 

The hard label aims to provide better quality data by cumu- 
lative evidence towards the label. So, in order to categorize a 

Table 10 – Distribution of labels in the emulator dataset. 

Class Soft label 
Hard label 

Indefinite Definite 

Mal 28,745 91 28,654 
Leg 35,246 4,437 30,809 

Total 63,991 4,528 59,463 

Table 11 – Distribution of labels in the real device dataset. 

Class Soft label 
Hard label 

Indefinite Definite 

Mal 41,382 165 41,217 
Leg 36,755 4,856 31,899 

Total 78,137 5,021 73,116 

legitimate sample with the hard label , the soft label must be 
supported by the additional evidence of not being detected 

as malware by any scanner. This does not provide complete 
certainty about the label, as malware scanners can be by- 
passed ( Cai and Yap, 2016 ) and have been evaded ( Zheng and 

Xu, 2015 ), but it creates additional support, reinforcing the as- 
signed label. Similarly, the malware soft label must be sup- 
ported by being found as malware for at least one AV and, ad- 
ditionally, having a malware family name reported. This last 
extra-condition aims to avoid cases where just a few scanners 
detect the sample as malware in a vague and non-defined way, 
making it prone to be a false positive . Therefore, the hard label 
aims to provide more certainty around the assigned label, re- 
ducing the impact of noisy, misclassified and low-quality data 
coming from dubious samples, an essential requirement to 
build effective machine learning detection systems. 

The composition of the final datasets regarding the soft la- 
bels and hard labels are provided in Table 10 for the emulator 
and Table 11 for the real device. The Indefinite column corre- 
sponds to the dubious samples, categorized as -1 in the hard 
label but assigned with the corresponding 0 or 1 value, depend- 
ing on the data source in the case of the soft label . 

As reported in Table 10 for the emulator dataset, 91 samples 
from the malware dataset are categorized as indefinite while 
4,437 from the benign dataset, a remarkable difference be- 
tween both data sources. Nevertheless, from the 4,437 sam- 
ples of the benign dataset, 2,362 were detected by just 1 AV, 
656 by just 2 AVs, and 225 by 3 AVs. As a result, 3,243 of these 
4,437 samples are detected by 3 AVs or less, which is far from 

the average number of positive AV detections for the malware 
dataset (i.e., 30), which suggests they are likely false positives . 
A total 744 of the 4,437 samples have more than 10 positive 
detections and just 13 of these are equal or over the average 
number of positive detection on the malware dataset (i.e., 30 
or more AV detections). These facts strongly suggest that the 
majority of the misclassified samples may correspond to false 
positives or false alarms triggered by the antivirus scanners. 

Similarly, based on Table 11 , for the real device dataset, 165 
malware samples are labeled as indefinite and 4,856 from the 
benign dataset. As in the emulator case, there is a significant 
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difference between both datasets. More specifically, from the 
4,856 indefinite benign samples, 2,695 got just 1 positive AV de- 
tection, 680 got 2 and 244 just 3 AV detections. Therefore, 3,619 
of the 4,856 samples were detected by 3 AVs or less, far from 

the mean of positive AV detections for the malware dataset 
(i.e., 30,47 AVs), which, again, suggests they could be false pos- 
itives . Just 768 of the 4,856 samples are detected by more than 

10 AVs and just 12 of them are over the mean of positive AVs 
detection on the corresponding malware dataset (i.e., 31 or 
more AV detections). Thus, these figures suggest that, as in the 
emulator case, the majority of the misclassified samples corre- 
spond to false positives , flagged erroneously by some of the AV 

scanners. 
As a consequence of the hard labeling process, removing the 

dubious samples to increase the quality of the data, the final 
datasets were reduced around 7%. Even though most of the 
data defined as indefinite might be considered false positives , 
only a deeper inspection could guarantee it. As most of the 
detection mechanisms used by AVs just use static data, they 
can be easily bypassed but also prone to false alarms ( Cai and 

Yap, 2016 ). Furthermore, as new malware samples are dis- 
covered on a daily basis, becoming known , these static fea- 
tures are constantly updated. Consequently, samples consid- 
ered malware-free today might be detected as malware in the 
future, thus creating uncertainty around the ground-truth la- 
bel. Therefore, for the sake of rigorousness, dubious samples 
were categorized as indefinite , but it is up to the user of the 
dataset to assess and decide what samples are included or ex- 
cluded from the final dataset and what labels are preferred, ei- 
ther the soft labels , trusting the source, or the hard labels , trust- 
ing the AVs results. 

5.3. (When) Time Matters: Metadata Analysis 

The importance of assigning a date to a malware sample 
arises from the fact of a phenomenon called concept drift , di- 
rectly related to machine learning and forensic analysis. Mal- 
ware is a non-stationary, constantly evolving phenomenon, 
with its key features and characteristics prone to change over 
time. Consequently, relevant features to characterize and dis- 
criminate old samples may differ significantly from the ones 
relevant for recent or future samples ( Jordaney et al., 2017 ). As 
the main consequence of this rapid evolution, it becomes an 

extremely challenging task to generate models that general- 
ize well over extended periods of time (i.e., detecting well past, 
present and future samples). Concept drift on data severely 
impacts the performance of ML models over time until they 
become obsolete. Android malware classifiers and detection 

rules can become unsustainable in the long term, outdated 

as malware evolves. Hence it becomes critically important to 
place malware in its temporal context in order to detect and 

react against the changes in malware over time and on time 
( Hu et al., 2017 ). 

Unfortunately, there is no straightforward and reliable 
technique to date an Android app. As timestamps can eas- 
ily be modified, purposely or not, the date of Android applica- 
tions is a challenging, almost infeasible, task. Even though the 
ground-truth timestamp is unlikely to be achieved, approxi- 
mations can be deemed useful in this matter. In this research, 
4 timestamps are used to date applications in an approximate 

Table 12 – Timestamps validity in the emulator dataset. 

Table 13 – Timestamps validity in the real device dataset. 

manner when the ground-truth is not accessible. Therefore, 
Earliest Modification, Last Modification, First Seen VT and First Seen 
ITW were extracted, providing different approaches to approx- 
imate the date of a sample. 

Table 12 provides information about the valid and not valid 
timestamps for each approach for the emulator dataset while 
Table 13 reports the same information for the real device 
dataset. For the purpose of this research, a valid timestamp is 
defined as those timestamps that are possible for the app to 
belong to, disregarding its accuracy, thus encompassing from 

2008, the first Android OS version release, to 2020. Contrarily, a 
not valid timestamp occurs when the timestamp data is miss- 
ing/not defined or the date is not factually possible for the An- 
droid app to exist (i.e., dates before 2008 and after 2020). 

As can be observed on Table 12 and Table 13 , both datasets 
show similar distribution trends regarding the timestamps. 
More specifically, in both cases, the First Seen VT timestamp 

shows valid values for all the applications in the dataset. De- 
spite its dubious accuracy, as will be explained later, it pro- 
vides valid data for the whole dataset. Contrarily, First Seen ITW 

timestamps are missing for almost all samples in the legiti- 
mate datasets and just valid for some malware samples. De- 
spite that, they are presumably the most accurate of all the 
timestamps. Both First Seen VT and First Seen ITW values, when 

not missing, they are always comprised between 2008 to 2020, 
thus being always valid . 

Regarding the apk inner timestamps, the Earliest Modifica- 
tion is valid for the vast majority of applications but it’s cer- 
tainly not as accurate as the Last Modification timestamp, as it 
tends to refer to an early timestamp, not indicating the last app 

update or release, what Last Modification may reflect. The Last 
Modification timestamp provides valid information for almost 
all the samples and it is preferred due to its more likely ac- 
curate nature. Finally, as reflected in the provided tables, both 

for emulator and real device, even though it may seem the op- 
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Fig. 2 – Emulator Earliest Mod valid year distribution. 

Fig. 3 – Emulator Last Mod valid year distribution. 

posite, legitimate applications have more not valid values than 

malware apps. 
As a result, if not altered purposely, the Last Modification 

timestamp should provide accurate infor- mation about an 

app’s creation/release date and it is widely available for most 
samples, thus being the preferred option. The First Seen ITW 

would also provide accurate temporal context but the lack of 
values in the vast majority of samples makes it a not preferred 

choice when a large number of samples are needed. Thus First 
Seen VT arises as the second preferred option due to its com- 
plete validity , despite its inaccurate, delayed nature, related to 
the users’ activity (i.e., submission time). The Earliest Modifica- 
tion seems to provide inaccurate data, not preferred for tempo- 
ral placement purposes if the information is not valid or differs 
excessively from the Last Modification date. 

The valid distributions for the emulator data set for each of 
the timestamps are provided in Fig. 2 , Fig. 3 , Figs. 4 and 5 . The 
green bars represent the benign samples while the red bars 
correspond to malware apps. For the sake of interpretation, 
numbers are added for those bars whose frequency is smaller 
than 150. 

Fig. 4 – Emulator First Seen VT valid year distribution. 

Fig. 5 – Emulator First Seen ITW valid year distribution. 

The Earliest Modification timestamps for the emulator data, 
provided in Fig. 2 show that the vast majority of valid sam- 
ples are concentrated between 2010 and 2011, while the rest of 
years show a much smaller proportion of samples. The most 
recent years have a significantly lower quantity of applica- 
tions, especially in the case of legitimate applications, thus 
providing limited data for the years from 2017 to 2020. 

The Last Modification timestamps, which are provided in 

Fig. 3 , show a similar trend than the Earliest Modification times- 
tamp, with most of the valid samples concentrated between 

2010 and 2011. However, the Last Mod data is more spread 

and populated in recent years, having more than 150 apps 
per year in all years in the period encompassing from 2017 
to 2020. In this case, the very early years show more missing 
data, with values less than 150 samples per year in 2008 and 

2009. 
The First Seen VT timestamp was found as the most com- 

plete data in terms of validity . Nevertheless, in terms of cover- 
age , as shown in Fig. 4 , the data are scarce for the early years, 
2008-2010, but more prevalent in the last years. This fact em- 
phasizes that these data are generally subject to delay with re- 
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spect to the Last Modification timestamp, thus suggesting lesser 
accuracy, being based on the users’ proactive behavior submit- 
ting apps to generate the timestamp. 

The First Seen ITW timestamp was suggested to be the 
most accurate (i.e., it marks its first seen online, anywhere) 
but clearly incomplete, lacking coverage and prevalence in all 
years as evidenced by the values and skewed distribution in 

Fig. 5 . In this case, information for benign data is significantly 
missingin all years. 

The same trends on the emulator data are confirmed for 
the real device data. For the sake of readability of the text 
and its comprehension, avoiding unnecessary repetitions of 
figures, the real device distributions are provided in Appendix 
A . As can be observed, in both cases, there is no exact and 

completely certain way to assign a date to an application. All 
timestamps analyzed may provide some temporal approxi- 
mations but the exact date of inception of an application ap- 
pears to be hardly reachable. The ground-truth timestamp for 
Android apps seems to be certainly not achievable for any of 
them. 

Last modification , a reference of the last time any of the 
files inside the apk was modified seems the most natural op- 
tion to assign a date for an application and should provide 
relatively accurate results. However, this metadata informa- 
tion can be tampered with and modified purposely by at- 
tackers. As a result, even though this is not a common prac- 
tice found in Android malware authors, this fact must be 
taken into account, not relying completely on any of the ap- 
proaches as ground-truth but as approximations (e.g., times- 
tamps with last modification in 2107 can be found in the 
dataset). 

First Seen VT is a timestamp based on VirusTotal which in- 
forms about when the application was first submitted. This 
data cannot be tampered with by attackers but it can be inac- 
curate as depends on the action of users (i.e., someone has to 
submit the file), thus it can never be exact but relatively de- 
layed, except in the case that the malware author uploaded it 
to self-check the detection ratio. 

First Seen ITW is the time reference that indicates when the 
application was seen online, anywhere, for the first time. As 
a result, this timestamp may also be prone to delays, but pro- 
vide a more accurate timestamp than the First Seen VT . It is a 
better approach than First Seen VT , but it is harder to collect 
and not possible in many cases. Earliest modification is placed 

as the least preferred option for its inaccurate nature as any of 
the files inside the app could exist much time before the ap- 
plication (i.e., that would be the reported timestamp) or report 
a not possible value, such as 1980. Therefore, Last modification 
and First Seen VT approaches seem the preferred options when 

the temporal context for an app is needed. Even though their 
accuracy might be dubious, they can provide a good approx- 
imation if they have not been tampered with or not delayed 

significantly. 

5.4. Malware Family Attribution 

Malware use a great variety of techniques and means to ac- 
complish their malicious intentions. These intentions are em- 
bodied in the app’s source code by the malware author. Once 
new malware is detected, the samples are studied by spe- 

cialists to determine, based on its characteristics, if it is a 
known malware variant or an unknown one. Malware vari- 
ants are build using the same base code from another known 

malware (i.e., AVs have developed a signature to detect it) 
thus composing a malware family. Therefore, a malware fam- 
ily is a set of malware that has been generated from the 
same source code. When these variants include different tools 
or techniques they are denoted as descendants ( Cohen and 

Walkowski, 2019 ). 
Malware family attribution allows classifying mal- 

ware samples into well-known categories, enhancing 
malware identification, characterization, and detection. 
However, even though some malware families have well- 
established denominations, it does not exist any convention 

on malware family naming. For example, the sample with 

SHA-256 hash value 727433bf595c257b029812106142d7ae2 
9682a9a125c8038314cc254fd2cdbdf is detected as belonging 
to the Steek malware family for some AV vendors, to Fatakr 
malware family for some others, an unnamed type of An- 
droid trojan (i.e., TrojanClicker.AndroidOS.t), just a trojan 

(i.e., Trojan (0048d7e51)), a generic Android malware (i.e., 
Android/Generic.AP.8CFF0!tr), malware named using custom 

cryptic denominations (i.e., Artemis!A879EF0F3DAA), just 
malware (i.e., Malware (ai Score = 100)) or a malware agent (i.e, 
Andr.Malware.Agent-1518794). Therefore, a single malware 
sample can receive as many denominations as the number of 
AV scanners processing the file, even for well-known malware 
families such as the Steek/Fatakr family. As a consequence of 
the lack of harmonization and convention, malware scanners 
tend to use their own naming conventions ( Kaspersky 2021 ; 
Microsoft 2021 ), sometimes cryptic denominations, which 

pose challenges to malware family identification and cate- 
gorization, even for malware analysts ( Hahn, 2019 ). Malware 
detection is critical to prevention, but proper identification 

is crucial for malware elimination, cleaning, and restoration 

after an infection ( Hahn, 2019 ). For research purposes, mal- 
ware family attribution helps to characterize and understand 

different malware categories, their evolution, and the devel- 
opment of more specific and effective counter-measures such 

as for instance, for ransomware. 
Aiming to minimize the malware family naming confusion, 

all final datasets samples were scanned using VirusTotal AV 

engine ( VirusTotal 2020 ). From the detection reports obtained, 
the most prevalent malware family provided by the scanners 
was imputed to the specific sample (i.e., the majority of the 
vote among all positive scanner results). The heuristic proce- 
dure was executed as follows: 

1 An initial database of malware families was generated 

from online resources and malware families research stud- 
ies. When possible, malware families with several denom- 
inations were categorized in a single label, which included 

all denominations separated by a slash (”/”). For instance, 
”Steek/Fatakr”. 

2 All samples, including the allegedly benign ones, were 
scanned, one at a time, using the AV scanner engine, and 

a detection report was retrieved for each app. 
3 The app’s detection report was parsed and all the positive 

scanner results were confronted with the known malware 
family names in the database. 
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Table 14 – Top-15 malware families in final data sets. 

4 A family name from the database was imputed to every 
sample based on the majority of the vote of all the indi- 
vidual positive results. In case of positive detection but no 
malware family was imputed (i.e., the malware family was 
unknown or not included in the database), the report was 
analyzed manually and imputed by manual inspection if a 
malware family was reported. The new suggested malware 
family was added to the database and the majority of the 
voting process was repeated. 

As a result of these heuristics, 99.7% of the samples present 
in the final datasets have a malware family attribution. More 
precisely, 209 malware families are represented in the emu- 
lator dataset while 240 in the real device dataset. Therefore 
31 malware families are represented in the real device dataset 
but not in the emulator dataset. Even though this difference is 
consequent with the smaller set of samples that compose the 
final malware set on the emulator, as discussed in Section 5.1 , 
it also evidences that some malware families are specifically 
tailored for ARM devices, thus not compatible with x86 em- 
ulators. Therefore, in these cases, the applicability of emula- 
tor sandboxes in the study and detection of such families is 
not possible, limiting the capabilities of emulators as foren- 
sics and detection platforms. 

Table 14 shows the 15 most prevalent malware families in 

each dataset, ranked in descending order. The top 15 malware 
families account for a total quantity of 24,099 samples in the 
emulator dataset (i.e., 84.1% of the hard label malware set) and 

34,733 in the real device dataset (i.e., 84.26% of the hard label 
malware set). 

As reported in Table 14 , the same malware families com- 
pose the most prevalent 15 malware families in both datasets. 
However, even though the total proportion of these families 
on both datasets is almost identical (i.e., ̃  84%), the distribu- 
tion differs significantly for some malware families. Airpush 
is the most prevalent family on both datasets while the sec- 
ond most prevalent family differs notably on both datasets. 
SMSreg , which is the second most prevalent family in the real 
device, with 5,019 samples, representing approximately 15% of 
the top 15 samples, places very low in the emulator dataset, as 
this family is just represented by 497 samples, the 2% of the 

Fig. 6 – Emulator categories distribution along years using 
First Seen VT timestamp. 

top 15. This remarkable difference indicates that SMSreg in- 
stallation may require, in many variants, ARM native libraries 
to collect device and user-related sensitive information that 
is usually not available or ill-defined on emulators, such as 
the International Mobile Equipment Identity (IMEI) number ( F- 
Secure 2021 ). A similar but less significant difference is found 

on Airpush and Boxer families. The rest show similar propor- 
tions on both datasets. 

The top 15 malware families can be embedded into four 
major malware categories (i.e., adware, fraudware, spyware, 
and ransomware). The color intensity in Table 14 groups them 

and indicates the degree of threat they pose for the users (i.e., 
darker meaning riskier). Adware trojans, referenced with the 
lightest red color, are represented by 6 malware families, be- 
ing Airpush the most aggressive and prevalent (i.e., Airpush, 
Agent, FakeApp, Kuguo, Dowgin and Youmi). Besides, 3 fraud- 
ware trojans (i.e., Boxer, FakeInst and SMSreg), the first ran- 
somware for Android (i.e., Slocker) and 5 spyware apps (i.e., 
DroidKungFu, GinMaster, BankBot, Simhosy and Malap) com- 
plete the list. Even though they all pose security threats and 

high risk for Android users, those using exploits and leverag- 
ing root privileges, with the purposes of extorsion (i.e., ran- 
somware), persistent access, or stealing sensitive data (i.e., 
spyware) are of special concern. 

The four malware major categories and their distribution 

along years in the datasets are depicted in Figs. 6 and 7 . The 
timestamp used is First Seen VT , indicative of the year when 

VirusTotal received the sample for the first time. This tem- 
poral context gives an indicator of malware evolution and 

trends over time. More concretely, Fig. 6 shows the proportion 

of each malware category from the most prevalent families 
along years for the emulator dataset. Fig. 7 shows the same 
information for the real device dataset. As can be noticed, 
both graphs show similar trends, indicating a ransomware 
outbreak in 2015. Adware and fraudware were the most preva- 
lent families in the early years of Android while more recently, 
with the surge of smartphones, spyware has become more 
prevalent. According to the data collected, 2017 is a partic- 
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Fig. 7 – Real device categories distribution along years 
using First Seen VT timestamp. 

Fig. 8 – Emulator categories distribution along years using 
Last Modification timestamp. 

ular year where an increase in adware, fraudware, and ran- 
somware disrupted the increasing trend of spyware. 

The First Seen VT timestamp is a good indicator of the gen- 
eral trend, as can’t be manipulated by attackers, but is lim- 
ited to the VirusTotal activity time (i.e., not much data before 
2011) and dependent on the behavior of the users, in relation 

to when the file is submitted to scan. A different and comple- 
mentary perspective can be obtained using the Last Modifica- 
tion timestamp. When not tampered with, it allows getting a 
more exact timestamp about the application’s temporal con- 
text Figs. 8 and 9 provide the proportion for the top 15 families 
major categories along years, using the Last Modification times- 
tamp. 

As can be noticed from Fig. 8 and Fig. 9 , there exists a 
similar trend as shown by the First Seen VT timestamp but 
with the remarkable exception of ransomware apps. In both 

cases, the outbreak of ransomware apps has its starting point 
in 2014, thus noticed by VirusTotal with delay. This fact is 
confirmed in Lipovsky´et al., 2016 , placing 2014 as the year 

Fig. 9 – Real device categories distribution along years 
using Last Modification timestamp. 

when ransomware first appeared in Android devices. How- 
ever, using this timestamp, 2008 shows a significant preva- 
lence of ransomware which is not possible. This fact suggests 
that the timestamps are tampered with for some specific ran- 
somware apps, misplacing these data in the timeline. Despite 
this fact, the general trend and proportions are confirmed us- 
ing both temporal contexts, evidencing the goodness of both 

approaches as approximate timestamps to date applications 
and trends in malware families. 

5.5. Dynamic App Profiling 

The dynamic features collected for all the applications in both 

datasets are system calls, also referred to as kernel calls or 
syscalls for short, issued at run-time without any user inter- 
action (i.e., for max. 60 seconds). The total feature set of sys- 
tem calls is composed of 288 Android OS system calls. For each 

sample, the absolute frequency (i.e., total number) of each sys- 
tem call during the run-time is reported. An additional fea- 
ture, total syscalls , was constructed, reporting the summation 

of the total number of syscalls issued by the application dur- 
ing its execution. As explained before, even though different 
architectures have different system calls set, for the sake of 
homogeneity of the datasets’ features, the larger system call 
set (i.e., real device) was used to define the total amount of sys- 
tem call features (i.e., 288). For that reason, more 0-valued or 
not-issued system calls can be found in the emulator dataset 
than in the real device dataset. 

The Table 15 provides a summary of descriptive statistics 
computed for the total syscalls feature in both datasets, for 
each app class (i.e., benign and malware) and for both labels 
(i.e., soft and hard). To improve the interpretability of the ta- 
ble, the soft labels statistics are provided in white-colored cells 
while the dark-colored cells provide the information regard- 
ing the hard labels . The statistics calculated are: mean, stan- 
dard deviation (referred as S.D.), range interval (i.e., minimum 

and maximum value), quartiles (i.e., 25% - Q1, 50% - median, 
75% - Q3) and interquartile range (i.e., IQR = Q1 - Q3). The total 
amount of samples of each dataset is reported as the n value. 
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Table 15 – Descriptive statistics of system calls. 

The average and median provide information about the cen- 
tral tendency values of the total syscalls distribution for each 

dataset, type, and label. They provide the notion of middle or 
expected values while the rest of statistics are related to disper- 
sion or variability of the data. 

As can be noticed, even though in the benign datasets case, 
the soft and hard labels datasets sizes (i.e. n value) are signif- 
icantly reduced, the values of the statistics are not really af- 
fected, showing similar values, slightly reduced for almost all 
statistics in the case of hard labels. In all cases, when malware 
and benign datasets are observed, the mean is significantly 
greater than the median, which is not greater than 3,300 in 

any case. This fact shows that 50% of the apps, either malware 
or benign, issued less than 3,300 syscalls and that there are 
some extreme values or applications that issued a huge amount 
of syscalls (i.e., outliers). Furthermore, 75% of the apps issued 

less than 9,000 syscalls with the central 50% of apps grouped 

around a range of maximum 7,954 syscalls, which emphasizes 
the fact that there is a great majority of applications issuing 
not more than 9,000 syscalls and a minority of applications 
issuing much greater values, as evidenced by the maximum 

values in all ranges, over 524,000 syscalls. This fact proves that 
the total syscalls distribution is not symmetrical in any case, 
being right-skewed with some outliers that affect the value of 
the mean, making it a not good representative of the expected 
value. 

The computed statistics reported in Table 15 show remark- 
able behavioral differences between emulators and real de- 
vices. The statistics considerably differ between classes on 

both datasets. In the case of malware, the statistics show that 
malware apps are less active in emulators than in real devices, 
with just a few extreme exceptions that have a powerful im- 
pact on the mean. This fact could suggest that some sophisti- 
cated malware may detect the emulator environment thus be- 
coming less active and hide its real behavior. However, these 
differences could also be originated by the significant differ- 
ence between both datasets, suggesting that ARM-dependent 
apps may be the cause of such increase. Further investigation 

should be performed to analyze if the cause of these behav- 
ioral differences is caused by the platform or the app. On the 
contrary, in the case of benign apps, with similar dataset sizes, 
the statistics show a significant more active behavior in the 
emulator than in the real device. More specifically, the most ac- 
tive apps (i.e., over the third quartile) issued more than 6,600 
syscalls in the emulator while in the real device this value is 
slightly over 2,000. These behavioral differences were already 

pointed out by Guerra-Manzanares et al., 2019 , suggesting that 
an app behavior (i.e., system calls) might not be identical across 
devices. This fact challenges the identical behavior assump- 
tion usually made in research studies to justify any platform 

selection. A more detailed inspection of these differences at 
the system call level is provided in Table 16 . 

The total quantity of distinct system calls actually used 

per dataset (i.e., used syscalls set, at least once), with re- 
spect to the system calls feature set (i.e., 288) are reported 

in the fourth and fifth column of Table 16 . The subset of the 
five most used syscalls and the proportion of apps in the 
dataset that issued them, at least once, are reported in columns 
sixth and seventh. The eighth column reports the most issued 
syscalls with respect to the total amount of issued system calls by 
all the apps in that specific dataset, a figure reported in the 
tenth column. The ninth column provides information about 
the proportion of syscalls over the total quantity of syscalls 
issued on that specific dataset that was caused by each of 
them. Similarly as before, the soft and hard labels datasets 
show similar values and sets. They are reported for the sake 
of completeness, but their minor differences are not further 
discussed. 

As reported in Table 16 , not all the available syscalls were 
issued by the applications at run-time. The variability of the 
syscalls is reduced to a smaller subset of them, issuing, at 
most 44.4% of the whole syscalls set (i.e., 128 out of 288 
syscalls). This fact seems even more remarkable in the emu- 
lator malware dataset where the smallest subset of syscalls 
is found, as just combinations of 99 syscalls are issued by 
28,745 apps. However, it is worth noting that even it may 
look a considerably smaller fraction, the final syscalls feature 
set was related to the ARM architecture, which showed more 
syscalls available than the x86 architecture thus the propor- 
tion is greater when taking into account its own feature set. 
As referenced before, the larger ARM-architecture syscalls set 
was used for the sake of homogeneity of the datasets as it in- 
cludes the x86-related ones. Thus, when taking into account 
just the specific x86 syscalls (i.e., 212), the fraction for the emu- 
lator grows to 46.7% for the malware dataset and 57.5% for the 
benign dataset. This fact suggests that these differences are 
due to the extended feature set used, but not that in the em- 
ulator fewer system calls are used. However, a real difference 
is found between the size of the syscalls set used by malware 
and benign samples. In both platforms, the benign samples 
use a larger set of syscalls than the malware. Benign samples 
consistently use a wider variety of syscalls even when the to- 



22 c o m p u t e r s  &  s e c u r i t y  1 1 0  ( 2 0 2 1 )  1 0 2 3 9 9  

Table 16 – System calls usage statistics. 

tal amount of syscalls issued is significantly lower, as in the 
case of the real device. 

The most used syscalls and most issued syscalls sets, reported 

in the sixth and eighth columns, are similar across class 
types (i.e., malware and benign) within the same platform but 
completely different between platforms. More specifically, the 
syscall clock _ gettime appears to have a remarkable significance 
in the real device, causing over 35% of the total amount of 
syscalls for that device in all cases, and being issued, at least 
once, by 98.9% of the apps run in that platform. Contrarily, in 

the case of the emulator, this syscall does not show the same 
prevalence, being excluded from the top 5 syscalls subset. For 
the emulator, two distinct syscalls arise as most used and most 
issued, ioctl and read , respectively. The read syscall appears to 
be much less important for the real device dataset than for the 
emulator dataset. It is the most issued syscall in the emulator, 
accounting for between 11.7% to 20.4% of the total syscalls, but 
excluded from the most issued calls set for the real device. 

The total issued syscalls, reported in the last column of 
Table 16 , provides additional support to the fact, stated be- 
fore, that benign apps show a distinct, more active behav- 
ior, in the emulator than in the real device. More precisely, 
even though the benign datasets have similar sizes, the total 

issued syscalls figure is three times greater in the emulator 
than in the real device. However, in the case of malware, as 
the datasets are of remarkably different sizes, the same state- 
ment is not applicable. Therefore, Table 16 provides additional 
support to the distinct behavioral differences found by previ- 
ous research regarding distinct Android OS platforms with re- 
spect to system calls ( Guerra-Manzanares et al., 2019 ; Guerra- 
Manzanares et al., 2019 ). 

5.6. Static App Profiling 

Each application in the dataset is characterized by 200 static 
features. Permissions, the most used static features used for 
malware detection, account for the largest number of static 
features (i.e., 173). In this regard, 166 binary features report the 
standard permissions requested by apps (i.e., 1/0 value mean- 
ing requested/not requested), 3 features are constructed as 
category counts (i.e., normal, dangerous and signature), 1 bi- 
nary custom permission indicator (i.e., 1 if custom permissions 
are defined, 0 otherwise), 2 subtotal permission counts (i.e., 
total standard and total custom ) and a total count of all permis- 
sions requested (i.e., sum of standard and custom permissions) 
as reported in Table 7 . 
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Table 17 – Descriptive statistics of permissions. 

The total standard permissions provides the total quantity of 
Android standard permissions declared by the apps. The up- 
per bound is set at 166 permissions, the maximum number 
of standard permissions at the present time ( Android 2021 ). 
Table 17 provides a statistical summary of standard permis- 
sions (i.e., named as Std in the Perm column) and all permis- 
sions counts (i.e., summation of standard and custom, named 

as All ) by device type, app class and label . 
As can be noticed, in the case of permissions, there is a 

remarkable difference in all the central tendency measures 
(i.e., mode, mean and median) between malware and benign 

apps. In this regard, malware applications are characterized 

by requesting a larger number of standard and total permis- 
sions than benign applications, in both platforms. When the 
hard label is used, these differences are further emphasized. 
The measures of dispersion (i.e., range, quartiles, IQR and 

S.D.) support the same overall tendency. A remarkable differ- 
ence exists between the emulator malware and the real de- 
vice malware datasets. In this regard, the real device dataset, 
more populated, shows larger mean and median values and 

larger dispersion, suggesting that the malware that did not 
run in the emulator provide even more notable differences be- 
tween legitimate and malware applications. It is worth notic- 
ing that some malware applications requested 97 standard per- 
missions (i.e, 124 if custom permissions are added) while the 
maximum number in the benign dataset is 70 (i.e., 104 if cus- 
tom permissions are added). 

The histograms depicted in Fig. 10 illustrate the absolute 
frequency distributions of the standard permissions for each 

device type and label. The horizontal axes refer to the total 
quantity of requested standard permissions in the closed range 
[0, 70], as they concentrate the 99th percentile of apps. The 
vertical axes refer to the absolute frequency of apps (i.e., the 
quantity of apps) that requested each specific number of per- 
missions. 

All the distributions in Fig. 10 , as suggested by the values 
in Table 17 , are not symmetric, being right-skewed (i.e., longer 
right tail than left tail). The peaks of both distributions, which 

relate to the most frequent value (i.e., mode), are different, be- 

Fig. 10 – Frequency distributions of standard permissions. 

ing higher and closer to zero in the case of benign samples, in 

all cases. The variability of the malware data is greater than 

the benign data, encompassing a wider range of values along 
the horizontal axis. Furthermore, the relatively small overlap- 
ping area between the two distributions confirms the exis- 
tence of two significantly different distributions and charac- 
teristics for both classes regarding requested standard permis- 
sions. 

Table 18 provides information about the most requested 

standard permissions and the standard permission set usage 
for each device type, class and label. As the label (i.e., soft or 
hard) does not change the output significantly, it is not further 
discussed. 

As can be noticed in Table 18 , malware apps in both 

datasets use a smaller fraction of the available standard per- 
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Table 18 – Permission usage statistics. 

missions than the benign sets, even though, as shown in 

Table 17 and Fig. 10 , they tend to request more permissions 
than benign apps. However, legitimate apps, which, on av- 
erage, tend to declare a remarkably smaller amount permis- 
sions, request a wider variety of them. Columns 6th and 7th in 

Table 18 show the 5 most used permissions set. As can be ob- 
served, 4 of the 5 permissions are common for both classes: IN- 
TERNET , READ_PHONE_STATE , ACCESS_NETWORK_STATE , and 

WRITE_EXTERNAL_STORAGE , but with different orderings and 

significantly different prevalence. The INTERNET permission 

is the most requested for both classes of applications and 

across devices. This permission allows the app to open net- 
work sockets and is considered a normal permission, thus be- 
ing granted automatically when the app is installed. It is re- 
quested by 8 out of 10 benign apps and almost every malware 
app. After this common first permission, different order of the 
common features appear. READ_PHONE_STATE allows the app 

to access the phone state , which includes the phone number, 
IMEI, cellular network information, status of any ongoing calls, 
and a list of the accounts registered on the device. It is con- 
sidered a dangerous permission, being requested by a signif- 
icantly more fraction of the malware (i.e., 90%) than the be- 
nign apps (i.e., 24%). Aligned with the information provided in 

Table 17 , the top four permissions on each class ranked list 
are requested by roughly 75% of malware apps while decreas- 
ing to 25% in the case of benign apps. As a result, in general, 
based on the most requested permissions, the malware seems 
to be more interested in accessing sensitive data and ensur- 

ing connectivity (i.e., 3 of the top 5 permissions are related to 
networks) while benign apps most used permissions encom- 
pass a wider variety of access requests, including GPS location. 
The reduced list provided in Table 18 seems to imply that be- 
nign apps request more dangerous permissions than malware 
apps. In order to explore this fact, datasets’ features normal, 
dangerous and signature , which provide the total amount of 
permissions requested by the app that lay within those cat- 
egories, are represented using boxplots in Fig. 11 . Boxplots are 
a visual and condensed way to plot similarly ranged distribu- 
tions. As there weren’t visual nor numerical differences be- 
tween the boxplots of both labels, in order to avoid repetition, 
just the soft label data is provided. The horizontal axis pro- 
vides the categories values, namely, normal, dangerous, and 

signature while the vertical axis provides the number of per- 
missions requested. The body of the boxplot (i.e., solid color 
fill) is defined by the Q1 and Q3 (i.e., 25 and 75 percentiles, re- 
spectively), the central 50% of the data, defining the IQR range. 
The whiskers extend to the so-called maximum and minimum 

thresholds, computed as maximum = Q3 + 1.5 ∗IQR and mini- 
mum = Q1 - 1.5 ∗IQR . They allow categorizing data points that 
extend further as outliers or extreme values (i.e., omitted in this 
graph). The body of the boxplots is crossed by a solid blue line 
which indicates the median or 50th percentile. A dotted or- 
ange line indicates the mean or average value. 

The boxplots in Fig. 11 confirm the fact that malware apps 
use, in general, many more permissions than benign applica- 
tions, in all three categories. More specifically, the boxplots 
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Fig. 11 – Standard permissions categories boxplots. 

show that the lower 25% of malware apps request a similar 
quantity of permissions than the 75% of benign apps. This 
fact is specially remarkable in the case of dangerous and sig- 
nature permissions. In the case of malware, these differences 
are further emphasized, with longer bodies and whiskers in 

all three categories, for the case of real device malware than 

for the emulator malware. As can be observed, in all boxplots, 
the mean value is over the median, which suggests the pres- 
ence of skewed distributions, with extreme values or outliers 
in the right tail of the distributions, as shown in Fig. 10 . The 
median values, better centrality measures in skewed distri- 
butions, show that in malware the middle values are in 4 re- 
quested permissions for normal and dangerous permissions 
while for benign they are placed in 2 for normal and 1 for 
dangerous. Therefore, the boxplots demonstrate the signifi- 
cant differences in the number of permissions in general and 

categories in particular between malware and benign appli- 
cations and the tendency of malware to request over-privileges 
from the system. 

Another important aspect when dealing with permissions 
analysis is the presence of custom permissions. Although they 
cannot be traced in an analogous manner as standard permis- 
sions, as there is no common reference, the presence of them 

might be considered itself a powerful feature. Two custom 

permissions-related features are generated in this dataset: the 
presence of them (i.e., binary indicator feature) and the quan- 
tity of them (i.e., total custom permissions). Table 19 provides 
a summary of both features for each dataset, class, and label. 
The column custom perm declared provides the proportion of 
apps that declared at least one custom permission and the last 
5 columns report a summary of relevant descriptive statistics 
for those applications that declared custom permissions. 

As provided in Table 19 , 32.1% of malware apps on the em- 
ulator declared custom permissions, a 2.5 times greater preva- 
lence than the benign apps. Besides, these differences in- 

Fig. 12 – Frequency distributions of all requested 

permissions. 

crease even more in the real device, as 42.3% of malware apps 
show custom permissions, thrice more than the benign apps. 
In the case of the malware class, the soft and hard labels do 
not seem to make any difference while in the benign case 
they show a reduction in the variability, which reduces the 
mean, range, and standard deviation values. In the real de- 
vice, where the malware set is larger makes custom permis- 
sions more prevalent, as shown by greater mean, median, and 

standard deviation statistics. The range values show that in 

the most extreme cases even 42 custom permissions are de- 
fined for malware and 35 for benign data. In any case, the us- 
age of custom permissions appears to be, at least 2.5 times 
more prevalent for malware apps than benign apps, ranging 
from 1 in the majority of cases to over 24 custom permissions 
declared in the most extreme cases, for both classes. 

Finally, to further analyze the differences in requested per- 
missions between malware and benign apps, the histograms 
in Fig. 12 depict the absolute frequency distributions of all de- 
clared permissions for each device type and label. All declared 

permissions sum together the declared custom and standard 
permissions. To provide a better comparison with Fig. 10 , the 
horizontal axes are restricted to the closed range [0, 70] of re- 
quested permissions. The vertical axes refer to the absolute 
frequency of apps (i.e., the quantity of apps) that requested 

each specific amount of permissions. Note that the vertical 
axes in Fig. 12 reach 14.000, almost twice as in Fig. 10 , a fact 
that may, at first sight, jeopardize the differences when com- 
paring both histograms. 

In consequence, as evidenced by the histograms in Fig. 12 , 
when all permissions are considered, the distributions show 

greater skewness and greater peak differences in contrast to 
Fig. 10 . Further emphasizing the significant differences in per- 
missions sets and quantities between devices, labels, and es- 
pecially between classes. More precisely, almost all benign ap- 
plications lay in the range [0, 5] of requested permissions, 
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Table 19 – Custom permission statistics. 

where just a small fraction of malware is located. The vast ma- 
jority of malicious apps are spread along the horizontal axis 
but mainly concentrated in the [5, 25] interval, extended even 

further in the case of the real device malware data. 

6. Discussion 

The available datasets used for Android malware detection are 
mainly focused on the apps collected from single sources cov- 
ering short time frames, frequently from Android early years. 
The related literature studies have mostly utilized these lim- 
ited datasets. This fact neglects the detrimental effects of mal- 
ware evolution on detection systems, especially the machine 
learning-based ones. KronoDroid , the dataset presented in this 
research mainly aims to introduce comprehensive malware 
and benign app samples that encompass the whole lifetime 
of Android since its initial release until recent years. We in- 
corporated a well-established temporal perspective into the 
dataset by including various timestamps that can be extracted 

from the apps and VirusTotal. The inclusion of the time vari- 
able in Android apps is a challenging task for which there is 
no perfectly certain ground-truth or timestamp that could be 
used in all cases. Given this difficulty, in our dataset, we aim to 
present various timing options to the researchers so that they 
allow setting the seed for novel future Android malware re- 
search and enhanced detection systems that could not be per- 
formed otherwise. To the best of our knowledge, our dataset is 
the first one that contains a comprehensive temporal context 
that can be utilized in the Android malware research. 

In this regard, the timestamp of apps allows the investiga- 
tion and characterization of concept drift in Android apps and 

its proper detection to build more effective and robust models. 
Although the existing research demonstrates that it is possi- 
ble to create learning models with high accuracy results, our 
dataset enables to conduct research that further test the ap- 
plicability of models in more realistic situations. The research 

questions regarding the sustainability of high detection ca- 
pability, for instance, the required time-frame for model up- 
dates and their implications on operational and maintenance 
aspects of malware detection solutions, cannot be addressed 

without such a dataset. 
Machine learning models have promised to revolution- 

ize the intrusion or malware detection domains by identify- 
ing new variants of malicious activities where the dominant 
signature-based approaches mostly fail. If the train and test 

dataset splitting strategies of usual machine learning work- 
flows are utilized then the models may provide good results 
on the testing phase, but not generalize well to real unknown 
samples in production and deployment phases. Thus, proper 
model testing requires a tweak so that the test data should in- 
clude unknown or future malware variants which are not con- 
tained in the training dataset. Additionally, the detection rates 
of such samples should be reported. The temporal context 
of our dataset enables to easily apply such splitting strategy, 
generate proper validation/testing sets and, thus, enhance the 
generalization capabilities of the induced ML models in a do- 
main having a frequently changing threat landscape. 

Our dataset also provides the family categories of the mal- 
ware samples. Therefore, the evolution of malware families 
and their phylogenetic properties can be studied thoroughly 
when samples are placed in their temporal context. Detec- 
tion models addressing specific malware families (e.g. ran- 
somware detection) could be developed. In addition to the 
induction of enhanced detection models, it is possible to do 
characterization of families, which can lead to more general- 
ized knowledge about mobile malware. 

A malware detection solution can work on cloud or de- 
vice platforms, meaning that the source platform of a train 

or test sample may vary in a real-life application. In our pre- 
vious work, we demonstrated that system calls obtained from 

an emulator or a real device can be different so that such vari- 
ations may cause reduced detection rates if the source plat- 
forms are not taken into consideration during the model life- 
cycle ( Guerra-Manzanares et al., 2019 ). KronoDroid is composed 

of hybrid datasets collected from an emulator and a real de- 
vice. Thus, the researchers and practitioners can thoroughly 
investigate the impact of source platforms on the model out- 
puts and evaluate their detection systems that may work on 

different system architectures. 
KronoDroid provides a wide variety of static and dynamic 

features to characterize the apps within the datasets. Com- 
plementing both approaches with each other provides a more 
complete characterization that aims to overcome the limita- 
tions of single static or dynamic approaches, a common char- 
acteristic in the existing datasets and related solutions. We 
make our dataset publicly available and share it in a ready-to- 
use structured format. This format might attract more inter- 
est not only from the cybersecurity research community but 
from the machine learning community as well. Although the 
procedures about data collection from mobile apps are known 

and applied in various studies, sharing structured data rather 
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than applications themselves removes the technical difficulty 
barrier for the research groups not familiar with the cyberse- 
curity test set-ups. 

6.1. Challenges and Limitations 

In the research and data generation process the researchers 
always face challenges that may have an impact on the col- 
lected data or the results. In the case of this research, there 
are several challenges that may pose limitations on the data 
and the results obtained. 

The collection of dynamic data requires the usage of live 
devices thus requiring the selection or usage of specific oper- 
ating system versions that may have an impact on the data 
collected. For this research, Android 8.0 Oreo was selected as 
it was the most stable distribution when this research started 

(i.e., Android 9.0 was the most recent release) and it also pro- 
vided fewer compatibility issues with old samples that fail to 
execute in more recent versions of the OS. In addition, when 

testing with emulators and real devices in analogous settings, 
the emulator platforms delay the stable releases thus limit- 
ing the availability of OS selection. Furthermore, the usage of 
non-recent versions of the OS is a common practice in time- 
extended studies in order to boost compatibility and analy- 
sis quality. For instance, the authors of AndroCT , a dataset re- 
leased in 2021, used Android 6.0 version to execute the testing 
samples ( Wen Li and Cai, 2021 ). 

Another challenge emerges with the usage of emulators 
as incompatibility issues may arise (i.e., not all the apps sup- 
port these architectures) or the behavior of malware on them 

might be distinct (e.g., some malware may not trigger the 
harmful behavior if they detect to be run in emulators). 

Regarding the compatibility issue, for this research, the 
same OS versions were used both in the emulator and the real 
device (i.e., Android 8.0). As the initial dataset used is the same 
for both platforms, using the same OS versions (i.e., API level) 
on both devices ensures that the installation failure on a sin- 
gle device is due to a distinct reason (e.g., not valid certificates 
or compatible libraries) and grants methodological coherence. 
However, as stated before, the selection of an OS version al- 
ways implies that some incompatibilities may have happened 

(i.e., on both devices) and that threatens the external validity 
of the results. In any case, the non-execution of an application 

in the emulator might be an indicator of incompatibility due 
to distinct reasons than the OS if the application was success- 
fully installed in the real device. Based on this fact, the sam- 
ples that did not run on the emulator were discarded (i.e., just 
for the emulator dataset), a common practice used in other 
approaches dealing with behavioral data issues ( Cai and Ry- 
der, 2017 ; Cai et al., 2020 ). 

When considering the behavior of malware in emulators, 
it should be noted that specific malware families may in- 
clude anti-sandbox capabilities so that they may get suspi- 
cious about the platform and hide their harmful actions. In 

our previous experiments ( Guerra-Manzanares et al., 2019 ; 
Guerra-Manzanares et al., 2019 ), although we induced learn- 
ing models by using the behavioral data of all malware types 
(i.e., regardless of showing such hiding activities or not) ob- 
tained from emulators, the results were similar to the data 
gathered from real devices. In this research, we did not elabo- 

rate on the impact of such activities on the collected dataset as 
such effort is beyond our objective and requires special atten- 
tion in a separate study. Nevertheless, researchers can use our 
datasets to identify and compare the behavioral deviations of 
the same malware on real devices and emulators and provide 
reasoning about possible hiding capabilities. 

7. Conclusions and Future Work 

The changing nature of Android malware has been neglected 

by Android malware research and the available datasets, 
which provide a rigid and limited snapshot of Android mal- 
ware in a restricted time-frame. In general, the time variable 
has never had the deserved attention, disregarding the concept 
drift . Besides, the source of dynamic data and their particular- 
ities have been overlooked. However, in order to build more 
effective, robust, and time-lasting detection systems, the time 
and data platform source are critical factors that must be ad- 
dressed. 

In this research, different sources of benign and malware 
data were merged, enabling to generate a dataset encompass- 
ing a larger time-frame, and 489 static and dynamic features 
were collected. To attend to the particularities of distinct dy- 
namic data sources (i.e., system calls), an emulator and a real 
device were used, generating two equally-featured datasets. 
As a result, the main outcome of this research is a novel, 
labeled, and hybrid-featured Android dataset that provides 
timestamps for each data sample, covering all years of An- 
droid history, from 2008-2020, and considering the distinct 
dynamic data sources. The emulator dataset is composed of 
28,745 malware from 209 malware families and 35,246 benign 

samples. The real device dataset contains 41,382 malware, be- 
longing to 240 malware families, and 36,755 benign samples. 
To the best of our knowledge, this is the first research where 
the applications’ timestamps and the distinct platform sources of 
dynamic features for Android malware detection are consid- 
ered. Made publicly available as KronoDroid ,2 this dataset is the 
largest hybrid-featured Android dataset and the only one pro- 
viding timestamped data, considering dynamic sources’ par- 
ticularities and containing samples of more than 209 malware 
families. 

The detection and characterization of concept drift , further 
investigation of the dynamic differences between emulators 
and real devices, and evolution of malware families over time 
constitute part of the authors’ plans to be investigated with 

the assistance of KronoDroid . 
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Appendix A. Real Device Distributions 

Fig. A13 , A14 , A15 , A16 

Fig. A.13 – Real device Earliest Mod valid year distribution. 

Fig. A.14 – Real device Last Mod valid year distribution. 

Fig. A.15 – Real device First Seen VT valid year distribution. 

Fig. A.16 – Real device First Seen ITW valid year distribution. 
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A B S T R A C T   

The majority of Android malware detection solutions have focused on the achievement of high performance in 
old and short snapshots of historical data, which makes them prone to lack the generalization and adaptation 
capabilities needed to discriminate effectively new malware trends in an extended time span. These approaches 
analyze the phenomenon from a stationary point of view, neglecting malware evolution and its degenerative 
impact on detection models as new data emerge, the so-called concept drift. This research proposes a novel 
method to detect and effectively address concept drift in Android malware detection and demonstrates the results 
in a seven-year-long data set. The proposed solution manages to keep high-performance metrics over a long 
period of time and minimizes model retraining efforts by using data sets belonging to short periods. Different 
timestamps are evaluated in the experimental setup and their impact on the detection performance is compared. 
Additionally, the characterization of concept drift in Android malware is performed by leveraging the inner 
workings of the proposed solution. In this regard, the discriminatory properties of the important features are 
analyzed at various time horizons.   

1. Introduction 

Android operating system (OS) leads the mobile OS market since 
2012. At present, over 71% of smartphones are powered by this open- 
source, highly customizable, and versatile OS (Statista, 2021c). Its 
ubiquity combined with the open-source nature of the OS, the high 
prevalence of devices running outdated OS versions, the poor end-user 
security awareness (e.g., sideloading and running over-privileged 
apps), and the wealth of data stored in these devices make Android 
users an attractive target for cyber attackers (Rafter, 2021). Despite the 
security enhancements introduced in the OS regular upgrades, Android 
is still the most targeted mobile operating system by malware, ac
counting for over 98% of the mobile cyber attacks (Kaspersky, 2020). 
These attacks are carried out using a wide variety of attack vectors over 
the large attack surface exposed by mobile devices (Townsend, 2020). In 
2020, an average of 482,579 new Android malware samples were 
discovered per month (Statista, 2021a). Mostly trojans and adware, the 
most predominant malware types nowadays (Statista, 2021b; Cheby
shev, 2021). However, the threat landscape is not static but subject to 

continuous change. For instance, ransomware Trojans were the most 
predominant type of Trojans in 2017, whereas, in 2020, banking Trojans 
were significantly more prevalent (Unuchek, 2018; Chebyshev, 2021). 
New malware trends have emerged over time and more sophisticated 
malware samples have been discovered, evidencing the non-stationary 
attribute of the threat, featured by constant evolution and innovation 
(Microsoft, 2020). As a result, the figures regarding detected mobile 
malware may only reflect a small portion of the total malware in the wild, 
with new and more sophisticated malware variants remaining unde
tected (Broersma, 2020). 

Notwithstanding the dynamic nature of the phenomenon, the 
specialized research has overlooked the evolution and changes in 
Android malware over time. In this regard, despite the vast body of 
literature available on the optimization of detection methods, the 
change in malware features over time and its degenerative impact on the 
machine learning-based detection models, the so-called concept drift, has 
not been explored thoroughly. Most machine learning-based models for 
malware detection are based on the assumption of consistent data, thus 
requiring the properties of the testing data distribution to approximately 
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match the characteristics of the training data distribution. However, due 
to the constant battle between attackers and defenders, malware evolve 
to exploit new vulnerabilities and improve its hiding capabilities in 
response to enhanced defenses, thus generating new malware variants 
that may use a distinct attack vector and behave differently but pursue 
the same ends. As a result, the incoming data distribution may diverge 
significantly from the model’s original training distribution, thus, 
generating concept drift and, consequently, harming the model’s per
formance over time. Despite that, the myriad of machine learning-based 
solutions proposed for Android malware detection are generally built, 
validated, and tested using relatively small data sets, collected in short 
time-frames, generally far from the present time. For instance, the most 
used Android data sets in research studies were gathered between 2010 
and 2012 (i.e., MalGenome (Zhou & Jiang, 2012) and Drebin (Arp et al., 
2014)), a decade ago, when malware capabilities and characteristics 
were significantly distinct to the present ones (e.g., the first Android 
ransomware was detected in 2014 and had its major outbreak in 2016, 
ergo not represented in these data sets). Even so, they are still being used 
in recent studies as the main malware references and frequently as the 
only malware source (Zhao et al., 2021; Reddy et al., 2021). Therefore, 
most of the proposed solutions have been optimized for malware 
detection at specific snapshots of the Android history, built and tested on 
static and partial data sets containing specific malware trends at a 
particular time, thus lacking the generalization capabilities needed to 
address the constant evolution of Android malware, its non-stationary 
character, and its challenges. 

The majority of studies on Android malware detection based on 
machine learning techniques lack historical coherence, mainly caused by 
splitting randomly the available data into the testing and training sets 
without respecting the historical timeline. More specifically, the testing 
set should always be composed of future or posterior data regarding the 
training set (Allix et al., 2015; Arp et al., 2020). In these solutions, 
concept drift is neglected and the optimized models provided by such 
approaches yield significantly biased and historically incoherent results, a 
critical issue when it comes to real Android malware detection (Allix 
et al., 2015; Pendlebury et al., 2019; Arp et al., 2020). In this regard, a 
critical challenge to deal with concept drift is how to locate the samples 
within the Android historical timeline in a reliable way. Our research 
uses and compares two timestamping approaches that may result in 
good approximations in the search for temporal accuracy. Furthermore, 
in production setups, the number of samples processed may rarely be 
evenly split between the classes. For instance, a malware outbreak may 
cause the processed data to be imbalanced towards the positive class (i. 
e., malware label), whereas, in the absence of an outbreak, the majority 
of the new samples should be benign. This fact is usually not considered 
by the related research, assuming and working with evenly split data 
sets. Our study addresses the concept drift issue in the presence of 
imbalanced data, providing a more realistic scenario and reliable results. 
Thus, the proposed solution can effectively handle the additional chal
lenge of imbalanced data towards any of the classes. Lastly, the small 
number of studies that proposed solutions considering Android malware 
concept drift issues did not provide any insights on the changes in the 
data, that is, the characterization of concept drift. This is a distinctive 
point of this study, which not only addresses concept drift but also aims 
to understand the evolution of features over time in the analyzed 
context. The characterization of concept drift allows understanding the 
direction of changes, enabling the expansion and enhancement of the 
knowledge about the threat while providing useful insights to improve 
the detection systems. 

1.1. Novelty and contribution 

In this paper, we address significant research gaps in Android mal
ware detection studies, by exploring, addressing, and characterizing the 
phenomenon of concept drift in Android malware detection using dy
namic features (i.e., system calls) on imbalanced data sets. Despite the 

existence of methods to detect drifting data (Yang et al., 2021; Jordaney 
et al., 2017) and a large body of research regarding malware detection 
(Liu et al., 2020), just a few studies related to Android malware detec
tion have considered concept drift in their detection solutions (Xu et al., 
2019; Onwuzurike et al., 2019; Cai et al., 2018; Hu et al., 2017; Nar
ayanan et al., 2017). All these studies used API calls, a static feature 
sensitive to code obfuscation and encryption techniques (Kaspersky, 
2021). Unlike these previous works, our study uses system calls, run- 
time data features that are robust to code obfuscation and encryption 
methods. System calls enable us to capture the real behavior of the app 
and are the most used dynamic features for Android malware detection 
(Liu et al., 2020). Besides, no previous study in the field has provided 
characterization of concept drift nor compared the performance of 
distinct timestamps when dealing with emerging concept drift, which 
are unique contributions of this research. Lastly, the usage of the Kro
noDroid data set (Guerra-Manzanares et al., 2021) enables us to over
come the limitations of other data sets and explore concept drift as it 
provides labeled and timestamped data for the whole Android history (i. 
e., 2008–2020). In this regard, our analysis spans a seven-year-long 
continuous time frame, whereas previous works used either dis
continued data sets (Hu et al., 2017; Narayanan et al., 2017) or 
encompassed a shorter time period (Onwuzurike et al., 2019; Xu et al., 
2019; Cai et al., 2018). Our workflow is composed of three stages where 
we analyze and demonstrate the presence of concept drift in Android 
malware detection, propose a solution to handle it, and characterize its 
behavior. Furthermore, the performance of the proposed solution is 
compared with the state-of-the-art solutions, outperforming all of them. 

The main novel points of this research are: (1) the usage of system 
calls as features in an Android concept drift-related study, (2) the pro
posed solution, which addresses the impact of concept drift on the 
classification model, enabling the detection system to sustain high 
detection performance over an extended period of time, even when 
imbalanced data are present, (3) the characterization of concept drift, 
which allows the overall understanding of its behavior and direction, 
and (4) the evaluation of distinct timestamping approaches to effectively 
deal with concept drift issues. 

The paper is structured as follows: Section 2 provides background 
information and a summary of related research studies in the field. 
Section 3 explains the methodology followed in this study and in
troduces the proposed solution to address and characterize concept drift 
in Android malware detection. Section 4 describes the results of the 
experimentation using the proposed solution and the main outcomes of 
this research. Section 5 provides a discussion of the main results and 
outlines future work. Finally, Section 6 summarizes the study. 

2. Background information and related work 

2.1. Background information 

A data stream can be defined as a countably infinite sequence of ele
ments that become available over time (Margara & Rabl, 2018). Due to 
their cumulative, continuous, rapid, and evolving nature, data streams, 
usually referenced under the umbrella term of big data, pose a variety of 
challenges such as one-pass constraint, concept drift, resource restric
tion, and massive-valued features (Aggarwal, 2015). Despite not facing 
all these challenges, Android malware detection shows issues related to 
data stream processing such as large data volume, continuous release of 
apps, and evolving data. Consequently, Android malware concept drift 
may be effectively handled when tackled from a data stream 
perspective. 

This paper performs a novel attempt to demonstrate, handle and 
characterize Android data concept drift using system calls as model 
features and from a data stream perspective. For this purpose, state-of- 
the-art algorithms are leveraged and customized in our study to tackle 
effectively concept drift issues in Android malware detection. The 
following paragraphs introduce their basics. 
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Gözüaçık and Can (2020) proposed an implicit (i.e., unsupervised) 
learning algorithm called One-Class Drift Detector (OCDD), which uses a 
one-class learner with a sliding window to detect concept drift. As the 
data analyzed in our work do not show normal distribution character
istics, it was not possible to apply statistical analysis to detect changes in 
the features over time. Therefore, the OCDD’s central idea was leveraged 
to analyze the impact of concept drift in the observed data. This 
approach was implemented in our work using the Isolation Forest algo
rithm. Isolation Forest (iForest) is an anomaly detection technique 
proposed by Liu et al. (2012). The algorithm uses binary decision trees to 
detect anomalous data based on path length. More precisely, in 
randomly generated binary trees, where instances are recursively par
titioned, these trees produce noticeable shorter paths for anomalies. In 
the regions occupied by anomalies fewer partitions are observed (i.e., 
shorter paths in the tree structure). For a specific sample, the received 
path length is compared to the average path length of unsuccessful 
searches in the binary search tree to obtain a universal anomaly mea
sure. This measure is used by the iForest algorithm to detect anomalies 
based on the results obtained on several trees. 

Zyblewski et al. (2021) proposed a novel framework employing 
stratified bagging to train base classifiers, integrating data pre- 
processing, and using dynamic ensemble selection methods for imbal
anced data stream classification. The experimental results showed that 
dynamic ensemble selection coupled with data pre-processing could 
outperform state-of-art methods for highly imbalanced data streams. In 
our work, we analyze Android app data in an extended time frame, 
where the ratio of malware to benign applications varies over time, thus 
causing imbalanced data issues. The high-level framework proposed by 
Zyblewski et al. (2021) was the point of departure of our algorithm and 
its application to the Android data issue. The original algorithm, 
designed for data streams split into data chunks, uses a pool of classifiers 
trained on past data to classify new data samples in upcoming data 
chunks. The best combination of classifiers for the new data (i.e., an 
ensemble of classifiers) are dynamically selected using the previous data 
chunk. The classifier pool is constantly purged and updated with new 
classifiers trained on data from each new chunk. Concept drift is 
addressed by the constant update of the pool of classifiers, while the 
ensemble selection mechanism enhances the classification results. The 
original algorithm was modified in our work to address the particular
ities of Android data and enhance the detection results, as reported in 
Section 3.2.2 and Section 4.3. 

2.2. Related work 

A large variety of malware detection approaches have been proposed 
since the early years of Android OS (Liu et al., 2020). Most of these 
solutions were optimized and tested on static snapshots of Android 
malware historical data, using old and short-time data sets (Zhou & 
Jiang, 2012; Arp et al., 2014). As a result, these solutions disregard the 
evolution and change in data over time and its potentially harmful effect 
on the detection system’s performance. 

The phenomenon of concept drift, where the statistical characteristics 
of the incoming data change over time, is visible in long-term Android 
data (Ramirez-Gallego et al., 2017). Neglecting the changes in malware 
data patterns over time has a significant detrimental impact on the 
classifiers’ performance, as models built using old data tend to make 
poor and ambiguous decisions when tested on new data (Jordaney et al., 
2017). Thus, adapting to the rapid evolution of Android malware is 
critical for an effective detection system (Hu et al., 2017). Consequently, 
concept drift should be considered in all ML-based detection methods 
aiming to provide high and reliable performance over time. However, 
even though an increasing number of studies recognize the importance 
of addressing concept drift in Android malware detection models 
(Suarez-Tangil et al., 2017; Hu et al., 2017), only a reduced number of 
studies have taken its impact into account. These solutions are briefly 
discussed in the following paragraphs. 

Hu et al. (2017) proposed the usage of an ensemble of classifiers to 
analyze data within a sliding window and dynamic adjustments to 
address concept drift on static features (i.e., permissions, actions, and 
selected API calls). The authors reported 96% accuracy in a relatively 
small, imbalanced, and discontinued in time data set. The time range of 
the data set and the source of the majority of the samples are not re
ported, which generates concerns about the results and the actual ex
istence of concept drift in the data, which is assumed but not proved. In 
our study, the first stage aims to prove the existence of drifting data 
within the data set. After, the proposed solution is tested on a large and 
time-extended data set addressing imbalanced data issues. 

In DroidOL (Narayanan et al., 2016), online algorithms were used to 
deal with concept drift. The solution was built and tested on a static- 
featured data set spanning 8 months (i.e., using inter-procedural con
trol-flow graphs as features). The authors reported 84% accuracy on a 
balanced data set. Even though the usage of an online learning algorithm 
can have benefits over batch learning algorithms for concept drift 
handling purposes, it is questionable that the time span of the data set 
might be too short for the emergence of concept drift, which was 
assumed but not proved in the study. The usage of online algorithms for 
concept drift handling was enhanced in DroidEvolver (Xu et al., 2019), 
where a pool of 5 online classifiers was used to build the detection 
system. Raw API calls were extracted from the source code and used to 
generate the input vector. After an initialization step, the pool of clas
sifiers was used to label every new instance. Next, based on a drift in
dicator, the detection models and feature sets were updated, if needed. 
The update of the feature sets (i.e., done incrementally by including all 
the new API calls) and the update of aging classifiers are intended to 
provide resilience against concept drift. Besides, the usage of a pool of 
classifiers aims to avoid the bias of a single classifier and generate more 
reliable detection results. The usage of a pool of classifiers to improve 
the detection performance is also leveraged in our proposed solution. 
However, the distinctive elements of our proposed solution that uses 
enhanced classifier dynamics (i.e., dynamic ensemble selection) instead of 
online learning algorithms which require constant retraining, the usage 
of dynamic features instead of static features, and a reduced and stable 
feature set as opposed to the incremental cost of an ever-growing feature 
set, provide increased and more stable long-term detection performance, 
as it is shown in Section 5. 

TRANSCEND (Jordaney et al., 2017) framework used statistical 
metrics to identify when a classification model was consistently mis
classifying new data, thus signaling the emergence of concept drift and 
the aging of the model. In the study, the framework was merely used as a 
drift indicator, not proposing any solution to handle concept drift 
distinct from data relabeling and model retraining once drifting was 
identified. The limitations of this work were addressed in TRANSCEN
DENT (Barbero et al., 2020), a model agnostic rejection framework 
composed of conformal evaluators. In the experimental setup, the 
framework helped to extend the effectiveness of Drebin classifier (Arp 
et al., 2014), doubling its lifespan, keeping an F1 score over 80% for two 
years. 

MaMaDroid (Onwuzurike et al., 2019) used static analysis to extract 
sequences of API calls from the call flow graph, and abstracted each API 
call to three distinct higher abstraction levels (i.e., family, package, or 
class). The sequences of abstracted API calls were used to build the 
feature vectors, represented using Markov chains. Concept drift was 
tackled under the assumption that the representation of the sequences of 
API calls in the higher level of abstraction changes less over time than 
the raw API calls, thus being more robust and resilient than the ap
proaches that use directly the API calls, such as DroidEvolver (Xu et al., 
2019), which need constant retraining, especially after new Android API 
releases and API changes, to address concept drift. 

API-Graph (Zhang et al., 2020), aims to enhance API call-based 
detection systems by leveraging API semantics and similar API usages 
among malware. The framework builds an API-level relation graph by 
extracting entities such as APIs and permissions and establishing their 
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relations into five meta-categories. The authors showed that the usage of 
API-Graph may improve the generalization capabilities and robustness 
against performance decay of existing solutions such as MaMaDroid and 
DroidEvolver. 

Event groups semantics were employed in EveDroid (Lei et al., 2019). 
In this study, API call graphs were used in conjunction with event 
grouping techniques (i.e., clustering) to train neural network models for 
Android malware detection in IoT devices. The ability of neural net
works to extract semantics from the input features was leveraged to 
provide robustness against performance decay. Even though the study 
results reported high performance, the two data sets used encompassed 
short and discontinued time-frames (i.e., 2013–2014 and 2017–2018). 
More importantly, the models were trained using random selection of 
samples, thus disregarding the chronological order and mixing the data 
in both the training and testing sets. Furthermore, legitimate and mal
ware samples did not belong to the same exact time-frames (e.g., legit
imate samples were from 2014 and 2018, whereas malware was from 
2013, 2014, 2017 and 2018-Q1). As a result, the robustness of the so
lution against concept drift poses severe doubts. 

Even though API calls are considered static features in malware 
analysis, they can also be collected dynamically (i.e., at run-time). This 
was the approach taken in DroidSpan (Cai, 2020) to overcome the lim
itations of static features (e.g., code obfuscation and encryption). In this 
work, particular API calls, related to sensitive data access and opera
tions, invoked at run-time were collected. The data was used to generate 
an input vector composed of 52 features. Although the solution aimed 
for long-term stability and reported better results than MaMaDroid, it 
did not provide any adaptive measures to maintain long-term perfor
mance (i.e., the model is never updated), making it prone to concept 
drift-related performance decay over time. A similar approach was used 
in Fu & Cai (2019) and Cai et al. (2018). 

Pendlebury et al. (2019) emphasize the significant impact of spatial 
and temporal bias in the Android malware detection research literature, 
which has consistently yielded not representative and overly inflated 
unrealistic performances. More specifically, temporal bias is caused by 
incorrect temporal splits on the training and testing sets (i.e., neglecting 
concept drift and providing impossible temporal configurations), 
whereas spatial bias is caused by unrealistic distributions on the training 
and testing sets (e.g., class-balanced data sets). The proposed tool, 
TESSERACT, did not provide any novel strategy to tackle concept drift (i. 
e., incremental retraining, active learning, or classification with rejec
tion), but aimed to assess the robustness of other solutions to perfor
mance decay by removing the spatio-temporal bias from the evaluations, 
thus revealing their true performance. The framework was tested with 
samples from AndroZoo data set (Université du Luxembourg, 2021) 
which were temporally located using the dex date timestamp, suggested 
by the authors as the most reliable timestamp and comparable to Viru
sTotal’s first seen timestamp. The dex date timestamp informs about the 
compilation date of the apk (i.e., app’s archive file). However, according 
to Université du Luxembourg (2021), the dex date timestamp is no longer 
a reliable timestamp as the vast majority of the apps released nowadays 
have a 1980 dex date, thus being not usable for temporal location pur
poses. Our proposed solution uses a distinct and more reliable time
stamp, the last modification, which is compared in this study to 
VirusTotal’s first seen timestamp, taking advantage of the timestamps 
provided by the KronoDroid data set. 

As can be observed, the vast majority of proposed solutions focused 
on static features which suffer from proven limitations to counter- 
detection techniques, such as code-obfuscation, packing, and encryp
tion (Aghakhani et al., 2020). Although more complex and time- 
consuming to acquire, dynamic features are more robust against 
deception techniques, thus preferred for an effective detection solution. 

System calls, the most used dynamic features for Android malware 
detection are used in our study (Liu et al., 2020). Besides, none of the 
studies that dealt with concept drift provided further exploration of the 
phenomenon (i.e., characterization). In this regard, the characterization 
of concept drift may provide a better understanding of the phenomenon 
and assist malware specialists to understand changes in malware over 
time, detect trends and build more effective detection systems while 
expanding the knowledge regarding Android malware behavior. An 
effective solution for Android malware detection should consider the 
emergence of concept drift and have adaptive skills to change its inner 
structure according to the detected data changes. In addition, other 
challenges overlooked by the specialized research should be addressed 
such as imbalanced data sets and high-dimensionality problems (i.e., 
ever-growing feature sets). All these issues are considered in this study 
and addressed by the proposed solution to build a long-lasting, effective, 
and robust Android malware detection system. 

3. Material and methods 

3.1. Data set 

The data set used in this research is KronoDroid (Guerra-Manzanares 
et al., 2021). This data set is composed of two device-related sub-data
sets (i.e., emulator and real device data sets) containing both benign and 
malware samples. Every sample in the data set (i.e., Android apps) is 
labeled and characterized by 289 dynamic features and 200 static fea
tures (i.e., including timestamps). The data set provides data covering 
the whole historical timeline of Android OS, from 2008 to 2020. In this 
regard, four timestamp features provide the possible temporal context of 
the apps, which makes this data set the only publicly available Android 
data source suitable for the investigation of concept drift in Android 
malware. For this research, just the real device data set, composed of 
78,137 samples, was used due to its larger size (i.e., 41,382 malware 
samples belonging to 240 malware families and 36,755 benign apps). 

To analyze the phenomenon of concept drift in Android malware 
detection from a dynamic perspective, just the dynamic features pro
vided by the KronoDroid data set were used along with the class labels 
and timestamp features. The dynamic features provided by the data set 
are kernel or system calls (syscalls for short). Syscalls are the most used 
dynamic features in Android malware detection systems (Liu et al., 
2020). The feature set is composed of 288 numeric variables, whose 
values provide the absolute frequency of each system call invoked by the 
app during the execution time (i.e., 1 min, no user interaction). 
Regarding the label, Kronodroid provides two labels for each data sam
ple: the hard label and the soft label. The only difference between them is 
the labeling approach used, as they are both defined as non-probabilistic 
binary labels (i.e., y ∈ {0,1}). More precisely, the soft label relies on the 
data source to assign the class to an instance without any further veri
fication. The hard label is based on a stricter labeling technique as it 
imputes the class of a sample according to the detection results from 
VirusTotal’s antivirus scanner disregarding the data source, as explained 
in Guerra-Manzanares et al. (2021). Due to this stricter class imputation, 
in this study, the hard label was selected as it increases the certainty 
about the class of the samples (i.e., benign or malware), thus increasing 
the reliability of the concept drift analysis results. 

Finally, as the study of concept drift explores the evolution of data 
over time, the timestamp used to date the samples becomes of critical 
importance. In this regard, from the four possible timestamps, the last 
modification and first seen timestamps were selected as they provide more 
data coverage, reliability, and accurate location of the apps within the 
Android historical timeline. The last modification timestamp provides the 
date of the most recent modification of any file inside the app, while the 
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first seen timestamp reports about the date when the app was submitted 
for the first time to VirusTotal’s antivirus engine. 

As a result, 78,137 Android apps described by 288 system calls 
numeric variables, the label, and two distinct timestamps were used as 
input data for this research. The following paragraphs explain the 
workflow followed to effectively detect, handle and characterize 
concept drift across Android OS history. 

3.2. Workflow 

The methodology used in this study is composed of three sequential 
stages related to concept drift: detection, handling and characterization. At 
each stage, different techniques are used, which are explained in detail 
in the following sections. Briefly, the concept drift detection stage aims to 
prove the existence of concept drift in the data using state-of-the-art 
techniques. Upon confirmation of the presence of concept drift, the 
following stages are set to address the related issues. In the concept drift 
handling stage, distinct techniques are used to effectively handle concept 
drift over time. The algorithm used in this stage to reduce the classifi
cation error caused by concept drift provides also the information used 
for concept drift characterization, the last stage of the workflow. It is 
worth emphasizing that the handling and characterization stages use a 
distinct methodology than the detection stage as the only goal of the 
latter is to prove the need for concept drift handling techniques in the 
Android malware detection case. 

3.2.1. Concept drift detection 
The concept drift detection process consists of three sequential 

phases, namely data pre-processing, feature selection, and drift detection. 
The whole process is depicted in Fig. 1 and explained as follows. 

The initial set of features was pre-processed using a sequential pro
cedure to remove features that might disturb or not provide any sig
nificant input data to the machine learning algorithm (i.e., null-valued 
and redundant features). The outcome was a refined set of features ob
tained after performing the following steps.  

1. Feature variance analysis: Homogeneous (i.e., zero variance) and 
zero-valued features (i.e., not invoked by any app) were removed 
from the initial feature set.  

2. Feature correlation analysis: Pearson’s correlation coefficient (r) was 
calculated pairwise for all variables. Highly correlated features were 
removed from the feature set. 

3. Feature distribution analysis: statistical normality tests were per
formed on all features that remained in the feature set after the 
previous steps. 

The goal of these sequential steps was to select relevant features, 
remove redundant variables and assess the data distribution to select the 
best techniques for the posterior steps. 

Concept drift detection can be formulated as follows. Each new 
observation is represented by ci = (xi,yi), where xi = (xi

1, xi
2, .., xi

n) ∈ X is 
the feature vector and yi ∈ Y is the target label. Given two data chunks (i. 
e., probes of the same size or collected during similar periods) taken 
from distributions F and F’, respectively, the following applies. For the 
null hypothesis, H0, that F and F’ are identical, the aim is, as stressed by 
Lu et al. (2014), to refuse H0, and identify some local regions of the 
problem space where H0 does not hold, and quantify the difference 
between F and F’. However, as shown by Mutz et al. (2006) and Ruiz- 
Heras et al. (2017), Android system calls’ distributions must be 
modeled and Gaussian distributions cannot be assumed. For this reason, 
the analysis of F and F’ distributions is hindered. 

In addition, the difference between F and F’ might be statistically 
important but not change the decision of the malware detection system. 
More precisely, concept drift changes the classification decision by 
changing the conditional probability p(y|X). However, it is possible to 
change the probability p(X) without changing p(y|X). In such a case, the 
change in the feature space does not affect the classification outcomes 
and is called feature drift or virtual drift (Ramirez-Gallego et al., 2017). 
The main difference is that under real concept drift, the restructuring of 
the learning model is required, whereas, under virtual drift, the old 
knowledge is extended with additional data from the same environment 
(Gözüaçık & Can, 2020; Elwell & Polikar, 2011). Consequently, concept 
drift is only observed if and only if the input data changes affect the 
classification results (i.e., the conditional probability p(y|X) is affected). 

Fig. 1. Schema of the concept drift detection stage.  
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To assess the existence of concept drift, the data set must be chro
nologically ordered and divided into consecutive periods. For n periods, 
two series of subsets are generated. In the first series, the set Mi consists 
of records describing malware and labeled with the timestamp (i.e., last 
modification or first seen) from the i-th period. The set Li, defined for the 
second series, is labeled analogously but composed of just benign apps. 

Then, the following procedure was performed to define the most 
discriminatory features for the first period (i.e., feature selection). 

The data from the first period M1 ∪ L1 was balanced using a random 
oversampling method to avoid over-representation of L1 or M1 (Seiffert 
et al., 2010). Next, Random Forest (RF) algorithm, a decision tree-based 
ensemble classification algorithm proposed by Breiman (2001), was 
induced to discriminate between L1 and M1. The rationale behind the 
selection of RF algorithm is the superior performance shown by this 
algorithm over other classification algorithms in analogous cases on 
previous research (Guerra-Manzanares et al., 2019a; Guerra- 
Manzanares et al., 2019b; Guerra-Manzanares et al., 2019c). The most 
relevant features of this initial classifier were selected using the permu
tation feature importance technique applied to the training data (see 
Section 3.2.3 for further details). This enabled the selection of the most 
relevant features for this baseline classifier. In this regard, only the 
features with positive mean importance for the model were selected, 
defining the important feature set. 

If the initial-period classification model provides high performance 
(e.g. accuracy > 95%), it is reasonable to assume that the selected fea
tures are significant to recognize classes L1 and M1. However, an open 
challenge is whether the same features can be successfully used to 
recognize classes Li and Mi for n ≥ i > 1. To address this issue, One-Class 
Drift Detection Models (Gözüaçık & Can, 2020) were used to analyze the 
impact of concept drift in the generated series. Therefore, based on the 
fact that the selected important features could be used successfully for the 
classification task on the M1 ∪ L1 set, one-class anomaly detectors were 
induced using L1 and M1 separately, to assess data drift. The Isolation 
Forest (iForest) algorithm was used to induce the anomaly detection 
models. This approach allows the observer to analyze the concept drift 
for malware and legitimate software in a more controlled way elimi
nating the class relations influence. 

Next, the iForest detection models induced were tested separately 
with Li and Mi sets, where n ≥ i > 1, described by the important feature 
set to calculate the ratio of samples recognized as part of the modeled 
class in each period (i.e., negative detection rate). The resulting ratios 
enable us to assess the emergence of concept drift on the data over time. 
More specifically, if the initially selected important features are not able 
to describe the modeled class effectively in a given period, the ratio will 
drop, thus indicating data drift. The observed drops may be qualified as 
concept drift as the ratio of correctly recognized observations decreases. 
Therefore, the change affects the classification results. 

The workflow performed for concept drift detection is described in 
Fig. 1 for further reference. 

The emergence of concept drift in the data requires the imple
mentation of an adaptive detection solution capable of handling it 
effectively. This issue is addressed in the next section. 

3.2.2. Concept drift handling 
The proposed solution to handle concept drift in Android malware is 

a modification of the algorithm proposed by Zyblewski et al. (2021). 
Although the original algorithm may provide good performance, the 
modifications performed address Android concept drift particularities, 
thus boosting the detection performance. The suggested adaptations are 
detailed in the following paragraphs. 

