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Summary
This thesis presents a comprehensive compilation of eight published research articles, summarizing their key findings, methodologies, and contributions. Copies of these articles are included in the appendix for easy access and further exploration.This research summary is organized as follows: Section 1 establishes the problem’s relevance, motivation, and research objectives. Section 2 outlines the primary research questions examined and highlights the main contributions of this thesis. Section 3, out-lines the research methodology employed. In Section 4, an overview of related work within the research context is presented. The findings are subsequently outlined in Sec-tion 5, showcasing their role in assessing the artifacts generated during the research. Sec-tion 6 presents the research context of this thesis and outlines the limitations and future directions for further improvements. Finally, the thesis concludes in Section 7 with a sum-mary of the key findings and conclusions derived from this research.
1 Introduction
1.1 Problem Relevance
Data mining has many popular approaches for extracting useful information from large datasets. Out of these techniques, association rule mining (ARM) [5, 6] is one of the widely used data mining [4] techniques that aims to discover interesting associations and relationships among variables in datasets. It has many applications in various domains, such as market basket analysis, web mining, and bioinformatics. However, classical ARM has limitations when it comes to handling continuous and high-dimensional data. To overcome these limitations, researchers have generalized classical ARM in many different forms for handling more complex data types, including nominal, ordinal, and interval data, in addition to numerical data. In recent years, there has been a growing interest in developing unsupervised learning techniques for generalized association rule mining.In general, real-world datasets contain numerical attributes that cannot be directly used in ARM. Therefore, to address this issue, the classical ARM was generalized to quanti-tative association rule mining (QARM) [100] or numerical association rule mining (NARM) [10]. These techniques extract meaningful rules from numerical datasets by discretizing the numerical attributes.In this context, NARM is a subset of generalized ARM, which exclusively focuses on numerical data. In NARM, numeric attributes can be discretized by partitioning the range of numeric attributes into different intervals. Discretization is a critical step in NARM, which involves partitioning the range of numeric attributes into different intervals to transform continuous data into categorical variables. The resulting discrete values can then be used for mining association rules via traditional rule mining algorithms. Although several methods for discretizing numerical attributes have been proposed, determining the optimal method is still an open research question.The motivation behind this thesis is to explore the current state-of-the-art methods for NARM, with a specific focus on the subjective and time-consuming nature of the dis-cretization process. Furthermore, the existing methods for discretizing numerical attributes are not automated and require expert knowledge, which may not always result in an optimal partition. Therefore, there is a need to develop formal measures for finding the optimal partition of numerical attributes, which can lead to better performance and accuracy of NARM.In the next three sections 1.1.1, 1.1.2 and 1.1.3, the thesis provides a detailed explanation of the problem’s relevance of this research.
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1.1.1 Generalized Association Rule Mining In 1997, Srikant and Agrawal introduced the problem of mining generalized association rules [101]. Generalized ARM goes beyond the binary values utilized in classical ARM and works with multiple levels or types of attributes. NARM is a special case of generalized ARM, where only numerical data is considered. It is a variant of ARM that deals with numerical data where the attribute values are continuous or discrete numerical values.
The critical challenge in developing an efficient mining algorithm is devising a mecha-nism to utilize the initial frequent itemsets and association rules for the direct generation of novel generalized association rules without necessitating a reiteration of the database scanning process [108]. Partitioning is one of the popular techniques to address the is-sue of numerical attributes in ARM [100], and it is utilized in the Apriori algorithm [100]. Srikant and Agrawal [100] used an equi-depth partitioning approach for finding the in-tervals of numeric attributes. Initially, researchers and scientists employed various dis-cretization approaches to incorporate numerical attributes into ARM. However, as time has progressed, numerous alternative methods have emerged within this field. Regret-tably, this proliferation of alternative methods has led to a substantial knowledge gap in comprehending the diverse techniques utilized in NARM. To bridge this knowledge gap, a detailed systematic literature review (SLR) became imperative. Therefore, the author conducted the first SLR on NARM from a substantial collection of 1,140 scholarly articles spanning the period from 1996 to 2022. This extensive review followed the guidelines established by Kitchenham [58] and played a significant role in addressing RQ1.
The section 4.1 highlights the overview of the conducted literature review for NARM. The publications [I], [II], [VI] and [VII] presented the detailed study about NARM.

1.1.2 Human Perception of Partitions of Numerical Attributes
Measures driven by different discretization algorithms often lack the multifaceted depth of human perception, which is crucial in developing measures for discretizing numerical attributes. Moreover, the current state-of-the-art discretization techniques often fail to account for human perceptions and observations; therefore, by incorporating human perception, a more accurate representation of the underlying distributions and natural groupings within numerical attributes can be achieved. Human experts bring to the table their domain knowledge and expertise, which methods driven solely by algorithms can not replicate. Additionally, using human-perceived discretization as a benchmark for automation can result in iterative algorithm refinement, leading to continuous improvement.

The role of human perception encompasses a spectrum of contributions that collec-tively enhance the quality and relevance of discretization outcomes. Limited work has been conducted in the realm of aligning human perception with discretization techniques. The overview of pertinent literature provided in section 4.3 underscores existing research that delves into human perception studies, which indirectly intersect with discretization techniques. Nonetheless, these studies often lack direct alignment with discretization methods. In this context, Aupetit et al. [14] delve into the evaluation of clustering algorithms concerning their alignment with the human perception of clusters within 2D scatter plots. The main question was whether current clustering techniques align with human perceptions of clusters. The authors evaluated various algorithms, including Gaussian Mixture Models, CLIQUE, DBSCAN, Agglomerative Clustering, and over 1437 variations of k-means, on benchmark data.
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    To the best of our knowledge, this work is the first endeavor to incorporate human 
perception in identifying partitions for numerical attributes. The significance of human 
perception in partitioning numerical attributes was highlighted in the publication [IV]. 
Furthermore, publications [V] and [VIII] conducted a comparative analysis between human-perceived outcomes and the outcomes generated by the proposed measures.
1.1.3 Reflecting the Impact of Independent Numerical Attributes on Dependent 
Numerical AttributesUnderstanding the relationships and dependencies between numerical attributes is essential for making informed decisions and extracting meaningful insights from data. Several discretizing techniques such as equi-depth, equi-width [19], ID3 [85], MDLP [31], Chi2 [69] and D2 [19] are available in the literature. However, existing methods often overlook the nuanced impact that independent numerical attributes can have on their dependent attributes.This thesis addresses this gap by focusing on developing measures that capture and reflect this impact. By doing so, it aims to enhance the precision and applicability of data analysis, modeling, and decision-making processes across diverse fields such as finance, healthcare, engineering, and more. Ultimately, the findings of this research have the po-tential to contribute to the refinement of analytical techniques and tools, benefiting both the academic and practical aspects of data science and analysis. This thesis investigates unsupervised learning techniques for generalized association rule mining that extracts interesting relationships between continuous attributes. The proposed measures offer a straightforward approach to identifying suitable cut points for achieving optimal partitions. To determine the best cut points, a process of order-preserving partitioning is executed on an independent factor. The order of the independent variable is preserved using the value of data points. Therefore, the values of data points within one partition consistently remain lower than the values of data points in the subsequent partition. Initially, the outcomes are compared to cut points perceived by humans, followed by a subsequent comparison of these outcomes among themselves. At first glance, LSQM and k-means clustering might seem alike since both involve dividing data into clusters. However, they differ significantly in their underlying principles and applications. k-means algorithm relies on the Euclidean distance metric to calculate dissimilarity between data points, which involves measuring the geometric distance between vectors X and Y. In contrast, LSQM focuses on order-preserving partitioning for the independent variable, emphasizing preserving the variable’s order. k-means clustering algorithm can be sensitive to the initial selection of cluster centroids, potentially leading to different clustering results depending on the initialization. However, LSQM is less dependent on the initial point chosen for starting the partitioning process, making it more robust in this regard. The output of k-means is cluster assignments for each data point and the coordinates of cluster centroids. Whereas the output of LSQM is a set of cut points that define the intervals for discretizing a numerical attribute. LSQM is tailored for discretizing numerical attributes by preserving their order, whereas k-means is a general-purpose clustering algorithm based on Euclidean distances.The publication [III] presented an optimal way to find out partitions of a numerical attribute that reflect best the impact of one independent numerical attribute on a dependent numerical attribute and proposed two measures Least Squared Ordinate-
Directed Impact Measure (LSQM) and Least Absolute-Difference Ordinate-Directed 
Impact Measure (LADM) for order-preserving partitioning of numerical factors. These impact-driven measures leverage human intuition and understanding to guide the partitioning process, resulting in data representations that are more interpretable and aligned with human cognitive abilities.
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1.2 Objectives
The main objective of this thesis is to develop and investigate the best discretization tech-niques to generalize classical ARM to NARM. The identified gaps in the current state-of-the-art have clearly highlighted the need for efficient discretization techniques to handle complex and high-dimensional data and generate more interpretable and actionable results.To address the identified gaps in the current state-of-the-art, this thesis aims to achieve the following objectives:

• Investigate the state-of-the-art NARM methods by conducting an SLR.
• Analyzing the role of human perception towards partitioning numerical attributes.The author has conducted experiments to understand how expert data scientistsand statisticians partition numerical attributes under different types of data points,such as dense data points, outliers, and uneven random points.
• Developing measures for partitioning numerical attributes in a way that reflectstheir impact on a dependent target variable.
• Evaluating the proposedmeasures, conducting experiments, and comparing the re-sults with the outcomes provided by humans on the same datasets.
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2 Research Questions And Contributions
2.1 Research Questions
This thesis focuses on addressing the two significant research gaps in NARM: first, the lack of systematic and well-defined understanding of NARM, and second, the lack of optimal measures to discretize numerical attributes that can best reflect the impact on numerical target attributes. To address these research gaps, this thesis answers three main research questions presented in the sequel.

The primary RQs addressed in this thesis are:
• RQ1Howcan classical association rulemining (ARM) efficientlyworkwith numerical-valued columns?

– RQ1.1What are the state-of-the-art methods for mining association rules fromnumerical-valued columns?
– RQ1.2 How are existing discretization techniques used in the numerical ARM?
– RQ1.3What are the limitations and the future potential of existing numericalARM techniques?
– RQ1.4Which Swarm Intelligence numerical ARM methods can be consideredoptimal and why?

• RQ2 How do humans partition numerical attributes?
– RQ2.1 How to identify typical patterns of human perception (in partitioningnumerical attributes)?

• RQ3 How to find the partition of a numerical factor that reflects best the impact ofthis factor on a dependent numerical target variable?
– RQ3.1 How to develop formal measures and techniques for finding those par-titions?
– RQ3.2 How do the proposed techniques/measures perform when comparedwith human perception?

Table 1 provides mapping among each RQ to the relevant publications for a betterunderstanding of the research outcomes.
Table 1: Mapping among associated RQs and publications.

Research Questions PublicationsRQ1.1 [I]RQ1.2 [II]RQ1.3 [VI]RQ1.4 [VII]RQ2, RQ2.1 [IV]RQ3, RQ3.1 [III]RQ3.2 [V], [VIII]
To achieve the objectives of this thesis and answer the research questions, we uti-lized a comprehensive compilation of eight articles. These articles collectively contributetowards answering the core research questions outlined in this thesis.
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The first publication [I], titled “On the Potential of Numerical Association Rule Mining," conducted an initial investigation into methods and algorithms associated with NARM. This article serves as a fundamental exploration, providing an introductory overview of the methods and algorithms used in NARM. The main purpose of this article was to establish a foundational understanding of the capabilities and potential applications of NARM techniques. Essentially, this publication answered RQ1.1 and laid the groundwork for further, more in-depth research and exploration of NARM, serving as a starting point for this research.The second publication [II], titled “A Systematic Assessment of Numerical Association Rule Mining Methods", is an extended version of [I] and it is published in the journal Springer Nature Computer Science (SNCS). This publication expanded on the groundwork laid in the previous research, offering a more extensive and detailed exploration of NARM algorithms. The article comprehensively examines thirty NARM algorithms and delivers a detailed analysis and assessment of each algorithm. Additionally, the publication made a significant contribution by investigating the extent to which discretization techniques have been employed in NARM methods.By examining both the algorithms themselves and the incorporation of discretization techniques, this publication answered RQ1.2 and provided valuable insights into the ad-vancements and complexities of NARM methods, further enriching the field’s understand-ing of these techniques.The third publication [III], “Impact-Driven Discretization of Numerical Factors: Case of Two- and Three-Partitioning", presented two formal measures LSQM (Least Squared Ordinate-Directed Impact Measure) and LADM (Least Absolute-Difference Ordinate-Directed Impact Measure) for order-preserving partitioning of numerical factor to optimally reflect the impact of a numerical factor onto another numerical target factor. The performance of these measures was evaluated for two-step staircase data sets (step functions), three-step staircase data sets, and arbitrary data sets (non-step functions). These measures are also validated against the human-perceived cut points and yield approximately similar results to each other. This publication answered RQ3.1.The fourth publication [IV], “An Analysis of Human Perception of Partitions of Numerical Factor Domains", highlighted the necessity and significance of human perception in the development of formal measures for optimal partitioning of numerical factors. In this paper, an experiment was conducted with the graphs of nine synthetic datasets and three real-world datasets, wherein various data experts and non-experts were provided with graphs to identify the most optimal partitions. Following the collection of these responses, a comprehensive analysis was conducted to gain insights into how humans partition data. Additionally, the influence of data point characteristics such as density, outliers, linearity, and unevenness on human judgment towards identifying partitions was explored. By exploring these factors, the research aimed to understand the intricate relationship between human perception and specific data patterns, shedding light on the complexities involved in partitioning numerical factor domains effectively. This publication answered RQ2 and RQ2.1.The fifth publication [V], “Discretizing Numerical Attributes: An Analysis of Human Per-ceptions", presented the results of the LSQM measure for different numbers of partitions (k = 1, 2, 3, 4, 5). The graphical representations in the paper are created for eight synthetic datasets, and their results are compared with the responses provided by data experts and non-experts. The essence of this research lies in the detailed analysis conducted on the comparison between the outcomes derived from human perception and the outcomes generated by the LSQM measure. To achieve this, the article employed a range of par-titions (k = 1 to 5) and applied the LSQM measure, creating graphical representations of
17



these partitions. These results were then rigorously compared with the responses ob-tained from both data experts and non-experts. This publication addressed RQ3.2.The sixth publication [VI], “Numerical Association Rule Mining: A Systematic Litera-ture Review", presented an extensive and meticulous SLR, adhering to the guidelines es-tablished by Kitchenham [58]. This work delved deeply into distinct methods, algorithms, metrics, and datasets related to NARM and addressed RQ1.3. To ensure the comprehen-sive coverage of the field, this research reviewed a vast collection of 1,140 scholarly articles published between the inception of NARM in 1996 and 2022.The execution of this SLR involved a rigorous selection process, incorporating meticu-lous assessment of multiple inclusion and exclusion criteria. Additionally, the author con-ducted rigorous quality evaluations to ensure the reliability and validity of the selected articles. As a result of this meticulous process, only 68 articles were found to meet the stringent criteria and were deemed suitable for inclusion in the systematic review. This rig-orous approach underscores the credibility and depth of the research findings presented in the publication, making it a valuable resource for anyone seeking a comprehensive un-derstanding of the developments and trends in NARM up to the present year.The seventh publication [VII], “Swarm-Intelligence Algorithms for Mining Numerical Association Rules: An Exhaustive Multi-Aspect Analysis of Performance Assessment Data", presented an exhaustive multi-aspect analysis of the four swarm intelligence-based algo-rithms for NARM with four real-world datasets and six metrics (performance time, the number of rules, support, confidence, comprehensibility, and interestingness). By system-atically assessing these algorithms across the selected metrics, the research aimed to pro-vide a holistic understanding of them and their performance and applicability in real-world scenarios. Furthermore, the research delved into the role of a multi-objective Swarm Intelligence-based optimization algorithm for NARM. This detailed assessment aids re-searchers and practitioners in selecting the most efficient algorithms for NARM.The eighth publication [VIII], “Discretizing Numerical Attributes: An Analysis of Human Perceptions", is a technical report which is the full version of the publication [V].In contrast to the fifth publication, this report encompasses a meticulous comparison of both proposed LSQM and LADM measures against human-perceived cut-points, aim-ing to evaluate their effectiveness in capturing human intuition regarding partitioning nu-merical attributes. To collect human responses, various graphs were utilized with diverse data points, including nine synthetic datasets and three real-world datasets. This report stands as a pivotal contribution to the field of data analysis by featuring the novel LSQM and LADM measures, which signify a substantial step in understanding human perceptions regarding numerical attribute partitions.
2.2 Contributions
This thesis primarily addresses the key issues of NARM, explicitly focusing on the challenge of dealing with numerical attributes and their discretization. The thesis proposed innovative approaches and techniques to effectively handle numerical attributes in the context of ARM. By addressing these primary issues, this research contributes to advancing the understanding and practice of NARM, providing valuable insights and practical solutions for working with numerical attributes. Table 2 illustrates the mapping between contribu-tions and corresponding evaluation methodologies.The following are the main contributions of this work:

• C1: Contribution (C1) is the identification of the NARM problems and respective so-lutions. The increase in alternative methods has resulted in a significant knowledgegap in understanding diverse techniques employed in NARM. To address this knowl-
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Table 2: Mapping between thesis contributions, and corresponding evaluation methodologies.

Contribution Summary Evaluation MethodologyC1 Presents an exhaustive study of NARMresearch articles Informed Arguments,SLRC2 Demonstrates the need for the humandiscretization of numeric attributes Controlled Experiment
C3 Provides two formal measures to auto-mate discretization of numeric attributes Controlled Experiment
C4 Provides an analytical evaluation of themeasures against human discretization. Controlled Experiment

edge gap, this contribution undertakes a comprehensive SLR, thoroughly examiningvariousmethods, algorithms,metrics, and datasets extracted froma substantial col-lection of 1,140 scholarly articles spanning the period fromNARM’s inception in 1996to 2022. This SLR is the first of its kind to provide an exhaustive study of the currentstate of the art on NARM, which is presented in the [VI]. The publications [I], [II]and [VII] contributed as the foundation to build this SLR and further research onthe need for human discretization. This contribution effectively addressed researchquestion RQ1.
• C2: Contribution (C2) is an explanation of the need and importance of human per-ception in partitioning numerical attributes. This contribution aims to investigatethe impact of data points’ features on human perception when partitioning numer-ical attributes. The publication [IV] corresponding to C2 highlights the importanceof human perception in data partitioning and offers a nuanced understanding ofhow different data characteristics influence human judgment. This knowledge isfundamental for the development of algorithms that can mimic human-like par-titioning processes, ensuring that the measures align closely with human intuitionand decision-making capabilities. The datasets used in the experiment are availableon the GitHub repository [47].
• C3: Contribution (C3) is the introduction of two novel measures designed for parti-tioning numerical attributes (see Definition 2 and Definition 3 on p. 92 of this thesis;resp. publication [III], p. 249). These measures are specifically developed to opti-mally reflect the impact of a numerical factor on another numerical target factor.Following evaluation, it was established that these newly proposedmeasures effec-tively identify optimal cut points aligned with human perception. These measureswere detailed in the publication [III] and significantly contributed to addressing theresearch question RQ3.1. The pseudocode for finding the three partitions is alsopresented in this work.
• C4: Contribution (C4) is an analytical evaluation of the introduced measures in con-trast to the outcomes of human perception. This research provides a thorough in-vestigation into how humans perceive the partitioning of a numerical factor andfurther conducts a comprehensive comparison with one of the proposed measuresas detailed in publication [V]. The research aimed to understand how human per-ception aligns with the results obtained through the LSQMmeasure.
Moreover, publication [VIII] extends this analysis by presenting a comparison of hu-man perception against both of the proposed measures. This comprehensive anal-ysis not only contributed valuable insights into the effectiveness of the LSQM and
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LADMmeasure but also provided a deeper understanding of the intricacies involvedin discretizing numerical attributes. The eighth publication contributes by advanc-ing both the theoretical understanding and the practical application of numericalattribute discretization, laying the groundwork for future research and innovationin the field. These publications collectively offer insights and solutions to addressthe research question RQ3.2.
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3 Research Methodology
This thesis follows the design science research approach. Design science is a fundamen-tal problem-solving paradigm that emphasizes the development and evaluation of in-novative solutions to real-world problems by creating new artifacts, models, and sys-tems [41, 72, 73, 83]. This approach is particularly relevant in disciplines that aim to design and build practical solutions, such as engineering, computer science, information systems, architecture, and product design.According to [41, 72], design science is based on processes of building and evaluating artifacts, where the artifacts include constructs, models, methods, and implementations (called instantiations in [41]). Building involves constructing an artifact specifically de-signed to address a specific problem or challenge with a focus on creating a practical and innovative solution to meet identified needs. Evaluation is responsible for assessing the performance and value of the artifact, using rigorous evaluation methods to determine its effectiveness [41, 72].
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Figure 1: The design science process and corresponding publications (dashed lines).

Figure 1 illustrates the research design of the thesis, along with publications relevantto each stage and associated research questions. This thesis offers two novel artifacts inthe form of two novelmeasures. A detailed exploration of the problem and solution spacewas undertaken to build the artifacts.This thesis is based on the foundation of five peer-reviewed research articles and threetechnical reports. The research articles offer valuable perspectives and substantiating ev-idence that underpin the results and conclusions delivered in this thesis. Publication [II]is a journal article and has been published in Springer Nature Computer Science (SNCS)journal. However, four peer-reviewed articles [I], [III], [IV], [V] have been published in theproceedings of reputed conferences. An exhaustive SLR of NARM [VI] has been publishedin an open-access repository arXiv. Furthermore, there is an additional article [VII] avail-able as a technical report on the renowned Social Science Research Network repository(SSRN). The publication [VIII] is an extended full version of the article [V], which is alsoavailable on arXiv.The proposed measures were carefully developed through a rigorous examination ofexisting literature in the field. In order to accomplish this, a thorough examination ofNARMwas carried out. The publications [I], [II] and [VI] played a significant role in reaching
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this goal. The publication [VII] partially contributes to investigating the role of optimizationalgorithms for NARM.The publication [I] delves into various methods (optimization, discretization, distribu-tion) of NARM. The publication [II] served as an extended article of [I] and is published inthe SNCS journal. Both articles [I] and [II] provide comprehensive coverage of state-of-the-art methods for NARM and emphasize the significance and necessity of the discretizationmethod in this domain. Additionally, the publications specifically address research ques-tion RQ1.2: “In how far are existing discretization techniques used in the numerical ARM"?The pioneering work introduced by Srikant and Agrawal [100] to discover quantita-tive association rules through partitioning served as a key inspiration for conducting thisresearch on partitioning numerical attributes. The need for human perception of parti-tioning has simultaneously driven the research toward developing formal measures forpartitioning numerical values.The publication [IV] answered the RQ2 by conducting a study to analyze the humanperception of partitioning numerical attributes. Through this research, I analyzed how hu-mans perceive partitions in numerical data and sought to gain insights into this aspect ofthe partitioning process. The publication [III] presents an order-preserving method withtwo novel measures LSQM and LADM for partitioning numerical attributes. The evalu-ation of this method and measures was carried out based on extreme cases of humanperception of partitions, specifically using two-step and three-step staircase scenarios. Inpublications [V] and [VIII], themeasures were evaluated for any number of partitions withdifferent datasets and compared the outcome of these measures with human-perceivedpartitions. The publication [VIII] serves as an extended version of [V], encompassing anal-ysis of both themeasures and experimentation on twelve datasets. Quantitative researchaims to answer research questions and focus on measurement and testing using numeri-cal data. This method is particularly effective for investigating relationships, patterns, andcause-and-effect relationships between variables systematically and rigorously.The publications [I], [II], [III], [VI] and [VII] utilized the quantitative research method.On the other hand, the publications [IV], [V] and [VIII] followed quantitative researchmethod and qualitative data collection method. The qualitative aspect of the study in-volves collecting and analyzing data related to human perceived responses. The study ofhuman perception was done by conducting a survey with data science experts and non-experts. The combination of expert data scientists and non-experts as participants adddepth to the study by considering diverse perspectives. The mixed-methods research ap-proach allows the researchers to triangulate the findings from different data sources andprovide a more robust analysis of the research questions.

22



4 Related Work
This section provides an overview of the related work that has been conducted within the scope of this thesis. Section 4.1 delves into exploring and analyzing existing methods, algorithms, metrics, datasets, and literature pertaining to NARM. Additionally, a separate section 4.2 is dedicated to the topic of discretization, which explores the different techniques used to convert numerical attributes into discrete values. It is imperative to comprehend the various discretization methods to make well-informed decisions about partitioning numerical attributes for ARM. Moreover, a comprehensive study on human perception related to the partitioning of numerical attributes is also conducted, and its overview is presented in section 4.3. It is crucial to understand how experts in the field, including data scientists and statisticians, perceive the partitioning process for developing more effective and human-intuitive approaches to NARM. By providing a thorough overview of the related work in these areas, the groundwork is established for the research and sets the stage for proposing novel solutions that address the gaps and challenges present in the current state of the field.
4.1 Numerical Association Rule Mining
This section delves into the details of various NARM techniques, examining their strengths, weaknesses, and applicability to different types of data. NARM was introduced as QARM by Srikant [100] and further evolved as NARM [10]. Srikant [100] partitioned the numeric attributes into intervals and mapped the intervals into consecutive integers and then applied the apriori [6] algorithm for finding the Boolean association rules to find quantitative association rules. Including partitioning [100, 20, 18, 34, 17, 87, 66, 30, 99], clustering [79, 65, 106, 70, 67, 38, 109, 23, 77], fuzzifying [21, 62, 42, 39, 64, 111] and hybrid [110, 80, 103, 57] approaches were also contributed to NARM. In their study, Altay et al. [10] outlined three primary approaches to addressing the NARM problem. Specifically, they discussed the use of discretization, optimization, and distribution strategies. The optimization method involves evolutionary [27], swarm intelligence based [16] and physics-based [86] algorithms. The evolution approach employs biological operators, including crossover, mutation, and selection, to mimic the evolutionary process. This ap-proach includes the genetic algorithm and differential evolution. Some prominent work in this direction to solve the NARM problem with this approach has been done by [76, 75, 74, 9, 32, 33, 11, 12]. However, the SI-based approach was first utilized for NARM by Alatas et al. in their work [7]. Further detailed work towards NARM has been conducted using different SI-based algorithms, such as [40, 63, 45, 8, 61]. Statistical concepts like mean, median, and standard deviation were utilized in some ARM studies [13, 46, 107]. Several alternative approaches have been proposed to address NARM [56, 43, 44].During the search process, several studies [3, 2, 37] were identified that have focused on NARM approaches and their comparison. Yet, no SLR has been found and published to date. It is important to note that these existing surveys and reviews have limitations. They often lack well-defined research questions, comprehensive search strategies, and rigorous research methodologies. Indeed, the identified limitations in previous surveys and reviews illuminated a critical knowledge gap, emphasizing the need for a systematic and comprehensive examination of the existing literature. The publication [VI] addressed these limitations and fulfilled the need for a more comprehensive understanding of the field by conducting an SLR.
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4.2 Discretizing Numerical AttributesThis work relies on extensively researched and highly cited literature regarding different discretization methods, including clustering and partitioning, with a particular focus on those closely aligned with the work presented in this thesis.In state of the art, several discretization approaches such as equi-depth, equi-width [19], ID3 [85], MDLP [31], Chi2 [69], D2 [19] etc., are proposed. Surveys on discretization tech-niques were conducted in 2002, 2006 and 2012 by Liu [68], Kotsiantis [60] and Gracia [35]. In 1991, Catlett [19] presented the equal-width and equal-frequency discretization algo-rithms. The equal-width divides the range into equal-width intervals called bins based on the minimum and maximum values of the continuous attribute. However, the equal-frequency algorithm assigns an equal number of continuous values to each bin. In 1995, Dougherty et al. [24] categorized discretization methods based on global/local, super-vised/unsupervised, and static/dynamic criteria. Binning, an unsupervised method, was compared to supervised methods based on entropy and purity. Global methods divide all attributes of a dataset into regions, while static methods discretize each feature sepa-rately. Dynamic methods search for inter-dependencies among features.Most of the techniques used in this context involve dividing the continuous factor into appropriate intervals by determining the right cut points or by clustering using distance measures. However, this thesis work is related to discretization and focuses on providing partitions of one factor that best describe the impact of one factor on another. In this di-rection, Mehta et al. [78] proposed an unsupervised correlation-preserving discretization method based on PCA. This method effectively converts continuous attributes in multi-variate data sets into discrete ones. The RUDE [71] algorithm discretizes numerical and categorical attributes with a mix of supervised and unsupervised methods. It has three steps: pre-discretizing, structure projection, and merging split points. The crucial step is structure projection, where the source attribute structure is projected onto the target attribute. Clustering is performed using the intervals, and split points are merged if the difference is within the user’s specified minimum criteria.Back in 1988, Eubank [29] and Konno et al. [59] focused on determining the most effec-tive piecewise constant approximation of a function f that only has one variable. Eubank relied on the population quantile function to demonstrate how to approach the problem of finding the best piecewise constant approximation. Later on, Bergerhoff [15] suggested a method that utilized particle swarm optimization to discover the best piecewise constant approximations of one-dimensional signals. The work presented in this thesis is distinct as it does not rely on signals; instead, the primary focus is on datasets that employ multiple data points for a single value of the influencing factor. In the context of the discretization method that can focus on providing partitions of one factor that best describes the impact of one factor on another, the author of this thesis also explored other concepts related to correlation and inter-dependency among variables, discussed in statistical reasoning, e.g., Pearson correlation [82, 102], linear regression [81], ANOVA (Analysis of Variance) [36] etc. However, these tools also do not find the partition of the numerical variable that reflects best the impact on another variable.
4.3 Human Perception for PartitioningThis section provides an overview of studies related to human perception that are con-nected to discretization techniques.In the current state of the art, several studies have leveraged human perception to evaluate diverse techniques. However, it is essential to note that these studies are not directly aligned with the specific context of discretization. Tatu et al. [104] explored how people  perceive multidimensional  data using visual quality criteria.  They conducted a
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user study to investigate the connection between the interpretation of clusters by hu-mans and the measurements that are automatically obtained from 2D scatter plots. Thisarticle found that contrary to intuition, separation is more crucial than density or overlapin cluster perception. While the importance of different cluster shapes remained unex-plored, the results of this article indicated a need for further research to understand theimpact of shapes on user perception. Additionally, this research suggested investigating acombination of measures based on both density and separation for a more comprehen-sive evaluation of clusters in data visualization.The article presented by Etemadpour et al. [28], aimed to explore the significance ofhuman perception in the analysis of projected views. The evaluationwas based on humanperception. Participantswere asked to evaluate high-dimensional data by identifying clus-ters and analyzing distances bothwithin and between clusters. The objectivewas to deter-mine whether distances solely influence subjects’ decisions in typical visual analysis tasksin the projected space or if other cluster properties such as cluster density, shape, size,and orientation also play a role. The article found that cluster density and shape signifi-cantly affect perception during visual inspection, leading to biased results in experiments.Cluster size and scatter plot orientation, however, did not have a significant impact. Over-all, the research underscores the influence of cluster properties on the outcomes of visualanalysis tasks.In this context, another research article conducted by Demiralp et al. [22] utilized hu-man judgments to estimate perceptual kernels for visual encoding variables, includingshape, size, color, and various combinations. To facilitate the experiment, Amazon’s Me-chanical Turk platform was utilized, and the experiment involved twenty Turkers who col-lectively completed thirty MTurk jobs. The use of human perceptions in this article con-tributes to a deeper understanding of how these variables are perceived in visual encodingtasks.A recent research [1] made a significant contribution by introducing a novel methodfor evaluating the visual quality of monochrome scatter plots. Their approach, ClustMe,utilized a data-driven visual quality measure (VQM) derived from human perceptual data.By ranking monochrome scatterplots based on cluster patterns, this method provided avaluable tool for assessing the effectiveness of visualization techniques. Despite theseadvancements, the question of which specific set of VQM is optimal for exploring multidi-mensional data remains unanswered. The article identified the need for further researchin determining the most suitable VQM, indicating an open avenue for future investiga-tions in the field of data visualization and analysis. Similarly, an article by Aupetit et al. [14]aimed to assess the effectiveness of clustering algorithms in aligning with human percep-tion of clusters in 2D scatter plots. The investigation evaluated various algorithms, includ-ing Gaussian Mixture Models, CLIQUE, DBSCAN, Agglomerative Clustering, and over 1437variations of k-means, on benchmark data. The primary objective was to determine howwell these algorithms corresponded with human perceptions of clusters. This researchalso addressed the difficulties associated with expanding perception-based approachesto higher-dimensional spaces.This work is inspired by research that relies on human judgments to evaluate differenttechniques. It aims to test the effectiveness of the proposed measure called LSQM and
LADM in terms of how humans perceive it.
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5 Evaluation
Evaluation entails the process of observing and quantifying how effectively the artifact contributes to solving a problem. This involves comparing the intended objectives of a solution with the actual observed outcomes resulting from the artifact’s utilization during the demonstration [83]. Evaluating a designed IT artifact necessitates establishing rele-vant metrics and, potentially, collecting and analyzing pertinent data [41].This section aims to illustrate the research’s evaluation through the presentation of results that pertain to the research questions. Here, the focus lies on elucidating how these results effectively address gaps within the existing body of knowledge, advancing our understanding of the subject. Additionally, this section highlights the alignment be-tween the outcomes of the research questions and the study’s objectives, validating the research’s relevance and significance.Table 3 provides an all-encompassing overview of the outcomes derived from address-ing RQ1, including the publications that address these questions. Four research articles are relevant to RQ1 and its sub-research questions. Table 3 offers a precise summary of the outcomes achieved in regard to the specific research questions, effectively highlighting the contributions put forth in each respective publication. All four publications [I], [II],[VI] and [VII] are relevant to RQ1.

• RQ1Howcan classical association rulemining (ARM) efficientlyworkwith numerical-valued columns?
– RQ1.1What are the state-of-the-art methods for mining association rules fromnumerical-valued columns?
– RQ1.2 In how far are existing discretization techniques used in the numericalARM?
– RQ1.3What are the limitations and the future potential of existing numericalARM techniques?
– RQ1.4Which Swarm Intelligence numerical ARM methods can be consideredoptimal and why?

Table 4, shows the results and associated publications for the research question RQ2.
• RQ2 How do humans partition numerical attributes?

– RQ2.1 How to identify typical patterns of human perception (in partitioningnumerical attributes)?
The results and publications related to research question RQ3 are presented in Table5. The three publications [III], [V] and [VIII] are relevant to RQ3.
• RQ3 How to find the partition of a numerical factor that reflects best the impact ofthis factor on a dependent numerical target variable?

– RQ3.1 How to develop formal measures and techniques for finding those par-titions?
– RQ3.2 How do the proposed techniques/measures perform when comparedwith human perception?
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Table 3: Summary of the RQ1 results with publication and current knowledge gaps.

Results and Associated Publications Current Knowledge GapsIn the publication [I], three NARM meth-ods were presented, and 24 algorithmswere reviewed in detail. This work par-ticularly addressed the research questionRQ1.1.

Section 4.1 outlined the limitations inher-ent in previous surveys and reviews, whichhave been successfully addressed and sur-passed in the context of this study.
The publication [II] is an extended ver-sion of [I]. This work provides an in-depthanalysis of 30 NARM algorithms and ex-plores the extent to which discretizationtechniques are utilized in these methods.Importantly, this publication significantlycontributed to the exploration of researchquestion RQ1.2.

Section 4.1 also outlined the lack of stud-ies that scrutinize the extent to whichdiscretization techniques have been inte-grated into NARM methods.

The publication [VI] presents a detailedand exhaustive SLR that followed guide-lines provided by Kitchenham [58]. Thispublication addressed RQ1.3.

The section 4.1 highlights that there is noSLR available on NARM in the existing re-views which followed any systematic re-search methodology.The publication [VI] provides a thoroughinvestigation of a wide range of methods,algorithms, metrics, and datasets sourcedfrom 1,140 scholarly articles spanning theperiod from the introduction of NARM in1996 to 2022. This SLR involved a rigor-ous selection process that assessed multi-ple inclusion and exclusion criteria, as wellas quality assessment. As a result, 68 arti-cles were chosen.

According to the investigation conductedin section 4.1, it is evident that no existingstudy has presented a detailed investiga-tion about NARM and used such a rigorousselection process.

The publication [VII] conducted a com-prehensive multi-aspect analysis of theSwarm Intelligence (SI)-based algorithms(along with their performance) applied inNARM. This publication played a partialrole in addressing the research questionRQ1.4. This work contributes by under-standing the performance of the subset(SI) of the optimization method.

The overview of the studies presented inthe section 4.1 also highlights that numer-ous research works focus on the perfor-mance analysis of NARM algorithms uti-lizing evolutionary algorithms. Interest-ingly, there seems to be a lack of perfor-mance assessment for SI-based NARM al-gorithms.
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Table 4: Summary of the RQ2 results with publication and current knowledge gaps.

Results and Associated Publications Current Knowledge GapsThe publication [IV] contributed by identi-fying the need for human perception to-wards partitioning the numerical attribute.This work raised the importance of per-ceptual conception in developing themea-sure for partitioning numerical factors.This work addresses the research ques-tion RQ2. After conducting extensive ex-perimentation with different features datapoints, the responses were collected andanalyzed human perception for partition-ing.

In the provided section 4.2, 4.3, the re-view of relevant literature highlights in-stanceswhere humanperception has beenintegrated into certain discretization tech-niques. However, it is noteworthy thatthere appears to be a gap in the existingbody of work concerning research specif-ically dedicated to the utilization of hu-man perception for partitioning numericattributes.

This research article formulated and testedfour hypotheses to investigate the im-pact of data point characteristics on hu-man perception when determining opti-mal cut points for partitioning numericalattributes.

The studies discussed in section 4.3 pro-vide insight into aligning human percep-tion with clustering. However, this workonly aimed to determine the cut pointsidentified by humans.

Table 5: Summary of the RQ3 results with publication and current knowledge gaps.

Results and Associated Publications Current Knowledge GapsThree publications addressed the RQ3.The publication [III] contributed to ad-dressing the main research question RQ3and sub-research question RQ3.1 by devel-oping two formal measures for partition-ing numerical attributes. This work intro-duced the order-preserving partitioning ofa numerical factor that reflects best the im-pact of this factor on a dependent numer-ical target factor.

Section 4.2 specifically shows the lackof discretization technique in literature,which finds the partition of the numericalvariable that reflects best the impact onanother variable.

The publication [V] presented an in-depthanalysis of human perceptions of parti-tioning a numerical factor and comparedit with one of the proposed measures witheight datasets. However, publication [VIII]evaluated and analyzed both the proposedmeasures against human perceived re-sponses with twelve datasets. The out-comes of both measures closely align witheach other, yielding results that closelyapproximate human perception. Both ofthese publications address the researchquestion RQ3.2.

