
Tallinn 2024

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Diego del Rio Manzanas 223594IVCM

Securing Remote Connectivity: A Systematic

Penetration Testing Analysis of a Telepresence

Robot

Master's thesis

Supervisor: Shaymaa Mamdouh Khalil

 MSc

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Diego del Rio Manzanas 223594IVCM

Turvalise kaugühenduse loomine:

Kaugosalusroboti süstemaatiline läbistustesti

analüüs

Magistritöö

Juhendaja: Shaymaa Mamdouh Khalil

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Diego del Rio Manzanas

10.05.2024

4

Abstract

Telepresence robots represent a technological advancement with transformative

potential across multiple sectors, facilitating remote communication and interaction.

However, their integration into various environments introduces inherent security

vulnerabilities that must be carefully addressed to mitigate risks and protect sensitive

data. This thesis presents a systematic black-box penetration testing methodology for a

comprehensive security analysis of the cyber security of a telepresence robot. The

proposed methodology is based on PatrIoT for the test framework and uses the STRIDE

threat model. The four-phase process gathered information about the telepresence robot

and used it to generate a data flow diagram representing the whole system. Potential

threats were derived based on STRIDE for each component of the diagram. Then,

during the planning phase, these threats were analysed to generate attack tests that

attempted to exploit the robot's weaknesses. Based on the success of the attack tests,

new ones were generated in several iterations, to ensure that the entire attack surface

was covered. Once all the tests had been run, a report was generated with the results of

the penetration testing process. Technical details of successful and unsuccessful tests

were documented, along with potential fixes that could be applied to strengthen the

security of the telepresence robot and its configuration. Specific details are omitted in

this thesis to protect the robot's manufacturer's privacy and avoid legal issues. Different

vulnerabilities and misconfigurations were found, which allowed to take control of the

robot and get information from users and administrators that connect to it. Based on

those discovered weaknesses and the proposed improvements, this study contributes to a

better understanding of cybersecurity issues affecting telepresence robots. It also

provides valuable information that can help manufacturers and owners not only of the

robot studied but also of other products with similar characteristics.

This thesis is written in English and is 84 pages long, including 9 chapters, 8 figures and

12 tables.

5

List of abbreviations and terms

IT Information Technology

IoT Internet of Things

ADB Android Debug Bridge

SSH Secure Shell

TCP Transmission Control Protocol

SDK Software Development Kit

DFD Data-Flow Diagram

ARP Address Resolution Protocol

6

Table of contents

1 Introduction ... 10

1.1 Research Problem ... 10

1.2 Scope, Goals and Limitations ... 11

1.3 Novelty and Contribution ... 12

2 Background .. 14

2.1 Related work ... 16

2.2 PatrIoT .. 22

2.3 STRIDE .. 25

3 Methodology .. 28

3.1 Tools ... 29

4 Reconnaissance .. 31

4.1 Passive scanning ... 31

4.2 Active scanning .. 33

5 Threat Modelling ... 35

5.1 Data-Flow Diagram .. 35

5.2 STRIDE .. 38

5.2.1 Spoofing .. 39

5.2.2 Tampering .. 40

5.2.3 Repudiation .. 44

5.2.4 Information Disclosure .. 44

5.2.5 Denial of Service ... 47

5.2.6 Elevation of Privilege .. 49

5.3 Risk Scoring ... 50

6 Exploitation ... 53

6.1 Planning .. 53

6.2 Execution .. 55

7 Reporting ... 69

8 Discussion .. 72

7

9 Summary .. 76

References .. 78

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 84

8

List of figures

Figure 1. Telepresence Robots [28]. ... 16

Figure 2. Methodology used, based on PatrIoT. .. 28

Figure 3. Modes of operation as a data-flow diagram. ... 36

Figure 4. Telepresence robot as a data-flow diagram. .. 36

Figure 5. Test tree planning. ... 55

Figure 6. Man-in-the-middle attack. ... 66

Figure 7. Test tree results. .. 68

Figure 8. Test tree with improvements applied. ... 73

9

List of tables

Table 1. Susceptibility of DFD elements to STRIDE threats [74]. 27

Table 2. Summary of information gathered during Reconnaissance phase. 34

Table 3. Data-flow diagram identifiers. ... 37

Table 4. Spoofing threats. ... 40

Table 5. Tampering threats. .. 42

Table 6. Repudiation threats. .. 44

Table 7. Information Disclosure threats. .. 45

Table 8. Denial of Service threats. ... 48

Table 9. Elevation of Privilege threats. .. 49

Table 10. STRIDE model of the data-flow diagram. ... 50

Table 11. Risk Scores. .. 52

Table 12. Report summary. .. 69

10

1 Introduction

In an era of technological advancements and the proliferation of interconnected devices,

telepresence robots have emerged as a groundbreaking solution to solve the challenges

of physical location barriers. Telepresence robots provide the experience of being

present in a particular location, allowing remote interaction to deliver an experience

similar to the one the individual controlling the device would have if he were on-site. To

accomplish that, the robots are equipped with audio and video capabilities as well as

mobility. This hardware allows the user to see, hear and move through the environment

[1]. This facilitates real-time presence by providing remote interaction and

communication for users in geographically distant locations, blurring the line between

virtual and physical spaces.

Telepresence robots have been used in areas like education [2], healthcare [3] or home

applications [4]. Despite the advantages of telepresence robots, the combination of their

hardware makes them capable of gathering sensitive information about their

surroundings and integration in critical environments [5], raising concerns about their

security and integrity. These security concerns can be addressed by performing

penetration testing. It is defined as a set of activities that aim to identify and exploit

security vulnerabilities, showing the effectiveness of the security measures implemented

on a system [5]. The discovery of the threats and vulnerabilities affecting the system is

the first step towards their mitigation and is key to ensuring awareness and achieving

better security.

1.1 Research Problem

Although the usage of telepresence robots is still minimal, and they “have only been

studied in controlled or small scale installations” [6], they are increasingly being used in

real-world scenarios. Despite the growing popularity and interest, there is a significant

lack of comprehensive studies investigating their cyber security.

11

This thesis aims to address this problem by actively identifying and analysing the

security risks and vulnerabilities through penetration testing. For this topic, the

following research questions are proposed:

RQ1: What are the potential cyber security threats affecting the telepresence robot?

RQ2: How can systematic penetration testing be adapted to the telepresence robot?

RQ3: What method can be used to choose the tests to be performed?

RQ4: What improvements can be made to enhance the cyber security of the

telepresence robot based on the findings from the penetration tests?

The answer to these questions, combined with the systematic methodology of stating

and analysing risks, would help improve the security of telepresence robots and,

therefore, benefit their manufacturers and users.

1.2 Scope, Goals and Limitations

The primary goal of this thesis is identifying potential cyber security vulnerabilities

within the selected telepresence robot. Through structured penetration testing, this

research aims to evaluate the effectiveness of the existing cyber security measures

implemented in the robot to mitigate cyber security threats. By performing this research,

the threats affecting cybersecurity robots are also discovered, even if they are not

associated with a vulnerability. This means that some of the potential threats discovered

are not exploitable but are useful in shaping the cybersecurity risks of these devices.

This contributes to a threat modelling of general telepresence robots with similar

characteristics. Furthermore, the study seeks to propose and recommend improvements,

based on the outcome of the penetration tests, to enhance the cyber security measures of

telepresence robots. In summary, this research seeks to advance the understanding of

cyber security issues related to telepresence robotics, provide actionable insights for

improving the security of these systems, and offer valuable guidance to manufacturers

and users.

This research focuses on conducting a comprehensive penetration testing analysis on a

specific brand and model of telepresence robot available in the market. The scope of

this study is restricted to the security assessment of the aforementioned robot. This

12

means it is unique based on its hardware configuration, software ecosystem, user

configuration and integration with various environments.

To safeguard the security and privacy of the robot’s manufacturer, the telepresence

device's brand, model and main characteristics are omitted in this document. In addition,

the attacks are limited to only affect the device locally. Even though the device has

internet connectivity and relies heavily on the cloud, no attacks target it or any remote

asset. This is to avoid legal disputes since the cloud provider hasn’t explicitly agreed on

testing their endpoint. Contact attempts to ask the manufacturer for collaboration were

unsuccessful, as no response was received. Finally, it is important to note that the robot

being analysed is currently being used during the development of this thesis. As a result,

this research is limited by the need to avoid disrupting its service. Any attacks on the

device must be reversible so that the robot can be restored to its default configuration

and resume normal operation.

It is essential to note that the findings and outcomes of this research are specific to the

selected robot model and characteristics and might differ when applied to different

devices. All the aspects narrowing the scope result in the impossibility of generalising

this research as it doesn’t cover the full spectrum of threats and vulnerabilities affecting

this particular robot. Also, replication on other devices must adapt the methodology to

fit the robot’s hardware, software, and configuration combination.

1.3 Novelty and Contribution

The novelty of this research lies in its focus on penetration testing of telepresence

robots, a topic that has not been extensively explored in the cyber security field. There

are studies on the cyber security of other IoT devices, including robots [7] and some of

them address areas similar to those where telepresence robots are used, like medicine

[8] or people care [9]. However, the unique functionalities and other usage scenarios of

telepresence robots require a dedicated security investigation, which is the research gap

covered by this thesis. This research employs penetration testing techniques tailored to

telepresence robots' specific characteristics and hardware configuration, providing new

insights into their potential vulnerabilities.

13

This research makes significant contributions to both academia and industry. For

academia, it will enrich the body of knowledge in the cyber security field by shedding

light on an unexplored area. The methodology and findings could serve as the

foundation for future research in this domain. For the research robot industry, the

findings could be instrumental in enhancing the security of their products. Even though

it is likely that the vendor already applied a secure by design process and performed

threat modelling, it is not public information. The provided threat modelling in this

thesis might help telepresence robot vendors ensure the completeness of their threat lists

and also guide them in using threat modelling for planning penetration testing in the

future. In addition, with the findings of this research, we believe their developing teams

can design more secure systems by understanding the potential vulnerabilities that affect

their products. Companies would benefit from a decreased probability of cyber-attacks,

directly impacting their financial losses and increasing reputation and user trust.

Moreover, this research could also help users of telepresence robots by raising

awareness about these devices' potential cyber security risks. This could encourage

users to adopt safer practices and configurations when using these robots, also

contributing to the overall security of these systems.

In conclusion, this research has the potential to significantly advance our understanding

of cyber security issues related to telepresence robotics and contribute to the

development of more secure systems.

This thesis is divided into nine chapters. This first chapter, Introduction, presents the

topic, including the research problem, scope, goals, limitations, novelty and

contribution. The second chapter, Background, includes the information needed for a

better understanding of this thesis and the related work. The third chapter,

Methodology, explains in detail the approach followed for the development of the work

and the tools used to achieve it. Its application is shown in subsequent chapters,

Reconnaissance, Threat Modelling, Exploitation and Reporting. They include the

information gathering, threat elicitation, attack attempts and findings reporting

respectively. The eighth chapter, Discussion, shows the interpretation of the results and

their implications. Finally, the Summary chapter provides a concise overview of the

research.

14

2 Background

“Robots have become incorporated into daily life over the last half century: what was

once only science fiction has now become a reality.” [10]. Today, robots are widespread

and help humans in repetitive or demanding tasks. The number of robots operating

around the globe is estimated to be 3.5 million [11].

The term telepresence was first used in 1980 by Marvin Minsky [12], describing a

human operator who can be physically present at a remote location thousands of miles

away. According to his paper, the operator managed to do so through interaction with

his actions and sensing feedback provided by teleoperation technology.

Based on that initial idea, telepresence robots are defined as “mobile robot platforms

capable of providing two way audio and video communication” [13]. They can also be

determined based on their capabilities, “embodied video conferencing on wheels” [14].

These days, people located far away from each other communicate through video chat

applications such as Skype, WhatsApp or FaceTime. Telepresence is an attempt to make

those online interactions as close as possible to their equivalent if they happened in the

physical world.

The first company producing a telepresence robot did so for the health industry. They

were also the first to introduce presence robots in hospitals [15]. Since then, several

other manufacturers have been developing telepresence robots. Although they still don’t

have great popularity, with their market valued at 334 million dollars, the rising demand

from the healthcare industry is expected to increase their usage. According to an

independent business report, this would raise the market value to 1.6 billion dollars in

the next ten years [16].

Since their appearance, different iterations of telepresence robots have evolved with

newer hardware features, making them capable of doing more tasks. Their hardware

includes the following elements:

15

▪ Video capabilities: For capturing input video to visually sense the environment

by the operator, most robots rely on cameras. Different models have used simple

cameras, high resolution, motorised pan/tilt cameras or 360-degree video

equipment for a full view of the surroundings [17]. More advanced telepresence

robots combine the images gathered by the cameras with laser scanners for a

more precise mapping of the physical space [18]. Most robots also feature a

screen so that the people physically interacting with the robot can see the

operator or any other image or video that wants to be displayed to the viewer.

▪ Audio capabilities: To provide two-way audio, telepresence robots feature a

combination of microphones with loudspeakers. Microphones record the audio

around the robot and deliver it to the operator. Then, the operator can reply

through the robot’s speakers so he can be heard by the people surrounding the

machine. Advanced robots in the market use a microphone array that can

localise audio sources, separate sounds, or suppress echo [19].

▪ Mobility: Almost all telepresence robots feature some mobility mechanism to

control and change the physical location of the robot. Most mobility mechanisms

include wheels, but a minority of them feature human-like walking via

humanoid robots [20]. In combination with the video and surrounding sensing

capabilities, most commercial robots feature obstacle detection and avoidance

mechanisms [21]. Robots can be guided autonomously, semi-autonomously, or

manually by the operator using a phone, a computer via keyboard and mouse, or

specific controllers. Although it can change in the future due to high-tech

hardware and the generalisation of artificial intelligence usage, most of the

current robots are operated manually. Adapted hardware for people with

disabilities has also been tested using eye trackers [22] or virtual reality headsets

[23]. However, there are exceptions with robots that don’t provide mobility

mechanisms but instead are static, as shown in previous literature [24].

Telepresence robots are not only restricted to two individuals having a conversation, but

they have been used in other more ambitious fields requiring a human presence in

remote areas that are not easily accessible, like underwater [25], Antarctica [26] or Mars

[27]. However, since those robots have unique, different characteristics from the ones

available in the market to fulfil their particular environments, this study will not cover

16

them. Figure 1 shows examples of telepresence robots for a better visualisation of their

characteristics and use cases.

Figure 1. Telepresence Robots [28].

2.1 Related work

Data and information security are two aspects that are highly concerning for companies

today [29]. One widely used method of improving security in an organisation is

penetration testing. It is described as “a structured process to test an organisation's

computing base looking for vulnerabilities like system configuration, software and

hardware errors, and its operational process in order to identify the weakness” [29].

This general definition can be applied to all aspects of an organisation. It is possible to

perform penetration testing on IT systems but also on some physical assets, such as

trying to break into an office using ordinary locksmith methods [30]. However, only IT-

related penetration testing has been considered for this research. This includes software

and hardware but excludes other methods, such as social engineering attacks.

Penetration testing usually tries to cover all the attack methods that apply to a specific

system based on its hardware and software characteristics and its environment. This

means that the attacks vary depending on the hardware installed, the wireless

connectivity available, the software versions installed and the people or employees with

access to the system.

17

According to a Penetration Testing guide published by Georgia Weidman [31], a typical

penetration testing process can have the following phases:

1. Pre engagement: Since penetration testing techniques are intrusive, the attacker must

agree with the system's owner on the aspects subject to attack. The scope of the test

must be clear, but also the contact information if a critical vulnerability is

discovered. Getting a signed authorisation stating that the attacks are allowed and

limiting liability is also a good recommendation.

2. Information gathering: Information is critical for the success of penetration testing.

This stage aims at collecting as much information about the target as possible. This

includes public information, a process known as OSINT (Open Source

INTelligence), and other tools to scan networks, such as port scanners.

3. Threat modelling: It is a set of techniques “used to model and analyse technology

systems and services to understand better how that system or service might be

attacked” [32]. This process leads to a set of threats that can potentially be attacked.

4. Vulnerability Analysis: This stage aims to actively discover vulnerabilities,

loopholes that could “be utilized by attackers to launch attacks on technical assets”

[33].

5. Exploitation: Based on the discovered vulnerabilities, exploits are run against the

target in an attempt to access or modify the system’s state. An example exploit is

logging in with default passwords and gaining access to the attacked system.