The first modification yields a complete pool of classifiers available 
from the initial stage. At the initial stage, the original algorithm starts 
with a single classifier in the pool. For every subsequent data chunk 
processed, a new classifier is added to the pool until the pool is full. Only 

then the full pool is available for prediction. For instance, if the size of 
the pool of classifiers is set to contain 10 elements (i.e., S parameter), 
then 10 chunks must be processed to have available the full pool of 
classifiers. Thus, these 10 initial data chunks are all tested with an 
incomplete pool of classifiers. After the pool is completed, in the sub
sequent data chunks (i.e., from the 11th chunk), each classifier is tested 
and the worst performer is eliminated (i.e., pool purge). Then, a new 
classifier trained on the new data chunk is added (i.e., pool update). 
Therefore, only after the initial S chunks are processed, the pool is 
guaranteed to be always composed of S elements. Our experimentation 
has shown that it may be beneficial to generate the full pool from the 
initialization phase (i.e., first chunk), as the usage of a larger variety of 
classifiers to process the initial data chunks enhances the performance 
on the initial stages. As a result, the proposed solution eliminates the 
delay on the generation of the full pool by splitting the initial chunk into 
S ordered subchunks and training a classifier on each subset, thus 
generating the full pool in the initial step. Then, after the first chunk is 
processed (i.e., initialization stage), the whole pool, containing S ele
ments, is used to process all the subsequent data chunks (i.e., from the 
2nd chunk). The classifier pool is updated using the same purge-update 
mechanism as the original solution when a new data chunk is processed. 

The second modification performs a refinement on the predictions using 
a supportive anomaly detection model. The original solution produces its 
predictions according to the classifiers’ pool assignment. The proposed 
modification adds a refinement step to the prediction process by using 
an anomaly detection model, induced on a subset of data (i.e., benign 
data), aiming to improve the predictions provided by the dynamic 
ensemble selection of classifiers. The rationale behind the addition of an 
anomaly detection model trained on legitimate data is due to the 
observation of more concept drift resilient features in this subset of data 
during our experimentation, as shown in Fig. 3 and Fig. 9a. More spe
cifically, concept drift in legitimate data appears to be less significant 
than in malware data, showing a more robust performance over time 
and keeping as important a broader and more consistent subset of fea
tures. Therefore, the addition of an anomaly detector trained on just 
benign data can help in dubious cases where the prediction probability 
of the classifier pool may not give enough confidence to the assigned 
label (e.g., p(y|x) ≈ 0.5). In such cases, the usage of the additional 
knowledge from the anomaly detection model might help. However, the 
benefits of this modification heavily rely on the prediction probabilities 
output by the classification model and the specific set of rules and 
thresholds used by the particular implementation. 

As an example, in our experimental setup, a reassignment rule was 
applied for borderline predictions as follows: if 0.55 ≥ ppool(benign|x) ≥
0.5, where x refers to a given sample and ppool to a particular prediction 
probability from the pool of classifiers, then the sample was assigned to 
the class suggested by the anomaly model. In any other case, the class 
assigned to x was the one suggested by ppool. This simple rule yielded 
from 1% to 4% improvement in detection performance in some time 
periods, especially in the initial chunks. It is worth mentioning that, in 
our experimental setup, no rule optimization was performed, thus there 
is room for improvement in this regard by the particular implementa
tions of the proposed solution. 

The proposed solution is provided in Algorithm 1 and Algorithm 2. 
For the sake of comprehension and similarly to the original formulation 
by Zyblewski et al. (2021), the algorithm is split into training and pre
diction phases. However, as these phases are applied sequentially for 
each data chunk, they should be embedded in the actual implementation 
of the solution. More specifically, Algorithm 1 provides the pseudo-code 
implementation of the training phase while Algorithm 2 defines the steps 
performed in the prediction phase.    
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Before providing a detailed explanation of the whole system, some 
general considerations must be addressed. They are provided as follows:  

• For the initialization of the system, the following hyper-parameters 
must be selected: the size of the classifier pool (i.e., |π|, S), the 
chunk size (i.e., n, sample size) and the anomaly detector sample size 
(i.e., − 1 by default, using all Lk− 1 data).  

• The first data chunk (i.e., k = 0) is used only for training purposes 
and not for testing purposes. All subsequent data chunks are pro
cessed sequentially, applying first the predictive phase and then the 
training phase. This is a modification to the original algorithm in 
which distinct steps are performed for the first and second chunks.  

• As all data chunks are assumed to be imbalanced, a data balancing 
technique (e.g., random oversampling) is applied to the learning set 
every time a new classifier is generated (i.e., inside the trainClassifier 
() function of Algorithm 1). 

Furthermore, as can be noticed in Algorithm 1 and Algorithm 2, the 
proposed solution requires the selection of a few hyper-parameters for 
its deployment. They are described in the following items:  

• Chunk size (n): the number of samples that compose each data chunk. 
It is a hyper-parameter that is not included in the algorithm 
description. However, it is assumed that all chunks have the same 
size and are processed in chronological order. Note that the chunk 
size may affect the concept drift detection capabilities of the system.  

• Classifier pool size (S): the number of classifiers in the pool. It may 
impact the concept drift adaptation capabilities of the system.  

• Anomaly detector’s sample size: the size of the data set that is used to 
induce the anomaly detection model. In this regard, the whole 
legitimate set of the new chunk can be used, a portion of it or even a 
bigger set by generating a cumulative data set from consecutive 
chunks. It may affect the accuracy of the predictions.  

• Dynamic Ensemble Selection (DES) algorithm: the algorithm used to 
select the best ensemble of classifiers from the pool to predict the 
class of the new data. Note that the usage of distinct DES algorithms 
can provide significantly different performances, thus it is a very 
important hyper-parameter of the system. The DSEL may also have a 
significant impact on the prediction performance but it is not a 
hyper-parameter as it strictly depends on data.  

• Data set balancing method: the technique used to balance the classes in 
the training set may have an impact on the detection accuracy. In this 
regard, different over-sampling and under-sampling techniques 
might be used. 

Despite that the selection of hyper-parameters might have a signifi
cant impact on the performance of the detection system, the proposed 
solution can be implemented with some degree of flexibility, thus 
enabling the usage of different configurations to achieve high perfor
mance on Android malware detection in the presence of concept drift. In 
this regard, our experimentation evidenced that good performance 
metrics can be obtained with the vast majority of possible configura
tions. The results and hyper-parameters used in our specific imple
mentation are provided in Section 4.3. 

After setting the general considerations and describing the main 
variables of the proposed solutions, the following paragraphs provide a 
detailed explanation of the intricacies and inner workings of the pro
posed solution. 

As specified in Algorithm 1, when the first data chunk is received (i. 
e., k = 0), the whole chunk is processed by the splitInitialDataset() 
function which takes the chunk as input, splits its n elements into S 
ordered and equal-sized data chunks (i.e., each composed of n/S sam
ples), and outputs the IDS data set. Then, each subset is used to train a 
new classifier (i.e., trainClassifier() function) which is added to the pool 
(i.e., lines 4–7 of Algorithm 1). As a result, a full pool of classifiers is 
generated after processing the first chunk, thus available for the testing 
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phase of all the subsequent data chunks (i.e., first modification to the 
original algorithm). In the next step, the set of legitimate samples from 
the initial data chunk (i.e., all by default, but a different sample size 
could be used) are used to train an anomaly detection model (i.e., 
trainAnomalyDetector()). Finally, the last processing step of the initial 
chunk involves the storage of the whole initial chunk as the dynamic 
ensemble selection data set (i.e., DSEL) for the next chunk (i.e., line 3 of 
Algorithm 2). As previously explained, the DSEL is used to select the best 
classifier ensemble from the classifier pool for each data sample in the 
new data chunk. This selection may vary according to the dynamic 
ensemble selection algorithm used in the particular implementation (Ko 
et al., 2008). 

This concludes the processing of the initial data chunk, which is used 
for initialization purposes, and it is the only data chunk with distinct 
processing steps in our proposed solution. For all subsequent data 
chunks, the same first-testing-then-training procedure is applied, 
described as follows. 

After the first chunk is processed, when a new data chunk is received, 
the prediction phase is applied first, as outlined in Algorithm 2. Thus, 
upon the arrival of the new data chunk, the dynamic ensemble selection 
algorithm is fit with the previously stored DSEL, the classifier pool, and 
the new data chunk (i.e., input of dynamicSelection() function, line 5 of 
Algorithm 2). This step aims to select the best ensemble of classifiers to 
predict the labels for each sample in the new data chunk. Once ΠDk is fit, 
this dynamic ensemble model is used to forecast the class of the n ele
ments of DSk, thus generating the initial predictions (line 6 of Algorithm 
2). These initially assigned labels are then refined based on custom rules, 
included inside the anomalyDetector() function, and using the anomaly 
detector forecasts for each sample in DSk (line 7 of Algorithm 2). The 
outcome of this step is the final prediction for all the samples of the new 
data chunk. As mentioned before, the anomaly detector helps to support 
or challenge the class prediction assigned by the classifier pool in 
borderline cases where the anomaly model may provide more accurate 
results. Finally, in the last step of Algorithm 2, the new data chunk is 
stored as DSEL for the next chunk. 

This concludes the first processing step of the new data chunk, the 
predictive phase. The next step for the new chunk is the training phase, as 
described in Algorithm 1. 

The training phase uses the whole data chunk and the outcome of the 
previous phase to update the pool of classifiers and generate a new 
anomaly detector. More specifically, the worst-performing classifier on 
the new data chunk is removed from the classifier pool (i.e., prune
WorstClassifier()). Then, a new classifier is induced using the samples 
from the new chunk and their predicted labels. The new classifier is 
added to the pool (line 12 in Algorithm 1), which is again composed of S 
classifiers. The removal of an aging classifier and the insertion of a new 
classifier keeps the pool at the specified size while updating its capa
bilities to accurately forecast on new data, thus being able to adapt and 
react to emerging concept drift. Finally, the legitimate portion of new 
data (i.e., Lk) is used to generate a new anomaly detector that will be 
used in the predictive step of the next data chunk. This last step con
cludes the processing of the new data chunk, using it as a training set to 
update the forecasting capabilities of the system. 

The described first-testing-then-training cycle is repeated for all the 
subsequent data chunks in the data stream, enabling the system to 
address concept drift issues effectively and efficiently without major 
changes in the solution. 

3.2.3. Concept drift characterization 
The proposed solution is able to detect and adapt effectively to 

concept drift in Android malware detection but also provide relevant 
insights about its character. The characterization of concept drift can 
provide useful knowledge and insights about the changes in Android 
malware, its direction, and expectations. It can also help to enhance the 
trust of analysts in the detection system. The inner workings of the 
proposed solution can be leveraged to explore thoroughly the 

phenomenon of concept drift by analyzing the influence of data changes 
on classification quality measures in various time horizons. 

For concept drift characterization and appraisal of its influence, 
permutation feature importance analysis was employed. This method, 
proposed by Breiman (2001), is model-agnostic and applicable to the 
discussed case of binary classification (i.e., malware detection) which 
can be evaluated by quality measures related to the classification results. 
The permutation feature importance technique is explained as follows. 

For a matrix of feature values X with rows xi given each of N ob
servations and corresponding response yi, xπ, j

i is a vector achieved by 
randomly permuting the j-th column of X. Given a loss function L, the 
importance VIj of the j-th feature is defined as the difference between the 
loss calculated using pseudo-random values and the original data, as it is 
expressed by the following equation: 

VIj
π =

1
N

∑N

i=1
L
(
yi, f

(
xi

π, j) ) − L(yi, xi) (1) 

It is worth mentioning that Random Forest algorithm offers an 
alternative assessment based on Gini coefficient or entropy (Maimon & 
Rokach, 2005), called feature importance. However, such calculated 
importance is based on the training data used to create the classification 
model. In the discussed case, a more important issue is how the model 
works on new data, which might be affected by concept drift, rather than 
how well the features were used to discriminate the learning set. 
Therefore, the application of the permutation feature importance tech
nique to the test data is preferred. In this regard, due to its stochastic 
nature, the permutation feature importance score may vary significantly 
among iterations. Hence, for the sake of results’ stability, it is recom
mended to repeat the permutation procedure at least 50 times and 
average the results (Altmann et al., 2010). 

The concept drift characterization method used in this study adopts 
Eq. (1) by the creation of the classification function ft using data Xt from 

period Pt. Next, observations X are taken from the set ∪l+h
l=t+1 Xj where h 

declares an analysis time horizon. In this work, we discuss the following 
time horizons: short-term (i.e., 3 months), mid-term (i.e., 6 months) and 
long-term (i.e., 12 months). The usage of several time horizons brings an 
opportunity for better characterization of the changes in the importance 
of features. The whole procedure is summarized by the following 
equation: 

VIπ
j (t) =

1
N

∑N

i=1,
xi∈∪

l+h
l = t+1 Xl

L
(
yi, ft

(
xπ, j

i
) )

− L(yi, xi) (2) 

The procedure can be used to evaluate the influence of features on 
various quality functions Q(.) = 1 − L(.) such as: 

• F1 score, which is a more comprehensive metric for malware detec
tion performance on imbalanced data sets than the overall accuracy 
and it is defined as: 

F1 =
2TP

2TP + FP + FN
(3)    

• Specificity (True Negative Rate), which describes the quality of benign 
software recognition (i.e., negative label). It is calculated as: 

TNR =
TN

TN + FP
(4)    

• Recall (True Positive Rate), which describes the quality of malware 
detection (i.e., positive label) and it is defined as: 
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TPR =
TP

TP + FN
(5)  

where TP (i.e., true positive) refers to the number of correctly 
recognized malware among all test instances. TN (i.e., true negative) 
reflects the number of correctly recognized benign software among 
all test data. FP (i.e., false positive) provides the number of instances 
incorrectly predicted as malware among all test samples, and FN (i. 
e., false negative) the number of incorrectly predicted samples as 
benign data in the test set. 

The analysis of permutation feature importance scores of chrono
logically ordered data chunks allows the exploration of changes and the 
observation of the evolution of important features in the data, which 
enable the detection of trends and the characterization of emerging 
concept drift. 

4. Results 

4.1. Data pre-processing 

After the application of each sequential data pre-processing step, the 
results reported in Table 1 were obtained. 

As can be observed, after the first pre-processing step, 128 syscalls 
were found to be non-zero and not constant valued. This filtered subset of 
features was further processed and highly correlated features (i.e., |r| >
0.80) were removed. More specifically, 31 features were found to be over 
the specified threshold, thus showing a strong linear correlation with 
another feature. The resulting feature set was composed of 97 features. 

To assess the adherence to the normal distribution of the feature 
distributions, four normality tests were applied to every feature, 
including the Shapiro-Wilk normality test, the most powerful normality 
test according to Mohd Razali & Bee Wah (2011). The results of the 
statistical analysis proved that no feature showed Gaussian distribution 
characteristics, as evidenced graphically by the plots of feature distri
butions in Fig. 2. Therefore, the final feature set was composed of 97 
non-normally distributed syscalls. 

4.2. Concept drift detection 

The initial period selected for concept drift detection was the second 
semester of 2011. As this study compares the performance of two 
timestamps for concept drift detection and handling, it was critical to 
select a period where effective models could be induced for both time
stamps. Thus, this period was preferred as it provided enough data to 
build effective classification models for both timestamps (i.e., accuracy 
> 95%). Data from prior periods were discarded and not further 
analyzed. Random Forest classification models were induced using the 
whole feature set (i.e., 97 syscalls) and the class labels of the samples 
corresponding to each timestamp. 

The most relevant features of the classification models were selected 
using the permutation feature importance technique (i.e., feature se
lection). In our experimentation, 500 permutations per feature were 
used, which is significantly over the empirically recommended quantity 
for results’ stability (Altmann et al., 2010). From the obtained results, 
only the features that showed positive mean importance on the initial- 
period model for each timestamp were selected and ranked in 
descending order of importance. The following results were obtained for 
each timestamp:  

• Last modification timestamp: 32 features were found important from 
the whole feature set (i.e., 97). This selected feature set is referenced 
as initial-lm-set. The data set for this period was composed of 9,288 
samples (i.e., 6,916 legitimate apps and 2,372 malware apps), and 
the accuracy of the RF classification model on the testing set was 
0.9870.  

• First seen timestamp: 17 features were found important from the 
whole feature set. This selected feature set is referenced as initial-fs- 
set. The data set for this period was composed of 2,677 samples (i.e., 
2,124 legitimate apps and 553 malware apps), and the accuracy of 
the RF classification model on the testing set was 0.9859. 

After feature selection, the resulting feature sets were used to build 
one-class anomaly detection models using the Isolation Forest algorithm 
(i.e., 300 estimators per model). As a result, for each class (i.e., malware 
and benign) in each timestamp-related data set, a one-class anomaly 
model was generated, using the corresponding feature set as model 
features (i.e., initial-hm-set or initial-fs-set). Then, the malware and 
benign data belonging to posterior time frames were split into 6 months 
periods (i.e., from 2012 to 2020) and used as testing sets for each cor
responding timestamp-class model. Besides, for every timestamp-class 
combination, 3 anomaly models were induced using distinct subsets of 
features from the important feature sets (i.e., best 5 features, best 10 
features, and all features). 

The accuracy metrics of all the induced anomaly models on their 
respective testing sets were retrieved. The results are provided in Fig. 3. 
The line graph on the left shows the results related to the last modification 
timestamp, while the line graph on the right provides the data related to 
the first seen timestamp. The 6 anomaly models generated for each 
timestamp are reported with different colors and line styles. The color 
reflects the data class (i.e., red for malware and green for benign apps). 
The line style informs about the subset of features that was used to build 
and test each specific anomaly model. More precisely, solid line is used 
for all features, dashed line for the 10 most important features, and dotted 
line for the 5 most important features. The horizontal axes provide the 
test period, whereas the vertical axes provide the accuracy value 
retrieved for each specific period. The horizontal axes are split into 6- 
months periods. The .1 value attached to the year number informs 
about data belonging to the first semester of that year (e.g., 2012.1), 
whereas .2 reflects the data regarding the second semester (e.g., 
2012.2). As a result, six anomaly detection models were built and tested 
per timestamp (i.e., three per class) encompassing the whole 2012–2020 
time frame. 

The anomaly detection results provided in Fig. 3 demonstrate the 
existence of concept drift in the data, thus proving that the same set of 
features and values are not useful in all time frames to recognize either 
one of the classes. In this regard, according to the concept drift typology 
proposed by Ramirez-Gallego et al. (2017), the following behaviors are 
observed. 

In benign applications, an incremental drift dominates. The number of 
recognized observations slightly goes down over time to dip in the last 
period in a sudden drift. However, this deep dip in performance might 
have been caused by the scarcity of samples available for this last period 
in the data set (e.g., over 1000 are available for 2020.1, whereas less 
than 40 for period 2020.2). Thus, except for the last period, the observed 
behavior is typical for an AI system with a static learning set tested on 
data evolving over time, as in Luckner (2019). 

The data drift is especially evident in malware data. The graphs de
pict that the initial model, trained on any feature set, shows remarkably 
distinct accuracy values from period to period, suggesting that the 
importance of features for the classification models might have changed 
significantly, thus evidencing concept drift. Both timestamps provide a 
similar picture of the phenomenon, with the initial models performing 
well on data belonging to closer periods and losing discriminatory power 
over time. In 2016.1 and 2019.1, the initial set of important features 
seems to become relevant again, reaching accuracy levels similar to 
benign data, but losing its importance in the subsequent periods, thus 
leading again to data drift and poor discrimination. It could be related to 
a recurrent threat emerging in the initial, 2016.1 and 2019.1 periods. 

In any case, the analysis of the line graphs in Fig. 3 evidences the 
presence of concept drift in Android behavioral data, which is especially 
pronounced in the malware case. In consequence, to build long-lasting 
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and robust Android malware detection solutions, the detection systems 
must be able to adapt and learn from the changes in the data to keep high 
and stable performance over time. 

4.3. Concept drift handling 

The proposed solution, detailed in Section 3.2.2, was applied to 
KronoDroid data set, described in Section 3.1. As the data set is not a real 
data stream and encompasses a long period, the data was divided into 
time-constrained data chunks. This operation enabled us to simulate a 
realistic scenario where the data flow is constant and in a great volume. 
In this regard, the samples in each data chunk are likely to be similar 
until drifting emerges in any of its forms. Besides, as the 6 months periods 
used in Section 4.2 might be too wide to accurately detect emerging 
concept drift, a shorter temporal constraint was established. Thus, a 
maximum of 3 months of data were included in every chunk (i.e., 
referenced as year quarter, Q). In addition, to train the models, a fixed 
chunk size of 4000 samples was established. In the case that the 
incoming data for a specific time frame did not contain enough data to 
cover the 4000 samples per chunk of the training phase, prior data were 
used respecting the chronological order. 

The data set used provided a large number of samples to cover the 
years from 2011 to 2018, but there were not enough timestamped data 
to cover effectively the requirement of 4000 samples per quarter in the 
years before and after this time frame (i.e., 2008–2010 and 2019–2020). 
Consequently, just the data from 2011.Q3 to 2018.Q2 were used in the 
experimental setup, thus covering 7 full years of Android history. 

Based on experimental testing, the values of the hyper-parameters 
selected for our implementation were: 4000 samples per training data 
chunk, pool size of 12 classifiers, and Random Forest models with 300 
estimators as classification models. The dynamic ensemble selection 
algorithm used was META-DES (Cruz et al., 2015). Isolation Forest al
gorithm was used to induce the anomaly detection models. The data 

balancing technique used was random oversampling. 
Although no hyper-parameter optimization procedure was per

formed, the selected hyper-parameters provided high and stable per
formance. A different selection of hyper-parameters may yield similar 
performance metrics as the solution is robust and allows certain degree 
of flexibility in the selection of the hyper-parameters. The imple
mentation was coded in Python programming language, leveraging the 
functionality of scikit learn, imblearn and deslib libraries. 

The performance of the proposed solution when the last modification 
timestamp data was used is reported in Fig. 4, while Fig. 5 provides the 
performance for the first seen timestamp data. 

Fig. 4 provides the F1 score performance of the proposed solution, 
using the provided hyper-parameters, and its comparison with two naive 
solutions and the original algorithm. More precisely, the initial classifier 
line (i.e., dotted grey line) provides the performance results of a classi
fier generated using the data of the first chunk and tested on all the 
subsequent chunks. This approach simulates the scenario where a 
detection model is generated at a specific time (i.e., 3rd quarter of 2011 
in this case) and is never updated, thus neglecting concept drift. As the 
initial data chunk was significantly imbalanced towards the legitimate 
class (i.e., 98% of the data points were benign apps), another naive so
lution is provided as a reference (i.e., dashed grey line), using data from 
the second chunk, where the data were more balanced (i.e., 65% legit
imate, 35% malware). As can be observed, the two naive solutions, 
which are never updated, yield poor detection performance as time 
passes. On the contrary, the proposed solution (i.e., solid blue line) 
provided a detection performance of over 90% in almost all periods, 
showing robustness against concept drift, reacting, and updating its 
knowledge when it emerged. Further, its performance was superior to 
the performance shown by the original algorithm in most periods, 
especially in the first ones. 

As can be seen in Fig. 5, when the first seen timestamp is used, the 
high, stable, and smooth performance line provided by the solution in 
the previous case is not observed. The performance line performs sudden 
dips and boosts that might have been caused by a general temporal 
misplacement of the data which led to improper concept drift handling. 
This timestamp does not seem as reliable as the last modification time
stamp to locate the data samples in their correct period and, conse
quently, the changes in data features do not emerge naturally but 
artificially, likely caused by temporal displacement. Despite that, the 
solution still shows good performance and adaptation over time. 

It is worth noticing that, in this case, the horizontal axis starts and ends 
a period later than in Fig. 4. This difference is due to the distinct temporal 

Fig. 2. Distributions of example features.  

Table 1 
Data pre-processing results.  

Preprocessing step Results 

Feature Variance Analysis 160 constant or zero-valued 
Feature Correlation Analysis 31 highly correlated 
Feature Distribution Analysis 0 normal 
Final feature set 97 non-normal syscalls  
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distribution generated by this timestamp, which allowed generating the 
initial classifier on 2011.Q3 but not a test set for that period. Therefore, the 
time series data is displaced one quarter with respect to Fig. 4. This fact 
supports the aforementioned differences between these two timestamps 
regarding the location of data samples within the historical timeline. 

As can be observed in Fig. 5, when the performance of the proposed 
solution is compared with the other approaches, it significantly out
performs the initial classifier and the naive solution, reaching high- 
performance values in almost all periods. Again, it outmatches the 
performance of the original algorithm, especially in the first periods. 
Despite that, when the first seen timestamp is used, the performance of 
the system is less smooth and remarkably lower than when the last 
modification timestamp is used. More precisely, the displacement of data 
samples over the historical timeline overrides the emergence of a natural 
concept drift, thus hindering its proper handling. 

In conclusion, the usage of single period classifiers, applied over time 
with no update, proved to be inefficient and showed poor and degenera
tive performance as time passed. These solutions become obsolete and 
ineffective in a short time span. Contrarily, the proposed solution is robust 
and resilient to changes in data over time, especially when the last modi
fication timestamp is used, keeping high-performance metrics on Android 
malware detection under the challenge of constant data evolution. These 
results also demonstrate that system calls can be used to achieve effective, 
long-lasting, and robust Android malware detection even when concept 
drift threatens the performance of the detection system. 

4.4. Concept drift characterization 

The following paragraphs explore the concept drift phenomenon 
using several instruments for its characterization. More specifically, the 
impact of the pool size and the evolution of the importance of features are 
analyzed. 

4.4.1. Impact of the pool size 
The analysis of the proposed solution according to the number of 

classifiers present in the pool of classifiers brings some interesting 
findings on the concept drift analysis and the modeled data. 

Different pool sizes for the proposed solution, ranging from 2 to 20 
classifiers, were assessed. The experiment was repeated 20 times per 
pool size and the results were averaged. In this regard, Fig. 6 provides 
relevant information regarding the experimental results such as the 

average lifetime of a classifier (i.e., how long, on average, a classifier was 
in the pool before it was removed), the average lifetime of the classifiers 
from the initial pool (i.e., in what period, on average, all the classifiers 
created in the first period were removed), and the quality of the new 
classifiers (i.e., how many times, on average, the most recent classifier 
was the best performer) calculated for both timestamps. The color rib
bons surrounding the lines in Fig. 6 provide the standard deviation for 
each reported value. 

As can be observed, regardless of the timestamp, the average lifetime 
of a classifier inside the pool is linear according to the pool size in a ratio 
of 0.8–0.9. This fact shows that the oldest classifier in the pool is not 
always the one removed when the poorest model is purged from the 
pool. Recurring threats might cause old classifiers to perform relatively 
well in later periods. Furthermore, the results show that regardless of the 
pool size, a single classifier is never the best performer for more than 5 
periods, thus demonstrating the dynamism of the phenomenon. 

More interestingly, the number of periods in which the newest 
classifier is the best slightly decreases when the pool size increases. As 
can be observed, in all models the number of times a classifier is the best 
performer is different from 1. This shows that there are periods where an 
older model is repeatedly the best performer and suggests that there 
might be gaps between periods where the same classifier is the best 
performer, thus reinforcing the existence of concept drift in the analyzed 
data. Besides, it should be noted that newly created classifiers are valid 
for a longer time for the first seen timestamp than for the last modification 
timestamp. Hence, natural concept drift handling seems to generate 
more specific and better classifiers with reduced lifetimes, as shown in 
Fig. 4, whereas misplaced data generate more generic and worse 
performer classifiers, but with longer lifetimes, as displayed in Fig. 5. 

In the case of the last modification timestamp, the classifiers from the 
initial pool are always removed as soon as possible (i.e., in the first S 
periods, where S refers to the pool size). This shows that the initial data 
cannot be used effectively to discriminate new data, so the related 
classifiers are rapidly removed. This observation concurs with the results 
obtained on the anomaly detection models (see Fig. 3). For the first seen 
timestamp, the lifetime of the initial pool substantially increases for 
seven and more pool components. This suggests that the knowledge 
from the initial periods is useful for later periods, which might be caused 
by a general misplacement of the data samples along the timeline, 
provoking artificial drift in the data. 

Although this thorough analysis yielded relevant insights about the 

Fig. 3. Performance of the one-class anomaly detection models.  
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impact of the pool size on concept drift and data modeling, it did not 
provide any hint about the optimal pool size, a relevant question that 
remains unsolved. The following paragraphs address this issue. 

Fig. 7 shows the classification results (i.e., F1 score) obtained using 
the proposed solution with pools of various sizes. The usage of boxplots 
enables us to easily compare the distributions of the classification results 
for distinct pool sizes. The dark blue boxplots provide the results for the 
last modification timestamp while the light blue boxplots provide the 
distributions of the classification results for the first seen timestamp. The 
body of the boxplots reflects the range where the central 50% of data is 
located, also referenced as interquartile range (IQR). The IQR is calcu
lated as IQR = Q3 - Q1, where Q3 and Q1 are the 75% and 25% per
centiles, respectively (i.e., the borders of the box). The orange line 
crossing the bodies references the median while the average is provided 

by the red rhombus. Outliers or extreme values are reported as grey dots, 
located further than the minimum and maximum whiskers which are 
calculated as minimum = Q1 − 1.5 * IQR and maximum = Q3 + 1.5 * IQR. 

The boxplots in Fig. 7 reflect that even though the average quality 
diminishes for larger pools in both timestamps, in general, the pool size 
does not seem to influence substantially the classification quality. 
However, the pool size of 12 classifiers for the last modification time
stamp shows distinctive properties. First, the average and median values 
are nearly the same, defining a relatively symmetrical distribution. Thus, 
the deviations of all terms from the median cancel out. This distribution 
is different from the other distributions, which are skewed, thus making 
the median a better central measure than the average and relating to the 
existence of extreme values. Second, the number of outliers in the dis
tribution is minimal. The other pool sizes generated classifiers with 

Fig. 4. Proposed solution performance using the last modification timestamp.  

Fig. 5. Proposed solution performance using the first seen timestamp.  
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worse and more spread results. Third, even though the pool size of 13 
shows similar properties, the whiskers for the pool size of 12 are shorter, 
thus concentrating the data in a shorter range, with less variability. 
Besides, as a smaller number of classifiers is needed, it is a more efficient 
approach than the pool size of 13 components. As a result, all these 
observations make the pool size of 12 the preferred option for optimal 
results. 

As can be seen in Fig. 7, in the case of the first seen timestamp, the 
obtained results for all pool sizes are remarkably worse than for the last 
modification timestamp. 

The combination of these results with the previous findings from 
Fig. 6 enables us to confirm that the system relied excessively on old 
classifiers when using the first seen timestamp. Two aspects that stress it 
are the delay in replacing the initial pool and the extended lifetime of the 
classifiers. Due to the discretionary nature of the generation of the first 
seen timestamp, which depends on users proactive submissions, it seems 
to lag behind the last modification timestamp unpredictably, thus being 
prone to displace the samples within the historical timeline and provide 
a relatively inaccurate temporal location. Therefore, the obtained results 
suggest that the first seen timestamp provides a less realistic approxi
mation to the real concept drift and, consequently, a less accurate so
lution and characterization of it. 

Based on these results, the following experiments were performed 
using the pool size of 12 components and the last modification 
timestamp. 

4.4.2. Evolution of features importance 
The permutation feature importance technique was used to analyze 

the evolution of the importance of features over time, thus enabling to 
characterize concept drift. The procedure and main results of this stage 
are explained as follows. 

For each period Pi, the best classifier was selected according to the 
results obtained in Section 4.3 and detailed in Fig. 4. The permutation 
feature importance technique applied to the classifier was calculated 
using Eq. (2) with F1 score as loss function. The importance was calcu
lated separately for three test sets (i.e., time horizons). The first set was 
the subsequent period to Pi, thus Pi+1. The second set consisted of two 
successive periods, ∪i+2

j=i+1 Pj, and the third set contained the four sub
sequent periods, ∪i+4

j=i+1 Pj. As defined, the sets were built incrementally, 
thus corresponding to three, six, and twelve months data horizons. The 
results were calculated for all possible periods of the data set in the range 

P1,…,Pn− 4. 
The usage of three incremental test sets enabled us to observe how 

the importance of features varied in short, medium, and long-term time 
horizons. In this regard, Fig. 8 provides the distributions of feature 
importance using boxplots, calculated for all periods and including all 
syscalls that reported a non-null importance in at least one period. The 
box color indicates the time span or horizon (i.e., darker colors reference 
longer time-frames). The orange line crossing the body indicates the 
median and the green triangle provides the average value. The hori
zontal axis informs about the system call name, while the vertical axis 
reflects increasing scores of permutation feature importance (i.e., a 
larger score directly relates to greater importance). 

The results provided in Fig. 8 were obtained from 20 tests of 500 
permutations each. Even though the results slightly varied among iter
ations, the main findings described in the following analysis were 
common for all tests. 

As can be observed in Fig. 8, no feature was found useful or important 
in all tests as all boxplots start near the zero value. A fact that stresses the 
existence of concept drift. More interestingly, based on these results 
three types of features can be distinguished. The first type of features 
includes those features that are not useful in any time horizon like 
getgid32 or restart_syscall. These features might have provided a low 
importance score in some periods due to the stochastic nature of the 
technique or a non-random positive importance but with a negligible 
impact on the task. The second group of features is related to features 
that are more important in longer time frames (i.e., medium and long 
term) than in the short-term. These features are not very good at 
recognizing sporadic threats, but they constitute a solid base in a time- 
extended threat detection system. Features like clock_gettime and flock, 
which lie inside this category, show a relatively stable discriminatory 
power over time. Lastly, the third type of feature shows the opposite 
situation, the feature is a relatively good discriminator in the short term 
but is not as useful in longer time frames. Due to the larger number of 
distinct threats present in longer time frames (i.e., more families and 
malware variants), these features are not so useful for overall discrimi
nation as in the short time frame, where a smaller variety of threats is 
present. Consequently, these features might work well to distinguish 
specific malware families. Features such as write or SYS_317 are included 
in this category. 

To perform a deeper analysis of the importance of features for spe
cific recognition tasks, the permutation feature importance was calcu
lated using specificity and recall as loss functions. The results for 

Fig. 6. Classifier pool statistics for both timestamps.  
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specificity provide information about important features to recognize 
benign software, whereas for recall, also called sensitivity, they describe 
important features for the malware detection task. 

The obtained results are depicted in Fig. 9, showing features with 
positive importance in benign and malicious software recognition tasks 
and their evolution over time. The presentation is limited to features 
with positive mean importance estimation obtained using Eq. (2) and 
that, for each task, were found in the top 3 most important features in 
any period. The horizontal axis provides the timeline, split into quarters 
or periods. Regarding the vertical axis, the color relates to specific fea
tures, while the colored areas (i.e., vertical range) in each stacked bar 
provide the importance score of the specific features relative to the total 
importance of each specific period of time (i.e., the total importance of a 
period is the sum of the importance scores of all the important features 
in that period). Consequently, the larger the vertical range or area 
spanned by a feature in a bar, the greater the importance of the feature 
in the period. 

In the case of benign software recognition, presented in Fig. 9a, the 
importance of features appears to be locally stable. Several features like 
read and mprotect have similar influence for extended periods of time (i. 
e., from 2011-Q4 to 2014-Q2 in the case of read and from 2012-Q1 to 
2017-Q1 in the case of mprotect). Besides, quarters with clearly 
outstanding features are rare (e.g., 2011-Q4, 2017-Q2). So, despite that 
some trends can be spotted, with some features gaining and others losing 
importance in some periods of time (e.g., SYS_310 increases from 2016- 
Q1 to 2017-Q1 and flock increases from 2016-Q1 to 2018-Q1), the 
overall picture shows stability and that the same set of features is rele
vant in all time frames with no distinctive changes in relative influence 
and no new important features emerging over time (i.e., the bars have 
either a small portion of grey area or no grey area, meaning that most of 
the important features for each period are included in the bars). 

The results are drastically different for the malware recognition task. 
Fig. 9b shows the changes in feature importance calculated for the recall 
function. As can be noticed, for most quarters, the dependencies 
observed in a specific period are not repeated in the following periods. 
Besides, even when a feature shows an extremely high importance in one 
period (e.g., pread in 2014-Q2), no consistency is observed and the 
importance of the feature dramatically decreases in the next periods. 
The only remarkable exception is clock_gettime feature, which is a very 
important discriminatory variable for several years (i.e., from 2012-Q3 

to 2015-Q3). However, even in this case, there are quarters in this 
extended time frame where the feature loses completely its discrimi
natory power for malware detection (i.e., from 2014-Q2 to 2015-Q1). 

Based on these observations, it is worth analyzing how two relevant 
features, clock_gettime and pread, were represented in the time horizon 
analysis performed previously. In this regard, Fig. 8 shows that clock_
gettime, the feature found important for an extended period of time, is 
more important for the medium and long-term time horizons than in the 
short-term. In contrast, pread, the feature that was found critically 
important for a single period, obtains similar results in all horizons. 
Therefore, the horizon analysis supports the previous observations. In 
any case, it should be stressed that any importance score (i.e., local or 
periodical) influences all three horizons, but that the relationship among 
the levels gives additional information about the character of the 
importance. 

Another issue observed in the malware recognition case is the exis
tence of periods where the total importance of the features included in 
the bar is far from reaching the top (i.e., 2014-Q4, 2018-Q2). In those 
periods, none (e.g., 2014-Q4) or few of the included features (e.g., 2018- 
Q2) were found important for the malware recognition task. In the 
former case, it suggests that the set of features was not large enough to 
model all malware types observed in the data, whereas in the latter case, 
new features, not important in other periods, emerged as important. 

Finally, even though important features seem to vary dramatically 
among quarters for the malware recognition task, some general patterns 
can be spotted. For instance, as mentioned before, clock_gettime is criti
cally important from 2012-Q2 to 2015-Q2 but not so much after (i.e., 
more recent years). The internet-related system calls (i.e., socketpair, 
recvfrom, setsockopt and getsockopt) appear to have more importance in 
the recent years, from 2015-Q4 to 2017-Q3. More interestingly, the bars 
from 2012-Q1 to 2016-Q1 show clear dominance of small subsets of 
features (i.e., mainly clock_gettime), whereas in the latter years, the bars 
are composed of more features, looking more similar to the bars of the 
benign recognition task. In this regard, it is worth noting that, when 
comparing Fig. 9a with Fig. 9b, the segmentation of the bars is a major 
difference between them. Specifically, for the benign recognition task, 
the bars are dense, composed of many features, and show stability (i.e., 
the same set of features shows similar importance over years). On the 
contrary, the bars for the malware recognition task are mostly composed 
of a small subset of features, showing clear dominance of some of them 

Fig. 7. Classification performance boxplots for both timestamps.  
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Fig. 8. Boxplots providing feature importance distributions calculated for short, medium and long-term time horizons.  
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Fig. 9. Feature importance calculated quarterly for specificity (a) and recall (b) tasks.  
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over the rest. Consequently, the malware recognition task appears to be 
significantly more complex and changing more rapidly than the benign 
software recognition task. 

To sum up, in this section we performed a thorough analysis of the 
evolution of the importance of relevant features. This analysis provides 
relevant insights about the data evolution, assisting to characterize 
concept drift which, in turn, can help to understand malware changes 
and their direction to design and implement better detection systems. 

5. Discussion 

The phenomenon of concept drift in Android malware detection has 
been neglected by most of the specialized research in the domain, which 
has overlooked the degenerative impact of time in the machine learning- 
based malware detection systems. The reduced number of studies that 
considered the impact of time in their detection systems proposed so
lutions to address the issue mainly based on static approaches (i.e., API 
calls) and did not provide any characterization of the phenomenon. 

To the best of our knowledge, the solution proposed in this study is 
the first to tackle the concept drift issue in Android malware using dy
namic features and achieving long-term high performance. The previous 
solutions focused on static features (i.e., API calls) and spanned shorter 
time frames. In this regard, DroidEvolver (Xu et al., 2019) used API calls 
as features and obtained significant results in a 6 year-long time frame (i. 
e., 2011–2016), outperforming MaMaDroid (Onwuzurike et al., 2019), a 
prior solution. As shown in Fig. 10, the solution proposed in this study 
outperforms the state-of-the-art solution, DroidEvolver, both in time and 
detection performance (i.e., F1 score). More specifically, when the 
training period is excluded (i.e., 2011), our proposed solution achieves 
an average F1 score of 94.05% in the 2012–2016 time frame, whereas 
DroidEvolver averages 89.56% in the same period of time. When the 
longest period is considered, from 2012 to 2018, our proposed solution’s 
average F1 score increases to 94.65%. To assess the statistical signifi
cance of the difference between both solutions, Wilcoxon’s signed-rank 
test for paired scores (Japkowicz & Shah, 2011) was used. The results 
confirmed that our solution, in the time frame from 2012 to 2016, 
performs significantly better than DroidEvolver at the confidence level 
of 0.05 (p-value = 0.048). However, as our solution could not be trained 
with full 2011 data (i.e., just samples from Q3 and Q4), the statistical 
significance of the results could not be confirmed at confidence level 
0.05 (p-value = 0.197) when the training period was included (i.e., 
2011–2016). 

Besides, is it worth noting that the data features used to build our 
approach are distinct from the ones in the related literature, including 

DroidEvolver. DroidEvolver, as most related solutions, uses API calls (i.e., 
static features), whereas our proposed solution uses system calls (i.e., 
dynamic features). In addition, none of the previous studies that dealt 
with Android concept drift provided any characterization of it, which 
hinders the interpretability of the results and the comprehension of the 
phenomenon. The solution proposed in this study has been proved 
effective to address concept drift in Android malware detection and 
characterize it. 

The related solutions focused on F1 score performance, not providing 
any other performance metric. As a result, the comparison between 
solutions is restricted to the F1 score metric. For the sake of complete
ness and better comparison of other solutions with this work, a summary 
of other relevant performance metrics of our proposed solution is pro
vided as follows. The proposed solution averaged 95.17% precision, 
94.14% recall, and 89.49% specificity in the 2012–2018 time frame. 
These metrics emphasize the goodness of the proposed solution to 
effectively tackle concept drift while keeping high-performance metrics 
for the whole study period. 

A distinctive point of this study is the evaluation of distinct time
stamps to date the apps and the assessment of their impact on concept 
drift detection and handling. The KronoDroid data set enabled the usage 
of distinct timestamps on our evaluation, thus providing results based on 
relevant timestamps (i.e., last modification and first seen). To the best of 
our knowledge, no previous study in the field has evaluated distinct 
timestamps for concept drift detection and handling. More precisely, the 
concept drift-related studies in the literature do not usually provide 
details about the used timestamp or justify the usage of a specific 
approach. But, if they do, they do not assess the reliability of the time
stamp. In this study, we address such issues by providing and comparing 
two relevant and useful timestamps for Android malware detection 
concept drift handling. The systematic usage of an internal timestamp (i. 
e., last modification) rather than external timestamps (e.g., first seen) has 
proved to be reliable and accurate to handle and characterize the phe
nomenon. Besides, the usage of the last modification timestamp may 
help to avoid errors and data misplacement caused by human-related 
techniques (e.g., user submission delay), thus enhancing historical ac
curacy. As shown in Section 4.3, the proposed solution using the last 
modification timestamp proved to be more accurate and reliable than 
when the first seen timestamp was used to locate applications in the 
Android historical timeline, thus generating a more effective detection 
solution. 

The features used in this study (i.e., system calls) have demonstrated 
great effectiveness and consistency to deal with concept drift. In this 
regard, just a small subset of the whole feature set was used to build an 

Fig. 10. Comparative performance of the proposed solution with the state-of-the-art solutions.  
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effective solution (i.e., 97 features). The system calls feature set is 
consistent, as system calls are rarely modified at kernel level which 
provides long-time stability for the feature set. This is radically different 
from the changing nature of API calls, which are prone to suffer constant 
modifications and the addition of new features on every new Android 
framework release. This constant modification of the features generates 
the need to constantly update the feature set to keep the models upda
ted, which may end up in an increasingly large, ever-growing feature set. 
For instance, in DroidEvolver, the API calls feature set grew from 14,327 
features in 2011 to 52,001 features in 2016 (Xu et al., 2019). On the 
contrary, our solution kept the same feature set constant, composed of 
just 97 features, for a longer period of time (i.e., 2011 to 2018). 
Furthermore, the usage of highdimensional feature sets may harm the 
performance of machine learning-based detection systems, a phenome
non called the curse of dimensionality (Aggarwal, 2015). Therefore, our 
proposed solution simplifies the learning process, based on a small 
subset of features, avoiding high-dimensional data issues in the long run. 
As a result, although the acquisition of dynamic features is generally 
more complex and time-consuming than the collection of static features, 
they have proved to be more reliable, efficient, robust, and consistent 
over time, thus enabling the generation of a more effective detection 
system. 

Finally, our characterization results demonstrate that the relevant 
system calls to discriminate benign applications do not show rapid 
variations in consecutive periods, whereas dominant feature sets for 
malware samples suffer radical changes. These results may help mal
ware analysts get a general idea about the evolution of benign and 
malware samples and understand the reason behind concept drifts, thus 
improving the trust of the experts in the learning models. However, 
despite the advantages shown by system calls to generate an effective 
detection model, an expert may not derive a clear understanding of what 
type of app behavior is induced by each feature as an individual system 
call can be associated with different system functions. Static features 
such as permissions or API calls can benefit more from our character
ization approach due to a more comprehensible mapping between these 
features and the behavior of the application. We consider the application 
of our methods to those features as one of the main directions in our 
future work. 

6. Conclusions 

The evolving nature of Android malware has been neglected by the 
majority of the machine learning-based detection methods proposed in 
the related literature, thus disregarding the degenerative impact of 
feature changes over time (i.e., concept drift). The reduced number of 
solutions that considered the impact of the time variable focused on the 
usage of API calls as input features. API calls can be used effectively to 
discriminate malware and provide a relatively good representation of its 
behavior. However, system calls, the most used dynamic features for 
Android malware detection, which allow capturing the real behavior of 
the apps at run-time, and are robust to obfuscation and encryption 
techniques, have not been considered in concept drift solutions. 

This experimental study proposes a method that uses system calls 
data gathered on real Android devices to detect, characterize, and 
handle Android malware concept drift effectively. 

Our proposed method minimizes model retraining and uses a pool of 
classifiers trained with recent data to adapt effectively to malware 
evolution. The experimental results evidence that system calls can 
effectively discriminate malware in the presence of concept drift using 
the proposed method, providing high-performance metrics for an 
extended period of time. More precisely, in a 7 year-long test, the pro
posed solution averaged 94.65% F1 score, 95.17% precision, 94.14% 
recall, and 89.49% specificity, proving the goodness of our solution to 
adapt and react to the concept drift issues that affect Android malware 
detection while keeping high-performance metrics. The proposed solu
tion outperforms the state-of-the-art solutions for Android malware 

detection under concept drift conditions. 
A critical issue to deal effectively with concept drift is the timestamp 

used to date the apps. In this study, distinct timestamps are analyzed and 
compared regarding concept drift-related performance. To the best of 
our knowledge, this is the first study on Android malware detection to 
perform such a comparison. 

Lastly, the proposed solution allows the characterization of the 
changes in the data by analyzing the important features on the best 
classifiers. The observation of concept drift in different time horizons 
was used to describe the important features and determine their evo
lution and usefulness over time. In this regard, some features were found 
to have a prolonged (i.e., long-term) influence on the model perfor
mance, whereas others showed an impact limited to the short term (i.e., 
specific periods). This fact evidenced the existence of concept drift and 
provided insights into its character. More specifically, when the mal
ware recognition task was analyzed (i.e., recall), it was observed that a 
small number of features had importance in each period, showing sig
nificant concept drifts and rapid feature importance changes. These facts 
were not observed for the benign software detection task (i.e., 
specificity). 

The usage of the proposed method in combination with other rele
vant data features for Android malware detection, such as security per
missions, remains part of our future work. 
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a b s t r a c t 

The large body of Android malware research has demonstrated that machine learning methods can pro- 

vide high performance for detecting Android malware. However, the vast majority of studies underesti- 

mate the evolving nature of the threat landscape, which requires the creation of a model life-cycle to 

ensure effective continuous detection in real-world settings over time. In this study, we modeled the 

concept drift issue of Android malware detection, encompassing the years between 2011 and 2018, using 

dynamic feature sets (i.e., system calls) derived from Android apps. The relevant studies in the literature 

have not focused on the timestamp selection approach and its critical impact on effective drift model- 

ing. We evaluated and compared distinct timestamp alternatives. Our experimental results show that a 

widely used timestamp in the literature yields poor results over time and that enhanced concept drift 

handling is achieved when an app internal timestamp was used. Additionally, this study sheds light on 

the usage of distinct data sources and their impact on concept drift modeling. We identified that dy- 

namic features obtained for individual apps from different data sources (i.e., emulator and real device) 

show significant differences that can distort the modeling results. Therefore, the data sources should be 

considered and their fusion preferably avoided while creating the training and testing data sets. Our anal- 

ysis is supported using a global interpretation method to comprehend and characterize the evolution of 

Android apps throughout the years from a data source-related perspective. 

© 2022 Elsevier Ltd. All rights reserved. 

1. Introduction 

Threats originating from mobile malware create significant se- 

curity incidents ( Palmer, 2018; Yaswant, 2021 ) as mobile devices 

store an increasing amount of valuable data about individuals and 

enterprises. Android is the dominant operating system (OS) in the 

mobile OS market with a market share of 72% as of September 

2021 ( Statista, 2021 ). Due to its open nature and high prevalence, 

Android devices are constantly targeted by cybercriminals. For in- 

stance, according to Kaspersky, 98% of mobile banking attacks have 

been launched against these devices ( Kaspersky, 2020 ). Malware 

spread remains a significant problem in Android OS despite the 

implementation of countermeasures by Google (2021) and Android 

original equipment manufacturers (OEMs) ( Samsung, 2021 ). The 

detection of mobile malware is a challenging task with the tradi- 

tional signature-based techniques used by most antivirus software 

due to rapid changes in the threat landscape and the emergence of 

new malware types. Machine learning approaches are seen as com- 

∗ Corresponding author. 

E-mail address: alejandro.guerra@taltech.ee (A. Guerra-Manzanares) . 

pelling solutions to address this bottleneck, especially when zero- 

day malware is considered ( Fedler et al., 2013; Whitwam, 2021 ). 

There exists a large body of research regarding the applica- 

tion of machine learning to mobile malware detection ( Sharma 

and Rattan, 2021 ). However, the vast majority of the studies aim 

to prove the superiority of the proposed machine learning-based 

solutions on static data sets, neglecting the dynamism of the phe- 

nomenon and the obstacles that are inevitable to face in real set- 

tings (i.e., malware evolution and new trends). Such experiments 

with static data sets can give initial insights about the feasibility of 

machine learning algorithms to solve the problem but not deeper 

application-oriented knowledge. 

In an organizational setting, machine learning models are incor- 

porated into continuous processes that require a sustainable data 

analytics ecosystem. In this regard, a well-functioning data pipeline 

should be established, model life-cycles should be carefully man- 

aged (i.e., creating, updating, or replacing the models) and inter- 

pretation of model results should be shared among experts to gen- 

erate trust between them and the machine learning models. Re- 

sults could also be used for re-designing the model life-cycles if 

needed. When the malware detection problem is reviewed from 

this application perspective, for instance, considering the typical 

https://doi.org/10.1016/j.cose.2022.102757 

0167-4048/© 2022 Elsevier Ltd. All rights reserved. 
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setting of a malware scanner vendor, it is apparent that practition- 

ers must solve various hindrances such as preventing the detri- 

mental impact of variability in data sources on detection perfor- 

mance and adapting the models to the ever-evolving threat land- 

scape. Such relevant aspects cannot be handled by just optimizing 

the learning models for a static data set. 

A data analytics process addressing mobile malware detection 

should consider the data pipelines that are fed from heteroge- 

neous resources such as real devices of customers, honeypots, 

threat intelligence feeds, and sandboxes. Dynamic features ob- 

tained from the same sample may vary according to the data col- 

lection environment (e.g., real device or emulated device), which 

may potentially cause a degenerative impact on the learning mod- 

els when the distinct data sources are not considered in the train- 

ing and testing steps of the machine learning workflow ( Guerra- 

Manzanares et al., 2019a ). In ( Alzaylaee et al., 2017 ), emulator 

and real phone issues are addressed using dynamically collected 

API calls and intent filters as data features. A similar approach 

focused on detection performance is used in Guerra-Manzanares 

et al. (2019a,b) . However, the data sets used in these studies are 

too small and do not consider the changes in data over time, a sig- 

nificant variable affecting the performance of malware detectors. 

No other studies in the literature have taken data source variation 

into consideration. 

Malware behavior is prone to change over time due to the in- 

trinsic evolving nature of the problem domain, revolving around 

the constant attack and defense battle between malicious actors 

and defenders. The possible transformation of legitimate samples 

should not be underestimated either. Therefore, concept drift han- 

dling should be integral to a solution aiming to provide continuous 

effective detection. A phenomenon that has been addressed by a 

limited number of proposed implementations ( Cai et al., 2019; Xu 

et al., 2019; Zhang et al., 2020 ). Furthermore, the incorporation of 

a reliable time feature into the data set, which is the centerpiece 

of concept drift modeling, has not been analyzed nor discussed in 

the related literature yet. The fundamental and challenging issue 

regarding the definition of timestamp reliability within the context 

of mobile malware detection must be addressed so that the times- 

tamp that best grasps the behavior of malware and benign soft- 

ware is utilized to model data drift effectively. 

Acquiring knowledge from data is an iterative process between 

the creation of a machine learning model and its analysis. The pro- 

cess of malware detection necessitates the involvement of various 

experts such as malware analysts. Thus, characterization of mali- 

cious behavior via interpretability constructs can enhance human- 

machine interaction and create a bidirectional feedback loop be- 

tween experts and learning models. 

In this paper, we deeply investigate a dynamic feature set de- 

rived from Android apps (i.e., system calls) within a concept drift 

model. More specifically, we explored the impact of data sources 

by creating and comparing models induced from data sets col- 

lected on real devices and emulators. Due to the central impor- 

tance of timestamps to concept drift modeling, in addition to data 

sources, we explored the effect of distinct timestamping options on 

detection performance. We also performed characterization of con- 

cept drift using a global interpretability method to shed more light 

on the changes in malware and benign samples over the years. For 

our experimental setup, the KronoDroid data set was used ( Guerra- 

Manzanares et al., 2021 ), which provides timestamped data en- 

compassing all years of Android history (i.e., 2008–2020). We ap- 

plied a sequential workflow that starts with a data preprocess- 

ing stage and continues with two different procedures: concept 

drift detection and concept drift modeling . The former addresses the 

question of whether concept drift exists in the data and, if so, what 

type of drift occurs, utilizing one-class anomaly models based on 

the Isolation Forest algorithm ( Gözüaçk and Can, 2020 ), whereas 

the latter addresses concept drift by dividing the whole study pe- 

riod into data chunks and induces an adaptive learning model that 

dynamically selects the best ensemble model from a pool of clas- 

sifiers for each chunk ( Guerra-Manzanares et al., 2022; Zyblewski 

et al., 2021 ). The last stage of the workflow applies the permu- 

tation feature importance technique ( Breiman, 2001 ) to provide a 

chunk-based characterization of concept drift results. 

It is worth emphasizing that the optimization of detection per- 

formance of the concept drift model is not the main aim of this re- 

search. Our focus is on the evaluation of the impact of distinct data 

sources and timestamps on model performance. In this regard, we 

created a working concept drift modeling solution complemented 

by a characterization step to comprehensively analyze the impact 

of data source variation and timestamp alternatives on the contin- 

uous detection of mobile malware throughout the years. 

To the best of our knowledge, this study is the first work that 

explores the impact of timestamp alternatives on concept drift 

modeling in mobile malware detection, a critical issue to consider 

for drifting data. Moreover, the comparison of learning models in- 

duced from emulator and real device data sets has not been per- 

formed for system calls yet. The characterization of concept drift is 

another noteworthy contribution of our study as it may help secu- 

rity practitioners to better comprehend the behavioral changes of 

malware and legitimate apps leading to the observed concept drift. 

This paper is structured as follows: Section 2 references the 

state-of-the-art in Android malware detection while Section 3 pro- 

vides the methodological description of this study. The main re- 

sults are detailed in Section 4 . Section 5 outlines the discussion 

points and limitations of this research while Section 6 summarizes 

the study and future work. 

2. Related work 

Static and dynamic features extracted from Android apps are 

used to induce effective machine learning-based Android malware 

detection systems ( Liu et al., 2020 ). 

Static features are collected without running the app, generally 

from the source code or the apk bundle. Features such as secu- 

rity permissions, API calls, and intent filters lie inside this cate- 

gory. Static features are fast and easy to collect in an automated 

fashion. However, the detection systems built based on them are 

prone to be bypassed by zero-day and sophisticated malware, es- 

pecially when obfuscation and encryption techniques are used. 

The collection of dynamic features requires the app to be ex- 

ecuted, allowing for the capture of the real behavior of the run- 

ning app in a live environment. Features such as system calls and 

network flow data can be acquired using this approach. The acqui- 

sition of dynamic features is generally time-consuming and chal- 

lenging but they tend to generate more robust and effective detec- 

tion systems. 

2.1. Real device vs. emulator 

System calls are the most commonly used dynamic feature for 

Android malware detection ( Liu et al., 2020 ). System calls are the 

mechanism used by running software to request a service from the 

kernel of the underlying OS. They allow collection of the behav- 

ior of the application by capturing the information flow between 

the distinct OS layers ( Dimjaševi ́c et al., 2016 ). Due to their dy- 

namic nature, the acquisition of system calls features requires the 

execution of the app in a live Android environment. Real devices 

and emulators are used as execution devices for such purpose. A 

real device is an actual physical phone running an Android OS ver- 

sion whereas an emulator is a software running on a computer 

that simulates almost all the capabilities of a real device ( Android, 

2021 ). 

2 
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There is no clearly dominant execution platform in the recent 

related literature. While some researchers prefer the usage of real 

devices for their experimentation, either using single ( Amin et al., 

2016; Saracino et al., 2018; Xiao et al., 2019 ) or multiple real de- 

vices ( Alzaylaee et al., 2020; Vidal et al., 2017; Wang and Li, 2021; 

Wei et al., 2022 ), others advocate for the exclusive usage of emula- 

tors to perform their operations, using either specialized sandboxes 

for dynamic analysis ( Feng et al., 2018; Han et al., 2020 ) or general- 

purpose Android emulators ( Casolare et al., 2021; Dimjaševi ́c et al., 

2016; Guerra-Manzanares et al., 2019c; Jerbi et al., 2020; Lin et al., 

2013; Surendran et al., 2020; Vinod et al., 2019; Zhang et al., 2021 ). 

Table 1 outlines relevant and recent studies in the research do- 

main. As can be observed, distinct Android platforms (i.e., device 

types), combined with different data sources, dynamic features and 

algorithms, have been used with significant success for malware 

discrimination purposes. In this regard, the single usage of any of 

the approaches shows advantages and limitations. 

Emulators are easy to deploy, manage, and they fit perfectly in 

automated analysis and detection systems ( Dimjaševi ́c et al., 2016 ), 

enabling the mimicry of almost all real device capabilities in a 

wide variety of virtual devices and Android versions without ac- 

tually having each real device ( Android, 2021 ). However, malware 

with anti-sandbox evasion techniques can deceive emulators (i.e., 

the malicious behavior would not be triggered if a sandbox envi- 

ronment is detected) ( Lindorfer et al., 2015 ). Although some solu- 

tions provide enhancements on this issue ( Naval et al., 2015; Vinod 

et al., 2019 ), they generally provide limited interaction (i.e., specific 

triggering events might not be possible such as SMS messages or 

SIM card detection ( Feng et al., 2018 )) and fail to install apps that 

do not support x86 or x86-64 architecture libraries. 

Real devices are more difficult to manage and integrate into au- 

tomated systems. For instance, restarting to run every sample in a 

clean device can be time-consuming, rooting can brick the device, 

and ensuring the exact same conditions for all tests might not be 

possible ( Lin et al., 2013 ). However, they provide full interaction 

with the app, they are inherently immune to anti-sandbox tech- 

niques, and they show much fewer incompatibility issues ( Guerra- 

Manzanares et al., 2021 ). 

In any case, the main underlying axiom in these studies is 

that the behavior of applications is fully consistent across devices 

( Lin et al., 2013 ) and Android versions ( Burguera et al., 2011; Vi- 

dal et al., 2017 ) and, consequently, that the nature of the devices 

(i.e., emulators or real devices) and OS versions used do not re- 

ally matter. This axiomatic assumption explains the absence of ho- 

mogeneity on the selection criteria and the wide variety of de- 

vices/versions and approaches used in research setups. However, 

the studies that have experimented with both devices ( Alzaylaee 

et al., 2017; Guerra-Manzanares et al., 2019a; 2019b ) challenge the 

validity of this cross-device behavioral consistency postulate. For in- 

stance, in Alzaylaee et al. (2017) , when API calls and intents , usu- 

ally analyzed as static features, were captured dynamically, real 

devices were found to provide more reliable and stable features 

for malware detection than emulators, thus leading to a more ef- 

fective detection outcome. However, when system calls are used 

as features, as in Guerra-Manzanares et al. (2019b) and Guerra- 

Manzanares et al. (2019a) , the results show that emulators may 

provide better detection outcomes than real Android devices. 

As can be observed, both kinds of devices have been widely 

used for Android malware detection purposes. The selection crite- 

ria are mainly based on the available resources and required flexi- 

bility under the assumption that app behavior is consistent across 

devices. Emulators are usually preferred to perform such opera- 

tions due to their comparatively lower analysis cost, flexibility, and 

easier integration in automated analysis. A small number of stud- 

ies have considered both kinds of devices in their experimentation, 

and their outcomes challenge the validity of the consistent behavior T
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assumption, opening the door for further exploration of the phe- 

nomenon. This research gap is explored thoroughly in this research 

by analyzing the same set of applications on distinct Android plat- 

forms and assessing the cross-device detection performance of in- 

duced models. 

2.2. Concept drift analysis 

The vast majority of prior related studies built and tested their 

proposed solutions for Android malware detection using static 

snaphots of data from Android history, usually using the same data 

sets. In this regard, MalGenome ( Zhou and Jiang, 2012 ) and Drebin 

( Arp et al., 2014 ) are the most used data sets for Android mal- 

ware research. Despite their relatively small size and being com- 

posed of outdated data (i.e., their most recent samples date back 

to 2012), they are still used as the main sources of malware in 

recent publications ( Sasidharan and Thomas, 2021 ). Even though 

some studies ( Cai et al., 2021; Gao et al., 2021 ) complement their 

data with more recent and larger data sets, such as the Android 

Malware Dataset (AMD) ( Wei et al., 2017 ), to mitigate data-related 

issues (i.e., Drebin duplication ( Irolla and Dey, 2018 )) and increase 

the representativeness of the data set, they still rely on incomplete, 

relatively old (i.e., AMD’s most recent sample is from 2016 and it 

provides samples for just 71 malware families), and short snap- 

shots of malware data from the whole Android historical timeline 

(i.e., from 2008 to 2021). Furthermore, when using data sets for 

machine learning purposes, the common practice is to mix all the 

data and then split it randomly into two disjoint sets (i.e., train/test 

sets), thus disregarding apps’ location in the historical timeline. 

This fact undermines the historical coherence and yields significantly 

biased and historically incoherent results ( Allix et al., 2015; Pendle- 

bury et al., 2019 ). 

As a result, these issues pose serious doubts about the gener- 

alization capabilities and effectiveness of these solutions to detect 

evolved and recent malware. 

Only a limited number of the related studies considered the 

usage of distinct and historically coherent snapshots of Android 

history for the train/test split. However, as they show significant 

time gaps between them ( Guerra-Manzanares et al., 2019a; 2019b; 

2019c ), concept drift and its degenerative impact are neglected. 

Consequently, the time variable and malware evolution over time 

have been purposely ignored in the vast majority of current An- 

droid malware research studies. 

As provided in Table 2 , only a few studies dealing with An- 

droid malware detection have considered the concept drift issue 

and proposed machine-learning solutions that adapt to changes in 

the data, and are able to minimize its detrimental effect over time. 

Even though some general approaches have been proposed to de- 

tect data drift ( Barbero et al., 2020; Jordaney et al., 2017; Pendle- 

bury et al., 2019 ), all the proposed solutions dealt with API calls 

( Cai, 2020; Cai et al., 2019; Lei et al., 2019; Narayanan et al., 2016; 

Onwuzurike et al., 2019; Xu et al., 2019; Zhang et al., 2020 ), an 

inherently static feature but one that can also be acquired dynam- 

ically. None of the studies have dealt with system calls, a pure dy- 

namic feature that enables us to capture the real run-time behav- 

ior of the app and which is robust to obfuscation and encryption 

techniques that can bypass static API-based detection systems. 

2.3. Timestamps: when time matters 

The central elements behind concept drift analysis are times- 

tamps . Timestamps enable the temporal placement of the sample, 

which aims to provide a reliable temporal context. However, due 

to the lagging nature of the malware discovery process, this is not 

always possible or generates reliability issues. Even though some 

concept drift-related studies did not provide information about T
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the timestamp approach they used ( Onwuzurike et al., 2019 ), in 

the ones that reported these data, some common timestamp ap- 

proaches, although differently named, can be observed. 

The compilation date is an internal timestamp that relates to the 

creation or compilation time of the apk bundle. Despite being ap- 

pointed as the most reliable timestamp in the past ( Pendlebury 

et al., 2019 ) and used in related research ( Barbero et al., 2020; Cai, 

2020; Pendlebury et al., 2019; Xu et al., 2019 ), it has become an 

unusable approach as most of the apps released nowadays have it 

set at 1980 ( Luxembourg, 2021 ). Another internal timestamp pro- 

posed lately is the last modification timestamp, which refers to the 

most recent modification timestamp found in any of the apk inner 

files ( Guerra-Manzanares et al., 2021 ). This feature was introduced 

in Guerra-Manzanares et al. (2021) which discusses the feasibility 

of four distinct timestamp approaches for Android malware detec- 

tion. 

Even though internal timestamps could be deemed as accu- 

rate approaches, they are prone to third-party manipulation which 

could lead to temporal misplacement. In this regard, more robust 

temporal approaches can be achieved using external timestamps. 

Virustotal ’s first seen , also referred as appearance or submission time 

in the literature, dates the application with the datetime it was first 

received by the VirusTotal scanning service. This timestamp has 

been used in relevant Android concept drift-related studies ( Cai 

et al., 2019; Lei et al., 2019; Zhang et al., 2020 ) as being based on 

external and reliable services, making it easy to acquire and more 

robust to alterations. However, it is prone to significant delay and 

time misplacements due to the required proactive behavior from 

the user to timestamp the app (i.e., submission of the file). 

As can be observed, the timestamp approach emerges as a crit- 

ical issue to properly handle data drift for effective Android mal- 

ware detection. Despite that, it has been neglected by all the con- 

cept drift-related studies in the problem domain. In this research, 

we address this research gap by considering and evaluating distinct 

timestamps. 

2.4. Explainability in android malware detection 

Our work aims to understand and evaluate the decision process 

behind the concept drift model utilized for Android malware de- 

tection. Explainability or interpretability methods have been used to 

understand the decision processes used by the machine learning- 

based detection systems on their predictions (i.e., XAI). In this re- 

gard, Scalas et al. (2019) stated that research regarding ransomware 

detection should focus attention on the explainability of the pre- 

dictions to review the model outputs for the purpose of better 

detection. They used explainability methods to find the most dis- 

criminant features analyzing packages, classes, and methods used 

in Android applications. Kinkead et al. (2021) pointed out the lack 

of research regarding explainability behind the predictions made 

by Android malware detection systems. In their study, the LIME 

algorithm was used to find the most important features for the 

classification task, and LIME activations were analyzed for specific 

malware families. 

Karn et al. (2021) explored the usage of explainability methods 

on models based on system calls to classify anomalous cloud con- 

tainers. The authors compared XAI techniques and concluded that 

not all have practical applications for malware detection (i.e., SHAP 

and LIME are efficient but, the LSTM autoencoder is less amenable 

for automated explanation extraction because of convergence in- 

stability). Iadarola et al. (2021) proposed a novel method based on 

image representations of Android apps used as an input for an ex- 

plainable deep learning model designed for Android malware de- 

tection and malware family recognition tasks. In this work, we ap- 

plied a post-hoc explainability method to characterize and analyze 

the evolution of mobile malware over time. 

2.5. Contribution to the field 

As a result, even though the related literature does not con- 

sider any cross-device behavioral differences, several studies found 

that the dynamic behavior of an app might not be fully consis- 

tent across Android platforms. This fact may lead to a degener- 

ative impact on the models when data from distinct sources are 

mixed or not properly used. Furthermore, the time variable is usu- 

ally neglected in Android malware detection studies, which poses 

a severe concern regarding the generalization capabilities of the 

proposed solutions, trained on outdated data, against new mal- 

ware. Finally, the timestamp approach, a critical variable for effec- 

tive concept drift handling, has not been properly considered in 

the concept drift-related studies. 

The main contribution of this study is to shed light on those 

significant research gaps by assessing the cross-device behavioral 

differences using system calls for Android malware detection un- 

der the consideration of the time variable (i.e., concept drift), the 

analysis of distinct timestamp approaches, and the assessment of 

their impact on the machine-learning-based models over an ex- 

tended period of time. 

3. Methodology 

3.1. Data set 

The data set used in this research is KronoDroid ( Guerra- 

Manzanares et al., 2021 ), a hybrid-featured, timestamped, and la- 

beled Android data set that includes malware and benign samples 

for all years of Android history (i.e., 2008–2020). Kronodroid is 

split into two data sets with different sizes, according to the acqui- 

sition device used for the dynamic features it provides (i.e., system 

calls). Therefore, emulator and real device-related data sets com- 

pose the full KronoDroid data set. This device-related split makes 

it an ideal data set to perform a behavioral comparison between 

emulators and real devices. However, as the sizes of the data sets 

are different, as not all apps were run in both devices, to perform 

a sound comparison of the dynamic profiles, just the intersection 

between the two data sets was selected using the hash attribute. 

As a result, the intersection data set, used in this research, was 

composed of 28,343 malware samples and 34,981 benign apps. 

The KronoDroid data set provides four possible timestamps per 

record: last modification , earliest modification , first seen VT , and first 

seen in the wild . Based on their reliability and prevalence among 

the data points, two timestamps were selected for this study: last 

modification and first seen VT . The earliest modification and first seen 

in the wild timestamps were discarded due to the inaccurate nature 

of the former (i.e., many apps had a 1980 value) and the high ratio 

of missing data of the latter (i.e., not available for most of the apps) 

( Guerra-Manzanares et al., 2021 ). The last modification timestamp 

locates the app within the Android history timeline according to 

the most recent modification timestamp retrieved among the app 

inner files. In contrast, the first seen VT reports about the date and 

time when the app was submitted to VirusTotal for the first time. 

The analysis of concept drift-related issues requires the usage 

of the historical context based on app timestamps. In this regard, 

there is no unambiguous approach to determine an app’s temporal 

location with complete reliability and accuracy. Due to its gener- 

ation mechanism, the first seen timestamp is prone to important 

delays as it depends on submission by users to VirusTotal. This 

timestamp heavily depends on the usability and popularity of the 

service to get timely notification of malware samples based on the 

users’ proactive behavior. Therefore, it can be hypothesized that 

the reliability of the last modification timestamp, when it has not 

been tampered with, should be greater than the first seen times- 

tamp in terms of accurately positioning the app in the historical 
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Fig. 1. Depiction of the methodological workflow followed in this research. 

timeline. Despite that, in this study, we used and experimentally 

compared the reliability of these two approaches to deal with con- 

cept drift. 

Lastly, the behavioral features collected per app in both data 

sets are system calls, also named as kernel calls or syscalls for short. 

The whole feature set is composed of 288 system calls. As Guerra- 

Manzanares et al. (2021) emphasizes, some of the system calls are 

device-related; thus the feature sets may not be consistent across 

Android platforms. For instance, the emulator feature set is com- 

posed of 212 system calls, whereas the real device feature set in- 

cludes these features and more system calls, being extended to 

288 features. Therefore, to perform a sound comparison, this com- 

parative analysis uses both feature sets in the experimental ap- 

proach, referenced distinctively as emulator or reduced feature set 

(i.e., 212 system calls) and real or extended feature set (i.e., 288 sys- 

tem calls). It is worth mentioning that when the extended feature 

set is used to characterize the emulator data, the values for the 

syscalls that belong exclusively to the real device set and which 

are not present in the emulator data (i.e., 76 features) are filled 

with zeroes. As provided by the Kronodroid data set, for each sam- 

ple, the value for each feature provides the number of times the 

specific system call feature was used by the specific application 

at run-time. Thus, the input vector for the induced classifiers was 

composed of numeric values reflecting the absolute frequency of 

each system call invoked per application. 

3.2. Workflow 

The methodology used in this study is composed of 4 sequen- 

tial phases. They are summarized in Fig. 1 and briefly explained as 

follows: 

1) Data Preprocessing : zero-valued and redundant features were 

removed from the initial feature sets. The distributions of the 

remaining features were assessed using normality tests. 

2) Concept Drift Detection : anomaly detection models were in- 

duced to assess the existence of concept drift in the data. 

3) Concept Drift Handling : an existing solution for data streams 

( Zyblewski et al., 2021 ), was slightly customized as described 

in Guerra-Manzanares et al. (2022) and used to address the 

concept drift issue in Android malware data. Different combi- 

nations of training and testing data sets belonging to distinct 

data sources were evaluated with different timestamps. 

4) Concept Drift Characterization : the analysis of changes in feature 

importance over time was used to characterize the observed 

concept drift. 

A more thorough explanation of the stages is provided in the 

following paragraphs. 

3.2.1. Data preprocessing 

Machine learning heavily relies on data quality to build effective 

models. The removal of redundant and irrelevant features is an es- 

sential step to improve data quality within the machine learning 

workflow. This step aims to remove noisy, repeated, and unimpor- 

tant features within the data set that may harm the classifier per- 

formance during the model’s training. Three sequential steps were 

performed in this phase: 

1) Variance analysis : sample variance was calculated for all fea- 

tures. A zero variance value, reporting no variability, was ob- 

tained for features that had constant or zero values for all sam- 

ples and labels. Therefore, zero variance features were removed 

as they did not provide any relevant information to describe the 

data. 

2) Correlation analysis : Pearson’s correlation coefficient ( r) was cal- 

culated pairwise for all features. Highly correlated features (i.e., 

| r| ≥ 0 . 80 ) were dropped. This step aims to remove redundant 

data, a critical step for model building and the characteriza- 

tion methods used in this study. Correlated features may dis- 

turb the outcomes of perturbation-based global interpretability 

methods; thus, their removal is essential to have more reliable 

characterization results ( Molnar et al., 2020 ). 

3) Distribution analysis : the adherence of each feature distribution 

to the Gaussian distribution was assessed using statistical tests. 

The adherence of the feature distribution to normality is useful 

to assess the techniques used in posterior steps. 

Once the data preprocessing step was concluded, the resulting 

feature sets (i.e., emulator and real device feature sets) were used 

in the following stages to tackle concept drift and analyze cross- 

device behavioral differences. 

6 
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3.2.2. Concept drift detection 

This phase aims to assess whether the use of concept drift han- 

dling is necessary, that is, if there is significant drift in the data. 

In a continuous analytics process, each new observation can 

be represented by c i = (x i , y i ) , where x i = (x 1 
i 
, x 2 

i 
, . . . , x n 

i 
) ∈ X is the 

feature vector and y i ∈ Y is the target label. The incoming observa- 

tions are aggregated into chunks, probes of the same size, or col- 

lected during a similar period (i.e., six months time-frame). Let us 

assume that features from two chunks can be described by dis- 

tributions F and F ′ . Feature drift is defined if the null hypothesis 

H 0 that F and F ′ are identical can be rejected ( Lu et al., 2014 ), 

that is, they are significantly different distributions. Despite this 

clear statistics-based definition, feature drift can be hard to de- 

tect in real data using statistical methods. For instance, Mutz et al. 

(2006) and Ruiz-Heras et al. (2017) showed that Android system 

calls could not be modeled using Gaussian distribution. Moreover, 

feature drift detection is not very relevant from a practical point of 

view. A more relevant phenomenon is concept drift , which occurs 

when feature drift leads to a change in ˆ y , the target estimation 

value provided by a predictive model. 

Relying on the aforementioned definitions and reservations, 

concept drift can be detected experimentally. Let us take two se- 

ries of data M i and L i ordered in n subsequent chunks. The series 

describe malware and benign software, respectively, with the value 

of i referring to the order in the sequence, 1 ≤ i ≤ n . 

Next, let us define the most important discriminators among 

the features using the following procedure. The data from the first 

chunk M 1 ∪ L 1 was balanced using a random oversampling method 

( Seiffert et al., 2010 ) to avoid over-representation of any of the 

classes. Then, the classes were discriminated using the Random 

Forest (RF) algorithm ( Breiman, 2001 ), a fast and reliable ML algo- 

rithm tested in similar scenarios showing outstanding performance 

( Guerra-Manzanares et al., 2019a; 2019b ). The most relevant fea- 

tures of this initial classifier were selected using the permutation 

feature importance technique ( Altmann et al., 2010 ). Only the fea- 

tures with positive mean importance were selected, thus generat- 

ing the important feature set. In this regard, if the important set of 

features can obtain high performance on the initial set L 1 ∪ M 1 , a 

relevant question is whether the performance level can be kept for 

L i ∪ M i where i > 1 . 

To test this issue, one-class anomaly detection models trained 

separately on L 1 and M 1 were employed. The usage of one-class 

algorithms eliminates the class relations influence. The Isolation 

Forest algorithm proposed by Gözüaçk and Can (2020) was used 

as the detection algorithm. The detectors trained on initial-period 

data (i.e., i = 1 ) were tested on the subsequent L i and M i data sets 

described by the important feature set to calculate the ratio of ob- 

servations recognized as part of the modeled class in the given 

chunk. The decrease in ratio signals the occurrence of concept 

drift, which occurs when the initially selected important features 

are not able to correctly model the analyzed phenomenon in the 

test data. 

3.2.3. Concept drift handling 

The concept drift problem is usually identified in data streams 

( Aggarwal, 2015; Margara and Rabl, 2018 ). However, Android mal- 

ware detection shows related characteristics and faces similar is- 

sues; thus, a solution to handle emerging concept drift for data 

streams could be applied. In Zyblewski et al. (2021) an algorithm to 

address concept drift issues in data streams split into data chunks 

was proposed. The method uses a pool of classifiers trained on 

past data to make predictions about new data samples. During the 

prediction process, the best ensemble of classifiers is dynamically 

selected to perform accurate predictions. Furthermore, the pool is 

modified to introduce classifiers trained on new data and remove 

low-performance models, aiming to keep high performance over 

time by updating the pool of classifiers with new and evolved data. 

The pool update procedure enables the detection system to handle 

concept drift effectively. 

To apply the original solution described in Zyblewski et al. 

(2021) for Android data analytics, the following changes were ap- 

plied, as proposed in Guerra-Manzanares et al. (2022) . 

• The classifier pool was full and ready from the first data chunk. 

This fact avoids waiting for S chunks to gradually fill the clas- 

sifier pool until its completeness (i.e., the S hyper-parameter 

refers to fixed pool size), as proposed in the original solution. 

• The pool of binary classifiers is supported by an anomaly de- 

tection model to improve the recognition of benign software. 

This improvement was made on the basis of the experimental 

research that evidenced a more consistent profile over time in 

benign data than in malware data. 

The proposed classification method, based on dynamic ensem- 

ble selection, is used in this research as a tool for concept drift 

handling and characterization. 

