DOCTORAL THESIS

Machine Learning-Based
Detection and Characterization
of Evolving Threats in Mobile
and loT Systems

Alejandro Guerra Manzanares

TALLINNA TEHNIKAULIKOOL
TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2022

TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS
54/2022

Machine Learning-Based Detection and
Characterization of Evolving Threats in
Mobile and loT Systems

ALEJANDRO GUERRA MANZANARES

TAL
TECH

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Software Science

The dissertation was accepted for the defence of the degree of Doctor of Philosophy in

Computer Science (Cybersecurity) on 12 August 2022

Supervisor:

Co-supervisor:

Co-supervisor:

Opponents:

Research Professor Dr. Hayretdin Bahsi,

Department of Software Science, School of Information Technologies,

Tallinn University of Technology,
Tallinn, Estonia

Senior Researcher Dr. Sven Nomm,

Department of Software Science, School of Information Technologies,

Tallinn University of Technology,
Tallinn, Estonia

Assistant Professor Dr. Marcin Luckner,
Faculty of Mathematics and Information Science,
Warsaw University of Technology,

Warsaw, Poland

Professor Dr. Juan Manuel Corchado Rodriguez,
Department of Computer Science and Automation Control,
University of Salamanca,

Salamanca, Spain

Professor Dr. Ali Akbar Ghorbani,
Faculty of Computer Science,
University of New Brunswick,
Fredericton, Canada

Defence of the thesis: 1 September 2022, Tallinn

Declaration:

Hereby | declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been

submitted for any academic degree elsewhere.

Alejandro Guerra Manzanares

signature

Copyright: Alejandro Guerra Manzanares, 2022
ISSN 2585-6898 (publication)

ISBN 978-9949-83-898-1 (publication)

ISSN 2585-6901 (PDF)

ISBN 978-9949-83-899-8 (PDF)

Printed by Koopia Niini & Rauam

TALLINNA TEHNIKAULIKOOL
DOKTORITOO
54/2022

Masinoppepohine arenevate ohtude
tuvastamine ning kirjeldamine
mobiilseadmete ja varkvorkude jaoks

ALEJANDRO GUERRA MANZANARES

Contents

[N o)l o101 o] [Tor= 1 o] o T3 PR 9
Author’s contributions to the publicationsccoeiiiiiiiiiiiiiiiiiiiiiiiiie 1
P o o] =LY/ = 1 L] £ T3 P 12
B 13 1 oo 18 ot o] o I O 15
11 Research objectivesiiiiiiiii e 16
1.11 Mobile malware detection objectives..................ooooiia. 16

1.1.2 loT botnet detection objectivesccooiiiiiiiiiiiiiia 17

1.2 Contributiontothefield ... 17

1.3 ThesisS StrUCTUIE ... e eeeees 18

2 Learning under concept drift ...uieiiiiiiiiiii it i i ii i i aaeae 20
2.1 Static models for adynamicworld ... 20

2.2 Conceptdriftdefinition ... 20

2.3 Typesofconceptdrift......ccooiiiimiiiiiiiii e 21
2.4 Theimpactof conceptdrift........coooiiiiiiiiiii i, 22

3 Dissecting Android malware detection......cueeiiiiiiiiiiiiiiieiiieerenneeennnnns 23
3.1 Neglecting the impact of time: conceptdriftooiiiiiiii 23

3.2 Explainability: aiming for a better understanding 25
3.3 Consistent cross-device behavior...........coooiiiiiii i 25
3.4 Android malware: a complex and ever-evolving threat landscape 26

4 Abrief on loT botnet detectionccuvieiiiiiiiiiiii i i iiie i eieeenas 27
Part I. About Android Malware Detectionoeeueeeiiiiieiiiiieeieenneeneennnnn 29
5 KronoDroid: a historical Android dataset......ccoviiiiiiiiiiiiiiiiiiiiiiiieinnnnn. 31
51 The path leading to KronoDroidccooiiiiiiiiiii i 31

5.2 KronoDroid: time-based Android datasetcccovviiiiiiiiiiil, 35
521 Datasetgenerationcooviiiiiiiiiiiiii e 35

5.2.2 Datasetanalysisand mainresults...............ccooiiiiiiiii 38

5.3 Chapter SUMMAIY ..ottt eaas 43

6 Concept drift on behavioral data: detection, handling and characterization 44
6.1 WOIKFIOW OVEIVIEW ...\ttt 44

6.2 Conceptdriftdetectionoooiiiiiiiiiiii i 44
6.2.1 Data Pre-ProCeSSiNgueeeneeeieetie et iie i iie e eeaaaas 45

6.2.2 Feature selectionovviiiiiiiiiiiiiii e 46

6.2.3 Conceptdriftdetectioncooviiiiiiiiiii i 46

6.2.4 Experimental resultsccoviiiiiiiiiiii 46

6.3 Conceptdrifthandlingcoooiiiiiiii e 48
6.31 The proposed solutioniiiiiiiiiiii e 48

6.3.2 Experimentalresults ... 50

6.4 Concept drift characterization.............c.coooiiiiiiiiiii i 52
6.4.1 Characterization methodologyccooiiiiiiiiiiiiiii 53

6.4.2 Experimental resultscooviiiiiiiiiiii e 53

6.5 Chapter SUMMAIY ..ottt ettt e 56

7 Concept drift and cross-device behavior: implications for effective detection 58
7.1 The postulate of cross-device consistencyc.cccoiiiiiiiiiinei .. 58
7.2 Cross-device behavior and concept drift handling............................. 58
7.3 Characterization of behavioral concept drift across devices 62
7.4 Chapter SUMMaAIY ..ottt ettt 64

8 Cross-device behavioral consistency: benchmarking and implications for effec-
LA Y0 =1 T o 65
8.1 Cross-device behavioral comparisonccoooviiiiiiiiiiiiiii i 66
8.2 Impact on ML-based detectionmodelsccooiiiiiiiiiiii i 68
8.3 Chapter SUMMAIY . ..ottt ettt 71
9 Leveraging the first line of defense against malware: Android security permissions 72
9.1 Permissions evolution and concept drift handling............................. 72
9.2 Experimental resultscoooiiiiiiiiiiii e 73
9.21 Datasetandfeaturesetsoooviiiiiiiiiiiiiiiiiii 73
9.2.2 Conceptdrifthandling ... 73
9.2.3 Concept drift characterizationcccoviiiiiiiiiiiiiiii 74
9.3 Chapter SUMMArY ..ottt et iee e iaaas 80

10 On the relativity of time: a study of timestamps for effective Android concept
(o 1410 o F=T g Ve |11 Y - P 81
10.1 Data set: timestamps and feature spaces...........cooeiiiiiiiiiiiiiiiiea 81
10.2 Timestamps statistical analysis ... 82
10.2.1 A deep comparison of timestampscoooiiiiiiiiiiiiiiiaa., 82
10.2.2 Experimental results ... 84
10.3 Last modification vs. first seen: a comparative analysis....................... 89
10.4 Timestamp performance analysis for concept drift handling 91
10.4.1 Permissions feature spacecoooeiiiiiiiii ittt 91
10.4.2 System calls feature spaceccooeeiiiiiiiiiiiiiiiii i 92
10.4.3 APl callsfeature spacecooeiiiiiiiiiiiiiii i iiiieeeaes 93
10.5 Chapter SUMMAIY ...ttt ettt eaaas 93
11 Applying active learning to handle data evolution in Android malware detection 94
1.1 Abriefonactivelearningcooiiiiiiiiiii e 94
112 TeStinNg SCENAIIOS ...ttt ittt e e e et ee e iiee e iaaeaaans 95
11.3 Experimental resultsooovniiiiiiiii i s 96
11,4 Chapter SUMMAIY oottt ettt ie ettt ittt ie et e e eieeennns 101
Part Il. About [0T Botnet Detection........eeeeeeeeineeeieneereneerenneerenneeeneasnenns 103
12 1oT botnet attack detectioneieeieiiiiiiiie it i iiiieeeeeeeeneaennnans 105
121 TheloTbotnetlifecyclecoovmniiiiiiiii i, 105
12.2 Hybrid feature selection for enhanced loT botnet attack detection.......... 106
12.3 Understanding the decision: building trust and enhancing detection........ 107
12.4 Chapter SUMMAIY ...ttt ettt ettt iiaee e, M
13 10T botnet attack preventionc.eieiiiiiiiiiiiiiiiiiiiiiiiiieiiiiriaeeeennass 12
13.1 MedBIoT: early stage loT botnetdataset...............iiiiiiiiiii 12

1311 Datasetfeaturesooovviiiiiiii i i i 13

13.1.2 Early loT malicious behavior detection...............ccooviiiiin... 13

13.2 Active learning for early loT botnet detection....................ooooiiiii 116
13.2.1 Baseline model: the passive approach ... 17

13.2.2 Active learning sCeNarios.ouiiieiiiiiiie ettt 118

13.2.3 Wrong labelingimpact ... 123

13.3 Chapter SUMMArY ...ttt e et iiaeeaaaas 124

14 Conclusions and fUtUre WOrKeeuiiiiiii it iiii ittt i iieeeeeeenaeenaeans 125
14.1 Android malware detection.............ooiiiiiiiiiiii e 125
14.2 loT botnetdetectioncooiiiiiiiiiiiii i 126
14.3 Limitations and threats to validity ... 126
T4.4 FULUNE WOIK ..ttt ettt 127
LISt Of FigUIES vttt it iiit ittt iieiee e eeeeeeeeaeennecasssnssnsssnasnsssnasnnnns 130
[T o) i =1 o] [N 131
2] =] 1] [l N 132
ACkNOWIEdgEmMENES ..ieiiii ittt ii it eieteetaetaeeenarnaaenarnnaennsanns 14
A 03] = ot P 142
(0] (017 S N 143
Y] 01T e 13"t 145
Y] 011 e 137 157
P Y o] o1=] o To [< T P 165
Y0 0 1=Y T 13 175
N 0] 011 Lo 137G 209
F Y o] o1=] o Lo [J PP 231
Y0 0 1=Y T 1328 253
Y] 011 e 137G S T 271
FiYo]o1=] o Te [A PP 305
Y o o 1= g Vo |G [PN 323
Y] 011 Lo 13700 341
YN oTo1=] oo |3 Gl 1 PP 347
Y o o1 g Vo |G S N 357
Y] 011 Lo 13 371

Appendix 15

LOLN T To U] (U3 TV 7= 1

[0] oY 4 g T=] o [V 1

List of publications

The present Ph.D. thesis is based on the following publications that are referred to in the
text by Roman numbers.

I A.Guerra-Manzanares, S. Nomm, and H. Bahsi. In-depth feature selection and ranking
for automated detection of mobile malware. In Proceedings of the 5th International
Conference on Information Systems Security and Privacy - Volume 1: ICISSP, pages 274~
283. INSTICC, SciTePress, 2019
A. Guerra-Manzanares, H. Bahsi, and S. Nomm. Differences in android behavior be-
tween real device and emulator: A malware detection perspective. In Proceedings
of the é6th International Conference on Internet of Things: Systems, Management and
Security (IOTSMS), pages 399-404, 2019
A. Guerra-Manzanares, S. Nomm, and H. Bahsi. Time-frame analysis of system calls
behavior in machine learning-based mobile malware detection. In International Con-
ference on Cyber Security for Emerging Technologies (CSET), pages 1-8, 2019
IV A.Guerra-Manzanares, H. Bahsi, and S. Nomm. Kronodroid: Time-based hybrid-featured
dataset for effective android malware detection and characterization. Computers &
Security, 110:102399, 2021
V A.Guerra-Manzanares, M. Luckner, and H. Bahsi. Android malware concept drift using
system calls: Detection, characterization and challenges. Expert Systems with Appli-
cations, 206:117200, 2022
A. Guerra-Manzanares, M. Luckner, and H. Bahsi. Concept drift and cross-device be-
havior: Challenges and implications for effective android malware detection. Com-
puters & Security, 120:102757, 2022
A. Guerra-Manzanares and M. Vilbe. Cross-device behavioral consistency: Bench-
marking and implications for effective android malware detection. Machine Learning
with Applications, 9:100357, 2022
VIII A. Guerra-Manzanares, H. Bahsi, and M. Luckner. Leveraging the first line of defense:
A study on the evolution and usage of android security permissions for enhanced
android malware detection. Journal of Computer Virology and Hacking Techniques,
in press, 2022
IX A. Guerra-Manzanares and H. Bahsi. On the relativity of time: Implications and chal-
lenges of data drift on long-term effective android malware detection. Computers &
Security, in press:102835, 2022
X A. Guerra-Manzanares and H. Bahsi. On the application of active learning to handle
data evolution in android malware detection. Conference paper, under review, 2022
A. Guerra-Manzanares, H. Bahsi, and S. Nomm. Hybrid feature selection models for
machine learning based botnet detection in iot networks. In 2019 International Con-
ference on Cyberworlds (CW), pages 324-327, 2019
A. Guerra-Manzanares, S. Nomm, and H. Bahsi. Towards the integration of a post-
hoc interpretation step into the machine learning workflow for iot botnet detection.
In 2019 18th IEEE International Conference On Machine Learning And Applications
(ICMLA), pages 1162-1169, 2019
Xl A. Guerra-Manzanares, J. Medina-Galindo, H. Bahsi, and S. Némm. Medbiot: Gener-
ation of an iot botnet dataset in a medium-sized iot network. In Proceedings of the
6th International Conference on Information Systems Security and Privacy - Volume 1:
ICISSP, pages 207-218, 2020

Vv

Vi

X

Xl

XIV A. Guerra-Manzanares, J. Medina-Galindo, H. Bahsi, and S. Nomm. Using medbiot
dataset to build effective machine learning-based iot botnet detection systems. In
International Conference on Information Systems Security and Privacy, pages 222-
243. Springer, 2020

XV A. Guerra-Manzanares and H. Bahsi. On the application of active learning for efficient
and effective early iot botnet detection. Journal article, under review, 2022

10

Author’s contributions to the publications

Vi

Vi

VI

Xl

Xl

Xl

XV

XV

In Publication I, | was the main author, designed and carried out all the experimen-
tation, collected and processed the data, built the ML models, analyzed the results,
prepared the figures, and wrote the manuscript.

In Publication Il, | was the main author, designed and carried out all the experimen-
tation, collected and processed the data, built the ML models, analyzed the results,
prepared the figures, and wrote the manuscript.

In Publication Ill, | was the main author, designed and carried out all the experimen-
tation, collected and processed the data, built the ML models, analyzed the results,
prepared the figures, and wrote the manuscript.

In Publication IV, | was the main author, designed and carried out all the experimental
workflow, collected and processed all the acquired data, generated the data sets,
analyzed the data sets, prepared the figures, and wrote the manuscript.

In Publication V, | was the main author, wrote the simulation program, carried out the
simulations, proposed modifications to the original algorithm, analyzed the results,
prepared the figures, and wrote the manuscript.

In Publication VI, | was the main author, wrote the simulation program, carried out
the simulations, analyzed the results, prepared the figures, and wrote the manuscript.

In Publication VII, | was the main author, | supervised the workflow for the data acqui-
sition phase and posterior statistical analysis, prepared the data for ML tasks, built all
the ML models, analyzed the results, prepared the figures, and wrote the manuscript.

In Publication VIII, | was the main author, wrote the simulation program, carried out
the simulations, analyzed the results, prepared the figures, and wrote the manuscript.

In Publication IX, | was the main author, wrote the simulation program, carried out
the simulations, analyzed the results, prepared the figures, and wrote the manuscript.

In Publication X, | was the main author, wrote the simulation program, carried out
the simulations and the analysis of the results, prepared the figures, and wrote the
manuscript.

In Publication XI, | was the main author, wrote the simulation program, carried out
the simulations and the analysis of the results, prepared the figures, and wrote the
manuscript.

In Publication XII, | was the main author, prepared the data for ML tasks, built all the
ML models, analyzed the results, prepared the figures, and wrote the manuscript.

In Publication XlII, | was the main author, built all the ML models, analyzed the results,
prepared the figures, and wrote the manuscript.

In Publication XIV, | was the main author, wrote the simulation program, carried out
the simulations and the analysis of the results, prepared the figures, and wrote the
manuscript.

In Publication XV, | was the main author, wrote the simulation program, carried out
the simulations and the analysis of the results, prepared the figures, and wrote the
manuscript.

1

Abbreviations

Al
App
AV
C&C
DDoS
DES
DSEL
DT
FS
IDS
loT
k-NN
LM
Malware
ML
OEM
0S
RF
SOC
SVM
Tbps
XAl

Artificial Intelligence
Application

Antivirus

Command & Control
Distributed Denial-of-Service
Dynamic Ensemble Selection
Dynamic Selection Dataset
Decision Tree

First Seen timestamp
Intrusion Detection System
Internet of Things

k-Nearest Neighbors

Last Modification timestamp
Malicious software

Machine Learning

Original Equipment Manufacturer
Operating System

Random Forest

Security Operations Center
Support Vector Machines
Terabit per second
eXplainable Artificial Intelligence

12

"Life is what happens when you’re busy making other plans”
- John Lennon

This doctoral dissertation, written by a former marine who dreamed about being a pilot
and never planned to pursue a college degree, is a vivid example of how surprising and
challenging life can be.

Amor fati. Elu on ilus

"Who dares wins”
- motto of the Special Air Service (SAS)

1 Introduction

We live in an interconnected world. The internet has been a disruptive technology that has
enabled the interconnection and intercommunication of people and computers world-
wide. However, the tremendous advances on data-based communication have generated
new threats and security challenges for individuals and organizations. Malicious software,
shortened as malware, is one of the most prominent threats. This dissertation explores
the application of machine learning techniques to tackle relevant cyber security issues re-
lated to two highly targeted systems by malware, namely, mobile devices and internet-of-
things devices. In the mobile domain, malware has been used to infiltrate mobile phones
with the intention of stealing, hijacking, or corrupting the wealth of sensitive data that
these devices store to provide immediate financial gain for the attackers (e.g., sending
premium SMS messages). In the Internet of Things (IoT) domain, malware has been used
to compromise loT devices with the primary objective of using them to perpetrate large-
scale cyber attacks (e.g., the record-breaking distributed denial-of-service (DDoS) attack
of 3.47 Thps targeting an Azure customer in Asia [95]). In both cases, the attackers exploit
the systems’ capabilities for their benefit, generating direct revenue for them or substan-
tial losses for the targeted entity.

Due to the constant evolution of the threat landscape, the traditional countermea-
sures against malware, such as signature-based detection systems, have become inef-
fective, unable to catch up with malware developments, especially with zero-day, obfus-
cated, and evolved malware. To address this issue, machine learning techniques have
been explored in both cyber domains with remarkable success.

Mobile malware focuses mainly on Android devices due to the open nature of the
system and the large target audience who use Android devices. In this regard, ML-based
malware detection solutions for mobile devices have been proposed since the initial de-
velopment of the Android OS. Using a wide variety of techniques, the vast majority of
these detection models are induced with static snapshots of historical data aiming to de-
tect future malware. These static models assume that the underlying properties of the
data distribution do not change over time. However, the threat landscape targeting An-
droid devices is dynamic, and ever-evolving since the early days of the popular mobile
operating system. Malware families evolve in a constant spiral of sophistication, revolving
around the large attack surface exposed by mobile devices. This shift in the threat land-
scape presents detection models with an expiration date, and they may become obsolete
over time should adaptive actions not be taken to address the underlying data changes,
a phenomenon called concept drift. Despite this fact, most proposed solutions neglect
concept drift and its degenerative impact on the learning models over time. Addressing
this significant research gap, concept drift handling and its characterization for effective
long-time detection performance of Android malware are the main issues tackled in this
dissertation. Besides, the small proportion of studies that addressed concept drift issues
in Android malware detection, did not investigate the impact of different timestamps on
the data modeling and the overall performance of the learning models over time. Times-
tamp selection, a critical component for effective data modeling and concept drift han-
dling, that has not previously been addressed in the related research, is comprehensively
examined in this dissertation. Lastly, Android malware research using behavioral data (i.e.,
dynamic features) is based on the assumption that the behavior of the apps is consistent
across devices, thus explaining the heterogeneity of different configurations of devices
and operating system versions found in research studies and enabling the generalization
of their systems to any Android device data. Simply put, it is assumed that the nature
of the devices (i.e., real device or emulator) and the OS versions used do not matter and

15

that the logged data is consistent across device configurations, allowing effective cross-
device malware detection. However, the results of [3] that considered different kinds of
devices in the same setting challenge this assumption. In this regard, the validity of the
cross-device behavioral consistency and its impact on the ML-based detection models is
explored in this dissertation for system calls, the most commonly used dynamic feature
set in Android detection systems [70].

On the other hand, loT malware is characterized by using more simplistic yet effec-
tive attack vectors. Due to the lack of security measures and proper management that
characterize 10T devices, their compromise is usually achieved through the exploitation
of well-known but not patched vulnerabilities or the usage of default admin credentials.
Once compromised, the bot is used to amplify cyber attacks over the network which may
cause significant financial and reputation losses. ML-based intrusion detection systems
have been proposed to detect and mitigate the generated attacks. However, despite their
effectiveness, these reactive measures can still yield significant losses for the targeted
system. Early identification of botnet formation prior to attack delivery (i.e., spreading
and C&C communication) and awareness of the main attack aspects could be valuable in
this respect to improve the detection models employed in such resource-constrained de-
vices and prevent attacks from occurring. These research gaps and areas not thoroughly
explored in the related loT botnet literature are addressed in this dissertation.

The objectives of this doctoral dissertation and its main contributions to the field are
provided in the following sections.

1.1 Research objectives

This thesis is composed of two parts with different but related research objectives. In
both cases, for Android malware detection, as well as for 10T botnet detection, the un-
derlying research objective is to enhance the effectiveness and efficiency of the machine
learning-based detection systems designed for such tasks. However, specific research ob-
jectives are defined for each application domain. They are described in the subsequent
paragraphs.

1.1.1 Mobile malware detection objectives

The specific research objectives related to mobile malware detection tackled by this thesis
are defined as follows:

e RO1: Generation of a data set suitable for concept drift and cross-device detection
issues exploration.

e RO2: Demonstration and characterization of concept drift in Android data dynamic
(system calls) and static (permissions) feature spaces.

e RO3: Application of an ML-based solution to handle effectively concept drift for
Android malware detection.

e RO4: Evaluation of different timestamps for effective concept drift handling and
modeling.

e RO5: Assessment of the validity of the cross-device postulate and its implications
for effective detection.

16

1.1.2 loT botnet detection objectives
The specific research objectives related to loT botnet detection guiding the work per-
formed in this thesis are defined as follows:

e RO6: Evaluation of feature selection techniques and post-hoc interpretation meth-

ods for enhanced attack detection.

e RO7: Application of supervised and unsupervised ML-based methods for early loT

botnet detection.

e RO8: Evaluation of active learning strategies for early loT botnet detection.

1.2 Contribution to the field

This thesis is based on a collection of peer-reviewed scientific publications published in
reputed scientific journals and international conferences. The primary objective of this
thesis is to enhance the performance in terms of effectiveness and efficiency of the ma-
chine learning-based detection systems designed for Android malware detection and loT
botnet detection tasks. In this regard, the main contributions of this dissertation to the
cyber security field are:

1.

10.

The generation of KronoDroid, a novel, and publicly available data set that enables
the exploration of concept drift and cross-device detection issues for Android mal-
ware detection for the whole Android historical timeline (i.e., since 2008).

The thorough statistical analysis of the differential features and discriminatory fac-
tors between benign and malware Android applications.

. The demonstration and characterization of concept drift in Android malware detec-

tion for distinct feature spaces (i.e., system calls, permissions and static API calls).

The comparison and thorough evaluation of the impact of timestamps as key factors
to model and handle concept drift effectively.

The demonstration that cross-device behavioral consistency can not be assumed
for system calls-based Android applications data.

The enhancement of an automated method to handle concept drift effectively for
Android malware detection in different feature spaces, yielding long-term high de-
tection performance and robustness against concept drift and imbalanced data is-
sues.

The application and demonstration of the benefits of the active learning approach
to concept drift handling for efficient and effective Android malware detection.

. The generation of guidelines and recommendations to design enhanced Android

malware detection systems.

The application of feature selection techniques and interpretation methods for a
better understanding of the phenomenon and induction of enhanced ML-based
models for attack detection in the loT botnet domain.

The demonstration that MedBIoT data set can be used to detect loT botnet for-
mation at early stages of botnet deployment, thus preventing the nefarious conse-
guences of loT-based attacks.

17

11. The application and demonstration of the benefits of the active learning approach
for early loT botnet detection in SOC environments.

For the sake of clarity, Table 1 provides the mapping of the chapters of this document
to the corresponding research objectives, publications, and contributions of this disserta-
tion.

Table 1: Mapping among thesis chapters, research objectives, publications, and contributions to the
field of this doctoral dissertation

Chapter | Research Objectives | Publications | Contributions
5 RO1 I, 11, 1, IV 1,2
6 RO2, RO3, RO4 \% 3,4,6
7 RO2, RO3, RO5 Vi 58
8 RO5 Vil 5
9 RO2, RO4 Vil 3,4
10 RO4 IX 3,4
1 RO3 X 7
12 RO6 X1, Xl 9
13 RO7,RO8 | XIll, XIV, XV 10,1

1.3 Thesis structure

This thesis is divided into 14 chapters and split into two parts, i.e., Part | and Part Il, cover-
ing 2 research topics. Briefly summarized, after four general introductory chapters, Part |,
about Android malware detection, encompasses Chapters 5 to 11, whereas Part Il, about
loT botnet detection, includes Chapters 12 and 13. Chapter 14 summarizes the main con-
clusions and provides future work.

A brief description of the content of each chapter is provided as follows.

e Chapter 1, Introduction, provides a brief overview of the problem statement, the
research objectives and the main contributions of this research work.

e Chapter 2, Learning under concept drift, provides background information about
the impact of concept drift in learning models, its formal definition and main ty-
pologies.

e Chapter 3, Dissecting Android malware detection, provides the main characteristics
of Android malware detection research in the context of observed research gaps
and related works.

e Chapter 4, A brief on IoT botnet detection, provides background information about
loT botnets and a summary of related works in the loT botnet detection literature.

Part |, About Android Malware Detection.

o Chapter 5, KronoDroid: a historical Android data set, describes the content of the
works that lead to the generation of KronoDroid and the main features, method-
ological workflow and analysis of the KronoDroid data set.

e Chapter 6, Concept drift on behavioral data: detection, handling, and characteri-
zation, demonstrates and characterizes concept drift for Android behavioral data
(i.e., system calls) and proposes a method to handle it effectively.

18

e Chapter 7, Concept drift and cross-device behavior: Implications for effective de-
tection, explores the combination of two of the main challenges for effective
long-term Android malware detection, namely, concept drift and cross-device
behavioral detection.

o Chapter 8, Cross-device behavioral consistency: Benchmarking and implications
for effective detection, describes and reports the results of the benchmarking
setup that enabled the testing of the cross-device behavioral consistency postu-
late on a varied set of Android devices.

e Chapter 9, Leveraging the first line of defense against malware: Android security
permissions, tackles and characterizes concept drift and malware family evolu-
tion in the permissions feature space.

e Chapter 10, On the relativity of time: A study of timestamps for effective Android
concept drift handling, compares and describes the impact of different times-
tamps on Android malware detection under concept drift constraints.

e Chapter 11, Applying active learning to handle data evolution in Android malware
detection, explores the usage of the active learning approach to deal with con-
cept drift for long-term effective Android malware detection.

Part Il, About IoT Botnet Detection.

o Chapter 12, IoT botnet attack detection, evaluates the usage of feature selection
techniques and interpretation methods to enhance IoT botnet attack detection
systems.

e Chapter 13, loT botnet attack prevention, explores the usage of MedBioT data set
for early stage loT botnet detection and the active learning approach as a means
to prevent loT botnet-based attacks.

e Chapter 14, Conclusions and future work, provides the main conclusions and out-
lines future work.

19

2 Learning under concept drift

This section provides background information about concept drift, its formal definition,
and its main typologies.

2.1 Static models for a dynamic world

The vast majority of learning models are static. That is, they are constructed under the as-
sumption that the input data is steady and consistent over time (i.e., stationary data); as
a result, learning models are constructed using previous data with the goal of effectively
coping with future data. These models are generated to reflect the problem domain as
it was then the model was formed, and not expecting significant changes or variability
over time [102]. However, the world is dynamic, and non-stationary data distributions
can be found in many problem domains. The evolution of data over time adds additional
complexity to the data modeling process that, if not addressed, might impact the gener-
alization capabilities of the models induced and their performance on future data. The
critical impact of the temporal dimension on the learning models can lead to model ob-
solescence over time. Due to the dynamic development of cyber attacks brought on by
the continuous conflict between attackers and defenders, the corresponding detection
models are susceptible to concept drift issues.

2.2 Concept drift definition

Concept drift is the phenomenon in which the statistical properties of relevant data in a
problem domain change over time in an unforeseeable way [71]. Formally, concept drift
can be defined as follows:

Given a time period [fo, ;] and a set of data instances belonging to that period S, ,, =
{dyy,....d;, }, where d; = (x;,y;) is a single observation, x; = (x},x?,...,x") € X is the fea-
ture vector, y; € Y is the target label, and S, ;, follows a certain distribution F ;, (X,Y).
In this setting, concept drift is observed at 1, if F, ;, (X,Y) # F}, »(X,Y), and denoted as
dr: Pr(X7Y) # PH—I(X?Y) (71].

Based on this definition, concept drift at time period ¢; can be equated as the change in
the joint probability of X and Y at time #;, expressed as P, (X,Y). As the joint probability
can be decomposed in two components, 7, (X,Y) = P, (X) x P, (Y | X), concept drift can
be originated from three sources [71]:

1. B(X)#P41(X) and (Y | X) = P4+1(Y | X). In this case, there is a shift in the
data distribution, P, (X), that has no impact on the posterior probability, 7 (Y | X),
thus not affecting the decision boundary of the model. This phenomenon is named
virtual concept drift and it is depicted as case 1in Figure 1.

2. B(X)=P41(X) and P(Y | X) # P41(Y | X). In this case, the data distribution
remains unchanged but the drift in the posterior probability will change the decision
boundary and lead to a decrease in learning accuracy. This phenomenon is named
real concept drift and it is depicted as case 2 in Figure 1.

3. A(X) # P1(X) and B(Y | X) # P+1(Y | X). In this case, the change in the data
distribution (i.e., virtual concept drift) coexists with a change in the decision bound-
ary (i.e., real concept drift). As these changes affects the decision boundary, this
phenomenon is also reflected as real concept drift and it is depicted as case 3 in
Figure 1.

20

Original Data Case 1: Virtual concept drift Case 2: Real concept drift Case 3: Real concept drift
P(X) Pt(X) # Pt+1(X) Pt(X) = Pt+1(X) P{(X) # Pt+1(X)
PYIX) Py(Y[X) = Pt+1(Y[X) P(Y[X) # Pt+1(Y|X) PH(YIX) # P+4(Y[X)
X2 Xo Xz Xp
—> > L —>
X1 X1 X1 X1
Period t Period t+1

Figure 1: Sources of concept drift

As can be observed in Figure 1, only the real concept drift changes the decision bound-
ary of the learning model provoking the obsolescence of the previous model. Real concept
drift refer to changes in P(Y | X), which may happen with or without a change in P(X)
[32]. In virtual concept drift, also called feature space drift or covariate shift, the under-
lying data distribution is changed without affecting P(Y | X). From a predictive perspec-
tive, only the shift that affects the decision boundary, i.e., prediction decision, requires
the adoption of adaptive measures [32].

2.3 Types of concept drift

The changes in data distribution leading to concept drift can occur in different forms and
speeds over time. Figure 2 illustrates in a one-dimensional toy example the four main
typologies of concept drift [71] and the outliers case (i.e., blips), which is usually not con-
sidered true concept drift but can present a remarkable challenge for proper concept drift
handling [32, 83].

c
=
Sudden | Abrupt drift £ 3
SE
=
fime
=
=3
Gradual drift 22
<=
<
fime
S
Incremental drift £3 ..
=z L
=
fime
c
£
Reocurring concepts £ 3
SE
=
time
=
=3
Blips £3
SE
<

fime

Figure 2: Types of concept drift patterns and the outliers case, based on [32, 71, 83]

The basic concept drift typologies, depicted in Figure 2, are briefly described in the

21

following points.

e Sudden drift: the switch to a new concept occurs abruptly, within a short period of
time.

e Incremental drift: an old concept changes slowly over time through many interme-
diate concepts before reaching a new concept.

e Gradual drift: a new concept gradually replaces an old one over a period of time.
In the transition phase both concepts coexist.

e Reocurring concepts: historical, previously seen concepts may reoccur after some
time.

e Blips: singular random deviations or outlier cases appear in the data distribution.

A combination of concept drift typologies is frequently observed in practice, even
while adaptive learning solutions designed to address concept drift issues may explicitly or
implicitly specialize in particular subsets of concept drift, such as sudden non-reoccurring
drifts [32]. Additionally, concept drift might last for an extended period and may not occur
at a particular moment. In this case, intermediate concepts may arise during the transition
between the old concept and the new concept. The intermediate concept can be inter-
preted as a mixture of both concepts, like in the incremental drift, or one of the old or
the new concept, as in the gradual drift [71]. In general, blips are not considered concept
drift, thus no adaptive measures should be taken to address such cases [32].

2.4 The impact of concept drift

Predictive models under concept drift influence require the implementation of adaptive
solutions to detect and react to the changing environment, otherwise, their performance
will degrade over time. As time goes on, the knowledge of the decision model might
need to be updated including the new data, or be completely replaced to address the
new scenario [32]. If no adaptive measure is taken, the model might become obsolete,
and completely ineffective in dealing with the new incoming data.

In general, concept drift methods should be able to detect concept drift as it occurs and
perform an adaptive change according to the severity and region of the drift to handle the
new concept properly [71]. Detecting and understanding concept drift, including knowing
where, how, and where the drift occurred is essential information that is used as input to
implement drift adaptation solutions that extend the life of the machine learning-based
solution. In this regard, the generation of a new model to substitute an obsolete model
when global drift is detected (i.e., concept drift affecting most of the feature space), the
usage of a model ensemble for recurring concept drifts, and the adjustment of existing
models to address regional drift (i.e., concept drift is localized only in a limited area of the
whole feature space) are common approaches to handle emerging concept drift [71].

22

3 Dissecting Android malware detection

Machine learning-based Android malware detection models are built using static and dy-
namic features extracted from Android applications (i.e., apk files) [70].

Static features are acquired without executing the app, generally extracted from the
source code or the apk bundle. Features such as security permissions, API calls, intents,
and activities, which can be collected using static analysis tools, fall within this category.
In general, static features are swift and easy to collect in an automated fashion. However,
the detection systems built based on these features are prone to be bypassed by zero-day
and sophisticated malware, especially when obfuscation and encryption techniques are
used.

The extraction of the so-called dynamic features requires the app to be installed and
executed, enabling the capture of the real behavior of the running app in a live environ-
ment. Features such as system calls and network flow data are collected using this ap-
proach. In general, the acquisition of dynamic features is a time-consuming and challeng-
ing task. However, they tend to generate more robust and effective detection systems.

There exists a large body of research related to Android malware detection [70]. A
myriad of methods, ranging from formal verification methods to deep learning, have been
proposed to generate robust and effective detection systems. The related literature in the
field reports high performance metrics to support the suitability of their approaches to
tackle the Android malware detection task effectively. Therefore, from a broad perspec-
tive, the Android malware detection task may seem an already solved issue from the ma-
chine learning challenge point of view. However, a closer inspection of the state-of-the-art
techniques evidences remarkable research gaps. These issues are briefly explained in the
following sections and constitute the core research performed leading to this dissertation.

3.1 Neglecting the impact of time: concept drift

The vast majority of ML-based Android malware detection solutions proposed in the re-
lated literature are static models built using snapshots of data from the Android histori-
cal timeline, usually using the same data sets. MalGenome [113] and Drebin [11] are the
most used data sets for Android malware research. Despite their small size and contain-
ing outdated data (i.e., both were collected before 2013), they have been utilized as the
main sources of malware samples in the related literature, and even in recent publica-
tions. Even though some studies complemented these data with more recent and larger
data sets, such as Android Malware Dataset (AMD) [103], to mitigate data-related issues
[54] and increase the representativeness of the data set, they still relied on incomplete,
relatively old, and short snapshots of malware data from the entire Android historical
timeline, which ranges from 2008 to the present date. In addition to the static data is-
sue, the common practice used in machine learning to handle data sets that consists of
mixing all the data and splitting them into two randomly selected disjoint data sets (i.e.,
training/testing sets), thus disregarding apps’ historical location in the Android timeline,
undermines historical coherence and yields significantly biased and historically incoherent
results [2, 82]. For instance, this happens when the testing set contains past data with re-
spect to the training set or when the training set may contain future data also represented
in the testing set. Only a very limited quantity of studies in the relevant literature have
considered the usage of distinct and historically coherent snapshots of Android history
for the training/testing split. However, they show significant time gaps between them or
other temporal inconsistencies (e.g., malware and benign samples do not belong to the
same historical time frame).

23

Consequently, even though most of the proposed detection systems in the literature
support their detection methods with great performance metrics, the aforementioned is-
sues pose serious doubts about the generalization capabilities and effectiveness of these
solutions to detect evolved and recent malware for a long time. In conclusion, the ma-
jority of the literature regarding Android malware detection neglect concept drift and its
degenerative impact on the proposed detection models.

The impact of the time variable on data and malware family evolution has been ig-
nored in the vast majority of Android malware research studies. Just a few studies dealing
with Android malware detection have considered the concept drift issue and proposed
machine-learning solutions that adapt to changes in the data and are able to minimize
its detrimental effect over time. In this regard, even though several general approaches
have been proposed to detect data drift [58, 16, 82], all the specific proposed solutions
dealt with API calls [78, 80, 22, 108, 112, 65, 21], an inherently static feature that can also
be acquired dynamically. None of the concept drift-related studies considered dynamic
features such as system calls, which may enable the induction of more robust systems, as
they are relatively immune to obfuscation and encryption techniques that can more easily
bypass static API-based detection systems.

A direct consequence of neglecting concept drift is the absence of timestamped data
sets available for Android malware research. None of the available data sets in the re-
search domain provide information about the specific historical context to which the sam-
ples belong, which might be distinct from the one in which they were collected.

Timestamps are the central elements behind concept drift handling and its proper
analysis as they enable the temporal placement of the sample, aiming to provide a reliable
temporal context.

In this regard, even though some concept drift-related studies did not disclose the
timestamp approach used [80], two approaches are observed in the literature: the com-
pilation time and VirusTotal’s first seen. The former is an internal timestamp that relates
the app to the creation or compilation time of the apk bundle. Despite being appointed as
the most reliable timestamp in the past [82], and used in related research [82, 16, 108, 21]
it has become a non-usable approach as the majority of the apps released nowadays have
this timestamp set at 1980 [27]. Even though internal timestamps could be deemed accu-
rate, they are prone to third-party manipulation, which could lead to temporal misplace-
ment. To prevent timestamp tampering, robust temporal approaches can be achieved
using external timestamps. Virustotal's first seen, also referred to as appearance or sub-
mission time in the literature, dates the application with the datetime it was first received
by the VirusTotal scanning service. This timestamp has been used in the related literature
[65, 112, 22] because of its robustness and easy acquisition. However, it is prone to signif-
icant delay and temporal misplacement due to the required proactive behavior from the
user to generate the timestamp for the app (i.e., submission of the file).

Besides, despite the importance of timestamp selection to handle concept drift ef-
fectively, a related issue in the literature is the absence of research studies exploring the
impact of timestamps alternatives or timestamp selection in the effectiveness of the de-
tection models to handle concept drift. The concept drift-related studies in the field did
not assess or considered timestamp selection issues nor any alternative to a single times-
tamp, thus neglecting its impact and essential role in the success of the detection system
to adapt to emerging concept drift.

24

3.2 Explainability: aiming for a better understanding

Explainability or interpretability methods have been used to comprehend the decision
processes used by the ML-based detection systems on their predictions (i.e., XAl). Under-
standing the rationale behind the model’s decisions aims to enhance the trust of experts
in the decision systems (i.e., establishing why a prediction was made or detecting model
bias), and meet potential legal requirements regarding algorithmic outcomes for certain
use-cases (e.g., medical practice); however, it has also been found useful to improve exist-
ing detection systems, for instance, in ransomware detection [86]. The revision of model
outputs can help to enhance detection by understanding the underlying processes in the
data. Despite the vast body of research on the application of machine learning techniques
to Android malware detection, there is an absence of research regarding the usage of ex-
plainability methods to assess and understand the predictions made by Android malware
detection systems [61]. The majority of the focus in the related research concerns perfor-
mance, disregarding the reasons behind the model’s output. Even though some recent
studies are found in the field [60, 52], none of them used XAl methods to explain, inter-
pret or describe the evolution of mobile malware over time and the related phenomenon,
concept drift.

3.3 Consistent cross-device behavior

The usage of dynamic features to describe Android apps requires the execution of the
sample in a sandboxed environment. Considering the plethora of real devices, Android
emulators, and operating system versions that coexist at any given moment, locating a
representative combination of device and OS version to conduct the data acquisition is an
arduous task.

System calls are the most commonly used dynamic features for Android malware de-
tection [70]. System calls are the mechanism used by running software to request a ser-
vice from the OS kernel. In Android platforms, system calls enable the collection of the
real behavior of the running app by capturing the information flow among the OS layers
[24]. System calls are an example of pure dynamic features, meaning that its acquisition
can only be achieved through the execution of the app in a live Android environment. For
this purpose, real devices and emulators might be used as acquisition platforms. A real
device is an actual physical phone running an Android OS version, whereas an emulator is
a software running on a host computer that simulates almost all the capabilities of a real
device [7]. Both types of devices have been employed for collecting data in the related lit-
erature, with no one execution platform having a distinctly dominant position. The variety
of collection devices observed ranges from the usage of a single [107, 6, 85] or multiple
real devices [5, 104, 100] to the exclusive usage of emulators, using either specialized An-
droid sandboxes [31, 51] or general-purpose Android emulators [24, 111, 97, 23, 94, 55].
Even though many different combinations of data sources (i.e., acquisition platforms), dy-
namic features and algorithms, have yielded significant success in the Android malware
discrimination task, the single usage of any of the approaches shows advantages and lim-
itations. They are briefly described as follows:

e Emulators are easy to deploy, manage, and they fit perfectly in automated analy-
sis and detection systems [24], enabling for the mimicking of almost all real device
capabilities in a wide variety of virtual devices and Android versions without ac-
tually having each real device [7]. However, malware with anti-sandbox evasion
capabilities can deceive them by not triggering malicious actions if an emulated en-
vironment is detected [68]. Although some solutions provide enhancements on this

25

issue [97], they generally provide limited interaction (i.e., specific triggering events
might not be possible such as SMS messages or SIM card detection [31]) and fail to
install apps that do not support x86 or x86-64 architecture libraries.

o Real devices are more difficult to manage and integrate into automated systems. For
instance, restarting the device to run every sample in a clean device can be time-
consuming, rooting can brick the device, and ensure the same exact conditions for
all tests might not be possible [67]. However, they provide full interaction with the
app, they are inherently immune to anti-sandbox techniques, and show much fewer
incompatibility issues.

The numerous acquisition platforms, operating system versions, and configurations
described in the related literature demonstrate the presence of an underlying assumption
concerning dynamic data. These studies axiomatically conceive the dynamic behavior of
an app as fully consistent across devices [67] and Android versions [20, 96], even explicitly
stated, and, consequently, that the nature of the devices (i.e., emulators or real devices)
and the OS version used make no difference to the app’s collected behavior. This axiomatic
cross-device behavioral consistency explains the heterogeneity observed regarding An-
droid platforms and OS versions used in the related research and the lack of common
selection criteria in the experimental setups.

However, the results of the studies that have experimented with both kinds of devices
challenge the validity of the cross-device behavioral consistency postulate. For instance, in
[4], when API calls and intents, usually analyzed as static features, were captured dynam-
ically, real devices were found to provide more reliable and stable features for malware
detection than emulators, thus leading to a more effective detection outcome.

3.4 Android malware: a complex and ever-evolving threat landscape

The standard Android malware detection research study proposes a novel method in-
duced and validated using a static and limited snapshot of Android data. If dynamic fea-
tures are used, they are collected from a single acquisition device. Then the data are
mixed and randomly split to train and validate the model. Usually, a high-performance
metric is reported (e.g., over 90% accuracy) to support the effectiveness of the method
of detecting Android malware and validate the novel work. However, these results only
demonstrate the effectiveness of the proposed method to detect Android malware in a
limited and likely unrepresentative data set. Static models could work well if the data fea-
tures remain constant; however, they are prone to degenerative performance when they
are applied to dynamic data scenarios. Android data are dynamic, the threat landscape
has been consistently changing since the inception of Android and will continue to change
due to the constant battle between attackers and defenders, the large attack surface ex-
hibited by these devices, and the constant change of features performed in every official
APl release. Consequently, neglecting concept drift, timestamps, historical coherence, and
cross-device behavior related issues poses severe concerns regarding the generalization of
such proposed methods to future and evolved data. This complex, dynamic world cannot
be captured properly using static methods, and adaptation is required to achieve long-life
effective Android malware detection methods. The exploration of the aforementioned
issues constitutes the core part of this dissertation (i.e., Part I, About Android Malware
Detection).

26

4 A brief on loT botnet detection

An loT botnet is a specific type of computer botnet in which the compromised devices
are Internet of Things devices, thus presenting analogous schemes and dynamics as com-
puter botnets. In this regard, when a device has its vulnerabilities exploited, thus being
compromised, it becomes a bot. Bots are grouped in a large community of compromised
devices, called a botnet. A botnet is typically under the control of a malicious actor, the
botmaster. The botmaster controls remotely the bots over the Internet, using command
& control (C&C) servers [93]. This privileged access and control are unauthorized, as there
is no consent or awareness from the real owner of the compromised device.

loT botnets are used to perpetrate a wide range of network-based cyber attacks, from
massive SPAM and phishing campaigns to distributed denial-of-service (DDoS), the most
common use case of botnets. A DDoS attack targets the availability of online resources,
such as websites or services. It seeks to deplete the resource by saturating the targeted
server or network. As a result, the crashed machine or network may become unavailable
and unresponsive to legitimate users requests for an extended period of time until the
incident is resolved or the attack stops [105]. The attack can cause not only significant
financial losses to companies and individuals but also severe loss of trust and reputation
[101].

Due to the serious effects of botnet attacks, research studies in the field have con-
centrated on improving intrusion detection capabilities for loT devices, seeking to over-
come the devices’ limited hardware and software resources and security-related capabil-
ities [110]. Machine learning-based solutions and methods have been proposed for such
a purpose with remarkable success for multiple botnet attacks [76, 92], but with the ma-
jor focus on the Mirai botnet [74, 25]. Feature selection and dimensionality reduction
techniques have also been used to optimize the feature sets, mainly using filter feature
selection methods [79, 15].

In consonance with the attack focus by research studies, all the available data sets
used to build and test ML-based loT intrusion detection systems simulate attack scenarios
where the malicious label is represented by attack data and the benign label with normal
loT traffic. With minor exceptions [64], all the publicly available data sets for loT botnet
research [76, 81, 17, 59] reproduce Mirai, the most prominent IoT botnet and perpetra-
tor of record-breaking attacks [8], and its antecessor BashlLite [73]. The related data sets
simulate different attacks that botnets can perform and also the scanning attack for the
recruitment of new members, as part of the post-attack stage. Besides, the available data
sets share additional characteristics such as only deploying a small number of loT devices,
either real or emulated, in a small-sized network.

As aresult, the research efforts in the loT botnet detection field have focused on the at-
tack and post-attack phases for well-known IoT malware (e.g., Mirai and its variants [63]).
Therefore, the early detection of the threat, that is, the detection of botnet components at
the early stages of botnet deployment (i.e., initial infection and C&C communication) has
not been explored in the research or addressed in the available data sets. However, early
botnet detection arises as a key element to prevent botnet formation and, consequently,
to prevent attacks.

The second part of this dissertation (i.e., Part Il, About loT Botnet Detection) focuses
on the investigation of aspects aiming to enhance IoT botnet detection at the early stages
of its formation, which may help to prevent botnet attacks, and explores the usage of fea-
ture selection and interpretation methods to enhance and comprehend relevant aspects
related to attack detection.

27

Part |

About Android Malware Detection

29

5 KronoDroid: a historical Android data set

This chapter introduces KronoDroid, a novel, timestamped data set that provides labeled
Android samples encompassing the Android historical timeline from 2008 to 2020, thus
enabling the study of concept drift and cross-device detection issues. This chapter also
summarizes the main findings of the studies that lead and determined the workflow and
characteristics of the KronoDroid data set.

5.1 The path leading to KronoDroid

The vast majority of Android malware detection-related research has been optimized for
MalGenome and Drebin data sets. These data sets, collected before 2013, are used as
the primary malware source of malware samples in recent studies, a decade after their
generation. These widely used data sets are representative of a limited time frame of the
Android historical timeline; however, they are not representative of the present malware
threat landscape for Android users. The Android malware landscape is characterized by
constant evolution, which is the outcome of the constant battle between attackers and
defenders in the cyberspace. As a result, a solution tailored for a specific time frame may
not be able to generalize well to posterior data where the relevant features for effective
malware detection may have changed, a phenomenon called concept drift. Therefore,
an effective solution for Android malware detection should be to detect and adapt over
time, modeling and reacting to the changes in the threat landscape. If this dynamism is
neglected, the effects of concept drift result in the detection model becoming obsolete
due to degenerative performance over time.

Given the ever-evolving nature of the phenomenon, the actual effectiveness of a pro-
posed detection system must be tested in scenarios where the solution faces realistic chal-
lenges such as concept drift and data imbalance issues. At the time of this research, none
of the existing data sets were representative of the dynamic threat landscape of Android
malware in a relatively wide time frame, being limited to reduced snapshots within the
extended Android history, i.e., 2008-2022. Consequently, to address and study concept
drift issues related to Android malware detection, the generation of a data set encom-
passing the widest possible time frame of the Android historical timeline was required.

The initial stage of a data set generation involves the exploration of methodological
and feasibility issues. In this regard, Publications I to Il cover methodological nuances and
feasibility approaches related to dynamic and static data collection from Android devices.
The related findings were applied in the data collection phase of the data set generation,
which is detailed in Publication IV, and materialized in the KronoDroid data set.

Publication I is the seed of the posterior work addressed in this dissertation, providing
initial insights about the existence of concept drift and other challenges for effective and
sustained Android malware detection over time. In this seminal study, the focus was on
the analysis of relevant dynamic (i.e., system calls) and static (i.e., permissions) features on
two distinct historical time frames of Android malware history. Malware data belonging
to different Android time frames (i.e., 2010-2012 and 2016-2018, named as old and new
malware respectively) and benign data, belonging to the 2016-2018 time frame, were
used. As a result, two distinct data sets were used combining the old malware data and
benign data (i.e., L/O), and the new malware data with the benign data (i.e., L/N). The
same features were used to characterize each data set. The system calls feature set was
composed of 212 features with numeric values reflecting the absolute frequency of each
feature for the first 2,000 system calls invoked by the app. The permissions feature set
was composed of 147 features containing categorical values (i.e., binary) that indicate the

31

presence of the permissions for the specific app.

Before inducing machine learning-based classification models, a two-step feature se-
lection procedure was applied to select and rank the relevant features for each data set.
In the first step, statistical hypothesis testing was applied to select the features that signif-
icantly differ between the classes for each data set. Welch'’s Test was used for the numeric
features and 2 for the categorical features with statistical significance level o = 0.05. In
the second step, Fisher’s score and Gini Index values computed for the numeric and cat-
egorical features, respectively, were used to rank the selected features according to their
discriminatory power. The feature rankings are provided in Table 2 and Table 3.

Table 2: System calls ranked by Fisher’s score [46]

System callname /O L/N Table 3: Permissions ranked by Gini index [46]
clock_gettime 0.84 1.1

munmap 0.75 0.57 Permission name L/O L/N
readlinkat 0.69 0.59 ACCESS_NETWORK_STATE 0.46 0.41
connect 0.67 0.52 WAKE_LOCK 0.45 0.39
mmap2 0.63 0.47 INSTALL_PACKAGES 0.42 0.41
prctl 0.61 0.53 READ_PHONE_STATE 0.32 0.45
madvise 0.54 0.48 GET_ACCOUNTS >0.47 0.47
ppoll 0.31 0.25 SYSTEM_ALERT_WINDOW >0.47 0.46
sigaction 0.29 0.30 GET_TASKS >0.47 0.45
sigaltstack 0.23 0.21 MOUNT_UNMOUNT_FILESYSTEMS >0.47 0.44
openat 0.22 0.16 VIBRATE >0.47 0.44
mprotect 0.15< 0.19 ACCESS_FINE_LOCATION 0.47 >0.47
futex 0.30 0.15< BIND_REMOTEVIEWS 0.47 >0.47
rt_sigprocmask 0.24 0.15< USE_FINGERPRINT 0.47 >0.47
epoll_create1 0.23 0.15< CAMERA 0.47 >0.47
eventfd2 0.22 0.15< BLUETOOTH 0.46 >0.47
getppid 0.22 0.15< READ_LOGS 0.44 >0.47
clone 0.21 0.15< SEND_SMS 0.43 >0.47
sendto 0.19 0.15< READ_CONTACTS 0.43 >0.47
recvfrom 0.18 0.15< READ_EXTERNAL_STORAGE 0.33 >0.47
close 0.17 0.15<

getdentsé4 0.5 0.15<

The results showed that the relevant subset of features differed significantly between
the data sets, and, more importantly, in the ranking according to discriminatory power. In
this regard, the ranked features showed significant deviations between the studied time
frames with the only exception of the most discriminatory feature, which was common for
both feature sets (i.e., clock_gettime). System calls results revealed that, over time, the
behavior of legitimate and malicious apps became more similar, with new characteristics
becoming more crucial and others losing their discriminatory abilities. An analogous but
greater shift was observed for permissions, implying the development of a new character
in the data. The classification results, using subsets of common features between time
frames, indicated that the observed changes in discriminatory power of features led to
changes in prediction performance, suggesting the existence of concept drift and moti-
vating further exploration.

The behavioral data used in Publication | was collected from an emulated device. Even
though Android emulators are capable of simulating most of the capabilities of real An-
droid devices, they suffer from limitations at the software and hardware level, which
may have led to the observed differences in the case of the system calls feature set. Be-
sides, some of the Android malware included in the experimentation could have had anti-
sandbox capabilities which may have been able to detect the emulated environment and
hide or inactivate the malicious behavior. Therefore, Publication Il explored the impact of
the collection platform on the acquired behavior from the apps and its implications for
cross-device malware detection performance.

Publication Il focuses on the comparison of the acquired behavioral data from dis-

32

tinct device types (i.e., emulators and real devices). For this purpose, an emulator and a
real Android device were used, running the same Android OS version and mimicking the
internal configurations of both devices to the greatest possible extent. The same data
set, composed of 220 Android applications (i.e., 110 malware and 110 benign), was exe-
cuted on both collection platforms for 60 seconds. The rational behind this specific time-
constraint is based on the findings of Publication Ill. The behavioral profile (i.e., invoked
system calls trace) during the execution time of each Android app on both platforms was
logged and further analyzed. Table 4 provides descriptive statistics (i.e., mean, median,
standard deviation, range, and interquartile range) calculated for the acquired data per
class and device type. The statistics revealed inconsistent behavior across classes and de-
vice types, as can be observed. In general, the real device data showed more dispersion
than the emulator data (i.e., a greater standard deviation and range). More importantly,
for the real device, a consistent invocation of system calls not defined in the standard C
library for the Linux kernel (i.e., Bionic library) used in Android OS was observed. These
system calls were anecdotic in the emulator.

Table 4: Descriptive statistics of the acquired data [39]

Real Device Emulator
Benign Malware Benign Malware

Xb 12,993 11,610 12,601 12,010

Sp 30,357 29,496 15,899 19,853
range [36, 289,715] [368, 265,746] [1,121,106,076] [28, 101,867]

Xp 6,213 4,033 7,561 4,343
10R), 9,245 5,300 9,632 6,174

nb 1,469 1,367 [¢] 1

Snb 3,641 3,575 1 2
range [7, 34,281] [24, 33,032] [0, 11] [0, 11]

Kb 618 410 0 0
I0R,,; 951 532 0 0

To further investigate these initial differences, the exploration focused on the Bionic
system calls. In this regard, Pearson’s linear correlation coefficient (p) and Fisher’s score
were calculated feature-wise per data set to analyze statistical correlation and select the
most discriminatory features, respectively. The correlation results show that ~ 63% of the
features in the emulator were highly correlated with some other feature (i.e., |p| > 0.80),
whereas in the case of the real device, ~ 46% of the features showed this characteristic.
Fisher’s score was used to rank the features according to their discriminatory power. In
general, Fisher’s scores for the real device were lower than for the emulator, and with
completely different orderings. These results enabled us to confirm that the behavior of
the same set of apps on different Android devices is not consistent. Additional support
for these findings was provided by the binary cross-data set classification models induced,
which showed that emulator data could be discriminated relatively accurately by models
trained on the real device data but not otherwise, and the fact that a multi-class classifica-
tion model could be trained to effectively discriminate any class from the generated data
sets, i.e., 86% accuracy. This latter fact emphasizes the possibility of building a classifier
capable of accurately predicting the class and device of an application based just on the
1-minute data behavioral profile.

As aforementioned, Publication Ill provided the time-constraints applied in Publication
Il and Publication IV. More specifically, Publication Ill performs an analysis of the impact
of collection windows for effective Android malware discrimination. Using the same de-
vices as in Publication I, but with an extended data set composed of 330 samples split
into 110 samples among old malware, new malware and benign data, each application

33

was executed and let run freely (i.e., no user interaction) for 15 minutes. This simulates a
realistic scenario where an antivirus solution performs on-device collection for posterior
class prediction. After each app was processed, the 15-minute-long system call trace was
further analyzed. The syscalls traces were analyzed from two perspectives, namely time-
specific system call frequency analysis and time-cumulative discriminatory power feature
analysis. In the former, a minute-based histogram is generated per application, reflect-
ing the number of system calls invoked per time-unit (i.e., minute). In the latter, Fisher’s
score was calculated feature-wise per cumulative time-unit, providing a measure of the
discriminatory power evolution of the feature over time.

The application-wise analysis evidenced that, in both Android platforms, the major-
ity of the apps invoked the largest proportion of the system calls of the total collection
time during the first minute, referenced as a 1st-minute spike in Publication Ill. More pre-
cisely, over 88% of the applications analyzed issued the maximum number of system calls
in the first minute, invoking less in the subsequent minutes, or remaining inactive. Con-
sequently, from this perspective, the first minute after the boot-up was consistently the
most productive in terms of system call invocation across classes and devices.

The feature-wise discriminatory power evolution analysis used Fisher’s score as a mea-
sure of discriminatory power, thus requiring positive and negative class data. Therefore,
two data sets were generated merging the benign data (L) with the old (O) malware and
the new (N) malware data, referenced as L/O and L/N, respectively, and for each device
(i.e., emulator and real device), resulting in four possible combinations. The cumulative
analysis refers to the fact that the data used to calculate the Fisher’s score value for the
i-th minute contains all data up to that specific minute, as opposed to the previous anal-
ysis that only included the data issued within the specific minute. The results, provided
in Figure 3 for distinct Random Forest models induced using distinct feature sets, showed
that in most cases and disregarding the device type, the discriminatory power of the fea-
tures decreases over time (i.e., lower Fisher’s score value), achieving the global maxima
in the first minute and decreasing almost monotonically for the subsequent time frames.
In the cases where the decrease was not monotonic, lower peaks or a relatively flat line
graph was observed.

10 18 features 19 features All features

0.91

- AN
08 Fa N B L VI Wt

Accuracy

0.7 1

0.6
== Real UN
== Emulator UN
—— Real LIO
— Emulator L/IO

0.5 . e e

13 5 7 9111315 135 7 9111315 135 7 9111315

Time (min)

Figure 3: Random Forest models’ accuracy [47]

As a result, both analytical approaches converged towards the selection of the first-
minute time frame as the optimal time frame to obtain an effective and efficient trade-
off between data quantity and discriminatory power. The classification models induced

34

provided additional support showing that, in general, the accuracy obtained using the
first-minute data provided better or similar accuracy than longer time frames.

The main methodological findings of Publication I (i.e., concept drift), Publication II
(i.e., behavioral differences across devices), and Publication 1l (i.e., optimal collection time
window), were used as the basis to perform a large data collection effort which material-
ization is the KronoDroid data set, detailed in Publication IV. At the time of this research,
the KronoDroid data set is the only Android malware data set conceived with a concept
drift mindset and suitable for Android malware concept drift exploration. Timestamps
are the central element in concept drift analysis as they provide a notion of the tempo-
ral context of the application within the historical timeline. In this regard, the inclusion
of timestamps as features to describe the data set samples is a distinctive characteristic
of the KronoDroid data set as timestamp features are not included in any other publicly
available Android data set.

5.2 KronoDroid: time-based Android data set

This subsection explains the methodology used to acquire and generate KronoDroid data
set, and its main characteristics in the form of statistical analysis.

5.2.1 Data set generation

The central concept introduced in the KronoDroid data set is the inclusion of the temporal
dimension as a sample descriptor. The naming of the data set emphasizes this focus by
referencing Chronos, the god of time in Greek mythology. The spelling as Kronos was
preferred as a tribute to Estonia, the physical location where the data set was conceived,
and attending to the particularities of the Estonian language.

KronoDroid data set is the cornerstone of this dissertation as it is the catalyst of the
subsequent research performed in the field of Android malware detection contained in
this thesis, i.e., from Publication IV to Publication X, and the upshot of the previously de-
tailed studies, i.e., Publication I, Publication I, and Publication lll. This relation is conveyed
graphically by the diagram depicted in Figure 4.

Device Impact Concept drift Collection time
Publication Il Publication | Publieation Il
e ’
-

e

~
-

KronoDroid
Publication IV

>

Cross-device behavioral
analysis and impact
Publication Vil

Concept drift
handling methodology
Publication V

L T

Concept drift and cross- Concept drift analysis for Timestamp selection for
device detection issues security permissions concept drift handling
Publication VI Publication Vil Publication X

Figure 4: Graphical depiction of the relation among the publications (i.e., Publications I-X)

35

KronoDroid data collection methodology includes singular aspects to overcome the
limitations of the available data sets for Android malware detection, which do not consider
the time dimension into the data collection loop nor the behavioral differences caused by
the collection platforms in the case of dynamic data. The workflow of the data collection
process is summarized in Figure 5.

Discarded
Nz zample

Run on real Apk metadata Detection

device? * and manifest > report data Real Device
Dataset
Initial Dataset
Data
* processing
Run on Apk metadata Detection
emulator? * and manifest * report dala Emulator

Dataset
Ne Discarded
sample

St anass

Figure 5: KronoDroid generation workflow [41]

The full workflow was composed of 5 sequential stages that run in parallel for both An-
droid collection platforms (i.e., emulator and real device). They are explained as follows:

1. Initial data set collection: A total of 93,894 Android app samples were collected
from various malware sources and repositories. As depicted in Figure 6, the over-
lap of the time frames of each data sample according to the specific data source
enabled us to encompass the whole Android historical timeline at the time of the
research, i.e., 2008-2020. In Figure 6, the length of the boxes indicates the tempo-
ral range encompassed by the data gathered from each specific data source while
the source data set name and the number of samples acquired are indicated inside
the box. The red and green colors indicate the class of the samples, i.e., green for
benign apps and red for malware apps. As reported in Figure 6, the malware data
set was acquired from four distinct sources [10, 12, 98, 99], totaling 54,834 data
samples. The benign data set was collected from three main sources [9, 28, 68],
summing up to 39,060 Android apps.

VirusShare (3,034)
AMD (24,553)
Drebin (5,560) VirusTotal (21,687)

| 2008 | 2010 2012 | 2014 | 2016 | 2018 | 2020
! 2009 T 2! 2013 201 ! ! 2017 2019 T !

MARVIN (29,941)

F-Droid (6,919)
APKMirror (2,200)

Figure 6é: Initial data set timeline and class composition

2. Dynamic analysis: Every application within the initial data set was attempted to
be installed and executed in both a real and an emulated Android device. Upon
successful installation and execution, apps’ system call traces were acquired for a
1-minute run-time suggested as the optimal time frame for data collection in Pub-
lication Ill. This procedure was automated using a bash script, leveraging Android
Debug Bridge (ADB) for computer-device communication and strace debugging tool

36

for behavioral trace retrieval, attaching the tool to the app’s main process. Monkey
tool was used to boot-up the application, and no further interaction was performed.
As a result, for each device and application within the data set a behavioral profile
based on the system calls trace was generated. It was not feasible to install as many
apps in the emulator as on the real device due to some applications’ intrinsic in-
compatibility with particular hardware architectures. Consequently, two data sets
were generated containing the dynamic profile of each app on each device. In order
to ensure the same conditions on both devices, the same Android OS version (i.e.,
Android 8.0 Oreo) and user settings were implemented.

As can be observed in Figure 5, if an application was not successfully installed and
executed, it was discarded and was not further processed for the specific device-
related workflow. This requirement ensured the collection of dynamic data for each
included sample and that the final data sets provided hybrid data for the included
data samples (i.e., system calls and relevant static data collected in posterior steps
as app’s descriptors). Therefore, this step acted as a filter stage, determining the
applications from the initial data set that composed each of the final device-related
data sets. The composition of the final data sets is summarized in Table 5.

Table 5: Initial and final data sets class composition [41]

[Class [Initial [Emulator | Real Device |
[Malware [54,834 [28745 | 41382 |
[Benign [39,060 | 35246 | 36755 |
[Total [93894 [63991 [78137 |

As can be observed, after the removal of duplicated samples (performed in the
data processing stage), 63,991 samples were included in the emulator data set, and
78,137 in the real device data set, which corresponds to 68.2% and 83.2% of the
initial data set samples, respectively. Most of the apps that failed to run in the
emulator were due to incompatibility issues upon installation (i.e., non-compatible
architecture) as the emulator inherits the architecture of the host device (i.e., x86)
thus causing issues for ARM-specific samples. This fact evidences that due to these
incompatibilities, mobile malware detection and analysis can be more challenging
in virtual devices.

. Static analysis I: Every application that was successfully executed in either of the col-
lection devices, was further processed and relevant static features were acquired in
two different stages. In the first step, static data was extracted from the apk archive
and the AndroidManifest.xml file involving the usage of data extraction tools such
as Androguard, Android Assest Packaging tool (aapt) and ExifTool. From the apk
archive, metadata such as internal timestamps, filesize, and SHA-256 hash were re-
trieved. Security permissions, intent filters, hardware features requested and other
relevant static data were extracted from the Android manifest.

. Static analysis II: After the extraction of the internal data from the app container,
the file was submitted to VirusTotal antivirus engine for scanning. A detection re-
port was received for each sample from the scanning service. This stage enabled us
to acquire other relevant static data such as detection-related (i.e., external) times-
tamps, and the verification of the class label (i.e., whether the sample was detected
as malware or benign) and extraction of the malware family in the case of malware
samples.

37

5. Data Processing: All the data gathered in the previous stages were processed, and
data features were manually engineered from the raw files and logs. A total of 489
features were crafted as descriptors or attributes for every data sample on both
data sets. Of the data descriptors, 289 refer to dynamic data (i.e., system calls), and
200 to static properties such as security permissions (i.e., 166 features), timestamps
(i.e., 4 features) and class labels. Redundant data samples were identified based on
hash value and removed keeping just one randomly selected instance.

5.2.2 Data set analysis and main results

Due to compatibility issues that may hinder or impede the malware analysis task (e.g.,
not including libraries supporting the architecture or the OS version requirements), the
data collection process for the data set showed that malware detection and analysis is
a more difficult task when using dynamic features in virtual environments than in real
device platforms. As a result, the emulator data set size is smaller than the real device
data set, especially in the case of malware.

Initially the samples were labeled according to the data source. Thus, if a sample be-
longed to a malware repository, it was labeled as malware. However, when this class
label was contrasted with the detection report results, inconsistencies were found. For
instance, several benign samples were detected as malware by the scanning service, and
a small number of malware apps were not detected by any AV or a significant proportion
of them. This generated the suspicion of data misclassification issues. As a result, two
labels were generated, namely, soft and hard label. The soft label reflects whether the
sample was acquired from a benign or a malware data source. Therefore, the possible
soft label values are contained in the set {0, 1}. The hard label applies a set of additional
conditions to impute the class label which aims to provide additional evidence or certainty
towards the samples class. In this case, the possible labels are {-1, 0, 1} which are defined
applying the following rules:

e O or benign class: refers to a sample with a zero-valued malware detection ratio and
it belongs to a benign data source.

e 1or malware class: refers to a sample with a non-zero malware detection ratio and
it belongs to a malware repository and a malware family is identified for the sample.

e -1 or indefinite class: any mismatch with the two previous conditions. It indicates
that inconsistencies are identified and that further inspection is needed to prevent
misclassification issues.

Based on this categorization, the following data sets are defined:

Table 6: Data sets class label composition [41]

Emulator Real device
Class [Hard label [Hard Tabel
Soft label | Indefinite | Definite Softlabel | Indefinite | Definite
[Malware [28745 | 91 [28654 [41,382 | 165 [41217 |
[Benign [35246 | 4,437 | 30809 [36755 | 4856 | 31,899 |
[Total [63991 [4528 [59463 | 78137 [5021 [7316 |

As can be observed in Table 6, the indefinite category found more inconsistencies for
the benign data. However, they might be false positives due to the strict hard labeling rules
implemented. For example, the soft labeling approach would classify a benign sample as
benign even if an AV detected it as malware, whereas the hard labeling rules would classify

38

it as indefinite. The use of either label may result in effective malware detection systems,
and according to the analysis, the majority of the indefinite class may correspond to false
positives. However, for tasks where label certainty is essential, the hard label offers an
additional degree of trust certainty towards the sample class. The accurate analysis of
concept drift might be one of such tasks.

Besides the importance of class certainty, a central element in concept drift analysis
is the timestamp used to locate the data samples within the historical timeline. In this re-
gard, there is no single timestamp approach deemed as completely accurate and reliable
in all cases. Thus, distinct timestamps may provide distinct historical locations of the apps
within the Android timeline, which, in turn, could provide different concept drift model-
ing. In general, the more accurate the timestamp, the better the concept drift model and
the more precise the data evolution analysis. For this purpose, timestamp acquisition was
included in the data collection workflow. Kronodroid provides four possible timestamps
per sample: two internal timestamps and two external timestamps. An internal times-
tamp is retrieved from the internal files of the application, whereas an external times-
tamp is determined by a third-party based on different parameters. The earliest modi-
fication and the last modification are the internal timestamps provided by Kronodroid,
which correspond with the earliest and last modification datetime retrieved from any file
inside the apk archive, respectively. The external timestamps are based on VirusTotal’s
detection report, defined as first seen and first seen in the wild. The former provides the
date and time of the first submission of the file to the scanning service, whereas the lat-
ter, reports the first time the application was seen anywhere on the Internet. Either of
the approaches shows advantages and disadvantages. The internal timestamps are prone
to manipulation by malicious actors; thus deliberate manipulation can cause data mis-
placement. Nevertheless, when not tampered with, they may locate the sample more
accurately than the external timestamps, especially the last modification timestamp. The
external timestamps cannot be manipulated by attackers; however, due to their proactive
nature (i.e., depending on users’ submission time) they are prone to delay and generate
temporal displacement. A more detailed inspection of the distinct timestamp approaches
and their suitability for concept drift purposes is provided in Publication IX.

The hard labeling rules required that to impute a sample as malware, a malware fam-
ily attribution could be retrieved from the detection report. Malware family attribution
is a controversial issue in the cybersecurity domain. Despite the existence of well-known
malware families and a myriad of malware variants, there is no consensus nor naming con-
vention on malware family denomination and identification across AV vendors or malware
analysts. For instance, a sample detected as malware by the scanning engine was named
in eight different ways, including vendor-specific cryptic denominations and well-known
names. Therefore, family name attribution becomes a challenging task in a large data col-
lection study. In order to provide a malware family for each KronoDroid malware sample,
a heuristic approach was implemented. Firstly, a database of malware family names was
generated from malware databases and research studies. When different denominations
for the same family existed, they were abstracted into the same name separated by "/"
(i.e., Airpush/StopSMS family). Secondly, all the detection reports (i.e., including benign
samples) were parsed and all the positive scanner results, which might identify the sam-
ple with a family name, were compared with the abstractions in the database. After this,
a family name from the database was imputed to every sample based on the majority of
the vote towards a family name from all the positive detection outputs. In the case of
a positive detection but no malware family was imputed (e.g., the malware family was
unknown or it was not included in the database), the sample’s report was manually in-

39

Table 7: Top-15 malware families in the final data sets [41]

Emulator Real Device
Family [Total [% Family [Total [%
Airpush 6,521 27 Airpush 7,775 22
Boxer 3,557 15 SMSreg 5,019 15
Malap 2,574 1 Malap 4,055 12
Fakelnst 2,158 9 Boxer 3,597 10
Agent 1,837 8 Agent 2,934 9
SLocker 1,822 8 Fakelnst 2,384 7
BankBot 1,241 5 SLocker 1,846 5
FakeApp 1,064 4 BankBot 1,297 4
Dowgin 772 3 Dowgin 1,145 3
GinMaster 595 2 FakeApp 994 3
Kuguo 513 2 DroidKungFu 990 3
SMSreg 497 2 Kuguo 843 2
Youmi 447 2 GinMaster 827 2
DroidKungFu 269 1 Youmi 628 2
Simhosy 232 1 Simhosy 399 1
[Total [24,099] 100]| Total [34,733] 100 |

spected and a family name was imputed (if applicable). The new malware family name
was included in the database and the process was repeated for all the samples aiming for
results consistency.

This heuristic procedure yielded a malware family imputation for 99.7% of the mal-
ware samples within the data sets. This translates into 209 different malware families
included in the emulator data set and 240 in the real device data set. The difference may
be expected as a result of the significantly distinct number of malware samples on both
data sets, as shown in Table 5. However, it evidences that certain malware families might
be specially tailored for ARM-based systems (i.e., real devices) and incapable of running or
being analyzed in x86-based emulators. The inadequacy of emulators to deal with those
specific malware families limits the capabilities of Android emulators to perform forensics
analysis and be used as reliable detection platforms.

Despite the different number of malware families and samples, the top-15 malware
families are, with varying proportions, the same for both data sets, grouping approxi-
mately 84% of the total malware samples. They are summarized in Table 7. Furthermore,
these most prevalent malware families can be embedded into four major malware cat-
egories: adware, fraudware, spyware and ransomware. The colors of the table reflect
this higher level of abstraction, indicating the degree of threat they pose for the end-user.
Adware trojans (i.e., Airpush, Agent, FakeApp, Kuguo, Dowgin and Youmi) are the most
prevalent malware families in the data sets, and they are indicated with the lightest color
in the table. The greatest the color intensity, the more dangerous the threat. Thus cor-
responding in increasing order to fraudware samples (i.e., Boxer, Fakelnst, and SMSReg),
ransomware (i.e., SLocker), and spyware families (i.e., DroidKungFu, GinMaster, BankBot,
Simhosy, and Malap).

The usage of timestamps to locate malware families along the Android historical time-
line provides different distributions and data trends that can help to explore malware out-
breaks and assess to some extent the reliability of timestamps. The combination of tem-
poral aspects with other data attributes such as malware family distribution is sketched
in Publication IV, and further explored in Publication VIII and Publication IX.

The dynamic data collected from malware and benign samples evidence different be-
havioral profiles on each platform. The descriptive statistics computed and provided in
Table 8 emphasize the existence of behavioral differences across Android platforms.

40

Table 8: Descriptive statistics of system calls [41]

. Statistic

’ Device ‘ Class ‘Label{ Mean [Median | Std.dev. [Samplesize |
Malware Soft 7,71 2,363 27,893 28,745
Emulator Hard 7,694 2,361 27,91 28,654
Benign Soft 8,755 2,959 20,995 35,246
Hard 8,664 2,890 20,771 30,809
Malware Soft 10,390 3,258 26,232 41,382
Real Hard 10,410 3,267 26,272 41,217
Device Benign Soft 2,878 1,148 13,386 36,755
Hard 2,792 1134 12,860 31,898

Table 9: System calls sets and usage statistics [41]

’ ‘ ‘ Syscalls Most used Most issued ‘ Total ‘

Device Class Label set (%) syscalls syscalls syscalls

Soft 34.4 joctl, getuid32, read, getuid32, write, 221,659,298

Emulator Malware Hard 34.4 mmap2, futex, close epoll_pwait, ioctl 220,454,507

K Soft 2.4 ioctl, getuid3Z, mmapZ, read, write, ioctl, 308,595,229

Benign Hard 4.7 close, futex recvfrom, epoll_pwait 266,918,501

Soft 39.2 clock_gettime, getuid32, clock_gettime, joctl, 429,999,343

Real Malware Hard 38.9 ioctl, futex, mmap2 getuid32, mprotect, SYS_329 429,069,377

Device . Soft 44.4 clock_gettime, getuid32, clock_gettime, getuid32, 105,779,886

Benign Hard 43.8 ioctl, writev, read ioctl, SYS_329, mprotect 89,051,861

In this regard, even though the data set size might be different for malware samples,
the results show inconsistencies in the behavioral averages for the classes between de-
vices. More interestingly, this is especially significant in the case of benign samples, which
show significantly different statistics across devices with similar data set sizes. In general,
the results show that benign apps invoked more system calls in the emulator environment
than in the real device, whereas the opposite is true for malware. These differences are
further emphasized when the other statistical figures are compared. Table 9 provides four
additional comparative items for a thorough behavioral comparison. The syscalls set (%)
column provides the proportion of system calls from the system calls set that were used
by the apps in that specific data set at least once. The most used syscalls and most issued
syscalls provide the top-5 syscall set used by the applications in the specific data set, and
the top-5 of most issued system calls concerning the total number of system calls issued
on each data set, respectively. Lastly, the total syscalls column provides the sum of all
individual syscalls invoked by all the applications in each data set.

The most frequently used and issued system call sets vary between classes within the
same device, although mainly between devices, as demonstrated in Table 9. For example,
the top five system calls for the emulator do not contain clock_gettime, the system call
that is issued and utilized the most on the real device. Besides, the figures for total syscalls
confirm the greater verbosity of the benign apps in the emulator compared to the real
device, even though a similar proportion of syscall features from the whole syscalls set
is used. In this regard, it is worth noticing the difference between classes in the syscalls
set usage. Benign apps use consistently a wider range of system calls across devices than
malware, especially in the emulator case. Even though at first glance may appear that
a larger proportion of syscalls are used in the real device compared to the emulator, a
detailed analysis suggests the opposite. The whole system calls feature set includes x86-
architecture specific syscall features, defined for the emulator and real device (i.e., 212),
and additional features just defined for the real device (i.e., 76), thus totaling 288 features.
The same feature set was used for both devices for the sake of consistency for the data
features. Thus, when the common feature set is considered, the proportion of system calls

M

Table 10: Descriptive statistics of permissions [41]

‘ Class ‘ Perm ‘ Label \ Permissions statistics [Custom “Most used Perm
| Mode | Mean [Median [S.D. |usage (%) permission set (% apps) set (%)
std jgz 12 13.4 1 9.4 Internet (97.7)
Read_Phone_State (91.6)
Malware Custom :Zﬁ; 1 4.3 2 4.7 =42 Access_Network_State (84.9)| ~ 78
Soft Write_External_Storage (81.0)
Al i) 9 15.2 1 12.4 Access_Wifi_State (66.3)
Std Soft 2 4.2 3 4.2 Internet (81.7)
Hard 3.9 3.9 Access_Network_State (51.3)
Benign Custom I-SIZZ 1 13 1 }i ~14 |Write_External_Storage (36.8) =~ 87
Soft 4.4 29 Read_Phone_State (27.4)
All 2 3 i
Hard 4.2 4.4 Access_Coarse_Location (20.1)

from this restricted feature set (i.e., 212) used by the emulator grows to 46.7% and 57.5%
for malware and benign data, respectively. As a result, benign apps show a distinct, more
active behavior in the emulator than in the real device, a fact that cannot be confirmed for
the malware set. These results provide additional support to the behavioral differences
spotted in Publication Il and Publication IlII.

The analysis of security permissions, the most used static feature set in Android mal-
ware studies [70], provided supplemental insights about the differences between benign
and malware applications. Publication IV provides a thorough comparison between both
data sets despite the fact that static features are immutable features of the applications,
i.e., they do not change across devices, as opposed to dynamic features. This is because
the two data sets are comprised of distinct numbers of samples, which affects the descrip-
tive statistics that summarize them and provide relevant comparative statistics. Notwith-
standing that, the main differences between classes can be broadly grasped by focusing
on the characteristics observed for the real device data set due to its larger data size. For
this reason, it is provided as an illustrative example. Table 10 provides summary statistics
for standard, custom and all permissions (i.e., sum of standard and custom) in the first
8 columns. The custom (%) column provides the proportion of each class that defined
custom permissions. The most used permission set is provided in the subsequent column
with the percentage of apps that defined each permission in parenthesis. The last column
reports the coverage of the whole permissions set per class.

Based on the data reported in Table 10, notable differences can be observed in the us-
age and definition of permissions between malware and legitimate applications. Malware
applications request significantly more permissions and define more custom permissions
than benign apps. Furthermore, the definition of custom permissions is three times more
for malware apps than benign apps. Although benign apps often request fewer permis-
sions than malicious apps, they cover a larger spectrum of the permissions set. The pro-
portion of applications that requested them is substantially lower for the innocuous class,
which is consistent with the lower average number of permissions required by this class of
apps, despite the fact that the most used permissions sets are comparable. Therefore, in
general, malware apps request more permissions than legitimate apps, both standard and
custom, thus requesting over-privileges to the user on the system. Besides, malware per-
missions requests prioritize more than legitimate apps the access to internet connectivity
(by any means) and the access to sensitive user data.

The distinctive request in permissions between classes is also confirmed by the fre-
quency distributions of requested permissions depicted in Figure 7. As can be seen in
Figure 7, the shape of malware and legitimate distributions are remarkably different re-

42

garding the number of requested permissions, with a minor overlap between the distri-
butions below 20 requested permissions (i.e., shady area). Based on these graphs, the
majority of legitimate apps request less than five permissions, whereas most malware
apps request over five permissions.

Malware

14000 g Benign

12000 o b

10000 A B

8000 b

6000 4 B

= 4000 4 4 1

14000 ~

12000 q

10000 ~

8000 4 1

6000 -l

5 4000 o 4]

2000 4 b

0 ——————————
OB 0GP PP 5D DR D B0 O VEPLDNHDOLPRHLPEP
uantity of reg t er ions Q tity of q t ar ions

Figure 7: Frequency distributions of requested permissions per class and label [41]

The statistical analysis of KronoDroid data has displayed relevant insights concerning
Android malware and benign data that can help to build better detection systems using
static, dynamic, or hybrid features. However, the distinctive point of the KronoDroid data
set is its focus on time. KronoDroid is the first Android data set that incorporates times-
tamps as features, thus enabling the consideration of data evolution, a variable that has
been neglected by the vast majority of Android research studies which are optimized for
static snapshots of malware data. Even though KronoDroid could be utilized for distinct
purposes such as family analysis and class-based differential exploration, as shown before,
its main aim is to help in Android data concept drift modeling and analysis with the objec-
tive of developing more robust and long-term effective detection systems. The data set is
the cornerstone of the subsequent research performed and detailed in the next chapters
of this dissertation.

5.3 Chapter summary

This chapter presented the seminal works that led to the design and generation of the
KronoDroid data set. KronoDroid is a novel, labeled, timestamped, and hybrid-featured
Android data set tailored for Android malware research that enables the study of concept
drift, malware family evolution, data imbalance, and cross-device detection challenges. If
they are not addressed, these problems will be encountered by detection systems in pro-
duction environments, decreasing their effectiveness over time and impeding the long-
term detection of Android malware. None of the publicly available Android malware data
sets enabled the study of such detection challenges prior to KronoDroid.

43

6 Concept drift on behavioral data: detection, handling and
characterization

KronoDroid data set enabled us to study the evolution of Android data, and, consequently,
concept drift-related issues from different perspectives. The following chapter deals with
the emergence of concept drift on behavioral data. It proposes a solution to handle
it, which can also be used to characterize it, leading to a better comprehension of the
changes. The present chapter focuses on the main contributions and findings of Publica-
tion V.

6.1 Workflow overview

This study focused on the analysis of concept drift in Android apps from a dynamic per-
spective (i.e., system calls). Due to the larger size of KronoDroid'’s real device sub-data
set it was preferred for this exploration, providing more applications than the emulator
data set for the same period of time (i.e., 2008-2020). Therefore, KronoDroid’s real de-
vice dynamic features were utilized (i.e., 288) along with the hard label and timestamps.
The hard label was preferred as it increases the certainty of the app class, thereby gen-
erating further confidence in the concept drift analysis. Of the four timestamps provided
by KronoDroid, the last modification and first seen were used. These timestamps were
preferred over the other options as they provide wide timeline coverage, reliability, and
relatively accurate location of the apps within the Android historical timeline. In this re-
gard, a more thorough exploration of these aspects was performed in Publication IX. As
a result, 78,137 Android apps described by 288 system call features, the label, and two
distinct timestamps were used as input data.

The methodology to explore concept drift-related issues and effective handling was
splitinto three sequential stages, namely, detection, handling and characterization. These
consecutive steps enabled us to demonstrate, address and visualize concept drift in be-
havioral Android data, respectively. The rationale behind the successive steps is that the
previous one justifies the following one. For example, only if concept drift exists there is
an actual need to address it. Figure 8 details the purpose and flow of these sequential
stages which are detailed in the following sections.

Detection Handling Characterization

Demonstrates the existence of concept Tackles the impact of concept drift on the Enables the visualzation of emerging concept
drift and justifies posterior steps. detection medel, aiming for effective drifts to comprehend the underlying shifts.
long-term malware detection.

Figure 8: Concept drift detection, handling and characterization workflow

6.2 Concept drift detection

The concept drift detection phase aims to demonstrate the existence of concept drift in
Android historical data. This phase was composed of three sequential stages, namely data
pre-processing, feature selection, and drift detection. The whole process is schematized
in Figure 9 and explicated in the following paragraphs.

44

Preprocessing

Feature selection

Concept drift detection

The most relevant
features set

Feature variance
analysis
Feature correlation
analysis

(T

i

Ordering data
according to
timestamps

sl
N

Random
oversampling

The most important
features set

Time series
with limited
features

Building and validation of

random forest discriminator

Time series
with the
most
important
features

Feature selection
using permutation
feature importance

= v
N Legitimate software | | |
L, recognition validation
_

N

IForest creation for
legitimate software

IForest creation for

malware

Malware recognition | |

validation Legitimate

software concept

drift report

v

Legitimate software
recognition validation

—

Malware recognition

Malware concept
drift report

validation A

Figure 9: Concept drift detection workflow [42]

6.2.1 Data pre-processing
The initial set of features (i.e., 288) was pre-processed using a sequential procedure that

aimed to remove irrelevant and redundant features. The outcome of this stage was a
refined set of features obtained after performing the steps described as follows:

1. Variance analysis: homogeneous and null-valued features were removed.

2. Correlation analysis: Pearson’s linear correlation coefficient (r) was calculated pair-
wise for all data features. Highly correlated features (i.e., r > 0.80) were removed.

3. Distribution analysis: the adherence to the normal distribution of the remaining
features was assessed using statistical tests.

The results of the application of the first two steps resulted in a refined set of 97 fea-
tures out of the initial set of 288. The statistical normality tests performed confirmed
that none of the features were normally distributed, as evidenced by Figure 10, which
prevented the application of parametric methods for concept drift detection.

Feature: clock_gettime

Feature: mprotect

Feature: epoll_ctl

12000 Benign
4000 12000 Malware
3500 10000

10000

» 3000

5 8000

T 8000 4

2 2500

- 6000 -

2000 6000 -
3 1500 40004
4000 4
1000
2000 2000+
500
0 2500 5000 7500 10000 12500 15000 0 500 1000 1500 2000

ber of syscalls

Figure 10: Feature distributions [42]

Number of syscalls

45

6.2.2 Feature selection

To assess the existence of concept drift, the data set was ordered chronologically and
divided into disjoint consecutive time periods. For n periods, two series of data subsets
were generated. In the first series, the set M; consisted of malware samples labeled with
the timestamp (i.e., last modification or first seen) and located on the i-th period. The set
L;, defined for the second series, was treated analogously and composed just by benign
samples. Next, the most important discriminators were selected for the first period (i.e.,
i = 1), taken as the initial or baseline period (i.e., feature selection). More specifically,
the permutation feature importance technique (detailed in Section 6.4) was applied to a
classifier model induced using M| UL, thereby enabling the selection of the most relevant
features for this baseline classifier.

As the initial period classification model provided high performance (i.e., over 95%
accuracy), the logical derivation is that the selected features were able to recognize classes
L; and M, effectively. A concept drift-related question is whether the same features could
be successfully used to recognize classes L; and M; forn > i > 1.