6. Post exploitation: If the exploits were successful, this phase gathers information

about the system from inside, trying to propagate along the network or escalate

privileges. It is a phase when, once some damage is done, attempts to make things

worse.

7. Reporting: This phase involves the documentation of the whole process and shows

the findings of it. Any vulnerability and attack method must be clearly stated in this

document so that the organisations can remediate the security risks.

Although these phases can be included in penetration testing, they are not present in all

methodologies. Effective penetration testing must be structured and standardised,

following a well-defined framework or methodology.

Frameworks in the IT industry provide a structured approach and a set of principles,

concepts, guidelines and best practices. Ralph E. Johnson [34] described them as “the

18

skeleton of an application” and “a reusable design of all or part of a system that is

represented by a set of abstract classes and the way their instances interact”. Avison and

Fitzgerald [35] defined a methodology as “a collection of procedures, techniques, tools

and documentation aids”. Wilhelm mentioned in his book [36] that frameworks focus

primarily on processes, activities and tasks in a penetration testing context, whereas a

methodology encapsulates them. Both concepts have similarities, but methodologies

offer a stricter approach. They are usually more detailed and include step-by-step

procedures. They also specify tools and strategies at every stage of the process. In

practice, they can both be used indistinctly depending on the use case of the penetration

testing process and the system subject to the analysis. Some research texts even use both

words to call the same concept within the same text as if they were synonyms, so for

this thesis, the choice of their naming is based on the sources used.

Since penetration testing is a procedure that is widely used in the industry, several

studies have applied it to a wide range of systems. The primary methodologies and

frameworks that can be used for the purpose of penetration testing according to different

studies [37], [38] are:

▪ Open Source Security Testing Methodology Manual (OSSTMM): A peer-

reviewed manual providing a scientific methodology for characterising

operational security [39]. The guidelines offer verified information so the testers

don’t need to rely on best practices, but at the same time, that implies an

increased complexity and demand for resources [39].

▪ Payment Card Industry Data Security Standards (PCI-DSS): It is a standard

ensuring the security of all operations related to credit card information and

payment [40]. This standard is helpful in the context of penetration testing for

analysing the security risks of a system that accepts payment operations.

▪ Open Web Application Security Project (OWASP): This open-source project

was designed to combat insecure software. It was initially intended for web

security, its main purpose. For this reason, it can be used to test web pages

successfully using the Web Security Testing Guide (WSTG) [41]. However, the

same project also offers other standards that can be used for application

penetration testing, such as The OWASP Mobile Application Security Testing

Guide [42].

19

▪ NIST SP 800-115: Created by the National Institute of Standards and

Technology, this technical guide is intended to assist organisations in

performing security tests. Practical recommendations for the design,

implementation and maintenance of security tests [43] serve to find

vulnerabilities in a system or network.

▪ Penetration Testing Execution Standard (PTES): This standard sets seven stages

to cover the penetration testing process, as explained above by the guide

published by Georgia Weidman [31]. This set of guidelines and best practices

aims to standardise the penetration testing approach, ensuring consistency

throughout the process.

In addition to those alternatives, a new vulnerability research methodology, PatrIoT,

specifically crafted for IoT devices emerged in November 2022 [44]. It was released by

the Division of Network and Systems Engineering of the KTH Royal Institute of

Technology. According to its documentation [44], it provides a structured methodology

covering the whole penetration testing process, supplementing it with valuable

information like the Compilation of Top 100 Weaknesses, a list of the most common

weaknesses in IoT devices. It also includes a custom simplified risk scoring system and

different guidelines. This methodology is beneficial for testing IoT products, which

often have unique security challenges compared to traditional IT systems. This

methodology has been previously used in several studies testing the security of different

IoT devices, such as a Smart Garage Door [45], a drone [46] or a vacuum robot [47].

Even though IoT penetration testing has been achieved using general-purpose

methodologies in previous literature [48], this research could benefit from an IoT-

specific approach.

Apart from those penetration testing methodologies, other threat modelling frameworks

can be useful in penetration testing. A threat modelling framework is aimed to identify

all possible threats to the system. Mitigation techniques can also be included in the

threat models. The threat models can be combined with the methodologies and

frameworks described above to represent the security risks. Commonly used methods

[49], [50] are:

20

▪ STRIDE is the most widely used threat modelling methodology [51]. It covers

six different threat categories: Spoofing, Tampering, Repudiation, Information

Disclosure, Denial of Service and Elevation of Privilege.

▪ LINDDUN: It is a privacy threat modelling framework providing a systematic

approach to privacy threat assessment [52]. The threats affecting the system are

assigned into the types that give this framework its name: Linking, Identifying,

Non-repudiation, Detecting, Data Disclosure, Unawareness and Non-compliance

[53]. Similar to STRIDE modelling, this methodology is also used to identify

threats to a system, but it focuses on those affecting privacy.

▪ PASTA: Also called Process for Attack Simulation and Threat Analysis, it is a

risk-centric methodology. It includes seven stages to align business objectives

and technical requirements: Defining Objectives, Defining Technical Scope,

Decomposing the Application, Analysis Threats, Vulnerability Analysis, Attack

Analysis and Risk and Impact Analysis. This approach focuses on business

impacts and protecting the most valuable assets [54].

▪ CORAS: This approach provides a customised threat and risk modelling

language. It facilitates the graphical representation of a system but also provides

guidelines on how to use the method to carry out practical risk analyses. [55].

▪ TRIKE: An asset-centric threat modelling approach that accomplishes this by

generating threat models reliably and repeatedly. For this approach to be

successful, it is key to understand the system completely. Communication with

stakeholders is also a big part of this approach [56]. Since Black Box penetration

testing is used, this approach is not suitable for this research work.

▪ Attack Trees: This method provides a methodical way of describing the security

of systems based on different types of attacks. The attacks on a system are

represented in a tree structure where the goal is the root node, and the ways of

achieving the goal are represented as leaf nodes [51]. Attack Trees are

sometimes combined with other methodologies, such as STRIDE.

Since telepresence robots have audio and video recording capabilities, they handle

sensitive information, so privacy is a big issue to assess. While LINDDUN can assess

privacy more effectively, other widely used approaches like STRIDE can also cover

non-privacy-related threats, such as Denial of service.

21

Finally, to give more background to the academic research, it is necessary to establish

the type of penetration testing carried out in this work. There are three main types of

penetration testing depending on the knowledge of the system to be attacked [57]. In the

Black Box Testing type, limited information about the organisation is available to the

pen-tester. They use methods such as fingerprinting or footprinting to gather

information about the system subject to the attack. This type is more challenging as it

requires the tester to perform additional steps to get knowledge that, in the best case, is

equivalent to White Box Testing, the second type. In this type, details of the system to

be attacked are provided to the pen-tester, including network-topology documents,

assets or any other valuable information. This way, testers have full knowledge of the

system's internal network. Finally, the Grey Box Testing type is only recognised by

some researchers and ignored by other studies [58]. This scenario is in between White

and Black Box Testing. Therefore, testers have partial knowledge about the systems to

be attacked. Gathering additional information might be required to perform accurate

threat modelling. The type used in this research is Black Box Testing. Due to the code

not being provided, a combination of LINDDUN and STRIDE for threat modelling was

attempted at an early stage of this thesis, but it was unsuccessful. Even though

LINDDUN seemed appropriate for this purpose, its application revealed that it requires

a deep understanding of the software implementation. There were several sections

where it was required to fully understand the handling of every data element and the

applicability of law and regulations, which was unfeasible given the lack of access to

the code running on the telepresence robot and its cloud provider.

There exists a lack of studies analysing the cyber security of telepresence robots. From

all sources consulted it was only possible to find a limited number of references

analysing those devices. In 2017, Rapid7 identified multiple vulnerabilities in the

Double Robotics Telepresence Robot [59]. The first vulnerability, R7-2017-01.1,

allowed an unauthenticated user to access sensitive device information, including device

serial numbers, current and historical driver and robot session information, device

installation keys, and GPS coordinates. This could be achieved by manipulating the

URL parameters in the API calls. The second vulnerability, R7-2017-01.2, was related

to static user session management. The access token, created during account assignment

to a robot, was never changed or expired. If this token was compromised, it could be

used to take control of a robot without a user account or password. The third

22

vulnerability, R7-2017-01.3, was associated with weak Bluetooth pairing. The pairing

process between the mobile application (iPad) and robot drive unit did not require the

user to know the challenge PIN. Once paired with the robot drive unit, a malicious actor

could download the Double Robot mobile application from the Internet and use it to

take control of the drive unit.

In 2018, Zingbox published multiple vulnerabilities found in the robot Celia

manufactured by Vecna [60]. The first vulnerability, CVE-2018-8860, allowed the

firmware to be intercepted when the robot downloaded updates as they were transferred

using HTTP. This firmware contained hardcoded credentials registered under CVE-

2018-8858. The third vulnerability, CVE-2018-8866, allowed remote code execution on

most GET parameters due to the lack of proper input validation. The third vulnerability,

CVE-2018-17931, also allowed code execution by inserting a USB stick with the code

contained in a particular file name executed on boot. The vulnerability CVE-2018-8858

combines different sensitive information disclosed by the robot, including credentials,

chat conversations and pictures. Lastly, the vulnerability CVE-2018-17933 allowed the

execution of sensitive XMPP commands, resulting in the disclosure of the camera feed.

In 2020, McAfee released the results of a security analysis of the Temi telepresence

robot [61]. The first vulnerability, CVE-2020-16170, was due to hardcoded credentials.

CVE-2020-16168 revealed an origin validation error, CVE-2020-16167 showed a lack

of authentication on a critical function and on CVE-2020-16169 there was an

authentication bypass. These three related works on cyber security on telepresence

robots show not only potential vulnerabilities that could be found on the device

analysed in this thesis but also shows the methodologies used, in all cases requiring first

to extract the software and then perform an analysis of the code.

2.2 PatrIoT

PatrIoT is a vulnerability research methodology that evaluates the cybersecurity aspects

of different IoT devices. Traditional penetration testing methodologies often prove

inadequate in addressing the unique vulnerabilities of IoT ecosystems. Consequently,

specialised approaches like the PatrIoT methodology have emerged to provide a

practical and agile framework for IoT security assessments. It was revealed in

November 2022 by KTH Royal Institute of Technology, and therefore, it’s still not as

23

widely used as other methodologies because it is still relatively unknown. However, one

of its advantages is that it is explicitly designed for IoT devices, making it ideal for this

thesis.

PatrIoT offers a four-stage methodology built upon four key elements to provide

support during those stages: Logical Attack Surface Decomposition, Compilation of

Top Weaknesses, Lightweight Risk Scoring and Step-by-Step Penetration Testing

Guidelines [44]. The element Logical Attack Surface Decomposition is used in all

phases to provide segmentation of the attack surfaces in an attempt to achieve

completeness. The attack surface is logically decomposed based on the technology used,

which is divided into seven surfaces: Hardware, Firmware, Radio, Network, Web,

Cloud, and Mobile. The Hardware surface includes the system's architecture, as any

other computing device, and the device’s specific features, such as data sensors, motors

or other additional attachments. Firmware combines the operating systems with the

utilities installed and the configuration applied to the device. Radio covers the local

connectivity, usually wireless connections between the devices or controllers. Network

targets the network service and connectivity, usually Wi-Fi, making the device remotely

available. The Web covers the web application managing the device. The Cloud surface

involves the communication API connecting the device and the server. Finally, Mobile

covers the controlling application, usually installed on phones, to allow access and

control of the IoT device. With the surface decomposed, it is easier to target each of

them individually to assess their specific threats independently.

The first stage is Planning, where it is necessary to define the scope of the tests, gather

information about the device to be tested and discover information about it. The

scanning can be done actively and passively. Active scanning directly interacts with

systems and devices, sending probes and packets to elicit responses, revealing details

like open ports, services, and potential vulnerabilities. This provides in-depth

information but generates noticeable network traffic. Passive scanning analyses existing

network traffic, gleaning information without direct interaction and combining it with

information publicly available. For this stage, the first key element is used to ensure the

completeness of the planning stage: Logical Attack Surface Decomposition.

In the second stage of the methodology, Threat Modelling is performed. This involves

eliciting the threats affecting the system, analysing the potential vulnerabilities that

24

could lead to the threats and ranking that information using risk scoring to prioritise its

analysis. The second key element, Compilation of Top Weaknesses, is used to guide the

threat modelling process. This compilation includes a list of 100 security weaknesses

that could affect an IoT device. This list is derived from the OWASP IoT Top 10 project

[62], which contains the top ten most critical security risks in the IoT space. In addition,

this list is enriched with the CWE Mitre’s project [63], a list of common weaknesses

affecting software and hardware. For firmware vulnerabilities, the OWASP Firmware

Security Testing Methodology (FSTM) [64] has also been used as a source for the

Threat Traceability Matrix. Finally, for threats affecting the control websites and

applications, the OWASP Web Security Testing Guide [65] and OWASP Mobile

Security Testing Guide [66], respectively. This list is enriched with clear descriptions,

risk impacts, and severity values to assess risk scoring, which is the next element. Once

the threats are modelled, the Lightweight Risk Scoring is used to prioritise them. It

provides a more straightforward approach to other scoring systems, like the Common

Vulnerability Scoring System (CVSS) with eight parameters [67] or OWASP’s risk

rating approach with 16 parameters [68]. This custom-proposed approach derives from

the well-known DREAD method but only considers three parameters on a scale of one

to three to output a score for each risk. Those parameters are Impact, Coverage and

Simplicity. Default values are provided for Impact, with value 3 for remote code

execution, 2 for authentication bypass, weak authentication or authorisation, tampering,

and privilege escalation, and 1 for information disclosure and denial of service.

Coverage is determined based on the affected users, with a value of three if all users are

affected by the threat, two if it only affects a group of users or one otherwise. For the

Simplicity parameter, if exploit code is found to be executed without modification, it

receives the value three; if the code needs to be modified, it scores two, and if it needs

to be developed from scratch, the parameter is set to value one. Once the parameters are

set, a formula is used to compute the final risk score:

𝑅𝑖𝑠𝑘 =
𝑖𝑚𝑝𝑎𝑐𝑡 + 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 + 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦 ∗ 3

5

The third phase, Exploitation, runs exploits for the vulnerabilities found in the previous

stage. Those exploits can be gathered from common vulnerabilities or specially crafted

for the device. If the system is successfully hacked, elevation of privileges is attempted

to gain full control of the device. The fourth key element, Step-by-Step Penetration

25

Testing Guidelines, is used to support this phase. During penetration testing, it is usual

to find online guidelines for penetration testing of the surfaces Network, Web, Cloud,

and Mobile since they are common to most IT scenarios. However, step-by-step

guidelines are provided for the surfaces that are IoT-specific, Hardware, Firmware and

Radio. This ensures a simplified exploitation stage and consistency across the

assessment of different devices, reducing the risk of overlooking crucial steps.

Finally, the last phase is Reporting, which documents the findings of the penetration

testing process. It includes details about discovered vulnerabilities, exploited

weaknesses, successful privilege escalation attempts and, optionally, recommendations

for remediation and mitigation.

PatrIoT methodology covers the complete penetration testing process, guiding and

providing helpful information along the different phases. Additionally, it accomplishes

its purpose in a flexible way, not limiting the specific methodologies to be used in each

phase but only suggesting them. Any language and method can be used for threat

modelling, and the same extends to other stages like risk scoring or reporting. In

addition to being explicitly designed to address the cybersecurity issues of IoT products,

all those features made it the right choice for this research.

2.3 STRIDE

STRIDE is a threat modelling framework developed by Microsoft to help identify and

address security vulnerabilities in software products [69]. It stands for:

▪ Spoofing: Impersonating a legitimate user, system or entity to gain unauthorised

access. This could include impersonating a legitimate user or masquerading as a

trusted system component.

▪ Tampering: Modifying data without authorisation. This includes altering

information in transit, modifying stored data, or tampering with the integrity of

system software or hardware.

▪ Repudiation: Denying an action performed, making it difficult to trace the

perpetrator. This could include users disowning their activities or systems failing

to log crucial events.

26

▪ Information Disclosure: Exposing confidential information to unauthorised

individuals. This includes the unintended release of confidential data such as

credentials.

▪ Denial of Service: Making a system unavailable or unusable. The aim is to

disrupt or impair the normal functioning of a system, rendering it temporarily or

permanently unavailable to users.

▪ Elevation of privilege: Gaining unauthorised access to higher levels of

permissions within a system. Attackers aim to escalate their permissions to

manipulate or control the system beyond their legitimate scope, such as gaining

root access.