3.2.4. Concept drift characterization 

The main aim of this investigation is not the optimization 

of concept drift detection but to use the concept drift handling 

method to analyze changes and differences in Android malware 

detection when distinct data sources are used over time. For this 

purpose, the permutation feature importance technique ( Breiman, 

2001 ) was employed to analyze whether the important feature sets 

were significantly different among data chunks and for distinct 

data sources. 

The permutation feature importance technique is an alterna- 

tive method to the built-in Random Forest’s importance estima- 

tion ( Maimon and Rokach, 2005 ). The method is defined as follows. 

For a matrix of feature values X with rows x i given each of N ob- 

servations and corresponding response y i , x 
π, j 
i 

is a vector achieved 

by randomly permuting the jth column of X . The method deter- 

mines the importance of a feature for the model by assessing the 

decrease in the model’s performance after a random permutation 

for the specific feature is performed while keeping the other fea- 

tures unchanged. According to Altmann et al. (2010) and due to the 

stochastic nature of the technique, the permutation process should 

be repeated at least 50 times to achieve stable results. For a loss 

function L , the importance V I j of the jth feature is defined as the 

difference between the loss calculated using pseudo-random val- 

ues and the original data. 

The concept drift characterization method uses the classifica- 

tion function f t on data X t from period P t . Next, the analysis obser- 

vations X are taken from the set � 

l+ h 
l= t+1 

X j where h declares a time 

horizon for the analysis (e.g., 3 months). The procedure is summa- 

rized in the following equation: 

V I πj (t) = 

1 

N 

N ∑ 

i =1 , 

x i ∈ � 

l+ h 
l= t+1 

X l 

Q ( y i , f t (x i ) ) − Q 

(
y i , f t (x 

π, j 
i 

) 
)
, (1) 

where Q(. ) = 1 − L (. ) is a quality function such as: 

• F1 score , a comprehensive metric for malware detection perfor- 

mance on imbalanced data sets defined as: 

F 1 = 

2 T P 

2 T P + F P + F N 

(2) 

• Specificity (True Negative Rate) , which provides the benign soft- 

ware recognition performance (i.e., negative label) and it is cal- 

culated as: 

T NR = 

T N 

T N + F P 
(3) 
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Table 3 

Data preprocessing results. 

Preprocessing 

stage 

Results 

Emulator Real device 

Initial Set 212 syscalls 288 syscalls 

Variance Analysis 90 constant 160 constant 

Correlation Analysis 28 high-correlated 31 high-correlated 

Distribution Analysis 0 normal 0 normal 

Final Set 94 syscalls 97 syscalls 

• Recall (True Positive Rate) , a measure of the quality of malware 

detection (i.e., positive label) defined as: 

T P R = 

T P 

T P + F N 

(4) 

where TP (i.e., true positive) refers to the number of correctly 

recognized malware in the test set. TN (i.e., true negative) re- 

flects the number of correctly recognized benign software in 

the test data. FP (i.e., false positive) provides the number of in- 

correctly recognized malwares in the test set, and FN (i.e., false 

negative) provides the number of incorrectly recognized benign 

data points in the test samples. 

4. Results 

4.1. Data preprocessing 

The results obtained after the application of each preprocess- 

ing step are summarized in Table 3 and explained in the following 

paragraphs. 

The initial feature sets, related to each device, were composed 

of 212 features for the emulator and 288 features for the real de- 

vice. After variance analysis , 122 syscalls showed non-zero vari- 

ance for the emulator case and 128 for the real device case. Thus, 

90 features were removed from the emulator feature set and 160 

from the real device feature set. The remaining features on each 

set were further processed and highly correlated features (i.e., | r| ≥
0 . 80 ) were removed. As a result, the final feature sets were com- 

posed of 94 features for the emulator and 97 for the real device. 

The normality tests applied to the final sets of features showed 

that no feature was normally distributed. Figs. 2 and 3 show the 

distributions of features included on both final sets as illustrating 

examples (i.e., red for malware samples’ values and green for be- 

nign samples). 

As can be observed, both features (i.e., getuid32 in the left 

graph and ioctl in the right) show a positively skewed distribu- 

tion in both Android platforms, and, consequently, a non-normal 

distribution. Furthermore, there is a remarkable difference in the 

shape of the distributions for the same feature on each of the de- 

vices. Analogous differences were spotted for all syscalls distribu- 

tions in both platforms. Therefore, these differences arise as ini- 

tial support to challenge the assumption of cross-device consistent 

behavior. 

4.2. Concept drift detection 

The KronoDroid data set provides timestamped data for the 

whole Android history (i.e., 2008–2020). Initially, the data was split 

into 6-month data chunks for both timestamps. The first period 

with enough data to build a classifier for both timestamps cor- 

responds to the second semester of 2011. Even though the Kron- 

oDroid data set provides data from previous years, the selected pe- 

riod was preferred in order to avoid biased results due to the small 

number of samples belonging to the previous periods in the data 

set. The scarcity of data samples for the 2008–2010 time frame is 

Table 4 

Important feature sets ranges. 

Timestamp Data Min Max 

Last 

Modification 

Emulator 28 31 

Real Device 29 32 

First 

Seen 

Emulator 16 21 

Real Device 16 26 

Table 5 

Top-10 features ranking. 

Emulator Real device 

Last mod First seen Last mod First seen 

rt_sigprocmask rt_sigprocmask epoll_ctl clock_gettime 

fcntl64 getuid32 futex SYS_329 

futex ioctl SYS_329 writev 

getuid32 recvfrom clock_gettime epoll_ctl 

ioctl read writev getuid32 

write futex ioctl write 

read write write close 

writev fcntl64 getuid32 gettimeofday 

recvfrom prctl munmap ioctl 

pread64 fstatat64 read connect 

consistent with the actual threat landscape timeline, as the first 

Android malware was discovered in 2010 ( Sophos, 2017 ). There- 

fore, the second semester of 2011 was selected as the initial period 

for both timestamps. 

The initial period was composed of 8378 samples for the last 

modification timestamp (i.e., 6672 benign, 1706 malware) and 

2595 instances for the first seen timestamp (i.e., 2133 benign, 462 

malware). In both cases, the data was imbalanced towards the be- 

nign class. The data sets were balanced using a random oversam- 

pling technique, and the data was used to induce Random Forest 

classifiers with 300 estimators. Both classifiers provided an accu- 

racy of over 0.95 on test data. 

In order to select the most relevant features for each classi- 

fier, the permutation feature importance technique was applied to 

the training data (i.e., 500 permutations per feature). Only features 

with positive average importance were selected, as they reflect the 

actual impact on the model’s performance. The results were aver- 

aged and ranked. Due to the stochastic nature of the permutation 

technique, a distinct amount of features might be part of the im- 

portant feature sets on every trial. Therefore, ten trials were per- 

formed. Table 4 provides the ranges of the number of important 

features observed after the iterations. 

As can be observed, a smaller set of important features was 

observed using the first seen timestamp for both devices’ data. 

However, the range and inner variability in the selected sets were 

greater for the first seen timestamp than for the last modifica- 

tion timestamp. Besides, the last modification timestamp showed 

a much more consistent feature set selection across trials, thus 

showing greater stability on the number and the composition of 

the sets of important features. As a descriptive example, the top 10 

features for each timestamp and device combination are provided 

in Table 5 in decreasing importance order. These results were ob- 

tained by averaging the importance ranking positions on each iter- 

ation. The two columns on the left in Table 5 provide the informa- 

tion about emulator data features sets for each timestamp. The two 

right-most columns show the same information for the real device 

data. For a better comparison, data related to the same timestamp 

are displayed in the same color (i.e., grey for last modification and 

white for first seen). Features observed in all feature sets are high- 

lighted in blue. 

As can be seen in Table 5 , the feature sets differ not only be- 

tween timestamps but more remarkably between Android plat- 

forms. More precisely, the usage of distinct timestamps in the 

same device produced relatively similar feature sets, mostly chang- 
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Fig. 2. Emulator features distributions. 

Fig. 3. Real device features distributions. 

ing in order. But when the feature sets are compared between de- 

vices, the differences are significant. For instance, the most im- 

portant feature in the emulator is rt_sigprocmask for both times- 

tamps, whereas in the real device this feature is not found in the 

top 10 for any timestamp. Similarly, clock_gettime shows noticeable 

importance in the real device but not in the emulator. Three fea- 

tures are common in all rankings but located on distinct positions, 

thus showing different importance (i.e., discriminatory power). Fur- 

thermore, architecture-related syscalls appear to have notable im- 

portance in both cases, as it is evidenced by the high ranking of 

SYS_329 for the real device (i.e., ARM architecture) and fcnlt64 for 

the emulator (i.e., x86_64 architecture). Therefore, the results pro- 

vided in Table 5 suggest that the timestamp selected might cause 

differences in the relevant feature set, mostly related to the order, 

but that more significantly, the data source can have a critical im- 

pact on the definition of the feature sets. 

These initial differences are further explored by assessing con- 

cept drift in the data. In order to test the data changes, one- 

class anomaly detection models (i.e., one for malware detection 

and another for benign software detection) were built using the 

minimal important feature sets found using permutation feature 

importance as the feature selection technique. The minimal fea- 

ture sets were constructed using the smallest important feature 

set among all iterations for each device and timestamp combi- 

nation (i.e., the lower boundary (min) reported in Table 4 ). The 

rationale behind the anomaly detection test is explained as fol- 

lows. If the phenomenon is stationary, meaning that the initial- 

period features, even with varying discriminatory power, could be 

consistently used to perform effective class discrimination in fu- 

ture data, the anomaly models built should show high performance 

over time. However, if the phenomenon evolves, meaning that im- 

portant features for effective discrimination are prone to change, 

the anomaly model performance should drop or fluctuate signifi- 

cantly over time. Therefore, in these models, data drift is detected 

as an anomaly with respect to the initial data. 

Anomaly detection models were induced using 5, 10, and all 

features of the minimal sets. The results of the initial-period 

anomaly models evaluated using 6-month data chunks from con- 

secutive periods in the 2011–2020 time-frame are shown in Figs. 4 

and 5 for emulator data and real device data respectively. For 
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Fig. 4. Emulator anomaly detection models. 

Fig. 5. Real device anomaly detection models. 

each device-related graph, six lines are depicted, corresponding to 

anomaly models induced for each class using different feature sets 

(i.e., red for malware and green for benign software) under one 

timestamp. Model accuracy is provided in the vertical axis while 

the time-frame of the test data is provided in the horizontal axis. 

In this regard, the test periods correspond to 6-month consecutive 

chunks where the added suffix .1 and .2 to each year refer to the 

first six months and to the last six months respectively. 

As can be observed in Fig. 4 , the data obtained from the em- 

ulator does not show data drift for benign software. The accuracy 

fluctuates in a tight range for all test chunks, except for the last 

one. However, in the case of malware, concept drift is present in 

the form of blips (i.e., rapid decrease of accuracy deep under the 

reference level outlined by the benign software) ( Ramírez-Gallego 

et al., 2017 ), for instance in the 2014.2 and 2020.1 periods. Further- 

more, the blips are more pronounced for the first seen timestamp. 

The remarkable differences observed between both timestamps de- 

serve an in-depth analysis, which is presented in Section 4.3 . 

In the case of emulator data, a reduced number of important 

features (i.e., 10) yielded similar results as the whole set of essen- 

tial features. However, the reduction to five features decreased ac- 

curacy rapidly, especially for the observed blips . This situation is 

not observed in the real device data, where five features showed 

better performance than the whole minimal feature set. 

For the real device data, the benign data shows a slightly de- 

creasing tendency over time. Despite that, the performance is over 

0.80 for most of the analyzed period. In the case of malware, data 

drift is observed in the form of repeated dips around 0.70 perfor- 

mance area for the last modification timestamp and reaching lower 

values for the first seen timestamp. Again, the performance dips 

are more pronounced for the first seen timestamp, analogously to 

the emulator case. 
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Substantial differences are observed between the emulator and 

real device data, depicted in Figs. 4 and 5 respectively. Firstly, the 

usage of distinct timestamps provides remarkably different perfor- 

mance for both cases. Overall, data blips for the real device mal- 

ware data are deeper than for emulator data. However, emulator 

malware data show more blips. Despite that, in both cases, the last 

modification timestamp provides fewer and shallower dips than 

the first seen timestamp. Secondly, the reduction in the size of the 

feature sets increased accuracy for most of the chunks in the real 

device data but not in the emulator. Lastly, accuracy in the case of 

real device benign data shows a decreasing tendency, especially for 

the first seen timestamp. Such a tendency may obscure the analy- 

sis of concept drift in a classification task. 

As a result and regardless of the data and timestamp used, the 

pronounced fluctuations in the accuracy performance for malware 

in all cases evidence that the initial set of important features did 

not maintain its discriminatory power over time. It lost it in some 

periods (i.e., blips, where some other features became important) 

to regain it in some others (i.e., peaks). This fact clearly manifests 

the existence of concept drift in the data. Furthermore, when using 

the first seen timestamp the observed drifts seem to be more sig- 

nificant (i.e., deeper dips) than when the last modification times- 

tamp is used. This fact indicates the generation of a more pro- 

nounced drift in the data when the first seen timestamp is used, 

which might be caused by the delayed nature of this timestamp 

and the consequent data misplacement. 

The observations extracted from Figs. 4 and 5 evidenced that 

concept drift emerges as a significant threat to the performance 

of detection models over time. The next stage in our workflow is 

to address the situation with a dedicated classifier and use it to 

perform a deeper analysis of the data. 

4.3. Concept drift handling 

The concept drift-handling detection system, based on the dy- 

namic selection of the best ensemble of classifiers from a pool of 

classifiers and its constant update as explained in Section 3.2.3 , 

was used to analyze malware and benign data. 

In order to explore the phenomenon from all possible perspec- 

tives, the solution was applied using different combinations of 

training and testing sets that were described using both feature 

sets (i.e., reduced and extended feature sets). The usage of emu- 

lator and real device data allowed us to analyze differences be- 

tween data sources and the usage of both feature sets enabled us 

to explore the effect of features in detection performance. Further- 

more, both timestamps were also used for every feature set and 

data source combination. For instance, when emulator data was 

used as the train set with the last modification timestamp, 4 dis- 

tinct combinations were tested by using the 2 possible feature sets 

as data descriptors and the 2 data sources as test set. These multi- 

testing scenario results are reported in Fig. 6 . The analysis of the 

phenomenon taking all possible permutations of the variables into 

account (i.e., feature set, device, and timestamp) enriched the anal- 

ysis of differences between data sources, the impact of feature sets, 

and the reliability of timestamps. More importantly, it enabled us 

to ensure unbiased results as no assumption was performed. 

For the sake of deeper exploration of the phenomenon, a 

greater level of granularity was used to better capture emerging 

concept drift. The data was split into quarter-year data chunks lim- 

ited to 40 0 0 samples, thus data were analyzed for each quarter of 

the 2011–2018 time frame. F1 score performance metric was cal- 

culated for each period using the classification model, composed 

of a dynamic ensemble of n classifiers trained during previous pe- 

riods (i.e., n = 12 yielded the best performance in our experimental 

setup). 

The obtained results illustrate changes in the quality of mal- 

ware detection among periods. The results for the last modifica- 

tion timestamp using emulator data as the train set are provided 

in Fig. 6 . Fig. 7 shows the results obtained when real device data 

were used as the train set for the same timestamp. As can be ob- 

served, the 4 possible combinations of test data variables are plot- 

ted. Disregarding the train data and timestamp, test data are al- 

ways defined by a data source (i.e, emulator or real device) and 

a data descriptor set (i.e., reduced or extended feature set used to 

describe the data). In the cases where the test data source differs 

from the train data source, it enables us to explore cross-device 

performance, whereas the usage of distinct feature sets provides 

information about the discriminatory capabilities of a larger fea- 

ture set versus a reduced feature set. In the figures, the feature set 

is referred to as the original source of data it belongs to (i.e., they 

are architecture-related features). For instance, in Fig. 6 , Real refers 

to the extended set of features and Emu to the reduced set of fea- 

tures. This denomination is preferred to properly relate the feature 

set impact to the data source. The same information is provided 

in Fig. 8 and Fig. 9 for the first seen timestamp. More precisely, 

Fig. 8 uses emulator data as the train set whereas Fig. 9 uses real 

device data to train the model. In these graphs, the horizontal axis 

reports the quarter analyzed, and the vertical axis the correspond- 

ing F1 performance of each test set on the trained model. It is 

worth noting that when using the first seen timestamp, a greater 

number of apps were dated in the period 2012–2013. The higher 

prevalence of malware for the first seen timestamp in this period 

might have been caused by the expansion and increased popular- 

ity of VirusTotal service during that time ( VirusTotal, 2012 ). Due to 

the 40 0 0 samples per chunk constraint, and to not miss emerg- 

ing concept drift, more than one chunk was processed per quar- 

ter. Therefore, for this timestamp, in the 2012–2013 time frame 

the relation chunk-quarter was exceptionally bypassed to analyze 

all the available data. This is reflected by the greater separation in 

the horizontal axis for this specific time frame. These additional 

data chunks are provided for the sake of completeness and as evi- 

dence of the different temporal alignments for the same data sets 

when using different timestamps. For the sake of interpretability 

of the graphs, test data source and feature set are plotted distinc- 

tively. More specifically, the line color indicates the source of the 

test data (i.e, blue for emulator and yellow for real device) and the 

line style reflects the feature set used to describe the train/test sets 

(i.e., solid for the extended feature set and dashed for the reduced 

feature set). 

When the last modification timestamp is considered, the per- 

formance of the proposed method to deal with concept drift is rel- 

atively stable. The method obtains over 0.80 F1 score in most of 

the studied timeframes especially when the model is tested with 

data from the same source as the training set as evidenced by the 

blue lines in Fig. 6 and the yellow lines in Fig. 7 . The results ob- 

tained using different feature sets are similar. This fact indicates 

the goodness of the reduced feature set (i.e., emulator features) to 

provide similar performance as the extended feature set and that 

the zero-filling for missing data when the real device feature set 

is used to describe emulator data does not significantly harm the 

model performance. When the model is trained with real device 

data but tested with data from the emulator using real device fea- 

tures as descriptors (i.e., extended feature set), the results obtained 

are the worst for this timestamp. In this case, the feature set seems 

to notably impact the performance, as when real device data are 

used for training with emulator-based features (i.e., reduced fea- 

ture set), better results are observed. This is confirmed by the fact 

that the performance blip observed in 2012-Q3 when the extended 

feature set is used it is not observed when the reduced feature 

set is used. More interestingly, the dip in 2012-Q3 is just observed 
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Fig. 6. Last Modification timestamp - Training Emulator. 

Fig. 7. Last Modification timestamp - Training Real Device. 

when the test data used does not belong to the same source as the 

training data. From 2016-Q3, a general worsening of the results is 

observed for all models, being especially pronounced when train- 

ing and testing data sources differ. This fact is observed regardless 

of the feature set used. Overall, from the analysis of Figs. 6 and 7 , 

it can be extracted that for the models built using the last modi- 

fication timestamp, the feature set used does not have a relevant 

impact on the performance of the model, whereas the data source 

used has a significant decreasing impact on the model’s outcome, 

especially if the training and testing set sources differ. 

When the first seen timestamp is used to locate the same set 

of apps within the Android historical timeline instead of the last 

modification timestamp, the performance of the model is radically 

different as evidenced by Figs. 8 and 9 . In this case, except for 

the period located between mid-2013 and the beginning of 2016 

where the results are similar, the usage of distinct train and test 

sources yields very poor results. This fact is especially evident in 

the 2011–2013 time frame where the test detection performance 

using data distinct from the training source drops to null levels 

Fig. 8. First Seen timestamp - Training Emulator. 

Fig. 9. First Seen timestamp - Training Real Device. 

in two consecutive data chunks. Furthermore, the performance of 

the different feature sets allows the observer to draw contradic- 

tory conclusions in the first periods. For instance, as can be ob- 

served in Fig. 8 , when the model is trained with emulator data and 

emulator-related features (i.e., reduced feature set) are used to de- 

scribe the data, the testing with real device data provides worse 

performance than when real device-related features are used as 

descriptors (i.e., extended data set). However, the opposite situa- 

tion is observed in Fig. 9 for the real device data trained models. In 

this case, when the extended feature set is used, testing with em- 

ulator data provides worse results than when the reduced feature 

set is used with the same testing data. This suggests that better re- 

sults can be achieved when the model is trained with the natural 

feature set used to describe the testing source (i.e., the extended 

for real device data and the reduced for emulator data). Never- 

theless, due to the aforementioned zero-filling imputation proce- 

dure for missing values when using the real device feature set to 

characterize emulator data, bias may be introduced to the model, 

and consequently, without proper knowledge about the source of 

12 



A. Guerra-Manzanares, M. Luckner and H. Bahsi Computers & Security 120 (2022) 102757 

Fig. 10. Temporal differences between timestamps - Benign data. 

Fig. 11. Temporal differences between timestamps - Malware data. 

the testing data, it is safer to use the reduced feature vector in all 

cases. The overall performance of the models built using the first 

seen timestamp is significantly worse than when the last modi- 

fication timestamp is used. The overall performance is lower, es- 

pecially when testing with a distinct data source, and the feature 

sets used seem to have a remarkable impact in the models. Fur- 

thermore, the performance varies abruptly from quarter to quarter 

indicating that sudden data drift occurs. This sudden drift could 

be caused by an artificial drift generated by the misplacement and 

the mix of historically incoherent data. Historical incoherence oc- 

curs when data belonging to different time-frames are blended to- 

gether, thus generating an unnaturally occurring set of data. This is 

opposed to the overall smooth performance lines observed in the 

last modification timestamp, which may indicate a more naturally 

occurring drift in the data. 

On the basis of the differences observed in the previous graphs, 

a deeper exploration of the timestamps becomes of interest. Every 

data sample can be located historically using either of the times- 

tamps. The timestamps might converge or diverge. Timestamps 

converge if they provide similar timestamps, for instance, 2018 in 

both cases, whereas they diverge when their locations are signifi- 

cantly apart, for instance, one locates the sample in 2018 and the 

other in 2012. The temporal differences (i.e., divergence) between 

the timestamps can provide relevant insights for timestamp selec- 

tion and analysis. Figs. 10 and 11 provide the temporal differences 

between both timestamps, computed for each sample and display- 

ing benign and malware data separately. The individual differences 

in timestamps are grouped in six-month periods and located in the 

timeline based on the sample last modification timestamp, which 

is taken as reference. The individual differences for every period 

are averaged and reported in Figs. 10 and 11 for benign and mal- 

ware samples, respectively. Days are used as the difference basic 

unit. More precisely, these graphs report the average value of the 

difference between the last modification timestamp and the first 

seen timestamp for the samples located in a specific period by the 

last modification timestamp. The initial expectation is that the last 

modification timestamp would place the sample more accurately 

in Android history (i.e., if not tampered), and earlier in time than 

the first seen timestamp. Therefore, it is chosen as the reference 

time. In Figs. 10 and 11 , the blue line provides the average value 

for each period while the dashed line provides the median value. 

These two central tendency measures provide insights into the ex- 

pected value of displacement of the samples for each period. The 

red and green areas provide the notion of the differences disper- 

sion. More specifically, it is the range between the largest and the 

smallest difference found in that period (i.e., the maximum and 

minimum difference found in specific samples belonging to that 

chunk). The red area encompasses from the average value to the 

maximum value for each specific period, whereas the green area 

ranges from the average to the minimum value. 

For both classes and all cases, a positive difference between 

both the timestamps is observed. This evidences that the first seen 

timestamp locates the samples later in time (i.e., delayed with re- 

spect to the last modification timestamp). The differences are es- 

pecially pronounced in the early years of Android history, where 

differences average around 1500 days (i.e., four years) for benign 

applications and around 3500 days (i.e., over nine years) in the 

case of malware samples. For instance, a malware sample located 

in 2008.1 according to the last modification timestamp would be 

located in 2017.1 by the first seen timestamp (i.e., when VirusTotal 

first received the sample). This significant difference notably im- 

pacts the performance of the classifier and its adaptation to mal- 

ware evolution when the concept drift issue is considered, as can 

be observed in Section 4.3 . 

However, as can be spotted in Figs. 10 and 11 , these tempo- 

ral differences have decreased over time. More precisely, they have 

monotonically decreased for benign instances and decreased signif- 

icantly in the case of malware samples, thus making these times- 

tamps more synchronized and closer in time. For example, for be- 

nign samples, 2020.1 and 2020.2 periods show a temporal dif- 

ference average of just 4.88 and 12.37 days and a median of 2 

and 3 days, respectively. In the case of malware samples, an av- 

erage value of 15.98 and 16.45 days and 7 and 11 days are ob- 

served, respectively. As a result, the gap between both timestamp 

approaches has largely decreased over time, making them converge 

and increasing the reliability and accuracy of the first seen times- 

tamp in the more recent years (i.e., 2019–2020). 

The large differences observed in the early years of Android, 

with data misplaced about 4–8 years on average, have a signif- 

icant impact on the models induced using the first seen times- 

tamp, as evidenced in Figs. 8 and 9 . In both cases, these initial 

periods provide the worst performance of all models induced for 

all tests cases, including when the test data source is the same 

as the training data source. Overall, as differences between times- 

tamps decrease, thus first seen converges to the last modification 
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timestamp, the detection performance appears to improve, espe- 

cially with regards to the test data from the same source as the 

train data. Therefore, it can be deduced that performance differ- 

ences in the most recent years are mainly caused by apps’ behav- 

ioral differences in different Android platforms rather than the im- 

pact of the timestamp, as the variation of the timestamp values 

minimizes. 

The main derivation from these experiments indicates that the 

timestamp approach has a significant effect on the performance of 

concept drift models, especially for the first years of Android his- 

tory. The last modification timestamp emerges as a more reliable 

temporal approximation to tackle the concept drift phenomenon, 

as evidenced by the high performance kept by the models in 

Figs. 6 and 7 over time and on both testing sets. Furthermore, the 

smooth transition between quarterly performances suggests that 

the data drift occurs more naturally and that the classifiers built 

on previous data chunks can be leveraged to accurately address 

emerging concept drift issues. The first seen timestamp perfor- 

mance transitions between adjacent quarters are abrupt and even 

extreme, thus indicating the existence of an artificial drift that can 

be hardly modeled using previous data knowledge. 

Therefore, the last modification timestamp was selected to fur- 

ther explore the behavioral differences of Android apps across de- 

vices in the next section. Besides, data samples were described us- 

ing the reduced feature set, which seems a more reasonable option 

for the selected timestamp. 

4.4. Concept drift characterization 

To perform a deeper analysis of the behavioral differences of 

the same set of apps in an emulator and a real device, permuta- 

tion feature importance was calculated using specificity and recall as 

quality (Q) functions. In this exploration, for each analyzed case, 

the training and testing sources belonged to the same Android 

platform, thus enabling to describe the specific behavioral patterns 

for each device. 

Feature importance calculated for specificity informs about the 

essential features to recognize benign software. The same function 

calculated for recall identifies the important features for malware 

recognition. 

The graphs in Fig. 12 show the features with positive average 

feature importance for the benign and malware recognition task 

(i.e., specificity and recall). The permutation feature importance 

technique was calculated using 20 0 0 permutations, and the exper- 

iment was repeated three times to ensure the stability of the re- 

sults. For the real device data, 48 features were found important in 

at least one quarter. For the emulator, this number reached 65. 

For each plot in Fig. 12 , the colored lines/areas provide the im- 

portant features for the related task (i.e., vertical axis) on each 

specific quarter (i.e., horizontal axis). The line/area color relates to 

specific features while the area width provides the relative feature 

importance of the specific feature. The relative importance of each 

system call on each specific chunk is reported in relative stand- 

ing to the total importance of all the important system calls for 

that chunk. The relative measure of importance is preferred to the 

absolute importance value to provide a more comprehensive vi- 

sual comparison of the important features over time. For the same 

reason, all features that showed a maximum relative importance 

value lower than five percent for any chunk in the whole analyzed 

period are aggregated in the others category. For each graph, the 

number of features aggregated in this category is provided within 

parentheses. 

Fig. 12 a and b report on the important features for the benign 

software recognition task per quarter. As can be observed, a similar 

set of features are important on both devices for specificity perfor- 

mance. However, the proportion of features importance (i.e., rela- 

tive importance) differs across devices. For instance, in the case of 

the emulator, the importance of faccessat feature is significant, es- 

pecially in the first quarter, whereas, for the real device case, the 

importance is not remarkable in any period, thus it is included in 

the others category. On the other hand, clock_gettime and read have 

a remarkably greater importance for the real device than for the 

emulator. Besides, the first three periods for the emulator are de- 

scribed by a smaller set of important features, as evidenced by the 

thin lines and gaps observed in the importance plots. This might 

be a reason for the poor performance provided by the classifier 

in the initial periods when testing with distinct device data (see 

Fig. 7 ). Overall, similar sets are used but with varying proportions 

which makes the characterization substantially different. Further- 

more, even though in the real device, a large set of features show 

importance, some of them show remarkably more importance than 

the others in the same chunk (e.g., clock_gettime in 2016–2017 

time-frame and recvfrom in the 2014–2018 time frame) whereas, 

in the emulator, the importance is split among a larger number of 

features showing small individual importance values (with some 

exceptions like recvfrom ). 

Therefore, the usage of data from distinct sources as learning 

and testing sets for the benign recognition task may be biased and 

yield sub-optimal results but should be a relatively successful task 

due to the similar features describing effectively both sets. 

In order to analyze deeper the differences between the emula- 

tor and real device data, the obtained feature importance, calcu- 

lated for specificity as Q function, were compared in each quarter 

for the emulator and the real device using the Wilcoxon signed- 

rank test. To apply this statistical test, the same number of val- 

ues must be present in the compared sets. However, some features 

noted missing values in quarters where they were not found as an 

important feature for the task. Due to the high ratio of missing 

values in the analyzed data: 64% and 68% for the emulator and the 

real device, respectively, the imputation of zero value might bias 

the comparison results, increasing the similarity of the vectors due 

to the high number of missing values replaced by zero. A better 

approach was to replace the missing values with the mean impor- 

tance of the feature, calculated for the given data set and taken as 

the reference negative value for the test. Thus, vectors were com- 

pared using means when the number of missing values was high 

and using the distribution of importance otherwise. The last issue 

was the different sets of important features for distinct data plat- 

forms. To avoid future complications, the intersection of both fea- 

ture sets was used. As a result, 45 features were compared. 

Table 6 (see Appendix) summarizes the experimental results. 

The table presents features with a p-value < 0 . 005 which suggests 

a great difference between the compared vectors. The occurrence 

value refers to the number of non-missing values in the compared 

vectors. As a result, only 13 features among 45 are significantly 

different for the emulated and real data. These results confirm the 

relative similarity observed in the distributions in Fig. 12 a and b. 

The situation changes drastically when the malicious software 

recognition task is analyzed. 

Fig. 12 c and d show the set of features with positive aver- 

age feature importance calculated for the recall metric, in the same 

manner as it was performed for specificity. 

As can be observed, in both cases, from 2011 to 2016-Q2, the 

importance of the features calculated for recall differs significantly 

from the results obtained for specificity. More precisely, the inci- 

dental spikes of feature importance for recall show that a reduced 

set of features are important in each quarter, contrary to the large 

set of features observed of specificity. For the malware recogni- 

tion task, in most of the quarters until 2016, less than 10 fea- 

tures emerge as important. However, this situation changed over 

time. In the last periods, the bars become more similar, as a larger 

amount of features become important for recall, thus the plots for 
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Fig. 12. Relative feature importance evolution from 2011-Q3 to 2018-Q2. 
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both recognition tasks resemble each other but still keep identifi- 

able differences. However, even though these similarities are strong 

enough to relate the distinct plots according to devices, the global 

picture is that malware recognition is a completely different task 

than benign software recognition, thus relying on different sets of 

important features. 

Although Fig. 12 c and d show the same set of important fea- 

tures, there are essential differences between them related to im- 

portance levels. For instance, the most important feature is differ- 

ent for both sets. Real device data are dominated by clock_gettime 

feature, which is the most important feature in thirteen periods. 

However, in the emulator data, this feature is not present in four- 

teen periods, and it is never the most important feature in a quar- 

ter. For the emulator data, the most important feature is munmap 

but with a lower dominance than the most important feature in 

the real device case. Besides, a visual comparison between both 

graphs enables the observer to easily spot the differences in impor- 

tant features between these sets. Their character is radically dis- 

tinct in the vast majority of the chunks. Therefore, it can be con- 

cluded that the usage of the same set of features can not guarantee 

the same results for both sets as the proportions and dominance of 

important features vary significantly. 

The observed differences in importance influence cross-device 

malware detection quality. For instance, in each quarter that the 

classification F1 performance drops (see Fig. 7 , training with real 

device data and testing with emulator), the feature clock_gettime 

is not considered as important in the emulator data. Besides, it is 

worth mentioning that the emulator data promotes mprotect fea- 

ture, which is not significant in real data. In the timeframe from 

2016.Q3 to 2017.Q3, when differences between F1 performance cal- 

culated for real device and emulated testing set are the largest, 

even when the same set of features is used, recvfrom feature is 

critical for recall. This feature is irrelevant for the emulator data in 

the same period. 

Analogously to the specificity case, Table 7 (see Appendix) 

presents the Wilcoxon signed-rank test results for recall calculated 

between the emulator and real device data. In this case, over 75% 

of features (i.e., 34 out of 45) statistically differ between data 

sources (i.e., p-value < 0 . 005 ). Thus significant differences in fea- 

tures are thrice more prevalent for recall than for the specificity 

metric. The experimental results backed by the statistical analysis 

prove that emulator data differ significantly from real device data 

and that the coincident usage of both data sets is not advisable in 

a malware detection task. 

As the previously presented Wilcoxon signed-rank tests per- 

formed for specificity and recall are remarkably different (i.e., in 

the number of features with different distribution), we compared 

the importances calculated separately for emulator and real device 

data using various quality functions Q . 

Table 8 (see Appendix) provides the results of the compari- 

son between recall and specificity calculated just with emulator 

data. The results obtained for the real device data are presented 

in Table 9 (see Appendix). 

In both cases, the test results confirm the high number of fea- 

tures that differ in importance for the specificity and recall met- 

rics. The number of different features exceeds 50% for the emula- 

tor data (i.e., 34 from 65 features) and 75% for the real device data 

(i.e., 35 from 45 features). These results support the previous ob- 

servation on the difference between importance distributions. Fur- 

thermore, these results prove that benign software and malware 

develop in a disparate way and are characterized by different fea- 

tures. More importantly, the only observed similarities between 

the emulator and real device data in this sense are restricted to 

the fact that just 17 features are common in both tables, which 

is about half of the listed features. For instance, the most impor- 

tant features are not shared. The shared features are emphasized 

in italics in Tables 8 and 9 (see Appendix). 

To summarize the findings from the previous tests, it could be 

stated that there exist significant behavioral cross-device differ- 

ences when using system calls. Furthermore, these differences also 

exist for the classes within the same data source, as malware and 

benign data are distinctly characterized. Thus, a description of mal- 

ware based on data from one device (i.e., real or emulated) should 

be used with much care to model classification for another device 

because of the significant differences in their characterization. This 

fact was also evidenced by the performance of the proposed mod- 

els when the test sets used were collected from a distinct source 

than the train sets used to induce the models. Consequently, both 

data sources should not be merged in the generation and evalua- 

tion of Android malware detection methods. 

5. Discussion 

The previous concept drift modeling works in the mobile mal- 

ware domain did not draw attention to the timestamp selection 

approach and its impact on the detection model performance. Our 

work shows that accurately grasping the evolution of malware and 

legitimate samples, thus effective modeling of the concept drift, 

greatly depends on the timestamp approach used, as the times- 

tamp value is the main determinant in positioning the instance in 

the suitable chunk. 

Concept drift detection results given in Section 4.2 (i.e., 

Figs. 4 and 5 ) indicate that the first seen timestamp creates more 

and deeper performance blips during the evolution of malware re- 

gardless of the data source (i.e., real device or emulator). The re- 

sults of our concept drift model given in Section 4.3 support the 

same fact, especially in the early years of the analysis period, as 

first seen led to very poor detection performance (i.e., Figs. 8 and 

9 ). Thus, we determined that the last modification timestamp bet- 

ter enables the model to reflect the changes and evolution of the 

threat landscape. 

The dynamic behavior of the same set of Android apps is com- 

pared between distinct Android platforms (i.e., an emulator and 

a real device), providing experimental and statistical evidence of 

the changing behavior of apps according to the execution device. 

Our findings suggest that data from different sources should not 

be merged in training and testing sets as the behavior of apps in 

different Android platforms is not consistent. 

The operational implications of hybrid detection systems, where 

cloud data might be merged with data acquired in users’ de- 

vices, are critical. If the model is trained in a cloud-based back- 

end with data collected from emulators and deployed to users’ de- 

vices, then the detection performance might be significantly hin- 

dered as demonstrated in Figs. 6 and 8 . As evidenced by Figs. 7 and 

9 , the best scenario for detection performance requires that train 

and test data are collected from the same Android platform, which 

in this case implies using either only real devices or only emula- 

tors as collection devices. Real device data collection is more time- 

consuming than the collection on emulators, as the devices have 

to be manually reset and root , and the collection cannot leverage 

snapshots for cleaning and restarting. This could make the process 

of building an effective model significantly longer. Furthermore, 

there may be further implications with the usage of distinct real 

devices, as due to the myriad of different devices, Android OS ver- 

sions, and chipsets found in Android devices, behavioral dissimilar- 

ities may also arise among them. Thus impacting the performance 

of the detection system. However, it could be more comfortable for 

the user as it enables on-device detection. If the selection is only 

emulators, the user should send the app to be processed on the 

cloud, and after all the processing, the detection result should be 
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provided to the user. This implies the need for connectivity to re- 

trieve the result, as the model is not deployed in the device and, 

consequently, a slower detection process. However, emulator mod- 

els might be faster to induce and device parameters are easier to 

control, which may generate more robust models. As can be seen, 

the selection of any platform requires the analysis of pros and 

cons. In any case, the main recommendation is the usage of the 

same platform data for the training and test sets. Those solutions 

using mixed data sources should trace the data source and avoid 

merging the data when high detection performance is the objec- 

tive. 

Therefore, not only does the timestamp become a critical is- 

sue when concept drift is explored, but the source of data also 

emerges as an essential variable, becoming an even more signifi- 

cant issue as the timestamps converge. Both critical factors have 

been overlooked by the existing body of Android malware re- 

search. This study is the first step in further exploration of the 

critical impact of timestamps and devices in the data collection 

step. 

This paper performs an attempt to characterize concept drift 

findings. We advocate for the incorporation of interpretation meth- 

ods into application-oriented machine learning studies to have a 

better understanding of the underlying aspects of the problem 

domain beyond detection accuracy. Our proposal is not exclu- 

sively for explaining black-box models, but also researchers can 

discuss the findings that can be obtained from inherently inter- 

pretable models. This can enhance and enrich the knowledge of 

the problem domain. Some studies leverage the combination of 

machine learning and interpretability to explore a phenomenon 

( Stachl et al., 2019; Zhao et al., 2020 ). We are aware of the pos- 

sible limitations of these methods ( Molnar et al., 2020; Rudin, 

2019 ), and that, usually, interpretability findings may not ex- 

plain causality. Nevertheless, such an endeavor can increase the 

body of the domain knowledge that can be derived from the 

data. Beyond the purpose of knowledge generation, we also ac- 

knowledge that cyber security community should consider inter- 

pretability more as a part of the machine learning-based solutions 

due to the fact that security analysts play key role in security 

operations. 

5.1. Threats to validity 

This research aims to emphasize and bring to light several is- 

sues that have been overlooked by the existing research and may 

affect the field of Android malware detection. However, this re- 

search is not free of limitations, which are summarized as follows. 

• The data used in this research is specifically tailored to ana- 

lyze concept drift-related issues. The same data set is analyzed 

on both Android platforms but issues such as malware anti- 

sandbox capabilities are not taken into account. Nevertheless, 

other third variables which may generate differences in behav- 

ioral profiles were controlled in the generation of the data set 

(i.e., using the same OS version, scripts, and debugging tool). 

• The Android platforms used to run the applications were se- 

lected on the basis of user preferences and device popular- 

ity (i.e., Google Emulator and a Samsung device) ( Guerra- 

Manzanares et al., 2021 ). However as they may change and 

evolve over time, other devices could have been used which 

might have provided distinct results. 

• The characterization technique (i.e., permutation feature impor- 

tance) has been widely used to characterize machine learning 

models. Nevertheless, due to its inherent randomization proce- 

dure, it might be prone to show distinct pictures of models, 

especially when feature randomization is embedded into the 

models, such as in the Random Forest algorithm. 

Therefore, even though this study has limitations, they have 

been tested and minimized to provide the most complete approach 

to the phenomenon. 

6. Conclusions and future work 

The vast majority of literature in Android malware detection 

has neglected the detrimental impact of the time variable in the 

machine learning-based detection models and has not even con- 

sidered the implications of merging data sources. Furthermore, the 

small number of concept drift-related studies have not paid atten- 

tion to the timestamp selection, a central element to address con- 

cept drift effectively. 

This research explores the emerging challenges and their im- 

plications when dealing with concept drift for Android malware 

detection using different timestam ps and, at the same time, us- 

ing data collected from distinct Android platforms (i.e., real device 

and emulator). Our results show the detrimental impact on ma- 

chine learning classifiers caused by concept drift, especially when 

using first seen as the timestamp. The last modification timestamp 

appears to be a reliable and accurate source for the historical loca- 

tion of apps in the Android timeline, providing and keeping high- 

performance detection models over time, even when distinct data 

sources are considered. However, our experimental setup proves 

that the behavior of Android apps is not consistent across Android 

platforms and that data collected from different sources should not 

be used coincidentally. 

An extensive body of research has previously focused on the 

optimization of proposed solutions in short and mostly outdated 

Android historical data sets. The focus on these solutions tailored 

for static data snapshots poses severe concerns about the gener- 

alization capabilities of such solutions to recent malware. To the 

best of our knowledge, this research is the first work addressing 

the challenges and implications of distinct timestamps for histori- 

cal location, concept drift issues, and cross-device data for Android 

malware detection. This work aims to bring to light the significant 

impact of these underlying critical variables that have been over- 

looked by the specialized research. 

In our future work, we plan to continue digging deeper into this 

approach and tackle the aforementioned limitations in a more re- 

strictive way. This work should be understood as a pioneering step 

into a new exploratory direction that considers the impact of sev- 

eral variables on the performance of the learning models and chal- 

lenges the assumptions of most of the previous research. 
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Appendix A 

Table 6 

Features that differ between emulated and real device data in importance cal- 

culated for Specificity p < 0 . 005 . 

Feature p-value max(Importance) Occurrences 

1 recvfrom 0.0036 0.2250 53 

2 clock_gettime 0.0001 0.1423 43 

3 setsockopt 0.0000 0.0755 39 

4 uname 0.0000 0.0193 20 

5 statfs64 0.0000 0.0218 17 

6 exit_group 0.0000 0.0006 12 

7 gettid 0.0001 0.0063 10 

8 tgkill 0.0000 0.0001 6 

9 nanosleep 0.0000 0.0000 3 

10 sched_getscheduler 0.0000 0.0000 2 

11 msync 0.0000 0.0141 2 

12 listen 0.0000 0.0000 1 

13 mremap 0.0000 0.0070 1 

Table 7 

Features that differ between emulated and real device data in importance cal- 

culated for Recall p < 0 . 005 . 

Feature p-value max(Importance) Occurrences 

1 clock_gettime 0.0032 0.0825 32 

2 getdents64 0.0002 0.0161 19 

3 fsync 0.0011 0.0527 18 

4 lseek 0.0050 0.0111 18 

5 dup 0.0000 0.0375 17 

6 fcntl64 0.0001 0.0477 16 

7 socket 0.0001 0.1513 15 

8 write 0.0000 0.0197 15 

9 recvfrom 0.0016 0.0728 15 

10 fchmod 0.0000 0.0058 14 

11 getuid32 0.0000 0.0363 14 

12 mprotect 0.0015 0.0484 14 

13 sigaltstack 0.0000 0.0077 14 

14 read 0.0000 0.0313 12 

15 _llseek 0.0000 0.0263 11 

16 fstatfs64 0.0000 0.0710 11 

17 sched_yield 0.0000 0.0063 11 

18 sendmsg 0.0000 0.0071 9 

19 setsockopt 0.0000 0.0058 9 

20 connect 0.0000 0.1851 8 

21 futex 0.0000 0.0441 8 

22 uname 0.0000 0.0018 6 

23 wait4 0.0000 0.0059 6 

24 exit_group 0.0000 0.0001 5 

25 getpriority 0.0000 0.0022 5 

26 flock 0.0000 0.0059 4 

27 listen 0.0000 0.0000 4 

28 getcwd 0.0000 0.0000 3 

29 gettid 0.0000 0.1234 3 

30 restart_syscall 0.0000 0.0000 2 

31 tgkill 0.0000 0.0000 2 

32 nanosleep 0.0000 0.0000 2 

33 mremap 0.0000 0.0000 2 

34 msync 0.0000 0.0000 2 

Table 8 

Features with different importance for Specificity and Recall for emulated data 

p < 0 . 005 . 

Feature p-value max(Importance) Occurrences 

1 writev 0.0038 0.1808 35 

2 getdents64 0.0003 0.0303 34 

3 pread64 0.0001 0.0587 34 

4 recvfrom 0.0000 0.1070 32 

5 fstatfs64 0.0002 0.0545 31 

6 epoll_create1 0.0000 0.0702 30 

7 fcntl64 0.0009 0.0556 30 

8 lseek 0.0028 0.0548 30 

9 fstatat64 0.0000 0.1219 29 

10 write 0.0002 0.1536 29 

11 futex 0.0000 0.0696 28 

12 read 0.0005 0.0994 28 

13 dup 0.0039 0.0724 27 

14 eventfd2 0.0011 0.0304 27 

15 flock 0.0005 0.0189 26 

16 setsockopt 0.0000 0.0058 19 

17 pipe2 0.0001 0.0069 18 

18 statfs64 0.0000 0.0090 17 

19 process_vm_readv 0.0006 0.0001 12 

20 restart_syscall 0.0000 0.0003 11 

21 inotify_add_watch 0.0000 0.0001 7 

22 ppoll 0.0000 0.0045 6 

23 exit_group 0.0000 0.0006 6 

24 tgkill 0.0000 0.0001 5 

25 nanosleep 0.0000 0.0000 4 

26 inotify_init1 0.0000 0.0001 4 

27 msync 0.0000 0.0141 4 

28 gettid 0.0000 0.0001 4 

29 mremap 0.0000 0.0070 2 

30 uname 0.0000 0.0000 1 

31 sched_getscheduler 0.0000 0.0000 1 

32 listen 0.0000 0.0000 1 

33 getcwd 0.0000 0.0000 1 

34 rt_sigsuspend 0.0000 0.0000 1 

Table 9 

Features with different importance for Specificity and Recall for real device data 

p < 0 . 005 . 

Feature p-value max(Importance) Occurrences 

1 clock_gettime 0.0019 0.1423 47 

2 recvfrom 0.0000 0.2250 36 

3 rt_sigprocmask 0.0047 0.1716 34 

4 lseek 0.0000 0.0550 33 

5 prctl 0.0007 0.3801 33 

6 close 0.0000 0.1269 32 

7 getdents64 0.0000 0.0601 32 

8 getuid32 0.0013 0.0751 32 

9 read 0.0000 0.4032 32 

10 write 0.0001 0.1145 32 

11 connect 0.0000 0.1851 31 

12 gettimeofday 0.0000 0.0755 31 

13 mprotect 0.0000 0.3975 30 

14 sigaltstack 0.0000 0.0265 30 

15 sched_yield 0.0000 0.0248 30 

16 setsockopt 0.0000 0.0755 29 

17 futex 0.0000 0.2334 28 

18 ioctl 0.0000 0.2304 28 

19 socket 0.0000 0.1513 27 

20 getpid 0.0014 0.0081 27 

( continued on next page ) 
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Table 9 ( continued ) 

Feature p-value max(Importance) Occurrences 

21 getpriority 0.0000 0.0519 27 

22 sendmsg 0.0005 0.0432 26 

23 fstatfs64 0.0004 0.0990 25 

24 flock 0.0000 0.0371 23 

25 wait4 0.0000 0.0220 21 

26 exit_group 0.0001 0.0003 11 

27 gettid 0.0000 0.1234 9 

28 getegid32 0.0000 0.0002 6 

29 getgid32 0.0000 0.0001 5 

30 listen 0.0000 0.0000 4 

31 tgkill 0.0000 0.0000 3 

32 getcwd 0.0000 0.0000 2 

33 sched_getscheduler 0.0000 0.0000 1 

34 nanosleep 0.0000 0.0000 1 

35 mremap 0.0000 0.0000 1 
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A B S T R A C T

Most of the proposed solutions using dynamic features for Android malware detection collect and test
their systems using a single and particular data collection device, either a real device or an emulator. The
results obtained using these particular devices are then generalized to any Android platform. This extensive
generalization is based on the assumption of consistent behavior of apps across devices. This study performs an
extensive benchmarking of this assumption for system calls, executing Android malware and benign samples
under the same conditions in 9 different collection devices, including real and virtual devices. The results
indicate the existence of significant differences between real devices and emulators in system calls usage
and, consequently, in the collected behavioral profiles obtained from running the same set of applications on
different devices. Furthermore, the impact of these differences on machine learning-based malware detection
models is evaluated. In this regard, a significant degenerative effect on the detection performance of the model
is produced when data collected on different devices are used in the training and testing sets. Therefore, the
empirical findings do not support the assumption of cross-device consistent behavior of Android apps when
system calls are used as descriptive features.

1. Introduction

Android users are under siege. The open-source nature and ubiquity
of the operating system (OS), which powers over 70% of smartphones
(O’Dea, 2021) and more than 2.5 billion users worldwide (Curry,
2021), make it an appealing target for cyber attackers. The most popular
mobile OS has been the objective of massive malware campaigns
since its early days (Keizer, 2012; Sophos, 2017) and is still under
a seemingly inexorable attack (Afifi-Sabet, 2019; CheckPoint, 2017;
Islam, 2021). After the record-breaking spike of mobile malware in
2016–2017, Android malware attacks have persistently remained at
high levels (Chebyshev, 2021b), posing a significant and constant threat
to the end-users (AV-Test, 2021). For instance, more than 700,000
new malware instances were discovered monthly in the last quarter of
2020 and over 480,000 in the first quarter of 2021 (Chebyshev, 2021a;
Statista, 2021).

Despite the remarkable efforts of Google and Android original
equipment manufacturers (OEMs) to address the situation by imple-
menting counter-means at the software (Google, 2021) and hardware
(Thinagarajan, 2021) level, Android malware is still a very lucra-
tive and cost-effective endeavor for attackers (Cimpanu, 2021; Ilascu,
2020). Malicious applications have been repeatedly found in Google

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: alejandro.guerra@taltech.ee (A. Guerra-Manzanares), mavalb@taltech.ee (M. Välbe).

Play (McGowan, 2020; Stokel-Walker, 2021) and third-party app stores
thus no safe shelter against the malware spread seems to exist. Ma-
licious apps disguise in many forms and shapes, a product of the
constant evolution and adaptation in the seek for new vulnerabilities
and attack vectors to perpetrate their obscure intentions (Microsoft,
2020; Yaswant, 2021). In this large threat landscape, Android end users
are vulnerable prey, at permanent risk (Kingsley-Hughes, 2021).

Furthermore, the ineffectiveness and limitations of traditional
signature-based detection methods on the mobile platform have not
helped to remedy the situation (Fedler, Schutte, & Kulicke, 2013;
Whitwam, 2021). In the search for solutions to balance forces in the
permanent battle between malicious actors and defenders, machine
learning techniques (ML) have been explored. In this regard, ML-
based solutions have proved remarkably successful in detecting and
neutralizing malicious threats, even against zero-day and obfuscated
malware (Millar, McLaughlin, del Rincon, & Miller, 2021; Yerima,
Sezer, & Muttik, 2014).

In supervised learning, machine learning-based malware detection
systems learn patterns and statistical relationships from known data
(i.e., training data) to make accurate forecasts about unknown data
(i.e., testing data). The quantity, but more importantly, the quality
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of the training data are critical for the effectiveness of the detection
system (Cortes, Jackel, Chiang, et al., 1995). Training data must be
accurate and representative of the task that the ML model aims to solve
(e.g., malware detection) so that the model can generalize effectively
to unknown data, that is, to predict accurately new data.

For malware detection, static and dynamic data features are collected
using malware analysis techniques and used as input data to induce
ML-based models. Static feature are extracted directly from the file or
source code without executing the app. In general, static features are
relatively easy and fast to acquire. However, the detection systems built
using only this type of features are prone to be bypassed when code
obfuscation and encryption means are implemented (Lysne, 2018). The
collection of dynamic features requires the execution of the app in a live
environment to be collected. The acquisition of these features is more
time-consuming, but they tend to build more robust detection systems
as they are inherently immune to code obfuscation and encryption.
Besides, they capture the real behavior of the app and are usually more
effective to detect zero-day malware (Networks, 2021). In this regard,
system calls are the most used dynamic feature for Android malware
detection and the basis of many high-performance solutions in the
related literature (Burguera, Zurutuza, & Nadjm-Tehrani, 2011; Dimja-
sevic, Atzeni, Ugrina, & Rakamaric, 2016; Guerra-Manzanares, Nõmm,
& Bahsi, 2019b; Hou, Saas, Chen, & Ye, 2016). Research studies use
either real devices or emulators as data collection platforms to acquire
system call-related features. More commonly, the data samples are run
in a single collection platform under a particular configuration (i.e., a
real device or emulator running a specific version of Android OS). As
a result, a myriad of different devices and configurations are used as
acquisition platforms. After the data is processed, the collected data
are fed into machine learning algorithms to build effective detection
solutions that usually report high-performance metrics. The detection
capabilities of the built systems and proposed solutions are assumed
(but not proven) to generalize to the plethora of distinct devices and
configurations found in the wild on the basis of an axiomatic cross-
device behavioral consistency. Thus assuming that the behavior of apps
is fully consistent across devices (Lin, Lai, Chen, & Tsai, 2013) and OS
versions (Burguera et al., 2011; Vidal, Orozco, & Villalba, 2017). This
fact, in turn, implies that the nature and characteristics of the devices
(i.e., emulators or real devices) and Android versions used as collection
platforms do not matter, as evidenced by the lack of homogeneity in
selection criteria and the wide variety of devices and configurations
found in research studies.

Nevertheless, the results of the reduced number of studies that
considered both kinds of devices in their experimentation challenge the
validity of this axiomatic consistency. More specifically, when differ-
ent platforms were considered in the same study, the results did not
support the fully consistent behavior assumption, not only for system
calls (Guerra-Manzanares, Bahsi, & Nomm, 2019a; Guerra-Manzanares,
Nomm, & Bahsi, 2019c) but also for run-time API calls (Alzaylaee,
Yerima, & Sezer, 2017; Gong et al., 2020), thus suggesting that the
nature and characteristics of the devices and versions used may actually
matter. These previous studies highlighted the potential relevancy of
the issue but did not analyze it thoroughly. This study fills this research
gap by focusing on testing and analyzing the cross-device behavioral
consistency issue. The main novelties provided by this work are an
extensive benchmarking of the same set of apps in a large collection
of devices and the exploration of the implications of the observed
inconsistencies on ML-based detection systems that use dynamically
acquired features.

To the best of our knowledge, this is the first study that explores
the phenomenon thoroughly and demonstrates, using nine different
Android devices and two different Android versions on the same data
set, that cross-device consistency cannot be assumed and that not
considering the heterogeneity of data sources that may coexist in
production setups (e.g., users devices data, honeypots, sandboxes, and
threat intelligence feeds) can introduce measurement bias (Data, 2021)
and significantly erode the detection performance of the classifier.

The experimental setup of this research explores the behavioral
differences in system calls invoked by the same set of applications
in different types of Android platforms (i.e., nine devices) and OS
versions (i.e., Android 9 and 10) and evaluates the implications of such
differences for effective ML-based malware detection. Furthermore,
the possible causes behind the observed differences are assessed and
recommendations to minimize their impact on production setups are
suggested.

This paper is structured as follows: Section 2 gives background
knowledge, while Section 3 provides an overview of related literature.
Section 4 details the methodology followed in this research. The main
results are provided in Section 5. Section 6 addresses discussion points
and limitations of this investigation, and Section 7 outlines the main
takeaways.

2. Background information

Kernel calls or system calls (syscalls, for short) are an interface
between a running process (i.e., application in User mode) and the
operating system kernel, which controls the underlying hardware (Bovet
& Cesati, 2005). More precisely, syscalls enable running programs to
request services and access resources on the system (e.g., memory,
storage, I/O, etc.). As all requests from applications pass through
the system call interface before they are executed via hardware, the
analysis of syscalls is a relevant source of information about the appli-
cation’s intentions (i.e., app behavior) (Malik & Khatter, 2016). Like
any other running program in the system, malicious software must
also use system calls to function and perform their desired actions on
the system. Therefore, it is possible to trace and analyze system calls
for discernible patterns that enable effective discrimination between
benign and malicious behavior (Denney, Kaygusuz, & Zuluaga, 2018).

The usage of system call auditing as a means of malicious intrusion
detection emerged long before the ubiquity of mobile devices and apps
proliferation (Forrest, Hofmeyr, Somayaji, & Longstaff, 1996; Kosore-
sow & Hofmeyer, 1997) but has, since then, been widely adopted as an
effective method for Android malware detection, thus making system
calls the most used dynamic feature for such a purpose (Liu, Xu, Xu,
Zhang, Sun, & Liu, 2020).

The collection of system calls requires the execution of the app in a
sandbox, a controlled live environment. Both real devices and Android
emulators have been widely used in research as collection platforms. A
real device refers to an actual physical handset powered by an Android
OS version, whereas an emulator is a software instance running on a
host machine that simulates the dynamics and capabilities of a real
device (Android, 2021d). In brief, the collection process involves the
execution of the app in the selected environment and the log of the
invoked syscalls at run-time. Some studies let the app run freely after
booting it up (i.e., with no further interaction) for the whole collection
time (Guerra-Manzanares et al., 2019a, 2019c), whereas others stimu-
late the app’s interface by manually or automatically injecting events
to trigger behaviors and expand code coverage (Tam, Feizollah, Anuar,
Salleh, & Cavallaro, 2017). Both approaches are explored in this study.

3. Literature review

Static and dynamic features collected from Android applications are
used to build Android malware detection systems (Liu et al., 2020).
Static features are extracted from the app archive, source code, or
metadata without the need to execute the application. Android security
permissions and API calls are widely used static features for generating
effective detection systems (Cai, Jiang, Gao, Li, & Yuan, 2021; On-
wuzurike, Mariconti, Andriotis, Cristofaro, Ross, & Stringhini, 2019;
Zhu, Li, Li, Li, You, & Song, 2021). Static features are relatively easy to
acquire and provide extensive code coverage. However, they can easily
avoid detection when code obfuscation techniques (e.g., encryption or
polymorphic techniques) are used to hide the malicious code aiming
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to bypass static features-based malware detection systems (Alzaylaee,
Yerima, & Sezer, 2020a).

Dynamic features require executing the app in a live and controlled
environment to be acquired. System calls are the most widely used
dynamic features for Android malware detection (Liu et al., 2020).
Even though they can be bypassed (Petsas, Voyatzis, Athanasopoulos,
Polychronakis, & Ioannidis, 2014a), dynamic features-based detection
methods are robust to code obfuscation and encryption techniques.
However, they are more time-consuming and difficult to collect as they
require the app to be installed and run in a sandbox device, either an
emulator or a real device. Greater code coverage can be achieved when
using pseudo-random events (Alzaylaee et al., 2020a).

This study focuses on the usage of system calls as detection features
in the Android ecosystem, and, more specifically, on the evaluation
of device influence on the collected behavior. In this regard, in the
research literature on dynamic-featured Android detection systems,
the selection of collection platforms is usually a discretionary deci-
sion mainly guided by the resources at hand and overall needs. As
a result, no clear dominance of a device type is observed in the re-
lated literature. While some studies prefer the usage of real devices,
using either single (Ahsan-Ul-Haque, Hossain, & Atiquzzaman, 2018;
Amin, Zaman, Hossain, & Atiquzzaman, 2016; Arshad, Shah, Wahid,
Mehmood, Song, & Yu, 2018; Canfora, Medvet, Mercaldo, & Visaggio,
2015; Da, Hongmei, & Xiangli, 2016; Isohara, Takemori, & Kubota,
2011; Saracino, Sgandurra, Dini, & Martinelli, 2018; Wahanggara &
Prayudi, 2015; Xiao, Fu, Xiao, Jiang, Li, & Lu, 2015; Xiao, Xiao, Jiang,
Liu, & Ye, 2016; Xiao, Zhang, Mercaldo, Hu, & Sangaiah, 2019) or
multiple handsets (Alzaylaee, Yerima, & Sezer, 2020b; Burguera et al.,
2011; Shabtai, Kanonov, Elovici, Glezer, & Weiss, 2012; Vidal et al.,
2017; Yu, Zhang, Ge, & Hardy, 2013), others are inclined to emula-
tors, using either specialized sandboxes for malware analysis (Feng,
Ma, Sun, Xu, & Ma, 2018; Jang, Yun, Woo, & Kim, 2014; Lindorfer,
Neugschwandtner, & Platzer, 2015; Naval, Laxmi, Rajarajan, Gaur, &
Conti, 2015; Saif, El-Gokhy, & Sallam, 2018; Tam, Fattori, Khan, &
Cavallaro, 2015; Tchakounte & Dayang, 2013; Yuan, Lu, Wang, & Xue,
2014) or standard Android emulators (Abderrahmane, Adnane, Yacine,
& Khireddine, 2019; Afonso, de Amorim, Gregio, Junquera, & de Geus,
2015; Ananya, Aswathy, Amal, Swathy, Vinod, & Mohammad, 2020;
Bernardi, Cimitile, Distante, Martinelli, & Mercaldo, 2019; Bhatia &
Kaushal, 2017; Casolare, De Dominicis, Iadarola, Martinelli, Mercaldo,
& Santone, 2021; Dimjasevic et al., 2016; Ferrante, Medvet, Mercaldo,
Milosevic, & Visaggio, 2016; Guerra-Manzanares et al., 2019b; Hou
et al., 2016; Jaiswal, Malik, & Jaafar, 2018; Kapratwar, Di Troia, &
Stamp, 2017; Leeds, Keffeler, & Atkison, 2017; Malik & Khatter, 2016;
Sihag, Vardhan, Singh, Choudhary, & Son, 2021; Singh & Hofmann,
2017; Surendran & Thomas, 2022; Surendran, Thomas, & Emmanuel,
2020a, 2020b; Tong & Yan, 2017; Vinod, Zemmari, & Conti, 2019).
Even though most of the studies report the collection platform, they
are vague in the description of the experimental setup and, more
significantly, in the Android version used and device configuration.
Furthermore, when different devices are used in the same experimental
setup, usually the same OS version is used in all devices. As a result,
the data gathered from a particular device and its specific configuration
are generalized as representative of all Android systems. Therefore, the
main assumption across all these studies either implicitly or explicitly
(Burguera et al., 2011; Lin et al., 2013; Vidal et al., 2017), is that
the behavior of the applications is fully consistent across Android plat-
forms/devices and OS versions and that, consequently, these variables
do not affect the collected behavior of the app.

However, the results of the small proportion of studies that ex-
perimented with both kinds of devices challenge the validity of this
axiom (Alzaylaee et al., 2017; Guerra-Manzanares et al., 2019a; Guerra-
Manzanares, Bahsi, & Nomm, 2021; Guerra-Manzanares et al., 2019c).
Significant behavioral inconsistencies were found in dynamically col-
lected data using distinct Android environments for API calls (Alzaylaee
et al., 2017) and system calls (Guerra-Manzanares et al., 2019a, 2021,

2019c). Despite their observations, these studies did not perform a
thorough inspection of the observed differences and their implications
in machine learning-based malware detection systems. A remarkable
research gap that is addressed in this research by collecting and an-
alyzing the behavior of the same set of applications on a large set
of Android platforms and OS versions, assessing their similarity, and
evaluating the impact and implications of the behavioral differences in
the effectiveness of ML-based malware detection models.

4. Methodology

This section outlines the methodology used in this research, which
aims to assess the validity of the cross-device consistent behavior assump-
tion. More precisely, the data collection process and the subsequent
analysis performed are detailed in the following paragraphs.

4.1. Data set

Most of the research studies regarding ML-based Android malware
detection use relatively large, labeled data sets (i.e., benign and mal-
ware samples) and a single Android device as a collection platform. In
general, the larger the data set, the more tendency to use emulators is
observed, as they are easier to deploy, manage and integrate into au-
tomated detection solutions (Dimjasevic et al., 2016). On the contrary,
due to its different focus, this study uses a reduced data set and a large
diversity of testing platforms. The fact that all the apps used in this
research had to be successfully executed in a wide variety of hardware
architectures (i.e., devices) and OS versions (i.e., compatible with all
collection platforms) significantly limited the number of available data
samples for our experimental setup. Consequently, this study does
not aim for statistical significance but advocates for thorough data
analysis and representativeness of the results. Thus, sixteen Android
apps (i.e., eight malware and eight benign) belonging to different time-
frames were tested on nine different devices (i.e., three real devices and
six emulators) powered by two different versions of Android OS.

To provide a sound comparison of the extensive benchmarking and
thorough data analysis performed in this research, the data samples
used had to meet strict requirements, so the generation of the data
set became a critical part of the whole methodology. The data set
requirements are outlined as follows.

• The selected apps had to be successfully installed and executed
on each testing platform. This aimed to ensure that any observed
differences were not due to incompatibility or malfunctioning
issues.

• Malicious and benign app sets had to include native libraries
compiled for different hardware architectures (i.e., application
binary interfaces or ABIs).

• Malicious samples had to represent widely spread families and
both legacy and recent specimens (i.e., representative malware
samples).

Due to the strict requirements of cross-device compatibility (i.e., archi-
tecture and OS version) and exploratory objective of this study, the data
set aimed to be representative, priming quality over quantity. Further
details about the data set are provided in the following paragraphs.

4.1.1. Malware set
The malware samples were selected from two different data sets that

are publicly available for research purposes. Samples were randomly
selected and included in the data set if they met all the requirements.
Therefore, if in the testing phase, a randomly chosen sample did not
meet the requirements (e.g. it was unable to be installed or executed
on all the platforms), it was discarded and another application was
randomly selected for testing. The malware samples represent different
well-known Android malware families. Four samples of recent malware
specimens were gathered from the AndroidMalware 2020 repository
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(Sk3ptre, 2020), and four older samples were acquired from the CI-
CAndMal2017 data set (Lashkari, Kadir, Taheri, & Ghorbani, 2018).
Table 1 provides a detailed overview of the malware data set. It details
the general malware category of the sample, the malware family it
belongs to, MD5 hash, VirusTotal’s first submission date (i.e., used to date
the sample) and the compatible architectures (i.e., ABIs supported).
Additionally, for posterior reference of the apps, a unique identifier
code was assigned to each sample (i.e., MX, where X is an integer
between 1 and 8).

4.1.2. Benign set
The benign samples were gathered from the CICAndMal2017 data

set and were tested using VirusTotal’s scan engine to confirm their non-
malicious nature. Like the malware samples, the apps were selected
randomly and included in the data set if they met the requirements.
Their properties are described in Table 2. More precisely, app type
(i.e., broad app category), MD5 hash, sample date (using the same data
source as the malware applications), and the supported architectures
are reported. Again, for posterior reference of the apps, a unique
identifier code was assigned to each sample (i.e., BX, where X is an
integer between 1 and 8).

4.2. Benchmarking platforms

A complete testbed of Android devices must include real and virtual
devices, as they are both widely used for research purposes. Further-
more, to extensively analyze the possible differences in system calls
on different Android platforms, different versions of the OS should
be tested and controlled as confounding variables. Therefore, in this
research, three real mobile handsets running two different Android OS
versions (i.e., Android 9 and Android 10) were selected as benchmark-
ing devices. To properly assess behavioral differences across devices,
the same phone models were virtualized as accurately as possible using
Android Studio 4.1.2 Android Virtual Device (AVD) Manager and Geny-
motion Desktop 3.2.0 emulator. As system call data collection requires
superuser privileges on the system, the real devices were rooted using
Magisk Manager (Magisk, 2021), whereas the emulated devices had root
available through system images. All the devices used 4G connection
(i.e., one SIM card per device) and a 16 GB SD card.

4.2.1. Device specifications
The host platform for all the virtual devices was an Intel Core

i7-8665U x86 64 CPU machine with 32 GB RAM running Ubuntu
20.04 LTS. A 4G USB modem was used for internet connection during
the testing phase. Table 3 provides an overview of the parameters of
the testing devices, both for real smartphones and their emulations,
including details of their central processing unit (CPU), system on
a chip (SoC) model, and kernel version. For posterior reference, a
two-character unique identifier is assigned to each device. The first
character identifies the nature of the device (i.e., R for real, A for
Android Emulator, and G for Genymotion emulator), and the second
character refers to the device number (i.e., an integer ranging from 1
to 3). Since R1 and R2 devices were running a 32-bit OS on a 64 bit
CPU, system images with x86 architecture were chosen for E1 and E2
(i.e., their corresponding Android emulator virtualizations) to match the
real device kernel architecture, while R3, running a 64-bit OS, was
emulated as E3 with a x86 64 system image (i.e., currently Android SDK
does not offer ARM system images for Android 9/10). Such distinctions
were not possible in Genymotion-based instances (i.e., GX devices), as
it only provides 32-bit x86 system images.

4.2.2. Device settings
The emulator instances were configured to resemble the real devices

as accurately as possible using the options available in the emulator
software. Consequently, if possible, all the emulated devices’ speci-
fications (e.g., OS image, CPU cores, RAM size, display resolutions
and dpi, storage, SD card, etc.) were selected according to the real
devices’ specifications. However, some minor deviations remained since
some features like storage size in Genymotion or display dpi sizes were
available only in fixed configurations. In such cases, the nearest value
to the real specification was used.

Regarding the user data configuration, all testing platforms were
also given as similar settings as possible to mimic an average user
setting. For instance, location services were enabled, WiFi connectivity
was enabled (although only 4G connection was used), Google Play
Services were enabled and the devices were logged in using a real
Google account. However, in the case of Android Studio, the system
images only permitted Google APIs but not Google Play Services,
whereas Genymotion allowed using Google Play through the Open
GApps widget. Play Protect was disabled on all platforms to grant
unhampered installation and execution of malware applications.

4.3. Data collection

The purpose of the data collection phase was to trace and log the
system call data for each executed application on each Android device
under the same conditions for posterior analysis. For this task, Android
debug bridge (ADB) (Android, 2021a) was used in combination with
Monkey (Android, 2021e) and Strace (Strace, 2021) tools. ADB enabled
the communication between the devices and the host machine via a
command-line interface, while Monkey and Strace were used to inject
pseudo-random events and log the app behavior (i.e., system calls),
respectively.

Between test runs, the devices were cleaned up to ensure the same
exact conditions for all samples. More precisely, after each malware
data collection, the read-only memory (ROM) of the real devices was
re-flashed with a clean system image, and, after each benign collection,
a system factory reset was performed. After that, the real devices were
re-rooted, and the OS settings configured again. This time-consuming
and strict restoration policy ensured that the original system state was
restored before each new collection and that all samples ran under the
same exact conditions. In the case of emulators, for such a purpose,
snapshots and cloning options were leveraged in Android Studio and
Genymotion, respectively. More specifically, the sequential steps of the
data collection procedure are detailed as follows:

1. Installation of the application
2. Application execution using the monkey tool and attachment of
strace to the main app process

3. Running of the app for 5 min (i.e., freely or injecting pseudo-
random events) and logging of the invoked system calls (i.e., be-
havior)

4. Detachment of strace from the main process, close of the appli-
cation and pull of the log file to the host computer

5. Saving of the collected data and restoration of the clean system

As depicted in the diagram in Fig. 1, this procedure was performed
twice per sample, for all samples in all devices, first with no user
interaction (i.e., only execution, referenced as 1E) and then simulating
brief user interaction by injecting 50 pseudorandom events generated
by the monkey tool (i.e., referenced as 50E). In the exceptional cases
when the app crashed during the collection process, the whole pro-
cedure was repeated according to the predefined criteria. No further
interaction with the devices was performed at run-time. However, there
was one forced deviation from this policy, which occurred before the
execution of legacy applications in Android 10 devices. In these cases, a
permissions-related screen prompt had to be accepted after installation
due to a privacy-related addition on the Android 10 release (Android,
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Table 1
Malware data set overview.

Code Category Family MD5 Hash Sample date Supported ABIs

M1 Backdoor Mobok 83763edd2d2e5d380df5c777cc9cdc24 2020-02-14 armeabi, armeabi-v7a, arm64-v8a, x86, x86 64
M2 Spyware XploitSpy 117e1331306fec02b1ffe6b68d148cc9 2020-05-06 armeabi, armeabi-v7a, x86
M3 Adware Hiddad ec2b4ad861c0dbef1404713d9eac48a4 2020-03-13 all
M4 Spyware Bahamut 9368dd657e410f8a9ba2b71c95cc0777 2020-08-26 all
M5 Adware MobiDash 08d05f01671f788e9c17a9ffca0547b0 2016-02-09 armeabi, armeabi-v7a, arm64-v8a, x86, x86 64, mips, mips64
M6 Scareware Android.Spy.277 2c5f158e2be5b0a67fe7378d6cff0d2d 2015-12-10 armeabi, armeabi-v7a, x86, mips
M7 Ransomware WannaLocker 762138e933a681628ceab29d8e5a96a2 2017-07-25 all
M8 Fraudware Plankton 0378f0cf4e7241a4c0f5a0722e601638 2013-08-07 all

Table 2
Benign data set overview.

Code App type MD5 Hash Sample date Supported ABIs

B1 Audiobook Player ea30d7cc4c1dd7ad31bc32156fd2025b 2017-02-16 armeabi, armeabi-v7a, x86
B2 Timesheet organizer 0ea05f7634ac6b1003a774d3d7f22103 2016-09-07 armeabi, armeabi-v7a, x86, mips
B3 Graphic design tool 33b2fcb832c67a6c69a5cc05b0a44e3f 2017-02-07 armeabi, armeabi-v7a, arm64-v8a, x86, x86 64, mips, mips64
B4 PDF Converter de76fdefa4a223d38162c8d349752720 2016-12-12 armeabi, armeabi-v7a, x86
B5 QR code scanner 90c81f6acc471d922fee136880eda641 2017-02-13 all
B6 Camping database 1607aef3d413ddd619c0248b07dd0087 2016-12-17 all
B7 Diary 944761948baeddf0e503325bf5e41ca4 2016-07-19 all
B8 Alarm clock d93520ceee3ce2a3ff29a38cd7f6428c 2015-04-02 all

Fig. 1. Data collection workflow.

2021c). As a result, to collect data from legacy apps in Android 10,
an acceptance button had to be pressed in the screen prompt with no
more interaction needed. The legacy applications affected on Android
10 platforms by this feature were M5, M6, M7, M8, B2, B6, B7, and B8.
The possible impact of these exceptional circumstances is discussed in
Section 6.

As a result of the workflow depicted in Fig. 1, the outcome of the
data collection process was a set of system call logs acquired for each
malicious and benign application on each platform and both modes
of execution: 1 event (execution-only) and 50 pseudo-random events.
Therefore, as sixteen distinct samples were used in the experimental
setup and run on two modes of execution possible on nine devices, a
total of 288 logs were collected and analyzed.

4.4. Impact on machine learning-based detection

The data collected in the acquisition phase were processed to build
and evaluate distinct machine learning-based classification models.
More specifically, feature engineering was performed on the acquired
data, and the absolute frequency (i.e., count) of each system call issued
by the apps during the collection time was used to describe each
application (i.e., data features). Thus, every data sample was described
by a vector composed of syscall-based numeric features, which were

used as input to the ML detection models. This data representation
space provides a meaningful behavioral profile of the apps and has
been used successfully to induce effective detection systems in previous
research in the problem domain (Guerra-Manzanares et al., 2019b;
Vidal et al., 2017). As a result, a tabular data set composed of 288
rows was generated, where each row (i.e., data sample) is described by
the app code, device code (i.e., where the app was executed), mode of
execution, class, and the system call frequency vector.

As machine learning models are sensitive to data quantity, the
main aim of this experimentation was not the induction of effective
forecasting models but the usage of machine learning models to assess
the similarity among different acquisitions of the same application on
different platforms and evaluate the implications of distinct behavioral
profiles for the same application in simple detection models. For the
sake of consistency, the same machine learning algorithm and hyper-
parameters were used to induce all the ML-based detection models. The
models’ performance was evaluated using the accuracy performance
metric, which informs about the degree of correctness of the model’s
predictions on the testing data. More specifically, it is calculated as the
ratio of the number of correct class predictions over the total number of
predictions (i.e., test samples). The accuracy metric is bounded in the
[0, 1] range, and the higher the value (i.e., closer to one), the better the
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Table 3
Specifications of the testbed devices.

Code Device System CPU Operating System

R1 Samsung Galaxy A20e Model: SM-A202F
RAM: 3 GB
Storage: 32 GB

SoC: Exynos 7 Octa
Instr. set: 64-bit ARMv8-A
ABIs: arm64-v8a, armeabi-v7a, armeabi

Android: 9 (Pie) - API level 28 Kernel
arch.: armv8l (32-bit) Kernel version:
4.4.111-...

R2 Samsung Galaxy A40 Model: SM-A405FN
RAM: 4 GB
Storage: 64 GB

SoC: Exynos 7 Octa
Instr. set: 64-bit ARMv8-A
ABIs: arm64-v8a, armeabi-v7a, armeabi

Android: 10 - API level 29
Kernel arch.: armv8l (32-bit) Kernel
version: 4.4.177-...

R3 Xiaomi Redmi Note 8 Pro Model: Note 8 Pro
RAM: 6 GB
Storage: 64 GB

SoC: MediaTek Helio G90T
Instr. set: 64-bit ARMv8-A
ABIs: arm64-v8a, armeabi-v7a, armeabi

Android: 10 - API level 29
Kernel arch.: aarch64 (64-bit) Kernel
version: 4.14.141-...

A1 AVD Samsung Galaxy A20e Model: AOSP on IA emulator
RAM: 3 GB
Storage: 32 GB

SoC: Android virtual processor
Instr. set: 32-bit x86
ABIs: x86, armeabi-v7a, armeabi

Android: 9 (Pie) - API level 28
Kernel arch.: i686 (32-bit) Kernel
version: 4.4.124+

A2 AVD Samsung Galaxy A40 Model: Android SDK built for x86
RAM: 4 GB
Storage: 64 GB

SoC: Android virtual processor
Instr. set: 32-bit x86 ABIs: x86

Android: 10 - API level 29
Kernel arch.: i686 (32-bit)
Kernel version: 4.14.175

A3 AVD Xiaomi Redmi Note 8 Pro Model: Android SDK built for x86 64
RAM: 6 GB
Storage: 64 GB

SoC: Android virtual processor
Instr. set: 64-bit x86
ABIs: x86 64, x86

Android: 10 - API level 29
Kernel arch.: x86 64 (64-bit)
Kernel version: 4.14.175

G1 Genymotion Samsung Galaxy A20e Model: Emulated A20e
RAM: 3 GB
Storage: 32 GB

SoC: i7-8665U (host)
Instr. set: 32-bit x86 ABIs: x86

Android: 9 (Pie) - API level 28 Kernel
arch.: i686 (32-bit)
Kernel version: 4.4.157-...