As presented in the overview in section 4.2and 4.3, it becomes evident that the do-main lacks a formalized measure for theprocess of partitioning. Additionally, com-paring the results of state-of-the-art mea-sures against human responses is not awidely practiced technique in the field.
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In summation, the responses to the primary research question and its accompanyingsub-research questions, as furnished by this study, have significantly contributed to thefulfillment of all predefined objectives. The first objective was accomplished by conduct-ing an SLR following the guidelines of Kitchenham [58]. Second, two IT artifacts have beendeveloped as mathematical measures to partition numerical attributes that reflect theirimpact on a dependent target variable. Third, an experiment was conducted to collect hu-man responses for partitioning numeric attributes and analyze human perception usingdifferent types of data points. Fourth, to evaluate these measures, a comparative analysishas been conducted.
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6 Discussion
The thesis presents novel impact-driven measures that capitalize on the concept of hu-man perception for partitioning numerical attributes and identifying optimal cut points. Traditional numerical discretization methods often overlook the subtleties of numerical relationships, leading to data representations that may not fully capture the underlying patterns and insights. In contrast, the impact-driven measures leverage human intuition and understanding to guide the partitioning process, resulting in data representations that are more interpretable and aligned with human cognitive abilities.Human perception brings a qualitative dimension to the process, allowing for the in-corporation of domain knowledge, contextual understanding, and cognitive reasoning. By involving human experts in the discretization process, the resulting partitions are more likely to align with how humans perceive and interpret data. This human touch enables the identification of meaningful cut points that align with how humans naturally perceive data. Moreover, the examination of existing literature through a systematic review provided a solid foundation for identifying gaps and opportunities for further exploration, leading to a deeper understanding of the landscape and methodologies of NARM.
6.1 Research Context
In the classical data analytics landscape, many data analysis practices are rooted around three popular decision support techniques (DSTs), i.e., statistical reasoning, online ana-lytical processing (OLAP), and association rule mining (ARM). The context of this research is also rooted around the intersection of these three decision-support techniques, con-tributing to the evolution of the research’s core idea.The author of this thesis has particularly worked on generalizing the classical ARM techniques from binary values to numerical values. As in its original form, classical ARM faces substantial limitations, e.g., the existing ARM techniques are confined to discrete-valued columns, leaving numerical-valued columns unaddressed. This limitation becomes particularly problematic in practical situations where numerical data is predominant. Therefore, an integral facet of this research lies in exploring discretizing numerical attributes, a critical undertaking within the realm of frequent itemset mining. This process holds particular significance, especially concerning QARM [100].Further, the inspiration for this research stems from an exploration of several research domains, including partial conditionalization [25, 26], ARM [5, 6, 98, 88], and NARM [100]. These research areas collectively provide the foundation upon which this thesis is built. In parallel, this research also draws inspiration from the development of complementary tools and frameworks. A notable mention is the introduction of the Grand report [84], and a framework [93] for unifying ARM, statistical reasoning (SR), and OLAP. The Grand report [84] reports the mean value of a chosen numeric target column concerning all possible combinations of influencing factors. Figure 2 illustrates the research context of this thesis.The work by [93] analyzes the inconsistencies and gaps between DSTs and proposes strategies to bridge the gap among the three popular DSTs: SR, OLAP, and ARM. The re-search on unifying DSTs elaborated the semantic correspondences between the founda-tions of SR, OLAP and ARM, i.e., probability theory, relational algebra and the itemset apparatus, respectively. Rahul et al. have developed a novel framework that unifies DSTs and created a tool to validate it. This tool simplifies the unified utilization of DSTs in deci-sion support, showing how SR, ARM, and OLAP can complement each other in improving data comprehension, visualization and decision-making processes.
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   This research strengthens the generalization of ARM by finding the partitions of nu-merical attributes that reflect best the impact of one independent numerical attribute on a dependent numerical attribute. The overarching vision of this research encompasses the development of an ecosystem that refines machine learning (ML) approaches, specifically ARM, to a new level of effectiveness, adaptability, and applicability.
6.2 Summary of Contributions
This research offers significant contributions, summarized as follows:

• This research provides an in-depth analysis of existing research articles in the fieldof NARM, offering a comprehensive overview of the existing literature.
• The thesis underscores the necessity of human involvement in the discretizationprocess of numeric attributes, recognizing the significance of human perception inthis domain.
• The research in this thesis introduces two formal measures, aiming to automatethe discretization of numeric attributes. These measures represent innovative ap-proaches in the field, designed to enhance the efficiency and accuracy of the dis-cretization process.
• The thesis conducts a rigorous analytical evaluation of the proposed measures bycomparing them to human discretization. This comparative analysis serves as a crit-ical assessment, validating the effectiveness and reliability of the proposed formalmeasures against human perception.
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6.3 Limitations
This thesis contributes valuable insights and advancements to the field of NARM; 
however, several limitations need to be acknowledged. The effectiveness and 
generalizability of the proposed measures and methodologies depend on the 
characteristics of the datasetsused for experimentation. Therefore, the results might not fully extend to datasets from different domains or with significantly different attributes. Further, the two proposed measures are theoretically grounded and have shown promising results within controlled experimental settings; however, their performance and robustness in complex real-world scenarios remain to be thoroughly validated. Moreover, their comparison and benchmarking against existing measures are limited. Currently, the suggested measures necessitate user input for the number of partitions (k). However, the overarching objective is to advance towards automating this process by leveraging various ML algorithms, such as the Elbow method [105], to identify the optimal value of k.These identified limitations underscore crucial areas for improvement, offering clear guidance for future research endeavors. The primary focus lies in using ML techniques to elevate automation levels and reduce human intervention.
6.4 Future Work
This research has provided valuable insights and contributions to the fields of NARM and developed two measures for effective partitioning of numerical attributes, but still, further exploration and expansion are needed to improve the effectiveness and applicability of the proposed measures.In the current settings in the measures, human intervention is required to set the number of partitions (k). This somehow restricts the measures to provide a fully automatic outcome. Therefore, to overcome the ratio of human involvement, future research can be focused on utilizing and developing advanced ML algorithms, e.g., Elbow method [105]. These algorithms can help to identify the number of cut points (value of k) and utilize the proposed measures to optimally decide the value of cut points. Exploring ML algorithms, heuristic methods, or evolutionary techniques tailored for this specific task can lead to a more automated and objective approach to selecting the number of cut points, aligning with the goal of complete automation. Moreover, integrating ML techniques into NARM can potentially revolutionize the NARM field to automatically detect intricate patterns and relationships in data, enhancing accuracy and reducing the effort required for pattern identification.
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7 Conclusion
The core objective of this Ph.D. thesis is to address three primary and seven supplemen-tary research questions, with the overarching goal of delivering invaluable insights and pragmatic solutions for addressing the numerical attributes in ARM. The thesis draws upon the research findings and contributions from a collection of five peer-reviewed articles and three technical reports published between 2020 and 2023.To address the RQ1 and its associated four sub-research questions, publications [I], [II] and [VI] delve into the identification of the NARM problems and respective solutions.The publication [VI] presents an extensive SLR that is the first of its kind to provide an exhaustive analysis of the current literature and previous surveys on NARM, comprehen-sively explores diverse methods, metrics, and various facets of NARM. This review draws insights from a substantial collection of 1,140 scholarly articles from 1996 to 2022.The publication [IV] addresses RQ2 and emphasizes the importance of human percep-tion for developing useful methods for discretizing numerical attributes. The significance of RQ3 lies in its role of pioneering the development of innovative techniques aimed at discretizing numerical attributes in a manner that closely aligns with human perception. The publications [III], [V] and [VIII] have made significant contributions in this aspect by in-troducing and validating two novel measures. The evaluation of these measures was con-ducted by gathering human perception responses, thereby enhancing the understanding of their effectiveness and practical implications. Moreover, the publication [VII] presented an exhaustive multi-aspect analysis of the four swarm intelligence-based algorithms for NARM and investigated the role of the multi-objective SI-based optimization algorithm for NARM.In total, this research presents four substantial contributions to the domains of ARM, QARM, or NARM.

• Offering a thorough investigation of research articles focused on NARM.
• Presenting the significance and importance of human perception for discretizationof numeric attributes.
• Developing two novel formal measures to automate the discretization of numericattributes.
• Providing analytical evaluation of the measures against collected responses of hu-man perception.
The research successfully answered the three formulated research questions.Examining existing literature through a systematic review provided a solid foundationfor identifying gaps and opportunities for further exploration, leading to a deeper under-standing of the landscape and methodologies of NARM. Furthermore, analyzing humanperception in data analysis underscores the significance of human perception in develop-ing effective measures for partitioning numerical attributes.The impact of this research resonates across decision support systems, data analytics,and the broader landscape of ML. As we move forward, the insights and solutions pre-sented here undoubtedly shape the future of these fields, contributing to enhanced datacomprehension, more accurate analyses, and informed decision-making.
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Abstract
Generalized Association Rule Mining – Dimensional Unsuper-
vised Learning
This thesis explores the synergistic use of numerical association rule mining and order-preserving partitioning methods to uncover the partitions of numerical attributes thatreflect the most significant impact of an independent numerical attribute on a dependentnumerical attribute. The key objective of this research work is to contribute to develop-ing an ecosystem that elevates machine-learning approaches by refining the dimensionsof the ARM. The thesis addresses three main research questions and seven sub-researchquestions by providing valuable insights and practical solutions for working with numer-ical attributes within the association rule mining domain. To fulfill these objectives, thethesis draws upon five peer-reviewed articles and three technical reports published be-tween 2020 and 2023. This thesis provides its first contribution through an exhaustiveSLR encompassing over 1,140 scholarly articles published since 1996. The review focuseson NARM, thereby identifying prevalent problems and proposing corresponding solutionswithin this research domain. The second contribution is demonstrating the significanceand importance of human perception for discretizing numeric attributes. This researchaimed to investigate the impact of data points’ features on human perception when par-titioning numerical attributes by experimenting with data experts and non-experts. Thethird significant contribution of this thesis presents two novel measures for partitioningnumerical attributes. The development of these measures provides a new approach toeffectively partition numerical attributes in decision-making processes. The fourth mean-ingful contribution entails conducting an analytical evaluation of the measures based oncollected human perception responses. This thesis conducts a comprehensive investiga-tion into human perception of numerical factor partitioning and undertakes a thoroughcomparison with the proposedmeasures. As a part of future work, It is planned to extendthis research further to improve the effectiveness of the proposed measures.
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Kokkuvõte
Üldistatud assotsiatsioonireeglite kaevandamine – dimensioo-
niline juhendamata õpe
See lõputöö uurib numbriliste assotsatsioonireeglite kaevandamise (NARM) ja järjestustsäilitavate jaotusmeetodite sünergilist kasutamist, et esile tuua numbriliste atribuutidesektsioonid,mis kajastavad sõltumatu numbrilise atribuudi kõige olulisematmõju sõltuva-le numbrilisele atribuudile. Selle uurimistöö põhieesmärk on aidata kaasa sellise ökosüs-teemi arendamisele, mis edenab masinõppe lähenemisviise täpsustades ARM-i ulatust.Lõputöö hõlmab kolme peamist uurimisküsimust ja kuut abistavat uurimiküsimust, pak-kudes väärtuslikke teadmisi ja praktilisi lahendusi numbriliste atribuutidega töötamiseksassotsiatsioonireeglite kaevandamise valdkonnas. Nende eesmärkide täitmiseks toetublõputöö viiele eelretsenseeritud artiklile ja kolmele tehnilisele aruandele,mis avaldati aas-tatel 2020–2023. See väitekiri annab oma esimese panuse ammendava süstemaatilise eri-alakirjanduse ülevaate kaudu, mis hõlmab üle 1140 teadusartikli, mis on avaldatud alates1996. aastast. Ülevaade keskendub NARM-ile, tuvastades esinevad probleemid ja pakku-des vastavad lahendused selles uurimisvaldkonnas. Teine panus näitab inimtaju olulisustja tähtsust numbriliste atribuutide diskretiseerimisel. Selle uuringu eesmärgiks oli tuvasta-da andmepunktide funktsioonide mõju inimese tajule numbriliste atribuutide jagamisel,katsetades andmeekspertide ja mitteekspertide rühmadega. Selle lõputöö kolmas olulinepanus esitab kaks uudset meedet numbriliste atribuutide jaotamiseks. Nende meetme-te väljatöötamine annab uue lähenemisviisi numbriliste atribuutide tõhusaks jaotamiseksotsustusprotsessides. Neljas oluline panus hõlmab meetmete analüütilist hindamist ko-gutud inimtaju vastuste põhjal. Selle uuringu käigus uuriti põhjalikult, kuidas inimene ta-jub arvuliste tegurite jaotust, ja võrdleb põhjalikult kavandatud meetmetega. Edasise tööosana on kavas antud uuringut veelgi laiendada, et suurendada väljapakutud meetmetetõhusust.
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Abstract. In association rule mining, both the classical algorithms and
today’s available tools either use binary data items or discretized data.
However, in real-world scenarios, data are available in many different forms
(numerical, text) and these types of data items are not supported in the
classical association rule mining algorithms. There are some association
rule mining algorithms that have been proposed for numerical data items
but unfortunately, for working data scientists and decision makers, it is
challenging to find concrete algorithms that fit their purposes best. There-
fore, it is highly desired to have a study on the different existing numeri-
cal association rule mining algorithms (NARM). In this paper, we provide
such a detailed study by thoroughly reviewing 24 NARM algorithms from
different categories (optimization, discretization, distribution).

Keywords: Knowledge discovery in databases · Association rule
mining · Numerical association rule mining

1 Introduction

Data mining is a widely used technique for extracting useful information from
large repositories of data. To extract useful information from data, there are
many well-known data mining techniques such as association rule mining, char-
acterization, classification, clustering, evolution, generalization, regression, pre-
diction, outlier detection, etc. that have been proposed in the literature. Out
of all the data mining techniques, association rule mining (ARM) is one of the
most established ones.

ARM was first introduced by Agrawal [2] to understand the relationship
between different data items and since then has been widely used for market
basket analysis, bio-informatics, medical diagnosis, etc. Agrawal [3] proposed the
apriori algorithm to discover all significant association rules in large databases

c© Springer Nature Singapore Pte Ltd. 2020
T. K. Dang et al. (Eds.): FDSE 2020, CCIS 1306, pp. 3–20, 2020.
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in 1994. The main aim of ARM is not just finding frequent itemsets but also
finding interesting association rules.

In classical association rule mining, most of the algorithms work in two
phases. In the first phase, all frequent itemsets are found, and in the second
phase, rules are drawn. Apriori and FP-growth are the two most algorithms
based on binary columns and are usually perceived as the classical association
rule mining algorithms. The classical association rule mining algorithms work
only with binary data items and do not support numerical data items, therefore,
whenever data is in numerical form (height, weight, or age) the data items need
to be changed from numerical to categorical using a discretization process. This
process of finding association rules in numerical data items has been referred to
as numerical association rule mining (NARM).

Research in the area of association rule mining generally considers binary
data items as input for the proposed algorithms but excludes numerical data
sets. A tool named Grand report has been proposed that reports mean values of a
chosen numeric target column concerning all possible combinations of influencing
factors [45]. There are some association rule mining algorithms available for
numerical data items but it is still challenging to find the best algorithms, NARM
algorithms have the potential to deal with different types of attributes, therefore,
it’s important to have a study on different numerical association rule mining
algorithms.

In this paper, we discussed different solutions and problems in the 24 NARM
algorithms proposed under the optimization, discretization and distribution
methods. The paper is structured as follows. In Sect. 2, we describe prelimi-
naries. In Sect. 3, we discuss all three methods to solve numerical association
rule mining problems. In Sect. 4, the optimization method is discussed with all
its sub-methods. In Sect. 5, the distribution method is introduced and discussed
and in Sect. 6 Discretization method is discussed. We finish the paper with a
conclusion in Sect. 7.

2 Preliminaries

In ARM, association rules have been developed based on the If-then relations
which consist of antecedents (If) and consequents (Then) [2]. For example, (1)
shows the following association rule: “If a customer buys bread and butter then
he also buys milk and sugar”. Here, bread and butter appear as antecedent and
milk and sugar as consequent. Generally, an association rule may be represented
as a production rule in an expert system, an if statement in a programming
language or implication in a logical calculus.

{Bread,Butter} ⇒ {Milk, Sugar} (1)

In a database, let I be a set of m binary attributes {i1, i2, i3, . . . , im} called
database items. Let T be a set of n transactions {t1, t2, t3, . . . , tn}, where each
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transaction ti has a unique ID and consists of a subset of the items in I, i.e.,
ti ⊆ I. As in (1), an association rule is an implication of the form

X ⇒ Y (2)

where X,Y ⊆ I (itemsets) and X ∩ Y = ∅.
In association rule mining, frequent itemsets and association rules are discov-

ered based on boolean data columns, therefore, it is known as boolean association
rule mining. Different measures of interestingess are proposed in the literature
to find out the interesting rules [53]. Boolean association rules are meaningful,
but data are often available in different forms (categorical, quantitative, text)
and in these cases, boolean association rule mining techniques do not fit. Thus,
the term numeric association rule mining was introduced by [26] and the prob-
lem was first discussed by Srikant in 1996 [55]. A numerical association rule can
easily be understood by the following example.

Age ∈ [40, 50] ∧ Gender=M ⇒ NumberOfCars = 2 (3)

Given a set of transactions T , let Antecedent denote the set of transactions in
T in which Age has a value between 40 and 50 and Gender equals M . Similarly,
let Consequent denote the set of transactions in which NumberOfCars = 2. Now,
the association rule (3) stands for the following fraction.

number of transcations in Antecedent ∩ Consequent

number of transcations in Antecedent
(4)

As an early solution, the problem of association rules for numerical data was
solved using a discretization process where numeric attributes are divided into
different intervals and, henceforth, these attributes are treated as categorical
attributes [12]. For example, an attribute Age with values between 20 to 80 can
be divided into six different age intervals (20−30, 30−40, 40−50, 50−60, 60−70, 70−
80). The data discretization process is an obvious solution, however, it reveals
a loss of valuable information which might cause poor results [16]. Thus, we
review solutions from three different approaches (discretization, distribution and
optimization) to solve issues with numerical association rule mining in Sect. 3.

3 Methods to Solve Numerical ARM Problems

To solve the issues in numerical association rule mining, three main approaches
(discretization, distribution and optimization) have been discussed in the liter-
ature. Based on these three approaches, many different NARM algorithms have
been proposed. The optimization method has several sub-methods as swarm
intelligence and evolution based algorithms which cover most of the area to deal
with NARM. The Distribution method does not contribute much in this area,
however, the discretization method is a common method that transforms contin-
uous attributes into discrete attributes. The discretization is further subdivided
into three sub-methods. Figure 1 (compare also with Fig. 1 in [9]) is showing all
three approaches and different algorithms proposed under each approach.
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Fig. 1. Methods to solve numerical association rule mining problems.

4 The Optimization Method

To solve the numerical association rule mining problem, many researchers have
moved towards optimization methods. Optimization methods provide a robust
and efficient approach to explore a massive search space. In this method,
researchers have invented a collection of heuristic optimization methods inspired
by the movements of animals and insects. For finding association rules, optimiza-
tion methods work in two phases. In the first phase, all the frequent itemsets are
found and in the second phase, all relevant association rules are extracted. As
shown in Fig. 1, optimization methods are divided into two parts, bio-inspired
optimization methods and physics-based optimization methods. Table 1 shows
an overview of all those algorithms that come under the optimization method.

4.1 The Bio-Inspired Optimization Method

Biology-based algorithms are generally divided into two parts: swarm-
intelligence-based algorithms and evolution-based algorithms [14]. The origin
of these algorithms is the biological behavior of natural objects [64].

Evolution-Based Algorithms. Evolution-based algorithms are inspired by
Darwinian principles and were first applied in [42]. These algorithms mimic
the capability of nature to develop living beings that are well-adapted to their
environment [64]. Evolution-based algorithms exploit stochastic search methods
that follow the idea of natural selection and genetics. The algorithms show strong
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Table 1. An overview of optimization method algorithms for NARM.

Methods Basic technique Algorithms

GA Genetic Algorithm GENAR [41], GAR [42], EGAR [33],
ARMGA, EARMGA [68], GAR-PLUS
[10], QuantMiner [51], RelQM-J [52],
RCGA [40]

MOGA Genetic Algorithm ARMMGA [47], QAR-CIP-NSGA-II [39],
MOEA [20]

DE Differential Evolution MODENAR [7], ARM-DE [18]

PSO Particle Swarm Optimization RPSO [4], CENPSO [5], MOPAR [12],
PPQAR [67], PARCD [61]

WSA Swarm Intelligence WSA [1]

GSA Physics-based (Gravity) GSA [13]

adaptability and self organization [14] and use biology-inspired operators such as
crossover, mutation, and natural selection [64]. The Genetic Algorithm [25] and
the Differential Evolution Algorithm [58] are two example of evolution-based
algorithms. Table 2 shows an overview of the evolution-based algorithms for
NARM, together with concepts.

Genetic Algorithms (GA). GA was first proposed by Holland [25] and they
are one of the most popular algorithms in bio-inspired optimization methods
at all. A basic genetic algorithm consists of five phases: initialization, evalua-
tion, reproduction, crossover, and mutation. GAs for NARM can be divided into
three fields, i.e., basic genetic algorithms, genetic programming and multiobjec-
tive genetic algorithms. A basic genetic algorithm has been proposed by Mata
et al. [41] and together with the tool GENAR (GENetic Association Rules) to
discover association rule with numeric attributes. Association rules in GENAR
algorithms allow for intervals (maximum and minimum values) for each numeric
attribute. Mata et al. [42] further extended the GENAR algorithms and proposed
a technique named GAR (Genetic Association Rule) to discover association rules
in numeric databases without discretization. In this paper, a genetic algorithm
was used to find the suitable amplitude of the intervals that conform k-itemset
and can have a high support value without too wide intervals. In [33], the GAR
algorithm was further extended to EGAR (extended genetic association rule).
This algorithm generates frequent patterns with continuous data [42].

A genetic-based strategy and two other algorithms ARMGA and EARMGA
were proposed by Yan et al. [68] In this approach, an encoding method was
developed with relative confidence as the fitness function. In these algorithms,
there was no requirement of a minimum support threshold. The GAR-plus tool
was presented by Alvarez [10]. This tool deals with categorical and numeric
attributes in large databases without any need of a prior discretization of numeric
attributes.
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Based on the genetic algorithm, in 2013, Salleb et al. [51] proposed “Quant-
Miner”, a quantitative association rule mining system. This tool dynamically
discovers meaningful intervals in association rules by optimizing both the confi-
dence and the support values.

Seki and Nagao [52] worked on GA-based QuantMiner for multi-relational
data mining and developed RelQM-J, a tool for relational quantitative associa-
tion rules5 in Java programming language. In this tool, efficient computation of
the support of the rules has been realized by using a hash-based data structure.

A real-coded [30] genetic algorithm was presented in [40] in 2010. The pro-
posed algorithm RCGA follows the CHC binary-coded evolutionary algorithm
[17]. RCGA algorithm has been applied to pollutant agent time series and helps
to find all existing relations between atmospheric pollution and climatological
conditions.

Genetic Programming for ARM. Genetic Programming [31] is a well-known
type of GA. In GA, the genome is in string structure while in GP, the genome
is in the form of tree structure [24]. Genetic Network Programming (GNP) is
a graph-based evolutionary algorithm and find the association rules for con-
tinuous attributes. In this method, important rules are stored in a pool and
these extracted rules are measured by the chi-squared test. This pool is updated
in every generation by exchanging the association rule with higher chi-squared
value for the same association rule with lower chi-squared value [59].

Multi-Objective Genetic Algorithm. The multi-objective genetic algorithm was
proposed by Fonseca et al. in 1993 [19]. Generally, the resource consumption
of an association rule mining computation is affected by two parameters, i.e.,
minimum support and minimum confidence. In classical ARM algorithms, only a
single measure (support or confidence) has been used as a measure to evaluate the
rule interestingness, therefore, if the values of minimum support and minimum
confidence are not set properly then the number of association rules may be very
less or it may be very large. This problem can be solved by using more objectives
or measures as referred in multi-objective ARM.

Gosh and Nath [20] used a Pareto-based genetic algorithm to solve the multi-
objective rule mining problem by using three measures: interestingness, compre-
hensibility and predictive accuracy. The single objective algorithm, ARMGA [68]
had issues that were addressed by introducing the multi-objective genetic algo-
rithm called ARMMGA by Qodmanan et al. in [47]. The ARMGA algorithm
finds high confidence and low support rules, whereas ARMMGA finds high con-
fidence and high support rules. ARMGA has a large set of rules in comparison
to ARMMGA; this problem was solved using a new fitness function in ARM-
MGA. To prevent invalid chromosomes in ARMGA, new crossover and mutation
operators are presented in the literature.

To solve multi-objective optimization problems, Srinivasan and Deb [56]
proposed a non dominated genetic sorting algorithm. In 2002, Deb et al. [15]
extended NSGA to NSGA-II. In 2011, Martin et al. [39] extended NSGA-II with
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a trade-off between interpretability and accuracy. NSGA-II performs evolution-
ary learning of intervals of attributes. For each rule, condition selection is done
for three objectives (interestingness, comprehensibility and performance). This
method did not depend on minimum support and confidence thresholds. Martin
et al. again extended their research on NSGA-II to a new approach called QAR-
CIP-NSGA-II and compared the results of this algorithm with other MOEA
algorithms.

Differential Evolutionary Algorithms. Differential evolutionary (DE) algorithms
are evolution-based algorithms. These algorithms were proposed by Storn and
Price in [57]. DE algorithms are simple and effective single-objective optimiza-
tion algorithms that solve real-valued problems based on the principle of natural
evolution. DE algorithms use Genetic-based operators such as crossover, muta-
tion, and selection. Although the evolution process of DE is similar to the one
of GA but it relies on a mutation operator instead of a crossover operator [65].

A pareto-based multi-objective DE algorithm for ARM was first proposed in
[7] by Alatas et al. for searching accurate and comprehensible association rules.
The problem of mining association rules was formulated with four objective opti-
mization problems, i.e., support, confidence, comprehensibility and amplitude.
Here, support, confidence and comprehensibility are maximization objectives and
the amplitude of intervals is a minimization objective. In a single run, a pareto-
based multi-objective DE algorithm search intervals of numeric attributes and
association rules.

In 2018, [18] proposed a novel approach for mining association rules with
numerical as well as categorical attributes based on DE. In this algorithm, a
single objective optimization problem is considered in which support and con-
fidence of association rules are combined into a fitness function. This new DE
using ARM (ARM-DE) with mixed (i.e., numerical and categorical) attributes
consist of three stages: 1. domain analysis, 2. representation of a solution, 3.
definition of a fitness function.

Swarm Intelligence Based Algorithms are further divided into two sub-
optimization methods, particle swarm optimization and the wolf search algo-
rithm. Table 3 provides an overview of swarm intelligence algorithms for NARM.

Particle Swarm Optimization. Particle Swarm Optimization (PSO) is a
population-based optimization algorithm for nonlinear function. This algorithm
is oriented towards animal behavior such as birds flocking or fish schooling. It
was developed in 1995 [27,46]. PSO was first used for NARM to find intervals
of the numerical attributes in 2008 [4].

Rough PSOA, based on rough patterns was proposed in [4], in which rough
values are defined with upper and lower intervals. This algorithm can comple-
ment the existing tools developed in rough computing. Rough values are useful
in representing an interval for an attribute. In this work, each particle consists of
a decision variable that has three parts. The first part of each decision variable
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Table 2. An overview of evolution-based algorithms for NARM.

Algorithm Proposer Concept

GENAR [41] J. Mata Vázquez
et al. (2001)

Based on finding frequent itemsets in
numerical databases and intervals of
all attributes that conform to those
frequent itemsets

GAR [42] J. Mata Vázquez
et al. (2002)

Extended version of GENAR

EGAR [33] H. Kwaśnicka
et al. (2006)

Uses medical databases where
attributes are continuous and discrete;
extended version of GAR

ARMGA [68] A. Yan et al.
(2009)

No requirement of minimum support
threshold

EARMGA [68] A. Yan et al.
(2009)

GARPLUS [10] V. Álvarez et al.
(2012)

Based on the finding intervals of
numeric attribute

QUANTMINER [51] A. Salleb-Aouissi
et al. (2013)

Based on genetic algorithm to find
good intervals by optimizing both
support and confidence

RelQM-J [52] H. Seki1 (2017) Based on mining numeric rules from
relational databases, implemented in
Java

RCGA [40] M. Martinez-
Ballesterosa
(2010)

Based on CHC binary-coded
evolutionary algorithm

ARMMGA [47] H. Reza
Qodmanan
(2011)

Based on multi-objective genetic
algorithm

QAR-CIP-NSGA-II D. Martın et al.
(2011)

Based on NSGA with three measures
(comprehensibility, interestingness,
performance)

MODENAR [7] B. Alatas (2008) Based on multi-objective differential
evolutionary algorithm

ARM-DE [18] I. Fister Jr.
(2018)

Single objective optimization problem
where features consist of numerical as
well as categorical attributes

represents the antecedent or consequent of the rule and can take values between
0 and 1. The second part represents the lower bound, the third part represents
the upper bound of the item interval. The second and third parts are combined
as one rough value during the implementation phase of particle representation.
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Table 3. An overview of swarm-intelligence-based algorithms for NARM.

Algorithm Proposer Concept

RPSO [4] B. Alatas et al. (2008) RPSOA is based on the notion of
rough patterns that use rough
values defined with upper and
lower intervals.

CENPSO [5] B. Alatas et al. (2009) CENPSO is based on chaos
numbers

MOPAR [12] V. Beiranvand et al. (2014) MOPAR is Based on Multi
objectives (confidence,
comprehensibility and
interestingness)

Parallel PSO [67] A. Yan et al. (2019) Parallel PSO is based on two
methods of parallel algorithm:
particle-oriented and data-oriented
parallelization

PARCD [61] I. Tahyudin et al. (2017) Combined PSO method with
cauchy distribution

WSA [1] I.E. Agbehadji et al. (2016) Based on wolves hunting strategy

Alatas and Akin [5] proposed a novel PSO algorithm based on chaos num-
bers. The CENPSOA algorithm (chaotically encoded PSO) uses chaos decision
variables and chaos particles. Chaos and PSO relation were first discovered by
Liu et al. [36], CENPSOA algorithm performs encoding of particles given by
chaos numbers. The Chaos numbers consist of the midpoint and radius part of
values [5]. Alatas and Akin [6] also proposed a multi-objective chaotic particle
swarm optimization algorithm for mining accurate and comprehensible classifi-
cation rules.

Yan et al. [67] proposed a parallel PSO algorithm for numerical association
rule mining. This parallel algorithm was designed with two strategies called
particle-oriented and data-oriented parallelization. Particle-oriented paralleliza-
tion is more efficient and data-oriented parallelization is more scalable to process
large datasets.

To discover association rules in a single step without prior discretization of
numerical attributes, Beiranvand et al. [12] proposed a multi-objective particle
swarm optimization algorithm (MOPAR). The algorithm defines multiple objec-
tives such as confidence, comprehensibility and interestingness. In the pareto
method, a candidate solution is identified better than all other candidates. And
in multi-objective optimization, a set of best solutions is identified in which the
members are superior among all the candidates.

Kuo et al. [32] proposed a multi-objective particle swarm optimization algo-
rithm using an adaptive archive grid for NARM. It is also based on Pareto
optimal strategy. In this algorithm, minimum support and minimum confidence
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are not required before mining. MOPSO algorithm includes a discretization pro-
cedure to process numerical data. This algorithm is executed in three parts:
1. initialization, 2. adaptive archive grid, and 3. particle swarm optimization
searching.

PSO for numerical association rule mining with cauchy distribution
(PARCD) has been evaluated by [61] and it showed that the result of PARCD
is better than the method of MOPAR.

Wolf Search Algorithm. The wolf search algorithm (WSA) is a bio-inspired
heuristic optimization algorithm. It was proposed by [63] and imitates the way
wolves search for food and survive by avoiding their enemies. WSA is tested
and compared with other heuristic algorithms and investigated with respect to
its memory requirements. The group of wolves has characteristics of commut-
ing together as a nuclear family, that is why it is different from particle swarm
optimization [66].

Agbehadji and Fong [1] proposed a new meta-heuristic algorithm that used
the wolf search algorithm for NARM. The wolf has three different features of
preying. These are prey initiatively, prey passively and escape. The preying ini-
tiatively feature allows the wolf to check its visual perimeter to detect prey. If
the prey is found within visual distance, the wolf moves towards the prey with
the highest fitness value, else, the wolves will maintain its direction. In prey
passively mode, the wolf only stays alert from threats and tries to improve its
position. In the escape mode, when a threat is detected, the wolf escapes quickly
by relocating itself to a new position with an escape distance that is greater than
its visual range.

4.2 Physics-Based Algorithm

The physics-based meta-heuristic optimization algorithm simulates the physi-
cal behavior and properties of the matter or follows the laws of physics [14].
For NARM, the gravitational search algorithm is a physics-based meta-heuristic
optimization algorithm.

Gravitational Search Algorithm. Rashedi et al. proposed a new optimiza-
tion algorithm based on the law of gravity and named it gravitational search
algorithm (GSA) [48]. Newtonian gravity laws state that “Every particle in the
universe attracts every other particle with a force that is directly proportional
to the product of their masses and inversely proportional to the square of the
distance between them”. In GSA, agents act as objects and their performance is
evaluated by their mass. Each mass presents a solution and it is expected that
masses will be attracted by the heaviest mass. GSA is like a small artificial world
of masses obeying the Newtonian laws of gravitation and motion. There are four
ways for representing the agents or coding the problem variables. These are con-
tinuous (real-valued), binary-valued, discrete, and mixed, which are called GSA
variants [49].
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Can and Alatas [13] first used GSA for NARM. GSA eliminated the task
of finding the minimum values of support and confidence. Automatically mined
rules have high confidence and support values. In this work, GSA has been
designed to find the numerical intervals of the attributes automatically, i.e.,
without any a priori data process at the time of rule mining. The problem of
interactions within attributes has been eliminated with the designed GSA by
not selecting one attribute at a time and not evaluating a partially-constructed
candidate rule due to its global searching with a population.

5 The Distribution Method

In [11], Aumann and Lindell have introduced a new definition for numerical
association rules based on statistical inference theory. In this study, they have
implemented several distribution scales including mean, median, and variance.
The following example shows the kind of generalization of ARM proposed by
the authors.

Gender=F ⇒ Wage:mean=$8.50 (overall mean wage = $12.60) (5)

As the above example shows, the average wage for females was $ 8.50 p/hr.
The rule displays that the wage of that group was far less than the average
wage; therefore, this rule can be considered useful. They also used the algorithm
which identifies repeated item-sets and then calculates the desired statistics for
the purpose with respect to repeated itemset. This procedure is restricted by the
requirement to store every repeated item-sets in memory throughout repeated
itemset generation. Where the data is not sparse, the number of frequent item-
sets will be huge and repeated itemset storage and access will dominate the
calculation. Moreover, they concluded that the suggested algorithm is beneficial
and may find rules between two given quantitative attributes.

6 The Discretization Method

Discretization is a process of quantizing numerical attributes into groups of inter-
vals and it is one of the most popular methods to solve the problem of numerical
association rule mining. There are numerous methods of discretization in lit-
erature. Due to different needs, discretization methods have been developed in
different ways such as supervised vs. unsupervised, dynamic vs. static, global
vs. local, splitting (top-down) vs. merging (bottom-up) and direct vs. incremen-
tal [37]. In classical ARM algorithms, numerical columns cannot be processed
directly [38], i.e., all columns need to be categorical, which is a major limitation
of ARM [62].

Discretization of numerical values is used to overcome this problem [28,43,44].
When a numeric column is divided into useful target groups, it becomes easier to
identify and generate association rules, i.e. discretization helps to understand the
numeric columns better. The discretized groups are useful only if the variables in
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the same group do not have any objective difference. Discretization minimizes the
impact of trivial variations between values. Discretization can be performed using
fuzzifying, clustering and partitioning and combining [8]. In Table 4, we summarize
some selected discretization algorithms used in NARM.

6.1 Fuzzifying

Fuzzy logic is a suitable way of handling numeric value columns for association
rule mining systems [50]. A straightforward method is in grouping numeric values
of a column by fuzzy sets [8]. Here, fuzzifying is the technique of illustrating
numeric values as fuzzy sets [29] which can help to rectify the sharp boundary
problem of association mining [50,60]. Sometimes, endpoint values of discretized
groups have more or less influence on the result than the midpoint values: this
phenomenon is known as a sharp boundary problem. Fuzzy Class Association
Rule (FCAR) is a model proposed by Kianmehr et al. in [29] to get the fuzzy
class association rules.

6.2 Clustering

Clustering is one of the popular methods of discretizing a numerical column in
an unsupervised manner [8]. In clustering, a numerical column is segregated into
different groups according to properties of each value; in this method, the prob-
ability of having values in the same group depends on the degree of similarity
or dissimilarity of the values [23,54]. To obtain maximum results in clustering,
the degree of similarity and dissimilarity needs to be well defined [21]: “In other
words, the intra-cluster variance is to be minimized, and the inter-cluster vari-
ance is to be maximized” [62]. Two-step clustering [54] is the most common
clustering method.

DRMiner Algorithm. Lian et al. [35] have proposed the DRMiner algorithm
which exploits the notion of “density” to capture the characteristics of numeric
attributes and an efficient procedure to locate the “dense regions”. DRMiner
scales up well with high-dimensional datasets. When mapping a database to
a multidimensional space, the data points (transactions) are not distributed
evenly throughout the multidimensional space. For this kind of distribution,
the density measure was introduced and the problem of mining quantitative
association rules transformed into the problem of finding dense regions to map
them to find quantitative association rules. Weaknesses of this method were the
prior requirement of many thresholds and, unsolving the dimensionality curse.
It was noted that the algorithm may not perform well for data sets with uniform
density between minimum density threshold and low density.

DBSMiner. DBSMiner is a density-based sub-space mining algorithm using
the notion of density-connected to cluster the high-density sub-space of numeric
attributes and gravitation between grid/cluster to deal with the low-density cells
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[22]. DBSMiner employs an efficient high dimension clustering algorithm CBSD
(Clustering Based on Sorted Dense unit) to deal with high dimensional data
sets. The algorithm has a unique feature to deal with low-density sub-spaces
and there is no need to scan the whole space just check the neighbor cell. It can
find interesting association rules.

MQAR. MQAR (Mining Quantitative Association Rules based on a dense
grid) is a novel algorithm that was proposed by Yang and Zhang [69]. The main
objective of this algorithm was to mine the numeric association rules using a tree
structure, DGFP-tree to cluster dense space. This algorithm is helpful to elimi-
nate noise and redundant rules by transforming the problem into finding regions
with enough density and to map them to quantitative association rules. A novel
subspace clustering algorithm was also proposed which is based on searching
DGFP-tree and inserts the dense cell in the database space into DGFP-tree as a
path from a root node to a leaf node. MQAR has the advantage that DGFP-tree
compresses the database and there is no need to scan the database several times.

ARCS. The Association Rule Clustering System [34] was presented by Lent
et al. together with a new geometric-based clustering algorithm, BitOP. In this
paper the problem of clustering of association rules like (A ∧ B) => C where
L.H.S. having quantitative attributes and R.H.S. having a categorical attribute
was discussed and a two-dimensional grid is formed where each axis represents
one of the L.H.S. attributes. ARCS is an automated system to compute a clus-
tering of two-attribute spaces in large databases. In ARCS framework Binner,
For a given partitioning of the input attributes, the algorithm makes only one
pass through the data and allows the support or confidence thresholds to change
without requiring a new pass through the data. BitOp algorithm enumerates the
clusters. To locate clusters within bitmap grids the algorithm performs bit-wise
operations.

6.3 Partitioning and Combining

In [55], Srikant and Agrawal discussed the problems of numeric attributes in
databases. The authors addressed the problem of mining association rules from
large databases containing both numerical and categorical attributes. To deal
with this problem, a partitioning method was introduced but before partitioning,
a measure of partial completeness was introduced which decided whether or
not to partition a numeric attribute and number of partitions. The number of
required partitions is computed by the following formula.

number of intervals =
2n

m(K − 1)
(6)

where n is number of numeric attributes, m is the minimum support and K
is the partial completeness level.
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Table 4. An overview of discretization-based algorithms for NARM.

Algorithm Proposer Concept

ARCS [34] B. Lent et al. (1997) Based on segmenting clusters using
the geometric-based BitOp
algorithm

DRMiner [35] W. Lian (2005) Based on finding density regions in
a multidimensional space.

DBSMiner [22] G. Yunkai et al. (2008) Based on clustering of high density
sub-spaces using a density- and
grid-based cluster algorithm

MQAR [69] Y. Junrui et al. (2010) Based on finding dense sub-spaces
using structure DGFP-tree

7 Conclusion

In this paper, a study of 24 NARM algorithms has been discussed. We briefly
discussed different solutions and problems in optimization, discretization and
distribution methods of solving the NARM problem. As per our findings, many
algorithms have been proposed in the optimization method but there is less
focused research in the area of discretization and distribution methods. NARM
has huge potential to extend dimensions of classical ARM and it may be used
for mining association rules in different types of data(categorical, quantitative,
text, etc.).
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(LNAI), vol. 1910, pp. 148–158. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45372-5 15
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Abstract. Many real-world data sets contain a mix of various types of
data, i.e., binary, numerical, and categorical; however, many data mining
and machine learning (ML) algorithms work merely with discrete values,
e.g., association rule mining. Therefore, the discretization process plays
an essential role in data mining and ML. In state-of-the-art data mining
and ML, different discretization techniques are used to convert numer-
ical attributes into discrete attributes. However, existing discretization
techniques do not reflect best the impact of the independent numerical
factor onto the dependent numerical target factor. This paper proposes
and compares two novel measures for order-preserving partitioning of
numerical factors that we call Least Squared Ordinate-Directed Impact
Measure and Least Absolute-Difference Ordinate-Directed Impact Mea-
sure. The main aim of these measures is to optimally reflect the impact
of a numerical factor onto another numerical target factor. We imple-
ment the proposed measures for two-partitions and three-partitions. We
evaluate the performance of the proposed measures by comparison with
human-perceived cut-points. We use twelve synthetic data sets and one
real-world data set for the evaluation, i.e., school teacher salaries from
New Jersey (NJ). As a result, we find that the proposed measures are
useful in finding the best cut-points perceived by humans.

Keywords: Discretization · Partitioning · Numerical attributes · Data
mining · Machine learning · Association rule mining

1 Introduction

In data mining and machine learning, discretization is an essential data pre-
processing step to achieve discretized values from numeric columns. Numeric
attributes can be discretized by partitioning the range of numeric attributes
into different intervals. In-state of the art, several discretization approaches such
as equi-depth, equi-width [3], ID3 [19], etc., are proposed. However, the existing
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discretization methods do not provide optimal results for the discretization pro-
cess, and they also have some drawbacks like information loss, etc., for mining
algorithms.

In this paper, we propose an optimal way to find out intervals or parti-
tions of a numerical attribute that reflect best the impact of one indepen-
dent numerical attribute on a dependent numerical attribute. We provide a
Least Squared Ordinate-Directed Impact Measure (LSQM) and Least Absolute-
Difference Ordinate-Directed Impact Measure (LADM) for order-preserving par-
titioning of numerical factors. The measures provide a simple way to search the
appropriate cut-points for finding the optimal partitions. For best cut-points,
order-preserving partitioning on an independent factor is performed and imple-
mented for two-partitions and three-partitions. The order of the independent
variable is preserved using the value of data points. Therefore, the value of data
points of one partition will always be less than the value of data points of the
next partition. The measures’ performance is assessed using one real-world data
set and twelve synthetic data sets (including two-step and three-step functions).
The outcomes are first compared to human perceived cut-points, and then their
outcomes are also compared to one another. The following are the key contribu-
tions of this article:

1. We develop two measures to find out the partitions which best reflect the
impact of one numerical factor on another numerical factor.