By systematically analysing these six threat types, the STRIDE model enables us to

proactively identify and address potential security risks and discover their associated

vulnerabilities. This security threat model was designed to be used during the design

phase [69], but in previous literature, it has been used to model threats of final consumer

products [70], [71]. STRIDE-per-element analyses threats against individual elements

within a system, such as components, modules, and functionalities, while STRIDE-per-

interaction analyses threats across interactions between elements, focusing on data

flows and communication channels. Previous literature shows that STRIDE-per-

interaction is more efficient, and “its protection strategies are normally enough to

protect system (as cyber attacks normally involve malicious interactions between

system components)” [72]. However, a study comparing both methods revealed a higher

level of completeness in the research results using STRIDE-per-element [73], which

was the reason for the choice of this method for this thesis.

A data flow diagram representing the whole system is required to perform threat

modelling using STRIDE, breaking it down into its logical and structural components.

Four data-flow diagram elements are used to represent the system. External entities

represent actors interacting with the system but not part of it. Data flows show the paths

of data transmitted between the elements. Data stores represent places where the data is

held. Processes represent the actions transforming the data. STRIDE threats don't apply

equally to all elements; only some are susceptible to each threat, as shown in Table 1.

27

Table 1. Susceptibility of DFD elements to STRIDE threats [74].

DFD element S T R I D E

Entity ✔ ✔

Data Flow ✔ ✔ ✔

Data Store ✔ ✔ ✔ ✔

Process ✔ ✔ ✔ ✔ ✔ ✔

STRIDE has been chosen for this research because of its wide usage and acceptance. It

is a recognised framework with a large amount of literature available on its successful

use in the IT and, more specifically, penetration testing industry, with proven results of

its suitability for this type of research. In addition, it follows a structured approach while

being easy to implement, so it perfectly fits this research.

Since the previous literature review has shown that there is a research gap in analysing

the security of telepresence robots, the related work showed different techniques to

accomplish the same goal on general IT and IoT devices. The related work researched

for this thesis, which is explained in this section, has provided guidance on the different

approaches for threat modelling and penetration testing. This knowledge enabled us to

adapt the existing methodologies to fit the specific conditions of a telepresence robot, as

shown in the next section of this document.

28

3 Methodology

This section describes the structured methodology used to conduct comprehensive

penetration testing on the telepresence robot subject to study. This research uses a

qualitative research method in the form of a case study. The methodology combines

STRIDE and PatrIoT to provide an understanding of the telepresence robot security

landscape. As shown in Figure 2, the proposed methodology follows the PatrIoT

structure, with the same phases: Reconnaissance, Threat Modelling, Exploitation and

Reporting. The methodology stages and their key elements are summarised in Figure 2,

showing the phases of the proposed method and the tools and sources of information

used in each of them.

Elements of PatrIoT are used along the whole process, like Logical Attack Surface

Decomposition, for a better understanding of the system and the threats that could affect

it. This element is heavily used in the first phase, Reconnaissance, as it is critical to

ensure a complete understanding of the telepresence robot and its environment. This

phase aims to gather as much valuable information about the system as possible. Once a

clear understanding is achieved, more information is gathered using passive and active

scanning.

The next phase is Threat Modelling, where, using the information gathered from the

previous section, a data-flow diagram is created showing a detailed view of the robot’s

system. This diagram shows all components that are part of the system and the data

Figure 2. Methodology used, based on PatrIoT.

29

exchange among them. With this representation, threat modelling using STRIDE is

performed, using the Compilation of Top Weaknesses as a source of possible threats to

the system. Finally, those threats discovered are ranked according to the risk they pose

to the system, based on the Lightweight Risk Scoring.

The next phase, Exploitation, shows the planning of the tests that attempt to exploit the

system. The Step-by-Step Penetration Guidelines, in combination with other public

sources of attacks, are used to craft those tests. This phase shows both successful and

failed attempts, as both help give an overview of the robot's security.

Finally, the Reporting phase documents the results of the tests so they can be shared

with the parties involved. This report also includes suggested improvements that, once

applied, could enrich the system's cyber security.

3.1 Tools

This section presents the list of hardware and software used in this thesis. The devices

used to achieve the telepresence robot penetration testing are an Android phone, a

Windows laptop to simulate interactions with the robot, and a computer capable of

booting Windows and Kali Linux to execute the attacks.

The Reconnaissance phase involved the use of active network scanning software. Angry

IP Scanner [75] provided the robot's IP address, and Nmap [76] was used to discover

open ports and services on the robot. The tools Fing for Android [77] and MACVendors

[78] provided detailed information about network devices based on their MAC

addresses.

The Exploitation phase included several utilities with different purposes. HTTP Toolkit

[79] and PuTTYgen [80] were used to generate keys and certificates. Android SDK

Platform Tools (ADB) [81] was used to establish shell access to the robot and execute

various commands. Firmwalker [82] was used to automatically analyse the robot's file

system, and Apktool [83] was used to decompile and analyse the robot's control

application. Android Studio [84] was used to create a virtual device for the dynamic

analysis of an Android application. Metasploit [85] was used to execute attacks on the

robot, along with MsfVenom [86] to create a malware application. TeamViewer [87]

was employed to remotely control devices. Several network utilities were used, with

30

Linux Wifi Hotspot [88] used to create a compromised access point, along with

Wireshark [89] to analyse its traffic. Bettercap [90] was used to perform ARP spoofing

and deny service to the robot, and Aircrack-ng [91] for other denial-of-service attacks.

Network traffic modification involved the use of Ettercap [92], Burp Suite [93], Burp-

Non-HTTP-Extension [94], Python [95] and its utilities Scapy [96] and NetfilterQueue

[97].

31

4 Reconnaissance

For a successful attack on a system, it is critical to understand what the system is and

what specific characteristics apply to it. This section collects information about the

hardware components of the system, the operating system and software running on it,

and network and communication protocols. Information gathering has been

accomplished using passive and active methods. Passive methods used in this thesis

include gathering information from the device’s user, developer manuals and physical

evaluation. Whereas passive methods provide detailed information about the model’s

characteristics, active methods have provided real-world updated data fitting the

model’s real configuration. In this section, the type of information gathered is presented,

but the content is omitted to preserve the privacy of the brand and model studied. Only

basic information about the system is shown, so it can’t be mapped to a single device

model.

4.1 Passive scanning

The manufacturer offers user and developer manuals of the device. Those manuals

include very detailed information about the hardware configuration, the connection

among those components, the operating system, additional services running on it, and

the filesystem. In addition, they provide helpful information about how to access the

shell, install third-party custom programs, and interact with its API. This information,

combined with the physical inspection of the robot, provides valuable insights about the

device.

The complete robot’s hardware architecture was discovered. The device is running on

an Intel 64-bit processor. For connectivity, the processing board is connected to the

screen via HDMI. USB ports are offered but only internally in an expansion hub that

requires disassembly to be accessed. By default, the USB expansion hub has a Wi-Fi

dongle featuring the standard 802.11ac.

32

The robot's Physical evaluation revealed that to access the motherboard and the

expansion ports, it is necessary to unscrew the lid from the main body to reveal access

to the internals. In the entire system, no connectivity port is easily accessible to the

users; they are all hidden under covers, which require tools to be opened. There is one

power button accessible to the user. The last noticeable element is a speaker providing

buttons for audio-related activities such as controlling the volume, microphone and call

initialisation and termination.

From a software side, the documentation reveals that the operating system is a custom

hybrid between Android and Ubuntu. This provides services from both ecosystems,

such as remote connectivity using Android Debug Bridge (ADB) or SSH on an

OpenSSH server. In addition, the manufacturer offers an SDK, allowing integrations to

control the robot’s different features. It can be used to take full control of the screen and

audio system or physical interfaces, including lights or motors. Apart from the SDK,

which is publicly available, the software and services installed in the robot aren’t

accessible, and therefore, they can’t be statically analysed.

In order to connect to the robot, the user needs to access the connection portal’s website

with a web browser. For this, a user account with access to the robot is required, or a

temporary link needs to be created granting access to an unregistered user for a specific

duration. Based on the robot's network conditions, there are two modes of operation for

video calls. Once the user requests a connection to start a call, the request is processed,

and the server and robot evaluate if the robot is locally reachable by the client’s

computer. This would be the case if the client is connected to the same Wi-Fi as the

robot. This is preferred as it provides the most stable signal and minimum latency. The

connection will be established through the server if the robot is unreachable locally. In

this mode, the cloud acts as a relay, directing the information from one endpoint to

another. The details of the behaviour of the Cloud API are unknown, and it hasn’t been

discovered using active scanning.

Wi-Fi. Most IoT devices include additional features such as Bluetooth or ZigBee, which

are not included in this model. However, Wi-Fi connectivity is analysed from two

perspectives: the Network attack surface, including its services, and the Radio attack

surface regarding wireless signals. The Mobile attack surface does not apply to this

33

device. A mobile application does not exist to connect to the robot as in other IoT

devices, so the static analysis of that feature is not included.

Finally, the documentation also has a separate section for security and privacy

describing how data is protected. Even though the protocols are not described in detail

in this thesis to avoid mapping the robot to a specific brand and model, it is stated that

call-related data is end-to-end encrypted. The data is not even available to the data

provider’s server as it is only decrypted in the robot and client’s browser. The rest of the

data (status and commands) is transmitted to the cloud using HTTPS.

4.2 Active scanning

For active scanning of the robot, the network was analysed to find out the robot's IP

address. With the configuration applied to the robot, it was connected to an open Wi-Fi

(with no password required) available in the building where the robot is used. Once

connected to the Wi-Fi hotspot, the tool Angry IP scanner was used to provide a list of

hosts available in the network along with their hostname. On an Android device, the

application Fing was used for the same purpose but included detailed information based

on the MAC address. This additional information filtered out devices that were not the

telepresence robot based on the device's manufacturer. Then, the Nmap tool was used to

discover more details about the system, in this case, the services that are active and

exposed. The results showed that the ports with open and running services were 22,

used for SSH, and 5555, used for ADB. In addition, it was discovered that when a user

is connected to a call, an additional port is open to enable connectivity between the user

and the device. All those ports use the TCP protocol. Nmap was unable to recognise the

operating system and suggested several candidates, including different versions of

Linux and Android devices. This was the expected outcome due to the hybrid OS. In

another scenario, it would be helpful to scan and analyse the website controlling the

functionalities of the telepresence robot. However, since it is out of the scope of this

research, it was omitted.

A summary of the data collected is displayed in Table 2 for a better understanding of the

data collected and the methods used for it.

34

Table 2. Summary of information gathered during Reconnaissance phase.

Method Category Details

Passive Architecture Hardware (processor, memory, disks).

Passive Connectivity Physical ports, screen, buttons, speaker and microphones.

Passive Software Operating System and services enabled (SSH and ADB).

Passive SDK Usage of the SDK for its control.

Passive Network topology Connection modes (Local and Relay), Connection methods (via

Cloud) and Data encryption (HTTPS and TLS)

Active Network details IP and MAC addresses and open ports (ADB, SSH and call

service).

35

5 Threat Modelling

This chapter will show the comprehensive threat modelling approach followed in this

research using STRIDE as a threat modelling methodology, while PatrIoT guides the

threats specific to IoT devices. Through in-depth data flow analysis, attack vectors, and

potential impact, this combined approach aims to identify security risks across all facets

of the control system, safeguarding both the robot and its users. Both models require a

data-flow diagram, represented in Figure 4.

5.1 Data-Flow Diagram

A data-flow diagram is used to better understand how a telepresence robot works and

which components are involved in its typical use. This shows a high-level overview of

the system, including the processes it contains, the external entities it interacts with, the

data stores and the flow of information among all those elements [98]. This enhances

the device's knowledge and helps understand potential vulnerabilities and security

considerations associated with transmitting and processing information.

Based on the two modes of communication between the client and the robot while a call

is established, there are two options for the data-flow diagram, as seen in Figure 3.

While in local mode, the video feed is transmitted peer-to-peer; it is routed through the

cloud in relay mode.

36

The final diagram can then be composed using both modes, even though they will not

run simultaneously. The final data-flow diagram is displayed below in Figure 4.

Figure 4. Telepresence robot as a data-flow diagram.

For the sake of simplicity of the document, the different entities and flows of the

diagram have been assigned identifiers, as shown in Table 3. In that table, the identifiers

have been generated to include the element type, with External Entities being Ei, Pi for

the Processes, DSi for the Data Stores, and DFi for the data flows, where ‘i’ stands for

Figure 3. Modes of operation as a data-flow diagram.

37

the element number. These same IDs will be used later in the thesis to reference the

elements in the data-flow diagram.

Table 3. Data-flow diagram identifiers.

External Entities Data Flows

ID Name ID Name

EU User DF1 Actuator commands

EA Administrator DF2 Sensors’ data

 DF3 Service commands

Processes DF4 Status updates

ID Name DF5 Logs

PHW Hardware Peripherals DF6 Call parameters

POS Operating System DF7 Robot’s camera feed

PSW Applications and Services DF8 Control commands

PCS Cloud Service DF9 Call initialization

 DF10 User’s camera feed

Data Stores DF11 Administrative and Commands data

ID Name DF12 Database accesses

DSS System Storage

DSC Cloud Storage

Three processes and a data storage represent the telepresence robot. The hardware is the

first of them (PHW), containing all the peripherals and electronics specific to

telepresence robots. These peripherals sense and actuate on the environment, capturing

data about the robot’s surroundings and giving feedback to it. For this, it includes

sensors like cameras, actuators such as wheels, and electronics combining features like

the touchscreen or USB and other serial ports. The robot has a bidirectional flow of

information (DF1, DF2) between the hardware peripherals processes (PHW) and the

Operating System process (POS).

To perform communication and control, the Application and Services process (PSW) is

in charge of connecting all the information and commands of the robot with the exterior,

communicating with the Operating System via bidirectional service commands (DF3).

Even if a call is inactive, it communicates with the cloud provider, sending the data

collected by the sensors (DF4) and system logs (DF5). This process also receives control

commands on operating the actuators and the information to be displayed on the screen

(DF8). As an intermediary, the cloud process (PCS) communicates with the client (EU),

sending status updates about the robot (DF4) and receiving control commands (DF8).

38

When a call is to be established, it is necessary to determine the connection mode. The

clients can send call initialisation commands (DF9) to the cloud, and the cloud then

communicates to the robot to request the call (DF9). Then, based on the network

conditions, the connection mode is determined, and the connection is established

accordingly. If it is local, it is necessary to create a direct connection between the robot

and the user requesting it. The robot returns the call parameters (DF6) to the cloud,

which are then forwarded to the client. Once this process is done, it is then possible for

the client to connect directly to the telepresence robot, sending the webcam feed to it

(DF10) and receiving the data collected from the robot’s cameras (DF7). On the other

hand, if the connection is of type relay, both robot and client send their video feeds to

the cloud and receive the stream of the other endpoint, downloading it from the same

web service.

Finally, there is one external entity interacting with the robot. In the diagram, it is

named Administrator (EA), but it can be any person connecting to the robot locally,

usually for administrative or developing purposes. The robot can open local connections

like the SSH or ADB shells for local configuration, establishing a bidirectional data

flow (DF11). Finally, two data stores are used, one managed by the robot (DSS) and the

other by the cloud provider (DSC). Both entities have bidirectional data flow to their

corresponding databases (DF12).

5.2 STRIDE

To ensure a systematic STRIDE threat modelling, each threat type was analysed for

every entity in the diagram presented in Figure 4. Threats were analysed for processes,

external entities, data stores and data flows. For the data flows, threats focused on every

combination of source, data flow and destination in the diagram, where sources and

destinations are processes, external entities and databases. This ensures that every

interaction and entity in the diagram is analysed for potential threats. With the

Compilation of the top weaknesses matrix provided by PatrIoT, it is possible to list the

threats that can potentially affect the system and link them to the STRIDE model. In

addition, other well-known vulnerabilities and weaknesses affecting IT systems have

been added to the threats. All the threats present in this section are hypothetical, it is a

list of threats that could potentially affect the system but need later analysis and

39

exploitation to confirm or deny their exitance. The threats found are listed in each

STRIDE threat type section.

5.2.1 Spoofing

For the Spoofing threat type, several threats could affect the system. The most common

spoofing threats to the system are man-in-the-middle related. In this use case, it would

be possible for the attacker to spoof the identity of another entity. This could be used to

assume the identity of a legitimate user and connect to the robot unauthorisedly. Taking

the identity of the cloud is also hypothetically possible by using fake route advertising

by DNS or ARP. Since the video is end-to-end encrypted, it would only be possible to

intercept status updates, logs or call initialization parameters. The robot's identity could

also be spoofed, and the video feed or other information about the user legitimately

connecting to the robot could be obtained.