G2 Genymotion Samsung Galaxy A40 Model: Emulated A40
RAM: 4 GB
Storage: 32 GB

SoC: i7-8665U (host)
Instr. set: 32-bit x86 ABIs: x86

Android: 10 - API level 29 Kernel arch.:
i686 (32-bit)
Kernel version: 4.4.157-...

G3 Genymotion Xiaomi Redmi Note 8 Pro Model: Emulated Note
8 Pro
RAM: 6 GB
Storage: 32 GB

SoC: i7-8665U (host)
Instr. set: 32-bit x86 ABIs: x86

Android: 10 - API level 29 Kernel arch.:
i686 (32-bit)
Kernel version: 4.4.157-...

classification performance of the model (i.e., more test data classified
correctly).

In our case, the underlying idea behind the usage of these detection
models is to leverage the model’s overfitting capabilities to evaluate
the similarities between the training and testing set. In general, an
ML classifier model is said to overfit the training data when it is
trained with limited data, and the trained model fits too closely the
training data, thus not generalizing well to unknown or new data (IBM,
2021). This is an undesirable situation when building machine learning
models that is usually addressed by providing more data or using
regularization techniques. However, in our case, it is leveraged to
provide a notion of the similarity between the training and testing
sets, which are composed of exactly the same samples and described
using the same set of features but reporting values collected in distinct
Android platforms. Generally, a high-performance ML model should
recognize almost perfectly training data when used as testing data. In
our case, as the data set is small, it should be perfectly recognizable
(i.e., 1 or 100% accuracy). Therefore, if an accuracy different from 1
is reported, then behavioral inconsistencies can be inferred as the only
difference is the collection device, conditioning the behavioral profile
registered (i.e., feature values). More precisely, the lower the prediction
accuracy, the more dissimilar or inconsistent the behavior of the apps
on the training device regarding the testing device.

5. Results

5.1. Data analysis

As a result of the extensive benchmarking performed, 288 log files
were collected in the form of raw system call trace logs. The descriptive
and statistical analyses of these data are provided in the following
paragraphs.

The raw data logs evidenced differences, with varying proportions,
in the length of collected sequences and the number of different system
calls invoked by each app during the run-time. More significantly,

this fact was observed for all data logs. Even though this observation
was expected for distinct data samples, as different apps would show
different behavior (i.e., invoke different number and set of syscalls), no
notable deviation was expected for different executions of the same app
in distinct devices for the same execution mode. However, the latter
was not confirmed, and substantial differences were found in the data
logs regarding the behavior of the same app in different devices for all
combinations of apps and devices.

As the objective of this study was to explore app behavioral dif-
ferences across different Android platforms and their implications for
machine learning-based detection systems, the behavioral data were
analyzed and compared between each real device and their emulated
counterparts. Due to the extensive amount of data included in the logs,
a sound comparison of syscalls at the individual level was deemed
unfeasible, so the analysis focused on the total syscalls issued and the
number of unique system calls invoked on the different devices. These
data were extracted from the syscalls trace summaries. An example of
a syscalls summary from strace logs is provided in Fig. 2. As can be
observed, the summary data includes, among other data, the list of
unique system calls issued (i.e., syscall column), the number of each
unique syscall invoked (i.e., calls column), and the total number of all
recorded system calls during the data collection process.

The total number of syscalls invoked at run-time and the number
of unique system calls for each app run were used as primary data for
the comparative analysis, as provided in Sections 5.2 and 5.3, whereas
the frequency of each system call was used as input data to build and
test the impact of the observed differences on ML-based classification
models, as described in Section 5.4. The total figures representing the
data recorded for each app on each platform are provided for 1 event
in Table 4 and 50 events in Table 5. For each execution mode, the
total number of invoked syscalls (i.e., total column) and the number
of unique syscalls (i.e., n column) are provided for each combination
of app and device. The device used is reflected in the columns, while
the rows report the samples. Therefore, each row provides the behavior
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Table 4
Extraction results summary (execution-only — 1E).

Fig. 2. Strace summary log.

of each sample on each device by specifying the total number of system
calls issued (total) and the number of different system calls invoked (n).

The behavioral data provided in Tables 4 and 5 were analyzed for
consistency and similarity across devices. In this regard, to establish
a comprehensible analysis scope, the real devices were employed as
the basis for four different device comparison subgroups. Such division
provided distinctive sets of data for comparison. The generated sub-
groups were coded as A, B, C, and D for future reference. Subgroup A
concentrates exclusively on behavioral differences among real devices,
while subgroups B, C, and D assess the differences between each real
device and their corresponding virtual devices. Furthermore, since data
acquisition was performed on each device using two classes of apps
and two modes of execution, it implied that there were four different
perspectives (i.e., conditions) to examine the potential contrasts within
each subgroup.

The four subgroups and the concept of conditions related to class and
execution mode are presented in Fig. 3 and explored in the next section.

5.2. Comparison metrics

This section describes the data comparison performed via scoring
metrics. In this regard, an experimental approach was implemented
to adequately assess the primary differences or similarities within the
data from the syscall summaries regarding the comparison sets and
conditions. For the sake of comprehension, the results of subgroup A
(i.e., comparison among real devices) under two of the four conditions

Fig. 3. Comparison groups and conditions.

(i.e., malware and benign samples with execution-only) are presented
as descriptive examples (see Table 6).

It is worth mentioning that due to the presence of extreme values
and several orders of magnitude within the collected data (i.e., the
total values ranged from a few thousand to over a million syscalls), a
numeric approach (i.e., score) was preferred to a graphical approach
(i.e., bar or line charts) as the latter could hinder, distort or over-
emphasize the differences.

The four subgroups generated for comparison included data from
three different platforms, compared under four different conditions
using two numeric attributes (i.e., the total number of syscalls issued
and the number of unique syscalls invoked).

Therefore, to perform a comprehensive comparison of both at-
tributes, two distinct similarity scores were calculated to measure the
differences of each data attribute across devices. They are described in
the following paragraphs.

• For total syscalls data, the ratio of increase between two values
was calculated (e.g., if the total syscalls data were 1500 and 1000
for the same app on two devices, the ratio would be reflected as
1.5, showing a 50% increase). All the calculations were performed
pairwise, subtracting the smallest value from the largest. Thus the
minimum possible value was 1, meaning that an equal number of
total syscalls was invoked on both devices (i.e., no increase).

• For number of unique syscalls data, as they might show significant
variability, the actual values (i.e., syscall name) instead of the
summary figure were used. All the comparisons were performed
pairwise, where the overlap between the unique syscalls sets
(i.e., invoked on both executions) was used to calculate the Jac-
card coefficient. The Jaccard coefficient (Costa, 2021) is a measure
of similarity between sets calculated as the size of the intersection
(i.e., overlap) over the size of the union of the sets, as expressed
in Eq. (1). It ranges from 0 to 1, where the greater the value, the
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Table 5
Extraction results summary (50 events injected — 50E).

Table 6
Similarity comparison — subgroup A (execution-only).

more similarity between the sets.

𝐽 (𝑆1, 𝑆2) =
|𝑆1∩𝑆2|
|𝑆1 ∪ 𝑆2| =

|𝑆1 ∩ 𝑆2|
|𝑆1| + |𝑆2| − |𝑆1 ∩ 𝑆2| (1)

The calculation of these scores resulted in two similarity indexes per
pair of compared devices per sample, as can be observed in the example
provided in Table 6, applied to execution-only data for subgroup A.

For the sake of interpretation of the results, similarity thresholds
were established to qualify pairwise behaviors as similar. The similarity
threshold was set to 0.75 for both comparative scores. Therefore, the
behavior of a specific app on two different platforms was qualified as
similar if the total syscalls ratio did not exceed 1.25 and the Jaccard
coefficient did not fall below 0.75.

Table 6 provides both comparison metrics for subgroup A of data
in execution-only mode. The total sum column provides the ratio for
the total syscalls data between pairs of runs while the Uniques column
provides the Jaccard coefficient. Besides, Table 6 also includes the size
of the overlap of unique syscalls on the compared devices (i.e., Intersect
column) and the total number of unique syscalls on both platforms
reported within parentheses in the same column. Similar behaviors are
highlighted in green. Besides, the pairs where the sets displayed an
outstanding degree of similarity (i.e., the ratio of total syscalls below
1.10 and Jaccard coefficient greater than 0.90) are highlighted in dark
green.

5.3. Cross-device behavioral analysis

The general overview of the results, covering the full spectrum of
comparison sets and conditions, is displayed in Table 7. In this table,
the same information as in Table 6 is provided but, for the sake of
interpretation of the results, the numeric values have been omitted,
thus providing a better visualization and comparison of the observed
similarities. The same color patterns to highlight similar behaviors are
applied. The following paragraphs summarize the results and provide
the main findings.

5.3.1. App behavior: Real device comparison
The comparison of app behaviors on the real devices (i.e., subgroup

A) evidences that, in general, the behavior of an app in distinct real de-
vices is remarkably dissimilar as only 12 of the 48 compared behaviors
in Table 6 are above the (good) similarity threshold (i.e., 0.75 for both
attributes). From these, just 5 of them show very similar values with
a great similarity score. Furthermore, the observed similarities seem to
be present just under certain conditions. For instance, similar results
are observed between R1 and R2 for malware samples in both modes
of execution. However, these similarities are largely diminished if R1
and R2 behavioral profiles are compared with R3. In such a case, only
a few malware samples continue to display consistency (e.g., M4 in the
case of only-execution mode and M5 and M7 in the case of 50 events).
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Table 7
General overview of comparison results.

Finally, for malware samples, slightly greater behavioral similarities
across devices are observed when 50 events are injected.

In the case of benign samples, the opposed trends are observed.
A decreased similarity is obtained when more events are injected
and show, in general, greater dissimilarity than the malware samples
in both execution modes. Therefore, for benign apps, there weren’t
notable general similarities observed among devices as they were in the
malware case. a minor exception is spotted in the comparison between
R2 and R3, where B4 and B7 achieved the 0.90 threshold for the
execution-only condition. This execution mode shows also a noticeable
similarity for the rest of apps when just the Jaccard coefficient is
considered, meaning that the platforms invoked a similar set of unique
system calls but not a similar amount of them.

Overall, as can be noticed in Table 7, this subgroup was the one
showing more behavioral similarities among all the analyzed sub-
groups. However, despite the observation of some similarities, it can
be concluded that the behavior of the applications was significantly
dissimilar across different real devices and OS versions.

5.3.2. App behavior: Real devices compared to emulations
As displayed in Table 7, the comparatives among real devices and

their emulated versions (i.e., subgroups B, C, and D) show remarkably
inconsistent results. This fact evidences that the behavior of apps in real
devices and their emulated versions, even when the virtual devices fully
mimic the settings and properties of the real devices, are significantly
different.

Although some exceptionally similar behaviors were spotted, no
significant similarity patterns were observed in most of the analyzed
sets under any condition. The only remarkable exception is observed in
subgroup D, where R3 and A3 reached the good similarity threshold for
four benign samples under the execution-only condition. Besides, it is
worth noting that when these devices are considered, the eight benign

apps show remarkable similarities when the set of unique system calls
is compared, scoring over the specified similarity threshold. However,
these similarities vanish under the condition of 50 injected events.

5.4. Impact on ML-based malware detection models

The absolute frequency (i.e., count) of each system call invoked
by the apps during the collection time was used to describe each
application and as input features to induce the ML-based models.
The whole set of apps invoked a total of 81 different system calls
during the data collection phase. As a result, the feature vector used
to describe each app is composed of 81 syscall frequency values plus
additional metadata features such as the app code, device code, mode
of execution, and class.

The Random Forest algorithm (Breiman, 2001), which has been
used in similar setups with outstanding performance (Guerra-Manzanares
et al., 2019a, 2019b), was used to build all the classification models in
this study. The default hyper-parameters of scikit-learn implementation
were used (scikit learn, 2021). The testing accuracy score for all the
induced models was retrieved. The obtained results are provided in
Fig. 4 for execution-only data and in Fig. 5 for the 50 events data.

More specifically, the bar charts in Figs. 4 and 5 provide the results
for cross-device detection accuracy for different training and testing
data sets splits. The vertical axis in these figures provides the accuracy
score, whereas the horizontal axis informs about the source of the
testing data (i.e., the collection device). Therefore, each bar reports
the testing set accuracy for each trained detection model. The color of
the bars informs about the training data used to build the detection
model (see legend). As can be observed, for each execution mode,
nine detection models were induced, trained with distinct data from
each device, and referenced with a different color in the charts. All
the trained models were tested separately with the data collected on
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Fig. 4. Detection models accuracy (execution-only data).

Fig. 5. Detection models accuracy (50 events).

all nine devices (i.e., including the training data) and accuracy was
retrieved. It is worth remembering that the training and testing sets
were composed of the same instances (i.e., the whole data set) in all
cases. The only difference was in the feature values describing each
sample which corresponded to the behavior collected on each particular
device. The only exception occurred when the training and testing data
belonged to the same device. In such a case, the training and testing
data were identical (i.e., same feature values).

Given the reduced size of the data set and the inherent randomness
of the classifier algorithm, to achieve a representative measure of the
performance, each model testing was repeated 100 times. The average
accuracy metrics are reported in Figs. 4 and 5.

The main idea behind these learning models is to analyze the impact
of mixing distinct data collection sources in simple scenarios where the
data set should be easily identifiable for the classifier model. In general,
for any ML model, the greater the accuracy, the better the discrimina-
tory capability of the model. In our case, the greater the accuracy, the
more similar the behavior of the apps across devices and, consequently,
the better the discriminatory capability of the model to cross-device
data. Thus, if the behavior is fully consistent across different Android
platforms, the average accuracy should be 1 (i.e., 100%) or very close,
meaning that the model has no issues identifying class-related data
collected from multiple devices. The lower the accuracy, the more
dissimilar the behavior of the apps across devices and the worse the
class-based discrimination by the model. Note that the discrimination
of the training data (i.e., when used for testing) by the model should
be close to perfect accuracy to make such implications, which means
that the classification model must classify effectively the training data
used to induce it.

The main difference between this approach and the previous data
analysis is the class-level implications of the behavioral differences for

ML-based detection classifiers, which aim to discriminate the class of a
sample based on class-related patterns in the training data.

As can be seen in Figs. 4 and 5, the accuracy value is never reaching
the maximum possible score (i.e., 1), except when the testing data
are the same as the training data (i.e., the data used to build the
model). This confirms the goodness of the induced models to perfectly
discriminate their own data but not any other testing data, which corre-
sponds to the same data set but described by the behavior collected on
other devices. This indicates that, even though the samples on training
and testing sets are the same, the data collection device impacts the
performance of the induced systems as the class-level discrimination
is significantly harmed even in this simple scenario. More accurately,
except for G2 and G3 as training and testing data in only-execution
mode (i.e., Fig. 4), all cross-device models decrease their performance
significantly, showing that the behavior of apps in different devices is
not consistent, thus confusing the classifiers induced with one specific
device data to generalize effectively to test data collected in other
Android platforms. Besides, in all cases, the induced model has no
issues discriminating the data collected on the same device with perfect
accuracy.

In summary, when all models are considered, the average cross-
device accuracy for execution-only data is 0.80 with a standard devi-
ation of 0.11, whereas for 50 events is 0.81 with a standard deviation
of 0.07. Therefore, when more events are injected, the overall perfor-
mance does not change significantly. However, the behavior appears
to be slightly more consistent across devices, reflected by the reduced
variability observed (i.e., smaller standard deviation). In conclusion,
due to the behavioral differences of the applications across devices, the
classifiers’ cross-device data detection performance is notably reduced
compared to the same-device data detection performance.

To further explore the implications of mixing behavioral profiles
from different collection platforms, mixed models were induced using
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Fig. 6. Mixed models accuracy.

training sets constructed using random combinations of data from
distinct devices. In this scenario, the benign and malware data were
independently and randomly selected from the nine data sources, which
ensured that the data set was composed of the sixteen samples. As in
the previous case, the trained model was tested with the data collected
from all devices. Thus the training sets included class samples from
randomly selected devices, whereas the testing data belonged to a
single device.

As all samples from a class were extracted from a single randomly
selected device from the nine devices, in a minority of models (i.e., ≈
11%) the same device was randomly assigned to provide both classes
for the training data (as in the previous experiment). These models
were kept for the sake of the completeness of the experiment and the
representation of different production setups (i.e., data might or might
not be mixed to build a model). For this experiment, a total of 10,000
models were induced. The average accuracy results are provided in
Fig. 6 for both execution modes (i.e., orange for execution-only and
blue for 50 events). The height of the bars reports the average accuracy
value, while the standard deviation is depicted as extended gray lines
below and above the average value. Given that the horizontal axis
reports the testing data set, the accuracy score informs about the
discriminatory properties of each data source in mixed trained models.

As shown in Fig. 6, the performance of the models where the
training data is mixed is remarkably lower than on the models induced
in Fig. 4 and Fig. 5, where the data for both classes were collected
on the same device. More specifically, for the execution-only mode,
an average accuracy of 0.72 is achieved with a standard deviation
of 0.044, whereas for the 50 events mode an average accuracy of
0.75 is reported and a standard deviation of 0.038. More interestingly,
data collected on the Genymotion emulator (i.e., GX) emerge as the
most easily recognizable by the mixed models, while the data collected
on real devices are the most challenging and provide the worst per-
formance of all mixed models. Lastly, in general, the mixed models
provide better performance for 50 events data than execution-only
data. It may suggest that more events would tend to make the behaviors
more similar across devices and, consequently, easier to discriminate by
the mixed models.

In any case, these results evidence that cross-device consistent be-
havior cannot be assumed and that the data source must be considered
in the design and data pipelines of any robust machine learning-based
Android malware detection system. Furthermore, mixing different data
sources in both training and testing sets seems to impact notably the
classification models’ performance. Our results show that, on average,
in simple models and easy data sets, the cross-device accuracy of single-
source trained models might be ≈ 20% lower than the same-device
testing accuracy and ≈ 30% lower in the mixed models’ case.

For the sake of reproducibility and further analysis, the generated
data set and raw log files are made publicly available.1

1 https://github.com/aleguma/android-testbed

6. Discussion

This section discusses the observed anomalies in the data, the pos-
sible causes of the cross-device behavioral differences, and the overall
implications of the results. Threats to the validity of our results and
future work are also discussed.

6.1. Outlier cases

As shown in Section 5.3, the similarities in system call summaries
between different platforms were mostly exceptional, present only
under certain conditions. The majority of comparisons indicated re-
markable differences in the analyzed data attributes. As can be seen
in Tables 4 and 5, the total number of syscalls for all apps varied
significantly on the different testing platforms. This variability was in
most cases in the same order of magnitude, thus considered normal
dispersion. For instance, M1 issued between 1,631 and 8,881 syscalls
in all the platforms. However, particular instances showed more ex-
treme cases where the inconsistencies differed by several orders of
magnitude. For instance, in Table 4, the data collection of M6 in all
devices exceeded 150,000 syscalls except in R3, where it produced just
4,330 syscalls. The opposite case is observed for M3, as on A2 over
a million syscalls were registered but did not issue more than 20,000
in any other device. In the context of the present study, such extreme
differences can be considered as outliers, thus likely not representing the
normal behavior of the app, generating the suspicion that underlying
issues generated such extreme behavior. To address this issue, multiple
collections of the specific instances were performed in the problematic
devices. However, the same results were obtained in all iterations.
Therefore, they were kept in the comparison table as they represent
the real behavior of the samples in the devices. In any case, these outlier
cases further emphasize the different cross-device behavior observed in
this research.

6.2. Causes and implications

Despite the existence of outliers, the majority of the results did not
display such extreme levels and can be considered inside a normal
range. Still, the behavioral differences among the devices are evident
for all samples. This section explores the possible causes behind the dif-
ferent behaviors and the implications of these differences for ML-based
detection systems.

6.2.1. Real devices compared to their emulations
The comparison of the behavioral profiles between the real devices

and their corresponding emulations proves that the use and distribution
of system calls differ remarkably among devices. For instance, Geny-
motion emulations show more differences with the corresponding real
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devices than Android Emulator, as only 2,08% (i.e., 2 of 96) of the
total comparisons involving Genymotion devices lay over the similarity
threshold (i.e., both originating from sample B4). In this regard, it is
worth noticing that Genymotion only allowed the usage of 32-bit x86
system images, which might have seriously affected the comparison of
G3 to its reference model, R3, which uses a 64-bit OS. Android SDK
emulations fared slightly better with 14,58% (i.e., 14 of 96) of the
behavioral profiles fitting into the 0.75 similarity threshold and even
showing some consistency for benign applications, for example, when
R3 is compared with its emulation A3.

The causes behind the differences are likely multifaceted, originat-
ing from both hardware and software-related aspects. All emulations
in this study used Intel hardware architecture (see Table 3), whereas
most of the real devices manufactured nowadays, including the phones
used in this research, use ARM hardware architecture. In this regard,
even though system calls in Linux are mostly universal for user space
processes on different Linux devices, the number of system calls and
their availability in distinct hardware architectures differ (Juszkiewicz,
2021). Besides, calling conventions are also distinct between x86 and
ARM platforms (Kumar Jha, 2014a, 2014b). These primary differences
are reflected in the logged syscalls traces. These differences in the
usage and availability of syscalls imply that even though emulators
are fast and convenient platforms for feature extraction and model
training, the models induced using emulator-acquired data might not
discriminate effectively test data collected from real Android devices.
Besides, models built using real device data might also underperform
when tested with data acquired on emulators. Both facts have been
tested and verified in this study (see Section 5.4).

To address this issue, better generalizable models could be induced
if an efficient ARM-based architecture is implemented on emulators.
Thus real devices and emulators would share the same underlying ar-
chitecture, and the differences based on this issue could be minimized.
In this regard, even though they are not available nowadays, the recent
updates indicate that Google might bring back ARM-based system im-
ages to the SDK emulator with the latest Android 12 version (Android,
2021b), which might enable new levels of architectural compatibility
for emulator-based researchers.

Despite its importance, the architectural differences in system call
handling may not be the only cause for the behavioral differences
between real devices and their emulations. Modern malware can im-
plement anti-emulation and sandbox detection techniques that may
hide the malicious behavior in virtual environments (Petsas, Voyatzis,
Athanasopoulos, Polychronakis, & Ioannidis, 2014b; Vidas & Christin,
2014). Therefore, some sophisticated malware might never reveal its
malicious behavior in a virtual environment as emulators can mimic
but never perfectly match real devices’ capabilities and specifications.
Based on our results, the collected profiles from malware instances do
not appear to include such advanced techniques.

6.2.2. Comparison among real devices
This study employed three real Android devices. Although the com-

parison of system calls’ summaries in this subgroup showed the most
consistent results, as shown in Table 7, the similarities were present
only under specific conditions. Most of the malware samples displayed
relatively similar results on R1 and R2 devices for both modes of
execution (i.e., more similarity in the case of 50 events). Such similar-
ities vanish when R3 is included in the comparison. Additionally, the
benign apps (except for B6 and B7) did not manifest fully consistent
cross-device similarity, although unique calls data between R2 and R3
displayed good parity for execution-only mode.

Interestingly, the devices with the largest number of similarities, R1
and R2, were running different Android versions (9 and 10, respec-
tively) but share the same kernel architecture (i.e., armv8l, a 32-bit
version of ARMv8) and similar kernel series (i.e., 4.4.111 and 4.4.117,
respectively). Furthermore, R1 and R2 are devices manufactured by
the same Android OEM (i.e., Samsung devices). On the other side, R3

uses Aarch64 architecture and a slightly newer version of the kernel.
Despite using ARM architectures, R1 and R2 run 32-bit OS in a 64-bit
chipset, whereas R3 implements a 64-bit OS. The significant differences
in system call summaries among these devices indicate that, due to its
improved instruction set, R3 implements different calling conventions
for most apps.

In conclusion, different behavioral profiles are observed not only
when real devices are compared to virtual devices but also among
different real devices and OS versions, especially when they belong to
distinct OEMs.

6.2.3. Implications for ML-based detection models
The detection models induced in Section 5.4 demonstrate that when

training and testing data are collected on different devices, the per-
formance of the detection system can decrease significantly as the
detection system may fail to classify effectively new data samples
collected on another device. Our experimental setup shows that this
happens even when the features of the same set of samples used to
induce the model are collected on a different device and used as testing
data. Furthermore, based on our results, the cross-device performance
of the induced models is further decreased when the training data are
mixed, belonging to different collection devices.

The implications of these findings for production systems are sig-
nificant. For instance, it implies that the detection models trained with
data collected from emulators (in the cloud) may fail to recognize data
collected from users’ real devices (e.g., a local copy of the detection
model is deployed for on-device detection or the data is sent to the
cloud for detection). On the other side, given the myriad of different
real devices available nowadays, a model trained with data collected
from a single real device will not generalize well to data collected on
other devices. Besides, as shown in Fig. 6, merging data from distinct
data sources does not solve these issues and may provoke even more
nefarious consequences in the detection performance. Therefore, the
data source must be considered in any production ML-based malware
detection system that integrates system calls as discriminatory features.
Failing to attend to the behavioral differences collected on different
devices might make the system fail by design.

The general recommendation based on our experimentation is to use
data collected from a single device to train and test the models. This
implies that emulators might be a better choice than using real devices
as emulators are easier to control and deploy. Besides, on-device col-
lection should be avoided as it may lead to ineffective detection when
a local copy of the detection model is deployed on the devices.

In conclusion, due to the inconsistent behavior of applications
across Android devices, poor cross-device detection performance should
be expected if different data sources are mixed in production systems.

6.3. Threats to validity

The limitations of this study, which may threaten the validity of our
results, are addressed in the following paragraphs.

• Missing initial boot sequences. Hooking the strace tool to a newly
started app’s main process through the ADB shell involves some
delay. The length of this delay is variable and cannot be con-
trolled. During that time, the initial system calls might not be
logged, and, consequently, the variability of the strace delays
might distort the final results gathered from different devices.
Despite this limitation, strace was used in this research as it is the
most used tool to acquire system calls in the related literature
(Burguera et al., 2011; Guerra-Manzanares et al., 2019a; Vidal
et al., 2017) and is usually included as a built-in tool in Android
OS.

• Unweighted unique system call values. In our similarity analysis, the
same weight was given to each unique system call invoked. Since
the proportion of each system call was different on each device,
the usage of a weighing or ranking system for the unique system
calls could improve the similarity assessment.
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• Neglecting system calls sequences. In our similarity analysis, we only
considered the total number and set of system calls invoked by
the applications on each device. However, it might be relevant
to assess the degree of common sequences of system calls in
the collected behaviors, that is, patterns of system calls among
devices, as an additional metric for comparison and evaluation of
the cross-device behavioral consistency.

• Emulation detection. Some of the malware used in this research
might have been able to detect the virtual environment and might
have not deployed their malicious activity. Although the malware
apps were not reverse-engineered to examine anti-sandbox capa-
bilities, according to the inspection of logs and results, these capa-
bilities should not be assumed. However, even though the virtual
devices mimicked the real device configurations, the possibility
that some malware could have expressed a different behavior in
the real devices from the virtual devices cannot be discarded. In
any case, given that behavioral differences were also found for
the benign samples, those results alone let us falsify the consistent
cross-device behavioral assumption.

7. Conclusions

The primary objective of this research was to test the validity of the
postulate that assumes consistent cross-platform behavior of Android
apps as the basis for the generalization of the effectiveness of the
proposed detection models in the related literature.

For that purpose, an extensive benchmarking setup composed of
nine different devices was used. For raw data acquisition, strict cri-
teria describing the setup settings, conditions, and restrictions were
implemented. Samples of malicious and benign apps were installed and
executed on testing environments according to predefined conditions
(i.e., execution-only and 50 events) for extracting system calls-based be-
havioral data that were evaluated in a thorough comparative analysis.
From the collected data, summary figures indicating the total number of
system calls issued and the number of unique system calls invoked were
extracted. The data were compared by groups according to devices and
modes of execution. The similarity of the behavioral profiles of the apps
across devices was analyzed using two similarity scores. Finally, the
implications of the behavioral differences observed for the ML-based
detection systems were evaluated.

The experimental results indicate the existence of important differ-
ences between real and virtual devices regarding system call usage and,
consequently, the logged behavior of the apps. The differences among
real devices were less salient but still significant. The evaluation of
the impact of the differences on ML-based models showed a significant
detrimental effect on the detection performance when the training and
testing data are collected on different devices. Our empirical findings
do not support the validity of the cross-device behavioral consistency
of Android apps when system calls are used as descriptive features.
Thus, if not carefully considered, data fusion may have destructive
implications in the machine learning-based Android malware detection
models.
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Abstract1

Android security permissions are built-in security features that constrain what an app can do and access on the system, that is,
its privileges. Permissions have been widely used for Android malware detection, mostly in combination with other relevant
app attributes. The available set of permissions is dynamic, refined in every new Android OS version release. The refinement
process adds new permissions and deprecates others. These changes directly impact the type and prevalence of permissions
requested bymalware and legitimate applications over time. Furthermore, malware trends and benign apps’ inherent evolution
influence their requested permissions. Therefore, the usage of these features in machine learning-based malware detection
systems is prone to concept drift issues. Despite that, no previous study related to permissions has taken into account concept
drift. In this study, we demonstrate that when concept drift is addressed, permissions can generate long-lasting and effective
malware detection systems. Furthermore, the discriminatory capabilities of distinct set of features are tested.We found that the
initial set of permissions, defined in Android 1.0 (API level 1), are sufficient to build an effective detection model, providing
an average 0.93 F1 score in data that spans seven years. In addition, we explored and characterized permissions evolution
using local and global interpretation methods. In this regard, the varying importance of individual permissions for malware
and benign software recognition tasks over time are analyzed.
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1 Introduction16

Android malware is ubiquitous and deceptive [1]. Malicious17

applications disguise in many forms and shapes, constantly18

adapting in an ever-evolving sophistication trend since the19

early years of Android operating system (OS) [2,3], the20

leading mobile OS [4]. The open nature of Android and21

its massive spread make the popular OS an attractive tar-22

get for cyber attackers, thus posing end-users at constant risk23

[5]. Furthermore, as mobile devices are increasingly becom-24

ing more integrated into our daily routine, from leisure time25

activities to work-related tasks, mobile security emerges as26

a central element for individuals and companies to prevent27
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Technology, Tallinn, Estonia

2 Faculty of Mathematics and Information Science, Warsaw
University of Technology, Warsaw, Poland

cyber attacks and protect the wealth of sensitive data that 28

mobile devices manage and store [6]. 29

Security permissions constitute the first line of defense 30

against malicious threats in Android devices. Permissions 31

are a Linux kernel-based Android OS built-in security fea- 32

ture that enables the system to control what apps can do 33

and access, that is, their privileges. In Android devices, the 34

user grants or denies access to apps to data and resources 35

from the system via permissions, thus determining the 36

apps capabilities on the system. The original Android OS 37

permissions-based security model implemented an accept 38

all-or-nothing policy upon installation. However, due to 39

its critical importance as the first-line security barrier, the 40

security model evolved after the release of Android 6.0 41

Marshmallow (i.e., API level 23) in 2015. Since then, the 42

new permissions model lets the user decide to grant or deny 43

specific permissions, related to sensitive data, for each app 44

at run-time and not upon installation [7]. This improvement 45

may have led to increased risk awareness, greater flexibility 46

and situational control over the privileges of apps on the sys- 47
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tem, which in turn may have diminished the risk for some48

users, but it has certainly not eradicated the threat.49

Furthermore, even though additional securitymechanisms50

have been implemented at software [8] and hardware [9]51

level to overcome the traditional limitations of antivirus to52

detect malware in the mobile platform [10], malware authors53

have always found their way to bypass them [11]. Statistical54

figures show that the threat is not only alive but constantly55

evolving [12].56

In recent years, machine learning (ML) techniques have57

been explored as a means to mitigate exposure to the threat,58

showing remarkable success evenwith evolved, zero-day and59

obfuscated malware samples [13].ML-basedmalware detec-60

tion systems use statistical properties of collected samples to61

learn about known data and make accurate predictions about62

future or unknown data (i.e., supervised learning). A wide63

variety of properties or features of malware samples have64

been used to build detection systems [14]. However, accord-65

ing to their nature, they are broadly categorized as static or66

dynamic features. Static features are directly extracted from67

the source code, without executing the app, whereas dynamic68

features require the execution of the app in a live environment69

to be acquired.70

Permissions are the most used static features for Android71

malware detection purposes [14]. Despite the remarkable72

effectiveness reported by these detection systems, most of73

them are built on data belonging to old and short time frames74

within the whole Android history, thus neglecting the impact75

of time and malware evolution on data. For instance, Drebin76

[15], the most used data set in recent studies, provides data77

collected between 2010 and 2012. Therefore, this old data78

set becomes an obsolete representation of the actual threat79

landscape and it is not representative of the recent malware80

threats (e.g., the first ransomware forAndroidwas discovered81

in 2013) [16].82

In addition to that, most studies propose the usage of a83

reduced subset of features for optimal detection, obtained84

after applying feature selection methods to the training data85

used to build the detection model. These feature subsets may86

provide great discriminatory power on the training set time-87

frame but generate doubts about the generalization of such88

systems to future time frames, where significant changes89

may affect relevant data properties due to the natural evo-90

lution of malware and benign data, thus directly impacting91

the discriminatory power of features and, consequently, the92

detection performance of those systems [17]. As a result,93

these facts cast severe doubts about the long-lasting detection94

capabilities of systems built using old data to detect recent95

malware. Relevant features to detect malware effectively are96

prone to change as malware evolves, a phenomenon called97

concept drift. Neglecting concept drift has a potentially dev-98

astating impact on detection systems. Therefore, addressing99

the detrimental impact of concept drift becomes a critical100

issue to build effective and long-lasting machine learning- 101

based malware detection systems. 102

This study aims to address these gaps by taking the impact 103

of time into consideration when permissions are used as 104

model features. Firstly, we modeled concept drift effectively 105

by using a solution consisting of an ensemble of ML clas- 106

sifiers. Then, we applied permutation feature importance, a 107

global interpretation method, to characterize the most rele- 108

vant features per data period and understand the changes in 109

the discriminatory power of permissions over time. Further- 110

more, a local interpretation method was used (i.e., Shapley 111

values) to explain individual predictions and locally com- 112

pare permissions evolution for specific malware families. 113

As security permissions are inherently interpretable con- 114

structs, their characterization provides useful insights about 115

Android malware intentions and its evolution. To the best of 116

our knowledge, no previous study focusing on permissions 117

performed any temporal characterization nor analysis of per- 118

missions’ importance evolution. 119

Adistinctive fact of our concept driftmodeling andcharac- 120

terization is the comparative analysis of the impact of distinct 121

natural feature subsets on the model’s performance. These 122

feature sets were formed considering the natural evolution of 123

the permission set which is updated in almost every new API 124

release. As a result, these feature sets were not selected using 125

any feature selection method, thus not artificially generated 126

nor optimized for a specific time frame. 127

Lastly, although permissions have been widely used in 128

detection systems, they have been relegated to a secondary 129

role, mainly used in conjunction with other static or dynamic 130

features to enhance performance [18]. This study brings per- 131

missions back to the primary role by showing that using a 132

reduced set of permissions and addressing concept drift, a 133

long-lasting effective malware detection system can be built. 134

This malware detection system showed consistent perfor- 135

mance, averaging 0.93 F1 score, in a seven-year-long time 136

frame. 137

The paper structure is as follows: Sect. 2 provides back- 138

ground information about Android permissions. Section 3 139

outlines the state of the art in Android malware detection 140

systems using permissions. The methodology used in this 141

research and main results are addressed in Sects. 4 and 142

5, respectively. Section 6 provides the main findings and 143

highlights discussion points. Lastly, Sect. 7 describes the lim- 144

itations of this work while Sect. 8 concludes the study and 145

outlines future work. 146

2 Android security permissions 147

Everything in Android, from the contacts list to games, is 148

an application and every application, for security reasons, 149

runs in a restricted and isolated environment (i.e., sandbox). 150
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Fig. 1 Android permissions timeline evolution (based on data gathered
from [21])

Therefore, if an app needs to access data or resources outside151

of its environment, it must ask for the necessary privileges to152

access them [19], requesting the appropriate permission.153

In this regard, security permissions support user privacy154

by protecting access to restricted data (e.g., contacts infor-155

mation), preventing restricted actions (e.g., take pictures),156

and limiting interaction with other apps [20]. To be able157

to perform such actions or access sensitive data, the app158

must declare all the related permissions in the AndroidMani-159

fest.xml. The manifest, located in the root folder of the app’s160

.apk archive, is the only mandatory file for every Android161

app and is used by the OS to get relevant information for the162

proper handling of the app.163

The initial set of standard Android permissions available164

on the first Android release (i.e., API level 1) was com-165

posed of 74 permissions [21]. Since then, the set of available166

permissions has been modified, adding or deprecating per-167

missions, on almost every new API release. This constant168

change has been in linewith the increase in smartphone capa-169

bilities and the need for new security measures to handle170

them. The latest released version at the time of perform-171

ing this research, Android 11 (i.e., API level 30), released172

in September 2020, has 157 available permissions. Thus,173

the permissions available suffered a two-fold increase in 13174

years. More specifically, 166 permissions have been defined175

since API level 1 but 9 were deprecated in API updates. Fig-176

ure 1 shows the evolution of Android permissions from 2008177

to 2020, that is, from API level 1 (i.e., Android 1.0) to API178

level 30 (i.e., Android 11). The yellow line shows the cumu-179

lative number of permissions defined over time, while the180

blue bars indicate the number of actually available permis-181

sions for each API release/year (i.e., the usable set, without182

the deprecated permissions).183

The dynamism of the phenomenon is evidenced in Fig. 1.184

The permissions set has increased more than two-fold since185

the first Android release and is constantly updated, especially 186

in the most recent API releases. The updates have introduced 187

new security permissions in response to new phone features 188

(e.g., USE_FINGERPRINT, API level 23) or refine/extend 189

existing permissions (e.g., ACCESS_BACKGROUND_ 190

LOCATION, API level 29, which refines ACCESS_COARSE 191

_LOCATION and ACCESS_FINE_LOCATION) [21]. 192

Besides, the usage of permissions is directly influenced 193

by trends and behavioral changes in apps, affecting the 194

prevalence of permissions over time. Therefore, the natu- 195

ral evolution of the feature set and the changes in prevalence 196

over time make the usage of permissions for Android mal- 197

ware detection prone to concept drift issues. 198

Android security standard permissions are categorized 199

into three risk or protection levels: normal, signature, and 200

dangerous [21].Normal permissions grant access to data and 201

actions that pose a minimal risk to the user’s privacy and the 202

operation of other apps. Signature permissions are granted 203

by the system to apps that declare a signature permission 204

that another app has defined when both apps are signed with 205

the same certificate. Dangerous permissions enable access 206

to sensitive user data or actions that may affect the sys- 207

tem and other apps. In addition to the standard permissions, 208

developers can create their own permissions (i.e., custom per- 209

missions) which allow these apps to share their resources and 210

data with other apps signed with the same certificate [22]. 211

An additional category, outside of the scope of app develop- 212

ers are special permissions. These permissions are related to 213

particular powerful app operations that only the platform and 214

original equipment manufacturers can define [21]. 215

Before Android 6.0 Marshmallow, all the permissions 216

declared in the appmanifestwere granted automatically upon 217

installation. So, if the user did not want to accept all the 218

permissions the app declared, then the installation was not 219

possible. This security paradigm changed in API level 23 220

with the inclusion of run-time permissions [23]. Since then, 221

normal and signature permissions are granted automatically 222

upon installation (i.e., install-time permissions), whereas 223

dangerous permissions are requested for user acceptance dur- 224

ing the app execution via an approval prompt (i.e., run-time 225

permissions) [24]. Android 11 added further enhancements 226

such as more granular permissions, one-time permissions, 227

and the auto-reset of sensitive permissions for unused apps 228

[25]. Recent Android releases have also focused on pri- 229

vacy issues and the update of the permission system [26], 230

as evidenced by the refinement of the permission set and 231

the addition of new permissions, as shown in Fig. 1. For 232

instance, API level 29 introduced ten permissions and depre- 233

cated one, while API level 30 defined eight new permissions 234

and removed one. These enhancements aim to provide more 235

control to the users, transparency, and minimize data usage 236

[20]. 237
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3 Related work238

Android security permissions have been widely used in239

research since the early days of Android OS, becoming the240

most used static feature for Android malware detection [14].241

Although static features are regarded as inherently weak242

against deception mechanisms such as encryption and obfus-243

cation (i.e., especially API calls), Android permissions are244

relatively robust aswithout the required permission, themali-245

cious behavior, obfuscated or not, might not be triggered246

[14]. Furthermore, permissions analysis enables direct detec-247

tion on the device, upon download and without the need248

for app installation, execution [15] nor root privileges [27],249

featuring low computational cost and high efficiency [28].250

Therefore, permissions constitute thefirst barrier to attackers,251

which could be leveraged for highly effective and efficient252

on-device malware detection.253

Permissions have been widely used as input features to254

build Android malware detection solutions since the early255

days of Android OS. In this regard, they have been used256

alone, using all available permissions [27,29–31], selected257

subsets [17,32–34], or patterns and relationships between258

permissions [35–39], but also in combination with other259

static features extracted from the app manifest [18,40–42]260

and the decompiled source code [15,28,43–46]. Besides, so-261

called hybrid approaches have used permissions jointly with262

dynamic features such as system calls [47], run-time API263

calls/events [48,49], and network traffic [50,51].264

However, despite the wide use of security permissions to265

buildML-basedmalware detection systems, no deep analysis266

of the feature evolution has ever been performed nor consid-267

ered, thus neglecting the impact of the time variable on the268

learning models and its long-term evolution.269

Among all the studies using permissions, only Hu et al.270

[46] considered concept drift. This study proposed a method271

to handle concept drift using a static feature set that includes272

permissions, API calls and actions (i.e., 405 features). Even273

though the method reports high accuracy, permissions are274

used in combination with other features, thus their analy-275

sis and impact on the overall performance of the detection276

model are not provided or explored. Besides, the data set used277

combines different data sets belonging to undefined and dis-278

continued time frames (i.e.,Drebin [15] andother unspecified279

sources), assuming the existence of sudden concept drift in280

the data. In this regard, a more gradual concept drift should281

be considered in a more realistic scenario where the threat282

landscape gradually evolves towards new threats based on283

old threats where sudden drifts might be possible but are less284

likely. In contrast, our study encompasses a long period in285

which a significant modification of the permissions set has286

been performed, thus capable of handling sudden and gradual287

drift, and our model only on permissions as input features,288

enabling us to assess and characterize using interpretability289

methods the impact of specific permissions and their evolu- 290

tion on the detection performance. 291

Besides, the vast majority of related research uses old, 292

short, and static snapshots of Android malware historical 293

data to build, validate and test their systems. For instance, 294

Drebin [15] andMalGenome [52], the most used data sets for 295

Android malware research, provide samples restricted just to 296

the 2010–2012 time frame [53]. This fact poses serious con- 297

cerns about the generalization capabilities of the proposed 298

detection systems, built on old and non-representative data, 299

to future and evolved malware. 300

Furthermore, in the studies that use data encompassing 301

wider time frames to buildML-based detection systems (e.g., 302

using two distinct data sets such as Drebin and Contagio 303

[54]), the common practice is to merge the data and split 304

the resulting data set randomly into disjoint sets of arbitrary 305

proportions (i.e., the training and the validation/testing sets) 306

[55]. This typical randomization procedure inmachine learn- 307

ing, when applied to time-series data, introduces temporal 308

bias, which has yielded not representative and overly inflated 309

performances in Android malware detection research, not 310

adjusted to the actual performance [56] due to the lack of 311

historical coherence when data is split disrespecting the his- 312

torical timeline. For proper validation, the testing data must 313

belong to a future or posterior time frame regarding the train- 314

ing data [55,57]. An additional issue is that it is common that 315

malware and benign samples used in the same data set do 316

not belong to the same time frames, leading to an histori- 317

cally impossible configuration [44]. For instance, it is typical 318

that benign data is collected at the time of research, whereas 319

malware belongs to a well-known data set, such as Drebin, 320

collected long before. This configuration generates biased 321

detection systems and inflated performance as the features to 322

describe apps belonging to distinct time frames might be too 323

different (e.g., new permissions available, new requirements 324

on permissions usage, etc.), thus generating an artificial sce- 325

nario that does not reflect the real challenge of recognizing 326

between malware and benign apps belonging to the same 327

time frame. 328

These common practices provide unrealistic scenarios and 329

neglect the impact of time on the input features and, conse- 330

quently, its detrimental effect on the ML models over time 331

(i.e.,concept drift). Therefore, neglecting concept drift pro- 332

vides biased and historically incoherent results, not adjusted 333

to real scenarios [55–57]. 334

Finally, the existing body of research has shown that the 335

combination of permissions with other features may yield 336

better performance than the usage of permissions alone 337

[47,50,51,58], which has relegated permissions to a sec- 338

ondary role, as a complementary feature, mainly used in 339

combination with other relevant features. Even though the 340

combination may yield better detection performance, it does 341

not provide any insights into the evolution of permissions, 342
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their relevancy to the detection performance, or the changes343

in their discriminatory power over time.344

This study focuses solely on the usage of permissions to345

detect Android malware, showing that when concept drift346

is addressed, permissions alone can provide and keep high-347

performance metrics over time. Notwithstanding that the348

combination with other features may yield increased per-349

formance, it is out of the scope of this research. To the best350

of our knowledge, no previous research has considered the351

concept drift issue for permissions, which has been explored352

for other features used in Android malware detection such353

as API calls [59,60] and system calls [61], nor performed a354

characterization of the phenomenon and assessed its impact355

on the detection performance over time.356

4 Methodology357

The following subsections detail the data set used in this358

research and concept drift basics, which enable the under-359

standing of the approach used. After, the methodological360

workflow followed in this study, depicted in Fig. 2, is thor-361

oughly explained.362

4.1 Dataset and features363

The data set used in this research is KronoDroid [53], a364

hybrid-featured data set that provides labeled samples of365

Android benign and malicious apps dating from 2008 to366

2020, which makes it suitable for the analysis of the evo-367

lution of features and concept drift issues. Each sample in368

the data set is described by 489 features (i.e., 289 dynamic369

and 200 static). The dynamic features were collected using370

twodistinctAndroid platforms, an emulator and a real device.371

Thus, the data set is originally split into two overlapping sub-372

datasets according to the source of the dynamic data. The373

data sets overlap in those samples that were able to provide374

dynamic data on both platforms but also contain distinct data375

samples, those acquired in only one of the sources. As in this376

research the interest lies just in the analysis of static features,377

disregarding the dynamic source, both data sets were merged378

to obtain the largest possible data set. The duplicated sam-379

ples, caused by the overlap of the data sets, were removed.380

As a result, the data set used in this work is composed of381

78,804 samples (i.e., 37,020 benign and 41,784 malware).382

Regarding the input features, all the individual permissions-383

related features provided by the data set, the class label, and a384

timestamp were used. Therefore, each sample was described385

using 168 static features. More specifically, the permission-386

related features are composed of 166 categorical attributes,387

which are binary indicators of the presence of the permission388

in the appmanifest (i.e., set as 1 if the permission is requested389

by the app and 0 if it is not). The data set provides permis-390

sions data until API level 30 (i.e., Android 11, released in 391

September 2020). A total of 166 permissions were defined 392

until API level 30 [21]. The timestamp used to locate each 393

app within the Android historical timeline was the last mod- 394

ification timestamp. This timestamp is reported as the most 395

reliable and accurate regarding the historical context from 396

the four alternative timestamps provided by the data set. The 397

last modification timestamp dates the app to the most recent 398

timestamp retrieved from any of the app archive inner files 399

[53]. Lastly, the class label (i.e., malware or benign) was 400

obtained for each sample. 401

4.2 Concept drift 402

Static detection models assume that the statistical properties 403

of the target distribution are relatively fixed, not chang- 404

ing over time. However, the malware threat landscape is 405

dynamic, making the underlying distribution change over 406

time (i.e., Pt (X) �= Pt+1(X)), referred to as covariate shift. 407

When this shift affects the decision boundary of the classi- 408

fier, and consequently, the class estimation (i.e., Pt (Y |X) �= 409

Pt+1(Y |X)), the performance of the model is significantly 410

harmed over time. Besides that, concept drift may also 411

occur if the class estimation changes while Pt (X) remains 412

unchanged [62].According to the speedof the changes, incre- 413

mental drift, gradual drift, sudden drift, and re-ocurring 414

drift have been proposed as concept drift typologies. The 415

appearance of any of these typologies requires the update 416

of the learning model [62]. Therefore, an effective malware 417

detection model should be able to update its knowledge con- 418

sidering the ever-evolving threat landscape, keeping high 419

detection performance in a non-stationary input context. 420

In this regard, to define concept drift for continuous ana- 421

lytics, let us define a new observation as ci = (xi , yi ), where 422

xi = (x1i , x2i , ..., xn
i ) ∈ X is the feature vector and yi ∈ Y 423

is the target label. The incoming observations ci , . . . , ci+k 424

are aggregated into sets of the same size k called chunks. To 425

avoid the integration of extended periods in a single chunk, 426

which may harm the detection of concept drift, temporal 427

restrictions were imposed (i.e., a maximum of three months 428

of data per chunk). In such a case, observation ci is addi- 429

tionally described by a timestamp ti and each chunk is a set 430

P[tmin ,tmax ) = {ci : tmin ≤ ti < tmax }, where tmin, tmax define 431

the temporal borders of the given chunk. 432

Next, let us assume that features from twochunks are given 433

by distributions F and F ′. Feature drift is defined if the null 434

hypothesis H0 that F and F ′ are identical can be rejected 435

[63]. Feature drift is categorized as concept drift if and only 436

if the change in the distribution leads to a change in ŷ estima- 437

tion, which corresponds to a change in class estimation by 438

the model in the described malware detection case. There- 439

fore, concept drift, which relates to a change in the model’s 440

detection performance, is the focus of our analysis. 441
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4.3 Workflow442

Themain objective of this work is to analyze the changes and443

evolution in permissions usage in Android apps and, more444

specifically, in malware (i.e., characterization). The focus445

lies on the impact of time on the detection capabilities of446

permission-based malware detection models (i.e., concept447

drift). Therefore, the optimization of classification quality is448

not a primary objective of this research. Nevertheless, for a449

meaningful analysis, the malware detector used during the450

analytic process must obtain high and preferably stable qual-451

ity. The required stability of detection quality is challenged452

by the concept drift phenomenon observed in malware data453

[46,64], especially for long-term observations. Theworkflow454

performed in this research is provided in Fig. 2 and explained455

in the following subsections.456

4.3.1 Data preprocessing457

The feature vector defined for each app was composed of458

166 permissions binary indicators, a timestamp, and the class459

label. As when some features were not available at the time,460

the vectorswerefilledwith 0 values, thismayhave introduced461

noise in the learning models and provide biased results. To462

explore this issue, models with distinct permission set sizes463

were compared in this work. More specifically, the initial464

feature set from API level 1 (i.e., 74 permissions) and the465

whole feature set from API level 30 (i.e., 166 permissions)466

were evaluated. In the former case, the model was restricted467

to using the features from the initial set during the whole468

analysis period, whereas in the latter case, the model was469

free to select what feature sets provided better performance470

for each specific period.471

However, before any analysis is performed, the feature set472

should be clear of redundant and irrelevant attributes thatmay473

affect the performance of the detection model and distort the474

characterization results. To address these issues, two sequen-475

tial steps were performed. Firstly, sample variance was476

calculated for all features. The featureswith variance equal to477

zerowere removed (i.e., constant or zero-valued) as theywere478

irrelevant to building the discriminatory model. Next, highly479

correlated features were removed. The removal of strongly480

correlated features enabled us to eliminate redundant data as481

well as improve the quality of the data for the characteriza-482

tion step using the permutation importance technique [65].483

To analyze the correlation between individual permissions,484

which are categorical features, Kendall’s rank correlation485

[66] was used and calculated pairwise for all features. Last,486

as depicted in Fig. 2, in the final preprocessing step, data487

samples were divided into n sequential chunks defined by488

timestamps t1, . . . , tn+1 as P[t1,t2), P[t2,t3), . . . , P[tn ,tn+1).489

4.3.2 Concept drift handling detection model 490

After the data preprocessing phase, the resulting data set was 491

suitable to be processed by themalware detectionmodel. The 492

data set was analyzed chunk by chunk, simulating a realistic 493

batch processing model for data streams [67]. Therefore, an 494

algorithm that addresses the concept drift issue for stream 495

data could be used to tackle the Android malware detection 496

concept drift. In our solution, an existing method that uses a 497

pool of classifiers was implemented [68]. More specifically, 498

during the data streamprocessing, the algorithm dynamically 499

selects the best ensemble of classifiers from an existing pool 500

of classifiers to forecast the labels of the samples of the new 501

data chunk. In our implementation, all the classifiers in the 502

pool were random forest models, which yielded high perfor- 503

mance in related studies [47,61,69,70]. Each classifier of the 504

pool of classifiers is trained on a different historical/previous 505

data chunk. This enables the pool to contain varied models 506

and to expand its knowledge with data belonging to differ- 507

ent timewindows. This previous knowledge is used to predict 508

the new data chunk. An updating mechanism is implemented 509

by the algorithm every time a new data chunk is processed, 510

introducing a new classifier trained on the newest chunk 511

and removing the worst classifier (i.e., aging model), which 512

causes the pool to be constantly modified after each chunk. 513

The update mechanism aims to handle and address concept 514

drift in the data. The original algorithm [68] was modified 515

to address Android data particularities as described in [61]. 516

More precisely, based on the implementation proposed by 517

Guerra-Manzanares et al. [61], the following changes were 518

performed: 519

1. The algorithm started with a full pool of classifiers and 520

kept the pool size static during the whole analytic process. 521

This change minimizes the differences in the quality of 522

the detection process in its initial phases. 523

2. The pool of binary classifiers was supported by an 524

anomaly detection model trained only with benign data. 525

This modification improves the recognition of benign 526

software, which was underrepresented in most data 527

chunks and showed more consistent features over time 528

(i.e., less drift in the data). 529

Malware detection can be defined as a binary classification 530

problem, where TP (i.e., true positive) refers to the number 531

of correctly recognized malware among all test instances. 532

TN (i.e., true negative) reflects the number of correctly rec- 533

ognized benign software among all test data. FP (i.e., false 534

positive) provides the number of actual benign samples incor- 535

rectly recognized as malware among all test samples and FN 536

(i.e., false negative) the number of actual malware samples 537

incorrectly identified as benign data by the classifier in the 538

test set. 539
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Fig. 2 Workflow of this study

Based on these concepts, the F1 score is used as a com-540

prehensive metric for malware detection performance on541

imbalanced data sets. F1 score can be formulated as542

F1 = 2T P

2T P + F P + F N
(1)543

In our experimental setup, the F1 score metric was used to544

analyze ŷ estimation performance of the permissions-based545

malware detection model for each chunk separately.546

4.3.3 Data analysis and characterization547

The F1 score gives a global picture of the detection perfor-548

mance of the proposedmodel. However, for a deeper analysis549

of permissions as a malware detection source, it is relevant to550

evaluate the influence of each permission separately on the551

detection process. As the detection model built was based552

on an ensemble of Random Forest classifiers, the built-in553

variable importance estimation [71] could be used for this554

task. In such a case, the importance calculation is tied to the555

optimization functions, which are generally accuracy or F1556

measures. However, for a better understanding of the ana-557

lyzed data, it is more relevant to observe the influence of558

specific permissions on more specialized functions such as559

specificity and recall.560

Specificity or True Negative Rate (TNR) is a measure of561

benign software acceptance (i.e., negative label recognition)562

and is calculated as: 563

T N R = T N

T N + F P
(2) 564

Recall or True Positive Rate (TRP) is a measure of the 565

quality ofmalware detection (i.e., positive label recognition), 566

defined as: 567

T P R = T P

T P + F N
. (3) 568

A preferred approach for analyzing features’ importance 569

using these specializedmetrics is permutation feature impor- 570

tance analysis [72]. Permutation feature importance is a 571

model-agnostic variable importance evaluation technique 572

that is not tied to any particular metric or data set, suitable 573

for analyzing the importance of model features for different 574

quality metrics on the training and testing data sets. In this 575

study, it was used as a tool to analyze the feature importance 576

changes among distinct data chunks. More specifically, the 577

permutation feature importance method evaluates how the 578

random permutation of a feature influences the quality func- 579

tion calculated for the given decision model. For a matrix of 580

feature values X with rows xi , given each of N observations 581

and corresponding response yi , xπ, j
i is a vector achieved by 582

randomly permuting the j th column of X, where π refers to 583

a random permutation. According to [73], the permutation 584

process should be repeated at least 50 times to obtain stable 585

results. Originally, the method is defined for a loss function 586
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L , but it can be easily adapted for the quality function Q with587

range [0, 1] using L(.) = 1−Q(.). Then, the importance V I j588

of the j th feature is calculated as the difference between the589

value of L for pseudo-randomized values and the value of L590

for the original data.591

The proposed analytic tool uses the classification function592

f[tl ,tl+1) induced on data from chunk P[tl ,tl+1), where tl and593

tl+1 define the temporal boundaries of a time period. The594

analysis observations X are taken from the corresponding595

chunk, P[tl ,tl+1). The procedure is summarized by the fol-596

lowing equation:597

V I π
j (P[tl ,tl+1))

= 1

N

N∑

i=1,
xi ∈P[tl ,tl+1)

Q (yi , xi ) − Q
(

yi , f[tl ,tl+1)(x
π, j
i )

)
(4)598

To analyze the importance of individual permissions for599

the recognition tasks, all features with V I π
j (.) > 0 (i.e.,600

positive importance) were retrieved for the analyzed data601

chunk.602

Based on Eq. 4, the importance of features on the train-603

ing set for the generated classifier is retrieved. The analysis604

of the important features for each new classifier’s training605

set enables us to determine the relevant set of features for606

each specific time frame. When performed on consecutive607

data chunks, it allows the observer to analyze the changes in608

permissions’ importance over time.609

The permutation feature importance technique is a global610

interpretability method as it reports the average behav-611

ior or expected value of an ML model. Therefore, global612

interpretability methods are particularly useful to under-613

stand the general mechanisms in the data [74], which,614

in our case, enables us to study concept drift behavior.615

However, this wide-scope analysis may fail to grasp the616

particularities behind individual decisions. In such a case,617

local interpretability methods might provide a better answer.618

Local interpretability methods allow explaining the reason-619

ing behind individual predictions. In our research, for the620

analysis of specific model predictions, Shapley values were621

used. Shapley values enable us to fairly attribute the predic-622

tion output among the relevant features, and it is the only623

local explanation method with a solid theoretical foundation624

[75]. The theoretical background of Shapley values lies in625

coalitional game theory [76]. The method aims to assess the626

contribution or importance of each feature in particular deci-627

sions (i.e., each feature is a player in a cooperative game or628

coalitionwhere the prediction is the payout) [75].As reflected629

in Eq. 5, the Shapley value of a feature (φi ) is its contribution630

to the payout, weighted and summed over all possible feature631

combinations. It is calculated as:632

Table 1 Data preprocessing results

Variance analysis 26 zero-valued

Correlation analysis 18 high-correlated

Final feature set 122 permissions

φi (v)

= 1

| N |
∑

S⊆N {i}

(| N | −1

| S |
)−1

(v(S ∪ {i}) − v(S)) ,
(5) 633

where N is the number of features, S is a subset of these 634

features, i is the vector of feature values of the instance to be 635

explained, and the function v calculates the payout for any 636

subset/combination of features. 637

5 Results 638

The main results of the workflow followed in this research 639

are described in the following subsections. 640

5.1 Data preprocessing 641

After the application of each sequential preprocessing step, 642

the results reported in Table 1 were obtained. 643

From the initial set of 166 individual permissions, variance 644

analysis showed that 26 were constant or null-valued for all 645

data samples, so they were removed from the feature set as 646

they did not provide any relevant information. Furthermore, 647

correlation analysis reported that 18 features were highly 648

correlated with at least another feature (i.e., Kendall’s |τ | > 649

0.80), evidencing redundancy in the data. These 18 features 650

were removed. As a result, the final permissions feature set 651

was composed of 122 permissions. This feature set is further 652

referenced in this work as the extended or full feature set. 653

To test permissions evolution and explore the bias caused 654

by the zero-filled values for the unavailable permissions, a 655

reduced feature set was formed using only the permissions 656

defined for API level 1 that remained available until API 657

level 30. After the preprocessing steps, this reduced feature 658

set was composed of 60 permissions. 659

Therefore, two feature sets were used in this research. The 660

extended or full feature set includes all permissions defined 661

during the whole Android history until API level 30 (i.e., 662

122), and the reduced or initial feature set is composed of 663

the permissions defined inAPI level 1 that remained available 664

until API level 30 (i.e., 60). 665
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5.2 Detectionmodel666

The dynamic model described in Section 4.3.2 was used667

to classify and analyze malware and benign app samples668

described by permissions. The input datawas described using669

both feature sets. The data samples were aggregated for670

each quarter of the 2011-2018 period (i.e., three months data671

chunks). This temporal constraint was found experimentally672

as the optimal for concept drift handling using these data.673

F1 score was calculated for each period using a dynamic674

ensemble selection from a pool of n classifiers as detailed in675

Section 4.3.2. In our experiment, n = 12 provided the best676

results.677

Figure 3 illustrates the changes in the F1 score quality678

measure formalware detection amongperiods. The solid blue679

line shows the F1 score per chunk using the extended feature680

set, whereas the dashed blue line provides the same informa-681

tion for the reduced feature set. The horizontal yellow lines682

provide the average values for both cases.683

As can be observed in Fig. 3, the performance of the684

proposed method to deal with Android data concept drift685

is relatively stable. Except for some periods (i.e., 5 chunks686

out of 28), the obtained results exceed 0.91 F1 score in all687

periods. The results obtained for the extended feature set and688

the reduced set are very similar, with a visible advantage of689

the reduced vector in the first period and a slight improve-690

ment of the full vector in the last periods. Furthermore, F1691

score mean values are almost identical (i.e., ∼ 0.93).692

To formally compare both feature sets of input data,693

the non-parametric Kolmogorov–Smirnov test was used to694

analyze the equality of both probability distributions (i.e.,695

two-sample K–S test). The results of the statistical analysis,696

depicted in Fig. 15 and further described in Appendix A,697

confirmed that there is no significant difference in detection698

performance between the compared feature sets.699

A deeper inspection of Fig. 3 enables us to observe that,700

for both feature vectors, there are three visible quality drops701

in performance: in the initial period (i.e., 2011-Q3), 2015-Q4702

and 2016-Q3. The nature of these drops is deeply analyzed703

and discussed in Section 5.3. In any case, despite these inci-704

dental dips, the system provided an average 0.93 F1 score705

in the analyzed period, which spans seven years of historical706

Android data.707

In conclusion, based on the experimental results and the708

statistical analysis performed, depicted in Figs. 3 and 15,709

respectively, the discriminatory power of the initial feature710

set (i.e., 60 permissions) is comparable to the extended fea-711

ture set (i.e., 122 permissions). This fact allows concluding712

that the set of initial permissions has a more significant role713

in malware detection than the later added permissions in the714

analyzed period. More features did not provide a better per-715

formance, emphasizing the goodness of a small subset of716

features to provide consistent and high malware detection717

performance over time, even in the presence of evolving 718

data. Therefore, when concept drift is addressed, a high- 719

performance malware detection solution can be built using 720

just a small number of permissions as input features with- 721

out needing to constantly update the feature set when new 722

permissions are defined. Even though the importance of fea- 723

tures changed over time (see Sect. 5.3), the initial feature set 724

was found of critical relevancy to generate a long-lasting and 725

robust permissions-based Android malware detection sys- 726

tem. 727

5.3 Data analysis and characterization 728

The following subsections provide a characterization of the 729

concept drift observed using interpretation methods. More 730

precisely, Section 5.3.1. analyzes the evolution of the impor- 731

tance of individual permissions over time for recall and 732

specificity tasks. Section 5.3.2. matches the class-based per- 733

formance with the characterization analysis, and Section 734

5.3.3. performs a thorough analysis of the malware families’ 735

distribution over time and its impact on the learning models 736

and concept drift. 737

5.3.1 Permissions’ importance evolution 738

This subsection presents a thorough analysis of permissions’ 739

importance evolution over time. Features’ importance was 740

calculated using specificity and recall as quality (Q) func- 741

tions. In this regard, importance calculated for specificity 742

informs about which permissions are essential to recognize 743

benign/legitimate applications. In the case of recall, it reports 744

permissions important for the malware detection task. Per- 745

mutation feature importance was calculated for the full and 746

reduced feature sets separately for each quarter. For the 747

sake of the stability of the results, the permutation feature 748

importance procedure was performed four times with 2000 749

permutations per iteration. 750

Figures 4 and 6 provide the set of important features 751

and their relative importance values calculated for the full 752

feature set using specificity and recall, respectively. More 753

specifically, each bar corresponds to a specific period (i.e., 754

year quarter) where the color refers to a specific feature, 755

as indicated by the graph legend. The bar range goes 756

from 0 to 1, meaning that it contains the total feature 757

importance for the period. The colored areas provide the 758

relative feature importance of each permission regarding 759

the total feature importance for that period. The vertical 760

length of the areas is equated to the percentage or pro- 761

portion of the total importance provided by each specific 762

feature. For instance, in 2016-Q1 in Fig. 4, five colored 763

areas are observed which relate to five different permis- 764

sions found important, in varying proportions, to recognize 765

benign apps in that specific period. Namely, SEND_SMS, 766
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Fig. 3 Evolution of the detection performance using different feature sets

INTERNET, READ_PHONE_STATS, GET_TASKS and767

MOUNT_UNMOUNT_FILESYSTEMSpermissions are rep-768

resented by the purple, light green, dark blue, dark green and769

light blue areas, respectively. The grey regions refer to the770

importance related to features not present in the reduced fea-771

ture set as, for the sake of interpretability and comparison772

between feature sets performance, in both Fig. 4 and 6, only773

the features belonging to the reduced feature set are depicted774

with colors and the ones belonging just to the extended fea-775

ture set are reported in grey.776

The white line provides the value of the maximum777

importance found for a feature in each specific period. For778

instance, in 2016-Q1 in Fig. 4, the most important feature,779

SEND_SMS, reports average feature importance of 0.35 (i.e.,780

the value of the white line for that bar), meaning that when781

this feature was randomly shuffled, the specificity metric782

dropped, on average, 0.35 or 35%. Therefore, combining the783

information of the colored bars (i.e., relative importance)784

with the white line values (i.e., maximum absolute impor-785

tance) provides a better depiction of the important features786

and their impact on the specific recognition tasks.787

Figures 5 and 7 provide the same illustration of changes788

in feature importance for the reduced permission set. As can789

be noticed, no grey areas are found on these graphs. For790

the sake of comparison and interpretation of the results, in791

Figs. 4, 6, 5 and 7 characterization graphs, only the same792

set of permissions is depicted and with the same colors (i.e.,793

only features belonging to the reduced set). Overall, as can794

be observed, the contribution of the later added permissions795

to the total importance (i.e., grey areas in Figs. 4 and 6) is less796

significant than the reduced permissions set. This observation797

aligns with the results reported in Figs. 3 and 15.798

In the case of the extended feature set, 85 out of 122 fea-799

tures obtained average positive importance in at least one800

quarter, whereas for the reduced feature set, this value is 48801

out of 60. Of these 48 features, 44 are present in both fea- 802

ture sets. The larger number of features important for the 803

extended set causes a reduction of the importance value of 804

particular features, as evidenced by the grey areas found in 805

the extended set graphs (i.e., Figs. 4 and 6). However, even 806

though the presence of these features does not allow the bars 807

to be completely color-filled (i.e., except for 2015-Q3 in Fig. 808

6), the importance of the initial set of features is remarkably 809

more significant in all periods, as they are responsible for 810

more than 85% of the total importance of the whole time 811

frame analyzed (i.e., 2011–2018). 812

For the specificity task, the distribution of the essential 813

features is similar for both feature vectors, as depicted in 814

Figs. 4 and 5. The most important permission in a sin- 815

gle quarter is MOUNT_UNMOUNT_FILESYSTEMS (i.e., 816

2017-Q2). The four permissions with the largest over- 817

all importance (i.e., SEND_SMS, READ_PHONE_STATE, 818

MOUNT_UNMOUNT_FILESYSTEMS, and INTERNET) 819

are the same for both feature vectors. These results might be 820

expected as they are permissions related to common mobile 821

phone functions such as communications, phone calls, and 822

access operations to storage file systems. The contribution 823

to the importance of the subset of permissions only belong- 824

ing to the extended permissions set is visibly lower than the 825

importance of the permissions included in the reduced fea- 826

ture set. Even though the impact of the extended features has 827

fluctuated over time, the common subset of features explains 828

most of the feature importance in the whole analyzed time 829

frame, thus being critical for effective benign software detec- 830

tion over time. Furthermore, the absolute importance values 831

(i.e., white line) reflect that the importance of themost impor- 832

tant feature per quarter is extremely high for this recognition 833

task, averaging 26.9% for the extended feature set and 33.1% 834

for the reduced feature set. 835
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Fig. 4 Importance for specificity, calculated for the extended feature set

Fig. 5 Importance for specificity, calculated for the reduced feature set
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Figure 5 clearly illustrates the existence of concept drift836

in benign data. As can be observed, READ_PHONE_STATE837

permission (i.e., dark blue), which was very relevant in the838

period from 2012-Q2 to 2016-Q1, lost its significant role in839

the period encompassing from 2016-Q2 to 2017-Q3, being840

outperformed by MOUNT_UNMOUNT_FILESYSTEMS841

(i.e., light blue) in that specific time frame. More pre-842

cisely, MOUNT_UNMOUNT_FILESYSTEMS emerged as843

the most important feature for that period and kept its signifi-844

cant role after it. Furthermore, for a fewquarters, INTERNET845

permission (i.e., light green) surged as a locally important846

feature. Beyond 2017-Q3, READ_PHONE_STATE impor-847

tance role surged back again after the weakening period.848

These sudden changes in the importance of featuresmay have849

contributed to the sharp decrease in performance observed in850

2016-Q3, as shown in Fig. 3). Besides, the sudden change is851

correlated with a decrease in the maximum absolute impor-852

tance (i.e., a major dip in the white line), coincidental with853

the local dominance of the INTERNET permission.854

For the malware recognition task, depicted in Figs. 6855

and 7 for the extended and reduced feature sets, respec-856

tively, the situation is significantly different. In this case, the857

importance of features changed dramatically over time, sug-858

gesting a more complex and abrupt drift in the data. More859

specifically, READ_PHONE_STATE and SEND_SMSwere860

the most important features in the 2012-2013 time frame.861

After it, SEND_SMS rarely became significant, whereas862

READ_PHONE_STATE kept its significant role for almost863

all the analyzed time frame. In the period from 2014-Q1864

to 2014-Q3, a sudden change in the important permissions865

is observed, especially in 2014-Q2 when permissions not866

included in the reduced set emerged as critically important867

(i.e., 50% of total importance). A fact that was repeated in868

2017-Q1. From 2014-Q4, READ_PHONE_STATE surged869

back as the most important feature, showing decay over time870

andfinally being ofminimal importance from2017. Thus, the871

opposite situation to the specificity case is observed. Lastly,872

from 2017-Q2, a similar pattern is spotted on both recall873

graphs, with a larger number of features sharing the status of874

important features and similar relative importance values.875

A remarkable fact in the recall case is that, as opposed876

to specificity, the absolute magnitude of the most important877

feature per quarter is small, never surpassing 0.25 or 25%,878

and with an average value of around 4.8% in both feature879

sets.880

The observed concept drift for recall when the reduced881

feature set is used is similar to the extended feature set case882

but more evident in the last periods, as shown in Fig. 7.883

More accurately, until 2017-Q1, READ_PHONE_STATE884

permission was consistently the most critical feature. After885

that period, this feature was marginalized, emerging as rela-886

tively important in just two periods, in quarters dominated by887

SYSTEM_ALERT_WINDOW and RECEIVE_BOOT_888

COMPLETED permissions, among others. Despite that, the 889

overall trends and most important permissions are consistent 890

between both feature sets but show different overall impor- 891

tance orderings (i.e., READ_PHONE_STATE, SEND_SMS, 892

WAKE_LOCK, ACCESS_WIFI_STATE, RECEIVE_ 893

BOOT_COMPLETEDandACCESS_NETWORK_STATE). 894

However, the influence of the extended features for recall 895

appears to be much more significant in specific periods than 896

in the specificity case. For instance, in 2014-Q2 and2017-Q1, 897

the importance is almost evenly split between the reduced set 898

features and the extended set features. A fact not observed in 899

the specificity case, with smaller grey areas in Fig. 4 com- 900

pared to Fig. 6. 901

Overall, when both detection tasks are compared, more 902

features appear to be important for the malware recognition 903

task, with the most important feature per quarter reporting 904

lower absolute importance for the recall task. Therefore, the 905

complexity of the recall task is deemed as more challenging 906

and varied, less stable over time, and more susceptible to 907

sudden concept drift. Theobserved changes in the last periods 908

demonstrate that malware is more unpredictable than benign 909

software in permissions usage. 910

To further explore these differences in important features, 911

the results obtained for specificity and recall were compared 912

for each quarter using Wilcoxon signed-rank test [77]. The 913

statistical comparison, detailed in Appendix B, confirmed 914

that the important features for the specificity task are not 915

equally relevant for the recall task. 916

For the sake of completeness of the characterization anal- 917

ysis, Figs. 8 and 9 unveil the important features behind the 918

grey areas in Figs. 4 and 6, respectively. More specifically, 919

Fig. 8 provides the features belonging to the extended feature 920

set that were found relevant in the analyzed time frame for the 921

specificity task, while Fig. 9 provides the same information 922

for the recall task. In these graphs, the features belonging to 923

the reduced feature set are hidden behind the grey areas. Even 924

though the importance of these features has been demon- 925

strated to be significantly lower than the ones included in the 926

reduced feature set, their analysis enables us to fully charac- 927

terize the evolution of the importance of permissions for the 928

whole analyzed time frame, from 2011 until 2018. 929

In the specificity case, depicted in Fig. 8, only 21 features 930

added in later releases of Android OS were found relevant at 931

some specific period in the analyzed time frame. As can be 932

noted inAppendixC, the available permission setwas refined 933

in almost every Android release, extending the available 934

permissions set to 157 permissions at the time of writ- 935

ing. More specifically, WRITE_EXTERNAL_STORAGE, 936

BIND_DEVICE_ADMIN, and READ_EXTERNAL_ 937

STORAGE were identified as the most relevant features for 938

specificity from the later additions to the feature set. Besides, 939

Fig. 8 evidences locally emerging concept drift as some spe- 940
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Fig. 6 Importance for recall, calculated for the extended feature set

Fig. 7 Importance for recall, calculated for the reduced feature set
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Fig. 8 Importance for specificity, showing only the extended features

cific features are relevant in some quarters but not globally941

(e.g., BIND_DEVICE_ADMIN from 2015-Q4 to 2016-Q2).942

For the recall task, 27 features belonging to the extended943

feature setwere found important at somepoint in the analyzed944

period, as provided in Fig. 9. More interestingly, in some945

cases, such as 2014-Q2 and 2017-Q1, an extended feature946

became the most important for the specific quarter. This fact947

was not observed for specificity and demonstrates the greater948

complexity of the malware recognition task, which is charac-949

terized bymore sudden and, consequently, complex to handle950

concept drifts. In addition to the relevant features found for951

the specificity case, KILL_BACKGROUND_PROCESSES952

and BIND_WALLPAPER were of remarkable importance953

for themalware recognition task in specific quarters. Besides,954

WRITE_EXTERNAL_STORAGE showed an even more955

significant impact on recall, present in almost all quarters956

with distinctive relative importance.957

Lastly, when Figs. 8 and 9 are compared, the observed958

concept drifts provide an interesting observation. For some959

prominent permissions, the features were found relevant for960

a task during a specific time frame, and then, after los-961

ing their importance for that task, they became relevant962

for the other task. For instance, BIND_DEVICE_ADMIN963

was important firstly for specificity (i.e., 2015-Q4 to 2016-964

Q2), and immediately after its importance vanished for965

this task, it emerged as an important feature for recall 966

(i.e., 2016-Q3 to 2017-Q1). The opposite is observed for 967

KILL_BACKGROUND_PROCESSES, becoming first rele- 968

vant for recall and later for specificity. 969

In summary, the characterization analysis performed evi- 970

denced the critical importance of the initial set of permissions 971

to build an effective recognition system, the lower relevancy 972

for such a purpose of the later added permissions, and that 973

even though concept drift issues were found in benign and 974

malware data, the former shows relative stabilitywith gradual 975

changes being relatively easy to address, whereas the lat- 976

ter is characterized by more sudden, complex concept drifts 977

dominated by specific features, making it harder to handle. 978

Besides, the set and degree of importance of features differ 979

for both tasks. Therefore, the analysis performed in this sec- 980

tion evidences the dynamism and constantly evolving nature 981

of the malware threat landscape and emphasizes the critical 982

requirement to address concept drift for any solution aim- 983

ing to provide long-lasting effective malware detection and 984

adapt, updating its knowledge in an ever-evolving threat land- 985

scape. This constantly changing nature has been overlooked 986

by all the proposed detection solutions using permissions in 987

the related literature. 988
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Fig. 9 Importance for recall, showing only the extended features