2. We evaluate the proposed measures on one real-world data set and twelve syn-
thetic data sets, including two-step functions, three-step functions, compare
it with human-perceived cut-points.

3. We provide the comparison of the results of both measures.

In Sect. 2, related work is discussed. In Sect. 3, we discuss the motivation
of the proposed measures with an example. We provide methods in Sect. 4. In
Sect. 5, we evaluate the proposed measures with a variety of data sets, including
one real-world data set, two-step, and three-step data points. We finish with the
paper with a conclusion in Sect. 6.

2 Related Work

In the literature, many concepts related to correlation and inter-dependency
among variables are discussed in statistical reasoning, e.g. Pearson correla-
tion [17,23], linear regression [15], ANOVA (Analysis of Variance) [8] etc. How-
ever, these tools do not find the partition of the numerical variable that reflects
best the impact on another variable.

The idea of this research emerged from the research on partial conditional-
ization [5], association rule mining [20,21] and numerical association rule min-
ing [9,22]. In these papers, the discretization process is discussed as an essential
step for numerical association rule mining. We have also presented a tool named
Grand report [18] which reports the mean value of a chosen numeric target col-
umn concerning all possible combinations of influencing factors. The measures
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proposed in this paper are important for discretization, which is an essential
step in frequent itemset mining, especially for quantitative association rule min-
ing [22] or numerical association rule mining.

There are various discretization processes available in the literature.
Researchers and data scientists proposed different algorithms using different
methods such as clustering, partitioning. However, these methods mainly focus
on discretizing the continuous factor by finding the appropriate cut-points to
make suitable intervals, or some of them use distance measures to create clusters.
In this paper, our work is related to discretization and provides the partitions
of one factor that best describes the impact of one factor on another.

Mehta et al. [14] worked in this direction and proposed a PCA-based unsuper-
vised correlation preserving discretization method, which discretizes continuous
attributes in multivariate data sets. The work ensures the use of all attributes
simultaneously to decide the cut-points in place of one attribute at a time.

Dougherty et al. [4] reviewed and classified discretization methods along three
separate axes; global versus local, supervised versus unsupervised, and static ver-
sus dynamic. Dougherty et al. [4] compared binning, unsupervised discretization
method to entropy-based and purity-based supervised methods. Global meth-
ods, such as binning, partition all the data set attributes into regions, and each
attribute is independent of other attributes. The static methods discretize each
feature separately, whereas dynamic methods obtain inter-dependencies among
features via conducting the search through space.

Liu et al. [12] performed a systematic study of existing discretization methods
and proposed a hierarchical framework for discretization methods from the per-
spective of splitting and merging. The unsupervised static discretization methods
such as equal-width and equal-frequency are simple and relevant to our work.
The Equal-width discretization algorithm uses the minimum and maximum val-
ues of the continuous attribute and then divides the range into equal-width
intervals called bins. The equal-frequency algorithm determines an equal num-
ber of continuous values and places them in each bin.

Ludl and Widmer [13] present RUDE (Relative Unsupervised Discretization)
algorithm for discretizing numerical and categorical attributes. The algorithm
combines the aspect of both supervised and unsupervised discretization. The
algorithm is implemented in three steps: pre-discretizing, structure projection,
and merging split points. The primary step is structure projection which projects
the structure of each source attribute onto the target attribute. Then clustering
is performed using projected intervals and merges split points if the difference is
less than or equal to the user-specified minimum difference.

Recently, H. M. Abachi et al. [1] worked on statistical unsupervised
method SUFDA (Statistical Unsupervised Feature Discretization Algorithm).
The SUFDA tries to provide discrete intervals with low temporal complexity
and good accuracy by decreasing the differential entropy of the normal distri-
bution. Multi-scale and information entropy-based discretization method is also
proposed in [24]. In 1988, Eubank [6] and Konno et al. [10] worked on the best
piecewise constant approximation of a function f of single variable. Eubank used
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the population quantile function as a tool to show the best piecewise constant
approximation problem. Later Bergerhoff [2] proposed an approach using parti-
cle swarm optimization for finding optimal piecewise constant approximations of
one-dimensional signals. Our work is different because we are not using signals,
and our main focus is on data sets that use several data points for one value of
influencing factor.

3 Motivation

A number of discretization methods have been proposed in the state of the
art [7,11]; however, they have not considered the type of target attribute, such
as binary, categorical, or numerical. We use numerical attributes as both influ-
encing and response factors in the proposed impact-driven discretization method.
In general, when one variable influences another, the human brain is trained to
notice changes and can easily discern compartments or partitions. However, in a
real-world data set, it is difficult for a human to determine the most suitable com-
partments; for example, both the Experience and Salary attributes are numerical
in the graph shown in Fig. 1. A human cannot easily find the appropriate com-
partment using this graph. As a result, the proposed measures partition the
numerical attribute and determine its impact on a target attribute. This section
presents a motivating example explaining why a specific measure is required to
locate the suitable compartments.
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Fig. 1. An example for motivation of real-world data set.
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4 Our Approach

The basic idea of our approach is to take one numerical independent variable
and one target variable from a data set and discretize the independent variable
in such a way as to find the appropriate cut-points, which are not observed easily
by humans.

4.1 Key Intuition

We claim to discretize the independent numerical attribute by using order-
preserving partitioning and see the impact on the numerical target attribute.
In Fig. 2, we provide the graph for two-step data points where X factor is the
numerical independent attribute, and Y factor is the numerical target attribute.
It is the extreme case where data points are distributed as a step-function. In
this case, humans can easily find out the cut-points without any difficulty. We
evaluate the same data set with the proposed measures and compare the results
with human perceived partitions.
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Fig. 2. Graph for two-step data-points (DS5 data set).

4.2 Step Function

In a Step function f, the domain is partitioned into several intervals. f(x) is
constant for each interval, but the constant can be different for each interval. The
different constant values for each interval create the jumps between horizontal
line segments and develop a staircase which is also known as a step function.
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Definition 1. A Step function f on interval [a,b] is a piece wise constant func-
tion which contains many finite pieces. There exist a partition P = {a =
x0, x1, . . . , xn = b} ∈ p[a, b] such that f(x) for all x ∈ (xr−1, xr) for each
r ∈ {1, 2, 3, . . . , n}. The jump of xr for r ∈ {0, 1, 2, . . . , n} is defined to be
f(x+

r ) − f(x−
r ).

4.3 Definitions

To compute appropriate cut-points of independent numerical variables, we intro-
duce the following impact measures as per the below definition.

Definition 2 (Least Squared Ordinate-Directed Impact Measure).
Given n≥2 real-valued data points (< xi, yi >)1≤i≤n, we define the least squared
ordinate-directed impact measure for k-partitions (with k−1 cut-points) as fol-
lows:

min
i0=0<i′

1<...<i′
k−1<i′

k=n

k∑

j = 1

∑

i′
j−1<i”≤i′

j

(yi” − µi′
j−1<φ≤i′

j
)2 (1)

where the average of data values in a partition µa<φ≤b between indexes a and b
(a < b ≤ n) is defined as

µa<φ≤b =

∑
a<φ≤b

yφ

b − a
(2)

In (1), we have that i′j is the highest element in the j-th partition, where high-
est element means the data point with the highest index.

Definition 3 (Least Absolute-Difference Ordinate-Directed Impact
Measure). Given n ≥ 2 real-valued data points (<xi, yi>)1≤i≤n, we define
the least absolute-difference ordinate-directed impact measure for k-partitions
(with k−1 cut-points) as follows:

min
i0=0<i′

1<...<i′
k−1<i′

k=n

k∑

j = 1

∑

i′
j−1<i”≤i′

j

|yi” − µi′
j−1<φ≤i′

j
| (3)

where the average of data values in a partition µa<φ≤b between indexes a and b
(a < b ≤ n) is defined as

µa<φ≤b =

∑
a<φ≤b

yφ

b − a
(4)
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Listing 1 . Pseudo-code for finding the three-partitions that reflect best the
impact of a numerical variable on another numerical variable.

FUNCTION finding the first partition(array_d)

FOR a=0 to (array_d.length-2)

MEAN_POINT1: mean(array_d[0 to a+1])

FOR b= 0 to a+1

ABS_DIFF1: absolute.difference(array_d[b]-MEAN_POINT1)

C1_SUM: C1_SUM + SQUARE(ABS.DIFF1)

ENDFOR

FOR j =(a+1) to (array_d.length-1)

MEAN_POINT2: mean(array_d[a+1 to j+1])

FOR i = a+1 to (j+1)

ABS.DIFF2: absolute.difference(array_d[i]-MEAN_POINT2)

C2_SUM: C2_SUM + SQUARE(ABS.DIFF2)

ENDFOR

MEAN_POINT3: mean(array_d[j+1 to (array_d.length)]

FOR k = j+1 to (array_d.length)

ABS_DIFF3: absolute.difference(array_d[k]-MEAN_POINT3)

C3_SUM = C3_SUM + SQUARE(ABS_DIFF3)

ENDFOR

TOTAL_SUM = C1_SUM1 + C2_SUM2 + C3_SUM3

IF a ==0 AND j == 1 THEN

CUT1 = 0

CUT2 = 1

temporary_var= TOTAL_SUM

ENDIF

IF TOTAL_SUM < temporary_var

CUT1 = a

CUT2 = j

temporary_var = TOTAL_SUM

ENDIF

ENDFOR

ENDFOR

PRINT(CUT1)

PRINT(array_d.[CUT1])

PRINT(CUT2)

PRINT(array_d.[CUT2])

ENDFUNCTION

4.4 Method

Let D be a collection of n data points D = (〈xi, yi〉)1≤i≤n, where 〈xi, yi〉 are data
points of real values. As per (1), the proposed measure LSQM computes appro-
priate cut-points. The number of cut-points is k − 1, where k is the number of
partitions suggested by the user. The measure first calculates the squared differ-
ence of the y-value of each data point of the current partition. In (1), the condition
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(ij−1 < r ≤ ij) requires that the index of data points of the current partition
should be greater than the highest index of the previous partition and less than or
equal to the highest index of the current partition. After summing up the squared
differences of the several partitions, it selects the minimum values, which corre-
spond to the appropriate cut-points. For the second measure LADM, we just take
the sum of the absolute differences of the several partitions. Next, we first provide
the pseudo-code for the case of three partitions (k = 3); and then, we compute the
cut-points for two partitions and three partitions. In Listing 1, we provide pseudo-
code for the three-partitioning approach according to Definition 2.

5 Evaluation

In this section, we experimentally validate the proposed measure in terms of
the quality of the resulting discretization and its ability to find the independent
variable’s impact on the target variable. In Fig. 2, a two-step function graph is
shown. In the graph, manual selection of cut-points can be performed for two-
partitions and three-partitions easily. However, we demonstrate the cut-points
after implementing the proposed measure on the same step-data sample and
then compare its cut-points with the human perceived manual methods.

5.1 Data Sets

We have conducted the experiment using twelve synthetic data sets and one
real-world data set. The real-world data set, New Jersey (NJ) school teacher
salaries (2016) [16] is sourced from the (NJ) Department of Education. It con-
tains 138715 records and 15 attributes. However, we have reduced the number
of rows from the data set to analyze the cut-points visually. We have taken
only initial 350 rows from the data set. The Data set NJ Teacher Salaries
(2016) consists of salary, job and experience data for the teachers and employ-
ees in New Jersey schools. We are interested in the column {experience total}
and {salary}. The column {experience total} is a numeric and independent
attribute, whereas {salary} is a numeric target attribute. The twelve synthetic
data sets are DS1 to DS121. These twelve synthetic data sets have only two
attributes named Age and Salary which are numeric. These data sets have a dif-
ferent number of rows and different values of attributes. In Table 1, we describe
the data sets. As the limit of pages, all the graphs for all data sets are not
included in this article. Repository of data sets has been given on the GitHub
(See footnote 1).

5.2 Results and Discussion

Two-Partitioning. For two-partitioning, k = 2, we need one cut-point. We
provide a graph for two-step data points in Fig. 2. The data set DS5 is from the

1 https://github.com/minakshikaushik/Least-square-measure.git.
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Table 1. Data sets used in evaluation.

Dataset Number of records Number of attributes

NJ Teacher Salaries(2016) 347 15

DS1 31 2

DS2 31 2

DS3 35 2

DS4 24 2

DS5 30 2

DS6 100 2

DS7 40 2

DS8 31 2

DS9 30 2

DS10 30 2

DS11 45 2

DS12 30 2

list of synthetic data sets. The data set DS5 is a sample of two-step function
data points. We use this data set for the manual selection method and later
implement the LSQM and LADM on the same data set. In the given data set,
the human would identify 44 as the natural cut-point of the two partitions 0−44
and 45−72, see Fig. 3. Next, we implement the proposed measures on the same
data set and see the cut-points.

Table 2. Comparison of the two-step and the three-step function using manual selec-
tion of cut-points and using proposed measures.

Dataset DS5 (Two-step function) DS12 (Three-step function)

Two-partitioning

Manual cut point 44 35

LSQM cut point 44 35

LADM cut point 44 35

Three-partitioning

Manual cut point (20,44) (35,52)

LSQM cut point (20,44) (35,52)

LADM cut point (20,44) (35,52)

Three-Partitioning. For three-partitioning, k = 3, we need two cut-points. We
provide a graph for three-step data points in Fig. 4. We use data set DS12 as an
extreme case of a three-step function. Earlier described in two-partitioning, we
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Fig. 3. Graph for showing the cut-point and two-partitions using manual method.
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Fig. 4. Graph for three-step data-points (DS12 data set).
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Fig. 5. Graph for showing the cut-points and three-partitions using manual method.
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Fig. 7. Graph for showing the two cut-points and three-partitions using Least Squared
Ordinate-Directed Impact Measure on real-world data set.
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Table 3. Result of Least Squared Ordinate-Directed Impact Measure using two-
partitions and three-partitions approach on different data samples.

Dataset Two-partitions Three-partitions

Cut-point Cut-point1 Cut-point2

NJ Teacher Salaries(2016) 13 18 7

DS5 (Two-step data-points) 44 20 44

DS12 (Three-step data-points) 35 35 52

DS1 52 52 54

DS2 52 32 52

DS3 25 25 56

DS4 40 29 40

DS6 20 12 24

DS7 19 14 27

DS8 32 32 52

DS9 52 35 52

DS10 35 35 52

DS11 42 32 42

Table 4. Result of Least Absolute Ordinate-Directed Impact Measure using two-
partitions and three-partitions approach on different data samples.

Dataset Two-partitions Three-partitions

Cut-point Cut-point1 Cut-point2

NJ Teacher Salaries(2016) 13 18 8

DS5 (Two-step data-points) 44 20 44

DS12 (Three-step data-points) 35 35 52

DS1 52 52 54

DS2 52 32 52

DS3 25 25 56

DS4 40 29 40

DS6 20 12 25

DS7 19 15 27

DS8 32 32 52

DS9 52 35 52

DS10 35 35 52

DS11 42 32 42



Impact-Driven Discretization of Numerical Factors 257

use this data set for the manual selection method and implement the proposed
measures. By using the manual method human would identify 35 and 52 as
two cut-points of the three-partitions 0−35, 36−52 and 53−72 in Fig. 5. After
implementing the proposed measures on the same data set, we can verify the
cut-points.

We implement both measures on data sets DS5 and DS12. We compare man-
ually selected cut-points with cut-points provided by LSQM and LADM for two-
partitioning and three-partitioning. As shown in Table 2, the cut-points for data
set DS5 are the same for the manual selection method and LSQM and LADM
measures. In the same way, cut-points for data set DS12 are also the same for
manual method and proposed measures.

Next, we implement both measures on real-world data set NJ Teacher Salaries
(2016) and the rest ten synthetic data sets (DS1, DS2, DS3, DS4, DS6, DS7,
DS8, DS9, DS10, DS11). Figure 6 shows one cut-point for two-partitioning
using LSQM measure on data set NJ Teacher Salaries(2016). Figure 7 shows two
cut-points for three-partitioning using LSQM measure on data set NJ Teacher
Salaries(2016). We received one cut-point 13 using LSQM for two-partitioning
and received two cut-points 18 and 7 for three-partitioning for the same data
set. Figure 8 is showing the two cut-points 18 and 8 after applying LADM mea-
sure. Both the measures LSQM and LADM provide the same cut-point for two-
partitioning as given in Fig. 6. However, their cut-point for three partitioning is
different and it is given in Figs. 7 and 8.

Table 5. Comparison of cut-points provided for measures LSQM and LADM for two-
partitioning and three-partitioning.

Dataset k=2 k=3 Deviation

LSQM LADM LSQM LADM

I I I II I II

NJ Teacher Salaries(2016) 13 13 18 7 18 8 Yes (In cut point2)

DS5 (Two-step data-points) 44 44 20 44 20 44 No

DS12 (Three-step data-points) 35 35 35 52 35 52 No

DS1 52 52 52 54 52 54 No

DS2 52 52 32 52 32 52 No

DS3 25 25 25 56 25 56 No

DS4 40 40 29 40 29 40 No

DS6 20 20 12 24 12 25 Yes (In cut point2)

DS7 19 19 14 27 15 27 Yes(In cut point1)

DS8 32 32 32 52 32 52 No

DS9 52 52 35 52 35 52 No

DS10 35 35 35 52 35 52 No

DS11 42 42 32 42 32 42 No



258 M. Kaushik et al.

The results of LSQM and LADM measures for two-partitioning and three-
partitioning on all the data sets are given in Tables 3 and 4, respectively. In
Table 5, We have compared the results of both measures for k = 2 and k = 3.
As we can see in the Table 5, NJ Teacher Salaries(2016) data set has one point
deviation in cut-point2 for k = 3. The measure LSQM cut-point2 has a value of
7, whereas LADM cut-point2 has a value of 8. The data sets DS6 also have only
one point difference in cut-point2 that is 24 and 25 whereas DS7 has one point
difference in cut-point1 14 and 15. We observed a deviation in the result when
k = 3. Except for these data sets, all the data sets have the same cut-points
for both measures. After analyzing and comparing the results of both measures,
we find out that the outcomes of both proposed measures are approximately
similar. We analyzed that the proposed measures provide the cut-points which
reflect best the impact of one independent numerical factor on a dependent
numerical target factor.

6 Conclusion

This paper aimed to find the partitions that best reflect the impact of a numer-
ical independent variable on a dependent numerical target variable. We pro-
posed two Least Squared Ordinate-Directed Impact Measure and Least Absolute-
Difference Ordinate-Directed Impact Measure. In the case of step functions, there
is an immediate, intuitive understanding of best cut-points regarding human
judgment. Therefore, we evaluated the performance of these measures for two-
step staircase data sets (step functions), three-step staircase data set and arbi-
trary data set (non-step function). We examined that the proposed measures
provide the same human perceived cut-points for two-step staircase and three-
step staircase data sets. Furthermore, the results of both proposed measures on
twelve synthetic data sets and one real-world data set are approximately sim-
ilar. As future work, we plan to evaluate the proposed measures in long series
of data repositories against respective human judgments (by data experts and
domain experts). We also plan to implement the measure for arbitrary numbers
of k-partitions beyond two- and three-partitions. A particular challenge will be
to come up with inter -measures for comparing partitions of different numbers
of k-partitions.
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Abstract. In Machine learning (ML), several discretization techniques
and mathematical approaches are used to partition numerical data
attributes. However, cut-points retrieved by discretizing techniques often
do not match with human perceived cut-points. Therefore, understanding
the human perception for discretizing the numerical attribute is impor-
tant for developing an effective discretizing technique. In this paper, we
conduct a study of human perception of partitions in numerical data
that reflects best the impact of one independent numerical attribute
on another dependent numerical attribute. We aim to understand how
expert data scientists and statisticians partition numerical attributes
under different types of data points, such as dense data points, outliers,
and uneven random points. The findings lead to an interesting discussion
about the importance of human perception under distinct kinds of data
points for finding partitions of numerical attributes.

Keywords: Discretization · Partitioning · Numerical attributes · Data
mining · Machine learning · Human perception

1 Introduction

Discrete values are significantly used in statistics, machine learning, and data
mining. Moreover, to find the intervals of numeric attributes, several discretiza-
tion techniques are presented in the literature [6,12,13]. However, these tech-
niques are unable to find the ideal intervals with appropriate ranges and it is
still difficult to get an ideal discretizer.

Humans can easily visualize the ideal partitions and even the number of com-
partments in extreme situations (like step-functions). However, in some other
unusual cases, e.g., mixed data point, uneven random data points, the partition
ranges completely depend on data experts’ perceptions and opinions. Percep-
tual conception is an important factor in developing an automated measure for
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supported by the European Union through the European Social Fund.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Pardede et al. (Eds.): iiWAS 2022, LNCS 13635, pp. 137–144, 2022.
https://doi.org/10.1007/978-3-031-21047-1_13



138 M. Kaushik et al.

discretizing numerical attributes. However, in the state of the art discretization
techniques, human perceptions and observations are overlooked.

We conduct this study to identify the typical patterns of human perception
in partitioning numerical attributes. We have also presented an order-preserving
partitioning method to find the partitions of numerical attributes that reflect
best the impact of one independent numerical attribute on a dependent numer-
ical attribute [10]. We aim to investigate the impact of data points’ features
on human perception when partitioning numerical attributes. We mainly focus
on data point density, the effect of outliers, uneven random distribution, and
linear function while performing perceptual analysis. We set four hypotheses
related to the data points of partitions that can influence human interpretation.
The human responses are collected through several experiments with data scien-
tists and machine learning experts. We used nine synthetic and three real-world
datasets to create a series of graphs for the experiment. This study’s concept is
inspired by previous studies on partial conditionalization [3,4], association rule
mining [16,19], and numerical association rule mining [11,20]. These articles
cover the discretization process as an important stage in numerical association
rule mining. Earlier, we have also presented a tool named Grand report [15] and
a framework [17,18] for the unification of ARM, statistical reasoning, and online
analytical processing.

The paper is organized as follows. In Sect. 2, we discuss related work. We
formulate hypotheses in Sect. 3. Then we describe the design of the experiment
in Sect. 4. We perform analysis and present the results in Sect. 5. We finish the
paper with a conclusion in Sect. 6.

2 Related Work

Many studies have used human perception to evaluate various techniques. These
studies primarily focused on visual perceptual analysis. However, they are not
completely related to discretization. For example, Etemadpour et al. [5] con-
ducted a perception-based evaluation of high-dimensional data where humans
were asked to identify clusters and analyze distances inside and across clus-
ters. Demiralp et al. [2] used human judgments to estimate perceptual kernels
for visual encoding variables such as shape, size, color, and combinations. The
experiment used Amazon’s Mechanical Turk platform, with twenty Turkers com-
pleting thirty MTurk jobs. In [1] authors also evaluated bench-marking cluster-
ing algorithms based on human perception of clusters in 2D scatter plots. The
authors’ main concern was how well existing clustering algorithms corresponded
to human perceptions of clusters. Our work is also related to considering human
perceptions when discretizing numerical attributes.
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3 Hypotheses

In this study, we want to see if the distances between the data points matter or
if other characteristics influence human perception when finding the cut-points
to partition a numerical attribute. We make the following hypotheses, which
investigate how different aspects affect humans’ partitioning process.

– H1: We expect that the density of data points influences the response.
– H2: We expect that outliers influence human responses.
– H3: Linear data functions will be partitioned using the mean of the function.
– H4: Random distribution of data points influences the responses.

4 Design of Experiment

We provide a set of graphs and discussed them with our team to create a
diverse collection of graphs with different data points. Finally, twelve graphs
were selected to be shared with humans to partition the data, as given in Fig. 1.
These graphs are obtained from nine synthetic datasets (D1 to D9) and three
real-world datasets (D10 to D12). The synthetic datasets (D1 to D9) consist
only of two numerical attributes. The graph D10 is drawn from a real-world
dataset DC public government employees [8]. It contains 33,424 records of DC
public government employees and their salaries in 2011. This dataset is sourced
from the washington times via freedom of information act (FOIA) requests.
The dataset D11 is the Heart Disease dataset [7] and is sourced from the UCI
machine learning repository. This dataset has 13 attributes and 303 records. We
used attribute {Age} and {Cholesterol} for drawing the graph. The graph D12
is drawn from New Jersey (NJ) school teacher salaries (2016) [14] sourced from
the New Jersey (NJ) Department of Education. It contains 138715 records and
15 attributes. We have only taken the initial 23000 rows from the dataset. We
are interested in the column {experience total} and {salary}. A copy of all these
datasets is available in the GitHub repository [9]. We designed a Google form
with a number of graphs (Fig. 1) and questions to get responses from individuals
and their perceptions on discretization. The Google form was distributed to
fifty DS/ML experts and non-experts to estimate the number of partitions and
the ranges of these partitions to determine the cut-points. Respondent identity
(name), email addresses, domain expertise (DS/ML expert or non-expert), the
number of partitions observed, and the ranges of each partition were collected
together and compiled after the experiments.

5 Analysis and Result

Two of the fifty responses submitted via the Google form were incomplete, there-
fore, they are not included in the analysis. We classified expert and non-expert
responses from the remaining forty-eight responses into two categories. Table 1
illustrates the comparison of human perception to identify the number of parti-
tions between the DS/ML experts’ responses and non-expert people. We received
60% responses from DS/ML experts and 40% of answers from non-expert people.
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Fig. 1. Graphs for datasets D1 to D12.
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5.1 Step-Function

In a Step function f, the domain is partitioned into several intervals. f(x) is
constant for each interval, but the constant can be different for each interval.
The different constant values for each interval create the jumps between hor-
izontal line segments and develop a staircase, which is also known as a step
function. The datasets D1, D2 and D3, are examples of step functions. We can
also include D6 for the example of the step function. For datasets, D1 and D2,
most responses from both categories (experts 93.3%, 73.3% and non-experts 90%,
60%) were for two partitions, and for dataset D3, three partitions were identified
by contributors (expert 93.3% and non-experts 100%). The dataset D6 received
maximum responses for four and five partitions, which indicates D6 as a step
function. Humans identified partitions based on dense regions of data points.
As for datasets D1 and D2, two dense regions were identified. However, for D3
and D6, three and four dense groups were identified, respectively. Hypothesis H1
confirms for datasets D1, D2, D3 and D6.

5.2 Linear Function

A linear function is a straight line between one independent and one depen-
dent variable. The datasets D4 and D5 are examples of linear functions. The
dataset D4 has more dense data points on another side of the slope and received
a total of 60% of responses (see Fig. 2) for two partitions, which means contrib-
utors split the data points based on the mean of the function and identified two
partitions. However, in contrast, dataset D5 did not receive any responses for
two partitions and got a total of 92% responses for no partition. We argue that
there is insufficient ground for selecting cut-points when a continuous variable is
distributed uniformly in the environment, so splitting would be pretty random.
Hence, contributors did not identify any partition for dataset D5. The hypoth-
esis H3 confirms for dataset D4 but contradicts for D5. Here we can notice that
H1 is also true for D4 and partially true for D5.

Table 1. The comparison of human perception to identify number of partitions based
on their profile.

Resp. P Datasets

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

DS/ML Experts (60%) No 33.3% 93.3% 40% 53.3% 40%

2 93.3% 73.3% 0% 53% 0% 13.3% 60% 33.3% 73.3% 40% 26.6% 26.6%

3 6.67% 26.6% 93.3% 13.3% 6.6% 26.6% 20% 66.6% 26.6% 6.66% 20% 6.66%

4 6.66% 26.6% 20% 0% 0% 6.66% 0% 20%

5 33.3% 6.66% 6.66%

Non-experts (40%) No 20% 90% 40% 60% 20%

2 90% 60% 0% 70% 0% 30% 40% 60% 60% 30% 30% 30%

3 10% 40% 100% 10% 10% 0% 40% 30% 30% 20% 0% 30%

4 0% 40% 20% 10% 10% 0% 10% 10%

5 30% 10% 10%

Resp: Responders; P: number of partitions
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5.3 Uneven Random Function

The datasets D7 to D12 fall under the uneven, randomly scattered plot cate-
gory. We found that responses from both categories were opposite for graph D8.
Out of the total responses for D8, 33.3% responses of DS/ML experts marked
two partitions and 66.6% responses of experts marked three partitions; how-
ever, 60% of non-experts marked two partitions, and only 30% marked three
partitions. Overall, 52% responses favor three partitions, and 44% of responses
identify two partitions. In this case, experts include the scattered data points
and consider them as one partition, and the remaining dense data points are
identified as two more partitions. However, non-experts observed two partitions,
one with a dense and the other with a scattered group of data points. The same
situation occurs with dataset D9; here, a total of 68% of responses identified
two partitions, one with the dense data points and the second with the scat-
tered data points. Hypothesis H1 is also confirmed by the datasets D8 and D9.
Datasets D10, D11, and D12 received high responses for no partition compared
to other partitions. For the dataset D10, 40% contributors responded with no
partition, and for the rest of the contributors, some random cut-points were
marked for two, three, four, and five partitions. Similarly, for the dataset D11,
56% responses are favored for no partition, and the rest of the responses are
answered for two, three, and four partitions. The dataset D12 encountered the
same situation where 32% contributors responded with no partition, and 68%
contributors marked some random cut-points for two, three, four, and five par-
titions. For these cases, hypothesis H4 confirms, but H2 contradicts, as outliers
do not influence human response (case of datasets D8, D9, and D11). Hence, it
proves that humans have no clear perception of these types of datasets and they
are unable to identify cut-points.

The percentage of responses of each partition for each dataset is demon-
strated in Fig. 2. Datasets D5, D10, D11 and D12 received high responses for
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no partition compared to other partitions. Hence, it proves that humans have
no clear perception of these types of datasets, and they are unable to identify
cut-points. It is important to note that datasets D5 and D6 have similar appear-
ances, but both datasets received different cut-points responses because of the
distribution of their data points. D6 has not received any responses with no par-
tition, and D5 has not gotten any responses with two partitions. For the datasets
D1, D2, D4, D7 and D9, mainly two partitions were suggested by contributors.
We find that the density of partitions has a substantial impact on perception
during a visual interpretation. The random distribution of data points and linear
function also influence human perception. However, outliers do not affect human
judgement. After analyzing Table 1, we also reach the conclusion that the opin-
ions of experts and non-expert responders do not make a huge difference, except
in some situations.

6 Conclusion

The main objective of this research is to analyze the human perception of par-
titioning the numerical attribute. In this paper, we analyzed the perception
of DS/ML experts and non-experts by providing them a series of graphs with
numerical data. The analysis gives us insights that the perceptions of experts and
non-experts while partitioning the numerical attribute are not much different.
However, the data points’ features influence most of the outcomes. Therefore,
human judgment plays a vital role in developing an automated approach for par-
titioning numerical attributes with the best cut points. In future work, we plan
to assess the accuracy of our proposed measures by comparing the outcomes of
human perceptions.
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Abstract. To partition numerical attributes, machine learning (ML)
has used a variety of discretization approaches that partition the numer-
ical attribute into intervals. However, an effective method for discretiza-
tion is still missing in various ML approaches, e.g., association rule min-
ing. Moreover, the existing discretization techniques do not reflect best
the impact of the independent numerical factor on the dependent numer-
ical target factor. The main objective of this research is to develop a
benchmark approach for partitioning numerical factors. We present an
in-depth analysis of human perceptions of partitioning a numerical factor
and compare it with one of our proposed measures. We also examine the
perceptions of various experts in data science, statistics and engineering
disciplines by using a series of graphs with numerical data. The analysis
of the collected responses indicates that 68.7% of the human responses
were approximately close to the values obtained by the proposed method.
Based on this analysis, the proposed method may be used as one of the
methods for discretizing the numerical attributes.

Keywords: Machine learning · Data mining · Discretization ·
Numerical attributes · Partitioning

1 Introduction

Various types of variables are available in real-world data. However, discrete val-
ues have explicit roles in statistics, machine learning, and data mining. Presently,
there is no benchmark approach to find the optimum partitions for discretizing
complex real-world datasets. Generally, if a factor impacts another factor, in
that case, humans can easily perceive the compartments or partitions because
the human brain can easily perceive the differences between the factors and
detect the partitions. However, it is not easy for a human or even an expert to
find the appropriate compartments in complex real-world datasets.
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supported by the European Union through the European Social Fund.
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Existing discretization techniques do not reflect best the impact of the
independent numerical factor on the dependent numerical target factor. More-
over, no discretization approach uses numerical attributes as influencing and
response factors. To find the cut-points for the cases of two-partitioning and
three-partitioning, we have proposed two measures Least Squared Ordinate-
Directed Impact Measure (LSQM) and Least Absolute-Difference Ordinate-
Directed Impact Measure (LADM) [10]. These measures provide a simple way
to find partitions of numerical attributes that reflect best the impact of one
independent numerical attribute on a dependent numerical attribute.

In this paper, the outcome of LSQM measure is compared with the human
perceived cut-points to assess the accuracy of the measure. We use numerical
attributes as influencing and response factors to distinguish them from the exist-
ing approaches. A series of graphs with different data points are used to collect
the human responses. Here, data scientists, machine learning experts and other
non-expert persons are referred to as humans.

The idea of this research emerged from the research on partial conditional-
ization [5,6], association rule mining (ARM) [17,19] and numerical association
rule mining (NARM) [11,12,20]. These papers discuss the discretization process
as an essential step for NARM. Moreover, research on discretizing the numerical
attributes is an essential step in frequent itemset mining, especially for quanti-
tative association rule mining [20].

In the same sequence, we have also presented a tool named Grand report [16]
and a framework [18] for unifying ARM, statistical reasoning, and online analyt-
ical processing. These paper strengthens the generalization of ARM by finding
the partitions of numerical attributes that reflect best the impact of one inde-
pendent numerical attribute on a dependent numerical attribute. Our vision is
to develop an ecosystem to generalize the machine learning approaches by sig-
nificantly improving the ARM from different dimensions.

The paper is organized as follows. In Sect. 2, we discuss related work. In
Sect. 3, we explain the motivation for conducting this study. Section 4 describes
the LSQM method. Then we discuss the design of the experiment in Sect. 5. In
Sect. 6, analysis and results are given. The conclusion and future work are given
in Sect. 7.

2 Related Work

Based on human perception evaluation and different discretization techniques,
we discuss the related work in the direction of discretization, clustering tech-
niques and human perception.

A variety of discretization methods are available in the literature [9,13,14].
Dougherty et al. [4] compared and analyzed discretization strategies along three
dimensions: global versus local, supervised versus unsupervised, and static versus
dynamic. Liu et al. [14] performed a systematic study of existing discretization
methods and proposed a hierarchical framework for discretization methods from
the perspective of splitting and merging. The unsupervised static discretization
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method, such as equal-width, uses the minimum and maximum values of the
continuous attribute and then divides the range into equal-width intervals called
bins. In contrast, the equal-frequency algorithm determines an equal number of
continuous values and places them in each bin [2].

In state of the art, many studies have used human perception to evaluate
the various techniques. However, they are not completely related to discretiza-
tion. Etemadpour et al. [7] conducted a perception-based evaluation of high-
dimensional data where humans were asked to identify clusters and analyze
distances inside and across clusters. Demiralp et al. [3] used human judgments
to estimate perceptual kernels for visual encoding variables such as shape, size,
colour, and combinations. The experiment used Amazon’s Mechanical Turk plat-
form, with twenty Turkers completing thirty MTurk jobs. In [1] authors evaluated
benchmarking clustering algorithms based on human perception of clusters in 2D
scatter plots. The authors’ main concern was how well existing clustering algo-
rithms corresponded to human perceptions of clusters. Our work is also related
to considering human perceptions for evaluating our proposed LSQM measure
for discretizing numerical attributes.

3 Motivation

For years, obtaining discrete values from numerical values has been a complex
and ongoing task. The main issue with the discretization process is obtaining
the perfect intervals with specific ranges and numbers of intervals. In the state
of the art, several discretization approaches such as equi-depth, equi-width [2],
MDLP [8], Chi2 [15], D2 [2], etc. have been proposed. However, determining the
most effective discretizer for each situation is still a challenging problem.

In [10], we presented an order-preserving partitioning method to find the
partitions of numerical attributes that reflect best the impact of one indepen-
dent numerical attribute on a dependent numerical attribute. In extreme cases
(such as step-functions), humans can easily visualize the perfect partitions and
even the number of compartments. However, in distinct cases, the ideal parti-
tion range depends on the perception of data experts. In state of the art, no
investigation is available to understand the human perception of partitioning.
Moreover, the current literature provides a comparison of discretization methods
and compares their results. In this paper, we take a different approach to com-
pare the human perception of discretization with the outcome of the proposed
discretization method. We aim to visualize the differences between the outcomes
of the proposed methods and the human perception of discretization.

4 The LSQM Method

In the LSQM method [10], we discretize the independent numerical attribute on
the basis of order-preserving partitioning to learn the impact on the numerical
target attribute. The number of cut-points is k − 1, where k is the number
of partitions suggested by the user. The measure first calculates the squared
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difference between the y-value of each data point and the average of y-values of
the current partition. The order of the independent variable is preserved using
the value of data points. Therefore, the value of data points of one partition
will always be less than the value of data points of the next partition. After
summing up the squared differences of the several partitions, LSQM retrieves
the minimum values as cut-points.

Definition 1 (Least Squared Ordinate-Directed Impact Measure).
Given real-valued data points (<xi, yi>)2≤i≤n, we define the least squared
ordinate-directed impact measure for k-partitions as follows:

min
i0=0<i′

1<...<i′
k−1<i′

k=n

k∑

j = 1

∑

i′
j−1<i”≤i′

j

(yi” − µi′
j−1<φ≤i′

j
)2 (1)

where the average of data values in a partition µa<φ≤b between indexes a and b
(a < b ≤ n) is defined as

µa<φ≤b =

∑
a<φ≤b

yφ

b − a
(2)

In (1), we have that i′j is the highest element in the j-th partition, where high-
est element means the data point with the highest index.

The definition of the LSQM measure seems similar to the k-means clus-
tering algorithm. The k-means clustering algorithm is a partitioning clustering
algorithm to classify objects into k different clusters. The LSQM measure is dif-
ferent from the k-means algorithm as k-means is based on the Euclidean distance
metric between two vectors, X and Y. It also has the severe drawback that its
efficiency is highly dependent on the initial random selection of cluster centres.
However, the LSQM measure is based on order-preserving partitioning for the
independent variable. This measure also does not depend on the initial point
chosen for starting.

5 Experimental Design

To understand how humans partition numerical factors, we designed a series
of graphs and asked several experts to partition the data points given in the
graphs. Initially, to produce a diverse collection of graphs with different data
points, a set of graphs was shared and discussed with our own research team.
These graphs include step functions, linear functions, and mixed data graphs.
Finally, eight graphs were selected to be shared with humans (see Fig. 1). These
graphs are obtained from eight synthetic datasets (D1 to D8). These synthetic
datasets (D1 to D8) consist only two numerical attributes. A copy of all these
datasets is available in the GitHub repository1.

1 https://github.com/minakshikaushik/LSQM-measure.git.
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Fig. 1. Graphs for datasets D1 to D8.

We designed a Google form by providing a series of graphs containing different
types of numerical data points and relevant questions to collect human responses
and their perceptions about discretization. The google form was sent to fifty
DS/ML experts and non-experts to estimate the number of partitions and the
ranges of these partitions to obtain the cut-points.
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Table 1. The comparison of human perception to identify the number of partitions
based on their profile.

Responders Partitions Datasets

D1 D2 D3 D4 D5 D6 D7 D8

DS/ML-Experts (60%) No 33.3% 93.3%

2 93.3% 73.3% 0% 53% 0% 13.3% 60% 33.3%

3 6.67% 26.6% 93.3% 13.3% 6.6% 26.6% 20% 66.6%

4 6.66% 26.6% 20% 0%

5 33.3%

Non-experts (40%) No 20% 90%

2 90% 60% 0% 70% 0% 30% 40% 60%

3 10% 40% 100% 10% 10% 0% 40% 30%

4 0% 40% 20% 10%

5 30%

Table 2. The comparison of human perceived cut-points with the LSQM measure.

D P Human perception LSQM

R Approx. near cut-points Cut-points

D1 2 92% 50(91.3%), 48(8.6%) 50

3 8% (48,60)(50%), (20,50)(50%) (20, 50)

D2 2 68% 50(88.2%), 52(11.7%) 52

3 32% (50,54)(37.5%), (20,53)(25%) (52, 54)

D3 3 96% (32,52)(62%), (30,52)(16.6%) 32,52

4 4% (20,32,52)(100%) (32,52,55)

D4 0 28% NA NA

2 60% 20(86.6%), 25(13.3%) 20

3 12% (20,45)(66.6%), (20,30)(33.3%) (12, 24)

D5 0 92% NA NA

2 0% NA 20

3 8% (14,28)(100%) (13, 26)

D6 2 20% 32(40%), 42(40%) 50(20%) 42

3 16% (42,68)(50%), (32,42)(25%) (32, 42)

4 32% (32,37,42)(87.5%), (33,37,43)(12.5%) (32, 37, 42)

5 32% (32,42,37,68)(87.5%), (17,32,38,42)(12.5%) (32, 37, 42, 56)

D7 2 52% 40(84.6%), 50(7.6%), 36(7.6%) 35

3 28% (32,39)(57.1%) (32, 39)

4 20% (32,39,50)(60%), (41,47,53)(40%) (32,39,52)

D8 2 44% 18(36%), 30(27%) 40

3 52% (28,47)(53.8%), (18,47)(23%) (13, 15)

4 4% (18,47,54)(100%) (11, 13, 15)

D: Datasets; P: number of partitions; R: percentage of responses
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The following data was gathered and compiled from the experiments: respon-
dent identification (name), their email addresses, domain expertise (DS/ML
expert or non-expert), number of partitions identified, and ranges of each parti-
tion.