6.2.3 Concept drift detection

To address the previous issue, One-Class Drift Detection models (OCDD) [34] were used to
analyze the impact of concept drift in the generated series. Based on the fact that the se-
lected important features were used successfully for the classification task on the M; UL,
data set, one-class anomaly detectors (OCDD) were induced using L; and M; separately,
to assess data drift. This approach enabled us to analyze concept drift for malware and
benign data in a more controlled way, eliminating the class relations influence. The in-
duced models were tested separately with the data belonging to the same class in the
subsequent time periods (i.e., L; and M; sets, where n > i > 1, described by the selected
feature set). The ratio of samples recognized by the initial models for each period was re-
trieved (i.e., negative detection rate for each class). These ratios enabled us to assess and
detect concept drift on the data over time. More specifically, if the important features for
the first period were not able to describe the modeled class effectively in a posterior time
frame, the ratio dropped, thus suggesting data drift. As the ratio of correctly recognized
samples declines, the shift impacts the classification results, qualifying the performance
drops as concept drift.

6.2.4 Experimental results

Due to data constraints and model-building requirements (i.e., highly accurate models for
both timestamps), the initial period selected for concept drift detection was the second
semester of 2011. Of the initial set of features (i.e., 97), the feature selection procedure
applied to the initial period data set yielded different subsets of important features for
each timestamp. More specifically, 32 features were found to be important for the last
modification timestamp and 17 for the first seen timestamp.

These feature sets were used to build the one-class anomaly detection models. As
a result, for each class (i.e., malware and benign) in each timestamp-based data set, a
one-class anomaly model was generated, using the corresponding feature set as model
features. Then, the malware and benign data belonging to posterior time frames were split
into six-month periods (i.e., from 2012 to 2020) and used as test sets for the corresponding
timestamp-class model. Besides, for each timestamp-class combination, three anomaly
models were induced using distinct subsets of features from the important feature sets
(i.e., best five features, best 10 features, and all features).

The results are provided in Figure 18 where the models’ accuracy performance is re-

46

ported. The line graph on the left shows the results related to the last modification times-
tamp, whereas the line graph on the right provides the data related to the first seen times-
tamp. The six anomaly models generated for each timestamp are reported with different
colors and line styles. The color relates to the data class (i.e., red for malware and green
for benign apps). The line style informs about the subset of features that was used to
build and test each specific anomaly model. The horizontal axis provides the testing pe-
riod, whereas the vertical axis provides the accuracy value retrieved for each 6-month
period. The .1 value attached to the year number informs about data belonging to the
first semester of that year (e.g., 2012.1), whereas .2 reflects the data located in the second
semester (e.g., 2012.2). As a result, six anomaly detection models were built and tested
per timestamp (i.e., three per class) encompassing the whole 2012-2020 time frame.

Timestamp: Last Modification Timestamp: First Seen V

— Benign - 32 — Benign-17
02 — Malware - 32 B — Malware - 17

Figure 11: One-class anomaly detection models performance - real device data [42]

The results provided in Figure 11 demonstrate the existence of concept drift in the data.
The irregular and overly fluctuating scores prove that the same set of features and values
are not useful in all time frames to discriminate either of the classes.

In benign applications, an incremental drift dominates. The number of recognized ob-
servations slightly goes down over time to dip in the last period in a sudden drift. However,
the etiology of the last dip might be extraneous due to the scarcity of benign data for that
period.

Concept drift is especially evident for malware data. In all cases, the models display
remarkably distinct accuracy scores from period to period, indicating concept drift and
implying that the significance of the initial features for the classification models changed
dramatically. Both timestamps provide a similar scenario, with the initial models perform-
ing well on data from closer periods and losing discriminatory power over time. The initial
set of important features appears relevant again in 2016.1 and 2019.1, attaining high accu-
racy scores, but loses significance in the following periods, resulting in data drift and poor
discrimination performance. Such behavior is similar to blips in the concept drift typology.
However, it could be related to a recurrent threat from the initial period, emerging again
2016.1 and 2019.1 periods.

Figure 11 evidences the presence of concept drift in Android historical data, which is
especially pronounced in the malware case. The emergence of concept drift in the data
requires the implementation of an adaptive detection solution capable of handling it ef-
fectively. This issue is addressed next.

47

6.3 Concept drift handling

To build long-lasting and robust Android malware detection solutions, the detection sys-
tems must be capable of adapting and learning from the changes in the data to maintain
high and stable performance over time.

6.3.1 The proposed solution

A data stream can be defined as a countably infinite sequence of elements that become
available over time [72]. They are characterized by a cumulative, continuous, rapid, and
evolving nature, and pose a variety of challenges such as one-pass constraints, concept
drift, resource restrictions, and massive-valued features [1]. Even if it does not present all
of these difficulties, Android malware detection may be considered a data stream because
it exhibits high data volume, ongoing app release, and constantly changing data. Conse-
quently, Android malware concept drift may be efficiently managed when approached
from a data stream viewpoint.

The proposed solution to handle concept drift in Android malware data is a modifica-
tion of the algorithm proposed by Zyblewski at el. [114] to deal with concept drift issues
for imbalanced data streams. The modifications and simplifications performed address
Android concept drift particularities, boosting the detection performance on the applica-
tion domain. Publication V is devoted to the implementation of the proposed solution
and provides the experimental results.

A schematic diagram of the solution used to handle Android concept drift is depicted
in Figure 12. Based on this diagram, the following paragraphs explain the inner workings of
the proposed solution, emphasizing the modifications suggested to handle Android data
characteristics.

Android data stream (tims |—»

DS, DSy DSk DS,
v Y p Y .
Preprocessing Preprocessing Preprocessing

A J - ¥ _ Y _ ¥ Ad _7_1 _
~ N VN SN
(Poolof 1\ gy (- Anomaly (DsELY) s (i

\ classifiers / “ _ detector, / N \ detectoryyq /
Gassifers / N\ N\ NN NG i
1

h

(Poolof \,

_classifiers / (LG
v
| Dynamic Ensemble Selection |

/’II ™,

(Poolof

\ classifiers /

\\"'-., - A
TN # Anomaly
__Predictions > «—— detector,)

Figure 12: Scheme of the proposed solution for Android concept drift handling

InFigure 12, the green line and related boxes refer to the special treatment of the initial
chunk based on the modifications proposed. The red and blue lines and boxes follow the

48

workflow of the training and prediction phases, respectively, for each subsequent data
chunk in the stream of Android data. The training and prediction phases are provided in
pseudo-code in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1: Training phase of the proposed framework

Input:
Stream - Data stream
S - Fixed size of the classifier pool
IT < 0 - Pool of classifiers (initially empty)
A < —1 - Sample size of the anomaly detector
Symbols:
DSy, - Data chunk
¥, - Bagging classifier
Ly - Legitimate data portion of the data chunk
&, - Anomaly detector

1 foreach k, DS in Stream do

2 if k == O then // first data chunk
3 IDS < splitInitial Dataset (DSy, ||) // split data chunk

4 fori<—0toS—1do

5 Yy < trainClassifier(IDS;) // train classifier

6 I+ P // add classifier to the pool

7 end

8 @y < trainAnomalyDetector(Ly,A) // train anomaly

9 else // rest of the data
10 11 < pruneWorstClassi fier(IT) // purge pool

1 Y, « trainClassifier(DSy)

12 11« ¥

13 @y « trainAnomalyDetector(Ly, L)

i end
15 end

Algorithm 2: Prediction phase of the proposed framework

Input:
Stream - Data stream
IT - Pool of classifiers
@, - Anomaly detector
Symbols:
DSy, - Data chunk
Vkpred Predicted labels for the samples in the current chunk
IIp; - Ensemble of classifiers selected using a DES algorithm
DSEL - Dynamic ensemble selection data set

1 foreach k, DS in Stream do

2 if k == O then // first data chunk
3 | DSEL preprocess(DSy) // store DSEL for next step

4 else // rest of data chunks
5 Tpy < dynamicSelection(I1,DSEL,DSy) // DES step

6 Ve prea < predict(DSy,Tlpy) // prediction step

7 Veprea < anomalyDetector (Vi preq, Pr) // refinement step

8 DSEL « preprocess(DSy.)

9 end
10 end

The proposed solution works as follows: when the first data chunk is received (i.e., k =
0), the whole chunk is processed, splitting its n elements into S ordered and equal-sized
data chunks. Each data subset is used to train a new classifier which is added to the pool
of classifiers. As a result, a full pool of classifiers is generated after the processing of the
first chunk, thus the full pool is available for the testing phase of all the subsequent data
chunks. Besides, the set of legitimate samples from the initial data chunk is used to induce
an anomaly detection model. The last processing step of the initial chunk involves the
storage of the whole initial chunk as the dynamic ensemble selection data set (DSEL) for
the next chunk. The DSEL is used to select the best classifier ensemble from the classifier

49

pool for each data sample in the new data chunk.

This concludes the processing of the initial data chunk, used for initialization purposes,
being the only one with distinct processing steps in our proposed solution. For all subse-
quent data chunks, the same testing-then-training procedure is applied. This procedure
is explained as follows.

After the first chunk is processed, when a new data chunk is received, the predic-
tion/testing phase is applied first. Thus, upon the arrival of the new data chunk, a dy-
namic ensemble selection algorithm is fit with the previously stored DSEL, the classifiers
pool, and the new data chunk. This step aims to select the best ensemble of classifiers to
predict the labels for each sample in the new data chunk. The fitted dynamic ensemble
model is used to forecast the class label of the n elements of the data chunk, generating
the initial set of predictions. These initially assigned labels are then refined, based on
custom-generated rules using the forecast of the anomaly detector for each sample. The
outcome of this step is the final prediction for all the samples of the new data chunk. The
anomaly detector helps to support or challenge the class prediction by the classifier in
borderline cases where the anomaly model may provide more reliable results. Finally, the
new data chunk is stored as the DSEL for the next chunk. This concludes the first process-
ing step of the new data chunk, the prediction phase, detailed in Algorithm 2 and depicted
by the red line flow in Figure 12.

The next step for the new chunk is the training phase, described in Algorithm 1.

The training phase uses the whole new data chunk and the outcome of the previ-
ous phase to update the pool of classifiers and generate a new anomaly detector. More
specifically, the worst-performing classifier on the new data chunk is removed from the
classifier pool. Then, a new classifier is trained using the samples from the new chunk and
their predicted labels. The new classifier is added to the pool, which is again composed
of S classifiers. Removing an aging classifier and inserting a new classifier keeps the pool
at the specified size while updating its capabilities to accurately forecast new data, thus
being able to adapt and react to emerging concept drift. The legitimate portion of the
new data (i.e., L) is used to generate a new anomaly detector that will be used in the
predictive step of the next data chunk. This last step concludes the processing of the data
chunk.

This testing-then-training cycle is repeated for all the subsequent data chunks in the
data stream ad-infinitum, enabling the system to address concept drift issues effectively
and efficiently without needing operational changes in the system.

It is worth noticing that the system is governed by hyper-parameters that have not
been discussed. Publication V provides further details and acts as a reference for this
discussion. It also provides a detailed explanation of the modifications performed to the
original algorithm which can be summarized as:

¢ The induction of a complete pool of classifiers available from the initialization stage
(i.e., chunk 0).

e The addition of a refinement step for the predictions using a supportive anomaly
detection model.

e The overall simplification of the stages and removal of special chunk treatments
(i.e., with the exception of the initial chunk).

6.3.2 Experimental results
The proposed solution was used to address KronoDroid data concept drift. As the data
set is not a real data stream and encompasses a long period of time, the timestamps

50

were used to locate the data within the Android historical timeline and the data was di-
vided into time-constrained consecutive data chunks. Due to data constraints and system
hyper-parameters selection, thoroughly explained in Publication V, the data for the ex-
perimental setup was partitioned into three-month data chunks encompassing the years
from the third quarter of 2011 to the second quarter of 2018. The last modification and
first seen timestamps were used, thus two concept drift-handling detection models were
induced.

The Fj score performance of the system using the last modification timestamp is pro-
vided in Figure 13, while Figure 14 reports about the results when the first seen timestamp
was used. In both cases, the performance of the models using the proposed solution are
compared with two naive solutions and the original algorithm [114]. The two naive so-
lutions correspond to two different static models, one induced using the data from the
initial period and another one using the data of the second time period. These static
models were never updated and they were tested with all subsequent data chunks.

—— Proposed Solution
1 Initial r

Naive
-~ Base Algorithm

1103 1104 1201 1202 1203 1204 1301 1302 1303 1304 1401 1402 1403 1404 1501 1502 1503 1504 1601 1602 1603 1604 1701 1702 1703 1704 1801 1802
Time period

Figure 13: Performance of the proposed solution using the last modification timestamp [42]

—— Proposed Solution
1 Initial classifier
Naive solution
-~ Base Algorithm

1104 1201 1202 1203 1204 1301 1302 1303 1304 1401 1402 1403 1404 1501 1502 1503 1504 1601 1602 1603 1604 1701 1702 1703 1704 1801 1802 1803
me per

Figure 14: Performance of the proposed solution using the first seen timestamp [42]

As can be observed in both figures, the proposed solution outperforms the naive so-
lutions and the original algorithm. The modifications proposed and implemented, even

51

though no hyper-parameter optimization was performed, enabled the proposed solution
to overcome the limitations of the cold-start in the initial stages (i.e., up to +10%) and im-
prove the detection quality of the base algorithm in most of the data chunks (i.e., between
+1% and +4%). More interestingly, the proposed solution shows great adaptation capabil-
ities and concept drift handling performance over an extended period of time, especially
when the last modification timestamp is used (i.e., F} detection performance over 90% in
almost all periods). Although the first seen timestamp provided good overall performance,
the detection performance is not as smooth and stable as in the last modification case.
Thus, it is a less reliable timestamp to deal with concept drift in Android data. A further
exploration of timestamps’ properties and their related issues is performed in Publication
VI and Publication IX.

The proposed solution, using the last modification timestamp, averaged 94.65% F;
score, 91.17% precision, 94.14% recall, and 80.49% specificity performance metrics in the
7-year-long case study, proving the goodness of the solution to adapt and react to Android
malware detection concept drift challenges under imbalanced data conditions. Besides,
it outperformed the state-of-the-art solutions MaMabDroid [80] and DroidEvolver [108],
as shown in Figure 15. More specifically, when the training period is excluded (i.e., 2011),
the proposed solution averaged 94.05% F) score in the 2012-2016 time frame, whereas
DroidEvolver reported an average of 89.56% for the same time window. However, it is
worth noticing that the features and data sets used by these approaches are different.
Thus, the comparison is provided to contextualize the goodness of the proposed solution
in relation to the state-of-the-art solutions as, due to the different data used, the direct
comparison among the approaches is hindered.

0.9
0.8

02 —— MaMaDroid

—— DroidEvolver

—— Proposed solution

01 Mean 2012-16 - MaMaDroid
Mean 2012-16 - DroidEvolve

Mean 2012-16 - Proposed solution

0.0
2011 2012 2013 2014 2015 2016 2017 2018
me (year

Figure 15: Comparative performance of the proposed solution with state-of-the-art solutions [42]

The proposed solution showed adaptive capabilities to effectively deal with concept
drift in Android data using a data stream perspective. Furthermore, when the classifiers
dynamics are explored, the proposed methodology can provide relevant insights about
the concept drift character and enhance the understanding of the phenomenon. The char-
acterization of concept drift using the proposed solution is explored in the next section.

6.4 Concept drift characterization

The proposed solution can be leveraged to explore thoroughly the phenomenon of con-
cept drift by analyzing the influence of data changes on classification quality measures in
various time horizons.

52

6.4.1 Characterization methodology

For concept drift characterization, the permutation feature importance technique [18] was
utilized. This method is model-agnostic and applicable in the binary classification case
posed by malware detection which can be evaluated by quality measures related to the
classification results. The analysis of permutation feature importance scores of chrono-
logically arranged data chunks allows the exploration of changes and observation of the
evolution of relevant features in the data, which enable the identification of trends and
the characterization of emerging concept drift. The permutation feature importance tech-
nique is explained as follows.

For a matrix of feature values X with rows x; given each of N observations and corre-
sponding response y;, xf" is a vector achieved by randomly permuting (7) the j-th column
of X. Given a loss function L, the importance VI; of the j-th feature is defined as the dif-
ference between the loss calculated using pseudo-random values and the original data,
as it is expressed by the following equation:

yir= 1 iL (y- f(x?w')) — L(yi,x1) (1)
bi Ni:l IX} i Iy

To analyze the relevant features for concept drift analysis, the permutation feature
importance technique was applied to the test data.

The concept drift characterization method used in this study adopts Eq. (1) by the cre-
ation of the classification function f; using data X; from period P,. Then, observations X
are taken from the set @Jﬁﬂ’HXj, where h declares an analysis time horizon. For instance,
short term (i.e., three months), mid-term (i.e., six months) and long-term (i.e., 12 months)
horizons were analyzed in Publication V. The usage of several time horizons enables bet-
ter characterization of the changes in importance of features. The whole procedure is

summarized by the following equation:

1

N .
viE =~ Y L(wAOF)) - LOnw) el

The procedure can be used to evaluate the influence of features on various quality
functions Q(.) = 1 — L(.) such as F; score, specificity (true negative rate), and recall (true
positive rate), which are relevant performance metrics on imbalanced data scenarios.

6.4.2 Experimental results
The concept drift characterization technique described above enabled us to analyze rel-
evant issues regarding the evolution of important features (i.e., concept drift), and also
understand and compare the system dynamics under each specific timestamp used. A
detailed analysis of the latter, which evidenced significantly different classifier dynamics
for the timestamps and that the first seen timestamp was prone to show temporal delay,
affecting the capabilities to deal with emerging concept drift, can be found in Publication
V. Publication VI also explores the differences between the timestamps for concept drift
handling and characterization, but focusing the analysis on cross-device detection perfor-
mance. Due to these differences and better suitability of the last modification timestamp,
the analysis of the evolution of important features was only performed for the last modi-
fication timestamp. The process is summarized in the following paragraphs.

For each period P, the best classifier was selected. The permutation feature impor-
tance technique was applied to the classifier using Eq. (2) with F} score as loss function.

53

The importance was calculated separately for three test sets (i.e., time horizons). The
first set was the subsequent period to P;, thus P ;. The second set consisted of the two
successive periods, LUJ?;%HPJ- and the third set contained the four subsequent periods,
LUJ’;‘[‘.+1P]~. As defined, the sets were built incrementally, thus corresponding to three, six,
and twelve months data horizons.

The usage of the three incremental test sets enabled us to observe the variation of the
importance of features on different time spans. The analysis and related plots, included in
Publication V, enabled us to conclude that no feature was found useful or important in all
periods. A fact that stresses the existence of concept drift in the data. More interestingly,
based on these results three types of features were distinguished.

The first type includes those features that are not useful in any time horizon like get-
gid32 or restart_syscall. Their influence is anecdotic and likely due to the stochasticity of
the technique.

The second type of features groups features that are more important in longer time
frames (i.e., medium and long term) than in the short-term. These features are not very
good at recognizing sporadic threats, but they constitute a solid base in a long-time threat
detection system. Features like clock_gettime and flock, which lie inside this category,
show a relatively stable discriminatory power over time.

The third type of features presents the opposite situation. The feature is a relatively
good discriminator in the short term but is not as useful in longer time frames. These
features are less beneficial for overall discrimination than in the short time frame, when
a smaller variety of threats is present, because a greater number of unique threats are
present in longer time frames (i.e., more families and malware variants). Consequently,
these features might work well to distinguish specific malware families. System calls such
as write or SYS_317 are included in this category.

To perform a deeper analysis of the importance of features for specific recognition
tasks, the permutation feature importance was calculated using specificity and recall as
loss functions. The results for specificity provide information about important features to
recognize benign software, whereas for recall, also called sensitivity, they inform about
the important features for the malware detection task.

The obtained results are depicted in Figure 16, showing the evolution of important fea-
tures for the goodware and malware recognition tasks, referred to as specificity and re-
call, respectively. The horizontal axis provides the timeline, split into quarters or periods.
Regarding the vertical axis, the color relates to specific features, while the colored areas
(i.e., vertical range) in each bar provide the importance score of each specific feature in
relation to the total importance of each specific period of time (i.e., the total importance
of a period is the sum of the importance scores of all the important features in that pe-
riod). Consequently, the larger the vertical range or area spanned by a feature in a bar,
the greater the importance of the feature in the specific period.

In the case of the benign software recognition task, presented in Figure 16a, the im-
portance of features appears to be locally stable. Several features like read and mprotect,
depicted with light red and brown colors, respectively, have similar influence for extended
periods of time. Besides, quarters with clearly dominant features are rare (e.g., 2011-Q4,
2017-Q2). Despite that some trends can be spotted, with some features gaining impor-
tance over time and others losing importance in some periods, the overall picture shows
stability and that the same set of features is relevant in all time frames with no distinctive
changes in relative influence and with no new clearly dominant features emerging over
time.

The results are drastically different for the malware recognition task. Figure 16b shows

54

Relative feature importance

Relative feature importance

1.0

0.6

Performance metric: Specificity - TNR

= - — . getuidz2
= geteuids2
P

-
getpriority

T I.-.-l--
| -
. “oaltstack
- :
—- -.l- =2 :

-1
=) o
Eine

atasync

l Gecense

setsockopt
getsockopt
sendmsg
sched yield
sysinfo

Q 04 Q1 Q@2 Q3 04 Q1 Q2 03 Q4 01 Q2 03 Q4 01 Q2 Q3 04 QI Q2 Q3 04 QI Q2 0 Q4 Q1 Q

TRLC RRRRRRrnnnnnenn
i~

Others/None

2011 2012 2013 2014 2015 2016 2017 2018
Time (quarters)

(a) Specificity

Performance metric: Sensitivity - TPR

- getuid32
- geteuia3z
i

fatasync
getdents6a
lseek

mmap2
ftatfs6s
statfssa
sigaction
t_sigprocmask
socketpair
recvrom
setsockopt
getsockopt
sendmsg
sched_yield
sysinfo
epoll_ctl
dock_gettime
gettimeofday

ettid
read
SY5_306
svs 310
svs_315
ss317
svs_329
svs_336
5¥5_339
SY5_340
Others/Nene

Q3 Q04 Q1 2 03 Q4 01 Q2 03 »u o

2011 2012 2013 2014 2015 2016 2017 2018
Time (quarters)

(b) Recall

Figure 16: Quarterly feature importance scores for recall and specificity [42]

55

the changes in feature importance calculated for the recall function. As can be noticed,
for the majority of quarters, the dependencies observed in a specific period are not
repeated in the following periods. Besides, even when a feature shows extremely high
importance in one period (e.g., pread in 2014-Q2), no consistency is observed and the
importance of the feature decreases dramatically in the following periods. The only
remarkable exception to this observation is clock_gettime, which is a very important
discriminatory variable for several years. However, even in this case, there are quarters in
this extended time frame where the feature loses completely its discriminatory power for
malware detection.

Another issue observed in the malware recognition case is the existence of periods
where the total importance of the features included in the bar is far from reaching the
top (i.e., 2014-Q4, 2018-Q2). In those periods, none (e.g., 2014-Q4) or few of the included
features (e.g., 2018-Q2) were found important for the malware recognition task. In the
former case, it suggests that the set of features was not large enough to model all
malware types observed in the data, whereas in the latter case, new features emerged
as important.

Finally, even though important features seem to vary dramatically among quarters for
the malware recognition task, some general patterns can be spotted. For instance, as
mentioned before, clock_gettime is critically important from 2012-Q2 until 2015-Q2
but not so much after (i.e., more recent years). The internet-related system calls
(i.e., socket-pair recvfrom, setsockopt and getsockopt) appear to have more importance
for the recent years, from 2015-Q4 to 2017-Q3. More interestingly, the bars from
2012-Q1 to 2016-Q1 show clear dominance of small subsets of features (i.e., mainly
clock_gettime), whereas in the latter years, the bars are composed of more features,
looking more similar to the bars of the benign recognition task.

It is worth noting that, when comparing Figure 16a with Figure 16b, the segmentation
of the bars is a major difference between them. For the benign recognition task, the bars
are dense, composed of many features, and show stability. On the contrary, the bars for
the malware recognition task are mostly composed of a small subset of features,
showing clear dominance of some of them over the rest. Consequently, the malware
recognition task appears to be significantly more complex and rapidly changing than the
benign software recognition task.

The characterization results may aid malware analysts in comprehending the
overall evolution of benign and malicious samples and the causes of concept drifts,
increasing experts’ confidence in learning models. However, despite the goodness
shown by system calls to generate an effective detection model, an expert may not
derive a clear comprehension of what type of app behavior is induced by each feature
as a particular system call can be associated with different system functions. Static
features such as permissions or API calls can benefit more from our characterization
approach due to a more comprehensible mapping between these features and the
application behavior. In this regard, Publication VIII applies the proposed methodology
to Android permissions.

6.5 Chapter summary

The evolving nature of Android malware has been neglected by the majority of ML-based
detection methods proposed in the related literature, thus disregarding the degenera-
tive impact of feature changes over time in the performance of the detection models
(i.e., concept drift). This chapter presented a data stream-based approach to detecting,

56

handling and characterizing Android malware concept drift effectively. The proposed
solution adapts to emerging concept drift, enabling long-term effective Android malware
detection. Besides, the presented approach allows the characterization of concept
driftwhich can be used to comprehend the nature of the changes by security analysts,
increase malware-related knowledge and enhance detection.

57

7 Concept drift and cross-device behavior: implications for
effective detection

7.1 The postulate of cross-device consistency

KronoDroid data set provides data collected on two types of devices (i.e., emulator and
real device). Both device types have been widely used in behavioral-based Android
malware-related research, almost indistinctly. The usage of an Android emulator or a
real device usually depends on the access to specific resources and the scale of the
study. For example, large-scale studies tend to use emulators as they are easy to deploy,
clean and restart, and integrate in automated systems. However, they are prone to be
bypassed by anti-sandbox techniques, suffer from hardware-related compatibility issues
and can be fairly limited regarding user interaction and overall phone simulation
capabilities (e.g., SIM card). On the other hand, real devices provide full phone
operability and user interaction, are immune to anti-sandbox techniques, and provide
close to null hardware-related incompatibilities. However, they are more difficult to
deploy, maintain and integrate into automated workflows. Therefore, the selection of
the collection device is mainly justified based on purpose, accessibility, or scale matters.

The underlying assumption that enables this freedom of choice is the implicit postu-
late of cross-device consistency. It implies that the behavior of applications is consistent
across Android operating systems and device versions, which suggests that the types of
devices (i.e., emulators or real devices) and OS versions used do not affect the behavioral
profile gathered. Notwithstanding that, this axiomatic cross-device consistency has been
challenged by the few studies that worked with data acquired from both kinds of devices.

By design, KronoDroid data set is especially suited to assess not only concept drift
issues but also cross-device behavioral consistency. This is the focus of Publication VI
where the KronoDroid data set and the concept drift handling methodology described
in Publication V and outlined in Chapter 6 were leveraged to analyze both issues.

7.2 Cross-device behavior and concept drift handling

KronoDroid provides dynamic data collected from the same set of initial applications on
two different devices. A simple comparison of the data would be biased and inevitably
produce erroneous findings since, as was explained in Section 5.2, the final composition
of the two data sets was not the same. For sound experimental comparison, the
intersection of the data sets — selected by matching hash value, was employed.
Therefore, the final device-related data sets utilized consisted of 34,981 benign apps
and 28,343 malware samples.

For the experimental setup, every app within the data sets was described by 288
dynamic features (i.e., system calls count). Even though the available system call set for
the emulator is smaller (i.e., 212, named reduced feature set), the usage of the whole
feature set included in KronoDroid, corresponding to the real device which includes 76
additional system calls (i.e., named extended feature set), was preferred to perform a
sound comparison of the impact of the distinct feature sets sizes on the detection
performance. Thus, for the 76 system calls not present in the emulator data, a zero value
was imputed for each of these system calls in all emulator apps.

Regarding the timestamps, the last modification and first seen timestamps were
used due to their extensive data coverage and high prevalence among the data samples.

To assess the impact of concept drift in cross-device detection, the methodology
detailed in Chapter 6 and summarized in Figure 17 was applied to both feature sets.

58

Data Preprocessing Concept Drift Detection Cancept Drift Handling Concept Drift Characterization

> IForest creation for
[1;1 benign software

- Benign software
T =

Benign software
concept dift report

Feature variance
analysis
Feature correlation
analysis
Distribution analysis|

Time series
viith limited
features

‘ P/ Ciassification function

8 J
5~ \Fmesmlveamnvur
M malware

I Pool of classifiers
J— update Qualiy function Quality function

Recall Specificity

]

Important
features for benign
software recognition

K)]
_ Malvare recognition

H> validation

Malware concept ‘ Creation of a new
arift report w classifier

Figure 17: Concept drift detection, handling and characterization scheme [43]

The data pre-processing steps applied to each device-related data set resulted in a dif-
ferent subset of features included in the final feature sets for each specific device (i.e.,
after correlated features were removed). Even though the normality tests confirmed that
none of the features was normally distributed for any data set, the distribution plots ev-
idenced distinct data distributions for the same system call on each device. As the sam-
ples composing each data set were the same, these differences provided initial support
to challenge the assumption of cross-device consistent behavior.

The concept drift detection stage evidenced the existence of concept drift on both
data sets. More specifically, the selection of the most important features for each initial
classifier, reported distinct sets of important features for each data set and timestamp
used, as can be seen in Table 11. In this table, the top-10 of most important features for
each device and timestamp are provided. The common features in all the approaches are
highlighted in blue, whereas the feature sets generated by each specific timestamp are
provided with different backgrounds (i.e., grey for the last modification and white for the
first seen).

Table 11: Ranking of the most important features per each data set and timestamp combination [43]

[Emulator Real Device |
[LastMod | First Seen [[LastMod | FirstSeen |
rt_sigprocmask rt_sigprocmask epoll_ctl clock_gettime
fentlé4 getuid32 futex SYS_329
futex ioctl SYS_329 writev
getuid32 recvfrom clock_gettime epoll_ctl
ioctl read writev getuid32

write futex ioctl write
read write write close
writev fentlé64 getuid32 gettimeofday
recvfrom prctl munmap ioctl
preadé4 fstatat64 read connect

As can be observed in Table 11, the important features for each timestamp on each
specific data set are similar but show different orders. However, when the devices are
compared, the feature sets are significantly distinct, with the exception of the 3 common
features (i.e., getuid32, ioctl, and write), including architecture-related features in high
positions on the list (i.e., fcntlé64 for the emulator, and SYS_329 for the real device). This

59

suggested that the timestamp selected might cause differences in the relevant feature set
but, more importantly, that the data source can have a critical impact on the definition of
the important feature sets.

These initial feature sets were used to induce and test the one-class anomaly detection
models in the concept drift detection phase, as depicted in Figure 17. The results for the
emulator data set for both timestamps, provided in Figure 18 evidence the existence of
concept drift. Even though the results are similar to the ones for the real device data (see
Figure 11in Section 6.2.4), the performance dips for the real device data are deeper than
for the emulator data. However, the emulator malware data show more dips. In both
cases, the last modification timestamp generates fewer and shallower dips than the first
seen timestamp.

Timestamp: Last Modification Timestamp: First Seen V

Malware - 5 Malware - 5

Figure 18: One-class anomaly detection models performance - emulator data [43]

The existence of concept drift on both data sources manifests the need for a handling
solution. The solution explicated in Section 6, used to handle concept drift effectively,
was used to explore the phenomenon of cross-device detection performance under the
presence of concept drift.

For this purpose, the concept drift handling solution was applied using all possible
combinations of training and testing sets described using both feature sets (i.e., reduced
and extended feature sets). This enabled us to test the same device (e.g., training and
testing with emulator data) and cross-device detection performance (e.g., training with
emulator and testing with real device data) using distinct feature set sizes. Besides, the
models were induced using both timestamps. This multi-testing scenario allowed us to
analyze the cross-device detection performance under concept drift constraints from all
possible perspectives. For example, when the emulator data was used as training set us-
ing the last modification timestamp, four different combinations were tested by using the
two possible feature sets (i.e., reduced and extended) as data descriptors and the two
data sources as testing sets (i.e., emulator data for same device detection, and real device
data for cross-device detection). The performance results for this scenario on the four
distinct testing cases are provided in Figure 19a. Figure 19b provides the performance of
the testing scenarios when the training set is from the real device data and the temporal
ordering is provided by the last modification timestamp. Figure 20 provides analogous
scenarios when the first seen timestamp is used instead of the last modification times-
tamp to locate the data samples along the Android historical timeline. More precisely,
Figure 20a provides the scenario of training data belonging to the emulator, while Figure
20b provides the results for the real device data as training set. As can be observed in all

60

graphs of Figure 19 and Figure 20, four possible combinations of data are tested, which,
depending on the training data used, conveys the performance on the same device data
using different feature sets or cross-device performance for both feature sets (i.e., re-
duced and extended). For the sake of consistency, disregarding the source of the training
data (i.e., specified in the title and caption), in all graphs, the color of the lines relates to
a specific device data (i.e., blue for emulator, yellow for real device), and the line style
informs about the feature set used (i.e., solid for the extended/real device-related feature

set, and dashed for the reduced/emulator-related feature set).

: Last Modification

Train: Emulator Data + Time: Last Modification Train: Real Device Data + Time
1.04 1.04
e T
0.9 0.9
0.8
0.7
0.6
@
2 054
T
0.4
03
0.2 —— Test: Emu + Feats: Real Test: Real + Feats: Real
==- Test: Emu + Feats: Emu Test- Real + Feats: Emu
0.14 Test: Real + Feats: Real —— Test: Emu + Feats: Real
Test: Real + Feats: Emu —=- Test: Emu + Feats: Emu
00+F T 00—
2012 2013 2014 2015 2016 2017 2018 2012 2013 2014 2015 2016 2017 2018
Time Time
(a) Training with emulator data (b) Training with real device data
Figure 19: Last modification timestamp-based detection models performance [43]
Train: Emulator Data + Time: First Seen VT Train: Real Device Data + Time: First Seen VT
1.0 1.0
I’ b
0.9 0.9 4 7 4
/
/
0.8 1 0.8 1 ,'
| .
0.7 0.7 7
1
2\ 1
0.6 \ 067 - i
© A\ v] 1
5 W 5 i !
2 054 205471 Y 1
- - I -
z z ; ! .
0.4 0471 i
1
! = I
0.3 i 034! A !
] \ 1
0.2+ — Test: Emu + Feats: Real | 024 \ Mo Test: Real + Feats: Real
——- Test: Emu + Feats: Emu V7 A Test: Real + Feats: Emu
0.14 Test: Real + Feats: Real 0.14 Las 3 —— Test: Emu + Feats: Real
Test: Real + Feats: Emu —=- Test: Emu + Feats: Emu
0.0 +—+—"+ "+ +——" T wr—r—r——+H+—
2012 2013 2014 2015 2016 2017 2018 2012 2013 2014 2015 2016 2017 2018
Time

Time
(b) Training with real device data

(a) Training with emulator data

Figure 20: First seen timestamp-based detection models performance [43]

As mentioned before, in the cases where the testing data source differs from the train-
ing data source, it enables us to test cross-device performance. The usage of different
feature sets provides information about the discriminatory capabilities of a larger feature
set versus a reduced feature set.

As can be observed in Figure 19, the performance of the proposed solution is rela-
tively stable (i.e., over 0.80 Fj score in the plotted time frame) when the last modification
timestamp is used, and especially when the testing data is from the same data source as
the training set. Besides, with just a few exceptions, the results obtained using different

61

feature sets as data descriptors are very similar. The worst results are obtained for cross-
device detection. As a result, this timestamp provides a relatively stable performance,
using either feature set, especially for same device data detection. Therefore, the data
source has a significant impact on the detection performance of the model, showing that
cross-device detection provides poorer and less reliable performance. However, the fea-
ture set does not show a significant impact on performance.

When the first seen timestamp is used to locate the same set of apps along the his-
torical timeline, the performance and outcomes of the proposed solution change dramat-
ically, as can be observed in Figure 20. This timestamp provided a different data distri-
bution across the timeline, concentrating a significantly larger number of samples in the
2012-2013 period. The cross-device detection performance is significantly inferior to the
same-device detection performance, sometimes even approaching null values, with the
exception of a specific time frame (i.e., mid-2013-2016). Regarding the feature set, the re-
sults show that it impacts the detection performance and that better results are obtained
when the natural feature set is used, that is, when the feature set is the one related to
the training device. The relative smoothness of the performance when the last modifi-
cation timestamp is utilized is not observed on the first seen performance graphs, which
are characterized by abrupt changes from quarter to quarter. This fact may indicate the
presence of artificial concept drift that, contrary to the gradual data drift, expected from
the natural changes in the threat landscape, can be hardly modeled and, consequently,
cannot be handled effectively using previous knowledge.

The observation of the artificial drift caused by the first seen timestamp could have
been caused by the generation of historically incoherent data, that is, the misplacement of
data samples across the historical timeline. Historical incoherence occurs when data orig-
inally belonging to different time frames are blended together and, consequently, gener-
ate a not naturally occurring data set. This is opposed to the overall smooth performance
observed when the last modification timestamp is used, indicating the emergence of a
more naturally occurring drift in the data. Based on these observations, the analysis of
the differences between the timestamps to locate the data samples was well-motivated
for further inspection. This divergence was further explored in Publication IX.

7.3 Characterization of behavioral concept drift across devices

As in Chapter 6, were the concept drift handling methodology was introduced, the pro-
posed solution to handle concept drift effectively was leveraged to characterize the single-
device learning models, that is, to describe the important features of the models that use
the same testing and training data per analyzed time period (i.e., quarter) using the last
modification timestamp as sample context. The last modification was preferred due to
the more natural emergence of concept drift observed. Permutation feature importance
was calculated using specificity and recall as quality functions for both data sources (i.e.,
emulator, and real device). Figure 21a and Figure 21b depict the important features for
the specificity task (i.e., benign software recognition task) for the emulator and real de-
vice data, respectively, whereas Figure 22a and Figure 22b convey the same information
for the recall task for the emulator and real device data, respectively. For comparison, the
same set of features is depicted in the four graphs with the same colors.

As can be observed in Figure 21 for the specificity task, even though the bars for both
devices (i.e., quarterly important features) may look relatively similar, as they are densely
populated by a wide variety of features in both cases, the comparative analysis shows that
a different set of features is important for each device. For example, in the real device,
clock_gettime (i.e., pink colored) has a greater relative importance than in the emulator

62

for the last periods. The green areas (e.g., features such as openat, readlinkat, etc.) are
large in the emulator. In contrast, they are negligible in the real device data. For the real
device, the brownish features are more important (e.g., mprotect), especially in the initial
time frames. This fact evidences that, even though the benign data samples use a wide
and similar set of features on both devices, the most important features are significantly
different across devices.

Regarding the recall task, depicted in Figure 22, a completely different situation is ob-
served. The bars on both devices show a low density of features (i.e., a few features per
bar) with clearly dominant features, which are significantly different across devices. For
example, clock_gettime has a large relative importance in most quarters for the real de-
vice, whereas its importance is negligible for the emulator data. In the emulator, mprotect
and the greenish features provide the majority of the importance in almost all the quar-
ters. For the real device, these greenish features are not significant. As a result, the key
features for the malware recognition task change notably between devices across the ex-
amined time frame.

I |l||ll|ll|l Illllll.ll.l
- . - IIII I I
|||||! !ll i I-

III ll Il._--l =

(a) Emulator (b) Real Device

Figure 21: Important features for the specificity task [43]

Sm I I ‘ ‘

(a) Emulator (b) Real Device

Figure 22: Important features for the recall task [43]

Finally, when the graphs are compared for the same device (e.g., Figure 21a with Figure
22a), it can be observed that even though the composition of the bars is relatively different
(i.e., different distribution of features), the set of most important features is remarkably
similar for both tasks, with the predominance of a similar set of features (i.e., similar color
tones), but with an extreme polarization towards a smaller set of features for the recall
task, in both cases.

63

The observed differences evidence different behavioral profiles of apps on different
collection devices and along the historical timeline, which strongly suggests that the ax-
iomatic cross-device consistency cannot be assumed. Further exploration of the issue with
statistical significance analysis of the important features between the devices was per-
formed. This statistical analysis is detailed in Publication VI.

The device-based differences in behavioral profiles described in Publication VI, set the
ground for a deeper and more fine-grained inspection of the cross-device consistency is-
sue. This exploration was performed in Publication VIl using a smaller data set but a wider
range of collection devices and Android OS versions.

7.4 Chapter summary

This chapter combined and analyzed the implications of two of the main challenges re-
lated to Android malware detection: concept drift and cross-device detection issues. The
results of the statistical analysis show that data collected on different Android platforms
(i.e., real devices and emulators) cannot be detected effectively using cross-device mod-
els, as the behavioral profiles for the same set of apps are significantly different. Fur-
thermore, the emergence of concept drift, even when an effective solution to address it
is used, magnifies the challenge and greatly impacts the performance of the detection
system over time.

64

8 Cross-device behavioral consistency: benchmarking and
implications for effective detection

The behavioral differences observed in Publication VI were further explored in a bench-
marking study, described in Publication VII. The objective of this benchmarking was to
assess the validity of the cross-device behavioral consistency in a larger set of Android de-
vices. Due to the significant number of variables affecting the behavior of apps at execu-
tion time in Android devices (e.g., user interaction, Android kernel, software version) the
elucidation of the exact etiology of such differences was out of the scope of the study. The
main purpose of this study was to analyze and compare the behavioral profiles acquired
for the same set of applications in a large and representative set of Android devices, in-
cluding different operating system versions.

The generation of effective ML-based detection models requires the usage of a large
amount of data. However, for a sound assessment of the validity of the cross-device be-
havioral consistency, the focus must be placed on the usage of a wide set of collection
devices and Android OS versions rather than on the data set size. Besides, the increase
in the number of devices and OS versions also increases the likelihood of incompatibility
issues which poses an additional challenge for the data set size. The wider the variety
of devices (i.e., architectures) and OS versions (i.e., Android API levels), the greater the
challenge of finding applications that can successfully be installed and executed on all
the devices (i.e., cross-device compatibility), which is a foundational requirement for the
soundness and representativeness of the benchmarking setup. As a result, priming data
quality over quantity, the data set used in this research was composed of 16 Android apps
(i.e., 8 malware and 8 benign samples). The final set of samples was formed iteratively,
after the successful installation of samples collected from well-known Android data sets
and repositories on all the collection devices. A detailed description of the data samples
used in this benchmarking is provided in Publication VII.

A complete testbed of Android devices has to include real and virtual collection plat-
forms, as they are both widely used for research purposes. In addition, to analyze the
possible differences in system calls on different Android platforms, distinct versions of the
0S should be tested and controlled as a possible confounding variable. Therefore, for the
experimental setup, three real mobile handsets running two different Android OS versions
(i.e., Android 9 and 10) were selected as benchmarking devices. The same phone mod-
els were also virtualized as accurately as possible using Android Studio’s Android Virtual
Device (AVD) Manager and GenyMotion Desktop emulators. The virtual devices were con-
figured to resemble the real devices’ properties and settings as close as possible using the
available options in the corresponding emulator software. The real devices were identi-
fied with sequential numbering after the R prefix (e.g., R3). Their corresponding emulated
counterparts were identified with the same number but using a different prefix accord-
ing to the emulator software used (e.g., A3 for the Android Studio instance emulating the
real device 3, and G3 for the GenyMotion instance emulating the real device 3). A detailed
description of the devices used is provided in Publication VII.

The workflow of the experimental setup is provided in Figure 23. As depicted, each
of the samples composing the data set was installed and executed in all the test devices
using two modes of execution. The first mode of execution installed the application, ex-
ecuted it, and let it run freely for five minutes, with no other interaction (i.e., named as
1-event execution or 1E). The second mode of execution involved the same initial steps but
added simulated user interaction in the execution phase. More specifically, 50 pseudo-
random events were injected during the run-time (i.e., named as 50-event execution or
50E. The behavior of the application (i.e., system call traces) was monitored and logged.

65

Initial selection

]

Experiment pool

1E 50E

4

Runtime

Figure 23: Benchmarking workflow [49]

Therefore, as 16 samples were used in the experimental setup and run on two modes of
execution on nine devices, the result of the workflow depicted in Figure 23 yielded 288
behavioral traces. These syscalls traces were further analyzed, being compared for simi-
larity using statistical measures, and used as input for ML models to evaluate the impact
of the observed divergences in cross-device and same-device class recognition tasks at
small scale.

8.1 Cross-device behavioral comparison

The initial exploration of the raw data logs evidenced differences, with varying propor-
tions, in the length of collected sequences and the number of different system calls in-
voked by each app during the run-time, for all logs. Even though this observation is ex-
pected for distinct data samples, as distinct apps show different behavior (i.e., invoke dif-
ferent sequences and number of syscalls), no significant deviation should be expected for
different executions of the same app in distinct devices for the same execution mode if
cross-device consistency exists. However, the latter was not confirmed and substantial dif-
ferences were found in the data logs regarding the behavior of the same app on different
devices, for all apps on all devices.

As the data set was composed of 16 distinct apps, 16 distinct behavioral profiles regard-
ing system calls usage were expected since every app differs from the others in its function
and nature. To examine the similarity of behaviors of individual apps across devices, the
collected data were analyzed for consistency and similarity across devices. In this regard,
feature engineering was used to extract data from the logs and generate meaningful data
attributes for comparison. More specifically, the total number of system calls invoked by
the application and the number of unique system calls used were retrieved. Based on
these two data features, a more fine-grained comparison of the behaviors was performed
using two statistical measures as scoring metrics for each data attribute.

For the total syscalls attribute, the ratio of increase between the number of system
calls produced by the same app on two different devices was calculated. All the calcu-
lations were performed pairwise, where the smallest value was always subtracted from
the largest. Therefore, the minimum value was 1, implying that an equal number of total
syscalls was invoked on both devices (i.e., no difference).

For the number of unique syscalls data, the system call name was used instead of a
summary numeric value (e.g., clock_gettime). All the comparisons were performed pair-

66

wise, where the overlap between the unique syscalls sets (i.e., invoked on both execu-
tions) was used to calculate the Jaccard coefficient. The Jaccard coefficient is a measure
of similarity between sets calculated as the size of the intersection (i.e., overlap) over the
size of the union of the sets, as expressed in equation 3. It ranges from O to 1, and the
larger the value, the more similarity between the sets.

J(Sl,Sz):|S1mS2|: [S1NSy |
[S1USa | [Si|+[8S2]=[85iNS |
The calculation of these scores resulted in two similarity indexes/scores per sample for

each pair of compared devices. For the sake of interpretation, similarity thresholds were

established to qualify behaviors as similar between devices. The similarity threshold was
set to 0.75 for both comparative scores. So that the behavior of a specific app on two

different platforms was qualified as similar if the total syscalls ratio did not exceed 1.25

and the Jaccard coefficient did not fall below 0.75.

To establish a comprehensible scope, the real devices were employed as the basis for

4 distinct device comparison subgroups. Such division provided distinctive sets of data for

comparison. The generated subgroups were coded as A, B, C, and D. Subgroup A concen-

trates exclusively on behavioral differences among real devices, while subgroups B, C, and

D assess the differences between each real device and its corresponding virtualizations.

Furthermore, since data acquisition was performed on each device using two classes of

apps and two modes of execution, it implied that there were 4 different perspectives to

examine the potential contrasts within each subgroup.

(3)

SUBGROUP A (real devices) SUBGROUP B (R1 and emulators)
Execution only 50 events injected Execution only 50 events iniected
[R1vsR2[R1vsR3[R2vsR3 | [R1vsR2| R1vs R3[R2vs R3 | [R1vs A1 [R1vsG1 [A1vsG1][R1vs Al [R1vsG1 [AlvsG1|
M A
2 2
Bl B
M [M [5]
[l [l
50f8 1of8 1of8 6of8 20f8 2of8 0of8 0of8 2of8 0of8 0of8 1of8
B o
2 B
B [B 5]
[l [l
O &
208 1of8 20f8 10f8 0of8 1of8 0of8 Oof8 5of8 20f8 1of8 1of8
SUBGROUP C (R2 and emulators) SUBGROUP D (R3 and emulators)
Execution only 50 events injected Execution only 50 events injected
[R2vs A2[R2vs G2 [A2vs G2 | [R2vs A2 [R2 vs G2 | A2 vs G2| [R3vsA3 [R3vs G3[A3vsG3 | [R3vs A3 [R3vs G3[A3vsG3 |
[[
El B
M H M [4
Ol I<]
H =
s L]
208 Oof8 Oof8 20f8 Oof8 Oof8 0of8 Oof8 Ooff 20f8 0of8 Oof8
M [
El [
B B |5
[] [l
7
(] B
1of8 0of8 1ofB 0of8 1of8 O0of8 4of8 Oof8 ODof8 10f8 0of8 20f8

|:| — overall similarity at least 0.75 (good)
I:I — overall similarity at least 0.90 (great)

Figure 24: General overview of the comparative results [49]

The general overview of the results, covering the full spectrum of comparison sets and
execution modes, is reported in Figure 24. For the sake of the interpretation of the results,

67

the numeric scores have been omitted, thus providing better visualization and compari-
son of the observed similarities. The light green colored cells report those devices where
the similarity score for the specific app was above the similarity threshold (i.e., good simi-
larity). The apps/devices where the sets displayed an outstanding similarity (i.e., the ratio
of total syscalls below 1.10 and a Jaccard coefficient greater than 0.90) are distinguished
with darker green color.

The results shown in Figure 24 support that, in general, it can be concluded that the
behavior of apps is significantly dissimilar across distinct real devices and OS versions.
Even though the real devices show similarities for some apps and platforms (i.e., R1and
R2, which belong to the same Android OEM), there is no consistency. The comparatives
among real devices and their emulated versions (i.e., subgroups B, C, and D) show re-
markably inconsistent results. This fact evidences that the behavioral profiles of the apps
in real devices and their emulated versions, even when the virtual devices fully mimic the
settings and properties of the real devices, are significantly different.

In general, although some exceptionally similar behaviors were spotted, inconsistent
similarity patterns were observed for the vast majority of the analyzed sets under any of
the execution modes and both app classes.

8.2 Impact on ML-based detection models

The data acquired in the collection stage were processed to build and evaluate distinct
ML-based classification models. More specifically, feature engineering was performed on
the acquired data and the absolute frequency (i.e., count) of each individual system call
issued by the apps during the collection time was used to describe each application.

As machine learning models are sensitive to data quantity, the main aim of this experi-
mentation was not the induction of effective forecasting models but the usage of machine
learning models to assess the similarity between distinct acquisitions of the same applica-
tion on different platforms and evaluate the implications of collecting distinct behavioral
profiles for the same application in simple detection models. For the sake of consistency,
the same classification algorithm and hyper-parameters were used to induce all the ML-
based detection models. The models’ performances were evaluated using the accuracy
performance metric.

The underlying concept behind the usage of these detection models was to leverage
the model’s overfitting capabilities to evaluate the similarities between the training and
testing set, both composed of 16 instances. In general, an ML classifier model is said to
overfit the training data when it is trained with limited data, and the resulting model fits
too closely or exactly the training data, thus, it does not generalize accurately to unknown
or new data [53]. This is an undesirable situation when building ML models that is usually
addressed by using more data or regularization techniques. However, in our case, it is
leveraged to provide a notion of similarity between the training and testing sets, which
are composed of exactly the same samples and described with the same features but col-
lected on distinct platforms. In general, a high-performance ML model should recognize
the training data almost perfectly when used as testing data (i.e., training set accuracy). In
our case, as the data set is small, it should be perfectly recognizable (i.e., 100% accuracy).
Therefore, if an accuracy distinct of 100% is reported, then behavioral inconsistencies can
be implied as all the training/testing sets are composed of exactly the same data samples,
and the only difference is the collection device, which defines the behavioral profile col-
lected. More precisely, the lower the testing accuracy, the more dissimilar or inconsistent
the behavior of the apps on the training device concerning the testing device.

The bar charts displayed in Figure 25a and Figure 25b provide the results for cross-

68

device detection accuracy for different training and testing sets. The vertical axis provides
the accuracy score, whereas the horizontal axis informs about the source of the testing
data (i.e., device). Thus, each bar reports the testing set accuracy for each trained de-
tection model. The color of the bars informs about the training data used to build the
detection model, as specified in the legend. For each execution mode, 9 detection mod-
els were induced, trained with each device data, and referenced with the distinct color
of the bars. All the trained models were tested separately with the data from all 9 de-
vices, including the training set, and the accuracy performance was retrieved. It is worth
remembering that the training and testing sets were composed of the same instances in
all cases, the only difference was in the feature values describing each sample which cor-
responded to the behavior collected on each particular device. The only exception to this
fact occurred when the training and testing data belonged to the same device. In such a
case, the training and the testing data feature values were identical.

Given the reduced size of the data set and the inherent randomness of the classifier
algorithm used (i.e., Random Forest), to achieve a representative measure of the perfor-
mance, each model training/testing was repeated 100 times. Therefore, Figure 25a and
Figure 25b report the average accuracy performance of all models.

- o8- .
07 07
06- 06-
Sos Sos
. =i =i
o4 s o4 s
5 5
03 @ 03 @
@ G
02- © 02- ©
a a
01 " 01 "
w2 [
00 A E © 1 A2 R3 00 AL [0 1) RL A2 R3

(a) Execution-only (1E) data (b) 50 pseudo-random events (50E) data

1
1

Figure 25: Accuracy of cross-detection models [49]

As mentioned before, in our case, the greater the accuracy, the more similar the behav-
ior of the apps across devices and, consequently, the better the discriminatory capability
of the model to cross-device data. The lower the accuracy, the more dissimilar the be-
havior of the apps across devices and the worse class-based discrimination by the model.
Note that the discrimination of the training data (i.e., when used for testing) by the model
should be close to perfect accuracy to make such implications, that is, the classification
model must be able to classify the training data effectively.

As can be seen in Figure 25a and Figure 25b, the accuracy never reaches the maxi-
mum score, except when the testing data are the same as the training data. This confirms
the goodness of the induced models to perfectly discriminate their own data, but not any
other test data, which corresponds to the same data set but is described by the behavior
collected on other devices. This demonstrates that even if the samples on the training and
testing sets are the same, the data collecting device has an effect on the performance of
the induced systems since even in this straightforward scenario, class-based discrimina-
tion degrades significantly. With the exception of G2 and G3 in execution-only mode, all
cross-device models decrease their performance significantly, showing that the behavior
of apps in distinct devices is not consistent, thus confusing the classifiers induced with
one device data to generalize effectively to data collected in other Android devices.

In summary, when all models are considered, the cross-device average accuracy for
execution-only data is 0.80 (out of 1) with a standard deviation of 0.11, whereas for 50

69

events is 0.81 with a standard deviation of 0.07. Thus, even though when more events
are injected the overall performance does not change significantly, the behavior appears
to be slightly more consistent across devices, showing lower variability. Therefore, the
behavioral differences captured on the testing sets with regard to the training set impact
the model’s performance significantly.

In conclusion, the classifiers’ cross-device detection performance is significantly infe-
rior to same-device data detection performance because of behavioral variations among
devices.

To further explore the implications of mixing behavioral profiles from distinct collec-
tion platforms, mixed models were induced using training sets constructed using random
combinations of data from distinct devices. In this scenario, the benign and malware data
were independently and randomly selected from one of the nine data sources, which en-
sured that the data set was always composed of the 16 different samples. The trained
model was tested, as in the previous case, with data collected from all devices. There-
fore, the training sets included class samples from randomly selected devices, whereas
the testing data always belonged to a single device.

1.0-

0.9-

el ddin Iy

Sos-

E
Execution-only

04 50 events

0.3-
0.2-
0.1-

0.0- " v v " . ¥’ v ¥’ J
AL a2 A3 Gl G2 G3 R1 R2 R3
Test set

Figure 26: Mixed models performance results [49]

For this experiment, a total of 10,000 models were induced. The average accuracy
results are provided in Figure 26 for both execution modes (i.e., orange for execution-only
and blue for 50 events). The height of the bars reports the average accuracy value, while
the standard deviation is depicted as extended grey lines below and above the average
value. As the horizontal axis reports the source of the testing data set, the accuracy score
informs about the discriminatory properties of each data source for mixed data models.

As shown in Figure 26, the performance of the models where the training data is mixed
is remarkably lower than for the models induced in Figure 25a and Figure 25b, where
the data for both classes were collected from the same device. More specifically, for the
execution-only mode, an average accuracy of 0.72 is achieved with a standard deviation
of 0.044 whereas in the 50 events mode an average accuracy of 0.75 is reported and a
standard deviation of 0.038. More interestingly, the data collected on the Genymotion
emulator (i.e., GX) emerge as the most easily recognizable by the mixed models, whereas
the data collected in the real devices are the most challenging and report the worst per-
formance of all mixed models. In this case, 50 events data are easier to discriminate than
execution-only data. This may suggest that more events would tend to make the behav-
iors more similar across devices and that, consequently, are easier to discriminate by the
mixed models.

In any case, despite the existence of some limitations, described in Publication VII,
these results evidence that cross-device consistent behavior cannot be assumed and that

70

the data source must be considered in the design and data pipelines of any robust ML-
based Android malware detection system. Furthermore, mixing data from distinct sources
in both training and testing sets seems to impact notably the performance of the classi-
fiers. Our results show that on average, in simple models and easy data sets, the cross-
device accuracy of single-source trained models might be ~ 20% lower than the same-
device testing accuracy and =~ 30% lower in the mixed models case.

8.3 Chapter summary

Most of the research regarding Android malware detection assumes some form of be-
havioral consistency of applications across Android devices. Consequently, the impact of
the nature of the devices and operating system versions used in the collected behavioral
profiles has not been considered. In this chapter, the cross-device consistency issue, in-
troduced in Chapter 7, was deeply explored by performing a thorough benchmarking of
Android apps in a wide set of Android devices. The results confirm that cross-device be-
havioral consistency cannot be assumed as the collected behavior of the same set of apps
in different Android platforms and OS versions differed significantly. Neglecting this is-
sue may lead to a severe decrease in the performance of the detection models designed
for specific platforms when facing data collected on a different platform. Cross-device
detection is a challenge that must be considered and cannot be assumed on the basis of
behavioral consistency across platforms when system calls are used as detection features.

71

9 Leveraging the first line of defense against malware: Android
security permissions

The previous chapter and related publications dealt with behavioral attributes of Android
apps (i.e., system calls). Dynamic analysis of Android applications is a time-consuming and
specialized task. It requires setting up a sandbox environment, using a sophisticated anal-
ysis toolkit, and running the application for a specific amount of time. As compensation,
these features are relatively immune to obfuscation and encryption attacks which tend to
bypass static approaches. Despite that, most of the Android detection systems proposed
in the literature are built on static attributes. In general, these attributes are easy and fast
to collect and may enable on-device detection. Permissions, API calls, and intent filters
are widely used static input features for Android malware detectors.

The data collected for KronoDroid data set, described in Chapter 5.2, includes, among
other static attributes, features related to Android security permissions. Permissions are
the most widely used static attributes in Android malware detection research. Besides,
permissions are a built-in security feature, based on the Linux kernel, that constitutes the
first line of defense against malicious threats on Android devices.

9.1 Permissions evolution and concept drift handling

Publication VIII explores the application of the proposed methodology to handle concept
drift in Section 6.3.1to the feature space defined by the permissions feature set. Contrary
to the system calls feature set, which has remained relatively stable over time, the per-
missions feature set has evolved significantly over time, as permissions have been added
or deprecated in almost every new Android API release.

170 4
160 o

Cumulative
mm Available

r of permissions

Numbe

04
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

Figure 27: Android permissions timeline evolution [38]

The changing nature of the permissions feature set is depicted in Figure 27. The initial
set of standard permissions was composed of 74 permissions (i.e., Android 1.0, API level
1, released in 2008). Since then, the permissions set has evolved to contain 157 available
permissions in 2020 (i.e., Android 11, API level 30). However, a total of 166 permissions
were defined and available at some point, with 9 of them deprecated along the process,
thus not supported by the release of Android 11. Not only the addition and deprecation of
permissions makes the feature set dynamic, and constantly changing, also the changes in
trends and behavior of apps over time cause an impact on their prevalence, and, conse-

72

quently, in their usefulness as discriminatory features. As a consequence, the detection
models based on permissions are prone to concept drift issues, thus requiring to handle
effectively the emerging drift to maintain high detection performance over time.

9.2 Experimental results

The concept drift handling method and workflow proposed in Section 6.3.1 was applied
analogously for categorical input data (i.e., permissions) as for numeric data features (i.e.,
system calls). The only differential steps were performed in the data pre-processing stage
regarding the data set and the feature selection method used. The methodological nu-
ances regarding the pre-processing stage, and the overall results for concept drift han-
dling and characterization using permissions as input features, covered in Publication VI,
are summarized in the following sections.

9.2.1 Data set and feature sets

KronoDroid data set provides a different number of samples per sub-dataset, according
to the dynamic data source. As permissions are static features, their values do not differ
between collection platforms. For that reason, to use the largest data set possible, both
KronoDroid sub-datasets (i.e., real device data and emulator) were merged. After the
removal of duplicated samples, the resulting data set was composed of 78,804 Android
apps, i.e., 37,020 benign samples and 41,784 malware.

Regarding the features used to describe the apps, the permission-related indicators
(i.e., binary features) were retrieved. As depicted in Figure 27, until API level 30, 166 per-
missions were defined. Therefore, each app within the data set was described by 166
categorical features related to permissions attributes, a timestamp, and the class label.

The pre-processing steps applied to the input features, as described in Section 6.3.1,
showed that 26 permissions from the initial feature set had null variance and 18 were
strongly correlated with another feature (i.e., Kendall’s T > 0.80). Therefore, the resulting
feature set was composed of 122 permissions. This feature set was named as full feature
set. In order to test the bias of zero-filled values for non-available permissions at spe-
cific times and the impact of permissions evolution, a reduced feature set was formed
by applying the pre-processing steps to the set of permissions defined in API level 1. The
reduced feature set was composed of 60 permissions.

9.2.2 Concept drift handling

The performance results of the proposed solution to handle concept drift as detailed in
Section 6.3.1 using permissions as input features are provided in Figure 28. For the sake of
comparison, recall, specificity and F; performance metrics are reported in Figure 28, and
detailed in red, green, and blue color, respectively.

As can be observed, the detection system provided over 0.91 F; scores in almost all
quarters, averaging 0.93 F; score in the analyzed time frame using both feature sets. No
significant differences were found in the performance metrics using both feature sets,
thus proving the goodness of the reduced or initial feature set to discriminate effectively
Android apps over time. Therefore, in the analyzed time frame, spanning 7 years of An-
droid history, the usage of more features did not enhance the results. The added per-
missions in later Android OS releases (i.e., API levels) do not seem to significantly impact
the performance of the model. In this regard, an in-depth analysis of the evolution of the
importance of the features over time is performed in Publication VIII, and summarized in
Section 9.2.3.

The specificity metric of the detection system remained relatively stable for the whole

73

— F1-ful
== F1-reduced
— Mean F1-full
=== Mean F1- reduced
Specificity - full

Mean Specificity - full
Mean specificity - reduced
Recall - full

01 Recall - reduced

Mean Recall - full

Mean Recall - reduced

2012 2013 2014 2015 2016 2017 2018
e (quarts

Figure 28: Performance of the proposed solution using permissions as input features [38]

time frame (i.e., over 0.80), whereas the recall performance dipped significantly in three
quarters (i.e., 2011-Q3, 2015-Q4, and 2016-Q3). Even though the average of both metrics
is high for the whole period (i.e., over 0.90 in both cases), it is worth noticing that the de-
tection performance varies between feature sets for class-based detection. For example,
the reduced set provides better performance than the full feature set to detect malware
(i.e., recall), whereas, the full vector yields better detection performance than the smaller
subset for benign software detection. The characterization of concept drift provided next
enabled us to explore the reasoning behind these observations.

9.2.3 Concept drift characterization

The analysis of the evolution of the importance of permissions enabled us to explore the
reasons behind the recall drops and the class-related performance differences between
the feature sets observed in Figure 28. The results and main findings, explicated in Publi-
cation VI, are briefly summarized in the following paragraphs.

The feature importance evolution analysis was performed independently for the full
and reduced feature sets. The latter enabled us to analyze the impact of the initial set of
permissions per quarter along the whole timeline, whereas, the former, the significance
of the later additions in the updated detection models. For the sake of brevity, only the
results regarding the full feature set are provided for the benign software recognition task
and the malware recognition task in Figure 29 and Figure 30, respectively. In these figures,
the relative feature importance (i.e., the share of the total importance of the chunk pro-
vided by each specific feature) is depicted per quarter in vertical bars. The colored areas
in each bar are associated with specific permissions. Finally, the white overlay line pro-
vides the maximum importance value, provided by the most important feature, in each
quarter chunk. For the sake of interpretation, Figure 29 and Figure 30 only depict the per-
missions included in the reduced set with colors. The permissions added in later stages,
thus belonging only to the full feature set, are masked in grey for each quarter.

Relatively mild and gradual concept drift is observed for specificity, with the features
varying in importance over time, especially for the last years, as can be observed in Figure
29. More interestingly, the same set of features belonging to the reduced feature set
has retained most of the importance over time. The later additions show a limited local
impact in specific quarters as depicted by the small grey areas. The dominance of the
reduced feature set is further emphasized by the large importance value shown by the
most important feature per quarter, always belonging to the reduced feature set, reported
by the overlay white line.

74

mm ACCESS_COARSE_LOCATION W= CHANGE_CONFIGURATION N FACTORY_TEST == PROCESS_OUTGOING_CALLS S RECEIVE_WAP_PUSH SET_WALLPAPER
ACCESS_CHECKIN_PROPERTIES W CHANGE_NETWORK_STATE N GET_ACCOUNTS m READ_CALENDAR RECORD_AUDIO . SET_WALLPAPER_HINTS

BN ACCESS_NETWORK_STATE B CLEAR_APP_CACHE BN GET_PACKAGE_SIZE READ_CONTACTS B REORDER TASKS = STATUS BAR

W ACCESS_WIFI_STATE B CONTROL_LOCATION_UPDATES B GET_TASKS E READ_INPUT_STATE = RESTART_PACKAGES = SYSTEM_ALERT_WINDOW

W BATTERY_STATS DELETE_CACHE_FILES B INSTALL PACKAGES READ_LOGS = SEND_SMS = VIBRATE

= BLUETOOTH = DELETE_PACKAGES INTERNET B READ_PHONE _STATE SET_ALWAYS_FINISH WAKE_LOCK
BROADCAST_PACKAGE_REMOVED == DIAGNOSTIC MASTER_CLEAR == READ_SMS W= SET_ANIMATION_SCALE mWRITE_CONTACTS

mE CALL PHONE DISABLE_KEYGUARD == MODIFY_AUDIO_SETTINGS. B READ_SYNC_SETTINGS ~ WEM SET_DEBUG_APP mE WRITE_GSERVICES

= CALLPRIVILEGED oump = MODIFY_PHONE_STATE == REBOOT SET_PREFERRED_APPLICATIONS 1 WRITE_SETTINGS
CAMERA = EXPAND_STATUS_BAR BN MOUNT_UNMOUNT_FILESYSTEMS RECEIVE_BOOT_COMPLETED mmm SET_PROCESS_LIMIT Others
CHANGE_COMPONENT_ENABLED_STATE

2011 2012 2013 2014 2015 2016 2017 2018

Figure 29: Quarterly feature importance for specificity [38]

For recall, depicted in Figure 30, the situation is dramatically different. This recogni-
tion task is characterized by sudden concept drifts, more important features per quarter,
and remarkably distinct important features for the last quarters than in the early ones. Be-
sides, the importance of the later added permissions is very significant in some quarters,
explaining over 50% of the overall importance and even becoming the most important
feature (see Publication VIII). A fact that is not observed for the specificity task. Lastly, the
maximum importance per quarter is always small, rarely over-passing the 8%.

Based on the spotted differences between both tasks, the recall task’s complexity is
deemed more challenging and varied, less stable over time, and more susceptible to sud-
den concept drift. The observed changes in the last periods demonstrate that malware is
more unpredictable than benign software in permissions usage.

In summary, the characterization and analysis performed evidenced the critical im-
portance of the initial set of permissions to build an effective recognition system and the
lower relevancy for such a purpose of the later added permissions. Even though concept
drift issues were found in benign and malware data, the former shows relative stability
with gradual changes, being relatively easy to address, whereas the latter is characterized
by more sudden, and complex concept drifts dominated by specific features, making it
a challenging task. Besides, the set and degree of importance of features differ for both
tasks. Therefore, the analysis performed evidences the dynamism and constantly evolving
nature of the malware threat landscape, and emphasizes the critical requirement to ad-
dress concept drift for any solution aiming to provide long-lasting effective malware detec-
tion. The detection solution must have the ability to adapt, updating its knowledge, in an
ever-evolving landscape. A constant change that has been overlooked by the permissions-
based solutions in the related literature.

A thorough analysis of the class-based recognition performance, that is recall and

75

mm ACCESS_COARSE_LOCATION W= CHANGE_CONFIGURATION N FACTORY_TEST == PROCESS_OUTGOING_CALLS S RECEIVE_WAP_PUSH SET_WALLPAPER
ACCESS_CHECKIN_PROPERTIES W CHANGE_NETWORK_STATE N GET_ACCOUNTS m READ_CALENDAR RECORD_AUDIO . SET_WALLPAPER_HINTS

BN ACCESS_NETWORK_STATE B CLEAR_APP_CACHE BN GET_PACKAGE_SIZE READ_CONTACTS B REORDER TASKS = STATUS BAR

W ACCESS_WIFI_STATE B CONTROL_LOCATION_UPDATES B GET_TASKS E READ_INPUT_STATE = RESTART_PACKAGES = SYSTEM_ALERT_WINDOW

W BATTERY_STATS DELETE_CACHE_FILES B INSTALL PACKAGES READ_LOGS = SEND_SMS = VIBRATE

= BLUETOOTH = DELETE_PACKAGES INTERNET B READ_PHONE _STATE SET_ALWAYS_FINISH WAKE_LOCK
BROADCAST_PACKAGE_REMOVED == DIAGNOSTIC MASTER_CLEAR == READ_SMS W= SET_ANIMATION_SCALE mWRITE_CONTACTS

mE CALL PHONE DISABLE_KEYGUARD == MODIFY_AUDIO_SETTINGS. B READ_SYNC_SETTINGS ~ WEM SET_DEBUG_APP mE WRITE_GSERVICES

= CALLPRIVILEGED oump = MODIFY_PHONE_STATE == REBOOT SET_PREFERRED_APPLICATIONS 1 WRITE_SETTINGS
CAMERA = EXPAND_STATUS_BAR BN MOUNT_UNMOUNT_FILESYSTEMS RECEIVE_BOOT_COMPLETED mmm SET_PROCESS_LIMIT Others
CHANGE_COMPONENT_ENABLED_STATE

Figure 30: Quarterly feature importance for recall [38]

specificity metrics per quarter, as depicted by the red and green lines in Figure 28, evi-
denced that the detection system provided high specificity consistently (i.e., over 0.8 in
all quarters) using either of the feature sets. This fact emphasizes the goodness of the
permissions-based model to recognize benign apps effectively over time and is consistent
with the smooth concept drift that characterized these data. However, the situation is
notably different for recall. Even though the average recall performance of the system
shows an accuracy over 0.90, even reaching 0.99 in eight periods, the malware recogni-
tion performance dips significantly in three specific time frames. The algorithm could not
accurately identify new malware samples in those quarters while maintaining high speci-
ficity. Figure 28 demonstrates that the reduced feature set is superior to the complete
feature set for long-term accurate malware detection since the full feature set’s average
performance line is lower than the reduced feature set’s average line (i.e., a difference
of 1.8%). Besides, the third dip was less severe for the model that used the reduced fea-
ture set. Therefore, for malware detection purposes the reduced feature set is preferred.
The opposite situation happens in the case of benign software recognition, where the full
feature set provides better average performance than the reduced feature set (i.e., a dif-
ference of 1.5%). This observation is consistent with the results of Publication IV where
benign data samples were found to use a smaller but more varied set of permissions than
malware apps. Consequently, the extended feature set, as it includes more permissions,
provides better overall performance for this task.

Despite the overall high performance of the detection system on both tasks, the sys-
tem provided diminished malware detection performance, with different degrees of sever-
ity, at three specific time frames, namely, 2011-Q3 (initial period), 2015-Q4, and 2016-Q3,
as shown by the red line in Figure 28. Publication VIII explores with great detail the etiol-
ogy behind these dips. The main findings are summarized in the following paragraphs.

76

The first dip happens in the initial period, 2011-Q3. Even though this should not be
considered a dip in performance, it is worth analyzing its cause. In the initialization phase
of the system, where the model has access to a limited amount of data, the performance
of the system strictly depends on the generalization capabilities of the initial data chunk
concerning the following quarters. Therefore this dip does not relate to the learning ca-
pabilities of the system as there is no previous reference of detection performance. In our
case, the initial chunk was split into n ordered data chunks, where n refers to the num-
ber of classifiers in the pool of classifiers. The system was initialized in this initial quarter,
building a distinct model with each data chunk and incorporating it into the pool. As a
result, the lower initial performance is likely caused by an insufficient variety of data to
capture the phenomenon properly. Despite that, the malware detection performance in-
creased in the subsequent quarters, demonstrating the capabilities of the model to learn
and adapt over time, even when a distinct combination of features emerged as important
in closer quarters (e.g., 2012-Q2).

The second and third dips correspond to actual sudden concept drift. The relation be-
tween these dips and the characterization graphs (i.e., Figure 29 and Figure 30), is sum-
marized as follows.

The second dip (i.e., 2015-Q4), which is less severe than the third dip, was caused by a
sudden malware shift (i.e., new features emerge as important, changing the distribution
of the important features significantly, and the previous important features see their in-
fluence diminished) coincidental with an increase in the specificity score. Despite these
learning challenges, the F; score of the system showed an acceptable performance (i.e.,
over 0.80), improving in the subsequent chunks.

Airpush/StopsMS

0gos Malap = Oprake smsPay
oby - Gumen Mobilespy/Godwon = Droidjack/SandoRAT
m— Robtes = fideicon
FakeDoc m—MimobSMS. = TrojansMs.Stealer - fakeToken
Kuguo - Gamex m— Podec = Ewind
= fakeinst Agent Locker/SLocker Ransomware = iddenAds = sMsspy
- oumi = Vdioader = FakeBank FakeUpdate/Apkaug Dialer
m= Waps/Simhosy Ksapp Banksot = Fjcon = smForw
Gappusin Dowigin = sMsreg = MobiDash = Lovetrap/Luvrtrap
= Counterclank = smssend = fakeFlash m= skymobi Triada
- Rufraud —rakeApp = Dnotua Batmobi Others

56

]

2 2

2013 2014 2015 2016 2017 2018
Time (quarter

Figure 31: Malware family distribution per period [38]

The third dip (i.e., 2016-Q3) is the major performance drop in the analyzed time frame.
For recall, the feature importance distribution shows a remarkably different character

77

than in the previous quarters (i.e., more features becoming important), with the previ-
ously most important feature having a marginal role and the emergence of three new
features as important (i.e., ACCESS_NETWORK_STATE and ACCESS_WIFI_STATE from the
reduced feature set and READ_EXTERNAL_STORAGE from the extended feature set). This
correlated with the maximum value in the absolute importance line. A similar situation is
observed for specificity, with old features losing importance and new features emerging
as critically important. These sudden and significant unforeseen changes in importance
from previous patterns did not enable the pool to deal properly with the new data char-
acteristics. However, after this dramatic decrease in recall performance, where the sys-
tem still kept acceptable benign software recognition capabilities, the pool adapted and
learned from the new data, improving and rapidly recovering past performance levels in
the subsequent chunks. Despite that, this dramatic decrease in recall deserved further
exploration. This investigation was performed via malware family evolution analysis. In
this regard, Figure 31 shows the distribution of the top 10 malware families per quarter in
the analyzed time frame. The graph shows the proportion and prevalence of 54 malware
families over time. It also reports the number of malware families per period (i.e., white
stars in the middle of each bar). Besides, the F; score of the detection system is provided
as a reference in an overlay white dashed line.

10} - o o e~ > - e——— “—t S - e s e
09 @

08
07
06

> 05

o~ Boxer
Malap
BankBot
03 b= SMSReg
slocker
AirPush
Fakelnst
DroidkungFu
Dowgin
01 GinMaster
Agent
FakeApp

04

1

02

00

Q3 Q4 oI 0 0 Q& o @ 0 Q& o @ 0 Q& o 0 0 0 ao 0 0 0 o 0 0 0 a a2

2011 2012 2013 2014 2015 2016 2017 2018

Figure 32: One-family anomaly detection models performance [38]

As can be noticed, the major dip occurs in a quarter dominated by the Slocker mal-
ware family (i.e., the first and most relevant Android ransomware). This suggests that the
dip was likely caused by a diminished ransomware detection capabilities of the system.
However, this malware family was also dominant in 2015-Q3 and the detection system
reported 99% recall. This motivated the exploration of intra-family evolution. One-class
anomaly models were used for such a purpose in which the malware family was leveraged
as the class concept. These models enabled us to analyze malware family changes over
time from an initial or breakout quarter. More precisely, the decrease in performance of
these anomaly detection models indicates a shift in the characteristics of malware family
samples (i.e., changes from the initial data used to induce the anomaly model).

Figure 32 provides the one-family anomaly detection models for 12 predominant fami-
liesin the time frame from 2011-Q3 to 2018-Q2. The initial models for each malware family
were induced in distinct quarters when the malware family produced an outbreak or their
prevalence was significant, and they were tested with data from subsequent quarters until
samples belonging to the malware family vanished. This figure provides relevant insights

78

about malware families’ evolution that are directly linked to the performance dips and
observed concept drifts. Firstly, most of the malware families showed similar or the same
character over time (i.e., high detection accuracy per quarter). This implies that most mal-
ware families did not change much regarding permissions over time, thus making these
features powerful discriminators. Secondly, the Slocker family did not follow that pattern.
The initial model built for the Slocker family dips significantly in 2016-Q3, suggesting a dra-
matic and sudden change in characteristics concerning the initial model’s samples. This
experimental finding was confirmed by reports from threat intelligence sources [87, 106],
stating that in the second half of 2016 over thrice Slocker variants were detected in com-
parison with the same period in 2015, and the occurrence of a recursive ransomware out-
break characterized by its evolution into a more sophisticated and diverse malware family.
This last fact was also suggested by the more complex and diverse quarter characterization
depicted in Figure 30.

(a) 2015-Q3 Slocker predictions decision paths (b) 2016-Q3 Slocker predictions decision paths

Figure 33: Slocker family 2015-Q3 and 2016-Q3 predictions decision paths [38]

Additional evidence of this diversification of the Slocker ransomware family is provided
in Figure 33. In this figure, Shapley values were used as local interpretation method to plot
and analyze the individual decision paths leading to prediction outcomes by the model.
The decision paths enable the understanding of the importance of features in the decision
taken by the model with respect to specific samples (i.e., malware or not malware). More
precisely, for each sample, a decision path is generated that starts in an initial feature (i.e.,
bottom of the graph) and an initial probability of ~ 0.5 to belong to the malware category
and ends in the upper part of the graph with the last feature and providing the malware
class probability assigned by the model to each specific sample. The line or decision path
leading from the bottom to the upper part of the graph, moving along the features placed
in the Y-axis ordered by importance, depicts graphically the impact of the features on
the decision probability along the path (i.e., increasing or decreasing it) until the final
probability is reached.

In this regard, Figure 33 compares two relevant quarters dominated by ransomware
samples (i.e., 2015-Q3 and 2016-Q3) and the model decisions for the ransomware sam-

79

ples in each specific quarter. As can be seen in Figure 33a, all ransomware samples were
correctly classified by the model and the decision explanations are similar for all sam-
ples with just six decision paths explaining all of them. The ransomware samples in this
quarter thus exhibit similar traits, and as a result, similar attributes are utilized to classify
them. On the contrary, Figure 33b shows numerous decision paths used to classify the
ransomware samples, with varying features importance, and many misclassified samples
reaching the no malware outcome (i.e., blue paths). Therefore, the Slocker samples from
2015-Q3 are significantly distinct from the 2016-Q3 samples, both in variety and charac-
teristics. A deeper analysis can be found in Publication VIII for the Slocker family, which
explains the performance dip in 2016-Q3, and also for the FakeApp family which is related
to the lighter dip observed in 2015-Q4, as suggested by the performance of the one-family
models for this family in Figure 32.

9.3 Chapter summary

This chapter presented the results of the application of the concept drift-handling method-
ology proposed in Chapter 6 to the permissions feature set. Permissions are first-line se-
curity constructs in Android OS, inherited from the Linux kernel. The analysis of their evo-
lution and usage can provide relevant insights into the dynamics of the malware threat
landscape. Permissions are usually mixed with other static or dynamic features as input
features in the detection systems proposed in the literature. Our findings show and char-
acterize the concept drift that exists in the permissions feature space, but more interest-
ingly, they show that when concept drift is addressed, a limited set of permissions that
were established in the early days of Android can still be used by themselves for reliable
malware detection over time.

80

10 On the relativity of time: a study of timestamps for
effective Android concept drift handling

The essential constructs underlying effective concept drift handling are timestamps. Times-
tamps enable the temporal location of apps, aiming to provide a reliable temporal context

within the Android historical timeline. The reliability of many produced timestamps can

be questioned, however, because of how malware is created and discovered and the lack

of a clear method that can guarantee absolute precision and accuracy.

Publication IX thoroughly explores the usage of distinct timestamping approaches for
effective Android concept drift handling in different feature spaces (i.e., system calls, per-
missions, and API calls). The timestamps analyzed are compared using distinct statisti-
cal measures and the detection performance yielded using the methodology proposed in
Publication V for concept drift handling.

10.1 Data set: timestamps and feature spaces

The base data set used for this study was KronoDroid. It provides four timestamps and two
commonly used feature spaces (i.e., system calls and permissions). For this benchmarking
study, the real device data set was used, composed of 41,382 malware samples and 36,755
benign samples. Additionally, for all the samples in the data set, two timestamps (i.e., dex
date and manifest date) and the API calls defined in the source code (i.e., static features)
were collected for the exploration and benchmarking performed in this study. Publication
IX provides detailed information on the methodology used for the acquisition and gener-
ation of these data features. The timestamps used, their acronym, and brief definition are
provided in Table 12. The name of the feature spaces investigated along with their type
and dimensionality are reported in Table 13.

Table 12: Summary of the timestamping approaches analyzed [37]

[Timestampname | Acronym | Description |
Last modification LM The most recent timestamp retrieved from any file inside the apk archive
Earliest modification EM The oldest timestamp retrieved from any file inside the apk archive
First seen FS Date and time of the first submission of the sample to VirusTotal
First seen in the wild FSW Date and time of the first time the sample was seen anywhere on internet
Dex date DD Timestamp retrieved from the classes.dex file (i.e., apk compilation time)
Manifest date MD Timestamp retrieved from the AndroidManifest.xml file inside the apk

Table 13: Summary of the feature spaces explored [37]

[Feature space [Dimensions | Type |
System calls 288 Numeric
Permissions 166 Binary

API calls 53,523 Binary

The feature spaces analyzed in this research for the same data set are representative
of the most common attributes used for Android malware detection [90] and provide
complementary perspectives for the concept drift phenomenon in varying dimensions
and feature types. In addition to that, the temporal dimensions segment and transform
the multi-dimensional feature spaces distinctively, thus providing an extensive exploration
of the suitability of the timestamps for effective concept drift handling.

81

10.2 Timestamps statistical analysis

The main focus of this study is on the temporal dimension of the data and its impact on
concept drift representation, analysis, and handling. Therefore, the initial step was to
perform a comparative analysis of the six timestamps using statistical metrics.

The usage of a timestamp to locate applications along the Android historical timeline
is subject to availability and reliability issues. The first pertains to the timestamp’s ac-
cessibility, while the second concerns the timestamp’s temporal accuracy concerning the
app’s actual position within the historical timeline. As the ground-truth temporal loca-
tion is hardly achievable in the vast majority of cases (i.e., it is not possible to know with
absolute certainty when the sample was released), the main aim of the timestamping ap-
proaches is to provide a good approximation to the explored phenomenon in the absence
of ground-truth data. In our case, a good approximation would minimize the amount of
error for the majority of the samples and enable concept drift handling effectively. In this
regard, due to the absence of a ground-truth temporal reference, our assumptionis that a
concept drift effective handling solution may provide relatively more stable and smoother
performance over time when using an accurate timestamp than with an inaccurate times-
tamp, as data evolution may, in general, occur by shifting gradually over time introducing
new elements and discarding others in a relatively smooth transition (i.e., gradual or incre-
mental concept drifts). Sudden concept drifts may happen over time but their prevalence
should not be significant (e.g., completely new malware outbreaks); otherwise, concept
drift could be hardly modeled, and keeping high performance over time would be an in-
tractable task.

10.2.1 A deep comparison of timestamps

The sequential steps and metrics used for the comparative analysis of the timestamps are
described as follows:

1. Prevalence: the prevalence of timestamps is a term related to availability which
informs about the accessibility of the timestamp, that is, if the timestamp can be
successfully collected or retrieved from the samples. For each timestamp, the num-
ber of set timestamps (i.e., properly defined) and not set timestamps (i.e., missing
or undefined) for the whole data set was retrieved.

2. Validity: the validity of a timestamp is an indicator of whether the timestamp is
comprised in the Android historical time frame (i.e., from the 22nd of October 2008
[33] to the present day). It is not an indicator of accuracy; however, it discards all
the timestamps not comprised in the valid Android timeline range (i.e., before 22nd
of October 2008 or in the future).

3. Suitability: the suitability of a timestamp combines the previous approaches in a
positive way. Thus, a suitable timestamp is available/prevalent and is also valid.
Consequently, a non-suitable timestamp is attributed to a timestamp that is avail-
able but invalid.

4. Distribution and statistical analysis: data distributions for each timestamp and
for each class were analyzed and compared using statistical measures. Histograms
were used to visualize the data distributions and as input to statistical tests and
techniques for similarity assessment. Two statistical methods for measuring the
similarity between data distributions were used:

82

e Jensen-Shannon distance: a distance metric that is calculated as the square
root of the Jensen-Shannon divergence. The Jensen-Shannon divergence (JSD)
is computed as:

JSD(P||Q) = DKL(ZPHM> + DKL(ZQHM)

where P and Q refer to two probability distributions, M is the point-wise mean
of P and Q calculated as %(P + Q) and Dk, refers to the Kullback-Leibler (KL)
divergence calculated for each pair of distributions. The KL divergence or rela-
tive entropy, which is used to quantify the difference between two probability
distributions, is calculated as:

Dk1(P||Q) = Toex P(x)log (1)

Based on these definitions, the distance metric provided by the square root of
the JSD enables us to measure the similarity between two probability distri-
butions. The JSD distance for two probability distributions is bounded in [0, 1]
when the base 2 logarithm is used for computations. The general interpreta-
tion is that the larger the value (i.e., closer to one) the greater the difference
between the distributions.

¢ Kolmogorov-Smirnov two-sample test: a non-parametric statistical hypothe-
sis test to assess the equality of one-dimensional probability distributions. It
enables us to assess the probability that two collections of samples (i.e., F(x)
and G(x)) could have been drawn from the same probability distribution, that
is, if they are statistically similar. The null hypothesis Hj for the test is that the
two distributions are identical (i.e., F (x) = G(x), Vx), whereas the alternative
hypothesis H; is that they are not identical. The Kolmogorov-Smirnov (KS) test
answers the hypothesis by analyzing the maximum difference between the
two experimental cumulative frequency distribution functions. The KS statis-
tic is calculated as:

Dy = sup | Fy(x) — G (x) |
X

where F,(x) and Gy,(x) refer to the empirical distribution functions of the two
data samples, of size m and n respectively, and sup is the supremum function.
For large samples, the null hypothesis is rejected at significance level « if

Dy p > c(0r)/ 28

where m and n are the sizes of the distributions and the value of ¢(a) is a

parameter calculated as c(at) = \/—In(%)3.

The similarity of distinct combinations of data distributions based on the times-
tamps was analyzed using the described metrics. As these metrics evaluate simi-
larity of distributions using different approaches, the usage of both techniques pro-
vides a better overall perspective of the differences between the analyzed sets.

. Accuracy: an approximation of the accuracy of the timestamps was explored to as-
sess their reliability. The evaluation of timestamp accuracy is a significant challenge
due to the absence of an exact ground-truth timestamp. For this purpose, open-
source intelligence feeds such as malware family discovery news of specific malware

83

families by antivirus vendors and media sources were used to establish an approxi-
mation of the discovery date of a specific malware family. After that, a time frame
around the date was established (i.e., + 6 months) and statistics were retrieved from
each timestamp data distribution for each family. The rationale is that, if the times-
tamp is accurate, it would place the samples around that time frame (i.e., discovery
time £ 6 months) and also after it, implying that the malware family might be lo-
cated accurately and also its evolution. If a significant number of samples is placed
outside of this time frame, the timestamp could be deemed relatively inaccurate.
Despite the limitations of this approach, the experimental results proved that it pro-
vides a good notion of the accuracy of the timestamps, especially when the results
among timestamps are compared.