Finally, an attacker could also impersonate the administrator using weak credentials to

connect to the robot locally using ADB or SSH connectivity. This means that potential

spoofing threats could be used to spoof the external entities User (EU) and

Administrator (EA), as well as the services Cloud Service (PCS) and Applications and

Services (PSW). If this were the case, it would affect the data flows: Status updates

(DF4), Logs (DF5), Call parameters (DF6), Control commands (DF8), Call

initialization (DF9) and Administrative and Commands data (DF11).

The weaknesses appearing in the IoT Threat Traceability Matrix that could result in a

successful spoofing are Authentication - Weak credentials, Authentication - Weak

password recovery, Vendor APIs - Inherent trust of cloud or mobile application,

Authentication bypass - Device to cloud or Insecure SSL/TLS issues. Table 4 shows the

Spoofing threats along with the potential vulnerabilities or weaknesses that could cause

them, grouped in the “Potential vulnerabilities” field.

40

Table 4. Spoofing threats.

ID TS1 Threat type Spoofing

Elements affected User (EU)

Description An attacker spoofs the identity of a legitimate user to connect to the

robot in an unauthorised way.

Potential

vulnerabilities

Weak credentials on the legitimate user’s account.

Weak password recovery on the legitimate user’s account.

Authentication bypass guessing the one-time connection link.

Impact Authentication bypass.

ID TS2 Threat type Spoofing

Elements affected Cloud (PCS)

Description An attacker spoofs the identity of the cloud to act as a man-in-the-

middle between the robot and a user.

Potential

vulnerabilities

Insecure SSL/TLS issues.

Insecure connections to compromised Wi-Fi networks.

Lack of domain spoofing measures.

Implicitly trusted cloud.

Impact Sensitive data disclosure.

ID TS3 Threat type Spoofing

Elements affected Administrator (EA)

Description An attacker spoofs the administrator's identity to connect to the robot

locally through SSH or ADB.

Potential

vulnerabilities

Weak credentials on the connection accounts.

Authentication bypass.

Impact Authentication bypass, Code execution.

ID TS4 Threat type Spoofing

Elements affected Applications and Services (PSW)

Description An attacker spoofs the identity of the robot.

Potential

vulnerabilities

Implicitly trusted device.

Impact Authentication bypass.

5.2.2 Tampering

Table 1 shows tampering threats that can affect data flows, data stores and processes.

Starting by processes, the four of them could theoretically be subject to tampering.

However, some of the threats are unfeasible since all hardware is enclosed in the robot's

shell, and this research is limited by not disassembling the device. This is the case for

the Hardware Peripherals process (PHW), which could be accomplished by unplugging

devices like the camera and replacing it by a modified one in a way a potential attacker

41

could modify the images captured. The same applies to plugging in USB devices, where

a plugged-in “Rubber Ducky” device could emulate a legitimate keyboard and access

the terminal of the robot [99].

Since all available ports are physically protected and unavailable on the outside,

tampering threats don’t affect most of the hardware connectivity. The only hardware

accessible to the user is the screen of the robot. This screen lacks any protection

mechanism and can be used to modify the device's configuration. For example, some

allowed actions are altering Wi-Fi connectivity, which could be used to connect the

device to a compromised hotspot, or enabling the ADB service for remote connections.

For the Operating System process (POS), a method to tamper with the operating system's

data wasn’t found. Some other IoT devices have a physical interface to install firmware

updates, and a modified version can be installed on them. This doesn’t apply to this

specific robot.

The Cloud Service (PCS) also resides out of the scope of this thesis. Since the

manufacturer has not granted permission to attack that surface of the system, all cloud

elements except for the legitimate flows interacting with it must remain untouched. This

also extends to the Cloud Storage (DSC). However, the Applications and Services

process (PSW) is subject to tampering attacks. The system provides a management tool

to install Android applications on the device or via ADB commands, which means that

tampered versions of applications are subject to be installed.

The System Storage data store (DSS) is also subject to tampering attacks. Files stored in

the system could be modified, although the information gathered doesn’t reveal which

data is locally stored in the device, so the impact of a successful data store tampering is

unclear. It is assumed that the device has credentials and configuration files stored on it

for different purposes as any other Android or Ubuntu device, but at the time of threat

modelling, it isn’t confirmed.

For the tampering of data flows, every combination of source, flow and destination was

analysed to determine if they are subject to tempering attacks. The actuator commands

(DF1) and sensors data flow (DF2) can’t be tampered with as it would require

disassembly to physically access the connection between the robot and the peripherals,

42

although it is technically possible. If accomplished, a device could be attached to the

motor’s wires to send signals taking control of the robot’s movement.

Both data flows involving service commands (DF3) occur locally and are not exposed

on any service. They could only be modified if an attacker had connected to the

operating system via a shell. The data flows connecting the processes Applications and

Services to Cloud Service and Cloud Service to User are treated differently. Status

updates (DF4), logs (DF5), call parameters (DF6), control commands (DF8) and call

initialization (DF9) follow HTTPS protocol in combination with TLS 1.3 standard. If

tampered with, an attacker acting as a man-in-the-middle could modify the data and

send incorrect status updates or call parameters.

For transmitting the robot’s and user’s camera feeds (DF7, DF10), the protocol used is

different and encrypted using AES-256. Even though an attacker could technically

modify the video frames, the new altered frames wouldn’t be coherent and would result

in the camera's denial of service instead of the display of a crafted video. Administrative

and commands data (DF11) are subject to being tampered with on their wireless

connection between the Applications and Services process and Administrator. ADB

connection, by default, doesn’t provide any security against tampering, so intercepted

messages can be modified in both directions of the data flow.

Finally, the connection happens locally for the flows connecting the robot’s database to

the Operating System and the Applications and Services processes, requiring an active

shell to the operating system to modify the information. Table 5 summarises the

Tampering threats, weaknesses, and vulnerabilities affecting them.

Table 5. Tampering threats.

ID TT1 Threat type Tampering

Elements affected Hardware Peripherals (PHW)

Description An attacker can interact with the robot’s screen to alter the device's

configuration.

Potential

vulnerabilities

Lack of authentication mechanisms.

Impact Unauthorized configuration changes, Unexpected system behaviour.

43

ID TT2 Threat type Tampering

Elements affected Applications and Services (PSW)

Description An attacker installs a modified version of an application with malicious

code, enabling it to gain control of the robot, manipulate its behaviour or

steal sensitive data.

Potential

vulnerabilities

Insecure customisation of OS platforms.

Lack of signature on update file.

Backdoor firmware.

Impact Control Takeover, Code execution, Sensitive data disclosure.

ID TT3 Threat type Tampering

Elements affected System Storage (DSS)

Description An attacker tampers files installed in the system to alter configuration

and credentials.

Potential

vulnerabilities

Hardcoded credentials.

Insecure filesystem permissions.

Impact Authentication bypass, DoS.

ID TT4 Threat type Tampering

Elements affected Status updates (DF4), Logs (DF5), Control commands (DF8)

Description An attacker alters the status updates or logs sent to the cloud to modify

the perceived state of the robot.

Potential

vulnerabilities

Insecure SSL/TLS issues.

Impact DoS.

ID TT5 Threat type Tampering

Elements affected Call parameters (DF6), Call initialization (DF9)

Description An attacker modifies the call parameters or initialization commands,

resulting in an incorrect call establishment.

Potential

vulnerabilities

Insecure SSL/TLS issues.

Impact DoS.

ID TT6 Threat type Tampering

Elements affected Administrative and Commands data (DF11)

Description An attacker captures and modifies shell access to execute arbitrary

commands on the robot.

Potential

vulnerabilities

Lack of transport encryption.

Authentication bypass.

Impact Code execution.

44

5.2.3 Repudiation

The conditions of this research make modelling repudiation threats a challenge. Since

the manufacturer didn’t agree to share the logs, and the type of penetration testing is

black-box, it is impossible to determine what actions are being logged and, therefore,

which are subject to repudiation. However, the threats described in this section are

analysed from a theoretical perspective, giving an overview of the threats that could

deny the involvement of an attacker or user in some action.

 The only threat found is the denial of the robot's use. The cloud server logs connections

established with the robot and displays them in the management console. However, the

robot doesn’t seem to send the status of local administrative connections to the cloud

server. This means that connections established by ADB and SSH seem free of logging

and, therefore, subject to repudiation. An illegitimate user could connect to the robot via

ADB or SSH to avoid being detected by the cloud service and control the robot without

establishing a call. This could be used, for example, to access the camera without being

noticed and without the option to inspect which individual was connecting to it, as no

user account is needed. Table 6 shows the only Repudiation threat found.

Table 6. Repudiation threats.

ID TR1 Threat type Repudiation

Elements affected User (EU)

Description A user connects via ADB or SSH to take control of the robot without

getting logged or traced.

Potential

vulnerabilities

Lack of complete logging.

Authentication bypass.

Impact Untraceable unauthorized access.

5.2.4 Information Disclosure

In order to model the threats of information disclosure type, it is not trivial to determine

which information is confidential and which data doesn’t have any risks involved when

published. It is clear that all user-related information should be kept secret, but other

information, such as the versions of software installed or network addresses, is arguable.

On the Hardware Peripherals process (PHW), the robot’s screen reveals valuable

information about the system. All network addresses can be listed along with the saved

Wi-Fi hotspots, logged-in accounts and installed applications. By default, the

45

Applications and Services process doesn’t reveal any valuable information, but a TCP

port is opened when a user is connected. This poses a security risk as scanning the open

ports of the device makes it possible to determine if the robot is being used. Depending

on the use of the robot, this information could be interesting for an attacker to know

when to launch a Denial-of-Service attack to disrupt a call. Also, if the robot is being

used for surveillance purposes, an attacker could realise a timeframe when it isn’t

recording video to physically perform a crime without being registered.

The Operating System process (POS) can disclose confidential information if an attacker

finds a way into the system via a terminal connection or installed malware. The Cloud

Service process (PCS) could be subject to data leakage if not implemented correctly.

Both data stores are not publicly accessible, but their connection is for local access.

Since the cloud is out of the scope of this research, it will be listed as not having any

risks associated with it. The System Storage (DSS) can disclose confidential information

also when access to the system is granted. All data flows with the cloud as source or

destination are end-to-end encrypted, so their content doesn’t reveal any data if

intercepted. The actuator commands (DF1), sensors data (DF2) and service commands

(DF3) data flows are not accessible by any user and therefore don’t disclose any

confidential information. Administrative and Commands data (DF11) could have

potential information disclosure threats if the packages involved in the shell interaction

weren’t encrypted. This would allow an attacker to capture the commands executed and

see confidential information such as credentials or configuration details. Table 7 shows

the Information Disclosure threats.

Table 7. Information Disclosure threats.

ID TI1 Threat type Information Disclosure

Elements affected Hardware Peripherals (PHW)

Description An attacker can interact with the screen to reveal sensitive information

about the robot.

Potential

vulnerabilities

Lack of authentication mechanisms.

Device information leakage.

Impact Sensitive data disclosure, Identification of vulnerable services,

Facilitation of further attacks.

46

ID TI2 Threat type Information Disclosure

Elements affected Applications and Services (PSW)

Description An attacker can scan the open ports of the robot to gather information

about its usage.

Potential

vulnerabilities

Device information leakage.

Impact Sensitive data disclosure, Bypass of security measures.

ID TI3 Threat type Information Disclosure

Elements affected Operating System (POS)

Description An attacker connects to the operating system, having access to critical

information.

Potential

vulnerabilities

Device information leakage.

User data disclosure.

Insecure filesystem permissions

Impact Sensitive data disclosure, Identification of vulnerable services,

Facilitation of further attacks.

ID TI4 Threat type Information Disclosure

Elements affected Cloud Service (PCS)

Description The cloud service discloses confidential information.

Potential

vulnerabilities

Username enumeration.

User data disclosure.

Device information leakage.

Impact Sensitive data disclosure, Facilitation of further attacks.

ID TI5 Threat type Information Disclosure

Elements affected System Storage (DSS)

Description An attacker gains access to the robot’s filesystem, having access to files,

including drivers and configuration files.

Potential

vulnerabilities

Sensitive data exposure - Hardcoded credentials.

Sensitive data exposure - Encryption keys and algorithms.

Configuration - Insecure filesystem permissions.

Insecure data storage.

Impact Sensitive data disclosure, Facilitation of further attacks.

ID TI6 Threat type Information Disclosure

Elements affected Administrative and Commands data (DF11)

Description An attacker intercepts shell commands disclosing confidential

information such as credentials or configuration steps.

Potential

vulnerabilities

Lack of transport encryption.

Authentication bypass.

User data disclosure.

Impact Sensitive data disclosure, Exposure of configuration details, Facilitation

of further attacks.

47

5.2.5 Denial of Service

Denial of service threats can affect Processes, Data Stores and Data Flows, as shown in

Table 1. The Hardware Peripherals (PHW) could be physically damaged to prevent

them from functioning, but this research will be limited to an IT perspective, avoiding

doing physical damage to any asset. Two methods can also deny the correct working of

the Operating System (POS). By physically pressing the power button in the device,

which is not a real threat, or by remotely rendering it unavailable. This second method

to manually take it down would involve connecting to the shell and running a command

to turn off the system. Also, a more advanced technique would be to install a script that

executes every time the robot turns on and runs a specific command to turn it off.

The Applications and Services process (PSW) could also deny access to the robot. If an

application is overloaded or maliciously forced to freeze, it would disrupt the correct

functioning of the robot. To finish with the process threats, the Cloud Service (PCS)

could be subject to Distributed Denial of Service (DDoS) attacks if not protected

effectively. This threat lands outside this research’s scope since the attacks on the cloud

provider are not contemplated. The same applies to Cloud Storage (DSC) since the

cloud provider should be attacked to perform a denial of service.

The System Storage (DSS) data store is not subject to denial of service either because it

is logically stored in the same storage unit where the operating system is running. So,

making the data store unavailable would make the whole Operating System process

(POS) inaccessible.

Regarding denial of service of data flows, the same characteristics apply similarly to the

other threat types. The flows that remain inside the telepresence robot can’t be denied,

which is the case for Actuator commands (DF1), Sensors’ data (DF2) and Service

commands (DF3). All other data flows are subject to denial-of-service attacks if they are

not sufficiently protected against them, so they are subject to this type of threat.

However, based on functionality, grouping those data-flow threats based on their paths

makes more sense. For this, there will be three distinct groups of flows. The first one

groups flows involved in connections established on local mode. This means its denial

consists in taking down the direct connections between the User (EU) and Applications

and Services (PSW). The second one tries to interrupt connections established on relay

mode, those connecting the same entities but doing so through the Cloud Service

48

process (PCS). The last group involves the Administrative and Commands data (DF11),

whose impact is disrupting local shell connections. Table 8 provides details about the

discovered Denial of Service threats.

Table 8. Denial of Service threats.

ID TD1 Threat type Denial of Service

Elements affected Operating System (POS)

Description An attacker runs scripts on the system, causing it to shut down or reboot.

Potential

vulnerabilities

Authentication bypass.

Backdoor firmware.

Impact DoS.

ID TD2 Threat type Denial of Service

Elements affected Applications and Services (PSW)

Description An attacker exploits a vulnerability, crashing a running service or

application.

Potential

vulnerabilities

Business and logic flaws.

Lack of Security Updates and Patches

Impact DoS.

ID TD3 Threat type Denial of Service

Elements affected Status updates (DF4), Logs (DF5), Call parameters (DF6), Robot’s camera

feed (DF7), Control commands (DF8), Call initialization (DF9), User’s

camera feed (DF10)

Description An attacker disrupts the service of a relay call connection.

Potential

vulnerabilities

Malformed input.

Connection endpoint disruption.

Impact DoS.

ID TD4 Threat type Denial of Service

Elements affected Status updates (DF4), Call parameters (DF6), Robot’s camera feed (DF7),

Control commands (DF8), Call initialization (DF9), User’s camera feed

(DF10)

Description An attacker disrupts the service of a local call connection.

Potential

vulnerabilities

Malformed input.

Connection endpoint disruption.

Impact DoS.

ID TD5 Threat type Denial of Service

Elements affected Administrative and Commands data (DF11)

Description An attacker disrupts the service of an administrative shell.