6 Analysis and Result

Out of the fifty responses received via the Google form, two were incomplete;
therefore, we did not consider them for the analysis. From the rest of the forty-
eight responses, we divided the responses into two categories, expert responses
and non-expert responses.

Table 3. Similarity between human perceived cut-points and LSQM cut-points.

P Datasets

D1 D2 D3 D4 D5 D6 D7 D8

LSQM 2 50 52 20 42 35 40

3 (20,50) (52,54) (32,52) (12,24) (13,26) (32,42) (32,39) (13,15)

4 (32,52,55) (32,37,42) (32,39,52) (11,13,15)

5 (32,37,42,56)

Human

percep.

2 50 52 20 42 36 30

3 (20,50) (50,54) (32,52) (20,30) (13,26) (32,42) (32,39) (18,47)

4 (20,32,52) (32,37,42) (32,39,52) (18,47,54)

5 (32,37,42,68)

Matching% 2 91.3% 11.7% 80.6% 40% 0% 0%

3 50% 19% 62% 0% 100% 25% 57% 0%

4 59% 85.7% 60% 0%

5 75%

Matching

Status

2 VH L VH M NM NM

3 M L H NM VH L H NM

4 M VH H NM

5 H

P: Number of partitions, VH: 80–100%, H: 60–80%, M: 40–60%, L: 1–40%, NM: 0%

Table 1 illustrates the comparison of human perception to identify the num-
ber of partitions between the DS/ML experts’ responses and non-expert people.
We received 60% responses from DS/ML experts and 40% of answers from non-
expert people. We analyzed that responses from both categories were opposite for
graph D8. Out of the total responses for D8, 33.3% responses of DS/ML experts
marked two partitions and 66.6% responses of experts marked three partitions;
however, 60% of non-experts marked two partitions, and only 30% marked three
partitions. In graphs D3 and D5, we analyzed that no contributor (experts or
non-experts) marked two partitions. No non-expert contributors marked three
partitions for graph D6 and four partitions for graph D3; whereas 26.6% of
DS/ML experts identified three partitions for D6, and 6.66% experts marked
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Table 4. Analysis of unmatched datasets in regard of number of partitions for the
LSQM and human perceived cut-points.

Dataset Partitions LSQM method Human perception Remarks

LSQM
cut-points

Logical
correct-
ness

Human
perceived
cut-points

Logical
correctness

D8 2 40 Yes 30 Yes Matter of perception

3 (13,15) No (18,47) Yes LSQM to be improved

4 (11,13,15) No (18,47,54) Yes LSQM to be improved

D4 3 (12,24) Yes (20,30) Yes Matter of perception

D7 2 35 Yes 36 Yes Matter of perception

four partitions in the graph D3. Table 2 illustrates the comparison between the
results of human perception and the LSQM measure. Table 3 describes the sim-
ilarity percentage between cut-points provided by human perceived experiment
outcome and the LSQM measure outputs. We have mentioned the cut-points
from responses near the LSQM provided cut-points. We determine the match-
ing status by distributing the matching percentage into the following categories:
VH (Very High), H (High), M (Medium), L (Low) and NM (No match). The
distribution of ranges is mentioned at the bottom of Table 3. It is clear from
Table 3 that human perceived cut-points and the cut-points identified by the
proposed measure LSQM do not match for the datasets D8, D4 and D7. In
Table 4, we present an analysis and reason for not getting similar cut-points
for the datasets D4, D8 and D7. If we look at Fig. 1(D8), then it seems logical
to have cut-points at the data points of 40 (LSQM cut-point) and 30 (Human
perceived cut-point) for two partitions on the X-axis. Humans divided the scat-
tered points into first partition and dense data points into the second partition.
In contrast, the LSQM measure calculated the cut-point in the middle of the
dense data points. This case can be observed as a matter of perception for human
perceived cut-points, while the cut-points marked by the LSQM measure seem
analytically correct. For the cases of three partitions and four partitions, human
perceived cut-points (18, 47) and (18, 47, 54) are good, but the cut-points pro-
vided by the LSQMmeasure are not satisfactory. The cut-points provided by
the LSQM (12, 24) and human perception experiment (20, 30) for D4 are also
the case of matter of perception. Similarly, cut-points 35 and 36 for D7 do not
match exactly. However, as the data points in the graph are scattered; therefore,
the difference between the cut-points of the proposed measure and the human
perceived cut-points is negligible and both can be considered the best cut-points.
This case can be observed as a matter of perception. Although these cut-points
do not match the LSQM measure cut-points, the correctness of the measure is
not affected due to non-similarity.

Out of the total responses for D1 to D7, we analyzed that 25% responses were
matching Very High, 25% responses were matching High, 18.7% responses were
matching Medium and 18.7% responses were matching Low. By aggregating all
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the matching status, 68.7% responses were similar to the responses marked by
the proposed LSQM measure. By the overall analysis, it is clear that for initial
datasets (D1 to D7), the proposed measure brought approximately equivalent
results to human perception. The analysis is conducted for the datasets D1 to
D7 because some random cut-points were observed by the human for the dataset
D8 which are difficult to match with the analytically calculated cut-points by
the LSQM. An analysis and reason for not getting similar cut-points for the
dataset D8 are given in Table 4.

7 Conclusion

This paper is the first step toward understanding the human perception of par-
titioning numerical attributes. We first assessed the human perception of parti-
tioning numerical attributes by examining a series of graphs with numerical data.
Furthermore, we compared the human perceived cut-points of partition with the
results of the proposed LSQM measure. The proposed measure produces cut-
points mostly close to human perceived cut-points. The overall analysis shows
that the proposed measure produced results that were approximately equiva-
lent to human perception for the datasets (D1 to D7). The present results of
the proposed measure are encouraging, and it is a significant step towards the
generalization of ARM by finding the partitions of numerical attributes that
reflect best the impact of one independent numerical attribute on a dependent
numerical attribute. In future work, we plan to implement with inter -measures
for comparing partitions of different numbers of k-partitions.
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Numerical association rule mining (NARM) is a widely used variant of the association rule mining (ARM)
technique, and it has been extensively used in discovering patterns in numerical data. Initially, researchers and
scientists incorporated numerical attributes in ARM using various discretization approaches; however, over
time, a plethora of alternative methods have emerged in this field. Unfortunately, the increase of alternative
methods has resulted into a significant knowledge gap in understanding diverse techniques employed in
NARM – this paper attempts to bridge this knowledge gap by conducting a comprehensive systematic literature
review (SLR). We provide an in-depth study of diverse methods, algorithms, metrics, and datasets derived
from 1,140 scholarly articles published from the inception of NARM in the year 1996 to 2022. Out of them, 68
articles are extensively reviewed in accordance with inclusion, exclusion, and quality criteria. To the best of
our knowledge, this SLR is the first of its kind to provide an exhaustive analysis of the current literature and
previous surveys on NARM. The paper discusses important research issues, the current status, and the future
possibilities of NARM. On the basis of this SLR, the article also presents a novel discretization measure that
contributes by providing a partitioning of numerical data that meets well human perception of partitions.
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1 INTRODUCTION
Decision-makers have used a wide variety of data mining techniques to extract valuable insights
from data. Out of these techniques, association rule mining (ARM) is one of the established data
mining techniques. ARM was first proposed by R. Agrawal [4], and it is primarily used to identify
interesting relationships between various data items, e.g., market basket analysis. Later, it has also
been used in medical diagnosis and bioinformatics.
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[96] proposed a new technique “quantitative association rule mining (QARM)”. In this technique,
numerical data items are converted to categorical data through a discretization process. In literature,
QARM is also referred to as “numerical association rule mining (NARM)” [11].
In the early stages of research on NARM, researchers and scientists have used various dis-

cretization approaches. However, as time progressed, a wide range of alternative methods emerged,
offering novel and innovative solutions in this field. Unfortunately, the increased number of alter-
native methods has created a substantial knowledge gap, making it difficult to fully comprehend
the diverse range of techniques utilised in NARM.
To address this knowledge gap, this paper conducts a comprehensive systematic literature

review (SLR) by following one of the established research methodologies for SLR as outlined by
Kitchenham and Charters’s [18]. Before conducting this SLR, we thoroughly reviewed several
surveys and reviews on NARM, which are listed in Table 1. However, it is important to note that
these existing surveys and reviews have certain limitations. They often lack well-defined research
questions, comprehensive search strategies, and rigorous research methodologies. Notably, to the
best of our knowledge, no SLR of the existing literature on NARM has been conducted to date. The
absence of a systematic review in the field has highlighted the need for this article and inspired
us to fill this knowledge gap. Indeed, the identified limitations in previous surveys and reviews
raised the importance of conducting SLR on NARM. Through this SLR, we aim to address these
limitations and fulfil the need for a more comprehensive understanding of the field.
In order to provide a complete overview of the NARM literature, we conducted a systematic

search across various academic databases and digital libraries to identify relevant scholarly articles.
We majorly focused on articles published from the inception of NARM in 1996 up until 2022. In
total, we identified 1,140 articles that met our search queries. Next, as per the research methodology,
we applied a rigorous process of inclusion, exclusion, and quality assessment criteria to ensure
that the selected articles were relevant to the research domain and of high quality. After the
screening process, we narrowed down the initial list to a final selection of 68 articles. By following
this systematic approach, we aimed to gather a comprehensive and reliable set of articles that
contributes to the thorough analysis and synthesis of existing knowledge on NARM.
Based on the exhaustive analysis of 68 articles, this SLR provides an in-depth examination of

diverse methods, algorithms, metrics, and datasets utilised in NARM. We thoroughly evaluate the
strengths and weaknesses of these methods, algorithms, and metrics while also highlighting their
outcomes and potential applications. By conducting a comprehensive analysis of the available liter-
ature, we aim to provide deep insights and understanding that can benefit researchers, practitioners,
and stakeholders in the field.
As per the findings of this SLR, the article also contributes by introducing an automated novel

discretization measure that addresses the human perception of partitions, providing a meaningful
and accurate partitioning of numerical data. This novel measure aims to overcome the limitations
of existing methods by providing a more meaningful and accurate partitioning of numerical data.

The primary contributions of this paper are as follows.

• Well-defined research questions and a methodology for extracting data for a systematic
investigation in the area of mining numerical association rules.

• Detailed knowledge about NARM methods and their algorithms.
• Identified popular metrics to evaluate NARM algorithms.
• Identified the major challenges involved in generating numerical association rules, along
with some probable future perspectives.

, Vol. 1, No. 1, Article . Publication date: July 2023.
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• A novel automated measure is presented for discretizing numerical attributes to contribute
to NARM by providing a partitioning of numerical data that meets well human perception of
partitions.

• Fills the gaps and overcomes the limitations of previous surveys.
The article is organized as follows: Section 2 presents an overview of the background and related

work. In Section 3, we detail our research methodology and articulate the research questions (RQs).
Section 4 presents the findings of the review. In Section 5, we address the potential threats to
the validity of this research article. Section 6 delves into a comprehensive discussion of the SLR’s
findings. Finally, we draw our conclusions in Section 7.

Table 1. Contributions and Limitations of Previous Reviews (N.M.= Not Mentioned)

Paper Type Time-
frame

Methodology Contributions Limitations

This Article SLR 1996-
2022

Kitchenham’s
guideline [18]

Present detailed and
systematic review encom-
passing various aspects
of NARM, including
methods, algorithms, and
other relevant factors.

Kaushik et
al. (2021)
[53]

Review 1996-
2020

Undefined Investigated discretization
techniques in various
NARM methods and
assessed 30 NARM algo-
rithms.

Authors focused
only on important
algorithms for three
methods.

Adhikary et
al. (2015) [2]

Survey N.M. Undefined Authors presented clus-
tering, partitioning, and
fuzzy approaches, includ-
ing evolutionary, statisti-
cal and info-theoretic ap-
proaches.

This study did not
present a detailed
study of the dis-
cretization method.

Adhikary et
al. (2015) [1]

Review N.M. Undefined Discussed applications of
NARM.

Approaches were
not discussed in
detail.

Gosain et al.
(2013) [39]

Survey N.M Undefined Presented a compara-
tive study of different
approaches of ARM
including Quantitative
data.

Approaches were
not categorized
and randomly
presented.

2 BACKGROUND AND RELATEDWORK
In this section, we provide an in-depth explanation of the background of ARM and NARM.

2.1 Association Rule Mining
In the original setting, association rules are extracted from transactional datasets composed of a set
𝐼 = {𝑖1, . . . , 𝑖𝑛} of 𝑛 binary attributes called items and a set 𝐷 = {𝑡1, . . . , 𝑡𝑛}, 𝑡𝑘 ⊆ 𝐼 , of transactions
called database. An association rule is a pair of itemsets (𝑋,𝑌 ), often denoted by an implication
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of the form 𝑋 ⇒ 𝑌 , where 𝑋 is the antecedent (or premise), 𝑌 is the consequent (or conclusion)
and 𝑋 ∩ 𝑌 = ∅. In ARM, support and confidence measures are widely utilized and considered
fundamental metrics. The support of an itemset𝑋 determines how frequently the itemset appears in
a transactional database. The support of an association rule𝑋 ⇒ 𝑌 can be defined as the percentage
of transactions among the total records that contain both itemsets X and Y, shown in Eq. 1.
The confidence of an association rule 𝑋 ⇒ 𝑌 determines how frequently items in 𝑌 appear in

transactions that contain 𝑋 . The confidence of a rule is calculated as the percentage of transactions
that contain itemset X also contain itemset Y, to the total number of records that contain 𝑋 shown
in Eq. 2.

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋 ⇒ 𝑌 ) = | (𝑋 ∪ 𝑌 ) |
|𝐷 | (1)

Confidence(𝑋 ⇒ 𝑌 ) = | (𝑋 ∪ 𝑌 ) |
|𝑋 | (2)

2.2 Numerical Association Rule Mining
NARM came into the scenario to extract association rules from numerical data. Unlike the classical
ARM, numerical ARM allows attributes to be categorical (e.g., gender, education) or numeric (e.g.,
salary, age) rather than just Boolean. A numerical association rule is an implication of the form
𝑋 ⇒ 𝑌 , in which both antecedent and consequent parts are the set of attributes in the forms
𝐴 = {𝑣1, 𝑣2, . . . 𝑣𝑛} if A is a categorical attribute, or 𝐴𝜖 [𝑣1, 𝑣2] if A is numeric attribute.

An example of a numerical association rule is given below.

𝐴𝑔𝑒 ∈ [21, 35] ∧𝐺𝑒𝑛𝑑𝑒𝑟 : [𝑀𝑎𝑙𝑒] ⇒ Salary ∈ [2000, 3000]
(Support = 10%,Confidence = 80%)

This rule states that those employees who are males, aged between 21 and 35 and having salaries
between $2,000 and $3,000 form 10% of all employees; and that 80% of males aged between 21 and
35 are earning between $2,000 and $3,000. Here, Age and Salary are numerical attributes and Gender
is a categorical attribute. In ARM, except for support and confidence, more than fifty measures of
interestingness are available in the literature [37, 94]. The support of an association rule 𝑋 ⇒ 𝑌
determines how frequently the itemset appears in a transactional database. The confidence of an
association rule determines how many transactions that contain 𝑋 also contain 𝑌 .

2.3 Related Work
In recent years, there have been few surveys and studies in the literature that have focused on NARM
approaches and their comparison. However, no SLR has been published to date. Our automated
search identified three reviews [2, 52, 53] and amanual search found two surveys [1, 39].While these
reviews provide a contribution towards understanding the methods and algorithms for NARM, they
have several limitations, as outlined in Table 1. Gosain et al. [39] presented a survey of association
rules on quantitative data in 2013. The authors focused on different types of association rules but
did not include NARM methods and algorithms. Adhikary and Roy[1] reviewed QARM techniques,
with a focus on applications in the real world, while their 2015 survey [2] provided a classification
of QARM techniques but lacked valuable information. A systematic assessment of the three popular
methods for NARM with thirty algorithms was conducted in [53]. This review focused only on
NARM algorithms, and the steps of systematic reviews were not followed. In contrast, our study
conducted an SLR under the guidelines of Kitchenham and Charters [18] and answered the research
questions in the state of the art of NARM.
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Moreover, it is worth noting that some authors have made notable contributions to NARM under
alternative names. For example, Telkani et al. [103] conducted an extensive survey on evolutionary
computation for ARM, wherein they thoroughly examined various approaches within the realm of
ARM, including NARM, and provided insights into the the classification of evolutionary algorithms
in this context.

3 RESEARCH METHODOLOGY
In this work, we adopt research methodology based on Kitchenham and Charters’s guidelines [18].
The main goal of this SLR is to summarize the existing evidence in the literature regarding this
topic and to identify gaps in the literature. According to Kitchenham’s guidelines, the process
included three main phases: planning, conducting, and reporting the review. The planning phase
involved identifying the need for the review and establishing a review protocol. The conducting
phase involved following the review protocol, which included selecting a primary search, assessing
the quality of the studies, and extracting relevant data. Finally, the reporting phase focused on
formatting and evaluating the report in accordance with the guidelines.

3.1 Planning the Review
The initial phase of this study aims to justify the need for an SLR and define the research questions.
Based on the objective and motivation of this study, we formulated the following research questions
with the goal presented in Table 2. The primary aim of this SLR is to address these research
questions, which will help us to comprehensively understand the existing research and identify
gaps in the literature related to NARM.

3.2 Conducting the Review
The review phase involves a series of sequential steps, beginning with the identification of relevant
research and followed by the selection of studies, study quality assessment, and data extraction.
These steps are conducted systematically to ensure the comprehensive coverage of relevant studies
and the extraction of accurate and reliable information for analysis.

3.2.1 Search Strategy.

Academic Databases. To conduct the review phase, we conducted a thorough search of scientific
publications from relevant journals and conferences, utilizing multiple reputable digital libraries,
including the ACM Digital Library, Scopus, SpringerLink, IEEE Xplore, and ScienceDirect. Addition-
ally, we performed a manual search on Google Scholar to minimize the chance of overlooking any
significant articles. The search was conducted between April and June 2022, focusing on articles
published in journals and conferences. We set the time frame for articles published from 1996
to 2022, as it was in 1996 when Srikant and Agrawal [96] first presented the problem statement
concerning numerical attributes.

Search Strings. For the search process, we derived the search terms from the research questions
and compiled a comprehensive list of synonyms, abbreviations, and alternative words. In this
study, we have also mentioned that the problem of handling numerical attributes was initially
addressed as “quantitative association rule” by Srikant and Agrawal [96]. Over time, this term
evolved into “numerical association rules.” Therefore, to ensure inclusivity, our search terms
included variations such as "quantitative association rule mining," OR "numerical association rule
mining," OR "quantitative association rules," OR "numerical association rules," OR "quantitative
ARM," OR "numerical ARM," OR "QARM," OR "NARM." We targeted these terms in the abstracts,
titles, and keywords of articles within the following electronic sources.
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Table 2. Research Questions Together With Their Goals

ID Research Question Goal
RQ1 Which methods exist for solving

NARM problems?
Identifying NARM methods used by researchers
in the literature to solve the NARM problem.

RQ2 What are the several algorithms
available for each of the existing
NARM methods?

Investigating state-of-the-art algorithms proposed
under different NARM methods.

RQ3 What are the advantages and limi-
tations of the existing NARM meth-
ods?

Exploring the benefits and limitations of existing
NARM methods, along with their classification.

RQ4 Which objectives are considered by
the several existing multi-objective
optimization NARM algorithms?

Providing an understanding of the objectives used
for the multi-objective NARM algorithms under
the optimization method.

RQ5 What are the metrics to evaluate the
NARM algorithms?

Discussing the metrics that have been used to eval-
uate algorithms and which ones are the most pop-
ular.

RQ6 Which datasets are used for experi-
ments by NARM methods?

Providing a detailed understanding of the datasets
used for NARM methods.

RQ7 What are potential future perspec-
tives for the area of NARM?

Discussing the research challenges and future
prospects that will help the researchers in future
investigations and perform meaningful research.

RQ8 How to automate discretization of
numerical attributes for NARM in a
useful (natural) manner?

Presenting an automated measure to discretize nu-
merical attributes, which is particularly natural,
i.e., which particularly well meets human percep-
tion of partitions.

• ACM Digital Library1
• IEEE eXplore2
• Scopus3
• SpringerLink4
• ScienceDirect5
• Google Scholar6

Search Process. Our search was specifically conducted for articles written in English, limited
to the period between 1996 and 2022, within the subject area of Computer Science, focusing on
the final publication stage. The search query and terms used in Scopus are outlined in Table 3.
Through a meticulous search process, we successfully identified a total of 1,628 articles. Following
the elimination of 488 redundant articles, we narrowed down the selection to 1,140 articles. Table 4
provides a breakdown of the number of articles obtained from each respective database.

3.2.2 Selection Based on Inclusion and Exclusion Criteria. To ensure the relevance of the articles,
we conducted an initial screening process by carefully reviewing the abstracts and conclusions. We
1http://dl.acm.org
2http://ieeexplore.ieee.org
3http://www.scopus.com
4http://www.link.springer.com/
5https://www.sciencedirect.com/
6https://scholar.google.com/
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Table 3. Search Terms

Search
Term

"Quantitative Association Rule Mining" OR "Numerical Association Rule Mining" OR
"Quantitative Association Rules" OR "Numerical Association Rules" OR "Quantitative
ARM" OR "Numerical ARM" OR "QARM" OR "NARM"

Search
String

(TITLE-ABS-KEY ("Quantitative Association Rule Mining") OR TITLE-ABS-KEY ("Nu-
merical Association Rule mining") OR TITLE-ABS-KEY ("Numerical Association Rule")
OR TITLE-ABS-KEY ("Quantitative Association Rule") OR TITLE-ABS-KEY ("Quanti-
tative ARM") OR TITLE-ABS-KEY ("Numerical ARM") OR TITLE-ABS-KEY ("QARM")
OR TITLE-ABS-KEY ("NARM")) AND PUBYEAR > 1995 AND PUBYEAR < 2023 AND
LIMIT-TO (PUBSTAGE,"final") AND LIMIT-TO (SUBJAREA,"COMP") AND LIMIT-TO
(LANGUAGE, "English")

Table 4. Search Results from the Digital Libraries

Digital Library Number of Results
IEEE Xplore 102
Scopus 223
SpringerLink 618
ACM 187
ScienceDirect 148
Google Scholar 350
Total 1,628
Redundant Articles 488
Non-redundant Articles 1,140

applied the predetermined Inclusion and Exclusion Criteria, which are outlined in Table 5. These
criteria are widely accepted and primarily focus on aligning with the scope of the study.
Non-peer-reviewed articles, such as theses and abstracts, were excluded from our analysis.

Additionally, we also excludedworks that combined results from both journals and conferences, such
as monographs and books. Following the application of these inclusion and exclusion criteria, we
were left with a final set of 96 articles that met our selection criteria. Next, to ensure a comprehensive
review, we conducted a thorough examination of the references cited in the selected primary studies.
This step aimed to identify any significant publications that might have been missed during the
initial search. As a result, we identified 14 additional papers that fulfilled our inclusion criteria.
These studies were subsequently incorporated into our list of primary studies, expanding the total
number of articles to 110.

3.2.3 Selection based on Quality Assessment. The objective of the quality assessment phase is
to ensure the inclusion of unbiased and relevant studies in the review. To accomplish this, we
established a set of criteria to evaluate the quality of the papers, refine our search results, and
assess the relevance and rigour of the included papers. Following the initial selection based on the
predefined inclusion and exclusion criteria, we conducted a thorough reading of the entire article.
During this phase, we utilized a quality assessment checklist comprising five criteria, as outlined in
Table 6, to refine our search results. Each criterion was evaluated using “Yes,” “No,” or “Partially”
responses, which corresponded to scores of 1, 0, or 0.5, respectively. Articles with scores of 2.5 or
higher were selected as the final primary studies. Through this rigorous quality assessment process,
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Table 5. Inclusion and Exclusion Criteria

ID Inclusion Criteria
I1 The article discusses a novel method for mining the

quantitative or numerical association rules.
I2 The article proposes a novel algorithm for mining the

quantitative or numerical association rules.
I3 The article discusses an extension to the existing al-

gorithm for mining the quantitative or numerical as-
sociation rules.

I4 The article is related to at least one of the proposed
research questions.

I5 The article describes the theoretical foundation of
mining the association rules from numerical data sets.

ID Exclusion Criteria
E1 Articles which are only application-oriented.
E2 Articles present surveys and short papers.
E3 Abstracts, editorials, thesis, monographs, panels,

books.
E4 Conference version of an article whose journal ver-

sion is included.

we determined a total of 68 articles that met our selection criteria and were deemed as the final
primary studies. The list of final articles is available in the GitHub repository7.

Table 6. Quality Assessment Checklist

ID Quality Questions
QQ1 Are the proposedmethods in the articles well defined?
QQ2 Are the methods/algorithms/experiments defined

clearly?
QQ3 Are the results validated?
QQ4 Are their any solid finding/result and clear outcomes?
QQ5 Is the contribution of the article clearly defined?

3.2.4 Data Extraction and synthesis. In the last phase, we extracted pertinent information from
the selected articles that successfully passed the quality assessment. This information was utilized
to generate a comprehensive summary of our findings. Each chosen article was downloaded and
thoroughly examined. Table 7 provides an overview of the extracted data from each publication,
highlighting its relevance to the respective research questions. For a more in-depth analysis of the
collected data and the synthesis of our findings, we encourage readers to refer to Sections 4 and
6. These sections provide a detailed presentation of the information gathered from the final set
of articles, offering valuable insights into the research questions and facilitating a comprehensive
understanding of our review’s outcomes.

7https://github.com/minakshikaushik/List-of-Final-selected-articles.git
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Table 7. Data Extracted from Selected Articles Based on Our ResearchQuestions

Extracted Data Related RQ
Article’s title General
Author’s name General
Source name General
Type of publication (conference/Journal) General
Year of publication General
Citation count General
Methods RQ1, RQ3
Algorithms RQ2
Name of datasets RQ6
Source of datasets RQ6
Objectives RQ4
Metrics RQ5

4 REPORTING THE REVIEW
The reporting phase is crucial as it involves the final presentation and evaluation of the findings
obtained from the systematic review. Effectively communicating the results is essential to high-
light the contribution of the review and provide valuable insights to readers. These results are
derived from the studies identified during the review phase and are aligned with the pre-defined
research questions. Through clear and concise reporting, the systematic review aims to enhance
understanding and facilitate informed decision-making.

4.1 RQ1.Which methods exist for solving NARM problems?
The selected studies, which are reviewed to examine the existingmethods in NARM, are summarized
in the subsequent sub-sections. Table 8 provides an overview of the included papers pertaining to
different NARM methods. Following a thorough analysis of these studies, it was determined that
they could be broadly categorized into four main methods. The following subsections provide brief
descriptions of these methods.

4.1.1 The Discretization Method. Classical ARM faces a significant limitation when dealing with
continuous variable columns as they cannot be processed directly and must be converted into binary
form first. To address this issue, researchers have turned to the discretization method [58, 70, 85].
Discretization involves dividing a column of numeric values into meaningful target groups, which
facilitates the identification and generation of association rules. This approach helps to understand
numeric value columns easily, but the groups are only useful if the variables in the same group
do not have any objective differences. Additionally, discretization minimizes the impact of trivial
variations between values. The discretization method for mining numerical association rules can
be categorized into four approaches: partitioning, clustering, fuzzifying and hybrid. In this article,
we have selected 28 relevant studies that focus on the discretization method.

Partitioning Approach. Srikant [96] presented a solution for mining association rules from quan-
titative data sets. The approach involved partitioning the numerical attributes into intervals and
subsequently mapping these intervals into binary attributes. To address the information loss result-
ing from partitioning, the authors introduced the concept of the partial completeness measure. By
partitioning the numerical attributes and mapping them into binary attributes, Srikant’s approach
allowed for the application of traditional ARM techniques to quantitative data. This work laid the
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foundation for handling numerical attributes in ARM and has since influenced further developments
in the field.

Clustering Approach. The clustering approach is utilized to divide a numerical column into
distinct groups based on similarity among values. Various clustering techniques, including merging-
based, density-based, and grid-based clustering, can be employed to achieve this goal. From the
clustering approach, we identified nine relevant articles that explore this methodology.

In the merging and splitting-based concept, intervals are merged initially and then subsequently
split based on specific criteria. Wang and Han proposed the notion of merging adjacent intervals in
their work [104]. Li et al. [66] developed a method that identifies intervals of numeric attributes
and merges adjacent intervals exhibiting similar characteristics based on predefined criteria. These
studies contribute to the understanding and advancement of the merging and splitting-based
approach within the context of NARM.
The density-based clustering aims to identify different dense regions within the dataset and

map these regions to numeric association rules. Algorithms such as DRMiner [67], DBSMiner
[40], and MQAR [109] are examples of techniques proposed within this category. Further details
regarding these algorithms will be provided in response to the subsequent research question. On
the other hand, grid-based clustering utilizes a bitmap grid to handle data clustering. It identifies
clusters within the bitmap grid, which subsequently yield association rules. This method offers an
alternative approach for extracting meaningful associations from numerical attributes.

Fuzzy Approach. The fuzzy approach is employed to tackle the issue of sharp boundaries in ARM
by representing numerical values as fuzzy sets. Fuzzy sets allow for the representation of intervals
with non-sharp boundaries, where an element can possess a membership value indicating its degree
of belonging to a set. Hong et al. [46] applied the fuzzy concept in conjunction with the apriori
algorithm to discover fuzzy association rules from a quantitative dataset. Their work demonstrated
the effectiveness of combining fuzzy sets and ARM techniques for extracting valuable insights from
numerical data.

Hybrid Approach. The hybrid approach for solving NARM problems is the combination of two or
more methods such as clustering, partitioning, and fuzzy approaches. This method is a more flexible
approach that can enhance the efficiency and accuracy of ARM. For instance, [113] combined the
fuzzy approach with the partitioning method to develop an efficient algorithm for mining fuzzy
association rules. On the other hand, [59, 84, 100] utilized the fuzzy approach with clustering to
enhance the accuracy of ARM. The hybrid approach in NARM offers a promising direction for
researchers to explore, as it allows for the utilization of complementary techniques to address the
complexities of mining association rules from numerical data.

4.1.2 The Optimization Methods. In the context of NARM, the optimization method has gained
significant attention, and we identified 34 papers out of the 68 studies reviewed that focused on
optimization methods. These methods utilize heuristic algorithms inspired by various natural
phenomena, such as animal movements and biological behavior. Generally, optimization methods
fall into two categories: bio-inspired and physics-based. Depending on the optimization goals, the
optimization methods can be further classified into single-objective and multi-objective approaches.
Bio-inspired optimization methods consist of approaches based on Swarm Intelligence (SI),

Evolutionary algorithms, and Hybrid methods. These methods draw inspiration from the collective
behavior of organisms in nature. For example, some studies have explored algorithms inspired by
the movements of wolves [3], insects [88], and mining behavior in biological systems [79]. The
physics-based optimization methods apply principles from physics to solve optimization problems.
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Table 8. Overview of Solutions Based on NARM Methods

Methods Approaches # included
papers

References

Discretization

Partitioning 9 [22, 23, 25, 33, 36, 66, 92, 95, 96]
Clustering 9 [29, 40, 65, 67, 70, 81, 82, 104, 109]
Fuzzy 6 [26, 42, 46, 62, 64, 114]
Hybrid 4 [59, 84, 100, 113]

Optimization

Evolutionary 17 [6, 10, 14, 72–80, 83, 86, 93, 98, 108]
Differential Evolution 3 [9, 12, 34]
Swarm Intelligence 11 [3, 7, 8, 20, 44, 49, 61, 63, 88, 99, 107]
Physics-based 1 [24]
Hybrid 2 [13, 87]

Statistical 3 [17, 50, 106]
Other 3 [47, 48, 56]

These approaches offer researchers a diverse range of techniques to explore and apply in NARM,
allowing for the discovery of efficient and effective association rules from numerical data.

Evolution-Based Methods. The evolutionary method in NARM is rooted in Darwin’s theory
of natural selection, which highlights the adaptive nature of living organisms in response to
changing environments. This approach employs biological operators, including crossover, mutation,
and selection, to mimic the evolutionary process in optimization algorithms [31]. By applying
these principles, evolutionary methods aim to enhance the effectiveness and efficiency of NARM
algorithms, allowing for the discovery of valuable association rules from numerical data.
Under the evolution-based method, the genetic algorithm (GA) and differential evolution (DE)

provide detailed solutions for the NARM problem. The optimization method aims to discover
association rules without the need for the prior discretization of numerical attributes. GA, a meta-
heuristic inspired by natural selection and genetic structure, evolves a population of individual
solutions over time [45]. It proceeds in three main steps: selection of parent individuals, crossover
to combine parents for the next generation, and mutation to apply random changes to parents
and form children. In 2001, the concept of genetic algorithms was successfully applied to identify
numerical association rules from numerical attributes [79].

Out of the selected studies, 17 refers to the use of genetic algorithms. Initially, NARM algorithms
focused solely on single-objective problems; later, multi-objective algorithms also came into the
scenario [83]. Over the years, the genetic algorithm has been used with some advancement by
integrating various supporting techniques, such as the binary-coded CHC algorithm [73], non-
dominated sorting genetic algorithm [78], and niching genetic algorithm [76], as well as other
multi-objective genetic algorithms. Genetic programming [60], which utilizes a tree structure for
the genome, is another aspect of the genetic algorithm. Grammar-guided genetic programming
[71, 72] also emerged with NARM in 2004.
In 1997, Storn and Price [97] introduced a global optimization meta-heuristic approach that

effectively minimized non-differentiable, non-linear, and multi-modal cost functions. This approach
utilized the same operator as genetic algorithms, which included crossover, mutation, and selec-
tion. To minimize the function, differential evolution (DE) employed a few control variables and
parallelization techniques, which helped to decrease computing costs and quickly converge on

, Vol. 1, No. 1, Article . Publication date: July 2023.



12 Minakshi et al.

the global minimum. Our research identified four relevant studies that used DE for NARM. One
such study, proposed in 2008 by Alatas and Akin, utilized a multi-objective differential evolution
algorithm [9]. Another study was conducted in 2018 and 2021 by I. Fister Jr. [34, 35], while Altay and
Alatas presented a hybrid DE-based method with a sine cosine algorithm and chaos number-based
encoding, respectively [12, 13].

Swarm Intelligence-Based. Swarm intelligence (SI) is a popular optimization technique inspired
by the collective behavior of self-organized groups in nature, as described by Bonabeau et al. in
1999 [21]. SI algorithms emulate the behavior of swarms found in birds, fish, honey bees, and ant
colonies. These algorithms consist of individuals that migrate through the search space, simulating
the progression of the swarm. Various SI-based algorithms have been developed, including Particle
Swarm Optimization (PSO), Bat Algorithm (BAT), Ant Colony Optimization (ACO), Cat Swarm
Optimization (CSO), and others. In the context of solving NARM problems, several SI algorithms
have been applied. Notable examples include PSO [7], BAT [44], Wolf Search Algorithm (WSA)
[3], Crow Search Algorithm (CSA) [63], and Cuckoo Search Algorithm (CS)[49]. These SI-based
algorithms have shown promise in optimizing NARM and extracting meaningful association rules.
Particle swarm optimization (PSO) is a widely used optimization technique for non-linear con-

tinuous functions inspired by the movement of bird flocks or fish schools as described in Kennedy
and Eberhart [57]. PSO simulates the collective behaviour of these groups, where 𝑁 particles
move in a 𝐷-dimensional search space, adjusting their position iteratively by using their own
best position pbest and the best position of the entire swarm gbest. The PSO algorithm finds the
optimum solution by calculating the velocity and position of each particle. In the context of mining
association rules with numeric attributes, Alatas and Akin introduced the application of PSO in
2008 [7]. They modified the PSO algorithm to search for numeric attribute intervals and discover
numeric association rules. Seven studies have since focused on adapting PSO for NARM including
the hybrid approach. These studies explore the potential of PSO to effectively mine association
rules with numeric attributes and provide valuable insights into its performance and limitations.

Ant colony optimization (ACO) is another optimization technique based on the foraging behaviour
of various ant species, as described in Dorigo et al.[30]. In ACO, a group of artificial ants collaborates
to find solutions to an optimization problem and communicate information about the quality of
these solutions using a communication mechanism similar to real ants. ACO is designed to address
discrete optimization problems by selecting a solution using a discrete probability distribution. In
the context of multi-objective NARM, Moslehi et al. introduced an ACO variant called 𝐴𝐶𝑂𝑅 in
2011 [88]. 𝐴𝐶𝑂𝑅 utilizes a Gaussian probability distribution function to handle continuous values
encountered in NARM. It maintains a solution archive of size 𝑘 , initially populated with 𝑘 random
solutions ranked by their quality. Each ant constructs its solution by probabilistically selecting
a solution from the archive, allowing for the exploration of different solution possibilities. The
utilization of ACO in NARM, particularly the 𝐴𝐶𝑂𝑅 variant, demonstrates its potential to address
the challenges posed by continuous attributes and provide effective solutions for multi-objective
NARM problems.
The Cuckoo Search algorithm (CS) is an optimization algorithm introduced by Yang and Deb

in 2009, inspired by the brooding parasitic behavior of cuckoo species [111]. Cuckoos lay their
eggs in the nests of other bird species, mimicking the color and pattern of the host birds’ eggs.
Some host birds may recognize the stranger’s eggs and remove them from the nest. The cuckoo
search algorithm mimics this behavior by generating new solutions (cuckoo eggs) and replacing less
promising solutions in the nests (solution space) with the new solutions. The algorithm operates
based on three main rules: A cuckoo bird lays only one egg at a time in a randomly chosen nest
(introduces a new solution to the search space). The nests with high-quality eggs are more likely to
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be carried over to the next generation (the better solutions have a higher chance of survival). The
probability of a host bird discovering cuckoo eggs in its nest is either 0 or 1 (either the host bird finds
and removes the cuckoo egg or it remains undetected). The goal of the cuckoo search algorithm is
to find new and potentially better solutions to replace the existing solutions in the nests, leading to
the improvement of the overall solution quality. In the context of NARM, a multi-objective cuckoo
search algorithm called MOCANAR was proposed by Kahvazadeh et al. in 2015 [49]. MOCANAR
applies a Pareto-based approach to solve the multi-objective NARM problem, aiming to discover
association rules that optimize multiple conflicting objectives simultaneously. By employing the
cuckoo search algorithm as the underlying optimization technique, MOCANAR demonstrates its
effectiveness in addressing the challenges of multi-objective NARM.

In 2012, Tang et al. proposed a heuristic optimization algorithm called the Wolf Search Algorithm
(WSA) that imitates how wolves hunt for food and survive in the wild by avoiding predators
[102]. Unlike other bio-inspired meta-heuristics, WSA enables both individual local searching
and autonomous flocking movement capabilities as wolves hunt independently in groups. WSA
follows three basic rules based on wolf hunting behavior. The first rule involves a fixed visual
area of each wolf with a radius v, which is calculated using Minkowski distance. The second rule
pertains to the current position of the wolf, represented by the objective function’s fitness, and
the wolf always tries to choose the better position. The third rule concerns escaping from enemies.
Agbehadji suggested WSA to develop an algorithm for searching for intervals of numeric attributes
and association rules [3].
In 2010, Yang introduced the BAT algorithm (BA) as a solution to continuous constrained

optimization problems inspired by the echolocation behavior of microbats [110]. Microbats use
echolocation to sense distance, discover prey, avoid obstacles, and find roosting nooks in the dark.
The BA algorithm is based on the velocity of a bat at a particular position, with a fixed frequency
and varying wavelength and loudness. The bat adjusts its frequency and loudness to locate a new
food source while changing its position in space. Heraguemi et al. [44] proposed a multi-objective
version of the Bat algorithm for numerical attributes. Previously, the BA was also used for ARM to
deal with categorical attributes.

The Crow Search Algorithm (CSA) is a recently developed meta-heuristic optimization technique
inspired by the intelligent behaviour of crows [15]. Crows are known for their ability to store and
hide food for future use while also keeping an eye on each other to steal food. The CSA is based
on four principles of crow behaviour: living in flocks, memorizing the position of hiding places,
following other crows to steal food, and protecting their caches from theft. In the CSA, a crow flock
moves in a 𝑑-dimensional search space, with each crow having its own position and memory of
its hiding place. When a crow follows another crow, it may either discover the hiding place and
memorize it or be tricked by the followed crow. The CSA has been successfully applied to various
optimization problems, such as image segmentation and feature selection. Recently, Makhlouf et al.
(2021) [63] proposed a discrete version of CSA for NARM.