10.2.2 Experimental results

It is worth noticing that from the set of six timestamps analyzed, two correspond to exter-
nal timestamps, set in this case by VirusTotal scanning reports, thus not extracted from the
apk archive metadata. These timestamps are the first seen and the first seen in the wild.
An external timestamp is less prone to be manipulated by perpetrators as it is not in the
immediate scope of the attacker. However, they can be prone to delays, as they depend
on users’ proactive behavior (i.e., user submission to VirusTotal’s service), and processing
errors. Besides, the first seen in the wild, defined as the first time the app was observed
anywhere across the internet, might be not set for benign applications. The remaining
four timestamps are internal timestamps, collected from the inner files of the app archive
data. Thus they can be manipulated or removed by a motivated attacker.

The following sections describe and provide a comparative analysis of the timestamps
from different perspectives in relation to availability and reliability measures.

1. Prevalence: provides a notion of the data availability, which is critical to build effec-
tive learning systems. If the timestamp cannot be retrieved, the sample cannot be
located in the historical timeline and, consequently, the sample is unusable. Figure
34 conveys graphically the prevalence or availability property for each timestamp in
the whole data set. The horizontal axis provides the timestamps, referenced in their
abbreviated form. For each timestamp, two vertical bars are defined, which report
the relative frequency or percentage of data samples that had the timestamp avail-
able. The colored areas refer to class-wise proportions (i.e., red for malware, green
for benign apps), while the grey areas indicate the proportion of data samples that
did not have the specific timestamp available.

As can be observed from Figure 34, the majority of the timestamps are available for
all data samples, as most of the bars reach beyond 97% prevalence. Furthermore,
the first seen was defined for all data samples. This was expected as to retrieve the
report for the first time the timestamp is always set by the scanning service. The
internal timestamps are mostly available, especially for malware instances. Interest-
ingly, a larger proportion of null-valued timestamps was found on legitimate apps,
a fact that could appear counter-intuitive, but that was also highlighted by [27].
An exception to the high availability of the timestamps is the first seen in the wild
timestamp. The majority of the reports retrieved did not provide information for
this feature, thus it is missing for most of the apps, especially for benign apps (i.e.,
0.6%). This is logical as the objective of the scanning service is to detect malware
threats (i.e., positive detection) thus the first seen in the wild location for benign
instances is not a priority as it is usually irrelevant.

84

1.0
09
08

=07

2

2

206

&

2
£05

©

=

=04

k]

<03
02
01
0.0

Relative freq uency

e 2o

>07
“’06
»705
404
’103
-A ilable - Valid W Available & Valid
NtA Ihl NtVId A \b\ &NtV\d

M FS st) o M Fs FSW o> MD M Fs FoW DD VD
Timestamp Timestamp Timestamp

Figure 34: Availability [37] Figure 35: Validity [37] Figure 36: Suitability [37]

2. Validity: The timestamp for any Android app sample should be located within the

Android historical timeline, which encompasses from the 22nd of October 2008
(i.e., Android Google Market public release) to the present day. A timestamp located
within this time frame is deemed as valid. Timestamps located in the future (e.g.,
2107) or in the past (e.g., 1997), which were found within the data, are impossible
configurations, suggesting tampering, and were consequently labeled as not valid.
Figure 35 reports the validity property for each timestamp in the whole data set.
Similarly to Figure 34, the horizontal axis provides the timestamps, referenced in
abbreviated form. The vertical bars report the proportion of valid timestamps for
each class with green/red color and the not valid as shaded areas.

Figure 35 reports similar values to the ones in Figure 34 for FS and FSW timestamps.
However, for the EM, LM, DD and MD timestamps, the bars reach lower figures, es-
pecially for the EM timestamp. This indicates that this timestamp is the one that
contains more non-valid values, followed by DD and MD timestamps. In all cases,
with the exception of EM, malware samples reach higher values than benign sam-
ples, which, again, seems counter-intuitive. However, this fact may only reflect a
general disregard for timestamps by benign app developers but does not provide
any hint about the accuracy of the timestamp.

. Suitability: in this analysis, the concept of suitability provides a notion about the
most usable timestamps, that is, they are available and valid. Figure 36 reports the
suitability proportion per timestamp and class. In this case, the colored areas refer
to class-wise timestamps that are both available and valid. The grey areas report
the proportion of samples that have available but invalid timestamps.

Figure 36 conveys that, FS, FSW and LM are the most suitable timestamps, with a
large proportion (i.e., 100% for FS and FSW) of available data that lie inside the valid
time frame. However, despite the high suitability of FSW, its low prevalence makes
it a worse option than FS and LM if data quantity is a requirement. EM, DD and
MD timestamps show values ranging from 87% to 93% thus deemed as the least
suitable options.

. Distribution and statistical analysis: The probability distribution of each individual
timestamp is provided in Figure 37. For each graph, the color of the bars refers to
the class distribution (i.e., green for benign software, and red for malware). The
X-axis provides the year range of the bar data, while the Y-axis provides the relative
frequency for each year. The horizontal range is adjusted to the valid time frame for
those timestamps that only provided valid data and the LM timestamp. This was

85

0.7 -

0.6 -

0.5-

0.4-

0.3-

0.2-

0.1-

0.7 - 0.7 -
Benign

0.6~ 0.6- Malware
05- 05-
0.4- 0.4-
03- 03-
02- 02-
01- 0.1-

0.0-" \ ! g C00- T T v " " T 00- . | y " " ' r
1980 1985 1990 1995 2000 2005 2010 2015 2020 2008 2010 2012 2014 2016 2018 2020 2008 2010 2012 2014 2016 2018 2020

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

0.1-

(a) EM probability distribution (b) LM probability distribution (c) FS probability distribution
0.7- 07-
0.6- 06-
0.5- 05-
0.4- 0.4-
03- 03-
0.2- 0.2-
0.1- 0.1-

- u v v v v | 0.0-% U U g 0.0-" . . . | | " ' v
0o 2008 2010 2012 2014 2016 2018 2020 1980 1985 1990 1995 2000 2005 2010 2015 2020 1980 1985 1990 1995 2000 2005 2010 2015 2020

(d) FSW probability distribution (e) DD probability distribution (f) MD probability distribution

Figure 37: Probability distribution for each timestamp [37]

preferred given the negligible proportion of invalid values of this timestamp and
also to provide an enhanced visual comparison between LM and FS (i.e., the most
suitable timestamps) which is enabled when just the valid range is plotted.

As can be observed in the graphs of Figure 37, the internal timestamps (i.e., EM,
LM, DD, MD), show similar data distributions. The LM, however, does not show the
large proportion of data points (i.e., around 10%) located in 1980 that the other
external distributions have, but the distributions in the valid range are relatively
similar, especially when compared with DD, MD. The FSW data distribution is rad-
ically different to the other distributions, showing malware data concentrated in
the 2008-2016 range and legitimate data in the 2014-2019 range and also in 2010.
When LM and FS are compared, the two distributions seem relatively similar for
legitimate data, peaking in one year and relatively low in the other years. However,
the peak occur in 2011 for LM and 2012 for FS. In the case of malware, the three con-
secutive bars around 0.2 probability value occur in both distributions in the range
2012-2014. Despite that, the distribution of data surrounding the 2012-2014 time
frame is different, with many samples in the years before this time frame for the LM
but not for the FS, which concentrates most of the samples in the years after this
range, especially in 2018. These observations may suggest that the relatively similar
but shifted shapes might have been caused by recurring delay in FS with respect to
LM. Further exploration of this hypothesis is addressed in Section 10.3.

The statistical analysis of timestamps distributions enables the assessment of their
similarity, which provides a notion of the degree of variability among them. For this
purpose, Jensen-Shannon distance (i.e., JS) and Kolmogorov-Smirnov 2-sample test
(i.e., KS) were used. The former uses the notion of distance between distributions
to provide a similarity score, bounded in the [0, 1] interval, where higher values
report greater dissimilarity, while the latter uses the concept of p-value to assess
the statistical significance of the results by accepting or rejecting the null hypothesis

86

(i.e., the distributions are equal) at a specific confidence level . Thus enabling the
assessment of the similarity between the distributions. Small p-values indicate a
high probability that the distributions come from the same population, suggesting
a greater similarity between the timestamps.

EM LM FS FSW DD MD EM LM FS FSW DD MD

EM 0.02 0.00 0.00 0.0l 0.01 EM- 0.00 0.00 0.00 0.00 0.00 EM LM _FS Fsw DD MD

.
” ” o W
w035 021 004 w023 045
-

0.26 0.01 024 024
FS 0.12 oe FS-0.38 0.22 (1151 0.45 0.45

FSw 0.04 004 ||, str 029 029 | |,.
1 Laliel o
DD 014 030 DD 013 014 0.23
” ”‘ KSv-0.04 030 0.26 001 004 0.04

MD- 0.14 0.30 0.02 MD- 0.13 0.14 0.28 0.00

Figure 38: JSD-KS matrix for Figure 39: JSD-KS matrix for Figure 40: JSD-KS matrix for
benign data [37] malware data [37] inter-class data [37]

The matrix in Figure 38 provides the comparison among all pairs of timestamp dis-
tributions for the benign data. Given the symmetry of the calculated measures, they
enable us to provide the computed values for both similarity measures in the form
of a matrix where the main diagonal is left blank to separate the values. The values
above the diagonal of the matrix provide the values for KS computations, while the
values below the diagonal provide the obtained JSD values.

As can be observed in Figure 38, all the timestamps seem to provide distinct distri-
butions for the samples. The only exception is for DD and MD which have an almost
0O distance (i.e., almost perfect similarity) and a p-value of 1. These values indicate
that these two distributions are roughly the same. A fact that was also spotted in
the graphical visualization in Figure 37. Further, DD and MD have a high degree of
similarity (i.e., they have small distance and high KS value) with LM and in less de-
gree with EM. This fact shows the relatively close distance between the distributions
based on internal timestamps, which also confirms the spotted similarities on the
plots. Despite that, LM is preferred as it provided more suitable timestamps than DD
and MD. Regarding the external timestamps, FS and FSW, they show unique distri-
butions, as evidenced by the large distance values and small p-values with almost all
the other distributions. When the most suitable timestamps are compared, FS and
LM, they are seen to have large dissimilarity (i.e., 0.77; therefore, they locate the
samples distinctly) but relatively low p-value (i.e., 0.21), which confirms the inter-
esting observation from the graphs. Their cumulative functions are close enough to
be found relatively similar using the KS-test but different when the distance-based
similarity is used.

The matrix in Figure 39 provides the comparison between all pairs of timestamp
distributions for the malware data. Again, the area above the diagonal provides KS
p-values, while the area below the diagonal provides the JSD values.

As can be seen in Figure 39, the overall picture is similar to the benign case. The in-
ternal timestamps have high similarity. The external timestamps differ significantly,
more than in the benign case. An exception to the overall similar observations to
the benign case emerges when comparing FS and LM. For the malware case, these
two distributions have a smaller distance but a significantly higher p-value. This fact
shows that the range and overall shape of the distributions are similar but that the
cumulative function of the values is significantly distinct. These results support the

87

hypothesis of the delay between them, and the greater concentration of data in the
early years for LM and for the latter years of the valid range for FS.

The previous statistical analysis compared the distribution of data according to times-
tamps for the same class (i.e., benign and malware). An interesting comparison is
also the analysis of the similarity of class distributions within a given timestamp.
The results of this comparison are reported in Figure 40, where the columns pro-
vide information about the specific timestamp and the horizontal rows about the
statistical value computed when comparing the benign and malware distribution
for each specific timestamp. The upper rows in the figure provide the comparative
results of JSD and KS for the whole distributions, whereas the lower rows provide
the same information but just for the distributions in the valid time frame, indicated
as JSD-v and KS-v.

The overall interpretation of Figure 40 is that the valid time frame emphasizes the
differences among class distributions. The values of distance increase and p-values
diminish in the lower rows (i.e., valid range) when compared with the upper rows
(i.e., whole range). The only exception to this are FS and FSW timestamps which
have the same values on both pairs of rows as they are always valid. Therefore, the
class-based distributions are significantly different across all timestamps.

. Accuracy: due to the absence of ground-truth timestamps, the assessment of times-
tamp accuracy and reliability is hindered and can only be approximated using open
source intelligence sources which might be relatively delayed and not fully precise.
In this research, the first publicly available report for specific malware families was
used to approximately contextualize the malware family within the historical time-
line. Table 14 shows 10 malware families (i.e., one per row) and the date used as a
reference of the discovery time frame based on reports taken from reliable sources
and contrasted with other sources (i.e., month/year). The data sources are pro-
vided in square brackets. The following six columns are split into three sub-columns
which are referred as £6, > 6, and NV. For the sake of interpretation of the table,
these columns have been colored in green, yellow, and grey, respectively. These
columns provide the proportion of data samples (i.e., percentages) of the data set,
dated with each specific timestamp, that lie within the reference value +6 months
(i.e., £6 column), beyond the reference value + 6 months (i.e., > 6 column), or that
have a invalid location (i.e., NV column). As mentioned before, a precise timestamp
should locate most of the samples of a specific malware family between the +6 and
> 6 range. The proportion of NV values and samples located before the valid range
should be minimal. A higher proportion of values within the > 6 range may imply
a delay in the timestamp or family evolution. The +6 range gives a notion of the
number of samples within this range but due to family evolution, it can only be in-
terpreted in comparison with the other values, as the data set may contain fewer
original samples than evolved samples. Furthermore, the malware family naming is
inconsistent among AV vendors or even analysts thus being a handicap for any mal-
ware family analysis. In our study, we assume that most of the labels are certain
which provides a relative degree of flexibility to interpret the results. The last row
of the table provides the average value of each column for each specific timestamp.
The difference between the sum of the three values (i.e., 6, > 6, and NV) and 100
is attributed to the proportion of timestamps dating the sample in the valid range
but before the reference value - 6 months.

As can be observed in Table 14, the individual proportions for specific malware fam-

88

ilies greatly vary among timestamps. A better general picture is provided by the
total values. Even though outlier values may cause the average to be skewed, it still
serves as a reliable indicator of the general trend. The LM timestamp offers the
best suitable accuracy characteristics according to the interpretation of the total
values. It has a very low ratio of invalid values and a high proportion of timestamps
within the valid time frame. The average values also confirm that the internal times-
tamps show similar statistics/distributions, with all of them showing similar propor-
tions but with significantly lesser invalid values for the LM timestamp. The external
timestamps show completely different pictures. The FS is characterized by provid-
ing always valid values, whereas the FSW shows a large proportion of invalid, which
correspond to missing data in this case. Finally, when the FS and LM timestamps
are compared, the average values show that FS captures most of the data beyond
the reference + 6 months (i.e., > 6) timestamp, whereas the LM timestamp does it
in similar proportions on both valid ranges. This supports the delayed nature of FS
to capture malware outbreaks and the goodness of LM to locate most of the data
samples with improved precision.

Table 14: Accuracy of timestamps for malware families [37]

Famil Reference ‘ M [M [il [Fiw [o [MD |
v 36 [56] W | %6 [6 [NV | % | »6 | W | %8 | 6 | W | 36 | 6 | W | %6 | 6 | W |
Geinimi T/A0[30] | 313 | 438] 63 | 563] 437] O 5] 875] © 881 0 563] 563 437] 0 563] 437] ©
DroidDream [03/11[29]| 659| 198 © 67 | 286 © 143 87| 0 165 44 | 65| 67 | 286] © 67 | 286 0
DroidKungFul 06/11[56]| 66.2| 131 | 119 | 68 | 316 | 03 | 76 | 924 © 25 | 165| 54 | 683[314| 03 | 683] 314 | 03
Plankton | 06/11[91]| 238 714 | 16 | 222| 778 | O 63 | 937 © 0 16 | 921 | 222] 778] © 222] 7728 | 0
GinMaster ﬁ%/;; 212 | 704| 66 | 76| 85| 02 | 07 | 989| O 52 | 39 | 698| 184| 807| 02 | 184| 807| 02
AnserverBot [09/11[56]| 96.3| 0 10 | 997] 0 0 421 79| 0 03 | 472 391 997] © 0 997] © 0
Slocker 05/14169]| 232 | 50.3| 258 231 | 529 | 184 11 | 985| © 01 | 10 | 989 232 551 | 211 | 233| 544 217
MobiDash | 01/15[62]| 3.3 | 60| 367] 33 | 902] 65 | 07 | 993| © 07 | 13 | 967 33 | 608] 359| 33 | 601| 366
BankBot | 01/16[26]| 60.4| 173 | 123 | 605| 204| 92 | 713| 27 | © 4 02 | 76 | 605 202] 94 | 605] 196 | 10
Triada 03716191 417 | © 583| 417 | 167] 416| 417 | 583] 0 47 83 | 50 | 47| 167 | 46| 47| 167 | 416
[Total [[433] 346] 161] 459] 449 76 | 198] 80 [0 [9 [85 69 [46 | #4.5] 109] 46 | #413[1|

10.3 Last modification vs. first seen: a comparative analysis

The results from Table 14 and the previous analysis suggest that FS and LM are significantly
better timestamps than the other analyzed approaches in terms of suitability, statistical
properties, and accuracy. To explore their relation deeply, the next paragraphs analyze
statistically the differences between them and their delayed relation over time.

Figure 41 and Figure 42 provide the differences between both timestamps, computed
for each data sample, separately for benign and malware data. The base unit is days and
the base timestamp used is the last modification, so that the differences can be expressed
in positive terms (e.g., +8 days). The assumption for this is that the last modification times-
tamp would place the sample more accurately in the historical timeline, earlier in time
with respect to the first seen timestamp. Therefore, it was chosen as the reference time.
These graphs report relevant descriptive statistics regarding the temporal differences (i.e.,
Y-axis) for the samples in the data set, located in a specific time period (i.e., six months
chunks) using the last modification timestamp (i.e., X-axis), with respect to the first seen
timestamp. The data are split into chunks of six months data (i.e., period) for better in-
terpretation of the results and deeper exploration of the differences. Just the valid time
frame is plotted (i.e., from 2009 to 2020). The semesters are referenced as appended suf-
fixes to the year figure (e.g., 2009.1 reflects the first six months of 2009). The differences
were calculated individually per data sample and grouped into data periods based on the
last modification timestamp. Descriptive statistics are calculated per period: mean, me-
dian, minimum difference, and standard deviation. The blue solid line reports the average

89

value for each period, while the blue dashed line provides the median. These two central
tendency measures report the average value of displacement of a sample for each period.
The green line provides the minimum difference value found in that period. The standard
deviation, plotted as a blue area, conveys the average spread of the differences around
the mean for the data samples located in each specific chunk.

— Mean — Mean
2500 4 —= Median 2500 —= Median
Min. value Min. value
D D

— 2000 + 2000+

,_.
&
S
S
—
o]
S
s

ifference (day
ifference (days

,_.
=)
<]
=]

1000

Time
Time

500 +

Figure 41: Differences between LM-FS times- Figure 42: Differences between LM-FS times-
tamps for benign data [37] tamps for malware data [37]

For both classes, a positive difference between both timestamps is observed. This evi-
dences that the first seen timestamp locates the samples later in time, thus delayed, with
respect to the last modification timestamp. This fact is especially pronounced in the early
years of Android history, with average differences of around 1,500 days (i.e., four years)
for both malware and benign applications. This means that an instance located in 2009.1
(i.e., the first semester of 2009) by the last modification timestamp might be located by
the first seen timestamp in 2013.1 (i.e., the first semester of 2013). This significant dif-
ference might impact the performance and adaptation capabilities of a trained classifier
to deal with concept drift as the first seen may generate artificial drift by misplacing the
data, which might be more complex to model effectively than real concept drift, generally
smoother.

However, as can be observed in Figure 41 and Figure 42, the differences between these
timestamps have been reducing over time, as evidenced by the monotonically decreas-
ing mean value for benign instances and the significant decrease occurred in the case of
malware instances, especially for the recent years. This fact makes the timestamps more
synchronized and closer over time, even equivalent for the 2019-2020 time frame. For
instance, 2020.1 and 2020.2 periods have mean values of 4.88 and 12.37 days and median
values of 2 and 3 days, respectively, for benign samples, and average values of 15.9 and
16.45 days and medians of 5 and 11 days, respectively, in the case of malware samples.
This is a dramatic change when compared to 2010.1 statistics, which show a mean value
of 728.4 days and a median of 747 days for malware and an average of 774.3 days, and a
median of 821 days for benign data. As a result, the gap between both timestamps to date
samples has significantly decreased over time making them converge and, consequently,
increasing the reliability and accuracy of the first seen timestamp in the recent years (i.e.,
2019-2020).

The convergence of both timestamps supports the hypothesis that the last modifica-
tion timestamp is accurate and that is rarely tampered by attackers. Consequently, if the
system has to learn from past data and predict past samples, it might be safer to use the
last modification, whereas if the system uses mainly recent data, the convergence of the

90

timestamps implies that both should be appropriate and perform relatively well against
data drift. Furthermore, if data tampering is a major concern, the usage of the first seen
ensures that the data have not been tampered with, even though a minimal delay should
always be assumed.

10.4 Timestamp performance analysis for concept drift handling

The main objective of the experimental scenario was to evaluate the goodness of the
analyzed timestamps to deal with concept drift when the detection model is induced in
different feature spaces. The concept drift handling method proposed in Section 6.3.1
was used as a continuous detection model. Due to the characteristics of KronoDroid data
and the demands of machine learning models, the experimental setup was restricted to
the period encompassing the second semester of 2011 until the first semester of 2018.
This time frame spans seven years of Android history, including the most active years in
Android malware development [13, 57].

The available data per timestamp for the selected time period (i.e., from 2011.2 to
2018.1) are provided in Table 15.

Table 15: Sample size per timestamp from 2011.2 to 2018.1[37]

[Timestamp [Malware [Benign [Total |
EM 33,346 7,602 40,948
LM 38,496 13,456 51,952
FS 40,376 32,870 73,246
FSW 2137 16 2,253
DD 36,805 11,555 48,360
MD 36,810 11,500 48,310

As can be noticed in Table 15, FS provides most of its data within this range, whereas
the external timestamps provide a smaller number of samples. As expected, the data is
imbalanced towards the malware data, thus justifying the usage of a data set balancing
technique to avoid any class bias from the classifier. Finally, as the data provided by the
FSW timestamp is not enough to build a single classifier, this timestamp was discarded
and not used in the following experimental setups.

Three experimental scenarios were induced to explore the different feature spaces
separately using the timestamps. The F; score performance metric was retrieved. The
graphs provided in the following sections report each model’s performance with different
colors and/or line styles. More precisely, EM, DD and MD are provided in green color and
with solid, dashed, and dotted line style, respectively. LM is reported with a blue solid line,
while FS with a red solid line. As the most suitable options were LM and FS, their average
performance for the whole analyzed time frame is reported with a horizontal line, in solid
blue color for LM and in solid red color for FS.

10.4.1 Permissions feature space

Figure 43 shows the performance outcomes of the models created for the permissions
feature space and the unique timestamps. The permissions feature space is categorical
and the smallest of the analyzed ones. As can be observed, despite suffering two sud-
den drops (and consequent recovery), the smoothest line is provided by the LM times-
tamp. The other internal timestamps provide similar performance but describe a rougher
surface. The FS timestamp performance is not smooth, characterized by several sudden
peaks and bottoms in neighboring quarters, especially at the beginning and the end of the
analyzed time frame (i.e., bumpy red line). Furthermore, it has the lowest average perfor-

91

mance in the analyzed period. Despite that, the overall performance of all models is over
0.90 Fi, which reflects the goodness of the system to deal with concept drift, especially
by the internal timestamps.

the natural data drift, which is better captured

Figure 43: Timestamps F| performance on the
permissions feature space [37]

Figure 44: Timestamps F| performance on the
system calls feature space [37]

Figure 45: Timestamps F| performance on the API calls feature space [37]

10.4.2 System calls feature space

Figure 44 shows the performance of the models built for the system calls feature space.
The system calls feature space is numeric and larger than the permissions space. Similar to
Figure 43, the internal timestamps provide smoother performance lines, and, again, the
LM timestamp seems to provide the best performance. It enables the model to capture
better the natural data drift, showing steady recovery after sudden data drifts. However,
in this case, EM achieves similar performance over the whole range but shows a more
noisy performance line. As in the permissions case, FS provides the worst performance
and is characterized by sudden dips and peaks, which are likely to be caused by the ar-
tificial data drift. An interesting fact in this plot is that from 13-Q3 to 16-Q3, LM and FS
seem to perform synchronously. The FS performance line is relatively similar but delayed

92

one quarter with respect to LM and reaches more extreme values. This goes in line with
the median differences observed in this time frame in Figure 41 and Figure 42 (i.e., below
90 days for both classes). Lastly, in this case, the difference between FS and LM average
performance is significantly greater, with the average performance of LM around 0.93 and
at the 0.87 level for FS.

10.4.3 API calls feature space

The performance of the models built for the API calls feature space are provided in Figure
45. The API calls feature space is the largest feature space, with over 53,523 features.
Similar to the other feature spaces, the performance of the internal timestamps is similar
and over the performance of FS. However, in this case, two large dips are observed for the
internal timestamps that are not observed in the case of FS. It is worth noticing that, in the
case of high-dimensional spaces, the quantity of data is critical to build effective models
(i.e., data density is needed to build precise classification boundaries), a phenomenon
called curse of dimensionality. As reflected in Table 15, the data sets available for the
internal timestamps are smaller in general, and significantly reduced on these specific
data periods; therefore, the reduced performance could be the result of insufficient data
to cover the feature space and build an effective model. However, despite the large dips
in those specific periods, the average performance of LM still outperforms FS.

10.5 Chapter summary

Only a tiny proportion of the research regarding Android malware detection has consid-
ered concept drift in their design or experimental setup. In this regard, timestamps, a cen-
tral element for concept drift handling, have not received the needed attention as none
of the concept drift-related studies considered more than a single timestamp in their pro-
posal. This chapter presented an extensive benchmarking about timestamp options and
their capabilities to deal with concept drift effectively in distinct feature spaces. The re-
sults show that timestamp selection is a critical decision and that the last modification
and first seen timestamps are the best options to build effective long-lasting ML models
for Android malware detection under data evolution constraints.

93

11 Applying active learning to handle data evolution in Android
malware detection

The methodology proposed in Chapter 6 enables concept drift handling using a data stream
approach and a pool of classifiers to update and refine the knowledge of the detection sys-
tem over time. Despite the remarkable benefit of the described approach and others in
therelated literature, model retraining is the most common approach to handling concept
drift. This simple approach proposes the update of the model by retraining it with a new
set of data when drifting is observed (e.g., a drift detector is used to signal concept drift)
or periodically to keep the model knowledge updated with recent data samples. In either
case, most of the approaches in the literature assume that the ground-truth label is avail-
able [71]. This implies that the data must be labeled by experts prior to their usage to up-
date the model. In this regard, data labeling can become expensive and time-consuming
when the process demands significant expert knowledge to be performed (e.g., malware
analysts). Additionally, according to statistics, thousands of Android malware samples are
found each month, necessitating enormous effort from companies and teams of malware
experts to evaluate all the incoming samples [14].

The active learning approach can be used to minimize data labeling efforts while aim-
ing for high-performance metrics. In our study, we investigated the suitability of the ac-
tive learning approach to minimize the data labeling cost in those environments where a
wealth of unlabeled data is available, and its usefulness to enhance model retraining in a
non-stationary data environment. The tested scenarios simulate the data processing and
adaptation to concept drift needed in the case of a malware scanner company/service
where a wealth of unlabeled data is available and the necessary skills for proper labeling
make the analysis of the whole data received costly and infeasible.

The work explained in this chapter is based on Publication X which is currently under-
going a peer-review process. This work has been included in the thesis to support the
related research and make a more complete narrative of the whole research performed.

11.1 A brief on active learning

Active learning is a form of semi-supervised learning based on the assumption that an
ML algorithm can yield better performance with fewer training iterations (i.e., less data)
if it is allowed to select the data from which it learns [88]. In the usual active learning
scenarios, a supervised model, trained with a small quantity of labeled data, is allowed
to request the labeling of specific instances from a collection of unlabeled data samples
by an oracle (i.e., human expert). The main objective of the active learning approach is
to achieve high-performance models using as few labeled samples as possible, thereby
minimizing the cost of the data labeling process.

The selection of the specific instance for labeling (i.e., query instance) at each train-
ing iteration is based on an informativeness assessment of the whole set of unlabeled
instances performed by the active learner using a query strategy [89]. The pool-based
framework, depicted in Figure 46, is the most common active learning approach. This
approach assumes the existence of a small set of labeled data, which is used to induce
the initial model, and the availability of a large pool of unlabeled samples [88]. Query in-
stances are selected by the classifier itself from the unlabeled pool for expert annotation.
Once annotated, the labeled data are included in the labeled training set which is used to
update the knowledge of the supervised model.

Different query strategies have been developed to select the most informative in-
stance from the whole set of unlabeled instances [89]. The most commonly used ap-

94

o

model training query selection

ML model

Labeled
data set Unlabeled pool

—— of samplas
data labeling

5 3

Oracle

Figure 46: Pool-based active learning framework

proach is uncertainty sampling, where the query instance is selected based on the as-
sessment of how certain is the learner about the class of the unlabeled samples. In the
classification uncertainty scoring strategy, the learner selects for labeling the instance (x)
for whichiitis least certain about how to label (i.e., greatest uncertainty). The classification
uncertainty metric is based on a least confidence score (U) computed as:

Ux) =1-P([x) (4)

where x is a specific instance and y* is the most likely prediction for that instance.

11.2 Testing scenarios

The data set used for the experimental tests was the real device KronoDroid data set. The
first seen timestamp was used to order the data samples along the historical timeline and
simulate a realistic scenario of the existence of an incoming data stream. We were able to
pose as a malware scanner firm dealing with an Android malware detection system that
was prone to concept drift issues by using this timestamp to replicate the continuous flow
of user-submitted data samples to a scanning service.

For detection model induction, three sets of input features were used to describe the
apps, namely, static (permissions), dynamic (system calls), and hybrid (system calls and
permissions) with lengths 166, 288, and 454, respectively. The same initial classification
model was used in all the experimental scenarios. This initial model was a Random For-
est instance trained with data belonging to July and August 2011. This initial time frame
was selected as it provided enough data to generate a high-performance initial detection
model. However, as this initial training data set was not balanced, a data balancing tech-
nique was applied to generate a balanced training set for initial model training. In this
regard, two data balancing methods were used (i.e., random undersampling and random
oversampling) and their impact was evaluated. The remaining ordered data samples were
split into consecutive data chunks using temporal and data set size constraints. Based on
experimental tests, the maximum temporal constraint or time window was set at 60 days
and the maximum data pool size set to 4,000 (i.e., unlabeled data). The time period an-
alyzed encompasses seven years of the Android history, from the initial time frame (i.e.,
July-August 2011) to May-June 2018.

In the testing scenarios, the initial classifier was retrained using different concept drift-
handling strategies. The strategies evaluated to handle concept drift using model retrain-
ing are described as follows.

e Batch retraining: this strategy updates the detection model by retraining the classi-

95

fier using the whole amount of data available in each specific chunk. The retrained
model is used to forecast the labels for each subsequent period. Therefore, at time
t all data from previous time periods (i.e., so, ..,s;_1, where s identifies a data set
belonging to a specific time period) was used to update the model, and forecast
the labels of s, | data. Next, the whole data set belonging to ¢ + 1 was used to up-
date the model and forecast labels for s;.,. This cycle was repeated for each data
chunk until the end of the analysis period. This batch retraining approach is the fre-
quent solution used for concept drift adaptation and was used as a baseline in our
experimentation.

e Active learning: this strategy updated the detection model by selecting the most
informative instances for each data chunk, one at a time until a predefined perfor-
mance threshold was reached (i.e., 0.95 > F}). The classification uncertainty score
was used to rank and select one instance at a time from the unlabeled pool of in-
stances (i.e., whole data chunk). The selected instance was labeled by the oracle
and used to retrain the model. The rest of the data chunk was used to evaluate the
performance increase/decrease after the single retraining step. The training cycle,
as depicted in Figure 46, was repeated until the threshold of 0.95 F; was achieved.
The remaining data, not used in the iterative training steps were discarded and the
trained model, as in batch retraining, was used to forecast all the samples for the
next period. If the performance retrieved processing all the data chunk was lower
than the established threshold, the model was rolled back to its best performer
configuration and used to forecast the data from the following period.

e Random sample selection retraining: this strategy uses the same iterative training
steps as the active learning approach but, in this case, no score is used to select
the most informative instances from the unlabeled pool of samples. Random sam-
ple selection was utilized instead. We were able to recreate the scenario where a
large amount of unlabeled data was available, but no special criteria were utilized
to choose the examples; thus, they were selected randomly. This model offers a
baseline for evaluating the sample selection method’s efficacy in minimizing data
labeling.

The performance of the induced models using the different sets of features for all the
strategies was retrieved and compared. In all cases, the model trained using data from
period t was used to forecast the labels of the data belonging to the subsequent period,
st+1. The main difference among the approaches lies in the strategy used to select the
samples for model updating to handle concept drift (i.e., all data, random selection, or
uncertainty score).

The performance of the detection models using the described retraining strategies to
handle concept drift was evaluated using two relevant binary classification performance
metrics: accuracy and F| score metrics. Given the randomness of the sampling techniques
and the base algorithm used, all the scenarios were repeated 30 times.

11.3 Experimental results

Table 16 provides the obtained results using all the described concept drift-handling ap-
proaches. More specifically, the feature set column describes the input features used by
each specific model tested and the balancing method reports the technique used to bal-
ance the initial data set, in the case of the two query strategies used (i.e., random and un-
certainty), and in all data chunks for the batch approach (i.e., to avoid that the imbalanced

926

data chunks generated biased RF models). For each combination of the feature sets and
balancing methods, three strategies to handle concept drift were used and referenced in
the query strategy column. The remaining columns report the performance metrics that
enabled us to analyze and compare all the approaches evaluated. The labeled samples
column informs about the average number of samples processed by each model (i.e., ,),
that is, the number of instances labeled to reach the performance threshold in the case
of the query strategies, Fi > 95%. The columns F| score and accuracy provide the aver-
age performance of the trained models in all time windows in the analyzed time frame
(e.g., 45 data chunks spanning between September-October 2011 and May-June 2018).
The reported values for labeled samples and the performance metrics are the average
values of the 30 tests performed for each specific scenario. The standard deviation (i.e.,
s) is reported to better contextualize the mean value as a data descriptor. Additionally, for
the labeled samples, the proportion of the average number of labeled samples reported
in relation to the total data available in the analyzed period is reflected by the % column.

Table 16: Results of the testing scenarios [36]

. Labeled samples F) score Accuracy
’ Feature set ‘ Balancing method Query strategy I = [3 [%7 % = [5 % = [5 %
Batch 67,068 0 100 91.2 0.4 92.5 0.4
Oversampling Random 30,100.4 129.8 44.9 89.4 1.0 90.3 1.0
Permissions Uncertainty 11,845.6 N7 17.7 89.4 0.6 90.4 | 0.6
Batch 67,068 0 100 90.9 0.8 92.4 0.8
Undersampling Random 29,409.9 113.5 43.9 89.5 1.1 90.3 11
Uncertainty 9,281.4 35.5 13.8 89.6 0.7 90.5 0.6
Batch 67,068 0 100 85.1 0.8 86.1 0.7
Oversampling Random 45,028.9 127.8 671 84.1 0.9 84.9 0.9
syscalls Uncertainty 13,098.8 38.6 19.5 84.5 0.9 85.3 0.8
Batch 67,068 0 100 82.7 1.2 83.3 1.2
Undersampling Random 45,378.7 118.5 67.7 84.5 0.9 85.0 1.0
Uncertainty 12,748.3 52.3 19.0 85.1 1.0 85.5 1.0
Batch 67,068 0 100 92.8 0.5 93.5 0.4
Oversampling Random 22,057.2 121.5 32.9 90.9 1.0 91.2 1.0
Hybrid Uncertainty 1,991.9 8.9 3.0 91.6 1.2 91.9 1.2
Batch 67,068 0 100 92.5 0.6 931 0.6
Undersampling Random 20,978.4 116.1 31.3 91.0 11 911 11
Uncertainty 1,459.4 6.3 2.2 91.7 1.4 91.9 1.4

Table 16 displays that when the permissions feature set is used, the active learning
approach provides similar performance as the baseline model (i.e., batch, using all data),
but requires the smallest quantity of data among the tested strategies. More precisely, the
uncertainty-based active learning approach minimizes the data labeling needs to achieve
similar performance as the other two approaches, using either of the balancing tech-
niques. The batch approach, which requires the labeling of all the data samples shows
slightly better performance than the active learning and random approaches, but these
show significantly lower data labeling requirements. In this regard, the uncertainty-based
active learning approach outperforms the random selection approach by using less than
18% of the total data available in the analyzed time frame (i.e., 67,068 data samples), in
both cases. Even though both single query-based retraining approaches show benefits
over the batch approach, the active learning approach requires three times fewer data
than the random instance selection to achieve the same performance metrics. This fact
evidences that, in the permissions case, the single query-based gradual modification of
the classifier decision boundary shows benefits when compared to the baseline model
which uses batch processing, that is, all data. The random approach shows slightly lower
performance than the baseline model, but with less data labeling needs. This shows that
all data may not be essential to manage concept drift successfully, but more crucially, that

97

progressive retraining of the model based on a single instance may be more advantageous
to managing concept drift. Even though there are no major differences in performance for
both balancing methods, the undersampling approach provides similar performance met-
rics to the oversampling method with significantly fewer data in the active learning case
(i.e., 28% more data, on average, for the oversampling case than for the undersampling
scenario).

The system calls feature set yielded the worst performance models among all tested
models in both evaluated metrics, the number of labeled samples needed and perfor-
mance achieved (i.e., below 85%). However, when the single instance query strategy is
utilized, and more especially, when the uncertainty-based active learning approach is ap-
plied, the model is significantly improved, achieving equivalent performance to the base-
line model, and even outperforming it when undersampling is employed. Despite that,
the labeling needs for the uncertainty-based active learning, which, again, minimizes the
labeling cost, is superior than for the permissions case for both balancing techniques (i.e.,
a minimum of 19% of the data has to be labeled by the oracle). Random selection reaches
similar performance as the uncertainty-based strategy but requires, in both cases, over
66.7% of the whole data to be labeled.

The hybrid feature set, which combines the permissions and system calls sets, pro-
vided the best overall models, in all cases. The active learning approach using the uncer-
tainty criterion reaches a slightly lower performance than the baseline performance using
the batch approach. However, in this case, the benefits of the active learning approach are
especially evident for both balancing techniques. The labeling needs are significantly
reduced, not over-passing the 9% of the whole data available. As a result, they provide the
best performance-labeling trade-off results among all the test scenarios. In this regard, the
best model of all the tested scenarios is obtained using the active learning approach
combined with undersampling, yielding an average 91.7% F score and 91.6% accuracy
using, on average, only 1,460 samples (i.e., = 2.2% of the total data) to provide effective
detection in the seven-year-long study period. Comparatively, the uncertainty-based
active learning approach for the hybrid-featured models requires 10-15 times fewer data
than the random query approach to achieve better performance results and 50 times
fewer data to reach similar detection performance than the baseline models. These results
show that the hybrid feature set generates better discriminatory models which benefit
notably from the active learning approach, being able to handle concept drift with a very
reduced quantity of labeled data belonging to specific time frames along a seven-year-long
time span (i.e., from September-October 2011 to May-June 2018).

To further explore the results, the summary values reported in Table 16 are provided in
a more fine-grained detail over the whole analyzed historical timeline in Fig. 47, 48, 49, 50.
In these figures, the X-axis reports the time frame of the specific data chunk, encompass-
ing, at maximum, 2 months of data. The labels provide the year and month separated by a
slash (e.g., 2011/9-10 reports data comprised between September and October 2011). The
left Y-axis reports the number of samples included in every data chunk (i.e., grey color),
thus composing the unlabeled pool of samples for the active learning approaches, that
were actually labeled by the oracle (i.e., blue color). The reported values for the number of
labeled samples (i.e., blue area on the bars) are mean values with the confidence interval
of the mean estimation reported by the white whiskers that extend above and below the
mean (i.e., 95% confidence level) due to the degree of randomness of the approaches
used. The average performance scores obtained on each data chunk are reported by the
yellow (i.e., accuracy) and blue (i.e., F; score) lines placed on top of the bar chart, and

98

[—— © [——
3 3 3 3 3 3 3 3 3 s 3
— s w 9-5/810
- Imwmm ¥ Imwmm o v-£/8102
§523 §523 E 3
LN EL S = 2§33 2
—Calatsd) — _fovoloe
S L : 2 T |
g o -
. o = iotoe
W o-/510
2 — i
$ L -
2 b0 I g
S — [emtor -
=9 [o-swroe
(SN & vevioz
W 2 o gl
(] Mo = |
= "
23 i
s g =
IS ===
o 2 == —— :
< O = :
< T T~ =
o S 2 =
< S — == -
< 2 < 1 S 1 ° S o < 3 S 2 2 3 2 °
H H H g § H & bo 2 § H H H § g H &
seouesul jo oquiny i S seouesul jo Joquiny
21055 adueuLOIRg m 21055 adueuLoag
3 3 3 3 S S 3 3 3 3 B
R W R
= L = A |
. o
Q
.
ISl >
%)
— :) <
— S e
$ £
o o
E P E
£g
£o
-
S
(%)
= c
L=
= m.
= et 3
F M S
E R
| 5 8
SN
_ o S -
— — A . S — = raror
g H 2 H g H °© B g 2 2 H g g 8 ©
H H H H g H 8 2 oo & H H H H § H H ?
seouesul jo oquiny T S seouesul jo Jsquiny

hybrid features and undersampling [36]

Figure 49: Active learning results for hybrid fea- Figure 50: Random selection strategy results for
99

tures and undersampling [36]

ranging from O to 1 (i.e., right Y-axis). The standard deviation of these performance met-
rics is provided by the colored ribbons surrounding the average lines. Fig. 47 provides
the average results for the uncertainty-based active learning approach when
undersampling and the permissions set were used. Fig. 48 reports the same information
when the system calls set was used, while Fig. 49 provides the hybrid feature set-related
information. These figures enable us to compare the impact of the feature set under the
same conditions (i.e., uncertainty-based active learning approach using undersampling).
Lastly, Fig. 50 enables the comparison between the best active learning model (depicted
in Fig. 49) and the random query strategy for the same feature set and sampling
technique.

As can be observed in Figure 47, the permissions feature set enabled the handling of
concept drift using significantly less labeled data than the system calls feature set, de-
picted in Figure 48. With minor exceptions (e.g., 11-12/2012), the permissions feature set
required fewer labeled data per chunk to sustain the training target of 95% F score,
over-passing this score in many chunks, thus no data was labeled for training purposes
(e.g., 10-11/2013, 11-12/2013, 1-2/2014, 3-4/2014, and 5-6/2014). Despite the effectiveness
shown by the permissions feature set to handle concept drift using the active learning
approach, these results are significantly outperformed by the hybrid feature set, which
combines the system calls and permissions feature set. In this case, a reduced
proportion of the chunk data is labeled in every chunk to achieve high-performance
metrics (e.g., 9-10/2011, 11-12/2011) with extended periods of no new labeled data needs
(e.g., from 4-6/2013 to 7-8/2015). Therefore, the high-dimensional feature space created
by combining the two feature sets allowed concept drift to be handled better than with
any other approach while maintaining high-performance metrics with few samples
labeled per chunk. Even though this feature set reduces the data needs in all approaches
and strategies, the uncertainty-based query strategy shows significant improvement
with respect to the ran-dom query selection, as can be seen in Fig. 50. The random
query strategy requires significantly more labeled data per data chunk to sustain
performance and address concept drift, evidencing the superiority of the uncertainty-
based selection over random query selection.

The obtained results show that the active learning approach, in its most basic form
(i.e., uncertainty sampling) can be effectively used to handle concept drift, keeping high-
performance metrics while minimizing the data labeling efforts (i.e., the quantity of
labeled data needed to keep high performance). As a result, active learning might be an
efficient and effective solution to handle concept drift in environments where a large
quantity of unlabeled data is available but with high labeling cost. The active learning
strategy allows focusing the labeling effort on the relevant data to improve the model
and discard the irrelevant data samples that may not provide any benefit to the model.
The comparative performance metrics obtained demonstrate that the gradual
modification of the decision boundary caused by the addition of a single relevant sample
to the training data set can yield high-performance models using significantly fewer data
samples than the batch retraining approach. Compared to the batch retraining
approach, random instance selection enhances the labeling requirements. Still, the
active learning approach greatly outperforms both of them. Random selection requires
consistently more data to achieve roughly the same (but not better) performance
metrics than the uncertainty sampling approach. This fact evidences the goodness of the
active learning approach to induce great performance models with significantly fewer
data needs.

100

Finally, regarding the impact of the balancing technique used, it can be argued that
even though both approaches worked similarly for random and batch strategies, the un-
dersampling approach provided distinctive benefits using the active learning approach
when the permissions and hybrid feature sets were used. This technique minimized the
data labeling efforts significantly while producing great discriminatory results.

11.4 Chapter summary

To the best of our knowledge, this was the first study that leveraged active learning to
handle concept drift in Android malware detection. Our results show that the active
learning approach, in its most basic form, enables effective concept drift handling in
Android malware detection and significantly reduces the data labeling needs.
Consequently, it becomes an interesting option to enhance the ML-based detection
systems in cybersecurity environments (e.g., malware protection companies, SOCs
dealing with Android malware detection), where a large body of unlabeled data is
constantly available but the high label-ing cost associated makes the task infeasible and
prohibitive, thus affecting the detection capabilities of the system.

101

Part Il

About loT Botnet Detection

103

12 loT botnet attack detection

This chapter summarizes the contributions of this dissertation regarding loT botnet attack
detection research and contextualizes the relation among Publication XI, Publication XIl,
Publication XIlI, Publication XIV, and Publication XV. More precisely, it describes the loT
botnet life cycle as a time-dependent cyclic process where IoT botnet evolution occurs
and how the aforementioned publications relate to it.

12.1 The loT botnet life cycle

The ubiquity and poor security measures of loT devices make them an enticing target
for cyber attackers. Once vulnerable devices are compromised, they become part of a
botnet. Large loT botnets are used to perpetrate massive cyber attacks, from massive
SPAM campaigns to DDoS attacks, that can cause massive financial losses for companies
by disrupting the availability of targeted servers, services or networks for lengthy periods
of time. As a result, the vast majority of 1oT botnet-related research focuses on attack
detection, a late but a critical phase in the botnet life cycle.

An loT botnet is just a particular type of botnet where the members of the botnet are
internet of things devices, instead of computers as in regular botnets. Any type of botnet
shows a similar set of phases during its existence, which are referred to with the term bot-
net lifetime cycle or life-cycle [50]. In this regard, the botnet lifetime cycle encompasses
four stages: formation, command and control (C&C), attack, and post-attack [66]. They
are briefly described as follows [50, 66]:

1. Formation: A vulnerable device is compromised and infected by a master, thus be-
coming a member of a botnet under the control of a botmaster. Also referenced as
the spreading or injection phase.

2. Command & Control (C&C): A C&C channel is used by the botmaster to establish
communication with the bots. The channelisimplemented using different protocols
and applications such as HTTP, P2P, or IRC. Commands are sent to instruct the bots
about required actions, such as launch attacks.

3. Attack: After the reception of an instruction, the perpetration of the attack by the
botnet members is performed. The main objective of a botnet is to launch massive
distributed attacks. This phase is also referenced as the application phase.

4. Post-attack: After the attack and exposure to the defender, some bots might be
cleaned from the infection (e.g., patched vulnerability). Therefore, the recruitment
of more members is needed in order to keep or increase the size and capabilities
of the botnet. For such a purpose, scanning attacks are performed. The newly re-
cruited bots might be merged with the non-exposed bots and the still operational
bots to create a new botnet. This new botnet will then receive new instructions to
perform attacks via the C&C channel and the cycle will repeat.

The first three steps can be understood as the core components of the botnet lifetime
cycle, whereas the last step re-initiates the formation step with the objective of overcom-
ing the eventualities that occurred after the attack phase thus enhancing the botnet’s
population.

Due to the nefarious and massive consequences of |oT botnet-based attacks, most of
the related research focuses on attack detection as it is the first step for attack mitigation.
In this regard, Publication XI and Publication XlI, address relevant aspects for the genera-
tion of more effective attack detection models. Publication XI analyzes the application of

105

hybrid feature selection models to enhance the detection capabilities of the model while
reducing the computational needs and increasing the model’s interpretability, whereas
Publication XII deals with the model’s interpretation as an essential means to increase
experts’ understanding of the model’s output and effective attack detection.

12.2 Hybrid feature selection for enhanced loT botnet attack detection

Feature selection is an integral and important step in the machine learning workflow
[1]. By reducing data dimensionality and selecting the most discriminatory subset of fea-
tures, the classification performance can be boosted while reducing computational needs,
avoiding issues related to the curse of dimensionality, and increasing the model’s explain-
ability (i.e., reducing the model’s complexity). Besides, it enables faster training and helps
to reduce overfitting issues. Filter methods are usually the preferred techniques for per-
forming feature selection. However, most of these methods focus on individual scores
of data features without considering the relation between them. In this regard, wrapper
methods, which involve the usage of a specific subset of features tailored to the machine
learning algorithm used to induce the model, can help to enhance the model’s perfor-
mance significantly. However, as the feature selection process is reduced to a search prob-
lem of the optimal subset of features, it can be computationally expensive. As a trade-off
between both approaches, the combination of filter techniques with wrapper methods
(i.e., hybrid methods) may constitute a significant improvement.

Publication XI focuses on the analysis of the impact of filter, wrapper, and hybrid fea-
ture selection techniques on the detection accuracy of ML models for loT botnet attack
detection.

The data set used in this research was N-BaloT which contains normal and malicious
loT traffic from 9 loT devices, gathered simulating distinct attacks using Mirai and Bash-
Lite malware [76]. The data points for each data category were randomly selected and
normalized. The data set was balanced, so that each of the three class labels (i.e., normal,
Mirai and BashLite) were represented in the same proportion. The data set was split into
three folds. Two folds were used in the feature selection phase (i.e., development folds)
and one fold as a test set in the final stage.

The impact of each feature selection technique used was analyzed for multi-class de-
tection models using cross-validation and macro-averaged F; score performance metric.
The final models were tested on unseen data (i.e., testing set) and the accuracy perfor-
mance metric was reported. The following feature selection techniques were applied in-
dependently and compared:

e Filter methods: Fisher’s score and Pearson'’s linear correlation coefficient (p).

e Wrapper methods: Sequential Forward Feature Selection (SFFS) and Sequential Back-
ward Feature Elimination (SBFE).

e Hybrid methods: a two-step feature selection procedure where the output of a filter
method is used as input for a wrapper method. Both filter methods were combined
with both wrapper methods, resulting in four possible cases.

As wrapper-based feature selection may vary according to the classification algorithm
used, two widely used multi-class classification algorithms were evaluated: k-Nearest
Neighbors (k-NN) and Random Forest (RF).

A detailed report of the subset of features selected by each feature selection tech-
nique and the F) score performance yielded by the related models using cross-validation

106

in the development folds are provided in Publication XI. The testing fold accuracy results
are reported in Table 17. The first two columns specify the filter and wrapper method
used (i.e., specified as - if none). In the case of the wrapper and hybrid methods, the
selected subset was tested using the two classifier algorithms, not just on the specific al-
gorithm used in the feature selection method step to obtain the corresponding subset
(i.e., cross-classifier tests). The source of the wrapper subset is provided after the name
of the wrapper method utilized (e.g., SFFS k-NN). The k-NN and Random Forest columns
provide the accuracy performance on the testing set of each classification algorithm using
the selected subsets by each of the feature selection techniques used.

Table 17: Accuracy comparison of all models in the testing set [36]

[Filter method [Wrapper method [kNN [Random Forest |
- - 0.9536 0.9985
FS - 0.9968 0.9990
P - 0.9224 0.9852
- SFFS k-NN 0.9982 0.9608

SFFS RF 0.9986 0.9988
SBFE k-NN 0.9984 0.9788
SBFE RF 0.9974 0.9992
SFFS k-NN 0.9994 0.9992
Fs SFFS RF 0.9938 0.9994
SBFE k-NN 0.9990 0.9992
SBFE RF 0.9992 0.9992
SFFS k-NN 0.9912 0.8475
SFFS RF 0.9622 0.9972
P SBFE k-NN 0.9906 0.9958
SBFE RF 0.9013 0.9970

As can be observed in Table 17, high accuracy values (i.e., over 98.00% in most cases)
were obtained using filter methods and wrapper methods alone, supporting the good-
ness of feature selection methods to achieve high-performance metrics with reduced in-
put data. However, the highest accuracy values were obtained using the combination of
filter and wrapper methods, the so-called hybrid techniques. More specifically, the use
of Fisher’s score with any of the wrapper methods and classifiers, provided the best per-
formances in almost all cases, yielding over 99.90% accuracy, even in the cross-classifier
tests. In this regard, the best results were achieved using the RF as a classifier except in
the cases in which SFFS is utilized in combination with k-NN as a wrapper model.

The hybrid feature selection technique may be seen as a trade-off between the simplic-
ity of the filter methods and the more computationally demanding wrapper techniques.
The experimentation demonstrated that hybrid feature selection allows for reducing the
computational load of the wrapper techniques without any significant loss in detection
rates of the machine learning classifiers.

12.3 Understanding the decision: building trust and enhancing detection

The priority of the ML-based studies in the cyber security domain focus on the optimiza-
tion of the detection model’s accuracy. Generally, the ML model is treated as a black box
where the hyper-parameters and input data are fine-tuned aiming for the maximum per-
formance possible. While this is the most desirable output and unique goal for many ML
applications, some fields may require that the humans understand the rationale behind
the decision in order to take appropriate subsequent actions (e.g., health decision, inci-
dent investigation). In these latter cases, model explainability is crucial to enhance the
trust of the experts in the system and the overall success of the system. Intrusion detec-
tion is one of these fields where the enrolment of the expert in the ML workflow is critical

107

for the investigation of relevant incidents and overall success of the human-machine de-
tection system.

Although feature selection methods can make the models more interpretable, it does
not guarantee their acceptability in all cases (i.e., experts may not trust over-simplistic
models in some situations). In this regard, local interpretation methods are specially de-
signed to provide the reasoning behind individual predictions in compelling ways, which
may boost the confidence of the expert in the system output.

In general, the application of the classical machine learning techniques presumes that
feature selection was conducted. Model-agnostic and post-hoc local interpretation meth-
ods are applied to the outputs of the learning models. In this regard, feature selection is
a prior step and local interpretation is a posterior step after model generation. As a re-
sult, even though they occur in different stages, feature selection and local interpretation
may interplay in the whole machine learning workflow, which can have an impact on the
quality of the interpretation.

Publication XIl analyzed the impact of feature selection on the detection accuracy and
the quality of the interpretation. In the first stage, the impact of hyper-parameters and
feature selection on data accuracy was explored. In the second stage, the impact of fea-
ture selection on the interpretation results was evaluated. Here, we introduced a quality
metric for the interpretation results from the cyber security analyst perspective, based
on the entropy notion, which assumes that an ideal explanation should be used as an
explanation for only one category, as more than one could create confusion for the ana-
lyst. Model decisions’ explanations were obtained using the Local Interpretable Model-
agnostic Explanation (LIME) method [84].

As in Publication XI, the data set used for this research was N-BaloT, composed of |a-
beled IoT botnet attacks and normal network traffic data. The attack data encompasses
attack and post-exploitation activities of the botnet life-cycle. The features were ordered
according to Fisher’s score value and used to find the optimal subset and model hyper-
parameters for k-Nearest Neighbors, Decision Tree, and Random Forest algorithms. The
optimal performance for all classification algorithms was achieved using the top 10-15 fea-
tures. A more detailed explanation of the feature selection process, the hyper-parameter
optimization performed, and their results are provided in Publication Xll. The following
paragraphs focus on the interplay between the feature selection and interpretation qual-
ity.

The application of LIME to 50 randomly selected instances for each class showed that
when a small subset of features was used (e.g., 3 features), the same explanations, ex-
pressed in the form of inequalities as shown in Table 18 (i.e., x1, x3, x3 refer to three input
features), were used to explain different categories. This fact was observed for all the
classifiers used.

Table 18: Class distribution for each explanation - k-NN model [40]

[Explanation Rule [Benign | Bashlite | Mirai |

X102 <277.96 and x; < 112.94 50 7 7

Xx1,X > 679.91 and 193.25 < x3 < 246.09] 4 0
X1, > 679.91 and x; > 246.09 0 26 7

x1,Xx < 277.96 and x3 < 193.25 0 1 0

277.96 < x1,x; < 595.68 and 112.94 < x3 < 193.25 0 1 12
277.96 < x1,x; <595.68 and 193.25 < x3 < 246.09 0 0 4
595.68 < x1,x2 < 679.91 and 193.25 < x3 < 246.09 0 0 12
595.68 < x1,x2 <679.91 and 112.94 < x3 < 193.25 0 0] 3
X1 < 277.96and 112.94 < x3 < 193.25 0 0 1
277.96 < x1,x; <595.68 and x3 < 112.94 0 0 1

108

As can be observed in Table 18, certain explanations overlap between categories, that
is, the same explanation is provided to explain different class predictions. For instance,
the same rule (i.e., x1,x; <277.96 and x3 < 112.94) explains all benign predicted samples,
but also explains 7 decisions for each of the malware categories. Thus, in this case, the
same inequality rule may explain the three categories. On the other side, the second
rule, x1,x2 > 679.91 and 193.25 < x3 < 246.09 explains 4 Bashlite instances and no other
category, thus no overlapping occured. The usage of the same explanations to explain
different class predictions would create confusion among security analysts even with a
highly accurate model. In this regard, hyper-parameter selection, including the number
of selected features, applied at each step before the post-hoc interpretation has animpact
on the overlaps of the local explanations. In this study, the implications of these choices
were analyzed rather than the decision quality of the interpretation method itself.

We introduced an interpretation quality metric, provided in Eq. 5, which computes the
degree of explanation overlap by using the entropy notion. Let ¢; be the i-th explanationin
an explanation set E, where K is the number of categories and py is the ratio of instances
labeled by category k to all the instances described by e;.

K
ei =Y —pi-log, pi (5)
k=1
The value of py -log, py is considered as zero when py is zero. Eq. 5 gets the lowest
value (i.e., zero) when all instances explained by one inequality rule belong to the same
category (i.e., explanation overlap is zero) and provides the highest value when the ex-
plained instances are equally distributed among the categories. Therefore, the first, third,
and fifth rows in Table 18 show entropy values distinct to zero, whereas all others, are
exactly zero.
Let’s assume that we have N instances and we apply LIME to provide an explanation
for each instance. The explanation overlap, EO, of an entire explanation set having N
elements is computed as follows:

N
EO=Y e (6)
i=1

where ¢; is computed as in Eq. 5.

Figure 51shows the explanation overlap (EO) of a randomly selected balanced instance
set, explained using LIME for decisions taken by learning models created with DT, k&-NN and
RF algorithms and a varying number of features. The X-axis of the graph gives the number
of features used to create the model, ordered according to the Fisher’s score, and the
Y-axis demonstrates the value of explanation overlap obtained according to the chosen
number of features (i.e., using Equation 6). Figure 52 provides the accuracy performance
(i.e., y-axis) based on the number of ranked features used.

The results show that all ML algorithms reached the zero value for EO between 13-17
features, meaning that, at the post-hoc interpretation step, LIME requires at least such
number of features to assign one explanation to just only one category. If the machine
learning model utilizes fewer features, the explanations may confuse the analysts as one
inequality set may explain more than one category. However, even though the models
reached the zero overlap value in the 13-17 features range some fluctuations exist for the
models after this range, especially for k—NN and RF algorithms. Despite that, as the mod-
els reached optimal accuracy using 10-15 features, in our case, it is possible to have a clear
explanation rule set and optimal accuracy with 13-17 features. However, such a number
of features might not be comprehensible by the experts as the feature set may have too

109

10 1.00
— OT
—— kNN
R 0.98
0.8 q
o 0.96
2
w
E 0.6 1 0.94 {
o
3
I
-1 0.92
2 044
g
e 0.90
I
0.2 4 0.88
—— Decision Tree
— Random Forest
/)Qj\ A 0.86 —— K Nearest Neighbours
0.0 ¥—/— S
SO LR PR EL O LOP PO PP PP PSS 20 20 60 80 100
Number of features # of Features

Figure 51: EO using Fisher’s score ranking [40] Figure 52: Accuracy using ranked features [40]

many inequalities. Miller’s psychological theory states that humans can handle 7 +2 ab-
stract entities at the same time [77]. Therefore, 13-17 features may not be suitable for
expert understanding despite the high detection accuracy rates. Additionally, the similar-
ity of the data features in the data set used, and reflected in the Fisher’s score ranking,
may generate additional comprehensibility issues. In this regard, wrapper, hybrid or em-
bedded feature selection methods may yield better accuracy rates with less number of
features, as demonstrated in Publication XI. Even though the comprehensive analysis of
feature selection methods was out of the scope of the paper, an additional experiment
was conducted to see the results using a customized feature set which we selected as fol-
lows. We traversed the list ranked by Fisher’s score value and selected 20 features that
belonged to different feature categories. This selection procedure meant that the final list
was more varied but that included features with lower Fisher’s score value.

10 1.000

— DT — DT
—— kNN —— kNN
—— RF 0.9751 —— RandomForest
0.8 1
w 0.950
5
E 0.6 1 5 0.925 4
g g
;:’-0.4_ & 0.900
E 0.875
0.2
0.850
0.0 0.825 4
P12 3 25 6 7 6 0101112 13 14 15 16 17 18 19 20 12 3 4567 6 91011121314151617 1819 20
Number of features Number of features
Figure 53: EO using the custom feature sets Figure 54: Accuracy using the custom feature
[40] sets [40]

The explanation overlap and accuracy results for the custom feature set are given in
Figure 53 and Figure 54. It is worth highlighting that the EO of all models reached zero
value with only six features, and no fluctuations were observed after it. The accuracy val-
ues shown in Figure 54 demonstrate that optimal detection accuracy was reached with
5 features, showing similar performance as when Fisher’s score ranking was used. How-
ever, in this case, the number of selected features is within the range of human capabilities
stated in Miller’s theory. Besides, as the features in the custom feature set belong to dif-
ferent categories, it can be argued that the security analysts could perceive better the

110

interpretation rules and grasp the distinctions between benign and malware data more
easily.

Although we did not investigate more feature selection techniques, the size reduction
of the optimal feature set from the accuracy point of view could be attributed to possible
dependencies among features or it could be argued that a filter method, which is compu-
tationally cheap, was not enough. In any case, the quality metric proposed in this study,
i.e., explanation overlap, supported the interpretability analysis of the selected features.

12.4 Chapter summary

This chapter presented the usage of feature selection methods to induce better models for
loT-based attack detection and the usage of post-hoc interpretation techniques to under-
stand the rationale behind the classifier decisions as a means to build trust and enhance
detection. Besides, an entropy-based metric was proposed to evaluate the explanation
overlap and enable the assessment of the impact of the feature selection technique used
on the quality of the explanations obtained in the post-hoc interpretation phase and the
detection performance.

M

13 loT botnet attack prevention

The mitigation of loT botnet attacks, which may create havoc and severe financial losses
for companies and individuals, is a priority and the focus of the related research. However,
little to no attention has been brought to attack prevention, that is, early detection of
loT botnet formation. The vast majority of the research in the problem domain and the
available data sets are centered around the attack and post-attack stages; however, to
prevent attacks, effective detection should be performed in the early stages of the botnet
life cycle (i.e., infection and C&C stages, as described in Section 12.1).

Publication XllI, Publication X1V, and Publication XV revolve around the concept of loT
botnet attack prevention by focusing attention on the early stages of botnet deployment.
More specifically, as most of the data sets available are centered around the attack phase,
Publication XIII and Publication XIV introduce and describe the generation of MedBIoT, a
novel loT data set focused on the early stages of the loT botnet life cycle, and its usage to
induce ML-based detection models that can effectively detect and discriminate between
normal and malicious loT network traffic. Publication XV combines MedBIoT and the ac-
tive learning approach to improve the learning process and generate more efficient and
effective detection systems by including a human oracle in the process.

13.1 MedBIoT: early stage loT botnet data set

The available data sets for loT botnet detection show similar characteristics. Namely, they
are collected in small-sized loT networks, focus on attack simulation, and use a small va-
riety of either real or emulated loT devices. This makes the induced models very specific
and precise to detect attacks but not to prevent them or detect botnet formation. As ma-
chine learning models rely on data quality and quantity, using only attack data limits what
the models can learn and detect. Therefore, if early detection is the objective, a distinct
data type must be used for such a purpose. MedBIoT data set addresses these issues and
the existing research gap by providing a data set that enables the generation of learning
models for enhanced intrusion detection systems (IDS) capable of detecting loT botnets
at early stages and, consequently, preventing loT botnet attacks.

The experimental setup and generation of malicious behavioral data sets were car-
ried out in [75] as the main contribution and work of the thesis. Detailed information
about the network topology, experimental setup and emulated behaviors is provided in
[75], Publication XIll and Publication XIV. Based on the generated behaviors, Publication
Xlll introduces MedBIoT, a novel loT botnet data set that includes malicious and normal
network traffic data and addresses the research gaps of the existing loT data sets. More
specifically, MedBIloT was acquired on a medium-sized loT network architecture (i.e., 83
devices), where real and emulated IoT devices were deployed and infected with three
prominent loT botnets (i.e., Mirai, BashLite, and Torii). The extended size of the loT net-
work used to collect MedBIoT data set enabled the capture of malware spreading patterns
and interactions that cannot be observed in small-sized networks, providing a more real-
istic environment. Furthermore, none of the previous data sets used the combination
of emulated and real devices in the same network. Additionally, this data set includes
the behavior of Torii botnet malware, being the first publicly available data set to deploy
it. Lastly, as this data set focuses on malware infection, propagation and communication
with C&C server phases, the first stages of botnet deployment, it can be seen as a com-
plement of the already available data sets, focused on attack data, to build an integral and
enhanced IDS for loT networks. In this regard, the data set is provided in structured and
raw format. The structured format provides extracted features from the network traffic

12

captured, in tabular data format, like the ones generated in other data sets (i.e., N-BaloT
and Bot-loT features), which enables the comparison and immediate usage of the data
sets together in an integral approach to the loT botnet life cycle. The raw format provides
the captured network packets (i.e., pcap files) for further manipulation and generation of
custom data features by the users. Besides, the data set is provided in bulk format (i.e., all
packets of the same class label are included together in the same file) and in fine-grained
format (i.e., the data are provided in separated files for each data source, life-cycle phase,
and device type).

Publication XIV is an extension of Publication XIlI. It provides further experimentation
on the usage of MedBloT data set to build effective ML-based IDS.

A brief summary of the data set features and the machine learning-based experimen-
tal results, further detailed in Publication XIIl and Publication XIV, are presented in the
following paragraphs.

13.1.1 Data set features

The distribution of the network data that compose MedBIoT is reported in Table 19. The
total size of the data set is 17,845,567 network packets. The majority of the traffic that
compose the data set corresponds to benign or normal loT traffic (i.e., 70.27%), whereas
the majority of the malware traffic corresponds to BashlLite.

Table 19: Data set composition [48]

[Datacategory | Devices [Nr.of packets [Proportion |

Normal 83 12,540,478 70.27%
BashLite 40 4,143,276 23.22%
Mirai 25 842,674 472%
Torii 2 319,139 1.79%

[All [Al T 17845567 [100% |

A detailed analysis of the captured data showed that 32% of the normal network traffic
was related to system updates, 53% to device communication (i.e., MQTT protocol), and
15% to other network data (e.g., TLS errors, ping, etc). Regarding the malicious data, 68%
of the traffic was related to malware propagation actions, whereas the remaining 32% to
direct communication between the bots and the C&C servers that were deployed in the
experimental setup.

13.1.2 Early loT malicious behavior detection

In order to test the goodness of the data set to induce effective intrusion detection sys-
tems for early loT botnet detection, four different scenarios were tested. Two scenarios
involved typical supervised learning approaches and two used unsupervised learning mod-
els. The experimentation performed is explained as follows.

e Supervised learning: binary and multi-class classification models were induced us-
ing randomly selected data points from the source data set to generate a reduced
balanced data set. k-Nearest Neighbors, Decision Tree, Support Vector Machines,
and Random Forest algorithms were used as classifiers. Cross-validation was used
to assess the performance of the models. Relevant performance metrics were re-
trieved.

- Binary classification: the classification task involved the discrimination be-
tween normal and malware data. The malware category was composed of

113

an equal number of instances from the three malware categories. The results
of the binary classification models are reported in Table 20.

Table 20: Binary classification models’ performance [44]

[Model [Accuracy [Precision | Recall [Fjscore |
k-NN 0.8871 0.9034 0.8871 0.8842
DT 0.9541 0.9582 0.9541 0.9538
RF 0.9702 0.9731 0.9702 0.9700

As shown in Table 20, the RF model provided the best discrimination accuracy,
classifying correctly over 97% of the network traffic. k.-NN and decision tree
models showed lower discriminatory capabilities. Linear SVM results are not
reported as they provided a poor performance on all metrics. This fact may
suggest that the data is not linearly separable; thus, linear classifiers such as
SVM with linear kernel or Logistic Regression may not be suitable for the binary
classification task using this data set. Nevertheless, the results obtained using
the other algorithms evidence the effective capabilities of ML approaches to
detect botnet malware traffic in the initial stages (i.e., infection, propagation
and communication with the C&C server stages) and disregarding the malware
type. Furthermore, it was demonstrated that MedBIoT is suitable to be used
as a medium-sized realistic loT data set for loT botnet detection scenarios, and
IDS training and testing purposes.

Muilti-class classification: this classification task involved the recognition of
the four class types; thus, the data set was divided into four classes or labels
according to the data source: normal, Mirai, BashlLite, and Torii. Four-class
or multi-class classification models were induced, and 10-fold cross-validated
using the same algorithms as in the binary task. An equal number of data
samples were used for all categories. The purpose of this task was not only to
test the classification capabilities of legitimate and malware classes but also
the recognition of the specific malware source. Table 21 shows the results ob-
tained for this task. Like in the binary approach, SVM algorithm is not reported,
as it showed a poor performance in all metrics.

Table 21: Multi-class classification models’ performance [44]

[Model [Accuracy [Precision [Recall | Fjscore |
k-NN 0.8990 0.9073 0.8990 0.8958
DT 0.9379 0.9478 0.9379 0.9347
RF 0.9617 0.9692 0.9617 0.9602

As can be observed in Table 21, in a similar fashion as in the binary models, the
Random Forest model outperformed Decision Tree and k-NN algorithms in the
multi-class classification setting. RF algorithm provides similar performance
for the multi-class task as in the binary task, reporting over 96% accuracy in
all metrics. The analysis of the RF model’s confusion matrix evidenced that
the classification error was not significantly biased towards any of the classes.
These results suggest that network traffic sources can be effectively discrim-
inated, even in the earliest stages of botnet infection. It also demonstrates
that the learning capabilities of ML-based detection methods can be accurate
both in the binary detection task and in the detection of different sources of
malicious traffic in medium-sized loT networks.

14

e Unsupervised learning: this task involved the identification of abnormal or unusual
observations (i.e., anomalies) in the input data distribution. For this task, malware
activity was considered anomalous as it does not represent the normal behavior of
the loT devices. Two novelty detection tasks were generated for this learning type.
For this task, it is assumed that the training data set does not contain outliers (i.e.,
contains only normal) and the goal is, given a new observation, to detect whether
it can be categorized as an outlier/novelty (i.e., malware) or an inlier (i.e., normal).
The anomaly detection algorithm used was Local Outlier Factor (LOF), which is ca-
pable to perform both novelty and outlier detection tasks. The models were trained
only with normal data and tested against normal and malicious data. The data set
was standardized and the data dimensionality was reduced using Principal Compo-
nent Analysis (i.e., 10-30 Principal components) prior to model induction.

- Novelty detection - first scenario: in this scenario, the normal data captured
during the time frame where a specific malware was running was used to build
the models. The testing sets correspond to hold-out normal data and malware
data from that specific collection time frame. For example, in the first row of
Table 22, the training data corresponds to normal data captured during the
deployment of BashLite malware. The testing samples correspond to normal
data from the same period of time and BashLite malware-generated data. The
detection performances for this first scenario are provided in Table 22. The
column training, specifies the source of the normal data used to build the
corresponding model, whereas the test malware and test normal refer to the
source of data used for testing purposes. The mixed total column provides the
average of the previous two columns. The all value refers to a stratified mix of
the normal data. The performance metric reported is accuracy.

Table 22: Novelty detection - first scenario accuracy performance [44]

[Training | Test Normal [Test malware [Mixed Total |

BashlLite 0.9486 0.9628 0.9557
Mirai 0.9331 0.8552 0.8942
Torii 0.9433 0.9515 0.9474

All 0.9444 0.9129 0.9286

As can be observed in Table 22, the models built with BashLite, Torii and com-
bined legitimate data provide detection performances of over 91% on malware
and over 93% on normal data. Normal data belonging to Mirai deployment
provides less accuracy on the malware data and normal test data, suggesting
that this malware traffic is more similar to legitimate traffic but prone to be
discriminated effectively. According to the results, BashLite malware provides
a differentiated profile from normal traffic that makes the models more effec-
tive in the detection of this specific malware. Torii and the mixed model (i.e.,
using stratified randomly sampled legitimate data from the three data sets)
provide high accuracy ratios for malware detection. In any case, these results
evidence that loT malware traffic can be discriminated from legitimate traffic
and effectively detected using anomaly-based detection models in the early
stages of a botnet deployment, prior to the attack phase.

- Novelty detection - second scenario: for this second scenario, the same models
built on the first scenario were tested against other testing sets belonging to
different malware data. For example, in the first row of Table 23, the training

15

data corresponds to legitimate data acquired during the deployment of Bash-
Lite malware. The testing set corresponds to data acquired in the same time
frame, thus BashLite-generated data, but also other testing sets are used such
as malicious data belonging to the deployments of Torii and Mirai malware.
This setting allows testing the goodness of the anomaly detection models to
detect different types of malware. The performance results are provided in
Table 23. In this table, the column training specifies the source of the normal
data used to build the corresponding model, whereas the rest of the columns
specify the source of the malware data that was tested. The test mixed col-
umn provides the performance of the model on a mixed and balanced data
set containing the three malware data. The performance metric reported is
accuracy.

Table 23: Novelty detection - second scenario accuracy performance [44]

[Training [TestMirai | TestTorii [TestBashLite [TestMixed |

BashLite 0.9066 0.9842 0.9628 0.9536
Mirai 0.8552 0.9665 0.9643 0.9262
Torii 0.8839 0.9515 0.9618 0.9120

All 0.8407 0.9594 0.9615 0.9074

The results provided in Table 23 suggest that the anomaly-based detection
models built in the first scenario are capable to detect effectively not only
its related malware but also the other sources of malware. With the excep-
tion of the detection of Mirai malware, which is slightly worse than for the
other malware, the detection ratios are over 91% in all models, disregarding
the data source used. These results emphasize the goodness of the anomaly-
based models to detect malware effectively and the goodness of the gener-
ated data set to build effective anomaly-based loT malware detection models
in the early stages of botnet deployment.

13.2 Active learning for early loT botnet detection

Active learning is well-suited to problem domains in which collecting data is easy and
cheap, but data labeling is expensive. Intrusion detection could be considered one of
these domains as it is easy to collect raw network or host data from the systems and con-
vert it to a suitable format for learning tasks. However, assigning the relevant resources to
the labeling tasks is difficult due to the limited number of human experts with sufficient
security skills to perform the task. Besides, confidentiality concerns usually prevent orga-
nizations to share any data, be it raw or labeled, with others, exacerbating the problem.

The active learning approach was already introduced in Section 11.1. In the study de-
scribed in Chapter 11 the active learning approach was leveraged to deal efficiently with
concept drift in Android malware detection. Intrusion detection is another problem do-
main that can benefit from active learning.

The work explained in this chapter is based on Publication XV, which is currently un-
dergoing a peer-review process. This work has been included in the thesis to support the
related research and make a more complete narrative of the whole research performed.

Publication XV explores the application of active learning to the intrusion detection
domain by simulating a realistic scenario in a SOC where human experts are available to
act as oracles and the wealth of data processed makes it unfeasible to allocate the needed
resources to label all the incoming data. More precisely, the predictive performance of
the active learning approach is evaluated by assessing the impact of the quality of the

16

instance selection process (i.e., query strategy), the size of the unlabeled data pool, the
number of labeled instances used to create the initial model, and the accuracy of the
expert decisions.

The usage of the MedBIoT data set enabled us to test the application of the active
learning approach to early loT botnet detection which might be of special interest for SOC
environments aiming for attack prevention. Redundant features were removed and bi-
nary classification models were induced. After the generation of the baseline classifier
model using different subsets of data (i.e., passive approach), used as a reference for the
active learning approach, different scenarios were designed to evaluate the impact of dis-
tinct variables on the success of the active learning implementation. The baseline model,
the description of the scenarios and the main results are described in the following para-
graphs.

13.2.1 Baseline model: the passive approach

The baseline classification algorithm, Random Forest, which outperformed other algo-
rithms in initial tests, was used to build classification models using training sets of differ-
ent sizes. For this purpose, training subsets of different sizes were sampled randomly from
the whole training set, without replacement. For every training set size used, 50 models
were induced and the results were averaged using mean and standard deviation. The test-
ing set was the same in all cases. The results are provided in Figure 55. In this graph, the
horizontal axis provides the training data set size and the vertical axis the accuracy per-
formance obtained on the testing set. The blue line provides the average accuracy value,
while the standard deviation is reported by the surrounding ribbons.

0.95 1
0.90
0.85 1
0.80 1

0.75 7

Accuracy

0.70 1

DO RDODD0LODLLL DL LLESeS L
w ~ S0 S
IVE R S S S S S S S SSSES s

Training set size

Figure 55: Performance of the baseline model using different training subsets [45]

As shown in Figure 55, in general, the larger the training set size, the greater the ac-
curacy retrieved and the lower the variability observed among iterations. Furthermore,
the performance line is steepest for the smaller data sets, suggesting that the model is
capable to learn effectively from small training sets and improve its knowledge rapidly
with additional data samples. For instance, from 10 to 40 data samples, the performance
increases from 0.58 to 0.73, whereas from 10,000 to 40,000 the increase is barely 0.01
points, from 0.97 to 0.98. The greatest performance obtained is 0.988 with 100,000
samples, that is, using the whole training set. The 0.90 accuracy performance is achieved
with 500 samples, whereas 0.95 and 0.97 accuracy values are achieved using data sets

17

containing 3,000 and 10,000 samples, respectively.

The baseline models are static models, that is, they are trained using a large amount
of data and they are not re-trained after their generation. The baseline models were used
as a reference to assess the performance and benefits of the active learning approach.

13.2.2 Active learning scenarios

The most common active learning approach is the pool-based framework, introduced in
Section 11.1. We performed a benchmarking of pool-based strategies for active learning.
The pool-based active learning framework assumes the existence of a small set of labeled
data (L) and the availability of a large collection (pool) of unlabeled data (U) [88]. Instances
are selected by the classifier from the unlabeled pool of instances for expert annotation.
The labeled sample is then incorporated into the labeled training set which is used to up-
date the knowledge of the learning model (i.e., model retraining). The instances are usu-
ally selected greedily based on an informativeness score used to evaluate all the instances
of the unlabeled pool [89]. Three query strategies were tested in the active learning sce-
narios. Uncertainty sampling, query by committee, and ranked batch-mode sampling ap-
proaches were evaluated using different parameters and informativeness criteria. The
following paragraphs summarize the scenarios and provide the main results. A detailed
description and further explanation of the query strategies and the informativeness cri-
teria used are provided in Publication XV. All the models evaluated in all the scenarios,
including active learning and passive approaches (i.e., static models), were tested on the
same testing set. Besides, as all the scenarios involved some degree of randomization, 50
iterations were performed per model in each testing scenario. Therefore, the reported
performance was the average accuracy score of all iterations. The following items sum-
marize the scenarios and their main results.

e Uncertainty sampling: a single classifier was used to generate an initial detection
model that used the active learning approach to update its knowledge based on dif-
ferent query strategies. The query strategies tested were classification uncertainty,
classification margin, and classification entropy. A total of 1,000 queries were per-
formed and the accuracy performance of the models was retrieved. In addition, the
impact of two variables on the active learner performance was evaluated: the size
of the initial data set (i.e., seed size), and the size of the unlabeled pool of instances.
In all cases, random selection was used to generate the initial training set (i.e., seed)
and the unlabeled pool samples.

The results for the models using classification uncertainty as query strategy are pro-
vided in Figure 56. As can be seen, for any seed size, the maximum accuracy per-
formance is reached with an unlabeled pool of about 7,000 instances (i.e., the red
line). The graphs evidence that when the unlabeled pool is too small (i.e., the light-
est green line) or too big (i.e., the darkest blue line), the learning is hindered. The
rationale behind these observations might be found in the lack of representative-
ness of the samples in the former case, whereas, in the latter case, an excess of
similar data samples (i.e., with the same informativeness value) might cause sub-
optimal instance selection and, consequently, slow down the learning.

Regarding the seed size, it is worth noticing that all models’ performance is over
0.97, thus disregarding the initial training data set used, the active learners achieved
the same high-performance score. The only substantial difference observed among
the models is the shape of the curve leading from the initial model to the last query.
In this regard, with the exception of the model with an initial seed of 2 instances (i.e.,

18

Initial Seed - 2 Initial Seed - 10

—— Pool 1000 0.65 -
— Pool 3000
— Pool 5000
— Pool 7000

—— Pool 1000
— pool 3000

— pool 5000
060 — pool 7000
— Pool 9000 — Pool 9000
— Pool 15000 055- — Pool 15000
— Pool 50000 — Pool 50000
— Pool 100000 — Pool 100000

200 400 600 800 1000 0 200 400 600 800 1000

Initial Seed - 200

~— Pool 1000 0.65 -
— Pool 3000
— Pool 5000

~— ool 1000

— Pool 3000
060 — Pool 5000
— Pool 7000 — Pool 7000

— Pool 9000 — Pool 9000

— Pool 15000 0.55- — Pool 15000
— Pool 50000 — Pool 50000

— Pool 100000 — Pool 100000

200 400 600 800 1000 0 200 400 600 800 1000

Figure 56: Uncertainty sampling: classification uncertainty score results [45]

top-left graph), the models suffer from an initial decrease in performance, that is
corrected later with a boost in performance. This correction takes more time (i.e.,
queries) for the models induced with more data, that is, a larger initial seed size.
This initial decrease may have been brought on by the bias that the initial classi-
fiers introduced, selecting sub-optimal samples for the first queries that possibly
responded to the bias in the model but were less capable of generalization. In any
case, all the active learning models recover from the initial draw-down and surpass
the 0.95 performance in about 600 queries and achieve 0.97 accuracy around 800
queries. Comparatively, the baseline model, depicted in Figure 55), achieved 0.95
and 0.97 accuracy scores when 3,000 and 10,000 samples were used, respectively.
This shows that the active learner can achieve similar performance to the passive
model using 10 to 12 times less labeled data. Besides, the active learning approach
seems to provide additional benefits when the initial seed is small, as no initial draw-
down in performance is observed in that case. However, the initial accuracy is lower
when the initial seed is smaller.

The three query strategies for uncertainty sampling evaluated produced similar re-
sults. A comparison of the three query strategies with the pool size of 7,000 and the
four initial seed sizes is provided in Figure 57. In this figure, the performance of the
random selection approach, in which the query sample is selected randomly from
the unlabeled pool, is provided as a comparative baseline to evaluate the effective-
ness of the different query strategies. Based on Figure 57, the random approach
seems to provide better performance than the active learning approaches in the
initial stages. However, as the number of queries increases, the active learner is ca-

19

— Uncertainty
—— Entropy
— Margin
050 - Random

0 200 400 600 800 1000

Figure 57: Comparison among the uncertainty sampling strategies and random query selection [45]

pable of learning better and faster using the uncertainty query strategies than using
the random query selection. All the active learning approaches, for any seed size,
outperform the random query selection strategy after ~ 500 queries. Besides, the
maximum performance of the random approach is lower and plateaus faster than
any of the active learning query strategies. More precisely, the best model using the
random approach achieved a maximum of 0.93 accuracy score after 1,000 queries,
whereas this performance was reached by most of the active learner models in 500
queries, reaching over 0.97 accuracy score after 1,000 queries.

e Ranked batch-mode sampling: the same scenario as for the uncertainty sampling
was implemented but the query strategy used was ranked batch-mode. This strat-
egy enables the learner to request for labeling more than one instance per query.
Besides, this strategy enhances the informativeness score using an additional scor-
ing metric based on similarity measures to improve query selection. In the test-
ing scenarios, the impact of the batch size (i.e., number of instances queried at
once), the pool size and the size of the initial seed were evaluated. Similar to the
uncertainty scenario, a total of 1,000 instances were queried in a variable number
of queries per model, depending on the batch size. The models’ accuracy was re-
trieved.

The results obtained using this approach did not show any additional improvement
to the uncertainty strategy. More precisely, the ranked batch-mode strategy did not
perform better than the uncertainty sampling approach. As a reference, Figure 58
provides the performance results for the batch size of 2 instances (i.e., 500 queries),
and different combinations of seed and pool sizes.

However, an interesting result from the ranked batch-mode testing scenarios is that
the best performance was achieved with a smaller pool size than for the uncertainty
sampling approach, reaching the maximum performance of 0.95 accuracy with an
unlabeled pool of 3,000 instances. As can be seen in Figure 58, the pool of 7000
unlabeled instances provided significantly worse results. Even though the ranked
batch-mode models did not provide improved performance concerning the single
qguery mode (i.e., uncertainty mode), none of the models in Figure 58 show the
initial decrease in performance observed for the uncertainty sampling strategies.

These results suggest that a hybrid approach, using uncertainty-based active learn-
ers combined with initial random selection or ranked-batch mode (i.e., just for the

120

P Seed 2 & Pool 3000

v Seed 2 & Pool 7000
0.60 7 ~~- Seed 10 & Pool 3000
— Seed 10 & Pool 7000

~-- Seed 40 & Pool 3000

055~ —— Seed 40 & Pool 7000
~-- Seed 200 & Pool 3000
—— Seed 200 & Pool 7000

0 100 200 300 400 500

Figure 58: Ranked batch-mode sampling performance for the batch size of 2 [45]

initial queries), may help to avoid the initial dips in performance and overcome the
initial bias evidenced by the uncertainty sampling models.

Query by committee: a group of classifiers was generated and the query by commit-
tee approach was used to update their knowledge based on different query strate-
gies. The query strategies tested were vote entropy, consensus entropy, and maxi-
mum disagreement. The best pool size for the uncertainty sampling scenarios was
used for simplicity and similarity. The impact of the initial seed size and the size
of the committee (i.e., number of members) were evaluated. As in the uncertainty
sampling scenarios, 1,000 queries were performed, and the accuracy was retrieved.

The results for the consensus entropy query strategy are provided in Figure 59. Sim-
ilar to Figure 56, each graph in Figure 59 shows the performance of the models built
with different initial seeds. For each model, distinct committee sizes were tested,
indicated as CE in the graph legend. For the sake of comparison, the best model
for maximum disagreement (MD) and vote entropy (VE) query strategies are pro-
vided with red color and different line styles. MD and VE query strategies provided
significantly lower performance than the CE strategy.

As can be observed in Figure 59, the larger the committee size, the better the re-
sults. The largest committee shows the steepest learning curve in all cases (i.e.,
faster learning). Besides, a large committee size tends to avoid the decrease in per-
formance on the initial queries. It provides improved learning from the early stages
of the active learning process. However, a larger committee implies the retraining
of more models after the labeling process, which might be more time-consuming,
and demand more resources. In any case, using the CE query strategy and any ini-
tial seed size, 0.95 accuracy is achieved before 600 queries and 0.97 before 800
queries. After 800-900 queries, all models seem to converge providing the same
performance after 1,000 queries.

The MD and VE query strategies showed sub-optimal performance, especially in
the case of the MD query strategy where the best model, using a committee of 10
members, did not even achieve 0.95 accuracy performance after 1,000 queries. The
best VE model, built with 10 committee members, reached 0.97 performance after
1,000 queries but its learning curve is worse than the CE strategy with a committee
of 5 members, for any initial seed sizes. Besides, in all cases, the VE strategy suffered

121

Initial seed - 2 Initial seed - 10

4 200 400 600 800 1000 0 200 400 600 800 1000
Query # Query #

Initial seed - 40 Initial seed - 200
1.00-

097-
095- -
0.90 /

cE-2 cE-2
— cE-3 — CE-3
060 - — CE-5 0.60- — cE-5
— cE-7 — cE-7

— CE-10 — cE-10

MD - Best. MD - Best

VE - Best VE - Best

0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 59: Query by committee performance results [45]

from a pronounced decrease in performance for the initial queries.

Given the similarities between the uncertainty sampling approach and the query by
committee (QBC) approach, a direct comparison is well-motivated. The comparison
is provided in Figure 60 for different initial seeds. The best uncertainty model and
two QBC models (i.e., with 3 and 10 members) are compared in the graph.