Potential

vulnerabilities

Malformed input.

Connection endpoint disruption.

Impact DoS.

49

5.2.6 Elevation of Privilege

The last STRIDE threat type, Elevation of Privilege, only affects the data-flow

diagram’s elements of the type Process. The installed Hardware Peripherals (PHW) do

not have a concept such as privileged access. The Operating System (POS) is subject to

privilege escalation on both parts of the hybrid architecture, the Android and Ubuntu

consoles. Applications and Services (PSW) are also subject to privilege escalation by

running any service or application as the root user to accomplish elevated rights and

exploit other system parts. In the Cloud Service (PCS), it is theoretically possible to

escalate privileges from a standard user account to an administration account. However,

to do so, it is necessary to either attack the cloud provider, staying out of the scope, or

impersonate the account with privileged rights, being considered under spoofing threats.

Elevation of Privilege threats are detailed in Table 9.

Table 9. Elevation of Privilege threats.

ID TE1 Threat type Elevation of Privilege

Elements affected Operating System (POS)

Description An attacker escalates privileges to run a terminal or command with root

privileges.

Potential

vulnerabilities

Business and logic flaws.

Insecure authorisation.

Authentication bypass.

Impact Privilege escalation, Complete system compromise.

ID TE2 Threat type Elevation of Privilege

Elements affected Applications and Services (PSW)

Description An attacker escalates privileges to run a service or application with

increased rights.

Potential

vulnerabilities

Business and logic flaws.

Insecure authorisation.

Impact Privilege escalation, Complete system compromise.

Finally, to give a clear picture of how the STRIDE threats affect the telepresence

robot’s system, Table 10 shows an overview of the elements of the data-flow diagram

and the threat types affecting them.

50

Table 10. STRIDE model of the data-flow diagram.

External Entities

ID Name S T R I D E

EU User ✔ ✔

EA Administrator ✔

Processes

ID Name S T R I D E

PHW Hardware Peripherals ✔ ✔

POS Operating System ✔ ✔ ✔

PSW Applications and Services ✔ ✔ ✔ ✔ ✔

PCS Cloud Service ✔ ✔

Data Stores

ID Name S T R I D E

DSS System Storage ✔ ✔

DSC Cloud Storage

Data Flows

ID Name S T R I D E

DF1 Actuator commands

DF2 Sensors’ data

DF3 Service commands

DF4 Status updates ✔ ✔

DF5 Logs ✔ ✔

DF6 Call parameters ✔ ✔

DF7 Robot’s camera feed ✔

DF8 Control commands ✔ ✔

DF9 Call initialization ✔ ✔

DF10 User’s camera feed ✔

DF11 Administrative and Commands data ✔ ✔ ✔

DF12 Database accesses

5.3 Risk Scoring

This section presents the risks associated with the threats identified during the threat

modelling phase. The risk score is calculated for each threat based on three independent

variables with values ranging from one to three. The first variable, Impact, rates the

potential impact of a successful attack on the system. Coverage measures which users

would be affected by the threat, whether it is an individual, a group, or all users in the

system. Most threats affect a group of users since the compromise of the robot would

affect a group of users rather than all users in the cloud provider. Only in the case a

51

single user account is compromised it would have the value one. The third variable,

Simplicity, ranks the ease of the attack. All risk scores are computed following the same

procedure. For a better understanding, the threat TT2 is used as an example to show how

the computations are performed. A value of three was assigned to the Impact field as it

enables remote code execution. Coverage was assigned the value of two since it affects

the group of users that have access to the robot. Simplicity received the value one since

this threat requires modifying the code of the application to be tampered with malware.

The risk score is computed according to its formula, Risk = (impact + coverage +

simplicity * 3)/5 = (3 + 2 + 1*3)/5 = 1.6. The risk scoring methodology is explained in

detail in the section 2.2. Table 11 displays the results of risk scoring on all the identified

threats.

52

Table 11. Risk Scores.

ID Im
p

a
c
t

C
o

v
e
ra

g
e

S
im

p
li
c

it
y

R
is

k

Description

TI1 2 2 3 2,6 An attacker can interact with the screen to reveal sensitive information about the robot.

TT1 2 2 3 2,6 An attacker can interact with the robot’s screen to alter the device's configuration.

TI2 1 2 3 2,4 An attacker can scan the open ports of the robot to gather information about its usage.

TI3 3 2 2 2,2 An attacker connects to the operating system, having access to critical information.

TI5 3 2 2 2,2
An attacker gains access to the robot’s filesystem, having access to files, including drivers

and configuration files.

TS3 3 2 2 2,2
An attacker spoofs the administrator's identity to connect to the robot locally through SSH or

ADB.

TI6 2 2 2 2
An attacker intercepts shell commands disclosing confidential information such as

credentials or configuration steps.

TT3 2 2 2 2 An attacker tampers files installed in the system to alter configuration and credentials.

TD1 1 2 2 1,8 An attacker runs scripts on the system, causing it to shut down or reboot.

TD3 1 2 2 1,8 An attacker disrupts the service of a relay call connection.

TD4 1 2 2 1,8 An attacker disrupts the service of a local call connection.

TD5 1 2 2 1,8 An attacker disrupts the service of an administrative shell.

TI4 1 2 2 1,8 The cloud service discloses confidential information.

TR1 1 2 2 1,8
A user connects via ADB or SSH to take control of the robot without getting logged or

traced.

TT2 3 2 1 1,6
An attacker installs a modified version of an application with malicious code, enabling it to

gain control of the robot, manipulate its behaviour or steal sensitive data.

TT6 3 2 1 1,6 An attacker captures and modifies shell access to execute arbitrary commands on the robot.

TE1 2 2 1 1,4 An attacker escalates privileges to run a terminal or command with root privileges.

TE2 2 2 1 1,4 An attacker escalates privileges to run a service or application with increased rights.

TS2 2 2 1 1,4
An attacker spoofs the identity of the cloud to act as a man-in-the-middle between the robot

and a user.

TS4 2 2 1 1,4 An attacker spoofs the identity of the robot.

TT4 2 2 1 1,4
An attacker alters the status updates or logs sent to the cloud to modify the perceived state of

the robot.

TT5 2 2 1 1,4
An attacker modifies the call parameters or initialization commands, resulting in an incorrect

call establishment.

TD2 1 2 1 1,2 An attacker exploits a vulnerability, crashing a running service or application.

TS1 2 1 1 1,2
An attacker spoofs the identity of a legitimate user to connect to the robot in an unauthorised

way.

53

6 Exploitation

This section explains the Exploitation phase, which transitions from theoretical threat

modelling to the practical assessment of identified vulnerabilities within the

telepresence robotics system. The aim is to attempt to exploit the vulnerabilities found

for the threats discovered. The Exploitation phase is characterised not only by the

execution of targeted attacks but also by meticulous planning. The planning involves

preparing the attacks and establishing a methodology for the threats that are tested along

with the methods and attack vectors used to attempt the exploitation.

6.1 Planning

The threats were attempted to be exploited in order of their risk score. This ensures that

the threats that pose the greatest danger to the system are analysed first, based on their

impact, the number of affected users, and the ease of the attack. However, if a test is

successful and results in new attack vectors for another risk, new tests are considered.

This means that if a test discovers new vulnerabilities in the system, they are also taken

into consideration. This can result in a chain of tests aimed at taking total control of the

telepresence robot.

The analysed threats are diverse in nature. Some tests involve simple actions or checks,

while others require highly advanced methods. When a vulnerability needs to be

exploited, we use the Exploit-DB database1 by OffSec and the Metasploit database2

from Rapid7, which provide valuable up-to-date knowledge of vulnerability exploits.

They include valuable up-to-date knowledge of vulnerability exploits. In addition, the

testing guides provided by NSE Lab, the developing team of PatrIoT, have been used.

The guides provide steps and methods to attack the different attack surfaces outlined in

the methodology.

1 URL: https://www.exploit-db.com/

2 URL: https://www.rapid7.com/db/

https://www.exploit-db.com/
https://www.rapid7.com/db/

54

The initial tests developed were those that assessed the risk of information disclosure

(TI1) and tampering (TT1) of the robot's screen, given a risk value of 2.6. The tests

aimed to obtain as much information as possible from the robot's screen and to modify

settings that could compromise its cyber security. Subsequently, the tests focused on the

information disclosure caused by an open port in the robot when a call is established

(TI2).

With a risk value of 2.2, the next planned tests attempted to spoof the robot's identity in

order to gain shell access (TS3) and gather information from both the operating system

(TI3) and the filesystem (TI5). If successful, gaining shell access to the robot greatly

simplifies the process of gathering information from the operating system and

filesystem. In the designed testing, the tests related to the threats TI3 and TI5 are

dependent on the success of the tests based on the spoofing threat (TS3), which would

provide shell access. This same precondition behaviour applies to other tests.

The tests with a risk value of 2 were designed with different preconditions. The trials

involving the tampering of files in the system (TT3) also require shell access. However,

tests involving the disclosure of shell commands (TI6) are exempt from this condition

and can be executed independently. Different tests were created with a risk value of 1.8

to attempt denial of service on the robot (TD1), relay call (TD3), local call (TD4), or

administrative shell (TD5). The denial-of-service attempts have been designed with the

precondition of having shell access, but they do not require it as they can be

accomplished from a network perspective.

Even though the cloud is not directly targeted, a test for user enumeration was also

considered under the threat TI4. Tests were also planned for log repudiation threats

(TR1) with the same risk value. Additionally, tests with a risk value of 1.6 were

conducted for the installation of malicious applications (TT2) and the capture and

modification of shell commands (TT6).

The tests are designed to target the sixteen threats with a higher risk value, ranging from

2.6 to 1.6. Those threats with a lower risk, with values ranging from 1.2 to 1.4, are not

considered to represent a major risk for the robot since none of them have a high

impact, and they are highly complex to execute. If the planned tests are unsuccessful

55

and no real threat to the robot's system is discovered, new tests will be considered, even

targeting those threats with a lower risk.

Figure 5 displays a testing tree that illustrates the results of the planning stage. The

square boxes represent the set of tests that have been designed, and the arrows

connecting them show the dependencies. For instance, the success of the tests under the

group “Robot drivers” depends on the success of the “Extract firmware” tests.

Additionally, each set of tests has an identifier of the targeted threat assigned to the top-

left corner of its square. For the sake of avoiding repetition, a more detailed explanation

of each set of tests can be found in the Execution section.

6.2 Execution

This section provides information on the tests conducted to exploit the robot's system.

As in the rest of the thesis, it is important to note that the level of detail has been

adjusted to protect the privacy of the device and its manufacturer.

The initial tests involved obtaining information about the robot by interacting with its

screen, which required physical access to the device. Since the screen is being operated

by the Android operating system, the status bar can be opened by swiping down from

the top of the screen, just like any other smartphone. In that menu, clicking on the gear

icon opens the Android settings application, where information about the system is

found. The Android version and its security patch level were successfully retrieved, and

Figure 5. Test tree planning.

56

a list of installed applications, along with their access permissions, was compiled. Only

three services differed from a stock Android installation: a camera application, a utility

to control the robot’s parameters and a proprietary application.

The Wi-Fi connectivity was also analysed, and it was possible to retrieve a list of Wi-Fi

hotspots that are saved in the robot, listing the Wi-Fi names to which the robot has

connected before. Details about the current Wi-Fi connectivity, including the IP and

MAC addresses, were also retrieved.

The subsequent tests involved modifying the robot’s configuration through its screen.

Initially, we attempted to enable Android Debug Bridge (ADB) to allow remote shells

to access the device. This was achieved effortlessly by tapping the Android version

seven times to activate developer settings and then selecting the ADB checkbox. The

subsequent test aimed to connect the robot to a hotspot of choice via Wi-Fi. The

procedure for connecting to a Wi-Fi network is the same as on other devices. A Wi-Fi

name is selected within the list of networks in reach, and credentials are entered if

needed.

During the last test, a Certificate Authority certificate was installed on the device. These

certificates are used to establish trust with servers and can be exploited in various

attacks. To generate the certificate, the HTTP Toolkit was used, and it was then

transferred to the robot's storage. The robot's browser can be used to access a website

that serves the file. After downloading the file, it can be installed on the robot through

the settings application, specifically in the Security and Credential section. All screen-

related tests (threats TI1 and TT1) were successful, allowing for the retrieval of valuable

system information and the implementation of necessary changes for future attack

vectors. Enabling the ADB shell is a crucial achievement as it serves as a prerequisite

for many other tests planned for the device, as demonstrated in Figure 5. These are the

only tests aiming at the hardware attack surface.

Next, tests were conducted to address usage monitoring based on open ports. For this

test, the robot must be reachable on the network by the device used to perform the test.

This was not an issue as the robot is currently connected to an open Wi-Fi network in

the building where it operates. The robot's IP address is required, but it can be obtained

using Nmap. Executing Nmap with the flags ‘-A -sV -sC’ allows for easy identification

57

of the robot's address among the list of connected devices on the Wi-Fi network, making

use of the information displayed about the operating system and hostname. Once the

target IP address is obtained, a full port scan is executed using the flag ‘-p-’.

Three scenarios were tested, each with different iterations, to ensure consistency. The

test results indicate that the robot consistently has port 22/TCP open to manage the SSH

server. The ADB protocol determines whether port 5555/TCP is open, meaning that the

ADB service is running. Additionally, depending on the robot's current use, an extra

port may be open. If no additional port is open, the robot is in standby mode and the

video feed is not being transmitted. If the robot is in use, it opens a random port,

typically above 50,000. Regardless of the call mode, both local and relay connections

exhibit the same behaviour. This test has been proven to successfully determine whether

the robot is in use or on standby to any device connected to the same Wi-Fi network.

Although the risk value of the threats was used to determine their order of execution,

they are presented in this section in a more coherent manner by grouping similar tests

together for easier comprehension. As ADB was successfully enabled in previous tests,

it is now possible to attempt to establish a shell connection. This process requires the

installation of the Android SDK Platform Tools provided by Google for Developers.

After installation and a connection to the same network as the robot is established, it is

possible to spoof an administrator and connect to the robot.

ADB lacks any security measures, such as authentication or authorisation by default.

Although some other telepresence robot vendors have implemented their own protection

methods, ADB is completely vulnerable in this device, and any device on the same Wi-

Fi network can freely connect to it. Doing so involves running the command ‘adb

connect <IP>:5555’ and then ‘adb shell’, which opens a new shell terminal on the

robot. Once a terminal connection is established, ADB commands can be used to

perform the same tests described earlier but with no interaction with the screen.

The command ‘getprop’ provides technical information about the device, including

hardware architecture, Android version, security patch updates, and the version of

Ubuntu that is part of the hybrid operating system. Regarding network connectivity, the

command ‘dumpsys wifi’ provides a log of the Wi-Fi connectivity, including basic

information such as the SSID of the currently connected Wi-Fi, MAC and IP addresses.

58

Furthermore, the details displayed include the BSSID of the networks in reach (the

MAC addresses of the hotspots) and the complete log of Wi-Fi connections. Upon

reading the contents of the file at ‘\data\misc\wifi\wpa_supplicant.conf’, a list of saved

Wi-Fi connections and their corresponding credentials are revealed. It is also possible to

force the device to connect to another Wi-Fi hotspot, which is useful for performing

network attacks. The command ‘wpa_cli -p /data/misc/wifi/sockets/ -i wlan0’ can be

used to list the identifiers of the networks in range, followed by ‘select_network <ID>’

and ‘enable_network <ID>’ to force the connection.

The Mitmproxy documentation [100] provided clear steps for installing a system's

Certificate Authority certificate via ADB. To obtain a list of all applications installed on

the device, identified by their package name, we used the command ‘adb shell pm list

packages’. The command ‘adb shell dumpsys package <package_name>’ can be used

to retrieve the permissions granted to different applications.

Additionally, usage monitoring using the ADB shell was conducted to determine if the

robot was streaming video. The initial test involved querying the application running on

the screen, with the hope of detecting a difference between the robot being in standby

mode and having an established call. As the results did not differ, a second test was

conducted to obtain usage based on the executed services. The command ‘top’ displays

the processes in use. When a call is established, the processor experiences a significant

increase in usage, particularly on the camera and audio servers, as well as the

proprietary app that controls the robot's functions.

