
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technology
Department of Software Science

ITC70LT
Andres Rauschecker

USER-ORIENTED PRIVACY ENHANCEMENTS

FOR WEB-BROWSERS
Master Thesis

Supervisor: Olaf Maennel PhD

Tallinn 2018

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has
been published or submitted for publication. All works and major viewpoints of the other
authors, data from other sources of literature and elsewhere used for writing this paper
have been referenced.

Author: Andres Rauschecker

May 6, 2018

2

Abstract

The numerous surveillance scandals and data leaks of our digital age show, that personal
information has become one of the most valued goods online. International companies
and governments seek to profit from exchanging their data records, leaving privacy rights
in a critical state. As a great majority of digital content is accessed through web browsers,
it is these applications, that require special attention in ensuring a user’s privacy.
We show in a survey, that users often have difficulties in configuring browsers, so they
match their security and privacy expectations. This is why we come up with a new de-
fence concept, that addresses this issue: Based on analysing, how a user wants to use the
Internet and what privacy aspects are considered important, we generate a custom config-
uration. Practically this is realised in a portable program.
Evaluating our new method, it becomes clear, that this way of setting up a browser im-
proves protection, while hiding the complexity of technical details from the user. The
enforced defence measures result in remediable rendering issues regarding video content.
A more critical problem manifests itself in ensuring the trustworthiness of the application
to the user. It is equally challenging to find a metric, that lets the user understand, how
much protection he has in reality and how his answers influence this rating.

The thesis is in English and contains 62 pages of text, 5 chapters, 14 figures, 9 tables.

3

Annotatsioon

Meie digiajastul on toimunud arvukad jälgimise skandaalid ja andmete lekked, mis tões-
tavad, et isiklikust informatsioonist on saanud üks kõige väärtuslikemaid varasid. Rahvus-
vahelised ettevõtted ja valitsused püüavad kasu saada andmete vahetamisest, eirates seeju-
ures indiviidide privaatsusõiguseid. Enamik digitaalsest infosisust saadakse veebibrauseri-
te kaudu ning seetõttu vajavad just need rakendused erilist tähelepanu kasutaja privaatsuse
tagamisel.
Uuringu tulemused on näidanud, et kasutajatel esineb tihti raskusi brauserite seadistamisel
selliselt, et nende turvalisuse ja privaatsuse ootused oleksid täidetud. Sellepärast oleme
töös esitanud uue kaitsekontseptsiooni, mis vastavat probleemi adresseerib. Analüüsi
alusel, kuidas indiviid soovib kasutada Internetti ja milliseid privaatsuse aspekte peetakse
oluliseks, on loodud mugandatud konfiguratsioon. See on realiseeritud portatiivse pro-
grammina.
Uue meetodi hindamisel selgub, et sellisel viisil brauseri seadistamine parandab kaitset,
peites kasutaja eest keerukad tehnilised üksikasjad. Need kaitsemeetmed tekitavad video
renderdamise probleemi, mis on siiski võimalik kõrvaldada. Suurem probleem on rak-
enduse usaldusväärsuse tagamine kasutaja jaoks. Samuti on keeruline leida mõõdik, mis
võimaldab kasutajal mõista, kui palju kaitset ta tegelikkuses omab ning kuidas tema vas-
tused mõjutavad hinnangut

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 62 leheküljel, 5 peatükki, 14
joonist, 9 tabelit.

4

Glossary of terms and abbreviations

API Application Programming Interface

CSS Cascading Style-Sheets

DNS Domain Name System

DOM Document Object Model

GUI Graphical User Interface

HSTS HTTP Strict Transport Security

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protcol

ISP Internet Service Provider

NSA National Security Agency

RFC Request For Comments

SOP Same Origin Policy

SQL Structured Query Language

TCP Transmission Control Protocol

TLS Transport Layer Security

XSS Cross Site Scripting

5

Contents

1 Introduction 10
1.1 Privacy in a current context . 10
1.2 Research problem . 10
1.3 Research question . 11
1.4 Limitations . 11
1.5 Outline . 12

2 Related work 13
2.1 Definition of privacy and security . 13
2.2 Attacker model . 14

2.2.1 Malicious hackers . 14
2.2.2 Governments . 15
2.2.3 Advertising companies . 15
2.2.4 Conclusion and scope of defence 16

2.3 Known attacks . 16
2.3.1 Exploits . 16
2.3.2 Fingerprinting . 18
2.3.3 Tracking . 20

2.4 Defence strategies . 22
2.4.1 Risk reduction for exploits . 23
2.4.2 Anti-Fingerprinting . 25
2.4.3 Anti-Tracking . 27