As can be observed in Figure 60, both active learning approaches converge to 0.97
performance after 1,000 queries, which shows the goodness of either of the active
learning approaches to achieve high performance with a small fraction of the data
needed by the passive learning approach to achieve the same results (see Figure
55). However, the learning curves are notably different for both approaches, espe-
cially for small initial seed sizes (i.e., greater separation between the curves). The
QBC strategy with a committee of 10 classifiers provides the steepest learning curve,
achieving high-performance metrics faster than the other approaches. Besides, the
initial models for the QBC approach start at a higher accuracy score than the un-
certainty sampling models. The ensemble of classifiers that form the committee
provides improved performance from the initial step, emphasizing the goodness of
combining several classifiers for enhanced learning. However, as mentioned before,
implementing committee-based approaches requires more resources and may im-
ply longer retraining schedules, especially when the committee size is large. For this
reason, the QBC with a committee size of 3 members is a good trade-off between
the best QBC model, composed of 10 members, and the best uncertainty model.

122

0604, ¢ -+ Seed 2 - Uncertainty -~ Seed 40 - Uncertainty
' ==+ Seed 2- QBC 3 members == Seed 40 - QBC 3 members
— Seed 2 - QBC 10 members — Seed 40 - QBC 10 members
-+~ Seed 10 - Uncertainty -+ Seed 200 - Uncertainty
H ——- Seed 10 - QBC 3 members ——- Seed 200 - QBC 3 members
050 - —— Seed 10- QBC 10 members —— Seed 200 - QBC 10 members

' | | ' | |
0 200 400 600 800 1000

Figure 60: Query by committee vs. uncertainty sampling [45]

13.2.3 Wrong labeling impact

In all the previous scenarios it was assumed that the oracle labeling the queries provided a
100% accuracy on class identification, that is, a 0% error in data class imputation. Although
highly desirable, this scenario is relatively unrealistic. For example, in SOC environments,
a diversity of analysts with different degrees of experience and expertise may coexist.
Therefore, a high degree of accuracy can be expected, but a non-null probability of wrong
labeling cannot be ruled out. Consequently, the last kind of simulated scenario considered
the possibility of mistakes or wrong labeling in the active learning implementation.

To implement the wrong labeling scenarios, the best models from the previous three
scenarios were selected and distinct wrong labeling probability values were evaluated
(i.e., 5%, 15%, and 25%). This implied that based on the outcome of a random number
generator function, a specific mislabeling probability was applied to each query instance.
Furthermore, the baseline models, built using the passive learning approach, were also
induced applying the wrong labeling approach to the training set.

Figure 61 displays the outcomes for the best QBC, best ranked batch-mode, and best
uncertainty sampling models when various initial seed sizes and wrong labeling probabili-
ties are applied. As can be observed, the active learners with the smallest initial seeds are
the ones affected the most by the wrong labels. This is expected as for the active learn-
ers, the wrong labeling is applied to the instance selected by the classifier as optimal for
learning, thus the most informative among the instances in the unlabeled pool. The incor-
rect labeling of these critical samples may produce a notable bias in the learning model,
thus affecting the end results significantly. However, despite that, the active learners still
show significant improvement and good learning output even in the extreme case of the
25% wrong labeled samples. More interestingly, the graphs show that when the seed size
is relatively large, the models are remarkably resilient to the 5% wrong label probability,
being able to provide similar results to the 0% error labeling approach after 1000 queries.
Based on these graphs, the impact of a wrong labeling probability below 15% might be
tolerable and yield good performance over time. A higher probability of mistakes (e.g.,
25%) may affect significantly the performance of the active learners and passive models.

123

Uncertainty - best model Query by committee - best model

065~ 0 A7 e e seed2s2sWemor e Seed 40 & 25% error +-res Seed 2 & 25% error Seed 40 & 25% error
—++ Seed 40 & 15% error —++ Seed 2 & 15% error ed 40 & 15% error
0.60 v 0.60 ed 40 & 5% error
— Seed40&0%e
Seed 200 & 25% error ed 200 & 25%
0551 —+- Seed 200 & 15% error i ed 200 & 15% error
- Seed 200 & 5% error --- Seed 10&5%error ——- Seed 200 & 5% error
050~ — Seed10& 0% emor —— Seed 200 & 0% error 050- — Seed10& 0% emor —— Seed 200 & 0% error
0 200 400 600 800 1000 o 200 400 600 800 1000

Rank batch - best model

Seed 2 & 25%emor weoov Seed 40 & 25% error
—-- Seed2&15% emor —-- Seed 40 & 15% error
~-- Seed 40 & 5% error
—— Seed 40 & 0% error
Seed 200 & 25% error
-+ Seed 200 & 15% error
- Seed 200 & 5% error

: 2o a0
e ISR SR SRS SIS SIEFSS S
' TIVIEELESEFESS S

Figure 61: Wrong labeling impact [45]

13.3 Chapter summary

This chapter evaluated different ML-based approaches for early loT botnet detection using
MedBIoT data set. Supervised and unsupervised ML models were induced, reporting high-
performance metrics. Besides, the active learning approach was evaluated using differ-
ent strategies and scenarios. The active learners were able to provide high-performance
metrics with significantly fewer labeled data than the passive approaches. The reported
results evidence the benefits of the active learning approach to minimize the labeling cost
for those environments, such as SOCs, where a wealth of data is available, but data label-
ing is expensive and time-consuming.

124

14 Conclusions and future work

This doctoral dissertation tackles existing challenges and research gaps related to the
design and effectiveness of machine learning-based Android malware detection systems
such as concept drift and cross-device detection issues. Besides, it addresses the impact of
feature selection methods on IoT botnet attack detection models and explores the gener-
ation of ML-based early IoT botnet detection systems for the prevention of cyber attacks.
Challenges that have been overlooked by specialized research. The following subsections
detail the main contributions and novelty of this doctoral thesis in the light of the initial
research objectives (RO).

14.1 Android malware detection

Android users are under siege as the popular OS is the most targeted mobile platform by
malicious actors. The open-source nature of the OS and large target audience make the
popular OS an enticing objective for cyber attackers whose most common motivation is
financial revenue. However, when a piece of malware infects an Android device, it can be
used not only for such a direct economic purpose (e.g., sending premium SMS) but also
to steal, hijack, or corrupt the wealth of sensitive data stored in these portable devices.
Aiming to protect vulnerable end-users, Android malware detection research has focused
on the application of machine learning methods as a means to overcome the limitation
of the traditional AV approaches in the mobile platform. Part | of this dissertation tackles
issues related to Android malware detection research.

In this regard, one of the major contributions of this work to the Android malware
research domain is the generation of KronoDroid, a novel, publicly available data set that
enables the study of concept drift and cross-device detection issues (RO1). KronoDroid
data set is the cornerstone of this research as it enabled all the subsequent investigations
performed. More specifically, KronoDroid main features were leveraged to perform a thor-
ough exploration of concept drift issues in two of the most commonly used feature spaces
for Android research, system calls and permissions (RO2), and propose a method based
on a data stream approach to handle concept drift effectively and maintain high detection
performance metrics over time (RO3). Further, the inner workings of the adaptive solu-
tion proposed to handle concept drift were leveraged to characterize the phenomenon in
combination with interpretation techniques (RO2). The proposed solution was then used
to explore the impact of the timestamps provided by KronoDroid in concept drift model-
ing and handling (RO4). A typical approach to update the detection model knowledge and
address data evolution issues in production setups is model retraining. In this regard, the
active learning approach was explored as an alternative means to address concept drift
while minimizing the data labeling needs for model retraining (RO3). In addition to the
temporal dimension, KronoDroid includes the data source perspective, enabling the study
of behavioral differences among Android platforms (i.e., real devices and emulators). In
this regard, it enabled us to explore cross-device detection issues under data evolution
constraints (RO5). Finally, the design and implementation of a thorough benchmarking
enabled us to assess the validity of the cross-device behavioral postulate (RO5).

As a result, the research outcomes and main findings of Part | of this thesis, detailed
in each chapter, address existing challenges in Android malware detection overlooked by
the specialized research and contribute to enhancing the effectiveness and efficiency of
the ML-based Android detection systems. Even though the research is far from complete
and the aspects investigated in this work may still be understood as open challenges, the
author of this thesis would be pleased if the work performed in this problem domain can

125

inspire or help others to consider and address these issues in the design and implemen-
tation of better detection systems, and make the digital world safer.

14.2 loT botnet detection

loT botnet attacks can have nefarious consequences for individuals and companies. From
financial losses to a severe impact on the reputation and consequent loss of trust from
current and potential customers, these massive-scale attacks constitute a potentially dev-
astating threat. As a result, most loT botnet detection-related research has focused on
attack detection. In this context, the first chapter of Part Il of this dissertation explores the
benefits of feature selection techniques to induce better attack detection systems (RO6).
Besides, the relation between these dimensionality reduction techniques and post-hoc
interpretation methods in the generation of decision explanations, which can help the
experts to understand the attacks, is investigated (RO6).

However, even though an enhanced attack detection can help to mitigate the con-
sequences of large-scale attacks; a more interesting issue is attack prevention. In this
respect, early loT botnet detection can potentially help to dismantle the botnet forma-
tion efforts and prevent the generation of the attacks. The second chapter of Part Il of
this thesis explores this topic. More specifically, MedBIoT data set is used to induce ef-
fective supervised and unsupervised ML-based detection models that can discriminate
effectively between malicious and benign IoT botnet traffic in the early stages of botnet
formation (RO7). For the same purpose, the active learning approach is evaluated in the
context of SOCs, where this learning strategy can help to induce effective detection mod-
els that minimize the data labeling needs and, consequently, reduce the expensive cost
associated with the labeling effort (RO8).

The main findings of Part Il of this thesis, detailed in each chapter, tackled relevant
aspects to enhance the effectiveness and efficiency of the machine learning-based loT
botnet detection systems. Currently, there are many excellent researchers focused on
this task in this complex and evolving field, thus our work can be understood as a small
contribution to the problem domain. Our aim will be fulfilled if our results are considered
in the design and induction of loT botnet detection systems.

14.3 Limitations and threats to validity

Machine learning-based systems rely on data quantity and, most importantly, data qual-
ity for their success at a given task (e.g., malware detection). Besides, the methodology
followed and techniques and algorithms used can significantly impact the obtained out-
comes. Consequently, the threats to the validity of our results and the limitations of this
research arise from two main sources: the data used and the approaches and techniques
employed.

The representativeness of the data is a central element for machine learning-based
systems and data analysis. This dissertation is based on two data sets: KronoDroid and
MedBloT. Regarding KronoDroid, despite being one of the largest publicly available An-
droid data sets and providing samples for an extended historical period, the represen-
tativeness of the data set is not guaranteed. The Android threat landscape is complex
and ever-evolving, with thousand of malicious applications discovered monthly. There-
fore, only sampling-based approximations of the dynamic malware threat landscape at
a specific period can be achieved. In this regard, given the large size of KronoDroid and
the combination of data sources, the representativeness of the data set is maximized but
not ensured. In this regard, KronoDroid could benefit from integrating more data samples

126

(i.e., especially from recent years) that could enlarge the representativeness of the data
set and, consequently, increase the internal validity of the results. The same reasoning
applies to the MedBIoT data set.

The techniques and algorithms employed for data analysis, concept drift handling, and
characterization are also not free from limitations and assumptions. For example, the data
stream approach for concept drift handling assumes that timestamps are accessible and
valid for managing the phenomenon effectively. However, as demonstrated, timestamps
might not always be accessible or valid. A larger data set could mitigate this issue. Besides,
the algorithms used to induce the classification models can have a significant impact on
the detection performance. Our methodology included testing several classification algo-
rithms to select the best performer for our solution. However, algorithmic enhancement
of our solution cannot be discarded, given the fast pace of development of new algo-
rithms and improvement of the existing ones by the machine learning community. The
characterization techniques employed and data analysis tools utilized in this research (i.e.,
feature selection methods and statistical metrics and tests) are widely used and accepted
scientific methods. However, they usually make assumptions about the data that may im-
pact the analysis and outcomes. For that purpose, different techniques have been used
in this research, enabling the exploration of the phenomenon from different viewpoints
(e.g., Shapley values, permutation feature importance, Fisher’s score) and providing com-
plementary analytical approaches to the studied phenomenon (e.g., important features
for concept drift). The consistency of the results obtained using the different techniques
indicates that the results are solid. However, the usage of additional approaches and tech-
niques may enrich the analysis and also contrast the obtained results.

14.4 Future work

The research presented in this doctoral dissertation explored two application domains
where machine learning can help significantly to address complex challenges in ever-
evolving data scenarios. Consequently, the work tackled in this research is far from com-
plete and most probably, will never be. However, there are several aspects that could be
improved and explored further in future research.

For instance, the generation of KronoDroid-like data sets, thus including temporal and
device-related aspects, could not only be used to contrast the findings of this work but
also to complement it. The inclusion of more recent samples, different timestamps, data
from more devices, etc., could assist in devising enhanced detection systems for malware
detection. This would also enable further exploration of the issues introduced in this the-
sis such as concept drift and cross-device data detection, but also other topics that were
briefly surfaced such as malware family evolution and multi-class detection.

The adaptive solution proposed in this work was capable of handling concept drift
effectively in the analyzed period. However, as with any algorithm, it might be subject
to improvements, especially to become more robust against adversarial drift attacks. In
these attacks, the attacker induces an artificial drift in the data to fool the classifier, thus
provoking adaptation to false data and harming the detection capabilities of the classifier.
Consequently, the exploration of adversarial drift is one of our future research paths in
the domain.

This work also opened the path of early loT botnet detection that may assist in attack
prevention. Our work and its related data set MedBIoT may be seen as an initial explo-
ration of the phenomenon that may foster future research in this direction.

Data quality and quantity are critical factors that empower machine learning systems
to excel in recognition tasks. Consequently, the focus on data set generation can open

127

significant research paths and lead to substantial enhancements in the related detection
systems for the years to come. Besides, the exploration of algorithmic improvements to
existing methods and application of new machine learning or deep learning approaches
can be of great benefit to foster research and, ultimately, contribute to a safer digital
future.

128

List of Figures

N ODN =

oN

10
1

12
13

14
15

16
17
18

19

20
21

22
23
24
25
26
27
28

29
30
31

32
33
34
35
36
37
38
39
40
4

Sources of concept drift ...t 21
Types of concept drift......ooooimiiiii 21
Pub. 3 - Random Forest models’ accuracycooveeiiiiiiiniiiiiinnn.. 34
Graphical depiction of the relation among the publications regarding An-

droid malware detection..........ooiiiiiiiiiii e 35
Pub. 4 - KronoDroid generation workflowccoiiiiiiiiiiiiin.., 36
Pub. 4 - Initial data set timeline and class composition....................... 36
Pub. 4 - Frequency distributions of requested permissions per class and

P51 o 43
Concept drift detection, handling and characterization workflow............ 44
Pub. 5 - Concept drift detection workflow ...l 45
Pub. 5 - Feature distributions...........coooiiiiiii i 45
Pub. 5 - One-class anomaly detection models performance on real device

6 - P 47
Scheme of the proposed solution for Android concept drift handling 48
Pub. 5 - Performance of the proposed solution using the last modification

MBS AMID it e 51

Pub. 5 - Performance of the proposed solution using the first seen timestamp 51
Pub. 5 - Comparative performance of the proposed solution with state-of-

the-art SOlUtIONS. ... e 52
Pub. 5 - Quarterly feature importance scores for recall and specificity 55
Pub. 6 - Concept drift detection, handling and characterization scheme 59
Pub. 6 - One-class anomaly detection models performance on emulator

Aata oo e 60
Pub. 6 - Last modification timestamp-based detection models performance 61
Pub. 6 - First seen timestamp-based detection models performance........ 61
Pub. 6 - Important features for the specificity task...............ooooiiiit. 63
Pub. 6 - Important features for therecall task..................oooiiiiiiiiit, 63
Pub. 7 - Benchmarking Wworkflowcoiiiiiiiiiii i 66
Pub. 7 - General overview of the comparativeresults......................... 67
Pub. 7 - Accuracy of cross-detection models ...l 69
Pub. 7 - Mixed models performanceresultsooiiiiiiiiiiiin... 70
Pub. 8 - Android permissions timeline evolution.................oocooiiiiiat. 72
Pub. 8 - Performance of the proposed solution using permissions as input

LSS L0 74
Pub. 8 - Quarterly feature importance for specificity 75
Pub. 8 - Quarterly feature importance forrecallooil 76
Pub. 8 - Malware family distribution per period............................... 77
Pub. 8 - One-family anomaly detection models performance................. 78
Pub. 8 - Slocker family 2015-Q3 and 2016-Q3 predictions decision paths 79
Pub. 9 - Availability analysis of timestamps............ccooviiiiiiiiiiiiinn.. 85
Pub. 9 - Validity analysis of timestamps...........coooiiiiiiiiiiii i 85
Pub. 9 - Suitability analysis of timestamps..............coooiiiiiiiiiiiii. 85
Pub. 9 - Probability distribution for each timestamp.......................... 86
Pub. 9 - JSD-KS matrix for benigndata...............oooiiii i 87
Pub. 9 - JSD-KS matrix for malwaredata...............ooooiiiiiii .., 87
Pub. 9 - JSD-KS matrix forinter-classdatacooiiiiiiiiiin. ., 87
Pub. 9 - Differences between LM-FS timestamps for benigndata............. 90

129

42
43
44
45
46
47
48
49
50

51

52
53
54
55
56
57

58
59
60
61

Pub. 9 - Differences between LM-FS timestamps for malware data 90

Pub. 9 - Timestamps F; performance on the permissions feature space 92
Pub. 9 - Timestamps F; performance on the system calls feature space..... 92
Pub. 9 - Timestamps F; performance on the API calls feature space......... 92
Pool-based active learning frameworkcooiiiiiiiiiii i 95
Pub. 10 - Active learning results for permissions and undersampling 99
Pub. 10 - Active learning results for system calls and undersampling 99
Pub. 10 - Active learning results for hybrid features and undersampling..... 99
Pub. 10 - Random selection strategy results for hybrid features and under-

SAMIPIIN oot e 99
Pub. 12 - EO using Fisher’s scoreranking.............ccooiiiiiiiiiii ... 110
Pub. 12 - Accuracy using ranked featuresccoiiiiiiiiiiiii i 110
Pub. 12 - EO using the custom feature setscccooeiiiiiiiiiiiiiiiin... 110
Pub. 12 - Accuracy using the custom featuresets ...t 110
Pub. 15 - Performance of the baseline model using different training subsets 117
Pub. 15 - Uncertainty sampling: classification uncertainty score results 119
Pub. 15 - Comparison among the uncertainty sampling strategies and ran-

dom query selectionviiiiiiii 120
Pub. 15 - Ranked batch-mode sampling performance for the batch size of 2 121
Pub. 15 - Query by committee performanceresults...................oouiee 122
Pub. 15 - Query by committee vs. uncertainty sampling 123
Pub. 15 - Wrong labeling impact ... 124

130

List of Tables

1

2Z0voNOO AN

12
13
14
15
16
17
18
19
20
21
22
23

Mapping among thesis chapters, research objectives, publications, and

CONtEIDULIONS . oo e 18
Pub. 1- System calls ranked by Fisher’'sscore...........cooiiiiiiiiiiiiiin... 32
Pub. 1- Permissions ranked by GiniindeX..........cooviiiiiiiiiiiiiiinnnn. 32
Pub. 2 - Descriptive statistics of the acquireddata 33
Pub. 4 - Initial and final data sets class composition 37
Pub. 4 - Data sets class label composition ... 38
Pub. 4 - Top-15 malware families in the final datasets........................ 40
Pub. 4 - Descriptive statistics of systemcallsccooviiiiiiiiiiiiat. 41
Pub. 4 - System calls sets and usage statisticsoooiiiiiil 1
Pub. 4 - Descriptive statistics of permissionsc.coiiiiiiiiiiii... 42
Pub. 6 - Ranking of the most important features per each data set and

timestamp combination ... 59
Pub. 9 - Summary of the timestamping approaches analyzed................. 81
Pub. 9 - Summary of the feature spacesexplored.............cccoovviiiiia.. 81
Pub. 9 - Accuracy of timestamps for malware families........................ 89
Pub. 9 - Sample size per timestamp from 2011.2t02018.1.................... 91
Pub. 10 - Results of the testing scenariosccooeiiiiiiiiiiiiiiin... 97
Pub. 11 - Accuracy comparison of all models in the testingset 107
Pub. 12 - Class distribution for each explanation - k-NN model................ 108
Pub. 13 - MedBIoT data set composition...........cooeiiiiiiiiiiiiiii .. 13
Pub. 14 - Binary classification models’ performance 14
Pub. 14 - Multi-class classification models’ performance 14
Pub. 14 - Novelty detection - first scenario accuracy performance 115
Pub. 14 - Novelty detection - second scenario accuracy performance 116

131

References

[1]
(2]

(3]

[4]

)

(7]

(8]

[10]

(1]

[12]

(13]

(14]

[15]

C. C. Aggarwal. Data mining: the textbook. Springer, 2015.

K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Are your training datasets yet
relevant? In International Symposium on Engineering Secure Software and Systems,
pages 51-67. Springer, 2015.

M. K. Alzaylaee, S. Y. Yerima, and S. Sezer. Emulator vs real phone: Android malware
detection using machine learning. In Proceedings of the 3rd ACM on International
Workshop on Security And Privacy Analytics, IWSPA '17, page 65-72, New York, NY,
USA, 2017. Association for Computing Machinery.

M. K. Alzaylaee, S. Y. Yerima, and S. Sezer. Emulator vs real phone: Android malware
detection using machine learning. In Proceedings of the 3rd ACM on International
Workshop on Security and Privacy Analytics, pages 65-72, 2017.

M. K. Alzaylaee, S. Y. Yerima, and S. Sezer. DI-droid: Deep learning based android
malware detection using real devices. Computers & Security, 89:101663, 2020.

M. R. Amin, M. Zaman, M. S. Hossain, and M. Atiquzzaman. Behavioral malware
detection approaches for android. In 2016 IEEE International Conference on Com-
munications (ICC), pages 1-6, 2016.

Android. Run apps on the android emulator.
https://developer.android.com/studio/run/emulator, 2021.

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Du-
rumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, et al. Understanding the mirai
botnet. In 26th {USENIX} Security Symposium ({USENIX} Security 17), pages 1093-
1110, 2017.

APKMirror. Apkmirror. https://www.apkmirror.com/, 2020.

ArgusLab. Amd dataset - argus cyber security lab. http://amd.arguslab.org/,
2020.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens. Drebin:
Effective and explainable detection of android malware in your pocket. In Ndss,
volume 14, pages 23-26, 2014.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens. Drebin:
Effective and explainable detection of android malware in your pocket. In Ndss,
volume 14, pages 23-26, 2014.

AV-Test. Malware. https://www.av-test.org/en/statistics/malware/, 2021.

AV-Test. Development of android malware.
https://www.av-test.org/en/statistics/malware/, 2022.

H. Bahsi, S. Nomm, and F. B. La Torre. Dimensionality reduction for machine learn-
ing based iot botnet detection. In 2018 15th International Conference on Control,
Automation, Robotics and Vision (ICARCV), pages 1857-1862, 2018.

132

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

F. Barbero, F. Pendlebury, F. Pierazzi, and L. Cavallaro. Transcending tran-
scend: Revisiting malware classification with conformal evaluation. arXiv preprint
arXiv:2010.03856, 2020.

V. H. Bezerra, V. G. T da Costa, R. A. Martins, S. B.
Junior, R. S. Miani, and B. B. Zarpelao. Data set.
http://www.uel.br/grupo-pesquisa/secmq/dataset-iot-security.html,
2018.

L. Breiman. Random Forests. Machine Learning, 45(1):5-32, 2001.

N. Buchka and M. Kuzin. Attack on zygote: a new twist in the evolution of mobile
threats. https://securelist.com/attack-on-zygote-a-new-twist-in-the-evolution-of-
mobile-threats/74032/, 2016.

I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-based mal-
ware detection system for android. In Proceedings of the 1st ACM workshop on
Security and privacy in smartphones and mobile devices, pages 15-26, 2011.

H. Cai. Assessing and improving malware detection sustainability through app
evolution studies. ACM Transactions on Software Engineering and Methodology
(TOSEM), 29(2):1-28, 2020.

H. Cai, N. Meng, B. Ryder, and D. Yao. Droidcat: Effective android malware detec-
tion and categorization via app-level profiling. IEEE Transactions on Information
Forensics and Security, 14(6):1455-1470, 2019.

R. Casolare, C. De Dominicis, G. ladarola, F. Martinelli, F. Mercaldo, and A. Santone.
Dynamic mobile malware detection through system call-based image representa-
tion. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl., 12(1):44-63,
2021.

M. Dimjasevi¢, S. Atzeni, I. Ugrina, and Z. Rakamaric. Evaluation of android malware
detection based on system calls. In Proceedings of the 2016 ACM on International
Workshop on Security And Privacy Analytics, pages 1-8, 2016.

R. Doshi, N. Apthorpe, and N. Feamster. Machine learning ddos detection for con-
sumer internet of things devices. In 2018 IEEE Security and Privacy Workshops
(SPW), pages 29-35. IEEE, 2018.

Dr.Web. Doctor web: banking trojan android.bankbot.149.origin has become a ram-
pant tool of cybercriminals. https://news.drweb.com/show/?i=11772, 2018.

U. du Luxembourg. Androzoo - lists of apks. https://androzoo.uni.lu/lists,
2021.

F-droid. F-droid - free and open source android app repository.
https://f-droid.org/, 2020.

F-secure. Trojan:android/droiddream.a. https://www.f-secure.com/v-
descs/trojan_android_droiddream_a.shtml, 2021.

F-secure. Trojan:android/geinimi. https://www.f-secure.com/v-

descs/trojan_android_geinimi.shtml, 2021.

133

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

[39]

[40]

(41]

[42]

[43]

[44]

P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma. A novel dynamic android malware detection
system with ensemble learning. IEEE Access, 6:30996-31011, 2018.

J. Gama, |. Zliobaité, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey on con-
cept drift adaptation. ACM computing surveys (CSUR), 46(4):1-37, 2014.
Google. Android market: Now available for users. https://android-

developers.googleblog.com/2008/10/android-market-now-available-for-
users.html, 2008.

0. Goziiacik and F. Can. Concept learning using one-class classifiers for implicit drift
detection in evolving data streams. Artificial Intelligence Review, (0123456789),
2020.

A. Guerra-Manzanares and H. Bahsi. On the application of active learning for effi-
cient and effective early iot botnet detection. Journal article, under review, 2022.

A. Guerra-Manzanares and H. Bahsi. On the application of active learning to han-
dle data evolution in android malware detection. Conference paper, under review,
2022.

A. Guerra-Manzanares and H. Bahsi. On the relativity of time: Implications and chal-
lenges of data drift on long-term effective android malware detection. Computers
& Security, in press:102835, 2022.

A. Guerra-Manzanares, H. Bahsi, and M. Luckner. Leveraging the first line of de-
fense: A study on the evolution and usage of android security permissions for en-
hanced android malware detection. Journal of Computer Virology and Hacking
Techniques, in press, 2022.

A. Guerra-Manzanares, H. Bahsi, and S. Nomm. Differences in android behavior be-
tween real device and emulator: A malware detection perspective. In Proceedings
of the éth International Conference on Internet of Things: Systems, Management
and Security (IOTSMS), pages 399-404, 2019.

A. Guerra-Manzanares, H. Bahsi, and S. Nomm. Hybrid feature selection models
for machine learning based botnet detection in iot networks. In 2019 International
Conference on Cyberworlds (CW), pages 324-327, 2019.

A. Guerra-Manzanares, H. Bahsi, and S. Nomm. Kronodroid: Time-based hybrid-
featured dataset for effective android malware detection and characterization.
Computers & Security, 110:102399, 2021.

A. Guerra-Manzanares, M. Luckner, and H. Bahsi. Android malware concept drift
using system calls: Detection, characterization and challenges. Expert Systems with
Applications, 206:117200, 2022.

A. Guerra-Manzanares, M. Luckner, and H. Bahsi. Concept drift and cross-device be-
havior: Challenges and implications for effective android malware detection. Com-
puters & Security, 120:102757, 2022.

A. Guerra-Manzanares, J. Medina-Galindo, H. Bahsi, and S. Nomm. Medbiot: Gen-
eration of an iot botnet dataset in a medium-sized iot network. In Proceedings
of the éth International Conference on Information Systems Security and Privacy -
Volume 1: ICISSP, pages 207-218, 2020.

134

[45]

[46]

[47]

[48]

[49]

[50]

[51]

(52]

(53]

[54]

[55]

[56]

(57]

(58]

[59]

A. Guerra-Manzanares, J. Medina-Galindo, H. Bahsi, and S. Nomm. Using medbiot
dataset to build effective machine learning-based iot botnet detection systems. In
International Conference on Information Systems Security and Privacy, pages 222-
243. Springer, 2020.

A. Guerra-Manzanares, S. Nomm, and H. Bahsi. In-depth feature selection and rank-
ing for automated detection of mobile malware. In Proceedings of the 5th Interna-
tional Conference on Information Systems Security and Privacy - Volume 1: ICISSP,
pages 274-283. INSTICC, SciTePress, 2019.

A. Guerra-Manzanares, S. Nomm, and H. Bahsi. Time-frame analysis of system calls
behavior in machine learning-based mobile malware detection. In International
Conference on Cyber Security for Emerging Technologies (CSET), pages 1-8, 2019.

A. Guerra-Manzanares, S. Nomm, and H. Bahsi. Towards the integration of a post-
hoc interpretation step into the machine learning workflow for iot botnet detection.
In 2019 18th IEEE International Conference On Machine Learning And Applications
(ICMLA), pages 1162-1169, 2019.

A. Guerra-Manzanares and M. Valbe. Cross-device behavioral consistency: Bench-
marking and implications for effective android malware detection. Machine Learn-
ing with Applications, 9:100357, 2022.

N. Hachem, Y. B. Mustapha, G. G. Granadillo, and H. Debar. Botnets: lifecycle and
taxonomy. In 2011 Conference on Network and Information Systems Security, pages
1-8. IEEE, 2011.

Q. Han, V. S. Subrahmanian, and Y. Xiong. Android malware detection via (some-
what) robust irreversible feature transformations. IEEE Transactions on Information
Forensics and Security, 15:3511-3525, 2020.

G. ladarola, F. Martinelli, F. Mercaldo, and A. Santone. Towards an interpretable
deep learning model for mobile malware detection and family identification. Com-
puters and Security, 105:102198, 2021.

IBM. Overfitting. https://www.ibm.com/cloud/learn/overfitting, 2021.

P. Irolla and A. Dey. The duplication issue within the drebin dataset. Journal of
Computer Virology and Hacking Techniques, 14(3):245-249, 2018.

M. Jerbi, Z. C. Dagdia, S. Bechikh, and L. B. Said. On the use of artificial malicious
patterns for android malware detection. Computers & Security, 92:101743, 2020.

X. Jiang and Y. Zhou. Android malware. Springer, 2013.

J. Johnson. Development of new android malware worldwide from june
2016 to march 2020. https://www.statista.com/statistics/680705/global-android-
malware-volume/, 2021.

R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov, and L. Caval-
laro. Transcend: Detecting concept drift in malware classification models. In 26th
{USENIX} Security Symposium ({USENIX} Security 17), pages 625-642, 2017.

H. Kang, D. H. Ahn, G. M. Lee, J. D. Yoo, K. H. Park, and H. K. Kim. lot network
intrusion dataset. http://dx.doi.org/10.21227/q70p-q449, 2019.

135

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

R. R. Karn, P. Kudva, H. Huang, S. Suneja, and I. M. Elfadel. Cryptomining Detection
in Container Clouds Using System Calls and Explainable Machine Learning. IEEE
Transactions on Parallel and Distributed Systems, 32(3):674-691, 2021.

M. Kinkead, S. Millar, N. McLaughlin, and P. O’Kane. Towards explainable cnns for
android malware detection. Procedia Computer Science, 184(2019):959-965, 2021.

N. Kiss, J.-F. Lalande, M. Leslous, and V. V. T. Tong. Kharon dataset: Android mal-
ware under a microscope. In The {LASER} Workshop: learning from authoritative
security experiment results ({LASER} 2016), pages 1-12, 2016.

C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. Ddos in the iot: Mirai and other
botnets. Computer, 50(7):80-84, 2017.

N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull. Towards the development
of realistic botnet dataset in the internet of things for network forensic analytics:
Bot-iot dataset. Future Generation Computer Systems, 100:779-796, 2019.

T. Lei, Z. Qin, Z. Wang, Q. Li, and D. Ye. Evedroid: Event-aware android malware
detection against model degrading for iot devices. IEEE Internet of Things Journal,
6(4):6668-6680, 2019.

J. Leonard, S. Xu, and R. Sandhu. A framework for understanding botnets. In 2009
International Conference on Availability, Reliability and Security, pages 917-922.
IEEE, 2009.

Y.-D. Lin, Y-C. Lai, C.-H. Chen, and H.-C. Tsai. Identifying android malicious repack-
aged applications by thread-grained system call sequences. computers & security,
39:340-350, 2013.

M. Lindorfer, M. Neugschwandtner, and C. Platzer. Marvin: Efficient and com-
prehensive mobile app classification through static and dynamic analysis. In 2015
IEEE 3%9th Annual Computer Software and Applications Conference, volume 2, pages
422-433, 2015.

R. Lipovsky, L. Stefanko, and G. Branisa. Trends in android ran-
somware. https://www.welivesecurity.com/wp-content/uploads/
2017/02/ESET_Trends_2017_in_Android_Ransomware.pdf, 2017.

K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu. A review of android malware
detection approaches based on machine learning. IEEE Access, 8:124579-124607,
2020.

J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang. Learning under concept drift: A
review. IEEE Transactions on Knowledge and Data Engineering, 31(12):2346-2363,
2018.

A. Margara and T. Rabl. Definition of Data Streams, pages 1-4. Springer Interna-
tional Publishing, Cham, 2018.

A. Marzano, D. Alexander, O. Fonseca, E. Fazzion, C. Hoepers, K. Steding-Jessen,
M. H. Chaves, i. Cunha, D. Guedes, and W. Meira. The evolution of bashlite and mirai
iot botnets. In 2018 IEEE Symposium on Computers and Communications (ISCC),
pages 00813-00818. IEEE, 2018.

136

(74]

[75]

[76]

[77]

(78]

[79]

[80]

(81]

(82]

(83]

[84]

(85]

(86]

(87]

C. D. McDermott, F. Majdani, and A. V. Petrovski. Botnet detection in the internet
of things using deep learning approaches. In 2018 International Joint Conference
on Neural Networks (IJCNN), pages 1-8. IEEE, 2018.

J. A. Medina Galindo. Generation of malware behavioral datasets in a medium scale
iot network. 2019.

Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher, and
Y. Elovici. N-baiot—network-based detection of iot botnet attacks using deep au-
toencoders. IEEE Pervasive Computing, 17(3):12-22, 2018.

G. A. Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological review, 63(2):81, 1956.

A. Narayanan, L. Yang, L. Chen, and L. Jinliang. Adaptive and scalable android mal-
ware detection through online learning. In 2016 International Joint Conference on
Neural Networks (IJCNN), pages 2484-2491, 2016.

S. Nomm and H. Bahsi. Unsupervised anomaly based botnet detection in iot net-
works. In 2018 17th IEEE International Conference on Machine Learning and Appli-
cations (ICMLA), pages 1048-1053, 2018.

L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross, and G. Stringh-
ini. Mamadroid: Detecting android malware by building markov chains of behav-
joral models (extended version). ACM Transactions on Privacy and Security (TOPS),
22(2):1-34, 2019.

A. Parmisano, S. Garcia, and M. J. Erquiaga. Stratosphere labora-
tory. a labeled dataset with malicious and benign iot network traffic.
https://www.stratosphereips.org/datasets-iot23, 2020.

F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro. {TESSERACT}:
Eliminating experimental bias in malware classification across space and time. In
28th {USENIX} Security Symposium ({USENIX} Security 19), pages 729-746, 2019.

S. Ramirez-Gallego, B. Krawczyk, S. Garcia, M. Wozniak, and F. Herrera. A survey on
data preprocessing for data stream mining: Current status and future directions.
Neurocomputing, 239:39-57, 2017.

M. T. Ribeiro, S. Singh, and C. Guestrin. " why should i trust you?" explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1135-1144, 2016.

A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli. Madam: Effective and efficient
behavior-based android malware detection and prevention. IEEE Transactions on
Dependable and Secure Computing, 15(1):83-97, 2018.

M. Scalas, D. Maiorca, F. Mercaldo, C. A. Visaggio, F. Martinelli, and G. Giacinto.
On the effectiveness of system APIl-related information for Android ransomware
detection. Computers and Security, 86:168-182, 2019.

T. Seals. Slocker android ransomware resurfaces in undetectable form.
https://www.infosecurity-magazine.com/news/slocker-android-
ransomware/, 2017.

137

(88]
(89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

(971

(98]

[99]

[100]

[101]

[102]

[103]

B. Settles. Active learning literature survey. 2009.

B. Settles and M. Craven. An analysis of active learning strategies for sequence la-
beling tasks. In proceedings of the 2008 conference on empirical methods in natural
language processing, pages 1070-1079, 2008.

T. Sharma and D. Rattan. Malicious application detection in android — a systematic
literature review. Computer Science Review, 40:100373, 2021.

M. Shipman. More bad news: Two new pieces of android malware - plankton and
yzhcsms. https://news.ncsu.edu/2011/06/wms-android-plankton/, 2011.

R. Shire, S. Shiaeles, K. Bendiab, B. Ghita, and N. Kolokotronis. Malware squid: A
novel iot malware traffic analysis framework using convolutional neural network
and binary visualisation. In Internet of Things, Smart Spaces, and Next Generation
Networks and Systems, pages 65-76. Springer, 2019.

S. S. Silva, R. M. Silva, R. C. Pinto, and R. M. Salles. Botnets: A survey. Computer
Networks, 57(2):378-403, 2013.

R. Surendran, T. Thomas, and S. Emmanuel. Gsdroid: Graph signal based compact
feature representation for android malware detection. Expert Systems with Appli-
cations, 159:113581, 2020.

A. Toh. Azure ddos protection—2021 g3 and g4 ddos attack trends.
https://azure.microsoft.com/en-us/blog/azure-ddos-protection-2021-q3-and-
g4-ddos-attack-trends/, 2021.

J. M. Vidal, A. L. S. Orozco, and L. G. Villalba. Malware detection in mobile devices
by analyzing sequences of system calls. World Academy of Science, Engineering and
Technology, International Journal of Computer, Electrical, Automation, Control and
Information Engineering, 11(5):594-598, 2017.

P. Vinod, A. Zemmari, and M. Conti. A machine learning based approach to detect
malicious android apps using discriminant system calls. Future Generation Com-
puter Systems, 94:333-350, 2019.

VirusShare. Virusshare. https://virusshare. com/, 2020.

VirusTotal. Virustotal academic malware samples.
http://www.virustotal. com, 2020.

X. Wang and C. Li. Android malware detection through machine learning on kernel
task structures. Neurocomputing, 435:126-150, 2021.

S. Weagle. Financial impact of mirai ddos at-
tack on dyn revealed in new data. Retrieved from:

https://www.corero.com/blog/797-financial-impact-of-mirai-ddos-
attack-on-dyn-revealed-in-new-data.html, 2017

G. I. Webb, R. Hyde, H. Cao, H. L. Nguyen, and F. Petitjean. Characterizing concept
drift. Data Mining and Knowledge Discovery, 30(4):964-994, 2016.

F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou. Deep ground truth analysis of current an-
droid malware. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 252-276. Springer, 2017.

138

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

W. Wei, J. Wang, Z. Yan, and W. Ding. Epmdroid: Efficient and privacy-preserving
malware detection based on sgx through data fusion. Information Fusion, 2022.

S. Weisman. Emerging threats - what is a distributed denial of ser-
vice attack (ddos) and what can you do about them? Retrieved from:
https://us.norton.com/internetsecurity-emerging-threats-what-is-
a-ddos-attack-30sectech-by-norton.html, 2019.

L. Wu. Android mobile ransomware: Bigger, badder, better?
https://www.trendmicro.com/en,s/research/17/h/android — mobile —
ransomware — evolution.html,2017.

X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah. Android malware detec-
tion based on system call sequences and Istm. Multimedia Tools and Applications,
78(4):3979-3999, 2019.

K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu. Droidevolver: Self-evolving android mal-
ware detection system. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 47-62. IEEE, 2019.

R. Yu Ginmaster a case study in android malware.
https://www.virusbulletin.com/conference/vb2013/abstracts/ginmaster-case-
study-android-malware, 2013.

B. B. Zarpelao, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga. A survey of intru-
sion detection in internet of things. Journal of Network and Computer Applications,
84:25-37, 2017.

N. Zhang, J. Xue, Y. Ma, R. Zhang, T. Liang, and Y.-a. Tan. Hybrid sequence-based an-
droid malware detection using natural language processing. International Journal
of Intelligent Systems, 36(10):5770-5784, 2021.

X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang, and M. Yang.
Enhancing state-of-the-art classifiers with api semantics to detect evolved android
malware. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 757-770, 2020.

Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolution.
In 2012 IEEE Symposium on Security and Privacy, pages 95-109, 2012.

P. Zyblewski, R. Sabourin, and M. Wozniak. Preprocessed dynamic classifier en-
semble selection for highly imbalanced drifted data streams. Information Fusion,
66(June 2020):138-154, 2021.

139

Acknowledgements

I would like to extend my gratitude to a variety of individuals who helped me to write
this dissertation, for although | am the author, no man is an island, and | could not have
done this work alone. | owe this research and its outcomes to the many people who have
influenced it, either directly or indirectly. In this regard, | would like to thank my family,
supervisors, friends, and colleagues for your continued support and help along the road.
I could not have reached the end line alone.

I would like to give special thanks to those whose contribution to this thesis has been
even more significant and crucial at some point during this four-year-long journey. | would
like to offer my warmest thanks to my beloved mother, Fina, who has always shown so
much love and support during my life journey, no matter how far life has brought me
from her or how much she still suffers and cries in our farewells. Gracias por darme todo
mama. | would like to thank and dedicate this dissertation to my yayo, who, despite never
comprehending why | was always so far from home if | could work in my hometown, always
showed me unconditional love and taught me the value of effort and how a real gentleman
behaves through example. Alli donde estés, gracias por cuidar de mi yayo, te echo de
menos. To my dear Duska, who has supported me along this journey, showing so much
love, respect, and understanding like no one would ever do. Grazie mille for being my
biggest supporter and standing by my side during this stressful period. To my (step)father,
Francesc, for the care and support all these years. Moltes gracies per tot. | would also
like to extend my thanks to my main supervisor, Hayretdin, who has taught me so many
things during my research path that | could fill another dissertation (or a couple more);
tesekkdirler for teaching me so much and especially for answering the email that started
this project and for helping that random exchange student asking for free supervision to
achieve a BSc, MSc, and now a Ph.D. degree. To Risto, suur aitdh for your kindness, for
counting on me for many projects, for always asking and respecting my opinion, and for
giving this dissertation a proper Estonian title and abstract. To Marcin, dziekuje for always
finding time for me in your busy schedule to help me in a critical time during my Ph.D.
studies.

Even though this is not the best doctoral dissertation ever written, it is my dissertation,
and | cannot be more proud and glad to reach the end line accompanied by all of you.
Thank you for making this achievement possible.

141

Abstract

Machine Learning-Based Detection and Characterization of
Evolving Threats in Mobile and loT Systems

This dissertation explores the application of machine learning methods to overcome the
present challenges that affect two significant research areas in the cyber security
domain: Android malware detection and Internet of Things (loT) botnet detection.

The majority of Android malware detection solutions neglect the impact of concept
drift on the performance of the detection models over time. This dissertation explores
the phenomenon by demonstrating, addressing and characterizing concept drift in the
most commonly used Android feature spaces to induce detection models (i.e., system
calls, permissions and API calls). Furthermore, the impact of timestamping approaches
in the data modeling and effectiveness of the models is analyzed. Cross-device
detection, another challenge for the development of effective detection systems, is
comprehensively investigated by examining the validity of the cross-device consistent
behavior postulate among Android platforms, which is often assumed in research
setups, and its impact on the learning models. The research outcomes, such as the
KronoDroid data set and the proposed solution to handle concept drift, and main
findings of the experimentation performed enable the design of more robust models to
ageing challenges and the enhancement of Android detection models.

In the loT domain, the majority of the research studies in the cyber security field
focus on attack detection. This doctoral dissertation explores the impact of feature
selection on the detection performance and the enhancement of the detection models.
Besides, attack prevention, as a means of avoiding the nefarious consequences of
loT-based attacks, is thoroughly explored using supervised and unsupervised machine
learning models and the active learning approach. The research outcomes in this domain
enable the generation of enhanced detection systems that might be capable of
preventing loT-based attacks and their consequences.

142

Kokkuvote

Masinoppepohine arenevate ohtude tuvastamine ning
kirjeldamine mobiilseadmete ja varkvorkude jaoks

Kaesolev vaitekiri keskendub masindppe meetodite kasutamisele, et liletada probleeme
kahes olulises kiiberturvalisuse valdkonnas: Androidi pahavara tuvastamine ja varkvorgu-
pohiste botnetide tuvastamine.

Enamik Androidi pahavara tuvastamise lahendustest ei arvesta kontseptuaalse triivi
aja jooksul ilmnevat moju tuvastusmudelite tipsusele. Vaitekiri uurib seda nahtust,
kirjeldades kontseptuaalset triivi ning pakkudes lahendusi sellega toimetulekuks levinud
Androidi tunnusruumide pohjal loodud tuvastusmudelites (stisteemi- ja rakendusliidese
funktsioonide valjakutsete ning Androidi diguste pohised mudelid). Samuti anallitsib
vaitekiri erinevate ajatembelduse meetodite méju andmemudelitele ning mudelite
efektiivsust. Vaitekiri keskendub ka pahavara seadmeiilesele tuvastamisele, mis on
efektiivsete tuvastussiisteemide loomisel oluline probleem. Vaitekirjas kasitletakse
pahavara kaitumist erinevatel Androidi platvormidel ja varasemates toodes tihti esinevat
postulaati, et pahavara kaitumine ei soltu platvormist, ning uuritakse selle moju
masindppe mudelitele. Uurimistéod tulemused nagu KronoDroid andmekogu,
lahendused kontseptuaalse triiviga toimetulekuks ning teised eksperimentide kaigus
saadud tulemused véimaldavad luua todkindlamaid masindppe mudeleid.

Varasemad varkvorkude kiiberturvalisuse valdkonnas tehtud uurimistéod
kasitlevad peamiselt rinnete tuvastamist. K&esolev doktorit6é keskendub
tuvastusmudelite tohustamisele ning sellele, kuidas tunnuste valik mojutab tuvastuse
tapsust. Doktoritdd uurib samuti varkvorkude vastaste riinnete tokestamist juhendatud
ning juhendamata masindppe mudelite abil, kasitledes ka aktiivoppe meetodeid.
Uurimist6d tulemused voimaldavad luua taiustatud varkvorkude vastaste riinnete
tuvastamise slisteeme, millel on riinnete tokestamise voimekus, et hoida &ra riinnete
tekitatud kahju.

143

Appendix 1

Publication |

A. Guerra-Manzanares, S. Nomm, and H. Bahsi. In-depth feature selection
and ranking for automated detection of mobile malware. In Proceedings
of the 5th International Conference on Information Systems Security and
Privacy - Volume 1: ICISSP, pages 274-283. INSTICC, SciTePress, 2019

145

In-depth Feature Selection and Ranking for Automated Detection of

Keywords:

Abstract:

Mobile Malware

Alejandro Guerra-Manzanares, Sven Nomm and Hayretdin Bahsi
Department of Software Science, TalTech University, Tallinn, Estonia

Machine Learning, Mobile Malware, Feature Selection.

New malware detection techniques are highly needed due to the increasing threat posed by mobile malware.
Machine learning techniques have provided promising results in this problem domain. However, feature selec-
tion, which is an essential instrument to overcome the curse of dimensionality, presenting higher interpretable
results and optimizing the utilization of computational resources, requires more attention in order to induce
better learning models for mobile malware detection. In this paper, in order to find out the minimum feature
set that provides higher accuracy and analyze the discriminatory powers of different features, we employed
feature selection and ranking methods to datasets characterized by system calls and permissions. These fea-
tures were extracted from malware application samples belonging to two different time-frames (2010-2012
and 2017-2018) and benign applications. We demonstrated that selected feature sets with small sizes, in both
feature categories, are able to provide high accuracy results. However, we identified a decline in the discrim-
inatory power of the selected features in both categories when the dataset is induced by the recent malware
samples instead of old ones, indicating a concept drift. Although we plan to model the concept drift in our
future studies, the feature selection results presented in this study give a valuable insight regarding the change
occurred in the best discriminating features during the evolvement of mobile malware over time.

1 INTRODUCTION

Mobile phone users are increasingly facing the risks
of malware. McAfee stated that “2018 could be the
year of mobile malware” as they detected 16 million
infections in the third quarter of 2017 alone, twice the
figure in 2016 (McAfee, 2018). This enormous in-
crease was also confirmed by Kaspersky who identi-
fied an 80% rise in mobile malware attacks (Unuchek,
2018). In addition to these spikes, malware detection
software has been proved to be inefficient in tackling
this threat (Fedler et al., 2013).

Traditional detection approaches based on signa-
tures fail to detect unknown malware due to the im-
proved obfuscation or stealth techniques employed
by malware creators (Fedler et al., 2013). On the
other side, machine learning techniques have been
perceived as a promising approach for detecting pre-
viously unseen malware samples and many studies
have shown that they could provide high detection ac-
curacy (Sahs and Khan, 2012; Yuan et al., 2014; Arp
et al., 2014). These studies created learning models
using dynamic, static or both (namely hybrid) fea-
tures extracted from legitimate applications and mal-
ware samples. Static features such as permissions,

274

Guerra-Manzanares, A., Nomm, S. and Bahsi, H.

In-depth Feature Selection and Ranking for Automated Detection of Mobile Malware.
DOI: 10.5220/0007349602740283

In of the 5th i C on
ISBN: 978-989-758-359-9

java codes or intent filters, are extracted directly from
APK files whereas dynamic features, e.g. system calls
or network traffic patterns, are derived from the in-
teraction of programs with OS or network (Feizollah
et al., 2015).

Feature selection, eliminating irrelevant or redun-
dant features that do not improve the classification
performance, is an essential step of machine learning
workflow due to three reasons: (1) Representing the
problem domain with high dimensions requires more
data for learning (commonly known as the curse of
dimensionality) and may disturb the accuracy of the
classifier, (2) Models using higher dimensions cannot
be easily interpreted by the experts, which may create
enormous problems in detecting falsely classified in-
stances or profoundly investigating a cyber incident,
(3) Higher dimensional data requires more computa-
tional resources for constructing and using the learn-
ing model on a mobile device. On the other side,
feature selection could be more complicated in prob-
lem domains where the behaviour of the subjects may
vary in time, i.e., a selected feature set may no longer
have its discriminatory power, which may be one of
the main concerns in malware detection.

In this study, our primary objectives are to iden-

ion Systems Security and Privacy (ICISSP 2019), pages 274-283

Copyright © 2019 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved

In-depth Feature Selection and Ranking for Automated Detection of Mobile Malware

tify the minimum feature set that provides higher ac-
curacy, compare the discriminatory powers of feature
categories and analyze the results of models induced
by datasets belonging to different time-frames. For
these purposes, we applied a two-step procedure to
the dataset that is composed by system calls (i.e., a
dynamic behaviour) and permissions (i.e., a static be-
haviour), extracted from malware samples and legit-
imate applications. In the first step, we used statis-
tical hypothesis testing methods to identify the fea-
ture set that may have a significant contribution to
the classification. In the second step, we employed
Fisher’s Score and Gini Index which enabled to rank
the selected features according to their discrimina-
tory power. We in turn induced machine learning
models with different combinations of datasets with
varying feature sets. As Android is the most used
mobile operating system worldwide, we focused on
detection of Android malware (Statista, 2018). For
this research, we formed two malware datasets. ”Old
dataset” which consists of randomly selected apps
from Drebin malware dataset, collected between 2010
and 2012 (Arp et al., 2014).”New dataset” formed by
randomly choosing samples, belonging to years 2017
and 2018, from VirusTotal Academic malware dataset
(VirusTotal, 2018). Third one is called "legitimate
dataset” which is composed by benign applications.
We utilized various combinations of these datasets for
inducing learning models.

This study shows that feature selection and rank-
ing process can significantly reduce the number of
features required in a classifier that provides high ac-
curacy for the detection of mobile malware. We found
that features possessing most discriminatory power in
classification may differ as new malware types evolve
over time, indicating a concept drift. Results suggest
that behaviour of mobile malware in terms of system
calls and permissions has become more similar to le-
gitimate apps over time although there are some vari-
ations among the extent of this evolvement in both
feature categories.

Our main contribution is a detailed analysis and
comparison of feature selection and ranking results
obtained for two types of feature categories. One of
the distinctive properties of the present paper is that,
in addition to the optimization of number of predic-
tors, we analyzed the change in selected features that
has occurred due to the evolvement of malware over
time.

This paper is organized as follows: Section 2
presents a review of related literature. Method em-
ployed in the study is described in Section 3. Re-
sults of our experiments are presented and discussed
in Section 4 whereas Section 5 concludes the study.

2 LITERATURE REVIEW

Feature selection and ranking methods have been
used in various machine learning-based malware de-
tection studies. In Yan et al. (2013) discriminatory
power of malware features such as hexdump of bina-
ries, disassembly codes, PE header and system calls
are measured by three filter methods, i.e., ReliefF,
Chi-squared, F-statistics, and two embedded meth-
ods, i.e., L1 regularized methods, L1-logreg and L1-
SVC. In this study, it is identified that PE header
and system calls are very beneficial to discern mal-
ware from legitimate software, and that L1 regular-
ized methods with 100 features provided higher de-
tection rates (Yan et al., 2013). In Ahmadi et al.
(2016) discriminatory powers of various static feature
categories are measured and compared by using mean
decrease impurity notion and random forest classifier
in a multi-class malware family classification.

Utilization of feature ranking methods is consid-
erably less common in those studies which provide
classifiers specifically for mobile malware detection
(Feizollah et al., 2015). Lindorfer et al. (2015) ap-
plied Fisher’s Score to evaluate the discriminatory
power of dynamic and static feature categories. This
study found out that required permissions and some
dynamic features related to SMS sending and dy-
namic loading of code have higher discriminatory
powers (Lindorfer et al., 2015). Cen et al. (2015),
created a classifier using Regularized Logistic Re-
gression with Lasso Norm for source code features
(java package, class and function levels). Information
Gain, Chi-Square and an embedded method of logis-
tic regression were utilized for feature selection. It
was found that 10% of the features selected by Infor-
mation Gain or Chi-Square are sufficient for high de-
tection rates (Cen et al., 2015). Similarly, in Shabtai et
al. (2012) filter methods such as Chi-Square, Fisher’s
Score and Information Gain were applied to some
system metric features (e.g., CPU consumption, num-
ber of running processes, battery level) in the early
times of Android.

Pehlivan et al. (2014) applied feature selection
methods such as Information Gain, ReliefF, Correla-
tion Feature Selection (CFS) and consistency-based
selection to permissions with different classification
models. Random forest classifier that selected 25 per-
mission features with CFS provided the best accuracy.
In a similar study by Nezhadkamali et al. (2017),
three feature selection methods, L1-based feature se-
lection, Information Gain and Gini Impurity, were
used with permissions. All three methods were tested
using different machine learning algorithms, such as
decision tree, SVM and Random forest. Best results

275

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

were obtained using Random Forest as classification
algorithm and Information Gain as feature selection
method (Nezhadkamali et al., 2017).

Sing and Hofmann (2017) used three feature se-
lection methods (Chi-Square, Information gain, and
correlation analysis) to select variables and form sys-
tem calls vector. In Ferrante et al. (2016), an embed-
ded feature selection method was used for classifying
the dataset that consisted of features such as system
calls, memory usage and CPU usage. Kim and Choi
(2014) used Linux kernel features related to mem-
ory, CPU and network (summing up to 59 features)
to perform malware detection. This study used an
embedded model to perform feature selection, ending
up eliminating 23 features and using 36 features for
their detection system (Kim and Choi, 2014). In Qiao
et al. (2016) combined API calls and permissions
were processed by two feature selection methods,
one-way analysis of variance (ANOVA) (i.e., a fil-
ter method) and Support Vector Machine—Recursive
Feature Elimination (i.e., a wrapper method). They
ended up with top 300 features from API set and 80
from permissions set (Qiao et al., 2016).

Although previously mentioned studies applied
feature selection methods and some of them provided
considerably detailed analysis about discriminatory
powers of used features, none of them analyses the
character change and its impact on feature selection.

In Hu et al. (2017) concept drift of mobile mal-
ware was modelled with an ensemble learning model
in which the feature selection is based on Information
Gain. In Jordaney et al. (2017) a concept drift detec-
tion method that was based on conformal evaluator is
applied to two cases, a binary classification for mobile
malware and a multi-class classification for malware.
These studies focus on enhancing the detection per-
formance of classifiers with concept drift. However,
they do not provide an in-depth analysis of discrimi-
natory powers of feature categories and their impact
on concept drift.

3 METHOD

We formulated mobile malware detection as a binary
classification problem that requires the discrimination
of benign mobile applications from mobile malware
samples. As we were able to obtain labelled data,
supervised machine learning methods were applied.
We followed machine learning workflow, that mainly
involves five steps: (1) Data Acquisition, (2) Data
Cleaning and Preparation, (3) Feature Selection, (4)
Classifier training and Evaluation, (5) Interpretation
(Robert, 2014). Sometimes tuning could be applied to

276

the trained classifier, but within the framework of the
present study, this step was omitted as it was deemed
as unnecessary.

We tested k-nearest neighbours (kNN), logistic re-
gression, decision tree, and support vector machines
(SVM) for building the classifiers, and used Python
programming language and Sci-kit learn library in
our implementation. Data acquisition and feature se-
lection stages are detailed in Sections 3.1 and 3.2.
We covered two types of feature categories in our
datasets: absolute frequency of system calls (numeri-
cal features) encountered during the execution of the
applications and requested Android standard permis-
sions (categorical features).

3.1 Data Acquisition

In this study, we collected 3000 Android x86 architec-
ture compatible applications as the details are given
below:

e 1000 benign applications which were randomly
downloaded by the authors from APKMirror
repository. They were verified as malware free ap-
plications with VirusTotal AntiVirus engine. Le-
gitimate applications date between April 2017 and
February 2018. Named as "legitimate dataset” in
this research.

1000 malware applications which were randomly
selected from Drebin malware dataset. These
samples date between August 2010 and October
2012 (Arp et al., 2014). We named this dataset as
”o0ld malware dataset”, and refer to each element
in the set as ”old malware”.

e 1000 malware applications which were ran-
domly selected from VirusTotal Academic mal-
ware dataset. This dataset, shared by VirusTo-
tal, dates between the end of 2016 and beginning
2018 (VirusTotal, 2018). We named this dataset
as “"new malware dataset”, and refer to each ele-
ment in the set as "new malware”.

Android requested permissions were directly ex-
tracted from AndroidManifest.xml file, included in
every application APK file, using Android Asset
Packaging Tool (aapt). The recent Android distribu-
tion, Android 8.0, defines 147 Android standard per-
missions. A permission profile vector that is com-
posed of the data regarding the presence/absence of
each Android standard permission was created for
each application.

As the collection of system calls requires to run
the application itself, we used an Android emulation
environment and Android Debug Bridge (ADB) to in-
stall, execute, monitor, log and uninstall each applica-

In-depth Feature Selection and Ranking for Automated Detection of Mobile Malware

tion. During the execution, strace tool was attached to
the main process to obtain the first 2000 system calls.
212 distinct system calls are defined in Bionic x86
library. A frequency vector that included the num-
ber of each system call made by the application was
formed from the logged data. Prior research have
demonstrated that malware could be effectively dis-
criminated with a reduced amount of system calls ac-
quired during the application’s boot up and that acqui-
sition of the first 2000 system calls provided the best
detection results (Vidal et al., 2017).

Although we selected malware samples from two
different time-frames, composing two different mal-
ware datasets, we used only one benign dataset com-
prised of recent applications. In this study, we fo-
cused on the analysis of change in selected features
according to the evolvement of malware with respect
to recent benign applications. This approach is in
line with malware detection practices happening in
the field as mobile phones are usually not compat-
ible with older applications due to frequent operat-
ing system and hardware changes and also changes
in applications’ installation requirements but the de-
tection systems usually include signatures of all mal-
ware samples including the old ones. The impact of
the evolvement in benign applications will also be an-
alyzed in the context of concept drift within our future
studies.

3.2 Feature Selection and Ranking

We employed a two-step procedure that consists of
conducting statistical hypothesis testing for feature
selection and applying feature ranking method. The
former one chooses the features which significantly
differ between the two classes (i.e., legitimate and
malware), and the latter one orders the features ac-
cording to their discriminatory power. Order provided
in this step is necessary to optimize the number of
features used as predictors and describe behavioural
evolvement of malware belonging to different time-
frames.

There are three feature selection techniques that
can be widely utilized in identifying the features (Ag-
garwal, 2015). Filter techniques evaluate the suit-
ability of a feature by using a statistical criterion
which can be applied irrespective of the classification
method used. Wrapper techniques iteratively extend
the feature set and evaluate the accuracy of each iden-
tified set in a classification model. Embedded tech-
niques also evaluate suitability of the feature set with
respect to a particular classification model, but unlike
the wrapper one, they attempt to prune the features
within the classification process itself. Since wrapper

and embedded techniques have higher computational
complexity, we utilized filter techniques in the second
step.

It is important to emphasize that feature categories
used in this study, system calls and permissions, do
not have the same data type. System calls are nu-
meric values (i.e., amount of calls issued for each sys-
tem call) and permissions are categorical (i.e., permis-
sion request was present/absent for each standard per-
mission). In both steps, we employed different tech-
niques that are more appropriate for each feature cat-
egory and its data type. The procedure was performed
as follows:

e Step 1: Feature selection by statistical hypothesis
testing

— System Calls. System calls which differ be-
tween malicious and legitimate applications in
terms of mean values were selected. To per-
form statistical hypothesis testing Welch’s Test
was used. This test provides more reliable re-
sults for the cases of unequal variances (Welch,
1947). The statement of the null (base) hypoth-
esis H, is that mean values of for the number
of system calls among first 2000 calls are the
same for legitimate y;, and malicious uy, appli-
cations, and the statement of the alternative hy-
pothesis Hj is that mean values are different.

Ho: pr=pm
Hy: oy #pm

— Permissions. As these features are categor-
ical, we employed %> (chi-squared indepen-
dence test) which can answer the question if
two categorical variables are related or not. The
statement of the null hypothesis is that there is
no relation between the particular permission
and class of the application. The statement of
the alternative hypothesis is that there is a rela-
tion between particular permission and class.

e Step 2. Feature ranking by Fisher’s Score and
Gini Index

— System Calls. Fisher’s Scores of system calls
with mean values that differ significantly be-
tween malicious and legitimate applications
were computed (i.e., higher Fisher’s score val-
ues indicate higher discriminatory power).

— Permissions. As permissions are categorical,
Gini Index suited better for ordering these fea-
tures (i.e., lower values of the Gini Index indi-
cate higher discriminatory power).

At first glance, a two step procedure may seem un-
necessary. One may suggest ordering features with re-

277

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

spect to only their p-values, computed during the hy-
pothesis testing step. It should be noted here that lin-
ear relationship between the values of Fisher’s Score
and p-values is not strong enough to lead exactly to
the same feature orderings. Simulations performed
by the authors demonstrated that for numeric values
Fisher’s Score based selection led to better orderings
with respect to classifier accuracy. This fact justi-
fies a two-step feature selection procedure for system
calls. Regarding permissions, p-values and Gini In-
dex based selection procedures did not lead to suffi-
cient difference in detection accuracy. Nevertheless,
a two-step selection procedure was used for the sake
of method coherence.

In relation to classifier training, one has to choose
desired number of predictors either on the basis of
Fisher’s Score values or Gini Index values. Note
that there are no universal or generic valid thresh-
olds for Fisher’s Score and Gini Index values indicat-
ing suitability or unsuitability of a particular feature.
Based on the outcomes of the feature selection pro-
cess, we provided our expert judgement to determine
the thresholds, selected the sets and verified their pre-
diction performance by creating and testing the learn-
ing model.

4 RESULTS & DISCUSSION

4.1 Results of Feature Selection and
Ranking

We applied feature selection and classification meth-
ods to two different compound datasets: First one
(namely L/O) includes 1000 legitimate and 1000 old
malware samples, and second one (namely L/N) is
composed by 1000 legitimate and 1000 new malware
samples. Let us remind that each particular system
call was treated as a numeric feature which results
in 212 numeric features. Each particular permission
was treated as a categorical feature (set or unset),
which leads to 147 categorical features. Following
the feature selection procedure described in Section
3.2, Welch’s test demonstrated that for L/O dataset,
38 numeric features differed significantly between the
legitimate and malicious applications for level of sig-
nificance o = 0.05, whereas this number was 43 for
L/N dataset. In a similar manner, for the same level
of significance, y? filtered out 85 permissions for L/O
dataset and 79 permissions for L/N dataset.

In the feature ranking step, Fisher’s Score and
Gini Index values were computed for numeric and
categorical features respectively. This allowed or-

278

2500 Syscalls: munmap vs. clock_gettime

Legitimate
old Malware

ee New Malware
2000

1500

clock_gettime
-
5
g
8

@
3
3

=500
=50 0 50 100 150 200 250

munmap

Figure 1: Scatter plot munmap vs clock_gettime.

350 Syscalls: prctl vs. mmap2

Legitimate
old Malware
New Malware

mmap2

=50 0 50 100 150 200
pretl

Figure 2: Scatter plot prctl vs mmap2.

2500 Syscalls: futex vs, mprotect

Legitimate
Old Malware
wes New Malware

2000

1500 *
.

mprotect
-
S
8
5
.
e

500

=500 -
-100 0 100 200 300 400 500 600
futex

Figure 3: Scatter plot futex vs mprotect.

dering the features with respect to their discrimina-
tory power. As mentioned before, there is no specific
threshold on any of the methods performed to select
or discard any particular feature, only data knowl-
edge and expertise helps in this selection step. As all
Fisher’s Score (F) values were relatively low, we se-
lected those system calls having F > 0.15. Regarding
permissions, all Gini Index (G) values were relatively

In-depth Feature Selection and Ranking for Automated Detection of Mobile Malware

Table 1: System Calls and Fisher’s Score Values.

System Call L/O L/N
clock_gettime 0.84 1.11
munmap 0.75 0.57
readlinkat 0.69 0.59
connect 0.67 0.52
mmap?2 0.63 0.47
pretl 0.61 0.53
madvise 0.54 0.48
ppoll 0.31 0.25
sigaction 0.29 0.30
sigaltstack 0.23 0.21
openat 0.22 0.16
mprotect 0.15< 0.19
futex 030 0.15<
rt_sigprocmask 024 0.15<
epoll_createl 023 0.15<
eventfd2 022 0.15<
getppid 022 0.15<
clone 021 0.15<
sendto 0.19 0.15<
recvfrom 0.18 0.15<
close 0.17 0.15<
getdents64 0.15 0.15<

Table 2: Permissions and Gini Index Values.

Permission L/O L/N
access_network_state 0.46 0.41
wake_lock 0.45 0.39
install_packages 0.42 0.41
read_phone_state 0.32 0.45
get_accounts >047 047
system_alert_window >0.47 0.46
get_tasks >0.47 045
mount_unmount_file_systems >0.47 0.44
vibrate >047 044
access_fine_location 047 >047
bind_remoteviews 047 >047
use_fingerprint 047 >047
camera 047 >047
bluetooth 046 >047
read_logs 044 >047
send_sms 043 >047
read_contacts 043 >047
read_external_storage 033 >047

high so we selected those with G < 0.47. System calls
possessing higher discriminatory power are listed, to-
gether with their Fisher’s Score values, in Table 1.
Similarly, Table 2 gives the selected permissions with
their Gini Index values.

As aresult of the second step, 21 features were se-
lected for L/O dataset and 12 for L/N dataset among

the system calls (11 of them were common in both
datasets). All common system calls in L/N except
clock_gettime have lower Fisher’s Score values.
Furthermore, there is only one additional discrimi-
natory system call, mprotect, which has a relatively
low score, that has been developed in the course of
time (appears as potentially discriminatory feature in
L/N dataset but not in L/O dataset). Based on that,
it can be argued that separability between legitimate
and new malware is less obvious, meaning that system
call behaviour of malware has become more similar
to legitimate as time has passed. Additionally, it can
also be argued that beyond this separability fact, new
malware has not developed a robust novel character.

Scatter plot graph given in Figure 1 shows an eas-
ily recognizable well-defined decision boundary that
is formed by two of the most discriminatory system
calls, clock_gettime and munmap2. As shown, old
malware is gathered in a cluster which is located be-
tween legitimate and new malware regions. On the
other side, decreased separability formed by system
calls with relatively less Fisher’s Score values, such
as prctl and mmap2, is demonstrated in Figure 2. Al-
though most of legitimate and new malware samples
form their own clusters which can be separable from
each other, boundaries are not so clear when com-
pared to the graph given in Figure 1. Figure 3 shows
the graph for two system calls having lower scores
such as futex and mprotect. It is observed that de-
spite some condensed regions occupied by one class,
boundaries between old malware, new malware and
legitimate apps mostly disappear.

According to Fisher’s Score values, it can be de-
rived that system calls that possess best discrimina-
tory power are related to socket connection, process
management or file operations. However, best pre-
dictor is the one which is related with clock time,
showing the most different behaviour between mal-
ware and legitimate applications.

Based on Gini Index values (see Table 2)
and the established threshold value, we identi-
fied that 13 permissions in L/O possess greater
discriminatory power whereas 9 permissions have
greater power in L/N (among the 147 permis-
sions in total). New malware gained more
separability from legitimate applications in fea-
tures such as wake_lock, access_network_state,
install_packages. They exceeded the threshold
value in an additional five features which were below
that value in old malware. On the other side, it has
become closer to legitimate apps in 10 features (for
instance, read_phone_state, camera, send_sms, or
read_contacts). It can be argued that total discrimi-
natory power of new malware has diminished to some

279

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

extent due to a reduction in the number of selected
features, but in contrast to system calls, it gained new
character.

Android OS has mainly three protection levels that
determine policies for granting permissions to mobile
apps: (1) Normal permissions which are automati-
cally given to applications without explicit consent of
the user, (2) Dangerous permissions that require ex-
plicit consent of the users to be granted, (3) Signa-
ture permissions which require that the app that uses
the permission must have the same certificate as the
app that defines the permission (Google, 2018). Fea-
tures with greater discriminatory capabilities, which
are identified by Gini Index in our study, do not be-
long to a single level. Among the 18 listed features
in Table 2, only 7 of them belong to the dangerous
level. This result indicates that malware and legiti-
mate apps can also differ in permissions which do not
seem risky.

It is important to note that, in our context, gain-
ing character or having more discriminatory power
means that the referenced dataset can better discrimi-
nate malware from legitimate apps by using the corre-
sponding feature. It does not show that, for instance,
malware uses that specific system call or permission
more (or less) frequently than a legitimate app. How-
ever, as we utilized the same legitimate dataset, it is
evident that the change in discrimination capabilities
relies on the change of malware behaviour over time.

Table 3: Classification with System Calls.

of features L/O L/N
accuracy — accuracy

Single Best Feature ! 0.87 0.89
3 Best Common Features 2 0.90 0.88
6 Best Common Features 3 091 0.89
All 11 Common Features

selected in both datasets 0.93 0.89
All 22 Selected Features 0.97 0.91
All 212 Features 0.97 0.93

4.2 Verification of Selected Features
with Classifiers

In order to verify the results obtained in Section 4.1,
we built and tested classifiers with selected feature

Iclock_gettime

2clock,gettime, readlinkat, and munmap

3clock,gettime, readlinkat, munmap, connect, prctl and
mmap2

4clock_gettime, readlinkat, munmap, connect, prctl,
mmap2, madvise, ppoll, sigaction, sigaltstack, openat

280

sets, grouping them in varied sizes. Recall that the fil-
ter methods that we use in this study treat each feature
separately while measuring its discriminatory power,
meaning that these sets do not guarantee higher accu-
racy due to, for instance, possible correlations among
the selected features. This verification study is needed
to show the validity of our findings.

We trained and tested k- Nearest Neighbours
(kNN), Logistic Regression, Decision Tree, and Sup-
port Vector Machines (SVM) machine learning algo-
rithms to the datasets. Among these methods, deci-
sion tree model demonstrated best accuracy results,
therefore, this method was chosen for further analy-
sis. Then decision tree model was applied to L/O and
L/N datasets. As shown in Table 3, we computed ac-
curacy value for different decision tree classifiers as
a performance metric (i.e., accuracy is computed as
the ratio of correctly classified samples to the total
samples), using 5-fold cross-validation with varying
feature set sizes for system calls. Corresponding con-
fusion matrix of each classifier is given summarized
in Table 4.

Table 4: Confusion Matrices for the Classification of Sys-
tem Calls.

of features Actual(L)/ Actual(M)/ Actual(L)/ Actual(M)/
Pred(L) Pred(M) Pred(M) Pred(L)
Single Best L/O 265 265 29 41
3 Best L/O 261 279 31 29
6 Best L/O 293 259 25 23
11 Common L/O 299 262 24 15
22 Selected L/O 303 276 10 11
All (212) L/O 295 290 8 T
Single Best L/N 300 234 27 39
3 Best L/N 263 266 39 32
6 Best L/N 259 269 37 35
11 Common L/N 282 254 32 32
22 Selected L/N 272 268 36 24
All (212) LN 279 281 19 21

Results of decision tree classifier model regard-
ing system calls show that just a single feature,
clock_gettime (highest Fisher’s score value), was
capable of discriminating malware from legitimate
apps (in both L/O and L/N datasets) with an accu-
racy over 87 %. However, this feature provided better
classification in L/N, which is in line with the higher
Fisher’s Score value of this feature in this dataset. In
all other classifier models built, selected features pro-
vided better outcomes in L/O dataset, justifying that
similarity of system calls behaviour between a legit-
imate app and malware is getting less obvious over
time.

Accuracy results of classifiers increase as bigger
feature set is covered in both datasets. Just the 22 se-
lected features are enough to give the same accuracy
performance than using all system calls (212) in L/O
dataset. However, a similar point is not achieved in
L/N dataset, indicating a decrease in the discrimina-

In-depth Feature Selection and Ranking for Automated Detection of Mobile Malware

tory power of the selected features. It can be derived
from the confusion matrices given in Table 4 that clas-
sifiers are, in general, well-balanced in terms of false
positive and false negative results, which are repre-
sented in the table as ”Actual(L)/Predicted(M)” and
”Actual(M)/Predicted(L)” respectively. Note that L
refers to legitimate whereas M means malware. How-
ever, results of the best feature in L/O and L/N are
slightly more skewed to false negatives whereas the
classifiers with all 11 common features in L/O and all
22 selected features in L/N are more inclined to false
positives.

Results regarding the application of decision tree
classifier model to permissions are given in Table 5.
Best feature provided accuracy values, 0.79 and 0.73,
in L/O and L/N datasets respectively. These values
are lower compared to the detection performance of
best system call predictor. As shown, accuracy value
in L/O was greater than in L/N. This fact was ex-
pected as the Gini Index score of the best feature in
L/O dataset has a lower value than in L/N dataset,
i.e. that it has more discriminatory power. Accu-
racy of the classifier that uses all selected features, in
both datasets, reaches almost the same value obtained
when all permissions are used, showing the effective-
ness of feature selection in permissions.

Table 5: Classification with Permissions.

of features L/O L/N
accuracy — accuracy

Single Best Feature > 0.79 0.73

4 Common Selected

Features in both datasets © 0.86 0.85

All 18 Selected Features 0.94 0.92

All 147 features 0.95 0.92

Accuracy values of L/N were slightly lower than
values of L/O when common or all selected permis-
sions were used. This result suggests that as time has
passed, separability between malware and legitimate
applications has partly decreased regarding permis-
sions.

Confusion matrices of classifiers built for permis-
sions are summarized in Table 6. It can be extracted
that most of classifiers are not well-balanced com-
pared to the ones built on the basis of system calls.
Results of the best and four common features in L/O
are skewed to false negatives, but remaining ones are
more balanced. L/N dataset provided unbalanced out-
comes in each classifier. Best feature in L/N gave
more false positives and remaining ones were inclined

Sread_phone_state for L/O and wake_lock for L/N
Saccess_network_state, wake_lock, install_packages and
read_phone_state for L/O and L/N

to false negatives.

Table 6: Confusion Matrices for the Classification of Per-
missions.

of features Actual(L)/ Actual(M)/ Actual(L)/ Actual(M)/

Pred(L) PredM) PredM) Pred(L)

Single Best L/O 271 201 30 98
4 Common L/O 262 248 23 67
18 Selected L/O 284 280 19 17
All (147) L/O 281 290 14 15
Single Best L/N 186 253 117 44
4 Common L/N 281 227 29 63
18 Selected L/N 274 274 19 33
All (147) LIN 284 268 20 28

When outcomes of system calls and permissions
are compared, it can be argued that their amount of
loss regarding discriminatory power in L/N is differ-
ent. All selected system calls in L/N gave an accuracy
value of 0.91, showing a decline from 0.97 which was
obtained in L/O. This value, 0.91, is below the accu-
racy result, 0.93, which was obtained in L/N when all
system calls were used for the classification. On the
other side, accuracy value declines from 0.94 to 0.92
for all selected permissions, which indicates a lower
amount of loss than selected system calls. Accuracy
value of 0.92, is equal to the result obtained by all
permissions in L/N. Recall that, in Section 4.1, we
identified a decrease from 21 to 12 in the number of
system calls which exceeded the selection threshold
in L/O and L/N datasets. Out of 12 system calls, just
only two of them have higher Fisher’s score in L/N.
Contrarily, decline in permissions goes from 13 to 9,
and more features, 5 of them, have higher discrim-
ination capability in L/N. These findings support the
results obtained in Section 4.1 so that system calls and
permissions lost part of their discriminatory power in
L/N, being the loss in system calls greater than the
loss in permissions.

It is important to highlight here that our results re-
garding the change in selected feature sets indicate a
concept drift. Comparison between system calls and
permissions given above provides initial insights into
the extent of this phenomenon. However, more com-
plete derivations can be drawn with modelling the
drift in the classifier. As we focus on feature selec-
tion and ranking in this paper, we postponed this mod-
elling effort to our future work.

Table 7 demonstrates detection performance of a
mixture of system calls and permissions (hybrid de-
tection approach). Classifier was constructed using
decision tree model within a 5-fold cross-validation
setting. As can be seen, in both datasets, detection
rates were higher compared to their previously built
respective single type classifiers, using only static or
only dynamic features.

Tclock_gettime and read_phone_state for L/O and

281

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

Table 7: Classification with System Calls and Permissions
(Hybrid).

of features L/O L/N
accuracy — accuracy

Best Two Features ’ 0.90 0.89

4+ 11 Common Selected

Features in both datasets 0.95 0.92

18 +22 Selected Features 0.97 0.94

All Features (212 + 147) 0.98 0.94

5 CONCLUSION & FUTURE
WORK

Detection of mobile malware remains a significant
challenge due to the rapidly evolving nature of the
threat. Machine learning techniques have provided
solutions to handle this problem. Although they have
provided promising results, there is a room for im-
provement of the classifiers by the utilization of fea-
ture selection to obtain better classification accuracy,
present the results in a more interpretable way and re-
duce required computational resources.

In this paper, we applied a feature selection and
ranking procedure that consists of two consecutive
steps, statistical hypothesis testing and filter feature
selection method. The former enables us to select the
features while the latter ranks them according to their
discriminatory power. We used system calls and per-
missions as the feature categories due to their proven
success in various research studies. Detection perfor-
mance of selected features was evaluated in decision
tree based classifiers. In order to analyze the impact of
the changing behaviour on feature selection process,
we induced classifiers with malware samples belong-
ing to different time frames.

This study shows that a small number of selected
features, such as 3-6 features, provide relatively high
accuracy results. Even a single system call, the
one possessing best Fisher’s Score value in our fea-
ture domain, clock_gettime, provided accuracy val-
ues over 87%. We identified that 10-12% of the
features are able to provide a discriminatory power
which is very close to the power of using all features
in both feature categories (system calls and permis-
sions). Moreover, we identified that system calls and
permissions of new malware samples are more sim-
ilar to legitimate apps than the old ones. This result
suggests a concept drift in these features. Addition-
ally, feature rankings and classifier outputs indicate
that system calls have lost more discriminatory power

clock_gettime and wake_lock for L/N

282

over time compared to permissions.

In this paper, we concentrated on feature selection
and its implications on accuracy of machine learn-
ing classifiers. Findings regarding concept drift can
be better explored and enhanced by precisely mod-
elling this learning aspect in the classifier itself. Fea-
ture sets used in the classifiers could be enhanced by
adding other static or dynamic categories. Also, re-
quired length of collection’s time period for dynamic
attributes such as system calls could be further inves-
tigated.

REFERENCES

Aggarwal, C. (2015). Data Mining: The Textbook. Springer
International Publishing.

Arp, D., Spreitzenbarth, M., Hiibner, M., Gascon, H., and
Rieck, K. (2014). Drebin: Effective and Explainable
Detection of Android Malware in Your Pocket. In Pro-
ceedings 2014 Network and Distributed System Secu-
rity Symposium, number February.

Cen, L., Gates, C. S., Si, L., and Li, N. (2015). A probabilis-
tic discriminative model for android malware detec-
tion with decompiled source code. IEEE Transactions
on Dependable and Secure Computing, 12(4):400—
412.

Fedler, R., Schiitte, J., and Kulicke, M. (2013). On the Ef-
fectiveness of Malware Protection on Android. Tech-
nical report, Fraunhofer, AISEC.

Feizollah, A., Anuar, N. B., Salleh, R., and Wahab, A. W. A.
(2015). A review on feature selection in mobile mal-
ware detection. Digital Investigation, 13:22-37.

Google (2018). Permissions overview. Retrieved
from: https://developer.android.com/guide/topics/
permissions/overview.

Kim, H.-H. and Choi, M.-J. (2014). Linux kernel-based fea-
ture selection for android malware detection. In Net-
work Operations and Management Symposium (AP-
NOMS), 2014 16th Asia-Pacific, pages 1-4. IEEE.

Lindorfer, M., Neugschwandtner, M., and Platzer, C.
(2015). Marvin: Efficient and comprehensive mobile
app classification through static and dynamic analy-
sis. In 2015 IEEE 39th Annual Computer Software
and Applications Conference, volume 2, pages 422—
433.

McAfee (2018). McAfee Mobile Threat Report Q1
2018. Retrieved from: https://www.mcafee.com/es/
resources/reports/rp-mobile- threat-report-2018.pdf.

Nezhadkamali, M., Soltani, S., and Hosseini Seno, S. A.
(2017). Android malware detection based on overlap-
ping of static features. In 7th International Confer-
ence on Computer and Knowledge Engineering (IC-
CKE 2017), October 26-27 2017, Ferdowsi University
of Mashhad.

Qiao, M., Sung, A. H., and Liu, Q. (2016). Merging per-
mission and api features for android malware detec-
tion. In 2016 5th IIAI International Congress on Ad-

In-depth Feature Selection and Ranking for Automated Detection of Mobile Malware

vanced Applied Informatics (IIAI-AAI), pages 566—
571.IEEE.

Robert, C. (2014). Machine learning, a probabilistic per-
spective. Taylor & Francis.

Sahs, J. and Khan, L. (2012). A Machine Learning Ap-
proach to Android Malware Detection. In 2012 Eu-
ropean Intelligence and Security Informatics Confer-
ence, pages 141-147.

Statista (2018). Mobile os market share 2017. Retrieved
from: https://www.statista.com/statistics/266136/
global-market-share-held-by-smartphone-operating-
systems/.

Unuchek, R. (2018). Mobile Malware Evolution 2017. Re-
trieved from: https://securelist.com/mobile-malware-
review-2017/84139/.

Vidal, J. M., Orozco, A. L. S., and Villalba, L. J. G. (2017).
Malware detection in mobile devices by analyzing se-
quences of system calls. [International Journal of
Computer, Electrical, Automation, Control and Infor-
mation Engineering, 11(5):606 — 610.

VirusTotal (2018). How to use VirusTotal Com-
munity - VirusTotal. Retrieved from: https:
/Iwww .virustotal.com/es/documentation/virustotal-
community/.

Welch, B. L. (1947). The generalization ofstudent’s’ prob-
lem when several different population variances are
involved. Biometrika, 34(1/2):28-35.

Yan, G., Brown, N., and Kong, D. (2013). Exploring
discriminatory features for automated malware clas-
sification. In International Conference on Detection
of Intrusions and Malware, and Vulnerability Assess-
ment, pages 41-61. Springer.

Yuan, Z., Lu, Y., Wang, Z., and Xue, Y. (2014). Droid-Sec
: Deep Learning in Android Malware Detection. In
Sigcomm 2014, pages 371-372.

283

Appendix 2

Publication Il

A. Guerra-Manzanares, H. Bahsi, and S. Nomm. Differences in android be-
havior between real device and emulator: A malware detection perspec-
tive. In Proceedings of the é6th International Conference on Internet of
Things: Systems, Management and Security (I0TSMS), pages 399-404, 2019

157

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)

Differences in Android Behavior Between Real
Device and Emulator: A Malware Detection
Perspective

Alejandro Guerra-Manzanares, Hayretdin Bahsi, Sven Nomm
Department of Software Science
Tallinn University of Technology, Tallinn, Estonia
Email: {alejandro.guerra, hayretdin.bahsi, sven.nomm} @taltech.ce

Abstract— Behavioral data extracted from emulators or real
devices, such as system calls, are utilized in research studies
where machine learning models have been employed for mobile
malware detection. However, these studies do not explore
whether the selection of data source may have an impact on the
performance of the models, assuming that both data sources
generate similar outputs. We provide a comparative analysis
of the data sets obtained from both sources by using statistical
techniques, inducing learning models and demonstrating the im-
pact of data source selection on detection models’ performance.
Our study shows that emulators generate more distinguishable
data than real devices, meaning that designers of detection
models should pay attention to the data sources utilized in
the various steps of the machine learning workflow.

Index Terms— mobile malware detection, machine learning,
android malware, dynamic analysis, system call

I. INTRODUCTION

Mobile malware is a major threat to mobile phone users.
After the significant spike of mobile malware in 2018 [1],
the threat is still posing a high risk to end users, evolving
in complexity and scope [2], [3]. Malware authors focus
their efforts on Android, the most popular mobile operating
system, which dominates over 75% of the market share [3],
[4]. Although recent versions of Android have improved
its security capabilities, the majority of Android users still
use old and not updated versions which increase even more
their risk of being compromised [5]. In addition, the proved
inefficient capabilities of malware detection software place
Android users in a risky situation [6].

Aiming to overcome these limitations, machine learning
(ML) models have been used to improve mobile malware
detection capabilities with remarkable success [7]. The data
needed by the ML algorithms are collected from Android
applications in different ways, either running the applica-
tion (dynamic analysis) or from the application apk file
itself (static analysis) [8]. More specifically, static features,
such as permissions or metadata, are extracted from apk
files or source code directly, without actually running the
application. Dynamic features, such as system calls and
network flow, are collected when running application, thus
they could be prone to change depending on the platform that
executes the application (real or emulated device). Emulators
are a cheap, easy to deploy and flexible approach to run
applications, being the preferred approach in some of the
research. The results based on emulators’ tests are usually
generalized to all Android devices (either real or emulated).

978-1-7281-2949-5/19/$31.00 ©2019 IEEE

Thus, if the behavior in emulators and real devices produce
significant variations for the same app, using both data
sources interchangeably with no caution could undermine
the detection performance of the machine learning models.
In general, when dynamic analysis is compared to static
analysis, the former is considered more reliable and less
prone to be bypassed by malware [9] although both of them
could be subject to various evasion and obfuscation tech-
niques. Malware authors mostly target the manipulation of
data extraction process to diminish the outcome of dynamic
analysis whereas misguiding the analysis of extracted data is
the main focus to defeat static analysis. In addition to the eva-
sion techniques employed for data extraction, the behavioral
differences obtained from emulators and real devices might
be an additional factor that weakens the practical advantage
of using dynamic features over static ones on ML models.
In this research, we analyzed the behavioral differences
between Android emulation and real devices and their impact
on ML based mobile malware detection models. We ex-
tracted the system calls triggered by malware and legitimate
mobile app samples in emulator and real device and created
a separate data set for each environment. We employed
statistical methods to identify the features having higher
discriminatory power and deduce the correlations between
feature pairs in both data sets. Then, we created learning
models that address to solve binary classification problems.
Additionally, we conducted some experiments in a multi-
class formulation in which device type and being mali-
cious/legitimate constitute the different classes. This study
is distinguished as, to the best of our knowledge, prior
research has not provided a comprehensive analysis of such
environments in the context of their impact on ML models.
This paper is structured as follows: Section II provides
background information and a review of related literature
while Section III describes the method followed in this study.
Results of our experiments are presented in Section IV.
Lastly, Section V concludes the study and states future work.