The following tests aim to breach the privacy of both the robot and its users. The initial

set of tests attempted to gain access to the robot's camera, enabling an attacker to view

its surroundings. There are numerous online sources detailing how to access the camera

using ADB commands. The method is the same in all cases. It involves making three

calls to the operating system: the first to start the camera activity, and the second and

third to force focusing and capture a picture or video. However, this well-known

method failed, and additional tests were conducted to try to achieve the desired

outcome. Initially, the proprietary app was terminated as it was believed to be

interfering with the camera, but even after its closure, images could not be captured. A

camera application was then installed to capture photos in a traditional manner, but

clicking on the shutter icon did not save any images.

59

The following test aimed to capture a screenshot of the device while the camera

application was running. Using the command ‘adb exec-out screencap -p >

<filename>’, an image of the device's screen was taken. If an attacker tries to access the

robot’s camera, it is possible to launch the camera application and take a screenshot of

the feed displayed on the screen. However, anyone in front of the robot would notice

that the screen is displaying the camera feed. For this reason, the test “Access Cameras”

is marked as partially successful. In addition, the screenshot utility can also be used

during a call between the robot and a user. In that scenario, both the user's camera and

the robot's cameras are shown on the screen. This poses a threat to the privacy of the

system as taking a screenshot captures both the user's and robot's images.

A similar command has been proven to work on other Android devices, allowing for the

capture of a video of a smartphone’s screen. Applied to the telepresence robot, this

would record a video of the screen instead of a static image. The command

‘screenrecord’ was tested for this purpose, which, in combination with VLC player, can

transmit the screen in real. Testing this command with different arguments, applications

and scenarios was always unsuccessful.

By default, ADB does not provide a method for recording audio. However, it is

theoretically possible to install another application to achieve this. A test was designed

to install malware on the robot, which included the ability to record audio. The tools

required to generate and control this malware are only available in Kali Linux, so this

operating system was added to the testing equipment on an external hard disk. In this

environment, the tool MsfVenom is used to generate code that is installed in the robot.

The tool specifies the connection arguments and uses the payload

‘android/meterpreter/reverse_tcp’. This generates an Android package with the

extension “.apk”. The package can then be remotely installed on the robot using the

ADB command ‘install <APK_file>’. Following installation, a listener was set up to

connect the app to the controlling device upon its execution. We used the Metasploit

tool with the same payload specified for MsfVenom.

Finally, the application needs to be executed. This is usually accomplished by manually

opening it in the attacked device, but since the robot’s screen doesn’t allow to open

applications, the ADB command “monkey” launched the app remotely. Upon launching

the app, it automatically connects to the listener and opens a shell on the attacker’s

60

device. This shell, specifically tailored for Android, offers custom commands that can

interact with the robot or open a new shell on it, even if the ADB setting is disabled.

The custom commands that were useful for the designed tests were related to video and

audio recording. The “screenshare” command enables an HTTP website on the device

to stream the contents of the screen in real time. The ‘record_mic’ command should

record the audio captured by the robot’s microphones. Finally, the commands

‘webcam_snap’ and ‘webcam_stream’ should capture images and videos using the

robot’s built-in cameras. However, all these commands failed. Although the installed

malware can obtain other information about the device, it cannot access the cameras,

audio, or screen.

In the last attempt, the same goal was attempted using TeamViewer, a software that

allows remote control of Android devices. The program was designed to display the

robot's screen on a controlling computer and simulate user input to take control of the

device. After installing the application on both the robot and the computer, a PIN code

is used to pair them. However, the connection failed to start, and remote control was not

possible. These results show that access to the cameras or microphones has been

restricted on this device. It is assumed that this behaviour is either a security measure or

an accidental conflict with other background services being used simultaneously.

The following tests aim to compromise the filesystem, according to the threats of

disclosing its information (TI5) and tampering with its files (TT3). As an ADB shell was

obtained by spoofing the administrator's identity, it will be used to access the filesystem.

ADB provides typical Linux commands to interact with the files stored in the device.

The ‘ls’ command can be used to list files, ‘cd’ to traverse folders, and ‘cat’ to print file

contents. Additionally, it supports the text editor Vi. These commands enable manual

analysis of the files installed on the system by traversing key folders such as ‘/data/ssh’.

This process can be automated using Firmwalker, a utility that traverses the firmware

file system to identify potentially interesting data from a cybersecurity perspective. The

software searches the entire filesystem for hardcoded credentials or scripts that could

potentially be exploited. The results revealed various certificates and key files,

including those utilised for SSH connectivity. Lastly, it enumerated IP addresses, URLs,

and emails referenced in the file system, which could be exploited to attack the Cloud

61

attack surface. However, it is important to note that this is beyond the scope of this

thesis.

As part of the information disclosure process, we obtained the firmware responsible for

the robot's features. This involved extracting the driver files and the controlling

application for static analysis. To generate a list of installed applications, we used the

command ‘pm list packages’. The robot's logic is managed by a single application that

handles call connections and controls its physical features. To locate the path of the

application’s ‘.apk’ executable file, the command ‘pm path <package_name>’ was

used. This file can then be retrieved using ‘adb pull <path>’ to extract it to another

device for its analysis.

The ‘backup’ command can be used to retrieve other associated data, such as cache and

configuration. This command enables the application to be cloned and installed in a

virtual device created with Android Studio for dynamic analysis using device emulation.

However, due to the inability to retrieve the backup file, only static analysis could be

performed on the extracted application.

To access the source code, the extracted file needs to be decompiled. The Apktool

utility, which specialises in reverse engineering Android apk files, was used for this

purpose. The disassembly's success allowed for analysis of the app's behaviour. Despite

the challenge of analysing over 300,000 lines of code, the process revealed how the app

establishes connections and controls the robot's features, such as its movement motors,

lights, and speakers.

The ‘logcat’ command can be used to retrieve Android's logs. This log provides

information about executed files and other event logs that offer insights into the

system's behaviour. The extracted information was used to generate new tests based on

the new possibilities that emerged from these files. Since most tests require access to an

ADB shell to succeed, we focused on attempting SSH connectivity. The initial tests

aimed to utilise the SSH information extracted from the file system. Despite retrieving

the robot's SSH server's public and private DSA and RSA keys, they couldn’t be used to

force a connection. This was due to the SSH configuration that enforced the use of the

Elliptic Curve Diffie-Hellman (ECDH) key exchange, resulting in the generation of new

keys for each connection. Furthermore, the leak of keys in the ‘authorized_keys’ file

62

could not be used to establish new connections due to the absence of private keys

needed for the process. Nevertheless, it was possible to add custom keys by modifying

the file. Once new RSA keys were generated using the utility PuTTYgen, the public key

was added to the authorised keys using the ‘echo <key_content> >> authorized_keys’

command. After adding the key, it was possible to gain access to the robot by using the

newly generated private key to connect to the user “root” via SSH. This ensures that

even if ADB is disabled, a potential attacker could still maintain access to the device.

Another method of taking control of the robot is through command execution. During

the analysis of the file system, we found a file with a '.js' extension that was executed by

the root user during the robot's boot-up process. This file was altered to include the

execution of custom code. The file was modified to execute custom code using the

‘execSync’ function, which allows shell commands to be executed with the specified

shell path (‘/system/bin/sh’). This method presents a powerful attack vector as it enables

the modification of files that are automatically executed by a root user.

Finally, the drivers obtained from the filesystem and reverse engineering of the control

application have opened new attack vectors to attempt to gain physical control of the

robot. After analysing the behaviour of the drivers, it was possible to replicate it by

manually calling the different functions that control the robot's peripherals, thus

granting full control over the robot. Some of the allowed actions include moving with

its motors, adjusting lighting, checking battery levels, and utilising Text-to-Speech to

read text aloud through its speakers.

As stated in the Threat Modelling section, it is necessary to analyse repudiation threats

from a theoretical perspective due to the uncertainty surrounding the data sent from the

robot to the cloud. The administration console displays recent user connections to the

robot and the last SSH accesses. The robot's user manual documents that the installation

of new SSH keys must be done through this console. However, it was discovered during

the testing phase that if a malicious SSH key is installed in the robot using ADB

commands, it will not be logged into the system. The administration cloud service does

not show the malicious key or the SSH accesses where it is used. Our tests also revealed

that the same behaviour applies to ADB shells, where accesses are not logged on the

cloud's endpoint but only locally. For a more complete repudiation, even though they

seem to not be transmitted to the cloud, the local logs stored in the robot were also

63

deleted. The ADB ‘logcat -c’ command deletes all logs from the device. An

administrator could notice that the logcat’s buffer is empty, revealing some

unauthorised access, but all the actions performed before wiping the logs are not

traceable.

The following tests targeted various methods for denying service to different features of

the telepresence robot's system. Based on the results of the threat modelling, the

attempts focused on disrupting relay calls (TD3), local calls (TD4), administrative shells

(TD5) and the overall system (TD1). Two main methods were tested: denying service

through ADB commands and through network attacks that do not require a shell.

The initial tests attempted to deny service to the robot as a whole. To stop the robot

from working, the simplest method is to reboot or power it off. This can be achieved

using the ‘reboot’ and ‘reboot -p’ commands. It is important to note that these

commands require a new shell connection on every reboot for a continuous denial of

service. However, to ensure a permanent denial of service, the executable file

discovered during the filesystem tests should be used. Custom code was injected into

the file to create a function rebooting the system. The function is called from an

asynchronous timer with a two-second delay to ensure all components are loaded. This

code causes the device to enter a boot loop, rendering the robot unusable and denying

service.

An alternative method to disable the robot's service using ADB commands is to

uninstall the application that controls all of its features. The command ‘uninstall

<package_name>’ can be used for this purpose. But in this case, the damage is not

reversible since it wasn’t possible to back up the application. As this thesis aims to

avoid irreversible damage, this test is only theoretical and has not been executed.

The tests carried out to disrupt the service of both local and relay calls are the same.

When a call is established, the operating system creates a new process to manage it. To

terminate the call, an ADB command was created to list all processes, filter them based

on the ‘ARGS’ property to isolate the desired one, and use the ‘kill’ command to

terminate the process. The robot automatically disconnects, causing the user controlling

it to receive error connection messages for several seconds until the call is finished.

Local and relay connections were successfully terminated using the same procedure.

64

Killing processes is also used to perform denial-of-service attacks on administrative

shell connections.

Four scenarios were considered, covering all possible connections. Both the attacker's

shell and the shell to be denied can use either ADB or SSH protocols. Android only

allows one ADB shell connection at a time. Therefore, if an attacker wants to deny the

service of an ADB shell, they need to connect to the robot via SSH to perform the

attack. Once connected, terminating the running process by filtering for the string ‘adb’

instantly terminates the shell connection. After terminating the process, a new one is

executed, and reconnection is possible.

To deny service for an extended period, the attacker must connect to the robot using

ADB, preventing the legitimate administrator from connecting due to the limitation of

one concurrent connection. Denial of an SSH shell can be accomplished by an attacker

connected by ADB or SSH. When an SSH connection is established, a new child

process is created to manage each shell in addition to the process responsible for the

SSH server. This means that if there are two concurrent connections, there will be three

processes managing SSH: one main process with the server and two child processes,

each responsible for one shell. To avoid disconnection of the attacker, the 'kill'

command should be used to terminate only the desired child process instead of

terminating the main process. To achieve this, in addition to filtering for only ssh

processes, further processing is necessary to select the specific one. These processes

have their PID identifiers in chronological order, so it is important to correctly identify

the other shell. If the attacker connected first, a command can be executed recursively to

terminate SSH connections with a higher identifier. Otherwise, a command is executed

to disconnect all SSH connections except for the one used for the attack, and then the

recursive command is scheduled.

Additional tests were designed to achieve denial of service with network attacks, even if

shell access is not granted. All of the proposed network attacks require being in the Wi-

Fi range of the robot or client or connected to their networks on LAN. No method was

found to deny the robot's service altogether but only to isolate it from its connectivity,

thus denying its basic functions. This method was successful in disrupting the service of

relay and local calls and administrative shells.

65

Two different approaches were tested, depending on the attacker's access to the

network. In the first, the attacker is connected to or has access to the same Wi-Fi

network. This is the scenario used for this research, as the robot analysed is connected

to a public Wi-Fi. For the first scenario, the tool Bettercap in Kali Linux was used. The

attack vector is based on ARP spoofing, where the attacking computer sends fake ARP

packets linking its MAC address to the IP of the robot or client. Once the commands to

set up ARP spoofing have been executed, it is possible to stop traffic on the target by

setting the ‘arp.ban on’ property. While this attack is being executed by Bettercap, the

target device (either the client or the robot) is isolated from the network, interrupting

current calls or shells. The four different scenarios tested, relay and local calls and ADB

and SSH shells, were all successfully denied.

In the second approach, the attacker has no access to the network. In other words, the

robot is connected to a Wi-Fi network whose credentials are unknown. This test uses the

Aircrack-ng tool, which is also included in the Kali Linux operating system. Another

requirement for this attack is a wireless network adapter that supports monitor mode.

Once the set-up is configured, the command ‘airodump-ng’ can be used to list all access

points in range. This will locate the Wi-Fi network to which the robot is connected and

retrieve the hotspot details. Using the hotspot's MAC address and Wi-Fi channel, the

same utility can be used to monitor devices connected to the hotspot. As there may be

several devices connected to the same hotspot, the MAC address of the robot must be

filtered. This can be done based on previous tests, by proximity based on the strength of

the signal, or by collecting all MAC addresses and filtering based on the manufacturer

of the device. Tools such as the previously used Fing or the online MACVendors can be

used to determine the manufacturer from a given MAC address.

With both MAC addresses (robot and access point), it is possible to launch a Wi-Fi de-

authentication attack using the ‘aireplay-ng’ command. This sends disassociate packets,

forcing the robot to disconnect from the Wi-Fi hotspot and resulting in denial of service

for calls and administrative shells. The process explained above was aimed at isolating

the robot from the network, but it is also possible to isolate the client running the same

test using the client's MAC address instead. The choice depends on the network

topology of the attacker.

66

A combination of the two previous attacks can be used to perform shell information

disclosure (TI6) tests. Man-in-the-middle can be used to expose information flowing

from the robot to the client, in this case, administrative shell commands. This method

can only be used if the attacker has access to the Wi-Fi network where the robot or

client is located. Figure 6 shows the network topology of a local connection used for

local calls or shell connections. The left part of the figure shows the normal topology

when no attack is performed, and the right part shows the scenario that was achieved by

this attack.

The first step in the test was to create a Wi-Fi hotspot for the robot to connect to. This

test was carried out in Kali Linux, where the ‘Linux Wifi Hotspot’ utility was installed.

Once executed, its configuration menu can be used to enter the credentials of the Wi-Fi

to be created, and the “gateway” checkbox must be activated so that the clients

connecting to it can access the Internet. Once the hotspot is up and running, it is

necessary to force the robot to connect to it. This approach builds on the previous tests

by using a Wi-Fi de-authentication attack to force the robot to disconnect from the Wi-

Fi. Since the robot cannot connect to its previous access point, it tries to connect to the

same Wi-Fi network served by a different access point. If the new connection is within

range of the robot, it will successfully connect to the compromised access point.

With this new network topology, it is possible to capture and analyse the network traffic

between the robot and the client using Wireshark. Different iterations of this test were

Figure 6. Man-in-the-middle attack.

67

able to capture traffic generated by SSH and ADB shells, as well as local and relay

calls. The traffic captured from the ADB shell showed all interactions in clear text. It

was possible to retrieve all commands sent by the administrator along with the robot's

responses. In terms of SSH, the captured traffic was encrypted using Elliptic Curve

Diffie-Hellman Key Exchange, so none of the attempts to decrypt the content were

successful. All traffic in the intercepted calls is encrypted, either using TLS for

commands, status and logs, or the UDP protocol with an encrypted payload for camera

feeds. This encryption prevented any information from being retrieved from the

connection and ensured privacy.

The same network topology described in the previous attack can be used to perform

shell tampering, an attack derived from the TT6 threat. The tests performed attempt to

modify the shell commands from a network perspective, which would mean interacting

with the shell in an unauthorised way. As SSH is encrypted and secure, we didn't find

any tests that would succeed in this type of attack. For the ADB connection, several

tests were run to try to make this attack successful. Previous literature has shown that

these attacks can be performed using Burp Suite. This program can't access TCP traffic

by default, as it usually targets HTTP and HTTPS connections, but Burp-Non-HTTP-

Extension can be installed to include this feature. After trying various configuration

methods, we were unable to capture the traffic using this program.