5.3.2 Class-based recognition performance989

The F1 score metric, reported in Fig. 3, is a relevant perfor-990

mancemetric to assess the effectiveness ofmalware detection991

solutions. However, class-based recognition comes in handy992

to assess the effectiveness of the detection solution to detect993

either of the classes and evaluate the degree of precision in994

the forecast of benign data.995

The effectiveness of themodel to detect each of the classes996

is provided in Fig. 10. This graph compares recall, f1 score,997

and specificity metrics for the reduced and extended feature998

sets.999

More specifically, the red lines provide quarterly recall1000

information for the full (i.e., red solid line) and reduced1001

feature sets (i.e., red dashed line). The horizontal red lines1002

provide the average recall performance for the whole time1003

frame for both feature sets. Similarly, the green and light1004

grey lines provide the same information for specificity and1005

F1 score, respectively.1006

As can be noticed in Fig. 10, the model provided consis-1007

tently high specificity quality (i.e., over 0.8) using either of1008

the feature sets. This fact emphasizes the effectiveness of the1009

permission-basedmodel to recognize benign apps effectively1010

over time and is consistent with the smooth concept drift that 1011

characterized these data. 1012

However, the situation is notably different for the recall 1013

metric. Even though the average recall performance of the 1014

system shows an accuracy over 0.90, even reaching 0.99 in 1015

8 periods, the malware recognition performance dips in two 1016

specific time frames, as evidenced by the F1 score and recall 1017

performance metrics in Fig. 10. The system failed to identify 1018

newmalware samples effectively in those specific chunks but 1019

kept high benign software recognition performance. Figure 1020

10 shows that the reduced feature set is more suitable for 1021

long-term accurate malware detection than the full feature 1022

set, as the average line for the full feature set is below the 1023

average line for the reduced feature set. More precisely, the 1024

average recall value for the reduced feature set is 91.7%, 1025

whereas for the extended feature set is 89.9%. Besides, the 1026

third dip was less severe when the reduced feature set was 1027

used. Therefore, formalware detection purposes, the reduced 1028

feature set is preferred. 1029

The opposite situation happens in the case of benign soft- 1030

ware recognition, where the extended feature set provides 1031

better average performance than the reduced feature set. 1032

More specifically, an average of 91% specificity is obtained 1033

with the extended set, whereas for the reduced feature set, 1034
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Fig. 10 Comparison of model’s performance metrics using both feature sets

the average value stands at 89.5%. This observation is con-1035

sistent with the findings in [53], where benign data samples1036

were found to use a smaller but more varied set of permis-1037

sions than malware apps. Consequently, the extended feature1038

set, which includesmore permissions, provides better overall1039

performance for this task.1040

Despite the overall high performance of the detection sys-1041

tem on both tasks, the system provided diminished malware1042

detection performance, with different degrees of severity, at1043

three specific time frames, namely, 2011-Q3 (initial period),1044

2015-Q4, and 2016-Q3. The cause and related insights1045

behind these exceptional cases are described in the following1046

paragraphs.1047

The first dip happens in the initial period, 2011-Q3. Even1048

though this should not be considered a dip in performance, it1049

is worth analyzing its cause. In the initialization phase of the1050

system, where the model has access to a limited amount of1051

data, the performance of the system strictly depends on the1052

generalization capabilities of the initial data chunk regarding1053

the following chunks/quarters. Therefore, the initial perfor-1054

mance directly relates to the quality of the data in the initial1055

chunk and not to the learning capabilities of the system,1056

as there is no previous reference of detection performance.1057

In our case, the initial chunk was split into n ordered data1058

chunks, where n refers to the number of classifiers in the1059

pool. The system was initialized in this initial quarter, build-1060

ing a distinctmodelwith each data chunk and incorporating it1061

into the pool. As a result, the low initial performance is likely1062

caused by an insufficient variety of initial data to capture the1063

phenomenon accurately. In this regard, the initial chunk was1064

significantly dominated by benign apps (i.e., 97.25%), thus1065

limiting the learning capabilities for an effective malware1066

detection performance. The specificity performance tops in1067

this initial quarter. However, even in this challenging learning1068

situation, where the proportion of malware was very small1069

(i.e., 3.75%), the system provided acceptable performance 1070

when the reduced feature set was used (i.e., 0.77 F1 score). 1071

The malware detection performance increased in the subse- 1072

quent quarters, demonstrating the capabilities of the model 1073

to learn and adapt over time, even when a distinct combi- 1074

nation of features emerged as important in close quarters 1075

(e.g., 2012-Q2). In the early quarters, the reduced set of per- 1076

missions showed prominent importance, as evidenced by the 1077

high dependency of the extended model on the reduced set of 1078

permissions in the first 11 quarters, with importance of over 1079

80% in all of them, as shown in Fig. 6. 1080

The second and third performance drops correspond with 1081

actual concept drift. 1082

The second performance drop, which is less severe than 1083

the third, is located in the fourth quarter of 2015. At first 1084

glance, the feature importance pattern looks similar to the 1085

previous data chunks. However, the distribution of 2015-Q4 1086

changes significantly from the previous four chunks, with 1087

more features sharing the important status and a significant 1088

decrease in the domination of READ_PHONE_STATE, as 1089

can be observed in Figs. 6 and 7. In addition, the absolute 1090

importance value reaches a local minimum in that quarter, 1091

which emphasizes the fact that more features are important 1092

for themodel, and none of them dominates significantly. This 1093

also includes the extended features (i.e., Fig. 9).Anadditional 1094

contributing factor might have been the special characteris- 1095

tics of the previous chunk, which shows a radically different 1096

importance distribution, dominated by a small number of 1097

features from the reduced feature set and no extended fea- 1098

ture showing importance. Thus, all these changes in feature 1099

importance distribution evidence a light drift in this quarter’s 1100

data concerning previous malware data, which can be seen as 1101

promoting factors behind this moderated performance dip. 1102

This malware data shift is coincidental with the speci- 1103

ficity score reaching its maximum value and being affected 1104
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by a decrease in the importance of previously impor-1105

tant features, as shown in Fig. 4, and the outbreak of1106

BIND_DEVICE_ADMIN as an important feature. This situ-1107

ation, where the model had to learn about significant changes1108

in benign software, might have also impacted the recall per-1109

formance at the expense of boosting specificity. Despite all1110

these learning challenges, the F1 score of the model showed1111

an acceptable performance (i.e., over 0.80), improving in the1112

subsequent chunks.1113

The third drop is located in the third quarter of 2016.1114

In this quarter, recall dips dramatically, especially for the1115

extended feature set. At first sight, this period shows remark-1116

ably different characteristics from the previous ones. Firstly,1117

it shows a significantly different feature distribution. In this1118

period, 35 features were found important for the extended1119

feature set (i.e., 16 belonging to the reduced set), whereas,1120

in the previous quarters, fewer than 20 features were found1121

important, on average. This relates to a change in data1122

complexity, as the model had to learn and rely on more1123

features for proper detection. Secondly, the dominant fea-1124

ture in the previous chunks, READ_PHONE_STATE, was1125

relegated to a marginal role, and two features emerged1126

as dominant features, ACCESS_NETWORK_STATE and1127

ACCESS_WIFI_STATE. Besides, an increase in1128

READ_EXTERNAL_STORAGE,belonging to the extended1129

feature set, was also observed. The emergence of new1130

important features correlated with an increase in absolute1131

importance value, reaching a local maximum, as depicted by1132

the overlay line. Thirdly, BIND_DEVICE_ADMIN dimin-1133

ished its importance significantly for specificity and emerged1134

as important for recall for the first time, as shown in Fig. 9.1135

Lastly, the sudden concept drift in recall is combined with1136

a significant drift in specificity as new features irrupt as1137

relevant with remarkable importance values in the reduced1138

feature set (i.e., INTERNET and MOUNT_UNMOUNT_1139

FILESYSTEMS) and the extended feature set (i.e.,1140

READ_EXTERNAL_STORAGE), as shown in Figs. 4 and1141

8, respectively.1142

In this case, for both recall and specificity, the changes1143

were too sudden, unexpected, and distinct from previous data1144

patterns for the classification pool to be able to deal with the1145

new data characteristics properly. However, after this sud-1146

den and severe decrease in the recall performance, where1147

the system still kept acceptable recognition capabilities for1148

benign software, the pool adapted and learned from the new1149

data, improving and recovering past performance levels in1150

the subsequent chunks. No significant dip in performance1151

was observed again.1152

In summary, the analysis performed in this subsection1153

enabled us to correlate the quarterly characterization per-1154

formed in the previous subsection with class-based perfor-1155

mance results and find the rationale behind the decrease1156

in performance in some specific quarters. The analysis evi-1157

denced that concept drift handling of benign data is an easier 1158

task due to the smoother feature variability in these data pro- 1159

voking agradual concept drift and that suddendrifts in feature 1160

importance observed for malware data correlate with perfor- 1161

mance dips. The more dramatic and unexpected the changes, 1162

the more severe the decrease in performance observed. This 1163

fact is augmented when the extended feature set is used. The 1164

reduced feature set shows improved performance and less 1165

severe dips for malware data. Regarding specificity, even 1166

though both feature sets work well, the more varied usage 1167

of features by benign applications makes the extended fea- 1168

ture set occasionally outperform the reduced feature set. 1169

5.3.3 Malware family evolution analysis 1170

This subsection aims to explore the third dip in detail, seeking 1171

the etiology of the unprecedented complexity observed in 1172

this quarter and the significant decrease in performance that 1173

occurred. 1174

Android malware is constantly evolving, and this is 1175

reflected in the prevalence of malware families over time. 1176

Figure 11 shows the distribution of the top 10 malware fami- 1177

lies per quarter in the time frame from 2011-Q3 to 2018-Q2. 1178

The graph shows the prevalence of 54 malware families over 1179

time, indicated using specific colors for each one. Besides, 1180

the graph reports the number of malware families per period 1181

(i.e., white stars in the middle of each bar, whose values are 1182

related to the right vertical axis). The F1 performance of the 1183

detectionmodel is providedwith a white dashed overlay line. 1184

As can be noticed, the major dip happens in a quarter 1185

dominated by the Slocker malware family, the first and most 1186

relevant Android ransomware family (i.e., 68% of the sam- 1187

ples in 2016-Q3). This fact suggests that the dip might have 1188

been directly caused by diminished ransomware detection 1189

capabilities. However, it is worth noticing that ransomware 1190

was also dominant in 2015-Q3 (i.e., 53%of the samples), and 1191

the detection model provided over 98% F1 score and higher 1192

recall, as shown in Fig. 10. 1193

To better explore the phenomenon, one-class anomaly 1194

detection models were built for the most prevalent fami- 1195

lies. Instead of using the label as the concept of class to 1196

build the one-class anomaly models, the malware family 1197

was leveraged as the class construct. The main idea behind 1198

these one-class or, in our case, one-family anomaly models 1199

is as follows. If an effective one-class anomaly detector for 1200

a specific family can be built in a specific quarter (i.e., high 1201

performance on the training data), when tested with samples 1202

of the same malware family in subsequent chunks, it should 1203

be able to detect them properly, reporting high accuracy. As 1204

a result, if the family samples change their character (i.e., 1205

malware family evolution), the anomaly model would reflect 1206

it as a performance decrease. Otherwise, if malware does not 1207

change significantly, high accuracy is expected. 1208
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Fig. 11 Distribution of malware families per period

Local Outlier Factor (LOF) algorithm was used to build1209

the one-family anomaly detection models. LOF allows1210

detecting dissimilar data samples using local density devia-1211

tion of data points with respect to their neighbors [78]. Figure1212

12 provides one-family anomaly models for 12 predominant1213

families in the time frame ranging from2011-Q3 to 2018-Q2.1214

The initial models for each family were induced in different1215

quarters when themalware family produced an outbreak, and1216

they were tested with subsequent chunks until the malware1217

family’s presence vanished.1218

Figure 12 provides relevant insights about malware fami-1219

lies’ evolution, which are directly related to the performance1220

dips and concept drift observed. Firstly, most malware fam-1221

ilies showed similar or the same character over time. This1222

is especially evident in the first half of the analyzed time1223

frame, where almost all malware families showed the same1224

features over time, as evidenced by the high accuracy values1225

provided by each initial anomaly model tested with the sub-1226

sequent quarters. It implies thatmostmalware families do not1227

evolve much regarding permissions over time, thus making1228

these features powerful discriminators. Secondly, and more1229

interestingly, the Slocker family did not follow that pattern.1230

The initial model built for the Slocker family dips signifi- 1231

cantly in 2016-Q3, showing a dramatic and sudden change 1232

in characteristics concerning the initial model samples. The 1233

experimental findings are confirmed by [79], which reported 1234

that in the second half of 2016, over thrice Slocker variants 1235

were detected in comparison with the same period in 2015, 1236

and by [80], which reported about a recursive ransomware 1237

outbreak characterized by evolution into a more sophisti- 1238

cated and diverse malware family. This increase in variety 1239

and sophistication was already suggested by the more com- 1240

plex and diverse quarter characterization depicted in Fig. 7. 1241

Additional evidence of the diversification of the Slocker 1242

ransomware family is provided in Fig. 13. Figure 13a 1243

provides individual predictions’ explanations for samples 1244

belonging to theSlocker family in 2015-Q3,whereas Fig. 13b 1245

provides the same information for Slocker samples belong- 1246

ing to 2016-Q3. The comparison between the 2015-Q3 and 1247

2016-Q3 samples is significant due to their similarity with 1248

regards to the large dominance of this family in these quar- 1249

ters and the fact that they yielded notably distinct detection 1250

performance. Shapley values are leveraged in these graphs 1251

to explain the reasoning behind individual predictions by the 1252
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Fig. 12 Performance of one-family anomaly detection models

Fig. 13 Slocker family 2015-Q3 and 2016-Q3 predictions’ decision paths

123

SPI Journal: 11416 MS: 0432 TYPESET DISK LE CP Disp.:2022/8/22 Pages: 32 Layout: Large



R
ev
is
ed

Pr
oo
f

A. Guerra-Manzanares et al.

model. The graphs should be interpreted as follows. The ini-1253

tial probability of a sample belonging to the malware class is1254

0.5. As the data set is balanced, it reflects the expected value.1255

On the left vertical axis, and from bottom to top, the features1256

are ordered in increasing importance for the final decision1257

made by the classifier, specified as prediction probability on1258

the top part of the graph. The range, from 0 to 1, refers to the1259

malware class probability. The lines or decision paths start-1260

ing from the bottom, and reaching a prediction probability1261

in the top part, give a notion of the impact of the features to1262

classify each sample regarding the final probability. As all1263

the data samples used to construct these graphs were Slocker1264

samples, the expected classification result was over 0.5 in all1265

cases (i.e., the model identified it as malware). The color of1266

the line is based on the final prediction, highlighting the paths1267

leading to the malware prediction (i.e., red) or the no mal-1268

ware prediction (i.e., blue). The more intense the line color,1269

the larger the number of samples that followed that decision1270

path. Both graphs use the extended feature set models as1271

they enable us to fully understand the differences between1272

the important features in each case.1273

As can be seen in Fig. 13a, all ransomware samples were1274

correctly classified by the model, and the explanations are1275

similar for all samples, with just six decision paths explain-1276

ing all of them. Therefore, the ransomware samples in this1277

quarter show similar characteristics, and consequently, sim-1278

ilar features are used to classify them. On the contrary, Fig.1279

13b shows numerous paths used to classify the ransomware1280

samples, with varying features importance, and many mis-1281

classified samples reach the nomalware outcome. Therefore,1282

Slocker samples from2015-Q3 are significantly distinct from1283

2016-Q3 samples. The samples from 2016-Q3 are more var-1284

ied, showing many different characters, and pose a more1285

complex threat than the initial Slocker samples. In this regard,1286

the differences in important feature sets on the explanations1287

provide useful insights into the changes in behavior and1288

main characteristics of these samples. For instance, the most1289

important permission to discriminate 2016-Q3 ransomware1290

was READ_EXTERNAL_STORAGE, which provides read1291

access to files outside the app-specific directory and the1292

media store (i.e., probably to access sensitive information1293

and send it to the C&C server), whereas, in 2015-Q3, the1294

ransomware samplesweremore concerned about the running1295

tasks and phone general information. These plots evidence1296

the significant change in the Slocker family, disguised in1297

many forms to avoid detection [80], and, consequently, the1298

added complexity for effective discrimination in the 2016-Q31299

quarter.1300

Lastly, Fig. 12 also provides relevant insights about the1301

reasons behind the second performance dip, located in 2015-1302

Q4. As can be observed, the quarterly malware distribution1303

graph, depicted in Fig. 11, shows a significant increase and1304

domination of the FakeApp family (i.e., 29.73%) in this1305

period. At the same time, the related one-family anomaly 1306

detectionmodel for that family shows that almost all samples 1307

for that quarter were detected as anomalies, thus indicating 1308

an extreme change in this malware family. 1309

Similar to the ransomware case, Fig. 14 shows the deci- 1310

sion paths for the FakeApp samples belonging to 2015-Q3 1311

and 2015-Q4. More precisely, Fig. 14a provides explana- 1312

tions for FakeApp samples belonging to 2015-Q3, whereas 1313

Fig. 14b provides the same information for theFakeApp sam- 1314

ples from 2016-Q4. As can be observed, a similar but more 1315

extreme outcome than in the ransomware case is depicted 1316

in Fig. 14, where the majority of data samples belonging to 1317

2015-Q4 were misclassified. However, they showed consis- 1318

tent characteristics, and therefore only a few decision paths 1319

are observed. 1320

The malware family analysis performed in this subsection 1321

enabled us to compare the performance dips and the changes 1322

in the malware threat landscape. It has been shown that mal- 1323

ware family evolution is behind the performance dips and that 1324

sudden outbreaks and evolution of specific malware families 1325

explain the results observed in previous sections. 1326

6 Discussion 1327

The present study focused on the analysis of permissions 1328

evolution over time and its significant impact on malware 1329

classifiers built using these data. The proposed method, built 1330

exclusively using permissions and an ensemble of classifiers 1331

selected from a pool, allowed it to learn and adapt to concept 1332

drift, providing high performance over an extended period. 1333

Despite the decrease in performance observed in 2015-Q4 1334

and 2016-Q3, an average F1 score of 0.93 was achieved in 1335

the 2011-Q3 to 2018-Q2 time frame. This consistent high- 1336

performance emphasizes the effectiveness of the proposed 1337

solution to deal with Android malware concept drift using 1338

permissions as sample descriptors. No prior solution using 1339

just permissions has addressed the concept drift issue. There- 1340

fore, this study, which directly tackles this issue, constitutes 1341

a novelty in the field with no comparative reference. The 1342

studies in the literature that used permissions before, achiev- 1343

ing high-performance metrics, were built and tested using 1344

small and outdated snapshots of data from Android his- 1345

tory. Only [17] included long-term data (i.e., 2010-2016) 1346

achieving over 0.90 F1 score. However, the usage of random 1347

selection to generate the training/testing sets, thus neglecting 1348

concept drift, poses severe concerns about the generaliza- 1349

tion capabilities of this detection system. Our study shows 1350

that if the concept drift issue is addressed, permissions 1351

alone can provide long-term effective malware discrimina- 1352

tory capabilities. This allows leveraging their security-related 1353

implications to enhance and understand the detection sys- 1354

tems. Notwithstanding that, the usage of permissions with 1355
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Fig. 14 FakeApp family 2015-Q3 and 2015-Q4 predictions’ decision paths

additional dynamic and static features may enhance the1356

detection capabilities of the proposed system, especially in1357

those time frames where permissions alone may struggle to1358

detect effectively under sudden concept drift (e.g., 2016-Q3).1359

This constitutes part of our future work.1360

The experimentation performed in this research has shown1361

that the initial set of permissions, released with the first1362

version of Android OS, is currently the most relevant fea-1363

ture set to discriminate malware apps. The later additions1364

to the permissions set, while showing relatively high local1365

importance in specific periods, do not show the powerful and1366

long-term consistent discriminatory capabilities provided by1367

the initial permission feature set. This fact has remarkable1368

implications in the generation of permissions-based effective1369

discriminatorymodels as there is no actual need to update the1370

feature set after every release, so the maintenance require-1371

ments of the detection system diminish significantly. Even1372

though this may change in the future, as the initial set of1373

permissions covers core security aspects (e.g., access to sen-1374

sitive data), if they are not redefined or substituted in future1375

API releases, they might retain their discriminatory power1376

and be an essential part of the arsenal for effective malware1377

detection. Besides, the curse of dimensionality, a degenera-1378

tive performance issue related to ever-growing feature sets in1379

machine learningmodels, is avoided when a small feature set1380

is used. Furthermore, permissions are the easiest static fea-1381

tures to collect and are inherently interpretable as they have 1382

security-related implications behind them. This fact makes 1383

the machine learning-based detection models based on per- 1384

missions computationally efficient, and their outcomes easily 1385

explainable and traced using post-hoc explainers or inter- 1386

pretable machine-learning models. 1387

The analysis of the importance of features and their rela- 1388

tion to malware distribution has provided relevant insights to 1389

explain the dips in performance of the proposed permissions- 1390

based detection system. Permutation feature importance 1391

and Shapley values have been used to provide permissions 1392

characterization over time and a better understanding of 1393

the decision outcomes, respectively, thus providing useful 1394

insights about malware evolution for its effective detection. 1395

None of the previous permission-based proposed solutions 1396

took into account concept drift in their models nor provided 1397

any thorough characterization of permissions evolution over 1398

time. 1399

7 Limitations and threats to validity 1400

The limitations that may challenge the generalization of the 1401

results are centered around the data set, model performance, 1402

and interpretation methods used. 1403
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The quality of the data is critical to building effective1404

machine learning-based detection systems.Thus, for an accu-1405

rate malware detection solution to perform effectively, the1406

data used should be representative of the actual situation.1407

This is especially critical for production setups. The data1408

set used, KronoDroid, provides a good approximation to the1409

malware threat landscape in the period studied but may have1410

limitations regarding the temporal accuracy, which is criti-1411

cal for proper concept drift study, and the quantity of data.1412

These facts may threaten the external validity of the experi-1413

mentation. However, no other data set for Android research1414

includes timestamps nor suits for the evaluation of long-term1415

evolution. Furthermore, the naming for malware families is1416

not homogeneous among vendors, which may impact the1417

labeling and, consequently, the range of distinct behaviors1418

included under the same family label. Despite that, the find-1419

ings using KronoDroid data have shown a correlation with1420

the actual Android historical timeline events, thus showing1421

the goodness and reliability of the data set.1422

Regarding the model performance, the time frame used to1423

split the data (i.e., quarters) was found experimentally, based1424

on the characteristics of the data set. The solution provided1425

high performance for an extended period. However, two1426

dips in performance were observed due to sudden concept1427

drift events. In a real-world setup, where data is constantly1428

flowing, the time constraints should be narrowed down (i.e.,1429

experimentally find the optimal chunk size/length), and the1430

sudden concept drift would likely be handledmore efficiently1431

as smaller data chunks should minimize and smooth out the1432

concept drift impact. Despite these limitations, the solution1433

provided high specificity, recall, and F1 metrics for a seven-1434

year-long time frame. They can be used as a reference of the1435

capabilities of the system for production setups.1436

Finally, the interpretation methods used to character-1437

ize the concept drift and explain the individual decisions,1438

which were permutation feature importance and Shapley1439

values, have inherent limitations, especially when corre-1440

lated features are included [75]. To minimize this issue,1441

the correlation between features was analyzed in the data1442

pre-processing step, and correlated features were removed.1443

Despite that, no machine learning interpretation method is1444

free from limitations, and the quality of the data used can1445

also significantly impact the outcome [75]. Therefore, any1446

interpretation method output should be carefully considered.1447

In our case, the global interpretability method (i.e., permuta-1448

tion feature importance) and the local interpretabilitymethod1449

(i.e., Shapley values) provided similar insights about the data,1450

supporting our findings.1451

8 Conclusions 1452

Permissions are first-line security constructs within the 1453

Android ecosystem. The analysis of their evolution and usage 1454

can provide relevant highlights about the malware scene, 1455

especially when analyzed long-term. 1456

We leveraged all these features in this study. Our results 1457

show that when concept drift is addressed, permissions alone 1458

can be used to build a long-lasting, effective malware detec- 1459

tion solution. An average F1 performance of over 0.93 was 1460

achieved in data that span seven years. Furthermore, per- 1461

missions, which have been relegated to a secondary role in 1462

Android malware detection systems, can provide powerful 1463

insights about the behavior of apps, as they are inherently 1464

comprehensible features, a property that can be used to 1465

enhance detection systems and malware knowledge. 1466

This research shows that a reduced number of features 1467

can be used to build an effective system, especially for the 1468

specific malware recognition task, and that there is no need 1469

to update the feature set after every Android release. The 1470

analysis of the evolution of permissions shows that malware 1471

is a complex phenomenon in constant evolution, so concept 1472

drift issues must be considered to keep high detection per- 1473

formance. However, clear patterns in permissions data are 1474

observed, especially for the benign recognition task, which 1475

can be leveraged to build more effective systems. 1476

Family-based analysis of permissions evolution and its 1477

characterization is part of our future work. 1478

Appendix A. Two-sample Kolmogorov- 1479

Smirnov statistical test 1480

To formally compare the performance of both feature sets 1481

(i.e., extended vs. reduced), the non-parametricKolmogorov– 1482

Smirnov test was used to analyze the equality of both 1483

probability distributions (i.e., two-sample K–S test). The test 1484

statistic quantifies the distance between the empirical distri- 1485

bution functions (EDF) of two data samples. In our case, the 1486

distribution of F1 score data is compared for the reduced and 1487

extended feature sets. The results show that with a p-value 1488

= 0.7634, the test cannot be the basis for H0 rejection that 1489

the F1 score distributions come from the same distribution. 1490

Moreover, the K–S statistic value, which reflects the max- 1491

imum distance between the EDFs, is relatively small (i.e., 1492

K–S = 0.04). The test cumulative density function (ECDF) is 1493

illustrated in Fig. 15. Thus, it can be concluded that there is 1494

no significant difference in detection performance between 1495

the compared feature sets. 1496
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Fig. 15 Kolmogorov-Smirnov
test to compare F1 for the
reduced and extended feature
sets. The maximum distance
between EDFs is 0.04 (marked
in the graph with red dots).

Appendix B. Wilcoxon signed-rank test1497

Wilcoxon signed-rank test is a non-parametric statistical1498

hypothesis test (i.e., no normality distribution is assumed)1499

that enables the comparison of two data distributions (i.e.,1500

specificity and recall in this case). However, the test requires1501

the same amount of data on both distributions and, in our par-1502

ticular case, as not all features were found important in all1503

periods, there were missing values in quarters regarding spe-1504

cific features. The quantity of missing values is critical. The1505

data for the reduced vector showed nearly 70% missing val-1506

ues while reaching 83% for the extended vector. Therefore,1507

the statistical analysis was performed only on the reduced1508

feature set data. In this regard, as the negative values of func-1509

tion (4) are unknown but are needed for the test, a solution1510

could be replacing missing values with zero values. Yet, the1511

large missing value ratio might bias the comparison results,1512

groundlessly increasing the similarity of the vector with a1513

large number of missing values. Therefore, a better approach1514

is to replace the missing values with the mean importance1515

of the feature, calculated for the given data set and taken as1516

a negative value. Thus, vectors are compared using means1517

when the number of missing values is high and using the1518

distribution of importance otherwise.1519

The results of the Wilcoxon test are reported in Table 2,1520

calculated for the reduced feature set, and used to distin-1521

guish permissions important to optimize specificity and recall1522

tasks. The table reports the features with a p-value less than1523

0.005,which suggests a highly significant difference between1524

the compared vectors. The occurrence refers to the number of1525

not missing values in the compared vectors (i.e., the number1526

of times the feature was found important in recall or speci- 1527

ficity). The maximum and total importance are provided for 1528

each feature. The maximum importance reflects the max- 1529

imum value of importance the feature had in any quarter, 1530

while the total importance is the cumulative importance of 1531

the specific feature in all quarters. The features are ordered 1532

based on the completeness of the data vectors (i.e., from a 1533

larger number of occurrences to a smaller number). 1534

As reported inTable 2, among the 44 shared features found 1535

important for both recognition tasks, 29 showed statistically 1536

significant differences with a p-value< 0.005. Among these 1537

important features showing significantly distinct importance 1538

distributions for malware detection and benign software 1539

recognition, there are relevant concept drift-related fea- 1540

tures such as READ_PHONE_STATE, SEND_SMS, and 1541

MOUNT_UNMOUNT_FILESYSTEMS. Apart from the 1542

large total importance, all these features have highoccurrence 1543

and the largest maximum importance values. In all cases, the 1544

obtained importance is significantly higher for specificity. 1545

Therefore, based on this table, it can be concluded that impor- 1546

tant features for benign app recognition (i.e., specificity) are 1547

not equally relevant for the malware recognition task (i.e., 1548

recall). 1549

Appendix C. Android permission set evolu- 1550

tion 1551

Table 3 provides the modifications that changed the avail- 1552

able set of Android security permissions over time. This table 1553

gives a notion of the dynamic character of the permission set 1554
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Table 2 Significantly different
(p < 0.005) features used to
maximize recall and specificity
for the reduced feature set

Permission Importance Occurrences
Total Max

1 READ_PHONE_STATE 5.0541 0.5246 51

2 SEND_SMS 7.7330 0.6100 44

3 GET_TASKS 0.8402 0.1256 43

4 SYSTEM_ALERT_WINDOW 0.6956 0.1083 42

5 READ_SMS 0.8039 0.1488 28

6 MOUNT_UNMOUNT_FILESYSTEMS 3.1416 0.7879 25

7 READ_SYNC_SETTINGS 0.0510 0.0191 19

8 MODIFY_AUDIO_SETTINGS 0.0310 0.0214 16

9 BATTERY_STATS 0.0280 0.0126 14

10 READ_CALENDAR 0.0075 0.0032 13

11 CHANGE_CONFIGURATION 0.0215 0.0141 12

12 INSTALL_PACKAGES 0.0090 0.0052 12

13 PROCESS_OUTGOING_CALLS 0.0208 0.0193 10

14 GET_PACKAGE_SIZE 0.0114 0.0091 9

15 CALL_PRIVILEGED 0.0008 0.0008 8

16 CLEAR_APP_CACHE 0.0047 0.0046 6

17 WRITE_CONTACTS 0.0192 0.0085 6

18 ACCESS_CHECKIN_PROPERTIES 0.0003 0.0003 4

19 MODIFY_PHONE_STATE 0.0009 0.0006 4

20 REBOOT 0.0010 0.0010 4

21 RECEIVE_WAP_PUSH 0.0050 0.0047 4

22 SET_WALLPAPER_HINTS 0.0022 0.0021 4

23 DELETE_CACHE_FILES 0.0010 0.0009 3

24 DELETE_PACKAGES 0.0001 0.0001 3

25 EXPAND_STATUS_BAR 0.0053 0.0048 3

26 SET_PREFERRED_APPLICATIONS 0.0250 0.0250 3

27 READ_INPUT_STATE 0.0000 0.0000 1

28 SET_DEBUG_APP 0.0000 0.0000 1

29 STATUS_BAR 0.0823 0.0823 1

and its evolution throughout the whole Android lifetime. The1555

permissions set was first defined for API level 1 (i.e., the first1556

release of Android) and has been constantly modified since1557

then. Table 3 provides the evolution of the available permis-1558

sion set fromAPI level 1 to API level 30. The table is ordered1559

chronologically based on API level release (i.e., from the1560

oldest to the latest), and it provides API level-related infor-1561

mation such as release date (i.e., Date) and OS version name.1562

For each API level (i.e., rows), the added and deprecated per-

missions in the corresponding API level are provided in the 1563

Added Permissions and Deprecated Permissions columns. 1564

Furthermore, for each added permission, the protection level 1565

is provided in the column Type. Three protection levels are 1566

defined: dangerous, normal and others, reported as D, N and 1567

O, respectively. Theothers category refers to permissions that 1568

can be requested by third-party apps and that do not belong 1569

to the dangerous or normal category, as defined in the offi- 1570

cial documentation [21]. If the permission cannot be used by 1571

third-party apps, it is referenced with a hyphen (-). For each 1572

deprecated permission, the API level that introduced the per- 1573

mission is provided within parenthesis. Lastly, the column 1574

Set reports the number of available permissions (i.e., exclud- 1575

ing deprecated) in each API level. 1576
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a b s t r a c t 

The vast body of research in the Android malware detection domain has demonstrated that machine 

learning can provide high performance for mobile malware detection. However, the learning models have 

been usually evaluated with data sets encompassing short time frames, generating doubts about the fea- 

sibility of these models in operational settings that deal with the ever-evolving malware threat land- 

scape. Although a limited number of studies have developed concept drift resilient models for handling 

data drift, they have never considered the impact of different timestamps on the detection solutions. 

Timestamps are critical to locating the data samples within the historical timeline. Different timestamp- 

ing approaches may locate samples differently, which, in turn, can significantly impact the performance 

of the model and, consequently, the adaptive capabilities of the system to concept drift. In this study, 

we conducted a comprehensive benchmarking that compares the detection performance of six distinct 

timestamping approaches for static and dynamic feature sets. Our experiments have demonstrated that 

timestamp selection is an important decision that has a significant impact on concept drift modeling and 

the long-term performance of the model regardless of the feature type used for model construction. 

© 2022 Elsevier Ltd. All rights reserved. 

1. Introduction 

Mobile devices have continuously penetrated every aspect of 

our lives, including personal and business-related. The vibrant 

ecosystem of mobile app development has accompanied the 

progress in the areas of mobile hardware and OS, leading to the 

very rapid uptake of technology. Considering the increasing in- 

volvement of mobile apps in the management of IoT devices, mo- 

bile security threats may cause economic, societal, or even physi- 

cal damage. In this threat category, malicious applications pose a 

significant attack vector due to their evolving nature. Despite the 

countermeasures applied by device and OS vendors ( Google, 2021; 

Samsung, 2021 ), the threat still remains. Therefore, it is imperative 

to timely detect and isolate the apps showing malicious behavior. 

This study focuses on Android malware, as Android is the domi- 

nant OS in the market (72% as of September 2021 ( Statista, 2021 )) 

and the target of most mobile malware ( Islam, 2021 ). 

Machine learning (ML) methods have provided promising de- 

tection results in Android malware detection ( Sharma and Rat- 

tan, 2021 ). However, the general validation approach in these stud- 

ies is limited to the utilization of data sets that encompass specific 

∗ Corresponding author. 

E-mail addresses: alejandro.guerra@taltech.ee 

(A. Guerra-Manzanares), hayretdin.bahsi@taltech.ee (H. Bahsi). 

time frames without paying attention to the detection performance 

against the evolving threat landscape that includes new malware 

types and variants of existing ones. 

Here, it is important to underline the general expectation of 

the cyber security domain about the ML methods in detecting ma- 

licious behavior. The current signature-based solutions supported 

by the cyber threat intelligence ecosystem constitute a working 

solution despite its various well-known shortcomings. ML meth- 

ods extend this capability by detecting malware not seen be- 

fore ( Buczak and Guven, 2015 ). However, temporal experimental 

bias arises as a significant issue when the models are not tested 

with samples that belong to later times than the training samples 

( Pendlebury et al., 2019 ). The existence of such bias creates con- 

fusion about whether the model can detect new and evolved mal- 

ware and whether the operational environments can sustain their 

discriminatory capability for a long time against data shifts in mal- 

ware or benign data. Therefore, it is necessary to model the change 

in the threat landscape (i.e., concept drift) by considering longer 

time frames and determining the life cycle of the detection mod- 

els (e.g., creation and update). We even argue that handling the 

concept drift should be an integral part of any ML-based malware 

detection solution to demonstrate its viability in operational set- 

tings. 

Regardless of the utilized features or modeling approaches, 

timestamps are the central element for concept drift analysis and 

https://doi.org/10.1016/j.cose.2022.102835 

0167-4048/© 2022 Elsevier Ltd. All rights reserved. 
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its proper handling as they provide the grounds of the historical 

context. They enable us to locate every app within the Android 

historical timeline according to their values. In this regard, the 

misplacement of a large number of samples may distort the data 

distribution and feature space representation. As a result, an in- 

accurate timestamping approach may prevent the model grasp the 

natural evolution of malware, which is vital for proper detection. 

However, despite the critical role of timestamps, there is no unam- 

biguous approach to determining an app’s temporal location with 

complete reliability and accuracy. A mobile app includes many files 

with temporal metadata that can be used as a timestamp for the 

app. External information sources such as VirusTotal can also pro- 

vide the temporal context regarding the appearance of malware in 

the wild . It is hard to define the exact timing of the appearance of 

specific malware and malware families as they usually evolve from 

older variants or reuse code from other malware types. 

Despite their importance, timestamping methods and their im- 

pact on learning models have not been thoroughly investigated. 

In the literature, only Guerra-Manzanares et al. (2022b) used two 

timestamps to locate samples in the system calls feature space an- 

alyzing cross-platform detection issues. In contrast, we conducted 

a benchmarking study that investigates the impact of six distinct 

temporal approaches on concept drift-based models induced by us- 

ing a dynamic feature set, system calls, and two static feature sets, 

API calls and permissions. As a data set, we utilized KronoDroid , 

which covers a wide period (i.e., 2008–2020), in addition to pro- 

viding various timestamp alternatives ( Guerra-Manzanares et al., 

2021 ). First, we performed a comprehensive statistical analysis of 

malicious and benign apps to explore the availability and validity 

of the temporal data obtained by each timestamping approach. In 

this part, we also developed an approximation method to compare 

the accuracy of the obtained data. Then, we formulated a concept 

drift-handling method that uses a pool composed of classifiers to 

compare the detection rates of each timestamping approach for 

each feature set. 

Our results indicate that the selection of the timestamping 

method has a significant impact on the detection accuracy of the 

learning models that encompass long time frames regardless of 

the feature set nature (i.e., dynamic or static). Thus, it is imper- 

ative to consider the collection of relevant temporal values besides 

the comprehensiveness of the data set. Note that our work does 

not aim to optimize the performance of the concept drift-handling 

method. Instead, it uses a working solution to compare the perfor- 

mance of temporal data for each feature set. 

Our study provides a unique contribution to the literature as 

a detailed evaluation regarding the impact of timestamping alter- 

natives on the performance of concept drift models has not been 

addressed for mobile malware detection. 

The outline of the paper is as follows: Section 2 defines concept 

drift and its consequences, while Section 3 surveys the related lit- 

erature. Methods and analytical approaches used in the study are 

presented in Section 4 . Section 5 provides the results of our ex- 

periments. The key findings, contributions and limitations of our 

study are given in Section 6 . Section 7 concludes the paper. 

2. Concept drift 

Most learning models are static , meaning that they assume sta- 

tionary data distributions, which are consistent over time. Thus, 

the training and testing data are assumed to be similar . However, 

non-stationary data distributions might be found in many prob- 

lem domains, such as in Android malware detection, where data 

evolves over time (e.g., the emergence of new malware families), 

adding additional complexity to the data modeling process that, if 

not addressed, can severely impact the generalization of the detec- 

tion model to future (evolved) data leading to model obsolescence, 

a phenomenon called concept drift . 

Concept drift can be defined as the phenomenon in which the 

statistical properties of data change over time in an unpredictable 

manner ( Lu et al., 2018 ). Formally, concept drift can be defined as 

follows. 

Given a bounded period of time [ t 0 , t 1 ] and a set of examples 

from that period S t 0 , t 1 = { s t 0 , . . . , s t 1 } , where s i = (x i , y i ) relates to a 

single observation, x i = (x 1 
i 
, x 2 

i 
, . . . , x n 

i 
) ∈ X defines the feature vec- 

tor, y i ∈ Y corresponds to the target label, and S t 0 , t 1 follows a spe- 

cific distribution F t 0 , t 1 (X , Y ) . The phenomenon of concept drift is 

observed at t 2 if F t 0 ,t 1 (X , Y ) � = F t 2 , ∞ 

(X , Y ) , and may be denoted as 

∃ t : P t (X , Y ) � = P t+1 (X , Y ) ( Lu et al., 2018 ). Following this definition, 

concept drift at time period t i can be equated as the change in 

the joint probability of X and Y at time t i , expressed as P t i (X , Y ) . 

As P t i (X , Y ) = P t i (X ) × P t i (Y | X ) , concept drift can arise from three 

primary sources ( Lu et al., 2018 ): 

1) P t (X ) � = P t+1 (X ) and P t (Y | X ) = P t+1 (Y | X ) . This shows a 

change in the input data distribution, P t (X ) , that has no impact 

on the posterior probability of the learning model, P t (Y | X ) , 

thus not affecting its decision boundary. This phenomenon is 

named virtual drift . 

2) P t (X ) = P t+1 (X ) and P t (Y | X ) � = P t+1 (Y | X ) . In such conditions, 

the input data distribution does not change, but the changes in 

the posterior probability modify the decision boundary, leading 

to a decrease in the learning accuracy, which reflects real con- 

cept drift . 

3) P t (X ) � = P t+1 (X ) and P t (Y | X ) � = P t+1 (Y | X ) . In such a scenario, 

the shift in the feature data distribution coincides with a 

change in the decision boundary, defining a real concept drift . 

As can be noted from the previous definitions, only the real 

concept drift changes the decision boundary of the model, which 

affects the generalization capabilities of the model and leads to 

model obsolescence. More precisely, real concept drift relates to 

changes in the model’s decision boundary, defined by P (Y | X ) , that 

might coexist with covariate shift ( Gama et al., 2014 ). Virtual drift , 

also named feature space drift or covariate shift , reflects a change 

in the underlying data distribution that does not affect the model 

decision boundary, that is, P (Y | X ) . In this regard, from a predic- 

tive perspective, only the changes that affect the decision bound- 

ary, that is, the class prediction made by the model, require the 

implementation of adaptive measures ( Gama et al., 2014 ). 

3. Related work 

3.1. Concept drift in android malware detection 

The vast majority of literature regarding Android malware de- 

tection neglects the existence of concept drift. The models and 

proposed solutions are generally trained and validated on static 

snapshots of Android historical data, usually with the same well- 

known data sets ( Abderrahmane et al., 2019; Afonso et al., 2015; 

Ahsan-Ul-Haque et al., 2018; Alzaylaee et al., 2017; 2020; Amin 

et al., 2016; Bhatia and Kaushal, 2017; Burguera et al., 2011; Can- 

fora et al., 2015; Casolare et al., 2021; Da et al., 2016; Dim- 

jaševi ́c et al., 2016; Feng et al., 2018; Ferrante et al., 2016; Fren- 

klach et al., 2021; Guerra-Manzanares et al., 2019a; 2019b; 2019c; 

Hei et al., 2021; Hou et al., 2016; Isohara et al., 2011; Jaiswal 

et al., 2018; Jang et al., 2014; Kapratwar et al., 2017; Lin et al., 

2013; Lindorfer et al., 2015; Liu et al., 2021; Mahindru and San- 

gal, 2021; Malik and Khatter, 2016; McLaughlin et al., 2017; Naval 

et al., 2015; Rathore et al., 2021; Saif et al., 2018; Saracino et al., 

2018; Sasidharan and Thomas, 2021; Sihag et al., 2021; Singh and 

Hofmann, 2017; Surendran et al., 2020; Tchakounté and Dayang, 

2013; Tong and Yan, 2017; Vidal et al., 2017; Vinod et al., 2019 ; 
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Wahanggara and Prayudi, 2015; Wang and Li, 2021; Xiao et al., 

2015; 2016; 2019; Yu et al., 2013; Yuan et al., 2014 ). In this regard, 

MalGenome ( Zhou and Jiang, 2012 ) and Drebin ( Arp et al., 2014 ) 

are the most used data sets for Android malware research. Despite 

their small size and outdated data (i.e., they were collected be- 

tween 2009–2012), they are still widely used as the primary source 

of malware samples in research studies ( Rathore et al., 2021; Sasid- 

haran and Thomas, 2021 ). 

Even though some recent studies ( Cai et al., 2021a; 2021b; Gao 

et al., 2021 ) complement their data with more recent and larger 

data sets, such as the Android Malware Dataset (AMD) ( Wei et al., 

2017 ), to mitigate data-related issues (e.g., Drebin duplication is- 

sue ( Irolla and Dey, 2018 )), they still rely on partial , relatively old 

(e.g., AMD’s most recent sample dates back to 2016 and includes 

just 71 malware families), and short snapshots of data within the 

whole Android historical timeline (i.e., 2008–2022). Furthermore, 

when the proposed solutions for Android malware detection are 

generated, it is common to randomize the data set order, thus ne- 

glecting its natural ordering, and split it into two disjoint sets (i.e., 

train/test sets) or several train/test folds (i.e., cross-validation). This 

common procedure, which can be applied to any ML task where 

the data does not follow any natural order or evolution issues (e.g., 

image classification), can significantly harm the performance of so- 

lutions built for naturally ordered sequential data, such as natu- 

ral language processing tasks or data streams. The randomization 

of train/test splits neglects apps’ location in the historical time- 

line, undermining historical coherence and yielding significantly bi- 

ased and historically incoherent results ( Allix et al., 2015; Pendle- 

bury et al., 2019 ). As a result, the training data may contain sam- 

ples belonging to future time frames, and the testing data may in- 

clude past samples contemporaneous to the training data. Thus the 

model is trained with an impossible configuration , with data that 

is not typically available in practice and providing biased perfor- 

mance, a phenomenon called data snooping ( Arp et al., 2020 ). Con- 

sequently, these practices pose serious doubts about the generaliza- 

tion capabilities and effectiveness of these solutions for detecting 

evolved and recent malware. 

Only a reduced number of the referred studies considered the 

usage of distinct snapshots of historical data for the train/test 

split. However, they included significant time gaps between them 

( Guerra-Manzanares et al., 2019a; 2019b; 2019c ). Therefore, con- 

cept drift and its degenerative impact on the performance of the 

ML-based models were neglected. 

As a result, the time variable and malware evolution have been 

neglected by the vast majority of Android malware research. Only a 

few studies dealing with Android malware detection have consid- 

ered the concept drift issue and proposed ML solutions that adapt 

to changes in the data and aim to minimize its detrimental impact 

over time. In this regard, general frameworks have been proposed 

to detect emerging drift in Android data ( Barbero et al., 2020; Jor- 

daney et al., 2017; Pendlebury et al., 2019 ), although the vast ma- 

jority of proposed solutions are based on API calls ( Cai, 2020; Lei 

et al., 2019; Narayanan et al., 2016; Onwuzurike et al., 2019; Xu 

et al., 2019; Zhang et al., 2020 ). 

3.2. Timestamps: when time matters 

The essential constructs underlying effective concept drift han- 

dling are timestamps . Timestamps enable the temporal allocation of 

apps, aiming to provide a reliable temporal context. However, due 

to the nature of the malware generation and discovery process, the 

reliability of timestamps is questionable. 

The studies that tackled concept drift-related issues in Android 

malware detection have not discussed the issue of timestamp se- 

lection. Although some studies did not provide any information 

about it ( Onwuzurike et al., 2019 ), most studies used a simi- 

lar approach, the compilation date . The compilation date, referred 

to using different names in the literature, is an internal times- 

tamp that reports the creation or compilation time of the app 

archive (i.e., apk ). Despite being pointed out as the best timestamp 

( Pendlebury et al., 2019 ) and used in related research ( Barbero 

et al., 2020; Cai et al., 2020; Pendlebury et al., 2019; Xu et al., 

2019 ), it has become an unusable approach as most of the apps 

released nowadays have it set in 1980 ( du Luxembourg, 2021 ). An- 

other internal timestamp, proposed more recently, is the last mod- 

ification timestamp, which refers to the most recent modification 

datetime found in any of the inner files of the apk archive ( Guerra- 

Manzanares et al., 2021 ). This feature was introduced in Guerra- 

Manzanares et al. (2021) , which discussed the feasibility of four 

distinct timestamp approaches for Android malware detection. 

Even though the internal timestamps, collected from apps’ in- 

ner files, could be deemed accurate , they are prone to manipula- 

tion, which may cause invalid timestamps or temporal misplace- 

ment. A more robust temporal context can be obtained using ex- 

ternal timestamps. An external timestamp is not retrieved from the 

app files but provided by an external entity. In this regard, Virus- 

total’s first seen , also named appearance or submission time in the 

studies, reports the datetime at which a sample was first received 

by the VirusTotal scanning service. It has been used in research 

studies ( Cai et al., 2019; Lei et al., 2019; Zhang et al., 2020 ) as 

it is based on third-party, reliable services, making the temporal 

assignment more robust to alterations. However, due to its proac- 

tive nature, this timestamp is prone to significant delay and tem- 

poral displacement (i.e., a user must submit the file to generate the 

timestamp). 

Consequently, the timestamp attribute and its selection emerge 

as critical elements to handle concept drift effectively for long- 

term Android malware detection. Despite its criticality, it has been 

neglected by the concept drift-related studies in the related liter- 

ature. In this research, we address this significant research gap by 

thoroughly analyzing, comparing, and evaluating different times- 

tamps for effective concept drift handling. 

4. Methodology 

4.1. Data set 

The data set used in this study is KronoDroid ( Guerra- 

Manzanares et al., 2021 ). This data set provides timestamped and 

labeled Android app samples covering the whole 2008–2020 pe- 

riod. Each data sample is described using dynamic and static fea- 

tures. More precisely, it is composed of 489 features, of which 289 

are dynamic features and 200 static features. For this research, sys- 

tem calls and permissions features were used along with the pro- 

vided timestamps (i.e., four timestamps), class labels, and other 

relevant metadata. As Kronodroid is composed of two data sets 

(i.e., according to the source of the dynamic features), in this study, 

the real device dataset was preferred due to its larger size for the 

same historical time frame (i.e., 78,137 samples). Furthermore, the 

selection of real device-collected data prevents that any behav- 

ioral differences could be influenced by malware anti-sandbox tech- 

niques. Therefore, the data set used in this research is composed 

of 41,382 malware samples belonging to 240 malware families and 

36,755 benign apps, encompassing from 2008 to 2020. 

To explore the impact of the time variable and the concept 

drift issue extensively, additional features were collected for this 

study. More specifically, for each data sample, Android API calls 

were statically collected using Androguard ( Desnos et al., 2018 ) 

and two additional timestamps from the inner apk files (i.e., dex 

date and manifest date ). The usage of all these data features en- 

ables us to observe and analyze the time impact on distinct fea- 

ture spaces for the same set of data within the same problem do- 
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Table 1 

Feature spaces. 

Feature space Dimensions Type 

System calls 288 Numeric 

Permissions 166 Binary 

API calls 53,523 Binary 

main (i.e., system calls, permissions, and API calls for malware de- 

tection) from six different temporal perspectives (i.e., timestamps). 

The sample descriptors (i.e., features) are representative of widely 

used dynamic and static approaches for Android malware detection 

( Feizollah et al., 2015 ). 

The feature sets used in this research, their dimensions, and 

data type are summarized in Table 1 . The temporal perspectives 

used to date the apps within the Android historical timeline and 

their description are outlined in Table 2 . 

As can be observed in Table 1 , three feature spaces are ana- 

lyzed in this research for the same data set, providing complemen- 

tary perspectives for the same phenomenon (i.e., concept drift). 

Furthermore, as the feature spaces are defined on varying dimen- 

sions and data types, they enable us to explore and analyze the 

issue from a wide perspective. In addition, the temporal dimen- 

sions segment and transform the feature spaces distinctively, thus 

providing extensive exploration of the studied phenomenon. In this 

study, six distinct timestamps are used and thoroughly compared. 

KronoDroid data set provides four possible timestamps per sam- 

ple: last modification, earliest modification, first seen, and first seen 

in the wild . The nature of their temporal attribution is described 

in Table 2 . Besides these timestamps, the dex date and manifest 

date timestamps were extracted in this research for all the apk s 

that compose the original data set. These timestamps were col- 

lected by inspection of two important app inner files: classes.dex 

and AndroidManifest.xml . The dex date timestamp, not included in 

the Kronodroid data set due to the inaccurate value reported for 

recent samples ( Guerra-Manzanares et al., 2021; du Luxembourg, 

2021 ), has been widely used in previous related research to locate 

apps within the Android timeline, thus being relevant for the com- 

parison. The dex date timestamp is also referred to in the literature 

as compilation or creation time, referring to the classes.dex times- 

tamp, which is essentially the compiled source code. The manifest 

date reports the timestamp of the AndroidManifest.xml or app man- 

ifest file. The addition of the manifest date as a temporal approach 

is based on the critical relevancy of this file for any Android app. 

In this regard, the manifest is the only compulsory file for any An- 

droid app as it provides the essential information about the app 

to the Android build tools, the operating system, and Google Play 

( Android, 2021a ). Therefore, the relevancy of this critical file and 

its omnipresent characteristic are leveraged as the grounds for its 

inclusion in a complete analysis. 

4.2. Workflow 

4.2.1. Data collection 

The initial stage of this research involved the collection of ad- 

ditional features to describe every sample in the selected data set. 

API external methods were extracted from every apk file using 

Androguard ( Desnos et al., 2018 ). As not all external methods are 

Android API calls, the results were filtered to select only the meth- 

ods relative to the existing Android API families ( Android, 2021b ). 

These Android Platform API families include android, dalvik, java, 

javax, junit, apache, json, dom , and xml . A similar approach was 

used in API call-related studies ( Onwuzurike et al., 2019; Xu et al., 

2019 ). Each class method defined by the apps in the data set 

was included as a feature. Therefore, all samples within the data 

set were described using a binary vector that indicates the pres- 

ence/absence (i.e., 1/0) of each API call for each data sample. 

The additional timestamps used to describe every data sample 

(i.e., dex date and manifest date ) were retrieved from the inner files 

of the apk archive by inspecting the metadata extracted from the 

classes.dex and AndroidManifest.xml files. A Python script was used 

for that purpose. 

The collected data were processed and structured in CSV format, 

where each row referred to a data sample and each column to a 

feature. As a result, each sample was described using a vector con- 

catenating the data for the three independent feature spaces (i.e., 

syscalls, permissions, and API calls), the six timestamps, the class 

label, malware family, and the sha-256 hash value that uniquely 

identifies each data sample. 

The feature spaces explored in this research are representa- 

tive of the most common attributes used for Android malware de- 

tection purposes. System calls are the most widely used dynamic 

features, whereas permissions and API calls are the features used 

in the vast majority of static approaches for malware detection 

( Feizollah et al., 2015 ). 

4.2.2. Timestamp analysis 

The main focus of this research is the temporal dimension of 

the data and its impact on concept drift representation, analysis, 

and handling. Therefore, in this second stage, a thorough compar- 

ative analysis of the timestamps was performed. 

The usage of a timestamp to locate applications across the An- 

droid historical timeline is subject to availability and reliability is- 

sues. The former refers to the accessibility of the timestamp for its 

collection, while the latter regards the temporal precision of the 

timestamp concerning the ground-truth location of the app within 

the historical timeline. As the ground-truth temporal location is 

hardly achievable in the vast majority of cases (i.e., it is not pos- 

sible to know with absolute certainty when the sample was re- 

leased), the timestamp approaches main aim is to provide a good 

approximation to the given phenomenon in the absence of ground- 

truth data. In our approach, a good approximation would minimize 

the amount of error for the majority of the samples and enable 

the handling of concept drifts effectively. In this regard, due to the 

absence of a ground-truth temporal reference, our assumption is 

that an effective concept drift-handling solution may provide rela- 

tively more stable and smoother performance over time using an 

accurate timestamp than with an inaccurate timestamp, as data 

should usually evolve through shifting gradually over time, intro- 

ducing new elements and discarding others in a relatively smooth 

transition. Sudden data drifts may happen over time, but their 

prevalence should not be significant (e.g., completely new malware 

outbreaks). Otherwise, concept drift could hardly be modeled, and 

keeping high performance over time would be a utopia. 

At this stage, the following steps were performed to ana- 

lyze and compare the timestamps using their intrinsic properties, 

whereas the next stage, described in Section 4.2.3 , explores their 

suitability for concept drift handling. 

The sequential steps of the comparative analysis are described 

as follows: 

1) Prevalence : the prevalence of timestamps is a term related to 

availability that informs about the accessibility of the times- 

tamp, that is, if the timestamp can be successfully collected or 

retrieved from the samples. For each timestamp, the number of 

set timestamps (i.e., properly defined) and not set timestamps 

(i.e., missing or undefined) was analyzed. 

2) Validity : the validity of a timestamp is an indicator of whether 

the timestamp is comprised within the Android historical time 

frame (i.e., from the 22nd of October 2008 ( Google, 2008 ) to 

the present day). It is not an indicator of accuracy but discards 
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Table 2 

Timestamps. 

Timestamp name Description 

Last modification The most recent timestamp retrieved from any file inside the apk archive 

Earliest modification The oldest timestamp retrieved from any file inside the apk archive 

First seen Date and time of the first submission of the sample to VirusTotal 

First seen in the wild Date and time of the first time the sample was seen anywhere on internet 

Dex date Timestamp retrieved from the classes.dex file, located inside the apk archive (i.e., compilation time) 

Manifest date Timestamp retrieved from the AndroidManifest.xml file, located inside the apk archive 

all the timestamps not comprised within the valid Android 

timeline range (i.e., before the 22nd of October 2008 or in the 

future). 

3) Suitability : the suitability of a timestamp combines the previous 

concepts positively. Thus a suitable timestamp is available and 

valid . Consequently, an unsuitable timestamp is available but in- 

valid . 

4) Distribution and statistical analysis : data distributions for each 

timestamp and each class were analyzed and compared using 

statistical measures. Histograms were used to visualize the data 

distributions and as input to statistical tests and techniques for 

similarity assessment. Two statistical methods for measuring 

the similarity between data distributions were used: 

• Jensen–Shannon distance : a distance metric that is the square 

root of the Jensen–Shannon divergence . The Jensen–Shannon 

divergence is computed using the Kullback Leibler (KL) di- 

vergence , but it has more desirable properties than the KL 

divergence, such as being always finite, symmetrical, and 

smooth, thus preferred when some probability values are 

small or zero. The Jensen–Shannon divergence is computed 

as: 

JSD (P || Q ) = 

D KL (P|| M) 
2 + 

D KL (Q|| M) 
2 , 

where P and Q refer to two probability distributions, M is 

the point-wise mean of P and Q calculated as 1 
2 (P + Q ) and 

D KL refers to KL divergence values calculated for each pair of 

distributions. The KL divergence, also named relative entropy , 

between two discrete distributions is calculated as: 

D KL (P || Q ) = 

∑ 

x ∈ X P (x ) log ( P(x ) 
Q(x ) 

) 

The KL divergence quantifies the difference between two 

probability distributions, which is leveraged by the Jensen–

Shannon divergence to provide a more comprehensive, 

smooth, and well-defined distance metric (i.e., the square 

root of JSD) to measure the similarity between two proba- 

bility distributions. The JSD distance for two probability dis- 

tributions is bounded between [0, 1] when the logarithm to 

the base 2 is used for computations. The general interpre- 

tation is that the higher the value (i.e., closer to one), the 

greater the difference between the distributions. 

• Kolmogorov–Smirnov two-sample test : a non-parametric sta- 

tistical hypothesis test to assess the equality of one- 

dimensional probability distributions. It enables us to assess 

the probability that two collections of samples (i.e., F (x ) and 

G (x ) ) could have been drawn from the same probability dis- 

tribution, that is, if they are statistically similar. The null 

hypothesis H 0 for the test is that the two distributions are 

identical (i.e., F (x ) = G (x ) , ∀ x ), whereas the alternative hy- 

pothesis H 1 is that they are not identical. The Kolmogorov- 

Smirnov (KS) test answers this hypothesis test by analyzing 

the maximum difference between the two experimental cu- 

mulative frequency distribution functions. The KS statistic is 

calculated as: 

D m,n = sup 
x 

| F n (x ) − G m 

(x ) | , 

where F n (x ) and G m 

(x ) refer to the empirical distribution 

functions of the two data samples, of sizes m and n, re- 

spectively, and sup is the supremum function. For large sam- 

ples, the null hypothesis is rejected at significance level α
if 

D m,n > c(α) 
√ 

m + n 
mn , 

where m and n are the sizes of the distributions and 

the value of c(α) is a parameter calculated as c(α) = √ 

−ln ( α2 ) 
1 
2 . 

Therefore, different combinations of data distributions based 

on the timestamps were analyzed regarding their similarity 

using both measures. As they evaluate similarity using differ- 

ent approaches, the usage of both techniques provides a bet- 

ter overall perspective of the differences between the analyzed 

sets. 

5) Accuracy : an approximation of the accuracy of the timestamps 

was explored to assess their reliability. The evaluation of times- 

tamp accuracy (i.e., the precise location of the sample within 

the Android historical timeline) is a significant challenge due 

to the absence of an exact ground-truth timestamp (i.e., it is 

not possible to surely know when the malware was first re- 

leased). Thus only approximations to the ground-truth times- 

tamp can be targeted. For this purpose, we used open-source 

intelligence feeds such as new malware family discovery news 

by antivirus vendors and media sources to establish an approx- 

imate discovery time of a specific malware family. After that, a 

time frame around the date was established (i.e., ± 6 months), 

and statistics were retrieved from each timestamp data distri- 

bution for each family. The rationale behind this analysis is that, 

if the timestamp is accurate, it should place samples around 

that time frame (i.e., discovery time ±6 months) and after it, im- 

plying that the malware family might be located accurately and 

also its evolution (i.e., samples dated after this range). If a sig- 

nificant amount of samples is placed outside of this time frame, 

the timestamp might be deemed relatively inaccurate. This ap- 

proach is naive and has notable limitations as it relies on the 

precision of the malware family labels and also the relative ac- 

curacy of the news feed. Nevertheless, it provides a good notion 

of the accuracy of the timestamps, especially when the results 

are compared. 

4.2.3. Concept drift handling 

The concept drift problem is usually identified with large data 

streams, as the meaningful properties and descriptors of data are 

prone to change over time ( Aggarwal, 2015; Margara and Rabl, 

2018 ). Android malware detection, which can be considered a con- 

stant flow of data, faces concept drift issues. The impact of con- 

cept drift on detection classifiers is a substantial decrease in per- 

formance over time until the detection model becomes obsolete. 

Thus, concept drift issues should be taken into account to design 

high-performance and long-lasting detection systems that are re- 

silient to data changes over time. 
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In this study, an algorithm designed to handle concept drift 

in data streams was used to explore the impact of the times- 

tamps to model and handle emerging data drift effectively. In 

Zyblewski et al. (2021) , the incoming data stream is split into 

chunks and processed sequentially. The method uses a pool of clas- 

sifiers trained on past data chunks to predict new data samples. 

During the process, the best ensemble of classifiers is dynamically 

selected to perform accurate predictions. Furthermore, the pool is 

updated after each new incoming data chunk by introducing classi- 

fiers trained on the new data and removing low-performance, ag- 

ing models. This last step makes the system resilient to concept 

drift, keeping high performance over time by updating the pool of 

classifiers with new, evolved data. 

The original algorithm by Zyblewski et al. (2021) was slightly 

modified for our scenario as described in the proposed method- 

ology by Guerra-Manzanares et al. (2022a) . More specifically, the 

initial data chunk was split to generate a full pool from the begin- 

ning. This fact avoids the need of waiting to n chunks to gradu- 

ally fill the classifier pool (i.e., the n hyper-parameter refers to the 

fixed pool size), as the original solution proposes. This enhanced 

classification methodology to deal with Android data concept drift, 

as detailed in Guerra-Manzanares et al. (2022a) , was used to ana- 

lyze the impact of different timestamps on concept drift handling 

in distinct feature spaces within the same problem domain. 

The performance of the classification method was evaluated us- 

ing the F 1 score metric. The F 1 performance metric provides a 

notion of the accuracy of the classifier in detecting malware in- 

stances. It is a comprehensive metric that is calculated as the har- 

monic mean of precision and recall performance metrics as defined 

by the following equation: 

F 1 = 

2 ∗ P recision ∗ Recall 

P recision + Recall 
(1) 

In this regard, the precision of a classification model informs 

about the fraction of actual malware data points that the model 

correctly classified as malware among all malware predictions and 

is calculated as: 

P recision = 

T P 

T P + F P 
, (2) 

where T P refers to True Positive , that is, the number of actual mal- 

ware that was predicted as malware by the model, and F P relates 

to False Positive or the number of benign instances incorrectly pre- 

dicted as malware by the model. 

The recall metric reports the fraction of samples classified as 

malware (i.e., positive) among the total number of actual malware 

samples included in the testing set. It is calculated as: 

Recall = 

T P 

T P + F N 

, (3) 

where T P relates to True Positive and F N refers to False Negative , 

that is, the number of actual malware instances incorrectly pre- 

dicted as benign by the classification model. 

In the case of imbalanced data scenarios, such as the one ex- 

plored in this study, the F1 score reports better the positive class 

detection performance than overall accuracy, thus being a pre- 

ferred performance metric for our analysis. 

5. Results 

5.1. Data collection 

The original data set was composed of 41,382 malware samples 

and 36,755 benign apps. Each sample was described by 288 system 

call features (i.e., counts), 166 permission-related features (i.e., bi- 

nary indicators), 4 timestamps (i.e., earliest modification , last modi- 

fication , first seen, and first seen in the wild ), the hash value, and the 

Table 3 

Final data set composition. 

Class Original data set size Error Final data set size 

Benign 36,755 38 36,717 

Malware 41,382 104 41,278 

Total 78,137 142 77,995 

class and family labels. To extend the set of feature spaces evalu- 

ated, API calls were collected. The API calls features extraction was 

successful for 99.82% of the original data set, with the final data 

set composition described in Table 3 . 

As can be observed in Table 3 , the API call collection process 

was not successful for 104 malware apps and 38 benign apps from 

the original data set due to corrupted file headers in particular apk 

archives (i.e., zip files), which prevented the extraction tool from 

parsing the compressed bundle and retrieving the data (i.e., failed 

magic number verification provoked a critical Bad Zip File error). As 

the comparative analysis required the same data set to be used in 

all the experimental setups, the final data set used was composed 

of 36,717 benign samples and 41,278 malware samples. There were 

no issues retrieving the dex date and manifest date timestamps for 

any of the samples. 

Therefore, the final data set samples are described by 3 distinct 

multi-dimensional feature spaces (i.e., system calls, permissions, and 

API calls ) and 6 timestamps (i.e., last modification, earliest modifica- 

tion, first seen, first seen in the wild, dex date, and manifest date ). 

5.2. Timestamps analysis and relations 

The following sections describe and provide a comparative anal- 

ysis of the timestamps from different perspectives regarding avail- 

ability and reliability measures. This is the essential part of this 

study that aims to compare and evaluate distinct timestamp ap- 

proaches and their suitability to build concept drift resilient ma- 

chine learning-based Android malware detection models. 

It is worth noticing that of the set of six timestamps analyzed 

in this research, two correspond to external timestamps, not ex- 

tracted from the apk archive metadata, which were set in this case 

by VirusTotal scanning reports. These timestamps are the first seen 

and first seen in the wild . An external timestamp is less prone to be 

manipulated by perpetrators as it is not in the immediate scope of 

the attacker. However, they can be prone to delays as they depend 

on users’ proactive behavior (i.e., user submission to VirusTotal’s 

service) and processing errors. Besides, the first seen in the wild 

timestamp, defined as the first time the app was seen anywhere 

on the internet, might not be set for benign applications. 

The remaining four timestamps are internal timestamps, col- 

lected from the inner files of the app bundle. Therefore, they can 

be manipulated or removed by a motivated attacker. 

5.2.1. Prevalence of timestamp data 

The prevalence of timestamps data provides a notion of data 

availability, which is critical to building effective learning systems. 

If the timestamp cannot be retrieved, the sample cannot be located 

in the historical context and is, consequently, unusable . Based on 

this, Fig. 1 conveys graphically the prevalence or availability prop- 

erty for every timestamp and the whole data set. The horizontal 

axis provides the timestamps, referenced in abbreviated form. EM 

refers to the earliest modification timestamp, LM to the last modi- 

fication timestamp, FS is used for first seen, FSW for first seen in the 

wild, DD for dex date, and MD for manifest date . For every times- 

tamp, two vertical bars are defined, which inform about the rela- 

tive frequency or percentage of data samples that had the times- 

tamp available , meaning that it was defined or properly set. The 

colored areas refer to class-wise proportions (i.e., red for malware, 
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Fig. 1. Availability of timestamps. Fig. 2. Validity of timestamps. Fig. 3. Suitability of timestamps. 

green for benign apps), while the grey areas indicate the propor- 

tion of data samples that did not have the specific timestamp avail- 

able. Two main causes of nonavailability were found. In the case of 

FSW, the data might not be found in the detection report, so there 

was no timestamp set for the sample. For the other timestamps, a 

nonavailable timestamp was found as null-valued timestamp meta- 

data, which was incorrectly parsed and retrieved by the software 

as 1980-0 0-0 0 . 

As can be observed in Fig. 1 , most of the timestamps are avail- 

able for all data samples, as most of the bars reach beyond 97% 

prevalence. Furthermore, the first seen was defined for all data 

samples. This was expected as the timestamp is automatically set 

upon submission of the sample for the first time. The other times- 

tamps, collected using different means and from the internal files, 

are mostly available, especially for malware instances. More pre- 

cisely, a larger proportion of null-valued timestamps was found on 

legitimate apps. A fact that may seem counter-intuitive, but that 

was also pointed out by du Luxembourg (2021) . An exception to 

the high availability of the timestamps is the first seen in the wild 

timestamp. As most of the reports retrieved did not provide data 

for this feature, it is missing for most of the applications, especially 

for benign apps (i.e., found only for 0.6% of them). This is logical 

as the scanning service aims to detect malware threats effectively 

(i.e., positive detection), so the first seen in the wild location for be- 

nign instances is actually irrelevant. 

5.2.2. Validity of timestamps 

The timestamp for any Android app sample should be located 

within the Android historical timeline, which encompasses from 

the 22nd of October 2008 (i.e., Android Google Market public re- 

lease) to the present day. Any timestamp located within this time 

frame is deemed valid . Timestamps located in the future (e.g., 

2107) or in the past (e.g., 1997), which were found in the data, are 

impossible configurations, suggesting tampering and consequently 

labeled as not valid . Fig. 2 reports the validity property for every 

timestamp and the whole data set. Similar to Fig. 1 , the horizon- 

tal axis provides the timestamps, referenced in abbreviated form. 

The vertical bars report the proportion of valid timestamps for each 

class using green and red colors and the not valid as shaded areas. 

Fig. 2 reports similar values to the ones in Fig. 1 for the FS 

and FSW timestamps. However, for the EM, LM, DD, and MD times- 

tamps, the bars reach lower figures, especially for the EM times- 

tamp. This indicates that this timestamp is the one that contains 

more non-valid values, followed by DD and MD timestamps. In all 

cases, except for EM , malware samples reach higher values than 

benign samples, which again might seem counter-intuitive. How- 

ever, this fact may only reflect a general disregard regarding times- 

tamps by benign apps’ developers but does not provide any hint 

about the accuracy of the timestamp. 

5.2.3. Suitability of timestamps 

For the purpose of this research, the concept of suitability pro- 

vides a notion about the most usable timestamps, that is, they 

are available and valid . Fig. 3 reports the suitability proportion per 

timestamp and class. In this case, the colored areas refer to class- 

wise timestamps that are both available and valid. The grey areas 

report the proportion of samples that have available but invalid 

timestamps. 

Fig. 3 conveys that FS, FSW, and LM are the most suitable times- 

tamps, with a large proportion (i.e., 100% for FS and FSW ) of avail- 

able data that lie within the valid time frame. However, despite 

the high suitability of FSW , its low prevalence makes it a worse op- 

tion than FS and LM if data quantity is a requirement. The EM, DD, 

and MD timestamps show values ranging from 87% to 93%, thus 

deemed as the least suitable options. 

Figs. 1 –3 enable us to rank the timestamps based on their com- 

bined properties. As a result, FS and LM significantly outperformed 

the other timestamps based on the analyzed criteria. 

5.2.4. Variability: assessing the similarity of timestamps 

The probability distribution of each timestamp (i.e., relative fre- 

quency) is provided in Fig. 4 . The probability distribution is shown 

in a discrete representation to emphasize the differences among 

years. The relative frequencies are preferred to absolute values (i.e., 

counts in histograms) as they enable the visual comparison of the 

distributions. For each graph, the color of the bars refers to the 

class distribution (i.e., green for benign software and red for mal- 

ware). The X-axis provides the year of the bar data, while the 

Y-axis provides the relative frequency for each year. It is worth 

noticing that the horizontal range is not the same for all graphs, 

whereas the vertical range is the same. This keeps the proportions 

on the Y-axis comparable while showing the whole range of val- 

ues the distribution encompasses on the X-axis. The only excep- 

tion is the LM graph, where only the range between 2008–2020 is 

provided due to the negligible proportion of outliers or non-valid 

values, which were not observable when plotting the whole 1980–

2020 range. Furthermore, an enhanced visual comparison between 

LM and FS (i.e., the most suitable timestamps) is enabled when only 

the valid range is plotted. 

As can be observed in the graphs in Fig. 4 , the internal times- 

tamps (i.e., EM, LM, DD, MD) seem to provide similar data distri- 

butions. The LM , however, does not show the large proportion of 

data points (i.e., around 10%) located in 1980 that the other ex- 

ternal distributions have, but the distributions in the valid range 
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Fig. 4. Probability distribution of each timestamp. 

are relatively similar, especially when compared with DD and MD . 

It is worth noticing that due to different X-axis ranges the vi- 

sual comparison is hindered. The FSW data distribution is radi- 

cally different from the other distributions, showing malware data 

concentrated in the 2008–2016 range and legitimate data in the 

2014–2019 range and also in 2010. An interesting observation oc- 

curs when LM and FS are compared, which motivates the plotting 

of LM only for the valid range. As can be observed, the two dis- 

tributions seem relatively similar for legitimate data, peaking in 

one year and showing relatively low figures for the other years. 

However, the peak occurs in 2011 for LM and 2012 for FS . In the 

case of malware, the three consecutive bars around 0.2 probabil- 

ity value occur in both distributions in the range 2012–2014. How- 

ever, the dispersion of data surrounding this range is distinct, with 

many samples in the years before this range for LM and in the 

years after this range, especially in 2018, for FS . These observa- 

tions may suggest that the relatively similar but shifted shapes 

might have been caused by a delay in the FS timestamp regard- 

ing the LM timestamp. Further exploration of this hypothesis is ad- 

dressed in the following paragraphs, using statistical means, and 

in Section 5.2.6 . 

The statistical analysis of timestamps distributions enables the 

assessment of their similarity, which provides a notion of the de- 

gree of variability among them. For this purpose, Jensen–Shannon 

distance (i.e., JSD) and Kolmogorov–Smirnov 2-sample test (i.e., KS) 

were used. The former uses the notion of distance between dis- 

tributions to provide a similarity score, bounded in the [0, 1] in- 

terval, where higher values report greater dissimilarity, while the 

latter compares the experimental cumulative density distributions 

to statistically infer if the distributions are likely to belong to the 

same population, thus being similarly distributed. In this case, the 

p-value is used to assess the statistical significance of the results by 

accepting or rejecting the null hypothesis (i.e., the distributions are 

equal) at a specific confidence level α. Thus assessing the similar- 

ity between the distributions. In general, small p-values indicate a 

high probability that the distributions come from the same popu- 

lation, thus reporting a greater similarity between the timestamps 

to locate the data within the Android historical timeline. 

As a result, both metrics provide complementary measurements 

to assess the similarity of the distributions. If distributions are sim- 

ilar, we would expect a JSD value close to 0 and a KS value close 

to 1. If they are significantly different, the JSD value is expected to 

be close to 1 and the KS value close to 0. Both measures are sym- 

metric, meaning that the order used to compare the distributions 

does not matter (i.e., d(P , Q) = d(Q , P) ). 

The matrix in Fig. 5 provides the comparison among all pairs 

of timestamp distributions for the benign data. Given the symme- 

try of the calculated measures, they enable us to provide the com- 

puted values for both similarity measures in the form of a matrix 

where the main diagonal is left blank to separate the values. The 

values above the diagonal of the matrix provide the values for KS 

computations, while the values below the diagonal provide the ob- 

tained JSD values. 

As can be observed in Fig. 5 , all the timestamps seem to pro- 

vide different distributions for the data. The only exception is for 

the pair DD - MD, which has an almost 0 distance (i.e., almost perfect 

similarity) and a KS of 1. These values strongly suggest that these 

two distributions are roughly the same. This fact was also spotted 

on the graphical visualization in Fig. 4 . Furthermore, DD and MD 

have a high degree of similarity (i.e., they show a small distance 

and large KS value) with LM and, to a lesser extent, with EM . This 

fact shows the relatively close distance between the distributions 

based on internal timestamps, which confirms the spotted simi- 

larities in the plots. However, EM appears to have a significantly 

different cumulative function as reflected by the small p-values , 

probably caused by the large number of invalid values included in 

this distribution and the higher peaks in the early years (i.e., be- 

fore 2015) observed in the graphical depiction of the distribution. 

In the case of DD and MD , their distributions can be interpreted 

as almost equivalent. Nevertheless, LM is preferred as it provides 
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Fig. 5. JSD-KS matrix for benign data. Fig. 6. JSD-KS matrix for malware data. Fig. 7. JSD-KS inter-class. 

more suitable timestamps than DD and MD . Regarding the external 

timestamps, FS and FSW show unique distributions, as evidenced 

by the large distance values and small p-values with almost all the 

other distributions. Despite having the same origin (i.e., VirusTotal), 

they are significantly different from each other and all other distri- 

butions, especially in the case of FSW (i.e., all p-values are near 0). 

When the most suitable timestamps are compared, FS and LM seem 

to have a great dissimilarity (i.e., a distance of 0.77, so they locate 

samples differently) but show a relatively low p-value (i.e., 0.21), 

which confirms the interesting observation from the graphs. Their 

cumulative functions are close enough to be found relatively sim- 

ilar using the KS-test but remarkably different when the distance- 

based similarity is used. 

The matrix in Fig. 6 provides the comparison among all pairs of 

timestamp distributions for the malware data. The area above the 

diagonal provides the KS values, while the area below the diagonal 

provides the JSD values. 

As can be seen in Fig. 6 , the overall situation is similar to the 

benign case. The external timestamps show the greatest similarity, 

with DD and MD being almost identical to each other and also to 

LM . Again, EM shows to be relatively different from all other distri- 

butions, emphasized by the large proportion of data points in the 

invalid range. The external timestamps differ significantly, but less 

than for the benign data. An important exception to the similar 

trends with the benign data emerges when comparing FS and LM . 

For the malware case, these two distributions have a smaller dis- 

tance and a significantly higher p-value . This fact shows that the 

range and overall shape of the distribution are similar and also 

that the cumulative function of the distributions is relatively sim- 

ilar. This fact supports the hypothesis of the delay between them 

and that even though they may provide similar distribution of mal- 

ware data along the historical timeline, there is more concentration 

of samples in the early years for LM and in the latter years of the 

valid range for FS . 

The previous statistical analysis compared the distribution of 

data according to timestamps for the same class (i.e., benign and 

malware). An interesting comparison is also the analysis of the 

similarity of class distributions within a given timestamp. The re- 

sults are reported in Fig. 7 , where the columns provide information 

about the specific timestamp and the horizontal rows about the 

statistical value computed when comparing the benign and mal- 

ware distribution for that specific timestamp (i.e., JSD or KS ). The 

upper rows in the figure provide the comparative results of JSD and 

KS for the whole time frame (i.e., whole distributions), whereas 

the lower rows provide the same information but just for the valid 

time frame, indicated as JSD-v and KS-v . 

The overall interpretation of Fig. 7 is that the valid time 

frame emphasizes the differences between class distributions. In 

general, the values of distance increase and p-values diminish 

in the lower rows (i.e., valid range) compared with the upper 

rows (i.e., including the invalid range). The only exceptions to 

this are the FS and FSW timestamps which have the same val- 

ues on both pairs of rows as they are always valid . Therefore, 

the class-wise distributions are significantly different across all 

timestamps. 