II. BACKGROUND AND LITERATURE REVIEW

The literature regarding behavioral-based malware detec-
tion is split into two in terms of data source: real device-
based data, where the behavior of the application is mon-
itored and logged using a real device, and emulator-based
data, where the device is virtualized on a computer using a

399

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 23,2022 at 12:54:04 UTC from IEEE Xplore. Restrictions apply.

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)

virtualization software environment, the emulator, that aims
to reproduce the behavior of a real device.
Some of the studies preferred real devices as a data source.
Crowdroid [10] is a behavior-based malware detection sys-
tem in which a real device acquires the app’s system calls and
sends them to a central server that runs a clustering algorithm
to discriminate between benign and malware applications.
MADAM [11] is a multi-level and behavior-based malware
detection method in which the data collection was performed
using a Samsung Galaxy Nexus running Android 4.3. In [12]
30 real devices with distinct versions of Android were used
to perform malware detection. The authors of this study state
that, in their context, using different versions of the OS, the
nature of the Android kernel did not impact the performance
of the detection method proposed. Other research conducted
using real devices are [13], [14], [15], [16], [17], [18].
Droid-sec [19] is a malware detection system which com-
bines static and dynamic features using deep learning tech-
niques. Applications were run in DroidBox [20], a sandbox
which emulates the Android environment and allows the
dynamic analysis of Android applications. MALINE [21] is a
dynamic Android malware detection technique that acquires
behavioral data of applications, such as system calls, by
running them on a customized build of the Android Software
Development Kit, which includes Android Emulator [22], a
virtual machine that emulates Android operating system. In
[23], the authors used an Android 2.1 emulator to test their
detection method stating that according their experience on
the detection of some malware applications, the results using
a real device and an emulator fully matched, thus the results
on an emulator should be cogent. Other research studies
using emulated devices are [24], [25], [26], [27], [28], [29].
As can be noticed, the referenced research on Android
malware detection does not converge on the usage of any
particular type of devices, either real or emulators, using a
wide variety of approaches even in the studies belonging to
each specific group. For example, among studies that use real
devices, some conduct all the research on a single real device
while others on different real devices (running different
versions of Android). There is also no clear preference on
the emulator platform used on the studies, ranging from the
official Android emulator to customized Android malware
detection sandboxes. To the best of our knowledge, the
possible behavioral differences caused by the data collection
environment have not been investigated. By not taking this
fact into consideration, the generalization of the induced
learning models’ results appears to be questionable.

III. METHOD

In this research, ML based malware detection is performed
on the basis of system calls, issued by malware and legitimate
applications. Network traffic is another behavioral compo-
nent but it describes the behavior of the application partially
and is out of scope of the present paper. For each dataset,
we conducted the analysis including the following items:

« Descriptive statistics

o Correlations between features

« Feature selection (identifying the discriminatory power
of the features)

o Accuracy of ML classifier models in which training and
testing are conducted with the same data set (named as
single data set approach)

o Accuracy of ML classifier models in which testing is
conducted with another data set (named as cross-data
set approach)

The data set used in this research is composed of 220
Android applications, distributed evenly as follows:

e 110 benign applications collected randomly from AP-
KMirror repository between 2017 and 2018. Tested to
be malware-free using VirusTotal detection engine.

e 110 randomly selected malware applications from
VirusTotal academic malware data set, belonging to the
same period of time as the legitimate applications.

Data set samples were installed and executed during 1

minute in a real device and an emulator. The details of the
real device and emulator device are described as follows:

« Real device — Samsung Galaxy A6 with Android 8.0.
o Emulated device — Samsung Galaxy S8 with Android
8.0, using GenyMotion emulation environment.

Android Debug Bridge (ADB) was used to install, execute,
monitor, log and uninstall each application. The system calls
issued by the main process of each application during the
running time were logged and collected using strace. No
interaction was performed with the applications aside from
booting them up using monkey tool for Android. On both
devices the same basic Android 8.0 configuration was setup:
security measures were disabled, Wi-Fi connection enabled,
SD card, Google Play installed and no SIM card.

The following subsections give the details of each analysis
item.

A. Data Preparation and Descriptive Statistics

212 system calls are defined in the standard C library for
Linux kernel, called Bionic library, used in Android OS. For
each application, a frequency vector that reflected the ratio of
each system call issued was formed using the application’s
logged data.

Descriptive statistics were calculated for the whole ac-
quired data set, dividing them according to application type
(benign or malware) and collection source (real or emulated).
In this step, raw data were used, so all the syscalls collected
were processed, even those not defined in the Bionic library.
Table I shows the measures of central tendency calculated:
mean (Y) and median (), and the measures of dispersion:
range, standard deviation (s) and inter-quartile range (/QR)
for both kind of system calls, the ones included in the Bionic
library (referenced with subscript b, e.g., x») and the ones
not included (referenced with subscript nb, e.g., Xnp)-

We identified that emulator data included just 95 system
calls out of the 212 syscalls defined in the Bionic library,
meaning that the remaining system calls were not issued.
On the other side, we captured only 71 different system calls
from the real device acquired data. As can be observed on

400

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 23,2022 at 12:54:04 UTC from IEEE Xplore. Restrictions apply.

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)

TABLE I
DESCRIPTIVE STATISTICS ON ACQUIRED DATA

Real Device Emulator
Benign Malware Benign Malware

X5 12993 11610 12601 12010
Sh 30357 29496 15899 19853
range [36, 289715] | (368, 265746] | (1121, 106076] | [28, 101867]
B @13 4033 7561 343

TQ Ry, 9245 5300 9632 6174
Xab 1269 1367 0 T
Snb 3641 3575 1 2
range 17, 34281] 124, 330321 10, 11] 10, 11]
) 618 710 0 0

TQR,p 951 532 0 0

Table I, the descriptive statistics show differences on most of
the statistics computed among the devices. More specifically,
applications show more dispersion of the data in the real
device than in the emulated device, as can be confirmed
by the wider range and greater standard deviation on real
device data. Furthermore, in the emulated device, almost all
the system calls issued are found in the Bionic library while
in the real device there are much more system calls that do
not belong to this specific library. These facts suggest that
the behavior of the same applications on real and emulated
devices is different.

After this step, the data was processed, thus being nor-
malized for further use in the machine learning models. As
the amount of system calls issued by each application could
differ for the same collection time (1 minute), the acquired
data was normalized using the maximum number of system
calls issued by the specific application, thus each attribute
value reflects the proportion of each feature among the total
amount of system calls issued by the application (logically,
the sum of all proportions is equal to 1, reflecting the total
amount of system calls issued by the application). It is worth
mentioning that he collection time, 1 minute, was established
based on our experiments as the most relevant to understand
the discriminatory power of the features, thus selected as
the optimal discriminatory time-frame. Due to the space
limitation, further information is not provided in this paper.

As the outcome of this step, two data sets were created:
real data set and emulator data set. Each data set contains
exactly the same features (212) and exactly the same number
of instances (220): the same 110 benign and the same 110
malware applications. The differences rely on the features’
values obtained from real device or emulator for each specific
application.

B. Feature Correlation

Pearson’s correlation coefficient (p) was applied to the
normalized data sets. Pearson’s p is a statistical criterion that
quantifies the linear relationship between pairs of variables,
ranging from [-1, 1]. Extreme values show perfect correla-
tions (-1 for negative and +1 for positive) while a value of 0
means that no linear correlation exists between the assessed
variables. In order to analyze the correlation of system calls
for each of the data sets, Pearson’s p was computed for all the
212 with the rest of variables in a pair-wise fashion. Figure
1 shows the features that at least had one strong correlation
with another feature, either positive or negative, |p| >= 0.80,

in the real device data set while Figure 2 provides the same
information for the emulator data. Graphically, the darker the
color, the greater the correlation.

Fig. 1. Strongly correlated system calls from real device data

Fig. 2. Strongly correlated system calls from emulator device data
As can be observed on Figure 1, 33 features were found
to have at least one strong correlation with another system
calls while this value reached 60 features in the case of the
emulated device, as shown in Figure 2. 30 features were
common in both feature sets. As can be observed when
comparing both figures, more features are correlated in the
case of emulated data, suggesting that the behavior in the
emulator tends to group features together, while in the real
device this grouping is less frequent. Recall that emulator and
real device used 95 and 71 different system calls respectively,
thus it can be deduced that emulated device tends to use more
system calls and in a grouped fashion (60 out of 95 features
showed at least one strong correlation) while the real device

401

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 23,2022 at 12:54:04 UTC from IEEE Xplore. Restrictions apply.

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)

uses less system calls and in a less correlated manner (33
out of 71 features showed at least one strong correlation).

C. Feature Selection

Feature selection methods, which allow data dimension-
ality reduction, help to reduce the risk of overfitting and
improve model’s performance while reducing training time.
In this study, after the data were normalized, Fisher’s score
was used to select most discriminatory features. Fisher’s
score is a filter feature selection technique that allows to
rank features according to their discriminatory power among
the different data classes (in this case, malware or benign).
More specifically, Fisher’s score is a statistical criterion that
quantifies the ratio of the average inter-class separation to
the average intra-class separation, as defined by the formula:

k 2
E]‘:l Pk — 1)
k 2
22j=1P50;
where p refers to the global mean of the data for the
individual feature; p; and o;, stand for the mean and
standard deviation of the data instances belonging to j class,
and p; is the fraction of instances that belong to j class.
Based on that, greater values of Fisher’s score suggest greater
discriminatory power of the feature among the classes.

F =

TABLE II
FISHER’S SCORE RANKING ON BOTH DATA SETS

Real T Emulator

System call F | System call F
setsockopt 021 clockgettime [0.2
socketpair 020 setrlimit 023
sysinfo, 020 [] connect 021
setrlimit 0.20 sysinfo 0.20
getpriority 0.17 ugetrlimit 0.18
sendmsg 0.13 sigaction 0.18
pretl 0.09 setpriority 0.16
clock gettime | 0.07 getuid32 0.14
sched_yield 0.04 readlinkat 0.14
read 0.04 socketpair 0.3

Fisher’s score ranking of the 10 best features for each
data set and their scores (F) are provided in Table IIL
As can be observed in Table II, only 4 system calls are
common on both rankings (highlighted in grey). Considering
these best features, the minimum Fisher’s score value in the
emulator dataset is 0.13 which is considerably greater than
the minimum score in the real device data set, 0.04. Among
the common ones, clock_gettime is so distinguished that it
has a very high discriminatory power in emulator data set
(0.92) but the value is considerably low in the real data set.
The closest feature to clock_gettime, setrlimit, has a score,
0.23, which is quite low. To sum up these findings, the top 10
Fisher’s score values on real device are lower than the values
obtained for the emulator, suggesting that the emulator data
could be more distinguishable among classes.

D. Classifier models: single and cross data set approaches

Malware detection could be considered as a binary clas-
sification problem that can be tackled using the machine
learning approach to discriminate between malware and
benign applications. In this research, we trained and eval-
uated five different traditional supervised machine learning

models used for binary classification problems: k—Nearest
Neighbors (k-NN), Logistic Regression (LR), Support Vector
Machines (SVM), Decision Tree (DT) and Random Forest
(RF) algorithms.

Binary classification models were trained and validated
using two distinct approaches:

« Single data set approach: the same data set was used
for training and validation. Different sizes of feature
sets were used to build the models. Models were cross-
validated using 5-fold cross-validation.

o Cross data set approach: the models were trained with
one data set and validated using the other data set.
Different combinations of features were used to build
the models.

After that, the best overall classifier algorithm of the
previous task was used to handle a multi-class classification
problem (i.e. four-class classification). In this regard, the two
data sets were merged, the labels were changed to distinguish
between application type coming from different sources (real
or emulated). A four-class classification problem was built
in order to discriminate the four possible options: real de-
vice malware, real device benign, emulated device malware
and emulated device real application. The purpose of this
experimental setup was to test whether a machine learning
model could be able to discriminate between malware from
benign while also identifying the data source. If so, it could
be argued that the behavior of the same application on each
device is different enough to allow the machine learning
algorithm to discriminate them as if they really were two
different applications. If that were the case, such learning
models could be utilized in the situations where the data
source is known at the training stage but unknown at testing
stage, which might help to avoid misclassifications due to
the fact of mixing data from different sources.

The performance metrics of all models built and tested are
reported. They are described as follows:

e Accuracy: ratio of correctly classified test instances

among all test instances.

« Precision: fraction of positive (malware) instances cor-
rectly classified among all the positive classified in-
stances.

o Recall: fraction of positive (malware) instances cor-
rectly classified among all the real positive instances.

IV. RESULTS AND DISCUSSION
A. Binary classification

Machine learning classification models were built and 5-
fold cross-validated. The library used to build all the models
was Python’s scikit_learn library. As the purpose of this re-
search was not to reach an optimal classifier but to highlight
any differences between different real and emulated Android
devices, the hyper-parameters used for all the classifiers were
the default values provided by the library.

k-Nearest Neighbors, Support Vector Machines, Logistic
Regression, Decision Tree and Random Forest models were
trained and tested with same source data (either real or

402

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 23,2022 at 12:54:04 UTC from IEEE Xplore. Restrictions apply.

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)

emulator) and different features (either all features or best 1,
5, 10 features according each data set Fisher’s score ranking).
Accuracy, precision and recall performance metrics for each
model are provided in Table III. As can be observed in

TABLE III
PERFORMANCE METRICS OF SINGLE SOURCE ML MODELS

To-Nearest Neighbors

[Real Emulator
[An T 5 10 ATl T 5 10
[Accuracy | 07727 | 05272 | 05136 | 0.7545 08727 | 08090 | 0.80% | 0.8272
| Precision | 0.7807 | 05158 0.5075 0.7599 0.8654 0.8258 0.8258 0.8385
[Recall [07636 | 0.9272 03818 0.7454 0.8909 0.8 03 0.3363
Support Vector Machines
[Real Emulator
| An T 5 10 ATl T 5 10
[Accuracy | 0.6227 | 0.6000 0.6181 0.6 0.8227 0.7863 0.7818 0.8045
[Precision | 06823 | 10 10 07104 09044 | 09178 | 09125 | 09185
[Recall | 03909 | 02000 | 02363 | 0.3636 07181 | 06272 | 06181 | 0.6636
Togistic Regression
[Real Emulator
[an T 5 10 All T 5 10
[Accuracy | 07090 | 06681 | 0659 | 0.6590 08227 | 08318 | 08318 | 08363
| Precision | 07386 | 07654 | 0.7394 0.6725 0.9044 0.9113 09113 09119
[Recall | 06636 | 04818 | 04909 | 0.6272 07181 | 07363 | 07363 | 07454
Decision Tree
[Real Emulator
[An T 5 10 All T 5 0
[Accuracy | 07818 | 06636 | 0.6545 | 07545 08227 | 07909 | 07727 | 08227
[Precision | 08063 | 08580 | 08239 | 07539 08390 | 08005 | 07679 | 08189
[Recall | 07636 | 03909 0.3909 0.7545 08 0.8 08 0.8454
Random Forest
[Real Emulator
[An T 5 10 ATl T 5 10
Accuracy 06636 | 06545 | 0.7590 08727 | 07863 | 07954 | 08454
Precision 0 | 08391 | 038053 09358 | 08138 | 0.7981 | 0.8616
[Recall | 08 | 03818 | 03909 07 038 07636 | 07999 | 08363

Table III, the models built and tested based on emulator
data show better overall performances than the ones built
and tested using real device data. This fact goes in line with
the greater Fisher’s score values obtained in the previous
steps, suggesting that separability of data points among
labels on emulator is greater than in real device. Random
Forest algorithm outperformed the other classifiers in most
of the experiments, be it real device or emulator. Based
on that, Random Forest was used to build cross-source
data set models. These models are featured to be models
which are built (trained) using data from one data set and
are tested with data belonging to the other data set. The
number of estimators for the Random Forest algorithm was
established to 100 (i.e., scikit_learn’s default value). Different
combinations of the best features were selected to build
the models, belonging to one data set or the other, as it is
specified in Table IV where, for the sake of easy comparison,
only the accuracy of each model is reported.

According to Table IV, when the model is trained with
real data and using at least 10 features, the detection of
emulator data is better than detection of real data, which
should be explained by the presence of clock_gettime feature
in the feature set, the highest ranked feature in the emulator
data set. In any other case, training with real data, the models
show better performance detecting real data. When the model
is trained with emulator data, this pattern is also present and
it can be observed that, in general, emulator data is better
detected than real data using any feature from the feature set
selected by Fisher’s score criterion for this data set, even with
just 1 feature the model achieves 78.63% accuracy. Based on
that, it can be argued that, for the same samples, emulator
based acquired data provide better detection patterns and
capabilities than real device acquired data.

TABLE IV
ACCURACY OF CROSS-DATA SET CLASSIFICATION MODELS

Test Data

Features Real Emulator

All 0.8272 0.8795

Best Real 1 0.6636 0.5045

Best Real 5 0.6545 0.6340

Real Best Real 10 0.7590 0.8659
Best Emu 1 0.6045 0.4249

Best Emu 5 0.6954 0.6409

Best Emu 10 0.7924 08181

All 0.7931 08727

Best Real T 0.6045 0.4568

Best Real 5 0.6909 0.6727

Emulator Best Real 10 0.7613 0.8636
Best Emu | 0.6022 0.7863

Best Emu 5 0.6613 0.7954

Best Emu_10 0.6636 0.8454

B. Multi-class classification

The differences highlighted in the previous paragraphs
suggested that it might be possible to train a classifier
able to discriminate between the four possible labels: legiti-
mate/malware from real device and legitimate/malware from
emulator. In order to build that model, the two binary class
data sets were merged to build a single four-class Random
Forest classifier. Feature selection was performed as in the
previous steps for the merged data set, results are shown in
Table V. The classifier performance summary using different
number of features and 5-fold cross-validations is provided
in Table VI. Macro-averaged metrics are retrieved as the test
data distribution is not imbalanced towards any of the classes.
Figure 3 shows an example of a confusion matrix extracted
from the tested model when all features are used on training
and testing stages. As can be seen in Table V, the most
discriminatory system call among these four labels (openat)
was not found in none of the individuals data sets rankings, a
fact that emphasizes the difference between each of the four
labels. According to Table VI, a model using all features is
capable of discriminate accurately 86% of the data points,
while with just 10 features, 81.59% . The confusion matrix in
Figure 3 confirms that the model, even not optimized (using
default parameters), can successfully discriminate between
data point sources showing more accurately results for the
emulator data than the real device data. This fact emphasizes
the possibility of building a classifier model able to predict
the type and source of an application.

TABLE V
TopP 10 - FISHER’S SCORE RANKING OF MERGED DATA SET

System call F
openat 095
clock_gettime | 0.76
readlinkat 056
TStatat6d 049
epoll_pwait 049
setsockopt 042
ugetrlimit 041
Taccessat 034
mkdirat 025
socketpair 0.4

V. CONCLUSIONS AND FUTURE WORK

Machine learning based models which are developed for
mobile malware detection use either emulator or real de-
vice as a data source when they address the issue from
a dynamic analysis perspective. Emulators have been more

403

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 23,2022 at 12:54:04 UTC from IEEE Xplore. Restrictions apply.

2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS)

TABLE VI
PERFORMANCE OF MULTI-CLASS RANDOM FOREST MODEL

Features
All 1 3 5 10
‘ Accuracy 0.8613 0.5272 0.7409 0.7568 0.8159
‘ Precision 0.8645 0.4073 0.7452 0.7630 0.8241
‘ Recall 0.8613 0.5272 0.7409 0.7568 0.8159
Leg Real 08
o6
_ Mal Real
H 04
Leg Emu
02
wal Emu
00
Fig. 3. Normalized confusion matrix

favored during the data collection process as they can be
readily scaled to run various detection tasks by using less
computational resources. However, this choice assumes that
emulators and real devices are indistinguishable in terms of
produced data and thus model performance. Our experiments
suggest that there is an important difference in the behavioral
aspect of applications running in real or emulated devices.
These differences are emphasized by training a classifier that
allows to discriminate among the same data points collected
from different sources. These differences can hinder the
capabilities of a classifier trained on one source of data
to detect data coming from another source. In this regard,

we
be

have shown that a four-class classification model can
constructed to establish the source of the data with

notable accuracy. The causation behind the differences of
behavior evidenced by this study remains unclear and will
be addressed in our future work.

[1]
[2]

3

[4

[5

[6

[7]
[8

9]

REFERENCES

V. Chebyshev, “Mobile malware evolution 2018.” [Online]. Available:
https://securelist.com/mobile-malware-evolution-2018/89689/
McAfee, “McAfee Mobile Threat Report.” [Online].
Available: https://www.mcafee.com/enterprise/en-us/assets/reports/rp-
mobile-threat-report-2019.pdf

V. Chebyshev, F. Sinitsyn, D. Parinov, B. Larin, O. Kupreev,
and E. Lopatin, “IT threat evolution QI 2019. Statistics.”
[Online]. Available: https://securelist.com/it-threat-evolution-q1-2019-
statistics/90916/

Statista, “Mobile operating systems’ market share worldwide
from January 2012 to December 2018 [Online]. Avail-
able: https://www.statista.com/statistics/272698/global-market-share-
held-by-mobile-operating-systems-since-2009/
Android, “Distribution dashboard.” [Online].
https://developer.android.com/about/dashboards

R. Fedler, J. Schiitte, and M. Kulicke, “On the Effectiveness of
Malware Protection on Android,” AISEC, Tech. Rep., 2013.

B. Baskaran and A. L. Ralescu, “A study of android malware detection
techniques and machine learning,” in MAICS, 2016.

A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A
review on feature selection in mobile malware detection,” Digital
investigation, vol. 13, pp. 22-37, 2015.

A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis
for malware detection,” in Twenty-Third Annual Computer Security
Applications Conference (ACSAC 2007). 1EEE, 2007, pp. 421-430.

Available:

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
behavior-based malware detection system for android,” in Proceedings
of the 1st ACM workshop on Security and privacy in smartphones and
mobile devices. ACM, 2011, pp. 15-26.

A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “Madam:
Effective and efficient behavior-based android malware detection and
prevention,” IEEE Transactions on Dependable and Secure Comput-
ing, vol. 15, no. 1, pp. 83-97, 2016.

J. M. Vidal, A. L. S. Orozco, and L. J. G. Villalba, “Malware
detection in mobile devices by analyzing sequences of system calls,”
World Academy of Science, Engineering and Technology, International
Journal of Computer, Electrical, Automation, Control and Information
Engineering, vol. 11, no. 5, pp. 594-598, 2017.

X. Xiao, X. Xiao, Y. Jiang, X. Liu, and R. Ye, “Identifying android
malware with system call co-occurrence matrices,” Transactions on
Emerging Telecommunications Technologies, vol. 27, no. 5, pp. 675—
684, 2016.

V. Wahanggara and Y. Prayudi, “Malware detection through call
system on android smartphone using vector machine method,” in 2015
Fourth International Conference on Cyber Security, Cyber Warfare,
and Digital Forensic (CyberSec). 1EEE, 2015, pp. 62-67.

A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, “andro-
maly: a behavioral malware detection framework for android devices,”
Journal of Intelligent Information Systems, vol. 38, pp. 161-190, 2012.
C. Da, Z. Hongmei, and Z. Xiangli, “Detection of android malware se-
curity on system calls,” in 2016 IEEE Advanced Information Manage-
ment, Communicates, Electronic and Automation Control Conference
(IMCEC). IEEE, 2016, pp. 974-978.

G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio, “Detecting
android malware using sequences of system calls,” in Proceedings of
the 3rd International Workshop on Software Development Lifecycle
for Mobile. ACM, 2015, pp. 13-20.

X. Xiao, P. Fu, X. Xiao, Y. Jiang, Q. Li, and R. Lu, “Two effective
methods to detect mobile malware,” in 2015 4th International Confer-
ence on Computer Science and Network Technology (ICCSNT), vol. 1.
IEEE, 2015, pp. 1041-1045.

Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-sec: deep learning in
android malware detection,” in ACM SIGCOMM Computer Commu-
nication Review, vol. 44, no. 4. ACM, 2014, pp. 371-372.
DroidBox, “DroidBox.” [Online]. Available:
https://github.com/pjlantz/droidbox

M. Dimjasevi¢, S. Atzeni, I. Ugrina, and Z. Rakamaric, “Evaluation
of android malware detection based on system calls,” in Proceedings
of the 2016 ACM on International Workshop on Security And Privacy
Analytics. ACM, 2016, pp. 1-8.

Google, “Run apps on the Android Emulator.” [Online]. Available:
https://developer.android.com/studio/run/emulator

Y.-D. Lin, Y.-C. Lai, C.-H. Chen, and H.-C. Tsai, “Identifying android
malicious repackaged applications by thread-grained system call se-
quences,” computers & security, vol. 39, pp. 340-350, 2013.

V. M. Afonso, M. F. de Amorim, A. R. A. Grégio, G. B. Junquera,
and P. L. de Geus, “Identifying android malware using dynamically
obtained features,” Journal of Computer Virology and Hacking Tech-
niques, vol. 11, no. 1, pp. 9-17, 2015.

S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4maldroid: A deep learning
framework for android malware detection based on linux kernel system
call graphs,” in 2016 IEEE/WIC/ACM International Conference on
Web Intelligence Workshops (WIW). 1EEE, 2016, pp. 104-111.

L. Singh and M. Hofmann, “Dynamic behavior analysis of android
applications for malware detection,” in 2017 International Conference
on Intelligent Cc ication and Comy ional Techniques (ICCT).
IEEE, 2017, pp. 1-7.

A. Ferrante, E. Medvet, F. Mercaldo, J. Milosevic, and C. A. Visaggio,
“Spotting the malicious moment: Characterizing malware behavior
using dynamic features,” in //th International Conference on Avail-
ability, Reliability and Security (ARES). 1EEE, 2016, pp. 372-381.
M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Effi-
cient and comprehensive mobile app classification through static and
dynamic analysis,” in 2015 IEEE 39th Annual Computer Software and
Applications Conference, vol. 2. 1EEE, 2015, pp. 422-433.

A. Guerra-Manzanares, S. Nomm, and H. Bahsi, “In-depth feature
selection and ranking for automated detection of mobile malware,” in
2019 5th International Conference on Information Systems Security
and Privacy, 2019, pp. 274-283.

404

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 23,2022 at 12:54:04 UTC from IEEE Xplore. Restrictions apply.

Appendix 3

Publication lll

A. Guerra-Manzanares, S. Nomm, and H. Bahsi. Time-frame analysis of sys-
tem calls behavior in machine learning-based mobile malware detection.
In International Conference on Cyber Security for Emerging Technologies
(CSET), pages 1-8, 2019

165

Time-frame Analysis of System Calls Behavior in
Machine Learning-Based Mobile Malware Detection

Alejandro Guerra-Manzanares, Sven Nomm, Hayretdin Bahsi
Department of Software Science, TalTech
Tallinn, Estonia
{alejandro.guerra, sven.nomm, hayretdin.bahsi} @taltech.ee

Abstract—Dynamic features are frequently used in the machine
learning based approaches to detect malicious applications on
Android devices. These features are constructed by collecting
the system calls observed during a certain period of time. In
spite of the popularity of this approach, very little attention has
been paid to the analysis of the length of the collection time-
frame and its impact on the detection performance of induced
learning models, which constitutes the scope of this research.
Such analysis helps to understand the accuracy and performance
trade-off in data collection efforts taking place at the various
stages of the machine learning workflow. Our time-frame analysis
also addresses different data collection environments, emulator
and real device, and the variations in detection capabilities in
the case of detecting recent or older malware. System calls of
330 benign and malicious applications, collected on different time
periods, are monitored and logged for each minute-long interval
for a total of fifteen minutes. First, distribution of the system calls
is analysed. After, the discriminatory power of each system call
is evaluated cumulatively for each minute-long interval. Fisher’s
score is used to assess the discriminatory power of each feature.
It is revealed that the system calls observed during the first
minute possess the highest discriminatory power, whereas the
discriminatory power of the system calls observed on greater
time-frames is lower. Finally, this finding is tested by training
and evaluating traditional machine learning classifiers.

Index Terms—system calls, mobile malware, machine learning,
dynamic behavior, malware detection, time analysis

I. INTRODUCTION

Mobile malware poses a real threat to mobile devices’ users,
which has evolved in scope and complexity of the attacks
[1] [2]. Cyber attackers have directed the majority of their
efforts to compromise Android OS, the widely-used open-
source mobile operating system [3], locating its users as the
main targets of their attacks [4].

Machine learning algorithms have been tested, using several
approaches, to overcome the main weaknesses and limitations
of signature-based antivirus detection in the mobile malware
landscape [5] with remarkable success [6]. In this regard,
static and dynamic features of Android applications have been
used to create learning models to detect mobile malware with
promising results [7]. Static features are extracted directly
from the application’s source code without needing to execute
it while dynamic features are acquired when the application
is running on an Android device, either real or emulated
[8]. Whereas static features (e.g. permissions or API calls)
are usually collected in its whole at once and rarely change
on different collections from the same application, dynamic

features (e.g. system calls or network traffic) are prone to
changes and increase in volume depending on other variables
such as the collection time and user-interaction on different
collections on the same application. As machine learning
algorithms heavily rely on data quantity and data quality, the
time variable appears to be of remarkable importance in the
case of the usage of dynamic features, as it may affect to
quality of the data when increasing data quantity (e.g. adding
noise or irrelevant data) which may directly cause a remarkable
impact on machine learning algorithm’s detection ratio.

The main objective of this research is to elucidate the impact
of the collection time on data quality, and more specifically,
whether it exists a specific time-frame that may be capable of
providing optimal accuracy performance when using system
calls data to induce learning models (i.e., whether more system
calls data encompassing longer time-frame provide better
detection ratio). We also analyse the optimal data collection
time-frame for detecting malware belonging to different years.
As Android is the most widely used mobile operating system,
we address malware detection in that environment.

In order to achieve our research purpose, first, we analyse
the distribution of system calls per application in each minute.
Then, we conduct a discriminatory power analysis of the data
collected in different time-frames by using Fisher’s score.
Finally, we induce learning models to evaluate the accuracy
performance with varying feature sets.

Our contribution is unique as our time-frame analysis is
more comprehensive in terms of covering different data collec-
tion environments (i.e., emulation and real device) and testing
with new and old malware.

This paper is organized as follows: Section II provides a
literature review and background information while Section III
explains the methodology followed in this research. Section
IV shows the experimental results obtained and Section V
concludes the study and states the future work.

II. BACKGROUND INFORMATION
& LITERATURE REVIEW

Machine learning based malware detection using dynamic
features requires the need of running the applications for
a certain amount of time and/or user-interaction in order
to acquire the data. Generally, longer data collection times
provide more data, which may usually be related to better
outcomes when using machine learning models. However,

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 23,2022 at 12:53:59 UTC from IEEE Xplore. Restrictions apply.

the amount of time can also provide more noisy data thus
lowering the data quality that could harm the performance of
the learning models. The existent research literature does not
show any particular trend or common practice regarding the
collection time, although system calls are the most widely-used
feature when dynamic features are used to induce learning
models [7].

Some studies use pseudo-random or human user-interaction
as a method for the collection of the application behavior
data, being the Monkey [9] the most used tool to generate
the pseudo-random user-interactions or events. The Monkey
uses by default no delay between the events, generating them
as rapidly as possible, thus there is no guarantee about that
the data obtained can belong to the same time-frame, unless
the same seed is used for each application to generate the
same pseudo-random chain of events, like in [10] where the
tests included 1, 500, 1000, 2000 and 5000 pseudo-random
injected events. In [11], [12] and [13], 1000 pseudo-random
events were generated to obtain the behavior of the application,
500 pseudo-random events in [14] while in [15], two different
settings were used to generate and extract system call data:
2500 pseudo-random interactions and 5 minutes human inter-
actions. In [16], human user-interactions were used, ranging
from 6 to 60 interactions to detect both self-written malware
and real malware. A different approach was used in [17],
where a custom behavioral testing tool, called Component
Traversal, was used to execute all the activities and services
defined by each application. The average execution time was
41 seconds. There is also some of the literature using this
approach does not provide any information about the number
of events injected like [18], [19] or the number of human
events performed [20].

The time comparison issues that may arise from the un-
controlled pseudo-random generated events can be overcome
with the usage of time-limited collections. In this regard, in
[21], benign and malware mobile games system call data was
collected for 30 and 60 seconds. The shorter time-frame did
not provide any discriminatory differences between applica-
tions while the longer provided discriminatory patterns among
classes that could be used to detect and classify mobile gaming
applications. Different data sets were run for 10 seconds
per application in [22] and 20 seconds in [23]. In [24], 44
applications were used by a human for 10 min each whereas in
[25] the Monkey was used to mimic human interaction in a 10
min limited collection. Also some studies using this approach
do not provide any information about the acquisition time like
[26] and [27].

Finally, a third approach of the research dealt directly
with the acquisition of a specific number of system calls
or sequences. In this regard, [28] evaluated the impact of
different lengths of system calls on application’s boot up (i.e.,
500, 1000, 2000, 2500 system call sequences) while [29]
used a fixed amount of system calls per application (i.e, first
2000 system calls) to perform malware detection on different
malware data sets.

III. METHODOLOGY
A. Data set

The data set used in the experimental set-up is composed
of 330 Android x86 applications distributed as follows:

e 110 random benign applications collected from APKMir-
ror repository between 2017 and 2018. Checked as
malware-free using VirusTotal malware detection engine.
Named indistinctly as “legitimate dataset” or “benign
dataset” in this research.

o 110 randomly chosen malware applications from Virus-
Total academic malware data set [30], belonging to the
time frame between 2017 and 2018. Named as “new
malware” in this research.

e 110 randomly selected malware applications from the
Drebin malware dataset [31], dating from 2010 to 2012.
Named as “old malware” in this research.

As can be noticed, two distinct malware data sets were
selected from different time-frames but only one benign data
set was selected with more recent applications. The rationale
behind this selection is that in order to analyse the time-
evolution we have to analyze all kinds of applications we can
encounter in the wild which encompasses old and new (recent)
malware and just recent applications. This is coherent with the
mobile malware detection practices as mobile phones typically
suffer from back-compatibility issues, so that older legitimate
applications do not usually work with the recent OS, due to
changes in application requirements and constant changes in
hardware and software from new OS developments. Neverthe-
less, malware detection systems usually include signatures of
all malware samples, including old and new ones.

B. Data acquisition

This research focuses on the extraction and usage of dy-
namic features, i.e. system calls, to perform mobile malware
detection on the Android OS environment. Over 200 distinct
system calls are defined in the Bionic x86 library, the standard
C library for Android, which are monitored, extracted and
logged for this research.

All the applications are installed, executed, monitored,
logged and uninstalled on Android devices, both in a real de-
vice (Samsung Galaxy A6) and an emulated device (Samsung
Galaxy S8 emulated using GenyMotion emulation software).
The rationale behind using two different types of devices is
that the existing literature use them interchangeably, using
emulators as a cheap and scalable approach to real devices,
thus preferred in some researches [32] and taken into account
in this experimental set-up. Android 8.0, the most deployed
version of the Android OS [33], is used as the operating
system running on both devices, with identical configuration.
Each application is executed and allowed to run without any
user interaction for 15 minutes. Application’s behavioral data,
i.e. system calls issued by the application’s main process, are
logged using strace tool. Consequently, fixed-collection time
with no user-interaction is analyzed in this experimental setup
while any kind of user-interaction, either real or emulated, is

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 23,2022 at 12:53:59 UTC from IEEE Xplore. Restrictions apply.

out of the scope of this present research and will be part of
the future work.

The outcome of this step is a log file for each application
and for each device (real and emulated), which contains all the
system calls issued by each specific application for the whole
acquisition time, established in 15 minutes.

C. Data processing

Applications’ logged data is analysed from a time-frame
evolution perspective. This is performed in a two-fold
approach: time-specific system call frequency analysis and
time-cumulative discriminatory power perspective. They are
described as follows:

1) Time-specific system call frequency analysis: In this
step, the number of system calls issued by each application
for each single running minute is analyzed using histograms.
So, as the outcome of this step, a histogram is obtained for
each application logged data, providing an overview of the
absolute frequency (i.e. count) of the system calls issued by
the application over time, on a minute-long basis analysis.

2) Time-cumulative discriminatory power feature analysis:
In this step, Fisher’s score (F), which is a statistical criterion
that allows to assess the discriminatory power of numeric
features among the different classes (i.e. malware or legitimate
application), is used to evaluate the discriminatory power evo-
lution of each feature (i.e. each system call) over time among
the classes, in a time-cumulative basis. More specifically,
Fisher’s score quantifies the ratio of the average inter-class
separation to the average intra-class separation, providing a
measure of the discriminatory power of the feature. Greater
magnitudes relate with greater discriminatory powers. Fisher’s
score is calculated as follows for each feature:

k 2
E]’:l pi(k; —)

Zle p;o}

where g refers to the global mean of the data on the
particular feature; y; and o, relate to the mean and standard
deviation of the data points belonging to class j for the specific
feature respectively, and p; refers to the proportion of data
points belonging to class j. So, in this research, as the outcome
of this step, for each feature (system call) we obtain a line-
graph showing the discriminatory power evolution for each
minute which allows us to assess the discriminatory power
evolution of each feature over time.

F =

D. Machine Learning models validation

From the data processed on the previous step, machine
learning binary classification models are built and validated.
As the main purpose of the machine learning models induced
is to evaluate empirically the previous findings and the overall
performance and trends of the classifiers, we use widely
used traditional machine learning algorithms for classification
issues to induce the malware classification models. In relation

to that, we do not perform any hyper-parameter optimization
of the machine learning algorithms, keeping the default con-
figurations that Python’s scikit_learn library provides. The
models built aim to provide empirical support to the results
obtained on previous steps, thus providing a general overview
of the classifiers’ performance. In this regard, there is room
for improvement, so that the results can be enhanced by
optimizing the models’ hyper-parameters, but is out of the
scope of this present research.

Three widely used machine learning algorithms for classi-
fication problems are evaluated: Random Forest, k—Nearest
Neighbors and Support Vector Machines. All models are
validated using 5-fold cross-validation, which aims to provide
a better estimation of the predictive model’s performance
against unseen data (i.e., data that has not been used to build
the model) than the regular fixed train-test split when the data
set used is small. The performance metric reported is accuracy,
a comprehensive metric that stands for the ratio of correctly
classified test instances among all the test instances. Accuracy
range varies from O to 1. Greater accuracy score imply greater
classification performance.

IV. RESULTS
A. Time-specific system call frequency analysis

The absolute frequency of system calls is used in this step to
construct application-wise histograms, as shown as an example
in Figure 1. For the sake of interpretability, histogram bars
are slightly spaced resembling a bar graph. The horizontal
axis is split and numbered from 1 to 15, each corresponding
to a minute fraction while the vertical axis accounts for the
absolute frequency of system calls issued for the application
in each time slot. Figure 1 shows an example of an application
that provided data for each minute of the total collection time.
More concretely, it corresponds to a new malware data set
sample (i.e., apk’s package name: air.com.bitrhymes.bingo)
that issued approximately 10000 system calls in the first
minute and a relatively constant amount of slightly less
than 4000 each subsequent minute until the end of the data
acquisition process. As can be observed, the application issued
system calls even when no interaction was performed along
the 15 minutes run-time.

Contrarily, histograms in Figure 2 and 3 are provided as
examples of applications that did not provide data for each
minute of the whole 15-minute run-time. More specifically,
Figure 2 shows an example of an old malware application
(i.e., apk’s package name: anohito.ha.ima) that issued system
calls only for the first minute, over 7500 system calls, while
Figure 3 provides an example of a legitimate application (i.e.,
apk’s package name: com.ms.office365admin) which issued a
vast amount of system calls only for the first three minutes
with an irregular pattern, issuing more system calls on the
second minute than in the first and stopping on the third. It
can be argued that these applications stopped issuing system
calls before the ending of the acquisition time because either
it finished its boot-up before the run-time timeout established
on 15 minutes, reaching an idle state, or was blocked waiting

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 23,2022 at 12:53:59 UTC from IEEE Xplore. Restrictions apply.

10000 -

8000

6000 -

Frequency of system calls

4000 4
2000 -
o4
5 6 7 8 9 10 11 12 13 14 15
Time (min)
Fig. 1. System call histogram of a new malware application sample

for some input, expecting some user-interaction or data that
never happened. Examples on Figure 1, Figure 2 and Figure
3 are provided as an example of histograms obtained from
logged data analysis, but they are not representative of any
class. Such an examples of histograms can be found on all the
data sets, either malware or benign.

7000 -

6000 {

5000 1

4000 1

3000 -

Frequency of system calls

2000

1000 A

0- T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time (min)

Fig. 2. System call histogram of an old malware application sample

A summary of the results obtained is provided in Table
I and Table II, which provide the frequency distribution of
applications (i.e., relative frequency) in relation to the maxi-
mum time they provided data on run-time, both on an emulator
and real device. Relative frequency provides information about
the occurrence of an outcome (e.g., providing data only for
one minute) among all the possible outcomes (i.e., the 15
time-frames splits on a minute basis). Table I provides an
overview and grouped data summary extracted from Figure
4 while Table II provides the same information from Figure
5. In both Figure 4 and Figure 5, the top graph (green data)
shows information about legitimate applications (referenced
as L in the corresponding tables), the center graph (blue data)
shows information about old malware applications (referenced
as O in the tables) while the bottom graph (red data) shows

120000

100000

80000 -

60000 -

40000

Frequency of system calls

20000

0- — T T T T
1 2 3 4 5 6 7 8 9

Time (min)

1011 12 13 14 15
Fig. 3. System call histogram of a legitimate application sample

information about new malware applications (referenced as N
in the tables) . As can be observed, there is a great number
of applications that provided data only for one minute and
got stuck while many others provided information for the
whole acquisition time. Those time-frames are the ones with
consistently higher frequency along all data sets, even when
they only encompass one minute data and not four minute
data like the other groups. The time-frame of 6-10 minutes is
consistently less frequent. These general patterns and facts are
found on all classes of applications and not specifically linked
to malware or legitimate applications.

Data distribution was also analysed regarding whether the
application issued the maximum number of system calls in
the first minute split (called / min spike in this research
and referenced as such in the corresponding tables) or in
any of the subsequent time-slots. In this regard, Table I and
Table II reference on their last row the relative frequency of
applications that show the / min spike on each data set. As can
be seen, on all data sets the vast majority of applications (at
least 88% in the worse case) issue the maximum number of
system calls in the first minute, issuing less in the subsequent
minutes, or nothing at all. So, based on the aforementioned,
the first minute of application’s boot-up appears to be the
most productive in terms of system calls issuing, consistently,
among all the different data sets and especially when a real
device is used.

TABLE I
SYSTEM CALLS STATISTICS ON EMULATOR

Observed Fact Ll;;equenq(/);i;m‘bunlsrelw
1 min data 0.2631 | 0.2536 0.4545
2 to 5 min data 0.1929 | 0.1594 0.1188
6 to 10 min data | 0.0614 | 0.0869 0.0769
11 to 14 min data | 0.0350 | 0.1594 0.0209
15 min data 0.4474 | 0.3405 0.3286

[Ist min spike [0.9035 [0.8985 0.8811 |

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 23,2022 at 12:53:59 UTC from IEEE Xplore. Restrictions apply.

TABLE 11
SYSTEM CALLS STATISTICS ON REAL DEVICE

Frequency distribution
Observed Fact Teg o New
1 min data 0.4166 | 0.3550 | 0.4685
2 to 5 min data 0.3166 | 0.1739 | 0.1678
6 to 10 min data | 0.0166 | 0.0507 | 0.0349
11 to 14 min data | 0.0083 | 0.0217 | 0.0349
15 min data 0.2416 | 0.3913 | 0.2937
[Istminspike [1.0 [0.9855 [0.9370 |
0.4 -
0.2
0.0 T T : : T i :
z
<
3 04+
E 0.2
2 oo T T T 7 T T 7
0.4
0.2
0.0 T T ; , T ; .
2 4 6 8 10 12 14
Time (min)
Fig. 4. Emulator data set frequency distribution
0.4
0.2
0.0 T T ; . T . ;
oy
g
2 044
E 0.2+
=
& 00 T T 7 T T T T
0.4 -
0.2 -
0.0 T T " T T ; ;
2 4 6 8 10 12 14
Time (min)

Fig. 5. Real device data set frequency distribution

B. Time-cumulative discriminatory power feature analysis

In this step, the single benign data set is merged with the
two malware data sets, providing two different mixed benign-
malware data sets. These new mixed data sets are named L/O
(when benign data is mixed with old malware data set) and
L/N (when benign data is mixed with new malware data) for

each of the devices used (real or emulated). For each possible
combination device and data set (i.e. L/O data on real device,
L/N on real device, L/O on emulated device and L/N on
emulated device) Fisher’s score is calculated in a cumulative
manner for each minute (e.g., minute 3 data contains all the
data up to that minute).

Fisher’s score is used in machine learning applications as a
feature selection method as it measures the separability of the
data among classes, allowing to select the best features to train
classifiers. In this regard, the greater the value, the greater the
separability of the data, implying that the data is less mixed
and more clustered among labels.

As a result of this step, line graphs are obtained for each
minute on each of the four possible combinations, showing the
evolution of data separability regarding each possible system
call over time, as shown in the example of Figure 6. The
horizontal axis is split and numbered from 1 to 15, each
corresponding to a minute fraction while the vertical axis
accounts for the Fisher’s score value of the specific feature
in each time-slot. In this graph, dotted lines represent the
evolution of values using L/N data set, thus indicating in
the legend with the letter R the results corresponding to Real
device and with the letter E to the emulated device. Solid lines
represent the evolution of values using L/O data set, indicating
also the device source, whether R or E. As a result, line graphs
are obtained for each of the system calls showing the trend or
evolution over time in each of the four cases.

Figure 6, shows the line graph of the feature (i.e.
clock_gettime) with the greatest Fisher’s score value, obtained
using L/O data set run on emulator. In this case, Fisher’s
score value is relatively stable along all the running period.
In the other three cases, the greatest Fisher’s score value is
reached in the first minute and lowering as time passes. This
latter trend is confirmed on the line graphs shown in Figure 7,
which provides the time evolution of the features that achieved
the greatest Fisher’s scores among all the evaluations. Only
19 features from over 200 defined in the Bionic x86 library
provided a Fisher’s score value over 0.10 in at least one of the
possible data set/device cases.

As can be spotted in Figure 7, the maximum value of
Fisher’s score on all features and in almost all cases is achieved
in the first minute, diminishing its initial value over time. This
fact suggests that the separability of data is greater in the first
minute, being the best source of data to perform classification
and malware detection. As time passes, the data is becoming
more mixed, thus less suitable to perform proper classification.
It can also be noticed from Figure 7 that data belonging to
emulators are, in general across the features, more clearly
separable than data obtained from real devices, providing
different results using the same data set, as suggested in [32].
As can be noticed on Figure 6 and Figure 7, L/O emulator
data is the case where there exist more prevalence of the
diminishing discriminatory trend on features among all the
possible cases.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 23,2022 at 12:53:59 UTC from IEEE Xplore. Restrictions apply.

clock_gettime

—— e

2.00 4

1754

1.50 1

— LJO-R

125

1.00

Fisher's score

0.75

0.50 +

0.25 4

e e e e e e e R R
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
Time (min)

Fig. 6. clock_gettime syscall Fisher’s score time evolution

C. Machine Learning models validation

Machine learning models are induced and 5-fold cross
validated. Random Forest, Support Vector Machines (SVM)
and k-Nearest Neighbors algorithms are tested and evaluated,
providing similar trends and results. For the sake of brevity,
only the model that provided the best accuracy performance,
outperforming the other two, is reported. In this regard,
Random Forest algorithm, which is a decision tree-based
ensemble method, provides the best performance and its results
are provided in Figure 8. The hyper-parameters used are the
default ones used by the library implementation, so that the
number of estimators parameter was set to 100.

The three graphs presented in Figure 8, show the classifier’s
performance on the four possible cases and its accuracy evolu-
tion using data from different time frames. More specifically,
the left-most graph on Figure 8 shows the models built with
data from the 18 features provided in Figure 7. In this graph,
it can be easily observed the decrease in accuracy for L/O data
(both in emulator and real device) and a more irregular pattern
with lower general accuracy value on the models built with
L/N data. The center graph in Figure 8 provides the results
when the models are induced using the previous 18 features
plus clock_gettime, the one that provided the greatest overall
Fisher’s score. It can be observed that the same decrease
pattern appears as in the previous graph when using Real L/O
data and Emulator L/O stays more stable while the overall
accuracy on emulator and Real L/N data is lower. This fact
confirms the pattern highlighted in Figure 6, where emulator
data on both data sets provided great Fisher’s score values,
thus related to an increased data separability and improved
accuracy value of the classifier. On the other side, the impact
of clock_gettime in accuracy increase is slightly better in each
L/N data. The right-most graph on Figure 8 shows the models
induced using all the features (over 200), with similar trends
and slightly improved accuracy values. However, the figures
between all features and 19 features are so close that the latter

Fisher's score

epoll_createl

eventfd?

\

L B LI e e e

a4 o

a1z o

a0 o

ana o

ans o

anz o

a5 o

an o

a1
a1s
1z
a1

ans o
ana o
anz o

0175 o
s
125
o100 o
o075
s -

a2 o

a0 o

ana o

s o

aca o

an o

fstatfs6d futex
_Rx]
a1z o
__‘____- amw o
——
[i T,
000 o
a4 o
==SS=S=======sSsSssss o] mm—m— e —————
getpriority readiinkat
~ -—
TN ard e =ma
------ a4
o R-_N__.__
.08 o
e]]
as2 o
000 o
L e L B a e e e e e
recvfrom t_sigprocmask
\—__‘___‘___‘__ s 4
s o K
125 o
0100 o
aors o \‘—--—._.___
aoso o
o0 o
G| SEESScsssssEammams
L e
sendto
2 \'_H—.—.____‘__
08 o
oo
o4 o
0z 4
o0 o
e e R e e
setpriority setriimit
N i o] Sem—
‘‘‘‘‘‘ a4 e
aed S
e P g
PO (R e T
— 012 o S—
a0 o
aos o __ﬁ_____-
__________________ il
L e L L e e e e A
setsockopt sigaction
= s o
N f T
i T e e
a2 o
ato o
aoe o
05 o
ot o ———
a2 4
— an | TEETTs—————————
T T T T T T T LB e e e s e e e B
sigaltstack socketpair
T a1 o T
---------- o150 e p————
4~
X
0100 o e
0050
—_—
——— | i
a0
T T T
sysinfo ugetrlimit

ans 4

o
o o
o0 o
a2 o
am
a1 o
amw
am o
00

01 02 63 04 05 06 07 08 03 3011 12 13 14 18

©1 02 03 04 05 06 07 08 09 10 1K 12 13 14 15

Tirme {min)

Fig. 7. Best Fisher’s score syscalls time evolution

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 23,2022 at 12:53:59 UTC from IEEE Xplore. Restrictions apply.

can be a viable option considering the shortcomings of using
all features in consuming computational resources.

As can be stated from the observation of the graphs provided
in Figure 8, in general, the accuracy obtained using one-
minute data provides better or similar accuracy values when
compared to including more data in a longer time duration.
In this regard, we can observe that in some cases (specially
when using old malware), there is a decline in the accuracy
performance over time. In other cases, there is no prominent
increase or decrease in the accuracy metric. Based on the
aforementioned observations, we conclude that, in this case,
covering longer time interval than 1 minute does not constitute
a more convenient option as it does not significantly improve
the classifier’s performance, when using accuracy as perfor-
mance metric. However, it is important to note that 1 minute
is definitely a better option for the data including old malware
when feature selection is applied.

All features
———————

., V\J\’\/\ | i, i

18 features 19 features

1.0

- %A o -
08 7 | ,("\ I Vo S
. - -~
z LT e R e
i} L= S v
o v V
o
<<
0.7 1 1
0.6 1 1
== Real UN
== Emulator UN
= Real UO
— Emulator L/O
0.5 T T T T
1357 9115 1305 7 9 U 13579 0115
Time (min)

Fig. 8. Random Forest models’ accuracy

D. Threats to validity

The results of this study highlight differences in the discrim-
inatory power of features along time. The main weaknesses
for the generalization of these findings are the limited data
set size (110 benign, 110 old malware and 110 new malware
samples) and the limited number of emulator/real devices
tested (two devices, one emulator and one real device). In
this regard, a bigger data set and the additional testing in
more emulators/real devices could help to overcome this
limitations, in order elucidate whether these differences are
only between the chosen pair of emulator/real device or a
more general issue that should be take into consideration in the
behavioral machine learning-based mobile malware detection.
These threats will be tackled deeply within our future work.

V. CONCLUSIONS
& FUTURE WORK

System calls are one of the most widely used features
when dealing with dynamic analysis in machine learning based

mobile malware detection. As the acquisition of a dynamic
features, including system calls, require the execution the
application, different approaches have been used to collect
them, mainly differing in the collection time and the usage
of human or software-based user-interaction. This research
focused on the analysis of the impact of the collection time
on the separability of the data in a learning model and its
time-based evolution, when no user interaction is performed.
Applications were just executed and let run freely for the
whole acquisition time (15 minutes).

The usage of Fisher’s score in conjunction with frequency
distribution analysis has demonstrated that most applications
perform in the first minute the maximum number of sys-
tem calls (the so-called data spike in this research) and
has demonstrated that, specially in some cases (e.g., when
emulator is used and L/O data set), short-time data collection
(i.e. 1 minute) may provide greater data separability thus,
consequently, leading to greater accuracy performance metrics
on mobile malware classifiers than long-time data collection
(e.g. 15 minutes). Machine learning classifiers may accurately
be optimized for such purposes with this input data achieving
great accuracy performances. In this regard, the collection of
more data, during more time, may not lead to provide better
data. Thus, in this case, data quality, in the form of greater
separability, might be jeopardized by noisy data when the
collection lasts for a longer time.

The underlying causation of the existing differences
highlighted in this research between the data sets obtained
from the emulator and the real device remains unclear. In
this regard, the potential impact of the different environment
variables, such as kernel version and network connection
type, will be further investigated in order to obtain a deeper
understanding of the possible sources that may explain the
behavioral deviations found in this study. The explanation
and investigation of these behavioral divergences in addition
to the increase of the data set used and their test with
additional emulators and real devices will constitute part of
our future work. Finally, as already stated in Section IIL.B,
the influence of user-interaction will also be explored in later
stages of our future work, thus providing a complementary
perspective to the findings of this present research, where no
user-interaction was performed during the experimental set-up.

REFERENCES

[1] V. Chebyshev, “Mobile malware evolution 2018.” [Online]. Available:
https://securelist.com/mobile-malware-evolution-2018/89689/

[2] R. Samani and G. Davis, “McAfee Mobile Threat Report Q1, 2019,”
2019. [Online]. Available: https://www.mcafee.com/enterprise/en-
us/assets/reports/rp-mobile-threat-report-2019.pdf

[3] A. Holst, “Global mobile OS market share in sales to end
users from Ist quarter 2009 to 2nd quarter 2018 2019.
[Online]. Available: https://www.statista.com/statistics/266136/global-
market-share-held-by-smartphone-operating-systems/

[4] P. Security, “Android devices 50 times more in-
fected with malware compared to i0S)” 2019. [On-
line]. Available: https://www.pandasecurity.com/mediacenter/mobile-

security/android-more-infected-than-ios/
R. Fedler, J. Schiitte, and M. Kulicke, “On the effectiveness of malware
protection on android,” Fraunhofer AISEC, vol. 45, 2013.

[5

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 23,2022 at 12:53:59 UTC from IEEE Xplore. Restrictions apply.

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

D. Geneiatakis, G. Baldini, I. N. Fovino, and I. Vakalis, “Towards
a mobile malware detection framework with the support of machine
learning,” in International ISCIS Security Workshop. — Springer, 2018,
pp. 119-129.

A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A review
on feature selection in mobile malware detection,” Digital investigation,
vol. 13, pp. 22-37, 2015.

A. Kapratwar, F. Di Troia, and M. Stamp, “Static and dynamic analysis
of android malware.” in Proceedings of the 3rd International Conference
on Information Systems Security and Privacy. SciTePress, 2017, pp.
653-662.

Android, “Ul/Application Exerciser Monkey.” [Online]. Available:
https://developer.android.com/studio/test/monkey

M. DimjaSevi¢, S. Atzeni, 1. Ugrina, and Z. Rakamaric, “Evaluation
of android malware detection based on system calls,” in Proceedings
of the 2016 ACM on International Workshop on Security And Privacy
Analytics. ACM, 2016, pp. 1-8.

S. Zhang and X. Xiao, “Cscdroid: Accurately detect android malware
via contribution-level-based system call categorization,” in 2017 IEEE
Trustcom/BigDataSE/ICESS. 1EEE, 2017, pp. 193-200.

X. Xiao, P. Fu, X. Xiao, Y. Jiang, Q. Li, and R. Lu, “Two effective
methods to detect mobile malware,” in 2015 4th International Confer-
ence on Computer Science and Network Technology (ICCSNT), vol. 1.
IEEE, 2015, pp. 1041-1045.

X. Xiao, X. Xiao, Y. Jiang, X. Liu, and R. Ye, “Identifying android
malware with system call co-occurrence matrices,” Transactions on
Emerging Telecommunications Technologies, vol. 27, no. 5, pp. 675—
684, 2016.

T. Bhatia and R. Kaushal, “Malware detection in android based on
dynamic analysis,” in International Conference on Cyber Security And
Protection Of Digital Services (Cyber Security). 1EEE, 2017, pp. 1-6.
P. Vinod, A. Zemmari, and M. Conti, “A machine learning based
approach to detect malicious android apps using discriminant system
calls,” Future Generation Computer Systems, vol. 94, pp. 333-350, 2019.
I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-
based malware detection system for android,” in Proceedings of the Ist
ACM workshop on Security and privacy in smartphones and mobile
devices. ACM, 2011, pp. 15-26.

S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4maldroid: A deep learning
framework for android malware detection based on linux kernel system
call graphs,” in 2016 IEEE/WIC/ACM International Conference on Web
Intelligence Workshops (WIW). 1EEE, 2016, pp. 104-111.

L. Singh and M. Hofmann, “Dynamic behavior analysis of android
applications for malware detection,” in 2017 International Conference
on Intelligent Communication and Computational Techniques (ICCT).
IEEE, 2017, pp. 1-7.

H. Alptekin, C. Yildizli, E. Savas, and A. Levi, “Trapdroid: Bare-metal
android malware behavior analysis framework,” in 2019 21st Interna-
tional Conference on Advanced Communication Technology (ICACT).
IEEE, 2019, pp. 664-671.

F. Tchakounté and P. Dayang, “System calls analysis of malwares on
android,” International Journal of Science and Technology, vol. 2, no. 9,
pp. 669-674, 2013.

M. Jaiswal, Y. Malik, and F. Jaafar, “Android gaming malware detection
using system call analysis,” in 2018 6th International Symposium on
Digital Forensic and Security (ISDFS). 1EEE, 2018, pp. 1-5.

A. Ahsan-Ul-Haque, M. S. Hossain, and M. Atiquzzaman, “Sequencing
system calls for effective malware detection in android,” in /EEE Global
Communications Conference (GLOBECOM). 1EEE, 2018, pp. 1-7.
M. R. Amin, M. Zaman, M. S. Hossain, and M. Atiquzzaman, “Behav-
ioral malware detection approaches for android,” in /EEE International
Conference on Communications (ICC). 1EEE, 2016, pp. 1-6.

A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, ““andro-
maly”: a behavioral malware detection framework for android devices,”
Journal of Intelligent Information Systems, vol. 38, pp. 161-190, 2012.
A. Ferrante, E. Medvet, F. Mercaldo, J. Milosevic, and C. A. Visaggio,
“Spotting the malicious moment: Characterizing malware behavior using
dynamic features,” in 2016 11th International Conference on Availabil-
ity, Reliability and Security (ARES). 1EEE, 2016, pp. 372-381.

G. Canfora, F. Mercaldo, and C. A. Visaggio, “A classifier of malicious
android applications,” in 2013 International Conference on Availability,
Reliability and Security. 1EEE, 2013, pp. 607-614.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

W. Yu, H. Zhang, L. Ge, and R. Hardy, “On behavior-based detection
of malware on android platform,” in 2013 IEEE global communications
conference (GLOBECOM). 1EEE, 2013, pp. 814-819.

J. M. Vidal, A. L. S. Orozco, and L. J. G. Villalba, “Malware de-
tection in mobile devices by analyzing sequences of system calls,”
World Academy of Science, Engineering and Technology, International
Journal of Computer, Electrical, Automation, Control and Information
Engineering, vol. 11, no. 5, pp. 594-598, 2017.

A. Guerra-Manzanares, S. Nomm, and H. Bahsi, “In-depth feature
selection and ranking for automated detection of mobile malware,” in
Proceedings of the 5th International Conference on Information Systems
Security and Privacy, vol. 1. SciTePress, 2019, pp. 274-283.
VirusTotal, “How to use VirusTotal Commu-
nity - VirusTotal,” 2018. [Online]. Available:
https://www.virustotal.com/es/documentation/virustotal-community/

D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and K. Rieck,
“Drebin: Effective and Explainable Detection of Android Malware in
Your Pocket,” in Proceedings 2014 Network and Distributed System
Security Symposium, 2014.

A. Guerra-Manzanares, H. Bahsi, and S. Nomm, “Differences in android
behaviour between real device and emulator: A malware detection
perspective,” in 2019 6th Int Conference on Internet of Things, Systems,
Management & Security (IOTSMS). 1EEE, 2019, forthcoming.
Google, “Distribution dashboard,” accessed on: Oct. 5, 2019. [Online].
Available: https://developer.android.com/about/dashboards/

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 23,2022 at 12:53:59 UTC from IEEE Xplore. Restrictions apply.

Appendix 4

Publication IV

A. Guerra-Manzanares, H. Bahsi, and S. Nomm. Kronodroid: Time-based
hybrid-featured dataset for effective android malware detection and char-
acterization. Computers & Security, 110:102399, 2021

175

COMPUTERS & SECURITY 110 (2021) 102399

+)

Available online at www.sciencedirect.com

. . Computers
ScienceDirect &

Security

journal homepage: www.elsevier.com/locate/cose

™ KronoDroid: Time-based Hybrid-featured A
Dataset for Effective Android Malware Detection Check or
and Characterization

Alejandro Guerra-Manzanares*, Hayretdin Bahsi, Suen Nomm

Department of Software Science, Tallinn University of Technology

ARTICLE INFO

ABSTRACT

Article history:

Received 2 March 2021
Revised 1 July 2021
Accepted 4 July 2021
Available online 9 July 2021

Keywords:

Android malware
Dataset

Mobile malware
Malware detection
Malware analysis

Android malware evolution has been neglected by the available data sets, thus providing
a static snapshot of a non-stationary phenomenon. The impact of the time variable has
not had the deserved attention by the Android malware research, omitting its degenera-
tive impact on the performance of machine learning-based classifiers (i.e., concept drift).
Besides, the sources of dynamic data and their particularities have been overlooked (i.e.,
real devices and emulators). Critical factors to take into account when aiming to build more
effective, robust, and long-lasting Android malware detection systems. In this research, dif-
ferent sources of benign and malware data are merged, generating a data set encompassing
a larger time frame and 489 static and dynamic features are collected. The particularities of
the source of the dynamic features (i.e., system calls) are attended using an emulator and
a real device, thus generating two equally featured sub-datasets. The main outcome of this
research is a novel, labeled, and hybrid-featured Android dataset that provides timestamps
for each data sample, covering all years of Android history, from 2008-2020, and considering
the distinct dynamic data sources. The emulator data set is composed of 28,745 malicious
apps from 209 malware families and 35,246 benign samples. The real device data set con-
tains 41,382 malware, belonging to 240 malware families, and 36,755 benign apps. Made
publicly available as KronoDroid, in a structured format, it is the largest hybrid-featured An-
droid dataset and the only one providing timestamped data, considering dynamic sources’
particularities and including samples from over 209 Android malware families.
© 2021 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

of a decrease in the near future (Statista, 2021a). Over 99%
of the mobile OS market share is covered when iOS devices
are added, placing Apple’s proprietary OS as the major alter-

Android operating system (OS) has become the reference OS
in the mobile platform ecosystem. Empowered by Google, the
free and open-source OS has consistently dominated the mo-
bile operating system market since 2012. From 2017, it has
been shipped with over 70% of smartphones, showing no signs

* Corresponding author.
E-mail address: alejandro.guerra@taltech.ee
(A. Guerra-Manzanares).
https://doi.org/10.1016/j.cose.2021.102399

native to Android OS (Statista, 2021a). The global dominance
of Android OS and the wealth of data stored by smartphones
make Android users an attractive target for cyber-attackers.
After a massive outbreak in 2016, Android malware attacks
have plateaued but still remain a constant and evolving threat
for the end-users (Chebyshev, 2019). New and more sophisti-
cated malicious applications are found on a daily basis, evi-
dencing the constant evolution of the phenomenon both in
new malware trends (e.g., ransomware) and sophistication

0167-4048/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

2 COMPUTERS & SECURITY 110 (2021) 102399

(Microsoft 2020). In 2020, over 480,000 new Android malware
samples were discovered monthly (Statista 2021b). However,
these figures only reflect the detected malware, which could
be considered as just the tip of the iceberg. Malware authors
are always ahead in innovation, achieving sophistication lev-
els that might let malware hide effectively, acting undetected
(Broersma, 2020).

But the situation might be even worse, as Android mal-
ware can be and has been found anywhere, even in Google
Play, affecting millions of users (McGowan, 2020). Despite
the remarkable efforts of Google and Android phone ven-
dors to implement security mechanisms at software (e.g.,
Bouncer (Oberheide and Miller, 2012) and Google Play Pro-
tect (Google 2021)) and hardware levels (e.g., Samsung Knox
(Samsung, 2021)), malware authors have always found the
way to circumvent them (Cimpanu, 2019; Lakshmanan, 2020).
Furthermore, traditional antivirus techniques (i.e., signa-
ture/fingerprint) have been proved ineffective to detect zero-
day or unknown malware in Android devices (Fedler et al., 2013;
Withwam, 2020).

However, the war is not yet lost. The application of ma-
chine learning techniques to Android malware detection has
shown outstanding results, using a wide variety of app fea-
tures (Feizollah et al., 2015), even with zero-day, repackaged,
and obfuscated malware (Grace et al., 2012), overcoming the
limitations of traditional detection methods (Faruki et al.,
2013). Machine learning (ML) uses data properties or charac-
teristics (i.e., features) to build effective systems that find sta-
tistical patterns to solve the problem at hand (e.g., malware
detection). The performance of a machine learning system
is strictly related to data quantity, but more significantly to
data quality (Cortes et al., 1994; Sessions and Valtorta, 2006).
Therefore, machine learning-based Android malware detec-
tion systems largely depend on the quality of the data fea-
tures to perform effectively and accurately. The Android mal-
ware data feed into the machine learning algorithms are a
critical element for the overall success, reliability, and gen-
eralization capabilities of the ML-based malware detection
system.

1.1. Datasets for Android Malware Detection

The phenomenon of malware detection in Android systems
has been investigated since the early years of the popular OS,
but with increased attention after the wide adoption of mobile
networks, the ubiquity of smartphones, and the rise of mobile
applications (apps). Roughly 3 million apps are available just
in Google Play at the present time (Google 2021), added and re-
moved daily. With billions of downloads per year (Igbal, 2020),
apps are the main attack vector to perpetrate attacks in An-
droid devices and the critical component to build effective
malware detection systems. Despite this fact and the avail-
ability of a few newer Android data sets in the recent years,
old malware data sets have monopolized the research. These
datasets have been widely used as reference data to build ma-
chine learning systems, even in recent studies. A fact that ne-
glects malware evolution and its change over time and poses
at severe doubt the generalization capabilities, reliability, and
effectiveness of the models induced using old datasets to de-
tect novel malware.

The most popular datasets for Android malware research
are summarized in Table 1. For each dataset reported, the fol-
lowing information is provided.

» Name - denomination or acronym that uniquely identifies
the dataset.

Composition - two non-negative integers separated by a
slash symbol ("/”). The first value indicates the number
of malware apps included in the data set and the second
value the quantity of benign/legitimate apps if any.
Time-frame - reported time period where the apps com-
posing the dataset were collected.

Access. - short for accessibility. It indicates whether the
data set is publicly available. A ,/ indicates the dataset is
available while X reports when it is not (i.e., project dis-
continued).

APK - indicates whether the data set provides the exe-
cutable files (i.e., .apk files). A / indicates the dataset pro-
vides the apks while a X reports the negative case.
Features - indicates whether the data set provides col-
lected features from the apps, in a structured format. A X
reports no features are provided. When features are pro-
vided the type is specified using a keyword: static, dynamic,
or hybrid. More about this terminology in Section 2.2.

Year - the year of publication of the data set’s research ar-
ticle.

Ref. - short for references. Composed of a pair of refer-
ences inside brackets. The first specifies the research ar-
ticle where the data set was presented while the second
refers to the data set’s website resource.

Citat. - short for citations. Provides the number of citations
of the dataset’s reference article according to Google Scholar
at the time of writing. It gives a rough measure of the usage
of the data set for research.

As shown in Table 1, the vast majority of the research
on Android malware has focused on MalGenome and Drebin
datasets. When added together, they cover 91% of the total
citations for the datasets included in Table 1 (i.e., 3,761 out
of 4,134). A notable fact considering that most of the datasets
were not published recently. However, the most recent sam-
ples in these two popular datasets were collected in 2012, al-
most a decade ago. A significant amount of time when techno-
logical advances are considered, making them outdated or old
in terms of malware evolution. Furthermore, their size is rela-
tively small, especially in the case of MalGenome, composed
of just 1,260 samples from 49 malware families and no le-
gitimate samples. Drebin, collected in a similar time-frame,
provides a more complete malware data set, composed of
5,560 samples belonging to 179 malware families. Neverthe-
less, Drebin may contain duplicated data (Irolla and Dey, 2018),
which makes the usable malware data set smaller and does not
provide access to the legitimate apks. Despite all these facts,
both datasets have been widely used, even in recent studies, as
the main source of malware data to build machine learning-
based malware detection systems that aim to detect recent
Android malware (Wu et al., 2020; El Fiky, 2020).

The third most referenced dataset, the Android Malware
Dataset (AMD), is a larger and more recent dataset that spans
a wider time-frame in the Android history but accounts for a

COMPUTERS & SECURITY 110 (2021) 102399 3

Table 1 - Most popular Android malware datasets.

Name Composition Time-frame Access. APK Features Year Ref. Citat.

MalGenome 1,260/ 0 2010-2011 X N X 2013 (Zhou and Jiang, 2012, Zhou and 2282
Jiang, 2015)

Drebin 5,560/ 123,453 2010-2012 N N static 2014 (Arp et al., 2014, 1479
Braunschweig, 2020)

CICAndroidBot 1,929/0 2010-2014 v f X 2015 (Kadir et al., 2015, U. of New 58
Brunswick 2020)

Kharon 20/0 2011-2015 v/ -/ static 2016 (Kiss et al., 2016, Kiss et al., 2021) 25

AMD 24,553/0 2010-2016 X N X 2017 (Wei et al., 2017, ArgusLab 2020) 217

CICAAGM2017 400/ 1500 2015-2016 A X dynamic 2018 (Lashkari et al., 2017, U. of New 37
Brunswick 2020)

CICAndMal2017 426/ 5,065 2015-2017 ¥ ¥ hybrid 2018 (Lashkari et al., 2020, U. of New 37
Brunswick 2020)

CICInvesAndMal2019 2019 (Taheri et al., 2019, U. of New 19
Brunswick 2020)

CICAndMal2020 200k / 200k N/A v X static 2020 (Rahali et al., 2020, U. of New -
Brunswick 2020)

CICMalDroid2020 17,341/0 2017-2018 ¥ ¥ hybrid 2020 (Mahdavifar et al., 2020, =

U. of New Brunswick 2020)

small fraction of the existing Android malware families. AMD
is composed of 24,553 malware samples belonging to 71 mal-
ware families and no benign samples. The Kharon dataset pro-
vides advanced static analysis data for 20 samples of repre-
sentative malware families. It is too small for machine learn-
ing purposes, where data quantity matters. The rest of the
datasets included in Table 1 are provided by the Canadian
Institute of Cybersecurity (CIC). Some of the CIC datasets in-
clude samples of other datasets, such as CICAndroidBot which
is composed of MalGenome dataset plus additional Android
botnet samples. With the exception of CICAndroidBot, the rest
of the datasets provided by the CIC only include recent mal-
ware at the time of the publication of the dataset and ex-
cept CICAndMal2020 and CICMalDroid2020, they are too small
to provide complete coverage of the existing Android malware
families. Although there is no time frame provided for CICAn-
dMal2020 dataset, its size makes it a good option for ML-based
malware detection systems. However, as the apks are not pro-
vided, the potential of this data set is limited to static feature-
based machine learning detectors.

The majority of the datasets in Table 1 are publicly avail-
able or upon request and provide the original apk files, useful
for further analysis and comparison. Nevertheless, at the time
of writing this article, AMD and MalGenome are discontinued
projects, making their data not accessible anymore in any for-
mat. This fact restricts the options for old malware samples to
Drebin dataset.

As reported in Table 1, the most frequently collected fea-
tures are static, especially in the old datasets, while dynamic
features are just provided in some more recent datasets. Static
features are easier and faster to collect what makes them
more appealing and suitable for large data sets, such as the CI-
CAndMAI2020 dataset. The collection of dynamic features re-
quires the usage of real devices or Android emulators, a deci-
sion that may also have an impact on the quality and quantity
of the collected data (Guerra-Manzanares et al., 2019).

As a result, based on the information contained in Table 1,
most of the datasets are considerably small, focused on static

Table 2 - Android malware repositories.

Repository Composition Date Ref.
VirusTotal ~ +20,000/0 2014-2020 (VirusTotal 2020)
VirusShare = +40,000/ 0 2008-2020 (VirusShare 2020)
AndroZoo +15 million? 2008-2020 (Allix et al., 2016,

du Luxembourg, 2021)
Contagio 357/0 2011-2018 (Parkour, 2019)
Mobile

features, and span a short time-frame, usually 1-2 years. Only
the AMD dataset studied the malware evolution as a concept
in a time-frame spanning 6-7 years. The rest of the data sets do
not take the time effect into consideration, restricted to small
time periods, thus neglecting the importance of changes and
evolution in Android malware over time. Ignoring this fact can
harm significantly the performance of malware detectors over
time, as malware evolves the importance of features to dis-
criminate them effectively using ML techniques may change,
a phenomenon called concept drift. Furthermore, most of the
detection methods published in recent years use old malware
data sets to induce and test their solutions, which might dam-
age the generalization capabilities of the proposed models to
recent malware.

The vast majority of the datasets provided in Table 1 pro-
vide an obsolete (i.e., old) and partial (i.e., a small amount of
data and just static analysis) depiction of the Android mal-
ware phenomenon, insufficient to study the evolution of An-
droid malware in general and malware families in particular.
Although they remain as an important source of malware, es-
pecially regarding old samples, all the datasets in Table 1 must
be complemented with other datasets or sources of malware
in order to get the largest, widest, and most complete picture
of the Android malware history and evolution. For such pur-
pose, Table. 2 provides accessible general malware reposito-
ries that also contain Android malware samples. These repos-

4 COMPUTERS & SECURITY 110 (2021) 102399

itories are a remarkable source of malware that have already
been used to complement and enrich existent datasets for re-
search. Mainly designed as database services, they are growing
repositories of malware samples. More specifically, VirusTotal
and VirusShare are upon request malware repositories, Conta-
gio is a discontinued but publicly available malware project
and AndroZoo is a large repository of Android applications, but
with unknown proportions of malware and benign apps.

Lastly, as can be extracted from the summary provided in
Table 1, the majority of datasets just provide malicious apps,
excluding benign samples. This fact restricts the possibilities
of building effective machine learning-based classifiers using
these datasets, as both types of applications are needed to
build effective malware classifiers (i.e., supervised machine
learning).

1.2 Research Objective

This research addresses the highlighted issues of existing
datasets by merging different data sources to generate a large
dataset with samples encompassing all years of Android his-
tory (i.e., 2008-2020), collecting static and dynamic features,
and being the first Android dataset attending to the particu-
larities of distinct dynamic data sources (i.e., real devices and
emulators). Furthermore, it is also the first data set to include
the time variable into the Android malware detection issue.
As Android malware is a non-stationary phenomenon, it is
an alive and constantly evolving phenomenon that should be
placed into its temporal context. This research aims to fill this
important gap, neglected by the available datasets, providing
different sources of time information (i.e., timestamps). The
time constraint might also be important as changes in An-
droid OS (i.e, new OS releases) can affect the behavior and fea-
tures used by the applications (e.g., the introduction of new
permissions or their deprecation). Even though there is no
straightforward method to ascertain the exact date of an An-
droid application, it can be approximated using several tech-
niques and tools, which are explored in this study.

1.3. Contribution and Novelty

As the main contribution of this research, we introduce Kron-
oDroid, an Android malware data set that merges and comple-
ments data sources, covering an extensive period of time and
characterizing each sample with static and dynamic features.
KronoDroid aims to fulfill the gaps in the existing datasets and
research, providing the following key aspects:

1 Hybrid analysis data. The combination of static and dy-
namic features provides more complete information about
the applications.

Distinct timestamp approaches for temporal context. Dif-
ferent timestamp options are analyzed and proposed. As
time is taken into consideration, it allows to learn about
the evolution of malware and build more effective, robust,
and long-lasting machine learning systems.

Malware and benign labeled samples. Both categories of
applications are provided, which can be used to build effec-
tive classifiers and perform thorough application forensic
analysis.

N

w

4 Device-based behavioral data. Existing dynamic data dif-
ferences were found when applications are run in real
or emulated devices. This dataset provides both sources
of dynamic data. KronoDroid is composed of two equally-
featured sub-datasets (i.e., real device and emulator) which
can be used for comparison and further investigation.

5 Large data set. Over 28,000 samples per class on both sub-
datasets.

The application of machine learning to Android mal-
ware detection is a widely-studied area. However, machine
learning research studies still suffer various pitfalls includ-
ing the inaccuracies related to datasets and their labeling
(Arp et al., 2020), acting as a barrier to overcome real-world
operational challenges such as adapting to evolving behavior,
utilization of data source variations, and conducting family-
oriented characterization. Our novel dataset has a big poten-
tial to facilitate the research in such directions. Our study
can be considered as a large-scale data generation effort
based on various key findings from our previous research
(Guerra-Manzanares et al., 2019; Guerra-Manzanares et al.,
2019; Guerra-Manzanares et al., 2019). We identified that the
same dynamic or static features extracted from the apps be-
longing to different time-frames have varying discriminatory
power, leading us to focus on the concept drift problem and
collecting a relevant dataset (Guerra-Manzanares et al., 2019).
We found out that the real devices and emulators may show
variations in dynamic behavior that cause reduced detection
performances in machine learning models if the type of data
source is not considered (Guerra-Manzanares et al.,, 2019).
Thus, we generated a dataset obtained from real devices in
addition to emulators. We determined the optimum duration
for collecting dynamic data according to the experimental re-
sults given in Guerra-Manzanares et al. (2019).

The paper structure is as follows: background information
about Android malware analysis and literature review are pro-
vided in Section 2. The methodology implemented in this re-
search is outlined in Section 4 while Section 5 shows a com-
prehensive analysis of the main outcome of this research, a
novel Android malware data set. Section 6 provides the dis-
cussion points while Section 7 wraps up the study, highlights
its major contributions, and establishes future work.

2. Background Information

This section provides the fundamental aspects of Android
malware analysis and background information about the ba-
sic structure of Android applications.

2.1. Structure of Android Apps

2.1.1. APK Bundle Structure

On Android, everything the user interacts with, from the
contacts list to games, is an app. Once compiled, apps
are distributed as Android package (APK) files, a compressed
ZIP archive identified by the .apk extension (Android 2021).
The APKs’ inner folders and file structures are consistent
across applica- tions, enabling them to run in compatible
Android devices (Android 2021). The AndroidManifest.xml and

COMPUTERS & SECURITY 110 (2021) 102399 5

the classes.dex files provide most of the relevant data about
the app. The former declares all the essen- tial information
about the app (i.e., more in Section 2.1.3) while the latter con-
tains the compiled code (i.e., Dalvik bytecode) executed by
Dalvik/Android Runtime virtual machine at runtime.

2.1.2. Components: APK Building Blocks

At a lower level, applications are designed and built on four
main building blocks or components, which are used as en-
try points by users and the OS to interact with the app
(Android 2021). Namely, activities, services, broadcast receivers
and content providers. An activity is a single screen with a user
interface where the interaction between the user and the app
occurs (Android 2021). A service enables to keep running the
app in the background (Android 2021). A broadcast receiver al-
lows apps or the OS to deliver events to apps outside of the
regular user flow (Android 2021) while a content provider man-
ages a shared set of app data, granting other apps a secure way
to access it (Android 2021).

Activities, services, and broadcast receivers are acti-
vated via asynchronous communication objects called intents
(Android 2021), declared in the AndroidManifest.xml and han-
dled by the OS. Content providers are activated using distinct
mechanisms (Android 2021).

2.1.3. The AndroidManifest.xml File

The AndroidManifest.xml is a critical and the only mandatory
file that every Android app must include. It contains all the es-
sential information about the app so that the OS can manage it
properly. Among other information, it declares (Android 2021;
Android 2021):

- Package name and version - which uniquely identify the
application.

+ App components - to get the system acquainted with all
the components of the app and enables them to be started.

« User permissions - requested security permissions needed
by the app to perform tasks.

« API level - minimum API level required by the app to run
on an Android system.

» Hardware and software features - used or required by the
app to perform any of its tasks.

« API libraries - libraries needed by the application to run,
distinct from the Android framework APIs.

The AndroidManifest.xml file contains critical information
about the app that is used by the OS, Google Play and Android
build tools to get and provide information about it (e.g., com-
patibility requirements). All this data can be collected using
specific tools and be used for forensics analysis and malware
detection.

2.2. Android Malware Analysis

There are two fundamental approaches for malware analy-
sis: static and dynamic. Both approaches can be further catego-
rized as basic or advanced and are briefly described as follows
(Sikorski and Honig, 2012; Dunham et al., 2015).

« Static - involves the analysis of the malware file without
being executed. The basic ap- proach involves the examina-
tion of the file without inspecting the actual code, to deter-
mine if the file is malicious and get its basic functionali-
ties (e.g., antivirus check) while the advanced methods re-
quire reverse-engineering the malware internals through a
deep examination of the malware code, thus providing ex-
act information about the malware actions.

Dynamic - the analysis is performed executing the mal-
ware in a controlled environment. In the basic approach,
the malware is run in a sandbox and its behavior is ob-
served, helping to produce effective signatures to prevent
its spread, whereas the advanced methods imply the usage
of other tools (e.g., debuggers) to examine the internal state
of the running malicious file, providing detailed informa-
tion about its behavior at runtime.

When both approaches are combined, hybrid analysis, they
yield a more complete analysis of the sample and retrieve im-
portant complementary data. This is the approach used in this
research where advanced static and dynamic techniques were
used together to provide a better and more complete profile
about each app behavior and functionalities.

3. Related work

This section provides a literature review about Android mal-
ware detection using machine learning techniques.

Android malware analysis approaches allow the collection
of different types of features, used to characterize and build
machine learning systems. Three main approaches are used,
depending on the nature of the collected features: static, dy-
namic, or hybrid analysis (Feizollah et al., 2015). This section
provides a concise review of the approaches and common fea-
tures used for machine learning-based Android malware de-
tection and introduces the concept drift related studies and
data sets in the study field.

3.1. Android Malware Detection

3.1.1. Static Android Malware Detection

Static features from Android apps are mainly collected from
two sources: inspection of the disassembled code and data ex-
traction from the AndroidManifest.xml file. While some stud-
ies combine both feature sources (Arp et al., 2014; Felt et al.,
2011; Li et al., 2018; Li et al., 2020; Peiravian and Zhu, 2013;
Yerima et al., 2015; Wang et al., 2019), the majority sticks to
a single source. In this regard, some solutions use code fea-
tures from the disassembled code such as the program flow
or the API function calls (Zhu et al., 2017; Grace et al., 2012;
Yang et al., 2021; Cai et al., 2021; Hou et al., 2017) while from
the AndroidManifest.xml the most used features are permis-
sions (Peng et al., 2012; Enck et al., 2009; Talha et al., 2015;
Liang and Du, 2014; Mcdonald et al., 2021) and intent filters
(Feizollah et al., 2017), alone or combined to boost detection
performance (Idrees and Rajarajan, 2014). In brief, API calls in-
dicate the functions called by the app in its source code, secu-
rity permissions the degree of privilege the app requests to
access some type of data (i.e., sensitive data) and intent filters

6 COMPUTERS & SECURITY 110 (2021) 102399

denote the actions the app is intended to perform. Static anal-
ysis features are easy to collect and provide extensive code
coverage but can easily avoid detection when code obfusca-
tion techniques are used. Data encryption, update attacks, ob-
fuscation, or polymorphic techniques are used to hide the ma-
licious code to bypass static features-based malware detection
systems (Alzaylaee et al., 2020).

3.1.2. Dynamic Android Malware Detection

Dynamic features are collected when the application is in-
teracting with the operating system or the network. System
calls (Burguera et al., 2011; Guerra-Manzanares et al., 2019;
Hou et al,, 2016; Tam et al., 2015; Guerra-Manzanares et al.,
2019) and network flow (Lashkari et al., 2017; Arora et al.,
2014) are the most common features used (Feizollah et al.,
2015). Less commonly, CPU and RAM usage, running processes,
battery statistics, API function calls and other runtime fea-
tures have also been used alone (Schmidt, 2011; Enck et al,,
2014; Amos et al., 2013) or combined with system calls or net-
work packets (Dini et al., 2012; Shabtai et al., 2012). Briefly,
system calls are used for app-OS communication while net-
work flow is obtained from the app-network interaction. Even
though they can be bypassed (Petsas et al., 2014), dynamic
features-based detection methods are robust to code obfusca-
tion and encryption techniques. However, they are more time-
consuming and difficult to collect as they require the app to be
installed and run in a sandboxed device, either an emulator or
a real device. Both kinds of devices have been used in the lit-
erature, assuming that, disregarding the device influence, the
app behavior would not reflect any change in the dynamic fea-
tures collected. When the dynamic approach is used, greater
code coverage can be achieved when using pseudo-random
user-generated events (Alzaylaee et al., 2020).

3.1.3. Hybrid Android Malware Detection

The combination of static and dynamic features collected
from applications is used by a smaller proportion of the
existing research (Grace et al., 2012; Alzaylaee et al., 2020;
Kabakus and Dogru, 2018; Guerra-Manzanares et al., 2019;
Yuan et al., 2014; Bl'asing et al., 2010). However, these ap-
proaches tend to provide more complete information about
the malware as they collect the application’s runtime behav-
ior complemented by relevant static features.

As can be observed, the predominant trend in the studies
is to use either static or dynamic approaches, thus neglecting
the potential of their combination (i.e., hybrid approach). As a
contribution to the field, this research focuses on the collec-
tion of hybrid features of the generated dataset for Android
malware detection. Hybrid analysis constitutes a smaller part
of the existing research (Feizollah et al., 2015). It is more com-
plex and time-consuming to perform but enables to generate
a better overall picture of the problem at hand, where the us-
age of complementary data may yield better results (Guerra-
Manzanares et al., 2019).

3.2 Android Malware Concept Drift
3.2.1. Related Studies

The vast majority of the previous studies do not take the
time variable into account, considering malware as stationary

data. Thus neglecting the changes in malware over time and
their degenerative impact on the performance of the machine
learning-based detection methods, a phenomenon called con-
cept drift. This is also emphasized by the fact that the vast ma-
jority of the studies published in recent years use old malware
data sets to test and prove their findings. Their results may not
generalize to recent malware as malware is a constantly evolv-
ing phenomenon that must be placed into a temporal context
to be fully comprehended.

This approach is considered in the studies summarized
in Table 3, which provides a detailed overview of the recent
works that addressed the phenomenon of concept drift in An-
droid applications. The Time-frame attribute for each study
(i.e., Name/Ref) provides the temporal window of the applica-
tions analyzed, while the size of the dataset and the malware
source are provided in the column Dataset Size (i.e., B for be-
nign data size, and M for malware data size) and Dataset Source
respectively. The Features column provides information about
what kind of data was used to characterize the samples on
the study period. The Timestamp states how the applications
temporal context (i.e., date) was determined while the Perfor-
mance shows the reported performance metric of the solution.
Finally, the Year column establishes the publication year of the
research.

As can be noticed, the time-frame encompassed in the
studies included in Table 3 varies significantly. While there are
some studies that focus on relatively narrow time-frames (i.e.,
8 months in the case of DroidOL), the majority encompass a
significant amount of years (i.e., an average of 6.6 years) be-
ing AndroCT the most extended, ranging from 2010 to 2019. In
this research, the collected dataset doubles the average time
of these studies, providing samples from 2008 to 2020 (i.e., 13
years data), which allows to analyze the issue in longer time-
frames and contrast the obtained results.