Hybrid Approach. The hybrid approach in optimization combines multiple techniques such as
evolution, SI, or other approaches to leverage their respective advantages and tackle complex
tasks effectively. In the context of NARM, researchers have explored the hybridization of different
algorithms to enhance the performance and efficiency of association rule discovery. One study
by Moslehi et al. [87] employed a hybrid approach that combined the GA and PSO. The GA
facilitated the search for the best solution, while the PSO helped avoid being trapped in local optima
by exploring a larger search space. By combining the strengths of both approaches, the hybrid
algorithm demonstrated the ability to find high-quality solutions to complex NARM problems
within a relatively short time. Another study by Altay and Alatas [13] proposed a hybrid approach
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that combined the DE algorithm with the sine and cosine algorithms. This hybridization aimed to
leverage the exploration and exploitation capabilities of both algorithms, resulting in improved
performance for NARM. The DE algorithm provided efficient search and optimization, while the
sine and cosine algorithms introduced chaos-based techniques to enhance the exploration process.

Physics-Based. Physics-based meta-heuristics have emerged as a powerful approach to solving
optimization problems. One such algorithm, the gravitational search algorithm (GSA) [91], is based
on Newton’s law of gravity, where particles attract each other with a gravitational force. The
following formula defines this force:

𝐹 = 𝐺
𝑀1𝑀2
𝑅2

(3)

where 𝐹 is the gravitational force,𝐺 is the gravitational constant,𝑀1 and𝑀2 are the mass of of two
particles and 𝑅 is the distance between these particles. According to Newton’s second law, when a
force is applied to a particle, its acceleration 𝑎 depends on the force 𝐹 , and it is mass𝑀 .

𝑎 =
𝐹

𝑀
(4)

In the GSA, agents are considered as objects with masses that determine their performance.
The heavier masses are better solutions and attract lighter masses, leading to an optimal solution.
Each mass has a position, inertial, active, and passive gravitational mass. The position of a mass
represents a problem solution, and its gravitational and inertial masses are calculated using a fitness
function. While GSA has been used in various optimization problems, it has only been applied to
NARM in one study, where Can and Alatas utilized it for finding intervals of numeric attributes
automatically without any prior processing [24].

4.1.3 The Statistical Method. Statistics is a traditional approach for developing theories and testing
hypotheses using statistical tests such as Pearson correlation, regression, ANOVA, t-test, and
chi-square test, among others. Statistical inference involves inferring population properties from
a sample to generate estimates and test hypotheses. Some studies have used statistical concepts
such as mean, median, and standard deviation in the mining association rule. We identified three
studies in this direction which suggested distribution-based interestingness measures. One such
study is Kang et al. (2009) [50], which used bipartition techniques such as mean-based bipartition,
median-based bipartition and standard deviation minimization for quantitative attributes in ARM.

4.1.4 Miscellaneous Other Methods. In addition to the established techniques discussed earlier,
there are other alternative approaches that have been proposed to tackle the challenge of NARM.
These approaches offer unique perspectives and methodologies to address the problem. One
such approach is the utilization of mutual information, as presented by Yiping et al. in 2008
[56]. Mutual information is a concept from information theory that measures the dependency
between two variables. In the context of NARM, mutual information is employed to generate
quantitative association rules (QARs), capturing the relationships and dependencies between
numerical attributes. Another approach is the use of Variable Mesh Optimization (VMO), proposed
by Jaramillo et al. [48]. VMO is a population-based metaheuristic algorithm that represents solutions
as nodes distributed in a mesh-like structure. Each node in the mesh represents a potential solution
to the optimization problem. By leveraging the principles of VMO, the algorithm explores the
solution space in a distributed and adaptive manner, facilitating the discovery of association rules.
Furthermore, in 2021, Hu et al. [47] introduced a cognitive computing-based approach for NARM.
Cognitive computing refers to the simulation of human thought processes by computer models.
By leveraging cognitive computing techniques, the proposed approach aims to mimic the human
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thought process during critical situations, allowing for a more comprehensive and nuanced analysis
of numerical data for ARM.
These alternative approaches demonstrate the diverse range of methodologies and concepts

that researchers have explored to tackle the NARM problem. By leveraging mutual information,
variable mesh optimization, and cognitive computing, these approaches offer unique perspectives
and potential benefits for discovering association rules from numerical data.

4.2 RQ2 What are the several algorithms available for each of the existing NARM
methods?

In response to RQ1, we have provided a comprehensive explanation of the four main methods
utilized in NARM in subsection 4.1. This section further delves into a more detailed exploration of
the algorithms associated with each of these methods.

4.2.1 The Discretization Method.

Partitioning Based Algorithms.

• Qunatitative Association Rule Mining (QARM): In 1996, Srikant and Agrawal proposed an
algorithm [96] to address the use of numeric attributes in ARM, which was traditionally
limited to binary attributes. One key issue was determining whether and how to partition a
quantitative attribute while minimizing information loss by setting minimum support and
confidence thresholds. To overcome this, the algorithm introduces a partial completeness
measure. The algorithm converts categorical attributes to integers and partitions numerical
attributes into intervals using an equi-depth discretization algorithm. Frequent itemsets
are then generated by setting minimum support for each attribute and used to generate
association rules. To ensure interesting and non-redundant rules, the algorithm employs an
interesting measure called “greater-than-expected-values.” However, setting the user-supplied
threshold too high can result in missed rules, while setting it too low can generate irrelevant
rules.

• Automatic Pattern Analysis and Classification System 2 (APACS2): To address the threshold
issue, a novel algorithm named APACS2 was presented by Chan et al. [25]. This algorithm
employed equal-width discretization to discover intervals of quantitative attributes without
the need for user-defined thresholds. The quantitative attribute values were mapped to these
intervals to obtain a new set of attributes. Each interval was described by the lower and
upper bounds as 𝑎1 = [𝑙1, 𝑢1]. The APACS2 algorithm used adjusted difference analysis to
identify interesting associations between items, which enabled it to generate both positive
and negative association rules.

• Q2: Buchter and Wirth [23] proposed the Q2 algorithm to work with multi-dimensional
association rules over ordinal data. Q2 aimed to reduce the cost of counting a large number
of buckets by only counting the buckets of successful candidates. First, apriori is used to
identify all frequent boolean itemsets. Then, only the items in these sets are discretized based
on the user’s specifications. Q2-gen technique is used to generate a prefix tree that includes
only the bucket combinations that need to be counted for the discretized items. The prefix
tree is then used to count these bucket combinations in a single pass through the data. Finally,
the prefix tree is used to produce all R-interesting rules. Unlike the hash tree used in QARM,
Q2 uses a prefix tree to store quantitative itemsets.

• Fukuda et al.Work: Fukuda et al. presented a novel algorithm [36] that computes two optimized
ranges for numeric attributes. To achieve this, the algorithm uses randomized bucketing
as a preprocessing step to compute the ranges for sorted data. The focus of the algorithm
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is on generating optimized rules of the format (𝐴[𝑣1, 𝑣1]) ∧𝐶1 ⇒ 𝐶2, where 𝐶1 and 𝐶2 are
binary attributes and 𝐴 is a numeric attribute. The main task of the algorithm is to generate
thousands of equi-depth buckets and combine some of them to generate optimized ranges.
The performance of the bucketing algorithm was compared with Naive Sort and Vertical
Split Sort, and the algorithm demonstrated superior performance.

• Brin’s Algorithm: In 1999, Brin et al. proposed an optimized algorithm for mining one and two
numeric attributes [22]. The focus of the algorithm was on optimizing gain rules, where the
gain of a rule 𝑅 is defined by the difference between the support of (𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡 ∧𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡)
and the support of 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡 , multiplied by the user-specified minimum confidence. To
reduce the input size, a bucketing algorithm was employed. For one numeric attribute, the
algorithm computes optimized gain rules, while for two numeric attributes, a dynamic
programming algorithm was presented to compute approximate association rules. Although
the algorithmwas successful for one numeric attribute, it was not well-suited for large domain
sizes in the case of two numeric attributes.

• Numerical Attribute Merging Algorithm: Li et al. [66] developed an algorithm that merges
adjacent intervals of numeric attributes based on a merging criterion that considers value
densities and distances between values. They called this the numerical attribute merging
algorithm and used it to find suitable intervals for the QARM algorithm. After discretizing
the numeric attributes, this algorithm treats each interval as a boolean attribute, allowing
them to work with classical ARM.

• Rastogi’s Algorithm: In 2002, Rastogi and Shim extended the work done by [92]. They pre-
sented efficient methods for reducing the search space during the computation of optimized
association rules applicable to both categorical and numeric attributes.

• SlidingWindow Partitioning - Random Forest (SWP-RF) Algorithm: In a related study, Guanghui
Fan et al. [33] proposed a machine learning-based QARM method called SWP-RF to identify
factors that cause network deterioration. This method uses sliding window partitioning
(SWP) to discretize continuous attributes into boolean values, followed by random forest (RF)
feature importance to measure the association between key performance indicator (KPI) and
key quality indicator (KQI).

• Numerical Association Rule-Discovery: Song and Ge [95] proposed NAR-Discovery, a divide-
and-conquer algorithm for mining numerical association rules. NAR-Discovery progresses
in two phases. In the first phase, attributes are partitioned into a small number of large
buckets, and then neighbouring buckets are mapped to an “item,” and apply a classical
frequent itemset mining algorithm. In the second phase, only the outermost buckets of each
rule are recursively partitioned, and some bounds and filtering are used to end the process.
The authors improved performance by one to two orders of magnitude using optimization
techniques. They developed a search based on a tree structure to manage rule derivations,
and interesting rules were selected using an optimization technique based on temporary
tables. NAR-Discovery was compared with QuantMiner [93] and claimed to discover all
appropriate rules.

Clustering Based Algorithms.

• Miller’s Algorithm: Miller et al. [82] introduced a distance-based ARM approach for interval
data in 1997. To handle the memory requirements, they utilized a 𝐵+ tree data structure. The
authors first used a clustering algorithm to identify intervals and then applied a standard
ARM algorithm to extract association rules from these intervals.

• Association Rule Clustering System (ARCS): In 1997, Lent et al. [65] introduced a compre-
hensive framework called ARCS that focused on rules with two quantitative attributes on
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the antecedent side and one categorical attribute on the consequent side. ARCS consists of
four main components: binner, association rule engine, clustering, and verifier. In the binner
phase, quantitative attributes are divided into bins using the equi-width binning method, and
these bins are then mapped to integers. The BitOp algorithm is used to enumerate clusters
from the grid and locate them within the Bitmap grid by performing bitwise operations,
which results in clustered association rules. However, this method is limited to handling
low-dimensional data and cannot handle high-dimensional data.

• Interval Merger Algorithm: In 1998, Wang and Han [104] proposed an algorithm for merging
adjacent intervals of numeric attributes by evaluatingmerging criteria. This algorithm has two
phases: initialization and bottom-upmerging. They used an𝑀-tree, which is a modified 𝐵-tree,
to efficiently find the best merge during the merging phase. Additionally, two interestingness
measures, 𝐽1 and 𝐽2, were used to evaluate the interestingness of the discovered association
rules. The higher the values for both measures, the more interesting the rule was considered
to be.

• Relative Unsupervised Discretization (RUDE): In 2000, Ludl et al. proposed the RUDE algorithm
as amerging approach based on themerging and splitting technique [70]. The RUDE algorithm
considers the interdependence of attributes and consists of three main steps. The first step
is the pre-discretizing phase, where equal-width discretization is applied to the data. In the
second step, called structure projection, the structure of each source attribute is projected onto
the target attribute. This projection is then used to perform clustering on the target attribute,
resulting in the gathering of split points in the split point list. Finally, in the postprocessing
step, the split points are merged using predefined merging parameters. The RUDE algorithm
was primarily used as a preprocessing step for the apriori algorithm. The association rules
extracted from RUDE and apriori were combined to obtain the final results.

• Dense Regions Miner (DRMiner): In 2005, Lian et al. [67] proposed the DRMiner algorithm,
which efficiently identifies dense regions and maps them to QARs. To achieve this, the authors
developed a three-step approach. First, a 𝑘 −𝑑 tree is built to store valid cells in the space and
their corresponding number of points. Second, a dense region cover set is grown inside some
leaf nodes from their boundaries, and self-merging of cover sets is done across boundaries.
Finally, the cells are traversed in each cover to find dense regions. The authors evaluated
the complexity of DRMiner for different steps and used a synthetic data set with varying
numbers of attributes and instances for evaluation.

• Density-Based Sub-space Miner (DBSMiner): The DBSMiner algorithm, proposed in 2008 by
Guo et al. [40], aims to cluster the high-density subspace of quantitative attributes. CBSD
(Clustering Based on Sorted Dense Units), a new clustering algorithm, was used to sort all
subspaces with densities greater than a certain threshold in descending order. Interestingly,
DBSMiner has a unique property when dealing with low-density subspaces: it only needs to
verify the neighbouring cell instead of scanning the entire space. The algorithm is capable of
uncovering interesting association rules.

• Mining Quantitative Association Rule (MQAR): Yang et al. [109] proposed the MQAR algorithm
in 2010, which utilizes dense regions to generate numerical association rules. The algorithm
clusters dense subspaces using the DGFP tree (dense grid frequent pattern tree) in four
main steps. Firstly, the data space is partitioned into non-overlapping rectangular units by
partitioning each quantitative attribute into intervals. Then, a DGFP tree is created to store
dense cells in the space with a density greater than the minimal density criterion by mapping
all database transactions into a high-dimensional space 𝑆 and sorting units by density. The
third step is to mine the DGFP tree to obtain dense subspaces, which provide information
about database transactions. Finally, the dense subspaces in 𝑆 are identified based on the
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dense subspaces, and associated cells are found to build clusters. Association rules that are
not redundant are then constructed using the clustering result.

• Quantitative Association Rule Mining Method with Clustering Partition (QARC_Apriori): The
QARC_Apriori algorithm, proposed in 2014, aimed to analyze correlations in satellite teleme-
try data [29]. The algorithm involved three main steps: First, it performed dimensionality
reduction to eliminate redundant attributes. Second, it discretized numeric attributes using
the 𝐾-means clustering algorithm. Finally, it used the apriori algorithm for mining QARs,
with frequent itemset mining and rule generation. Since satellite telemetry data has a vast
amount of data, numerical attributes, and high dimensions with various attributes such as
voltage, current, pressure, and temperature, the authors used the grey relational analysis
method to reduce the dimensionality.

• Graph Clustering and Quantitative Association Rules (GCQAR): Medjadba et al. [81] proposed
GCQAR, a method for discovering significant patterns in geochemical data by combining
graph clustering and QARM. Identifying hidden patterns related to mineralization in geo-
chemical data is a challenging task. The proposed method tackles this by first applying graph
clustering to partition the input data into highly cohesive, sparsely connected subgraphs.
This step helps to separate the relevant geochemical data from the complex background.
Then, QARs are used to measure the interrelation between pairs of vertices in each subgraph.
For each cluster, a set of QARs is generated by randomly selecting antecedent and consequent
rules and evaluating them based on support and confidence.

Fuzzy Based Algorithms.

• Fuzzy-Automatic Pattern Analysis and Classification System (F-APACS): Chan extended the
APACS2 algorithm for QARM by proposing the F-APACS algorithm [26], which is based
on fuzzy set theory and is designed for mining association rules with numeric attributes.
Instead of finding intervals for quantitative attributes as done in other methods, F-APACS
uses linguistic terms to represent discovered patterns and exceptions. Similar to APACS2,
F-APACS also employs the adjusted difference analysis technique, which eliminates the need
for a user-supplied threshold and can discover both positive and negative association rules.
To capture the uncertainty associated with the fuzzy association rules, F-APACS uses a weight
of evidence measure to represent confidence.

• Kuok’s Approach: Kuok et al. [62], proposed the method for mining fuzzy association rules of
the form, “If X is A then Y is B.” Here X, Y are attributes and A, B are fuzzy sets. This approach
is important because it provides a better way of handling numeric attributes compared
to existing methods. The study showed that the use of fuzzy sets helps to understand the
correlation between two attributes through the significance factor and certainty factor.

• Fuzzy Transaction Data mining Algorithm (FTDA): Hong et al. [46] used the fuzzy concept
with the apriori algorithm to discover fuzzy association rules from a quantitative data set. To
overcome the limitation of the apriori algorithm in handling quantitative data, the authors
introduced the FTDA (Fuzzy Transaction Data mining Algorithm), which first transformed
quantitative data into linguistic terms using membership functions. Next, the scalar cardinal-
ities of all linguistic terms were calculated, and the apriori algorithm was modified to find
association rules as fuzzy sets. However, a drawback of this method is that experts need to
provide the best fuzzy sets of quantitative attributes manually.

• Gyenesei’s Approach: Gyenesei [42] addressed the limitation of expert dependency in selecting
fuzzy sets for quantitative attributes by introducing a fuzzy normalization process. To obtain
unbiased membership functions, the author proposed using fuzzy covariance and fuzzy
correlation values. Interest measures were defined in terms of fuzzy support, fuzzy confidence,
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and fuzzy correlation. The approach was evaluated using two methods: with normalization
and without normalization. The non-normalized method produced the most interesting rules,
while the number of rules generated by the normalized approach was comparable to the
discrete method. The fuzzy normalization process helped to reduce anomalies that may arise
from the arbitrary selection of fuzzy sets.

• Generalized Fuzzy Quantitative Association Rule Mining Algorithm: Lee [64] proposed a novel
algorithm for generalized fuzzy QARM, incorporating fuzzy concept hierarchies for cate-
gorical attributes and fuzzy generalization hierarchies of linguistic terms for quantitative
attributes. Unlike other methods, this approach calculates the weighted support and weighted
confidence by taking into account the importance weights of attributes. To eliminate redun-
dant rules, the 𝑅-interest measure is used. The algorithm converts each transaction into an
augmented transaction and applies apriori [5] to generate frequent itemsets with the aid of
weighted support and weighted confidence measures. It then extracts QARs by removing
rules not meeting the R-interest measure’s criteria.

• Optimized Fuzzy Association Rule Mining(OFARM): Zheng et al. [114] proposed a novel
algorithm, OFARM (optimized fuzzy association rule mining), in 2014 to optimize the partition
points of fuzzy sets with multiple objective functions. The frequent itemsets are generated
using a two-level iteration process, and the certainty factor with confidence is used to evaluate
fuzzy association rules.

Hybrid Based Algorithms .

• Equal-Depth Partition with Fuzzy Terms (EDPFT): Zhang [113] proposed an enhanced version
of the equi-depth partition (EDP) algorithm that integrated fuzzy terms, called EDPFT. This
algorithm was designed to identify association rules that contain intervals, crisp values, and
fuzzy terms on both the left-hand and the right-hand sides. Unlike FTDA, which relies on
user-supplied fuzzy sets, EDPFT utilizes equi-depth partitioning to obtain the intervals of
numeric attributes. Although the author did not evaluate the algorithm using any data set,
this approach shows potential in dealing with both crisp and fuzzy values in ARM.

• Mohamadlou et al. Algorithm: Mohamadlou et al. [84] introduced a fuzzy clustering-based
algorithm for mining fuzzy association rules. The algorithm utilizes 𝐶-means clustering to
cluster all the transactions, followed by obtaining the fuzzy partition for each attribute. It
then converts the quantitative transactions into ‘fuzzy discrete transactions’ by mapping the
quantitative data into fuzzy partitions. The algorithm mines fuzzy association rules from the
‘fuzzy discrete transactions’ using an ARM algorithm.

• Fuzzy Inference Based on Quantitative Association Rule (FI-QAR): Wang et al. [105] proposed a
three-phase algorithm called FI-QAR, which integrates clustering and fuzzy techniques. In the
first phase, the density-based fuzzy adaptive clustering (DFAC) [69] algorithm was applied
to discretize numeric attributes into discrete intervals. The intervals were then combined
with the TS fuzzy model to generate a nominal vector matrix, which was used to modify
the A apriori algorithm and reduce the scanning overhead of a large database. The second
phase involved mining QARs using an improved apriori algorithm. Finally, the third phase
pruned the association rules. The proposed approach offers a way to mine QARs from large
databases effectively.

• Fuzzy Class Association Rule Support VectorMachine (FCARSVM:) Kianmehr et al. [59] proposed
the FCARSVM to obtain fuzzy class association rules. The authors extracted Fuzzy Class
Association Rules (FCAR) using a fuzzy 𝐶-means clustering algorithm in the first phase, and
FCARs were weighted based on the scoring metric strategy in the second phase.
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4.2.2 The Optimization Method.

Evolution and DE-Based Algorithms.

• GENetic Association Rules (GENAR):Mata et al. [79] introduced GENAR as a genetic algorithm-
based solution for NARM. GENAR is designed to identify numerical association rules with an
unknown number of numeric attributes in the antecedent and a single attribute in the conse-
quent. By utilizing genetic algorithms, GENAR offers an effective approach to discovering
association rules involving numerical attributes.

• Genetic Association Rules (GAR): The extended version of GENAR, called GAR, was proposed
by Mata et al. [80]. GAR utilizes the five fundamental phases of a genetic algorithm, namely
initialization, evaluation, reproduction, crossover, and mutation, to discover intervals for
numerical attributes. A key contribution of GAR is the introduction of a fitness function to
determine the optimal amplitude for each numerical attribute’s interval. The genes in GAR
represent the upper and lower limits of the attribute intervals and are initially created ran-
domly. Through crossover and mutation operations, a new generation of genes is generated,
and the fitness function is used to evaluate the quality of the intervals. GAR provides an
effective approach for identifying appropriate intervals for numerical attributes in ARM.

• Genetic Association Rules Plus (GAR Plus): Alvarez et al. [14] made enhancements to the GAR
algorithm and introduced GAR Plus. This improved version enables the automatic extraction
of intervals for numerical attributes through an evolutionary process, eliminating the need for
pre-discretization. GAR Plus enhances the fitness function of GAR by incorporating additional
parameters such as support, confidence, interval amplitude, and the number of attributes
with a modifier. By considering these parameters, GAR Plus provides a more comprehensive
evaluation of the fitness of candidate intervals, resulting in improved performance and
accuracy compared to the original GAR algorithm.

• Alatas and Akin Algorithm: Alatas and Akin [6] have made significant contributions to the
field of NARM. In one of their studies, Alatas extended the GAR algorithm to discover both
positive and negative association rules. They compared the performance of their proposed
algorithm with the original GAR algorithm and observed that the amplitude of the intervals
generated by their approach was lower than that of GAR. This indicates that the extended
algorithm by Alatas and Akin was able to identify more specific and precise intervals for
numerical attributes, resulting in improved rule discovery.

• QuantMiner: QuantMiner [93] is a system for discovering QARs that employs a genetic
algorithm. The system operates with a predefined set of rule templates, which can be either
user-selected or computed by the system itself. These templates define the format of the
QARs. By utilizing the genetic algorithm, QuantMiner searches for the optimal intervals for
the numerical attributes specified in the rule templates. This approach allows the system
to efficiently explore the search space and identify association rules that meet the desired
criteria.

• Expending Association Rule Mining with Genetic Algorithm (EARMGA): Yan et al. [108] pre-
sented an encoding method for discovering association rules using a genetic algorithm. Their
approach, named ARMGA, initially designed for boolean attributes, was extended to handle
generalized association rules incorporating both categorical and quantitative attributes. The
authors introduced a fitness function based on relative confidence, eliminating the need for a
user-defined minimum support threshold. To handle quantitative attributes, they discretized
them into intervals and integrated four genetic operators into the algorithm. The resulting
enhanced version, EARMGA, successfully accommodated quantitative attributes and utilized
the 𝑘-FP tree data structure for efficient rule mining.
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• Real-Coded Genetic Algorithm (RCGA): Martinez et al. [74] introduced a real-coded genetic
algorithm (RCGA) for NARM. The RCGA is a variation of the binary-coded CHC algorithm
[32], known for its elitist selection mechanism that favors the best individual for the next
generation. In the context of NARM, the RCGA is utilized to search for optimal intervals.
By employing real-coded representations and incorporating the elitist selection feature, the
RCGA aims to efficiently explore the search space and discover high-quality numerical
association rules.

• Quantitative Association Rules by Genetic Algorithm (QARGA): Martínez et al. [73] improved
the RCGA by proposing QARGA to extract QARs from real-world multidimensional time se-
ries. The QARGA method discovered significant relationships between ozone concentrations
in the atmosphere and other climatological time series, including temperature, humidity,
wind direction, and speed.

• Niching Genetic Algorithm for Quantitative Association Rules (NICGAR): NICGAR was pro-
posed by Martin et al. [76] to prevent the generation of similar rules by reducing the set of
quantitative rules, which includes positive and negative rules. The algorithm consists of three
components: an external population, a punishment mechanism, and a restarting process
to manage niches and avoid the same solutions. The article also proposes a new similarity
measure to find the similarity between rules.

• QAR-CIP-NSGA-II:Martin et al. [78] presented a novel multi-objective evolutionary algorithm
called QAR-CIP-NSGA-II, which extends NSGA-II to simultaneously learn the intervals
of attributes and conditions for each rule in a QAR system. QAR-CIP-NSGA-II aims to
discover a set of high-quality QARs that balance interpretability and accuracy by maximizing
comprehensibility, interestingness, and performance objectives. The algorithm incorporates
an external population and a restarting method to enhance population diversity and store
discovered nondominated rules. The comprehensibility of a rule is measured by the number of
attributes involved in the rule, while the product of the certainty factor and support determines
the accuracy. The interestingness measure, lift, is used to determine how significant the rule
is.

• Multi-Objective Genetic algorithm Association Rule mining (MOGAR): Minaei-Bidgoli et al.
[83] proposed MOGAR algorithm for discovering association rules from numerical data.
The algorithm maintains a population of candidate association rules, representing potential
solutions, and applies genetic operators such as selection, crossover, and mutation to evolve
the population over successive generations. The fitness of each candidate rule is evaluated
based on multiple objectives, such as confidence, interestingness and comprehensibility.
MOGAR employs a Pareto dominance concept to identify non-dominated solutions MOGAR
has the ability to handle complex datasets with multiple conflicting objectives, providing a
more comprehensive view of associations in the data.

• Multi-Objective Positive Negative Association Rule Mining Algorithm (MOPNAR): Martin et al.
[77] proposed MOPNAR, a multi-objective algorithm that aims to achieve the same objectives
as QAR-CIP-NSGA-II, including mining a reduced set of positive and negative QARs. The
authors also claimed to achieve a low computational cost and good scalability, even with an
increased problem size. In addition, MOPNAR was compared with other existing evolutionary
algorithms such as GAR, EARMGA, GENAR, and MODENAR.

• Multi-Objective Quantitative Association Rule Mining (MOQAR): Martínez et al. [75] improved
the multi-objective evolutionary algorithm (MOEA) non-dominated sorting genetic algorithm-
II (NSGA-II) [28] by integrating it with their proposed QARGA approach. The authors used
principal component analysis (PCA) to select the best subset of quality measures for the fitness
function. Additionally, different distance criteria were introduced to replace the crowding
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distance of solutions to obtain secondary rankings in Pareto fronts. The primary ranking
was achieved through the non-dominated sorting of the solutions.

• Multi-Objective Evolutionary Algorithm for Quantitative Association Rule Mining (MOEA-
QAR): The MOEA-QAR algorithm [86] combines a genetic algorithm with clustering to mine
interesting association rules. The dataset is first clustered using 𝐾-means, and each cluster is
used as input to a separate GA to extract rules for that cluster. The fitness function of each
chromosome is defined by confidence, interestingness, and cosine2. The algorithm can be
applied to the entire dataset or just to each cluster, and experiments show that more rules
are retrieved per cluster than for the whole dataset. Notably, users do not need to specify
minimum support or confidence thresholds.

• Association Rule Mining with Differential Evolution (ARM-DE): In 2018, Fister et al. [34] pro-
posed a novel approach to ARMwith numerical and categorical attributes based on differential
evolution. Their algorithm consists of three stages: domain analysis, solution representation,
and fitness function definition. In domain analysis, attribute domains are determined for
numerical and categorical attributes. For numerical attributes, the minimum and maximum
bounds are defined, while for categorical attributes, a set of values is enumerated. Each
solution is represented mathematically using a real-valued vector. The fitness function is then
calculated based on confidence and support, and optimization is achieved by maximizing the
fitness function value.

• Rare-PEAR: The Rare-PEARs algorithm proposed by Almasi et al. [10] aims to discover various
interesting and rare association rules by giving a chance to each rule with a different length
and appearance. The algorithm decomposes the process of ARM into 𝑁 − 1 sub-problems,
where each sub-problem is handled by an independent sub-process during Rare-PEARs
execution. 𝑁 is the number of attributes, and each sub-process starts with a different initial
population and explores the search space of its corresponding sub-problem to find rules with
semi-optimal intervals for each attribute. This approach allows for a more comprehensive
exploration of the search space, discovering more diverse and rare association rules.

• Genetic Network Programming (GNP): Taboada et al. [98] proposed Genetic Network Program-
ming (GNP) as a graph-based approach to ARM with numerical attributes. GNP consists of
three node types: a start node, a judgement node, and a processing node. The judgement
nodes act as conditional branch decision functions, while the processing nodes act as action
functions. Evolution is carried out using crossover and mutation operators, and the signifi-
cance of important rules is measured using the chi-square test. Rules are stored in a pool,
which is updated every generation, and the lower chi-squared value rule is exchanged with a
higher chi-squared value rule. This approach effectively extracts important rules from the
database.

• Grammar-Guided Genetic Programming Association Rule Mining (G3PARM): Luna et al. [72]
applied Grammar-Guided Genetic Programming (G3P) to the task of finding QARs, building
on their previous work in 2010, where they introduced G3PARM for ARM. The focus of the
approach proposed in [72] was to reduce gaps in numerical intervals and emphasize the
distribution of instances. To achieve this, the authors developed a self-adaptive algorithm
that dynamically adjusts the number of parameters used in the evolutionary process and
utilizes context-free grammar to represent solutions. The algorithm aims to identify the best
rules according to a given fitness function, which are then stored in a pool and updated in
each generation.

• Multi-Objective Differential Evolution algorithm for Numeric Association Rules (MODENAR):
Alatas et al. [9] proposed a multi-objective differential evolution algorithm to discover
accurate association rules from numeric attributes. The algorithm was designed to optimize
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four objectives: amplitude, comprehensibility, support, and confidence, based on Pareto
principles. The support and confidence of the discovered rules were required to be high.
Comprehensibility was defined as the number of attributes involved in a rule, and shorter
rules were preferred. The amplitudes of attribute intervals were aimed to satisfy fewer rules;
hence amplitude was minimized while support, confidence, and comprehensibility were
maximized.

Swarm Intelligence-Based Algorithms.

• Rough Particle Swarm Optimization Algorithm (RPSOA):
The RPSO algorithm was introduced as the first PSO-based algorithm for NARM with rough
particles [7]. This algorithm aims to determine numeric attribute intervals and then discover
association rules that conform to these intervals, where the fitness function is responsible
for determining the amplitude of the intervals. Rough values of each attribute are defined by
upper and lower bounds and are useful in representing an interval for an attribute. Each rough
particle has decision variables representing items and intervals. It consists of three parts: the
first describes the antecedent or consequent of a rule, the second represents the lower bound,
and the third represents the upper bound of the interval. An item is considered an antecedent
if its value is between 0 and 0.33, a consequent if it is between 0.33 and 0.66, and if it is
between 0.66 and 1.0, the item would not be included in the rule. Once the RPSO algorithm
completes its execution, attribute bounds refinement is performed for the covered rule. This
refinement step aims to improve the quality and accuracy of the discovered association rules
by further optimizing the attribute bounds.

• Chaotically ENcoded Particle Swarm Optimization Algorithm (CENPSOA): The CENPSOA
algorithm, proposed by Alatas and Akin [8], introduced the use of chaos variables and
particles in PSO for the first time. Unlike previous PSO-based methods, CENPSOA employs
chaotic numbers to encode particle information. Specifically, each chaotic number𝑚𝑖𝑑𝑟𝑎𝑑
represents an interval with a lower bound of𝑚𝑖𝑑 − 𝑟𝑎𝑑 and an upper bound of𝑚𝑖𝑑 + 𝑟𝑎𝑑 . In
CENPSOA, a particle is represented as a string of chaotic parameters consisting of a midpoint
and radius pair. Each decision variable consists of three parts: the first part represents the
antecedent or consequent, the second part describes the midpoint and the third part represents
the radius. This algorithm works similarly to RPSOA but is different only with the encoding
of particles.

• Parallel PSO for Quantitative Association Rule Mining (PPQAR): Yan et al.[107] parallelized
the PSO algorithm for ARM to increase its scalability and efficiency in dealing with large
datasets in real-world applications. To evaluate each particle’s quality, the suggested technique
used four optimization objectives: support, confidence, comprehensibility, and interest. The
parallel PSOmethod employs two techniques to handle distinct application scenarios: particle-
oriented and data-oriented. The particle-oriented technique is well-suited for small datasets
with a large number of particles, treating each particle as a separate computing unit and
computing the fitness function in parallel. On the other hand, the data-oriented approach
is suitable for large datasets, dividing the entire dataset into partitions and treating each
partition as a computing unit. Unlike the particle-oriented method, the data-oriented method
updates particle locations, velocities, and local best sets in parallel. Both methods were
compared with the benchmark serial algorithm.

• Multi-Objective Particle swarm optimization algorithm for Association Rules mining (MOPAR):
The MOPAR algorithm, proposed by Beiranvand et al. [20], is a multi-objective particle swarm
optimization (MOPSO) technique based on Pareto optimality. It aims to extract numerical
association rules in a single step using three objectives: confidence, comprehensibility, and
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interestingness. Like RPSOA, the particle in MOPAR is represented by lower and upper
bounds of intervals for each attribute. To address the problem of numerical ARM, MOPAR
provides a redefinition of lbest and gbest particles and a selection procedure. The algorithm
was compared with other multi-objective ARM algorithms, including MODENAR, MOGAR,
RPSOA, and GAR.

• PSO with the Cauchy Distribution (PARCD):Amethod proposed by Tahyudin et al. [99] extends
the MOPAR algorithm by combining PSO with the Cauchy distribution. In traditional PSO,
the velocity of a particle approaches 0 after many iterations, leading to premature searching
and suboptimal results. The proposed approach addresses this issue by integrating the Cauchy
distribution in the velocity equation, allowing particles to continue exploring the search
space. This method uses multiple objectives, including support, confidence, comprehensibility,
interestingness, and amplitude functions, to extract numerical association rules in a single
step. To evaluate the method’s performance, it was compared with MOPAR, MODENAR,
MOGAR, and RPSOA on various datasets, and it was found that the proposed method, called
PARCD, outperformed MOPAR.

• Wolf Search Algorithm (WSA): Agbehadji [3] introduced a wolf search algorithm for NARM
inspired by the hunting behaviour of wolves. The algorithm is based on three stages of
wolf-preying behaviour: actively seeking prey, passively seeking prey, and escaping from
predators. The algorithm generates association rules if the wolf is actively seeking prey,
and no rules are generated if the wolf is passively seeking prey or escaping. The fitness
function includes support, confidence, the number of attributes, and the penalization of
interval frequency. The algorithm represents rules using the wolf’s best position and fitness
value, and each wolf’s position contains decision variables for items and intervals. While this
study introduces the algorithm, it has not been evaluated on datasets, and the algorithm’s
accuracy and efficiency will be determined in future work.

• Multi-objective Particle Swarm Optimization (MOPSO): The MOPSO algorithm, originally
proposed by Coello [27] in 2004, utilizes Pareto dominance and an archive controller. In 2019,
Kuo et al. [61] developed a MOPSO algorithm for NARM consisting of three stages: initializa-
tion, adaptive archive grid, and PSO searching. Particle representation and initialization are
the same as in the RPSOA algorithm. The adaptive archive grid is a hypercube-shaped space
designed to obtain non-dominated solutions by comparing all particle solutions using Pareto
optimality. It contains two components: the archive controller and the grid. The external
archive retains non-dominated solutions, and new solutions are added if existing ones do not
dominate them or if the external archive is empty, the new solution is saved in the external
archive; otherwise, it is discarded. The adaptive grid approach is used when the external
population reaches its maximum capacity. The objective function space is partitioned into
regions. The grid is recalculated if the external population’s individual falls outside the grid’s
bounds, and each individual within it must be relocated. After the archive grid stage, PSO
searching occurs. The algorithm also utilizes three objectives: confidence, comprehensibility,
and interestingness to generate rules.

• Ant Colony Optimization for Continous attributes (𝐴𝐶𝑂𝑅): The 𝐴𝐶𝑂𝑅 algorithm, introduced
by Moslehi and Eftekhari [88], is an ant colony optimization technique designed to discover
association rules for numeric attributes without relying on minimum support and confidence
thresholds. Unlike the ACO algorithm, which uses a discrete probability distribution, 𝐴𝐶𝑂𝑅

employs a probability density function. It employs a solution archive size of 𝑘 to describe the
pheromone distribution over the search space, instead of a pheromone table. The algorithm
works by having the ants move across the archive, selecting a row based on its associated
weight (𝜔). Then a new solution is created by sampling the Gaussian function 𝑔 for each
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dimension’s values in the selected solution. Each numeric attribute corresponds to one
dimension of the solution archive, which is divided into three sections that make up a
numeric association rule: the first part represents the rule’s antecedent or consequence; the
second part represents its value; and the third part represents its standard deviation, which
is used to form numeric attribute intervals.
The algorithm uses Gaussian functions to determine the attribute intervals that correspond
to interesting rules, with the function controlling the intervals’ frequency and length. The
objective function has four components. The first section, which can be viewed as the rule’s
support, measures the importance of the association rule. The second section is the confidence
value of the rule. The third section is the number of attributes, while the last section penalizes
the amplitude of the intervals that comply with the itemset and rules. The pheromone update
technique introduces a set of new solutions, each generated by one ant, and eliminates the
same number of bad solutions from the archive after ranking them to track the solutions.
This ensures that the top-ranked solutions are always at the archive’s top, and that the best
solution in each execution of 𝐴𝐶𝑂𝑅 is a rule.

• Multi-Objective Cuckoo search Algorithm for Numerical Association Rule Mining (MOCANAR):
MOCANAR [49] is a multi-objective cuckoo search algorithm that uses Pareto principles
to derive high-quality association rules from numeric attributes. The algorithm mimics the
brooding parasitic behavior of cuckoo species and represents ARM using a 2𝐷 array. The
columns of the array represent the attributes in the dataset, and the first row among three
rows represents the attribute’s location. The second row consists of the lower bound of the
attribute, and the third row represents the upper bound of the attribute. A value of 0 in
the first row indicates that the related attribute is not present in the rule, 1 shows that the
attribute belongs to the antecedent part of the rule, and 2 shows that the attribute belongs to
the consequent part of the rule. MOCANAR considers four objectives: support, confidence,
interest, and comprehensibility. The algorithm was evaluated on three datasets and produced
a small number of high-quality rules incrementally for each iteration of the method.

• Multi-Objective Bat Algorithm for Numerical Association Rule Mining (MOB-ARM): Heraguemi
et al. [44] proposed a multi-objective bat algorithm for NARM inspired by microbats’ be-
haviour. The algorithm uses four quality measures, namely support, confidence, comprehen-
sibility, and interestingness, and two global objective functions to extract interesting rules.
The first objective function combines support and confidence, while the second objective
function considers comprehensibility and interestingness. The algorithm comprises three
main steps: initialization, searching for the non-dominance solution for the Pareto point, and
searching for the best solution for each bat at the Pareto point. The rule is encoded using the
Michigan approach. The bats are initialized with random frequency and velocity, and the
proposed algorithm is also compared with other algorithms, including MODENAR, MOGAR,
and MOPAR.

• Discrete Crow Search Algorithm for Quantitative Association Rule Mining (DCSA-QAR): In
2021, a new algorithm called DCSA-QAR was proposed for mining numerical association
rules [63]. This approach utilizes a novel discretization algorithm called Confidence-based
Unsupervised Discretization Algorithm (CUDA) that employs the confidence measure to
discretize numerical attributes. The CSA is then transformed from continuous to discrete
using crow position encoding, and new operators are used to ensure that any position update
within the search space is valid. Each crow in the flock is represented by its current position
and memory positions, with each particle composed of two vectors for control and parametric
attributes. The control attributes can have one of three values: 0 indicates that the attribute
is not part of the rule, 1 indicates that it belongs to the antecedent, and −1 indicates that it
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is part of the consequent. The fitness function is optimized by maximizing the measures of
support, confidence, and gain of the rules. DCSA-QAR was compared with several mono and
multi-objective algorithms, including NICGAR, MOPNAR, MODENAR, and MOEA-Ghosh.

Physics Based Algorithms.

• Gravitational Search Algorithm for NARM (GSA-NARM): GSA is a physics-inspired meta-
heuristic that leverages Newton’s law of gravity. In the context of NARM, the GSA algorithm,
as described by Can et al. [24], aims to discover attribute intervals simultaneously without
needing a minimum support or confidence threshold. In GSA-NARM, agents are treated as
objects, and their positions represent potential solutions. The objective function determines
the amplitude of the intervals being explored. The algorithm identifies the position of the
agent with the heaviest mass as the global solution, analogous to the gravitational force
exerted by massive objects in Newton’s law. During the optimization process, the fitness
function is evaluated for each agent, and the gravitational constant, denoted as 𝐺 , is updated
based on the performance of the best and worst agents in the population. The mass 𝑀 of
each agent is computed, and the velocity and position are updated accordingly, mimicking
the motion of celestial objects influenced by gravitational forces. The GSA-NARM algorithm
continues iterating until the stopping criteria are met, such as reaching a maximum number
of iterations or achieving a desired fitness value. The algorithm then returns the association
rule with the best fitness value obtained during the optimization process. GSA-NARM has
demonstrated promising results when compared to other state-of-the-art methods for NARM,
showcasing its effectiveness in tackling the NARM problem.