The next approach was to use custom Python code, including the Scapy and

NetfilterQueue utilities. The program developed was able to capture the traffic and, in

theory, manipulate its contents to alter the commands, but when the tests were run, the

contents of the shell weren't actually altered. An additional test used Ettercap to

accomplish this purpose. An additional test used Ettercap for this purpose. First, a filter

was created with instructions on how to manipulate the TCP packets, with strict rules

specifying the changes that would be made. This filter was then compiled using the

command ‘etterfilter <input_filter> -o <output_file>’. This filter was then used in the

‘ettercap’ command, specifying the interface used. An ARP attack was then selected,

although no devices were spoofed, as otherwise, the ADB commands would not be

successfully modified. After this attack was executed, the ADB shell displayed

modified commands according to the specified filters, proving the success of this test.

68

The last test attempted to retrieve information from the cloud provider, under the threat

TI4. During the development of this thesis, we noticed that the cloud service is not

properly protected against user enumeration. In the test carried out, going to the login

page of the cloud provider and clicking on “Forgot password” allows entering an email

to reset the password. If the email exists, a confirmation message is displayed, otherwise

an error message appears. This behaviour allows an attacker to check whether an email

is registered on the robot's online platform. This information isn't useful on its own, but

when combined with social engineering, it can form part of an attack vector. Although

this type of attack is not considered in this thesis, it is usually good practice not to reveal

whether an email is registered with a service.

Figure 7 shows an overview of the test results. The tests or categories that were

successful are marked in green; since access to the cameras was only partially

successful, they are marked in yellow; and the unsuccessful tests are marked in red.

Finally, the grey colour is used for the “Control App Uninstallation” tests, as they

couldn't be carried out in order not to destroy the robot, as stated in the limitations

section.

Figure 7. Test tree results.

69

7 Reporting

The results of the execution section have been documented so that the details can be

shared with both the robot manufacturer and the Creativity Matters research group1,

who own the robot used for this research. The content of the report includes the data

documented in this thesis and additional information with the exact steps performed in

each of the tests so that they can be replicated. Due to the limitation in this thesis to

safeguard the privacy of the manufacturer by not revealing the brand and model of the

robot, these details can't be appended to this document. We have considered that the

information included in the execution section is the appropriate amount to give an

overview of the work carried out while ensuring that identification of the robot is not

possible. However, a brief summary of the results, vulnerabilities discovered and the

tools used to map them to the threat analysis is given in Table 12. This summary

follows the structure used to share the results of the tests attempted on the device,

grouped by the threat from which they originate.

Table 12. Report summary.

Threat Information Disclosure (TI1) Success Yes

Details Information retrieved from the screen of the robot: Android version, security

patch level, installed applications, application permissions, saved Wi-Fi

hotspots and IP and MAC addresses.

Method Input in robot’s screen.

Vulnerabilities Lack of authentication on the touchscreen’s settings.

Threat Tampering (TT1) Success Yes

Details Settings altered through the screen of the robot: ADB shell, Wi-Fi hotspot

used and Certificate Authority certificate installation.

Method Input in robot’s screen, HTTP Toolkit.

Vulnerabilities Lack of authentication on the touchscreen’s settings.

1 Creativity Matters research group at TalTech IT College. URL: https://cm.taltech.ee/about

https://cm.taltech.ee/about

70

Threat Information Disclosure (TI2) Success Yes

Details Monitor the robot’s usage based on open ports.

Tools Nmap.

Vulnerabilities Exposure of information.

Threat Information Disclosure (TI3) Success Yes

Details Information retrieved from establishing a shell with the operating system.

Requires the success of threat TS3. Information retrieved: Usage monitoring,

Android version, security patch level, installed applications, application

permissions, saved Wi-Fi hotspots, saved Wi-Fi passwords, IP and MAC

addresses, screen capturing, Malware installation, filesystem access, log

repudiation and denial of service.

Failed to record video from the screen and audio through the microphones.

Partially succeeded in capturing images from the camera.

Tools Android SDK Platform Tools (ADB).

Vulnerabilities Inadequate ADB shell privileges.

Threat Information Disclosure (TI5) Success Yes

Details Retrieval of the filesystem, controlling application and drivers. Requires the

success of threat TS3. Enabled physical control of the robot.

Tools Firmwalker, Apktool, Android Studio, Android SDK Platform Tools (ADB).

Vulnerabilities Inadequate ADB shell privileges.

Threat Spoofing (TS3) Success Yes

Details Spoofing an administrator to establish a shell to the robot’s system.

Tools Android SDK Platform Tools (ADB).

Vulnerabilities Lack of authentication on ADB shells.

Threat Information Disclosure (TI6) Success Yes

Details Interception of shell traffic using man-in-the-middle attack.

Tools Kali Linux, Linux Wifi Hotspot, Bettercap, Aircrack-ng, Fing, MACVendors,

Wireshark.

Vulnerabilities Lack of encryption on ADB shells.

Threat Tampering (TT3) Success Yes

Details Tampering files in the operating system to modify the robot’s drivers,

command injection and installing an SSH backdoor. Requires the success of

threat TS3.

Tools PuTTYgen, custom code, Android SDK Platform Tools (ADB).

Vulnerabilities Inadequate filesystem privileges.

Threat Denial of Service (TD1) Success Yes

Details Disruption of the overall system. Requires the success of threat TS3.

Tools Android SDK Platform Tools (ADB).

71

Threat Denial of Service (TD3) Success Yes

Details Disruption of service of relay calls.

Tools Kali Linux, Bettercap, Aircrack-ng, Fing, MACVendors, Android SDK

Platform Tools (ADB).

Threat Denial of Service (TD4) Success Yes

Details Disruption of service of local calls.

Tools Kali Linux, Bettercap, Aircrack-ng, Fing, MACVendors, Android SDK

Platform Tools (ADB).

Threat Denial of Service (TD5) Success Yes

Details Disruption of service of administrative shells

Tools Kali Linux, Bettercap, Aircrack-ng, Fing, MACVendors, Android SDK

Platform Tools (ADB).

Threat Information Disclosure (TI4) Success Yes

Details User enumeration on the cloud provider.

Tools None.

Vulnerabilities Exposure of information.

Threat Repudiation (TR1) Success Yes

Details Log and usage repudiation. Requires the success of threat TS3.

Tools Android SDK Platform Tools (ADB).

Vulnerabilities Inadequate ADB shell privileges.

Threat Tampering (TT2) Success Yes

Details Installation of malware capable of accessing the device’s features.

Tools Kali Linux, MsfVenom, TeamViewer, Metasploit, Android SDK Platform

Tools (ADB).

Threat Tampering (TT6) Success Yes

Details Tampering of shell commands resulting in arbitrary code execution.

Tools Kali Linux, Burp Suite, Burp-Non-HTTP-Extension, Python, Scapy,

NetfilterQueue, Ettercap

Vulnerabilities Lack of encryption and integrity checks on ADB shells.

Potential improvements to enhance the cybersecurity of the analysed telepresence robot

are also included in the report. These improvements are detailed in the Discussion

section.

72

8 Discussion

The success of some of the tests carried out on the robot during the development of this

thesis reveals weaknesses that affect the robot. Most of the weaknesses arise from the

ability to enable ADB shells and the lack of security around this protocol. Although

ADB is not enabled by default, it can be easily enabled on screen, along with changing

various settings and revealing confidential information. The nature of these robots

involves human interaction, so in most use cases, this interaction with the screen is

easily achieved. For all the suggestions to improve the robot’s security, it is specified

who should apply the changes since the issues can be fixed by the manufacturer or the

robot's users (those with administrative rights).

Suggested improvements to increase the security of the robot include protecting the

screen with password authentication so that only authorised users can access the robot's

settings. This setting should be included in a future software update, fixed by the

manufacturer. From a user perspective, a temporary fix would be the installation of an

“AppLock” program in charge of securing an application (in this case, the settings app)

with password protection. If those changes are applied, the risks associated with

disclosing information and modifying settings through the screen will no longer exist.

Another recommendation to secure ADB is to disable it if possible. ADB lacks

authentication and encryption, while the SSH server installed in the device provides the

same functionality in a secure way. For this purpose, ADB can be removed entirely

while maintaining its functionality. This setting is disabled by default, but it can easily

be enabled in the robot’s settings. Modern Android devices include a message

highlighting the risks of this setting and discouraging users from enabling it. The

manufacturer could update the software, including a similar approach or directly

removing the option in the settings. From a user’s perspective, there is no fix other than

ensuring this setting is disabled at all times.

Usage monitoring based on ports can be avoided only from the manufacturer’s side, by

updating its behaviour to use a fixed port and leaving it open regardless of the robot's

73

usage. This change would only solve this attack vector, but usage could still be

monitored by analysing network traffic on a device having access to the Wi-Fi network.

From a user perspective, there is no method to fix this security weakness.

The user enumeration on the cloud service can be easily fixed by changing the code not

to reveal whether the email is registered or not and instead give a generic message.

Again, this action must be performed by the manufacturer since users cannot control the

behaviour of the website used to manage and connect to the robots.

Finally, the robot should be connected to a private Wi-Fi network, ideally isolated from

the rest of the user's devices, to limit the number of network attacks that can exploit the

system. This is a security measure that the robot’s administrator should adopt. If these

suggested improvements were applied, the success of the designed tests would be as

shown in Figure 8.

There are several caveats to the approach taken in this research. The methodology

followed for penetration testing relies entirely on the data-flow diagram designed. This

diagram was designed by combining information about the robot gathered from online

documentation and through active methods. Even though the diagram was designed

with the highest possible accuracy, any error in its representation would lead to

Figure 8. Test tree with improvements applied.

74

incorrect addressing of the threats affecting the robot. If the threats were modified,

different tests would have to be designed, which would change the results of the work.

Secondly, the attacks carried out were based on various sources, documentation and

hacking forums. This approach was taken in order to obtain an up-to-date database of

available attacks and methods, although some of the sources do not originate from

academic publications. For this reason, several sources were cross-checked in an

attempt to achieve the highest possible coverage of attacks. As there are a large number

of hacking tools for each method, it is possible that some attack methods have been

overlooked. Although special emphasis was placed on the unsuccessful tests in an

attempt to discover new attack vectors that would be successful, it is possible that some

methods that were not tested would have been successful. Also, the availability of

newer tools could change the results of the unsuccessful tests, leading to different

results than those in this research.

After evaluating the results, it was discovered that the method that PatrIoT uses for risk

scoring, Lightweight Risk Scoring, is excessively lightweight. We realised that the

formula used to compute the risk gives the “Simplicity” variable a very high weight

over the final score. This results in overvaluing specific threats merely based on how

easy they are to be performed. As an example, a threat with the values one for Impact,

two for Coverage and three for Simplicity would have a risk score of 2,4. Another threat

with values of three for Impact, two for Coverage and two for simplicity would have a

risk score of 2,2. This means that a threat with the highest impact but a medium

simplicity has a theoretically lower risk than another with the lowest impact but the

highest simplicity. We believe this risk scoring method is not adequately balanced. The

risk scoring was based on a theoretical perspective, and the values were assigned with

the highest possible partiality. However, since the risk scoring method only relies on

three values to compute the scores, the values might differ depending on the people who

assign the values. This is also tied to the lack of collaboration by the manufacturer,

which would have been ideal for a person with full knowledge of the robot, and the

company would have decided on the variable values since the risks require

organisational context. Another approach would have been to perform vulnerability

scoring using a standard like the Common Vulnerability Scoring System (CVSS) [101].

With this, assessing the risk values based on the vulnerabilities that create those risks

would be possible. For all the reasons previously mentioned, the risk scoring used in

75

this thesis has been shown to have some margin to be improved. However, since these

risk scores were only used to establish the order of the exploitation of the threats, all

threats with a high impact were analysed, and there were several iterations on the

threats, meaning that their order didn’t affect the results. We believe the choice of the

Lightweight Risk Scoring was not ideal, but at the same time, it didn’t affect the results.

Using an alternative method to score the vulnerabilities or risks found and prioritise the

exploits to be tested relies on future work.

In addition, an appropriate validation method for this research, other than empirical

testing, couldn't be found. The results were empirically validated during the exploitation

phase. This shows that the elicitation of the threats was adequate and did indeed pose a

cybersecurity risk to the robot. Due to the novelty of the topic, it was not possible to

compare it with other previous research for additional validation. Had the vendor agreed

to collaborate on this issue, their security analysis could have been compared to this

work to assess its validity. This lack of collaboration also limited the attack surface, as

the cloud service was not analysed. Previous literature has shown successful attacks on

IoT devices on the cloud surface [102], so this area needs to be analysed for the

completeness of the robot penetration test.

It is also worth mentioning that the company that manufactures the robot showed a

complete lack of collaboration at all project stages. They never answered when they

were first contacted for cooperation on this thesis. More prominent companies usually

offer different ways of reporting vulnerabilities, from a single email point of contact to

bug bounty programs. Even though it is a generalised issue for small companies, we

believe a simple contact method to report vulnerabilities found is an easy yet effective

way to collect cyber security issues. The manufacturer should make an effort to

implement some mechanism for this purpose.

Finally, this work was limited in time and resources. Although we consider the coverage

of the tests to be adequate, some threats were not analysed. From the elicitation of all

threats, tests for those with the lowest risk score were not considered in the exploitation

phase. As explained above, the threats that weren't analysed had a low impact and were

the most complex. Although we believe the results wouldn't be too different when

attempting to exploit them, they could be included in future research along with the

cloud attack surface to achieve the full penetration test.

76

9 Summary

The aim of this research was to investigate the potential cybersecurity threats and

vulnerabilities affecting the telepresence robot under study. We employed a four-step

methodology based on PatrIoT [44], consisting of Reconnaissance, Threat Modelling,

Exploitation and Reporting. During the Reconnaissance phase, information about the

device and the behaviour of the whole system was collected. Based on this information,

a data-flow diagram was created in the Threat Modelling phase, showing the behaviour

and information flow between the components of the telepresence robot system. This

diagram was used to identify the threats affecting the system using STRIDE threat

modelling. The threats were then prioritised according to their risk score. In the

Exploitation phase, we used the discovered threats to plan tests to exploit the robot.

These tests were then executed, opening up new attack vectors and generating

additional tests. After several iterations in which all the planned tests were executed, the

results were documented in the Reporting phase. This report contains details of the tests

performed, including successful exploits, unsuccessful attempts and a list of

improvements that can be made to improve the cybersecurity of the telepresence robot.

The main findings of the research can be summarised in four points corresponding to

the proposed research questions. This research was able to identify the potential

cybersecurity threats affecting the telepresence robot during the threat modelling phase,

thus answering the first research question (RQ1). This thesis also showed how

systematic penetration testing can be adapted to the telepresence robot through the

methodology applied to conduct the research, answering the second research question

(RQ2). A method for selecting the tests to be performed was also shown, using the risk

score of the threats to prioritise and select the tests to be performed (RQ3). The

improvements that can be made to enhance the cybersecurity of the telepresence robots

are shown in section 8, based on the results of the penetration tests. This answers the

final research question (RQ4) and successfully achieves the objectives of this thesis.

77

These findings can contribute to a deeper understanding of the security implications

associated with telepresence robots. They can also be used by telepresence robot

manufacturers to improve the security of their products. The results also include

information about the robot's configuration, which could be used by owners to ensure

greater security when using their product.

This research was limited in two ways: by not analysing the system's cloud service due

to a lack of cooperation from the service provider and by not analysing low-risk threats

due to limited resources. Further research can continue with different objectives,

starting from overcoming the limitations described above. The low-risk threats could be

included in the penetration testing process together with the cloud network analysis if

the service provider allows it. However, future work could also find an additional

method to validate the current research, ideally by comparing it to the existing work of

the robot's development team.

78

References

[1] M. Lei, I. M. Clemente, H. Liu and J. Bell, “The acceptance of telepresence

robots in higher education,” International Journal of Social Robotics, vol. 14, p.

1025–1042, 2022.

[2] A. Velinov, S. Koceski and N. Koceska, “A review of the usage of telepresence

robots in education,” Balkan Journal of Applied Mathematics and Informatics,

vol. 4, p. 27–40, 2021.

[3] N. D. Xuan Hai, L. H. Thanh Nam and N. T. Thinh, “Remote Healthcare for the

Elderly, Patients by Tele-Presence Robot,” in 2019 International Conference on

System Science and Engineering (ICSSE), 2019.

[4] R. Bevilacqua, A. Cesta, G. Cortellessa, A. Macchione, A. Orlandini and L.

Tiberio, “Telepresence robot at home: a long-term case study,” in Ambient

Assisted Living: Italian Forum 2013, 2014.