Regarding the datasets, the most prevalent dataset is An-
droZoo, followed by Drebin, an old dataset. The legitimate sam-
ples come mainly from Google Play. In this research, we used
Drebin as a source of old malware data and other more recent
well-known malware sets to constitute the body of malware
data. The usage of well-known and established data sets (i.e.,
Drebin, AMD, VirusTotal, and VirusShare) was preferred to the
usage of AndroZoo, which is a good source of applications in
general (i.e., over 15 million apps) but not specifically of mal-
ware instances, thus needing to rely exclusively on the an-
tivirus (AV) detection report to label the apps from the repos-
itory. We used the AV detection report as extra support for
the label and we required the original data source to provide
the label, as explained in Section 5.2. The size of the datasets
varies significantly among the studies, being the one used in
DroidOL the largest one in terms of malware apps. Our dataset
is composed of a similar amount of malware instances (i.e., in
the real device case), providing a large corpus of data for mal-
ware and similarly of legitimate apps.

As can be observed, all the studies focus on the analysis
of API calls in a dynamic or static analytical methodology. API
function calls are eminently static objects which can also be
acquired dynamically or traced when the app is executed, pro-
viding a behavioral perspective complementary to the static
approach. This is the approach taken by the studies marked
by an asterisk (*) in Table 3. Function calls provide a dynamic

COMPUTERS & SECURITY 110 (2021) 102399 7

Table 3 - Recent Android malware research works that take into account the time.

Name/Ref Time-frame Dataset Features (#) Timestamp Performance Year
Source Size
Google Play
Anzhi
AppChina
SlideMe
HiApk
FDroid B: 44,347 Graph-kernel
DroidOL (Narayanan 2014 Angeeks M: 42,910 (1,653,496) Creation day Acc: 0.84 2016
et al., 2016)
ENBCS (Hu et al,, 2017) N/S Drebin Other N/S B: 5,101 Permissions (152) N/S Acc: 0.96 2017
M: 1,761 API calls (24)
Actions (229)
TRANSCEND 2010-2014 Drebin B: 133,127 Permissions Train: Drebin Prec: 0.89 2017
(Jordaney et al., 2017) MARVIN M: 14,739 API calls Test: MARVIN Rec: 0.76
Other static
(Cai and Ryder, 2017) N/S Google Play B: 125 API calls* N/s N/A 2017
(Cai and Ryder, 2017) M: 0 (selected, 122)
MamaDroid Drebin B: 8,447 2016
(Onwuzurike et al., 2019)
MamaDroid ext. 2010-2016 Virushare M: 35,493 API calls N/S 0.87 2019
(Mariconti et al., 2016)
DroidCat (Cai et al., 2019) 2009-2017 Google Play API calls* First seen VT F1:0.97 2018
AndroZoo B: 17,365 (selected, 122) (range of years)
VirusShare M: 16,978
Drebin
MalGenome
(Cai and Jenkins, 2018) 2012-2017 N/S B: 3,431 API calls* N/S F1:0.82-0.93 2018
M: 3,001 (selected, 122)
DroidEvolver (Xu etal.,, 2011-2016 AndroZoo B: 33,294 API calls Compilation time F1:0.95-0.85 2019
2019) M: 34,722 (dex date, year)
(Fu and Cai, 2019) 2010-2017 N/S B: 13,627 API calls* N/S F1:0.71 2019
M: 11,153 Other N/S
EveDroid (Lei et al., 2019) 2012-2018 PlayDrone B: 14,956 API calls VT Submission 0.99-0.84 2019
Google Play M: 28,848 (Year)
VirusShare
TESSERACT (Pendlebury 2014-2016 AndroZoo B: 116,993 Permissions Compilation time F1:0.91-0.82 2019
et al., 2019) M: 12,735 API calls (dex date, year)
Other static
TRANSCENDENT 2014-2018 AndroZoo B: 232,848 Permissions Compilation time F1:0.90-0.70 2020
(Barbero et al., 2020) M: 26,387 API calls (dex date, year)
Other static
APIGraph (Zhang et al., 2012-2018 Google Play B: 290,505 API calls Appearance (Year) F1:0.92-0.68 2020
2020) AndroZoo M: 32,089
VirusShare
VirusTotal
AMD
(Cai et al., 2020) 2010-2017 Google Play B: 15,451 API calls* Compilation time N/A 2020
VirusShare M: 15,183 (dex date, year))
AndroZoo
DroidSpan (Cai, 2020) 2010-2017 Google Play B: 13,627 API calls’ N/s F1:0.92-0.72 2020
VirusShare M: 12,755
AndroZoo
(Cai, 2020) 2010-2017 N/S B: 1,000 API calls* N/S N/A 2020
M: 1,000
(Cai and Ryder, 2020) 2010-2017 Google Play B: 3,000 API calls* (122) N/s N/A 2020
AndroZoo M: NA
AndroCT (Wen Li and 2010-2019 Google Play B: 18,277 API calls*(122) N/S N/A 2021
Cai, 2021) VirusShare M: 17,697
AndroZoo

N/A - Not applicable, the evaluation was not performed or provided N/S - Not specified
* The feature was collected dynamically

8 COMPUTERS & SECURITY 110 (2021) 102399

behavioral profile of the app which is prone to changes due
to API/libraries modifications, deletions, or additions. The ap-
proach taken in this study focuses on the usage of a distinct
dynamic object, kernel or system calls, which are eminently dy-
namic objects (i.e., they cannot be traced in a static way as API
calls) that provide a robust behavioral profile of the applica-
tion, less subtle to drastic changes along years. This provides
a distinct and novel approach with regard to all the studies
in Table 3. While API calls and system calls can both provide an
app’s behavioral profile, they are not directly linked as they oc-
cur in different OS regions (i.e., user vs. kernel space) and they
are issued with distinct purposes (i.e., kernel calls are requests
to the OS while API calls are API framework function calls to per-
form specific tasks that may or may not trigger a kernel call).
As a result, API function calls and system calls provide a dis-
tinct approach to the same study object. In addition to that,
a novelty provided by the KronoDroid dataset is the usage of
additional static features such as permissions, intents, etc. to
enhance malware detection and Android app comprehension
from a hybrid perspective. None of the studies in Table 3 com-
bine both approaches using distinct objects for app character-
ization.

The temporal context approach and the usability of the
dataset are distinctive points of KronoDroid when compared to
the studies given in Table 1 and Table 3. Regarding the tempo-
ral context, the studies that consider the temporal dimension
attach themselves to a particular timestamp, generating a sin-
gle perspective that may be prone to temporal bias and errors
(e.g., dex date timestamp used in many studies is no longer
reliable as the majority of apps have it set at 1980 (du Luxem-
bourg, 2021)). In order to overcome this limitation, KronoDroid
provides 4 possible timestamps per sample, depending on the
temporal context source, helping to provide a more exact tem-
poral context for the studied apps. Regarding usability, Kron-
oDroid is provided in a ready-to-use tabular format (i.e., CSV)
which can be directly used without having to process log files
or the raw data. However, this latter option is also provided
for more technically experienced individuals. Therefore Kron-
oDroid can be used by any interested researcher without the
need of deep technical data extraction knowledge.

In this study, for the sake of completeness, taking into ac-
count the different dynamic malware analysis devices used
in research, the dynamic features of this data set were col-
lected using two devices: an emulator and a real device. In
this regard and even though researchers tend to assume that
the behavior of an app does not change according to the plat-
form or device used, our experimentation and research indi-
cate that specific dynamic features, such as system calls, may
change significantly according to the device type where they
are collected (Guerra-Manzanares et al., 2019). As a result, this
research aims to contribute to a deeper exploration of these
differences by providing kernel-related dynamic features (i.e.,
system calls) collected on two different Android platforms
(i.e., ARM and x86 devices).

3.2.2. Related Datasets

The datasets used in concept drift studies in Android mal-
ware detection are provided in Table 4. This table reflects the
datasets made publicly available or on request by the studies
contained in Table. 3. This concise table specifies the name

of the dataset (or the related study), its composition (i.e., Size
column; B for benign data and M for malware data; E and
R are added to specify the dataset if Emulator and Real de-
vice datasets have different compositions), the time-frame
they encompass (i.e., Time range), the availability of the dataset
and its format, the malware analysis methodology used to
collect the dataset features (i.e., static or dynamic), the data
source when the dynamic approach was used (i.e., emulator
or real device), the type and number of features provided by
the dataset and the reference to the dataset repository.

As can be noticed, although some studies included in
Table 3 released the hashes of the data samples they used thus
enabling reproducibility of the results (Zhang et al., 2020), just
aminority of the studies released their data sets for public use.

When comparing KronoDroid with the available datasets for
concept drift research, provided in Table 4, it can be argued
that AndroCT (Wen Li and Cai, 2021) is similar, as they are the
only ones providing data tested on emulators and real devices.
However, even though the features of AndroCT make it an
interesting and useful Android dataset, KronoDroid is signif-
icantly distinct from it in both the perspective used and its
broad comparative metrics. Regarding the perspective, Kron-
oDroid uses dynamic (i.e., system calls) and relevant static fea-
tures such as permissions (i.e., 489 in total, including times-
tamps) to characterize each application while AndroCT pro-
vides just dynamic data (i.e., API calls). This fact makes Kro-
noDroid usable for a wide variety of researchers and mal-
ware detection approaches, choosing freely the focus on one
or another perspective. When the broad comparative metrics
are analyzed, the size and time-frame encompassed by Kron-
oDroid are unprecedented. Composed by more than 28,000 per
class (i.e., benign/malware), including over 200 malware fam-
ilies, and encompassing 13 years (i.e., 2008-2020) of Android
history make it, to the best of our knowledge, the largest, fully
labeled and most extended timestamped Android dataset.
Lastly, whereas AndroCT provides all log traces and collected
data in a semi-processed format, KronoDroid is readily avail-
able in structured tabular format (i.e., CSV file) and raw for-
mat (i.e., not processed log files), matching the distinct types of
technical needs and capabilities that machine learning prac-
titioners have.

In conclusion, the present dataset aims to address the
aforementioned research gaps and improve the field of An-
droid malware detection. However, this research is not free of
limitations, weaknesses, and challenges, which are covered in
Section 6.1 after the methodology and results are explained in
the following sections.

4. Methodology

KronoDroid, the major contribution of this research, is a hybrid-
featured Android malware dataset that introduces the time
feature in the Android malware analysis. The acquisition of
the hybrid features and the timestamps required the uti-
lization of static and dynamic analysis techniques on the
collected samples. The features collected are detailed in
Table 7 whereas the hybrid analysis workflow is depicted in
Fig. 1 and is thoroughly explained in the following paragraphs.

COMPUTERS & SECURITY 110 (2021) 102399

©o

Table 4 - Android malware repositories.

Name Size Time Range Availability Analysis Source Features (#) Reference
MaMaDroid B: 8,402 2010-2016 ~ On request Static - API Calls (-) (Stringhini, 2018)
M: 34,521
TraceDroid B: 15,451 2010-2017 Public (Raw data) Dynamic Emulator API Calls (122) (Cai, 2020)
M: 15,183
AndroCT B: 18,277 2010-2019 Public (Raw data) Dynamic Emulator Real API Calls (122) (Li et al., 2021)
M: 17,697 device
KronoDroid BE: 35,246 2008-2020 Public Static Emulator Syscalls (289) (Guerra-Manzanares, 2021)
BR: 36,755 (Raw data Dynamic Real device Permissions (166)
ME: 28,745 and CSV) Other static (34)
MR: 41,382
A Data set Size Time-frame
Drebin 5,560 2010-2012
l AMD 24,553 2010-2016
VirusTotal 21,687 2014-2020
Discarded Ne Run on Dynamic Run on real Discarded VirusShare S 2008-2018
sample emulator? analysis device? " sample Total 54,834 2008-2020
Tools + apk Static Tools + apk
Data set Size Time-frame Ref.
l l F-droid 6,919 2010-2020 (F-droid 2020)
MARVIN 29,941 2008-2014 (Lindorfer et al.,
Detection Static Detection 2015)
report analysis Il report . X
APKMirror 2,200 2010-2020 (APKMirror 2020)
Total 39,060 2008-2020 =
Data
processing
consistency may cause a great unexpected impact in the in-
duced machine learning models (i.e., models not generaliz-
" v ing to both sources of data). Thus, for the sake of complete-
Emulator Real Device
Dataset Dataset ness, as both types of devices are used in the Android malware
detection research literature without any distinction, this re-
Fig. 1 - Data set generation workflow. search was performed using both emulator and real device
platforms. Consequently, after the dynamic phase, two dis-
tinct platform-based data sets were generated from the ini-
tially collected set of applications. As malware and benign An-
4.1. Data Collection: The Workflow droid applications were collected, two app categories were gen-

The first step of the data collection workflow involved the ac-
quisition of the Android samples which composed the initial
dataset. The initial dataset is composed of 93,894 Android ap-
plications that were acquired from 7 different datasets and
repositories. After the collection of the initial dataset, dy-
namic analysis was performed using two different Android
devices: an emulator and a real device. The rationale for
the usage of these two devices is extracted from Guerra-
Manzanares et al., 2019. According to the authors, the regis-
tered dynamic behavior of Android applications might differ
across platforms when using system calls as features. This in-

erated (i.e., also referenced as classes or labels). The composi-
tion of each initial single-class dataset is provided in Table 5
for malware apps and Table 6 for benign applications. As can
be observed, the overlap of the time-frames of the applica-
tions included in both datasets encompass from 2008, when
the first commercial Android version was released, until 2020.
After the dynamic analysis phase, two sequential static anal-
ysis phases, referred as static analysis I and static analysis II in
Fig. 1, were performed before all the collected data were pro-
cessed and the features generated, thus conforming the two
final platform-based datasets. The whole process is detailed in
the following paragraphs.

10 COMPUTERS & SECURITY 110 (2021) 102399

4.1.1. The Malware Data

The initial malware dataset is composed of applications be-
longing to two malware datasets and two repositories, out-
lined in Table 5. More specifically, Drebin is a malware dataset
collected between 2010-2012 and presented in Arp et al., 2014,
including 5560 samples from 179 malware families. It is the
most used academic dataset for Android malware research
nowadays (Irolla and Dey, 2018). Cited more than a thousand
times since its generation, it has become the replacement
of the discontinued MalGenome Project dataset (Zhou and
Jiang, 2012). Drebin provides the older malware samples for this
study (i.e., belonging to the early years of Android history). The
Android Malware Dataset (Wei et al., 2017), is a public dataset
composed of 24,553 malware samples, split into 135 varieties
among 71 malware families and collected between 2010 and
2016. The VirusTotal Academic Malware Samples dataset is a mal-
ware repository collected by VirusTotal using their antivirus
engine (VirusTotal 2020). It is a growing repository generated
by VirusTotal from the positively detected files submitted for
scanning by its users. Its collection time-frame ranges from
2014 to 2020. At the time of this study, the repository had
21,687 Android apps. Finally, VirusShare (VirusShare 2020) is a
repository of malware samples that provides access to live ma-
licious samples for research and forensics purposes. For this
study, 3,034 Android applications were randomly selected and
downloaded from VirusShare.

As reported in Table 5, old malware data are covered using
Drebin and AMD datasets while more recent malware is cov-
ered by apps belonging to VirusTotal Academic Malware Samples
dataset. The set of applications from VirusShare are added for
the sake of completeness of the dataset, as they encompass
the widest time-frame. Consequently, the malware data cov-
ers the widest time-frame possible, from Android OS first re-
lease, 2008, to the present time, 2020.

4.1.2. The Benign Data

The malware dataset is composed of 54,834 applications while
the benign data set includes 39,060 samples. This difference
is due to the more challenging task of collecting old benign
applications.

Unlike malware apps, legitimate apps are not usually
stored or available in repositories, neither provided in the ex-
isting malware datasets, as reported in Table. 1. Also, as they
are frequently updated and adapted to OS releases by their de-
velopers, they tend to generate more compatibility issues than
malware apps (i.e., requiring a higher minimum API level).
Furthermore, as the legitimate alternative app markets started
their activity some time after the release of Android, their app
set is significantly limited for the first years of Android history.
Therefore, due to the focus on malware and scarcity of benign
data, the initial benign dataset was out-numbered by the initial
malware dataset.

The initial benign dataset was generated from three
sources, provided in Table. 6, two public Android app markets
and a research dataset. In this regard, F-droid (F-droid 2020) is
a free, open-source Android repository that provides apps to
users via a client software. It is a well-known alternative to the
official Android apps market (i.e., Google Play) that performs
security checks to ensure the apps provided are malware-free.
At the time of this research, the F-droid repository contained

6,919 samples, ranging from 2010 to 2020. Similarly to F-droid,
APKMirror is a larger, web-based Android alternative app store
(Apkmirror 2020). Due its security checks, it is considered a
trusted and secure source of apps (APKMirror 2021). For this re-
search, 2,200 randomly selected apps, uploaded to the app cat-
alog between 2010 to 2020, were used. Finally, 29,941 samples
from MARVIN benign dataset (Lindorfer et al., 2015), shared by
the authors, were used in this study. They allow covering the
early years of Android history, from 2008 to 2014.

Similar to the malware dataset, the overlap of the data
sources enables complete coverage of the whole 2008-2020 pe-
riod, as shown in Table 6. More specifically, old benign apps
were provided by MARVIN dataset while recent benign sam-
ples were provided by F-droid repository. APKMirror samples
were used for the sake of completeness and time-frame cov-
erage, especially for the recent years.

4.2. Phase II: Dynamic Analysis

System or kernel calls are the most used behavioral feature
in dynamic malware detection research and the dynamic fea-
tures collected in this study. System calls are the fundamen-
tal interface between the apps and the operating system ker-
nel. They provide a level of abstraction and security, acting
as handlers of service and resource requests from the appli-
cations using API (i.e., user-level) to the OS (i.e., kernel-level)
(Bovet and Cesati, 2005). Android OS is built on top of the Linux
kernel, which provides more than 200 system calls, depending
on the CPU architecture (e.g., ARM or x86). More specifically,
kernel calls manage the requests of services and resources
that the apps are not allowed to perform directly, related to
process control, file management, device management, com-
munication, etc. Therefore, system calls analysis provide dy-
namic data about the real behavior of apps at runtime.

The system calls collection in this study was performed
by means of an automated script using Android Debug Bridge
(ADB) commands. ADB is a command-line tool that enables
the communication between a computer and a mobile device.
The script, developed by the author, attempted to install, exe-
cute, monitor, log, and uninstall all the applications compos-
ing the initial datasets in each of the devices used. Two devices
were used for this research: a Samsung A6 (i.e., real device) and
a Nexus 5X Android SDK emulator instance (i.e., emulated de-
vice). The same Android version (i.e., Android 8.0 Oreo), con-
figuration, script, initial dataset and acquisition procedure was
in place for both devices.

As Android applications can depend on specific libraries to
be executed in different CPU architectures and require a mini-
mum API level (i.e., compatibility issues), not all the apps from
the initial dataset were successfully installed on both devices
(Android 2020). For instance, if the application had only na-
tive libraries for ARM-based devices (i.e., armeabi), it was not
successfully installed in the emulator (i.e., x86 architecture),
deemed as incompatible app. The set of incompatible apps for
each device were discarded for any posterior steps, not fur-
ther processed, and did not form part of the final dataset for
the specific device they were not compatible with.

Regarding the compatible apps, after their successful in-
stallation, they were attempted to boot up by invoking the ap-
plication main activity using the monkey tool (Android 2021).

COMPUTERS & SECURITY 110 (2021) 102399 11

If this step was successful, they were allowed to run freely,
without any further interaction, for 60 seconds. The ratio-
nale behind this run-time constraint is based on the findings
of Guerra-Manzanares et al., 2019, where different run-time
time-frames were evaluated in a similar dataset and the au-
thors concluded that longer time-frames (i.e, up to 15 min-
utes) did not lead to improved detection performance. During
the run-time, the application was monitored and the system
calls issued by the main process were logged using strace tool
(Levin, 2021). The generated log file, containing the issued sys-
tem calls by the app at run-time, was pulled into the storage
device using ADB before the application was uninstalled from
the device.

As a result, only the successfully installed and executed
applications are included in the final device- related labeled
datasets. Therefore, the dynamic analysis acted as a filter
stage, determining the apps that finally form part of either of
the resulting datasets, thus ensuring the collection of hybrid
analysis features for all the samples included.

4.3. Phase III: Static Analysis

After the dynamic analysis step, two sequential static analysis
steps were performed on the remaining set of applications.
These steps are outlined in the following paragraphs.

4.3.1. Static Analysis I: APK Data Extraction
The apk archive and the AndroidManifest.xml inside the apk
container were analyzed and relevant information extracted.

From the apk bundle, metadata such as filesize, timestamps
(i.e., last modification, earliest modification) and SHA-256 hash
were retrieved.

All Android applications must include the AndroidMani-
fest.xml file inside their apk containers. This file contains rel-
evant data and metadata, such as the app’s package name,
the components of the app (i.e., activities, services, broad-
cast receivers, and content providers), the required hardware
and software features, and the security permissions the app
needs to access protected resources (i.e., requested permis-
sions) (Android 2021). In this first static analysis step, rele-
vant features used by static malware detection studies were
extracted from the AndroidManifest.xml of each processed ap-
plication:

+ Android permissions: all the requested permissions were
extracted. The current list of Android standard permissions
includes 166 permissions, categorized into 3 different lev-
els of risk, also known as protection levels: dangerous, signa-
ture, or normal (Android 2021). As Android allows to define
custom permissions, if any was declared, it was also col-
lected.

Android Intent Filters: all the intent filters data declared by
the app were extracted.

Hardware & Software features: hardware features and soft-
ware requirements defined by the application were re-
trieved.

Other relevant data: such as package name, activities, and
services declared.

In this phase, all the collected data was retrieved using
a script, developed by the author, by means of AndroGuard,
Android Asset Packaging Tool (aapt) and ExifTool. More specifi-
cally, AndroGuard (Desnos et al., 2018) and aapt (Android 2021)
were used to explore the apk archive and retrieve the rele-
vant data from the apk and AndroidManifest.xml file. ExifTool
(Harvey, 2021) was used to retrieve metadata about the apk
bundle.

4.3.2. Static Analysis II: Detection Report

The second step of static analysis was performed using Virus-
Total AV engine. VirusTotal is an antivirus scanner service
which in its basic version allows the user to upload files and
obtain a malware detection report and other related signals
based on over 50 antiviruses’ results (VirusTotal 2020). Virus-
Total API was used to obtain the detection report and relevant
metadata for all the apps filtered on the dynamic phase. As
VirusTotal terms of agreements did not allow to share their
collected timestamp data (i.e., first seen and first seen in the
wild) nor other raw data from the report in the public dataset,
they were not included as features in the released dataset.
However, anyone interested in those features, used and dis-
cussed in this research, can collect them directly from the
source, VirusTotal, using the SHA-256 list and the script pro-
vided in the dataset repository.! More information is provided
in Table. 7. In summary, this second static analysis step meets
two purposes:

1 Malware detection check - in the case of malware samples,
it provides data about the malware family and detection
ratio. In the case of benign samples, the detection report is
used as an additional check of their not malicious content.
When allegedly benign apps were detected as malware by
some AV, their real label was questioned and reflected in
the dataset. The same is applied in the alleged malware
found malware-free. For that purpose, the concepts of soft
and hard labels are defined and implemented in this study.
A detailed overview of them and the analysis results are
reported in Section 5.2.

Collection of relevant static data - the detection report
provides additional static features that are used to enrich
the quality and completeness of the dataset, such as the
detection-related timestamps.

N

4.3.3. Phase IV: Data Processing

After all the previous steps were performed, all the gathered
and logged data for each application were further processed
in order to extract and construct meaningful features to char-
acterize each application. A total amount of 489 features were
extracted and constructed to describe apps on both datasets
(i.e., emulator and real device data) and each app class within
them (i.e. malware or legitimate). Table 7 provides a concise
description of the features that characterize each app. More
specifically, apps are characterized by the following static fea-
tures:

» Package Name - application ID or identifier string that
uniquely identifies the appli- cation. It is defined in

1 Script link: https://github.com/aleguma/kronodroid

12 COMPUTERS & SECURITY 110 (2021) 102399

Table 7 - Data set features summary.

Category Count Var type Brief description

Package Name 1 Categorical Application’s package name

System Calls 288 Numeric Absolute frequency of each syscall from the syscall set issued by the app
at run-time. For consistency, the syscalls set is composed of 288 features

Total system Calls 1 Numeric Total number of syscalls issued by the app at run-time

Standard 166 Categorical Binary feature that indicates whether the standard Android permissions

Permissions was requested (i.e., 1) or not requested (i.e., 0) by the app

Standard 3 Numeric Total number of normal, dangerous and signature permissions requested

Permissions

Categories

Total Standard 1 Numeric Total number of standard permissions requested by the app

Permissions

Custom Permissions 1 Categorical Binary feature that indicates if any custom permission was declared by
the app (i.e., 1 if any, 0 if none)

Total Custom 1 Numeric Total number of custom permissions defined by the application

Permissions

Total Permissions 1 Numeric Total number of requested permissions. Sum of standard and custom
permissions

SHA-256 1 Categorical SHA-256 hash value of the apk file

Compressed Filesize 1 Numeric Compressed (apk) filesize of the app

Uncompressed 1 Numeric Not compressed size of the file (i.e., sum of the size of all the raw apk

Filesize inner files)

Timestamps 4 Numeric Collected timestamps (i.e., inner files earliest and last modification,
timestamp of first seen by VirusTotal* and first seen itw*)

Files 1 Numeric Number of files inside the apk container (i.e., inner files)

Hardware & 1 List List of hardware and software requested features

Software Features

Activities 1 List List of activities defined by the application

Total Activities 1 Numeric Total number of activities defined by the application

Intent filters (IF) List 1 List List of all the Intent filters defined by the application

IF Activities 1 Numeric Total number of activities defined in intent filters

IF Activities Actions 1 Numeric Total number of actions related to activities defined in intent filters

IF Services 1 Numeric Total number of services defined in intent filters

IF Services Actions 1 Numeric Total number of actions related to services defined in intent filters

IF Receivers 1 Numeric Total number of receivers defined in intent filters

IF Receivers Actions 1 Numeric Total number of actions related to receivers defined in intent filters

Total Intent filters 1 Numeric Total number of intent filters declared by the application

Services 1 List List of services defined by the application

Total Services 1 Numeric Total number of services defined by the application

Detection Ratio 1 Numeric Ratio of the AV scanners that detected the sample as malware. Value in
the range [0,1].

Scan Time 1 Numeric Timestamp that indicates when the app was scanned for this research

Malware Family 1 Categorical Most likely malware family of the sample

Soft Label 1 Categorical Soft label for the specific app. Possible values: {0,1}

Hard Label 1 Categorical Hard label defined for the specific app. Possible values: {-1, 0, 1}

Total Features 489 - 313 Numeric, 172 Categorical and 4 List Features

* Features not provided with the dataset. More info at https:/github.com/aleguma/kronodroid

the form of a Java package name or a reversed DNS
domain name, aiming to avoid naming collisions (e.g.,
com.company.appname) (Android 2021). In this dataset,
this single feature corresponds to the identifier string,
which can be used to identify a particular app or differ-
ent samples with the same package name in the whole
dataset.

Standard Permissions - permissions are a security mech-
anism that allows Android to limit what an app can ac-
cess (e.g., contacts list) and do (e.g., record audio). They
can be requested by the application either at installa-
tion time (normal permissions) or at run-time (danger-
ous permissions). Permissions requested by the applica-

tion are declared in the AndroidManifest.xml file using the
syntax: android.permission.PERM, where PERM is substituted
by the corresponding permission name. For example, an-
droid.permission.INTERNET would be requested by the ap-
plication to have connectivity, enabling it to open network
sockets. A total quantity of 166 standard permissions are
defined by the permissions API provided for Android de-
velopers (Android 2021). As a result, 166 categorical binary
permission features were generated for each sample. The
value for each feature can be either 0 or 1 (i.e., unset or set
permission). A value of 0 reflects that the permission was
not requested by the app while a value of 1 indicates a re-
quested permission.

COMPUTERS & SECURITY 110 (2021) 102399 13

» Permission Statistics - Android categorizes permissions ac-
cording to the sensitive information they can access and the
security threat they may pose. Based on that, normal, dan-
gerous and signature permissions are defined. Custom per-
missions can also be created and used. Consequently, 7 sta-
tistical features were computed for each application in re-
lation to the permissions requested.

- Total Standard Permissions - total quantity of standard
permissions re- quested by the application.

- Total Dangerous - total quantity of requested standard
permissions that are categorized as dangerous. Indica-
tive of permissions that request access to the user’s per-
sonal data, which may pose a security threat.

Total Normal - total quantity of requested standard per-

missions that are categorized as normal.

- Total Signature - total quantity of requested standard

permissions that are categorized as signature.

Custom Permission - binary categorical feature that in-

dicates whether any custom permission was declared

by the application (i.e., value of 1). If no cus- tom per-
missions were defined the value of 0 is reported.

- Total Custom - total number of custom permissions re-

quested by the application.

Total Permissions - total number of permissions re-

quested by the application (i.e., summation of all custom

and standard permissions requested).

» Compressed Filesize - integer that reflects the apk file size
in bytes.

» Uncompressed Filesize - integer that reflects the sum of
the raw size of the applica- tion’s inner files in bytes.

» Timestamps - temporal metadata about the application.
As this information can be tam- pered or wrong, 4 distinct
and complementary timestamps were collected, helping
to generate the temporal context of the application. The
4 timestamp features collected are:

- Earliest Modification - earliest modification timestamp
found in any of the in- ner files of the application.

- Last Modification - latest modification timestamp
found in any of the files that compose the application.

- First Seen VT - timestamp that denotes when the app
was submitted for the first time to VirusTotal (VT) scan
service.

- First Seen in the Wild (ITW) - timestamp that indicates
when the app was seen anywhere, online, for the first
time. This feature was extracted from the VT scan re-
port.

More specifically, Exiftool was used extract the Earliest mod-

« Files - numeric feature that reports the number of files
inside the application’s compressed container (i.e., inner
files).

« Activities - expanded in two features. One provides the list
of activities declared by the application (i.e., names) and
the other provides the total number of them (i.e., count).

« Intent Filters (IF) - list of all the intent filters defined by the
application.

- Intent Filters Statistics - 7 summary statistics are com-
puted for each application in relation to the intent filters
declared.

- Intent Activities - total number of intent filters related
to activities.

- Intent Activities Actions - number of defined actions in
the intent filters related to activities.

- Intent Services - total number of intent filters related to
services.

- Intent Services Actions - number of defined actions in
the intent filters related to services.

- Intent Receivers - total number of intent filters related
to receivers.

- Intent Receivers Actions - number of defined actions in
the intent filters related to receivers.

- Total Intent Filters - total number of intent filters de-
clared by the applica- tion.

« Services - expanded in two features. One provides the list

of services declared by the application (i.e., names) and the

other provides the total number of them (i.e., count).

Detection Ratio - numeric value compressed in the range

[0,1] that reflects the amount of AV scanners that posi-

tively detected the sample (i.e., as malware) over the to-

tal amount of scanners. It is a constructed feature based
on information provided by the detection report (i.e., nr. of
positive detections / nr. of scanners).

Malware Family - most likely malware family of the sample

according to the results provided by the AV scanners that

positively detected the sample (i.e., majority of the vote). A

detailed explanation of the procedure followed is provided

in Section 5.4.

Scan time - timestamp that reflects the time when the app

was scanned by the VirusTotal AV engine, thus generating

the parsed detection report.

Soft Label - binary feature that indicates if the application

is malware or be- nign according to the data source. A value

of 0 denotes a benign application while a value of 1 indi-
cates malware.

Hard Label - binary feature that indicates if the application

is malware or legitimate according to the detection report

and its source. A value of 0 denotes a benign application, a

value of 1indicates malware and a value of -1 denotes a du-
bious sample. This label is explained in detail in Section 5.2.

ification and Last Modification timestamps from the files inside
the apk while the VirusTotal report provided the First Seen VT
and First Seen ITW timestamps.
From the dynamic perspective, the following features are
defined for each application:

» SHA-256 - hexadecimal representation of the 256-bit hash
string of each sample, uniquely identifying them. In mal-
ware analysis, SHA-256, a secure hash algorithm, is used to
uniquely identify samples. It also helps to differentiate be-
tween distinct instances of the same malware, which may
have slight modifications but the same package name.

« System Calls - absolute frequency of each specific system
call issued by the app during the run-time. As two distinct
devices were used to collect these features, powered by dif-
ferent CPU architectures (i.e., x86 for the emulator, ARM
for the real device), two distinct syscalls set were retrieved.

14 COMPUTERS & SECURITY 110 (2021) 102399

Even though x86 and ARM architectures have different sys-
tem calls set, for the sake of consistency of the datasets,
the union of both system calls sets was used to generate
the final system call set, composed of 288 features. More
specifically, the x86-arch system calls set is limited to 212
features while the ARM-arch set encompasses the whole
288 feature set.

Total System Calls - total number of system calls issued by
the application during the run-time.

As a result of the data processing stage, 489 features were
generated to characterize each application that composes
each of the final device-related datasets. More specifically, 313
numeric, 172 cat- egorical, and 4 list features are provided for
each sample in both datasets (i.e., emulator and real device).
Regarding the feature type, 289 are dynamic features, collected
using advanced dynamic analysis procedures, while 200 are
considered static features, collected using basic and advanced
static analysis techniques.

5. Results
5.1. Final Datasets: Emulator vs. Real device

The dynamic step acted as a filter step for the applications,
just selecting for each final dataset the ones that were suc-
cessfully installed and executed on each device. As a result,
even though the initial dataset was formed by the same num-
ber of apps (i.e., 93,894), split into 58.4% malware apps (i.e.,
54,834 samples) and 41.6% benign apps (i.e., 39,060 samples),
the final datasets show different compositions, as provided in
Table 8 and Table 9. The Initial column is the same for both ta-
bles, as it provides the composition of the initial dataset. The
column Install Failed refers to the applications that were not
successfully installed on the device. The most common rea-
son for that was that the app was not compatible, not having
the native libraries required for the specific architecture. That

Table 8 - Emulator final dataset.

Install
Class Initial ~ Failed Dynamic Analysis Final
Failed Processed
Mal 54,834 19,788 2,213 32,822 28,745
Leg 39,060 2,000 1,797 35,263 35,246
Total 93,894 21,788 4,010 68,085 63,991

Table 9 - Real Device final dataset.

Install
Class Initial ~ Failed Dynamic Analysis Final
Failed Processed
Mal 54,834 6,527 2,463 45,844 41,382
Leg 39,060 422 1,860 36,778 36,755
Total 93,894 6,949 4,323 82,622 78,137

error was reported, when trying to install, as INSTALL FAILED
NO MATCHING ABIS.

Another reason was the lack of valid or any certificates
inside the app, thus INSTALL PARSE FAILED NO CERTIFICATES
message was raised. Both types of errors ended up with the
same result, the app was not successfully installed, being dis-
carded, and not further processed for that specific device. The
column Dynamic Analysis is split into two subcategories: Failed
and Processed. The subcategory Failed refers to applications
that were successfully installed but due to either of the mon-
key tool not being able to start the application (i.e., main ac-
tivity not defined) or the debugger failing to attach to the pro-
cess, the dynamic data was not possible to collect. As a re-
sult, those applications were discarded for the next steps. The
subcategory Processed refers to the apps that were successfully
installed and dynamic data were able to be collected. The col-
umn Final, provides the final dataset compositions when dupli-
cated samples (i.e., SHA-256 collisions) are removed from the
processed data. Therefore, the final datasets for each device are
the applications from the initial dataset that were successfully
installed and processed, thus the dynamic analysis was success-
ful, and their hash value was unique. Finally, the rows in these
tables indicate the app class, malware or benign, and the total
values.

The emulator final dataset composition is provided in
Table 8. A total of 63,991 apps compose this dataset, indicat-
ing that 68,2% of the apps from the initial data were success-
fully processed and found unique (i.e., 72,5% before the re-
moval of the duplicates). About 4,3% were installed but failed
and 23,2% directly failed to be installed. The class composi-
tion of this final dataset is slightly unbalanced towards the
benign class, being 44.9% malware and 55.1% benign applica-
tions. Even though this proportion may seem reasonable, the
initial malware dataset was larger than the benign dataset,
meaning that a considerable amount of malware applications
failed to be installed in the emulator. More specifically, 19,788
malware apps directly failed to be installed, which represents
36.1% of the initial malware dataset versus just 5.1% of the
benign samples with respect to the initial legitimate dataset.
As aresult, 91% of the failed-to-be-installed samples are mal-
ware apps. This fact enables to conclude that malware tends
to not be compatible with emulators (i.e., x86 architecture),
thus being highly constricted by the architecture of the de-
vice. Therefore, in the case of malware, incompatibility issues
can hamper significantly the collection of dynamic features in
emulated environments.

The real device final dataset composition is provided in
Table 9. A total of 78,137 apps compose this dataset, indicat-
ing that 83,2% of the apps of the initial data were successfully
processed and found unique (i.e., 88% before the removal of
the duplicates). About 4,6% were installed but failed to be pro-
cessed and 7,4% directly failed to be installed. The class com-
position of the final dataset is slightly unbalanced towards the
malware apps, with proportions closer to the initial dataset. In
this regard, 53% of the final dataset are malware apps (58,4%
in the original). The 12% of the initial malware dataset failed
to be installed on the real device and just 1.1% of the benign
applications. Furthermore, and in a similar fashion as in the
emulated device, 94% of the failed apps belong to the malware
dataset. These figures show that, as in the emulator, acquiring

COMPUTERS & SECURITY 110 (2021) 102399 15

dynamic data is more challenging for malware samples than
benign applications.

As can be inferred from Table 8 and Table 9, the duplication
issue was more significant in the malware sets than benign sets,
an expected side-effect of the usage of overlapping malware
repositories and the scarcity of data sources.

As a result, the comparative inspection of the two final
datasets shows that dynamic analysis of malware apps in the
emulator is a more challenging task than in the real device. In
both malware datasets, similar numbers and proportions of
apps were installed but failed to be processed, thus the main
difference lies in the incompatibility issues, when the apps could
not be installed. Although emulators are easier to manage and
deploy than real devices, their architecture, inherited from the
host machine, poses challenges to dynamic malware analysis,
as many apps might not be compatible with x86 devices. This
fact could condition, impact, and bias the results obtained us-
ing emulators. Consequently, the underlying CPU architecture
appears to be an important conditional variable to be taken
into account when performing dynamic malware analysis.

5.2 Final Datasets: Soft vs. Hard label

The final datasets, discussed in Section 5.1, base their com-
position according to the unique and successfully processed
samples by data source, reported in Table 5 and Table 6. Each
sample processed was labeled, as either benign or malware,
according to the original source of the data (i.e., benign or mal-
ware repository), without any further analysis, defining their
source label or soft label.

Nevertheless, after the data processing step, the analysis of
the detection results arouse the possibility of misclassification
issues from the original sources. More specifically, based on
the detection reports collected, some allegedly benign sam-
ples, gathered from trusted benign sources, reported a non-
zero malware detection ratio (i.e., they were detected as mal-
ware for at least one AV). Similarly, a small number of al-
leged malware samples, from well-known malware reposito-
ries, were found to have zero malware detection ratios, mean-
ing that none of the AV detected them as malware. As a re-
sult, the suspicion of some data misclassification, from some
sources, shaped the concept of determining a hard label. The
hard label is based on the detection results and strictly applies
the following rules:

+ A benign sample has a zero-valued malware detection ratio
AND originates from a trusted legitimate source. The coded
hard label for benign data is 0.

A malware sample has a non-zero malware detection AND
belongs to a malware repository AND a malware family
name is reported. The coded hard label for malware data
is 1.

Any mismatch with the two conditions stated above is la-
beled as -1, indefinite class. It indicates that the ground-
truth label cannot be ensured and further inspection must
be performed. Assigning any other label would be prone to
misclassification issues.

The hard label aims to provide better quality data by cumu-
lative evidence towards the label. So, in order to categorize a

Table 10 - Distribution of labels in the emulator dataset.

Hard label
Qe Seitlebel Indefinite Definite
Mal 28,745 91 28,654
Leg 35,246 4,437 30,809
Total 63,991 4,528 59,463

Table 11 - Distribution of labels in the real device dataset.

Hard label
Qe Softlabel = T o fnite Definite
Mal 41,382 165 41,217
Leg 36,755 4,856 31,899
Total 78,137 5,021 73,116

legitimate sample with the hard label, the soft label must be
supported by the additional evidence of not being detected
as malware by any scanner. This does not provide complete
certainty about the label, as malware scanners can be by-
passed (Cai and Yap, 2016) and have been evaded (Zheng and
Xu, 2015), but it creates additional support, reinforcing the as-
signed label. Similarly, the malware soft label must be sup-
ported by being found as malware for at least one AV and, ad-
ditionally, having a malware family name reported. This last
extra-condition aims to avoid cases where just a few scanners
detect the sample as malware in a vague and non-defined way,
making it prone to be a false positive. Therefore, the hard label
aims to provide more certainty around the assigned label, re-
ducing the impact of noisy, misclassified and low-quality data
coming from dubious samples, an essential requirement to
build effective machine learning detection systems.

The composition of the final datasets regarding the soft la-
bels and hard labels are provided in Table 10 for the emulator
and Table 11 for the real device. The Indefinite column corre-
sponds to the dubious samples, categorized as -1 in the hard
label but assigned with the corresponding 0 or 1 value, depend-
ing on the data source in the case of the soft label.

Asreported in Table 10 for the emulator dataset, 91 samples
from the malware dataset are categorized as indefinite while
4,437 from the benign dataset, a remarkable difference be-
tween both data sources. Nevertheless, from the 4,437 sam-
ples of the benign dataset, 2,362 were detected by just 1 AV,
656 by just 2 AVs, and 225 by 3 AVs. As a result, 3,243 of these
4,437 samples are detected by 3 AVs or less, which is far from
the average number of positive AV detections for the malware
dataset (i.e., 30), which suggests they are likely false positives.
A total 744 of the 4,437 samples have more than 10 positive
detections and just 13 of these are equal or over the average
number of positive detection on the malware dataset (i.e., 30
or more AV detections). These facts strongly suggest that the
majority of the misclassified samples may correspond to false
positives or false alarms triggered by the antivirus scanners.

Similarly, based on Table 11, for the real device dataset, 165
malware samples are labeled as indefinite and 4,856 from the
benign dataset. As in the emulator case, there is a significant

16 COMPUTERS & SECURITY 110 (2021) 102399

difference between both datasets. More specifically, from the
4,856 indefinite benign samples, 2,695 got just 1 positive AV de-
tection, 680 got 2 and 244 just 3 AV detections. Therefore, 3,619
of the 4,856 samples were detected by 3 AVs or less, far from
the mean of positive AV detections for the malware dataset
(i.e., 30,47 AVs), which, again, suggests they could be false pos-
itives. Just 768 of the 4,856 samples are detected by more than
10 AVs and just 12 of them are over the mean of positive AVs
detection on the corresponding malware dataset (i.e., 31 or
more AV detections). Thus, these figures suggest that, as in the
emulator case, the majority of the misclassified samples corre-
spond to false positives, flagged erroneously by some of the AV
scanners.

As a consequence of the hard labeling process, removing the
dubious samples to increase the quality of the data, the final
datasets were reduced around 7%. Even though most of the
data defined as indefinite might be considered false positives,
only a deeper inspection could guarantee it. As most of the
detection mechanisms used by AVs just use static data, they
can be easily bypassed but also prone to false alarms (Cai and
Yap, 2016). Furthermore, as new malware samples are dis-
covered on a daily basis, becoming known, these static fea-
tures are constantly updated. Consequently, samples consid-
ered malware-free today might be detected as malware in the
future, thus creating uncertainty around the ground-truth la-
bel. Therefore, for the sake of rigorousness, dubious samples
were categorized as indefinite, but it is up to the user of the
dataset to assess and decide what samples are included or ex-
cluded from the final dataset and what labels are preferred, ei-
ther the soft labels, trusting the source, or the hard labels, trust-
ing the AVs results.

5.3. (When) Time Matters: Metadata Analysis

The importance of assigning a date to a malware sample
arises from the fact of a phenomenon called concept drift, di-
rectly related to machine learning and forensic analysis. Mal-
ware is a non-stationary, constantly evolving phenomenon,
with its key features and characteristics prone to change over
time. Consequently, relevant features to characterize and dis-
criminate old samples may differ significantly from the ones
relevant for recent or future samples (Jordaney et al., 2017). As
the main consequence of this rapid evolution, it becomes an
extremely challenging task to generate models that general-
ize well over extended periods of time (i.e., detecting well past,
present and future samples). Concept drift on data severely
impacts the performance of ML models over time until they
become obsolete. Android malware classifiers and detection
rules can become unsustainable in the long term, outdated
as malware evolves. Hence it becomes critically important to
place malware in its temporal context in order to detect and
react against the changes in malware over time and on time
(Hu et al., 2017).

Unfortunately, there is no straightforward and reliable
technique to date an Android app. As timestamps can eas-
ily be modified, purposely or not, the date of Android applica-
tions is a challenging, almost infeasible, task. Even though the
ground-truth timestamp is unlikely to be achieved, approxi-
mations can be deemed useful in this matter. In this research,
4 timestamps are used to date applications in an approximate

Table 12 - Timestamps validity in the emulator dataset.

Class Timestamp Valid Not Valid
Earliest Mod 26,985 1,760
Last Mod 28,395 350
Malware | g Seen VT | 281745 0
First Seen ITW | 6,145 22,600
Earliest Mod 29,969 5,277
Elatizn) Last Mod 34,335 911
First Seen VT | 35,246 0
First Seen ITW 209 35,037

Table 13 - Timestamps validity in the real device dataset.

Class Timestamp Valid | Not Valid
Earliest Mod 37,969 3,413
Last Mod 40,934 448
Malware | &t Seen VT | 41382 0
First Seen ITW | 8,090 33,292
Earliest Mod 31,207 5,548
Benign _Last Mod 35,782 973
First Seen VT 36,755 0
First Seen ITW 219 36,536

manner when the ground-truth is not accessible. Therefore,
Earliest Modification, Last Modification, First Seen VT and First Seen
ITW were extracted, providing different approaches to approx-
imate the date of a sample.

Table 12 provides information about the valid and not valid
timestamps for each approach for the emulator dataset while
Table 13 reports the same information for the real device
dataset. For the purpose of this research, a valid timestamp is
defined as those timestamps that are possible for the app to
belong to, disregarding its accuracy, thus encompassing from
2008, the first Android OS version release, to 2020. Contrarily, a
not valid timestamp occurs when the timestamp data is miss-
ing/not defined or the date is not factually possible for the An-
droid app to exist (i.e., dates before 2008 and after 2020).

As can be observed on Table 12 and Table 13, both datasets
show similar distribution trends regarding the timestamps.
More specifically, in both cases, the First Seen VT timestamp
shows valid values for all the applications in the dataset. De-
spite its dubious accuracy, as will be explained later, it pro-
vides valid data for the whole dataset. Contrarily, First Seen ITW
timestamps are missing for almost all samples in the legiti-
mate datasets and just valid for some malware samples. De-
spite that, they are presumably the most accurate of all the
timestamps. Both First Seen VT and First Seen ITW values, when
not missing, they are always comprised between 2008 to 2020,
thus being always valid.

Regarding the apk inner timestamps, the Earliest Modifica-
tion is valid for the vast majority of applications but it’s cer-
tainly not as accurate as the Last Modification timestamp, as it
tends to refer to an early timestamp, not indicating the last app
update or release, what Last Modification may reflect. The Last
Modification timestamp provides valid information for almost
all the samples and it is preferred due to its more likely ac-
curate nature. Finally, as reflected in the provided tables, both
for emulator and real device, even though it may seem the op-

COMPUTERS & SECURITY 110 (2021) 102399 17

19000
. Malware
= Benign
17000

15000 4

13000 A

11000

of applications

9000

7000 A

Quantit

299° 00 0 o o o o e e o o e ®

Timestamp year

Fig. 2 - Emulator Earliest Mod valid year distribution.

23000 1
. Malware

210004 = Benign

19000 -
17000 -
15000 1

13000 1

of applications

11000 1

9000

Quantity

7000

B e LA e

Timestamp veal

Fig. 3 - Emulator Last Mod valid year distribution.

-,,u“q’ 1009 10‘5’ o 10*7’ 10\“ 10\" 10\6 10\1 1@“ 10‘9 1,075’
Timestamp year

Fig. 4 - Emulator First Seen VT valid year distribution.

3000
E Malware

=N Benign

1% 0 90 9 (9 @ 9P 90 (90 g P 9 0

Timestamp year

Fig. 5 - Emulator First Seen ITW valid year distribution.

posite, legitimate applications have more not valid values than
malware apps.

As a result, if not altered purposely, the Last Modification
timestamp should provide accurate infor- mation about an
app’s creation/release date and it is widely available for most
samples, thus being the preferred option. The First Seen ITW
would also provide accurate temporal context but the lack of
values in the vast majority of samples makes it a not preferred
choice when a large number of samples are needed. Thus First
Seen VT arises as the second preferred option due to its com-
plete validity, despite its inaccurate, delayed nature, related to
the users’ activity (i.e., submission time). The Earliest Modifica-
tion seems to provide inaccurate data, not preferred for tempo-
ral placement purposes if the information is not valid or differs
excessively from the Last Modification date.

The valid distributions for the emulator data set for each of
the timestamps are provided in Fig. 2, Fig. 3, Figs. 4 and 5. The
green bars represent the benign samples while the red bars
correspond to malware apps. For the sake of interpretation,
numbers are added for those bars whose frequency is smaller
than 150.

The Earliest Modification timestamps for the emulator data,
provided in Fig. 2 show that the vast majority of valid sam-
ples are concentrated between 2010 and 2011, while the rest of
years show a much smaller proportion of samples. The most
recent years have a significantly lower quantity of applica-
tions, especially in the case of legitimate applications, thus
providing limited data for the years from 2017 to 2020.

The Last Modification timestamps, which are provided in
Fig. 3, show a similar trend than the Earliest Modification times-
tamp, with most of the valid samples concentrated between
2010 and 2011. However, the Last Mod data is more spread
and populated in recent years, having more than 150 apps
per year in all years in the period encompassing from 2017
to 2020. In this case, the very early years show more missing
data, with values less than 150 samples per year in 2008 and
2009.

The First Seen VT timestamp was found as the most com-
plete data in terms of validity. Nevertheless, in terms of cover-
age, as shown in Fig. 4, the data are scarce for the early years,
2008-2010, but more prevalent in the last years. This fact em-
phasizes that these data are generally subject to delay with re-

18 COMPUTERS & SECURITY 110 (2021) 102399

spect to the Last Modification timestamp, thus suggesting lesser
accuracy, being based on the users’ proactive behavior submit-
ting apps to generate the timestamp.

The First Seen ITW timestamp was suggested to be the
most accurate (i.e., it marks its first seen online, anywhere)
but clearly incomplete, lacking coverage and prevalence in all
years as evidenced by the values and skewed distribution in
Fig. 5. In this case, information for benign data is significantly
missingin all years.

The same trends on the emulator data are confirmed for
the real device data. For the sake of readability of the text
and its comprehension, avoiding unnecessary repetitions of
figures, the real device distributions are provided in Appendix
A. As can be observed, in both cases, there is no exact and
completely certain way to assign a date to an application. All
timestamps analyzed may provide some temporal approxi-
mations but the exact date of inception of an application ap-
pears to be hardly reachable. The ground-truth timestamp for
Android apps seems to be certainly not achievable for any of
them.

Last modification, a reference of the last time any of the
files inside the apk was modified seems the most natural op-
tion to assign a date for an application and should provide
relatively accurate results. However, this metadata informa-
tion can be tampered with and modified purposely by at-
tackers. As a result, even though this is not a common prac-
tice found in Android malware authors, this fact must be
taken into account, not relying completely on any of the ap-
proaches as ground-truth but as approximations (e.g., times-
tamps with last modification in 2107 can be found in the
dataset).

First Seen VT is a timestamp based on VirusTotal which in-
forms about when the application was first submitted. This
data cannot be tampered with by attackers but it can be inac-
curate as depends on the action of users (i.e., someone has to
submit the file), thus it can never be exact but relatively de-
layed, except in the case that the malware author uploaded it
to self-check the detection ratio.

First Seen ITW is the time reference that indicates when the
application was seen online, anywhere, for the first time. As
a result, this timestamp may also be prone to delays, but pro-
vide a more accurate timestamp than the First Seen VT. It is a
better approach than First Seen VT, but it is harder to collect
and not possible in many cases. Earliest modification is placed
as the least preferred option for its inaccurate nature as any of
the files inside the app could exist much time before the ap-
plication (i.e., that would be the reported timestamp) or report
a not possible value, such as 1980. Therefore, Last modification
and First Seen VT approaches seem the preferred options when
the temporal context for an app is needed. Even though their
accuracy might be dubious, they can provide a good approx-
imation if they have not been tampered with or not delayed
significantly.

5.4. Malware Family Attribution

Malware use a great variety of techniques and means to ac-
complish their malicious intentions. These intentions are em-
bodied in the app’s source code by the malware author. Once
new malware is detected, the samples are studied by spe-

cialists to determine, based on its characteristics, if it is a
known malware variant or an unknown one. Malware vari-
ants are build using the same base code from another known
malware (i.e.,, AVs have developed a signature to detect it)
thus composing a malware family. Therefore, a malware fam-
ily is a set of malware that has been generated from the
same source code. When these variants include different tools
or techniques they are denoted as descendants (Cohen and
Walkowski, 2019).

Malware family attribution allows classifying mal-
samples into well-known categories, enhancing
malware identification, characterization, and detection.
However, even though some malware families have well-
established denominations, it does not exist any convention
on malware family naming. For example, the sample with
SHA-256 hash value 727433bf595c257b029812106142d7ae2
9682a9a125c8038314cc254fd2cdbdf is detected as belonging
to the Steek malware family for some AV vendors, to Fatakr
malware family for some others, an unnamed type of An-
droid trojan (i.e., TrojanClicker.AndroidOS.t), just a trojan
(i.e., Trojan (0048d7e51)), a generic Android malware (i.e.,
Android/Generic.AP.8CFFQ!tr), malware named using custom
cryptic denominations (i.e., Artemis!A879EFOF3DAA), just
malware (i.e., Malware (ai Score=100)) or a malware agent (i.e,
Andr.Malware.Agent-1518794). Therefore, a single malware
sample can receive as many denominations as the number of
AV scanners processing the file, even for well-known malware
families such as the Steek/Fatakr family. As a consequence of
the lack of harmonization and convention, malware scanners
tend to use their own naming conventions (Kaspersky 2021,
Microsoft 2021), sometimes cryptic denominations, which
pose challenges to malware family identification and cate-
gorization, even for malware analysts (Hahn, 2019). Malware
detection is critical to prevention, but proper identification
is crucial for malware elimination, cleaning, and restoration
after an infection (Hahn, 2019). For research purposes, mal-
ware family attribution helps to characterize and understand
different malware categories, their evolution, and the devel-
opment of more specific and effective counter-measures such
as for instance, for ransomware.

Aiming to minimize the malware family naming confusion,
all final datasets samples were scanned using VirusTotal AV
engine (VirusTotal 2020). From the detection reports obtained,
the most prevalent malware family provided by the scanners
was imputed to the specific sample (i.e., the majority of the
vote among all positive scanner results). The heuristic proce-
dure was executed as follows:

ware

1 An initial database of malware families was generated
from online resources and malware families research stud-
ies. When possible, malware families with several denom-
inations were categorized in a single label, which included
all denominations separated by a slash (’/”). For instance,
”Steek/Fatakr”.

2 All samples, including the allegedly benign ones, were
scanned, one at a time, using the AV scanner engine, and
a detection report was retrieved for each app.

3 The app’s detection report was parsed and all the positive
scanner results were confronted with the known malware
family names in the database.

COMPUTERS & SECURITY 110 (2021) 102399 19

Table 14 - Top-15 malware families in final data sets.

Emulator Real Device
Family Total % Family Total %
Airpush 6,521 27 Airpush 7,775 22
Boxer 3,557 15 SMSreg 5,019 15
Malap 2,574 11 Malap 4,055 12
Fakelnst 2,158 9 Boxer 3,597 10
Agent 1,837 8 Agent 2,934 9
SLocker 1,822 8 Fakelnst 2,384 7
BankBot 1,241 5 SLocker 1,846 5
FakeApp 1,064 4 BankBot 1,297 4
Dowgin 772 3 Dowgin 1,145 3
GinMaster 595 2 Fake App 994 3
Kuguo 513 2 DroidKungFu 990 3
SMSreg 497 2 Kuguo 843 2
Youmi 447 2 GinMaster 827 2
DroidKungFu 269 1 Youmi 628 2
Simhosy 232 1 Simhosy 399 1
Total 24,099 | 100 Total 34,733 | 100

4 A family name from the database was imputed to every
sample based on the majority of the vote of all the indi-
vidual positive results. In case of positive detection but no
malware family was imputed (i.e., the malware family was
unknown or not included in the database), the report was
analyzed manually and imputed by manual inspection if a
malware family was reported. The new suggested malware
family was added to the database and the majority of the
voting process was repeated.

As aresult of these heuristics, 99.7% of the samples present
in the final datasets have a malware family attribution. More
precisely, 209 malware families are represented in the emu-
lator dataset while 240 in the real device dataset. Therefore
31 malware families are represented in the real device dataset
but not in the emulator dataset. Even though this difference is
consequent with the smaller set of samples that compose the
final malware set on the emulator, as discussed in Section 5.1,
it also evidences that some malware families are specifically
tailored for ARM devices, thus not compatible with x86 em-
ulators. Therefore, in these cases, the applicability of emula-
tor sandboxes in the study and detection of such families is
not possible, limiting the capabilities of emulators as foren-
sics and detection platforms.

Table 14 shows the 15 most prevalent malware families in
each dataset, ranked in descending order. The top 15 malware
families account for a total quantity of 24,099 samples in the
emulator dataset (i.e., 84.1% of the hard label malware set) and
34,733 in the real device dataset (i.e., 84.26% of the hard label
malware set).

As reported in Table 14, the same malware families com-
pose the most prevalent 15 malware families in both datasets.
However, even though the total proportion of these families
on both datasets is almost identical (i.e., ~ 84%), the distribu-
tion differs significantly for some malware families. Airpush
is the most prevalent family on both datasets while the sec-
ond most prevalent family differs notably on both datasets.
SMSreg, which is the second most prevalent family in the real
device, with 5,019 samples, representing approximately 15% of
the top 15 samples, places very low in the emulator dataset, as
this family is just represented by 497 samples, the 2% of the

=
o
L

0.

®
L

re categories

0.

o
s

!

0.4
Adware
Fraudware

B Ransomware
W Spyware

0.2

0.0

T T T T T T T T T T
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Timestamp vea

Fig. 6 - Emulator categories distribution along years using
First Seen VT timestamp.

top 15. This remarkable difference indicates that SMSreg in-
stallation may require, in many variants, ARM native libraries
to collect device and user-related sensitive information that
is usually not available or ill-defined on emulators, such as
the International Mobile Equipment Identity (IMEI) number (F-
Secure 2021). A similar but less significant difference is found
on Airpush and Boxer families. The rest show similar propor-
tions on both datasets.

The top 15 malware families can be embedded into four
major malware categories (i.e., adware, fraudware, spyware,
and ransomware). The color intensity in Table 14 groups them
and indicates the degree of threat they pose for the users (i.e.,
darker meaning riskier). Adware trojans, referenced with the
lightest red color, are represented by 6 malware families, be-
ing Airpush the most aggressive and prevalent (i.e., Airpush,
Agent, FakeApp, Kuguo, Dowgin and Youmi). Besides, 3 fraud-
ware trojans (i.e., Boxer, Fakelnst and SMSreg), the first ran-
somware for Android (i.e., Slocker) and 5 spyware apps (i.e.,
DroidKungFu, GinMaster, BankBot, Simhosy and Malap) com-
plete the list. Even though they all pose security threats and
high risk for Android users, those using exploits and leverag-
ing root privileges, with the purposes of extorsion (i.e., ran-
somware), persistent access, or stealing sensitive data (i.e.,
spyware) are of special concern.

The four malware major categories and their distribution
along years in the datasets are depicted in Figs. 6 and 7. The
timestamp used is First Seen VT, indicative of the year when
VirusTotal received the sample for the first time. This tem-
poral context gives an indicator of malware evolution and
trends over time. More concretely, Fig. 6 shows the proportion
of each malware category from the most prevalent families
along years for the emulator dataset. Fig. 7 shows the same
information for the real device dataset. As can be noticed,
both graphs show similar trends, indicating a ransomware
outbreak in 2015. Adware and fraudware were the most preva-
lent families in the early years of Android while more recently,
with the surge of smartphones, spyware has become more
prevalent. According to the data collected, 2017 is a partic-

20 COMPUTERS & SECURITY 110 (2021) 102399

1.0

=)

L0

@

Adware

Fraudware
S Ransomware
B Spyware

0.2

0.0

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Timestamp vear

Fig. 7 - Real device categories distribution along years
using First Seen VT timestamp.

1

0.8 1

5}

Adware

Fraudware
W= Ransomware
. Spyware

0.2

0.0 T T T T T T T
o d o o J l L] o A o (5]
LR R i R R
Timestamp vear
Fig. 8 - Emulator categories distribution along years using
Last Modification timestamp.

ular year where an increase in adware, fraudware, and ran-
somware disrupted the increasing trend of spyware.

The First Seen VT timestamp is a good indicator of the gen-
eral trend, as can’t be manipulated by attackers, but is lim-
ited to the VirusTotal activity time (i.e., not much data before
2011) and dependent on the behavior of the users, in relation
to when the file is submitted to scan. A different and comple-
mentary perspective can be obtained using the Last Modifica-
tion timestamp. When not tampered with, it allows getting a
more exact timestamp about the application’s temporal con-
text Figs. 8 and 9 provide the proportion for the top 15 families
major categories along years, using the Last Modification times-
tamp.

As can be noticed from Fig. 8 and Fig. 9, there exists a
similar trend as shown by the First Seen VT timestamp but
with the remarkable exception of ransomware apps. In both
cases, the outbreak of ransomware apps has its starting point
in 2014, thus noticed by VirusTotal with delay. This fact is
confirmed in Lipovsky'et al., 2016, placing 2014 as the year

w

tegone:
o

ot malware

5 044

I L]]

021 Adwiare

Fraudware
W= Ransomware

. Spyware

0.0 B T T T T Oap e S S p——

T T BN S A TN, . T G W, T BN~

F I PP ITFITIFINIFNTITFEN

TS S S S
a

Fig. 9 - Real device categories distribution along years
using Last Modification timestamp.

when ransomware first appeared in Android devices. How-
ever, using this timestamp, 2008 shows a significant preva-
lence of ransomware which is not possible. This fact suggests
that the timestamps are tampered with for some specific ran-
somware apps, misplacing these data in the timeline. Despite
this fact, the general trend and proportions are confirmed us-
ing both temporal contexts, evidencing the goodness of both
approaches as approximate timestamps to date applications
and trends in malware families.

5.5. Dynamic App Profiling

The dynamic features collected for all the applications in both
datasets are system calls, also referred to as kernel calls or
syscalls for short, issued at run-time without any user inter-
action (i.e., for max. 60 seconds). The total feature set of sys-
tem calls is composed of 288 Android OS system calls. For each
sample, the absolute frequency (i.e., total number) of each sys-
tem call during the run-time is reported. An additional fea-
ture, total syscalls, was constructed, reporting the summation
of the total number of syscalls issued by the application dur-
ing its execution. As explained before, even though different
architectures have different system calls set, for the sake of
homogeneity of the datasets’ features, the larger system call
set (i.e., real device) was used to define the total amount of sys-
tem call features (i.e., 288). For that reason, more 0-valued or
not-issued system calls can be found in the emulator dataset
than in the real device dataset.

The Table 15 provides a summary of descriptive statistics
computed for the total syscalls feature in both datasets, for
each app class (i.e., benign and malware) and for both labels
(i.e., soft and hard). To improve the interpretability of the ta-
ble, the soft labels statistics are provided in white-colored cells
while the dark-colored cells provide the information regard-
ing the hard labels. The statistics calculated are: mean, stan-
dard deviation (referred as S.D.), range interval (i.e., minimum
and maximum value), quartiles (i.e., 25% - Q1, 50% - median,
75% - Q3) and interquartile range (i.e., IQR = Q1 - Q3). The total
amount of samples of each dataset is reported as the n value.

COMPUTERS & SECURITY 110 (2021) 102399

21

Table 15 - Descriptive statistics of system calls.

: Statistic

Device Chw | L8 | e o Range 25% | 75% | IQR | S.D. n
Malware | SO | 7711 | 2363 | [0, L144.643] | 765 | 5,894 | 5,120 | 27,893 | 28,745
T Hard | 7,694 | 2361 763 | 5,888 | 5125 | 27911 | 28,654
Benign | SO | &755 | 2050 | [0, 7053351 | 1136 | 6,585 | 5,440 | 20,005 | 35,246
Hard | 8,664 | 2,890 1,127 | 6,591 | 5464 | 20771 | 30,809
Malware | SOt | 10390 [3258 | [0, 524,761] | 963 | 8,895 | 7,932 | 26232 | 41,382
Real Hard | 10,410 | 3267 962 | 8916 | 7.954 | 26272 | 41,217
Device T2 " Soft | 2878 | L148 | [0-533,765] | 478 | 2,102 | 1,624 | 13,386 | 36,75
S | Hard | 2,792 | 1134 | [0-529279] | 473 | 2,090 | 1,617 | 12,860 | 31,898

The average and median provide information about the cen-
tral tendency values of the total syscalls distribution for each
dataset, type, and label. They provide the notion of middle or
expected values while the rest of statistics are related to disper-
sion or variability of the data.

As can be noticed, even though in the benign datasets case,
the soft and hard labels datasets sizes (i.e. n value) are signif-
icantly reduced, the values of the statistics are not really af-
fected, showing similar values, slightly reduced for almost all
statistics in the case of hard labels. In all cases, when malware
and benign datasets are observed, the mean is significantly
greater than the median, which is not greater than 3,300 in
any case. This fact shows that 50% of the apps, either malware
or benign, issued less than 3,300 syscalls and that there are
some extreme values or applications that issued a huge amount
of syscalls (i.e., outliers). Furthermore, 75% of the apps issued
less than 9,000 syscalls with the central 50% of apps grouped
around a range of maximum 7,954 syscalls, which emphasizes
the fact that there is a great majority of applications issuing
not more than 9,000 syscalls and a minority of applications
issuing much greater values, as evidenced by the maximum
values in all ranges, over 524,000 syscalls. This fact proves that
the total syscalls distribution is not symmetrical in any case,
being right-skewed with some outliers that affect the value of
the mean, making it a not good representative of the expected
value.

The computed statistics reported in Table 15 show remark-
able behavioral differences between emulators and real de-
vices. The statistics considerably differ between classes on
both datasets. In the case of malware, the statistics show that
malware apps are less active in emulators than in real devices,
with just a few extreme exceptions that have a powerful im-
pact on the mean. This fact could suggest that some sophisti-
cated malware may detect the emulator environment thus be-
coming less active and hide its real behavior. However, these
differences could also be originated by the significant differ-
ence between both datasets, suggesting that ARM-dependent
apps may be the cause of such increase. Further investigation
should be performed to analyze if the cause of these behav-
ioral differences is caused by the platform or the app. On the
contrary, in the case of benign apps, with similar dataset sizes,
the statistics show a significant more active behavior in the
emulator than in the real device. More specifically, the most ac-
tive apps (i.e., over the third quartile) issued more than 6,600
syscalls in the emulator while in the real device this value is
slightly over 2,000. These behavioral differences were already

pointed out by Guerra-Manzanares et al., 2019, suggesting that
an app behavior (i.e., system calls) might not be identical across
devices. This fact challenges the identical behavior assump-
tion usually made in research studies to justify any platform
selection. A more detailed inspection of these differences at
the system call level is provided in Table 16.

The total quantity of distinct system calls actually used
per dataset (i.e., used syscalls set, at least once), with re-
spect to the system calls feature set (i.e., 288) are reported
in the fourth and fifth column of Table 16. The subset of the
five most used syscalls and the proportion of apps in the
dataset thatissued them, atleast once, are reported in columns
sixth and seventh. The eighth column reports the most issued
syscalls with respect to the total amount of issued system calls by
all the apps in that specific dataset, a figure reported in the
tenth column. The ninth column provides information about
the proportion of syscalls over the total quantity of syscalls
issued on that specific dataset that was caused by each of
them. Similarly as before, the soft and hard labels datasets
show similar values and sets. They are reported for the sake
of completeness, but their minor differences are not further
discussed.

As reported in Table 16, not all the available syscalls were
issued by the applications at run-time. The variability of the
syscalls is reduced to a smaller subset of them, issuing, at
most 44.4% of the whole syscalls set (i.e.,, 128 out of 288
syscalls). This fact seems even more remarkable in the emu-
lator malware dataset where the smallest subset of syscalls
is found, as just combinations of 99 syscalls are issued by
28,745 apps. However, it is worth noting that even it may
look a considerably smaller fraction, the final syscalls feature
set was related to the ARM architecture, which showed more
syscalls available than the x86 architecture thus the propor-
tion is greater when taking into account its own feature set.
As referenced before, the larger ARM-architecture syscalls set
was used for the sake of homogeneity of the datasets as it in-
cludes the x86-related ones. Thus, when taking into account
just the specific x86 syscalls (i.e., 212), the fraction for the emu-
lator grows to 46.7% for the malware dataset and 57.5% for the
benign dataset. This fact suggests that these differences are
due to the extended feature set used, but not that in the em-
ulator fewer system calls are used. However, a real difference
is found between the size of the syscalls set used by malware
and benign samples. In both platforms, the benign samples
use a larger set of syscalls than the malware. Benign samples
consistently use a wider variety of syscalls even when the to-

22 COMPUTERS & SECURITY 110 (2021) 102399

Table 16 - System calls usage statistics.

Used % total Total
‘ syscalls | syscalls Most used % total Most issued % total issued
Device Class Label set set syscalls apps syscalls syscalls syscalls
99.4 IT.7
97.8 11.6
ioct] 507 read i
Soft 99 344 getuid32 96.7 getuid32 111 | 221,659,298
Malware
Emulat mmap2 99.3 write 11.7
mulator futex 97.8 epoll pwait 11.6
96.8 g 11.1
close %65 ioctl 11
Hard 99 344 96.7 11.1 220,454,507
99.9 204
99.2 13.8
o | B e | D2
Benien | St 122 424 getuid32 986 write 70 308,595,229
2 mmap2 999 10ctl 20.3
close 99.5 recvfrom 13.8
99.2 epoll pwait 13.2
futex 95 poll pwai 53
Hard 120 41.7 99.2 6.9 266,918,501
98.9 37.9
97.6 11.7
clock gettime gg:g clock gettime gg
Mialkvae SOft 113 39.2 getuid32 96.0 ioctl 4.4 429,999,343
Real ioctl 98.9 getuid32 37.9
Device futex 97.6 mprotect 11.7
mmap2 97.6 SYS 329 5.7
96.0 5.0
Hard 112 38.9 96.0 4.4 429,069,377
clock- gettime 993 353
getuid32 97.4 7.3
ioctl 97.1 6.6
writev 95.6 lock. eetti 6.0
Benign | SOt | 128 | 444 read 055 | “ewiidsz | 59 | 105779.886
clock gettime 99.7 el 36.0
getuid32 97.7 SYS 329 6.9
ioctl 97.3 mprotect 6.7
read 96.0 5.8
Hard 126 43.8 writev 95.8 5.8 89,051,861

tal amount of syscalls issued is significantly lower, as in the
case of the real device.

The most used syscalls and most issued syscalls sets, reported
in the sixth and eighth columns, are similar across class
types (i.e., malware and benign) within the same platform but
completely different between platforms. More specifically, the
syscall clock_gettime appears to have a remarkable significance
in the real device, causing over 35% of the total amount of
syscalls for that device in all cases, and being issued, at least
once, by 98.9% of the apps run in that platform. Contrarily, in
the case of the emulator, this syscall does not show the same
prevalence, being excluded from the top 5 syscalls subset. For
the emulator, two distinct syscalls arise as most used and most
issued, ioctl and read, respectively. The read syscall appears to
be much less important for the real device dataset than for the
emulator dataset. It is the most issued syscall in the emulator,
accounting for between 11.7% to 20.4% of the total syscalls, but
excluded from the most issued calls set for the real device.

The total issued syscalls, reported in the last column of
Table 16, provides additional support to the fact, stated be-
fore, that benign apps show a distinct, more active behav-
ior, in the emulator than in the real device. More precisely,
even though the benign datasets have similar sizes, the total

issued syscalls figure is three times greater in the emulator
than in the real device. However, in the case of malware, as
the datasets are of remarkably different sizes, the same state-
ment is not applicable. Therefore, Table 16 provides additional
support to the distinct behavioral differences found by previ-
ous research regarding distinct Android OS platforms with re-
spect to system calls (Guerra-Manzanares et al., 2019; Guerra-
Manzanares et al., 2019).

5.6. Static App Profiling

Each application in the dataset is characterized by 200 static
features. Permissions, the most used static features used for
malware detection, account for the largest number of static
features (i.e., 173). In this regard, 166 binary features report the
standard permissions requested by apps (i.e., 1/0 value mean-
ing requested/not requested), 3 features are constructed as
category counts (i.e., normal, dangerous and signature), 1 bi-
nary custom permission indicator (i.e., 1 if custom permissions
are defined, O otherwise), 2 subtotal permission counts (i.e.,
total standard and total custom) and a total count of all permis-
sions requested (i.e., sum of standard and custom permissions)
as reported in Table 7.

COMPUTERS & SECURITY 110 (2021) 102399 23

Table 17 - Descriptive statistics of permissions.

. Statistic
Device Class | Perm | Label —proe e T Nedian | Range | 5% [75% [TOR [SD. T =
Sia | Soft | 12 | 104 9 (0,86 | 7 12 [5 [62 [28745
Malware Hard 28,654
Al | Soft 9 I1.1 10 [0, 116] | 7 14 7 | 77 | 28745
Emulator Hard 7.6 | 28,654
S | Soft 2 41 3 0,691 [2 5 3 4 [35.246
Bletizm Hard 3.8 [0, 56] 1 4 | 3.6 | 30,809
Al | Soft 2 43 3 [0, 104] | 2 6 4 | 45 [35246
Hard 4.1 [0, 80] 1 5 4.1 | 30,809
Swd | Soft 12 13.4 11 0,971 | 7 16 9 [o1 | 41382
Malware Hard 8 8 41,217
Al | Soft 9 152 11 [0, 1247 | 8 17 9 | 124 | 41382
Real Hard 41217
Device o~ Soft 7 12 3 [0, 70] 2 6 4 42 | 36,755
Benign Hard 39 0,63 | 1 5 39 | 31,808
A | Soft 2 44 3 [0, 104] [2 6 4 | 49 | 36,755
Hard 4.2 [0, 93] 5 3 | 44 | 31,898

The total standard permissions provides the total quantity of
Android standard permissions declared by the apps. The up-
per bound is set at 166 permissions, the maximum number
of standard permissions at the present time (Android 2021).
Table 17 provides a statistical summary of standard permis-
sions (i.e., named as Std in the Perm column) and all permis-
sions counts (i.e., summation of standard and custom, named
as All) by device type, app class and label.

As can be noticed, in the case of permissions, there is a
remarkable difference in all the central tendency measures
(i.e., mode, mean and median) between malware and benign
apps. In this regard, malware applications are characterized
by requesting a larger number of standard and total permis-
sions than benign applications, in both platforms. When the
hard label is used, these differences are further emphasized.
The measures of dispersion (i.e., range, quartiles, IQR and
S.D.) support the same overall tendency. A remarkable differ-
ence exists between the emulator malware and the real de-
vice malware datasets. In this regard, the real device dataset,
more populated, shows larger mean and median values and
larger dispersion, suggesting that the malware that did not
run in the emulator provide even more notable differences be-
tween legitimate and malware applications. It is worth notic-
ing that some malware applications requested 97 standard per-
missions (i.e, 124 if custom permissions are added) while the
maximum number in the benign dataset is 70 (i.e., 104 if cus-
tom permissions are added).

The histograms depicted in Fig. 10 illustrate the absolute
frequency distributions of the standard permissions for each
device type and label. The horizontal axes refer to the total
quantity of requested standard permissions in the closed range
[0, 70], as they concentrate the 99th percentile of apps. The
vertical axes refer to the absolute frequency of apps (i.e., the
quantity of apps) that requested each specific number of per-
missions.

All the distributions in Fig. 10, as suggested by the values
in Table 17, are not symmetric, being right-skewed (i.e., longer
right tail than left tail). The peaks of both distributions, which
relate to the most frequent value (i.e., mode), are different, be-

Emulator - Soft Labe Real Device - Soft Label

Malware
Benign
8000 1

Emulator - Hard Label Real Device

8000

“ 2000 4

o
O ONBHPPHPH NS PH P SO COPPYPPEPHNOPH PSP
Quantity of rmissior uantity of ted per n

Fig. 10 - Frequency distributions of standard permissions.

ing higher and closer to zero in the case of benign samples, in
all cases. The variability of the malware data is greater than
the benign data, encompassing a wider range of values along
the horizontal axis. Furthermore, the relatively small overlap-
ping area between the two distributions confirms the exis-
tence of two significantly different distributions and charac-
teristics for both classes regarding requested standard permis-
sions.

Table 18 provides information about the most requested
standard permissions and the standard permission set usage
for each device type, class and label. As the label (i.e., soft or
hard) does not change the output significantly, it is not further
discussed.

As can be noticed in Table 18, malware apps in both
datasets use a smaller fraction of the available standard per-

24

COMPUTERS & SECURITY 110 (2021) 102399

Table 18 - Permission usage statistics.

Used % total
) perm perm Most used Permission | % total

Device Class Label set set permissions category apps
96.8
88.5
INTERNET . :rfgrgg{l . e
e | S0 | 120 | 77 | A REARCHRNEREATR e | e | L
WRITE EXTERNAL STORAGE | dangerous | ga'o
Emulator ACCESS WIFI STATE o | e
75.0
Hard | 123 74.1 54.1
1.4
50.8
_ INTERNET normal | 337
Blentizm Soft 142 85.5 W/%(I"FIE B 5(EE%%E%’PSQZEE dangerous 20.0
READ PHONE STATE dangerous | 49¢
ACCESS COARSE LOCATION | dancorous | 449
23.7
Hard 19.9

97
915
INTERNET ghomal i
real Malware | SOt | 129 711 ARESPNERVERE TR e normal 66.3
el WRITE EXTERNAL STORAGE | dangerous | §1°¢
ACCESS WIFL STATE normal s
81.0
Hard | 128 77.1 00.3

I
513
INTERNET normal | 364

Benign Soft 144 86.7 W%(E"FE M—g\[{\{gﬁ %FSQXEE dangerous 20.1
READ PHONE STATE dangerous | §93
ACCESS COARSE LOCATION | ganocone | 432
244
Hard 19.9

missions than the benign sets, even though, as shown in
Table 17 and Fig. 10, they tend to request more permissions
than benign apps. However, legitimate apps, which, on av-
erage, tend to declare a remarkably smaller amount permis-
sions, request a wider variety of them. Columns 6th and 7th in
Table 18 show the 5 most used permissions set. As can be ob-
served, 4 of the 5 permissions are common for both classes: IN-
TERNET, READ_PHONE_STATE, ACCESS_NETWORK_STATE, and
WRITE_EXTERNAL_STORAGE, but with different orderings and
significantly different prevalence. The INTERNET permission
is the most requested for both classes of applications and
across devices. This permission allows the app to open net-
work sockets and is considered a normal permission, thus be-
ing granted automatically when the app is installed. It is re-
quested by 8 out of 10 benign apps and almost every malware
app. After this common first permission, different order of the
common features appear. READ_PHONE_STATE allows the app
to access the phone state, which includes the phone number,
IMEIJ, cellular network information, status of any ongoing calls,
and a list of the accounts registered on the device. It is con-
sidered a dangerous permission, being requested by a signif-
icantly more fraction of the malware (i.e., 90%) than the be-
nign apps (i.e., 24%). Aligned with the information provided in
Table 17, the top four permissions on each class ranked list
are requested by roughly 75% of malware apps while decreas-
ing to 25% in the case of benign apps. As a result, in general,
based on the most requested permissions, the malware seems
to be more interested in accessing sensitive data and ensur-

ing connectivity (i.e., 3 of the top 5 permissions are related to
networks) while benign apps most used permissions encom-
pass a wider variety of access requests, including GPS location.
The reduced list provided in Table 18 seems to imply that be-
nign apps request more dangerous permissions than malware
apps. In order to explore this fact, datasets’ features normal,
dangerous and signature, which provide the total amount of
permissions requested by the app that lay within those cat-
egories, are represented using boxplots in Fig. 11. Boxplots are
a visual and condensed way to plot similarly ranged distribu-
tions. As there weren’t visual nor numerical differences be-
tween the boxplots of both labels, in order to avoid repetition,
just the soft label data is provided. The horizontal axis pro-
vides the categories values, namely, normal, dangerous, and
signature while the vertical axis provides the number of per-
missions requested. The body of the boxplot (i.e., solid color
fill) is defined by the Q1 and Q3 (i.e., 25 and 75 percentiles, re-
spectively), the central 50% of the data, defining the IQR range.
The whiskers extend to the so-called maximum and minimum
thresholds, computed as maximum = Q3 + 1.5*IQR and mini-
mum = Q1 - 1.5*IQR. They allow categorizing data points that
extend further as outliers or extreme values (i.e., omitted in this
graph). The body of the boxplots is crossed by a solid blue line
which indicates the median or 50th percentile. A dotted or-
ange line indicates the mean or average value.

The boxplots in Fig. 11 confirm the fact that malware apps
use, in general, many more permissions than benign applica-
tions, in all three categories. More specifically, the boxplots

COMPUTERS & SECURITY 110 (2021) 102399 25

Emulator - Soft Label Real Device - Soft Labe

B Malware
I Benign
14 1

121 1

) I T |

o] |l

normal dangerous signature
Category of permissions

normal dangerous signature
Category of permissions

Fig. 11 - Standard permissions categories boxplots.

show that the lower 25% of malware apps request a similar
quantity of permissions than the 75% of benign apps. This
fact is specially remarkable in the case of dangerous and sig-
nature permissions. In the case of malware, these differences
are further emphasized, with longer bodies and whiskers in
all three categories, for the case of real device malware than
for the emulator malware. As can be observed, in all boxplots,
the mean value is over the median, which suggests the pres-
ence of skewed distributions, with extreme values or outliers
in the right tail of the distributions, as shown in Fig. 10. The
median values, better centrality measures in skewed distri-
butions, show that in malware the middle values are in 4 re-
quested permissions for normal and dangerous permissions
while for benign they are placed in 2 for normal and 1 for
dangerous. Therefore, the boxplots demonstrate the signifi-
cant differences in the number of permissions in general and
categories in particular between malware and benign appli-
cations and the tendency of malware to request over-privileges
from the system.

Another important aspect when dealing with permissions
analysis is the presence of custom permissions. Although they
cannot be traced in an analogous manner as standard permis-
sions, as there is no common reference, the presence of them
might be considered itself a powerful feature. Two custom
permissions-related features are generated in this dataset: the
presence of them (i.e., binary indicator feature) and the quan-
tity of them (i.e., total custom permissions). Table 19 provides
a summary of both features for each dataset, class, and label.
The column custom perm declared provides the proportion of
apps that declared at least one custom permission and the last
5 columns report a summary of relevant descriptive statistics
for those applications that declared custom permissions.

As provided in Table 19, 32.1% of malware apps on the em-
ulator declared custom permissions, a 2.5 times greater preva-
lence than the benign apps. Besides, these differences in-

Emulator - Soft Labe Real Device - Soft Lal

Malviare

14000 5l Benign

., 12000 4 1

Emulator - Hal

Label Real Device - Hard Label

14000 o 4

1 12000 4 R

% 10000 o 4

6000 |

2 4000 4 E

2000 4 E
0
COPY PP R PR B PSP OO COEWHLPPRHNHPLH PP ©

Quantity of requested permissions Quantity of requested permissions

Fig. 12 - Frequency distributions of all requested
permissions.

crease even more in the real device, as 42.3% of malware apps
show custom permissions, thrice more than the benign apps.
In the case of the malware class, the soft and hard labels do
not seem to make any difference while in the benign case
they show a reduction in the variability, which reduces the
mean, range, and standard deviation values. In the real de-
vice, where the malware set is larger makes custom permis-
sions more prevalent, as shown by greater mean, median, and
standard deviation statistics. The range values show that in
the most extreme cases even 42 custom permissions are de-
fined for malware and 35 for benign data. In any case, the us-
age of custom permissions appears to be, at least 2.5 times
more prevalent for malware apps than benign apps, ranging
from 1 in the majority of cases to over 24 custom permissions
declared in the most extreme cases, for both classes.

Finally, to further analyze the differences in requested per-
missions between malware and benign apps, the histograms
in Fig. 12 depict the absolute frequency distributions of all de-
clared permissions for each device type and label. All declared
permissions sum together the declared custom and standard
permissions. To provide a better comparison with Fig. 10, the
horizontal axes are restricted to the closed range [0, 70] of re-
quested permissions. The vertical axes refer to the absolute
frequency of apps (i.e., the quantity of apps) that requested
each specific amount of permissions. Note that the vertical
axes in Fig. 12 reach 14.000, almost twice as in Fig. 10, a fact
that may, at first sight, jeopardize the differences when com-
paring both histograms.

In consequence, as evidenced by the histograms in Fig. 12,
when all permissions are considered, the distributions show
greater skewness and greater peak differences in contrast to
Fig. 10. Further emphasizing the significant differences in per-
missions sets and quantities between devices, labels, and es-
pecially between classes. More precisely, almost all benign ap-
plications lay in the range [0, 5] of requested permissions,

26 COMPUTERS & SECURITY 110 (2021) 102399

Table 19 - Custom permission statistics.

K Custom Statistics
Device Class Label perm declared | Mode | Mean | Median | Range | S.D.
Malware gzj:td 32.1% 1 22 1 [1,42] | 3.0
Emulat

mutator Benign | SO 13.6% I 17 1 L35 [15
Hard 13.2% (1,241 | 1.2

Soft 423% 1 43 2 [1,42] | 47

Real Malware Hard

Device) Soft 14.0% 1 I8 1 1,351 | 1.8
BEwEn | e 13.5% 1.7 [1,30] | 14

where just a small fraction of malware is located. The vast ma-
jority of malicious apps are spread along the horizontal axis
but mainly concentrated in the [5, 25] interval, extended even
further in the case of the real device malware data.

6. Discussion

The available datasets used for Android malware detection are
mainly focused on the apps collected from single sources cov-
ering short time frames, frequently from Android early years.
The related literature studies have mostly utilized these lim-
ited datasets. This fact neglects the detrimental effects of mal-
ware evolution on detection systems, especially the machine
learning-based ones. KronoDroid, the dataset presented in this
research mainly aims to introduce comprehensive malware
and benign app samples that encompass the whole lifetime
of Android since its initial release until recent years. We in-
corporated a well-established temporal perspective into the
dataset by including various timestamps that can be extracted
from the apps and VirusTotal. The inclusion of the time vari-
able in Android apps is a challenging task for which there is
no perfectly certain ground-truth or timestamp that could be
used in all cases. Given this difficulty, in our dataset, we aim to
present various timing options to the researchers so that they
allow setting the seed for novel future Android malware re-
search and enhanced detection systems that could not be per-
formed otherwise. To the best of our knowledge, our dataset is
the first one that contains a comprehensive temporal context
that can be utilized in the Android malware research.

In this regard, the timestamp of apps allows the investiga-
tion and characterization of concept drift in Android apps and
its proper detection to build more effective and robust models.
Although the existing research demonstrates that it is possi-
ble to create learning models with high accuracy results, our
dataset enables to conduct research that further test the ap-
plicability of models in more realistic situations. The research
questions regarding the sustainability of high detection ca-
pability, for instance, the required time-frame for model up-
dates and their implications on operational and maintenance
aspects of malware detection solutions, cannot be addressed
without such a dataset.

Machine learning models have promised to revolution-
ize the intrusion or malware detection domains by identify-
ing new variants of malicious activities where the dominant
signature-based approaches mostly fail. If the train and test

dataset splitting strategies of usual machine learning work-
flows are utilized then the models may provide good results
on the testing phase, but not generalize well to real unknown
samples in production and deployment phases. Thus, proper
model testing requires a tweak so that the test data should in-
clude unknown or future malware variants which are not con-
tained in the training dataset. Additionally, the detection rates
of such samples should be reported. The temporal context
of our dataset enables to easily apply such splitting strategy,
generate proper validation/testing sets and, thus, enhance the
generalization capabilities of the induced ML models in a do-
main having a frequently changing threat landscape.

Our dataset also provides the family categories of the mal-
ware samples. Therefore, the evolution of malware families
and their phylogenetic properties can be studied thoroughly
when samples are placed in their temporal context. Detec-
tion models addressing specific malware families (e.g. ran-
somware detection) could be developed. In addition to the
induction of enhanced detection models, it is possible to do
characterization of families, which can lead to more general-
ized knowledge about mobile malware.