2.5 Current state of defence strategies and our contribution 30

3 Survey: Analysing current browser configurations 31
3.1 Survey design . 31

3.1.1 User data . 31
3.1.2 Browser data . 32

3.2 Outcomes . 32
3.2.1 Usability versus protection . 33
3.2.2 Trustworthiness of an external application 33
3.2.3 Privacy intents versus actual configuration 33

4 Implementation of a configurator application 34
4.1 Requirements analysis . 34

4.1.1 User model . 34
4.1.2 Operating system compatibility 35

6

4.1.3 Browser compatibility . 35
4.1.4 Extensibility . 35

4.2 Application design . 35
4.2.1 Separation of concerns . 36
4.2.2 View . 36
4.2.3 Database . 37
4.2.4 Configurator . 38
4.2.5 Question design . 39

4.3 Testing . 41
4.3.1 Exploit risk . 41
4.3.2 Fingerprinting . 42
4.3.3 Tracking . 45
4.3.4 Headless mode . 47
4.3.5 Usability vs privacy . 47
4.3.6 Beta testing and user interview 49

5 Conclusion and outlook 53
5.1 Future work . 54

Appendix A Survey: Users & browser configurations 58

Appendix B Panopticlick fingerprinting results & values 59

Appendix C Alexa top 30 sites - United States 62

7

List of Figures

1 Package model: View, Database & Browser configurator 36
2 View - Class diagram . 36
3 Database - Class diagram . 37
4 Configurator - Class diagram . 38
5 Configurator code invocation using JAVA’s Reflect API 39
6 Firefox start-up - Configuration loading error 41
7 Firefox post-configuration plugin overview - Flash disabled 42
8 Firefox fingerprinting parameter overload issue 42
9 Mozilla Lightbeam graph - Firefox default configuration 45
10 Mozilla Lightbeam graph - Firefox full privacy configuration 46
11 Headless mode of our application - usage overview 47
12 Headless mode of our application - automatic configuration 47
13 Our privacy configurator application - survey view 51
14 Proposal of an improved application interface - survey view 52

8

List of Tables

1 Normalized Shannon’s entropy of Fingerprinting methods (adapted from
[17, p. 14, appendix A] and [17, p. 4, table I]) 26

2 SQL Structure of Table: SurveyQuestions 37
3 SQL Structure of Table: SurveyAnswers 38
4 Fingerprinting results (normalized Shannon’s entropy) pre and post de-

fence (Windows 10) . 43
5 Survey results: User & browser configurations 58
6 Fingerprinting results & values - Windows 10 - Pre defence 59
7 Fingerprinting results & values - Windows 10 - Post defence 60
8 Fingerprinting results & values - macOS Sierra 10.12.6 - Pre defence . . . 60
9 Fingerprinting results & values - macOS Sierra 10.12.6 - Post defence . . 61

9

1. Introduction

1.1. Privacy in a current context

With Edward Snowden’s revelations of global surveillance programs, that the American
National Security Agency (NSA) used to monitor citizens world-wide [1], it becomes ap-
parent, that personal information has become one of the most valuable resources online.
It is not only governments, but also private businesses like Facebook or Google, who seek
to sell the data they collect.
While actively user generated content, like submitted text or similar interactions, is the
main source for data collection, meta-information also plays an important role in analysing
a user’s behavioural patters: Knowing where a visitor came from and what pages he has
viewed in the past, allows to put a current action into context. It becomes possible to link
identities between services and understand how single requests correlate to each other.

1.2. Research problem

As a majority of today’s Internet traffic is exchanged via web browsers, these applica-
tions become a central target of the previously described meta data analysis. Browsers
have developed into complex programs and many components, designed to enhance func-
tionality, can be exploited to gain additional information about their user. Looking at
the past decade of security incidents, we can see numerous issues with applications like
Firefox or Chrome and third party plug-ins like Adobe Flash [2]. Secondly, the amount
of techniques used to track and control users across the Internet has grown significantly.
Companies want to know, what advertisements potential customers clicked on. Govern-
ments have recognized, that the digital world offers a new space for illegal activities and
thus want to monitor online behaviour.
While institutions like the TOR Project [3] and several private contributors develop tools
to protect against the latest attack trends, in the end it is the user, who has to decide, which
software is working as intended. He has to install a set of applications or plug-ins, that fit
to his privacy and security needs. As previously mentioned, this task becomes more and
more complex, as one has to understand how attacks work and analyse, whether a tool
correctly defends the latter.