5.2.5. Accuracy: a measure of historical context reliability 

The evaluation of timestamp accuracy (i.e., how precise the lo- 

cation of a sample is within the Android historical timeline) is a 

significant challenge due to the absence of an exact ground-truth 

timestamp (i.e., it is not possible to ascertain when the malware 

sample was first released). In this regard, only approximations to 

the ground-truth timestamp can be achieved. This approximation 

might be based on external information such as open-source intel- 

ligence (OSINT) feeds, discovery reports of specific malware fam- 

ilies by antivirus vendors, or media news. Therefore, the assess- 

ment of timestamps’ accuracy and reliability is hindered and can 

only be approximated using these OSINT sources, which might be 

relatively delayed and not fully precise. In this research, this ap- 

proach was used to obtain an approximation of the reliability of 

the timestamps evaluated. In this regard, the first discovery re- 

port released for specific malware families was used to contextu- 

alize each malware family within the historical timeline. The first 

two columns in Table 4 show 10 malware families (i.e., one per 

row) and reference dates as a context of the discovery time frame 

based on the reports (i.e., month/year). The data sources are pro- 

vided in square brackets. They were taken from reliable sources 

when possible and contrasted with other media feeds. The follow- 

ing 6 columns are split into three sub-columns which are referred 

to as ±6, > 6 , and NV. For the sake of interpretation of the ta- 

ble, these columns have been colored in green, yellow, and grey, 

respectively. These columns show the proportion of data samples 

(i.e., percentages) of the data set dated with each specific times- 

tamp that lies within the reference value ±6 months (i.e., ±6 col- 

umn), beyond the reference value + 6 months (i.e., > 6 column) and 

that has a non-valid location (i.e., NV column). Note that the val- 

ues before the reference time - 6 months are not provided but can 

be computed by summing the provided proportions and subtract- 

ing to 100. The rationale behind these computed proportions is the 

following. A precise timestamp should locate most of the samples 

of a specific family in the ±6 and > 6 range, which is defined as 

the valid range for the specific family. The proportion of NV values 

and samples located before the valid range should be minimal (i.e., 

ideally zero). A larger proportion of values in the > 6 range may 

imply a delay in the timestamp or denote family evolution. The ±6 

range gives a notion of the amount of samples within this range, 

but due to family evolution it can only be interpreted in compari- 

son with the other values, as the data set may contain fewer orig- 

inal samples than evolved samples. Furthermore, malware family 

denominations are not consistent among AV vendors or even an- 
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Table 4 

Accuracy analysis of timestamps to locate specific malware families. 

References [90–98] citation mentioned in Table 4 ( F-secure, 2021b ; F-secure, 2021a ; Jiang and Zhou, 2013 ; Shipman, 2011 ; Yu, 2013 ; Jiang and Zhou, 2013 ; 

Lipovsky et al., 2017 ; Kiss et al., 2016 ; Dr.Web, 2018 ; Buchka and Kuzin, 2016 ). 

alysts, thus being a handicap for any malware family analysis. In 

our case, it is assumed that most of the labels are certain , which 

provides a relative degree of flexibility in interpreting the results. 

The last row of the table computes the totals or average value of 

each column for each specific timestamp. 

As can be observed in Table 4 , the individual proportions for 

specific malware families greatly vary among timestamps. For in- 

stance, AnserverBot seems to be well captured by all external 

timestamps in the reference ±6 months time frame, which may 

imply that the reference might be precise for the family discov- 

ery date and corresponding outbreak, and that these timestamps 

precisely locate this malware family. A different situation hap- 

pens with the MobiDash family, where almost all timestamps con- 

vey the idea that the outbreak of this family happened in a later 

time frame, but also that the initial reference might be precise as 

the sum of the three proportions is 100% (i.e., no samples dated 

before the reference time frame). However, in general, individual 

values greatly vary across families and timestamps. A better and 

broader picture is provided by the total values. Even though the 

average value might be significantly biased due to outlier values, 

it is a good indicator of the overall trend. Based on the inter- 

pretation of the total values, it can be stated that the LM times- 

tamp provides the most desirable properties of accuracy. It has a 

very low ratio of non-valid values and a high proportion of times- 

tamps within the valid time frame (i.e., sum of values in the time 

frame encompassed by reference ±6 and > 6 ). The average values 

also confirm that the internal timestamps show similar distribu- 

tions, with all of them showing similar proportions but with signif- 

icantly lower non-valid values for the LM timestamp. The external 

timestamps show completely different pictures. The FS is charac- 

terized by always providing valid values, whereas the FSW shows 

a large proportion of non-valid , which correspond to missing data 

in this case and not actual non-valid values. Finally, when the FS 

and LM timestamps are compared, the average values show that 

FS captures most of the data beyond the reference + 6 months (i.e., 

> 6 ), whereas LM does it in similar proportions on both valid time 

frames. This supports the delayed nature of FS to capture malware 

outbreaks and the goodness of LM to locate most data samples 

with improved precision. 

The results shown in Table 4 and the analysis performed sug- 

gest that FS and LM are significantly better timestamps than the 

other analyzed approaches in terms of suitability, statistical prop- 

erties, and accuracy. To further investigate their relationship, the 

next section analyzes statistically the differences between them 

and their relation over time. 

5.2.6. Last modification vs. first seen: a comparative analysis 

Figs. 8 and 9 provide the differences between both timestamps, 

computed for each data sample, separately for benign and mal- 

ware data. The base difference unit is days and the base times- 

tamp used is the last modification , so that the differences can be 

Fig. 8. Differences LM-FS for benign data. 

Fig. 9. Differences LM-FS for malware data. 

expressed in positive terms (e.g., +8 days). The assumption was 

that the last modification timestamp would place the sample more 

accurately in the Android historical timeline, usually earlier than 

first seen . Therefore, it was chosen as the reference time. These 

graphs report relevant descriptive statistics regarding the tempo- 

ral differences (i.e., Y -axis) for the samples in the data set located 

in a specific period (i.e., six months chunks) using the last modifi- 

cation timestamp (i.e., X -axis) concerning the first seen timestamp. 

The data is split into chunks of 6 months data (i.e., period) for bet- 

ter interpretation of the results and deeper exploration of the dif- 

ferences. Only the valid time frame is plotted (i.e., from 2009 to 
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2020). The semesters are referenced as appended suffixes to the 

year figure (e.g., 2009.1 reflects the first six months of 2009). The 

temporal differences are calculated individually per data sample 

and grouped into data periods. Descriptive statistics are calculated 

per period: mean , median , minimum difference, and standard devia- 

tion . In this regard, the solid blue line reports the average value for 

each period, while the dashed blue line provides the median value. 

These two central tendency measures report the average value of 

displacement of a sample per period. The green line provides the 

minimum difference value found in each period. The standard devi- 

ation, plotted as a blue area, conveys the average spread of dif- 

ferences around the mean for the data samples located in each 

chunk. 

As expected, in both cases, a positive difference between both 

timestamps is observed. This evidences that the first seen times- 

tamp locates the samples later in the timeline, thus delayed re- 

garding the last modification timestamp. This fact is especially pro- 

nounced in the early years of Android history, with average dif- 

ferences of around 1500 days (i.e., four years) for both malware 

and benign applications. Thus it implies that an instance located 

in 2009.1 (i.e., the first semester of 2009) by the last modifica- 

tion timestamp might be located by the first seen timestamp in 

2013.1 (i.e., the first semester of 2013). This significant difference 

in the temporal location of samples might impact the performance 

and adaptation capabilities of a detection system to deal with con- 

cept drift, as first seen may generate artificial drift by misplacing 

the data, which might be more complex to model effectively than 

real concept drift, generally smoother. 

However, as can be observed in Figs. 8 and 9 , the differences 

between these timestamps have been reducing over time, as ev- 

idenced by the monotonically decreasing mean value for benign 

instances and the significant decrease that has occurred in the 

case of malware instances, especially in recent years. This fact has 

made the timestamps more synchronized and closer over time, 

and even equivalent for the 2019–2020 time frame. For instance, 

2020.1 and 2020.2 periods have mean values of 4.88 and 12.37 

days and median values of 2 and 3 days, respectively, for benign 

samples, and average values of 15.9 and 16.45 days and medians 

of 5 and 11 days, respectively, in the case of malware samples. 

This is a dramatic change when compared to 2010.1, which shows 

a mean value of 728.4 days and a median of 747 days for mal- 

ware, and an average of 774.3 days and a median of 821 days 

for benign data. As a result, the gap between both timestamping 

approaches to date samples has significantly decreased over time, 

making them converge and, consequently, increasing the reliabil- 

ity and accuracy of the first seen timestamp in more recent years 

(i.e., 2019–2020). 

The convergence of both timestamps supports the hypothesis 

that the last modification timestamp is accurate and that it is rarely 

tampered with by attackers. Consequently, if the system has to 

learn from past data and predict about past samples, it might be 

safer to use the last modification timestamp, whereas, if the system 

uses mainly recent data, the convergence of the timestamps im- 

plies that both approaches could be appropriate and perform sim- 

ilarly against data drift. Furthermore, if data tampering is a major 

concern, the usage of first seen ensures that the data have not been 

tampered with, even though a delay should always be assumed. 

5.3. Concept drift handling 

For the purpose of this research, the existence of concept drift 

is assumed and not proven. The concept drift phenomenon has al- 

ready been proved and explored in previous research for the fea- 

ture spaces used in this study: system calls, permissions, and API 

calls ( Guerra-Manzanares et al., 2022a; Onwuzurike et al., 2019; Xu 

et al., 2019 ). 

Table 5 

Data set size per timestamp in the period 2011.2-2018.1. 

Timestamp Malware Benign Total 

EM 33,346 7602 40,948 

LM 38,496 13,456 51,952 

FS 40,376 32,870 73,246 

FSW 2,137 116 2,253 

DD 36,805 11,555 48,360 

MD 36,810 11,500 48,310 

The purpose of this experimental scenario was to evaluate the 

impact and adaptive response generated by the appearance of con- 

cept drift, which is distinct for different timestamps and feature 

spaces, and analyze what approach was better to model natural 

concept drift, which is assumed to be mostly a relatively smooth 

transition with eventual sudden drifts. The sudden changes may 

occur, for instance, when a new malware outbreak occurs and the 

ML model has to learn about the new threat, which is not simi- 

lar to previous data, and, consequently, adapt to it by updating its 

knowledge. 

The adaptive classifier used in this study requires the selec- 

tion of hyper-parameters such as the chunk size (i.e., number of 

samples per chunk), pool size (i.e., number of classifiers in the 

pool), and time constraint (i.e., max. time frame of data included 

in the chunks). Based on the data distribution and experimen- 

tal tests, a good set of hyper-parameters was 40 0 0 samples per 

chunk, 12 classifiers in the pool, and 3 months of data per chunk. 

All the classifiers in the pool were Random Forest models, which 

have proved successful for the task in similar studies ( Guerra- 

Manzanares et al., 2019b ). As the data set is imbalanced towards 

the malware label, the random oversampling technique was ap- 

plied to the training chunks to balance the classes and avoid a bi- 

ased classifier. 

Due to the characteristics of KronoDroid data and the demands 

of machine learning models, it was not possible to use the whole 

Android historical timeline to build effective ML-based classifiers 

per quarter (i.e., there is not enough data in the early years or 

more recent years), so the experimental setup was restricted to 

the period encompassing from the second semester of 2011 until 

the first semester of 2018. This time frame spans 7 years of An- 

droid history, including the most active years of Android malware 

development ( AV-Test, 2021; Johnson, 2021 ). 

The available data per timestamp for the selected period (i.e., 

from 2011.2 to 2018.1) is provided in Table 5 . 

As can be noticed in Table 5 , FS provides most of its data within 

this range, whereas the external timestamps provide lower propor- 

tions of samples (i.e., especially in the case of EM ). As expected, 

the data is imbalanced towards the malware class, thus justifying 

the usage of a data set balancing technique to avoid any class bias 

from the classifier. Finally, as the data provided by the FSW times- 

tamp is not enough to build a single classifier, this timestamp was 

discarded and not used in the following experimental setups. 

Three experimental setups are described in the following sec- 

tions. The distinct feature spaces were explored individually and 

used as input features to the adaptive classifier algorithm. The data 

was split into chunks and processed sequentially. The timestamps 

were used to place the data samples into consecutive chunks, and 

the system performance was retrieved. The F1 score performance 

metric is provided for each induced adaptive classification model 

(i.e., one per each combination of a timestamp and feature space). 

It is worth noticing that no hyper-parameter optimization was per- 

formed as the main aim was to test the same scenario for all 

timestamps and compare the outcome, so no model was optimized 

to ensure the same conditions. The performance graphs provide 

each model performance with different color and/or line style. EM, 
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Fig. 10. F1 performance of permissions-based models using different timestamps. 

DD and MD are provided in green color but with solid, dashed, and 

dotted line styles, respectively. LM is reported with a solid blue line 

while FS with a solid red line. As the most suitable options were 

LM and FS , their average performance for the whole period is re- 

ported with a horizontal overlay line, LM with a solid blue line and 

FS with a solid red line. 

5.3.1. Permissions 

The performance results of the models built for the permissions 

feature space and using the different timestamps are provided in 

Fig. 10 . The permissions feature space is defined by categorical data 

and is the smallest of the analyzed ones (i.e., 166 dimensions). As 

can be observed, despite two sudden drops (and consequent re- 

covery), the smoother line is provided by the LM timestamp. The 

other external timestamps provide similar performance but de- 

scribe a more fluctuating surface. The FS timestamp performance 

is not smooth, characterized by several sudden peaks and bottoms 

in neighboring quarters, especially at the beginning and the end of 

the analyzed time frame (i.e., bumpy red line). Furthermore, it has 

the lowest average in the analyzed period. Despite that, the overall 

performance of all models is over 0.90 F1, which reflects the good- 

ness of the system to deal with concept drift, and especially with 

natural data drift, which is better captured by the internal times- 

tamps. 

5.3.2. System calls 

The performance of the models built using the system calls fea- 

ture space is provided in Fig. 11 . The system calls feature space 

is numeric and larger than the permissions space (i.e., 288 di- 

mensions). Similar to Fig. 10 , the external timestamps provide 

smoother performance lines, and, again, the LM timestamp seems 

to yield the best performance. LM enables the model to capture 

better the natural data drift, showing quick recovery after sudden 

data drifts. However, in this case, EM achieves similar performance 

over the whole range but shows a more irregular performance line. 

As in the permissions space, FS provides the worst performance 

and is characterized by sudden dips and peaks, likely caused by ar- 

tificial data drift. An interesting fact in this plot is that from 13-Q3 

until 16-Q3, LM and FS seem to perform synchronously. The FS per- 

formance line is relatively similar but delayed one quarter regard- 

ing LM and reaches more extreme values. This goes in line with 

the median differences observed in this time frame in Figs. 8 and 9 

Fig. 11. F1 performance of system calls-based models using different timestamps. 

Fig. 12. F1 performance of API calls-based models using different timestamps. 

(i.e., below 90 days for both classes). Lastly, in this case, the dif- 

ference between FS and LM average performance is significantly 

larger, with the average performance of LM of around 0.93 and at 

the 0.87 level for FS . 

5.3.3. API calls 

The performance of the models built using the API calls fea- 

ture space is provided in Fig. 12 . The API calls feature space is 

the largest feature space, with over 53,523 features. Similar to the 

other feature spaces, the performance of the internal timestamps 

is rather similar, and over the performance of FS . However, in this 

case, two deep dips are observed for the internal timestamps that 

are not observed for FS . It is worth noticing that, in the case of 

high-dimensionality spaces, the quantity of data is critical to build- 

ing effective models (i.e., data density is needed to generate pre- 

cise classification boundaries), a phenomenon called the curse of 

dimensionality . As reflected in Table 5 , the data samples available 

for the internal timestamps are fewer and significantly reduced for 

these specific periods. Therefore, reduced performance might be 

observed due to insufficient data to cover the feature space effi- 
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ciently. However, despite the deep dips in those specific periods, 

the average performance of LM still outperforms FS. 

6. Discussion 

Timestamp selection has not been explored in concept drift- 

related research, where some common approaches are usually 

used without considering alternatives. However, depending on the 

timestamp selected, the same app might be located in different 

temporal contexts within the Android historical timeline. The posi- 

tion of the apps along the timeline determines the observed drift, 

whether natural or artificial. Therefore, timestamp selection is crit- 

ical to handle concept drift effectively. 

This research has demonstrated that the selection of the times- 

tamp is an important decision in building long-lasting machine 

learning-based Android malware detection systems that adapt and 

learn over time about drifting data. The most common approaches 

for timestamps used in research studies, such as FS and DD , have 

been shown sub-optimal in tackling emerging concept drift. Fur- 

thermore, the test scenarios and statistical analysis suggest that FS 

should not be employed when old data is used, as it can misplace 

data samples along the historical timeline, generating artificial data 

drift that cannot be modeled efficiently by machine learning sys- 

tems due to the randomness and noise added to the detection task. 

In the seek for alternatives, LM has emerged as a reliable and suit- 

able timestamp that outperforms other options to handle concept 

drift in the Android malware detection task. Despite showing an 

inherent tampering risk, as it is extracted from the inner files of 

the apk and, consequently, in the scope of the attacker, it has been 

demonstrated to be robust and accurate. Other alternatives such 

as DD, MD, and EM can provide similar performance, but as their 

suitability is lower, fewer data samples can be used to address 

the drift, thus providing less effective results. Furthermore, the us- 

age of specific file-related timestamps might be riskier as there is 

no guarantee that the timestamps are set for those specific files 

( du Luxembourg, 2021 ). A potential benefit of the usage of LM or 

even EM is that they do not rely on a single file to date the ap- 

plication but on any of the inner files, which may overcome the 

single-file dependency of the DD and MD timestamps. 

The implications of our findings are relevant for any An- 

droid malware detection solution seeking long-term reliable per- 

formance. Most research studies focus on the optimization of their 

systems in a restricted testing set, disregarding temporal context 

and data evolution. However, the features used for Android mal- 

ware detection are likely to suffer concept drift at any point, as 

the dynamism of the malware generation phenomenon (e.g., new 

malware trends or new malware capabilities) and the evolution of 

the Android framework (e.g., changes in API calls or permissions) 

are directly reflected in the features. Thus optimizing for static his- 

torical data sets does not guarantee effective future performance. 

The system might not be able to predict well future and unknown 

data, which is the main objective of machine learning-based de- 

tection systems. Furthermore, the traditional random split of data 

into testing/training sets generates impossible data configurations 

and yields over-inflated performance metrics caused by subtle but 

harmful data snooping . 

This research has shown that, in general, inner timestamps 

might be more appropriate to build models in which past data is 

involved, whereas, for recent data, FS might be a good approach as 

the temporal gap between samples has been reducing over time, 

thus increasing the accuracy of FS . In any case, timestamp selec- 

tion is critical to achieving long-lasting, high-performance Android 

malware detection systems. 

The main limitation of our study is that the results strictly rely 

on the reliability of the data used. Even though the size of the data 

set is large enough to enable statistical inference, the soft labels of 

the data set were used, which are not as certain as the hard labels. 

We chose the soft label to perform our analysis as more data was 

available, so the error due to the class label might be minimized 

by increased data quantity. Furthermore, the malware family anal- 

ysis relied on the malware family label provided by the data set 

( Guerra-Manzanares et al., 2021 ). However, malware family naming 

conventions vary significantly among antivirus vendors. Therefore, 

the accuracy of the malware family label is not fully guaranteed. 

To minimize this issue, for the malware family analysis, old and 

well-known malware families were used as it might increase the 

certainty around the actual malware family label for the sample. 

7. Conclusions 

The vast body of Android malware detection research has ne- 

glected the impact of concept drift in Android malware research. 

Timestamps, critical elements for concept drift handling, have not 

received the deserved attention in the related literature. Our study 

performed an extensive benchmarking about timestamp options 

and their capabilities to deal with concept drift effectively in dif- 

ferent feature spaces. Our results show that timestamp selection 

is a critical decision and that the last modification and first seen 

timestamps are the best options to build effective, long-lasting ML 

models for Android malware detection under data evolution chal- 

lenges. 
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On the application of active learning to handle
data evolution in Android malware detection

Alejandro Guerra-Manzanares and Hayretdin Bahsi

Tallinn University of Technology, Tallinn, Estonia

Abstract. Mobile malware detection remains a significant challenge in
the rapidly evolving cyber threat landscape. Although the research about
the application of machine learning methods to this problem has provided
promising results, still, maintaining continued success at detecting mal-
ware in operational environments depends on holistically solving chal-
lenges regarding the feature variations of malware apps that occur over
time and the high costs associated with data labeling. The present study
explores the adaptation of the active learning approach for inducing de-
tection models in a non-stationary setting and shows that this approach
provides high detection performance with a minimal set of labeled data
for a long time when the uncertainty-based sampling strategy is applied.
The models that are induced using dynamic, static and hybrid features
of mobile malware are compared against baseline approaches. Although
active learning has been adapted to many problem domains, it has not
been explored in mobile malware detection extensively, especially for
non-stationary settings.

Keywords: mobile malware · Android · malware detection · active learn-
ing · concept drift · data evolution

1 Introduction

Mobile devices play a significant role in our personal and professional lives. Ma-
licious actors target these devices for various purposes ranging from pursuing
economic benefits to collecting information for espionage activities. Mobile mal-
ware is one of the greatest cyber threats in this digital ecosystem. Android is the
most targeted mobile operating system (OS) by attackers, its share in the threat
landscape constitutes 98% of the mobile cyber attacks [8]. The security efforts of
Google and device vendors in this regard [14, 4] have not been able to put a stop
to the increasing trend of this type of cyber attack. Machine learning methods
have been proposed to detect malware [18] as these techniques may discriminate
behavioral patterns of mobile apps to identify new malicious applications.

The research studies that apply machine learning methods to cyber secu-
rity problems, in general, and mobile malware detection, in particular, usually
validate their results on static data sets belonging to specific time frames (e.g.,
Drebin [2]). However, the threat landscape is subject to constant evolution due
to the inherent attack-defense confrontation between the malicious actors and
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the security experts in the domain. Relevant dynamic and static features of mo-
bile malware have been proved to continuously change (i.e., legitimate apps are
also prone to change to some extent) so that the discrimination capabilities of
the learning models diminish over time [7]. Thus, handling the non-stationary
property of the data should be one of the building blocks of an operational sys-
tem to maintain continuous high detection performance for malware detection
purposes. This denotes that the learning model should be retrained when a sig-
nificant data distribution shift is detected. Based on the resources available, one
option would be to perform periodic retraining of the model to guarantee an
updated model regardless of the variations in the data.

Finding labeled data is always a significant challenge in the cyber security
domain due to the lack of human resources or confidentiality concerns that elim-
inate the possibility of data sharing between different organizations. Although
one-class models, which are trained on only legitimate samples, provide a so-
lution to some extent, their performance is usually lower when compared to
supervised models and they do not enable the induction of multi-class models
which may be highly beneficial to identify malware families. Additionally, they
require additional mechanisms to prove that legitimate samples are free from
any malicious content, which refers to another form of labeling. Similar to all
settings, the effectiveness of non-stationary ones also hugely depends on feeding
the training sets with recent samples which are correctly labeled. Therefore, the
design considerations of such operational detection systems should holistically
address labeling and retraining aspects.

On the other side, despite the aforementioned problems, it does not mean
that the cyber security vendors (i.e., companies providing mobile malware scan-
ners or protection products in our case) cannot assign any resources for labeling.
A typical vendor has teams of malware analysts that work on a daily basis
to investigate the new malware samples. Therefore, we contemplate that both
data labeling and model retraining can be achieved by adapting active learning
to a non-stationary environment. Active learning approaches create an interac-
tive channel between experts and models so that the models themselves select
the most informative samples from an unlabeled data pool, ask the class label
from the experts and incorporate their answers into the model. Active learning
approaches aim to minimize the labeling efforts to achieve the highest model
performance possible. These approaches are very instrumental in cases where
obtaining unlabeled data is easy and cheap but labeling is expensive, which
reflects the needs of our target problem [15].

In this study, we adapted a pool-based active learning approach that uses
the uncertainty sampling strategy to a non-stationary setting and demonstrated
its effectiveness in terms of detection performance and the required labeling ef-
fort for mobile malware detection in Android devices. We utilized the Android
malware data set KronoDroid [5] which suits well for non-stationary model ex-
periments as it has timestamped malware and goodware samples encompassing
the whole Android historical timeline. Dynamic and static features of Android
apps, more specifically, system calls and permissions, are used for inducing the
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models separately or in hybrid mode. We compared our results with two baseline
models: (1) a batch retraining strategy that uses all the previous labeled sam-
ples for inducing a model for the next time period, and (2) an iterative learning
strategy that randomly selects a sample from the unlabeled data pool without
using any informativeness criteria. Our results show that the uncertainty sam-
pling method achieves over 91% F1 score, on average, throughout a 7-year-long
period while enormously minimizing the required labeling effort (i.e., 2-3% of
the labeled samples are enough for high detection performance when compared
to the batch retraining strategy).

The performance of active learning in non-stationary settings, subject to con-
cept drift issues, has not been demonstrated comprehensively for mobile malware
detection. Therefore, this study provides a solid contribution by proposing ac-
tive learning for addressing the problems of such detection systems in operational
settings.

It is important to note that although this study presents experimental results
of a solution that covers both data labeling and model retraining, our focus was
to elaborate on the trade-off between the labeling effort and its impact on model
performance. We assumed that the model is retrained in fixed intervals. It is
evident that the detection performance and labeling resource consumption may
be also enhanced by different retraining approaches or intervals which can be
coupled with various concept drift detectors. However, the detailed analysis of
retraining options is out of scope in the present paper.

This paper is structured as follows. Section 2 provides background informa-
tion and a summary of the related literature. Section 3 provides the methodology
while Section 4 reports and discusses the main results. Section 5 concludes the
study.

2 Background Information & Literature review

2.1 Background information

Active Learning A form of semi-supervised learning based on the assump-
tion that a machine learning (ML) algorithm can yield better performance with
fewer training iterations (i.e., less data) if it is allowed to select the data from
which it learns [16]. For this purpose, a supervised model is trained with a small
quantity of data (i.e., active learner) and enabled to submit queries for selected
unlabeled data samples to a labeling oracle (i.e., a human expert). The main
aim is to achieve high performance using as few labeled samples as possible, thus
minimizing the cost of the data labeling process.

The selection of the specific instance for labeling (i.e., query instance) at
each training iteration is based on an informativeness assessment of the whole
set of unlabeled instances performed by the active learner using a specific query
strategy [17]. The pool-based framework, described graphically in Figure 1, is
the most common active learning approach. This approach assumes the existence
of a small labeled data set and the availability of a large pool of unlabeled data
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[16]. Query instances are selected from the unlabeled pool for expert annotation.
The labeled data sample is then incorporated into the labeled training set which
is used to update the knowledge of the ML model (i.e., retraining).

Fig. 1. Pool-based active learning framework

Various query strategies can be used to choose the most informative instance
[17]. The most commonly used approach is uncertainty sampling, where the query
instance is selected based on how certain is the learner about the class of the
samples. In the classification uncertainty scoring strategy, the learner selects
the instance (x) for which it is least certain about how to label (i.e., greatest
uncertainty). More precisely, the strategy is based on the least confidence score
(U) computed as:

U(x) = 1− P (y∗|x) (1)

where x is a specific instance and y∗ is the most likely prediction for that instance.

Concept Drift Most machine learning models are built on the assumption
of stationary data, so the testing data attributes are assumed to be similar to
the training data attributes, not changing over time. However, in some problem
domains, this assumption does not hold as the incoming data features distri-
bution may change over time, thus affecting the generalization of the model
against new data and, consequently, harming the effectiveness of the detection
model over time, a phenomenon called concept drift [10]. More precisely, con-
cept drift is observed when the underlying data distribution changes over time
(i.e., Pt(X) ̸= Pt+1(X), where t and t+ 1 indicate consecutive non-overlapping
periods) and affects the decision boundary of the classifier which impacts the
target class estimation (i.e., Pt(y|X) ̸= Pt+1(y|X)) and results in a decay of
performance over time. The appearance of any type of concept drift requires the
update of the knowledge of the learning model to the new data distribution to
keep high-performance metrics [10].

As a result of the constant evolution of the threat landscape (e.g., new mal-
ware) and the inherent evolution of the Android framework (e.g., system up-
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dates), Android malware detection systems are prone to concept drift issues.
Therefore, an effective malware detection system must update its knowledge to
sustain high detection performance over time.

2.2 Literature review

The first active learning applications in the cyber security domain were carried
out for network intrusion detection using the widely-known KDD Cup 1999
data set [1, 9]. Uncertainty sampling strategy achieved the reduction of required
labeled data by a factor of eight when compared to the baseline strategy, random
sampling, [1] whereas confidence measures identified by transductive reliability
estimation reduced this factor to the fifth of the same baseline model [9].

Malicious doc files were detected by an active learning solution that yielded
a high-performance model with 14% of the labeled samples used by the passive
learning model [11]. The directory paths that are retrieved from the hierarchical
structure of office documents constitute the features of the detection model in
the corresponding study. Uncertainty sampling is complemented by a rare-class
detection that is applied in the form of multi-class formulation to annotate mal-
ware families [3]. The main idea is to include representative samples from all
families while selecting the samples from the pool. The proposed approach was
applied to two problems, detection of malicious pdf files and network attacks.

A few Android research studies have concentrated on concept drift handling
and none of them used the active learning approach in their method. MaMaDroid
[12] and DroidEvolver [19] used API calls and traditional ML and online algo-
rithms, respectively, to handle concept drift, whereas [6] used system calls and
a data stream methodology to tackle the issue.

[13] draws the attention to experimental biases in malware detection research
including the temporal bias and demonstrates how validation designs with such
biases influence the results obtained. Although it also demonstrates some results
regarding the active learning application in non-stationary settings, the purpose
is to underline the biases rather than elaborating on an active learning approach.
In our study, we investigate the impact of feature types (i.e., dynamic, static, or
both) and data balancing strategies on the detection results. We used a data set
that encompasses a longer time frame (i.e., our experimentation covers a period
of seven years, whereas [13] covers two years of Android data). Our benchmark
includes a comparison with random sampling to show the effectiveness of the
uncertainty sampling strategy in our problem formulation.

Similarly, active learning is used as one of the methods for maintaining the
detection stability of a mobile malware detection model over time in [20]. Al-
though this period encompasses a long period, five years, this study concentrates
on the representation of the feature space rather than the comprehensive evalu-
ation of the active learning approach. More specifically, this study proposes an
abstract representation of API call features to grasp better semantic similarities
between different malware samples, thus, the model induced using those features
can detect the malware evolution better.
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3 Methodology

The following sections describe the data set used in our experimental setup, the
methodological workflow and the tested scenarios to handle concept drift for
Android malware detection using active learning techniques.

3.1 Data set and data features

The data set used in this research is KronoDroid [5], a hybrid-featured, labeled,
and fully timestamped Android data set, which makes it the most suitable data
set for Android concept drift exploration among the available data sets for the
purpose of Android malware detection. The real device data set was used due
to its larger size (i.e., 41,382 malware samples, and 36,755 benign apps). For
this study, system calls and permissions features were used as models’ input fea-
tures, along with the first seen timestamp and the class labels, which were used
to order the samples along the Android historical timeline and class identifica-
tion, respectively. The first seen timestamp, retrieved from VirusTotal, provides
information about when the sample was received for the first time (i.e., user
submission) by the detection system. The usage of this timestamp enabled us
to simulate the constant data stream of Android data samples as a realistic
scenario for a malware scanner company dealing with an Android malware de-
tection system subject to concept drift issues. For model induction, three sets
of input features were used to describe the apps, namely, static (permissions),
dynamic (system calls), and hybrid (system calls and permissions) with lengths
166, 288, and 454, respectively, and composed of different variable types. Table
1 summarizes the data set used in this study.

Table 1. Data set summary

Data Size Description

Benign samples 36755 Time frame: 2008-2020

Malware samples 41382 Time frame: 2008-2020

Permissions 166 Binary features

System calls 288 Numeric features

Hybrid (perms + syscalls) 454 Binary and numeric features

3.2 Workflow and scenarios

To explore the application of active learning for concept drift handling and adap-
tation, the data was divided into consecutive data chunks, simulating a data
stream covering the Android historical timeline. The samples were ordered and
grouped in data chunks, according to their timestamp. Additionally, maximum
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data chunk size and time constraints were used to ensure the existence of suf-
ficient data (i.e., over 100 samples) for every chunk in the whole time frame
analyzed. The same classifier algorithm was used in all scenarios and was re-
trained using different concept drift-handling strategies.

The test scenarios for concept drift handling are described as follows:

– Batch retraining : This strategy updates the detection model by retraining
the classifier using the whole amount of data available in each specific chunk,
and the retrained model is used to forecast the labels for each subsequent pe-
riod. Therefore, at time t all data from previous time periods (i.e., s0, .., st−1,
where s identifies a data set belonging to a specific time period, t) was used
to update the model, and forecast the labels of st+1. Next, the whole data
set belonging to t + 1 was used to update the model (i.e., retraining) and
forecast labels for st+2. This cycle was repeated for each data chunk until
the end of the analysis period. This batch-retraining approach is the frequent
solution utilized for concept drift adaptation. It was used as a baseline in
our experimentation.

– Active learning : This strategy updated the detection model by selecting the
most informative instances for each data chunk, one at a time, until a pre-
defined performance threshold was reached. The classification uncertainty
score, as described in Section 2.1, was used to rank and select one instance
at a time from the unlabeled pool of instances (i.e., whole data chunk).
The selected instance was labeled by the oracle and used to retrain the
model. The rest of the data chunk was used to evaluate the performance
increase/decrease after the single retraining step. The training cycle, as de-
picted in Figure 1, was repeated until a performance score threshold was
achieved. The remaining data, not used in the iterative training steps, were
discarded and the trained model was used to forecast all the samples for
the next period, as in batch retraining. If the performance retrieved process-
ing all the data chunk was lower than the established threshold, the model
was rolled back to its best performer configuration and used to forecast the
subsequent period data.

– Random sample selection retraining : This strategy uses the same iterative
training steps as the active learning approach but, in this case, no score
is used to select the most informative instances from the unlabeled pool
(i.e., whole data chunk). Instead, random sample selection is used. This
strategy enabled us to simulate the scenario where a bunch of unlabeled
data is available, but no specific criterion is used to select the instances.
Thus, samples are selected at random. This model provides the baseline to
assess the effectiveness of the sample selection strategy in terms of data
labeling minimization.

All the testing scenarios were performed using the same classification al-
gorithm, induced separately using the three feature sets (i.e., static, dynamic,
and hybrid). The performance of the induced models, using the different sets
of features for all the strategies, was retrieved and compared. In all cases, the
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model trained using data from period t − 1 was used to forecast the labels of
the data belonging to the subsequent period, st. The main difference among the
approaches lies in the training data used and, more specifically, in the strategy
used to select the samples for model updating (i.e., all data, random selection
or uncertainty score).

The performance of the detection models using the described retraining
strategies to handle concept drift was evaluated using two relevant binary classi-
fication performance metrics: accuracy and F1 score metrics. These metrics were
retrieved for each data chunk (i.e., period).

The accuracy metric reports the number of correctly predicted data points
out of all the test data points, whereas the F1 score metric is the harmonic mean
of precision and recall. The precision of a classification model informs about the
fraction of true positive (i.e., malware) data points that the model correctly
classified as positive (i.e., malware), while recall reports the fraction of samples
classified as positive among the total number of positive samples in the testing
set.

4 Results & Discussion

The three concept drift-handling retraining strategies described were evaluated
using the same base classifier, a Random Forest instance trained using the same
initial data set and the default values of Python’s scikit-learn library. The initial
training data set encompassed the months of July and August 2011. This period
was selected as it provided enough data to generate a good initial base classifi-
cation model. Despite that, as the initial training data set was not balanced, a
data balancing technique was applied. Two data balancing methods were used
(i.e., random undersampling and random oversampling) and their impact was
evaluated. As explained, the remaining data, ordered by their timestamp, were
split into consecutive data chunks using temporal and size constraints. Based
on experimental tests, the maximum temporal constraint or time window was
set at 60 days (i.e., ≈ 2 months) and the maximum data pool size set to 4000.
Therefore, the maximum data chunk size was composed of 4000 data samples,
spanning a maximum of 60 days of data per chunk. The time period analyzed
ranges from the initial time frame (i.e., July-August 2011) to May-June 2018.
Posterior time frames did not provide enough quantity of data to continue our
experimentation (e.g., chunks with less than 50 samples), so the experimentation
time frame and the provided results encompass 7 years of the Android history.

The active learning query strategy was implemented using Python’s modal
library, while the balancing techniques used the imblearn library. Given the
inherent randomness of some of the strategies (i.e., random selection) and tech-
niques used (i.e., random under/oversampling) each of the evaluated scenarios
was repeated 30 times and the average values were reported. The performance
threshold to stop processing data for the active learning approaches was set at
0.95 F1 score. Therefore, if after processing n samples, an F1 performance of
0.95 (out of 1) or higher was obtained, no more data was labeled in that quarter
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and the resulting model was used to forecast the labels for the next period data.
When the performance threshold was not achieved, the highest F1 performer
model was used.

Table 2 provides the obtained results using all the described concept drift-
handling approaches. More specifically, the column feature set describes the in-
put features used by each specific model tested and the balancing method column
reports the technique used to balance the initial data set, in the case of the two
query strategies used (i.e., random and uncertainty), as well as all data chunks
for the batch approach (i.e., to avoid that the imbalanced data chunks gener-
ated biased RF models). For each combination of the feature sets and balancing
methods, three strategies to handle concept drift were evaluated, described in
Section 3.2, and referenced in the query strategy column. The remaining columns
in Table 2 report the performance metrics that enabled us to analyze and com-
pare all the evaluated approaches. The labeled samples column informs about
the average number of samples processed by each model (i.e., , x), that is, the
number of instances labeled, to reach the performance threshold, F1 ≥ 95%. The
columns F1 score and accuracy provide the average performance of the trained
models in all time windows in the analyzed time frame (e.g., 45 data chunks
spanning between September/October 2011 and May/June 2018). The reported
values for labeled samples and the performance metrics are the average values
of the 30 tests performed for each specific scenario. The standard deviation (i.e.,
s) is reported to contextualize better the mean value as a data descriptor. Addi-
tionally, for the labeled samples, the proportion of the average number of labeled
samples reported in relation to the total data available in the analyzed period
is reflected by the % column.

As can be observed in Table 2, when the permissions features are used, the
active learning approach (i.e., uncertainty) provides similar performance as the
baseline model (i.e., batch, using all data), but requires the smallest number of
data samples among the tested strategies. The uncertainty-based active learning
approach minimizes the data labeling needed to achieve similar performance as
the other two approaches using either of the balancing techniques. More precisely,
the batch approach, which requires the labeling of all the data samples, shows
slightly better performance than the active learning approaches, but these show
significantly lower data labeling requirements. In this regard, the uncertainty-
based active learning approach outperforms the random selection approach by
using less than 18% of the total data in both cases. Even though both single
query-based retraining approaches show benefits over the batch approach, the
active learning approach requires three times fewer data than the random in-
stance selection to achieve the same performance metrics. This fact evidences
that, in the permissions case, the single query-based gradual modification of the
classifier decision boundary shows benefits when it is compared to the base-
line model, which uses batch processing (all data). The random approach shows
slightly lower performance than the baseline model, but with less data labeling
needs, evidencing that more data might not be necessary to handle concept drift
effectively but that, more importantly, the instance-based gradual retraining of
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Table 2. Testing scenarios results

Feature set Balancing method Query strategy
Labeled samples F1 score Accuracy
x s % x s x s

Permissions

Oversampling
Batch 67068 0 100 91.2 0.4 92.5 0.4

Random 30100.4 129.8 44.9 89.4 1.0 90.3 1.0
Uncertainty 11845.6 41.7 17.7 89.4 0.6 90.4 0.6

Undersampling
Batch 67068 0 100 90.9 0.8 92.4 0.8

Random 29409.9 113.5 43.9 89.5 1.1 90.3 1.1
Uncertainty 9281.4 35.5 13.8 89.6 0.7 90.5 0.6

Syscalls

Oversampling
Batch 67068 0 100 85.1 0.8 86.1 0.7

Random 45028.9 127.8 67.1 84.1 0.9 84.9 0.9
Uncertainty 13098.8 38.6 19.5 84.5 0.9 85.3 0.8

Undersampling
Batch 67068 0 100 82.7 1.2 83.3 1.2

Random 45378.7 118.5 67.7 84.5 0.9 85.0 1.0
Uncertainty 12748.3 52.3 19.0 85.1 1.0 85.5 1.0

Hybrid

Oversampling
Batch 67068 0 100 92.8 0.5 93.5 0.4

Random 22057.2 121.5 32.9 90.9 1.0 91.2 1.0
Uncertainty 1991.9 8.9 3.0 91.6 1.2 91.9 1.2

Undersampling
Batch 67068 0 100 92.5 0.6 93.1 0.6

Random 20978.4 116.1 31.3 91.0 1.1 91.1 1.1
Uncertainty 1459.4 6.3 2.2 91.7 1.4 91.9 1.4

the model may be more beneficial to handle concept drift effectively. There are
no major differences in performance in any cases when both balancing methods
are compared. However, the undersampling approach provides similar perfor-
mance metrics to the oversampling method with significantly fewer data in the
active learning case (i.e., 28% more data is needed, on average, for the oversam-
pling case than for the undersampling scenario). In conclusion, the best results
in terms of both performance and minimization of data labeling needs, when the
permissions feature set is used, are obtained using the undersampling balancing
strategy combined with the uncertainty-based active learning query approach.

Comparatively, the system calls feature set produced the worst performance
models among all tested models in both evaluated metrics, the number of labeled
samples needed and performance achieved. More precisely, the batch strategy us-
ing undersampling provides average performance metrics below 85%, which are
slightly better when oversampling is used. These performance metrics are the
worst across all models and feature sets, as none of the tests using the permis-
sions or the hybrid feature sets go lower than 89.4% F1 and 90.3% accuracy.
However, the system calls-based model performance is significantly improved
when a single query strategy is implemented, and, more specifically, when the
uncertainty-based active learning approach is used, reaching similar performance
as the baseline model, as in the permissions case, and even outperforming when
undersampling is used. Despite that, the labeling needs for the uncertainty-
based active learning, which, again, minimizes the labeling cost, is superior to
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the permissions case for both sampling techniques (i.e., a minimum of 19% of the
data has to be labeled by the oracle). It is worth noting that random selection
reaches similar performance as the uncertainty-based strategy but requires, in
both cases, over 66.7% of the whole data to be labeled. Thus, again, the sin-
gle query approach shows advantages over batch processing to handle concept
drift effectively, especially when the uncertainty-based active learning approach
is applied.

The hybrid feature sets, which combine the permissions and system calls
sets for model induction, provide the best overall models, in all cases. The ac-
tive learning approach using the uncertainty criterion reaches a slightly lower
performance than the baseline performance implementing the batch approach.
However, in this case, the benefits of the active learning approach are especially
evident for both balancing techniques. The labeling needs are significantly low-
ered, not over-passing 9% of the whole data set. As a result, they provide the
best performance-labeling trade-off results among all the test scenarios. In this
regard, the best model of all the tested scenarios is obtained using the active
learning approach combined with undersampling, yielding an average 91.7% F1

score and 91.6% accuracy using, on average, only 1460 samples (i.e., ≈ 2.2%
of the total data) to provide effective detection in the seven-year-long study
period. Comparatively, the uncertainty-based active learning approach for the
hybrid-featured models requires 10-15 times fewer data than the random query
approach to achieve better performance results and 50 times fewer data to reach
similar detection performance than the baseline models. These results show that
the hybrid feature set generates better discriminatory models which benefit no-
tably from the active learning approach, being able to handle concept drift with
a significantly reduced quantity of labeled data belonging to specific time frames
along a seven-year-long time period (i.e., from September-October 2011 to May-
June 2018).

To further explore the results, the summary values reported in Table 2 are
provided in more fine-grained detail on the analyzed historical timeline of An-
droid in Fig. 2, 3, 4, and 5. More specifically, in these figures, the X-axis reports
the time frame of the specific data chunk, encompassing, at maximum, two
months of data. The axis labels provide the year and month separated by a slash
(e.g., 2011/9-10 reports data comprised between September and October 2011).
The left Y-axis reports the number of samples included in every data chunk
(i.e., grey color), thus composing the unlabeled pool of samples for the active
learning approaches, that were actually labeled by the oracle (i.e., blue color).
Given the degree of randomness of the approaches used, the reported values for
the number of labeled samples (i.e., blue area on the bars) are mean values with
the confidence interval of the mean estimation reported by the white whiskers
that extend over and below the mean (i.e., confidence level 95%). The average
performance scores obtained on each data chunk are reported by the yellow (i.e.,
accuracy) and blue (i.e., F1 score) lines placed on top of the bar chart, and rang-
ing from 0 to 1 (i.e., right Y-axis). The standard deviation of these performance
metrics is provided by the colored ribbons surrounding the average lines. Fig. 2
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provides the average results for the uncertainty-based active learning approach
when undersampling and the permissions set were used. Fig. 3 reports the same
information when the system calls set is used while Fig. 4 provides the hybrid
feature set-related information. These figures enable us to compare the impact of
the feature set under the same conditions (i.e., uncertainty-based active learning
approach using undersampling). Lastly, Fig. 5 enables the comparison between
the best active learning model (i.e., hybrid feature set, undersampling using un-
certainty score, as depicted in Fig. 4) and the random query strategy for the
same feature set and sampling approach configuration.

Fig. 2. Permissions, undersampling, and
uncertainty-based model results

Fig. 3. System calls, undersampling, and
uncertainty-based model results

As can be observed, in Figure 2, the permissions feature set enabled the han-
dling of concept drift using significantly less labeled data than the system calls
feature set, depicted in Figure 3. With some minor exceptions (e.g., 11-12/2012),
the permissions feature set required fewer labeled data per chunk to sustain the
training target of 95% F1 score, over-passing this score in many chunks, thus no
data was labeled for training purposes (e.g., 10-11/2013, 11-12/2013, 1-2/2014,
3-4/2014, and 5-6/2014). Despite the goodness shown by the permissions feature
set to handle concept drift using the active learning approach, these results are
significantly outperformed by the hybrid feature set, which combines the sys-
tem calls and permissions feature set. In this case, a reduced proportion of the
chunk data is labeled in every chunk to achieve high-performance metrics (e.g.,
9-10/2011, 11-12/2011) with extended periods of almost no training data needs
(e.g., from 4-6/2013 to 7-8/2015). Therefore, the high-dimensional feature space
generated by the joint usage of both feature sets enabled the handling of con-
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Fig. 4. Hybrid, undersampling, and
uncertainty-based model results

Fig. 5. Hybrid, undersampling, and ran-
dom selection model results

cept drifts better than any other approach, keeping high-performance metrics
with just a few samples labeled per chunk. Even though this feature set reduces
the data needs in all approaches and strategies, the uncertainty-based query
strategy shows significant improvement concerning random query selection, as
can be seen in Fig. 5. The random query strategy requires significantly more
labeled data per data chunk to sustain performance and address concept drift,
evidencing the superiority of the uncertainty-based selection over random query
selection.

The obtained results show that the active learning approach, in its most ba-
sic form (i.e., uncertainty sampling) can be effectively used to handle concept
drift, keeping high-performance metrics while minimizing the data labeling ef-
forts (i.e., the amount of labeled data needed to keep high performance). As a
result, active learning might be an efficient and effective solution to handle con-
cept drift in environments where a large quantity of unlabeled data is available
but with high labeling costs. It allows focusing the labeling effort on the relevant
data to improve the model and discard the irrelevant data samples that may
not provide benefit to the model. Despite that, uncertainty sampling may yield
biased classifiers and sub-optimal models if the initial data set is too small or
not representative as the model certainty is used to rank the informativeness
or relevancy of the samples. To avoid that, other query strategies could be used
such as query by committee or ranked batch-mode [16]. In our case, the ini-
tial data set has been proved reliable and large enough to overcome this issue
and the performance obtained by the models does not change significantly (i.e.,
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standard deviation values are not large). The exploration of the benefits of other
approaches constitutes part of our future work.

The comparative performance metrics provided in this study show that the
gradual modification of the decision boundary caused by the addition of a single
relevant sample in the training data set provides high-performance models using
significantly less data than the batch retraining approach. Random instance
selection improves the labeling needs concerning the batch retraining approach,
but they are both outperformed significantly by the active learning approach.
Random selection requires consistently more data to achieve roughly the same
(but not better) performance metrics than the uncertainty sampling approach.
This fact evidences the goodness of the active learning approach to induce great
performance models with significantly fewer data needs.

To address imbalance issues, two balancing techniques were explored. Ran-
dom oversampling balances the data by generating artificial but similar data
points for the underrepresented class, whereas random oversampling selects a
random sample from the overrepresented class to match the number of samples
in the underrepresented class. Even though both approaches worked similarly for
random and batch strategies, the undersampling approach provided distinctive
benefits using the active learning approach for the permissions and hybrid feature
sets. This technique minimized the data labeling efforts significantly while pro-
ducing great discriminatory results. The exploration of more complex balancing
approaches is part of our future work.

This paper explores the application of active learning as an alternative ap-
proach to deal with concept drift in Android malware detection. The related
methods in the literature [19, 12, 20, 13] propose the usage of more complex al-
gorithmic solutions that require extensive data labeling efforts and intensive
computational resources. The active learning approach, due to its focus on data
labeling minimization, reduces the computational load and resources needed to
deal effectively with concept drift issues, as demonstrated in this paper. More
specifically, the comparison of the results obtained in this study with related
works [6, 19, 12, 20, 13] evidences the goodness of the active learning approach to
maximize detection performance metrics while minimizing labeling needs and,
consequently, computational resources. Most of these proposed solutions assume
the labeling of the whole data set at each training step thus they are analogous
to the batch retraining approach, which was used as a baseline in our study.
Besides, the detection solutions in the literature are more computationally in-
tensive due to their algorithmic complexity. For instance, some methods combine
the output of a pool of classifiers [6, 19] or use complex adaptive pipelines [12]
that increase the burden of system maintenance and the overall resources needed
to operate and update the detection system. In our benchmarking, a single clas-
sifier model, based on a traditional machine learning algorithm (i.e., Random
Forest), using the active learning query strategy was capable of providing high
detection performance for a long period (i.e., from 2011 to 2018) with few data
updates over time and many time frames with zero labeling needs. The perfor-
mance results are similar to the ones proposed by [6] and the baseline approach
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(i.e., batch retraining), but use a less complex system, which is easier to maintain
and requires less computational and labeling resources. It also outperforms the
rest of concept drift-handling methods in the related literature, which manifest
significant performance decay over time [19, 12].

5 Conclusions

The active learning approach is built on the assumption that a machine learn-
ing model can learn faster (i.e., in fewer training steps) and with less data if the
model is allowed to select the data from which it learns. This approach combines
the knowledge of an oracle and instance selection by the supervised model to en-
hance performance and minimize data needs. To the best of our knowledge, this is
the first study that leverages active learning to handle concept drift in Android
malware detection. Our results show that the active learning approach, in its
most basic form, allows effective concept drift handling in Android malware de-
tection and, more interestingly, minimizes the data labeling needs. Consequently,
it becomes an option worth considering for enhancing the ML-based detection
systems in cyber security environments (e.g., malware protection companies, se-
curity operating centers dealing with Android malware detection), where a large
body of unlabeled data is constantly available but the high labeling cost as-
sociated makes the task infeasible and prohibitive, thus affecting the detection
capabilities of the system.
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Abstract—Timely detection of intrusions is essential in IoT
networks, considering the massive attacks launched by the huge-
sized botnets which are composed of insecure devices. Machine
learning methods have demonstrated promising results for the
detection of such attacks. However, the effectiveness of such
methods may greatly benefit from the reduction of feature set size
as this may prevent the impeding impact of unnecessary features
and minimize the computational resources required for intrusion
detection in such networks having several limitations. This paper
elaborates on feature selection methods applied to machine
learning models which are induced for botnet detection in IoT
networks. A particular attention is devoted to the use of wrapper
methods and their combination with filter methods. While filter-
based feature selection methods provide a computationally light
approach to select the most informative features, it is shown that
their utilization in combination with wrapper methods boosts up
the detection accuracy.

Keywords-Internet of Things, botnet, feature selection, machine
learning, wrapper method.

I. INTRODUCTION

The rise of the Internet of Things (IoT) is a reality. There
are now over 7 billion IoT devices which may grow up to over
20 billion by 2025 [1]. Their ubiquity combined with the lack
of security measures (e.g.: default passwords) have promoted
them as an enticing target for cyberattackers, enabling them
to be compromised and converted into members of the botnet
under the attacker’s control, using them as a powerful platform
to amplify their attacks [2]. Machine learning (ML) has
become a handy and promising approach for the detection of
such threats [3]. However, high dimensionality data can yield
performance and explainability issues in ML models. Feature
selection constitutes an important step in the ML workflow
to reduce data dimensionality. Filter feature selection methods
are usually the preferred techniques to tackle dimensionality
reduction. However, these methods only focus on individual
scores of the features without considering the relationship
between them. In this sense, wrapper techniques or their
combination with filter ones (hybrid methods) may constitute
a significant solution.

In this paper, we evaluated the impact of wrapper and
hybrid feature selection techniques on the detection accuracy
of ML models which are developed for the identification of
IoT botnets. Aiming to achieve optimal feature sets that could
boost classification while reducing data dimensionality and
computational needs. Some studies addressed the application

of filter methods to IoT botnet data sets [4] [5]. However, to
the best of our knowledge, the elaboration on feature selection
methods has not been performed profoundly. This paper fills
this research gap by comparing detection performances of
filter, wrapper and hybrid methods in this particular problem
domain. Section II provides the literature review. Section III
explains the methodology while Section IV tackles the main
results and discussion. Lastly, Section V concludes the study.

II. LITERATURE REVIEW

Network traffic behavior has been used in combination
with ML algorithms for general botnet detection. In [6], filter
methods were used to select the best features to build a
decision tree model. Flow features were able to discriminate
90.4% malicious traffic in [7]. In [8] eight ML models were
assessed with network data. Artificial Fish Swarm algorithm
was used in conjunction with Support Vector Machines in
[9]. Recurrent neural networks [10] and PSO-based K-means
clustering algorithm [11] have also been used to tackle general
botnet detection. Fewer approaches have dealt specifically with
IoT botnet detection. Logistic Regression algorithm was used
in [12] to detect compromised devices. In [13], deep auto-
encoders were trained to detect botnet attacks while in [4]
the same data set was used focusing on filter methods for
feature selection. Five ML algorithms were evaluated in [5] as
DoS attack detectors. In [14] Random Neural Networks were
trained to detect network attacks against IoT devices. Principal
Component Analysis was used in [15] as dimensionality
reduction method to induce classification models. As can be
noticed, few studies considered feature selection issues on their
detection models and none performed any feature selection
approach distinct from filter methods.

III. METHOD

In this study, we followed the ML workflow for a multi-class
classification problem focusing on feature subset selection.
The steps performed are explained in the following paragraphs.

A. Data set

The data set used in this study has already been used in other
studies [4] [13] and it contains both normal and malicious
IoT traffic, being preferred for our purpose to other realistic
IoT data sets [16]. It is composed of statistics of network
traffic collected in a synthetic IoT environment where normal
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and botnet traffic (Mirai, BashLite) were simulated for nine
devices [13]. 115 numeric features are defined for each data
point, reflecting aggregated statistics of network raw streams
in five time windows (100 ms, 500ms, 1.5s, 10s and 1min,
coded as L5, L3, L1, L0.1 and L0.01 respectively) within five
major categories, host-IP (traffic originated from specific IP
address, coded as H), host-MAC&IP (traffic originated from
the same MAC and IP, coded as MI), channel (traffic between
specific hosts, coded as HH), socket (traffic between specific
hosts, including ports, coded as HpHp) and network-jitter
(time interval between packets in channel communication,
coded as HH jit). For each major category, packet count, mean
and variance packet size are computed. For socket and channel
category, additional statistics are provided such as covariance,
correlation coefficient of packet size, radius and magnitude.
Distribution of labels in the whole data set is 8% normal
traffic, 45% Bashlite and 47% Mirai. As the initial dataset
was composed of 9 unbalanced sub-datasets, to create a single,
mixed and representative data set, instances from sub-datasets
were sampled randomly so that each class is represented
equally in the final data set. Features were scaled using inter-
quartile range approach, a robust technique to normalize data
that contains outlier values (which may negatively affect mean
and variance statistics). Stratified 3-fold was applied to split
the data set into three equally class balanced folds. Two folds
were used in the feature selection steps while the third fold
was used in the final stage as a test set.

B. Feature Selection

Feature selection was performed using filter, wrapper and
hybrid approaches. They are described as follows:

- Filter methods: a statistical criterion is used to assess the
discriminatory power of each feature. The output value is used
to select most suitable features. Two filter methods were used
in this research, described briefly as follows:

• Fisher’s score: a criterion designed for numeric features
that allows to rank them. It measures the ratio of the
average inter-class separation to the average intra-class
separation.

• Pearson’s correlation coefficient (ρ): a criterion that
measures the linear relationship between two variables,
ranging from [-1,1].

- Wrapper methods: a heuristic procedure where the perfor-
mance of the machine learning is used to determine the most
relevant feature sets selected by a specific feature search algo-
rithm. Two wrapper methods were used: Sequential Forward
Feature Selection (SFFS) and Sequential Backward Feature
Elimination (SBFE). Both algorithms attempt to refine a
current set of features by adding/removing features iteratively,
respectively, based on a classifier’s performance. At this step,
classifier’s performance was evaluated using cross-validated
macro-averaged F1 score. F1 score is the harmonic mean of
precision and recall metrics, ranging [0, 1]. The greater the
score, the better the model. To select the best minimal subset,
a limitation of maximum 5 features on selected subsets was
imposed to the wrapper methods evaluated.

- Hybrid approach: a two-step feature selection procedure
where the output of a filter method is used as an input for a
wrapper method to boost classifier model performance. Both
filter methods were combined with both wrapper methods and
evaluated with the selected classifier models. This two-step
approach is summarized in two sequential steps: 1) Filter step:
select the candidate subset according to the filter model (SF ),
2) Wrapper step: evaluate SF with the classifier model using
the macro-averaged F1 score as a heuristic.

C. Classification model training
In this research, two widely used multi-class classification

algorithms were evaluated: k-Nearest Neighbors (k-NN) and
Random Forest (RF). As this research focused on feature selec-
tion, the attention was centered on these steps, thus providing
results on just two traditional ML algorithms make the results
easier to analyze and present. In this regard, default parameters
of scikit learn library were used: euclidean distance and k = 5
for k-NN and n = 50 for RF algorithm (maximum depth was
limited to 5 to reduce the risk of overfitting).

D. Model validation
Classifiers were validated at two stages using different

performance metrics. Two splits of the data set were used in
the feature selection part while the third was used to perform
models validation as a test data set. These stages are summa-
rized as follows: 1) Feature Selection: wrapper methods use
the macro-averaged F1 score of a classifier to find an optimal
subset of features, 2) Models validation: models were built
based on feature selection methods output and tested against
unseen data. In this step, classification accuracy is reported,
which is defined as the ratio of correct predictions among all
predictions. In the feature selection step, maximizing F1 helps
to minimize the number of incorrectly classified malicious
instances while in the validation step, accuracy is preferred
as a more comprehensive metric of the overall performance.

IV. RESULTS & DISCUSSION

A. Feature Selection Results
1) Pearson’s ρ: Pairwise linear correlations were computed

for all features. To avoid redundancy, all high correlated
features were dropped, so that features with |ρ| ∈ [0, 0.80]
were selected. Table I shows the remaining 18 features. 13
out of 18 features belong to the shortest time frame (L5,
100 ms), indicating that the features regarding larger time
windows have higher correlations, thus may not add more
value to the classification. Only 3 features are host-centric (i.e.,
Host-MAC&IP) whereas the others are derived from host-to-
host communication (i.e., channel, channel jitter and socket
categories). This suggests that the statistics obtained from
network traffic between host pairs show more uncorrelated
behavior. On the other side, most of these features are related
to channel or channel jitter categories rather than socket
category. Although socket information provides more scrutiny
on host-to-host communication by additionally considering
port numbers, channel category, which is only based on IP
numbers, is enough to generate more discriminatory features.
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TABLE I
FEATURES SELECTED USING PEARSON’S ρ

Feature name Time frame Major category
MI dir L5 weight

L5 Source MAC&IPMI dir L5 mean
MI dir L5 variance
HH L5 weight

L5

Channel

HH L5 std
HH L5 radius
HH L5 covariance
HH L5 pcc
HH L0.1 covariance L0.1HH L0.1 pcc
HH L0.01 covariance L0.01HH L0.01 pcc
HH jit L5 mean L5 Channel jitterHH jit L5 variance
HH jit L1 variance L1
HpHp L5 weight

L5 SocketHpHp L5 radius
HpHp L5 covariance

2) Fisher’s score: The Fisher’s score (F) of each feature
was computed. Best 20 features were selected, as shown in
Table II. In contrast to the results of Pearson’s method, the
best features selected by Fisher’s score are host-centric (e.g.,
Host-IP and Host-MAC&IP categories) and related to weight
(packet count). Considering the attacks launched from bots
generate a high amount of traffic with varying frequencies (i.e.,
DDoS, network scans, spam campaigns), it could be perceiv-
able that host-centric statistics would reflect the distinctions
between different class behaviors. On the other side, Fisher’s
score evaluates each feature individually, meaning that it may
similarly prioritise features which are correlated to each other.
Although the best 4 features belong to longer time intervals
(1 minute or 10 seconds), the selected 20 features cover all
time intervals, unlike the ones selected by Pearson’s ρ.

TABLE II
TOP 20 FEATURES ACCORDING TO FISHER’S SCORE

Rank Feature name F Rank Feature name F

1 MI dir L0.01 weight 1.54 11 MI dir L0.01 mean 0.69
2 H L0.01 weight 1.54 12 H L0.01 mean 0.69
3 MI dir L0.1 weight 1.23 13 MI dir L0.1 mean 0.65
4 H L0.1 weight 1.23 14 H L0.1 mean 0.65
5 MI dir L1 weight 0.90 15 MI dir L1 variance 0.62
6 H L1 weight 0.90 16 H L1 variance 0.62
7 MI dir L5 weight 0.84 17 MI dir L1 mean 0.58
8 H L5 weight 0.84 18 H L1 mean 0.58
9 MI dir L3 weight 0.84 19 MI dir L3 mean 0.53
10 H L3 weight 0.84 20 H L3 mean 0.53

3) Filter feature selection models: Classifier models using
k-NN and RF were built using subsets chosen by the filter
methods. Cross-validated macro-averaged F1 scores obtained
using all features, 4, 10 and 20 best Fisher’s score’s features
and 18 Pearson’s features are shown in Table III. The features
selected by Fisher’s score provided better performance than
the ones selected by Pearson’s ρ. The use of feature selection
in k-NN avoids the curse of dimensionality, providing great
performance with a small number of features. 4 features
achieved 99.01% detection rate while using all features the
performance is reduced, 94.52%. On the other side, RF models
demonstrated contrary results as using all features achieved

the highest detection rate, 99,96%, and 4 features 97.66%. 20
features with highest Fisher’s Score yielded 99.93%, close to
the results of all features. It could be argued that as the depth
of the trees was limited to avoid overfitting, the performance
in the experiments with a smaller amount of features was
not optimal. Models using Pearson’s ρ features had a low
performance with k-NN (91.15%) when compared to the same
feature set with RF (98.74%).

TABLE III
CROSS-VALIDATION F1 SCORE RESULTS ON WHOLE AND FILTERED DATA

Model Number of features
115 4 FS 10 FS 20 FS 18 P

k-NN 0.9452 0.9901 0.9909 0.9940 0.9115
RF 0.9996 0.9766 0.9864 0.9993 0.9874

4) Wrapper models: SFFS and SBFE were used to select
best feature subsets using k-NN and RF as classifiers. In order
to have a reduced subset of features, an extra limitation was
added by establishing the maximum number of features on
the selected subset to 5. Results were cross-validated macro-
averaged F1 score, as shown in Table IV. The optimal subset
identified by the wrapper method is related to the utilised clas-
sifier algorithm as each wrapper-classifier combination results
in a different feature set. Both classifiers and wrapper methods
produced high performance metrics, F1 scores over 99.80%
in all cases. RF achieved slightly better results than k-NN in
each wrapper variation. The optimal subset of features found
using SFFS did not reach the maximum set size (5), obtaining
high-performance levels with fewer features. Furthermore, in
our experiments, we identified that FFS is faster than SBFE
taking, on average, 100 times less time to produce an optimal
subset. It can be suggested that SFFS is a better choice than
SBFE as it has slightly better detection rates, is faster and has
smaller optimal feature set sizes.

TABLE IV
WRAPPER METHOD FEATURE SELECTION RESULTS

Wrapper Classifier F1 score Best subset

SFFS
K-NN,
k = 5

0.9987
HH jit L3 mean

HH L0.01 magnitude
HH L0.01 covariance

Random
Forest 0.9999

H L0.1 weight
H L0.01 mean

HH jit L3 mean
HpHp L0.1 magnitude

SBFE
K-NN,
k = 5

0.9981

HH L0.01 magnitude
HH L0.01 covariance
HH jit L0.01 mean
HpHp L0.1 weight
HpHp L0.01 mean

Random
Forest 0.9998

MI dir L0.01 variance
H L0.1 mean

H L0.01 weight
HH L0.1 covariance
HpHp L3 magnitude

5) Hybrid models: In this stage, SFFS and SBFE were
combined with the outcomes of both filter methods: 20 best
Fisher’s score features (F) and 18 Pearson’s features (ρ).
Table V shows the results when hybrid models are built and
validated using cross-validation. The performance was over
99% in almost all cases. Best performances were obtained
using Fisher’s score with RF, where both wrapper methods
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achieved the same detection rate, 99.97%. The main advantage
produced by the hybrid methods is the reduction of the time
needed for the wrapper to produce an optimal subset. Wrapper
methods use all features as an input, which can be troublesome
and time-consuming with large sets of features. Providing a
reduced set of features produces faster results. Although in
some cases there is a slight reduction of F1 score in the hybrid
method compared with the wrapper methods, there is a great
time reduction on hybrid methods, producing optimal subsets
10 times faster using hybrid SFFS than wrapper SFFS and 100
times faster using hybrid SBFE than wrapper SBFE.

TABLE V
CROSS-VALIDATION F1 SCORES ON HYBRID FEATURE SELECTION MODELS

Wrapper Filter k-NN Random Forest

SFFS F 0.9993 0.9997
ρ 0.9916 0.9965

SBFE F 0.9989 0.9997
ρ 0.9871 0.9967

B. Test fold validation

All combinations of feature selection methods were vali-
dated on a test set that simulates the prediction of unseen
data. Test accuracy values are shown in Table VI. The first
two columns specify the filter and wrapper method used (-,
if none). In the case of the wrapper and hybrid methods, the
selected subset was tested using the two classifier algorithms,
not just the specific algorithm used in the feature selec-
tion method step to obtain the corresponding subset (cross-
classifier tests). High accuracy values (i.e., over 98.00% in
most cases) were obtained using filter methods and wrapper
methods alone, supporting the goodness of feature selection
methods to achieve high performance metrics with reduced
data input. However, the highest accuracy values were obtained
using the combination of filter and wrapper methods (hybrid
techniques). More specifically, the use of Fisher’s score with
any of the wrapper methods and classifiers, provided the best
performances in almost all cases, over 99.90% accuracy even
in cross-classifier tests. In this regard, best results are achieved
using the RF as classifier except the cases in which SFFS is
utilised in combination with k-NN as a wrapper model.

TABLE VI
TEST FOLD ACCURACY COMPARISON OF ALL MODELS

Filter method Wrapper method k-NN Random Forest

- - 0.9536 0.9985
FS - 0.9968 0.9990
ρ - 0.9224 0.9852
- SFFS k-NN 0.9982 0.9608
- SFFS RF 0.9986 0.9988
- SBFE k-NN 0.9984 0.9788
- SBFE RF 0.9974 0.9992

FS

SFFS k-NN 0.9994 0.9992
SFFS RF 0.9938 0.9994
SBFE k-NN 0.9990 0.9992
SBFE RF 0.9992 0.9992

ρ

SFFS k-NN 0.9912 0.8475
SFFS RF 0.9622 0.9972
SBFE k-NN 0.9906 0.9958
SBFE RF 0.9013 0.9970

V. CONCLUSIONS

The present paper has demonstrated the applicability and
importance of the hybrid feature selection technique to the
problem of ML based IoT botnet detection. Application of the
hybrid feature selection technique may be seen as the trade-off
between the simplicity of filter models based feature selection
and the more computationally demanding wrapper techniques.
It was demonstrated that hybrid feature selection allows reduc-
ing the computational load of the wrapper techniques without
any significant loss in detection rates of the machine learning
classifiers. More specifically, the combination of Fisher’s score
with wrapper methods provided consistently higher accuracy
rates in each of the classification models.
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Abstract—The analysis of the interplay between the feature
selection and the post-hoc local interpretation steps in a machine
learning workflow followed for IoT botnet detection constitutes
the research scope of the present paper. While the application
of machine learning-based techniques has become a trend in
cyber security, the main focus has been almost on detection
accuracy. However, providing the relevant explanation for a
detection decision is a vital requirement in a tiered incident
handling processes of the contemporary security operations
centers. Moreover, the design of intrusion detection systems in
IoT networks has to take the limitations of the computational
resources into consideration. Therefore, resource limitations in
addition to human element of incident handling necessitate
considering feature selection and interpretability at the same
time in machine learning workflows. In this paper, first, we
analyzed the selection of features and its implication on the data
accuracy. Second, we investigated the impact of feature selection
on the explanations generated at the post-hoc interpretation
phase. We utilized a filter method, Fisher’s Score and Local
Interpretable Model-Agnostic Explanation (LIME) at feature
selection and post-hoc interpretation phases, respectively. To
evaluate the quality of explanations, we proposed a metric that
reflects the need of the security analysts. It is demonstrated
that the application of both steps for the particular case of IoT
botnet detection may result in highly accurate and interpretable
learning models induced by fewer features. Our metric enables
us to evaluate the detection accuracy and interpretability in an
integrated way.

Index Terms—Botnet detection, machine learning, interpreta-
tion.

I. INTRODUCTION

This paper aims to provide interpretable results for machine
learning-based IoT botnet detection system while minimizing
the feature set. IoT technology has been an important enabler
in many sectors such as energy, manufacturing, transportation
or health. However, physical-, network-, and application-layer
attacks may cause important consequences ranging from pri-
vacy violations or business interruptions to physical damage
in these systems [1]. Besides these problems, the botnets
composed of compromised IoT devices constitute a significant
threat to all Internet-faced systems. For instance, in 2016, some
companies such as a hosting company, OVH [2] and an internet
performance management company, Dyn DNS [3], suffered
from massive denial of service attacks originated from IoT
bots. Considering the high adaptation rate of IoT technology
into real-world applications, these attacks could be assumed
as initial warnings for the more detrimental attacks in the

future. The research community has addressed the intrusion
detection in these environments [4]. Identifying the new attack
types remains as a significant difficulty, but machine learning
methods have provided solutions for this problem [5].

Although there exists a huge amount of research with
convincing results for the adaptation of machine learning to
the intrusion detection field, the optimization of the detection
accuracy has been the only focus in those studies. However,
the detection result is just only a starting phase of an incident
handling process that mostly takes place in a layered tier
structure of the security operations center [6]. In an ideal case,
a full-automatized protection system itself should identify the
intrusion, decide and take the necessary actions. However,
human-in-the-loop character of these systems has not reduced,
inversely, increased in time due to the complexity of the cyber
threats. The responsibility of experts is so vital in terms of
reducing the false positives, assigning priority levels to the
findings and conducting in-depth forensic analysis during the
incident handling period. Therefore, machine learning method
is highly required to provide the details of explaining the
detection decision to the experts, which means interpretability
arises as a significant performance metric besides the accuracy
rate of the detection.

A model in which the expert can easily understand the
reason behind the decision is considered as an interpretable
model (a.k.a. comprehensible, understandable or explainable
[7]). Reducing the model size via dimensionality reduction is
one of the approaches for making models more interpretable
[8] despite the fact that it does not guarantee the acceptability
in all cases (i.e., the experts may not trust over-simplistic
models in some situations) [9]. Interpretability is an ill-defined
concept as some scholars relate it to a more general notion
such as trust of users to learning models, some of them find it
as an instrument for identifying the casual structure or others
may simply assume that it helps to gather more useful data
from the model [10].

Interpretability methods can be divided into two, global or
local. Global interpretability aims to provide understanding of
the whole logic of a model and all of its possible outcomes
while local interpretability deduces the reasoning behind an
individual prediction. In practice, the global interpretability of
a model is hardly achievable while local interpretability being
more feasible.

Application of the classical machine learning techniques
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usually presumes that the feature selection process was con-
ducted1. Model-agnostic and post-hoc local interpretation
methods are applied to the outputs of learning models. In
this sense, feature selection is a prior step and local inter-
pretation is the following step for the creation and validation
of the learning models in classical algorithms. Usually, local
interpretation for each particular instance is presented by
the set of inequalities (i.e., assuming that the features are
numeric), whereas the number of inequalities is greater or
equal to the dimensionality of the feature set. Therefore,
although they take place in different steps, feature selection
and local interpretation may have an interplay, in the whole
machine learning work-flow, that may have an impact on
the quality of the interpretation. Besides this, it is obvious
that the feature selection has also an impact on the accuracy
of the model. Intrusion detection designers would prefer to
understand the implication of the feature selection not just
only to the accuracy but to the quality of the interpretation as
well.

In this study, we analyzed the impact of feature selection on
the detection accuracy and the interpretation quality. In the first
part, we analyzed the impact of hyper-parameters and feature
selection on data accuracy. In the second part, we analyzed
the impact of feature selection on the interpretation results.
Here, we introduced a quality metric for the interpretation
results from the cyber security analyst perspective. This metric,
which is based on entropy notion, assumes that an ideal
explanation should bring explanation for just only one category
as others could create confusion for the analyst. As our focus
is not the optimization of the local interpretation step but
just to understand the interplay between feature selection
and post-hoc local interpretation, we used well-known Local
Interpretable Model-agnostic Explanation (LIME) as a local
interpretation method [11] although there are other methods in
the literature. The decision quality of the interpretation method
and comparing it with other similar methods are also out of
our scope.

Recently deep-learning-based techniques have gained a lot
of popularity. Unlike the classical machine learning algo-
rithms, the deep-learning methods do not require separate
feature selection procedure2. However, as IoT environments
are limited with various computational resource restrictions,
classical learning models induced by fewer features can be
considered more suitable than deep-learning methods which
are computationally intensive. The very high accuracy values
that we obtained by classical methods in this problem domain
reinforce our method selection decision.

The studies dealing with the application of machine learning
to the cyber security problems, in general, and to the intrusion
detection, in particular, give the whole focus to the detection
accuracy, and very little attention is paid to the interpretability.
This paper addresses such an important research gap. Our

1While some techniques do not suffer from the curse of dimensionality,
feature selection is still necessary to provide stable classifiers.

2It may be seen that feature selection becomes an implicit integral part of
the deep learning process

work is unique as it provides an interplay analysis of feature
selection and interpretability steps within the context of the
IoT botnet detection problem.

The content of our paper is presented as follows: Section II
gives background information about the addressed topic and
summarizes the literature. In Section III, we described the data
utilized in this study. Section IV explains the method of our
research and the obtained results. Our work is concluded in
Section V.

II. BACKGROUND INFORMATION AND LITERATURE
REVIEW

Artificial Intelligence has become a widely adopted solution
to deal with some complex tasks such as prediction in a great
variety of fields ranging from biology to cybersecurity. The
inherent complexity of most machine learning models makes
them powerful but lacking transparency, posing as black-
boxes, where the explanation each decision remains hidden
and unknown to the end-user. Thus, becoming one of the
main obstacles to the spreading of AI to fields where the
explanation behind each decision is important and needed to
trust and justify the AI-system predictions, for instance in
disease diagnosis or compliance with General Data Protection
Regulation (GDPR).

In recent years, explainable AI (XAI) has emerged as a
new research field aiming to create more human-interpretable
models, that will empower transparency and trust in machine
learning outcomes, whilst preserving their high-performance
capabilities [12]. The main issue for XAI models is deal-
ing properly with the interpretability and accuracy tradeoff.
One of the successful approaches that allows keeping high-
performance metrics while providing interpretability to com-
plex machine learning models is post-hoc methods, which pro-
vide explanations without disturbing or having any knowledge
about the inner works of the model they are explaining [12].

Local interpretation methods have focused the attention
especially to explain the complex and opaque Deep Neural
Networks, methods which usually claim to be model-agnostic
[12]. In this regard, [11] proposed the Local Interpretable
Model-Agnostic Explanation (LIME) method which explains
individual instances of non-linear models by sampling per-
turbed instances around the individual decision, weighting
them according to their proximity, getting original model’s
output for the perturbed instances and learning a linear model
in the neighbourhood of the explained instance. From the same
authors and more recently, in [13] they proposed Anchors,
which extend LIME’s model-agnostic explanations on the
basis of if-then rules, claiming to provide more coverage,
interpretability, and enhanced generalization. Local Rule-based
Explanations (LORE), proposed in [14], builds a decision tree
model based on a set of neighbor instances of a concrete deci-
sion, using a genetic algorithm and given an original black-box
model. Explanation of individual decision is extracted from the
learned decision tree. In [15], local explanations are based on
the local gradients which identify what directions an instance
has to be moved in order to change its predicted label, thus
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indicating the most influential directions to the prediction.
Lastly, [16] applied influence functions that measure the
effect of local changes in instances to understand individual
predictions.

Cybersecurity is a potential field of application where XAI
models are needed [12]. Regarding it, network security is
one of the emerging issues where interpretability may help to
explain and improve detection mechanisms such as intrusion
detection systems. In this regard, the framework for explain-
able Deep Neural Networks (DNN) based anomaly detection
implemented in [17] relied on input feature relevance scores
on network-based anomaly detection to explain individual de-
cisions and enhance human trust on machine learning models
in the context of critical and industrial systems monitoring.
Input relevance scores measured quantitatively the influence
of certain input features on the detected anomaly by the DNN
model. In the same context, but as a different approach, Situ
[18] proposed the use of p-value anomaly scoring to explain
anomalies detected on network data streams. P-value anomaly
scoring was calculated on a set of statistics of interest and
used to discriminate and explain network suspicious behavior.
Adversarial learning samples, mainly used to deceive ML
classifier models, are adopted in [19] to explain Deep Learning
models used as classifiers in Intrusion Detection Systems
(DNN-IDS). In this regard, a model-agnostic adversarial ma-
chine learning method is implemented to explain misclassified
samples by feeding the classifier with misclassified samples,
making minimum amount of modifications on them until
they are correctly classified. Comparison of modified samples
correctly classified and original samples is used to find out
the most relevant features that produced the misclassification,
thus explaining the classifier’s output.