A malware detection solution can work on cloud or de-
vice platforms, meaning that the source platform of a train
or test sample may vary in a real-life application. In our pre-
vious work, we demonstrated that system calls obtained from
an emulator or a real device can be different so that such vari-
ations may cause reduced detection rates if the source plat-
forms are not taken into consideration during the model life-
cycle (Guerra-Manzanares et al., 2019). KronoDroid is composed
of hybrid datasets collected from an emulator and a real de-
vice. Thus, the researchers and practitioners can thoroughly
investigate the impact of source platforms on the model out-
puts and evaluate their detection systems that may work on
different system architectures.

KronoDroid provides a wide variety of static and dynamic
features to characterize the apps within the datasets. Com-
plementing both approaches with each other provides a more
complete characterization that aims to overcome the limita-
tions of single static or dynamic approaches, a common char-
acteristic in the existing datasets and related solutions. We
make our dataset publicly available and share it in a ready-to-
use structured format. This format might attract more inter-
est not only from the cybersecurity research community but
from the machine learning community as well. Although the
procedures about data collection from mobile apps are known
and applied in various studies, sharing structured data rather

COMPUTERS & SECURITY 110 (2021) 102399 27

than applications themselves removes the technical difficulty
barrier for the research groups not familiar with the cyberse-
curity test set-ups.

6.1. Challenges and Limitations

In the research and data generation process the researchers
always face challenges that may have an impact on the col-
lected data or the results. In the case of this research, there
are several challenges that may pose limitations on the data
and the results obtained.

The collection of dynamic data requires the usage of live
devices thus requiring the selection or usage of specific oper-
ating system versions that may have an impact on the data
collected. For this research, Android 8.0 Oreo was selected as
it was the most stable distribution when this research started
(i.e., Android 9.0 was the most recent release) and it also pro-
vided fewer compatibility issues with old samples that fail to
execute in more recent versions of the OS. In addition, when
testing with emulators and real devices in analogous settings,
the emulator platforms delay the stable releases thus limit-
ing the availability of OS selection. Furthermore, the usage of
non-recent versions of the OS is a common practice in time-
extended studies in order to boost compatibility and analy-
sis quality. For instance, the authors of AndroCT, a dataset re-
leased in 2021, used Android 6.0 version to execute the testing
samples (Wen Li and Cai, 2021).

Another challenge emerges with the usage of emulators
as incompatibility issues may arise (i.e., not all the apps sup-
port these architectures) or the behavior of malware on them
might be distinct (e.g.,, some malware may not trigger the
harmful behavior if they detect to be run in emulators).

Regarding the compatibility issue, for this research, the
same OS versions were used both in the emulator and the real
device (i.e., Android 8.0). As the initial dataset used is the same
for both platforms, using the same OS versions (i.e., API level)
on both devices ensures that the installation failure on a sin-
gle device is due to a distinct reason (e.g., not valid certificates
or compatible libraries) and grants methodological coherence.
However, as stated before, the selection of an OS version al-
ways implies that some incompatibilities may have happened
(i.e., on both devices) and that threatens the external validity
of the results. In any case, the non-execution of an application
in the emulator might be an indicator of incompatibility due
to distinct reasons than the OS if the application was success-
fully installed in the real device. Based on this fact, the sam-
ples that did not run on the emulator were discarded (i.e., just
for the emulator dataset), a common practice used in other
approaches dealing with behavioral data issues (Cai and Ry-
der, 2017; Cai et al., 2020).

When considering the behavior of malware in emulators,
it should be noted that specific malware families may in-
clude anti-sandbox capabilities so that they may get suspi-
cious about the platform and hide their harmful actions. In
our previous experiments (Guerra-Manzanares et al., 2019;
Guerra-Manzanares et al., 2019), although we induced learn-
ing models by using the behavioral data of all malware types
(i.e., regardless of showing such hiding activities or not) ob-
tained from emulators, the results were similar to the data
gathered from real devices. In this research, we did not elabo-

rate on the impact of such activities on the collected dataset as
such effort is beyond our objective and requires special atten-
tion in a separate study. Nevertheless, researchers can use our
datasets to identify and compare the behavioral deviations of
the same malware on real devices and emulators and provide
reasoning about possible hiding capabilities.

7. Conclusions and Future Work

The changing nature of Android malware has been neglected
by Android malware research and the available datasets,
which provide a rigid and limited snapshot of Android mal-
ware in a restricted time-frame. In general, the time variable
has never had the deserved attention, disregarding the concept
drift. Besides, the source of dynamic data and their particular-
ities have been overlooked. However, in order to build more
effective, robust, and time-lasting detection systems, the time
and data platform source are critical factors that must be ad-
dressed.

In this research, different sources of benign and malware
data were merged, enabling to generate a dataset encompass-
ing a larger time-frame, and 489 static and dynamic features
were collected. To attend to the particularities of distinct dy-
namic data sources (i.e., system calls), an emulator and a real
device were used, generating two equally-featured datasets.
As a result, the main outcome of this research is a novel,
labeled, and hybrid-featured Android dataset that provides
timestamps for each data sample, covering all years of An-
droid history, from 2008-2020, and considering the distinct
dynamic data sources. The emulator dataset is composed of
28,745 malware from 209 malware families and 35,246 benign
samples. The real device dataset contains 41,382 malware, be-
longing to 240 malware families, and 36,755 benign samples.
To the best of our knowledge, this is the first research where
the applications’ timestamps and the distinct platform sources of
dynamic features for Android malware detection are consid-
ered. Made publicly available as KronoDroid,? this dataset is the
largest hybrid-featured Android dataset and the only one pro-
viding timestamped data, considering dynamic sources’ par-
ticularities and containing samples of more than 209 malware
families.

The detection and characterization of concept drift, further
investigation of the dynamic differences between emulators
and real devices, and evolution of malware families over time
constitute part of the authors’ plans to be investigated with
the assistance of KronoDroid.

CRediT author statement

Alejandro Guerra-Manzanares: Conceptualization, Methodol-
ogy, Software, Investigation, Formal Analysis, Writing-Original
Draft, Writing - Review & Editing, Visualization; Hayretdin
Bahsi: Conceptualization, Methodology, Validation, Writing-
Original Draft, Writing - Review & Editing and Supervision;
Sven Nomm: Conceptualization, Methodology, Writing - Re-
view & Editing and Supervision

2 https://github.com/aleguma/kronodroid

28 COMPUTERS & SECURITY 110 (2021) 102399

m Malware
BN Benign

00 272 2%

2009 7002 910 HAY 2012 913 0LR 1015 9010 0YT H1B 519 20

Timestamp vear

Fig. A.15 - Real device First Seen VT valid year distribution.

27000 1
Declaration of Competing Interest 25000 1
23000
None. 21000
., 19000
Appendix A. Real Device Distributions £ 150004
; 13000 1
Fig. A13, A14, A15, Al6 £ 11000
5 9000 1
7000
19000 - 5000
17000 30007
1000
15000 - L
£ 13000 -
11000 1
s 9000
_5 7000
3
3000 1
5000
3000 - 2500 4
1000 1

2000

2008 2002 5030 H3% 2012 5013 o3 2015 030 01T 01® 012 20 g

Timestamp vear

of appii

1500 4
Fig. A.13 - Real device Earliest Mod valid year distribution.

Quantity

1000 1

200% 2009 9030 g01% 5% 033 903E 933 910 0T 03 912 920

Timestamp year

Fig. A.16 - Real device First Seen ITW valid year distribution.

REFERENCES

23000 . Malware
B Benign
21000
19000 Allix K, Bissyandé TF, Klein], Traon YLe. Androzoo: Collecting
17000 millions of android apps for the research community. In:
£ 15000 Proceedings of the 13th International Conference on Mining
13000 Software Repositories, MSR '16. ACM; 2016. p. 468-71.
http://doi.acm.org/10.1145/2901739.2903508.
11000 7 doi:10.1145/2901739.2903508.
9000 | Alzaylaee MK, Yerima SY, Sezer S. DI-droid: Deep learning based
7000 4 android malware detection using real devices. Computers
Security 2020;89.
5000 . . N . .
Amos B, Turner H, White J. Applying machine learning classifiers
30007 to dynamic android malware detection at scale. In: 2013 9th
International Wireless Communications and Mobile

2002 9009 5010 503> 9012 9032 9038 9032 930 9017 9038 901 20

Computing Conference (IWCMC); 2013. p. 1666-71.
d0i:10.1109/ITWCMC.2013.6583806.

Timestamp vear

Android, Android abis,
Fig. A.14 - Real device Last Mod valid year distribution. https://developer.android.com/ndk/guides/abis/, 2020.

Android, Application fundamentals, https:

//developer.android.com/guide/components/fundamentals,

2021.

Android, Reduce your app size, https:
//developer.android.com/topic/performance/reduce-apk-size,

2021.

COMPUTERS & SECURITY 110 (2021) 102399 29

Android, Introduction to activities, https://developer.android.
com/guide/components/activities/intro-activities, 2021.

Android, Services overview,
https://developer.android.com/guide/components/services,
2021.

Android, Broadcasts overview,
https://developer.android.com/guide/components/broadcasts,
2021.

Android, Content providers, https://developer.android.com/
guide/topics/providers/content-providers, 2021.

Android, How it works, https://developer.android.com/guide/
topics/manifest/manifest-intro/, 2021.

Android, Ui/application exerciser monkey,
https://developer.android.com/studio/test/monkey, 2021.

Android, <permission>, https://developer.android.com/guide/
topics/manifest/permission-element/, 2021.

Android, Aapt2,
https://developer.android.com/studio/command-line/aapt2,
2021.

Android, Set the application id,
https://developer.android.com/studio/build/application-id,
2021.

Android, Manifest.permission, https://developer.android.com/
reference/android/Manifest.permission/, 2021.

APKMirror, Faq - security,
https://www.apkmirror.com/fag/#Security_What_measures_
do_you_take_to_make_sure_all_uploadedAPKs_are_real _and_
created_by_the_respective_developers, 2021.

APKMirror, Apkmirror, https://www.apkmirror.com/, 2020.

ArgusLab, Amd dataset - argus cyber security lab,
http://amd.arguslab.org/, 2020.

Arora A, Garg S, Peddoju SK. Malware detection using network
traffic analysis in android based mobile devices. In: 2014
Eighth International Conference on Next Generation Mobile
Apps, Services and Technologies; 2014. p. 66-71.
doi:10.1109/NGMAST.2014.57.

Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K,

Siemens C. Drebin: Effective and explainable detection of
android malware in your pocket. Ndss 2014;14:23-6.

Arp D, Quiring E, Pendlebury F, Warnecke A, PierazziF,
Wressnegger C, Cavallaro L, Rieck K, Dos and don’ts of
machine learning in computer security, arXiv preprint
arXiv:2010.09470 (2020).

Barbero F, Pendlebury F, Pierazzi F, Cavallaro L, Transcending
transcend: Revisiting malware classification with conformal
evaluation, arXiv preprint arXiv:2010.03856 (2020).

Bl'asing T, Batyuk L, Schmidt A-D, Camtepe SA, Albayrak S. An
android application sandbox system for suspicious software
detection. In: 2010 5th International Conference on Malicious
and Unwanted Software. IEEE; 2010. p. 55-62.

Bovet DP, Cesati M, Understanding the Linux Kernel: from I/O
ports to process management, ” O'Reilly Media, Inc.”, 2005.

Braunschweig TU, The drebin dataset,
https://www.sec.cs.tu-bs.de/~danarp/drebin/index.html, 2020.

Broersma M, Android hit by ‘incredibly sophisticated’ malware,
https://www.silicon.co.uk/workspace/
android-sophiticated-malware- 344222, 2020.

Burguera I, Zurutuza U, Nadjm-Tehrani S. Crowdroid:
behavior-based malware detection system for android. In:
Proceedings of the 1st ACM workshop on Security and privacy
in smartphones and mobile devices; 2011. p. 15-26.

Cai H, Jenkins J. Towards sustainable android malware detection.
In: Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, ICSE "18,
Associa- tion for Computing Machinery; 2018. p. 350-1.
doi:10.1145/3183440.3195004.

Cai H, Ryder BG. In: 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME). Artifacts for

dynamic analysis of android apps; 2017. 659-659.
doi:10.1109/ICSME.2017.36.

Cai H, Ryder BG. Understanding android application
programming and security: A dynamic study. In: 2017 IEEE
International Conference on Software Maintenance and
Evolution (ICSME; 2017. p. 364-75. doi:10.1109/ICSME.2017.31.

Cai H, Ryder BG. A longitudinal study of application structure and
behaviors in android. IEEE Transactions on Software
Engineering 2020 1-1.

Cai Z, Yap RH. Inferring the detection logic and evaluating the
effectiveness of android anti-virus apps. In: Proceedings of
the Sixth ACM Conference on Data and Application Security
and Privacy; 2016. p. 172-82.

Cai H, Meng N, Ryder B, Yao D. Droidcat: Effec- tive android
malware detection and categorization via app-level profiling.
IEEE Transactions on Information Forensics and Security
2019;14:1455-70.

Cai H, Fu X, Hamou-Lhadj A. A study of run-time behavioral
evolution of benign versus malicious apps in android.
Information and Software Technology 2020;122.

Cai M, Jiang Y, Gao C, Li H, Yuan W. Learning features from
enhanced function call graphs for android malware detection.
Neurocomputing 2021;423:301-7.

Cai H. Assessing and improving malware detection sustainability
through app evolution studies. ACM Transactions on Software
Engineering and Methodology (TOSEM) 2020;29:1-28.

Cai H. In: Embracing mobile app evolution via continuous
ecosystem mining and characterization, MOBILESoft "20. New
York, NY, USA: Association for Computing Machinery; 2020.

p. 31-5. doi:10.1145/3387905.3388612.

Cai H, Tracedroid: Eight-year behavioral profiles of android apps,
https://zenodo.org/record/3665877#.YNmvvegzYuU, 2020.

Chebyshev V, Mobile malware evolution 2019,
https://securelist.com/mobile-malware-evolution-2019/96280,
2020.

Cimpanu C, Gustuff android banking trojan targets 125+ banking,
im, and cryptocurrency apps, https://www.zdnet.com/article/
gustuff-android-banking-trojan-targets-100-banking-im
-and-cryptocurrency-apps, 2019.

Cohen R, Walkowski D, Banking trojans: A reference guide to the
malware family tree,
https://www.f5.com/labs/articles/education/
banking-trojans-a-reference-guide-to-the-malware-family-tree,
2019.

Cortes C, Jackel LD, Chiang W-P. Limits on learning machine
accuracy imposed by data quality. Advances in Neural
Information Processing Systems 1994;7:239-46.

Desnos A, Gueguen G, Bachmann S, Androguard,
https://androguard.readthedocs.io/en/latest, 2018.

Dini G, Martinelli F, Saracino A, Sgandurra D. Madam: a
multi-level anomaly detector for android malware. In:
International Conference on Mathematical Methods, Models,
and Architectures for Computer Network Security. Springer;
2012. p. 240-53.

Dunham K, Hartman S, Morales JA, Quintans M, Strazzere T.
Android Malware and Analysis. 1st ed. USA: CRC Press; 2015.

El Fiky AH. Deep-droid: Deep learning for android malware
detection. International Journal of Innovative Technology and
Exploring Engineering 2020;9.

Enck W, Ongtang M, McDaniel P. On lightweight mobile phone
application certification. In: Proceedings of the 16th ACM
conference on Computer and communications security; 2009.
p. 235-45.

Enck W, Gilbert P, Han S, Tendulkar V, Chun B-G, Cox LP, JungJ,
McDaniel P, Sheth AN. Taintdroid: an information-flow
tracking system for realtime privacy monitoring on
smartphones. ACM Transactions on Computer Systems
(TOCS) 2014;32:1-29.

30 COMPUTERS & SECURITY 110 (2021) 102399

F-droid, F-droid - free and open source android app repository,
https://f-droid.org/, 2020.

F-Secure, Riskware:android/smsreg.variant!online,
https://www.f-secure.com/sw-desc/
riskware_android_smsreg_online.shtml, 2021.

Faruki P, Ganmoor V, Laxmi V, Gaur MS, Bharmal A. Androsimilar:

robust statistical feature signature for android malware
detection. In: Proceedings of the 6th International Conference
on Security of Information and Networks; 2013. p. 152-9.

Fedler R, Schutte], Kulicke M. On the effectiveness of malware
protection on android. Fraunhofer AISEC 2013;45.

Feizollah A, Anuar NB, Salleh R, A WA. Wahab, A review on
feature selection in mobile malware detection. Digital
investigation 2015;13:22-37.

Feizollah A, Anuar NB, Salleh R, Suarez-Tangil G, Furnell S.
Androdialysis: Analysis of android intent effectiveness in
malware detection. computers security 2017;65:121-34.

Felt AP, Chin E, Hanna S, Song D, Wagner D. Android permissions
demystified. In: Proceedings of the 18th ACM conference on
Computer and communications security; 2011. p. 627-

638.

Fu X, Cai H. On the deterioration of learning-based malware
detectors for android. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion Proceedings
(ICSE-Companion); 2019. p. 272-3.
doi:10.1109/ICSE- Companion.2019.00110.

Google, Google play protect,
https://developers.google.com/android/play- protect, 2021.

AppBrain, Number of android apps on google play,
https://www.appbrain.com/stats/number-of-android-apps,
2021.

Grace M, Zhou Y, Zhang Q, Zou S, Jiang X. Riskranker: scalable
and accurate zero-day android malware detection. In:
Proceedings of the 10th international conference on Mobile
systems, applications, and services; 2012. p. 281-94.

Grace M, Zhou Y, Zhang Q, Zou S, Jiang X. Riskranker: scalable
and accurate zero-day android malware detection. In:
Proceedings of the 10th international conference on Mobile
systems, applications, and services; 2012. p. 281-94.

Guerra-Manzanares A, Nomm S, Bahsi H. In-depth feature
selection and ranking for automated detection of mobile
malware. ICISSP 2019:274-83.

Guerra-Manzanares A, Bahsi H, N'omm S. Differences in android
behavior between real device and emulator: A malware
detection perspective. In: 2019 Sixth International Conference
on Internet of Things: Systems, Management and Security
(IOTSMS). IEEE; 2019. p. 399-404.

Guerra-Manzanares A, Nomm S, Bahsi H. Time-frame analysis of
system calls behavior in machine learning-based mobile
malware detection. In: 2019 International Conference on
Cyber Security for Emerging Technologies (CSET). IEEE; 2019.
p. 1-8.

Guerra-Manzanares A, Bahsi H, Nomm S. Differences in android
behavior between real device and emulator: A malware
detection perspective. In: 2019 Sixth International Conference
on Internet of Things: Systems, Management and Security
(IOTSMS); 2019. p. 399-404.
doi:10.1109/I0TSMS48152.2019.8939268.

Guerra-Manzanares A, Kronodroid dataset,
https://github.com/aleguma/kronodroid, 2021.

Hahn K, Malware naming hell part 1: Taming the mess of av
detection names, https://www.gdatasoftware.com/blog/2019/
08/35146-taming-the-mess-of-av-detection-names, 2019.

Hahn K, Ransomware identification for the judicious analyst,
https://www.gdatasoftware.com/blog/2019/06/
31666-ransomware-identification-for-the-judicious-analyst,
2019.

Harvey P, Exiftool, https://exiftool.org/, 2021.

Hou S, Saas A, Chen L, Ye Y. Deep4maldroid: A deep learning
framework for android malware detection based on linux
kernel system call graphs. In: 2016 IEEE/WIC/ACM
International Conference on Web Intelligence Workshops
(WIW). IEEE; 2016. p. 104-11.

Hou S, Saas A, Chen L, Ye Y, Bourlai T. Deep neural networks for
automatic android malware detection. In: Proceedings of the
2017 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining 2017; 2017. p. 803-10.

Hu D, Ma Z, Zhang X, Li P, Ye D, Ling B. The concept drift problem
in android malware detection and its solution. Security and
Communication Networks 2017;2017.

Hu D, Ma Z, Zhang X, Li P, Ye D, Ling B, The concept drift problem
in android malware detection and its solution, Security and
Communication Networks 2017 (2017).

Idrees F, Rajarajan M. Investigating the android intents and
permissions for malware detection. In: 2014 IEEE 10th
International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob); 2014. p. 354-8.
doi:10.1109/WiMOB.2014.6962194.

Igbal M, App download and usage statistics (2020),
https://www.businessofapps.com/data/app- statistics, 2020.

Irolla P, Dey A. The duplication issue within the drebin dataset.
Journal of Computer Virology and Hacking Techniques
2018;14:245-9.

Irolla P, Dey A. The duplication issue within the drebin dataset.
Journal of Computer Virology and Hacking Techniques
2018;14:245-9.

Jordaney R, Sharad K, Dash SK, Wang Z, Papini D, Nouretdinov I,
Cavallaro L. Transcend: Detecting concept drift in malware
classification models. In: 26th USENIX Security Symposium
(USENIX Security 17; 2017. p. 625-42.

Jordaney R, Sharad K, Dash SK, Wang Z, Papini D, Nouretdinov I,
Cavallaro L. Transcend: Detecting concept drift in malware
classification models. In: 26th USENIX Security Symposium
(USENIX Security 17; 2017. p. 625-42.

Kabakus AT, Dogru IA. An in-depth analysis of android malware
using hybrid techniques. Digital Investigation 2018;24:25-33.

Kadir AFA, Stakhanova N, Ghorbani AA. Android botnets: What
urls are telling us. In: International Conference on Network
and System Security. Springer; 2015. p. 78-91.

Kaspersky, Rules for naming, https://encyclopedia.
kaspersky.com/knowledge/rules-for-naming, 2021.

Kiss N, Lalande J-F, Leslous M, Viet Triem Tong V. In: Learning
from Authoritative Security Experiment Results. Kharon
dataset: Android malware under a microscope. San Jose,
United States: The USENIX Association; 2016
https://hal-univ-orleans.archives-ouvertes.fr/hal-01300752.

Kiss N, Lalande J-F, Leslous M, Viet Triem Tong V, Kharon malware
dataset, http://kharon.gforge.inria.fr/dataset, 2021.

Lakshmanan R, Joker malware apps once again bypass google’s
security to spread via play store, https://thehackernews.com/
2020/07/joker-android- mobile-virus.html, 2020.

Lashkari AH, Kadir AFA, Gonzalez H, Mbah KF, Ghorbani AA.
Towards a network-based framework for android malware
detection and characterization. In: 2017 15th Annual
Conference on Privacy, Security and Trust (PST). IEEE; 2017.
p. 233-23309.

Lashkari AH, AKadir AF, Gonzalez H, Mbah KF, Ghorbani AA.
Towards a network-based framework for android malware
detection and characterization. In: 2017 15th Annual
Conference on Privacy, Security and Trust (PST); 2017.

P. 233-23309. d0i:10.1109/PST.2017.00035.

Lashkari AH, Kadir AFA, Taheri L, Ghor- bani AA. Toward
developing a systematic approach to generate benchmark
android malware datasets and classification. In: 2018
International Carnahan Conference on Security Technology
(ICCST). IEEE; 2020. p. 1-7.

COMPUTERS & SECURITY 110 (2021) 102399 31

Lei T, Qin Z, Wang Z, Li Q, Ye D. Evedroid: Event-aware android
malware detection against model degrading for iot devices.
IEEE Internet of Things Journal 2019;6:6668-80.

Levin D, Strace - linux syscall tracer, https://strace.io, 2021.

Li D, Wang Z, Xue Y. Fine-grained android malware detection
based on deep learning. In: 2018 IEEE Conference on
Communications and Network Security (CNS); 2018. p. 1-2.
doi:10.1109/CNS.2018.8433204.

Li H, Zhou S, Yuan W, Li J, Leung H. Adversarial-example attacks
toward android malware detection system. IEEE Systems
Journal 2020;14:653-6.

Li W, Fu X, Cai H, Androct: Ten years of app call traces in android,
https://zenodo.org/record/5010831#.YNnJA-gzYuU, 2021.

Liang S, Du X. Permission-combination-based scheme for android
mobile malware detection. In: 2014 IEEE International
Conference on Communications (ICC); 2014. p. 2301-6.
doi:10.1109/ICC.2014.6883666.

Lindorfer M, Neugschwandtner M, Platzer C. Marvin: Efficient and
comprehensive mobile app classification through static and
dynamic analysis, 2; 2015. p. 422-33.

Lipovsky R, S tefanko L, Brani“sa G, The rise of android
ransomware, https://www.welivesecurity.com/wp-content/
uploads/2016/02/Rise_of_Android_Ransomware.pdf, 2016.

du Luxembourg U, Androzoo, https://androzoo.uni.lu, 2021.

du Luxembourg U, Androzoo - lists of apks,
https://androzoo.uni.lu/lists, 2021.

Mahdavifar S, Kadir AFA, Fatemi R, Alhadidi D, Ghorbani AA.
Dynamic android malware category classification using
semi-supervised deep learning. In: 2020 IEEE Intl Conf on
Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Comput- ing, Intl Conf on Cloud
and Big Data Computing, Intl Conf on Cyber Science and
Technology Congress (DASC/PiCom/CBDCom/CyberSciTech).
IEEE; 2020. p. 515-22.

Mariconti E, Onwuzurike L, Andriotis P, De Cristofaro E, Ross G,
Stringhini G, Mamadroid: Detecting android malware by
building markov chains of behavioral models, arXiv preprint
arXiv:1612.04433 (2016).

Mcdonald J, Herron N, Glisson W, Benton R. Machine
learning-based android malware detection using manifest
permissions. In: Proceedings of the 54th Hawaii International
Conference on System Sciences; 2021. p. 6976.

McGowan E, Another 21 malware apps found on google play,
https:
//blog.avast.com/new-malware-apps-on-google-play-avast,
2020.

Microsoft, Sophisticated new android malware marks the latest
evolution of mobile ransomware,
https://www.microsoft.com/security/blog/2020/10/08/
sophisticated-new-android-malware-marks-the-
latest-evolution-of-mobile-ransomware, 2020.

Microsoft, Malware names,
https://docs.microsoft.com/en-us/windows/security/
threat-protection/intelligence/malware-naming, 2021.

Narayanan A, Yang L, Chen L, Jinliang L. Adaptive and scalable
android malware detection through online learning. In: 2016
International Joint Conference on Neural Networks (JCNN);
2016. p. 2484-91. doi:10.1109/]JCNN.2016.7727508.

Oberheide J, Miller C, Dissecting the android bouncer,
https://jon.oberheide.org/files/summercon12-bouncer.pdf,
2012.

Onwuzurike L, Mariconti E, Andriotis P, Cristofaro ED, Ross G,
Stringhini G. Mamadroid: Detecting android malware by
building markov chains of behavioral models (extended
version). ACM Transactions on Privacy and Security (TOPS)
2019;22:1-34.

Parkour M, Contagio minidump,
http://contagiominidump.blogspot.com/, 2019.

Peiravian N, Zhu X. Machine learning for android malware
detection using permission and api calls. In: 2013 IEEE 25th
International Conference on Tools with Artificial Intelligence;
2013. p. 300-5. doi:10.1109/ICTAIL.2013.53.

Pendlebury F, Pierazzi F, Jordaney R, Kinder J, Cavallaro L.
TESSERACT: Eliminating experimental bias in malware
classification across space and time. In: 28th USENIX Security
Symposium (USENIX Security 19; 2019. p. 729-46.

Peng H, Gates C, Sarma B, Li N, Qi Y, Potharaju R, Nita-Rotaru C,
Molloy I. Using probabilistic generative models for ranking
risks of android apps. In: Proceedings of the 2012 ACM
conference on Computer and communications security; 2012.
p. 241-52.

Petsas T, Voyatzis G, Athanasopoulos E, Polychronakis M,
lIoannidis S. Rage against the virtual machine: hindering
dynamic analysis of android malware. In: Proceedings of the
seventh european workshop on system security; 2014. p. 1-6.

Rahali A, Lashkari AH, Kaur G, Taheri L, Fran- cois G, Massicotte F.
In: 10th International Conference on Communication and
Network Security. Didroid: Android malware classification
and characterization using deep image learning; 2020.

Samsung, About knox,
https://www.samsungknox.com/en/about-knox, 2021.

Schmidt A-D, Detection of smartphone malware (2011).

Sessions V, Valtorta M. The effects of data quality on machine
learning algorithms. ICIQ 2006;6:485-98.

Shabtai A, Kanonov U, Elovici Y, Glezer C, Weiss Y. andromaly”: a
behavioral malware detection framework for android
devices. Journal of Intelligent Information Systems
2012;38:161-90.

Sikorski M, Honig A. Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software. 1st ed. USA: No Starch
Press; 2012.

Statista, Development of new android malware worldwide from
june 2016 to march 2020, https://www.statista.com/statistics/
680705/global-android-malware-volume, 2021b.

Statista, Mobile operating systems’ market share worldwide from
january 2012 to october 2020,
https://www.statista.com/statistics/272698/
global-market-share-held-by-mobile-operating
-systems-since-2009, 2021a.

Stringhini G, Mamadroid source code,
https://bitbucket.org/gianluca_students/mamadroid_code,
2018.

Taheri L, Kadir AFA, Lashkari AH. Extensible android malware
detection and family classification using network-flows and
api-calls. In: 2019 International Carnahan Conference on
Security Technology (ICCST). IEEE; 2019. p. 1-8.

Talha KA, Alper DI, Aydin C. Apk auditor: Permission-based
android malware detection system. Digital Investigation
2015;13:1-14.

Tam K, Khan SJ, Fattori A, Cavallaro L. Copperdroid: automatic
reconstruction of android malware behaviors. Ndss 2015.

U. of New Brunswick, Android botnet dataset,
https://www.unb.ca/cic/datasets/android-botnet.html, 2020.

U. of New Brunswick, Android adware and general malware
dataset (cic-aagm2017),
https://www.unb.ca/cic/datasets/android-adware.html, 2020.

U. of New Brunswick, Android malware dataset (cic-andmal2017),
https://www.unb.ca/cic/datasets/andmal2017.html, 2020.

U. of New Brunswick, Investigation of the android malware
(cic-invesandmal2019),
https://www.unb.ca/cic/datasets/invesandmal2019.html, 2020.

U. of New Brunswick, Cccs-cic-andmal-2020,
https://www.unb.ca/cic/datasets/andmal2020.html, 2020.

U. of New Brunswick, Cicmaldroid 2020,
https://www.unb.ca/cic/datasets/maldroid-2020.html, 2020.

VirusShare, Virusshare, https://virusshare.com/, 2020.

32 COMPUTERS & SECURITY 110 (2021) 102399

VirusTotal, Virustotal academic malware samples,
http://www.virustotal.com, 2020.

VirusTotal, How it works, https://support.virustotal.com/hc/
en-us/articles/115002126889- How-it-works/, 2020.

Wang W, Zhao M, Wang J. Effective android malware detection
with a hybrid model based on deep autoencoder and
convolutional neural network. Journal of Ambient Intelligence
and Humanized Computing 2019;10:3035-43.

WeiF, Li Y, Roy S, Ou X, Zhou W. Deep ground truth analysis of
current android malware. In: International Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer; 2017. p. 252-76.

Wen Li XF, Cai H, Androct: Ten years of app call traces in android,
in: The 18th International Conference on Mining Software
Repositories (MSR 2021), Data Showcase Track, 2021.

Withwam R, Android antivirus apps are useless here’s what to do
instead, https://www.extremetech.com/computing/
104827-android-antivirus-apps-are-useless- heres-
what-to-do-instead, 2020.

Wu Q, Li M, Zhu X, Liu B. Mviidroid: A multiple view information
integration approach for android malware detection and
family identification. IEEE MultiMedia 2020;27:48-57.

XuK, LiY,Deng R, Chen K, Xu J. Droidevolver: Self-evolving
android malware detection system. In: 2019 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE; 2019.

p. 47-62.

Yang Y, Du X, Yang Z, Liu X. Android malware detection based on
structural features of the function call graph. Electronics
2021:10.

Yerima SY, Sezer S, Muttik I. High accuracy android malware
detection using ensemble learning. IET Information Security
2015;9:313-20.

Yuan Z, Lu Y, Wang Z, Xue Y. Droid-sec: deep learning in android
malware detection. In: Proceedings of the 2014 ACM
conference on SIGCOMM,; 2014. p. 371-2.

Zhang X, Zhang Y, Zhong M, Ding D, Cao Y, Zhang Y, Zhang M,
Yang M. Enhancing state-of-the-art classifiers with api
semantics to detect evolved android malware. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and
Communications Security; 2020. p. 757-70.

Zheng C, Xu Z, New android malware family evades antivirus
detection by using popular ad libraries,
https://unit42.paloaltonetworks.com/
new-android-malware-family-evades-antivirus-detection
-by-using-popular-ad-libraries, 2015.

Zhou Y, Jiang X. Dissecting android malware: Characterization
and evolution. 2012 IEEE Symposium on Security and Privacy
2012:95-109. d0i:10.1109/SP.2012.16.

Zhou Y, Jiang X, Malgenome project,
http://www.malgenomeproject.org/, 2015.

Zhu Dali, Jin Hao, Yang Ying, Wu D, Chen Weiyi. Deepflow: Deep
learning-based malware detection by mining android
application for abnormal usage of sensitive data. In: 2017 IEEE
Symposium on Computers and Communications (ISCC); 2017.
p. 438-43. d0i:10.1109/ISCC.2017.8024568.

Alejandro Guerra Manzanares is a Ph.D. candidate at the Center
for Digital Forensics and Cyber Security, Department of Software
Science, Tallinn University of Technology, Estonia. He received a
B.A. degree in Criminology from the Autonomous University of
Barcelona, Spain, in 2013, and a B.S. degree in ICT Engineering from
the Polytechnic University of Catalonia, Spain, in 2017. In 2018, he
received a M.Sc. in Cybersecurity from Tallinn University of Tech-
nology, Estonia. His research interests are in the application of ma-
chine learning and deep learning techniques to digital forensics
and cyber security related issues, such as mobile malware and IoT
botnet detection.

Hayretdin Bahsi is a research professor at the Center for Digital
Forensics and Cyber Security at Tallinn University of Technology,
Estonia. He has two decades of professional and academic experi-
ence in cybersecurity. He received his PhD from Sabanci University
(Turkey) in 2010. He was involved in many R&D and consultancy
projects about cybersecurity as a researcher, consultant, trainer,
project manager, and program coordinator at the National Cyber
Security Research Institute of Turkey between 2000 and 2014. His
research interests include machine learning and its application to
cyber security and digital forensic problems.

Sven N6mm holds the position of senior researcher in the Institute
of Software Science at Tallinn University of Technology. In 1995 he
graduated from St. Petersburg State University with a diploma in
Applied Mathematics (M.Sc. equivalent). He received a PhD degree
from Tallinn University of Technology (Estonia) and Ecole Centrale
de Nantes et Université de Nantes (France) in 2004. His research
interests are spanned around the application of machine learn-
ing and artificial intelligence techniques in the areas of medical
diagnostics and cybersecurity.

Appendix 5

Publication V
A. Guerra-Manzanares, M. Luckner, and H. Bahsi. Android malware concept

drift using system calls: Detection, characterization and challenges. Expert
Systems with Applications, 206:117200, 2022

209

Expert Systems With Applications 206 (2022) 117200

Contents lists available at ScienceDirect
Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Check for
Updates

Android malware concept drift using system calls: Detection,
characterization and challenges™

Alejandro Guerra-Manzanares >, Marcin Luckner ”, Hayretdin Bahsi *

“ Department of Software Science, Tallinn University of Technology, Estonia
Y Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland

ARTICLE INFO ABSTRACT

Keywords:

Concept drift

Android malware

System calls

Mobile malware
Malware characterization
Malware detection
Malware evolution
Malware behavior

The majority of Android malware detection solutions have focused on the achievement of high performance in
old and short snapshots of historical data, which makes them prone to lack the generalization and adaptation
capabilities needed to discriminate effectively new malware trends in an extended time span. These approaches
analyze the phenomenon from a stationary point of view, neglecting malware evolution and its degenerative
impact on detection models as new data emerge, the so-called concept drift. This research proposes a novel
method to detect and effectively address concept drift in Android malware detection and demonstrates the results
in a seven-year-long data set. The proposed solution manages to keep high-performance metrics over a long
period of time and minimizes model retraining efforts by using data sets belonging to short periods. Different
timestamps are evaluated in the experimental setup and their impact on the detection performance is compared.
Additionally, the characterization of concept drift in Android malware is performed by leveraging the inner
workings of the proposed solution. In this regard, the discriminatory properties of the important features are

analyzed at various time horizons.

1. Introduction

Android operating system (OS) leads the mobile OS market since
2012. At present, over 71% of smartphones are powered by this open-
source, highly customizable, and versatile OS (Statista, 2021c). Its
ubiquity combined with the open-source nature of the OS, the high
prevalence of devices running outdated OS versions, the poor end-user
security awareness (e.g., sideloading and running over-privileged
apps), and the wealth of data stored in these devices make Android
users an attractive target for cyber attackers (Rafter, 2021). Despite the
security enhancements introduced in the OS regular upgrades, Android
is still the most targeted mobile operating system by malware, ac-
counting for over 98% of the mobile cyber attacks (Kaspersky, 2020).
These attacks are carried out using a wide variety of attack vectors over
the large attack surface exposed by mobile devices (Townsend, 2020). In
2020, an average of 482,579 new Android malware samples were
discovered per month (Statista, 2021a). Mostly trojans and adware, the
most predominant malware types nowadays (Statista, 2021b; Cheby-
shev, 2021). However, the threat landscape is not static but subject to

continuous change. For instance, ransomware Trojans were the most
predominant type of Trojans in 2017, whereas, in 2020, banking Trojans
were significantly more prevalent (Unuchek, 2018; Chebyshev, 2021).
New malware trends have emerged over time and more sophisticated
malware samples have been discovered, evidencing the non-stationary
attribute of the threat, featured by constant evolution and innovation
(Microsoft, 2020). As a result, the figures regarding detected mobile
malware may only reflect a small portion of the total malware in the wild,
with new and more sophisticated malware variants remaining unde-
tected (Broersma, 2020).

Notwithstanding the dynamic nature of the phenomenon, the
specialized research has overlooked the evolution and changes in
Android malware over time. In this regard, despite the vast body of
literature available on the optimization of detection methods, the
change in malware features over time and its degenerative impact on the
machine learning-based detection models, the so-called concept drift, has
not been explored thoroughly. Most machine learning-based models for
malware detection are based on the assumption of consistent data, thus
requiring the properties of the testing data distribution to approximately

* The code (and data) in this article has been certified as Reproducible by the CodeOcean: https://codeocean.com/capsule/6162888/tree/v1. More information on
the Reproducibility Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.

* Corresponding author.

E-mail addresses: alejandro.guerra@taltech.ee (A. Guerra-Manzanares), mluckner@mini.pw.edu.pl (M. Luckner), hayretdin.bahsi@taltech.ee (H. Bahsi).

https://doi.org/10.1016/j.eswa.2022.117200

Received 12 September 2021; Received in revised form 7 April 2022; Accepted 7 April 2022

Available online 21 April 2022
0957-4174/© 2022 Elsevier Ltd. All rights reserved.

A. Guerra-Manzanares et al.

match the characteristics of the training data distribution. However, due
to the constant battle between attackers and defenders, malware evolve
to exploit new vulnerabilities and improve its hiding capabilities in
response to enhanced defenses, thus generating new malware variants
that may use a distinct attack vector and behave differently but pursue
the same ends. As a result, the incoming data distribution may diverge
significantly from the model’s original training distribution, thus,
generating concept drift and, consequently, harming the model’s per-
formance over time. Despite that, the myriad of machine learning-based
solutions proposed for Android malware detection are generally built,
validated, and tested using relatively small data sets, collected in short
time-frames, generally far from the present time. For instance, the most
used Android data sets in research studies were gathered between 2010
and 2012 (i.e., MalGenome (Zhou & Jiang, 2012) and Drebin (Arp et al.,
2014)), a decade ago, when malware capabilities and characteristics
were significantly distinct to the present ones (e.g., the first Android
ransomware was detected in 2014 and had its major outbreak in 2016,
ergo not represented in these data sets). Even so, they are still being used
in recent studies as the main malware references and frequently as the
only malware source (Zhao et al., 2021; Reddy et al., 2021). Therefore,
most of the proposed solutions have been optimized for malware
detection at specific snapshots of the Android history, built and tested on
static and partial data sets containing specific malware trends at a
particular time, thus lacking the generalization capabilities needed to
address the constant evolution of Android malware, its non-stationary
character, and its challenges.

The majority of studies on Android malware detection based on
machine learning techniques lack historical coherence, mainly caused by
splitting randomly the available data into the testing and training sets
without respecting the historical timeline. More specifically, the testing
set should always be composed of future or posterior data regarding the
training set (Allix et al., 2015; Arp et al., 2020). In these solutions,
concept drift is neglected and the optimized models provided by such
approaches yield significantly biased and historically incoherent results, a
critical issue when it comes to real Android malware detection (Allix
et al., 2015; Pendlebury et al., 2019; Arp et al., 2020). In this regard, a
critical challenge to deal with concept drift is how to locate the samples
within the Android historical timeline in a reliable way. Our research
uses and compares two timestamping approaches that may result in
good approximations in the search for temporal accuracy. Furthermore,
in production setups, the number of samples processed may rarely be
evenly split between the classes. For instance, a malware outbreak may
cause the processed data to be imbalanced towards the positive class (i.
e., malware label), whereas, in the absence of an outbreak, the majority
of the new samples should be benign. This fact is usually not considered
by the related research, assuming and working with evenly split data
sets. Our study addresses the concept drift issue in the presence of
imbalanced data, providing a more realistic scenario and reliable results.
Thus, the proposed solution can effectively handle the additional chal-
lenge of imbalanced data towards any of the classes. Lastly, the small
number of studies that proposed solutions considering Android malware
concept drift issues did not provide any insights on the changes in the
data, that is, the characterization of concept drift. This is a distinctive
point of this study, which not only addresses concept drift but also aims
to understand the evolution of features over time in the analyzed
context. The characterization of concept drift allows understanding the
direction of changes, enabling the expansion and enhancement of the
knowledge about the threat while providing useful insights to improve
the detection systems.

1.1. Novelty and contribution

In this paper, we address significant research gaps in Android mal-
ware detection studies, by exploring, addressing, and characterizing the
phenomenon of concept drift in Android malware detection using dy-
namic features (i.e., system calls) on imbalanced data sets. Despite the

Expert Systems With Applications 206 (2022) 117200

existence of methods to detect drifting data (Yang et al., 2021; Jordaney
et al., 2017) and a large body of research regarding malware detection
(Liu et al., 2020), just a few studies related to Android malware detec-
tion have considered concept drift in their detection solutions (Xu et al.,
2019; Onwuzurike et al., 2019; Cai et al., 2018; Hu et al., 2017; Nar-
ayanan et al., 2017). All these studies used API calls, a static feature
sensitive to code obfuscation and encryption techniques (Kaspersky,
2021). Unlike these previous works, our study uses system calls, run-
time data features that are robust to code obfuscation and encryption
methods. System calls enable us to capture the real behavior of the app
and are the most used dynamic features for Android malware detection
(Liu et al., 2020). Besides, no previous study in the field has provided
characterization of concept drift nor compared the performance of
distinct timestamps when dealing with emerging concept drift, which
are unique contributions of this research. Lastly, the usage of the Kro-
noDroid data set (Guerra-Manzanares et al., 2021) enables us to over-
come the limitations of other data sets and explore concept drift as it
provides labeled and timestamped data for the whole Android history (i.
e., 2008-2020). In this regard, our analysis spans a seven-year-long
continuous time frame, whereas previous works used either dis-
continued data sets (Hu et al., 2017; Narayanan et al., 2017) or
encompassed a shorter time period (Onwuzurike et al., 2019; Xu et al.,
2019; Cai et al., 2018). Our workflow is composed of three stages where
we analyze and demonstrate the presence of concept drift in Android
malware detection, propose a solution to handle it, and characterize its
behavior. Furthermore, the performance of the proposed solution is
compared with the state-of-the-art solutions, outperforming all of them.

The main novel points of this research are: (1) the usage of system
calls as features in an Android concept drift-related study, (2) the pro-
posed solution, which addresses the impact of concept drift on the
classification model, enabling the detection system to sustain high
detection performance over an extended period of time, even when
imbalanced data are present, (3) the characterization of concept drift,
which allows the overall understanding of its behavior and direction,
and (4) the evaluation of distinct timestamping approaches to effectively
deal with concept drift issues.

The paper is structured as follows: Section 2 provides background
information and a summary of related research studies in the field.
Section 3 explains the methodology followed in this study and in-
troduces the proposed solution to address and characterize concept drift
in Android malware detection. Section 4 describes the results of the
experimentation using the proposed solution and the main outcomes of
this research. Section 5 provides a discussion of the main results and
outlines future work. Finally, Section 6 summarizes the study.

2. Background information and related work
2.1. Background information

A data stream can be defined as a countably infinite sequence of ele-
ments that become available over time (Margara & Rabl, 2018). Due to
their cumulative, continuous, rapid, and evolving nature, data streams,
usually referenced under the umbrella term of big data, pose a variety of
challenges such as one-pass constraint, concept drift, resource restric-
tion, and massive-valued features (Aggarwal, 2015). Despite not facing
all these challenges, Android malware detection shows issues related to
data stream processing such as large data volume, continuous release of
apps, and evolving data. Consequently, Android malware concept drift
may be effectively handled when tackled from a data stream
perspective.

This paper performs a novel attempt to demonstrate, handle and
characterize Android data concept drift using system calls as model
features and from a data stream perspective. For this purpose, state-of-
the-art algorithms are leveraged and customized in our study to tackle
effectively concept drift issues in Android malware detection. The
following paragraphs introduce their basics.

A. Guerra-Manzanares et al.

Goziiacik and Can (2020) proposed an implicit (i.e., unsupervised)
learning algorithm called One-Class Drift Detector (OCDD), which uses a
one-class learner with a sliding window to detect concept drift. As the
data analyzed in our work do not show normal distribution character-
istics, it was not possible to apply statistical analysis to detect changes in
the features over time. Therefore, the OCDD’s central idea was leveraged
to analyze the impact of concept drift in the observed data. This
approach was implemented in our work using the Isolation Forest algo-
rithm. Isolation Forest (iForest) is an anomaly detection technique
proposed by Liu et al. (2012). The algorithm uses binary decision trees to
detect anomalous data based on path length. More precisely, in
randomly generated binary trees, where instances are recursively par-
titioned, these trees produce noticeable shorter paths for anomalies. In
the regions occupied by anomalies fewer partitions are observed (i.e.,
shorter paths in the tree structure). For a specific sample, the received
path length is compared to the average path length of unsuccessful
searches in the binary search tree to obtain a universal anomaly mea-
sure. This measure is used by the iForest algorithm to detect anomalies
based on the results obtained on several trees.

Zyblewski et al. (2021) proposed a novel framework employing
stratified bagging to train base classifiers, integrating data pre-
processing, and using dynamic ensemble selection methods for imbal-
anced data stream classification. The experimental results showed that
dynamic ensemble selection coupled with data pre-processing could
outperform state-of-art methods for highly imbalanced data streams. In
our work, we analyze Android app data in an extended time frame,
where the ratio of malware to benign applications varies over time, thus
causing imbalanced data issues. The high-level framework proposed by
Zyblewski et al. (2021) was the point of departure of our algorithm and
its application to the Android data issue. The original algorithm,
designed for data streams split into data chunks, uses a pool of classifiers
trained on past data to classify new data samples in upcoming data
chunks. The best combination of classifiers for the new data (i.e., an
ensemble of classifiers) are dynamically selected using the previous data
chunk. The classifier pool is constantly purged and updated with new
classifiers trained on data from each new chunk. Concept drift is
addressed by the constant update of the pool of classifiers, while the
ensemble selection mechanism enhances the classification results. The
original algorithm was modified in our work to address the particular-
ities of Android data and enhance the detection results, as reported in
Section 3.2.2 and Section 4.3.

2.2. Related work

A large variety of malware detection approaches have been proposed
since the early years of Android OS (Liu et al., 2020). Most of these
solutions were optimized and tested on static snapshots of Android
malware historical data, using old and short-time data sets (Zhou &
Jiang, 2012; Arp et al., 2014). As a result, these solutions disregard the
evolution and change in data over time and its potentially harmful effect
on the detection system’s performance.

The phenomenon of concept drift, where the statistical characteristics
of the incoming data change over time, is visible in long-term Android
data (Ramirez-Gallego et al., 2017). Neglecting the changes in malware
data patterns over time has a significant detrimental impact on the
classifiers’ performance, as models built using old data tend to make
poor and ambiguous decisions when tested on new data (Jordaney et al.,
2017). Thus, adapting to the rapid evolution of Android malware is
critical for an effective detection system (Hu et al., 2017). Consequently,
concept drift should be considered in all ML-based detection methods
aiming to provide high and reliable performance over time. However,
even though an increasing number of studies recognize the importance
of addressing concept drift in Android malware detection models
(Suarez-Tangil et al., 2017; Hu et al., 2017), only a reduced number of
studies have taken its impact into account. These solutions are briefly
discussed in the following paragraphs.

Expert Systems With Applications 206 (2022) 117200

Hu et al. (2017) proposed the usage of an ensemble of classifiers to
analyze data within a sliding window and dynamic adjustments to
address concept drift on static features (i.e., permissions, actions, and
selected API calls). The authors reported 96% accuracy in a relatively
small, imbalanced, and discontinued in time data set. The time range of
the data set and the source of the majority of the samples are not re-
ported, which generates concerns about the results and the actual ex-
istence of concept drift in the data, which is assumed but not proved. In
our study, the first stage aims to prove the existence of drifting data
within the data set. After, the proposed solution is tested on a large and
time-extended data set addressing imbalanced data issues.

In DroidOL (Narayanan et al., 2016), online algorithms were used to
deal with concept drift. The solution was built and tested on a static-
featured data set spanning 8 months (i.e., using inter-procedural con-
trol-flow graphs as features). The authors reported 84% accuracy on a
balanced data set. Even though the usage of an online learning algorithm
can have benefits over batch learning algorithms for concept drift
handling purposes, it is questionable that the time span of the data set
might be too short for the emergence of concept drift, which was
assumed but not proved in the study. The usage of online algorithms for
concept drift handling was enhanced in DroidEvolver (Xu et al., 2019),
where a pool of 5 online classifiers was used to build the detection
system. Raw API calls were extracted from the source code and used to
generate the input vector. After an initialization step, the pool of clas-
sifiers was used to label every new instance. Next, based on a drift in-
dicator, the detection models and feature sets were updated, if needed.
The update of the feature sets (i.e., done incrementally by including all
the new API calls) and the update of aging classifiers are intended to
provide resilience against concept drift. Besides, the usage of a pool of
classifiers aims to avoid the bias of a single classifier and generate more
reliable detection results. The usage of a pool of classifiers to improve
the detection performance is also leveraged in our proposed solution.
However, the distinctive elements of our proposed solution that uses
enhanced classifier dynamics (i.e., dynamic ensemble selection) instead of
online learning algorithms which require constant retraining, the usage
of dynamic features instead of static features, and a reduced and stable
feature set as opposed to the incremental cost of an ever-growing feature
set, provide increased and more stable long-term detection performance,
as it is shown in Section 5.

TRANSCEND (Jordaney et al., 2017) framework used statistical
metrics to identify when a classification model was consistently mis-
classifying new data, thus signaling the emergence of concept drift and
the aging of the model. In the study, the framework was merely used as a
drift indicator, not proposing any solution to handle concept drift
distinct from data relabeling and model retraining once drifting was
identified. The limitations of this work were addressed in TRANSCEN-
DENT (Barbero et al., 2020), a model agnostic rejection framework
composed of conformal evaluators. In the experimental setup, the
framework helped to extend the effectiveness of Drebin classifier (Arp
etal., 2014), doubling its lifespan, keeping an F1 score over 80% for two
years.

MaMaDroid (Onwuzurike et al., 2019) used static analysis to extract
sequences of API calls from the call flow graph, and abstracted each API
call to three distinct higher abstraction levels (i.e., family, package, or
class). The sequences of abstracted API calls were used to build the
feature vectors, represented using Markov chains. Concept drift was
tackled under the assumption that the representation of the sequences of
API calls in the higher level of abstraction changes less over time than
the raw API calls, thus being more robust and resilient than the ap-
proaches that use directly the API calls, such as DroidEvolver (Xu et al.,
2019), which need constant retraining, especially after new Android API
releases and API changes, to address concept drift.

API-Graph (Zhang et al., 2020), aims to enhance API call-based
detection systems by leveraging API semantics and similar API usages
among malware. The framework builds an API-level relation graph by
extracting entities such as APIs and permissions and establishing their

A. Guerra-Manzanares et al.

relations into five meta-categories. The authors showed that the usage of
API-Graph may improve the generalization capabilities and robustness
against performance decay of existing solutions such as MaMaDroid and
DroidEvolver.

Event groups semantics were employed in EveDroid (Lei et al., 2019).
In this study, API call graphs were used in conjunction with event
grouping techniques (i.e., clustering) to train neural network models for
Android malware detection in IoT devices. The ability of neural net-
works to extract semantics from the input features was leveraged to
provide robustness against performance decay. Even though the study
results reported high performance, the two data sets used encompassed
short and discontinued time-frames (i.e., 2013-2014 and 2017-2018).
More importantly, the models were trained using random selection of
samples, thus disregarding the chronological order and mixing the data
in both the training and testing sets. Furthermore, legitimate and mal-
ware samples did not belong to the same exact time-frames (e.g., legit-
imate samples were from 2014 and 2018, whereas malware was from
2013, 2014, 2017 and 2018-Q1). As a result, the robustness of the so-
lution against concept drift poses severe doubts.

Even though API calls are considered static features in malware
analysis, they can also be collected dynamically (i.e., at run-time). This
was the approach taken in DroidSpan (Cai, 2020) to overcome the lim-
itations of static features (e.g., code obfuscation and encryption). In this
work, particular API calls, related to sensitive data access and opera-
tions, invoked at run-time were collected. The data was used to generate
an input vector composed of 52 features. Although the solution aimed
for long-term stability and reported better results than MaMaDroid, it
did not provide any adaptive measures to maintain long-term perfor-
mance (i.e., the model is never updated), making it prone to concept
drift-related performance decay over time. A similar approach was used
in Fu & Cai (2019) and Cai et al. (2018).

Pendlebury et al. (2019) emphasize the significant impact of spatial
and temporal bias in the Android malware detection research literature,
which has consistently yielded not representative and overly inflated
unrealistic performances. More specifically, temporal bias is caused by
incorrect temporal splits on the training and testing sets (i.e., neglecting
concept drift and providing impossible temporal configurations),
whereas spatial bias is caused by unrealistic distributions on the training
and testing sets (e.g., class-balanced data sets). The proposed tool,
TESSERACT, did not provide any novel strategy to tackle concept drift (i.
e., incremental retraining, active learning, or classification with rejec-
tion), but aimed to assess the robustness of other solutions to perfor-
mance decay by removing the spatio-temporal bias from the evaluations,
thus revealing their true performance. The framework was tested with
samples from AndroZoo data set (Université du Luxembourg, 2021)
which were temporally located using the dex date timestamp, suggested
by the authors as the most reliable timestamp and comparable to Viru-
sTotal’s first seen timestamp. The dex date timestamp informs about the
compilation date of the apk (i.e., app’s archive file). However, according
to Université du Luxembourg (2021), the dex date timestamp is no longer
a reliable timestamp as the vast majority of the apps released nowadays
have a 1980 dex date, thus being not usable for temporal location pur-
poses. Our proposed solution uses a distinct and more reliable time-
stamp, the last modification, which is compared in this study to
VirusTotal’s first seen timestamp, taking advantage of the timestamps
provided by the KronoDroid data set.

As can be observed, the vast majority of proposed solutions focused
on static features which suffer from proven limitations to counter-
detection techniques, such as code-obfuscation, packing, and encryp-
tion (Aghakhani et al., 2020). Although more complex and time-
consuming to acquire, dynamic features are more robust against
deception techniques, thus preferred for an effective detection solution.

Expert Systems With Applications 206 (2022) 117200

System calls, the most used dynamic features for Android malware
detection are used in our study (Liu et al., 2020). Besides, none of the
studies that dealt with concept drift provided further exploration of the
phenomenon (i.e., characterization). In this regard, the characterization
of concept drift may provide a better understanding of the phenomenon
and assist malware specialists to understand changes in malware over
time, detect trends and build more effective detection systems while
expanding the knowledge regarding Android malware behavior. An
effective solution for Android malware detection should consider the
emergence of concept drift and have adaptive skills to change its inner
structure according to the detected data changes. In addition, other
challenges overlooked by the specialized research should be addressed
such as imbalanced data sets and high-dimensionality problems (i.e.,
ever-growing feature sets). All these issues are considered in this study
and addressed by the proposed solution to build a long-lasting, effective,
and robust Android malware detection system.

3. Material and methods
3.1. Data set

The data set used in this research is KronoDroid (Guerra-Manzanares
et al., 2021). This data set is composed of two device-related sub-data-
sets (i.e., emulator and real device data sets) containing both benign and
malware samples. Every sample in the data set (i.e., Android apps) is
labeled and characterized by 289 dynamic features and 200 static fea-
tures (i.e., including timestamps). The data set provides data covering
the whole historical timeline of Android OS, from 2008 to 2020. In this
regard, four timestamp features provide the possible temporal context of
the apps, which makes this data set the only publicly available Android
data source suitable for the investigation of concept drift in Android
malware. For this research, just the real device data set, composed of
78,137 samples, was used due to its larger size (i.e., 41,382 malware
samples belonging to 240 malware families and 36,755 benign apps).

To analyze the phenomenon of concept drift in Android malware
detection from a dynamic perspective, just the dynamic features pro-
vided by the KronoDroid data set were used along with the class labels
and timestamp features. The dynamic features provided by the data set
are kernel or system calls (syscalls for short). Syscalls are the most used
dynamic features in Android malware detection systems (Liu et al.,
2020). The feature set is composed of 288 numeric variables, whose
values provide the absolute frequency of each system call invoked by the
app during the execution time (i.e., 1 min, no user interaction).
Regarding the label, Kronodroid provides two labels for each data sam-
ple: the hard label and the soft label. The only difference between them is
the labeling approach used, as they are both defined as non-probabilistic
binary labels (i.e., y € {0,1}). More precisely, the soft label relies on the
data source to assign the class to an instance without any further veri-
fication. The hard label is based on a stricter labeling technique as it
imputes the class of a sample according to the detection results from
VirusTotal’s antivirus scanner disregarding the data source, as explained
in Guerra-Manzanares et al. (2021). Due to this stricter class imputation,
in this study, the hard label was selected as it increases the certainty
about the class of the samples (i.e., benign or malware), thus increasing
the reliability of the concept drift analysis results.

Finally, as the study of concept drift explores the evolution of data
over time, the timestamp used to date the samples becomes of critical
importance. In this regard, from the four possible timestamps, the last
modification and first seen timestamps were selected as they provide more
data coverage, reliability, and accurate location of the apps within the
Android historical timeline. The last modification timestamp provides the
date of the most recent modification of any file inside the app, while the

A. Guerra-Manzanares et al.

first seen timestamp reports about the date when the app was submitted
for the first time to VirusTotal’s antivirus engine.

As a result, 78,137 Android apps described by 288 system calls
numeric variables, the label, and two distinct timestamps were used as
input data for this research. The following paragraphs explain the
workflow followed to effectively detect, handle and characterize
concept drift across Android OS history.

3.2. Workflow

The methodology used in this study is composed of three sequential
stages related to concept drift: detection, handling and characterization. At
each stage, different techniques are used, which are explained in detail
in the following sections. Briefly, the concept drift detection stage aims to
prove the existence of concept drift in the data using state-of-the-art
techniques. Upon confirmation of the presence of concept drift, the
following stages are set to address the related issues. In the concept drift
handling stage, distinct techniques are used to effectively handle concept
drift over time. The algorithm used in this stage to reduce the classifi-
cation error caused by concept drift provides also the information used
for concept drift characterization, the last stage of the workflow. It is
worth emphasizing that the handling and characterization stages use a
distinct methodology than the detection stage as the only goal of the
latter is to prove the need for concept drift handling techniques in the
Android malware detection case.

3.2.1. Concept drift detection

The concept drift detection process consists of three sequential
phases, namely data pre-processing, feature selection, and drift detection.
The whole process is depicted in Fig. 1 and explained as follows.

The initial set of features was pre-processed using a sequential pro-
cedure to remove features that might disturb or not provide any sig-
nificant input data to the machine learning algorithm (i.e., null-valued
and redundant features). The outcome was a refined set of features ob-
tained after performing the following steps.

Expert Systems With Applications 206 (2022) 117200

1. Feature variance analysis: Homogeneous (i.e., zero variance) and
zero-valued features (i.e., not invoked by any app) were removed
from the initial feature set.

2. Feature correlation analysis: Pearson’s correlation coefficient (r) was
calculated pairwise for all variables. Highly correlated features were
removed from the feature set.

3. Feature distribution analysis: statistical normality tests were per-
formed on all features that remained in the feature set after the
previous steps.

The goal of these sequential steps was to select relevant features,
remove redundant variables and assess the data distribution to select the
best techniques for the posterior steps.

Concept drift detection can be formulated as follows. Each new
observation is represented by ¢; = (x;y;), where x; = (xil, xiz, XD EXis
the feature vector and y; € Y is the target label. Given two data chunks (i.
e., probes of the same size or collected during similar periods) taken
from distributions F and F’, respectively, the following applies. For the
null hypothesis, Hy, that F and F’ are identical, the aim is, as stressed by
Lu et al. (2014), to refuse Hy, and identify some local regions of the
problem space where Hy does not hold, and quantify the difference
between F and F’. However, as shown by Mutz et al. (2006) and Ruiz-
Heras et al. (2017), Android system calls’ distributions must be
modeled and Gaussian distributions cannot be assumed. For this reason,
the analysis of F and F’ distributions is hindered.

In addition, the difference between F and F’ might be statistically
important but not change the decision of the malware detection system.
More precisely, concept drift changes the classification decision by
changing the conditional probability p(y|X). However, it is possible to
change the probability p(X) without changing p(y|X). In such a case, the
change in the feature space does not affect the classification outcomes
and is called feature drift or virtual drift (Ramirez-Gallego et al., 2017).
The main difference is that under real concept drift, the restructuring of
the learning model is required, whereas, under virtual drift, the old
knowledge is extended with additional data from the same environment
(Goziiacik & Can, 2020; Elwell & Polikar, 2011). Consequently, concept
drift is only observed if and only if the input data changes affect the
classification results (i.e., the conditional probability p(y|X) is affected).

Preprocessing Feature selection

Concept drift detection

Ordering data
according to
timestamps

Feature variance
analysis

Time.
series

Feature correlation
analysis

A AT Y
() N~ Legitimate software
— H—>) recognition validation
Lz) S
J— Y
P
TGS Malware recognition y
> I3 validation Legitimate
N software concept

N IForest creation for
Y
-—>\—/J—>
\M‘

IForest creation for |
malware

The most relevant
features set
Random
oversampling

The most important
features set

drift report

Building and validation of

random forest discriminator|

Time series
with limited
features

Feature selection
using permutation
feature importance

Time series

Malware concept
drift report

_ s
N Legitimate software
“ recognition validation
v
Malware recognition
validation

with the
most

important

features

Fig. 1. Schema of the concept drift detection stage.

A. Guerra-Manzanares et al.

To assess the existence of concept drift, the data set must be chro-
nologically ordered and divided into consecutive periods. For n periods,
two series of subsets are generated. In the first series, the set M; consists
of records describing malware and labeled with the timestamp (i.e., last
modification or first seen) from the i-th period. The set L;, defined for the
second series, is labeled analogously but composed of just benign apps.

Then, the following procedure was performed to define the most
discriminatory features for the first period (i.e., feature selection).

The data from the first period M; U L; was balanced using a random
oversampling method to avoid over-representation of L; or M (Seiffert
et al., 2010). Next, Random Forest (RF) algorithm, a decision tree-based
ensemble classification algorithm proposed by Breiman (2001), was
induced to discriminate between L; and M;. The rationale behind the
selection of RF algorithm is the superior performance shown by this
algorithm over other classification algorithms in analogous cases on
previous research (Guerra-Manzanares et al, 2019a; Guerra-
Manzanares et al., 2019b; Guerra-Manzanares et al., 2019¢). The most
relevant features of this initial classifier were selected using the permu-
tation feature importance technique applied to the training data (see
Section 3.2.3 for further details). This enabled the selection of the most
relevant features for this baseline classifier. In this regard, only the
features with positive mean importance for the model were selected,
defining the important feature set.

If the initial-period classification model provides high performance
(e.g. accuracy > 95%), it is reasonable to assume that the selected fea-
tures are significant to recognize classes L; and M;. However, an open
challenge is whether the same features can be successfully used to
recognize classes L; and M; for n > i > 1. To address this issue, One-Class
Drift Detection Models (Goziiacik & Can, 2020) were used to analyze the
impact of concept drift in the generated series. Therefore, based on the
fact that the selected important features could be used successfully for the
classification task on the M; U L; set, one-class anomaly detectors were
induced using L; and M; separately, to assess data drift. The Isolation
Forest (iForest) algorithm was used to induce the anomaly detection
models. This approach allows the observer to analyze the concept drift
for malware and legitimate software in a more controlled way elimi-
nating the class relations influence.

Next, the iForest detection models induced were tested separately
with L; and M; sets, where n > i > 1, described by the important feature
set to calculate the ratio of samples recognized as part of the modeled
class in each period (i.e., negative detection rate). The resulting ratios
enable us to assess the emergence of concept drift on the data over time.
More specifically, if the initially selected important features are not able
to describe the modeled class effectively in a given period, the ratio will
drop, thus indicating data drift. The observed drops may be qualified as
concept drift as the ratio of correctly recognized observations decreases.
Therefore, the change affects the classification results.

The workflow performed for concept drift detection is described in
Fig. 1 for further reference.

The emergence of concept drift in the data requires the imple-
mentation of an adaptive detection solution capable of handling it
effectively. This issue is addressed in the next section.

3.2.2. Concept drift handling

The proposed solution to handle concept drift in Android malware is
a modification of the algorithm proposed by Zyblewski et al. (2021).
Although the original algorithm may provide good performance, the
modifications performed address Android concept drift particularities,
thus boosting the detection performance. The suggested adaptations are
detailed in the following paragraphs.

The first modification yields a complete pool of classifiers available
from the initial stage. At the initial stage, the original algorithm starts
with a single classifier in the pool. For every subsequent data chunk
processed, a new classifier is added to the pool until the pool is full. Only

Expert Systems With Applications 206 (2022) 117200

then the full pool is available for prediction. For instance, if the size of
the pool of classifiers is set to contain 10 elements (i.e., S parameter),
then 10 chunks must be processed to have available the full pool of
classifiers. Thus, these 10 initial data chunks are all tested with an
incomplete pool of classifiers. After the pool is completed, in the sub-
sequent data chunks (i.e., from the 11th chunk), each classifier is tested
and the worst performer is eliminated (i.e., pool purge). Then, a new
classifier trained on the new data chunk is added (i.e., pool update).
Therefore, only after the initial S chunks are processed, the pool is
guaranteed to be always composed of S elements. Our experimentation
has shown that it may be beneficial to generate the full pool from the
initialization phase (i.e., first chunk), as the usage of a larger variety of
classifiers to process the initial data chunks enhances the performance
on the initial stages. As a result, the proposed solution eliminates the
delay on the generation of the full pool by splitting the initial chunk into
S ordered subchunks and training a classifier on each subset, thus
generating the full pool in the initial step. Then, after the first chunk is
processed (i.e., initialization stage), the whole pool, containing S ele-
ments, is used to process all the subsequent data chunks (i.e., from the
2nd chunk). The classifier pool is updated using the same purge-update
mechanism as the original solution when a new data chunk is processed.

The second modification performs a refinement on the predictions using
a supportive anomaly detection model. The original solution produces its
predictions according to the classifiers’ pool assignment. The proposed
modification adds a refinement step to the prediction process by using
an anomaly detection model, induced on a subset of data (i.e., benign
data), aiming to improve the predictions provided by the dynamic
ensemble selection of classifiers. The rationale behind the addition of an
anomaly detection model trained on legitimate data is due to the
observation of more concept drift resilient features in this subset of data
during our experimentation, as shown in Fig. 3 and Fig. 9a. More spe-
cifically, concept drift in legitimate data appears to be less significant
than in malware data, showing a more robust performance over time
and keeping as important a broader and more consistent subset of fea-
tures. Therefore, the addition of an anomaly detector trained on just
benign data can help in dubious cases where the prediction probability
of the classifier pool may not give enough confidence to the assigned
label (e.g., p(y|x) ~ 0.5). In such cases, the usage of the additional
knowledge from the anomaly detection model might help. However, the
benefits of this modification heavily rely on the prediction probabilities
output by the classification model and the specific set of rules and
thresholds used by the particular implementation.

As an example, in our experimental setup, a reassignment rule was
applied for borderline predictions as follows: if 0.55 > ppeoi(benign|x) >
0.5, where x refers to a given sample and pp,o to a particular prediction
probability from the pool of classifiers, then the sample was assigned to
the class suggested by the anomaly model. In any other case, the class
assigned to x was the one suggested by pyeo. This simple rule yielded
from 1% to 4% improvement in detection performance in some time
periods, especially in the initial chunks. It is worth mentioning that, in
our experimental setup, no rule optimization was performed, thus there
is room for improvement in this regard by the particular implementa-
tions of the proposed solution.

The proposed solution is provided in Algorithm 1 and Algorithm 2.
For the sake of comprehension and similarly to the original formulation
by Zyblewski et al. (2021), the algorithm is split into training and pre-
diction phases. However, as these phases are applied sequentially for
each data chunk, they should be embedded in the actual implementation
of the solution. More specifically, Algorithm 1 provides the pseudo-code
implementation of the training phase while Algorithm 2 defines the steps
performed in the prediction phase.

A. Guerra-Manzanares et al.

Algorithm 1: Training phase of the proposed framework

Input:
Stream - Data stream
S - Fixed size of the classifier pool
IT < & - Pool of classifiers (initially empty)
A« —1 - Sample size of the anomaly detector
Symbols:
DSy - Data chunk
W, - Bagging classifier
L, - Legitimate data portion of the data chunk
P - Anomaly detector
1 foreach k, DS in Stream do

2 if £ == 0 then // first data chunk

3 1DS « splitInitial Dataset(DSk,|x|) // split data chunk
Y fori«0toS—1do
5 Wy « trainClassifier(1DS;) // train classifier
6 11 < Wy // add classifier to the pool
7 end
8 by« trainAnomalyDetector(Lg, N) // train anomaly
9 else // rest of the data
10 11 < pruneW orstClassi fier(11) // purge pool
11 Wy, trainClassi fier(DS)
12 11 Wy
13 by« trainAnomalyDetector(Lg, N)
14 end
15 end
Algorithm 2: Prediction phase of the proposed [ramework
Input:
Stream - Data stream
11 - Pool of classifiers

@4 - Anomaly detector

Symbols:
DSy - Data chunk
Ykpred - Predicted labels for the samples in the current chunk
115, - Ensemble of classifiers selected using a DES algorithm

DSEL - Dynamic ensemble selection data set
1 foreach k, DS in Stream do

2 if k == 0 then // first data chunk

3 DSEL <« preprocess(DSy) // store DSEL for next step
1 else // rest of data chunks
5 1y < dynamicSelection(11, DSEL, DSy) // DES step

6 Yk prea < predict(DSy, ;) // prediction step

7 Ykprea < anomalyDeteclor(yi,,.q, Px) // refinement step
8 DSEL <« preprocess(1DSk)

9 end

10 end

Expert Systems With Applications 206 (2022) 117200

Before providing a detailed explanation of the whole system, some
general considerations must be addressed. They are provided as follows:

e For the initialization of the system, the following hyper-parameters
must be selected: the size of the classifier pool (i.e., |z|, S), the
chunk size (i.e., n, sample size) and the anomaly detector sample size
(i.e., —1 by default, using all Lx_; data).

The first data chunk (i.e., k = 0) is used only for training purposes
and not for testing purposes. All subsequent data chunks are pro-
cessed sequentially, applying first the predictive phase and then the
training phase. This is a modification to the original algorithm in
which distinct steps are performed for the first and second chunks.
As all data chunks are assumed to be imbalanced, a data balancing
technique (e.g., random oversampling) is applied to the learning set
every time a new classifier is generated (i.e., inside the trainClassifier
O function of Algorithm 1).

Furthermore, as can be noticed in Algorithm 1 and Algorithm 2, the
proposed solution requires the selection of a few hyper-parameters for
its deployment. They are described in the following items:

Chunk size (n): the number of samples that compose each data chunk.
It is a hyper-parameter that is not included in the algorithm
description. However, it is assumed that all chunks have the same
size and are processed in chronological order. Note that the chunk
size may affect the concept drift detection capabilities of the system.
Classifier pool size (S): the number of classifiers in the pool. It may
impact the concept drift adaptation capabilities of the system.
Anomaly detector’s sample size: the size of the data set that is used to
induce the anomaly detection model. In this regard, the whole
legitimate set of the new chunk can be used, a portion of it or even a
bigger set by generating a cumulative data set from consecutive
chunks. It may affect the accuracy of the predictions.

Dynamic Ensemble Selection (DES) algorithm: the algorithm used to
select the best ensemble of classifiers from the pool to predict the
class of the new data. Note that the usage of distinct DES algorithms
can provide significantly different performances, thus it is a very
important hyper-parameter of the system. The DSEL may also have a
significant impact on the prediction performance but it is not a
hyper-parameter as it strictly depends on data.

Data set balancing method: the technique used to balance the classes in
the training set may have an impact on the detection accuracy. In this
regard, different over-sampling and under-sampling techniques
might be used.

Despite that the selection of hyper-parameters might have a signifi-
cant impact on the performance of the detection system, the proposed
solution can be implemented with some degree of flexibility, thus
enabling the usage of different configurations to achieve high perfor-
mance on Android malware detection in the presence of concept drift. In
this regard, our experimentation evidenced that good performance
metrics can be obtained with the vast majority of possible configura-
tions. The results and hyper-parameters used in our specific imple-
mentation are provided in Section 4.3.

After setting the general considerations and describing the main
variables of the proposed solutions, the following paragraphs provide a
detailed explanation of the intricacies and inner workings of the pro-
posed solution.

As specified in Algorithm 1, when the first data chunk is received (i.
e., k = 0), the whole chunk is processed by the splitlnitialDataset()
function which takes the chunk as input, splits its n elements into S
ordered and equal-sized data chunks (i.e., each composed of n/S sam-
ples), and outputs the IDS data set. Then, each subset is used to train a
new classifier (i.e., trainClassifier() function) which is added to the pool
(i.e., lines 4-7 of Algorithm 1). As a result, a full pool of classifiers is
generated after processing the first chunk, thus available for the testing

A. Guerra-Manzanares et al.

phase of all the subsequent data chunks (i.e., first modification to the
original algorithm). In the next step, the set of legitimate samples from
the initial data chunk (i.e., all by default, but a different sample size
could be used) are used to train an anomaly detection model (i.e.,
trainAnomalyDetector()). Finally, the last processing step of the initial
chunk involves the storage of the whole initial chunk as the dynamic
ensemble selection data set (i.e., DSEL) for the next chunk (i.e., line 3 of
Algorithm 2). As previously explained, the DSEL is used to select the best
classifier ensemble from the classifier pool for each data sample in the
new data chunk. This selection may vary according to the dynamic
ensemble selection algorithm used in the particular implementation (Ko
et al., 2008).

This concludes the processing of the initial data chunk, which is used
for initialization purposes, and it is the only data chunk with distinct
processing steps in our proposed solution. For all subsequent data
chunks, the same first-testing-then-training procedure is applied,
described as follows.

After the first chunk is processed, when a new data chunk is received,
the prediction phase is applied first, as outlined in Algorithm 2. Thus,
upon the arrival of the new data chunk, the dynamic ensemble selection
algorithm is fit with the previously stored DSEL, the classifier pool, and
the new data chunk (i.e., input of dynamicSelection() function, line 5 of
Algorithm 2). This step aims to select the best ensemble of classifiers to
predict the labels for each sample in the new data chunk. Once Ipy is fit,
this dynamic ensemble model is used to forecast the class of the n ele-
ments of DSy, thus generating the initial predictions (line 6 of Algorithm
2). These initially assigned labels are then refined based on custom rules,
included inside the anomalyDetector() function, and using the anomaly
detector forecasts for each sample in DSk (line 7 of Algorithm 2). The
outcome of this step is the final prediction for all the samples of the new
data chunk. As mentioned before, the anomaly detector helps to support
or challenge the class prediction assigned by the classifier pool in
borderline cases where the anomaly model may provide more accurate
results. Finally, in the last step of Algorithm 2, the new data chunk is
stored as DSEL for the next chunk.

This concludes the first processing step of the new data chunk, the
predictive phase. The next step for the new chunk is the training phase, as
described in Algorithm 1.

The training phase uses the whole data chunk and the outcome of the
previous phase to update the pool of classifiers and generate a new
anomaly detector. More specifically, the worst-performing classifier on
the new data chunk is removed from the classifier pool (i.e., prune-
WorstClassifier()). Then, a new classifier is induced using the samples
from the new chunk and their predicted labels. The new classifier is
added to the pool (line 12 in Algorithm 1), which is again composed of S
classifiers. The removal of an aging classifier and the insertion of a new
classifier keeps the pool at the specified size while updating its capa-
bilities to accurately forecast on new data, thus being able to adapt and
react to emerging concept drift. Finally, the legitimate portion of new
data (i.e., Ly) is used to generate a new anomaly detector that will be
used in the predictive step of the next data chunk. This last step con-
cludes the processing of the new data chunk, using it as a training set to
update the forecasting capabilities of the system.

The described first-testing-then-training cycle is repeated for all the
subsequent data chunks in the data stream, enabling the system to
address concept drift issues effectively and efficiently without major
changes in the solution.

3.2.3. Concept drift characterization

The proposed solution is able to detect and adapt effectively to
concept drift in Android malware detection but also provide relevant
insights about its character. The characterization of concept drift can
provide useful knowledge and insights about the changes in Android
malware, its direction, and expectations. It can also help to enhance the
trust of analysts in the detection system. The inner workings of the
proposed solution can be leveraged to explore thoroughly the

Expert Systems With Applications 206 (2022) 117200

phenomenon of concept drift by analyzing the influence of data changes
on classification quality measures in various time horizons.

For concept drift characterization and appraisal of its influence,
permutation feature importance analysis was employed. This method,
proposed by Breiman (2001), is model-agnostic and applicable to the
discussed case of binary classification (i.e., malware detection) which
can be evaluated by quality measures related to the classification results.
The permutation feature importance technique is explained as follows.

For a matrix of feature values X with rows x; given each of N ob-
servations and corresponding response y;, xf‘j is a vector achieved by
randomly permuting the j-th column of X. Given a loss function L, the
importance VI; of the j-th feature is defined as the difference between the
loss calculated using pseudo-random values and the original data, as it is
expressed by the following equation:

l N
VI = ;L(,v,-.,f(xf 7)) = Ly x))

It is worth mentioning that Random Forest algorithm offers an
alternative assessment based on Gini coefficient or entropy (Maimon &
Rokach, 2005), called feature importance. However, such calculated
importance is based on the training data used to create the classification
model. In the discussed case, a more important issue is how the model
works on new data, which might be affected by concept drift, rather than
how well the features were used to discriminate the learning set.
Therefore, the application of the permutation feature importance tech-
nique to the test data is preferred. In this regard, due to its stochastic
nature, the permutation feature importance score may vary significantly
among iterations. Hence, for the sake of results’ stability, it is recom-
mended to repeat the permutation procedure at least 50 times and
average the results (Altmann et al., 2010).

The concept drift characterization method used in this study adopts
Eq. (1) by the creation of the classification function f; using data X; from

period P,. Next, observations X are taken from the set Uijﬂ X; where h
declares an analysis time horizon. In this work, we discuss the following
time horizons: short-term (i.e., 3 months), mid-term (i.e., 6 months) and
long-term (i.e., 12 months). The usage of several time horizons brings an
opportunity for better characterization of the changes in the importance
of features. The whole procedure is summarized by the following

equation:

1

VI (1) = N Z L()’i-ft (xf j)) — L(yi,x;) 2

xieu X

1=

The procedure can be used to evaluate the influence of features on
various quality functions Q(.) = 1 — L(.) such as:

e F1 score, which is a more comprehensive metric for malware detec-
tion performance on imbalanced data sets than the overall accuracy
and it is defined as:

2TP

= pFrp+ N

3)

e Specificity (True Negative Rate), which describes the quality of benign
software recognition (i.e., negative label). It is calculated as:

N

TNR = ————
TN + FP

@

e Recall (True Positive Rate), which describes the quality of malware
detection (i.e., positive label) and it is defined as:

A. Guerra-Manzanares et al.

P

TPR=
TP + FN

(5)

where TP (i.e., true positive) refers to the number of correctly
recognized malware among all test instances. TN (i.e., true negative)
reflects the number of correctly recognized benign software among
all test data. FP (i.e., false positive) provides the number of instances
incorrectly predicted as malware among all test samples, and FN (i.
e., false negative) the number of incorrectly predicted samples as
benign data in the test set.

The analysis of permutation feature importance scores of chrono-
logically ordered data chunks allows the exploration of changes and the
observation of the evolution of important features in the data, which
enable the detection of trends and the characterization of emerging
concept drift.

4. Results
4.1. Data pre-processing

After the application of each sequential data pre-processing step, the
results reported in Table 1 were obtained.

As can be observed, after the first pre-processing step, 128 syscalls
were found to be non-zero and not constant valued. This filtered subset of
features was further processed and highly correlated features (i.e., |r| >
0.80) were removed. More specifically, 31 features were found to be over
the specified threshold, thus showing a strong linear correlation with
another feature. The resulting feature set was composed of 97 features.

To assess the adherence to the normal distribution of the feature
distributions, four normality tests were applied to every feature,
including the Shapiro-Wilk normality test, the most powerful normality
test according to Mohd Razali & Bee Wah (2011). The results of the
statistical analysis proved that no feature showed Gaussian distribution
characteristics, as evidenced graphically by the plots of feature distri-
butions in Fig. 2. Therefore, the final feature set was composed of 97
non-normally distributed syscalls.

4.2. Concept drift detection

The initial period selected for concept drift detection was the second
semester of 2011. As this study compares the performance of two
timestamps for concept drift detection and handling, it was critical to
select a period where effective models could be induced for both time-
stamps. Thus, this period was preferred as it provided enough data to
build effective classification models for both timestamps (i.e., accuracy
> 95%). Data from prior periods were discarded and not further
analyzed. Random Forest classification models were induced using the
whole feature set (i.e., 97 syscalls) and the class labels of the samples
corresponding to each timestamp.

The most relevant features of the classification models were selected
using the permutation feature importance technique (i.e., feature se-
lection). In our experimentation, 500 permutations per feature were
used, which is significantly over the empirically recommended quantity
for results’ stability (Altmann et al., 2010). From the obtained results,
only the features that showed positive mean importance on the initial-
period model for each timestamp were selected and ranked in
descending order of importance. The following results were obtained for
each timestamp:

e Last modification timestamp: 32 features were found important from
the whole feature set (i.e., 97). This selected feature set is referenced
as initial-Im-set. The data set for this period was composed of 9,288
samples (i.e., 6,916 legitimate apps and 2,372 malware apps), and
the accuracy of the RF classification model on the testing set was
0.9870.

Expert Systems With Applications 206 (2022) 117200

o First seen timestamp: 17 features were found important from the
whole feature set. This selected feature set is referenced as initial-fs-
set. The data set for this period was composed of 2,677 samples (i.e.,
2,124 legitimate apps and 553 malware apps), and the accuracy of
the RF classification model on the testing set was 0.9859.

After feature selection, the resulting feature sets were used to build
one-class anomaly detection models using the Isolation Forest algorithm
(i.e., 300 estimators per model). As a result, for each class (i.e., malware
and benign) in each timestamp-related data set, a one-class anomaly
model was generated, using the corresponding feature set as model
features (i.e., initial-hm-set or initial-fs-set). Then, the malware and
benign data belonging to posterior time frames were split into 6 months
periods (i.e., from 2012 to 2020) and used as testing sets for each cor-
responding timestamp-class model. Besides, for every timestamp-class
combination, 3 anomaly models were induced using distinct subsets of
features from the important feature sets (i.e., best 5 features, best 10
features, and all features).

The accuracy metrics of all the induced anomaly models on their
respective testing sets were retrieved. The results are provided in Fig. 3.
The line graph on the left shows the results related to the last modification
timestamp, while the line graph on the right provides the data related to
the first seen timestamp. The 6 anomaly models generated for each
timestamp are reported with different colors and line styles. The color
reflects the data class (i.e., red for malware and green for benign apps).
The line style informs about the subset of features that was used to build
and test each specific anomaly model. More precisely, solid line is used
for all features, dashed line for the 10 most important features, and dotted
line for the 5 most important features. The horizontal axes provide the
test period, whereas the vertical axes provide the accuracy value
retrieved for each specific period. The horizontal axes are split into 6-
months periods. The .1 value attached to the year number informs
about data belonging to the first semester of that year (e.g., 2012.1),
whereas .2 reflects the data regarding the second semester (e.g.,
2012.2). As a result, six anomaly detection models were built and tested
per timestamp (i.e., three per class) encompassing the whole 2012-2020
time frame.

The anomaly detection results provided in Fig. 3 demonstrate the
existence of concept drift in the data, thus proving that the same set of
features and values are not useful in all time frames to recognize either
one of the classes. In this regard, according to the concept drift typology
proposed by Ramirez-Gallego et al. (2017), the following behaviors are
observed.

In benign applications, an incremental drift dominates. The number of
recognized observations slightly goes down over time to dip in the last
period in a sudden drift. However, this deep dip in performance might
have been caused by the scarcity of samples available for this last period
in the data set (e.g., over 1000 are available for 2020.1, whereas less
than 40 for period 2020.2). Thus, except for the last period, the observed
behavior is typical for an AI system with a static learning set tested on
data evolving over time, as in Luckner (2019).

The data drift is especially evident in malware data. The graphs de-
pict that the initial model, trained on any feature set, shows remarkably
distinct accuracy values from period to period, suggesting that the
importance of features for the classification models might have changed
significantly, thus evidencing concept drift. Both timestamps provide a
similar picture of the phenomenon, with the initial models performing
well on data belonging to closer periods and losing discriminatory power
over time. In 2016.1 and 2019.1, the initial set of important features
seems to become relevant again, reaching accuracy levels similar to
benign data, but losing its importance in the subsequent periods, thus
leading again to data drift and poor discrimination. It could be related to
a recurrent threat emerging in the initial, 2016.1 and 2019.1 periods.

In any case, the analysis of the line graphs in Fig. 3 evidences the
presence of concept drift in Android behavioral data, which is especially
pronounced in the malware case. In consequence, to build long-lasting

A. Guerra-Manzanares et al.

and robust Android malware detection solutions, the detection systems
must be able to adapt and learn from the changes in the data to keep high
and stable performance over time.

4.3. Concept drift handling

The proposed solution, detailed in Section 3.2.2, was applied to
KronoDroid data set, described in Section 3.1. As the data set is not a real
data stream and encompasses a long period, the data was divided into
time-constrained data chunks. This operation enabled us to simulate a
realistic scenario where the data flow is constant and in a great volume.
In this regard, the samples in each data chunk are likely to be similar
until drifting emerges in any of its forms. Besides, as the 6 months periods
used in Section 4.2 might be too wide to accurately detect emerging
concept drift, a shorter temporal constraint was established. Thus, a
maximum of 3 months of data were included in every chunk (i.e.,
referenced as year quarter, Q). In addition, to train the models, a fixed
chunk size of 4000 samples was established. In the case that the
incoming data for a specific time frame did not contain enough data to
cover the 4000 samples per chunk of the training phase, prior data were
used respecting the chronological order.

The data set used provided a large number of samples to cover the
years from 2011 to 2018, but there were not enough timestamped data
to cover effectively the requirement of 4000 samples per quarter in the
years before and after this time frame (i.e., 2008-2010 and 2019-2020).
Consequently, just the data from 2011.Q3 to 2018.Q2 were used in the
experimental setup, thus covering 7 full years of Android history.

Based on experimental testing, the values of the hyper-parameters
selected for our implementation were: 4000 samples per training data
chunk, pool size of 12 classifiers, and Random Forest models with 300
estimators as classification models. The dynamic ensemble selection
algorithm used was META-DES (Cruz et al., 2015). Isolation Forest al-
gorithm was used to induce the anomaly detection models. The data

Table 1
Data pre-processing results.

Preprocessing step Results

160 constant or zero-valued
31 highly correlated

0 normal

97 non-normal syscalls

Feature Variance Analysis
Feature Correlation Analysis
Feature Distribution Analysis
Final feature set

Feature: clock_gettime

Feature: mprotect

Expert Systems With Applications 206 (2022) 117200

balancing technique used was random oversampling.

Although no hyper-parameter optimization procedure was per-
formed, the selected hyper-parameters provided high and stable per-
formance. A different selection of hyper-parameters may yield similar
performance metrics as the solution is robust and allows certain degree
of flexibility in the selection of the hyper-parameters. The imple-
mentation was coded in Python programming language, leveraging the
functionality of scikit learn, imblearn and deslib libraries.