10

1.3. Research question

This thesis evaluates, how browsers can be made more secure and protective to privacy,
by including the user in the configuration process: Can a better understanding of a user’s
intents improve the way how browsers are set up? Subsequently, this research question is
structured into the following aspects:

1. Defining privacy and security. What do we aim to protect against?:
We discuss, where the identity of a user is reflected in his browser and in what
known ways it can be revealed or tracked.

2. Who is the attacker? How may he compromise our goals?
As mentioned previously, several entities aim to benefit from collecting and linking
meta information about their users. We will analyse their motives and options.

3. How are devices configured in reality?
Via an online survey, we will dissect browser configurations and evaluate, how they
match their users’ privacy intents.

4. How can we reduce configuration complexity and meet the user’s needs?
We attempt to extract individual preferences from the user and use this information
as a foundation to allow an automated configuration of web browsers.

5. How much can we improve protection? What limitations exist?
We quantify our adaptations and evaluate, how effective usage-based defence can
be. We also look at possible restrictions (e.g. usability and granularity of the de-
fence).

1.4. Limitations

Because of the limited time frame for the thesis, only Mozilla Firefox will be used and
analysed within this work. The research outcomes are however still applicable to other
browsers, as most of them share the same attack surfaces and offer similar configuration
options for a defence. For the application implemented in the scope of the thesis, Google
Chrome and Microsoft Edge support are planned.

11

1.5. Outline

The thesis is structured as follows: Chapter 2 will find a definition of digital privacy,
discuss attacks to it and select methods for a successful defence. Then, chapter 3 will
analyse in a survey, how users configure their browsers and what privacy aspects they
consider important. Subsequently, chapter 4 focuses on the realisation of a configurator
application, that intends to enhance individual privacy by questioning the user about his
browsing intents. In the last sections, it will evaluate the benefits and limitations of the
created software. Lastly, chapter 5 will summarize the research and conclude on the pros
and cons of the user oriented application, as well as the idea behind it. This includes a
future work section, where extensions to the work are discussed.

12

2. Related work

Before we can develop a methodology on how to include user intents in browser config-
urations, it is necessary to give a clear understanding of the terms, which will be used in
the thesis. Secondly, we will look at possible attackers, their motivations and how they
can interfere with our defence goals.

2.1. Definition of privacy and security

As Onn et al. recognize in their publication "Privacy in the Digital Environment", privacy
is a complex term, that is dependent on many parameters, such as time and context [4,
p. 6]. This is why it seems less practical to cite rigid legislation, but rather use a more
open definition and translate it to the digital space, we will be focusing on. While the
previously mentioned work aims to discuss the current state of online privacy and possible
enhancements to it, the authors come up with a very considered definition [4, p. 12]:

The right to privacy is our right to keep a domain around us, which includes
all those things that are part of us, such as our body, home, property, thoughts,
feelings, secrets and identity. The right to privacy gives us the ability to
choose which parts in this domain can be accessed by others, and to control
the extent, manner and timing of the use of those parts we choose to disclose.

To adapt the personal domain of the first sentence to a digital world, it is useful, to think
through example interactions with a website: A user can request a page, enter his own
thoughts into input fields and send them back as an answer. Looking at the personal in-
formation he shares, it is his thoughts, that he decides to disclose, as well as his identity,
that is linked to his IP address or authenticated session parameters.
Understanding the second sentence in a digital context, a common page request can be
considered a privacy agreement, where the user grants the server access to his identity
and the requested page name for the purpose of obtaining the requested content. A user-
generated input submission constitutes a similar privacy agreement: The user allows the
server to obtain his thoughts and identity within the scope, that the input page displayed.

13

Summarizing these elements, we can update the original privacy definition, to form a
foundation for our further research: Digital privacy is the right to choose which personal
information can be accessed by others. Every user-server interaction denotes an agree-
ment, where a user grants access to his identity and/or thoughts. The agreement is bound
temporally for the duration of the enclosing interaction and is access limited to the parties,
that are part of the interaction itself.

The term security will be used in close relation to privacy: Whenever a privacy agreement
is violated by breaching security concepts, this attack surface will be considered necessary
to defend.

2.2. Attacker model

As a next step it is necessary to analyse, who wants to interfere with a user’s privacy or
possibly his web-browser’s security, to benefit from. To do so, we will extract attacker
types from recent literature and discuss their motivation. Secondly, we will take a look
at the attack surface of web-browsers and go through currently known attack techniques.
Finally we will match these attacks to attackers and evaluate defence strategies against
each of them.