III. DATA SET DESCRIPTION

The dataset is composed of various statistics obtained from
the network traffic of 9 IoT devices such as a security camera,
webcam, baby monitor, thermostat, and door-bell [20]. Each
record contains 115 numeric features and is labeled as benign
(normal) or malicious (attack). The malicious traffic covers
different attacks (i.e., denial of service, spam or scan) which
are conducted by the devices compromised with Mirai or
Bashlite (Gafgit) malware. In a typical botnet life-cycle, there
exist four phases, formation, command and control (C&C),
attack and post-attack [21]. This dataset does not include
malicious activities that are related to the first two phases
which correspond to exploitation of the device and creation
of a remote control channel but covers the post-exploitation
activities (attack and post-attack phases).

We analyzed the features within five categories, host-IP,
host-MAC&IP, channel, network jitter and socket as shown in
Table I. Host-IP category tracks the network traffic of each host
regardless of the other communication entity and provides the
statistics such as packet counts, mean and variance of packet
sizes. Host-MAC&IP category is very similar to the previous
one, the only difference is that it dissects each host by its
MAC and IP addresses in order to eliminate the artifacts of

possible IP spoofing attempts. Channel category captures the
sames statistics produced by the source and destination host
pairs whereas socket category also includes the source and
destination ports in addition to host information. The statistics
of the last two categories are extended by magnitude, radius,
covariance and correlation coefficient of packet sizes. We
classified the network-jitter of the channel type communication
(i.e., the time intervals between the packet arrivals) into a
separate category. All these statistics are obtained from the
most recent five different time windows (100ms, 500ms, 1.5
sec, 10 sec and 1 min). In order to improve the readability, we
represent a feature as "Feature Category Type-Time Window-
Statistic Type". For instance, "Host_IP-100ms- Pkt Count"
means the packet count of host-IP category obtained at the
most recent 100ms interval.

The source dataset has 502,605 normal, 2,835,317 Bashlite
and 2,935,131 Mirai records, meaning that the label distribu-
tions are 8%, 45%, and 47%, respectively. In this study, we
covered the three-class classification problem. We utilized the
accuracy as a detection metric for the simplicity as we focus
on the interaction between feature selection and interpretation
steps, and such an analysis can be conducted by other metrics
deemed to be useful.

TABLE I
FEATURE CATEGORIES

Feature Categories Features
Host-IP Packet count, mean and variance (outbound)
Host-MAC&IP Packet count, mean and variance (outbound)
Channel Packet count, mean and variance (outbound)

Magnitude, Radius, Covariance,
Correlation Coef. (inbound and outbound)

Network Jitter Count, mean and
variance of packet jitter in channel

Socket Packet count, mean and variance (outbound)
Magnitude, Radius, Covariance

Correlation Coefficient (inbound and outbound)

IV. METHOD & RESULTS

The feature selection step is an integral part of any ML
workflow where a classification algorithm is used. According
to [22] it may be either a stand-alone step or integrated as
a part of a wrapper or an embedded technique. Within the
frameworks of the present research, only the case when feature
selection is a stand-alone step is considered. Namely Fisher’s
score (given in Equation 1) based filter model is applied to
provide initial grading of the features with respect to their
discriminating power. Such simplification is possible due to
the numeric nature of the features.

A typical work-flow for the application of supervised learn-
ing method is depicted in Figure 1. According to [22] three
different approaches may be used for feature selection: filter
models, wrapper models and embedded models.

Fisher’s score is closely related to the information gain and
usually defined as given in Equation 1.

Fi =

∑K
k=1 pk(μk − μ)2
∑K

k=1 pkσ2
k

(1)
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Fig. 1. Usual machine learning work-flow for supervised learning.

where K is the number of classes, pk proportion of the
observation points belonging to the class k, μk is the mean
value of the class k along the feature i, μ is the overall
mean and σk is the standard deviation of the class k along
the feature i [22]. The higher value of (6) signals greater
discriminating power of the feature and vice verse. Fisher’s
score is computed for each of the 115 features. The features are
ordered according to their Fisher’s scores as shown in Figure
2. Then feature selection may be performed either with respect
to certain threshold or simply by choosing desired number of
features based on their Fisher’s score values. In Figure 2 one
may clearly see that Fisher’s score values for some features
are negligibly low which is a clear indicator that these features
may be omitted.

Fig. 2. Values of Fisher’s score ordered in descending order.

A. Optimization of Model Hyper-Parameters

Detection of botnet traffic is considered in this subsection as
the classification problem where three classes are considered.
The first class corresponds to the benign traffic (normal
operation of the devices), the second class is Mirai attack and
the third class corresponds to the Bashlite attack. Decision
trees (DT), k - nearest neighbors (kNN), and logistic regres-
sion (LR), are frequently considered as classical classification
techniques. This list may be complemented by random forest

classifiers (RF) and support vector machines (SVM). Usually
these techniques require lesser levels of computational power
than deep learning techniques. The application of these meth-
ods leads different trade-offs between the hyper-parameters of
the algorithms their accuracy. Let us first consider how number
of features affects overall accuracy.

For the case of kNN, number of nearest neighbors k
and number of features are the hyper-parameters. In Figure
3 accuracy of this method computed during 5-fold cross-
validation for different values of hyper-parameters is depicted.
The most optimal value for the number of nearest neighbours

Fig. 3. Trade-offs between accuracy and hyper-parameters in kNN classifiers

is k = 1. In the framework of the present research, the depth
of the decision trees was not limited in any manner, therefore,
the number of the features is the sole hyper-parameter. De-
pendence between the number of the features and accuracy of
the DT classifier is depicted in Figure 5.

For the RF classifier, there are two hyper-parameters number
of the features and number of the trees. Like in the case of
decision trees depth of the individual trees was not limited in
any way. Figure 4 depicts the accuracy as the function of the
number of features and number of trees. The accuracy of the
classifiers is stable high when number of the features is greater
or equal 11 and number of trees is greater or equal than 11.

Fig. 4. Trade-offs between accuracy and hyper-parameters in RF classifiers

Figure 5 demonstrates the change in accuracy with the
number of the ordered features in learning models induced
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by DT, RF and kNN (i.e., note that such values are derived
from the learning models with the hyper-parameters provid-
ing highest accuracy). Logistic regression and support vector
machine classifiers have demonstrated lower accuracy rates in
comparison to the other methods and therefore omitted from
further studies.

Observing the trade-offs between the accuracy and number
of features depicted in Figure 5, one may easily see that it
is not necessary to base the classification process on all the
available features. A feature set having 10-15 features provide
optimal accuracy performance. Results of the present section
clearly demonstrate that, in our problem, smaller number of
features is enough to reach very high accuracy rates, which
eliminates the need to use deep-learning algorithms requiring
high computational resources. It is important to note that, in
most of the cases, intrusion detection in IoT network should be
done with limited resources due to the hardware constraints in
IoT devices, justifying the minimization of required resources
for inducing learning models.

Fig. 5. Comparison of the trade-off between the number of features and
accuracy

B. LIME based interpretation

We applied the LIME method [11] to the instances labeled
by learning models. In order to compare the local explanations
generated for the outputs of these models, we conducted
several experiments by using supervised learning methods
such as Random Forest, k-NN and Decision Tree with varying
sizes of selected features. If not otherwise stated, we chose the
hyper-parameters that utilize the best accuracy according to the
results of experiments given in Section IV-A. Table II gives the
explanations of three test instances belonging to the categories,
Benign, Bashlite and Mirai which are correctly classified by
the corresponding model (the data points are [4.53 4.53 2.19],
[480,00 480.00 219.69] [798.87 798.87 267.78] respectively).
In Table II letter ’w’ in the feature name column refers to
’weight’. The value of k was chosen as 3 for kNN and
the number of estimators was utilized as 10 in Random
Forest. The learning models were induced with the best three
features selected by the Fisher’s Score. In the data-set, the
features that belong to Host-IP and Host-MAC&IP categories

are very similar. Therefore, local explanations for the same
corresponding features (for instance, MI_dir_L1_weight and
H_L1_weight) have the same value. It can be observed that
all learning methods provide similar intervals for the selected
test instances. In case of k-NN, for example, a security analyst
can easily deduce from the explanations that if the packet
count of a host captured in 1.5 sec and 500 ms intervals are
lower than 277.96 and 112.94 respectively, then that host is
not compromised by any malware type. Although the acquired
explanations are not global, meaning that they do not represent
the whole characteristics of the corresponding category, and
they are just local explanations of the selected test instances,
the results can give intuition to the analyst about the difference
between Bashlite and Mirai categories (i.e., Bashlite infection
produced more packets then Mirai infection).

TABLE II
EXPLANATIONS FOR SELECTED TEST INSTANCES

Label Feature kNN Rand. For. Decision
(k = 3) (10Est.) tree

MI_dir_L1_w ≤ 277.96 ≤ 268.37 ≤ 270.17
Benign H_L1_w ≤ 277.96 ≤ 268.37 ≤ 270.17

MI_dir_L3_w ≤ 112.94 ≤ 110.04 ≤ 110.21
MI_dir_L1_w ≥ 679.91 ≥ 680.42 ≥ 677.42

Bashlite H_L1_w ≥ 679.91 ≥ 680.42 ≥ 677.42
MI_dir_L3_w ≥ 246.09 ≥ 247.44 ≥ 244.75
MI_dir_L1_w > 277.96 > 268.37 > 270.17

≤ 595.68 ≤ 594.29 ≤ 593.59
Mirai H_L1_w > 277.96 > 268.37 > 270.17

≤ 595.68 ≤ 594.29 ≤ 593.59
MI_dir_L3_w > 193.25 > 191.15 > 194.09

≤ 246.09 ≤ 247.44 ≤ 244.75

We applied LIME to the randomly selected 50 test instances
from each category. The results of correctly categorised in-
stances are given in Table III (note that f1 refers to the feature,
MI_dir_L1_weight and f2 refers to MI_dir_L3_weight). As the
Host-IP and Host-MAC&IP categories have the same values
for the same statistical feature, we did not include the Host-IP
category in the table. Each row gives the inequality set for the
explanation and the number of instances explained by such
an exactly the same inequality set. The results show that all
instances belonging to the benign category are represented by
one common inequality set whereas five and eight inequality
sets are created for Bashlite and Mirai, respectively. As the
identified explanations are local and the models are trained
with only three features, we observed the same exact expla-
nations for the instances of different categories as one may
expect (namely, explanation overlap). The rows shaded by the
same gray tone show the same inequality set that is recognized
in different categories. For instance, all benign, seven Bashlite
and seven Mirai instances are explained by the same inequality
set, MI_L1_weight ≤ 277.96,MI_L3_weight≤ 112.94. An-
other similar result is obtained for the set, MI_L1_weight >
679.91, MI_L3_weight> 246.09, which explains 26 Bashlite
and 7 Mirai instances.

It is obvious that providing the same explanation to different
classes would create big confusion for the security analysts
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TABLE III
SAMPLE EXPLANATIONS FOR THE OUTPUT OF K-NN

Class Inst. Explanation Rules
Benign 50 f1 ≤ 277.96, f2 ≤ 112.94

7 f1 ≤ 277.96, f2 ≤ 112.94
4 f1 > 679.91, 193.25 < f2 ≤ 246.09

Bashlite 26 f1 > 679.91, f2 > 246.09
1 f1 ≤ 277.96, f2 ≤ 193.25
1 277.96 < f1 ≤ 595.68, 112.94≤ f2 ≤ 193.25
4 277.96 < f1 ≤ 595.68, 193.25 < f2 ≤ 246.09
12 277.96 < f1 ≤ 595.68, 112.94 < f2≤ 193.25
7 f1 > 679.91, f2 > 246.09

Mirai 12 595.68 < f1 ≤ 679.91,193.25 < f2≤ 246.09
7 f1 ≤ 277.96, f2 ≤ 112.94
3 595.68 < f1 ≤ 679.91,112.94 < f2 ≤ 193.25
1 f1 ≤ 277.96,112.94 < f2 ≤ 193.25
1 277.96 < f1 ≤ 595.68, f2 ≤ 112.94

even if the accuracy of the model is so high. The hyper-
parameter choices, including the number of selected features,
applied at each step before the post-hoc interpretation would
definitely have an impact on the overlaps of the local expla-
nations. In this work, we focus on the implications of these
choices rather than the decision quality of the interpretation
algorithm itself. In order to show the explanation overlap
generated by the LIME interpretation in a better way, we
restructured the sample data given in Table III as shown in
Table IV so that each row gives a distinct explanation with the
distribution of the instance categories described by that expla-
nation. For instance, the first row, f1 ≤ 277.96, f2 ≤ 112.94,
explains 50 benign, 7 Bashlite and 7 Mirai instances, which
is not the ideal case for an analyst as the same inequality
explains three categories. On the other side, the second row,
f1 > 679.91, 193.25 < f2 ≤ 246.09 just explains 4
Bashlite instances but no benign and Mirai ones, not creating
a confusion.

TABLE IV
CLASS DISTRIBUTION FOR EACH EXPLANATION (LEARNING MODEL IS

K-NN)

Explanation Rule Benign Bashlite Mirai
f1 ≤ 277.96, f2 ≤ 112.94 50 7 7

f1 > 679.91, 193.25 < f2 ≤ 246.09 0 4 0
f1 > 679.91, f2 > 246.09 0 26 7
f1≤ 277.96, f2 ≤ 193.25 0 1 0

277.96 < f1 ≤ 595.68, 112.94 ≤ f2 ≤ 193.25 0 1 12
277.96 < f1 ≤ 595.68, 193.25 < f2 ≤ 246.09 0 0 4
595.68 < f1 ≤ 679.91,193.25 < f2 ≤ 246.09 0 0 12
595.68 < f1 ≤ 679.91,112.94 < f2 ≤ 193.25 0 0 3

f1 ≤ 277.96,112.94 < f2≤ 193.25 0 0 1
277.96 < f1 ≤ 595.68, f2≤ 112.94 0 0 1

We introduced an interpretability quality metric in Equation
2 which computes the degree of explanation overlap by using
the entropy notion. Assume that ei is the ith explanation in an
explanation set E, K is the number of categories and pk is
the ratio of instances labeled by category k to the all instances
described by ei.

ei =
K∑

k=1

−pk · log2 pk (2)

The value of pk · log2 pk is considered as zero when pk is
zero. Equation 2 gets the lowest value, zero, when all instances
explained with one inequality belongs to the same category
(namely, explanation overlap is zero) and provides the highest
value in case of instances are equally distributed among the
categories. Therefore, the first, third and fifth rows in Table
IV have entropy values greater than zero whereas all others
are exactly zero.

Let’s assume that we have N instances and apply LIME to
get an explanation for each instance. The explanation overlap,
E, of an entire explanation set having N elements is computed
as follows:

E =

N∑

i=1

ei (3)

where ei is computed by Equation 2.

Figure 6 shows the explanation overlap (EO) of a randomly
selected instance set (recall that we selected 50 from each
category) and explained by LIME for the learning models
created by decision trees, kNN and random forest with varying
selected features. The x-axis of the graph gives the number of
features ordered according to the Fisher’s Score and the y-axis
demonstrates the value of explanation overlap obtained by the
chosen features (i.e., using Equation 3). The results show that
all machine learning methods reach the zero value for EO
between 13 and 17 features (i.e., although all of them provide
non-zero values for some greater feature numbers), meaning
that, at the post-hoc interpretation step, the LIME requires at
least such number of features to assign one explanation to
just only one category. If the machine learning model utilizes
fewer features, the explanations may, in turn, confuse the
analysts so that one inequality set may explain more than
one category. On the other side, once reaching the zero value,
LIME provides more zero-valued results for the interpretation
of the decision tree models for the greater number of features
as there exist fewer fluctuations in the remaining of the graph
for this learning model. However, RF and kNN still give much
non-zero EO values after 13-17 features.

Recall, in Figure 5, it is shown that the learning models
have already reached the optimal accuracy values around 10-
15 features. Therefore, we can deduce that it is possible to have
a clear explanation figure and optimal accuracy with 13-17
features in our problem. However, such a number of features
can not be comprehensible by the experts as the feature set has
so many inequalities. Miller’s psychological theory states that
humans can handle 7(+/−)2 abstract entities at the same time
[23]. Although there is no clear definition of interpretability
(i.e., whether it includes comprehensibility or acceptability),
it is obvious that 13-17 features may not be preferable by the
experts in spite of the high detection accuracy rates. Such high
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Fig. 6. Equation overlap results by using the features ranked by Fisher’s
Score

numbered features can not easily explain the decision to the
human analyst even in the decision trees which are considered
as one of the most inherently interpretable models.

Additionally, the dataset has various features belonging to
different time-variants but seem semantically similar, which
may be very hard for analysts to dissect the categories.
Figure V shows the best 20 features selected by Fisher’s
score. It can be observed that most of the packet counts in
different time intervals (for instance, "MI_dir_L1_weight",
"MI_dir_L3_weight" or "MI_dir_L0.1_weight") are deter-
mined as the best features which are, in turn, included in the
interpretation sets. For an analyst, analyzing all of them may
not be much sense if there are no big behavioral deviations
in such different intervals. The similarity of data in feature
categories, Host-IP and Host-MAC&IP, makes the compre-
hensibility issue more problematic.

TABLE V
SELECTED FEATURES BY FISHER’S SCORE

Features (in a descending order)
MI_dir_L1_weight

H_L1_weight
MI_dir_L3_weight

H_L3_weight
MI_dir_L0.1_weight

H_L0.1_weight
MI_dir_L5_weight

H_L5_weight
MI_dir_L0.01_weight

H_L0.01_weight
HH_L1_weight

HH_jit_L1_weight
MI_dir_L1_variance

H_L1_variance
HH_L3_weight

HH_jit_L3_weight
MI_dir_L0.01_mean

H_L0.01_mean
MI_dir_L0.1_variance

H_L0.1_variance

Here, it is important to note that the rank of Fisher’s score
can not be treated as ground truth for the determination of
discriminatory power. Wrapper or embedded feature selection

methods may yield better accuracy rates with less number
of features. One alternative could be also to eliminate the
dependent features. Nevertheless, the comprehensive analysis
of feature selection methods is beyond the scope of the
paper. However, we conducted additional experiment to see
the results of another feature set which we selected in the
following way: We traversed the list ranked by Fisher Score,
but included the 20 features that belong to different feature
category (i.e., refer to Table I for these categories) in our
final list given in Table VI . We also eliminated the "Host-
MAC&IP" category due to its similarity to the "Host-IP"
category. This selection means that the final list also includes
features with the lower Fisher’s Score.

TABLE VI
CUSTOMARY SELECTION OF THE FEATURES

Features (in a descending order)
H_L1_weight
HH_L1_weight

HH_jit_L1_weight
H_L1_variance
H_L0.01_mean
HH_L0.01_std

HpHp_L0.01_mean
HH_L1_mean

HH_jit_L5_mean
HH_jit_L0.01_variance

HpHp_L0.01_std
HpHp_L0.01_magnitude
HH_L0.01_magnitude

HH_L0.01_radius
HH_L0.01_pcc

HpHp_L0.01_radius
HpHp_L5_covariance

HpHp_L5_pcc
HH_L0.1_covariance
HpHp_L0.1_weight

Explanation overlap and accuracy results for the custom
feature set are given in Figures 7 and 8. It is interesting to note
that the LIME interpretation of all models reached zero with
6 features for the value of equation overlap, and there does
not exist any fluctuation in the remaining part of the graph for
greater numbers of features. When the results in Figures 8 and
5 are compared, it can be deduced that the optimal detection
accuracy is already reached with 5 features, and the overall
accuracy figure is similar to the previous case in which the
strictly ranked feature set was used. The number of selected
features is still within the range of limits stated in Miller’s
theory. As the features belong to different categories, it can
be argued that the security analysts could better perceive the
interpretation rules and understand the distinctions between
the benign and malware types.

Although we have not thoroughly investigated all feature
selection methods, the reduction in the size of the optimal
feature set from the accuracy point of view could be attributed
to the possible dependencies among features or it can be
argued that a filter method which is computationally cheap is
not enough. However, the quality metric, explanation overlap,
that we proposed in this study, supported the interpretability
analysis of the selected features.
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Fig. 7. Using custom features

Fig. 8. 3-label accuracy using custom features

V. CONCLUSION

In this study, we analyzed the feature selection and its
impact on the post-hoc local interpretation of the learning
model outputs within the context of the botnet detection
in IoT networks. A quality metric for the explanations of
model decisions reflecting the security analyst perspective is
introduced to facilitate this analysis. This metric basically
evaluates whether the given explanation describes just only
one category or not. If the explanation is prone to explain one
category, this is preferable. In our experiments, we utilized
a well-known method, LIME, in the post-hoc interpretation
phase.

This paper demonstrated that, by using the selected dataset
chosen from the problem domain, it is possible to have very
high accurate classical machine learning models which can
produce explanations that do not create confusion for the
security analysts. Our quality metric enabled us to provide
such an analysis of interpretability and accuracy in a common
picture. Our work is distinguished as it investigates the feature
selection and interpretability within the IoT botnet detection
domain.
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Abstract: The exponential growth of the Internet of Things in conjunction with the traditional lack of security mecha-
nisms and resource constraints associated with these devices have posed new risks and challenges to security
in networks. IoT devices are compromised and used as amplification platforms by cyber-attackers, such as
DDoS attacks. Machine learning-based intrusion detection systems aim to overcome network security lim-
itations relying heavily on data quantity and quality. In the case of IoT networks these data are scarce and
limited to small-sized networks. This research addresses this issue by providing a labelled behavioral IoT
data set, which includes normal and actual botnet malicious network traffic, in a medium-sized IoT network
infrastructure (83 IoT devices). Three prominent botnet malware are deployed and data from botnet infec-
tion, propagation and communication with C&C stages are collected (Mirai, BashLite and Torii). Binary and
multi-class machine learning classification models are run on the acquired data demonstrating the suitability
and reliability of the generated data set for machine learning-based botnet detection IDS testing, design and
deployment. The generated IoT behavioral data set is released publicly available as MedBIoT data set∗.

1 INTRODUCTION

The adoption of the Internet on an increasing wider
scope, i.e., providing connectivity capabilities to ev-
eryday objects, is a reality. In fact, the rise of the
Internet of Things (IoT) has just begun and it is ex-
pected to have a major increase in the near future. It
was estimated that there would be 26.66 billion active
IoT devices by 2019, a figure that may be increased
up to 75 billion by 2025 (Statista, 2019). 127 new
IoT devices are connected to the Internet every second
(McKinsey, 2017) in a wide range of applications,
from factories and smart cities sensors to healthcare
and car products. The market size is calculated to
grow over $212 billion by 2019 and reach $1.6 trillion
by 2025 (Liu, 2019). However, the adoption of the
IoT technology still poses usability concerns even to
early adopters and eager customers, related to device
security and data privacy issues (Bosche et al., 2018;
Sklavos et al., 2017). Thus, despite its huge growth,
the Internet of Things market explosion is still being
limited by its main barrier: security (Bertino and Is-

a https://orcid.org/0000-0002-3655-5804
b https://orcid.org/0000-0001-8882-4095
c https://orcid.org/0000-0001-5571-1692

lam, 2017; Bosche et al., 2018; Pratt, 2019).
Their ubiquity will pose a major challenge to secu-

rity as IoT devices have traditionally lacked of proper
control measures and proactive security management
(e.g., usage of default passwords, no firmware up-
dates, no access control policy), featuring them as
high vulnerable and prone to be compromised devices
(Bertino and Islam, 2017). These features have been
exploited by malicious actors, being able to compro-
mise the defenseless devices by exploiting its vulnera-
bilities, gaining remote access and using them as mag-
nification platforms for their massive attacks (Kolias
et al., 2017). An IoT botnet is just a particular type of
botnet in which the compromised devices are IoT de-
vices, thus showing analogous scheme and dynamics
to computer botnets. In this regard, when a vulnera-
ble device is compromised it becomes a bot, a mem-
ber of a larger community of compromised devices,
called botnet, under the control of a malicious actor,
the botmaster. The botmaster has remote access and
control of the bot over the Internet, without the con-
sent and awareness of the actual owner of the com-
promised device, using a Command&Control (C&C)
server (Silva et al., 2013). Botnets have been used
to perpetrate a wide range of malicious attacks, from
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Guerra-Manzanares, A., Medina-Galindo, J., Bahsi, H. and Nõmm, S.
MedBIoT: Generation of an IoT Botnet Dataset in a Medium-sized IoT Network.
DOI: 10.5220/0009187802070218
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 207-218
ISBN: 978-989-758-399-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

207



massive SPAM and phishing campaigns to distributed
denial-of-service (DDoS), the most common usage of
a botnet. A DDoS attack targets the availability of
online resources, such as websites or services. The
main goal is to saturate the targeted server or network
with more traffic than it can handle (e.g., receiving
an overwhelming amount of messages, connection re-
quests or forged packets) thus provoking the service
or website to crash and become unavailable to legiti-
mate users requests (Weisman, 2019).

1.1 Data Sets for IoT Anomaly
Detection

The phenomenon of botnet detection in computer net-
works has been widely studied (Garcia et al., 2014;
Feily et al., 2009), with many available data sets at
hand (Shiravi et al., 2012), while the most recent IoT
network botnet phenomenon has not received the re-
quired attention yet, showing a remarkable lack of
available data sources.

Data sets for building effective IoT anomaly de-
tection methods rely on the acquisition of both le-
gitimate (normal) and malicious (botnet) behavioral
data from IoT networks. Anomaly models are built
and trained using only legitimate data to establish the
so-called normality patterns. The induced models are
tested using legitimate and malicious data, where the
metrics related to model’s detection performance are
evaluated. Therefore, proper and complete data are
key components for a high-performance effective in-
trusion detection system (IDS). Table 1 summarizes
the available data sets for IoT anomaly-based intru-
sion detection systems. As can be observed, a small
amount of data sets are available for the specific IoT
botnets issue. The available data sets are focused on
small-sized IoT networks, reflecting the behavior of
a small set of IoT devices. Additionally, a specific
and small variety of devices are used (mostly security
cameras) limiting the scope of the IoT devices ana-
lyzed from the broad domain of available IoT devices.
None of the available IoT data sets combine real and
emulated devices, which limit the scope of their re-
sults to either real or emulated devices. In this regard,
our generated data set combines real and emulated de-
vices, using different but common types of IoT de-
vices, not investigated by previous data sets (i.e., fans,
locks, light bulbs and switches), in a medium-sized
network composed of more than 80 devices. Fur-
thermore, our data set focuses on the first stages of
a botnet deployment, such as infection and propaga-
tion, while the rest of the data sets focus on the last
stages of the botnet lifecycle, mainly detection of at-
tacks (Kirubavathi and Anitha, 2014).

As already stated, the Internet of Things is a real-
ity that will become ubiquitous in the following years.
This fact combined with the lack of proper security
measures and devices inherent vulnerabilities make
IoT devices an easy and appealing target for cyber
attackers (Bertino and Islam, 2017). Thus, proper
data are in need to create machine learning-based ef-
fective detection systems that may help to overcome
these limitations. In this regard, there is a remarkable
lack of available data sets that might help to build ef-
fective IDSs in IoT networks. This research aims to
fill this significant gap in IoT anomaly-based IDSs by
providing a novel IoT data set obtained from medium
size IoT network architecture (more than 80 devices),
which includes normal and malicious behavior from
different devices (real and emulated) and the deploy-
ment of prominent IoT botnets (Mirai, BashLite and
Torii). The scale extension enables to capture mal-
ware spreading patterns that cannot be seen in small-
sized networks, thus providing a more realistic envi-
ronment. Additionally, this data set includes the be-
havior of Torii botnet malware which has not been
addressed in any other data set before. Finally, this
data set provides data for the first stages of botnet de-
ployment (i.e., infection, propagation and communi-
cation with C&C server stages), thus complementing
the available data sets which mainly focus on attack
detection, the main outcome and part of the last stages
of the botnet lifecycle (Hachem et al., 2011; Kiruba-
vathi and Anitha, 2014).

This paper is structured as follows: Section 2 pro-
vides background information and a review of re-
lated literature, Section 3 explains the methodology
followed to implement the experimental setup while
Section 4 offers a detailed overview of the main out-
come of this study, a novel IoT data set for botnet
detection, and its verification. Finally, Section 5 con-
cludes the study and highlights its main contributions.

2 LITERATURE REVIEW &
BACKGROUND INFORMATION

2.1 Botnets & DDoS Attacks

Botnets have been used to perpetrate record-breaking
DDoS attacks. In this regard, in 2016, the journalist
Brian Krebs was the target of a record-breaking attack
(620 Gbps) to its blog KrebsOnSecurity.com, specifi-
cally tailored to take the site offline (Krebs, 2016). A
month later, the french hosting provider OVH was at-
tacked by the same botnet (probably BashLite), reach-
ing 1 Tbps and involving over 140.000 compromised
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Table 1: Data sets for IoT Anomaly-based IDS.

Data set Botnet
Number

of devices
Device type

Real or
Emulated

Network
Size

Data set features Date Reference

N-Baiot
Mirai

BashLite 9

Doorbell
Webcam

Thermostat
Baby monitor

Security Camera

Real Small 115 - statistics 2018

(Meidan et al.,
2018a)

(Meidan et al.,
2018b)

IoT host-based
datasets for ID

research

Hajime
Aidra

BashLite
Mirai
Doflo

Tsunami
Wroba

2
Multimedia Center
Security Camera Emulated Small

NA - PCAP &
Netflow/Host

2018

(Bezerra et al.,
2018a)

(Bezerra et al.,
2018b)

IoT Network
Intrusion Dataset

Mirai 2
Speaker

Wi-Fi Camera Real Small NA - PCAP 2019
(Kang et al.,

2019)

Bot-IoT
No actual
malware -
simulated

5

Refrigerator
Smart Garage door

Weather Monitoring
Smart Lights

Smart thermostat

Emulated Small 31+14 - flow 2019

(Moustafa,
2019)

(Koroniotis
et al., 2019)

cameras/dvr (Pritchard, 2018). The same year, Dyn, a
domain name system provider of major websites and
services such as CNN, Netflix, Paypal, Visa or Ama-
zon was attacked by the Mirai botnet, using around
100.000 IoT devices and reaching up to 1.2 Tbps,
causing the servers to be inoperative and the web-
sites unreachable by the legitimate users for several
hours (Weisman, 2019; Hilton, 2016). It is estimated
that Dyn lost around 8% of its customers (i.e., 14000
domains) as a consequence of the attack and the lost
of trust (Weagle, 2017). This was just the onset for
the IoT botnet-based attacks. Since then, the attacks
have not stopped, evolving in sophistication and ca-
pabilities as the source code of the malware behind
the botnets became available to the public (Asokan,
2019). A recent report by F-secure states that cyber-
attacks on IoT devices rouse 300% in 2019, reaching
the 3 billion attacks, an unprecedented figure (Doff-
man, 2019). The threat is still alive and growing,
caused mainly by the combination of the increase of
the number of IoT devices deployed worldwide and
the intrinsic vulnerabilities carried by such devices,
which can also contain valuable data related to med-
ical or control issues. Nevertheless, one of the major
risks is the usage of the IoT endpoints (e.g., a printer
or a fridge) as an easy-to-reach and vulnerable en-
try points to wider and secured networks (Doffman,
2019).

As a result, cyber security for IoT, in the form of
early detection of threats, becomes a key issue to de-
tect and mitigate such attacks. In this regard, intru-
sion detection systems are widely used network secu-
rity components which aim to detect security threats
where preventive security measures are not feasible to
implement (Benkhelifa et al., 2018; Sun et al., 2007).

2.2 Intrusion Detection Systems

An intrusion could be defined as a set of activities
or actions that compromise one or more components
of the IT security model known as CIA triad (i.e.,
short for Confidentiality, Integrity and Availability)
of a specific entity or system. These systems are not
restricted to computers, network equipment, firewall,
routers or networks but to any information technol-
ogy system which is under the monitoring scope of
an intrusion detection system (IDS) (Sun et al., 2007).
Based on that, an intrusion detection system is a secu-
rity tool that aims to detect and identify the unautho-
rized individuals willing to break into and misuse a
system and also those authorized and legitimate users
that abuse of their privileges within the system (Sun
et al., 2007). There are four common approaches used
for intrusion detection: misuse, anomaly, specifica-
tion and hybrid (Benkhelifa et al., 2018; Sun et al.,
2007; Butun et al., 2013; Zarpelão et al., 2017). They
are briefly explained as follows:

• Misuse or signature-based detection systems use
known fingerprints or signatures from attacks
stored in a database. If an IDS finds a match be-
tween the current activities and a known signa-
ture it raises the alarm about the detected suspi-
cious behavior. This systems are easily bypassed
by not-known or novel attacks, when a signature
is not yet available.

• Anomaly-based detection systems are based on
the creation of a typical or normal activity pro-
file. Current activities are compared against this
normal behavior. If the IDS finds a significant de-
viation or discrepancies from the normality model
it raises the alarm about the suspicious behavior.
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These systems success on the detection of novel
attacks but they are prone to false positives (i.e.,
legitimate behavior is detected as malicious be-
havior) as the normal behavior might not be easy
to model, so that being very sensitive to the cor-
rectness of the normality model created.

• Specification-based detection systems combine
features of misuse and anomaly approaches. They
apply anomaly-based principle on set of human
generated specifications or constraints about the
normal or legitimate behavior. These systems aim
to detect novel attacks based on anomalous behav-
ior while reducing the amount of false positives.

• Hybrid detection systems involve the combination
of any of the previous approaches, aiming to over-
come the weaknesses of one approach using the
strengths of another.

One of the most effective and widely used detection
methods is the anomaly-based approach, which en-
ables to detect novel attacks but with the inevitable
trade-off of being sensitive to the correctness of the
generated normality model. In this regard, statistical
methods and machine learning algorithms are gen-
erally used to generate the normal behavior profile
(Zarpelão et al., 2017). Therefore, valid behavioral
models should be used in order to obtain the max-
imum benefit of this approach, depending in a direct
manner on the available training data (Bolzoni, 2009).
In IoT networks, where a wide variety of devices may
coexist in the same network, it is likely to have dif-
ferent normality profiles which emphasizes the need
of accurate IoT behavioral data that enable the imple-
mentation of effective anomaly-based IDS. Thus, the
need of proper data encompassing such differences
are highly in demand. However, there is a remarkable
lack of available data sets that consider the different
network behaviors, devices and architectures that can
be found in IoT networks and its major threats. As
a result, proper IoT behavioral data are key to train
the IDS model for effective intrusion detection in IoT
networks.

2.3 Machine Learning-based IDS

Machine learning has shown promising results re-
garding computer botnet traffic detection (Livadas
et al., 2006) and more lately, in the specific IoT botnet
detection issue (Zarpelão et al., 2017). As a result of
the remarkable increase in IoT related security inci-
dents, researchers have reoriented their focus to deal
with the investigation of feasible and effective IoT
botnet detection methods involving anomaly-based
machine learning approaches. These approaches aim

to overcome the intrinsic hardware and software lim-
itations and capabilities of these devices (Zarpelão
et al., 2017). In this regard, in Meidan et al. (2018b),
Deep Autoencoders, Local Outlier Factor, One-Class
Support Vector Machines and Isolation Forest algo-
rithms models built and evaluated using the N-baiot
dataset. The results show that all algorithms, except
Isolation Forest, effectively detected all Mirai and
BashLite simulated attacks. Their proposed method,
based on Deep Autoencoders, showed the lowest false
alarms ratio and required less time to detect the at-
tacks than the other approaches. Prokofiev et al.
(2018) used Logistic Regression algorithm to esti-
mate the probability that a device was part of an
IoT botnet, focusing on the connection initiation at
the propagation stage. Lin et al. (2014) proposed an
IoT botnet detection method which combines Sup-
port Vector Machines and Artificial Fish Swarm al-
gorithms. McDermott et al. (2018) provided a new
application for a text recognition deep learning algo-
rithm (Bidirectional Long Short Term Memory based
Recurrent Neural Network), with remarkable success
on Mirai botnet attack detection. Doshi et al. (2018),
used different network features to train and evaluate
the accuracy of k-Nearest Neighbors, Support Vector
Machines, Decision Tree, Random Forest and Artifi-
cial Neural Networks algorithms on the detection Mi-
rai DDoS attacks. A novel IoT malware detection ap-
proach using network traffic is proposed in Shire et al.
(2019) where Convolutional Neural Networks and bi-
nary visualisation technique were used to provide a
fast detection method for zero-day malware.

As can be observed, the application of anomaly
detection requires the acquisition of malicious traf-
fic which is tested against normal or legitimate traffic
in order to evaluate the goodness of the proposed de-
tection model. For this purpose, the data sets should
provide both kinds of network traffic in order to as-
sess the effective detection of threats. In this paper
we provide demonstrability of the generated data set
on classification issues (i.e., supervised learning), for
the easiness of interpretation of the results and com-
parison, but this data set may also be used to build
effective anomaly detection models, considered tradi-
tionally unsupervised learning.

3 METHODOLOGY

The main outcome of this research is the generation of
a labelled behavioral IoT data set, which includes nor-
mal and actual botnet malicious network traffic, in a
medium-sized IoT infrastructure (composed of more
than 80 devices). The focus was on the acquisition
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of network data from all the endpoints and servers
during the initial propagation of Mirai, BashLite and
Torii botnets.

3.1 IoT Network Topology

The network topology created for the purpose of this
study is provided in Figure 1. It is composed by
3 connected networks: internet network, monitoring
network and IoT LAN network. Their functions and
components are described as follows:

• Internet Network: this network is directly con-
nected to the internet in order to provide internet
connectivity for the initial configuration of differ-
ent devices. To restrict the connectivity between
networks, a different subnetwork mask is estab-
lished.

• Monitoring Network: this network provides stor-
age and processing capabilities for the data re-
ceived from the switch. It is composed by a cap-
ture server and a security information and event
management (SIEM) server. The capture server
is responsible for the collection and storage of the
acquired network packages within the whole in-
frastructure. Tcpdump is used to monitor and log
the network traffic and store the data in pcap file
format which is later used as an input by the SIEM
server. The SIEM server is a Splunk software in-
stance which is responsible for data indexing, fil-
tering, analysis and data set generation (i.e., data
processing and labelling).

• IoT LAN Network: this local area network (LAN)
allows to spread the malware in a contained man-
ner. This network is composed of physical and
virtual IoT devices that generate the behavioral
traffic collected by the monitoring network, ei-
ther benign or malware generated traffic. Virtual
devices are deployed using containerization soft-
ware (i.e., Docker). The composition and capa-
bilities of this network devices are explained as
follows:

– Router: this device is responsible for the gener-
ation of an isolated network segment allowing
only communication between internal devices
within this network (i.e., using firewall rules).
The router provides IP addresses to this inter-
nal devices using Dynamic Host Configuration
Protocol (DHCP).

– Switch: this device is responsible for the ac-
quisition and transfer of the network packages
using the port mirroring technique. Port mir-
roring is used to clone and transfer network
packages that flow through one port to another

port, in real time, without affecting the network
performance. In this scenario, all devices gen-
erated data are captured and transferred to the
monitoring network.

– IoT Management System: this device allows
the management of all the IoT devices in a cen-
tralized manner. It is deployed using Hassio
software running on a Raspberry Pi, which al-
lows to simulate the same network behavior of
real implementations. In this network, 4 differ-
ent IoT devices were emulated: fan, lock, light
bulb and switch. Each device allows the re-
mote control of different features. For instance,
the fan allows the selection of speed, oscillation
state, current fan state and turning on/off capa-
bilities.

– Virtual IoT Devices: this device allows the vir-
tualization of IoT devices using Docker con-
tainers. It is deployed using a Raspberry Pi
which allows to emulate the behavior of an IoT
device.

– Wireless Access Point: this device allows net-
work connection to the non-ethernet compati-
ble devices. It is configured to allow the router
the capability of assigning IP addresses (via
DHCP), thus avoiding the possibility of IP ad-
dress duplicates.

– BashLite C&C Server: this server is the com-
mand and control unit of the BashLite botnet.
FTP and web services are installed to allow the
spreading of the malware. The server is also
used to compile the malware binaries used to
propagate the infection.

– Mirai C&C Server: this server is the command
and control device of the Mirai botnet. FTP and
web services are installed to allow the malware
propagation. The server is also used to compile
the malware binaries used to spread the infec-
tion.

– DNS Server Sinkhole: this server provides the
domain name resolution for the Mirai botnet. It
is also used as a sinkhole for the domains that
Torii malware requests connection. The sink-
hole avoids the actual connection between Torii
and the domain of its C&C server, providing ef-
fective malware contention.

– Physical Devices: this devices compose the col-
lection of real IoT devices of this network. It is
composed by 3 different devices: Sonoff tas-
mota smart switch, TpLink smart switch and
TpLink smart bulb. All of them allow exter-
nal device management and provide different
features. For instance, the light bulb allows to
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control light intensity, status and turn on/off ca-
pabilities.

In order to create a medium-sized network, virtual de-
vices are created and physical devices deployed, sum-
ming up a total amount of 83 devices. Table 2 shows
the composition of the IoT LAN network. As can
be observed, 80 devices are emulated and 3 are ac-
tual physical devices. The virtual devices have ARM
architecture as it is inherited from the Raspberry Pi
while the physical devices have MIPS architecture.
This fact conditions the malware binary used to in-
fect the device, being architecture-dependant, and en-
riches the spectrum of the data, considering a wider
variety of IoT devices. The features column provides
outlines the actions that the deployed IoT devices are
capable to perform.

Table 2: IoT network device composition.

Device Type Features Architecture
Number of

devices

Switch Physical
Turn On
Turn Off MIPS 2

Light
bulb

Physical
Turn On
Turn Off
Intensity

MIPS 1

Lock Virtual
Lock

Unlock ARM 20

Fan Virtual

Turn On
Turn Off

Speed
Oscillation

ARM 20

Switch Virtual
Turn On
Turn Off ARM 20

Light
bulb

Virtual
Turn On
Turn Off
Intensity

ARM 20

3.2 IoT Behavior

The simulation of devices’ behavior can be performed
in several ways, ranging from the imitation of the be-
havior by manual usage of the devices to the automa-
tion of the execution of specific functions/tasks using
scripts. The quality and consistency of the simulated
behavior is key to create a high quality data set that
provide realistic data input for effective IDS solutions.
In such cases, the acquisition of real and relevant data
regarding the normal usage patterns provide a realis-
tic baseline for the simulation of the behavior. For in-
stance, in a normal living room, the research showed
that a light bulb had a mean usage of 1.7h per day
while this value achieved 2.3h in the case of a light
bulb in the kitchen (Gifford et al., 2012). This infor-
mation provided a baseline for the simulation of be-
nign behavior in our experimental setup. In the case
of malware behavior it is simulated by the execution
of the different modules within the botnet, providing
a real output of the botnet behavior.

3.2.1 Legitimate Behavior

An automated execution approach is utilised for the
simulation of benign behavior. This approach takes
into account the architecture of the device, as stated in
Table 2, performed using a python script and MQTT
(MQ Telemetry Transport) protocol, which is a com-
munication protocol used to control IoT devices. The
IoT management system allows to automate this con-
trol and perform scheduled tasks on connected IoT
devices. A script with trigger actions is configured
and deployed. In this scenario, the following legiti-
mate behavior is simulated using the following trig-
gers:

• All devices are turned on at 8.00 AM

• Each time a device state changes, the manage-
ment system starts a countdown until the next
state change.

• The countdown value is randomized.

• The maximum limit of changes is established in
20 and a maximum of 3h on ON state is set.

• All devices are turned off at 07.00 PM

• In order to simulate a working environment, exe-
cution of the triggers is limited from Monday to
Friday.

By the usage of the previous triggers, network pack-
ages are generated along the network, captured and
stored. The captured network packages provide the
following communication information: time, protocol
used, TCP stream, TCP stream size, source IP, desti-
nation IP, MAC addresses, TCP raw message and re-
sponse code.

3.2.2 Malicious Behavior

The malicious behavior is generated by the deploy-
ment of three prominent botnet malware within the
controlled environment: Mirai (Antonakakis et al.,
2017), BashLite (Marzano et al., 2018) and Torii
(Kroustek et al., 2018). Mirai and BashLite botnets
have been widely studied and malware source code is
available on the Internet. Thus its deployment is fully
controlled in the lab environment using a C&C server
for each botnet and the source code is modified to con-
nect with this specific C&C server. Torii source code
is not yet available on the Internet, thus the samples
used for its deployment within the controlled envi-
ronment were obtained from Hybrid Analysis archive
(Crowdstrike, 2019). In order to avoid Torii malware
to connect with its actual C&C server, special con-
tention measures are in place. Mirai, BashLite and
Torii botnet propagation is performed and controlled
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Figure 1: Medium-sized IoT network topology.

within the environment using different strategies, ex-
plained in the following paragraphs.

• Botnet Propagation Techniques
– Mirai and Yakuza version of BashLite are con-

figured and executed within the controlled envi-
ronment, modifying the malware source codes
in order to link the infection binaries with the
corresponding in-lab C&C servers. Once the
botnet is properly set, droppers are the medium
used by these botnets to download and install
the appropiate malware file according to the
victim’s architecture which once executed will
run the bot daemon, compromising the device
successfully.

– Torii malware has not been profoundly studied
yet, so the deployment of this malware in the
lab environment carries further risks. In order
to contain and eliminate the risks of improper
use of the devices by Torii’s actual botmaster, a
sinkhole in the DNS server and firewall rules
are used. Torii connection attempts with its
C&C server are permanently denied and redi-
rected. As a result of the lack of proper knowl-
edge of Torii malware spreading methods and
source codes, the binaries are deployed manu-
ally within the lab environment. The obtained
sample is specifically tailored to target ARM
devices. The malware is executed running the
executable with root privileges in the target de-
vices, allowing to spread the malware through
the IoT devices.

• Botnet Contention Methods
– One of the major risks within the lab is the

abuse of the devices by real attackers. In this
regard, Torii poses a major challenge. Contrar-
ily to Mirai and BashLite, Torii has not been
deeply analyzed and poses a risk within the lab
environment that has to be addressed. Unsuc-

cessful botnet contention may lead to unautho-
rized usage of the IoT devices by real attackers
to perpetrate attacks or collect rellevant data.
Two major risks are found within this experi-
mental setup which are addressed and outlined
as follows:

1. Possibility of existence of hidden code in Mi-
rai’s source code to connect to the real C&C
server

2. Torii’s unknown spread techniques and func-
tionalities

Even though Mirai spreading techniques are
well-known, additional security measures are
taken to ensure effective contention of the mal-
ware. To address this issues, a sinkhole and
firewall rules are in place to deny possible con-
nection attemps to the real C&C servers. The
DNS sinkhole redirects the connection attempts
by resolving the name resolution request with a
controlled IP address. Firewall rules are set in
the router to block/control the traffic based on
known network masks.

Botnet malware are deployed at different times within
6 days (i.e., each let run free for 2 consecutive days)
aiming to obtain relevant botnet information and elim-
inate undesired overlapping of information. Further-
more, Mirai malware is capable of detect malware
running on a specific device and remove it in order
to take the single control of it. A limited number of
devices are infected in each botnet deployment. In the
case of BashLite malware, 40 devices were infected,
chosen in a pseudo-randomized way by limiting the
scope of devices scanned and infected. Mirai botnet
malware infected 25 devices, limited by the change of
configuration to restrict the internal scanner to spread
within the lab IP ranges. Torii botnet malware was
manually deployed in 12 devices, all under the con-
trolled scope of the DNS sinkhole.
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3.3 IoT Behavior Verification

In order to verify the suitability of the IoT behavioral
data set generated within the experimental setup for
detection purposes, the generated data are further pro-
cessed and used to build and test machine learning-
based classification models. Machine learning clas-
sification models aim to correctly predict the label or
category of an unknown data point based on features
(also called predictors) found on the training data pro-
vided during the model training/building phase (i.e.,
supervised learning). Binary classification is used
when the data points are split into to two mutually
exclusive categories (e.g., benign and malware) while
multi-class classification deals when more than two
categories are present within the data (e.g., benign,
Mirai, BashLite and Torii). In order to validate the
outcome of the experimental setup, both approaches
are used, inducing binary and multi-class machine
learning classification models, which are validated us-
ing k-fold cross validation.

From the source pcap files captured within the lab,
features are extracted and used as predictors/input for
the machine learning models. The features used in
this lab are computed as in Mirsky et al. (2018). A
total of 100 network traffic statistical features are cal-
culated, within different time windows. Table 3 pro-
vides a brief description of the generated features. As
can be observed, statistical features are calculated in
relation to 4 major categories for each of the 5 time
windows (i.e, 100ms, 500ms, 1.5s, 10s and 1min).

Table 3: Feature Categories.

Categories Features
Host-MAC&IP Packet count, mean and variance

Channel
Packet count, mean, variance, magnitude, ra-
dius, covariance, and correlation

Network Jitter
Packet count, mean and variance of packet jit-
ter in channel

Socket
Packet count, mean, variance, magnitude, ra-
dius, covariance and correlation

After the features are extracted, a random sample
of data points are selected for each class and used
to train/test machine learning models using 10-fold
cross validation. Four traditional machine learning
algorithms are used to induce and test classifier mod-
els. The main objective for these tests is to demon-
strate the suitability of the present data set for ma-
chine learning-based anomaly and classification de-
tection models. In this regard, there is no model
hyper-parameter optimization performed on the in-
duced models. Default scikit learn library (version
0.20) configurations are used, leaving room for im-
provement on the classifiers performance. In this re-

lation, k-Nearest Neighbors (k-NN), Support Vector
Machines (SVM), Decision Tree (DT) and Random
Forest (RF) algorithms are implemented. For each of
the models, four performance metrics are reported:
accuracy, precision, recall and F1 score. They are
briefly described as follows:

• Accuracy: ratio of the correctly classified test in-
stances among all test instances.

• Precision: fraction of positive instances correctly
classified among all the positive classified in-
stances.

• Recall: fraction of positive instances correctly
classified among all the actual positive instances.

• F1 score: harmonic mean of precision and recall
metrics.

All the performance metrics are bounded on the in-
terval [0, 1]. In general, a value close to 1 may be
deemed as a positive or good result for the given task
while a value close to 0 as a bad performance. In this
regard, for classification tasks, the higher the value
the better the classifier performance on label detection
and discrimination, thus inferring that the data and the
classifier are suitable for that purpose. In our specific
case, if the classifiers show a performance close to 1
in all metrics it may be inferred that the data is suit-
able for machine learning-based IoT botnet detection
and that the data labels (e.g., legitimate and malware)
can be discriminated effectively.

4 RESULTS

4.1 IoT Behavioral Data Set

The network packets collected in the IoT LAN net-
work are redirected to the monitoring network using
the port mirroring technique, where the SIEM soft-
ware (i.e., Splunk) was used to process and label the
data, thus allowing to create the final data set. This fi-
nal data set is generated in two versions: structured
(features are computed and extracted from the raw
data) and non-structured format (raw pcap files). The
total number of packets captured during the experi-
mental setup are provided in Table 4.

Table 4: Network data captured.

Number of packets Traffic type Number of devices

4,143,276 BashLite 40
842,674 Mirai 25
319,139 Torii 12

12,540,478 Benign 83
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As can be observed, a total amount of 17,845,567
network packets were captured within the experimen-
tal setup. Around 30% of this traffic was deemed
and labelled as malicious while 70% corresponds to
legitimate network traffic. Using Splunk it is possi-
ble to analyze and provide further details about the
type of communication. Regarding the legitimate net-
work traffic, 32% of the packages are found to be
related to system updates, 53% to device communi-
cation (MQTT protocol) and 15% to other network
data (e.g., TLS errors, pings, etc). Mirai and BashLite
source codes are configured to convey different kind
of communications on different ports, with the pur-
pose of facilitating the posterior analysis of the data.
In this relation, malicious traffic analysis shows that
68% of the data captured is related to the malware
propagation activity while 32% to the communica-
tion between the C&C servers and bots. In the case
of Torii, malicious traffic only includes data regard-
ing the initial infection of the device as the contain-
ment measures did not allow the real C&C to reach
the device and trigger posterior botnet events such
as propagation. The generated data set is made pub-
licly available in the following url: https://cs.taltech.
ee/research/data/medbiot

4.2 IoT Behavior Verification

4.2.1 Binary Classification

Binary or two-class classification models are induced
and 10-fold cross validated for four widely used ma-
chine learning classification models. In this case, the
data is divided in two classes or labels: legitimate
and malware (mixed data from the three malware sub-
classes). More specifically, the data set used is created
by random selection of 3000 data points from the le-
gitimate traffic, thus conforming the legitimate class
data. The malware class is composed of 1000 ran-
dom selected data points for each one of the malware
botnets deployed within the lab, summing up to 3000
data points for this class. As a result, a balanced data
set is created and used to perform the binary clas-
sification task. Support Vector Machines algorithm
showed a poor performance in all assessed metrics,
thus is not reported in the results, which are provided
in Table 5.

Table 5: Binary classification results.

Model Accuracy Precision Recall F1 score

k-NN 0.9025 0.9082 0.9025 0.9001
DT 0.9315 0.9448 0.9315 0.9293
RF 0.9532 0.9580 0.9532 0.9481

As can be observed, Random Forest algorithm is
able to discriminate over 95% of the data points, thus
detecting effectively the vast majority of the malware
traffic. Decision Tree and k-NN show slightly less
discriminatory performance, but over 90% in all per-
formance metrics in both cases. The malware traffic,
which is composed of a mixture of 3 different bot-
net malware, is effectively discriminated from legit-
imate traffic, as can be confirmed by the normalized
confusion matrix provided in Table 6, extracted from
a Random Forest model. As already stated, SVM
showed bad performance, and its results are not re-
ported. Nevertheless, this fact may suggest that the
data is not linearly separable, thus being SVM a not
suitable classifier model for this task unlike the other
algorithms used. These results emphasize the effec-
tive capabilities of machine learning approaches to
detect botnet malware traffic, even in the first stages of
its deployment (i.e., infection, propagation and com-
munication with the C&C server stages) and disre-
garding the botnet malware employed. Furthermore,
the data set created within this lab demonstrates its
suitability to be used as a medium-sized realistic IoT
data set for IoT botnet detection scenarios and IDS
testing.

Table 6: Confusion matrix of RF binary classification.

Predicted
Malware Legitimate

A
ct

ua
l

Malware 291 9
Legitimate 7 293

4.2.2 Multi-class Classification

In this setting, multi-class classification models are
induced and 10-fold cross validated for the same algo-
rithms employed in the binary approach. In this case,
the data was divided in four classes or labels: legit-
imate, Mirai, BashLite and Torii. The data set used
is created by random selection of 2000 data points
of each of the possible classes, summing up to 8000
data points, evenly distributed in 4 labels. The main
aim of this configuration is not only to test the le-
gitimate/malware discrimination, as in the binary ap-
proach, but also the discrimination of the specific mal-
ware source. As in the previous setting, Support Vec-
tor Machines algorithm showed a poor performance
in all metrics, thus its performance is not reported.
Table 7 provides the results for the multi-class classi-
fication task.

As can be seen, Random Forest model outper-
forms Decision Tree and k-NN algorithms in the
multi-class classification task, in a similar fashion as
in the binary models. More specifically, RF algorithm
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Table 7: Multi-class classification results.

Model Accuracy Precision Recall F1 score

k-NN 0.8706 0.8849 0.8706 0.8505
DT 0.9516 0.9584 0.9516 0.9499
RF 0.9766 0.9824 0.9766 0.9657

is able to discriminate more accurately the labels in
the multi-class scenario than in the binary setting, be-
ing able to discriminate accurately over 97% of the
data points. As shown in Table 8, extracted from the
Random Forest model, the classification model is very
accurate in all cases, not showing any significant bias
towards any of the possible labels. The results ob-
tained suggest that the source of network traffic can
be effectively discriminated in earlier stages of bot-
net infection. They also demonstrate that the learning
capabilities of machine learning-based detection can
be accurate not only in the binary setting but also in
the specific discrimination of different sources of ma-
licious traffic in medium-sized IoT networks.

Table 8: Confusion matrix of RF multi-class classification.

Predicted
Mirai BashLite Torii Legitimate

A
ct

ua
l Mirai 197 0 0 3

BashLite 2 196 0 2
Torii 0 0 198 2
Legitimate 2 0 0 198

5 CONCLUSIONS

The exponential growth of the Internet of Things is a
fact and these devices will become ubiquitous in the
near future. The increasing connectivity capabilities
of these devices in conjunction with their traditional
lack of security features make them an appealing tar-
get for cyber-attackers. Malicious actors compromise
the vulnerable IoT devices and use them as an ampli-
fication platform of their attacks, becoming part of the
so-called botnet. Botnets have been extensively used
to deliver massive spam campaigns and perpetrate
record-breaking DDoS attacks that may lead to nefar-
ious consequences. Therefore, there is an increasing
need to overcome the lack of security of these devices.
The proposed solutions are mainly coming from ma-
chine learning-based approaches.

The performance of machine learning algorithms
heavily rely on data quality and quantity. In this re-
lation, there is a remarkable lack of data sources in
the specific IoT networks scenario. The experimen-
tal setup of this research aims to fulfill this gap by
providing a novel data set with network data col-
lected from a medium-sized IoT network architecture,

which is composed of legitimate and botnet malware
traffic. Three IoT botnet malware are deployed in
real and emulated IoT devices and data are acquired
from the first stages of botnet deployment, such as
infection, propagation and communication with C&C
server. These data complements the already existing
data sets which mainly focus on detection of botnet
attacks, part of the last stages of a botnet deployment.
In this sense, by focusing on early stages of botnet
deployment, the proposed data set provides the op-
portunity to perform early detection of the threat, pre-
vious to the perpetration of an attack, being able to
prevent such attacks and botnet growth. Three promi-
nent botnet malware are deployed in this research, one
of them is a complete novelty (i.e., Torii), not be-
ing deployed before in any other available data set.
The other two are well-known IoT botnet malware
whose source code is publicly available and have been
used in other data sets (i.e., Mirai and BashLite). The
currently available data sets, summarized in Table 1,
focus on small-sized networks (usually less than 10
devices), using either emulated or real devices, thus
providing limited interactions between devices inside
the network. The generated data set addresses these
limitations by combining emulated and real devices
to create a medium-sized network (i.e., 83 devices).
A larger network size may provide different insights
and interactions than smaller IoT networks. Finally,
machine learning models are built and validated us-
ing this data to demonstrate the suitability of this data
set as a reliable data source for botnet detection in
general and IDS testing and deployment in particu-
lar. The data set generated within the experimental
setup is made publicly available, aiming to overcome
the scarcity of relevant data sources in IoT network
security and limitations of the existing data sets.
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Abstract. The exponential increase in the adoption of the Internet of Things
(IoT) technology combined with the usual lack of security measures carried by
such devices have brought up new risks and security challenges to networks. IoT
devices are prone to be easily compromised and used as magnification platforms
for record-breaking cyber-attacks (i.e., Distributed Denial-of-Service attacks).
Intrusion detection systems based on machine learning aim to detect such threats
effectively, overcoming the security limitations on networks. In this regard, data
quantity and quality is key to build effective detection models. These data are
scarce and limited to small-sized networks for IoT environments. This research
addresses this gap generating a labelled behavioral IoT data set, composed of
normal and actual botnet network traffic in a medium-sized IoT network (up to
83 devices). Mirai, BashLite and Torii real botnet malware are deployed and
data from early stages of botnet deployment is acquired (i.e., infection, propa-
gation and communication with C&C stages). Supervised (i.e. classification) and
unsupervised (i.e., anomaly detection) machine learning models are built with the
data acquired as a demonstration of the suitability and reliability of the collected
data set for effective machine learning-based botnet detection intrusion detec-
tion systems (i.e., testing, design and deployment). The IoT behavioral data set is
released, being publicly available as MedBIoT data set.

Keywords: Botnet · Internet of Things · Dataset · Intrusion detection ·
Anomaly detection · IoT · Machine learning

1 Introduction

The inter-connectivity of nowadays world’s elements is a fact. Internet has extended
the connectivity and communication capabilities like never before, not only to humans
but also for everyday objects. Now it is possible to interact and control via Internet
objects such as TV’s, refrigerators, light bulbs or thermostats. The so-called Internet of
Things (shortened as IoT) has just started its expansion, expecting a major growth in the
near future. It was estimated that there were around 22 billion connected IoT devices
by 2018, a figure expected to reach 50 billion by 2030 [52]. Globally, 127 new IoT
devices are connected to the Internet every second [34] encompassing a wide range of
c© Springer Nature Switzerland AG 2022
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applications from healthcare and manufacturing to automotive and agriculture. A typi-
cal consumer owns an average of four IoT devices that communicate directly with the
cloud [34]. The global IoT market size is estimated to grow over $248 billion by 2020
and reach the $1.6 trillion figure by 2025 [51]. In spite of its wide spread and significant
growth, the IoT technology still poses concerns even to the early adopters and eager cus-
tomers, mostly related to security and data privacy [10,34,50]. IoT devices have been
identified as potential entry points and enticing targets for cyberattacks, exposing their
vulnerabilities and facing challenges for their massive adoption [34]. Thus, despite its
vast growth, the Internet of Things market blast is still constrained by its main barrier:
security [5,10,42].

The ubiquity of IoT devices might pose a major challenge to security as IoT devices
have traditionally lacked of proper control measures, maintenance and proactive secu-
rity management (e.g., usage of default passwords, no firmware updates, no access con-
trol policy), featuring them as highly vulnerable and easy to be compromised devices
[5,34]. These weaknesses have been exploited by attackers, being able to compromise
the defenseless devices by exploiting its vulnerabilities, thus gaining remote control and
using them as amplification platforms for their massive disruptive attacks [25].

Effective IoT botnet attack anomaly detection methods rely on the usage of appro-
priate data. These data sets are characterized by the collection of normal (legitimate) and
malicious (botnet) behavioral data from IoT networks. Anomaly detection models are
built on the basis of legitimate data, establishing a normality pattern. The induced models
are assessed using normal and malicious data. Performance metrics are computed and
used to evaluate the model’s detection capabilities. Therefore, accurate and complete
data are key elements to build highly effective intrusion detection systems (IDS).

In this regard, as can be observed in Table 1, all the available data sets focus on
small-sized IoT networks and on a specific and small variety of devices, mostly cam-
eras. As a result, the behavior of a small set of devices is acquired, considerably limiting
the scope of the IoT devices analyzed from the vast and varied domain of the existing
IoT devices. Furthermore, none of the data sets use a combination of real and emu-
lated IoT devices, which impacts and limits the scope of their results to either real or
emulated devices.

This research aims to fill this substantial gap by providing a novel IoT data set
acquired from a medium size IoT network architecture (i.e., 83 devices), including
normal and malicious behavioral traffic from both real and emulated devices and the
deployment of three prominent IoT botnets (i.e., Mirai, BashLite and Torii). The size
extension allows to capture malware spreading patterns and interactions that cannot be
observed in small-sized networks, providing a more realistic environment. Furthermore,
no data set uses the combination of emulated and real devices within the same network.
Additionally, this data set includes the behavior of Torii botnet malware, being the first
publicly available data set to deploy it. Lastly, this data set provides and focuses on
malware infection, propagation and communication with C&C server phases, the first
stages of actual botnet deployment, while the other data sets focus on the last stages of
the botnet life cycle, the attack phase [29]. In this relation, this data set can be seen as a
complement of the already available data sets, which mainly focus on attack detection,
the main outcome and part of the later stages of the botnet life cycle [22,29].
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This paper is an extension of the original paper [21] which presented the novel Med-
BIoT data set. This paper builds up on the original paper by adding more detailed anal-
ysis and comparison of publicly released data sets for IoT botnet detection (Sect. 2.4),
recently published research literature on the field (Sect. 2.3) and, more significantly,
extends the experimentation performed with MedBIoT data set to anomaly-based detec-
tion models (Sect. 4.2, anomaly detection). In this regard, while the original paper
focused on supervised machine learning (i.e., classification) this paper provides tests
and experimentation using unsupervised machine learning models (i.e., anomaly detec-
tion) which show and emphasize the goodness of the data to build any kind of effective
machine learning-based intrusion detection system. The data set is available at https://
cs.taltech.ee/research/data/medbiot/.

The paper structure is as follows: background information and literature review are
provided in Sect. 2, while Sect. 3 explains the methodology implemented in the exper-
imental setup. Section 4 shows a comprehensive overview of the main outcome of this
research, a novel IoT botnet data set, and its verification. Lastly, Sect. 5 wraps up the
study and highlights its major contributions.

2 Background Information

2.1 Botnets and DDoS Attacks

An IoT botnet is a specific type of computer botnet in which the compromised devices
are IoT devices, thus presenting analogous schemes and dynamics as computer botnets.
In this regard, when a device has its vulnerabilities exploited, thus being compromised,
it becomes a bot. Bots are grouped on a large community of compromised devices,
called botnet. A botnet is typically under the control of a malicious actor, the botmas-
ter. The botmaster controls remotely the bot over the Internet, using Command & Con-
trol (C&C) servers [49]. This privileged access is unauthorized, there is no consent or
awareness from the real owner of the compromised device.

IoT Botnets are used to perpetrate a wide scope of attacks, from massive SPAM
and phishing campaigns to distributed denial-of-service (DDoS), the most common
attack performed using botnets. A DDoS attack aims to compromise the availability
of online resources, such as websites or services. This goal is achieved overloading
the targeted server or network with more traffic than it can handle (e.g., sending an
overwhelming amount of messages, connection requests or forged packets) and pro-
voking the service or website to get saturated and crashing. As a result, the crashed
machine becomes unavailable and unresponsive to the legitimate users requests [56]. In
this regard, KrebsOnSecurity.com, the blog of the journalist Brian Krebs, was the target
of a record-breaking attack (i.e., 620 Gpbs) in 2016. The attack, performed using Mirai
botnet, was specifically tailored to tackle the site down [27]. Just a month later, the com-
pany OVH, a well-known hosting provider, was attacked by BashLite botnet hitting 1
Tbps and involving over 140.000 compromised cameras/dvr [43]. The same year, Dyn,
a domain name system provider of well-known websites and services such as Netflix,
PayPal, Visa, CNN and Amazon was attacked by 100.000 IoT devices belonging to
Mirai botnet. The attack reached up to 1.2 Tbps, disrupting the services and causing
the servers to be inoperative and the websites unavailable for several hours [23,56].
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As a collateral damage from the attack and the loss of trust, it is estimated that Dyn
lost around 8% of its customers (i.e., 14000 domains) [55]. And these attacks were just
the beginning. Since then, IoT botnet-based attacks have not stopped. On the contrary,
they have evolved in sophistication and capabilities, influenced by the public release
of the source code behind some prominent botnet malware [2]. According to F-secure,
in 2019, cyber attacks on IoT devices rouse 300%, reaching the unprecedented figure
of 3 billion attacks [14]. Therefore, the threat is still alive and growing, mainly caused
by the conjunction of factors such as the increase of the number of devices deployed
worldwide and the inherent vulnerabilities that characterise them, which also poses at
risk the data they carry and store, usually in an unencrypted manner [40], which might
be deemed as confidential and related to medical or control issues in many applications.
Nevertheless, one of the major threats is the leveraging of IoT endpoints, such as print-
ers or fridges, as highly vulnerable entry points to wider and otherwise considered to be
secure networks [14].

Consequently, cyber security for the IoT domain, in the form of early detection
of such a threats becomes a key issue to detect and mitigate such attacks. For that
purpose, intrusion detection systems are widely deployed network security tools aiming
to detect security threats and attacks where preventive security measures are infeasible
to implement [4,53].

2.2 Intrusion Detection Systems

The concept of intrusion can be defined as the set of actions or activities that compro-
mise either one or more components of the CIA triad, the IT security model that refers
to the confidentiality, integrity and availability elements of a specific system or entity.
Whereas system refers not only to computers, firewall, network equipment, routers or
networks but to any information technology system under the scope of the monitor-
ing capabilities of an intrusion detection system [53]. Within this context, an intru-
sion detection system is a security tool which aims to detect and identify unauthorized
accesses that target to misuse the system but also authorized accesses which abuse of
their privileges within the system [53]. Four main approaches are used to build intru-
sion detection systems: misuse, anomaly, specification and hybrid [4,11,53,58]. They
are outlined as follows:

– Misuse detection systems use known fingerprints or signatures of attacks stored in
a database. The IDS tries to find a match between the known signatures and the
current activities within the system. If a match is found, the alarm is raised about
the detected suspicious behavior. Also known as signature-based systems, they are
prone to be easily bypassed by unknown and novel attacks, where the signature is
not yet available.

– Anomaly-based detection systems are dependant on the creation of a typical or
normal activity profile or pattern. Current actions within the system are compared
against the normality pattern. If the IDS finds a significant deviation or discrepancy
from the normality model, the alarm is raised about the suspicious behavior. These
systems are capable of detect novel attacks but they are prone to false alarms or false
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positives (i.e., normal behavior is detected as malicious behavior) as the normality
pattern might be difficult to model accurately. Thus, these systems are sensitive to
the correctness of the normality model created.

– Specification-based detection systems use a combination of features of misuse and
anomaly approaches. More concretely, anomaly-based principles are applied on a
set of human-generated specifications or constraints about the normal or legitimate
behavior. These systems aim to detect novel attacks using the anomaly principles
and improve the limitations of anomaly-based models by reducing the amount of
false positives.

– Hybrid detection systems combine any of the previous approaches, with the purpose
of overcoming the weaknesses of a particular approach with the strengths of another.

The anomaly-based approach is one of the most used and effective detection methods,
enabling to detect novel attacks with the inevitable trade-off of being sensitive to the
correctness of the generated normality model. In this regard, statistical methods and
machine learning algorithms are usually used to build the normality profile [58]. There-
fore, valid behavioral models must be used to optimize the benefits obtained when using
this approach, which is directly dependant on the training data used [8]. In the specific
case of an IoT network, where a wide variety of devices may coexist, it is highly likely
to have different normality profiles. This fact evidences the actual need of accurate IoT
behavioral data which enable the implementation of effective anomaly-based intrusion
detection systems. However, there is a significant lack of available data addressing the
different network architectures, devices and behaviors that can be found in IoT net-
works and its major threats. As a result, in order to build intrusion detection systems
for effective intrusion detection in IoT networks the use of proper IoT behavioral data
is key.

2.3 Literature Review on Machine Learning-Based IDS

The application of machine learning to computer botnet detection first and lately to
the specific case of IoT botnet detection has demonstrated encouraging results [31,58].
The noteworthy increase in IoT-related security incidents has provoked the reorienta-
tion of researchers’ focus to the IoT field, thus promoting the investigation of effective
and feasible IoT botnet detection methods involving anomaly-based machine learning
approaches. The main aim of these approaches is to overcome the intrinsic hardware
and software constraints and limited capabilities of these devices related to security
[58].

In [36], Deep Autoencoders, Local Outlier Factor, One-Class Support Vector
Machines and Isolation Forest models were built and tested using the N-baiot dataset.
All models, except Isolation Forest, effectively detected all the simulated attacks using
Mirai and BashLite malware. Deep Autoencoders provided the lowest ratio of false
positives and provided the fastest attack detection times. Logistic Regression algorithm
was used in [44] to estimate the likelihood for a device to be part of an IoT botnet by
analyzing the connection initiation at the propagation stage. [30] developed an IoT bot-
net detection method combining Artificial Fish Swarm and Support Vector Machines
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algorithms. A different method was proposed in [48] using Convolutional Neural Net-
works and binary visualization technique feed with network traffic. The novel detec-
tion approach provided fast detection times for zero-day malware. A novel application
for a text recognition deep learning algorithm (Bidirectional Long Short Term Mem-
ory based Recurrent Neural Network) was developed in [33]. The suggested approach
demonstrated remarkable success on Mirai botnet attack detection. In [15], different
network features were used to build and assess the accuracy of traditional machine
learning algorithms such as k-Nearest Neighbors, Support Vector Machines, Decision
Tree, Random Forest and Artificial Neural Networks to test their detection capabilities
on Mirai DDoS attacks. Traditional unsupervised anomaly-based learning algorithms
were used on [39] to perform botnet detection using reduced feature sets by apply-
ing different feature selection techniques. Dimensionality reduction and discriminatory
feature analysis was performed in [3] to build fast, efficient and interpretable models.
Hybrid feature selection methods were evaluated in [19] to induce faster and more effi-
cient IoT botnet detection methods.

As can be noted, the implementation of anomaly detection requires the acquisi-
tion of malicious data that is tested against the normality patterns in order to assess
the goodness of the proposed detection model. Therefore, the used data sets must pro-
vide both kinds of network traffic data in order to assess effectively the detection of
the threats. In this regard, we provide demonstrability of the generated data set both
on classification issues (i.e., supervised learning), for the easiness of interpretation of
the results and comparison and also on anomaly-based scenarios (i.e., unsupervised
learning). This facts evidences the suitability of this data set to build effective anomaly
detection models.

2.4 IoT Botnet Attack Anomaly Detection Datasets

As already mentioned, an vast amount of scientific literature deals with the botnet detec-
tion phenomenon in computer networks [16,17], with many publicly available data sets
for experimentation [47]. On the contrary, the more recent IoT botnet phenomenon has
not attracted the required attention yet, evidenced by a notable scarcity on available
data sources. Table 1 provides and overview of the publicly released IoT botnet data
sets which are used to build and test IoT anomaly-based intrusion detection systems.
As can be observed, a small amount of data sets are available, showing common and
similar characteristics in their scenarios.

Mirai, the most prominent IoT botnet and perpetrator of record-breaking attacks
[9], is deployed in the vast majority of the data sets (all except Bot-IoT). Mirai, “the
future” in japanese, discovered in 2016, was designed to exploit vulnerabilities on low-
secured Linux-based IoT devices (i.e., consumer devices such as cameras, printers and
routers) to perform massive DDoS attacks [1,9,57]. Mirai is capable to perform 10 dif-
ferent DDoS attacks, which can be customized using several parameters [57]. Since the
release of the source code, it has been used as a basis to create other IoT botnet malware
[13], but also facilitated its deployment it in a contained manner in lab environments,
improving knowledge and data set creation. BashLite, also known as Lizkebab, Qbot,
Torlus, Gafgyt and LizardStresser, is a notorius botnet in the IoT botnet landscape and
the second most deployed in the data sets. Discovered in 2014 and made public in 2015,
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it is the antecessor of Mirai [45]. As one of the oldest IoT malware, there are many vari-
ants of this malware in the wild. Since its inception, BashLite was designed to exploit
devices running BusyBox (e.g., routers) evolving later to exploit any IoT device, thus
enhancing its possibilities to be perform large-scale DDoS attacks [54].

Half of the data sets use emulated IoT devices, usually running on a Raspberry Pi.
Emulators are a cheap and more scalable alternative to the usage of real IoT devices
in lab environments, thus preferred in some cases. The IoT landscape embraces a wide
variety of different devices used for different applications, so that is also the case for
the type of devices used on the data sets, showing a great variability among data sets.
Camera is the only IoT device type that can be found in more than 2 data sets. Regarding
the data format, all the studies except one provide the raw pcap file while some also
provide an structured feature data set. N-Baiot data set provides only structured data
thus restricting the possibilities of perform further experimentation using this data set.

When analyzing the data sets based on the botnet lifetime cycle they encompass
[22], it is shown that none of the data sets encompass all the botnet life-cycle steps,
thus focusing the majority of them on the attack and post-attack phases. The data sets
simulate different attacks that botnets can perform and also the scanning attack for the
recruitment of new members, part of the post-attack stage. MedBIoT data set is the only
data set that deals with the early stages of botnet deployment, focusing on formation and
C&C stages, two of the core components of botnet deployment [29]. In this sense, this
data set provides the opportunity to perform early detection of the threat, previous to
the perpetration of an attack, key to prevent attacks and botnet growth.

3 Method

The main contribution of this study is the generation of a fully-labelled behavioral IoT
data set and the demonstration of its suitability to induce effective machine learning-
based detection systems. The data set is composed of normal and actual botnet mali-
cious network data acquired in a medium-sized IoT network infrastructure (i.e., 83 IoT
devices). The focus was placed on the acquisition of network traffic from all the end-
points and servers during the initial propagation steps performed by Mirai, BashLite
and Torii botnet malware.

3.1 IoT Network Topology

The network infrastructure topology built for the purpose of this research is provided
in Fig. 1. As can be observed, it is composed of three connected networks: internet
network, monitoring network and IoT LAN network. Their roles, tasks and components
are described as follows:

– The internet network is directly connected to the Internet and provides internet con-
nectivity to the whole setup, for the initial configuration of different devices. A dif-
ferent sub-network mask is on place to restrict the connectivity between networks.

– The monitoring network provides the storage and processing capabilities for the data
set creation. It receives the network data from the switch. It is composed of:
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Table 1. Data sets for IoT anomaly-based IDS.

Name Botnet Number of
devices

Device type Real or
Emulated

Net. Size Data format Date References

N-Baiot Mirai
BashLite

9 Doorbell
Webcam
Thermostat
Baby moni-
tor
Security
Camera

R Small structured 2018 [35,36]

IoT
host-based
datasets for
ID research

Hajime
Aidra
BashLite
Mirai
Doflo
Tsunami
Wroba

2 Multimedia
Center
Security
Camera

E Small pcap
structured

2018 [6,7]

IoT Network
Intrusion
Dataset

Mirai 2 Speaker
Wi-Fi
Camera

R Small pcap 2019 [24]

Bot-IoT No actual
malware -
simulated

5 Refrigerator
Smart
Garage door
Weather
Monitoring
Smart Lights
Smart
thermostat

E Small pcap
structured

2019 [26,38]

Aposemat
IoT-23

Mirai
Torii
Trojan
BashLite
Kenjiro
Okiru
Hakai
IRCBot
Muhstik
Hide&Seek

4 Raspberry Pi
Lamp
Amazon
Echo
Lock

R Small pcap 2020 [41]

MedBIoT Mirai
BashLite
Torii

83 Switch
Fan
Light bulb
Lock

E+R Medium pcap
structured

2020 [20,21]

• Capture server: responsible for the collection and storage of all the network
packets captured within the whole network infrastructure. In our setup, Tcpdump
was used to monitor and log the network traffic. Data was stored as pcap file
format, which was later further processed by the SIEM server.

• Security Information and Event Management (SIEM) server: responsible for
data indexing, filtering, analysis and data set generation (i.e., data processing
and labelling). In our setup, the SIEM server was a Splunk software instance.

– The IoT LAN network is a local area network (LAN) which allows malware spread-
ing in a contained manner. It is composed of both real and virtual IoT devices. These
devices generate all the behavioral traffic (i.e., benign and malicious) that is collected
by the monitoring network. Containerization software (i.e., Docker) was used to
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deploy the virtual devices. The composition and capabilities of the network devices
are outlined as follows:

• Router: this networking device is responsible for the creation of an isolated net-
work segment thus allowing only communication internally between devices.
This is achieved using firewall rules. It also assigns IP addresses to the internal
devices using Dynamic Host Configuration Protocol (DHCP).