Algorithm for Hybrid Based.

• Hybrid Genetic PSO-Quantitative Association Rule Mining (HGP-QAR):Moleshi et al. [87] intro-
duced a hybrid approach called HGP-QAR, which combines the strengths of multi-objective
GA and multi-objective PSO methods. By leveraging the advantages of both techniques,
HGP-QAR aims to improve the efficiency of NARM. The hybridization of GA and PSO allows
for the exploration of the search space from different perspectives. In HGP-QAR, individuals
are represented as chromosomes for GA and particles for PSO. The individuals are sorted
based on a fitness function that considers three metrics: confidence, interestingness, and
comprehensibility. During the optimization process, the upper half of individuals follow the
stages of GA, including selection, crossover, and mutation, while the lower half follows the
stages of PSO, updating their velocity and positions based on the personal best (pbest) and
global best (gbest) positions. This combination of GA and PSO allows for a more efficient
search and exploration of the solution space. The outcomes obtained from GA and PSO are
then combined to generate the next generation and form new rules. This process is repeated
until the termination criteria are met, such as reaching a maximum number of iterations or
achieving satisfactory results. Various experimental results show that the hybrid GA-PSO
approach, HGP-QAR, outperforms other algorithms like MOPAR and PARCD in terms of
efficiency, demonstrating its effectiveness in NARM.

• Multi-objective Hybrid Differential Evolution Sine Cosine Numerical Association Rule Mining
Algorithm (MOHDESCNAR): DE has been known to suffer from premature convergence and
stagnation issues in multi-modal search spaces. A recent approach called MOHDESCNAR
[12] has been proposed to overcome these problems. This algorithm reduces the number
of numerical association rules by adjusting the intervals of related numeric attributes. It
employs hybrid sine and cosine operators with DE, which can overcome stagnation issues.
The proposed algorithm balances exploration and exploitation by using global DE exploration
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and local SCA exploitation during iterations to prevent premature convergence and stagnation
problems. This study used three methods: using only the sine operator (MOHDESNAR), only
the cosine operator(MOHDECNAR), and both the sine and cosine operators (MOHDESCNAR).

• Quantitative Association Rule miner with Chaotically Encoded Hybrid Differential Evolution
and Sine Cosine Algorithm (QARCEHDESCA): Altay and Alatas proposed the MOHDESCNAR
algorithm in 2021, which used a combination of DE and the sine and cosine algorithms. In
2022, the authors introduced a new hybrid algorithm called QARCEHDESCA [13], which
employs chaos number-based encoding and HDESCA (Hybrid differential evolution sine
cosine algorithm). The QARCEHDESCA algorithm dynamically discovers the ranges of
quantitative attributes and association rules. It randomly initializes candidate search agents to
find quantitative associations. The initial set of search agents is removed from all-dominating
search agents. The remaining nondominated search agents are sent to SCA-based new
operators and DE crossover. The nearest neighbour distance function is used to remove rules
close to each other when the count of nondominated rules exceeds the defined threshold. For
QARCEHDESCA, the best search agent and one random agent are chosen for sine and cosine
operators. After that, DE’s crossover operator is applied to nondominated search agents. If
the trial agents dominate the target search agent, it is added to the population; otherwise,
the search agent with the highest weighted sum fitness is chosen for subsequent iterations.
When the maximum number of iterations is reached, QARCEHDESCA returns nondominated
QARs. The fitness function of the algorithm aims to maximize support, confidence, and
comprehensibility while minimizing attribute amplitudes. Each search agent represents a
numerical association rule with two components: inclusion/exclusion and a chaotic number
representing the center point and radius. QARCEHDESCA is compared with RPSOA and
other intelligent optimized algorithms.

4.2.3 The Statistical Method.

• Aumann and Lindell’s Work: Aumann and Lindell [17] introduced a new definition of QARs
based on the distribution of values of quantitative attributes and presented an algorithm to
mine them. To consider the distribution of continuous data, they used conventional statistical
measures.

• Webb’s Work: Aumann and Lindell’s approach has the disadvantage of being impractical for
generating frequent itemsets in dense data. To address this limitation, Webb proposed an
efficient admissible unordered search algorithm for discovering impact rules, which capture
meaningful interactions between data selectors and numeric variables in dense data [106].
Impact rules were introduced as a new name for QARs. The proposed OPUS_IR algorithm
uses the OPUS framework and does not need to retain all frequent itemsets in memory
during frequent itemset generation, unlike Aumann and Lindell’s method [17]. It also does
not require a minimum cover to be specified for the search. The OPUS_IR algorithm was
compared with the frequent itemset approach in terms of performance.

• Kang et al. Work: The authors of the study [50] introduced a new approach to bipartition
quantitative attributes called standard deviation minimization. This technique minimizes
the standard deviation of two partitions obtained by dividing the attribute into two parts,
and it outperforms existing bipartition techniques. The authors also redefined the mean-
based and median-based bipartition techniques, and their experimental results confirmed the
effectiveness of the proposed framework.

4.2.4 Miscellaneous Other Methods.
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• Mutual Information and Clique (MIC) Framework: Yiping et al. [56] proposed a novel approach
for mining QARs using an information-theoretic framework called MIC. This framework
avoids the generation of excessive itemsets by investigating the relationship between at-
tributes. The approach comprises three phases: 1) discretization, which partitions numeric
attributes into intervals; 2) MI graph construction, which computes the normalized mutual
information of attributes and represents their strong relationships using a MI (mutual infor-
mation) graph; and 3) clique computation and QAR generation, which computes frequent
itemsets using cliques and generates QARs. The experiments demonstrate the effectiveness
of the MIC framework in reducing the number of generated itemsets and improving the
efficiency of QAR mining.

• Generalized One-sided Quantitative Association Rule mining (GOQR) and Non-redundant
Generalized One-sided Quantitative Association Rule mining (NGOQR): Zhiyanget al.[47]
proposed a cognitive computing-based method for NARM, consisting of two algorithms:
GOQR and NGOQR. These algorithms consider the order relation of attribute values when
mining rules. The first phase of the GOQR algorithm generates frequent itemsets, while
the second phase extracts generalized one-sided QARs. To enhance efficiency, the rules are
reduced using a generalized one-sided concept lattice. For non-redundant rule extraction,
the NGOQR algorithm first executes the minimal generator of a target itemset algorithm and
then continues with rule mining.

• Quantitative Miner with the VMO algorithm (QM_VMO): The Quantitative Miner with the
VMO algorithm (QM_VMO) [48] utilizes the Variable Mesh Optimization algorithm [90], a
population-based meta-heuristic. The algorithm represents the population 𝑃 as a mesh of
𝑛 nodes 𝑃 = 𝑛1, 𝑛2, ..., 𝑛𝑛 , where each node corresponds to a possible solution and consists
of an m-dimensional vector 𝑛𝑖 = (𝑣𝑖1, 𝑣𝑖2, ..., 𝑣𝑖𝑚). The algorithm primarily operates through
expansion and contraction processes. QM_VMO is executed in three stages: (i) defining a rule
template, (ii) generating the rule population, and (iii) optimizing the numerical attributes of
the rule by optimizing intervals. Compared with QuantMiner, QM_VMO is found to be less
sensitive to changes in the dataset.

4.3 RQ3 What are the advantages and limitations of the existing NARMmethods?
There are strengths and limitations associated with each method for NARM. These advantages and
limitations of each approach are summarized in Tables 9, 10, and 11.
Discretization methods are advantageous in terms of simplicity, interpretability, and flexibility.

They allow for the handling of both categorical and numerical attributes, and the resulting discrete
intervals can be easily understood and applied. However, these methods require the specification
of a user-defined threshold, which can be subjective and may affect the quality of the discovered
rules. Discretization can also lead to information loss and may not capture the true underlying
patterns in the data.
Optimization methods excel in their ability to discover relationships and patterns in high-

dimensional data without the need for user-defined thresholds or discretization steps. They can
handle both categorical and numerical attributes and are often more robust to noise and missing
data. However, these methods can suffer from issues such as convergence problems, finding only
local optima, high computational complexity, and the need for a large amount of computational
resources.

Statistical methods are advantageous in their ability to handle missing data and noise. They are
also well-suited for analyzing categorical data and can provide statistical significance measures
for the discovered rules. However, these methods are typically designed for categorical data and
may not be suitable for numerical attributes. They often assume linear relationships and may not
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capture more complex patterns present in the data. Overall, each approach has its strengths and
limitations, and the choice of method depends on the specific requirements and characteristics of
the dataset being analyzed.

Table 9. Advantages and Limitations of Discretization Method

Approaches Reference Advantages Limitations
Partitioning [96] Simple and easy to implement. Adjusting minimum support and

minimum confidence.
[25] Discover both +ve and -ve rules.

Avoid user-specified threshold.
need to adjusted difference analysis

Clustering [65] The ARCS system scales better
than linearly with data size.

Algorithm is sensitive to noise. Not
used for high dimensional data.

[104] Scalable for very large databases.
Generate only non-overlapping in-
tervals.

Only generate the rules where con-
sequent should be categorical at-
tribute

[70] Reflects all the possible interdepen-
dencies between attributes in data
sets

Requirement of the user-specified
threshold.

[67] Efficiently identify a small set of
subspaces for finding dense re-
gions. In each cover searching is
limited.

Need to specify many thresholds.
Performance is poor on more than
10 dimensions. The dimensionality
curse problem is unsolved. The al-
gorithm does not perform well for
the data set with uniform density.

[40] Effective and scale up linearly with
an increased number of attributes.

Minimum threshold is needed.

[109] There is no need to scan the data-
base many times. Do not generate
many candidate units. Histogram
H’ saves the calculation time of sup-
port of each grid.

As the number of transactions in-
creases, the run time also increases.

Fuzzy [113] Prune less interesting rules.
[46] Accuracy increased as the number

of transactions increased.
Membership functions should be
known in advance.

[114] Optimized the fuzzy sets. The fre-
quent itemsets are created through
a two-level iteration process. Flexi-
ble membership function.

[105] Provide better clustering than
other methods.

, Vol. 1, No. 1, Article . Publication date: July 2023.



30 Minakshi et al.

Table 10. Advantages and Limitations of Optimization Method

Approaches Reference Advantages Limitations
Evolution
and DE

[79] Find association rules from numeric
dataset without discretization

[80] Find the amplitude of the intervals by
fitness function.

Only frequent itemsets are
generated.

[14] Find association rules from numeric
and categorical without discretization

[6] discover both positive and negative
rules.

[108] High-performance association rule
mining, System automation, no need
for user-specified minimum support
threshold

[76] Low run time, discover diverse, both
positive and negative rules.

[75] Low computational cost and good scal-
ability

[86] No need to determine the minimum
support and minimum confidence.

[34] Capable of dealing with numerical and
categorical attributes.

The algorithm is unable to
shrink the lower and upper
borders of the numerical at-
tributes.

[9] association rules are mined without
generating frequent itemsets. The al-
gorithm is easy to implement and inde-
pendent from the requirement of mini-
mum support and minimum confidence
threshold.

DE suffers from stagnation
and premature convergence
problem and its local exploita-
tion capability is weak.

Swarm-
Intelligence

[107] Efficient and scalable to process huge
dataset.

PSO trap in local optima.

[20] Prevent generation of huge useles rules.
No requirement for minimum support
and minimum confidence threshold.

Low support values for asso-
ciation rules.

[99] Increase the global optimal value of ex-
panded search space.

[88] No need for minimum support and min-
imum confidence threshold.

Variable correlations are not
differentiated by ant algo-
rithms.

[49] Provide better support and confidence. Higher number of extracted
rules decreases the inter-
pretability of the results.

[44] Reduces computation time.
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Table 10. Advantages and Limitations of Optimization Method

Approaches Reference Advantages Limitations
Physics-
based

[24] The confidence and support values of
the automatically mined rules are very
high. No prior requirement for mini-
mum support and confidence threshold.
The problem of attribute interactions
has been solved.

Not very efficient in search-
ing.

Hybrid [13] Efficient with respect to the mean num-
ber of rules, mean confidence, and
mean size metrics.

Does not provide the higher
mean support value.

Table 11. Advantages and Limitations of Statistical Method

Reference Advantages Limitations
[17] Able to handle large datasets. Adapt-

able and may be used for various types
of data and user needs.

Computationally expensive. Assump-
tions-dependent and limited inter-
pretability.

[106] Its unordered search quality makes it
handle different types of data. High
performance. Identify high-impact pat-
terns and relationships.

High computation cost for large
datasets. Limited interpretability.

[50] Accuracy of ARM can be improved by
identifying patterns and relationships
within particular subsets of the data.
Able to handle large datasets.

Difficult to choose the right threshold.
Loss of information could be possible.

4.4 RQ4 Which objectives are considered by the several existing multi-objective
optimization NARM algorithms?

Optimization problems are prevalent and important in scientific research. They can be categorized
into two types based on the number of objective functions: single-objective and multi-objective
optimization problems. In NARM, the most commonly used parameters are support and confidence,
making NARM algorithms single-objective optimization methods where a single solution is selected
based on the user’s requirements. On the other hand, multi-objective optimization problems involve
computing multiple objective functions simultaneously, which can conflict with each other. A
solution that works well for one function may be ineffective for another. This makes finding a
single solution that satisfies all objectives difficult, and instead, a set of Pareto-optimal solutions is
obtained that trade-off between the competing objectives. Table 12 lists the objectives considered
in multi-objective optimization NARM studies, and Table 13 provides the names of algorithms that
utilize these objectives. A detailed explanation of all these objectives is given via Eq. 5–13.

Support: The number of records with both 𝑋 and 𝑌 itemsets determines the rule’s support count.
|D| is the total number of records in a dataset.
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Table 12. List of Objectives for Multi-objective Optimization Algorithm for NARM

Objectives References
Confidence [9, 10, 12, 13, 20, 44, 49, 61, 63, 75, 83, 86–88, 99, 107]
Support [9, 12, 13, 44, 49, 63, 88, 99, 107]
Interestingness [10, 20, 44, 49, 61, 77, 78, 83, 86–88, 99, 107]
Comprehensibility [9, 12, 13, 20, 44, 49, 61, 77, 78, 83, 87, 99, 107]
Amplitude [9, 12, 13, 88, 99]
Performance [77, 78]
Accuracy [10, 75]
Leverage [75]
Gain [63]
Cosine [86]

Table 13. List of Multi-Objective Algorithms for NARM

Algorithms Reference Objectives
MOGAR [83] Confidence, Comprehensibility, Interestingness
QAR-CIP-NSGA-II [78] Comprehensibility, Interestingness, Performance
MOPNAR [77] Comprehensibility, Interestingness, Performance
MOQAR [75] Accuracy, Leverage, Confidence
MOEA-QAR [86] Confidence, Interestingness, Cosine
Rare-PEAR [10] Interestingness, Accuracy, Confidence
MODENAR [9] Support, Comprehensibility, Confidence, Amplitude
MOHDESCNAR [12] Support, Comprehensibility, Confidence, Amplitude
PPQAR [107] Support, Confidence, Comprehensibility, Interesting-

ness
MOPAR [20] Confidence, Comprehensibility, Interestingness
PARCD [99] Support, Confidence, Comprehensibility, Interesting-

ness, Amplitude
MOPSO [61] Confidence, Comprehensibility, Interestingness
𝐴𝐶𝑂𝑅 [88] Support, Confidence, Interestingness, Amplitude
MOCANAR [49] Support, Confidence, Interestingness, Amplitude
MOB-ARM [44] Support, Confidence, Comprehensibility, Interesting-

ness
DCSA-QAR [63] Support, Confidence, Gain
QARCEHDESCA [13] Support, Comprehensibility, Confidence, Amplitude
HGP-QAR [87] Confidence, Comprehensibility, Interestingness

Support(𝑋 ⇒ 𝑌 ) = | (𝑋 ∪ 𝑌 ) |
|𝐷 | (5)

Confidence: The confidence metric assesses the quality of a rule by counting the number of times
an AR appears in the entire dataset. The following equation 6 is used to compute the confidence
of the rule 𝑋 ⇒ 𝑌 . Furthermore, these parameters do not ensure that significant rules will be
generated.
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Confidence(𝑋 ⇒ 𝑌 ) = | (𝑋 ∪ 𝑌 ) |
|𝑋 | (6)

Interestingness: The interestingness of a rule is a metric for determining how surprising a rule is to
users, not just all possible rules. The first component of Eq.(7) relates to the probability of producing
the rule based on the antecedent part, the second part relates to the probability of producing rules
based on the consequent part, and the last component is the probability of producing rules based
on the overall dataset.

Interestingness =
Support| (𝑋 ∪ 𝑌 ) |

Support|𝑋 | · Support| (𝑋 ∪ 𝑌 ) |
Support|𝑌 | ·

(
1 − Support(𝑋 ∪ 𝑌 )

Support(𝑋 )

)
(7)

Comprehensibility: The number of attributes included in both the antecedent and consequent
parts of the rule is measured by comprehensibility [38]. If the generated rules containmore attributes,
then the rules will be difficult to comprehend. The rule is more comprehensible if the number of
conditions in the antecedent part is less than that in the consequent part. The following expression
measures the comprehensibility of an association rule:

Comprehensibility =
log(1 + |𝑌 |)

log(1 + |𝑋 ∪ 𝑌 |) (8)

Where |𝑌 | and |𝑋 ∪ 𝑌 |) represent the number of attributes in the consequent part and both parts.

Amplitude: The intervals in each attribute that comply with interesting rules must have smaller
amplitudes. If two rules have the same number of rows and attributes, the one with smaller intervals
will provide more information. Amplitude is a minimization function; however support, confidence
and comprehensibility are maximization functions [9].

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜 𝑓 𝑡ℎ𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 = 1 − 1
𝑚

𝑚∑︁
𝑖=1

𝑢𝑖 − 𝑙𝑖
𝑚𝑎𝑥 (𝐴𝑖 ) −𝑚𝑖𝑛(𝐴𝑖 ) (9)

Performance: The product of support and CF is performance. Performance enables the ability to
mine accurate rules with a suitable trade-off between local and general rules. This measure has
a range of values between 0 and 1. The user may find a rule with a performance value close to 1
more useful.

Accuracy: Accuracy represents the veracity of the rule [37].

Accuracy(𝑋 ⇒ 𝑌 ) = Support(𝑋 ⇒ 𝑌 ) + Support(¬𝑋 ⇒ ¬𝑌 ) (10)

Leverage: Leverage is the difference between the frequency with which the antecedent and the
consequent are identified together and the frequency with which they would be expected to be
observed together, given their individual support [89]. It represents the strength of the rule.

Leverage(𝑋 ⇒ 𝑌 ) = Support(𝑋 ∪ 𝑌 ) − Support(𝑋 ) · Support(𝑌 ) (11)

Gain: Gain is the difference between the confidence of both the antecedent and consequent part
and the support of the consequent part [37].

Gain(𝑋 ⇒ 𝑌 ) = confidence(𝑋 ⇒ 𝑌 ) − Support(𝑌 ) (12)
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Fig. 1. Metrics Used to Evaluate NARM Algorithms.

Cosine: The cosine measure considers both the pattern’s interest and its significance [101].

Cosine(𝑋 ⇒ 𝑌 ) = Support(𝑋 ∪ 𝑌 )√︁
Support(𝑋 ) · Support(𝑌 )

(13)

4.5 RQ5 What are the metrics to evaluate the NARM algorithms?
This RQ aims to identify the commonly used evaluation metrics in NARM algorithms. As shown in
Figure 1, the number of rules is the most commonly used metric, followed by support, confidence,
and run time. Only a few algorithms use other metrics, such as Yule’sQ measure (3%), leverage
(3%), accuracy (3%), gain (2%), length of rule (2%), and the number of attributes per rule (3%).
Interestingly, all methods use the number of rules, run time, support, and confidence as evaluation
metrics, while only the optimization method employs all metrics (see Figure 2). Some papers on
discretization methods use the number of frequent itemsets as a metric [29, 42]. The discretization
method primarily uses run time metric with different parameters, such as over the number of
records or buckets [23, 36, 40, 42, 62, 65, 67, 82, 109], minimum support, and minimum confidence
[22, 23, 29, 36, 95, 114] over the number of buckets [23], number of sparse points, number of dense
regions and number of attributes [67]. On the other hand, the statistical method primarily uses
run time [17, 106] and a number of rules [17, 50] as evaluation metrics. However, other methods
also use minimum support, and confidence except for run time and number of rules [47, 48, 56].
Mean of interest of missing QARs and variance of interest of missing QARs, the maximum interest
of missing QARs were also used for performance evaluation in [56]. Of the 34 papers (52%) that
employ the number of rules as an evaluation metric, 24 papers (36%) belong to the optimization
method. However, 24 publications (36%) in all have evaluated the NARM algorithms regarding the
execution time, among which 15 (23%) articles are from the discretization method.
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4.6 RQ6 Which datasets are used for experiments by NARMmethods?
Different NARM methods may use different datasets for their experiments, depending on the
method type and application domain. Table 14 presents the datasets that were most commonly
used by different NARM methods, excluding those that were used in only one or two articles. In
total, we considered twenty-two datasets, including both real-world and synthetic ones. Fifteen
of these datasets were sourced from the Bilkent University Function Approximation Repository
(BUFA) [41], while seven were from the University of California Irvine machine learning repository
(UCI) [68]. Figure 3 shows the datasets used by NARM methods.

The Quake dataset was used more frequently than any other dataset, followed by Basketball,
Bodyfat, Bolts, and Stock Price. Synthetic datasets were also commonly used. Table 15 lists the
datasets that were used specifically for the discretization method, which were mostly different from
those used by other methods. In total, we considered seventeen datasets, including both real-world
and synthetic ones. Most articles on the discretization method used various real-world datasets.
As shown in Figure 4, most of these datasets were used in only one article. We also observed
that the optimization method articles tended to use datasets from the BUFA repository, while the
discretization method articles tended to use datasets from the UCI repository.

4.7 RQ7 What are the challenges and potential future perspectives for the area of
NARM?

To address this research question, a manual identification of the existing research challenges in
NARM was conducted. Additionally, the focus was placed on identifying future directions for
NARM research.

4.7.1 Research Challenges. After a comprehensive analysis of various NARM methods in both
static and dynamic settings, we have identified several issues that NARM needs to address.
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• Handling Skewed Data: NARM faces challenges when dealing with skewed data, where
the data distribution is uneven. Finding associations between numerical variables in such
datasets can be difficult and lead to biased results, as well as a high number of irrelevant rules.
Moreover, skewed data can have a negative impact on the accuracy and reliability of the
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Table 14. Data-sets Used by NARM Algorithms (WBC=Wisconsin Breast Cancer Data; WDBC = Wiscon-
sin Diagnostic Breast Cancer) According to Ulitized Methods (Opt.=Optimization; Disc.=Discretization;
Stat.=Statistical, Etc.=Other).

Source Dataset Methods References

BUFA

Basketball Opt. Etc. [6–10, 13, 20, 24, 44, 48, 49, 61, 63, 73, 75, 76, 78, 80,
83, 86–88, 99]

Balance Scale Opt. Etc. [10, 47, 76, 78]
Bolts Opt. [6, 7, 9, 10, 12, 13, 63, 73, 75–78, 80, 87, 88, 99]
House_16H Opt. [10, 12, 72, 75–78]
Pollution Opt. [6, 7, 9, 10, 12, 13, 63, 73, 75–78, 80, 87, 88, 99]
Quake Opt. [6–10, 12, 13, 20, 24, 44, 49, 61, 63, 73, 75–78, 80, 83,

86–88, 99]
Stock Price Opt. [9, 10, 24, 73, 75–78, 80]
Stulong Opt. [10, 12, 76–78, 93]
Vineyard Opt. [12, 73, 75, 80]
Segment Opt. [72, 76, 77]
Bodyfat Opt. [7–9, 12, 13, 20, 44, 49, 61, 63, 73, 75, 80, 83, 86, 87, 99]
Ailerons Opt. [12, 63, 75]
Elevators Opt. [12, 63, 75]
Longley Opt. [12, 73, 75]
Sleep Opt. [6, 7, 9, 73, 75, 80, 88]

UCI

Iris Opt. Disc. etc. [47, 48, 66, 69, 93, 95]
Weather Ankara Opt. [63, 72, 75]
Thyroid Opt. Etc. [24, 56, 76]
WBC Disc. [66, 69, 82]
WDBC Opt. Etc. [72, 76, 114]
Abalone Disc. Stat. Etc. [48, 95, 106]
Synthetic Opt. Stat. Etc. [6–9, 14, 22, 36, 48, 50, 56, 62, 64, 65, 67, 70, 74, 79, 80,

88, 92, 93, 96, 98, 104, 113]

analysis, potentially resulting in biased conclusions. Calculation of support and confidence
measures can be particularly affected, leading to inaccurate values and erroneous assessments
of rule strength. Furthermore, processing skewed data can also impact the speed and efficiency
of the algorithms, as they may need to handle a large number of extraneous rules.

• Handling a Large Number of Rules: The main objective of mining numerical association rules
is to discover relationships between numerical variables in large datasets. However, this often
results in a vast number of association rules, which can make the process computationally
expensive, time-consuming, and difficult to sift through to identify the most relevant or
interesting rules. To address this challenge, several techniques have been developed to
simplify the process and make it more manageable. Some of these techniques include data
sampling, the use of efficient algorithms, parallel and distributed computing, dimensionality
reduction, and pruning methods. By implementing these techniques, it becomes easier to
extract useful association rules from large datasets, reduce the size of the dataset, simplify
the mining process, and speed up computations.

• Quality of Association Rules: Extracting high-quality rules is also a challenge in NARM due to
the potential for redundancy, irrelevance, and conflicts in the rules. The large and complex
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Table 15. Data-sets Used by Discretization Method for NARM Algorithms

Datasets References
Wisconsin Breast Cancer Data [66, 69, 82]
Wisconsin Prognostic Breast Cancer [114]
Wisconsin Diagnostic Breast Cancer [114]
Glass Identification [66]
Heart Disease [66]
Shuttle [40, 109]
The Car [40]
Seed [69]
Pima Indian diabities [95, 114]
Wine [69]
Auto MPG [95]
Abalone [95]
Census-lncome [25]
Iris [66, 69, 95]
Zoo [25]
Synthetic [22, 36, 62, 64, 65, 67, 70, 92, 96, 104,

113]
Other real-world datasets [23, 26, 29, 33, 42, 46, 70, 81, 84]

nature of the datasets used in NARM can lead to a large number of rules, making it difficult
to identify the most relevant ones. Additionally, skewed data can impact the reliability
of support and confidence measures, further affecting the quality of the rules. The rules
generated by NARM algorithms may also be challenging to interpret and understand. To
address these issues, data pre-processing, the use of alternative metrics, the selection of
appropriate algorithms, and the application of ensemble methods can be helpful in improving
the quality of association rules.

• Complex Relationship: Numerical data often contain intricate relationships, such as non-linear
or multi-dimensional relationships, which can be difficult to represent and analyze using
traditional ARM algorithms. This may result in inaccurate or incomplete rules, which can
impact the reliability and accuracy of the analysis. To address this challenge, advanced
algorithms such as decision trees, artificial neural networks, or support vector machines can
be utilized in NARM. Ensemble approaches like gradient boosting or random forests can also
be helpful in addressing complex relationships by combining the output of multiple algorithms
to produce more accurate results. However, these techniques may increase computational
complexity and require more data and computing resources to be effective.

• Handling Outliers: Outliers are extreme values that differ significantly from the majority
of values in the dataset and can impact the accuracy and reliability of the results of ARM.
Outliers may indicate genuine data variances, or they could result from measurement errors
or data input issues. Several methods can address this problem, including outlier detection,
data cleaning, data transformation, and robust algorithms. These methods can help remove
or mitigate the effect of outliers, ensuring that the mining process yields more accurate and
reliable results.

4.7.2 Future directions.
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• Handling Big Data:Despite conducting a thorough SLR, we were unable to identify any studies
that focus on retrieving numerical association rules from big data. However, the rise of big
data will undoubtedly have a significant impact on the future of NARM. Developing more
efficient algorithms that can handle vast amounts of numerical data will be essential as big
data continues to become increasingly common. This will likely lead to the development of
new algorithms specifically designed for big data that are optimized for scalability, speed, and
accuracy. Additionally, advanced data cleanings and preprocessing techniques, such as outlier
detection, imputation of missing values, and feature selection, will become increasingly
important to ensure the quality of results.

• Explainable AI: Improving the interpretability and explainability of NARM results is a critical
research direction. Explainable AI [16, 19] can enhance transparency and comprehension,
which is essential for non-experts to validate the findings and ensure their alignment with the
intended objectives. By revealing the underlying reasoning behind the results, Explainable AI
can assist users in making better decisions and recognizing any inherent biases or limitations
in the outcomes. Therefore, developing NARM techniques that provide transparent and
comprehensible results is a vital area of research.

• Hybrid Approach:A promising future direction in NARM is to leverage the strengths of various
methods and techniques through hybrid approaches. Some studies, such as [12, 13, 59, 84, 87,
105, 113], have attempted to combine different approaches to improve the results of NARM.
Combining NARM with deep learning, integrating rule-based and distance-based approaches,
and combining unsupervised and supervised learning are all hybrid approaches that show
potential in this field. By integrating these techniques, the limitations of individual methods
can be addressed, resulting in a more accurate and thorough analysis of the relationships
between variables in numerical data. Hybrid approaches can lead to valuable insights and
more reliable results.

• Handling Streaming Data: To keep up with the increasing demand for real-time analysis,
developing NARM algorithms that can handle streaming data and update association rules
in near real-time is crucial. In applications where timely and accurate decisions are critical,
streaming data enables real-time analysis of numerical data, which allows organizations to
make informed decisions based on up-to-date information. The ability to analyze a larger
volume of numerical data in real time will lead to more comprehensive and accurate results.
Moreover, streaming data enables dynamic updates to the results of NARM as new data
becomes available, providing a more accurate and comprehensive view over time. Therefore,
developing NARM algorithms that can handle streaming data is an important future direction.

• Incorporating Machine Learning Techniques: The integration of machine learning techniques,
such as deep learning, into NARM, has the potential to revolutionize the field. With the
ability to automatically detect patterns and relationships in the data, which may not be
immediately apparent to human analysts, machine learning algorithms can significantly
enhance the accuracy of the results. Moreover, this approach can reduce the time and effort
required to identify such patterns in the data. The utilization of machine learning can also
expand the scope of NARM applications across various industries, as these algorithms can
handle complex data more efficiently, including high-dimensional data or data with non-linear
relationships.

• Privacy and Security: The importance of privacy and security in NARM is increasing, and it
is imperative to protect and use data ethically. However, the existing studies in this SLR did
not address these issues. To ensure data protection, sensitive information can be removed
or masked using anonymization techniques while preserving the necessary data for ARM.
Furthermore, to reduce the risk of unauthorized access, the data can be partitioned into
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smaller subsets, and access control methods can be developed to control who has access to
the data and the association rules generated from it. Incorporating these privacy and security
measures will safeguard the data and ensure its ethical use.

4.8 RQ8 How to automate discretization of numerical attributes for NARM in a useful
(natural) manner?

Developing novel methods and techniques for NARM is a continuous area of research, and the dis-
cretization method serves as the foundation for NARM [96]. However, selecting the best partitions
for discretizing complex real-world datasets still lacks a benchmark method. None of the discretiza-
tion methods that we figured out with the review, see Sects. 4.1.1 in 4.2.1, explicitly addresses
human perception of partitions. Therefore, we proposed a novel discretization technique in our
research [51], which utilizes two measures for order-preserving partitioning of numerical factors:
the Least Squared Ordinate-Directed Impact Measure (LSQM) and the Least Absolute-Difference
Ordinate-Directed Impact Measure (LADM).
These proposed measures offer a straightforward method for finding partitions of numerical

attributes that reflect best the impact of one independent numerical attribute on a dependent
numerical attribute. We thoroughly experimented with these measures and compared the outcomes
with human perceptions of partitioning a numerical attribute [55]. To develop an automatedmeasure
for discretizing numerical attributes, understanding perceptual conception is crucial. To achieve
this, we investigated the impact of data points’ features on human perception when partitioning
numerical attributes [54]. These efforts have contributed to the development of more accurate and
efficient methods for NARM.

5 THREATS TO VALIDITY
This section outlines potential threats to the validity of this SLR that might bias the outcomes of
our in-depth investigation. The first threat pertains to defining the search string. We make no
claims regarding the perfection of the search string used in the process. While we included all
relevant search terms related to NARM, it is possible that the search terms may not have captured
all relevant NARM-related work. To mitigate this risk, we included synonyms for “numerical
association rule mining” and abbreviations such as “NARM” and “QARM” in the search term.
The second threat pertains to the selection of digital libraries to search for articles. Although
we searched five digital libraries for computer science, it is possible that additional sources may
have produced different outcomes. To minimize bias, we manually searched Google Scholar and
also looked through the list of references for the selected primary studies to identify significant
publications. We are confident that the majority of published research on NARM is covered in this
study. The third threat is the inclusion and exclusion of articles. To determine whether a paper
should be included or excluded, we first reviewed the title, abstract, and keywords according to the
inclusion and exclusion criteria. Then, we manually checked for references to ensure we did not
miss any relevant papers. Additionally, we evaluated the selected studies using a quality assessment
procedure. The fourth threat is about the time frame. Since the search process was conducted in
early 2022, only articles published between 1996 and the beginning of 2022 were included. It is
possible that we may have missed some articles published after the specified time frame. The final
threat concerns article selection. The authors of this article may have been biased in their choice
and categorization of publications that were included. Two authors chose articles based on their
personal experiences. Although the final selection was made by a single author, all studies were
verified by other authors to minimize bias.
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6 DISCUSSION AND FINDING
In this SLR, we analyzed a total of 68 studies on NARM published between 1996 and 2022. Our
analysis revealed several significant findings and trends. Figure 5 illustrates the distribution of
selected articles by publication year, with a notable concentration in 2014 and strong NARM trends
in 2019 and 2021.

The distribution of primary studies by the method is presented in Figure 6. The majority of articles
focus on the discretizationmethod, followed by the evolution-based optimizationmethod (Figure 6a).
Statistical and other techniques make up a smaller portion. We further detail the partition of articles
by the method as a percentage in Figure 6b. Table 16 provides the number of articles published in
different journals and conferences. Overall, 60% of the selected articles were published in journals

, Vol. 1, No. 1, Article . Publication date: July 2023.



42 Minakshi et al.

3%
7%

27%

34%

29%

ACM IEEE Springer ScienceDirect Others

(a) Articles Published in Journals.

33%

41%

22%

4%

ACM IEEE Springer Others

(b) Articles Published in Conferences.

15%

20%

25%

21%

19%

ACM IEEE Springer ScienceDirect Others

(c) Total Articles Published in Different Sources.

Fig. 7. Publication Source Distribution: 1996-2022.

Table 16. Type of Publications in the Area of NARM

Publication Source Type of Publication Number of Articles
IEEE Journal 3
Springer Journal 11
ACM Journal 1
ScienceDirect Journal 14
Other Journal 12
IEEE Conference 11
Springer Conference 6
ACM Conference 9
Other Conference 1

and 40% in conferences. Figure 7 illustrates the percentage of articles published in journals and
conferences. ScienceDirect published 34% journal articles (Figure 7a) however, IEEE published 41%
conference articles (Figure 7b), which is the highest number and Springer published 25% overall
articles (Figure 7c). We identified several methods for solving NARM, including the discretization
method, optimization methods using evolutionary and bio-inspired approaches, the statistical
method, and other methods. The discretization method was the most widely used, accounting for
39% of the total articles (Figure 6b). Evolution-based and SI-based optimization methods covered
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Table 17. Advantages and Limitations of NARM Methods

NARM Method Advantages Limitations
The Discretiza-
tion method

Easier to interpret. Efficient and
scalable to process huge datasets.
Able to deal with continuous vari-
ables. Highly flexible.

Requirement of a user-specified
threshold. Information loss. Unable
to deal with high dimensional data.
Discretization bias can lead to inac-
curate or unreliable results. Mem-
bership functions should be known
in advance.

The Optimization
method

No need to determine the minimum
support and minimum confidence.
No need for a prior discretization
step. High scalability.

Higher computational cost. Low
search capability in the local area.
Stuck in local minima. Convergence
issues.

The Statistical
method

Measuring significance to identify
meaningful association rules. Can
handle noise and missing data. Pro-
vide quantifiable results.

Lack of scalability. Not able to de-
tect complex relationships in data.
Not suitable for handling high-
dimensional data. Not well-suited
for mining rules in numerical data.

32% and 20% of the total articles, respectively (Figure 6b). The optimization and discretization
methods had a greater impact compared to the statistical and other methods. Each method also
employs various approaches to address NARM problems. For example, the discretization method
includes the clustering approach, which encompasses density-based and grid-based techniques.
The partition approach, which involves converting continuous numerical data into discrete values
by grouping them into intervals or bins, was found to be simple and easy to implement. However,
the choice of interval or bin size can affect result accuracy, and it may not be suitable for datasets
with a large number of variables. The optimization method encompasses a range of approaches,
such as genetic algorithms, grammar-guided genetic programming, differential evolution, particle
swarm optimization, gravity-based algorithms, swarm-based algorithms, Cauchy distribution, and
hybrid-based methods. The statistical method is limited and utilizes various distribution scales,
including mean, median, variance, and standard deviation. Some studies did not fit into any specific
method and were categorized as miscellaneous other methods based on the information-theoretic
approach, cognitive computing, and variable mesh.
Many algorithms [46, 65, 70, 96, 105, 113, 114] based on the discretization method use apriori

algorithm for generating association rules. However, the evolution and SI-based algorithms do not
use the apriori algorithm. Additionally, certain algorithms under the discretization method have
employed new measures, including density measure [40, 67], R-measure [113], Certainty Factor
[114], and adjusted difference measure [25]. Figure 8 demonstrates the visual presentation of NARM
methods and their algorithms. In Table 17, we have summarized the advantages and limitations of
each method.

Our analysis found that most studies based on the discretization method used synthetic and real-
world data to evaluate the effectiveness of NARM algorithms. However, evolutionary and SI-based
algorithms mostly used common datasets, such as Quake, Basketball, Bolt, Bodyfat. Furthermore,
the Iris dataset was the only one commonly used by discretization, optimization, and statistical
methods-based algorithms. It is crucial to note that the choice of the dataset may impact the
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performance of the methods, and further studies are needed to evaluate the algorithms’ practical
applicability on real-world datasets.

In our extensive review of the literature on NARM, we analyzed various metrics used to evaluate
the performance and effectiveness of different algorithms and models. Our study focused on
important metrics such as generated number of rules, run time, and value of support and confidence.
Support measures the frequency of a specific item set or rules in the dataset, frequently used in
conjunction with confidence, which quantifies how likely a certain outcome is given an antecedent.
However, it is crucial to carefully interpret and evaluate the reliability and validity of the metrics
used, as they can lead to spurious or irrelevant associations if not used properly. Our SLR sheds light
on the most commonly used metrics in NARM, including those used by multi-objective algorithms.
Multi-objective NARM algorithms consider different objectives simultaneously to generate a

set of Pareto-optimal solutions that balance competing objectives. The choice of objective for
multi-objective NARM algorithms depends on the research question and data characteristics. Some
common objectives include maximizing support or confidence while minimizing the number of
rules generated.
As a rapidly evolving research area, NARM presents numerous potential future directions for

research. These include exploring new scalable optimization algorithms, addressing Big Data
challenges, incorporating explainable AI into the mining process, integrating machine learning
techniques, addressing security concerns, and using hybrid approaches. By pursuing these directions,
researchers can advance the state of the art in NARM and develop more effective and practical
solutions for real-world applications.

7 CONCLUSION
This article addressed a significant research gap in the field of NARM and provided readers with
a comprehensive understanding of the state-of-the-art methodologies and developments in the
domain. Moreover, this study serves as a foundation for future research and offers comprehensive
insights for researchers working on NARM-related problems. To achieve this, a comprehensive
SLR is conducted based on the guidelines set forth by Kitchenham and Charter. We conducted
a detailed examination of a wide range of methods, algorithms, metrics, and datasets sourced
from 1,140 scholarly articles spanning the period from the introduction of NARM in 1996 to 2022.
Eventually, through a rigorous selection process, including several inclusion, exclusion and quality
assessment criteria, 68 articles were selected for this SLR. By providing an exhaustive understanding
of the existing NARM methods, highlighting their strengths and limitations, as well as identifying
research challenges and future directions, we aim to stimulate innovative thinking and encourage
the exploration of novel approaches in NARM. These perspectives include exploring new scalable
optimization algorithms, analyzing NARM methods with big data, incorporating explainable AI
into the mining process, incorporating machine learning techniques, addressing security concerns,
and using hybrid approaches. Subsequently, based on the finding of this SLR, a novel discretization
measure is presented to aid in NARM that explicitly addresses the human perception of partitions.
The ultimate goal of this review is to inspire and guide researchers in developing more effective
and practical solutions for real-world NARM applications.
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Abstract

Numerical association rule mining (NARM) is an extended version of associ-
ation rule mining that determines association rules in numerical data items,
primarily via distribution, discretization and optimization techniques. Un-
der the umbrella of optimization techniques, several evolutionary and swarm
intelligence-based algorithms have been proposed to extract association rules
from a numeric dataset. However, a sufficient understanding of the perfor-
mance of swarm intelligence-based algorithms, especially for NARM, is still
missing. In state-of-the-art, various swarm intelligence-based optimization
algorithms are claimed to be better based on their arbitrary comparisons with
different algorithms in different classes, e.g., swarm intelligence-based algo-
rithms are compared with genetic algorithms. Unfortunately, they are not
compared within their own class algorithms. Therefore, it is challenging to
select an appropriate swarm intelligence-based algorithm for NARM. This ar-
ticle aims at filling this gap by conducting an exhaustive multi-aspect analysis
of four popular swarm intelligence-based optimization algorithms (MOPAR,
MOCANAR, ACO-R and MOB-ARM) with four real-world datasets and six
major metrics and objectives: performance time, the number of rules, sup-
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port, confidence, comprehensibility, and interestingness. In our analysis, the
MOPAR algorithm produces a low number of rules and shows high values
of confidence, comprehensibility, and interestingness. The MOCANAR algo-
rithm provides satisfactory results with respect to all six parameters across
all the data sets. The ACO-R algorithm produces high-quality rules but
needs parameter modification for a large number of attributes in datasets,
and the MOB-ARM algorithm is way slower than the other three algorithms.