[5] A. G. Bacudio, X. Yuan, B.-T. B. Chu and M. Jones, “An overview of penetration

testing,” International Journal of Network Security & Its Applications, vol. 3, p.

19, 2011.

[6] I. Rae and C. Neustaedter, “Robotic telepresence at scale,” in Proceedings of the

2017 chi conference on human factors in computing systems, 2017.

[7] I. Priyadarshini, “Cyber security risks in robotics,” in Cyber security and threats:

concepts, methodologies, tools, and applications, IGI Global, 2018, p. 1235–

1250.

[8] T. Bonaci, J. Herron, T. Yusuf, J. Yan, T. Kohno and H. J. Chizeck, “To make a

robot secure: An experimental analysis of cyber security threats against

teleoperated surgical robots,” arXiv preprint arXiv:1504.04339, 2015.

[9] E. Fosch-Villaronga and T. Mahler, “Cybersecurity, safety and robots:

Strengthening the link between cybersecurity and safety in the context of care

robots,” Computer Law & Security Review, vol. 41, p. 105528, 2021.

[10] N. G. Hockstein, C. G. Gourin, R. A. Faust and D. J. Terris, “A history of robots:

from science fiction to surgical robotics,” Journal of robotic surgery, vol. 1, p.

113–118, 2007.

[11] IFR, “World Robotics Report 2022,” 2022.

[12] M. Minsky, “Telepresence,” 1980.

[13] M. Desai, K. M. Tsui, H. A. Yanco and C. Uhlik, “Essential features of

telepresence robots,” in 2011 IEEE Conference on Technologies for Practical

Robot Applications, 2011.

[14] K. M. Tsui, M. Desai, H. A. Yanco and C. Uhlik, “Exploring use cases for

telepresence robots,” in Proceedings of the 6th international conference on

Human-robot interaction, 2011.

[15] D. Geffen, “World's First Hospital to Introduce Remote Presence Robots in ICU,”

79

Newswise, 2005.

[16] FACT.MR, “Telepresence Robot Market Is Expected To Accelerate At A

Whopping 17% CAGR, Reaching US 1.6 Billion by 2033,” 2023.

[17] J. P. Hansen, A. Alapetite, M. Thomsen, Z. Wang, K. Minakata and G. Zhang,

“Head and gaze control of a telepresence robot with an hmd,” in Proceedings of

the 2018 ACM Symposium on Eye Tracking Research & Applications, 2018.

[18] M. Zhang, P. Duan, Z. Zhang and S. Esche, “Development of telepresence

teaching robots with social capabilities,” in ASME International Mechanical

Engineering Congress and Exposition, 2018.

[19] C. Liu, C. Ishi and H. Ishiguro, “Auditory scene reproduction for tele-operated

robot systems,” Advanced Robotics, vol. 33, p. 415–423, 2019.

[20] G. Zhang and J. P. Hansen, “Telepresence robots for people with special needs: A

systematic review,” International Journal of Human–Computer Interaction, vol.

38, p. 1651–1667, 2022.

[21] D. G. Macharet and D. A. Florencio, “A collaborative control system for

telepresence robots,” in 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2012.

[22] G. Zhang and J. P. Hansen, “Accessible control of telepresence robots based on

eye tracking,” in Proceedings of the 11th ACM Symposium on Eye Tracking

Research & Applications, 2019.

[23] S. J. Badashah and others, “Telepresence Robot Using Raspberry Pi,” Journal of

Algebraic Statistics, vol. 13, p. 2165–2172, 2022.

[24] A. Kosugi, M. Kobayashi and K. Fukuda, “Hands-Free collaboration using

telepresence robots for all ages,” in Proceedings of the 19th ACM Conference on

Computer Supported Cooperative Work and Social Computing Companion, 2016.

[25] B. Hine, C. Stoker, M. Sims, D. Rasmussen, P. Hontalas, T. Fong, J. Steele, D.

Barch, D. Andersen, E. Miles and others, “The application of telepresence and

virtual reality to subsea exploration,” in Proceeding of the 2nd Workshop on:

Mobile Robots for Subsea Environments, International Advanced Robotics

Program (IARP), MJ Lee and RB McGee (eds), Monterey, CA, 1994.

[26] P. Ardanuy, C. Otto, J. Head, N. Powell, B. Grant and T. Howard, “Telepresence

enabling human and robotic space exploration and discovery: antarctic lessons

learned,” Space 2005, p. 6756, 2005.

[27] C. R. Stoker, “Telepresence in the human exploration of Mars: Field studies in

analog environments,” Proc. Vision 21: Interdisciplinary Science and

Engineering in the Era of Cyberspace, p. 23–34, 1993.

[28] B. P. Singh, “Telepresence Robots Market Research Report 2022, Size, Share,

Trends and Forecast to 2027,” LinkedIn, 2022. [Online]. Available:

https://www.linkedin.com/pulse/telepresence-robots-market-research-report-

2022-size-share-singh.

[29] H. M. Z. A. Shebli and B. D. Beheshti, “A study on penetration testing process

and tools,” in 2018 IEEE Long Island Systems, Applications and Technology

Conference (LISAT), 2018.

[30] M. Bishop, “About Penetration Testing,” IEEE Security & Privacy, vol. 5, pp. 84-

87, 2007.

[31] G. Weidman, Penetration testing: a hands-on introduction to hacking, No starch

press, 2014.

80

[32] UK National Cyber Security Centre, “Threat Modelling,” Risk management,

2023.

[33] P. S. Shinde and S. B. Ardhapurkar, “Cyber security analysis using vulnerability

assessment and penetration testing,” in 2016 World Conference on Futuristic

Trends in Research and Innovation for Social Welfare (Startup Conclave), 2016.

[34] R. E. Johnson, “Frameworks=(components+ patterns),” Communications of the

ACM, vol. 40, p. 39–42, 1997.

[35] D. Avison and G. Fitzgerald, Information systems development: methodologies,

techniques and tools, McGraw-Hill, 2003.

[36] T. Wilhelm, Professional Penetration Testing: Volume 1: Creating and Learning

in a Hacking Lab (Vol. 1, pp. 26). Burlington: Syngress, 2009.

[37] S. Shah and B. M. Mehtre, “An overview of vulnerability assessment and

penetration testing techniques,” Journal of Computer Virology and Hacking

Techniques, vol. 11, p. 27–49, November 2014.

[38] M. Alhamed and M. M. H. Rahman, “A Systematic Literature Review on

Penetration Testing in Networks: Future Research Directions,” Applied Sciences,

vol. 13, 2023.

[39] M. R. Albrecht and R. B. Jensen, “The Vacuity of the Open Source Security

Testing Methodology Manual,” in Security Standardisation Research: 6th

International Conference, SSR 2020, London, UK, November 30–December 1,

2020, Proceedings 6, 2020.

[40] E. A. Morse and V. Raval, “PCI DSS: Payment card industry data security

standards in context,” Computer Law & Security Review, vol. 24, pp. 540-554,

2008.

[41] OWASP, “OWASP Web Security Testing Guide”.

[42] OWASP, “OWASP Mobile Application Security Testing Guide”.

[43] K. Scarfone, M. Souppaya, A. Cody and A. Orebaugh, “Technical guide to

information security testing and assessment,” NIST Special Publication, vol. 800,

p. 2–25, 2008.

[44] E. Süren, F. Heiding, J. Olegård and R. Lagerström, “PatrIoT: practical and agile

threat research for IoT,” International Journal of Information Security, vol. 22, p.

213–233, November 2022.

[45] M. Berner, Where’s My Car? Ethical Hacking of a Smart Garage, 2020.

[46] G. Rubbestad and W. Söderqvist, Hacking a Wi-Fi based drone, 2021.

[47] C. Torgilsman and E. Bröndum, Ethical hacking of a Robot vacuum cleaner,

2020.

[48] M. Rak, G. Salzillo, C. Romeo and others, “Systematic IoT Penetration Testing:

Alexa Case Study.,” in ITASEC, 2020.

[49] A. Konev, A. Shelupanov, M. Kataev, V. Ageeva and A. Nabieva, “A survey on

threat-modeling techniques: protected objects and classification of threats,”

Symmetry, vol. 14, p. 549, 2022.

[50] K. Tuma, G. Calikli and R. Scandariato, “Threat analysis of software systems: A

systematic literature review,” Journal of Systems and Software, vol. 144, p. 275–

294, 2018.

[51] S. Hussain, A. Kamal, S. Ahmad, G. Rasool and S. Iqbal, “Threat modelling

methodologies: a survey,” Sci. Int.(Lahore), vol. 26, p. 1607–1609, 2014.

81

[52] K. Wuyts and W. Joosen, “LINDDUN privacy threat modeling: a tutorial,” CW

Reports, 2015.

[53] K. L. DistriNet Research Unit, “LINDDUN.ORG”.

[54] T. UcedaVélez, “What is PASTA Threat Modeling?,” 2021.

[55] F. Den Braber, I. Hogganvik, M. S. Lund, K. Stølen and F. Vraalsen, “Model-

based security analysis in seven steps—a guided tour to the CORAS method,” BT

Technology Journal, vol. 25, p. 101–117, 2007.

[56] P. Saitta, B. Larcom and M. Eddington, “Trike v. 1 methodology document

[draft],” URL: http://dymaxion. org/trike/Trike v1 Methodology Documentdraft.

pdf, 2005.

[57] I. Yaqoob, S. A. Hussain, S. Mamoon, N. Naseer, J. Akram and A. ur Rehman,

“Penetration testing and vulnerability assessment,” Journal of Network

Communications and Emerging Technologies (JNCET) www. jncet. org, vol. 7,

2017.

[58] S. Mehta, G. Raj and D. Singh, “Penetration Testing as a Test Phase in Web

Service Testing a Black Box Pen Testing Approach,” in Smart Computing and

Informatics: Proceedings of the First International Conference on SCI 2016,

Volume 2, 2018.

[59] S. Huckins, “R7-2017-01: Multiple Vulnerabilities in Double Robotics

Telepresence Robot,” Rapid7, 13 March 2017. [Online]. Available:

https://www.rapid7.com/blog/post/2017/03/13/r7-2017-01-multiple-

vulnerabilities-in-double-robotics-telepresence-robot/. [Accessed 16 February

2024].

[60] D. Regalado, “Watching You through the Eyes of,” Zingbox, 2018.

[61] M. Bereza, “Call an Exorcist! My Robot’s Possessed!,” McAfee, 05 August 2020.

[Online]. Available: https://www.mcafee.com/blogs/other-blogs/mcafee-labs/call-

an-exorcist-my-robots-possessed/. [Accessed 17 Februry 2024].

[62] OWASP, “OWASP Top 10 Internet of Things,” 10.

[63] MITRE, Common Weakness Enumeration (CWE).

[64] OWASP, OWASP Firmware Security Testing Methodology (FSTM), 2020.

[65] O. W. A. S. P. Project, OWASP Web Security Testing Guide.

[66] O. W. A. S. P. Project, OWASP Mobile Security Testing Guide.

[67] P. Mell, K. Scarfone and S. Romanosky, “Common vulnerability scoring system,”

IEEE Security & Privacy, vol. 4, p. 85–89, 2006.

[68] OWASP, “OWASP Risk Rating Methodology”.

[69] L. Kohnfelder and P. Garg, “The threats to our products,” Microsoft Interface,

Microsoft Corporation, vol. 33, 1999.

[70] Z. Abuabed, A. Alsadeh and A. Taweel, “STRIDE threat model-based framework

for assessing the vulnerabilities of modern vehicles,” Computers & Security, vol.

133, p. 103391, 2023.

[71] D. Overstreet, H. Wimmer and R. J. Haddad, “Penetration testing of the amazon

echo digital voice assistant using a denial-of-service attack,” in 2019

SoutheastCon, 2019.

[72] R. Khan, K. McLaughlin, D. Laverty and S. Sezer, “STRIDE-based threat

modeling for cyber-physical systems,” in 2017 IEEE PES Innovative Smart Grid

Technologies Conference Europe (ISGT-Europe), 2017.

82

[73] K. Tuma and R. Scandariato, “Two architectural threat analysis techniques

compared,” in Software Architecture: 12th European Conference on Software

Architecture, ECSA 2018, Madrid, Spain, September 24–28, 2018, Proceedings

12, 2018.

[74] M. Howard and S. Lipner, The security development lifecycle, vol. 8, Microsoft

Press Redmond, 2006.

[75] Angry IP Scanner, “Angry IP Scanner,” [Online]. Available: https://angryip.org/.

[Accessed 19 March 2024].

[76] G. Lyon, “Nmap,” [Online]. Available: https://nmap.org/. [Accessed 19 March

2024].

[77] Fing Limited, “Fing,” [Online]. Available: https://www.fing.com/. [Accessed 19

March 2024].

[78] MACVendors, “MAC Vendors,” [Online]. Available: https://macvendors.com/.

[Accessed 19 March 2024].

[79] T. Perry, “HTTP Toolkit,” [Online]. Available: https://httptoolkit.com/. [Accessed

19 March 2024].

[80] S. Tatham, “PuTTYgen,” [Online]. Available: https://www.puttygen.com/.

[Accessed 19 March 2024].

[81] Google, “Android SDK Platform Tools,” [Online]. Available:

https://developer.android.com/studio/releases/platform-tools. [Accessed 19 March

2024].

[82] C. Smith, “Firmwalker,” [Online]. Available:

https://github.com/craigz28/firmwalker. [Accessed 19 March 2024].

[83] R. Wiśniewski and C. Tumbleson, “Apktool,” [Online]. Available:

https://ibotpeaches.github.io/Apktool/. [Accessed 19 March 2024].

[84] Google, “Android Studio,” [Online]. Available:

https://developer.android.com/studio. [Accessed 19 March 2024].

[85] Rapid7, “Metasploit,” [Online]. Available: https://www.metasploit.com/.

[Accessed 19 March 2024].

[86] Rapid7, “Msfvenom,” [Online]. Available: https://www.offensive-

security.com/metasploit-unleashed/msfvenom/. [Accessed 19 March 2024].

[87] TeamViewer AG, “TeamViewer,” [Online]. Available:

https://www.teamviewer.com/. [Accessed 19 March 2024].

[88] L. Akash, “Linux Wifi Hotspot,” [Online]. Available:

https://github.com/lakinduakash/linux-wifi-hotspot. [Accessed 19 March 2024].

[89] Wireshark Foundation, “Wireshark,” [Online]. Available:

https://www.wireshark.org/. [Accessed 19 March 2024].

[90] S. Margaritelli, “Bettercap,” [Online]. Available: https://www.bettercap.org/.

[Accessed 19 March 2024].

[91] C. Devine, “Aircrack-ng,” [Online]. Available: https://www.aircrack-ng.org/.

[Accessed 19 March 2024].

[92] Ettercap Project, “Ettercap,” [Online]. Available: https://www.ettercap-

project.org/. [Accessed 19 March 2024].

[93] PortSwigger, “Burp Suite,” [Online]. Available: https://portswigger.net/burp.

[Accessed 19 March 2024].

83

[94] Josh, “Burp-Non-HTTP-Extension,” [Online]. Available:

https://github.com/summitt/Burp-Non-HTTP-Extension. [Accessed 19 March

2024].

[95] P. S. Foundation, “Python,” [Online]. Available: https://www.python.org/.

[Accessed 19 March 2024].

[96] P. Biondi, “Scapy,” [Online]. Available: https://scapy.net/. [Accessed 19 March

2024].

[97] M. Fox, “NetfilterQueue,” [Online]. Available:

https://pypi.org/project/NetfilterQueue/. [Accessed 19 March 2024].

[98] DistriNet, “LINDDUN PRO Tutorial,” 2023.

[99] B. Cannoles and A. Ghafarian, “Hacking experiment by using usb rubber ducky

scripting,” Journal of Systemics, vol. 15, p. 6671, 2017.

[100] Mitmproxy, “Install System CA Certificate on Android Emulator,” [Online].

Available: https://docs.mitmproxy.org/stable/howto-install-system-trusted-ca-

android/. [Accessed 3 March 2024].

[101] K. a. M. P. Scarfone, “An analysis of CVSS version 2 vulnerability scoring,”

2009 3rd International Symposium on Empirical Software Engineering and

Measurement, pp. 516--525, 2009.

[102] T. Stroeven and F. Söderman, Cybersecurity Evaluation of an IP Camera, 2022.

84

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Diego del Rio Manzanas

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis "Securing Remote Connectivity: A Systematic Penetration Testing Analysis

of a Telepresence Robot" supervised by "Shaymaa Mamdouh Khalil".

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of

Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

10.05.2024

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