• Switch: this networking device is responsible for the acquisition and transfer
of the network packets. This is achieved using port mirroring technique. Port
mirroring is used to clone and transfer network packets flowing through a port
to another port. It can be made in real time and without any affectation on the
network’s performance. In this setup, all the data generated by all devices was
captured and transferred to the monitoring network by this mean.

• IoT Management System: this software allows the management of all the IoT
devices within the network in a single and centralized point. In our setup, it was
deployed using Hassio software on a Raspberry Pi, allowing to simulate the
same network behavior of the real implementations. Four types of IoT devices
were emulated: switch, light bulb, lock and fan. Each type allows the remote
management of different features. For instance, the emulated fan allows to turn
on/off, speed selection, oscillation state and get current fan state.

• Virtual IoT devices: these IoT devices were virtualized using Docker containers.
They are deployed using a Raspberry Pi thus emulating the behavior of an IoT
device.

• Wireless Access Point: this networking device provided network connection to
the non-ethernet compatible devices. To avoid the existence of duplicated IP
addresses, it is configured to delegate on the router the capabilities of assigning
IP addresses (via DHCP).

• BashLite C&C server: this server acts as the command and control unit for the
BashLite malware botnet. In order to allow the spreading of the malware within
the network, web and FTP services are installed. It also performs the compila-
tion of the malware binaries used to propagate the malware infection.

• Mirai C&C server: this server acts as the command and control unit for the Mirai
malware botnet. Role and tasks are analogous to BashLite C&C server.

• DNS server sinkhole: this server has two main tasks. It provides domain name
resolution for the Mirai botnet and it acts as a sinkhole for the connection
requests to the domains that Torii malware performs. This task provides effec-
tive malware contention within the network by avoiding the actual connection
between Torii and the domain of its remote C&C server.

• Physical devices: these are the real IoT devices deployed within the network.
Three different devices were used: Sonoff tasmota smart switch, TpLink smart
switch and TpLink smart bulb. All these devices allow external device man-
agement and control of different features. For instance, the light bulb provides
control of turn on/off, light intensity and get the device status.

To create a medium-sized network, 80 virtual devices are created and 3 physical
devices are deployed. As a result, the total amount of IoT devices deployed in the LAN
network is 83. The virtual devices have ARM architecture, inherited from the Raspberry
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Fig. 1. Medium-sized IoT network topology. Extracted from the original paper [21].

Pi used to create them. All the real devices have MIPS architecture. The architecture
of the device determines the malware binary used to infect the device. Having different
types of architectures generates a wider variety of devices which enriches the spectrum
of the data collected.

Regarding the virtual devices deployed, 20 instances of each type were created (i.e.,
fan, switch, lock and light bulb). All these devices provided different features to be
controlled remotely. More specifically, all the devices allowed to active/deactivate them
(on/off status). Additionally, the fan allowed to control its speed and oscillation and the
light bulb its intensity.

Regarding the real devices, one instance of each type was in place (i.e., two different
switches and a light bulb). All the devices allowed to active/deactivate them remotely.
Additionally, the light bulb allowed control of intensity.

3.2 IoT Behavior

To simulate the behavior of IoT devices different approaches can be used, ranging from
the manual usage of the devices aiming to mimic the behavior to a more automated
solution using scripts to trigger scheduled functions/tasks. The quality and consistency
of the simulated behavior is the most important element on the generation of a high
quality data set that could be used as a realistic input data on effective intrusion detec-
tion systems. In such cases, the collection of relevant and real statistics of normal usage
patterns offers a realistic baseline for the behavior simulation. As an example, in a aver-
age living room, a light bulb has a average usage of 1.7 h per day while in a kitchen it
reaches 2.3 h [18]. These statistics provided the baseline for the simulation of normal
behavior in our experimental setting. In the case of malware, the behavior was simu-
lated by the execution of the different modules within the botnet, providing a real output
of the actual botnet malware behavior.

Normal Behavior. An automated approach is selected for the simulation of the benign
or normal behavior. It takes into account the architecture of the device and its per-
formed using a Python script and MQ Telemetry Transport (MQTT) protocol. MQTT
is a communication protocol used to manage IoT devices. The IoT management system
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provides the capabilities to automate and perform scheduled tasks on the controlled IoT
devices. The script contained the trigger actions to be performed, conveyed to the end-
points using MQTT protocol. The following triggers were used in this research setting
to simulate the legitimate behavior:

– All devices are activated at 8.00 AM
– Each time a device state changes, the management system starts a countdown for the

next state change. The countdown value is randomized.
– The maximum limit of changes is established in 20 and a maximum of 3 h on active

state is set.
– All devices are deactivated at 07.00 PM
– To simulate a working environment, the execution of the triggers is limited to week-

days

These triggers provoked the generation of network packets along the network, which
are captured and stored. The acquired network packets provide the following commu-
nication data: time, protocol used, TCP stream, TCP stream size, source IP, destination
IP, MAC addresses, TCP raw message and response code.

Malicious Behavior. Three prominent botnet malware are deployed within the con-
trolled environment. Mirai [1], BashLite [32] and Torii [28] actual malware are used
to generate the malicious behavior. Mirai and BashLite botnets have been widely
researched and their source code is publicly available. For that reason, their deploy-
ment is fully controlled within the experimental setup using a Command & Control
server for each botnet and modifying the source code to connect only with each specific
C&C server. On the contrary, Torii source code is not available, thus actual samples
were used to deploy it. The samples were obtained from Hybrid Analysis archive [12].
To safely contain Torii malware within the network and avoid the connection with its
real C&C server, extra contention measures are in place. As a result, Mirai, BashLite
and Torii malware propagation is performed and controlled in our restricted network
setting using different strategies, they are summarized in the following paragraphs.

– Botnet Malware Propagation Techniques. Three botnet malware are deployed
within the controlled environment. Mirai and BashLite source code was publicly
released, thus facilitating their contention in a similar fashion. Torii needed special
measures for its unknown spreading and behavior patterns.

• Mirai and Yakuza version of BashLite are configured and executed after modi-
fying the malware source code to connect with the corresponding C&C servers
within the controlled network. Mirai and BashLite use dropper as a method to
download and install the appropriate infection binaries in the targets, according
to their architecture. Once the binary is executed, the bot daemon will run and
the compromised device will become a bot.

• Torii behavior has not been so deeply studied yet so its deployment involves
further risks. To contain and mitigate the risk of improper use of the infected
devices by the actual botmaster, firewall rules and a DNS sinkhole are used.
Thus Torii connection attempts with the remote C&C server are permanently
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denied and redirected to the sinkhole. As a result of the actual lack of knowl-
edge about Torii spreading methods and information about its source code, the
infection binary is manually deployed in the infected devices. The sample used
is tailored to infect ARM devices. The malware is run by executing the binary
as root in the target devices, allowing to spread the malware through the IoT
devices.

– Botnet Contention Methods. One of the greatest risks of deploying actual malware
is the abuse of the infected devices by the real attackers. In the case of Torii, its
unknown spreading methods and lack of knowledge about this malware this implies
a greater challenge. In the eventuality of an unsuccessful malware contention, real
attackers might be able to control the infected devices and use them to perpetrate
attacks or collect relevant data. In this regard, two major risks are identified and
addressed:
1. The possibility of hidden code in Mirai’s source code to establish connection

with the actual C&C server
2. Lack of knowledge about Torii’s spreading techniques and capabilities

Although Mirai spreading method is well-known, extra security measures are taken
to contain the malware effectively. Firewall rules and a DNS sinkhole are in place
to avoid any effective connection to the real C&C servers. The sinkhole purpose
is to redirect the connection attempts, resolving the name resolution request with a
controlled IP address. The firewall rules placed on the router allow to control and
block traffic based on known network masks.

In this experimental setup, the three botnet malware were deployed at different times
within 6 days (i.e., each let run free for 2 consecutive days). The main aim was to
obtain relevant botnet data while eliminating the risk of data overlapping between dif-
ferent malware. Additionally, one of the Mirai malware capabilities is to detect other
malware running on devices and remove it, to take the single control of it. A limited
and randomized number of devices are infected for each botnet deployment. Thus, 40
devices were infected using BashLite malware, selected in a pseudo-randomized way
by constraining the scope of the reachable devices. 25 devices were infected by Mirai
malware, limited by restricting the internal scanner to spread on the network IP ranges.
Finally, Torii malware was manually deployed in 12 devices, all under the scope of the
DNS sinkhole.

3.3 IoT Behavior Verification

The generated data set was further processed and machine learning models were
induced. The purpose of this experimental implementation is to verify the suitability
of the generated data set for machine learning-based intrusion detection systems. In
this regard, classification and anomaly detection machine learning models were built.
They are briefly described as follows:

– Classification models are a kind of supervised learning which main aim is to cor-
rectly predict the class or label of an unknown data point based on specific features,
also called predictors, found on the training data provided during the model build-
ing phase. When the data points are labelled into two mutually exclusive classes or
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categories (e.g., legitimate and malicious traffic), binary classification is used, while
when more than two categories are present in the data (e.g., legitimate, Mirai, Bash-
Lite and Torii), multiclass or multinomial classification is performed. In order to
validate the outcome of this research, both approaches are implemented and vali-
dated using k-fold cross validation.

– Anomaly detection models are a type of unsupervised learning that aim to detect and
identify observations that do not conform with an expected pattern or feature values
in a data set. Commonly, legitimate data are used to build models that aim to detect
and identify observations (i.e., malware generated points) that deviate significantly
from the learnt expected normality pattern. Eventually, any data point that deviates
significantly, thus seemingly not belonging to the same (legitimate) data distribu-
tion, is detected and categorized them as anomalous data points or anomalies by the
learning models.

Data features are extracted from the pcap files acquired in this experimental setup.
These features are used as predictors/inputs for all the machine learning models. More
specifically, the features used in this research are computed as in [37]. Thus, 100 statis-
tical features are generated from the network traffic, encompassing different time win-
dows. Table 2 provides an overview of the extracted features. As it is shown, statistical
features are generated for 4 main categories and 5 time windows for each one.

Table 2. Feature categories.

Category Statistic Time window Features

Host-MAC&IP Packet count
Mean
Variance

100 ms
500 ms
1.5 s
10 s
1 min

15

Network Jitter 15

Channel Packet count
Mean
Variance
Magnitude
Radius
Covariance
Correlation

35

Socket 35

After the extraction of the features, a random sample for each class is generated and
used to train and test 10-fold cross validated machine learning models. Four traditional
machine learning classification algorithms are implemented: k-Nearest Neighbors (k-
NN), Support Vector Machines (SVM), Decision Tree (DT) and Random Forest (RF).
The main objective of these classifier models is to demonstrate the suitability of the gen-
erated data set for machine learning-based anomaly detection and classification models.
No hyper-parameter optimization was performed, leaving room for improvement on the
induced models. In this regard, default scikit learn library (version 0.22.2) values are
used. For each model, four performance metrics are reported: accuracy, precision, recall
and F1 score. They are defined as follows:
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– Accuracy: ratio of the correctly classified test instances from all test instances.
– Precision: fraction of positive instances correctly classified among all the positive

classified instances.
– Recall: fraction of positive instances correctly classified among all the actual positive

instances.
– F1 score: harmonic mean of precision and recall.

All the metrics reported range from 0 to 1. In this sense, a reported value closer to 1 is
generally deemed as a positive or good result for the given metric while a value close
to 0 as a bad or negative performance. Thus, for classification tasks, the greater the
value the better the classifier’s performance on label discrimination task, thus evidenc-
ing that the data and the classifier are suitable for that purpose. In our case, obtaining
values closer to 1 in all classifiers’ metrics could be used to infer that the data is suit-
able for machine learning-based IoT botnet detection and also that the data labels (e.g.,
legitimate and malware) can be effectively discriminated.

4 Results

4.1 IoT Botnet Data Set

All the network packets generated within the IoT LAN network were collected and redi-
rected using port mirroring to the monitoring network. There, a SIEM software instance
was used to perform data processing and labelling, creating the final data set. The data
set is generated in two formats: structured (i.e., tabular features are extracted from the
raw data) and unstructured (i.e., raw pcap files). The number of packets captured and
provided within the whole data set are provided in Table 3.

Table 3. Data set composition.

Data source Number of devices Number of packets Proportion

Normal 83 12,540,478 70.27%

BashLite 40 4,143,276 23.22%

Mirai 25 842,674 4.72%

Torii 12 319,139 1.79%

All All 17,845,567 100%

As can be observed, the majority of the traffic is deemed as normal or legitimate IoT
traffic (i.e., 70.27%) while around 30% is originated and acquired from different IoT
botnet malware sources. The SIEM software used (i.e., Splunk) allowed further anal-
ysis and acquisition of more fine-grained of the communication details. In this regard,
32% of the normal network traffic is related to system updates, 53% to device commu-
nication (i.e., MQTT protocol) and 15% to other network data (e.g., TLS errors, pings,
etc.). Regarding the malicious data, 68% of the traffic is related to malware propagation
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actions while 32% to direct communication between bots and C&C servers. It is worth
to note that Mirai and BashLite source codes were configured to perform these different
types of communications using different ports, thus facilitating the posterior data anal-
ysis. Torii’s data only includes traffic regarding the initial infection of the devices as the
contention measures were explicitly established to avoid any remote communication
with the actual C&C, thus preventing posterior botnet events such as propagation. The
generated data set is made publicly available in the following url: https://cs.taltech.ee/
research/data/medbiot/.

4.2 IoT Behavior Verification

Binary Classification. Four traditional and widely used machine learning classification
models for binary classification (i.e., two class classification) are induced and 10-fold
cross validated. To perform such a classification task, the data is split into two groups
or labels: legitimate/normal and malware. Thus the malware class contains mixed data
from the three malware deployed. More specifically, the legitimate class data is com-
posed of 15000 randomly selected data points from the acquired legitimate traffic. The
malware class is composed of 5000 randomly selected data points for each of the mal-
ware deployed within the network, summing up to 15000 data points for this class. As
a result, a balanced data set is generated and used for the binary classification task. The
results of models built are provided in Table 4. The table does not reflect the perfor-
mance metrics for Support Vector Machines algorithm as it showed poor performance
in all the assessed metrics.

Table 4. Binary classification.

Model Acc. Prec. Rec. F1

k-NN 0.8871 0.9034 0.8871 0.8842

DT 0.9541 0.9582 0.9541 0.9538

RF 0.9702 0.9731 0.9702 0.9700

Table 5. RF confusion matrix.

Predicted

Malware Legitimate

Actual Malware 1443 57

Legitimate 19 1481

As can be observed, Random Forest model is able to discriminate effectively the
vast majority of the network traffic, as over 97% of the data points are detected cor-
rectly. k-NN and Decision Tree models reported lower discriminatory capabilities but
with performance metrics over 88% and 95%, respectively. The confusion matrix pro-
vided in Table 5, extracted from a Random Forest model, confirms that the mixed mal-
ware traffic is effectively discriminated from the normal traffic with a few misclassified
points. As already stated, SVM results are not reported as they showed poor perfor-
mance on all metrics. This fact may suggest that the data is not linearly separable,
thus linear classifiers such as SVM or Logistic Regression may not be suitable for the
classification task using this data set. Nevertheless, the results obtained using the other
algorithms evidence the effective capabilities of machine learning approaches to detect
botnet malware traffic, in the first stages (i.e., infection, propagation and communica-
tion with the C&C server stages) and disregarding the malware type. Furthermore, it
is demonstrated that the data set generated in this research is suitable to be used as a
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medium-sized realistic IoT data set for IoT botnet detection scenarios and IDS training
and testing purposes.

Multiclass Classification. For this task, the data set was divided in four classes or
labels according to the data source: normal, Mirai, BashLite and Torii. Four-class or
multiclass classification models were induced and 10-fold cross validated using the
same algorithms as in the binary task. The data set used was generated by random selec-
tion of 10000 data points for each of the classes, summing up to 40000 data points. The
data set is balanced, thus data points were evenly distributed within the four labels. The
purpose of this task is not only to test discrimination capabilities of legitimate/malware
labels but also the discrimination of the specific malware source. Table 6 shows the
results obtained for this task. As in the binary approach, Support Vector Machines algo-
rithm is not reported, showing a poor performance in all metrics.

Table 6. Multiclass classification.

Model Acc. Prec. Rec. F1

k-NN 0.8990 0.9073 0.8990 0.8958

DT 0.9379 0.9478 0.9379 0.9347

RF 0.9617 0.9692 0.9617 0.9602

Table 7. RF confusion matrix.

Predicted

Mirai BashLite Torii Leg.

Actual Mirai 983 3 3 11

BashLite 14 974 2 10

Torii 5 5 978 12

Leg. 11 3 3 983

As can be observed, in a similar fashion as in the binary models, Random Forest
model outperforms Decision Tree and k-NN algorithms in the multiclass classification
task. More specifically, RF algorithm provides similar discrimination performance in
the multiclass task and in the binary setting, achieving over 96% accuracy in all metrics.
The Random Forest model confusion matrix provided in Table 7, emphasizes the sig-
nificant accuracy of this classification model in all cases, not being significantly biased
towards any of the possible classes. These results suggest that network traffic source
can be effectively discriminated, even in the earliest stages of botnet infection. It also
demonstrates that the learning capabilities of machine learning-based detection meth-
ods can be accurate both in the general detection task (i.e., legitimate vs. malware) and
in the detection of different sources of malicious traffic in medium-sized IoT networks.

Anomaly Detection. This task involves the identification of abnormal or unusual
observations within the data distribution, the so-called anomalies. In our case, these
abnormal observations are the ones generated by the non-normal behavior of the IoT
devices, mainly caused by malware activity. Depending on the purpose of anomaly
detection it can be further divided into outlier detection and novelty detection. In outlier
detection, the training data set contains outliers (i.e., observations that deviate signif-
icantly from the rest) and the goal of the algorithms is to identify regions where data
is most concentrated thus ignoring the data that lie far from that regions, the outliers.
The observations on concentrated areas, which belong to the same data distribution,
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are called inliers. In the case of novelty detection it is assumed that the training data
set does not contain outliers and the goal is, given a new observation, detect whether
it can be categorized as an outlier or an inlier. In this case, the outlier observation is
called novelty. Both anomaly detection approaches were used and tested with the data
set generated in this research. The anomaly detection algorithm used was Local Out-
lier Factor (LOF), which is capable to perform both novelty and outlier detection tasks.
LOF’s algorithm Scikit-learn library implementation was used to build and test all the
anomaly-based models [46].

In order to build the models, the data was sampled using random sampling. Thus,
for each benign data set 100.000 observations were randomly selected (i.e., 90.000 for
training and 10.000 for testing) and 10.000 observations for each malware data set (i.e.,
BashLite, Mirai and Torii). Prior to induce the models, data was pre-processed by using
standardization and Principal Component Analysis (PCA) to reduce data dimension-
ality, from high dimensionality data to lower dimensionality (i.e., ranging from 10 to
30 Principal Components on all induced models). Principal components are new gen-
erated features by PCA algorithm, created from the linear combination of the original
features of the data set, aiming to capture the maximum variance within the data points.
Based on that, the new generated features possess no real meaning or category and they
are just called Principal Components or PC (i.e., 1PC is the first principal component).
Two different scenarios were tested in the anomaly-based induced models. In the first
scenario, legitimate data captured during the time a specific malware was running was
used to build the models. The testing sets correspond to held-out legitimate data and
malware data from that specific collection time-frame. For example, as can be observed
in the first row in Table 8, the training data corresponds to legitimate data acquired dur-
ing the deployment of BashLite malware. The testing samples correspond to legitimate
data from the same period of time and BashLite malware generated data. The detection
performances for this first scenario are provided in Table 8. The column training, speci-
fies the normal data training source used to build the corresponding model while the test
malware and test normal refer to the source of data used for testing purposes. The mixed
total column provides the average of the previous two columns, as the same amount of
legitimate and malware instances were tested against the model (i.e., 10.000 samples).
The All value refers to a stratified mix of the legitimate data (i.e., 1/3 of each of the
previous data sets). The performance metric used is accuracy, which provides the ratio
of correctly classified instances among all the testing samples. Accuracy ratios closer to
1 indicate a good performance metric while closer to 0 a poor detection performance.

Table 8. Novelty detection performance - first scenario.

Training Test normal Test malware Mixed total

BashLite 0.9486 0.9628 0.9557

Mirai 0.9331 0.8552 0.8942

Torii 0.9433 0.9515 0.9474

All 0.9444 0.9129 0.9286
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As can be observed on Table 8, models built with BashLite, Torii and combined
legitimate data provide detection performances over 91% on malware and over 93% on
the held-out legitimate data. Legitimate data belonging to Mirai deployment provides
less accuracy on the malware data and test data, suggesting that the malware is more
similar to legitimate traffic but prone to be discriminated effectively. It is worth to note
that these models are not optimized and there is room to improvement as mostly default
values were used on the generation of the models. According to the results, BashLite
malware provides a differentiated profile from normal traffic that make the models more
effective in the detection of this specific malware. Torii and the mixed model (i.e., using
stratified randomly sampled legitimate data from the three data sets) provide high accu-
racy ratios for malware detection based on anomaly models. In any case, these results
evidence IoT malware can be discriminated from legitimate and effectively detected
using anomaly-based detection models in the early stages of a botnet deployment (i.e.,
prior to any attack).

In the second scenario, the same models built on the first scenario were tested
against other test sets belonging to different malware data. For example, the first row in
Table 9, the training data corresponds to legitimate data acquired during the deployment
of BashLite malware. The testing samples correspond to the same time-frame BashLite
generated data, and also data belonging to the deployments of Torii and Mirai malware.
This setting allows to test the goodness of the anomaly detection models to detect differ-
ent types of malware. The column training in Table 9 specifies the normal data training
source used to build the corresponding model while the rest of columns specify what
malware data test was tested. The All value refers to a stratified mix of the legitimate
data (i.e., 1/3 of each of the previous data sets). The Test Mixed column provides the
performance when a mixed data set of the three malware data sets was combined and
tested against the model. This test data set was generated using stratified random sam-
pling (i.e., the same amount of samples extracted from each malware data set, 33%).
The performance metric reported is the detection accuracy.

Table 9. Novelty detection performance - second scenario.

Training Test Mirai Test Torii Test BashLite Test mixed

BashLite 0.9066 0.9842 0.9628 0.9536

Mirai 0.8552 0.9665 0.9643 0.9262

Torii 0.8839 0.9515 0.9618 0.9120

All 0.8407 0.9594 0.9615 0.9074

The results provided in Table 9 suggest that the anomaly-based detection models
built in the first scenario are capable to detect effectively not only its specific malware
but also the other IoT botnet malware. With the exception of the detection of Mirai
malware, which is slightly worse than the other malware, the detection ratios are over
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91% in all models, whatever the data source used, except the Mirai-based model. These
results emphasize the goodness of the anomaly-based models to detect malware effec-
tively and the goodness of the generated data set to build effective anomaly-based IoT
malware detection models on early stages of botnet deployment.

5 Conclusions

The Internet of Things is growing exponentially and these devices will become ubiqui-
tous in the following years. This fact, in combination with the traditional lack of secu-
rity measures associated to them, make IoT devices an appealing objective for cyber
attackers. The vulnerable IoT devices are compromised and become part of a botnet,
which is mainly used as amplification platform for cyber attacks. In this regard, botnets
have been used to perpetrate massive DDoS attacks against companies and individuals,
leading to nefarious consequences. As a result, the security of these devices is a critical
issue to be addressed. The most recent solutions involve machine learning techniques,
which are providing notable and promising results.

The performance of machine learning models is directly related with the amount of
data used to build the models and its quality to capture the phenomenon. In the specific
case of IoT botnet detection, there is a remarkable lack of data sets which limits the
possibilities of building efficient machine learning-based models. This paper elaborates
on the original research where MedBIoT data set was introduced [21] by adding more
experimentation with the acquired data, demonstrating the suitability of MedBIoT data
set to build effective machine learning-based IoT botnet detection models. As provided
in [21], the data set focuses on the early stages of botnet deployment in a medium-sized
IoT network (i.e., 83 IoT devices). Three prominent botnet malware were deployed (i.e.,
Torii, Mirai and BashLite) in different IoT devices within the network. The network
traffic data is provided labelled according to its source: botnet malware or normal.

Supervised (i.e., classification) and unsupervised (i.e., anomaly detection) machine
learning models are induced and tested. The obtained results evidence the goodness of
MedBIoT data set to build effective IoT botnet detection models, using both machine
learning-based approaches. In this regard, the performance metrics obtained in all the
tested scenarios (i.e., over 85% in all cases) prove that IoT botnet detection can be
achieved with high accuracy even in the early stages of botnet deployment, thus pre-
venting the attack phase and avoiding its nefarious consequences. As a result, MedBIoT
data set complements the existing data sets, which mainly focus on attack scenarios, by
putting emphasis on the early stages of botnet deployment. Early detection may help to
prevent attacks and botnet growth in a significant manner.

The extensive experimentation performed in this research proves the suitability of
MedBIoT data set as a reliable data source for IoT botnet detection in general and
intrusion detection systems’ testing, design and deployment in particular. The data set
is available at https://cs.taltech.ee/research/data/medbiot/.
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3. Bahşi, H., Nõmm, S., La Torre, F.B.: Dimensionality reduction for machine learning based
IoT botnet detection. In: 2018 15th International Conference on Control, Automation,
Robotics and Vision (ICARCV), pp. 1857–1862 (2018)

4. Benkhelifa, E., Welsh, T., Hamouda, W.: A critical review of practices and challenges in
intrusion detection systems for IoT: toward universal and resilient systems. IEEE Commun.
Surv. Tutor. 20(4), 3496–3509 (2018)

5. Bertino, E., Islam, N.: Botnets and internet of things security. Computer 2, 76–79 (2017)
6. Bezerra, V.H., da Costa, V.G.T., Martins, R.A., Junior, S.B., Miani, R.S., Zarpelao, B.B.:

Data set (2018). http://www.uel.br/grupo-pesquisa/secmq/dataset-iot-security.html
7. Bezerra, V.H., da Costa, V.G.T., Martins, R.A., Junior, S.B., Miani, R.S., Zarpelao, B.B.: Pro-

viding IoT host-based datasets for intrusion detection research. In: Anais do XVIII Simpósio
Brasileiro em Segurança da Informação e de Sistemas Computacionais, pp. 15–28. SBC
(2018)

8. Bolzoni, D.: Revisiting Anomaly-based Network Intrusion Detection Systems. University of
Twente, Enschede (2009)

9. Bonderud, D.: Leaked mirai malware boosts IoT insecurity threat level (2016). https://
securityintelligence.com/news/leaked-mirai-malware-boosts-iot-insecurity-threat-level/

10. Bosche, A., Crawford, D., Jackson, D., Schallehn, M., Schorling, C.: Unlocking
opportunities in the internet of things (2018). https://www.bain.com/contentassets/
5aa3a678438846289af59f62e62a3456/bain brief unlocking opportunities in the internet
of things.pdf

11. Butun, I., Morgera, S.D., Sankar, R.: A survey of intrusion detection systems in wireless
sensor networks. IEEE Commun. Surv. Tutor. 16(1), 266–282 (2013)

12. Crowdstrike: Hybrid analysis (2019). https://www.hybrid-analysis.com/
13. DeBeck, C., Chung, J., McMillen, D.: I can’t believe mirais: tracking the infamous IoT

malware (2019). https://securityintelligence.com/posts/i-cant-believe-mirais-tracking-the-
infamous-iot-malware-2/

14. Doffman, Z.: Cyberattacks on IoT devices surge 300% in 2019, ‘measured in billions’,
report claims (2019). https://www.forbes.com/sites/zakdoffman/2019/09/14/dangerous-
cyberattacks-on-iot-devices-up-300-in-2019-now-rampant-report-claims/#574229995892

15. Doshi, R., Apthorpe, N., Feamster, N.: Machine learning DDoS detection for consumer inter-
net of things devices. In: 2018 IEEE Security and Privacy Workshops (SPW), pp. 29–35.
IEEE (2018)

16. Feily, M., Shahrestani, A., Ramadass, S.: A survey of botnet and botnet detection. In: 2009
Third International Conference on Emerging Security Information, Systems and Technolo-
gies, pp. 268–273. IEEE (2009)

17. Garcia, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of botnet detection
methods. Compu. Secur. 45, 100–123 (2014)

18. Gifford, W.R., Goldberg, M.L., Tanimoto, P.M., Celnicker, D.R., Poplawski, M.E.:
Residential lighting end-use consumption study: estimation framework and ini-
tial estimates (2012). https://www1.eere.energy.gov/buildings/publications/pdfs/ssl/2012
residential-lighting-study.pdf
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Abstract

The active learning approach for machine learning can greatly benefit those environments where a wealth of unlabeled data is
available, and the labeling cost of the data can be restrictive. In this regard, Security operating centers (SOCs) can take advantage
of the human expertise available to improve machine learning-based detection models using the active learning approach. In the
context of SOC operations and IoT botnet detection, our study provides a thorough benchmarking of the application of different
active learning approaches within the framework of pool-based sampling. The selection of the optimal query instance for learning
is evaluated using uncertainty sampling, ranked batch-mode sampling, and query by committee strategies. Our results show that
the active learning approach can help to generate better detection models using all the active learning query strategies tested in our
benchmarking setup. Leveraging the human-machine interaction can produce high-performance models in the context of IoT botnet
detection using significantly less data than the passive approaches traditionally used for the generation of machine learning-based
detection systems. Additionally, the impact of wrong-labeled data in the active learning implementation is explored.

Keywords: active learning, iot botnet, botnet detection, machine learning, query learning, internet of things, intrusion detection, iot

1. Introduction

Botnets constitute a serious threat as they are the network
infrastructure utilized by the attackers who conduct large-scale
malicious activities such as identity theft, denial of service at-
tacks, or sending unsolicited messages [1]. According to Cisco,
machine-to-machine connections generated by IoT devices will
constitute half of the global network connections by 2023 [2].
Consequently, compromised IoT devices amplify the serious-
ness of this threat, as evidenced by some past incidents, such as
the high-volume DDoS attacks that occurred in 2016 [3].

Security specialists resort to security monitoring systems to
identify malicious activities in their networks in their early
stages. Current solutions still mostly rely on signature-based
detection, which requires the generation of specific attack de-
scriptions. However, they suffer from high false-positive rates
and cannot detect newly-evolved attack types prematurely. A
survey conducted with IT specialists of US companies identi-
fied that only 19% of the alerts from these solutions are reliable
and that only 4% are investigated by security analysts [4].

Machine learning promises to be a significant alternative so-
lution to signature-based systems [5]. In this regard, super-
vised models induced for IoT botnet detection have demon-
strated high performance [6]. However, finding or creating
labeled data is very hard in the cyber security domain due to
the confidentiality concerns of organizations or human resource
shortages. Thus, unsupervised models have been suggested by
the research community to overcome this problem. However,
these methods still require data that are guaranteed to be benign.
High-performance results have been obtained when a dedicated
model is induced for each specific IoT device [7] . However,
this is prone to cause a significant management burden on sys-

tem owners and solution developers due to the enormous num-
ber of device types in the IoT landscape.

The assumption of the lack of resources to label data and
the consideration of only unsupervised options underestimate
the analysis capabilities of contemporary organizational struc-
tures, such as security operations centers (SOCs) or managed
security service companies (MSCs), which have continuously
developed during recent years. We conjecture that the effective
utilization of existing but limited expert resources in such or-
ganizations could pave the way to use active learning. Active
learning is an approach in which humans can assist improving
the existing learning models created using a small number of
labeled data. Considering the continuous incident handling cy-
cles in SOCs and MSCs, these organizations may accumulate
labeled data over time and develop well-working solutions.

In the active learning approach, which is usually considered a
type of semi-supervised learning, the supervised learning algo-
rithm selects specific samples (i.e., usually the most informative
ones) from an unlabeled data set. Next, the selected instance is
provided to experts for labeling. The labeled instance is used to
update the knowledge of the model, which is initially induced
with a small number of labeled data. The predictive capability
of the learning model may depend on the quality of the instance
selection process, the size of the unlabeled data pool, the num-
ber of labeled instances used to create the initial model, and the
accuracy of the expert decisions.

Active learning is well-suited to problem domains in which
collecting data is easy and cheap, but data labeling is expensive
[8]. Intrusion detection could be one of the application domains
as it is easy to collect raw network or host data from the systems
and convert it to a suitable format for learning tasks.
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However, assigning the relevant resources to the labeling
tasks is challenging due to the limited number of human experts
with sufficient security skills to perform the task. Besides, con-
fidentiality concerns usually prevent organizations from shar-
ing any data, be it raw or labeled, with others, exacerbating the
problem.

In addition to the continuous accumulation of expert knowl-
edge, active learning provides an instrument for balancing the
required labeling effort and predictive capability, which can be
optimized for an organization according to the cost and avail-
ability of experts. Therefore, the successful implementation of
active learning models has the potential to guide the organiza-
tional restructuring efforts in SOCs and MSCs.

Despite the promising advantages of the active learning ap-
proach, experts may likely misclassify some instances, which
may hurt the models. Therefore, it is important to consider the
possible consequences of such labeling errors, which may vary
depending on the experience and knowledge of experts.

In this study, we present a comprehensive benchmarking of
active learning approaches for early IoT botnet detection. More
specifically, we evaluated the impact of the following design
components of an active learning implementation: (1) Size of
the unlabeled data pool, (2) Query strategy (i.e., uncertainty
sampling, query by committee, ranked batch-mode), (3) Size
of the initial data set (i.e., seed size), (4) Wrong labeling. We
selected a supervised model trained with a large set of instances
as a reference for the comparison (i.e., passive approach). Ran-
dom selection of query instances is also used as a baseline for
evaluating the performance of the active learning query strate-
gies. The experimental results prove that active learning consti-
tutes an important solution in this problem domain and that can
provide high detection performance even using wrong-labeled
instances.

Active learning has been applied in the cyber security field
in general and intrusion detection in particular in a small num-
ber of studies [9, 10, 11]. However, empirical studies in the
IoT botnet detection problem domain are missing. We contem-
plate that most research that applies machine learning to intru-
sion detection focus on optimizing the detection accuracy with-
out considering the human and machine interaction. Labeling
difficulties have been acknowledged, but solution approaches
have been more on resorting to benign data to induce one-class
learning models. Still, obtaining benign data from operational
environments or being sure that the obtained data is benign is
a challenging task. However, instead of considering labeling
and model development as separate tasks, both tasks can be
handled holistically if the perspective of human and machine
interaction is taken into consideration within the framework of
active learning. The utilization of this methodology suits well
the organizational developments in the cyber security field as
the maturity of SOCs has developed recently.

More empirical studies in the IoT domain are needed to un-
derstand the benefits of machine learning in the intrusion detec-
tion problem. Despite the security weaknesses that characterize
IoT devices, which pave the way for advanced attacks, these
devices may have distinguishable benign traffic that can sig-
nificantly benefit from machine learning solutions compared to

usual IT networks.
This study is distinguished as it gives and discusses the re-

sults of a comprehensive benchmarking about the application
of active learning to an intrusion detection problem in IoT en-
vironments. Moreover, it elaborates on the wrong or noisy la-
beling problem, which is highly likely to occur in real-world
settings, especially in SOCs and MSCs.

This paper is structured as follows: Section 2 gives back-
ground information about the active learning methodology in
general and query strategies in particular. Previous research
dealing with the application of this method to cyber security
problems, and specifically for intrusion detection, is reviewed
in Section 3. Section 4 presents the data set used, the machine
learning workflow, and the overall design of our benchmark-
ing study. Main results are presented in Section 5 and further
discussed in Section 6. Section 8 concludes the paper.

2. Background information

Given the wealth of unlabeled data available in many do-
mains and the expensive and time-consuming labeling process,
the application of active learning is well-motivated to provide
high-performance systems minimizing the labeling cost. Intru-
sion detection is one of such domains.

Active learning is a form of semi-supervised learning. Semi-
supervised learning systems are built by combining a small
quantity of labeled data with a large amount of unlabeled data
during training [12]. The core idea behind active learning is that
a machine learning algorithm can provide better performance
with fewer training steps (i.e., fewer data instances) if it is al-
lowed to select the data from which it learns [13]. For such
a purpose, a supervised model trained with a small amount of
data (i.e., active learner) may pose queries regarding selected
unlabeled data instances for labeling by an oracle, i.e., a hu-
man with expertise in the task. Also called query learning, ac-
tive learning-based systems try to overcome the labeling bottle-
neck by letting the classifier select specific instances of interest
(i.e., query instances), based on an informativeness or relevancy
score, from a collection of unlabeled samples and asking an or-
acle (e.g., a human annotator) to label them [13]. This aims to
remove the randomness in data labeling and focus the labeling
efforts on the most relevant instances for the task, based on the
selection of the classifier. By doing this, the active learning ap-
proach aims to achieve high accuracy, updating the knowledge
of the model using as few labeled samples as possible, thus
minimizing the cost of the data labeling process.

The selection of the specific sample for labeling (i.e., query
instance) at each training iteration and updating the model ca-
pabilities is based on an informativeness criterion applied by
the active learner using a specific query strategy to the unla-
beled data set [14]. The most informative instance is selected
for labeling, which may vary depending on the strategy, and
used to retrain the model and improve its knowledge. The most
common active learning approach, the pool-based framework,
is depicted in Figure 1.

The present paper is a benchmarking study of pool-based
strategies for active learning implementations. As shown in
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Figure 1: Pool-based active learning cycle

Figure 1, the pool-based active learning framework assumes the
existence of a small set of labeled data and the availability of a
large collection or pool of unlabeled data [13]. Query instances
are selected from the unlabeled pool of samples for expert an-
notation (i.e., oracle). Once labeled, the sample is incorporated
into the labeled training set, which is used to update the knowl-
edge of the learning model (i.e., model retraining). For its im-
plementation, the active learning cycle depicted in Figure 1 may
be repeated until a stopping criterion (e.g., performance thresh-
old) is met.

Query instance selection is the critical step for the success of
the active learning approach. For this reason, this study evalu-
ates different query selection strategies. The instances are usu-
ally selected greedily, based on an informativeness score used
to evaluate all the samples of the unlabeled pool [14]. Thus
the most informative sample is selected at each training step.
The query strategies tested in this research, used to evaluate the
degree of informativeness of the samples and select the query
instance, are introduced in the following paragraphs.

2.1. Uncertainty sampling
The simplest and most commonly used query instance se-

lection strategy. In this strategy, the query instance is selected
based on how certain is the learner about the class label of a
sample. For this purpose, different informativeness scores can
be used such as:

• Classification uncertainty (U): the learner selects the in-
stance (x) for which it is least certain about how to label
(i.e., the largest uncertainty score). It is based on a least
confidence score computed as:

U(x) = 1 − P(y∗|x) (1)

where x is a specific unlabeled sample and y∗ is the most
likely prediction for that sample.

• Classification margin (M): a score that computes the dif-
ference in probability between the first and second most
likely predictions. The sample with the smallest margin is

selected as it corresponds to the most uncertain decision.
It is calculated as:

M(x) = P(y∗1|x) − P(y∗2|x) (2)

where y∗1 and y∗2 are the first and second most likely classes
based on the current classification model for a specific in-
stance x.

• Classification entropy (H): this score involves the usage of
entropy as a classification uncertainty measure. The sam-
ple with the highest entropy score is selected. It is com-
puted as:

H(x) = −
∑

k

pk log(pk) (3)

where pk refers to the probability of a specific unlabeled
sample to belong to the kth class according to the current
classifier knowledge.

2.2. Query by committee
This query strategy involves the generation of a group of clas-

sification models, called a committee, trained on the same cur-
rent labeled set, but representing competing hypotheses in the
hypothesis space. In this strategy, each member of the commit-
tee votes on the class label of the query candidates. The most
informative instance is considered the one in which they most
disagree about its class. Different query selection scores can be
applied to evaluate the degree of disagreement, such as:

• Vote entropy: the query instance selected is the sample for
which the entropy of the vote distribution is the largest. It
is computed as:

VE = arg max
x
−
∑

i

V(yi)
C

log(
V(yi)

C
) (4)

where yi ranges over all possible class labels, and V(yi)
is the number of votes a label receives from the committee
members for a specific instance x. C is the committee size.

• Consensus entropy: this disagreement measure first calcu-
lates the average of the class probabilities of each classi-
fier, named consensus probability (Pcs). Then the entropy
of the consensus probability is calculated. The unlabeled
sample with the highest consensus entropy is selected as
the query instance. The score is calculated as:

CE = −
∑

y

Pcs log(Pcs) (5)

where Pcs =
1
C
∑C

c=1 P(yi) is the consensus probability.

• Maximum disagreement: this score also calculates the con-
sensus probability by averaging the predicted class prob-
abilities. Instead of entropy, the Kullback-Leibler diver-
gence is used to quantify the difference between the con-
sensus probabilities and the predicted class probabilities
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for each committee member. The sample with the highest
divergence score is chosen as query instance. The score is
computed as:

MD = arg max
x

1
C

C∑

i

D(Pθ(c) ||Pcs) (6)

where D(Pθ(c) ||Pcs) =
∑

i P(yi|x; θ(c)) log P(yi |x;θ(c))
Pcs

calculates
the corresponding Kullback-Leibler divergence. θ(c) repre-
sents a particular classification model of the committee,
and Pcs is the consensus probability.

2.3. Ranked batch-mode sampling
The classic pool-based active learning framework is designed

to query only one instance per retraining step (see Figure 1).
The ranked batch-mode sampling strategy, proposed by Car-
doso et al. [15], allows the learner to query and label multi-
ple instances at once, aiming to overcome the limitations of the
classic approach. According to this strategy, each sample of the
unlabeled pool is scored using the formula:

score = α(1 − Φ(x, Xlabeled)) + (1 − α)U(x) (7)

where α = |Xunlabeled |
|Xunlabeled |+|Xlabeled|

, Xlabeled is the labeled data set, U(x)
is the least confidence score of a particular sample x, and Φ
is a similarity function (e.g., cosine similarity). The similar-
ity function measures how well the feature space is already ex-
plored around the sample x by the current labeled set used to in-
duce the classification model. The samples are ranked from the
greatest to the lowest score. The sample with the largest score
is selected and removed from the pool. Then, the score is recal-
culated for the remaining instances and the process is repeated
until the desired number of instances that compose the learn-
ing batch are selected. The batch or set of chosen instances is
queried for labeling in a single training step and used to update
the learning model.

3. Related work

Active learning focuses on selecting relevant samples around
the decision boundary of the learning model to enhance the
classification performance of the model using a reduced labeled
training set. Despite its successful application to various prob-
lem domains [16], the active learning approach is not guaran-
teed to cover the whole representation space and may miss some
data clusters. This is likely to cause performance degradation in
some data sets (i.e., known as sampling bias) [8]. It is suggested
that supporting uncertainty-based selection methods with ran-
dom sampling may solve this problem [8].

Early implementations of active learning to the intrusion de-
tection problem were demonstrated on the well-known KDD
Cup 1999 data set [9, 10]. In [9], a Support Vector Machine
(SVM) classifier used an uncertainty approach based on the
closeness of the points to the decision hyperplane and achieved
a reduction by a factor of eight in the number of queries com-
pared to the results of the random selection strategy. As a mod-
ification to the uncertainty sampling strategy, this study uses a

balanced model in which the selection strategy guarantees that
an equal representation of the classes is included in the training
set.

Confidence measures proposed by transductive reliability
estimation were adapted as query mechanism for k-Nearest
Neighbors (k-NN) models in [10]. This study reached the same
performance that can be achieved using 2000 randomly selected
instances, with only 40 samples using their proposed active
learning approach. Cost-sensitive learning methods which as-
sign varied costs to misclassifications, instead of uniform costs,
have also been adapted to the active learning context and suc-
cessfully applied to the KDD Cup 1999 dataset [17]. In [18],
sampling bias is addressed using a labeling strategy that ap-
plies rare category detection in addition to the classic uncer-
tainty strategy. This study leveraged the multi-class logistic re-
gression algorithm to better cover the representation space by
selecting representative instances from different families and
demonstrated its effectiveness on two data sets: Contagio, a
data set composed of malicious and benign pdf files, and NSL-
KDD, a data set that includes network attack data. A similar
idea of supporting the uncertainty strategy with anomaly detec-
tion is described in [19].

Other notable studies taking advantage of the active learn-
ing approach are [20] for detecting malicious behavior on Mi-
crosoft Office documents and [21] for phishing URLs.

Besides the detection of malicious files or network attacks,
active learning strategies have also been applied to cyber threat
intelligence problems. Security-related tweets obtained from
leading cyber security experts were classified according to their
relevancy using active learning models in [11]. In this study,
uncertainty sampling was applied to label instances and update
k-NN and Random Forest models using an online learning ap-
proach. The results showed that the labeling of 600 instances
using the active learning approach was sufficient to reach the
same performance as the model induced by random sampling
using about 6000 samples.

Despite these initial and other posterior attempts, compared
to the huge body of machine learning research in this problem
domain [5], it can be argued that active learning has not drawn
significant attention within the cyber security research commu-
nity. The application of the active learning approach to the
intrusion detection problem requires more elaboration for IoT
networks as the characteristics of these networks show signif-
icant differences from conventional IT systems. For instance,
benign network traffic between IoT devices may show some
regular communication patterns that can be beneficial for the
learning model to discriminate the malicious behavior success-
fully. On the other side, the security of IoT devices is usually
neglected due to poor secure development and administration
practices.

In Table 1, we compared our study with other research stud-
ies that specifically address network intrusion detection. The
comparison covers the aspects such as baselines, sampling
strategies, and benchmarking variables (e.g., pool size, initial
seed, class balance ratios). It also includes information about
the data sets used and the types of networks where the data sets
were collected. Finally, we also inspected whether the studies

4



considered wrong labeling impact in their experiments.
Beaugnon et al. [18] focus on comparing their proposed sam-

pling strategy, which is based on rare class detection, with other
similar studies. This study lacks baseline comparison and elab-
oration on important benchmarking variables (e.g., pool size,
initial seed). Its sampling strategy, balancing the training set
with various malware families (i.e., noted as uncertainty with
family annotation in Table 1), is compared to the uncertainty
strategy as well as the proposals of other studies [22, 19].
Stokes et al. [19] apply an uncertainty sampling strategy sup-
ported by an anomaly detection model and compares the result
of this approach with a method that only uses the uncertainty
strategy. Görnitz et al. [22] utilize an active learning strategy
to improve a semi-supervised anomaly detection method based
on support vector data description. The sampling idea of this
study benefits from the margin strategy (i.e., selecting the in-
stances close to the decision hyperplane), which is supported
by the identification of anomalous clusters. Despite demon-
strating the effectiveness of an active learning-based approach,
Li and Guo [10] do not elaborate on the optimization of this
approach. Almgren and Jonsson [9] conduct experiments re-
garding the impact of pool size and variation of class balance in
the data set.

All studies except ours address the usual IT networks without
considering the impact of wrong labeling. Our study evaluates
three active learning query strategies using different scoring
measures and compares the performance with two baselines:
a supervised model trained with a huge number of labeled data
and a learning model induced by random query selection. Ex-
cept for Almgren and Jonsson [9], the related research did not
assess the impact of relevant variables on the implementation of
active learning (e.g., seed size, pool size). Our study provides a
detailed investigation of these variables.

4. Methodology

4.1. Data set

The data set used in this research is MedBIoT [24]. This
data set is composed of benign and malicious traffic captured
in a medium-sized IoT network architecture formed by real and
virtual IoT devices. Malicious network data of three promi-
nent IoT botnets are included in the data set (i.e., Mirai [25],
BashLite [26], and Torii [27]). More specifically, the network
data provided by MedBIoT are related to the initial steps of the
botnet life cycle (i.e., spread and C&C [28]) for the three mal-
ware and do not include data related to attacking activities of
the compromised IoT devices (bots). This fact could make the
data set more complicated to categorize as the malicious traffic
might not be as evident as usual attack traffic (i.e., character-
ized by a large volume of network packets and connections), so
the malicious data might be more similar to benign IoT traffic
(i.e., a lower volume of network data). In this study, all mali-
cious labels (i.e., related to malware type) were abstracted to a
single malware label (i.e., positive class) and the features used
were the ones provided by MedBIoT in the structured data set
format, as in [29]. In this regard, the feature set is composed of

100 data attributes based on statistical methods applied sequen-
tially to the raw network packet data.In this study, it is assumed
that the features are inherently interpretable by a human analyst
(i.e., oracle). Given the large size of the original data set, a ran-
domly selected sample of data points was used instead. More
precisely, 150,000 data points were extracted from the data set
files to compose a balanced data set. As a result, the data set
was composed of 75,000 data points per class (i.e., malware
and benign). This data set was split into two disjoint data sets
for training and testing purposes, keeping the balanced class
composition. The training data set was composed of 100,000
data samples, while the testing data set included 50,000 data
points.

Even though hyper-parameter optimization of the learning
models was not performed, the feature set was refined to re-
move redundant features (i.e., feature selection). Pearson’s lin-
ear correlation coefficient was applied pair-wise to the feature
set, and highly correlated features (i.e., Pearson’s r > 0.80)
were removed and not used as input data for the models.

The application of active learning requires the availability of
a collection of unlabeled data (i.e., pool). For the purpose of
this study, the pool of unlabeled data was always composed of
data points extracted from the training data set (i.e., 100,000
samples). The testing data set was never used for training pur-
poses and was always used to test the accuracy of the learning
models at every iterative step in the active learning scenarios.

4.2. Baseline model (passive approach)
To proper evaluate the benefits of the active learning ap-

proach, a passive (i.e., static) baseline performance was re-
quired for comparison. In this study, static models were in-
duced and taken as a baseline model. These models are trained
using large labeled data sets and are rarely updated. They are
representative of commonly used approaches to build intrusion
detection models in production setups.

To establish a reference or baseline performance, the passive
learning models induced were built using the same algorithm
(i.e., a typical supervised model trained using a large data set)
for proper comparison with the active learning results. In this
regard, traditional ML algorithms (i.e., k-Nearest Neighbors,
Decision Tree, Logistic Regression, Naive Bayes, Support Vec-
tor Machines, and Random Forest) were evaluated. The classi-
fication algorithm providing the best performance was selected
for all the experimental scenarios.

The performance of the selected algorithm induced using dif-
ferent subsets of the training data and tested with the whole
testing set was used as the baseline performance. These train-
ing data subsets of different sizes were selected randomly from
the whole training data set.

Given the stochasticity of the data selection process and for
the sake of the stability of the results, a total of 50 models were
induced per training set size. The performance reported per
model is the average of the 50 iterations. Accuracy, which re-
flects the ratio of correctly identified samples (i.e., malware or
benign) on the testing set, was used as the models’ performance
metric.
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The Study Baselines Sampling Benchmarking Dataset(s) Wrong Target
Strategies Variables Labeling Network

[9] Random query Uncertainty Pool size Kdd Cup 1999 [23] No IT
Greedy optimal Balanced class selection Class balance

[10] Random query Uncertainty - Kdd Cup 1999 [23] No IT
[18] - Uncertainty with family annotation - NSL-KDD No IT

Uncertainty
Semi-supervised model [22]
Rare category labeling [19]

[19] - Uncertainty with anomaly detection - Kdd Cup 1999 No IT
Uncertainty

[22] Random query Margin strategy with anomaly detection - HTTP Traffic Data No IT
Margin strategy

Our Study Supervised model Uncertainty Initial seed MedBIoT [24] Yes IoT
Random query Query-by-Committee Pool size

Ranked Batch-Mode Batch size

Table 1: Comparison of this study with similar studies

4.3. Active Learning Scenarios
As described in the previous section, the first step in this re-

search was to find good baseline models that worked effectively
on the classification task (i.e., early IoT botnet traffic detection).
These passive models were used as comparative baselines for
the performance of the active learning scenarios. The follow-
ing scenarios were implemented to evaluate the active learning
strategies explicated in Section 2:

• Uncertainty sampling: a single classifier (i.e., active
learner) was used to generate an initial detection model
that used the active learning cycle (see Figure 1) to up-
date its knowledge based on different query instance se-
lection criteria. The query instance selection criteria (i.e.,
scores) tested were classification uncertainty, classifica-
tion margin, and classification entropy. The stopping cri-
teria for the active learning cycle was 1,000 single queries,
meaning that the process was repeated 1,000 times select-
ing a single sample per iteration. The accuracy provided
by the models on the testing set at each training step was
retrieved. In addition, the impact of two variables in the
active learner performance was evaluated: the size of the
initial data set (i.e., seed size), and the size of the pool of
unlabeled samples.

• Ranked batch-mode sampling: a single classifier was used
to generate an initial detection model that used the active
learning cycle to update its knowledge using the ranked-
batch mode query strategy, as defined in [15]. This en-
abled the learner to query for labeling more than a single
instance per training step. The stopping criteria was the
query of a total of 1000 instances. In this case, depend-
ing on the batch size, meaning how many instances were
queried per training step, a variable number of training it-
erations were performed. For instance, 500 training steps
were performed when a batch size of 2 query instances
was used. The accuracy performance of the models on the
testing set at each training step was retrieved. As in the
previous scenario, the impact of the pool size and the size

of the initial seed were evaluated. In addition, the impact
of the batch size (i.e., the number of samples queried per
training step) was assessed.

• Query by committee: a group of classifiers was generated,
and the committee-based active learning strategy was used
to update their knowledge based on different query in-
stance selection scores. The scoring measures tested were
vote entropy, consensus entropy, and maximum disagree-
ment. Given the similarity between this active learning
strategy and the single classifier strategy (i.e., uncertainty
sampling scenarios), and to reduce the number of variables
analyzed, only the best pool size of the uncertainty sam-
pling scenarios was used for the committee-based scenar-
ios. Therefore, for these scenarios, the impact of the pool
size was not evaluated. However, the impact of the ini-
tial seed size and the size of the committee (i.e., number
of members) were evaluated. The same stopping criterion
as in the uncertainty sampling scenarios was applied (i.e.,
1000 single instance training steps). The accuracy perfor-
mance of the models on the testing set at each training step
was retrieved.

In the previous scenarios, it was assumed that the oracle la-
beling the queries provided a 100% accuracy on class identifi-
cation, that is, a 0% error in data class imputation. Although
desirable, this scenario is not realistic. For instance, in SOC
environments, where analysts with different degrees of experi-
ence and expertise coexist, even though a high degree of accu-
racy can be expected, a certain margin of error cannot be ruled
out. For this reason, the last kind of scenarios evaluated con-
sidered the possibility of wrong labeling in the active learning
implementation. The possibility of wrong labeling was materi-
alized assigning a wrong labeling probability to the scenarios.
More specifically, for each queried sample (i.e., the most infor-
mative sample according to the used strategy), a wrong labeling
probability (e.g., 5%) was implemented using a random num-
ber generator function. If the number was below an established
threshold related to a probability, the label was flipped.
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To implement the wrong labeling scenarios, the best models
from the previous scenarios were selected (i.e., one per strat-
egy), and different wrong labeling probabilities were evaluated.
Furthermore, the baseline models, built using the passive learn-
ing approach, were also induced implementing the wrong label-
ing scenario. In this case, the wrong labeling probability func-
tion was applied to each data sample in the training set before
training the model.

All scenarios, including active and passive learning ap-
proaches, were tested on the same testing data set. Besides,
as all scenarios involved some degree of randomness, 50 iter-
ations were performed per scenario. Therefore, the reported
performance of the models is the average accuracy score of the
50 iterations. As both the training and testing data sets are bal-
anced, the accuracy score provided a reliable and comprehen-
sive score of the models’ performance. The implementation of
the active learning strategies was performed using the modAL
library for Python [30].

5. Results

This section provides the main results of the experimental
setup where the active learning scenarios were tested.

5.1. Data preprocessing

The data preprocessing stage aimed to remove redundant and
irrelevant data features. For this purpose, Pearson’s linear cor-
relation coefficient (r) was applied. Features highly correlated
with any other feature were removed (|r| > 0.80), keeping just
one of them. As a result, from the initial set of 100 features
used to describe every sample of the data set, only 20 features
remained in the feature set.

For the purpose of data visualization, t-Distributed Stochastic
Neighbor Embedding (t-SNE) [31] technique was used. t-SNE
is a dimensionality reduction technique that enables the visual-
ization of high dimensional data sets in low dimensional spaces.
It captures the structure of the data in a way that neighboring
points in the high dimensional space are likely to be neighbor-
ing points in the low dimensional space representation. There-
fore, it enabled us to get a sense of the data structure as depicted
in Figure 2.

As can be observed in the two-dimensional representation of
the data set in Figure 2, the classes seem to be spread and clus-
tered in different regions of the feature space (i.e., red refers to
malware data and green to benign data). This may indicate rela-
tively good separability of the data. However, some areas show
completely mixed data, which can hinder class discrimination
in those regions and, consequently, the application of the active
learning approach.

5.2. Machine learning algorithm selection

All the scenarios tested in this study used the same base
algorithm and hyper-parameters, which ensured equal condi-
tions for the active and passive learning scenarios. To as-
sess the goodness of different machine learning algorithms for

Figure 2: Comparison of algorithms performance

Figure 3: Comparison of algorithms performance

the task and select the best one for the scenarios, classifica-
tion models were induced using different subsets of features
and traditional machine learning classification algorithms (i.e.,
k-Nearest Neighbors, Decision Tree, Random Forest, Support
Vector Machines, Logistic Regression and Naive Bayes). The
features were ranked according to discriminatory power based
on Fisher’s score [12]. The feature subsets included the top n
features based on the ranked list of features, where n was an in-
teger (i.e., 3, 5, 10, 15, 20). The performance results for all the
induced models are provided in Figure 3. The whole training
set was used to generate the classification model, and the whole
testing set was used to evaluate its predictive performance.

As can be observed in Figure 3, the Random Forest (RF)
algorithm outperformed all the other algorithms in all cases.
Therefore, the RF algorithm was selected for all the benchmark-
ing scenarios using the default hyper-parameters of the scikit-
learn library for Python [32].
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Figure 4: Baseline model on distinct training subsets

5.3. Baseline model performance
The baseline classification algorithm, Random Forest, was

used to build classification models with training data subsets
of different sizes. For this purpose, training subsets of differ-
ent sizes were randomly sampled from the whole training set
without replacement. For all training set sizes, 50 models were
induced. The whole testing set was used to test the predictive
performance of the models. The results reported are the aver-
age and standard deviation of the 50 models per training subset.
The results are provided in Figure 4. In this line graph, the hor-
izontal axis provides the training data set size, and the vertical
axis the average accuracy performance obtained on the testing
set. The blue line provides the average value, while the standard
deviation is reported with the surrounding colored area. For the
sake of interpretation, the vertical axis range was limited to the
observed values, thus restricted to the [0.5, 1] interval.

As shown in Figure 4, the larger the training data size, the
greater the accuracy retrieved and the lower the variability ob-
served among iterations. Furthermore, the performance line
is steeper for the smaller data sets, suggesting that the model
could learn effectively from a small training data set and in-
crease its knowledge with a small number of added samples.
For instance, from 10 to 40 data samples, the performance in-
creased from 0.58 to 0.73, whereas from 10,000 to 40,000 sam-
ples, the increase was barely 0.01, from 0.97 to 0.98. The high-
est performance obtained was of 0.988 accuracy (i.e., 98.8%)
with 100,000 samples, that is, using the whole training set.
The 0.90 accuracy performance was achieved with 500 sam-
ples, whereas 0.95 and 0.97 accuracy values were achieved us-
ing data sets containing 3,000 and 10,000 samples, respectively.

5.4. Active learning scenarios
The following paragraphs report the performance results for

the active learning scenarios described in Section 4.

5.4.1. Uncertainty sampling
The three query instance selection scoring measures, namely

classification uncertainty, classification margin, and classifica-

tion entropy, were evaluated under the same conditions, and
their performance. The impact of using a different number of
samples in the unlabeled pool of data (i.e., pool size) and the
number of samples used for the initial model (i.e., seed size)
was assessed. The initial seed size tested were 2, 10, 40, and
200 samples. In all cases, the training set was balanced. This
implied that if the initial seed was 2 instances, one sample per
class was selected randomly from the whole training set. Ran-
dom selection of the initial seed data ensured the generation of
a different model per iteration. Similarly, for the pool size, each
specific active learning model scenario was implemented us-
ing different unlabeled pool sizes. The instances that composed
each pool for each scenario were randomly selected. Given
the randomness of the scenarios and for the sake of stability of
the results, 50 models were induced per combinatorial scenario.
The reported result per combination is the average performance
of all the models induced per scenario. The results for the sce-
narios using classification uncertainty as query selection metric
are provided in Figure 5.

Initially, it seems logical to assume that, for both variables,
the larger the number of instances, the better the performance.
Therefore, the classifier should be trained initially with the
maximum labeled data available as the initial seed, and the un-
labeled pool should contain the maximum number of unlabeled
instances available. In this regard, in our testbed, we assumed
that the maximum number of labeled instances available was
200, and the maximum number of unlabeled samples in the pool
was 100,000.

However, as can be observed in Figure 5, in all graphs (i.e.,
using any seed size), the maximum accuracy performance is
reached with an unlabeled pool of about 7,000 instances (i.e.,
red line). The graphs evidence that the learning is hindered
when the unlabeled pool is too small (i.e., lightest green line)
or too big (i.e., darkest blue line). In the former case, the pool
might not be representative of the underlying data distribution
in most iterations, and, consequently, even though the learn-
ing process works well in the initial steps, it is halted when the
representative data is exhausted, as evidenced by the plateau in
performance. In the latter case, the existence of many similar
instances for which the uncertainty scores might be similar or
identical may hinder the selection of the optimal learning sam-
ple, leading to slower learning. This phenomenon is evidenced
by the slow pace of learning observed in this scenario, which
reaches the lowest performance of all pool sizes , and shows
the smallest slope and no signs of flattening (i.e., the model
was still learning).

Regarding the seed size, it is worth noticing that all mod-
els’ performance is over 0.97 regardless of the initial training
data set used. The only substantial difference observed among
the models is the shape of the curve leading from the initial
model to the last query. As can be observed in Figure 5, ex-
cept for the model with an initial seed of 2 instances (i.e., top-
left graph), the models suffer from an initial decrease in per-
formance, which is corrected later with an increase in perfor-
mance. This correction takes more time (i.e., queries) for the
models induced with a larger initial seed size. This initial per-
formance decrease might have been caused by the initial bias
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Figure 5: Uncertainty sampling: classification uncertainty results

of the classifiers induced, thus selecting sub-optimal instances
in the first iterations that may respond to the model bias but
not provide better generalization capabilities. This fact is em-
phasized for larger pools. In any case, all the active learning
models recover from the initial draw-down, surpassing the 0.95
performance in about 600 queries and achieving 0.97 in around
800 queries.

Comparatively, the baseline models (i.e., the passive learn-
ing models depicted in Figure 4) reached 0.95 and 0.97 accu-
racy scores with 3,000 and 10,000 samples, respectively. This
shows that the active learner can achieve similar performance to
the passive model using 10 to 12 times fewer labeled samples.
Besides, the active learning approach seems to provide addi-
tional benefits when the initial training set (i.e., initial seed) is
small, as no initial draw-down in performance is observed in
that case. However, as a trade-off, the initial accuracy is lower
when the initial seed is smaller.

In the uncertainty sampling scenarios, the three instance
scoring measures evaluated produced similar results. A com-
parison of the performance of the three metrics (i.e., classifi-
cation uncertainty, margin, and entropy) using a pool size of
7000 and the four initial seed sizes are provided in Figure 6.
More interestingly, this figure includes the performance of the
random query selection approach, where the query sample is
selected randomly from the unlabeled pool. This approach is
provided as a comparative baseline that can be used to eval-
uate the effectiveness of the query selection metrics. In this

Figure 6: Comparison of uncertainty sampling strategies and random query
selection
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Figure 7: Ranked batch-mode sampling performance for batches of 2 samples
per query

regard, the random approach seems to provide better perfor-
mance than the active learning approaches in the initial stages.
However, as the number of queries increases, the active learner
approach learns better and faster than the random query selec-
tion, achieving higher accuracy, for any initial seed size, after
600 queries. Besides, the maximum performance of the ran-
dom instance selection strategy is lower and plateaus faster than
any of the active learning query strategies. More precisely, the
random approach achieved a maximum accuracy of 0.93 after
1000 queries in the best model, whereas this performance was
reached by most active learners in 500 queries, achieving over
0.97 accuracy score after 1000 queries to the oracle.

5.4.2. Ranked batch-mode sampling
The classic pool-based active learning strategy, uncertainty

sampling, limits the query size to a single instance. Ranked
batch-mode sampling was designed to overcome this limitation
enabling the learner to query multiple instances per query and
enhancing the informativeness score using an additional scor-
ing metric, as detailed in Section 2. The ranked batch-mode
sampling strategy was implemented and tested in our experi-
mental setup. For a proper evaluation of this strategy, different
batch sizes (i.e., 2, 3, 4, 5, 7, 10, 20) were used in addition to
different pool sizes and initial seeds.

Based on the results, the scoring proposed by this query strat-
egy did not provide any additional improvement. The ranked
batch-mode strategy did not provide better performance than
the uncertainty sampling strategy. As a reference, Figure 7 pro-
vides the performance results for the batch size of 2 instances
which implied 500 training steps. The graph also provides the
different seed sizes (i.e., SX, where X specifies the size) and
pool sizes evaluated (i.e., specified in the legend as 3,000 or
7,000 next to the seed size, separated by a hyphen).

Despite the low performance, an interesting result from the
ranked batch-mode scenarios is that the best performance was
achieved using a smaller pool size than for uncertainty sam-
pling, achieving the maximum accuracy performance of 0.95
with an unlabeled pool of 3,000 instances. As can be seen in
Figure 7, the pool of 7,000 unlabeled instances provided signif-

icantly lower results. Besides, even though the ranked batch-
mode models did not provide improved performance regarding
the single query mode, none of the models in Figure 7 show the
performance decrease in the initial stages observed for uncer-
tainty sampling, as shown in Figure 5 and Figure 6.

These results suggest that a hybrid approach, combining
uncertainty-based active learners with random selection or
ranked batch-mode only for the initial queries, may help to
overcome the initial reductions in performance and bias evi-
denced by the uncertainty sampling models. This could avoid
the draw-downs and provide sustained learning leading to high-
performance results.

5.4.3. Query by committee (QBC)
The previous scenarios used a single learner to select the

most informative instances and pose queries to the oracle. In
the query by committee approach, a group of learners trained
on the same data but representing competing hypotheses decide
about the most informative instances based on their disagree-
ment. The labeled instance is incorporated into each committee
member’s training set. The query strategies tested in our testbed
were vote entropy, consensus entropy and max disagreement,
as explicated in Section 2. As this approach is very similar to
the uncertainty sampling strategy (i.e., the decision is based on
committee disagreement but the individual models behave simi-
lar to the uncertainty sampling classifiers), the best pool size for
the uncertainty sampling strategy was used for the committee-
based scenarios (i.e., 7,000 samples). The impact of the size of
the committee and the initial seed size on the performance of
the QBC models was explored.

The results for the consensus entropy query instance selec-
tion metric are provided in Figure 8. Similar to Figure 5, each
graph in Figure 8 shows the performance of the models built
with different initial seeds (i.e., 2, 10, 40, and 200). For each
model, different committee sizes were tested (i.e., 2, 3, 5, 7,
and 10). They are reported using different colors, and desig-
nated as CE in the legend. For the sake of comparison, the best
model for the maximum disagreement (i.e., MD) and vote en-
tropy (i.e., VE) metrics are provided using red lines and dashed
and solid line styles, respectively. The MD and VE scoring met-
rics provided significantly lower performance than the CE strat-
egy. Therefore, their complete results are not reported.

As can be observed in Figure 8, the larger the committee size,
the better the results. The largest committee shows the steepest
learning curve in all cases (i.e., the fastest learning). Besides,
a large committee size tends to avoid the decrease in perfor-
mance on the initial queries and provides improved learning
in the early stages of the active learning process. However, a
larger committee implies retraining more models after the la-
beling process, which might be more time-consuming, and de-
mand more resources. In any case, using the CE scoring metric,
a 0.95 accuracy is achieved before 600 queries and 0.97 be-
fore 800 queries, regardless of the initial seed size.All models
converge beyond 900 queries, providing the same final perfor-
mance.

The MD and VE scoring metrics showed sub-optimal perfor-
mance, especially MD, where the best model, using a commit-
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Figure 8: Query by committee performance results

tee of 10 members, did not even achieve 0.95. The best VE
model, built with 10 members, reached 0.97 performance, but
its learning curve is worse than CE for 5 members. Besides,
the VE strategy suffered from a pronounced decrease in perfor-
mance in the initial queries for all models.

Given the similarities between uncertainty sampling and
query by committee (QBC), a direct comparison between both
query strategies is well-motivated. In this regard, Figure 9 pro-
vides the comparison between both active learning strategies
for different initial seeds. The best uncertainty model and two
QBC models (i.e., 3 and 10 members) are provided.

As can be seen in Figure 9, both active learning strategies
converge to 0.97, which shows the goodness of either of the ap-
proaches to achieve high performance with a small fraction of
the data needed by the passive learning approach (see Figure 4).
However, the learning curves of both strategies are notably dif-
ferent, as depicted in Figure 9, especially for a small number of
initial seed (i.e., larger separation between the curves). In any
case, the QBC strategy with a committee of 10 classifiers pro-
vides the steepest learning curve , achieving high-performance
faster than the other approaches. Besides, the initial models for
the QBC strategy start at a higher accuracy score than the uncer-
tainty sampling models. Therefore, the ensemble of classifiers
that form the committee provides improved performance from
the initial step, emphasizing the goodness of combining sev-
eral classifiers for enhanced learning. However, as mentioned
before, implementing committee-based strategies require more

Figure 9: Committee vs uncertainty sampling
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resources and may imply longer retraining schedules, especially
when the committee size is large. For this reason, the QBC with
a committee size of 3 may be a good trade-off between the best
QBC model, composed of 10 classifiers, and the best uncer-
tainty model (i.e., using a single classifier).

5.4.4. Wrong labeling impact
The previous scenarios assumed a perfect labeling approach,

that is, a 0% error in the label provided by the oracle. Even
though this is highly desirable, it is unrealistic due to the pos-
sible limitations of the oracles (e.g., inexperienced analysts)
and the inherent difficulties of the data labeling process (e.g.,
anomalous instances or confusing data attributes). For these
reasons, it is worth considering the case of labeling mistakes.

The best models from the previous scenarios were used to
implementing a probabilistic wrong labeling approach. In this
regard, different wrong labeling probabilities (i.e., 5%, 15%,
and 25%) were applied to every query instance. Figure 10
shows the results for the best uncertainty sampling model (i.e.,
using classification uncertainty), the best QBC model (i.e., CE
with a committee of 10 members), and the best ranked batch-
mode model (i.e., batch of 2 instances) for different initial seed
sizes (i.e., 2, 10, 40, and 200) and different wrong labeling prob-
abilities (i.e., 0%, 5%, 15%, and 25%). For the sake of com-
parison, the wrong labeling probability was also applied to the
training set of the passive models. As in the previous scenarios,
50 iterations were performed per model for the sake of stability
and representativeness of the results.

As can be observed in Figure 10, the active learners with the
smaller initial seeds are the ones affected the most by the wrong
labels.

This is expected as for the active learners, the wrong label-
ing is applied to the instance selected as optimal for learning
purposes, the most informative among the instances in the un-
labeled pool. Therefore, this fact may produce a notable bias,
affecting the results significantly. However, despite that, the ac-
tive learners still show significant improvement and good learn-
ing output, even in the extreme case of the 25% wrong labeled
samples. Besides, the graphs show that when the seed size is
relatively large, the models are remarkably resilient to the 5%
wrong labeling probability, providing similar final performance
to the perfect labeling approach (i.e., 0% error). Based on these
graphs, wrong labeling below 15% has a minimal impact on the
models, yielding good performance over time. Larger propor-
tions may significantly affect the performance of the models.
This fact is also applicable to the passive models.

6. Discussion

The application of active learning is especially suitable for
those domains where large amounts of unlabeled data are avail-
able, and the labeling cost might be a limiting issue. In this
research, we performed a thorough benchmarking of the active
learning approach for the IoT botnet detection problem domain,
simulating a SOC environment where human experts are avail-
able.

The results show that active learners can provide the same
performance as passive learning approaches using significantly
fewer data (i.e., at least 10 times fewer labeled samples) and
that the smart query implementation performed by the active
learning approaches outperforms the random selection of in-
stances in the long term. Therefore, in those scenarios where
a wealth of unlabeled data is available but the labeling cost is
expensive, the active learning approach can provide great ben-
efits, optimizing resources and minimizing the labeling cost as
less labeled data is required by the active learners to yield high
performance. Furthermore, the active learners with a small seed
size (i.e., initial training set) may provide better learning capa-
bilities and minimize the labeled data needed to achieve perfor-
mance similar to models trained initially with a larger quantity
of labeled data. However, models using small seed sizes are
more affected by mislabeled instances. Thus a large initial seed
is recommended to increase the initial robustness of the model
if wrong labeling is expected to be a significant issue.

In any case, the active learning approach is further enhanced
when the predictive power of an ensemble of classifiers is lever-
aged. However, this implementation requires more resources
which might be a restricting issue in resource-limited environ-
ments.

On the other side, as shown in Figure 6, random sampling
provided better results than uncertainty sampling for the first
few hundred queries but did not achieve higher detection per-
formance in the later stages. This outcome may indicate sam-
pling bias which causes a decrease in the effectiveness of the
uncertainty sampling strategies. Although these strategies do
not get stuck at low-performance levels, it can be deduced that,
due to the initial model bias, the capability of the initial queries
to explore the feature space is relatively limited. In some appli-
cations, the proper exploration of the feature space might be
essential for generating an accurate decision boundary. The
difference between random sampling and the active learning
strategies decreases when a larger initial seed is selected, mean-
ing that more instances in the initial training set may provide
better space exploration. Nevertheless, an active learning-based
solution that utilizes random sampling for the first set of queries
or mixes random sampling with other sampling strategies may
yield enhanced performance for the active learning approach.

The ranked batch-mode sampling strategy resorts to
uncertainty-based methods, which are prone to sampling
bias. However, this approach tries to avoid getting stuck in
previously-explored regions of the feature space by calculating
the similarity of each unlabeled instance with the samples al-
ready incorporated into the model [15]. However, in our study,
the additional scoring proposed by this method to select the op-
timal learning query did not improve the results yielded by the
uncertainty sampling strategies.

Most research focuses on perfect labeling , thus assuming no
error in the labeling process. Even though this would be ideal,
this assumption is highly unrealistic. For the sake of complete-
ness, our benchmarking explored the impact of wrong label-
ing on the active learning implementation and the generation
of the passive models. The results show that active learning
models are resilient to low error rates, which are the expected
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Figure 10: Wrong labeling impact

rates when domain experts act as oracles. For high error rates
(i.e., over 15%), the active learning approach may lead to sub-
optimal performance.

The noisy or wrong labeling problem has been studied in
classification problems in which the labeling cost is relatively
cheap (i.e., non-expert labeling cases), and a repetitive labeling
strategy works as a solution [33]. Estimating the accuracy of
noisy labelers and incorporating this knowledge into the multi-
ple labeler context was studied in [34]. Intrusion detection re-
quires experts in their fields, meaning that the expected wrong
labeling ratio should be considerably low. According to our re-
sults, the error ratios of around 15% would induce models that
are reasonably resistant to the labeling problems that can be ex-
perienced in the field. It is important to note that we assume
that the probability of wrong labeling is equal for each query.
However, this might not be completely accurate as experts with
varying knowledge and experience are involved in the tier struc-
tures of SOCs. Therefore, the probability of mislabeling may
differ depending on the expert who receives the query. Another
variable that deserves attention in this context is the variation
of the labeling cost, as a less fallible expert may have a higher
associated cost than an inexperienced analyst. In this regard, it
would be an interesting research direction to consider the cost
variations with wrong labeling.

In summary, our benchmarking study demonstrates the good-
ness of the active learning approach in the analyzed scenar-
ios and that the human-machine interaction may yield high-

performance results with significantly fewer data.

7. Limitations and Threats to Validity

Our work aims to provide an initial benchmarking of the ac-
tive learning approach to generate more efficient and effective
intrusion detection systems (IDS) for IoT networks. As an ini-
tial approach and novel application to the field, it does not aim
to convey a complete solution for the phenomenon but to assess
the feasibility of the active learning framework in generating
better IDS in the IoT context. We also evaluated the impact of
different variables (e.g., pool and seed size) in the implemen-
tation, performing a comprehensive benchmarking. Based on
that, our work is not free from threats to the validity of our re-
sults and limitations, which are described as follows.
• Data set: The IoT environment is a complex network in-

frastructure characterized by constant dynamism, resource
constraints, and large data volumes, among other features.
The data set used in this study, MedBIoT, is one of the
larger and more realistic IoT botnet data sets, which cap-
tures part of this challenging environment and enables the
simulation of benign and malicious network behavior of
a medium-sized IoT architecture. In this regard, we per-
formed an empirical study using a specific data set. How-
ever, the learning models induced in this study might not
be directly transferable to some IoT network architectures

13



(i.e., larger IoT networks, variable types of benign traf-
fic). Our results might be comprehended as an initial com-
prehensive evaluation of the active learning approach to
induce better IDSs. More empirical studies are needed
for replicating and exploring the results on other data sets
that capture the characteristics of other IoT architectures,
which is in line with our future work.

• Data features: In our benchmarking, we assumed that the
data features were interpretable for experts. For this rea-
son, we did not explore the implications and relation of
specific features in the discriminatory process. As the
main objective of this work was the exploration of active
learning, we did not cover other relevant issues related to
the interaction of SOC experts with the model and the na-
ture of incident handling operations at SOCs (e.g., teams
are usually composed of members with different levels of
expertise, so labeling costs and wrong labeling ratios may
change among members), which were out of the scope
of this paper. However, they constitute part of our future
work in the problem domain.

• Balancing data: In our benchmarking, we assumed that
the data set (i.e., training and testing sets) were balanced.
The training set was balanced to avoid biased classifiers,
a critical aspect to consider for high-performance models.
The testing set was balanced to make the accuracy met-
ric meaningful as a performance metric. The imbalanced
data issue might be a significant variable to address in real
IoT networks as in normal operation, most of the traffic
should be benign. This aspect was not included in our pa-
per for the sake of comprehensibility of this exploratory
paper. Therefore, it was out of the scope of this paper but
remains as future work on the topic.

8. Conclusions

The application of active learning for IoT detection in the
SOC context is well-motivated due to the large amount of un-
labeled data generated in those environments and the availabil-
ity of human experts for labeling purposes. The smart instance
query selection strategy performed by the active learning strate-
gies can help to build and enhance the detection models us-
ing significantly less data than the traditional models used to
build machine learning-based detection systems (i.e., passive
approaches). Of the general active learning approaches tested
in our benchmarking, the QBC-based strategies yield highly ac-
curate detection models with at least 10 times less data than
passive approaches for model generation. If resources are lim-
ited, uncertainty sampling strategies can generate similar mod-
els, but they may require a larger quantity of labeled data. Be-
sides, our results show that active learning models are resilient
to wrong-labeled data when the proportion of mislabeled in-
stances is relatively low (i.e., below 15%), expected in SOC
environments where domain experts act as oracles.
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