Keywords: swarm intelligence optimization, association rule mining,
machine learning, numerical association rule mining

1. Introduction

Numerical association rule mining (NARM) is an extended version of
classical association rule mining. It is used to mine association rules from
continuous values or datasets consisting of numeric attributes, which makes
it highly relevant for a plenty of today’s data analysis tasks. Several meth-
ods, such as optimization, discretization, and distribution, are proposed in
the literature to solve the problem of NARM [6, 28]. Out of them, the
optimization method is one of the potential solutions to deal with such
complex problems, which consists of Evolutionary-based, Swarm Intelligence
(SI)-based and Physics-based algorithms [27]. Various SI-based optimization
algorithms [10] consisting of animal, insect movements and the biological be-
haviour of natural objects are proposed in the literature [17, 33]. Primarily,
these optimization algorithms are helpful in mining association rules from
numeric datasets without discretization. However, it is still unclear which
algorithms perform better for efficient NARM.

In the state of the art [9, 34, 24, 26], SI-based optimization algorithms
are compared randomly with different algorithms in different classes; how-
ever, they are not compared in their own classes. Therefore, it is challenging
to select the most suitable SI-based algorithm for NARM. This research
conducts an exhaustive multi-aspect analysis of four popular SI-based op-
timization algorithms, i.e., MOPAR [9], ACO-R [34], MOB-ARM [24] and
MOCANAR [26].

MOCANAR, MOB-ARM, MOPAR and ACO-R algorithms have been
shown efficient in solving multi-objective optimization problems in various
domains, including numerical association rule mining and continuous opti-
mization. Moreover, these algorithms are relatively new algorithms that have
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been proposed in recent years, and their performance comparison is not yet
available in the state of the art. Therefore, these algorithms are selected for
their performance comparison to find a set of optimal solutions that trade-
off between multiple objectives simultaneously. The performance evaluation
of these algorithms will surely shed light on their potential advantages and
limitations.

We first discuss the usefulness of these algorithms in NARM and then
experiment with four real-world datasets. The results are then compared with
a set of six metrics and objectives, i.e., the average number of rules mined,
the average values of confidence, support, comprehensibility, interestingness
of the rules and the time efficiency, i.e., average time spent in running the
algorithms.

In our assessments, the MOPAR algorithm produces a low number of
rules that show high confidence, comprehensibility, and interestingness; how-
ever, it requires modification of parameters under a large number of dimen-
sions in datasets. The MOCANAR algorithm has produced reliable results
with respect to all six parameters across all the data sets. The ACO-R al-
gorithm produces high-quality rules but needs parameter modification for
a large number of attributes in datasets and the MOB-ARM algorithm per-
forms several times slower. Based on this analysis, we conclude that different
SI-based NARM optimization algorithms best suit different needs. The in-
vestigations in this article are built on data collected by a preliminary study
on the performance of SI-based NARM algorithms [25]. This analysis is
valuable for bridging the artificial gaps between the optimization algorithms
and developing the advanced framework for generalized association rule min-
ing [38].

The following are the key contributions of this article.

• Investigating the role of multi-objective optimization algorithms, espe-
cially SI-based optimization algorithms for NARM.

• Presenting an exhaustive multi-aspect analysis of SI-based algorithms
with four real-world datasets and six major metrics and objectives (per-
formance time, the number of rules, support, confidence, comprehensi-
bility, and interestingness).

• Providing efficient utilization of four popular SI-based optimization al-
gorithms(MOPAR, MOCANAR, ACO-R and MOB-ARM) for NARM
and discussing challenges associated with them.

3
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The paper is structured as follows. In Sect. 2, related work is given.
Sect. 3 highlights the background information to understand the subject.
We discuss the SI-based algorithms in Sect. 4. Sect. 5 outlines the exper-
imental results and multi-aspect analysis of the four SI-based algorithms.
Sect. 6 provides the challenges and future directions for the algorithms. The
conclusion is given in Sect. 7.

2. Related Work

In data mining [1], association rule mining (ARM) is a well-known tech-
nique to find interesting relations among various data items. Agrawal [2]
introduced ARM in 1993 to discover the associations between data items
in market basket analysis. Later, some essential algorithms, such as Apri-
ori [3] and FP-Growth [22], were proposed. These algorithms were suitable
for binary data but could not deal with numerical data. In 1996, Srikant in-
troduced the concept of quantitative association rule mining (QARM) [41] to
deal with numerical data. Further, this technique is also known as NARM [6].
Several methods, such as optimization, discretization, and distribution, are
available in the literature to solve the problem of NARM [6, 28]. The opti-
mization method seems to be a potential solution to deal with such complex
problems. Evolutionary-based and SI-based algorithms come under the op-
timization method [27]. Recent NARM optimization algorithms also cover
SI-based algorithms, which are based on animal, and insect movements and
the biological behaviour of natural objects [17]. In recent decades, bio-
inspired computation [14] has been one of the most researched subfields of
artificial intelligence. SI-based algorithms are the subcategory of nature-
inspired algorithms. Particle swarm optimization (PSO) [29], ant colony op-
timization (ACO) [15], cuckoo search [46], bat-inspired algorithm [45], crow
search [8],and wolf search [43] are some examples of various SI algorithms.
The variants of these algorithms were used for solving NARM problems.
Such as in 2008, Alatas and Akin [4] used the PSO algorithm for mining the
association rule with numeric attributes. The PSO was modified to search
the numeric attributes’ intervals and discover the numeric association rules.
Further, Coello et al. [12] extended PSO to handle multi-objective issues. In
the same way Makhlouf et al. [31] used the crow search-based algorithm for
NARM. A multi-objective PSO technique using an adaptive archive grid for
NARM was proposed by Kuo et al. [30]. It is based on the Pareto-optimal
technique as well. Recently Stupan and Fister [42] presented a minimal-
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istic framework NiaARM for NARM which is the extended version of the
ARM-DE [16] algorithm. Users can preprocess their data using the NiaARM
framework and use a variety of interest measures. In the literature, a per-
formance analysis of several NARM algorithms was conducted. Altay et
al. [6] analyzed the performance of seven evolutionary and fuzzy evolution-
ary NARM algorithms. The chosen algorithms were also compared against
the Apriori algorithm. A comparative analysis was done in terms of support,
confidence, the number of rules mined, the number of records covered, and
time spent using eleven real-world datasets. This research found that the
evolutionary algorithms have better results in terms of support, confidence,
and time metrics. The authors also performed a performance analysis of
multi-objective evolutionary NARM algorithms in [44]. In this research, six
multi-objective and four single-objective optimization algorithms were cho-
sen to be compared. The number of rules, coverage percentage, support,
confidence, conviction, lift, netconf, ylesQ and certain factor measures were
used for comparative analysis. Ten real-world datasets were used. This re-
search found that multi-objective algorithms outperformed single-objective
algorithms in terms of support, lift, certain factors, netconf, and yulesQ met-
rics. An example of using NARM for real-world problems was presented in [5],
which performed an association analysis of multi-objective NARM algorithms
using data about Parkinson’s disease. This research used numerical data con-
sisting of speech samples related to Parkinson’s disease. This data was used
on three multi-objective NARM algorithms to find association rules related
to healthy individuals and patients with Parkinson’s disease. The number of
rules, coverage percentage, support, confidence, conviction, lift, netconfylesQ
and certain factor measures were used for comparative analysis. Another ex-
ample of using NARM for real-world problems was presented in [7], which
presented an association analysis of multi-objective NARM algorithms using
data about liver fibrosis. This data was used on two multi-objective NARM
algorithms to find association rules related to liver fibrosis. The number
of rules, coverage percentage, support, confidence, conviction, lift, netconf,
ylesQ and certain factor measures were used for comparative analysis. After
that, a sensitivity analysis was done to find the best parameters for this prob-
lem. A recent exhaustive review of more than five hundred nature-inspired
metaheuristic algorithms and a performance assessment of fifteen algorithms
has been conducted in [32].

5
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3. Background

3.1. Association Rule Mining

ARM aims to extract interesting correlations, frequent patterns, or asso-
ciations among sets of items in mainly transactional databases. One applica-
tion of ARM is to find out what products are bought together from a store [2].
The discovered association rules can help determine how to boost the sales of
a product, what products may be impacted by the discontinuation of another
product, and the best locations for the products. Let I = {i1, i2, i3, . . . im}
be a set of different m data items and D be a set of transactions where each
transaction T contains a non-empty set of items, T ⊆ I. A transaction T
contains X which is a set of some items in I if X ⊆ T . An association rule
is an if-then relationship and denoted by X ⇒ Y that has an antecedent
X, and a consequent part Y , where X ⊂ I, Y ⊂ I and X ∩ Y = ϕ [3].
Support and confidence are the most commonly used measures in ARM. The
support is calculated as the percentage of transactions of the total records
containing both itemsets X and Y. The confidence of a rule is described as
the percentage of transactions that contain itemset X also contain itemset Y.

3.2. Numerical Association Rule Mining

NARM came into the scenario to extract association rules from numerical
data. Unlike a classical ARM, a numerical ARM allows attributes to be either
categorical (e.g., gender, education) or numeric (e.g., salary, age) rather than
just Boolean. A Numerical association rule is an implication of the formX ⇒
Y , in which both antecedent and consequent parts are the set of attributes
in the forms A = {v1, v2, . . . vn} if A is a categorical attribute, or A ϵ [v1, v2]
if A is numeric attribute.

An example of a numerical association rule is given below.

Age ϵ [25, 35] ∧Gender : [Male] ⇒ Salary ϵ [2000, 2500]

(Support = 10%, Confidence = 70%)

This rule states that “10% of the employee are males aged between 25
and 35, and their salary would be between $2,000 and $2,500,” while “70%
of males aged between 25 and 35 are earning between $2,000 and $2,500.”
Here, Age and Salary are numerical attributes and Gender is a categor-
ical attribute. In ARM, except for support and confidence, more than fifty

6
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measures of interestingness are available in the literature [39, 19]. This ar-
ticle mainly uses support, confidence, comprehensibility, and interestingness
measures.

The support of an association rule X ⇒ Y determines how frequently the
itemset appears in a transactional database, shown in Eq. 1.

Supp(X ⇒ Y ) =
|(X ∪ Y )|

|D| (1)

The confidence of an association rule, shown in Eq. 2, determines how
many transactions that contain X, also contain Y.

Conf(X ⇒ Y ) =
Supp(X ∪ Y )

Supp(X)
(2)

According to [20], if the number of conditions involved in the antecedent
part is less than the consequent part, the rule is more comprehensible. Eq. 3
is used to calculate the comprehensibility of an association rule. Here, |Y |
represents the number of attributes in the consequent part of the rule, and
|X∪Y | shows the number of attributes in both the antecedent and consequent
parts of the rule.

Comp(X ⇒ Y ) =
log(1 + |Y |)

log(1 + |X ∪ Y |) (3)

The interestingness measure is focused on discovering hidden information
by extracting interesting rules. The Eq. 4 consists of three parts; the first
part shows the probability of generating the rule based on the antecedent
part, the second part shows the probability based on the consequent part
and the third part shows the probability of not generating the rule based on
the whole dataset.

interest(X ⇒ Y ) =
Supp(X ∪ Y )

Supp(X)

Supp(X ∪ Y )

Supp(Y )

(
1− Supp(X ∪ Y )

|D|

)
(4)

3.2.1. Multi-objective NARM

A single objective optimization problem has just one objective function;
however, when many objective functions are used, the process is referred to
as multi-objective [13]. Multi-objective optimization aims to balance sev-
eral conflicting performance measures by using a set of non-dominated so-
lutions [35]. The weighted sum and Pareto dominance are two methods for
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solving multi-objective optimization problems. The weighted sum method is
a classical multi-objective method that summarizes multiple objectives into
a single objective by multiplying each objective with a pre-defined weight.
Traditional evolutionary algorithms optimize the resulting single-objective
function. It is the simplest multi-objective method, but finding suitable mul-
tipliers can be challenging. However, in the Pareto dominance method, all
the objectives are evaluated simultaneously. One solution dominates another
if it improves one objective without causing a worse outcome for all the other
objectives. Using this dominance criterion, non-dominated solutions can be
defined.

4. Swarm Intelligence Optimization Algorithms

Optimization methods provide a robust and effective approach for massive
search spaces and they are divided into biology-inspired and physics-based
methods. Biology-based algorithms are further divided into SI and evolution-
based, which is one of the widespread optimization methods [28, 6]. How-
ever, SI-based algorithms belong to the subset of bio-inspired algorithms [18],
which, in turn, belong to the subcategory of nature-inspired algorithms.

According to [11], SI-based optimization methods are based on the collec-
tive intelligence of self-organized groups and the group behaviour of swarms,
such as birds, fish, honey bees, and ant colonies. These algorithms are com-
prised of individuals who migrate throughout the search space over the sim-
ulated progression. Different SI-based algorithms are popular for different
optimization problems. Some advanced SI algorithms have been developed
recently for solving NARM problems. The most popular SI-based algorithms
for NARM are Particle Swarm Optimization and Ant Colony Optimization.
The Bat Algorithm and the Cuckoo Search Algorithm are also part of the fam-
ily. The pseudocode of a nature-inspired meta-heuristic algorithm is given
below in List 1. First, a population of agents is initialized with random so-
lutions. The solutions are evaluated in terms of the used objectives. After
that, each agent modifies its solution until a stopping criterion is met and
the best-generated solutions are returned.

Listing 1: Pseudo code of nature-inspired meta heuristic algorithm

Step 1 : I n i t i a l i z e the populat ion
Step 2 : Evaluate s o l u t i o n s
Step 3 : For i t e r a t i o n in max i t e r a t i o n s :

8
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Step 4 : Modify s o l u t i o n s
Step 5 : Evaluate modi f i ed s o l u t i o n s
Step 6 : S e l e c t the best s o l u t i o n s
Step 7 : Return the best s o l u t i o n s

Two key elements must be addressed when employing nature-inspired
population-based algorithms to solve the ARM: (1) the representation of so-
lutions in the search space and (2) fitness function assessment. The former
describes the solution’s encoding in the search space, whereas the latter is
concerned with the quality of solutions. A solution must be encoded to mine
numerical association rules in the search space. There are two well-known ap-
proaches to representing individuals: Michigan and Pittsburgh. When using
the Michigan approach for representing individuals, each individual encodes
a single association rule, while in the Pittsburgh approach, each individual
encodes a set of association rules [17]. The Michigan approach is compara-
tively better than the Pittsburgh approach for finding high-quality rules. In
the Michigan approach, different types of individual representation are iden-
tified. The first representation of encoding the association rules in NARM is
shown in Eq. 5. The rule is encoded as a vector of attributes with n number
of triplets, where n is the total number of attributes in the transactional
database. Each triplet consists of three elements. ACN determines whether
the attribute is present in the rule. ACN stands for antecedent, consequent
and not present. LB determines the lower bound of the attribute and UB
determines the upper bound of the attribute [17].

((ACN1,LB1,UB1), ..., (ACNn,LBn,UBn)) (5)

Another way to represent a rule as a vector is shown in Eq. 6. Here, s
shows the value and δ shows the standard deviation of the attribute [34].

((ACN1, s1, δ1), ..., (ACNn, sn, δn)) (6)

The ACN element can be encoded in two different ways. In a first way,
shown in Eq. 7, if ACN value is less than or equal to 1/3, then the attribute
is in the antecedent part of the rule. If the value is greater than 1/3 and
smaller than or equal to 2/3, then the attribute is in the consequent part. If
the value is greater than 2/3, then the attribute is not present in the rule.

9
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j =





ACNj ≤ 1
3
, antecedent

1
3
< ACNj ≤ 2

3
, consequent

ACNj >
2
3
, not present

(7)

The second way to encode ACN is shown in Eq. 8. Here, if ACN is 1, then
the attribute is in the antecedent part, if it is 2, then it is in the consequent
part; and if it is 0, then the attribute is not present in the rule [26].

j =





ACNj = 1, antecedent

ACNj = 2, consequent

ACNj = 0, not present

(8)

Another way to represent an association rule is shown in Eq. 9, where
n is the number of attributes in the database. Here, cpi defines the cutting
point between the antecedent and consequent attributes. If the oi...n value is
zero, then the attribute is omitted from the rule; otherwise, it represents the
id of the interval of the attribute. In this case, the database is discretized
into intervals.

(cpi, oi1 ...oi,n) (9)

4.1. Multi-Objective Particle Swarm Optimization Algorithm

Particle swarm optimization (PSO) is the most popular optimization
method for continuous non-linear functions, which simulates the movement
of bird flocks or fish schools [29, 36]. As bird flocks move around in search
of food in the sky and change their speed and position according to the
group’s direction and food availability, PSO simulates this behaviour artifi-
cially. A swarm is made up of N particles that move across in D dimensional
search space. While searching, particles adjust their position by using the
best position of their own pbest and by using the best position of the whole
swarm gbest. The velocity and position of the particles are calculated itera-
tively and find the optimum solution.

4.1.1. MOPAR

The MOPAR is a multi-objective PSO (MOPSO) algorithm based on
Pareto optimality for extracting numerical association rules in one step. The
algorithm used three objectives: confidence, comprehensibility, and interest-
ingness. For rule encoding, Eq. 5 and Eq. 7 are used.

10
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Steps of the algorithm based on [9] are given in algorithm 1. The pop-
ulation consists of particles, the external repository consists of the mined
rules, and the global best (the best particle) is initialized. In each iteration,
the particle population is updated. After that, the best solutions from the
population are added to the external repository, and the global best solution
is updated. Finally, after the iterations, the external repository is returned.
To update particles, Eq. 10 and Eq. 11 are used, which update the velocities
and positions of a particle. After that, the particle’s objectives are evalu-
ated. Finally, the local best solution of each particle is updated using Pareto
dominance.

vi,k(t+1) = w(t)vi,k(t)+c1R1

(
lbesti,k(t)−xi,k(t)

)
+c2R2

(
gbesti,k(t)−xi,k(t)

(10)

xi,k(t+ 1) = xi,k(t) + vi,k(t+ 1) (11)

To find the global best solution, roulette wheel selection is used. The
roulette wheel first assigns a rank to each particle using Eq. 12, in which
xRank is a user-specified parameter and local dominated count is the number
of a particle’s local best solutions that the current solution dominates. After
that, each particle is assigned a probability based on Eq. 13. Based on these
probabilities, a particle is chosen.

ranki(t) =
xRank

local dominated count
(12)

Probi(t) =
ranki(t)∑n
k=1 rankk(t)

(13)

The MOPAR develops a MOPSO that provides a redefinition of lbest and
gbest particles and a selection procedure to handle the problem of numerical
ARM. In this algorithm, the particle has the same representation as RPSOA
and has lower and upper bounds of intervals.

4.2. Cuckoo Search Algorithm

The Cuckoo search algorithm (CSA) was proposed by Yang and Deb in
2009 [46]. CSA is inspired by the brooding parasitic behaviour of cuckoo
species. Cuckoo birds do not build nests and instead lay eggs in the nests

11

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4399331

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Algorithm 1 MOPAR algorithm steps.

Input: Data, population size, maximum iterations, external repository size,
c1, c2, inertia weight, xRank
Output: External repository

1: Initialize population.
2: Evaluate the objectives of the generated rule.
3: Initialize external repository.
4: Initialize global best.
5: Update the velocities of particles.
6: Update the positions of particles and evaluate the objectives of the new

rules.
7: Update the non-dominated local set of each particle. Update local best.
8: Update external repository. If the size of the external repository is bigger

than the external repository size, then particles that dominate more rules
are removed.

9: Update global best by using the roulette wheel selection. If the maximum
number of iterations is not reached, go to step 2.

10: return the external repository.

of other bird species. The cuckoo bird has the special ability to mimic the
colour and pattern of other birds’ eggs. It is possible that some of the host
birds know about the stranger’s eggs and throws them, or they can leave
their nest. The three rules are followed for describing the cuckoo search
algorithm. The first rule is that cuckoo birds lay only one egg at a time in
randomly chosen nests. According to the second rule, the nest with high-
quality eggs will carry over to the next generation. In the third rule, the
number of host nests is fixed, and the probability of discovering the cuckoo
eggs by the host bird is either 0 or 1. If the host finds so, it can destroy the
egg or quit the nest. Each egg in the nest represents a solution, and the egg
laid by the cuckoo denotes a new solution, and the goal is to use the new and
possibly better solution to replace the less interesting solution in the nest. In
the direction of ARM, k used the concept of a multi-objective cuckoo search
algorithm for NARM using a Pareto-based approach [26].

4.2.1. MOCANAR

The MOCANAR [26] is a multi-objective cuckoo search algorithm based
on Pareto principles that derive high-quality association rules from numeric
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attributes. This algorithm mimics the brooding parasitic behaviour of cuckoo
species. A 2D array for ARM represents the cuckoos. The columns represent
the attributes in the dataset, and the number of rows is three. The first
row represents the attribute’s location; the second row consists of the lower
bound of the attribute, and the third row represents the upper bound of the
attribute. The 0 value of the first row indicates that the related attribute is
not present in the rule. In contrast, value 1 shows that the related attribute
belongs to the antecedent part of the rule, and value 2 shows that the con-
cerned attribute belongs to the consequent part of the rule. The MOCANAR
considers the following objectives: support, confidence, interest, and compre-
hensibility. The rules were retrieved incrementally, with a small number of
high-quality rules being produced for each iteration of the method.

For rule encoding, Eq. 5 and Eq. 8 are used. Pareto optimality is used
for extracting non-dominated rules. Algorithm 2 shows the steps of the algo-
rithm and is based on [26]. In each increment, the population, which consists
of cuckoos, and current non-dominated rules, are initialized. In each genera-
tion, random cuckoos are generated and directed towards the best solution,
using levy flight policy [46] and replaced with the worst cuckoos in the popu-
lation. After that, each cuckoo generates an egg using levy flight. At the end
of each generation, current non-dominated rules are updated. At the end of
each increment, the final non-dominated rules are updated. Finally, the final
non-dominated rules are returned. A tournament is used to choose the best
solution when generating eggs. For this, a number of tournament cuckoos
are selected randomly from the population, and a random non-dominated
solution from this selection is returned.

A levy flight policy is used to direct cuckoos towards the best cuckoo.
For each attribute of a source cuckoo’s rule, three-step sizes are calculated
using levy distribution and a target cuckoo. Based on these step sizes, the
rule of a source cuckoo is modified. To generate a new population, first, a
percentage of eggs that have the worst support measure is eliminated. After
that, the eggs and cuckoo population is merged into a temporary population.
The temporary population is sorted in terms of support measure, and 1/4
of the highest-ranking solutions are added to the new population. The same
is done for the rest of the measures, after which a new population has been
formed.
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Algorithm 2 MOCANAR algorithm steps.

Input: Data, population size, number of increments, maximum generations,
pa, pmut, number of tournaments, number of random cuckoos, w1, w2, w3
Output: Final non-dominated rules

1: Initialize population and cuckoo eggs. Evaluate the objectives of gener-
ated rules.

2: Generate random cuckoos and direct them toward the best cuckoo in the
population. Replace the worst cuckoo in the population with the directed
cuckoo.

3: Generate cuckoo eggs by directing all cuckoos in the population toward
the best cuckoo. The best cuckoo is chosen for the tournament.

4: A percentage of the worst eggs in terms of the support measure is elim-
inated. A new population is formed by choosing the cuckoos with the
best objective measures.

5: Population and non-dominated lists are merged, and duplicated rules are
deleted. Non-dominated rules from the merged list are assigned to the
non-dominated list.

6: If the maximum number of generations is not reached, go to step 2.
7: Rules from the non-dominated list are added to the final non-dominated

list.
8: If the maximum number of increments is not reached, go to step 1.
9: Duplicated and dominated rules are removed from the final non-

dominated.
10: return the final non-dominated list.

4.3. Ant Colony Optimization Algorithm

Ant colony optimization (ACO) is based on the foraging behaviour of vari-
ous ant species. Ants begin to investigate the area around the nest at random
and eventually find some food sources. Based on the quantity and quality
of food, these ants deposit chemical pheromones on the ground to suggest
the desired path for colony members to follow on their return trip [15]. In
ACO, a group of artificial ants develops solutions to the optimization prob-
lem and communicates information about the quality using a communication
mechanism similar to real ants.
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4.3.1. ACO-R

The ACO-R algorithm is an ant colony optimization for numeric values
and retrieves association rules for numeric attributes without minimum sup-
port and minimum confidence thresholds. ACO uses a discrete probability
distribution, while ACO-R uses a probability density function. ACO stores
pheromone information in the pheromone table, whereas ACO-R, describes
the pheromone distribution over the search space using a solution archive
size of k. The ants in ACO-R move across the archive, selecting one row
depending on its associated weight (ω). Then a new solution is created by
sampling the Gaussian function g of the values of each dimension in the
selected solution. Each numeric attribute is one dimension of the solution
archive, divided into three sections, with each complete solution regarded as
a numeric association rule. The first part of the solution reflects the rule’s
antecedent or consequence. The second part represents the solution’s value.
The third part shows the solution’s standard deviation, which is used to con-
struct numeric attribute intervals. This algorithm uses Gaussian functions
to identify attribute intervals that correspond to an interesting rule, with
the function determining the frequency and length of the intervals. There
are four components to this objective function as given in Eq. 16. The first
section can be seen as support for the rule, which is the importance of an
association rule. The second part is known as the confidence value. The
rule’s third section is the number of attributes. The amplitude of the inter-
vals that adhere to the itemset and rules is penalized using the last part of
the objective function. The pheromone update technique adds a number of
new solutions, each made by one ant, and removes the same number of bad
solutions from the archive after ranking the solutions to keep track of the
solutions. As a result, the best solutions are always at the top of the solution
archive, and the best solution in each ACO-R execution can be thought of
as a rule.

For rule encoding, Eq. 6 and Eq. 8 are used. Algorithm 3 shows the
steps of the algorithm and is based on [34]. First, the archive, which consists
of solutions, is initialized, and solutions are ranked. In each iteration, the
weights and probabilities of solutions are calculated. Each ant chooses a
solution based on the assigned probabilities and generates a new solution by
sampling a Gaussian function. At the end of each iteration, the solutions
in the archive are ranked and the worst solutions are removed. After the
iterations, the archive is returned.
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Algorithm 3 ACO-R algorithm steps.

Input: Data, archive size, ant colony size, maximum iterations, alpha1,
alpha2, alpha3, alpha4, alpha5, q, e
Output: Archive

1: Initialize and sort the archive.
2: Initialize weights, probabilities, and ants.
3: Ant chooses a solution and generates a new solution by sampling a Gaus-

sian function. The objectives of the new solution are evaluated.
4: If the number of ants that have generated a new rule is not reached, go

to step 3.
5: Add ant-generated solutions to archive, sort and cut off
6: If the number of iterations is not reached, go to step 2.
7: Delete duplicated rules from the archive.
8: return non-dominated rules from the archive.

The interval objective, shown in Eq. 14, favours rules with smaller inter-
vals. Here, n is the number of attributes, max bound and min bound is the
maximum and minimum values for the attribute in the database. UBi and
LBi are the upper and lower bounds of an attribute in the rule. The upper
and lower bound of the intervals can be calculated by adding a coefficient of
a standard deviation to the value of solution sij using Eq. 15.

int =
n∑

i = 0

(UBi − LBi)

maxboundi −minboundi
(14)

UBi = sij + α5σ and LBi = sij − α5σ (15)

All the mentioned objectives are put together into a single objective function,
shown in Eq. 16. Here α1, α2, α3, and α4 are input parameters of the
algorithm.

objective = α1 · supp+ α2 · conf − α3 · inter − α4 · int (16)

ωj =
1

qk
√
2π

e
−(j−1)2

2q2k2 (17)

To calculate the weight ωj of a solution Sj, Eq. 17 is used, where k is the
number of solutions in the archive, j is the rank of the solution, and q is
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a user-specified parameter. If q is small, best-ranked solutions are more
preferred, and if it is large, the probability is more uniform [40].

To calculate the probability of choosing solution Sj, Eq. 18 is used, where
the weight of a solution is divided by the sum of all the weights of the
solutions.

pj =
ωj∑k
r=1 ωr

(18)

After an ant chooses a solution based on the probabilities, a new solution
is sampled using Eq. 19. Here, δ is calculated using Eq. 20 and µ is the value
of the chosen solution.

P (x) = g(x, µ, δ) =
1

δ
√
2π

e
−(x−µ)2

2δ2 (19)

In Eq. 20, ξ is a user-specified parameter. The higher it is, the lower the
convergence speed of the algorithm. Parameter k is the number of solutions
in the archive, and sij is the value of the chosen solution.

δ = ξ

k∑

r=1

sir − sij
k − 1

(20)

4.4. BAT Algorithm

Yang (2010) introduced the BAT algorithm (BA) to address continuous
constrained optimization problems based on the echolocation behaviour of
microbats [45]. Bats have the special characteristics to use echolocation to
sense distance. Microbats use echolocation to discover prey, avoid obstacles,
and find roosting nooks in the dark. These bats produce an extremely loud
sound pulse and listen for the echo reflected back from the objects in their
surroundings. The BA is based on the velocity of a bat at a particular
position, with a fixed frequency and varying wavelength and loudness. BA
was used for ARM for dealing with categorical attributes [23].

4.4.1. MOB-ARM

Amulti-objective bat algorithm for NARMwas proposed by Heraguemi et
al. [24]. This algorithm is based on the behaviour of microbats. The authors
used four quality measures: support, confidence, comprehensibility, and in-
terestingness, and defined two global objective functions for optimization to
extract interesting rules. The first objective function consists of support and
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Algorithm 4 MOB-ARM algorithm steps.

Input: Data, population size, iterations, Pareto points, alpha, beta, gamma,
delta, minimum support, minimum confidence
Output: Non-dominated solutions

1: Initialize population. Sort population. Initialize global best. Initialize
the non-dominated solutions list.

2: Initialize weights.
3: Update every bat’s frequency, velocity and generate a new rule.
4: If the random number is bigger than the bat’s rate, change one attribute

in the new rule.
5: Check and fix rule. Evaluate fitness.
6: If the new objective is bigger than the old objective, then accept the new

rule, increase rate, and decrease the loudness of the bat.
7: Sort population. Update global best.
8: If the number of iterations is not reached, go to step 3.
9: Add best solutions to non-dominated solutions

10: If the number of Pareto points is not reached, go to step 2.
11: return non-duplicated rules from the non-dominated solutions list.

confidence (Eq. 23), and the second objective function consists of compre-
hensibility and interestingness (Eq. 24). The algorithm flows in three main
steps: initialization, searching for the non-dominance solution for the Pareto
point, and searching for the best solution for each bat at the Pareto point.
This algorithm uses the Michigan approach for encoding the rule. The bats
are initialized with a random frequency and velocity.

For rule encoding, Eq. 9 is used. Prior to using the algorithm, data is
discretized into intervals. The weighted sum is used to determine the best
solutions. Algorithm 4 presents the steps and is based on [24]. First, the
population, which consists of bats, is initialized. In each iteration, objective
weights are generated, and each bat’s frequency, velocity and rules are up-
dated. At the end of each iteration, the bats are ranked, and a new global
best solution is chosen. After each iteration, each bat’s best solution is
recorded as a non-dominated solution. Finally, the non-dominated solutions
are returned. To generate weights, Eq. 21 is used. Here, k is the number
of objectives used, which in MOB-ARM is two. The weights are used for
calculating an objective measure shown in Eq. 22, which uses two objectives.
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k∑

k = 1

wk = 1 (21)

Obj(R) = w1 Obj1(R) + w2 Obj2(R) (22)

The objective measure uses two separate objectives, which are calculated
using Eq. 23 and Eq. 24. The equations use user-specified parameters α,
β, γ and δ as weights for the support, confidence, comprehensibility, and
interestingness measures.

Obj1(R) = αconf(R) +
βsupp(R)

α
+ β (23)

Obj2(R) = γComp(R) +
δInter(R)

γ
+ δ (24)

To update a bat’s frequency and velocity, Eq. 25 and Eq. 26 are used.
First, the new frequency is calculated using a maximum frequency, which
is the number of attributes in the dataset. After that, a new velocity is
calculated using the maximum frequency, new frequency, and the previous
velocity.

f t
i = 1 + (fmax)β (25)

vti = fmax − f t
i − vt−1

i (26)

At+1
i = αAt

i (27)

rt+1
i = r0i [1− exp (−γt)] (28)

A new rule is generated using an algorithm proposed in [23]. The rules are
generated based on the velocity, frequency and loudness of the bat. Velocity
determines the starting position of the change in the rule, and frequency
determines how many attributes are changed. If the loudness of the bat is
less than a random number, the attribute value at index velocity is increased;
otherwise, it is decreased. If the value goes out of bounds, it is set to zero.
After the rule is generated, one item in the rule is changed if a random
number is bigger than the rate.
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If the new rule’s objective is better than the old objective, the rule is
accepted, and the loudness and rate of the bat are updated. Loudness is
decreased by using Eq. 27. The rate is increased using Eq. 28, where r0i is
the initial rate of the bat and t is the current iteration [45].

Table 1: Datasets used in the experiments

Dataset #records #attributesDescription

Basketball 96 5 This dataset includes a variety of nu-
merical attributes related to the perfor-
mance of basketball teams and players
to identify patterns and relationships.

Quake 2178 4 This dataset is used to demonstrate the
use of various smoothing techniques in
statistics. The dataset contains a time
series of the number of earthquakes
that occurred in California between the
years 1980 and 1984.

Fat 225 18 This dataset contains the percentage of
body fat, age, weight, height, and 10
measurements of body circumference
(such as the abdomen) for a total of
252 men.

Longley 16 7 The Longley dataset comprises a num-
ber of strongly collinear US macroe-
conomic indicators. It has been used
to assess the precision of least squares
methods.

5. Experimental Results

In experimentation and to evaluate the performance of the MOPAR, MO-
CANAR, ACO-R, and MOB-ARM algorithms, four real-world datasets are
selected from Guvenir et al. [21]. A detailed description of these datasets
is given in Table 1. These datasets have different numbers of records and
attributes, which helps in providing a more accurate evaluation of how well
the implementations perform when dealing with various characteristics. All
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Table 2: Algorithmic parameters used in the experiment

Algorithms Parameters

MOPAR [9] Population size: 50, iterations: 200, external repository
size: 50, inertia weight: 0.63, velocity: 3.83, xRank:
13.3, c1:2, c2: 2

MOCANAR [26] Population size: 50, generations: 200, increments: 1,
randomcuckoo: 1, tournament: 30, Pa: 0.3, P mut:
0.05, w1: 0.2, w2: 0.5, w3: 0.3

MOB-ARM [24] Population size: 50, iterations: 40, Pareto points: 5,
alpha: 0.4, beta: 0.3, gamma: 0.2, delta: 0.1, minsupp:
0.2, minconf: 0.5

ACO-R [34] Ant colony size: 50, iterations: 200, archive size: 50,
alpha1, alpha2: 4, alpha3, alpha5: 1, alpha4: 0.001, Q:
0.1, E: 0.85

Table 3: Average support of the MOPAR, MOCANAR, ACO-R and MOB-ARM algo-
rithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’ datasets

Datasets MOPAR [9] MOCANAR [26] ACO-R [34] MOB-
ARM [24]

Basketball 0.13 0.49 0.41 0.28
Fat 0.08 0.63 0.01 0.34
Quake 0.22 0.51 0.57 0.45
Longley 0.10 0.29 0.35 0.28

the experiments are performed using an Intel Core i7-10510U machine with
16 GB of memory and running Windows 10. Table 2 lists the parameters
used in this experiment for the four algorithms. However, to evaluate the
algorithms under equal conditions, the population size is fixed at 50, and the
number of iterations is set at 200 for all the algorithms. For the MOPAR
algorithm, the external repository size is 50 and the other parameters are
taken from Beiranvand et al. [9]. The parameters used for ACO-R are de-
cided via testing because the author of the algorithm, Moslehi et al. [34], did
not specify the best parameters. For the MOB-ARM algorithm, the number
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Figure 1: Average support of MOPAR, MOCANAR, ACO-R and MOB-ARM algorithms
with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’ datasets

Table 4: Average confidence of the MOPAR, MOCANAR, ACO-R and MOB-ARM algo-
rithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’ datasets

Datasets MOPAR [9] MOCANAR [26] ACO-R [34] MOB-
ARM [24]

Basketball 0.78 0.80 0.80 0.63
Fat 0.48 0.87 0.86 0.72
Quake 0.71 0.84 0.87 0.72
Longley 0.94 0.93 0.99 0.92

Table 5: Average generated rules by the MOPAR, MOCANAR, ACO-R and MOB-ARM
algorithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’ datasets

Datasets MOPAR [9] MOCANAR [26] ACO-R [34] MOB-
ARM [24]

Basketball 11.2 32.8 40.4 8.4
Fat 10.4 54.6 13.8 7.8
Quake 18.6 22.2 47 8.4
Longley 16.2 8.8 8.4 20.6
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Figure 2: Average confidence of the MOPAR, MOCANAR, ACO-R and MOB-ARM al-
gorithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’ datasets
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Figure 3: Average generated rules by the MOPAR, MOCANAR, ACO-R and MOB-ARM
algorithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’ datasets

of iterations and Pareto points is set as 40 and 5, respectively. For each
dataset, all the algorithms are tested five times. The programming code is
available in the GitHub1 repository.

1https://github.com/rahul-sharmaa/Performance-Analysis-of-SI-based-Algorithms.

git
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Table 6: Average time (in seconds) spent by the MOPAR, MOCANAR, ACO-R and MOB-
ARM algorithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’ datasets

Datasets MOPAR [9] MOCANAR [26] ACO-R [34] MOB-
ARM [24]

Basketball 455.4 404.9 442 1181.92
Fat 1259.28 1469.22 1173.26 3345.4
Quake 361 424.04 402.16 1253.42
Longley 500.28 545.08 604.52 1539.3
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Figure 4: Average time (in seconds) spent by the MOPAR, MOCANAR, ACO-R and
MOB-ARM algorithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’
datasets

Table 3 demonstrates the average support values from all four SI algo-
rithms over four datasets. Fig. 1 shows the average support values of the rules
mined by the algorithms. The MOCANAR produced high support rules in
most of the datasets; however, ACO-R produced rules with high support in
the Basketball, Quake, and Longley datasets but underperformed in the Fat
dataset. MOB-ARM had average support measures in all datasets, while
MOPAR had the overall lowest support values.

The average confidence values obtained from the SI algorithms within
four datasets are given in Table 4. Fig. 2 represents the average confidence
values of the rules mined by the algorithms. MOCANAR and ACO-R had the
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Table 7: Average comprehensibility of the MOPAR, MOCANAR, ACO-R and MOB-ARM
algorithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’ datasets

Datasets MOPAR [9] MOCANAR [26] ACO-R [34] MOB-
ARM [24]

Basketball 0.82 0.67 0.62 0.62
Fat 0.83 0.69 0.75 0.62
Quake 0.71 0.66 0.63 0.64
Longley 0.90 0.75 0.55 0.70
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Figure 5: Average comprehensibility of the MOPAR, MOCANAR, ACO-R and MOB-
ARM algorithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’ datasets

Table 8: Average interestingness of the MOPAR, MOCANAR, ACO-R and MOB-ARM
algorithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’ datasets

Datasets MOPAR [9] MOCANAR [26] ACO-R [34] MOB-
ARM [24]

Basketball 0.43 0.24 0.25 0.24
Fat 0.15 0.21 0.54 0.27
Quake 0.16 0.24 0.24 0.22
Longley 0.84 0.65 0.56 0.59
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Figure 6: Average interestingness of the MOPAR, MOCANAR, ACO-R and MOB-ARM
algorithms with respect to the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Longley’ datasets

Figure 7: Boxplots of the support, confidence, comprehensibility and interestingness values
for the ‘Longley’ dataset

highest results across all datasets. Compared to other algorithms, MOPAR
and MOB-ARM have average results but produced the lowest confidence in
the Fat and Basketball datasets, respectively.
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Figure 8: Boxplots of the support, confidence, comprehensibility and interestingness values
for the ‘Quake’ dataset

The average generated association rules by algorithms for each dataset
have been presented in Table 5. It is clear from the table that MOCANAR
and ACO-R mined the most rules across all datasets. MOPAR and MOB-
ARM mined the least rules across all datasets except Longley dataset. Fig. 3
shows the average number of rules mined by the algorithms.