The performance of the proposed solution when the last modification
timestamp data was used is reported in Fig. 4, while Fig. 5 provides the
performance for the first seen timestamp data.

Fig. 4 provides the F1 score performance of the proposed solution,
using the provided hyper-parameters, and its comparison with two naive
solutions and the original algorithm. More precisely, the initial classifier
line (i.e., dotted grey line) provides the performance results of a classi-
fier generated using the data of the first chunk and tested on all the
subsequent chunks. This approach simulates the scenario where a
detection model is generated at a specific time (i.e., 3rd quarter of 2011
in this case) and is never updated, thus neglecting concept drift. As the
initial data chunk was significantly imbalanced towards the legitimate
class (i.e., 98% of the data points were benign apps), another naive so-
lution is provided as a reference (i.e., dashed grey line), using data from
the second chunk, where the data were more balanced (i.e., 65% legit-
imate, 35% malware). As can be observed, the two naive solutions,
which are never updated, yield poor detection performance as time
passes. On the contrary, the proposed solution (i.e., solid blue line)
provided a detection performance of over 90% in almost all periods,
showing robustness against concept drift, reacting, and updating its
knowledge when it emerged. Further, its performance was superior to
the performance shown by the original algorithm in most periods,
especially in the first ones.

As can be seen in Fig. 5, when the first seen timestamp is used, the
high, stable, and smooth performance line provided by the solution in
the previous case is not observed. The performance line performs sudden
dips and boosts that might have been caused by a general temporal
misplacement of the data which led to improper concept drift handling.
This timestamp does not seem as reliable as the last modification time-
stamp to locate the data samples in their correct period and, conse-
quently, the changes in data features do not emerge naturally but
artificially, likely caused by temporal displacement. Despite that, the
solution still shows good performance and adaptation over time.

It is worth noticing that, in this case, the horizontal axis starts and ends
a period later than in Fig. 4. This difference is due to the distinct temporal

Feature: epoll_ctl

12000 4 Benign
40007 12000 4 Malware
3500 4 10000 4

10000 4

& 3000 A

s 8000

® 8000

£ 2500

%.

5 6000

22000 6000

g ‘

3 1500 A 4000

4000
1000 -
20004 | | 2000 1
500 4 ‘
| ‘ |
: - : . - : - 01+ - . - - 0+ T - T :
0 2500 5000 7500 10000 12500 15000 0 500 1000 1500 2000 0 2 4 6 8

Number of syscalls

Number of syscalls

Number of syscalls

Fig. 2. Distributions of example features.

10

A. Guerra-Manzanares et al.

Timestamp: Last Modification

1.0 9
0.9 A
0.8 -
0.7 4
0.6
>
9
©
5 0.5
¥
9
<
0.4
0.31
—— Benign - 32
0.2 1 —— Malware - 32
——- Benign - 10
——- Malware - 10
01 Benign - 5
Malware - 5
0.0 — T T T T T T T T T T T T T T T T
SEPIT o o 9 s o> oY @ Gr AT AV o o o ot o7 oY
I NS E PN ENE R BN

Test period

Expert Systems With Applications 206 (2022) 117200

Timestamp: First Seen VT

— Benign - 17
4 ; —— Malware - 17
Benign - 10
Malware - 10
Benign - 5

- Malware - 5

N N N MR RN LN R MO TN RN) AR Q70 9 0 O

RS RS A S S BB I S S A A)

DDA AT AT AT AT AT AR
Test period

Fig. 3. Performance of the one-class anomaly detection models.

distribution generated by this timestamp, which allowed generating the
initial classifier on 2011.Q3 but not a test set for that period. Therefore, the
time series data is displaced one quarter with respect to Fig. 4. This fact
supports the aforementioned differences between these two timestamps
regarding the location of data samples within the historical timeline.

As can be observed in Fig. 5, when the performance of the proposed
solution is compared with the other approaches, it significantly out-
performs the initial classifier and the naive solution, reaching high-
performance values in almost all periods. Again, it outmatches the
performance of the original algorithm, especially in the first periods.
Despite that, when the first seen timestamp is used, the performance of
the system is less smooth and remarkably lower than when the last
modification timestamp is used. More precisely, the displacement of data
samples over the historical timeline overrides the emergence of a natural
concept drift, thus hindering its proper handling.

In conclusion, the usage of single period classifiers, applied over time
with no update, proved to be inefficient and showed poor and degenera-
tive performance as time passed. These solutions become obsolete and
ineffective in a short time span. Contrarily, the proposed solution is robust
and resilient to changes in data over time, especially when the last modi-
fication timestamp is used, keeping high-performance metrics on Android
malware detection under the challenge of constant data evolution. These
results also demonstrate that system calls can be used to achieve effective,
long-lasting, and robust Android malware detection even when concept
drift threatens the performance of the detection system.

4.4. Concept drift characterization

The following paragraphs explore the concept drift phenomenon
using several instruments for its characterization. More specifically, the
impact of the pool size and the evolution of the importance of features are
analyzed.

4.4.1. Impact of the pool size

The analysis of the proposed solution according to the number of
classifiers present in the pool of classifiers brings some interesting
findings on the concept drift analysis and the modeled data.

Different pool sizes for the proposed solution, ranging from 2 to 20
classifiers, were assessed. The experiment was repeated 20 times per
pool size and the results were averaged. In this regard, Fig. 6 provides
relevant information regarding the experimental results such as the

11

average lifetime of a classifier (i.e., how long, on average, a classifier was
in the pool before it was removed), the average lifetime of the classifiers
from the initial pool (i.e., in what period, on average, all the classifiers
created in the first period were removed), and the quality of the new
classifiers (i.e., how many times, on average, the most recent classifier
was the best performer) calculated for both timestamps. The color rib-
bons surrounding the lines in Fig. 6 provide the standard deviation for
each reported value.

As can be observed, regardless of the timestamp, the average lifetime
of a classifier inside the pool is linear according to the pool size in a ratio
of 0.8-0.9. This fact shows that the oldest classifier in the pool is not
always the one removed when the poorest model is purged from the
pool. Recurring threats might cause old classifiers to perform relatively
well in later periods. Furthermore, the results show that regardless of the
pool size, a single classifier is never the best performer for more than 5
periods, thus demonstrating the dynamism of the phenomenon.

More interestingly, the number of periods in which the newest
classifier is the best slightly decreases when the pool size increases. As
can be observed, in all models the number of times a classifier is the best
performer is different from 1. This shows that there are periods where an
older model is repeatedly the best performer and suggests that there
might be gaps between periods where the same classifier is the best
performer, thus reinforcing the existence of concept drift in the analyzed
data. Besides, it should be noted that newly created classifiers are valid
for a longer time for the first seen timestamp than for the last modification
timestamp. Hence, natural concept drift handling seems to generate
more specific and better classifiers with reduced lifetimes, as shown in
Fig. 4, whereas misplaced data generate more generic and worse
performer classifiers, but with longer lifetimes, as displayed in Fig. 5.

In the case of the last modification timestamp, the classifiers from the
initial pool are always removed as soon as possible (i.e., in the first S
periods, where S refers to the pool size). This shows that the initial data
cannot be used effectively to discriminate new data, so the related
classifiers are rapidly removed. This observation concurs with the results
obtained on the anomaly detection models (see Fig. 3). For the first seen
timestamp, the lifetime of the initial pool substantially increases for
seven and more pool components. This suggests that the knowledge
from the initial periods is useful for later periods, which might be caused
by a general misplacement of the data samples along the timeline,
provoking artificial drift in the data.

Although this thorough analysis yielded relevant insights about the

A. Guerra-Manzanares et al.

0.6 14

0.5

F1 score

0.4
0.3
0.2

—— Proposed Solution
014

Initial classifier
-~ Naive solution
-~ Base Algorithm

Expert Systems With Applications 206 (2022) 117200

0.0
1103 1104 1201 12Q2 12Q3 1204 13Q1 13Q2 13Q3 1304 14Q1 14Q2 14Q3 14Q4 15Q1 15Q2 15Q3 1504 16Q1 16Q2 16Q3 16Q4 17Q1 17Q2 17Q3 17Q4 18Q1 18Q2
Time period

Fig. 4. Proposed solution performance using the last modification timestamp.

impact of the pool size on concept drift and data modeling, it did not
provide any hint about the optimal pool size, a relevant question that
remains unsolved. The following paragraphs address this issue.

Fig. 7 shows the classification results (i.e., F1 score) obtained using
the proposed solution with pools of various sizes. The usage of boxplots
enables us to easily compare the distributions of the classification results
for distinct pool sizes. The dark blue boxplots provide the results for the
last modification timestamp while the light blue boxplots provide the
distributions of the classification results for the first seen timestamp. The
body of the boxplots reflects the range where the central 50% of data is
located, also referenced as interquartile range (IQR). The IQR is calcu-
lated as IQR = Q3 - Q1, where Q3 and QI are the 75% and 25% per-
centiles, respectively (i.e., the borders of the box). The orange line
crossing the bodies references the median while the average is provided

1.0
0.9
0.8
0.7
0.6

0.5

1 score

0.4

0.3

0.2

Proposed Solution
Initial classifier

=~ Naive solution
Base Algorithm

0.1

by the red rhombus. Outliers or extreme values are reported as grey dots,
located further than the minimum and maximum whiskers which are
calculated as minimum = QI — 1.5 * IQR and maximum = Q3 + 1.5 *IQR.

The boxplots in Fig. 7 reflect that even though the average quality
diminishes for larger pools in both timestamps, in general, the pool size
does not seem to influence substantially the classification quality.
However, the pool size of 12 classifiers for the last modification time-
stamp shows distinctive properties. First, the average and median values
are nearly the same, defining a relatively symmetrical distribution. Thus,
the deviations of all terms from the median cancel out. This distribution
is different from the other distributions, which are skewed, thus making
the median a better central measure than the average and relating to the
existence of extreme values. Second, the number of outliers in the dis-
tribution is minimal. The other pool sizes generated classifiers with

0.0
1104 1201 1202 1203 1204 1301 1302 1303 1304 14Q1 14Q2 14Q3 14Q4 15Q1 1502 1503 15Q4 16Q1 16Q2 16Q3 16Q4 17Q1 17Q2 17Q3 17Q4 18Q1 18Q2

1803

Time period

Fig. 5. Proposed solution performance using the first seen timestamp.

12

A. Guerra-Manzanares et al.

worse and more spread results. Third, even though the pool size of 13
shows similar properties, the whiskers for the pool size of 12 are shorter,
thus concentrating the data in a shorter range, with less variability.
Besides, as a smaller number of classifiers is needed, it is a more efficient
approach than the pool size of 13 components. As a result, all these
observations make the pool size of 12 the preferred option for optimal
results.

As can be seen in Fig. 7, in the case of the first seen timestamp, the
obtained results for all pool sizes are remarkably worse than for the last
modification timestamp.

The combination of these results with the previous findings from
Fig. 6 enables us to confirm that the system relied excessively on old
classifiers when using the first seen timestamp. Two aspects that stress it
are the delay in replacing the initial pool and the extended lifetime of the
classifiers. Due to the discretionary nature of the generation of the first
seen timestamp, which depends on users proactive submissions, it seems
to lag behind the last modification timestamp unpredictably, thus being
prone to displace the samples within the historical timeline and provide
arelatively inaccurate temporal location. Therefore, the obtained results
suggest that the first seen timestamp provides a less realistic approxi-
mation to the real concept drift and, consequently, a less accurate so-
lution and characterization of it.

Based on these results, the following experiments were performed
using the pool size of 12 components and the last modification
timestamp.

4.4.2. Evolution of features importance

The permutation feature importance technique was used to analyze
the evolution of the importance of features over time, thus enabling to
characterize concept drift. The procedure and main results of this stage
are explained as follows.

For each period P;, the best classifier was selected according to the
results obtained in Section 4.3 and detailed in Fig. 4. The permutation
feature importance technique applied to the classifier was calculated
using Eq. (2) with F1 score as loss function. The importance was calcu-
lated separately for three test sets (i.e., time horizons). The first set was
the subsequent period to P;, thus P;.;. The second set consisted of two
successive periods, U}fﬁrl P;, and the third set contained the four sub-
Ut
thus corresponding to three, six, and twelve months data horizons. The
results were calculated for all possible periods of the data set in the range

sequent periods, P;. As defined, the sets were built incrementally,

Expert Systems With Applications 206 (2022) 117200

Py,..,Py_4.

The usage of three incremental test sets enabled us to observe how
the importance of features varied in short, medium, and long-term time
horizons. In this regard, Fig. 8 provides the distributions of feature
importance using boxplots, calculated for all periods and including all
syscalls that reported a non-null importance in at least one period. The
box color indicates the time span or horizon (i.e., darker colors reference
longer time-frames). The orange line crossing the body indicates the
median and the green triangle provides the average value. The hori-
zontal axis informs about the system call name, while the vertical axis
reflects increasing scores of permutation feature importance (i.e., a
larger score directly relates to greater importance).

The results provided in Fig. 8 were obtained from 20 tests of 500
permutations each. Even though the results slightly varied among iter-
ations, the main findings described in the following analysis were
common for all tests.

As can be observed in Fig. 8, no feature was found useful or important
in all tests as all boxplots start near the zero value. A fact that stresses the
existence of concept drift. More interestingly, based on these results
three types of features can be distinguished. The first type of features
includes those features that are not useful in any time horizon like
getgid32 or restart syscall. These features might have provided a low
importance score in some periods due to the stochastic nature of the
technique or a non-random positive importance but with a negligible
impact on the task. The second group of features is related to features
that are more important in longer time frames (i.e., medium and long
term) than in the short-term. These features are not very good at
recognizing sporadic threats, but they constitute a solid base in a time-
extended threat detection system. Features like clock gettime and flock,
which lie inside this category, show a relatively stable discriminatory
power over time. Lastly, the third type of feature shows the opposite
situation, the feature is a relatively good discriminator in the short term
but is not as useful in longer time frames. Due to the larger number of
distinct threats present in longer time frames (i.e., more families and
malware variants), these features are not so useful for overall discrimi-
nation as in the short time frame, where a smaller variety of threats is
present. Consequently, these features might work well to distinguish
specific malware families. Features such as write or SYS_ 317 are included
in this category.

To perform a deeper analysis of the importance of features for spe-
cific recognition tasks, the permutation feature importance was calcu-
lated using specificity and recall as loss functions. The results for

31 —— New classifier lifetime - first seen
30 —— New classifier lifetime - last modification
Times same classifier is the best - first seen
2 —— Times same classifier is the best - last modification
28 Times new classifier is the best - first seen -
27 - —— Times new classifier is the best - last modification -
26 Initial pool deleted - first seen
2 be — Initial pool deleted - last modification
24 i i -
23 - - - S .

Average value

1 12 13 14 15 16 17 18 19 20
Pool size

Fig. 6. Classifier pool statistics for both timestamps.

13

A. Guerra-Manzanares et al.

specificity provide information about important features to recognize
benign software, whereas for recall, also called sensitivity, they describe
important features for the malware detection task.

The obtained results are depicted in Fig. 9, showing features with
positive importance in benign and malicious software recognition tasks
and their evolution over time. The presentation is limited to features
with positive mean importance estimation obtained using Eq. (2) and
that, for each task, were found in the top 3 most important features in
any period. The horizontal axis provides the timeline, split into quarters
or periods. Regarding the vertical axis, the color relates to specific fea-
tures, while the colored areas (i.e., vertical range) in each stacked bar
provide the importance score of the specific features relative to the total
importance of each specific period of time (i.e., the total importance of a
period is the sum of the importance scores of all the important features
in that period). Consequently, the larger the vertical range or area
spanned by a feature in a bar, the greater the importance of the feature
in the period.

In the case of benign software recognition, presented in Fig. 9a, the
importance of features appears to be locally stable. Several features like
read and mprotect have similar influence for extended periods of time (i.
e., from 2011-Q4 to 2014-Q2 in the case of read and from 2012-Q1 to
2017-Q1 in the case of mprotect). Besides, quarters with clearly
outstanding features are rare (e.g., 2011-Q4, 2017-Q2). So, despite that
some trends can be spotted, with some features gaining and others losing
importance in some periods of time (e.g., SYS_310 increases from 2016-
Q1 to 2017-Q1 and flock increases from 2016-Q1 to 2018-Q1), the
overall picture shows stability and that the same set of features is rele-
vant in all time frames with no distinctive changes in relative influence
and no new important features emerging over time (i.e., the bars have
either a small portion of grey area or no grey area, meaning that most of
the important features for each period are included in the bars).

The results are drastically different for the malware recognition task.
Fig. 9b shows the changes in feature importance calculated for the recall
function. As can be noticed, for most quarters, the dependencies
observed in a specific period are not repeated in the following periods.
Besides, even when a feature shows an extremely high importance in one
period (e.g., pread in 2014-Q2), no consistency is observed and the
importance of the feature dramatically decreases in the next periods.
The only remarkable exception is clock gettime feature, which is a very
important discriminatory variable for several years (i.e., from 2012-Q3

Expert Systems With Applications 206 (2022) 117200

to 2015-Q3). However, even in this case, there are quarters in this
extended time frame where the feature loses completely its discrimi-
natory power for malware detection (i.e., from 2014-Q2 to 2015-Q1).

Based on these observations, it is worth analyzing how two relevant
features, clock gettime and pread, were represented in the time horizon
analysis performed previously. In this regard, Fig. 8 shows that clock -
gettime, the feature found important for an extended period of time, is
more important for the medium and long-term time horizons than in the
short-term. In contrast, pread, the feature that was found critically
important for a single period, obtains similar results in all horizons.
Therefore, the horizon analysis supports the previous observations. In
any case, it should be stressed that any importance score (i.e., local or
periodical) influences all three horizons, but that the relationship among
the levels gives additional information about the character of the
importance.

Another issue observed in the malware recognition case is the exis-
tence of periods where the total importance of the features included in
the bar is far from reaching the top (i.e., 2014-Q4, 2018-Q2). In those
periods, none (e.g., 2014-Q4) or few of the included features (e.g., 2018-
Q2) were found important for the malware recognition task. In the
former case, it suggests that the set of features was not large enough to
model all malware types observed in the data, whereas in the latter case,
new features, not important in other periods, emerged as important.

Finally, even though important features seem to vary dramatically
among quarters for the malware recognition task, some general patterns
can be spotted. For instance, as mentioned before, clock_gettime is criti-
cally important from 2012-Q2 to 2015-Q2 but not so much after (i.e.,
more recent years). The internet-related system calls (i.e., socketpair,
recvfrom, setsockopt and getsockopt) appear to have more importance in
the recent years, from 2015-Q4 to 2017-Q3. More interestingly, the bars
from 2012-Q1 to 2016-Q1 show clear dominance of small subsets of
features (i.e., mainly clock gettime), whereas in the latter years, the bars
are composed of more features, looking more similar to the bars of the
benign recognition task. In this regard, it is worth noting that, when
comparing Fig. 9a with Fig. 9b, the segmentation of the bars is a major
difference between them. Specifically, for the benign recognition task,
the bars are dense, composed of many features, and show stability (i.e.,
the same set of features shows similar importance over years). On the
contrary, the bars for the malware recognition task are mostly composed
of a small subset of features, showing clear dominance of some of them

1.0

0.9

08

0.6

0.1

mmm Last Modification timestamp
First Seen VT timestamp

i

2 3 4 5 6 7 8 9 10

1 12 13 14 15 16 17 18 19 20

Pool size

Fig. 7. Classification performance boxplots for both timestamps.

14

A. Guerra-Manzanares et al. Expert Systems With Applications 206 (2022) 117200

0.07
= 3 months Horizon
EEm 6 months Horizon
Il 12 months Horizon

core

0.04

Permutation feature importance

0.02 1

0.01

| o Y !
A
0.00 4 Ji . b L [T] W [I L JE 1L e e 2yl 3t o ye 48 A

N @ A X N Y Xt
‘&&‘&1@&1 W ‘9\@\ 0‘\“ o Q‘c‘- o @ \°$Z¢ & ‘(\a" «\a"o‘z“ o w‘z ¥ é\sv@!o 9,‘\ ‘56 \s?-e‘t\e?fe* ‘_eb (\"“ 656(;2‘(:8 \zzv d\o“ ‘(@s\;&;‘\@ﬁ
o ¥ W & @ %

q@““:e

System call

0.04 1

0.03 1

Permutation feature importance score

0.02 4

0.01

0.004 vl WL L il Jodll —_ b ool IL n A
o gq 3t o &0 e and e* D O 20 & @ Loy o® w400 400 401 530 sk a® Al »2 02 3> 0 39 5O ,p0 L6l

Qo soc*" <“ ‘\\361@4 ‘;Q:\}/ <o “° SO s I S 09 COATENSME NI IS NI NI NN ,g(sf’dsf’g(sf’g(sf’
Ca NS ;- o ge @s o

&7

S V_gw w
0 @

System call

Fig. 8. Boxplots providing feature importance distributions calculated for short, medium and long-term time horizons.

15

A. Guerra-Manzanares et al.

Relative feature importance

Relative feature importance

Expert Systems With Applications 206 (2022) 117200

Performance metric: Specificity - TNR

getuid32
geteuid32
kill
getpriority
pret!
sigaltstack
read

write

dose.
getpid
munmap
mprotect
ioct!
writey

fsync
fdatasync
getdents6d.
Iseek

mmap2
fstatfs64
statfs64
sigaction
rt_sigprocmask
socketpair
recvfrom
setsockopt
getsockopt
sendmsg
sched_yield
sysinfo
epoll_cti
dock_gettime
gettimeofday
futex

gettid

pread
SY5_306
SYS_310
SY5_315
sY5_317
SYS_329
SY5_336
5Y5_339
SYS_340
Others/None

Q Q2 Q3

2011

2014 2015 2016 2017 2018
Time (quarters)

(a) Specificity

Performance metric: Sensitivity - TPR
m— getuid32
getpriority

pret!
sigaltstack
read

write
dose
getpid
munmap
mprotect
foct!
writev
flock
dup
fsync
fdatasync
getdents64
Iseek
mmap2
fstatfs64
statfs64
sigaction
t_sigprocmask
socketpair
recvfrom
setsockopt
getsockopt
sendmsg
sched_yield
sysinfo
epoll_cti
dock_gettime
gettimeofday
itex

gettid
pread
5Y5_306
SYs_310
SY5_315
sY5_317
SYS_329
SYS_336
SY5_339
SY5_340
Others/None

(A LI RR R TNRR D]
2

Q2 Q3 &4 Q1 Q2 3

2011

2014 2015 2016 2017 2018
Time (quarters)

(b) Recall

Fig. 9. Feature importance calculated quarterly for specificity (a) and recall (b) tasks.

16

A. Guerra-Manzanares et al.

over the rest. Consequently, the malware recognition task appears to be
significantly more complex and changing more rapidly than the benign
software recognition task.

To sum up, in this section we performed a thorough analysis of the
evolution of the importance of relevant features. This analysis provides
relevant insights about the data evolution, assisting to characterize
concept drift which, in turn, can help to understand malware changes
and their direction to design and implement better detection systems.

5. Discussion

The phenomenon of concept drift in Android malware detection has
been neglected by most of the specialized research in the domain, which
has overlooked the degenerative impact of time in the machine learning-
based malware detection systems. The reduced number of studies that
considered the impact of time in their detection systems proposed so-
lutions to address the issue mainly based on static approaches (i.e., API
calls) and did not provide any characterization of the phenomenon.

To the best of our knowledge, the solution proposed in this study is
the first to tackle the concept drift issue in Android malware using dy-
namic features and achieving long-term high performance. The previous
solutions focused on static features (i.e., API calls) and spanned shorter
time frames. In this regard, DroidEvolver (Xu et al., 2019) used API calls
as features and obtained significant results in a 6 year-long time frame (i.
e., 2011-2016), outperforming MaMaDroid (Onwuzurike et al., 2019), a
prior solution. As shown in Fig. 10, the solution proposed in this study
outperforms the state-of-the-art solution, DroidEvolver, both in time and
detection performance (i.e., F1 score). More specifically, when the
training period is excluded (i.e., 2011), our proposed solution achieves
an average F1 score of 94.05% in the 2012-2016 time frame, whereas
DroidEvolver averages 89.56% in the same period of time. When the
longest period is considered, from 2012 to 2018, our proposed solution’s
average F1 score increases to 94.65%. To assess the statistical signifi-
cance of the difference between both solutions, Wilcoxon’s signed-rank
test for paired scores (Japkowicz & Shah, 2011) was used. The results
confirmed that our solution, in the time frame from 2012 to 2016,
performs significantly better than DroidEvolver at the confidence level
of 0.05 (p-value = 0.048). However, as our solution could not be trained
with full 2011 data (i.e., just samples from Q3 and Q4), the statistical
significance of the results could not be confirmed at confidence level
0.05 (p-value = 0.197) when the training period was included (i.e.,
2011-2016).

Besides, is it worth noting that the data features used to build our
approach are distinct from the ones in the related literature, including

10
0.9
0.8
0.7

0.6

0.4
0.3
0.2

0.1

Expert Systems With Applications 206 (2022) 117200

DroidEvolver. DroidEvolver, as most related solutions, uses API calls (i.e.,
static features), whereas our proposed solution uses system calls (i.e.,
dynamic features). In addition, none of the previous studies that dealt
with Android concept drift provided any characterization of it, which
hinders the interpretability of the results and the comprehension of the
phenomenon. The solution proposed in this study has been proved
effective to address concept drift in Android malware detection and
characterize it.

The related solutions focused on F1 score performance, not providing
any other performance metric. As a result, the comparison between
solutions is restricted to the F1 score metric. For the sake of complete-
ness and better comparison of other solutions with this work, a summary
of other relevant performance metrics of our proposed solution is pro-
vided as follows. The proposed solution averaged 95.17% precision,
94.14% recall, and 89.49% specificity in the 2012-2018 time frame.
These metrics emphasize the goodness of the proposed solution to
effectively tackle concept drift while keeping high-performance metrics
for the whole study period.

A distinctive point of this study is the evaluation of distinct time-
stamps to date the apps and the assessment of their impact on concept
drift detection and handling. The KronoDroid data set enabled the usage
of distinct timestamps on our evaluation, thus providing results based on
relevant timestamps (i.e., last modification and first seen). To the best of
our knowledge, no previous study in the field has evaluated distinct
timestamps for concept drift detection and handling. More precisely, the
concept drift-related studies in the literature do not usually provide
details about the used timestamp or justify the usage of a specific
approach. But, if they do, they do not assess the reliability of the time-
stamp. In this study, we address such issues by providing and comparing
two relevant and useful timestamps for Android malware detection
concept drift handling. The systematic usage of an internal timestamp (i.
e., last modification) rather than external timestamps (e.g., first seen) has
proved to be reliable and accurate to handle and characterize the phe-
nomenon. Besides, the usage of the last modification timestamp may
help to avoid errors and data misplacement caused by human-related
techniques (e.g., user submission delay), thus enhancing historical ac-
curacy. As shown in Section 4.3, the proposed solution using the last
modification timestamp proved to be more accurate and reliable than
when the first seen timestamp was used to locate applications in the
Android historical timeline, thus generating a more effective detection
solution.

The features used in this study (i.e., system calls) have demonstrated
great effectiveness and consistency to deal with concept drift. In this
regard, just a small subset of the whole feature set was used to build an

—— MaMaDroid

—— DroidEvolver

—— Proposed solution
Mean 2012-16 - MaMaDroid
Mean 2012-16 - DroidEvolver
Mean 2012-16 - Proposed solution

0.0
2011 2012 2013 2014

2015 2016 2017 2018

Fig. 10. Comparative performance of the proposed solution with the state-of-the-art solutions.

A. Guerra-Manzanares et al.

effective solution (i.e., 97 features). The system calls feature set is
consistent, as system calls are rarely modified at kernel level which
provides long-time stability for the feature set. This is radically different
from the changing nature of API calls, which are prone to suffer constant
modifications and the addition of new features on every new Android
framework release. This constant modification of the features generates
the need to constantly update the feature set to keep the models upda-
ted, which may end up in an increasingly large, ever-growing feature set.
For instance, in DroidEvolver, the API calls feature set grew from 14,327
features in 2011 to 52,001 features in 2016 (Xu et al., 2019). On the
contrary, our solution kept the same feature set constant, composed of
just 97 features, for a longer period of time (i.e., 2011 to 2018).
Furthermore, the usage of highdimensional feature sets may harm the
performance of machine learning-based detection systems, a phenome-
non called the curse of dimensionality (Aggarwal, 2015). Therefore, our
proposed solution simplifies the learning process, based on a small
subset of features, avoiding high-dimensional data issues in the long run.
As a result, although the acquisition of dynamic features is generally
more complex and time-consuming than the collection of static features,
they have proved to be more reliable, efficient, robust, and consistent
over time, thus enabling the generation of a more effective detection
system.

Finally, our characterization results demonstrate that the relevant
system calls to discriminate benign applications do not show rapid
variations in consecutive periods, whereas dominant feature sets for
malware samples suffer radical changes. These results may help mal-
ware analysts get a general idea about the evolution of benign and
malware samples and understand the reason behind concept drifts, thus
improving the trust of the experts in the learning models. However,
despite the advantages shown by system calls to generate an effective
detection model, an expert may not derive a clear understanding of what
type of app behavior is induced by each feature as an individual system
call can be associated with different system functions. Static features
such as permissions or API calls can benefit more from our character-
ization approach due to a more comprehensible mapping between these
features and the behavior of the application. We consider the application
of our methods to those features as one of the main directions in our
future work.

6. Conclusions

The evolving nature of Android malware has been neglected by the
majority of the machine learning-based detection methods proposed in
the related literature, thus disregarding the degenerative impact of
feature changes over time (i.e., concept drift). The reduced number of
solutions that considered the impact of the time variable focused on the
usage of API calls as input features. API calls can be used effectively to
discriminate malware and provide a relatively good representation of its
behavior. However, system calls, the most used dynamic features for
Android malware detection, which allow capturing the real behavior of
the apps at run-time, and are robust to obfuscation and encryption
techniques, have not been considered in concept drift solutions.

This experimental study proposes a method that uses system calls
data gathered on real Android devices to detect, characterize, and
handle Android malware concept drift effectively.

Our proposed method minimizes model retraining and uses a pool of
classifiers trained with recent data to adapt effectively to malware
evolution. The experimental results evidence that system calls can
effectively discriminate malware in the presence of concept drift using
the proposed method, providing high-performance metrics for an
extended period of time. More precisely, in a 7 year-long test, the pro-
posed solution averaged 94.65% F1 score, 95.17% precision, 94.14%
recall, and 89.49% specificity, proving the goodness of our solution to
adapt and react to the concept drift issues that affect Android malware
detection while keeping high-performance metrics. The proposed solu-
tion outperforms the state-of-the-art solutions for Android malware

18

Expert Systems With Applications 206 (2022) 117200

detection under concept drift conditions.

A critical issue to deal effectively with concept drift is the timestamp
used to date the apps. In this study, distinct timestamps are analyzed and
compared regarding concept drift-related performance. To the best of
our knowledge, this is the first study on Android malware detection to
perform such a comparison.

Lastly, the proposed solution allows the characterization of the
changes in the data by analyzing the important features on the best
classifiers. The observation of concept drift in different time horizons
was used to describe the important features and determine their evo-
lution and usefulness over time. In this regard, some features were found
to have a prolonged (i.e., long-term) influence on the model perfor-
mance, whereas others showed an impact limited to the short term (i.e.,
specific periods). This fact evidenced the existence of concept drift and
provided insights into its character. More specifically, when the mal-
ware recognition task was analyzed (i.e., recall), it was observed that a
small number of features had importance in each period, showing sig-
nificant concept drifts and rapid feature importance changes. These facts
were not observed for the benign software detection task (i.e.,
specificity).

The usage of the proposed method in combination with other rele-
vant data features for Android malware detection, such as security per-
missions, remains part of our future work.

CRediT authorship contribution statement

Alejandro Guerra-Manzanares: Conceptualization, Methodology,
Software, Validation, Investigation, Visualization, Writing — original
draft, Writing — review & editing. Marcin Luckner: Conceptualization,
Methodology, Investigation, Visualization, Writing - original draft,
Writing — review & editing. Hayretdin Bahsi: Conceptualization,
Writing — review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Aggarwal, C. C. (2015). Data mining: The textbook. Springer.

Aghakhani, H., Gritti, F., Mecca, F., Lindorfer, M., Ortolani, S., Balzarotti, D., et al.
(2020). When malware is packin’heat; limits of machine learning classifiers based on
static analysis features. In Network and Distributed Systems Security (NDSS) Symposium
2020.

Allix, K., Bissyanéle, T. F., Klein, J., & Le Traon, Y. (2015). Are your training datasets yet
relevant? In International Symposium on Engineering Secure Software and Systems (pp.
51-67). Springer..

Altmann, A., Tolo si, L., Sander, O., & Lengauer, T. (2010). Permutation importance: A
corrected feature importance measure. Bioinformatics, 26, 1340-1347. https://doi.
org/10.1093/bioinformatics/btq134

Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi, F., Wressnegger, C.,
Cavallaro, L., & Rieck, K. (2020). Dos and don’ts of machine learning in computer
security. arXiv preprint arXiv:2010.09470, .

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. (2014).
Drebin: Effective and explainable detection of android malware in your pocket. In
Ndss, 14, 23-26.

Barbero, F., Pendlebury, F., Pierazzi, F., & Cavallaro, L. (2020). Transcending transcend:
Revisiting malware classification with conformal evaluation. arXiv preprint arXiv:
2010.03856, .

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32. 10.1023/ A:
1010933404324.

Broersma, M. (2020). Android hit by ‘incredibly sophisticated’ malware. https://www.
silicon. co.uk/workspace/android-sophiticatedmalware-344222.

Cai, H. (2020). Assessing and improving malware detection sustainability through app
evolution studies. ACM Transactions on Software Engineering and Methodology
(TOSEM), 29, 1-28.

Cai, H., Meng, N., Ryder, B., & Yao, D. (2018). Droidcat: Effective android malware
detection and categorization via app-level profiling. IEEE Transactions on Information
Forensics and Security, 14, 1455-1470.

Chebyshev, V. (2021). Mobile malware evolution 2020. https:// securelist.com/mobile-
malware-evolution-2020,/101029/.

A. Guerra-Manzanares et al.

Cruz, R. M., Sabourin, R., Cavalcanti, G. D., & Ren, T. I. (2015). Metades: A dynamic
ensemble selection framework using meta-learning. Pattern recognition, 48,
1925-1935.

Elwell, R., & Polikar, R. (2011). Incremental learning of concept drift in nonstationary
environments. IEEE Transactions on Neural Networks, 22, 1517-.

Fu, X., & Cai, H. (2019). In On the deterioration of learning-based malware detectors for
android (pp. 272-273). IEEE.

Guerra-Manzanares, A., Bahsi, H., & Nomm, S. (2021). KronoDroid: Time-based hybrid-
featured dataset for effective android malware detection and characterization.
Computers & Security, 110, 102399.

Goziiacik, O., & Can, F. (2020). Concept learning using one-class classifiers for implicit
drift detection in evolving data streams. Artificial Intelligence Review, URL:. https://
doi.org/10.1007/510462-020-09939-x. 10.1007/510462-020-09939-x

Guerra-Manzanares, A., Bahsi, H., & Nomm, S. (2019a). Differences in Android Behavior
Between Real Device and Emulator: A Malware Detection Perspective. In Proceedings
of the Sixth International Conference on Internet of Things: Systems, Management and
Security (IOTSMS) (pp. 399-404). IEEE.

Guerra-Manzanares, A., Nomm, S., & Bahsi, H. (2019b). Time-frame Analysis of System
Calls Behavior in Machine Learning-Based Mobile Malware Detection. In 2019
International Conference on Cyber Security for Emerging Technologies (CSET) (pp. 1-8).
IEEE.

Guerra-Manzanares, A., Nomm, S., & Bahsi, H. (2019c). In-depth feature selection and
ranking for automated detection of mobile malware. In Proceedings of the 5th
International Conference on Information Systems Security and Privacy - Volume 1: ICISSP
(pp. 274-283). INSTICC, SciTePress.

Hu, D., Ma, Z., Zhang, X., Li, P., Ye, D., & Ling, B. (2017). The concept drift problem in
android malware detection and its solution. Security and Communication Networks,
2017. https://doi.org/10.1155/2017/4956386

Japkowicz, N., & Shah, M. (2011). Evaluating Learning Algorithms: A Classification
Perspective. New York, NY, USA: Cambridge University Press.

Jordaney, R., Sharad, K., Dash, S. K., Wang, Z., Papini, D., Nouretdinov, 1., & Cavallaro,
L. (2017). Transcend: Detecting concept drift in malware classification models. In
26th {USENIX} Security Symposium ({USENLX}.

Kaspersky (2020). Mobile security: Android vs ios - which one is safer? https://www.
kaspersky.com/resource-center/threats/ android-vs-iphone-mobile-security.

Kaspersky (2021). Machine learning for malware detection. https: //media.kaspersky.
com/en/enterprise-security/Kaspersky-LabWhitepaper-Machine-Learning. pdf.

Ko, A. H., Sabourin, R., & Britto, A. S., Jr (2008). From dynamic classifier selection to
dynamic ensemble selection. Pattern recognition, 41, 1718-1731.

Lei, T., Qin, Z., Wang, Z., Li, Q., & Ye, D. (2019). Evedroid: Event-aware android malware
detection against model degrading for iot devices. IEEE Internet of Things Journal, 6,
6668-6680. https://doi.org/10.1109/J10T.2019.2909745

Liu, F. T., Ting, K. M., & Zhou, Z. H. (2012). Isolation-based anomaly detection. ACM
Transactions on Knowledge Discovery from Data, 6, 1-44. https://doi.org/10.1145/
2133360.2133363

Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., & Liu, H. (2020). A review of android malware
detection approaches based on machine learning. IEEE Access, 8, 124579-124607.

Lu, N., Zhang, G., & Lu, J. (2014). Concept drift detection via competence models.
Artificial Intelligence, 209, 11-28. URL: http://dx.1016/.

Luckner, M. (2019). Practical web spam lifelong machine learning system with automatic
adjustment to current lifecycle phase. Security and Communication Networks, 2019.
https://doi.org/10.1155/2019/6587020

Maimon, O., & Rokach, L. (Eds.). (2005). Data Mining and Knowledge Discovery Handbook.
A Complete Guide for Practitioners and Researchers. San Francisco, CA, USA: Springer.

Margara, A., & Rabl, T. (2018). Definition of data streams. In S. Sakr, & A. Zomaya (Eds.),
Encyclopedia of Big Data Technologies (pp. 1-4). Cham.

Microsoft (2020). Sophisticated new android malware marks the latest evolution of
mobile ransomware. https://www.microsoft.com/security/ blog/2020/10/08/
sophisticated droid-malware-marks-thelatest-evolution-of-mobile-
ransomware.

Mohd Razali, N., & Bee Wah, Y. (2011). Power comparisons of Shapiro-Wilk,
Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical
Modeling and Analytics, 2, 21-33.

Mutz, D., Valeur, F., Vigna, G., & Kruegel, C. (2006). Anomalous system call detection.
ACM Transactions on Information and System Security, 9, 61-93. https://doi.org/
10.1145/1127345.1127348

19

Expert Systems With Applications 206 (2022) 117200

Narayanan, A., Chandramohan, M., Chen, L., & Liu, Y. (2017). Context-aware, adaptive,
and scalable android malware detection through online learning. IEEE Transactions
on Emerging Topics in Computational Intelligence, 1, 157-175. https://doi.org/
10.1109/TETCI.2017.2699220

Narayanan, A., Yang, L., Chen, L., & Jinliang, L. (2016). Adaptive and scalable android
malware detection through online learning. In In 2016 International Joint Conference
on Neural Networks (IJCNN) (pp. 2484-2491). https://doi.org/10.1109/
1JCNN.2016.7727508

Onwuzurike, L., Mariconti, E., Andriotis, P., Cristofaro, E. D., Ross, G., & Stringhini, G.
(2019). Mamadroid: Detecting android malware by building markov chains of
behavioral models (extended version). ACM Transactions on Privacy and Security
(TOPS), 22, 1-34.

Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., & Cavallaro, L. (2019).
{TESSERACT}: Eliminating experimental bias in malware classification across space
and time. In 28th {USENIX} Security Symposium ({USENIX} Security 19) (pp.
729-746).

Rafter, D. (2021). Android vs. ios: Which is more secure? https://us.norton.com/
internetsecurity-mobile-android-vs-ios-whichis-more-secure. html.

Reddy, R., Swamy, M. K., & Kumar, D. A. (2021). Feature and sample size selection for
malware classification process. In ICCCE 2020 (pp. 217-223). Springer.

Ramirez-Gallego, S., Krawczyk, B., Garcia, S., Wozniak, M., & Herrera, F. (2017).

A survey on data preprocessing for data stream mining: Current status and future
directions. Neurocomputing, 239, 39-57. https://doi.org/10.1016/j.
neucom.2017.01.078

Ruiz-Heras, A., Garcia-Teodoro, P., & Sanchcz—Casado, L. (2017). ADroid: Anomaly-
based detection of malicious events in Android platforms. International Journal of
Information Security, 16, 371-384.

Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2010). RUSBoost: A
hybrid approach to alleviating class imbalance. IEEE Transactions on Systems, Man,
and Cybernetics Part A: Systems and Humans, 40, 185-197. https://doi.org/10.1109/
TSMCA.2009.2029559

Statista (2021a). Development of new android malware worldwide from june 2016 to
march 2020. https://www.statista.com/statistics/680705/ global-android-malware-
volume.

Statista (2021b). Distribution of leading android malware types in 2019. https://www.
statista.com/statistics/681006/share-of-androidtypes-of-malware.

Statista (2021c). Mobile operating system market share worldwide february 2021.
statcounter..

Suarez-Tangil, G., Dash, S. K., Ahmadi, M., Kinder, J., Giacinto, G., & Cavallaro, L.
(2017). Droidsieve: Fast and accurate classification of obfuscated android malware.
In In Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy (pp. 309-320).

Townsend, K. (2020). How smartphones have become one of the largest attack surfaces.
https://blog.avastcom/smartphones-and-increasingmobile-threats-avast.

Université du Luxembourg (2021). Androzoo - lists of apks. https://androzoo.uni.lu/lists.

Unuchek, R. (2018). Mobile malware evolution 2017. https://securelist.com/mobile-
malware-review-2017/84139.

Xu, K., Li, Y., Deng, R., Chen, K., & Xu, J. (2019). In Droidevolver: Self-evolving android
malware detection system (pp. 47-62). IEEE.

Yang, L., Guo, W., Hao, Q., Ciptadi, A., Ahmadzadeh, A., Xing, X., et al. (2021). CADE}:
Detecting and explaining concept drift samples for security applications. In 30th
{USENIX Security Symposium ({USENIX} Security 21).

Zhang, X., Zhang, Y., Zhong, M., Ding, D., Cao, Y., Zhang, Y., et al. (2020). Enhancing
state-of-the-art classifiers with api semantics to detect evolved android malware. In
In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security (pp. 757-770).

Zhao, L., Wang, J., Chen, Y., Wu, F,, Liu, Y. et al. (2021). Droidmfc: A novel android
malware family classification scheme based on static analysis. arXiv preprint arXiv:
2101.03965, .

Zhou, Y., & Jiang, X. (2012). In Dissecting android malware: Characterization and evolution
(pp. 95-109). IEEE. https://doi.org/10.1109/5P.2012.16.

Zyblewski, P., Sabourin, R., & Wozniak, M. (2021). Preprocessed dynamic classifier
ensemble selection for highly imbalanced drifted data streams. Information Fusion,
66, 138-154. URL: .org/.

Appendix 6

Publication VI

A. Guerra-Manzanares, M. Luckner, and H. Bahsi. Concept drift and cross-
device behavior: Challenges and implications for effective android malware
detection. Computers & Security, 120:102757, 2022

231

Computers & Security 120 (2022) 102757

Contents lists available at ScienceDirect

Computers
& S it

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Concept drift and cross-device behavior: Challenges and implications)
for effective android malware detection

Updates

Alejandro Guerra-Manzanares®*, Marcin Luckner®, Hayretdin Bahsi®?

2 Department of Software Science, Tallinn University of Technology, Estonia
b Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland

ARTICLE INFO ABSTRACT

Article history:

Received 25 October 2021
Revised 4 February 2022
Accepted 13 May 2022
Available online 19 May 2022

The large body of Android malware research has demonstrated that machine learning methods can pro-
vide high performance for detecting Android malware. However, the vast majority of studies underesti-
mate the evolving nature of the threat landscape, which requires the creation of a model life-cycle to
ensure effective continuous detection in real-world settings over time. In this study, we modeled the
concept drift issue of Android malware detection, encompassing the years between 2011 and 2018, using

Keywords: dynamic feature sets (i.e., system calls) derived from Android apps. The relevant studies in the literature
Concept drift have not focused on the timestamp selection approach and its critical impact on effective drift model-
Android ing. We evaluated and compared distinct timestamp alternatives. Our experimental results show that a

Malware detection
Android emulator
Real device
Smartphone
Mobile security

widely used timestamp in the literature yields poor results over time and that enhanced concept drift
handling is achieved when an app internal timestamp was used. Additionally, this study sheds light on
the usage of distinct data sources and their impact on concept drift modeling. We identified that dy-
namic features obtained for individual apps from different data sources (i.e., emulator and real device)
show significant differences that can distort the modeling results. Therefore, the data sources should be
considered and their fusion preferably avoided while creating the training and testing data sets. Our anal-
ysis is supported using a global interpretation method to comprehend and characterize the evolution of
Android apps throughout the years from a data source-related perspective.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Threats originating from mobile malware create significant se-
curity incidents (Palmer, 2018; Yaswant, 2021) as mobile devices
store an increasing amount of valuable data about individuals and
enterprises. Android is the dominant operating system (OS) in the
mobile OS market with a market share of 72% as of September
2021 (Statista, 2021). Due to its open nature and high prevalence,
Android devices are constantly targeted by cybercriminals. For in-
stance, according to Kaspersky, 98% of mobile banking attacks have
been launched against these devices (Kaspersky, 2020). Malware
spread remains a significant problem in Android OS despite the
implementation of countermeasures by Google (2021) and Android
original equipment manufacturers (OEMs) (Samsung, 2021). The
detection of mobile malware is a challenging task with the tradi-
tional signature-based techniques used by most antivirus software
due to rapid changes in the threat landscape and the emergence of
new malware types. Machine learning approaches are seen as com-

* Corresponding author.
E-mail address: alejandro.guerra@taltech.ee (A. Guerra-Manzanares).

https://doi.org/10.1016/j.cose.2022.102757
0167-4048/© 2022 Elsevier Ltd. All rights reserved.

pelling solutions to address this bottleneck, especially when zero-
day malware is considered (Fedler et al., 2013; Whitwam, 2021).

There exists a large body of research regarding the applica-
tion of machine learning to mobile malware detection (Sharma
and Rattan, 2021). However, the vast majority of the studies aim
to prove the superiority of the proposed machine learning-based
solutions on static data sets, neglecting the dynamism of the phe-
nomenon and the obstacles that are inevitable to face in real set-
tings (i.e., malware evolution and new trends). Such experiments
with static data sets can give initial insights about the feasibility of
machine learning algorithms to solve the problem but not deeper
application-oriented knowledge.

In an organizational setting, machine learning models are incor-
porated into continuous processes that require a sustainable data
analytics ecosystem. In this regard, a well-functioning data pipeline
should be established, model life-cycles should be carefully man-
aged (i.e,, creating, updating, or replacing the models) and inter-
pretation of model results should be shared among experts to gen-
erate trust between them and the machine learning models. Re-
sults could also be used for re-designing the model life-cycles if
needed. When the malware detection problem is reviewed from
this application perspective, for instance, considering the typical

A. Guerra-Manzanares, M. Luckner and H. Bahsi

setting of a malware scanner vendor, it is apparent that practition-
ers must solve various hindrances such as preventing the detri-
mental impact of variability in data sources on detection perfor-
mance and adapting the models to the ever-evolving threat land-
scape. Such relevant aspects cannot be handled by just optimizing
the learning models for a static data set.

A data analytics process addressing mobile malware detection
should consider the data pipelines that are fed from heteroge-
neous resources such as real devices of customers, honeypots,
threat intelligence feeds, and sandboxes. Dynamic features ob-
tained from the same sample may vary according to the data col-
lection environment (e.g., real device or emulated device), which
may potentially cause a degenerative impact on the learning mod-
els when the distinct data sources are not considered in the train-
ing and testing steps of the machine learning workflow (Guerra-
Manzanares et al, 2019a). In (Alzaylaee et al., 2017), emulator
and real phone issues are addressed using dynamically collected
API calls and intent filters as data features. A similar approach
focused on detection performance is used in Guerra-Manzanares
et al. (2019a,b). However, the data sets used in these studies are
too small and do not consider the changes in data over time, a sig-
nificant variable affecting the performance of malware detectors.
No other studies in the literature have taken data source variation
into consideration.

Malware behavior is prone to change over time due to the in-
trinsic evolving nature of the problem domain, revolving around
the constant attack and defense battle between malicious actors
and defenders. The possible transformation of legitimate samples
should not be underestimated either. Therefore, concept drift han-
dling should be integral to a solution aiming to provide continuous
effective detection. A phenomenon that has been addressed by a
limited number of proposed implementations (Cai et al., 2019; Xu
et al,, 2019; Zhang et al., 2020). Furthermore, the incorporation of
a reliable time feature into the data set, which is the centerpiece
of concept drift modeling, has not been analyzed nor discussed in
the related literature yet. The fundamental and challenging issue
regarding the definition of timestamp reliability within the context
of mobile malware detection must be addressed so that the times-
tamp that best grasps the behavior of malware and benign soft-
ware is utilized to model data drift effectively.

Acquiring knowledge from data is an iterative process between
the creation of a machine learning model and its analysis. The pro-
cess of malware detection necessitates the involvement of various
experts such as malware analysts. Thus, characterization of mali-
cious behavior via interpretability constructs can enhance human-
machine interaction and create a bidirectional feedback loop be-
tween experts and learning models.

In this paper, we deeply investigate a dynamic feature set de-
rived from Android apps (i.e., system calls) within a concept drift
model. More specifically, we explored the impact of data sources
by creating and comparing models induced from data sets col-
lected on real devices and emulators. Due to the central impor-
tance of timestamps to concept drift modeling, in addition to data
sources, we explored the effect of distinct timestamping options on
detection performance. We also performed characterization of con-
cept drift using a global interpretability method to shed more light
on the changes in malware and benign samples over the years. For
our experimental setup, the KronoDroid data set was used (Guerra-
Manzanares et al., 2021), which provides timestamped data en-
compassing all years of Android history (i.e., 2008-2020). We ap-
plied a sequential workflow that starts with a data preprocess-
ing stage and continues with two different procedures: concept
drift detection and concept drift modeling. The former addresses the
question of whether concept drift exists in the data and, if so, what
type of drift occurs, utilizing one-class anomaly models based on
the Isolation Forest algorithm (Goziiack and Can, 2020), whereas

Computers & Security 120 (2022) 102757

the latter addresses concept drift by dividing the whole study pe-
riod into data chunks and induces an adaptive learning model that
dynamically selects the best ensemble model from a pool of clas-
sifiers for each chunk (Guerra-Manzanares et al., 2022; Zyblewski
et al, 2021). The last stage of the workflow applies the permu-
tation feature importance technique (Breiman, 2001) to provide a
chunk-based characterization of concept drift results.

It is worth emphasizing that the optimization of detection per-
formance of the concept drift model is not the main aim of this re-
search. Our focus is on the evaluation of the impact of distinct data
sources and timestamps on model performance. In this regard, we
created a working concept drift modeling solution complemented
by a characterization step to comprehensively analyze the impact
of data source variation and timestamp alternatives on the contin-
uous detection of mobile malware throughout the years.

To the best of our knowledge, this study is the first work that
explores the impact of timestamp alternatives on concept drift
modeling in mobile malware detection, a critical issue to consider
for drifting data. Moreover, the comparison of learning models in-
duced from emulator and real device data sets has not been per-
formed for system calls yet. The characterization of concept drift is
another noteworthy contribution of our study as it may help secu-
rity practitioners to better comprehend the behavioral changes of
malware and legitimate apps leading to the observed concept drift.

This paper is structured as follows: Section 2 references the
state-of-the-art in Android malware detection while Section 3 pro-
vides the methodological description of this study. The main re-
sults are detailed in Section 4. Section 5 outlines the discussion
points and limitations of this research while Section 6 summarizes
the study and future work.

2. Related work

Static and dynamic features extracted from Android apps are
used to induce effective machine learning-based Android malware
detection systems (Liu et al., 2020).

Static features are collected without running the app, generally
from the source code or the apk bundle. Features such as secu-
rity permissions, API calls, and intent filters lie inside this cate-
gory. Static features are fast and easy to collect in an automated
fashion. However, the detection systems built based on them are
prone to be bypassed by zero-day and sophisticated malware, es-
pecially when obfuscation and encryption techniques are used.

The collection of dynamic features requires the app to be ex-
ecuted, allowing for the capture of the real behavior of the run-
ning app in a live environment. Features such as system calls and
network flow data can be acquired using this approach. The acqui-
sition of dynamic features is generally time-consuming and chal-
lenging but they tend to generate more robust and effective detec-
tion systems.

2.1. Real device vs. emulator

System calls are the most commonly used dynamic feature for
Android malware detection (Liu et al., 2020). System calls are the
mechanism used by running software to request a service from the
kernel of the underlying OS. They allow collection of the behav-
ior of the application by capturing the information flow between
the distinct OS layers (Dimjasevic et al., 2016). Due to their dy-
namic nature, the acquisition of system calls features requires the
execution of the app in a live Android environment. Real devices
and emulators are used as execution devices for such purpose. A
real device is an actual physical phone running an Android OS ver-
sion whereas an emulator is a software running on a computer
that simulates almost all the capabilities of a real device (Android,
2021).

A. Guerra-Manzanares, M. Luckner and H. Bahsi Computers & Security 120 (2022) 102757

There is no clearly dominant execution platform in the recent
related literature. While some researchers prefer the usage of real
devices for their experimentation, either using single (Amin et al., C | iEiEcomAa@maa
2016; Saracino et al., 2018; Xiao et al., 2019) or multiple real de-
vices (Alzaylaee et al., 2020; Vidal et al., 2017; Wang and Li, 2021;
Wei et al., 2022), others advocate for the exclusive usage of emula-
tors to perform their operations, using either specialized sandboxes
for dynamic analysis (Feng et al., 2018; Han et al., 2020) or general-
purpose Android emulators (Casolare et al., 2021; Dimjasevic et al.,
2016; Guerra-Manzanares et al., 2019¢; Jerbi et al., 2020; Lin et al.,
2013; Surendran et al., 2020; Vinod et al., 2019; Zhang et al., 2021).

Table 1 outlines relevant and recent studies in the research do-
main. As can be observed, distinct Android platforms (i.e., device
types), combined with different data sources, dynamic features and
algorithms, have been used with significant success for malware
discrimination purposes. In this regard, the single usage of any of
the approaches shows advantages and limitations.

Emulators are easy to deploy, manage, and they fit perfectly in
automated analysis and detection systems (Dimjasevic et al., 2016),
enabling the mimicry of almost all real device capabilities in a
wide variety of virtual devices and Android versions without ac-
tually having each real device (Android, 2021). However, malware
with anti-sandbox evasion techniques can deceive emulators (i.e.,
the malicious behavior would not be triggered if a sandbox envi-
ronment is detected) (Lindorfer et al., 2015). Although some solu-
tions provide enhancements on this issue (Naval et al., 2015; Vinod
et al,, 2019), they generally provide limited interaction (i.e., specific
triggering events might not be possible such as SMS messages or
SIM card detection (Feng et al., 2018)) and fail to install apps that
do not support x86 or x86-64 architecture libraries.

Real devices are more difficult to manage and integrate into au-
tomated systems. For instance, restarting to run every sample in a
clean device can be time-consuming, rooting can brick the device,
and ensuring the exact same conditions for all tests might not be
possible (Lin et al., 2013). However, they provide full interaction
with the app, they are inherently immune to anti-sandbox tech-
niques, and they show much fewer incompatibility issues (Guerra-
Manzanares et al., 2021).

In any case, the main underlying axiom in these studies is
that the behavior of applications is fully consistent across devices
(Lin et al., 2013) and Android versions (Burguera et al., 2011; Vi-
dal et al., 2017) and, consequently, that the nature of the devices
(i.e., emulators or real devices) and OS versions used do not re-
ally matter. This axiomatic assumption explains the absence of ho-
mogeneity on the selection criteria and the wide variety of de-
vices/versions and approaches used in research setups. However,
the studies that have experimented with both devices (Alzaylaee
et al., 2017; Guerra-Manzanares et al., 2019a; 2019b) challenge the
validity of this cross-device behavioral consistency postulate. For in-
stance, in Alzaylaee et al. (2017), when API calls and intents, usu-
ally analyzed as static features, were captured dynamically, real
devices were found to provide more reliable and stable features
for malware detection than emulators, thus leading to a more ef-
fective detection outcome. However, when system calls are used
as features, as in Guerra-Manzanares et al. (2019b) and Guerra-
Manzanares et al. (2019a), the results show that emulators may
provide better detection outcomes than real Android devices.

As can be observed, both kinds of devices have been widely
used for Android malware detection purposes. The selection crite-
ria are mainly based on the available resources and required flexi-
bility under the assumption that app behavior is consistent across
devices. Emulators are usually preferred to perform such opera-
tions due to their comparatively lower analysis cost, flexibility, and
easier integration in automated analysis. A small number of stud-
ies have considered both kinds of devices in their experimentation,
and their outcomes challenge the validity of the consistent behavior

sk

T
Multi

Accuracy
0.94
0.87
0.96
0.95
0.96
0.96
0.98
7
/S
7
0.96
9
9
97
9
9

0.
N
0.
0.
0.
0.
0.
0.

Linear combination of classifiers
CNN-Bi-LSTM-Attention

Features/Misbehaviors correlation
Bayes theorem

Experimental goodness threshold
RF, Rotation Forest, AdaBoost

RF, SVM, MLP, CNN

Weighted features threshold
kNN, LR, DT, SVM

Statistical hypothesis testing
NB, DT, ANN, k-NN

Algorithm/s used
Ensemble + Meta-classifier
NB, SVM, DT, RF, ANN
Genetic Algorithm

LSTM

S
S
S
S
S
S

API calls + Intents

System calls

System calls
Kernel-related

T ™
3338
EEEE
33T D
ggegs
20050
> > > >
ARA A

API calls

o
%‘u
-
sE
<2
m w»n

Features
System calls
System calls
Behavioral

B: 13,806 + M: 10,213
B: 3535 + M: 25,134
B: 2707 + M: 2978

B: 19,620 + M: 11,505
B: 400 + M: 102

B: 3536 + M: 3567
B: 227 + M: 1260
B: 9804 + M: 2800
B: 570 + M: 5130

B + M: 2000

B: 1275 + M: 1275
B: 3130 + M: 11,514
B: 3462 + M: 3355
B: 1,000 + M: 2,000
B: 1,250 + M: 1,250
B: 1000 + M: 2000

Data set size

Drebin/AMD/Contagio + Google Play

MalGenome + Xi’an University
Drebin/Androzoo + Google Play
Drebin/VirusTotal + APKMirror
AMD/DROIDCat + Google Play

MalGenome + Google Play

4 data sources

Drebin + Google Play
McAfee Labs

MalGenome/Drebin
PlayDrone + Drebin
7 data sources
Drebin + Google Play

Data set

ator
ator
ator
ator
ator
ator
ator
ator
ator

Device type

Real
Real
Rea
Rea
Rea
Rea
Rea
Emul
Emul
Emul
Emul
Emul
Emul
Emul
Emul
Emul

(2018)
Guerra-Manzanares et al. (2019¢)

Alzaylaee et al. (2020)
Vidal et al. (2017)
Surendran et al. (2020)
Jerbi et al. (2020)

Wei et al. (2022)
Casolare et al. (2021)

Xiao et al. (2019)
Amin et al. (2016)
Saracino et al.

Lin et al. (2013)
Vinod et al. (2019)

Reference

Relevant Android malware detection studies using dynamic features.

Table 1

A. Guerra-Manzanares, M. Luckner and H. Bahsi Computers & Security 120 (2022) 102757

assumption, opening the door for further exploration of the phe-
nomenon. This research gap is explored thoroughly in this research
by analyzing the same set of applications on distinct Android plat-
forms and assessing the cross-device detection performance of in-
duced models.

F1: 0.99-0.87

F1: 0.97

F1: 0.82

F1:0.95-0.85
F1: 0.99-0.84
F1: 0.91-0.82
F1: 0.90-0.70
F1: 0.92-0.68
F1: 0.92-0.72

Performance
Acc: 0.84

2.2. Concept drift analysis

The vast majority of prior related studies built and tested their
proposed solutions for Android malware detection using static
snaphots of data from Android history, usually using the same data
sets. In this regard, MalGenome (Zhou and Jiang, 2012) and Drebin
(Arp et al,, 2014) are the most used data sets for Android mal-
ware research. Despite their relatively small size and being com-
posed of outdated data (i.e., their most recent samples date back
to 2012), they are still used as the main sources of malware in
recent publications (Sasidharan and Thomas, 2021). Even though
some studies (Cai et al., 2021; Gao et al,, 2021) complement their
data with more recent and larger data sets, such as the Android
Malware Dataset (AMD) (Wei et al., 2017), to mitigate data-related
issues (i.e., Drebin duplication (Irolla and Dey, 2018)) and increase
the representativeness of the data set, they still rely on incomplete,
relatively old (i.e., AMD’s most recent sample is from 2016 and it
provides samples for just 71 malware families), and short snap-
shots of malware data from the whole Android historical timeline
(i.e., from 2008 to 2021). Furthermore, when using data sets for
machine learning purposes, the common practice is to mix all the
data and then split it randomly into two disjoint sets (i.e., train/test
sets), thus disregarding apps’ location in the historical timeline.
This fact undermines the historical coherence and yields significantly
biased and historically incoherent results (Allix et al., 2015; Pendle-
bury et al.,, 2019).

As a result, these issues pose serious doubts about the gener-
alization capabilities and effectiveness of these solutions to detect
evolved and recent malware.

Only a limited number of the related studies considered the
usage of distinct and historically coherent snapshots of Android
history for the train/test split. However, as they show significant
time gaps between them (Guerra-Manzanares et al., 2019a; 2019b;
2019c), concept drift and its degenerative impact are neglected.
Consequently, the time variable and malware evolution over time
have been purposely ignored in the vast majority of current An-
droid malware research studies.

As provided in Table 2, only a few studies dealing with An-
droid malware detection have considered the concept drift issue
and proposed machine-learning solutions that adapt to changes in
the data, and are able to minimize its detrimental effect over time.
Even though some general approaches have been proposed to de-
tect data drift (Barbero et al., 2020; Jordaney et al., 2017; Pendle-
bury et al.,, 2019), all the proposed solutions dealt with API calls
(Cai, 2020; Cai et al., 2019; Lei et al., 2019; Narayanan et al., 2016;
Onwuzurike et al., 2019; Xu et al.,, 2019; Zhang et al., 2020), an
inherently static feature but one that can also be acquired dynam-
ically. None of the studies have dealt with system calls, a pure dy-
namic feature that enables us to capture the real run-time behav-
ior of the app and which is robust to obfuscation and encryption
techniques that can bypass static API-based detection systems.

Compilation date
Compilation date
Compilation date
First seen

Compilation date

Compilation date
First seen

Timestamp
First seen
First seen

Evaluation framework

Conformal Evaluator
Evaluation framework

Algorithm/s used
Online classifier

RF, k-NN, SVM
Conformal Evaluation
5 online classifiers
ANN

RF

Graph-kernel

Features
API calls
API calls
Static

API calls
API calls
Static

Static

API calls
API calls

B: 44,347 + M: 42,910
B: 8,447 + M: 35,493
B: 17,365 + M: 16,978
B: 133,127 + M: 14,739
B: 33,294 + M: 34,722
B: 14,956 + M: 28,848
B: 116,993 + M: 12,735
B: 232,848 + M: 26,387
B: 290,505 + M: 32,089
B: 13,627 + M: 12,755

Data set size

PlayDrone/Google Play + VirusShare
VirusShare/AndroZoo + Google Play

7 data sources
Drebin/Virushare
5 data sources
Drebin + MARVIN
AndroZoo
AndroZoo
AndroZoo

5 data sources

Data set

Time-frame
2010-2016
2009-2017
2010-2014
2011-2016
2012-2018
2014-2016
2014-2018
2012-2018
2010-2017

2014

2.3. Timestamps: when time matters

(2019)

(2017)

The central elements behind concept drift analysis are times-
tamps. Timestamps enable the temporal placement of the sample,
which aims to provide a reliable temporal context. However, due
to the lagging nature of the malware discovery process, this is not
always possible or generates reliability issues. Even though some
concept drift-related studies did not provide information about

Narayanan et al. (2016)
Onwuzurike et al. (2019)
Barbero et al. (2020)

Zhang et al. (2020)

Xu et al. (2019)
Cai (2020)

Reference
Jordaney et al.
Lei et al. (2019)
Pendlebury et al.

Concept drift-related Android malware detection research.

Table 2

A. Guerra-Manzanares, M. Luckner and H. Bahsi

the timestamp approach they used (Onwuzurike et al.,, 2019), in
the ones that reported these data, some common timestamp ap-
proaches, although differently named, can be observed.

The compilation date is an internal timestamp that relates to the
creation or compilation time of the apk bundle. Despite being ap-
pointed as the most reliable timestamp in the past (Pendlebury
et al., 2019) and used in related research (Barbero et al., 2020; Cai,
2020; Pendlebury et al.,, 2019; Xu et al., 2019), it has become an
unusable approach as most of the apps released nowadays have it
set at 1980 (Luxembourg, 2021). Another internal timestamp pro-
posed lately is the last modification timestamp, which refers to the
most recent modification timestamp found in any of the apk inner
files (Guerra-Manzanares et al., 2021). This feature was introduced
in Guerra-Manzanares et al. (2021) which discusses the feasibility
of four distinct timestamp approaches for Android malware detec-
tion.

Even though internal timestamps could be deemed as accu-
rate approaches, they are prone to third-party manipulation which
could lead to temporal misplacement. In this regard, more robust
temporal approaches can be achieved using external timestamps.
Virustotal's first seen, also referred as appearance or submission time
in the literature, dates the application with the datetime it was first
received by the VirusTotal scanning service. This timestamp has
been used in relevant Android concept drift-related studies (Cai
et al,, 2019; Lei et al,, 2019; Zhang et al., 2020) as being based on
external and reliable services, making it easy to acquire and more
robust to alterations. However, it is prone to significant delay and
time misplacements due to the required proactive behavior from
the user to timestamp the app (i.e., submission of the file).

As can be observed, the timestamp approach emerges as a crit-
ical issue to properly handle data drift for effective Android mal-
ware detection. Despite that, it has been neglected by all the con-
cept drift-related studies in the problem domain. In this research,
we address this research gap by considering and evaluating distinct
timestamps.

2.4. Explainability in android malware detection

Our work aims to understand and evaluate the decision process
behind the concept drift model utilized for Android malware de-
tection. Explainability or interpretability methods have been used to
understand the decision processes used by the machine learning-
based detection systems on their predictions (i.e., XAl). In this re-
gard, Scalas et al. (2019) stated that research regarding ransomware
detection should focus attention on the explainability of the pre-
dictions to review the model outputs for the purpose of better
detection. They used explainability methods to find the most dis-
criminant features analyzing packages, classes, and methods used
in Android applications. Kinkead et al. (2021) pointed out the lack
of research regarding explainability behind the predictions made
by Android malware detection systems. In their study, the LIME
algorithm was used to find the most important features for the
classification task, and LIME activations were analyzed for specific
malware families.

Karn et al. (2021) explored the usage of explainability methods
on models based on system calls to classify anomalous cloud con-
tainers. The authors compared XAl techniques and concluded that
not all have practical applications for malware detection (i.e., SHAP
and LIME are efficient but, the LSTM autoencoder is less amenable
for automated explanation extraction because of convergence in-
stability). Iadarola et al. (2021) proposed a novel method based on
image representations of Android apps used as an input for an ex-
plainable deep learning model designed for Android malware de-
tection and malware family recognition tasks. In this work, we ap-
plied a post-hoc explainability method to characterize and analyze
the evolution of mobile malware over time.

Computers & Security 120 (2022) 102757
2.5. Contribution to the field

As a result, even though the related literature does not con-
sider any cross-device behavioral differences, several studies found
that the dynamic behavior of an app might not be fully consis-
tent across Android platforms. This fact may lead to a degener-
ative impact on the models when data from distinct sources are
mixed or not properly used. Furthermore, the time variable is usu-
ally neglected in Android malware detection studies, which poses
a severe concern regarding the generalization capabilities of the
proposed solutions, trained on outdated data, against new mal-
ware. Finally, the timestamp approach, a critical variable for effec-
tive concept drift handling, has not been properly considered in
the concept drift-related studies.

The main contribution of this study is to shed light on those
significant research gaps by assessing the cross-device behavioral
differences using system calls for Android malware detection un-
der the consideration of the time variable (i.e., concept drift), the
analysis of distinct timestamp approaches, and the assessment of
their impact on the machine-learning-based models over an ex-
tended period of time.

3. Methodology
3.1. Data set

The data set used in this research is KronoDroid (Guerra-
Manzanares et al.,, 2021), a hybrid-featured, timestamped, and la-
beled Android data set that includes malware and benign samples
for all years of Android history (i.e.,, 2008-2020). Kronodroid is
split into two data sets with different sizes, according to the acqui-
sition device used for the dynamic features it provides (i.e., system
calls). Therefore, emulator and real device-related data sets com-
pose the full KronoDroid data set. This device-related split makes
it an ideal data set to perform a behavioral comparison between
emulators and real devices. However, as the sizes of the data sets
are different, as not all apps were run in both devices, to perform
a sound comparison of the dynamic profiles, just the intersection
between the two data sets was selected using the hash attribute.
As a result, the intersection data set, used in this research, was
composed of 28,343 malware samples and 34,981 benign apps.

The KronoDroid data set provides four possible timestamps per
record: last modification, earliest modification, first seen VT, and first
seen in the wild. Based on their reliability and prevalence among
the data points, two timestamps were selected for this study: last
modification and first seen VT. The earliest modification and first seen
in the wild timestamps were discarded due to the inaccurate nature
of the former (i.e., many apps had a 1980 value) and the high ratio
of missing data of the latter (i.e., not available for most of the apps)
(Guerra-Manzanares et al., 2021). The last modification timestamp
locates the app within the Android history timeline according to
the most recent modification timestamp retrieved among the app
inner files. In contrast, the first seen VT reports about the date and
time when the app was submitted to VirusTotal for the first time.

The analysis of concept drift-related issues requires the usage
of the historical context based on app timestamps. In this regard,
there is no unambiguous approach to determine an app’s temporal
location with complete reliability and accuracy. Due to its gener-
ation mechanism, the first seen timestamp is prone to important
delays as it depends on submission by users to VirusTotal. This
timestamp heavily depends on the usability and popularity of the
service to get timely notification of malware samples based on the
users’ proactive behavior. Therefore, it can be hypothesized that
the reliability of the last modification timestamp, when it has not
been tampered with, should be greater than the first seen times-
tamp in terms of accurately positioning the app in the historical

>

Guerra-Manzanares, M. Luckner and H. Bahsi

Computers & Security 120 (2022) 102757

Data Preprocessing Concept Drift Detection

Concept Drift Handling Concept Drift Characterization

IForest creation for

Data segmentation

b

Permutation

function

&)

features

Ty benign software ‘
Feature variance } Benign software ?
analysis > & > recognition validation Creation of
% ¢ classifiers
Benign software l
concept drift report
Feature correlation ool of classifiers o
analysis ClyeeeyCn
) 4
———) et
Distribution analysis| LM)
— f Pool of classifiers
— update
)
= Malware recognition
validation
Time series Malware concept - Creation of a new
with limited drift report classifier

Quality function
Recall

Important
features for malware
detection

Quality function
Specificity

Important
features for benign
software recognition

V” N

Fig. 1. Depiction of the methodological workflow followed in this research.

timeline. Despite that, in this study, we used and experimentally
compared the reliability of these two approaches to deal with con-
cept drift.

Lastly, the behavioral features collected per app in both data
sets are system calls, also named as kernel calls or syscalls for short.
The whole feature set is composed of 288 system calls. As Guerra-
Manzanares et al. (2021) emphasizes, some of the system calls are
device-related; thus the feature sets may not be consistent across
Android platforms. For instance, the emulator feature set is com-
posed of 212 system calls, whereas the real device feature set in-
cludes these features and more system calls, being extended to
288 features. Therefore, to perform a sound comparison, this com-
parative analysis uses both feature sets in the experimental ap-
proach, referenced distinctively as emulator or reduced feature set
(i.e., 212 system calls) and real or extended feature set (i.e., 288 sys-
tem calls). It is worth mentioning that when the extended feature
set is used to characterize the emulator data, the values for the
syscalls that belong exclusively to the real device set and which
are not present in the emulator data (i.e., 76 features) are filled
with zeroes. As provided by the Kronodroid data set, for each sam-
ple, the value for each feature provides the number of times the
specific system call feature was used by the specific application
at run-time. Thus, the input vector for the induced classifiers was
composed of numeric values reflecting the absolute frequency of
each system call invoked per application.

3.2. Workflow

The methodology used in this study is composed of 4 sequen-
tial phases. They are summarized in Fig. 1 and briefly explained as
follows:

1) Data Preprocessing: zero-valued and redundant features were
removed from the initial feature sets. The distributions of the
remaining features were assessed using normality tests.

2) Concept Drift Detection: anomaly detection models were in-
duced to assess the existence of concept drift in the data.

3) Concept Drift Handling: an existing solution for data streams
(Zyblewski et al., 2021), was slightly customized as described
in Guerra-Manzanares et al. (2022) and used to address the
concept drift issue in Android malware data. Different combi-

nations of training and testing data sets belonging to distinct
data sources were evaluated with different timestamps.

4) Concept Drift Characterization: the analysis of changes in feature
importance over time was used to characterize the observed
concept drift.

A more thorough explanation of the stages is provided in the
following paragraphs.

3.2.1. Data preprocessing

Machine learning heavily relies on data quality to build effective
models. The removal of redundant and irrelevant features is an es-
sential step to improve data quality within the machine learning
workflow. This step aims to remove noisy, repeated, and unimpor-
tant features within the data set that may harm the classifier per-
formance during the model’s training. Three sequential steps were
performed in this phase:

1) Variance analysis: sample variance was calculated for all fea-
tures. A zero variance value, reporting no variability, was ob-
tained for features that had constant or zero values for all sam-
ples and labels. Therefore, zero variance features were removed
as they did not provide any relevant information to describe the
data.

Correlation analysis: Pearson’s correlation coefficient (r) was cal-
culated pairwise for all features. Highly correlated features (i.e.,
|r] > 0.80) were dropped. This step aims to remove redundant
data, a critical step for model building and the characteriza-
tion methods used in this study. Correlated features may dis-
turb the outcomes of perturbation-based global interpretability
methods; thus, their removal is essential to have more reliable
characterization results (Molnar et al., 2020).

Distribution analysis: the adherence of each feature distribution
to the Gaussian distribution was assessed using statistical tests.
The adherence of the feature distribution to normality is useful
to assess the techniques used in posterior steps.

N

w

Once the data preprocessing step was concluded, the resulting
feature sets (i.e., emulator and real device feature sets) were used
in the following stages to tackle concept drift and analyze cross-
device behavioral differences.

A. Guerra-Manzanares, M. Luckner and H. Bahsi

3.2.2. Concept drift detection

This phase aims to assess whether the use of concept drift han-
dling is necessary, that is, if there is significant drift in the data.

In a continuous analytics process, each new observation can
be represented by ¢; = (x;,y;), where x; = (x!.x2,....x") € X is the
feature vector and y; € Y is the target label. The incoming observa-
tions are aggregated into chunks, probes of the same size, or col-
lected during a similar period (i.e., six months time-frame). Let us
assume that features from two chunks can be described by dis-
tributions F and F’. Feature drift is defined if the null hypothesis
Hoy that F and F’ are identical can be rejected (Lu et al., 2014),
that is, they are significantly different distributions. Despite this
clear statistics-based definition, feature drift can be hard to de-
tect in real data using statistical methods. For instance, Mutz et al.
(2006) and Ruiz-Heras et al. (2017) showed that Android system
calls could not be modeled using Gaussian distribution. Moreover,
feature drift detection is not very relevant from a practical point of
view. A more relevant phenomenon is concept drift, which occurs
when feature drift leads to a change in y, the target estimation
value provided by a predictive model.

Relying on the aforementioned definitions and reservations,
concept drift can be detected experimentally. Let us take two se-
ries of data M; and L; ordered in n subsequent chunks. The series
describe malware and benign software, respectively, with the value
of i referring to the order in the sequence, 1 <i <n.

Next, let us define the most important discriminators among
the features using the following procedure. The data from the first
chunk M; U Ly was balanced using a random oversampling method
(Seiffert et al., 2010) to avoid over-representation of any of the
classes. Then, the classes were discriminated using the Random
Forest (RF) algorithm (Breiman, 2001), a fast and reliable ML algo-
rithm tested in similar scenarios showing outstanding performance
(Guerra-Manzanares et al., 2019a; 2019b). The most relevant fea-
tures of this initial classifier were selected using the permutation
feature importance technique (Altmann et al., 2010). Only the fea-
tures with positive mean importance were selected, thus generat-
ing the important feature set. In this regard, if the important set of
features can obtain high performance on the initial set L; UMy, a
relevant question is whether the performance level can be kept for
L;UM; where i > 1.

To test this issue, one-class anomaly detection models trained
separately on L; and M; were employed. The usage of one-class
algorithms eliminates the class relations influence. The Isolation
Forest algorithm proposed by Goziiack and Can (2020) was used
as the detection algorithm. The detectors trained on initial-period
data (i.e, i = 1) were tested on the subsequent L; and M; data sets
described by the important feature set to calculate the ratio of ob-
servations recognized as part of the modeled class in the given
chunk. The decrease in ratio signals the occurrence of concept
drift, which occurs when the initially selected important features
are not able to correctly model the analyzed phenomenon in the
test data.

3.2.3. Concept drift handling

The concept drift problem is usually identified in data streams
(Aggarwal, 2015; Margara and Rabl, 2018). However, Android mal-
ware detection shows related characteristics and faces similar is-
sues; thus, a solution to handle emerging concept drift for data
streams could be applied. In Zyblewski et al. (2021) an algorithm to
address concept drift issues in data streams split into data chunks
was proposed. The method uses a pool of classifiers trained on
past data to make predictions about new data samples. During the
prediction process, the best ensemble of classifiers is dynamically
selected to perform accurate predictions. Furthermore, the pool is
modified to introduce classifiers trained on new data and remove
low-performance models, aiming to keep high performance over

Computers & Security 120 (2022) 102757

time by updating the pool of classifiers with new and evolved data.
The pool update procedure enables the detection system to handle
concept drift effectively.

To apply the original solution described in Zyblewski et al.
(2021) for Android data analytics, the following changes were ap-
plied, as proposed in Guerra-Manzanares et al. (2022).

« The classifier pool was full and ready from the first data chunk.
This fact avoids waiting for S chunks to gradually fill the clas-
sifier pool until its completeness (i.e., the S hyper-parameter
refers to fixed pool size), as proposed in the original solution.
The pool of binary classifiers is supported by an anomaly de-
tection model to improve the recognition of benign software.
This improvement was made on the basis of the experimental
research that evidenced a more consistent profile over time in
benign data than in malware data.

The proposed classification method, based on dynamic ensem-
ble selection, is used in this research as a tool for concept drift
handling and characterization.

3.2.4. Concept drift characterization

The main aim of this investigation is not the optimization
of concept drift detection but to use the concept drift handling
method to analyze changes and differences in Android malware
detection when distinct data sources are used over time. For this
purpose, the permutation feature importance technique (Breiman,
2001) was employed to analyze whether the important feature sets
were significantly different among data chunks and for distinct
data sources.

The permutation feature importance technique is an alterna-
tive method to the built-in Random Forest’s importance estima-
tion (Maimon and Rokach, 2005). The method is defined as follows.
For a matrix of feature values X with rows x; given each of N ob-
servations and corresponding response y;, xf) is a vector achieved
by randomly permuting the jth column of X. The method deter-
mines the importance of a feature for the model by assessing the
decrease in the model’s performance after a random permutation
for the specific feature is performed while keeping the other fea-
tures unchanged. According to Altmann et al. (2010) and due to the
stochastic nature of the technique, the permutation process should
be repeated at least 50 times to achieve stable results. For a loss
function L, the importance VI; of the jth feature is defined as the
difference between the loss calculated using pseudo-random val-
ues and the original data.

The concept drift characterization method uses the classifica-
tion function f; on data X; from period P;. Next, the analysis obser-
vations X are taken from the set wf:i‘ﬂxj where h declares a time
horizon for the analysis (e.g., 3 months). The procedure is summa-
rized in the following equation:

N
> Qs fitxi)) = Qi i), (1
i=1,

I+h
Y
XeY X

1
VI = §

where Q(.) =1 —L(.) is a quality function such as:

« F1 score, a comprehensive metric for malware detection perfor-
mance on imbalanced data sets defined as:

2TP

Fl= s PN

(2)

« Specificity (True Negative Rate), which provides the benign soft-
ware recognition performance (i.e., negative label) and it is cal-
culated as:

TN

INR= TN+ Fp

3)

A. Guerra-Manzanares, M. Luckner and H. Bahsi

Table 3
Data preprocessing results.
Preprocessing Results
stage -
Emulator Real device
Initial Set 212 syscalls 288 syscalls

160 constant

31 high-correlated
0 normal

97 syscalls

90 constant

28 high-correlated
0 normal

94 syscalls

Variance Analysis
Correlation Analysis
Distribution Analysis
Final Set

* Recall (True Positive Rate), a measure of the quality of malware
detection (i.e., positive label) defined as:
S 4)
+FN

where TP (i.e., true positive) refers to the number of correctly
recognized malware in the test set. TN (i.e., true negative) re-
flects the number of correctly recognized benign software in
the test data. FP (i.e., false positive) provides the number of in-
correctly recognized malwares in the test set, and FN (i.e., false
negative) provides the number of incorrectly recognized benign
data points in the test samples.

TPR =

4. Results
4.1. Data preprocessing

The results obtained after the application of each preprocess-
ing step are summarized in Table 3 and explained in the following
paragraphs.

The initial feature sets, related to each device, were composed
of 212 features for the emulator and 288 features for the real de-
vice. After variance analysis, 122 syscalls showed non-zero vari-
ance for the emulator case and 128 for the real device case. Thus,
90 features were removed from the emulator feature set and 160
from the real device feature set. The remaining features on each
set were further processed and highly correlated features (i.e., |r| >
0.80) were removed. As a result, the final feature sets were com-
posed of 94 features for the emulator and 97 for the real device.

The normality tests applied to the final sets of features showed
that no feature was normally distributed. Figs. 2 and 3 show the
distributions of features included on both final sets as illustrating
examples (i.e., red for malware samples’ values and green for be-
nign samples).

As can be observed, both features (i.e., getuid32 in the left
graph and ioctl in the right) show a positively skewed distribu-
tion in both Android platforms, and, consequently, a non-normal
distribution. Furthermore, there is a remarkable difference in the
shape of the distributions for the same feature on each of the de-
vices. Analogous differences were spotted for all syscalls distribu-
tions in both platforms. Therefore, these differences arise as ini-
tial support to challenge the assumption of cross-device consistent
behavior.

4.2. Concept drift detection

The KronoDroid data set provides timestamped data for the
whole Android history (i.e., 2008-2020). Initially, the data was split
into 6-month data chunks for both timestamps. The first period
with enough data to build a classifier for both timestamps cor-
responds to the second semester of 2011. Even though the Kron-
oDroid data set provides data from previous years, the selected pe-
riod was preferred in order to avoid biased results due to the small
number of samples belonging to the previous periods in the data
set. The scarcity of data samples for the 2008-2010 time frame is

Computers & Security 120 (2022) 102757

Table 4

Important feature sets ranges.
Timestamp Data Min Max
Last Emulator 28 31
Modification Real Device 29 32
First Emulator 16 21
Seen Real Device 16 26

Table 5
Top-10 features ranking.

Emulator Real device

First seen
clock_gettime

First seen
rt_sigprocmask

[fentl64 | gewids2 | futex o svs329
ioctl [SYS.329° 1 writev
getuid32 recvfrom | clock-gettime | epoll_ctl
ioctl read getuid32
write futex ioctl write
write write close

Rwiitey S fcntie
pretl
fstatat64

getuid32 gettimeofday

ioctl
connect

consistent with the actual threat landscape timeline, as the first
Android malware was discovered in 2010 (Sophos, 2017). There-
fore, the second semester of 2011 was selected as the initial period
for both timestamps.

The initial period was composed of 8378 samples for the last
modification timestamp (i.e., 6672 benign, 1706 malware) and
2595 instances for the first seen timestamp (i.e., 2133 benign, 462
malware). In both cases, the data was imbalanced towards the be-
nign class. The data sets were balanced using a random oversam-
pling technique, and the data was used to induce Random Forest
classifiers with 300 estimators. Both classifiers provided an accu-
racy of over 0.95 on test data.

In order to select the most relevant features for each classi-
fier, the permutation feature importance technique was applied to
the training data (i.e., 500 permutations per feature). Only features
with positive average importance were selected, as they reflect the
actual impact on the model’s performance. The results were aver-
aged and ranked. Due to the stochastic nature of the permutation
technique, a distinct amount of features might be part of the im-
portant feature sets on every trial. Therefore, ten trials were per-
formed. Table 4 provides the ranges of the number of important
features observed after the iterations.

As can be observed, a smaller set of important features was
observed using the first seen timestamp for both devices’ data.
However, the range and inner variability in the selected sets were
greater for the first seen timestamp than for the last modifica-
tion timestamp. Besides, the last modification timestamp showed
a much more consistent feature set selection across trials, thus
showing greater stability on the number and the composition of
the sets of important features. As a descriptive example, the top 10
features for each timestamp and device combination are provided
in Table 5 in decreasing importance order. These results were ob-
tained by averaging the importance ranking positions on each iter-
ation. The two columns on the left in Table 5 provide the informa-
tion about emulator data features sets for each timestamp. The two
right-most columns show the same information for the real device
data. For a better comparison, data related to the same timestamp
are displayed in the same color (i.e., grey for last modification and
white for first seen). Features observed in all feature sets are high-
lighted in blue.

As can be seen in Table 5, the feature sets differ not only be-
tween timestamps but more remarkably between Android plat-
forms. More precisely, the usage of distinct timestamps in the
same device produced relatively similar feature sets, mostly chang-

A. Guerra-Manzanares, M. Luckner and H. Bahsi

Feature: getuid32

Computers & Security 120 (2022) 102757

Feature: ioct

3500
Benign
3500 Malware
3000
3000
2500
2500
2000
< 1500
1500
1000
1000
500 500
o o
0 500 2000 0 1000 2000 3000 4000 5000 6000
Nu syscalls
Fig. 2. Emulator features distributions.
Feature: getuid32 Feature: ioct
Benign
3000 4 1750 Malware
1500
2500
» 1250
S 2000
1000
2 1500
2 750
3
1000 -
500
500 250
[T T T T T 0 T T T T
0o 200 400 600 800 1000 0o 200 400 600 800

Number of syscalls

1000 1200 1400
alls

Number of

Fig. 3. Real device features distributions.

ing in order. But when the feature sets are compared between de-
vices, the differences are significant. For instance, the most im-
portant feature in the emulator is rt_sigprocmask for both times-
tamps, whereas in the real device this feature is not found in the
top 10 for any timestamp. Similarly, clock_gettime shows noticeable
importance in the real device but not in the emulator. Three fea-
tures are common in all rankings but located on distinct positions,
thus showing different importance (i.e., discriminatory power). Fur-
thermore, architecture-related syscalls appear to have notable im-
portance in both cases, as it is evidenced by the high ranking of
SYS_329 for the real device (i.e., ARM architecture) and fcnit64 for
the emulator (i.e., x86_64 architecture). Therefore, the results pro-
vided in Table 5 suggest that the timestamp selected might cause
differences in the relevant feature set, mostly related to the order,
but that more significantly, the data source can have a critical im-
pact on the definition of the feature sets.

These initial differences are further explored by assessing con-
cept drift in the data. In order to test the data changes, one-
class anomaly detection models (i.e., one for malware detection
and another for benign software detection) were built using the

minimal important feature sets found using permutation feature
importance as the feature selection technique. The minimal fea-
ture sets were constructed using the smallest important feature
set among all iterations for each device and timestamp combi-
nation (i.e., the lower boundary (min) reported in Table 4). The
rationale behind the anomaly detection test is explained as fol-
lows. If the phenomenon is stationary, meaning that the initial-
period features, even with varying discriminatory power, could be
consistently used to perform effective class discrimination in fu-
ture data, the anomaly models built should show high performance
over time. However, if the phenomenon evolves, meaning that im-
portant features for effective discrimination are prone t