Table 6, 7, and 8 demonstrates the average time spent by the algorithms,
the average comprehensibility values, and the average interestingness val-
ues of the rules mined by the algorithms, respectively. However, Table 9
presents the comparative analysis of all four algorithms with four datasets.
Fig. 4 showcases that MOPAR, MOCANAR and ACO-R had approximately
similar results for all datasets. MOB-ARM stood multiple times slower than
the other algorithms. MOPAR produced the highest comprehensibility mea-
sures for all datasets, which is shown in Fig. 5. MOCANAR, ACO-R and
MOB-ARM had similarly average results across all datasets. Fig. 6 demon-
strates the average interestingness values of the rules mined by the algo-
rithms. MOPAR produced the highest results for Basketball and Longley
datasets but the lowest results for Quake and Fat datasets. ACO-R has
the highest interestingness measure for Fat dataset. MOCANAR and MOB-
ARM produced average interestingness results for all the datasets.
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Table 9: Comparative experimental results for the ‘Basketball’, ‘Quake’, ‘Fat’ and ‘Long-
ley’ datasets

Datasets Algorithms Time(sec) Avg.
rules

Avg.
Supp.

Avg.
Conf.

Avg.
Comp.

Avg.
Int.

Basketball

MOPAR 455.4 11.2 0.13 0.78 0.82 0.43
MOCANAR 404.9 32.8 0.49 0.80 0.67 0.24
ACO-R 442 40.4 0.41 0.80 0.62 0.25
MOB-ARM 1181.92 8.4 0.28 0.63 0.62 0.24

Quake

MOPAR 361 18.6 0.22 0.71 0.71 0.16
MOCANAR 424.04 22.2 0.51 0.84 0.66 0.24
ACO-R 402.16 47 0.57 0.87 0.63 0.24
MOB-ARM 1253.42 8.4 0.45 0.72 0.64 0.22

Fat

MOPAR 1259.28 10.4 0.08 0.48 0.83 0.15
MOCANAR 1469.22 54.6 0.63 0.87 0.69 0.21
ACO-R 1173.26 13.8 0.01 0.86 0.75 0.54
MOB-ARM 3345.4 7.8 0.34 0.72 0.62 0.27

Longley

MOPAR 500.28 16.2 0.10 0.94 0.90 0.84
MOCANAR 545.08 8.8 0.29 0.93 0.75 0.65
ACO-R 604.52 8.4 0.35 0.99 0.55 0.56
MOB-ARM 1539.3 20.6 0.28 0.92 0.70 0.59

Table 10: The Average values of six measures across all datasets

Algorithms Time(sec) Avg.
rules

Avg.
Supp.

Avg.
Conf.

Avg.
Comp.

Avg.
Int.

MOPAR 644 14 0.13 0.72 0.81 0.39
MOCANAR 710 29 0.48 0.86 0.69 0.33
ACO-R 655 27 0.33 0.88 0.64 0.40
MOB-ARM 1830 11 0.34 0.75 0.64 0.33
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Boxplots for the confidence, support, interestingness and comprehensibil-
ity for Longley and Quake datasets are given in Fig. 7 and Fig. 8. We have
considered these datasets because, out of the four datasets, Longley has the
lowest number of records, and Quake has the highest number of records. For
Longley dataset, MOPAR has given the best results under comprehensibility
and interestingness measures. The algorithms performed very closer to each
other in terms of confidence, but ACO-R gave the best result. It is observed
that algorithms do not perform well in terms of support, although ACO-R
has a better average support value in comparison to other algorithms.

When comparing the algorithms for interestingness measure with Quake
dataset, MOCANAR, ACO-R and MOB-ARM have given nearly similar val-
ues. However, the MOPAR has given significantly different results for inter-
estingness and achieved a better result in terms of comprehensibility. The
ACO-R has given the best results in terms of confidence and support values.

In terms of measures, Table 10 presents the average of the results of the
four SI-based NARM algorithms across four data sets. After the evaluation
of Table 10, it can be observed that none of the algorithms gave the best
results in terms of all six measures. However, MOPAR performed best in
terms of average time, average comprehensibility, and average interesting-
ness, and ACO-R performed best in terms of average confidence and average
interestingness measures. MOCANAR generated the best average support
value and the highest average number of rules.

6. Future Directions

SI-based algorithms have been used in NARM to optimize traditional
data mining algorithms. However, several issues and challenges need to be
addressed to make SI-based algorithms more effective. For a fair comparison
among different algorithms, stopping criteria is also one of the important fac-
tors to be considered. Ravber et al. [37] have raised this issue and concluded
that the maximum number of generations as a stopping criterion is harm-
ful and not it is not recommended for a fair comparison of the optimization
algorithms. However, In this paper, we have also used the maximum gen-
eration as a stopping criterion, as per the original settings proposed under
the algorithms. Therefore, for future direction, this is one of the important
factors to be considered.

Next, scalability and premature convergence are also the main issues with
optimization algorithms. These algorithms require significant computational
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resources and memory, which makes them less practical for larger datasets.
Premature convergence can occur when the algorithm’s parameters are not
set correctly or the search space is too small, leading to sub-optimal solutions.

Parameter tuning is another challenge, as it can be time-consuming and
requires expertise in the field. Additionally, SI-based algorithms are often
robust to noisy and incomplete data; they can still be sensitive to certain
types of noise or outliers in the data. Incorporating domain knowledge into
the algorithm can improve performance and interpretability, but this requires
additional efforts and expertise in the field.

In future, addressing these important issues and challenges will be an
important factor for the continued development of SI-based algorithms for
NARM.

7. Conclusion

This paper presents an exhaustive multi-aspect analysis of four SI-based
algorithms for NARM. The algorithms are experimented with four real-world
datasets and analysed with six major parameters, i.e., time, average support,
average confidence, the average number of rules, average comprehensibility,
and average interestingness. The experiments and the analysis demonstrate
that the MOB-ARM algorithm yields the worst results in terms of average
time spent on all datasets, but MOPAR, MOCANAR and ACO-R algorithms
performed well. However, when the average comprehensibility value of the
rules produced by the algorithms is examined, MOPAR provides the best
result across all the data sets. The MOPAR algorithm has a low support
value and can produce a low number of rules with high confidence and in-
terestingness measures. Still, it needs parameter modification for datasets
with a larger number of attributes or instances. The MOCANAR algorithm
can be used to generate rules with consistent outcomes in all metrics across
all datasets. The ACO-R generates high-quality rules, but it underperforms
for support under the Fat dataset and requires parameter modification when
applied to datasets with more attributes. MOB-ARM produced a few rules
with average results across all datasets, but it was much slower than the
other three algorithms. The performance of the MOB-ARM algorithm can
be improved by eliminating the discretization step to produce more rules
which is also helpful to reduce the time complexity of the algorithm. The
overall results demonstrated that no single SI-based algorithm is a perfect
fit for efficient NARM, and each SI-based algorithm has its own drawback,
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therefore, a combination of algorithms for different metrics and objectives is
suggested to be utilized for efficient NARM.
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[42] Stupan, Ž., Fister, I., 2022. Niaarm: A minimalistic framework for
numerical association rule mining. Journal of Open Source Software 7,
4448.

[43] Tang, R., Fong, S., Yang, X.S., Deb, S., 2012. Wolf search algorithm
with ephemeral memory, in: Seventh International Conference on Digital
Information Management (ICDIM 2012), IEEE. pp. 165–172.

[44] Varol Altay, E., Alatas, B., 2020. Performance analysis of multi-
objective artificial intelligence optimization algorithms in numerical as-
sociation rule mining. Journal of Ambient Intelligence and Humanized
Computing 11, 3449–3469.

[45] Yang, X.S., 2010. A new metaheuristic bat-inspired algorithm, in:
Nature inspired cooperative strategies for optimization (NICSO 2010).
Springer, Berlin, Heidelberg, pp. 65–74.

35

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4399331

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



[46] Yang, X.S., Deb, S., 2009. Cuckoo search via lévy flights, in: 2009 World
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Abstract. Machine learning (ML) has employed various discretization
methods to partition numerical attributes into intervals. However, an ef-
fective discretization technique remains elusive in many ML applications,
such as association rule mining. Moreover, the existing discretization
techniques do not reflect best the impact of the independent numeri-
cal factor on the dependent numerical target factor. This research aims
to establish a benchmark approach for numerical attribute partitioning.
We conduct an extensive analysis of human perceptions of partitioning a
numerical attribute and compare these perceptions with the results ob-
tained from our two proposed measures. We also examine the perceptions
of experts in data science, statistics, and engineering by employing nu-
merical data visualization techniques. The analysis of collected responses
reveals that 68.7% of human responses approximately closely align with
the values generated by our proposed measures. Based on these findings,
our proposed measures may be used as one of the methods for discretizing
the numerical attributes.

Keywords: Machine learning · data mining · discretization · numerical at-
tributes· partitioning

1 Introduction

Various types of variables are available in real-world data. However, discrete
values have explicit roles in statistics, machine learning (ML), and data mining.
Presently, there is no benchmark approach to find the optimum partitions for
discretizing complex real-world datasets. Generally, if a factor impacts another
factor, in that case, humans can easily perceive the compartments or partitions
because the human brain can easily perceive the differences between the factors
and detect the partitions. However, it is not easy for a human or even an ex-
pert to find the appropriate compartments in complex real-world datasets. In
state-of-the-art, to find the optimum partitions of the numerical values, various
discretization techniques have also been presented in the literature [23,13,22].
However, the existing discretization techniques do not reflect best the impact
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2 M. Kaushik

of the independent numerical factor on the dependent numerical target factor.
Moreover, no existing discretization approach uses numerical attributes as influ-
encing and response factors.

To find the cut-points for the cases of two-partitioning and three-partitioning,
we have proposed two measures Least Squared Ordinate-Directed Impact Mea-
sure (LSQM) and Least Absolute-Difference Ordinate-Directed Impact Measure
(LADM) [18]. These measures provide a simple way to find partitions of nu-
merical attributes that reflect best the impact of one independent numerical
attribute on a dependent numerical attribute. In these measures, we use numer-
ical attributes as influencing and response factors to distinguish them from the
existing approaches.

In this paper, the outcome of LSQM and LADM measures are compared
with the human-perceived cut-points to assess the accuracy of the measures. We
use numerical attributes as influencing and response factors to distinguish them
from the existing approaches. A series of graphs with different data points are
used to collect the human responses. Here, data scientists, ML experts and other
non-expert persons are referred to as humans.

The idea of this research emerged from the research on partial conditional-
ization [8,9], association rule mining (ARM) [31,29] and numerical association
rule mining (NARM) [32,19,20]. These papers discuss the discretization process
as an essential step for NARM. Moreover, research on discretizing the numerical
attributes is an essential step in frequent itemset mining, especially for quanti-
tative association rule mining (QARM) [32].

In the same sequence, we have also presented a tool named Grand report [27]
and a framework [30] for unifying ARM, statistical reasoning, and online analyt-
ical processing. These paper strengthens the generalization of ARM by finding
the partitions of numerical attributes that reflect best the impact of one inde-
pendent numerical attribute on a dependent numerical attribute. Our vision is to
develop an ecosystem to generalize the ML approaches by significantly improving
the ARM from different dimensions.

The paper is organized as follows. In Sect. 2, we delve into the discussion of
related work concerning discretization and its connection with human percep-
tion. This section aims to provide a comprehensive overview of prior research
and studies that have explored the topic from different angles. In Sect. 3, we
explain the motivation for conducting this study. Sect. 4 describes the LSQM
and LADM measures. Then, we describe the design of the experiment in Sect. 5.
In Sect. 6, we present the analysis and results. The conclusion and future work
are given in Sect. 7.

2 Related Work

Based on human perception evaluation and different discretization techniques,
we discuss the related work in the direction of discretization and clustering
techniques and human perception.
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2.1 Discretization

Many data mining and ML algorithms are not designed to work with numeric
attributes and instead require nominal attributes as input data [13]. In order to
convert numeric attributes into nominal attributes, different discretization meth-
ods have been employed as a pre-processing measure. Discretization techniques
divide the range of a numeric attribute into n intervals, which are determined by
n− 1 cut-points. A variety of discretization methods are available in the litera-
ture [13],[22] and [23]. Dougherty et al. [7] compared and analyzed discretization
strategies along three dimensions: global versus local, supervised versus unsu-
pervised, and static versus dynamic. Static approaches discretize each attribute
separately, whereas dynamic methods conduct a search through space to find
interdependencies between features. Liu et al. [23] performed a systematic study
of existing discretization methods and proposed a hierarchical framework for
discretization methods from the perspective of splitting and merging. The un-
supervised static discretization method, such as equal-width, uses the minimum
and maximum values of the continuous attribute and then divides the range into
equal-width intervals called bins. In contrast, the equal-frequency algorithm de-
termines an equal number of continuous values and places them in each bin [4].

The RUDE (Relative Unsupervised Discretization) algorithm [25] performs
the discretization of numerical attributes in three steps: pre-discretizing, struc-
ture projection, and merging split points. In 2010, Joita [15] proposed an un-
supervised method for selecting the initial cluster centers for the clustering of
a one-dimensional vector of real-valued data. This method was based on a k-
means clustering algorithm and can be used in single-attribute discretization. In
2013, Dietrich et al. [6] also proposed a method for obtaining cut-points that is
more intuitive for human users. This smoothed discretization approach works as
a post-processing step to obtain the intervals after using an arbitrary traditional
discretization approach. The authors also proposed two measures, distance-based
deviation measure and instance-based deviation measure, for comparing the orig-
inal discretization method cut-points with modified cut-points. The discretiza-
tion cut-points were computed for each training dataset for the three general dis-
cretization methods: equal-frequency [4] discretization, entropy-based discretiza-
tion [12], [28] and Chi2 [24] discretization. After that, the introduced smoothing
approaches were used with distance-based and instance-based modification mea-
sures to get the desired results. There is another similar work, called the best
piecewise constant approximation [21], which deals with approximating a single
variable function. Still, it is different because we are not using signals, and our
primary focus is on data sets that use several data points for one value of the in-
fluencing factor. Eubank used the population quantile function as a tool to show
the best piecewise constant approximation problem [11]. Later Bergerhoff [3]
suggested a method for finding optimal piecewise constant approximations of
one-dimensional signals using particle swarm optimization.
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2.2 Human perceptual evaluation

Discretization approaches are usually evaluated based on their mathematical
backgrounds. However, we are the first to assess the discretization measures by
considering human perceptions.

In the state of the art, many studies have used human perception to evaluate
various techniques. However, they are not completely related to discretization.
Tatu et al. [33] proposed a preliminary investigation of human perception us-
ing visual quality criteria for multidimensional data. The authors conducted a
user study to examine the relationship between human cluster interpretation
and the measurements automatically retrieved from 2D scatter plots. Etemad-
pour et al. [10] conducted a perception-based evaluation of high-dimensional
data where humans were asked to identify clusters and analyze distances in-
side and across clusters. Demiralp et al. [5] used human judgments to estimate
perceptual kernels for visual encoding variables such as shape, size, color, and
combinations. The experiment used Amazon’s Mechanical Turk platform, with
twenty Turkers completing thirty MTurk jobs. In [1], a new visual quality mea-
sure (VQM) based on perceptual data was proposed to rank monochrome scatter
plots. This experiment collected perceptual data from human subjects, and the
best clustering model was chosen to create a perceptual-based VQM of grouping
patterns. Similarly, a study by Aupetit [2] analyzed and compared clustering
algorithms through the lens of human perception in 2D scatter plots. The pri-
mary focus of the authors was to evaluate how accurately clustering algorithms
aligned with the way humans perceive clusters. The authors evaluated Gaussian
Mixture Models, CLIQUE, DBSCAN, Agglomerative Clustering methods, and
1437 variations of k-means on the benchmark data. Our work is also related to
considering human perceptions for evaluating our proposed LSQM and LADM
measures for discretizing numerical attributes.

3 Motivation

Real-world data sets contain real or numerical values frequently. However, many
data mining and ML approaches need discrete values. For years, obtaining dis-
crete values from numerical values has been a complex and ongoing task. The
main issue with the discretization process is obtaining the perfect intervals with
specific ranges and numbers of intervals. In state of the art, several discretization
approaches such as equi-depth, equi-width [4], MDLP [12], Chi2 [24], D2 [4], etc.
have been proposed. However, determining the most effective discretizer for each
situation is still a challenging problem. The existing methods for discretizing nu-
merical attributes are not automated and require expert knowledge; therefore,
there is a need to develop an automated and formal measure for finding the
optimal partition of numerical attributes.

In [18], we presented an order-preserving partitioning method to find the
partitions of numerical attributes that reflect best the impact of one indepen-
dent numerical attribute on a dependent numerical attribute. In extreme cases
(such as step-functions), humans can easily visualize the perfect partitions and
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even the number of compartments. However, in distinct cases, the ideal parti-
tion range depends on the perception of data experts. In state of the art, no
investigation is available to understand the human perception of partitioning.
Moreover, the current literature provides a comparison of discretization methods
and compares their results. In this paper, we take a different approach to com-
pare the human perception of discretization with the outcome of the proposed
discretization method. We aim to visualize the differences between the outcomes
of the proposed methods and the human perception of discretization.

4 Impact Driven discretization Method

In the Impact driven discretization method [18], we perform discretization on
the independent numerical attribute using order-preserving partitioning to un-
derstand its impact on the numerical target attribute. The method involves
creating a total of (k − 1) cut-points, with k being the number of partitions
recommended by the user. Below are two measures introduced in the paper [18].

4.1 The LSQM Measure

The LSQM measure operates by initially computing the squared difference be-
tween the y-value of each data point and the average of y-values within the
current partition. This measure maintains the order of the independent variable
by considering the values of data points, ensuring that the values within one
partition are consistently lower than those in the subsequent partition. After
summing up the squared differences of the several partitions, LSQM retrieves
the minimum values as cut-points.

Definition 1 (Least Squared Ordinate-Directed Impact Measure).
Given n≥2 real-valued data points (< xi, yi >)1≤i≤n, we define the least squared
ordinate-directed impact measure for k-partitions (with k−1 cut-points) as fol-
lows:

min
i0=0<i′1<...<i′k−1<i′k=n

k∑

j = 1

∑

i′j−1<i”≤i′j

(yi” − µi′j−1<ϕ≤i′j
)2 (1)

where the average of data values in a partition µa<ϕ≤b between indexes a
and b (a < b ≤ n) is defined as

µa<ϕ≤b =

∑
a<ϕ≤b

yϕ

b− a
(2)

In (1), we have that i′j is the highest element in the j-th partition, where high-
est element means the data point with the highest index.

Indeed, the LSQM (Least Squares Ordinate-Directed Impact Measure) mea-
sure may appear similar to the k-means clustering algorithm on the surface, as
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both involve partitioning data into clusters. However, they differ significantly in
their underlying principles and applications.

k-means clustering is primarily an unsupervised ML technique employed for
the task of clustering data points into groups or clusters, with each data point
assigned to the cluster whose centroid is closest to it in terms of a chosen distance
metric, often the Euclidean distance. Euclidean distance metric calculates dis-
similarity between data points, which involves measuring the geometric distance
between vectors X and Y . The primary goal of k-means is to minimize the sum
of squared distances between data points and their assigned cluster centroids,
and it finds applications in various domains, including customer segmentation,
image compression, and data reduction. However, k-means’ effectiveness is in-
fluenced by the initial random selection of cluster centers, which can lead to
different clustering results depending on the initialization.

In contrast, LSQM is a specialized method designed specifically for discretiz-
ing numerical attributes. Its core objective is to partition a numerical attribute
into intervals while preserving the order of data points within those intervals.
LSQM achieves this by measuring the squared difference between the values of
data points and the average of values within each partition, aiming to minimize
the sum of squared differences. Unlike k-means, LSQM is not highly dependent
on the initial point chosen to start the partitioning process, making it robust in
this regard. LSQM is primarily employed in data preprocessing tasks related to
data mining, enhancing the quality of numerical attribute discretization.

In summary, k-means clustering is a versatile and widely used clustering
algorithm with applications across various domains, focusing on minimizing
the squared distances between data points and cluster centroids. On the other
hand, LSQM serves a specific purpose in discretizing numerical attributes while
maintaining the order of data points, making it particularly valuable in data
preprocessing for data mining tasks.

4.2 The LADM Measure

For the LADM measure, we take the sum of the absolute differences of the
several partitions.

Definition 2 (Least Absolute-Difference Ordinate-Directed Impact Mea-
sure).
Given n ≥ 2 real-valued data points (< xi, yi >)1≤i≤n, we define the least
absolute-difference ordinate-directed impact measure for k-partitions (with k−1
cut-points) as follows:

min
i0=0<i′1<...<i′k−1<i′k=n

k∑

j = 1

∑

i′j−1<i”≤i′j

|yi” − µi′j−1<ϕ≤i′j
| (3)
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where the average of data values in a partition µa<ϕ≤b between indexes a and b
(a < b ≤ n) is defined as

µa<ϕ≤b =

∑
a<ϕ≤b

yϕ

b− a
(4)

5 Experimental Design

To understand how humans partition numerical factors, we designed a series
of graphs and asked several experts to partition the data given in the graphs.
Initially, to produce a diverse collection of graphs with different data points,
a set of graphs was shared and discussed with our own research team. The
team consists of three early-stage researchers and one senior researcher. These
graphs include step functions, linear functions, and mixed data graphs. Finally,
twelve graphs were selected to be shared with humans (see Figs. 1, 2 and 3).
These graphs are obtained from nine synthetic datasets (D1 to D9) and three
real-world datasets (D10 to D12). These synthetic datasets (D1 to D9) have
only two numerical attributes. The dataset D10 is a real-world dataset. The
data set, DC public government employees [16], contains 33,424 records of DC
public government employees and their salaries in 2011. This dataset is sourced
from the Washington Times via Freedom of Information Act (FOIA) requests.
The dataset D11 is Heart disease dataset [14], and it is sourced from the UCI
machine learning repository. This dataset has 13 attributes and 303 records.
We used attribute {Age} and {Cholesterol} for drawing the graph. The dataset
D12 is a New Jersey (NJ) school teacher salaries (2016) [26] sourced from the
(NJ) Department of Education. It contains 138715 records and 15 attributes.
We have taken only an initial 23000 rows from the dataset. We are interested
in the column {experience total} and {salary}. A copy of all these datasets is
available in the GitHub repository [17].

We designed a Google form by providing a series of graphs containing dif-
ferent types of numerical data points and relevant questions to collect human
responses and their perceptions about discretization. We put some constraints in
the Google form to know whether a response is submitted by DS/ML experts or
not. By employing this procedure, we compare and comprehend the perceptions
of both DS/ML experts and non-expert responders.

The Google form was sent to fifty DS/ML experts and non-experts to es-
timate the number of partitions and the ranges of these partitions to obtain
the cut-points. The following data was gathered and compiled from the experi-
ments: respondent identification (name), their email addresses, domain expertise
(DS/ML expert or non-expert), number of partitions identified, and ranges of
each partition.

6 Analysis and Result

Out of the fifty responses received via the Google form, two were incomplete;
therefore, we did not consider them for the analysis. From the rest of the forty-
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Fig. 1. Graphs for datasets D1 to D4.
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Fig. 2. Graphs for datasets D5 to D8.
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Table 1. The comparison of human perception to identify number of partitions based
on their profile.

Datasets Number of Partitions
Total responses from
DS/ML experts = 60%

Total Responses from
Non-expert People =
40%

% Responses % Responses

D1
2 93.3% 90%
3 6.67% 10%

D2
2 73.3% 60%
3 26.6% 40%

D3
2 0% 0%
3 93.3% 100%
4 6.66% 0%

D4
0 33.3% 20%
2 53% 70%
3 13.3% 10%

D5
0 93.3% 90%
2 0% 0%
3 6.6% 10%

D6

2 13.3% 30%
3 26.6% 0%
4 26.6% 40%
5 33.3% 30%

D7
2 60% 40%
3 20% 40%
4 20% 20%

D8
2 33.3% 60%
3 66.6% 30%
4 0% 10%

D9
2 73.3% 60%
3 26.6% 30%
4 0% 10%

D10

0 40% 40%
2 40% 30%
3 6.66% 20%
4 6.66% 0%
5 6.66% 10%

D11

0 53.3% 60%
2 26.6% 30%
3 20% 0%
4 0% 10%

D12

0 40% 20%
2 26.6% 30%
3 6.66% 30%
4 20% 10%
5 6.66% 10%
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Table 2. The comparison of human perceived cut-points with the LSQM and LADM
measures.

D P
Human Perception LSQM LADM

R Approx. near Cut-Points Cut-points Cut-Points

D1 2 92% 50(91.3%), 48(8.6%) 50 50
3 8% (48,60)(50%), (20,50)(50%) (20, 50) (20, 50)

D2 2 68% 50(88.2%), 52(11.7%) 52 52
3 32% (50,54)(37.5%), (20,53)(25%) (52, 54) (52, 54)

D3 3 96% (32,52)(62%), (30,52)(16.6%) (32,52) (32,52)
4 4% (20,32,52)(100%) (32,52,55) (32,52,60)

D4 0 28% NA NA NA
2 60% 20(86.6%), 25(13.3%) 20 20
3 12% (20,45)(66.6%), (20,30)(33.3%) (12, 24) (12, 25)

D5 0 92% NA NA NA
2 0% 0% 20 19
3 8% (14,28)(100%) (13, 26) (13, 26)

D6 2 20% 32(40%), 42(40%) 50(20%) 42 42
3 16% (42,68)(50%), (32,42)(25%) (32, 42) (32, 42)
4 32% (32,37,42)(87.5%), (33,37,43)(12.5%) (32, 37, 42) (32, 37, 42)
5 32% (32,42,37,68)(87.5%), (17,32,38,42)(12.5%) (32, 37, 42, 56) (32, 37, 42, 56)

D7 2 52% 40(84.6%), 50(7.6%), 36(7.6%) 35 33
3 28% (32,39)(57.1%) (32, 39) (32, 39)
4 20% (32,39,50)(60%), (41,47,53)(40%) (32,39,52) (32,39,52)

D8 2 44% 18(36%), 30(27%) 40 40
3 52% (28,47)(53.8%), (18,47)(23%) (13, 15) (40,45)
4 4% (18,47,54)(100%) (11, 13, 15) (13,15,18)

D9 2 68% 40(41%), 50(23.5%),47(23.5%) 15 13
3 28% (24,36)(57%), (36,47)(28.5%) (14, 50) (8,15)
4 4% (24,39,47)(100%) (14,50,52) (13,15,18)

D10 0 40% NA NA NA
2 36% 44(33.3%), 24(33.3%), 52(22%) 56 11
3 12% (20,32)(66.6%), (18,45)(33.3%) (11,56) (11,56)
4 4% (12,29,42)(100%) (49,50,56) (11,52,56)
5 8% (12,24,30,40)(100%) (11,49,50,56) (11,41,50,56)

D11 0 56% NA NA NA
2 28% 52(42.8%), 60(42.8%), 67(14%) 67 67
3 12% (48,68)(66.6%), (40,68)(33.3%) (67,70) (67,70)
4 4% (40,48,68)(100%) (51, 63, 67) (62,67,70)

D12 0 32% NA NA NA
2 28% 50(42.8%), 40(28.5%), 24(28.5%) 17 15
3 16% (22,32)(50%), (14,34)(25%), (27,44)(25%) (15,51) (14,38)
4 16% (9,31,58)(50%), (20,36,48)(25%),

(10,20,30)(25%)
(15,51,52) (10,17,38)

5 8% (16,28,36,44)(50%), (7,20,28,36)(50%) (15,50,51,52) (14,37,51,52)

D: Datasets; P: number of partitions; R: percentage of responses
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Fig. 3. Graphs for datasets D9 to D12.

eight responses, we divided the responses into two categories: expert responses
and non-expert responses.

Table 1 illustrates the comparison of human perception to identify the num-
ber of partitions between the DS/ML experts’ responses and non-expert people.
We received 60% responses from DS/ML experts and 40% of answers from non-
expert people. We analyzed that responses from both categories were opposite
for graph D8. Out of the total responses for D8, 33.3% responses of DS/ML
experts marked two partitions and 66.6% responses of experts marked three
partitions; however, 60% of non-experts marked two partitions, and only 30%
marked three partitions.

In graphs D3 and D5, we analyzed that no contributor (experts or non-
experts) marked two partitions. No non-expert contributors marked three parti-
tions for graph D6 and four partitions for graph D3, whereas 26.6% of DS/ML
experts identified three partitions for D6, and 6.66% experts marked four par-
titions in graph D3. For graph D10, 40% DS/ML experts and 40% non-experts
have marked no partition.

Table 2 illustrates the comparison between the results of human perception,
the LSQM and the LADM measure. In the initial four columns, we detailed
the dataset used, the count of partitions, the response percentage, and the ap-
proximate cut-points as observed by contributors. The last two columns present
the cut-points assessed by the measures. Table 3 describes the similarity per-
centage between cut-points provided by human perceived experiment outcome
and the LSQM and the LADM measures outputs. We have mentioned the cut-
points from responses near the LSQM and the LADM provided cut-points. We
determine the matching status by distributing the matching percentage into the
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Table 3. Similarity between human perceived, LSQM and LADM cut-points.

D P LSQM Cut-
Points

LADM Cut-
Points

Human Perceived
Cut-Points (Near to
LSQM Cut-Points)

Matching% Matching
status

D1 2 50 50 50 (91.3%) 91.3% Very
High

3 (20,50) (20,50) (20,50)(50%) 50% Medium

D2 2 52 52 52(11.7%) 11.7% Low
3 (52,54) (52,54) (50,54)(37.5%) 19% Low

D3 3 (32,52) (32,52) (32,52)(62%) 62% High
4 (32,52,55) (32,52,60) (20,32,52)(100%) 59% Medium

D4 2 20 20 20(80.6%) 80.6% Very
High

3 (12,24) (12,25) (20,30)(33.3%) 0% No match

D5 3 (13,26) (13,26) (13,26)(100%) 100% Very
High

D6 2 42 42 42(40%) 40% Medium
3 (32,42) (32,42) (32,42)(25%) 25% Low
4 (32,37,42) (32,37,42) (32,37,42)(85.7%) 85.7% Very

High
5 (32,37,42,56) (32,37,42,56) (32,37,42,68)(85.7%) 75% High

D7 2 35 33 36(7.6%) 0% No match
3 (32,39) (32,39) (32,39)(57%) 57% High
4 (32,39,52) (32,39,52) (32,39,52)(60%) 60% High

D8 2 40 40 30(27%) 0% No match
3 (13,15) (40,45) (18,47)(23%) 0% No match
4 (11,13,15) (13,15,18) (18,47,54)(100%) 0% No match

D9 2 15 13 40(41%) 0% No match
3 (14,50) (8,15) (24,36)(57%) 0% No match
4 (14,50,52) (10,17,33) (24,39,47)(100%) 0% No match

D10 2 56 11 52(22%) 0% No match
3 (11,56) (11,56) (18,45)(33.3%) 0% No match
4 (49,50,56) (11,52,56) (12,29,42)(100%) 0% No match
5 (11,49,50,56) (11,41,50,56) (12,24,30,40)(100%) 0% No match

D11 2 67 67 50(42.8%) 0% No match
3 (67,70) (67,70) (48,68)(66.6%) 0% No match
4 (51,63,67) (62,67,70) (40,48,68)(100%) 0% No match

D12 2 17 15 24(28.5%) 0% No match
3 (15,51) (14,38) (14,34)(25%) 0% No match
4 (15,51,52) (10,17,38) (20,36,48)(25%) 0% No match
5 (15,50,51,52) (14,37,51,52) (16,28,36,44)(50%) 0% No match

D: Datasets; P: number of partitions; R: percentage of responses
Very High: 80-100%, High:60-80%, Medium:40-60%, Low:1-40%, No match: 0%

following categories: VH (Very High), H (High), M (Medium), L (Low) and NM
(No match). The distribution of ranges is mentioned at the bottom of Table 3. It
is clear from Table 3 that human perceived cut-points and the cut-points identi-
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Table 4. Analysis of unmatched datasets in regard of number of partitions (#) for
LSQM, LADM and human perceived cut-points.

D P
LSQM Method LADM Method Human Perception

Remarks

LSQM cut-
points

LC LADM cut-
points

LC Human
Perceived
cut-points

LC

D8 2 40 Yes 40 Yes 30 Yes Matter of perception.
3 (13,15) No (40,45) No (18,47) Yes LSQM, LADM to be

improved.
4 (11,13,15) No (13,15,18) No (18,47,54) Yes LSQM, LADM to be

improved.

D9 2 15 No 13 No 40 Yes LSQM, LADM need to
be improved.

3 (14,50) Yes (8,15) No (24,36) Yes Matter of perception.
However, LADM needs
to be improved.

4 (14,50,52) No (10,17,33) No (24,39,47) Yes LSQM and LADM to
be improved.

D10 2 56 No 11 No 52 No This dataset is an ex-
ceptional case; random
cutpoints are obtained.

3 (11,56) No (11,56) No (18,45) Yes
4 (49,59,56) No (11,52,56) No (12,29,42) Yes
5 (11,49,50,56) No (11,41,50,56) No (12,24,30,40) Yes

D11 2 67 Yes 67 Yes 50 Yes Matter of perception.
3 (67,70) No (67,70) No (48,68) Yes LSQM to be improved.
4 (51,63,67) Yes (62,67,70) No (40,48,68) Yes Matter of perception.

However, LADM needs
to be improved.

D12 2 17 Yes 15 Yes 24 Yes This dataset is an ex-
ceptional case; random
cutpoints are obtained.

3 (15,51) Yes (14,38) Yes (14,34) Yes
4 (15,51,52) No (10,17,38) No (20,36,48) Yes
5 (15,50,51,52) No (14,37,51,52) No (16,28,36,44) Yes

D4 3 (12,24) Yes (12,25) Yes (20,30) Yes Matter of perception.

D7 2 35 Yes 33 Yes 36 Yes Matter of perception.

D: Datasets; P: number of partitions; LC: Logical Correctness

fied by the proposed measures LSQM and LADM do not match for the datasets
D8 to D12. In Table 4, we present an analysis and reason for not getting similar
cut-points for the datasets D8 to D12. If we look at Fig. 1(D8), then it seems
logical to have cut-points at the data points of 40 (LSQM, LADM cut-point)
and 30 (Human perceived cut-point) for two partitions on the X-axis. Humans
divided the scattered points into the first partition and dense data points into
the second partition. In contrast, both measures calculated the cut-point in the
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middle of the dense data points. This case can be observed as a matter of per-
ception for human perceived cut-points, while the cut-points marked by both
the measures seem analytically correct. For the cases of three partitions and
four partitions, human perceived cut-points (18, 47) and (18, 47, 54) are good,
but the cut-points provided by the LSQMmeasure and the LADM measure are
not satisfactory.

Similarly, in dataset D9, human perception identified a single cut-point at
40 for two partitions and two cut-points at (24, 36) for three partitions, which
intuitively makes sense. However,LSQM and LADM produced cut-points at 15
and 13 for two partitions, which are not analytically accurate. On the other
hand,LSQM cut-points (14, 50) align analytically, albeit it remains a matter
of perception. Even though the three partitions provided byLADM (8, 15) and
the four partitions by LSQM (14, 50, 52) and LADM (10, 17, 33) might seem
illogical, human-perceived cut-points (24, 39, 47) appear appropriate.

In dataset D11, the situation is again contingent on perception, with discrep-
ancies arising for both two partitions and four partitions in the case of LSQM.
For four partitions, LADM suggests cut-points (62, 67, 70), which lack logical
consistency. Meanwhile, for three partitions, both LSQM and LADM present
unexpected cut-points (67, 70).

Datasets D4 and D7 also lack matching results for three partitions and two
partitions, respectively. In the case of D4, both LSQM and LADM suggest cut-
points (12, 24) and (12, 25), while human perception identifies (20, 30) as the
appropriate cut-points. This instance can be attributed to varying perceptions.

Similarly, for D7, the proposed cut-points by LSQM and LADM for two
partitions are 35 and 33, respectively, which do not exactly align with the
human-perceived cut-point of 36. However, given the scattered distribution of
data points on the graph, the difference between the proposed measures’ cut-
points and the human-perceived cut-point is negligible. In this case, both sets of
cut-points can be considered suitable, further emphasizing the role of perception.
While these cut-points do not match precisely, it does not affect the correctness
of the measures due to the lack of similarity.

For datasets D10 and D12, the responses from contributors present a unique
challenge. In the case of D10, 40% of contributors indicated no partition, while
the remaining contributors marked random cut-points for two, three, four, and
five partitions. Similarly, for D12, 32% of contributors opted for no partition,
while 68% of contributors designated random cut-points for various partitions.
These random cut-points identified by humans are not easily aligned with the
cut-points derived from the proposed LSQM and LADM measures. Furthermore,
these random cut-points lack analytical correctness.

As a result, for datasets with such characteristics, it becomes difficult for
humans to identify the most appropriate partitions. The absence of clear patterns
or logic in the random cut-points makes it challenging to establish meaningful
partitions, emphasizing the complexity of the task in these scenarios.

The distribution of response percentages for each partition across the datasets
is visually represented in Fig. 4. Notably, datasets D5, D10, D11, and D12 ex-
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Fig. 4. Percentage Responses of partitions for each dataset.

hibit a significant prevalence of responses indicating no partition compared to
other partition numbers. Hence, it proves that for these specific datasets, human
participants struggled to form a definitive perception. It suggests that individ-
uals had difficulty forming a clear and consistent perception of these datasets,
making it unclear for them to identify appropriate cut-points.

It is worth highlighting that datasets D5 and D6 share a similar visual ap-
pearance. However, they received different responses in terms of cut-points. This
discrepancy can be attributed to the distinct distribution of data points within
each dataset. Notably, D6 did not receive any responses suggesting no partition,
while D5 lacked responses suggesting two partitions.

Conversely, for datasets D1, D2, D4, D7, and D9, the majority of responses
predominantly indicated the presence of two partitions. This indicates a higher
degree of consensus among contributors regarding the presence of two partitions
in these datasets.

Table 3 provides an overview of the alignment between human-perceived
cut-points and those observed by the LSQM and LADM measures. The anal-
ysis reveals that 25% of responses exhibited a Very High level of similarity,
25% demonstrated a High level of similarity, 18.7% displayed a Medium level
of similarity, and an additional 18.7% showed a Low level of similarity. When
considering the collective matching statuses, it becomes evident that approxi-
mately 68.7% of the responses closely resembled the cut-points identified by the
proposed LSQM and LADM measures. This analysis primarily pertains to the
initial datasets (D1 to D7), as random cut-points were observed in the responses
for datasets D8 to D12. These random cut-points in the latter datasets presented
challenges in aligning them with the analytically calculated cut-points generated
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by the proposed measures. Further details and explanations for the dissimilarity
in cut-points for datasets D8 to D12 can be found in Table 4.

7 Conclusion

This paper is the first step toward understanding the human perception regard-
ing partitioning numerical attributes. We meticulously examine the partitions
perceived by humans and compare them with the outputs generated by both
proposed measures. Our approach involved evaluating human perception by pre-
senting a series of graphs containing numerical data and subsequently compar-
ing human-perceived cut-points for partitioning with the results generated by
the LSQM and LADM measures.

The outcomes of this study indicate a close alignment between the cut-
points produced by the proposed measures and those perceived by humans.
Particularly for the initial datasets (D1 to D7), our proposed measures yielded
results that closely approximated human perception. However, certain excep-
tional cases, such as datasets D10 and D12, highlighted situations where humans
faced challenges identifying optimal partitions. The results also demonstrate that
both measures yield approximately similar outcomes. These findings represent
a promising step forward, signifying progress in the pursuit of advancing ARM
by identifying numerical attribute partitions that reflect best the impact of an
independent numerical attribute on a dependent numerical attribute. In future
research endeavors, we intend to explore inter-measures for comparing partitions
with varying numbers of k-partitions.
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tionalization. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., A
Min Tjoa, Khalil, I. (eds.) Proceedings of DEXA’2019 - the 30th International Con-
ference on Database and Expert Systems Applications. LNCS, vol. 11706, p. xvi.
Springer, Heidelberg New York Berlin (2019)

10. Etemadpour, R., da Motta, R.C., de Souza Paiva, J.G., Minghim, R., de Oliveira,
M.C.F., Linsen, L.: Role of human perception in cluster-based visual analysis of
multidimensional data projections. In: 2014 International Conference on Informa-
tion Visualization Theory and Applications (IVAPP). pp. 276–283 (2014)

11. Eubank, R.: Optimal grouping, spacing, stratification, and piecewise constant ap-
proximation. Siam Review 30(3), 404–420 (1988)

12. Fayyad, U., Irani, K.B.: Multi-interval discretization of continuousvalued attributes
for classification learning, 1993. In: 13th Int’l Joint Conf. Artificial Intelligence
(IJCAI) (1993)

13. Garcia, S., Luengo, J., Sáez, J.A., Lopez, V., Herrera, F.: A survey of discretiza-
tion techniques: Taxonomy and empirical analysis in supervised learning. IEEE
Transactions on Knowledge and Data Engineering 25(4), 734–750 (2012)

14. Janosi, A., Steinbrunn, W., Pfisterer, M., Detrano, R.: Heart Disease. UCI Machine
Learning Repository (1988)
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