2.2.1. Malicious hackers

As a first attacker type, we can identify individuals or smaller groups, that mostly target
the aforementioned security concepts of web-browsers to gain profits. The motivation is
partially monetary: Hackers may sell unknown exploits in the Darknet or exchange them
against other goods, that are of interest. [5, p. 12, section 2.1.1.2] They may also be paid
by thirds to attack someone, like it is often the case in industrial espionage or political
conflicts. Another incentive is to be found in propaganda and digital ideologies. An
example is Anonymous: As Fuchs states in his publication "The Anonymous movement
in the context of liberalism and socialism" [6, p. 347], the collective makes use of a
shared identification with values like freedom of media, as well as fighting for justice and
freedom. Some hackers thus act solely out of the belief in certain values.

14

2.2.2. Governments

Like already mentioned in the introduction, Snowden’s revelations of the NSA’s surveil-
lance programmes, have made it clear, that governments spy on their citizens. While these
acts are commonly declared to be part of anti-terrorism strategies or homeland defence,
we can see, that in some countries, citizens are actively attacked, in order to hold up gov-
ernmental power: Al-Saqaf shows in his dissertation, that during the Arab Spring, several
regimes used malware to maintain Internet censorship [7, p. 206]. A third motivation for
the control of the online space can be found in law enforcement: Actions like breaking
copyright law or uploads of prohibited content require a government to invade privacy
rights, so perpetrators can be found and made responsible for their legal violations.
Looking at the resources of governments, we can see a high amount of capital, personnel
and time, as well as access to the military sector and cooperation with Internet Service
Providers (ISPs).

2.2.3. Advertising companies

Online advertising allows publishers to benefit from obtaining several details about their
users. Advertisers know what exact contents are viewed and can target their messages
very specifically. [8, p. 42] A core technique to get such a deep understanding of website
viewers lies in third-party advertising: Website providers embed advertisement elements
from other companies and share information about the current page and viewer with this
element. This allows the advertisement company to track, what sites and thus possible
interests a user has, which improves ad targeting. [9, p. 415] This goes against our def-
inition of privacy rights, since identity and personal information are communicated to
another party, that the user has not directly agreed to exchange data with.
The motivation for this business model is clear: First-party websites can make money
by embedding advertisements. The tracking companies generate revenue by selling ad-
vertisement spots to businesses, who want to promote their products. Ultimately, these
businesses increase their profits, since the targeted ads encourage end customers to buy
their goods.

Resource wise we can see, that the tracking data is sold amongst each other [9, p. 419],
which extends the data sources that advertisers work with. However, they can not acquire
information from ISPs, to link identities and IP addresses.

15

2.2.4. Conclusion and scope of defence

We listed governments, advertising companies and malicious hackers as the three main
groups of attackers, that are trying to invade our privacy. As we want to develop a defence
scheme in the following sections, we need to assess, what adversaries we can realistically
protect against [10, slide 15-16]: It is apparent, that governments have a big capital and
connections to ISPs and the military. This means, that they can buy zero-day exploits and
exchange with security agencies world-wide. They have access to ISP logs and Internet
backbone infrastructure. Protecting against this adversary is highly complex. Even if we
manage to reduce our browser fingerprint to a minimum and deploy various protection
mechanisms, they can use one of the many mentioned information channels to circumvent
our tactics. Thus a defence attempt seems impractical in the scope of a thesis. Looking
at advertising companies and (sponsored) hackers, their motivation is mainly monetary:
They do not care, if single browsers can not be tracked, as long as millions of other users
generate revenue by loading their advertisements and feeding into their tracking systems.
Thus this opponent seems to be better suited for our research: By reducing accuracy of
fingerprinting and tracking, we can prevent personal data to be sold and provide users a
better protection for their data. Out of these reasons, the following sections focus on a
defence against these commercial parties, that prioritize mass-data harvesting.

2.3. Known attacks

This part will discuss currently known attacks, that interfere with or circumvent the pri-
vacy model, that we previously defined. Additionally, we will talk about ways of mea-
suring the risk, that a browser is exposed to, in order to allow a comparison of protection
before and after developing a defence.

2.3.1. Exploits

As mentioned in section 2.2.1, the term "exploit" refers to a manipulation of a program
state, that leads to a breach of security mechanisms in place. Since browser applications
are extensible and use features from many different sources, attacks can be executed on
the following elements:

16

2.3.1.1. Browser extensions Browsers like Firefox or Chrome allow the user to install
extensions, which are inserts, that can communicate with the browser functionality over a
defined interface. They can provide different functionalities like ad-blocking or bookmark
storage. As Liverani and Freeman show in their talk on "Abusing Firefox Extensions"
[11], these extensions are sometimes not checked as thoroughly or their complexity makes
it difficult to find all possible vulnerabilities, which leads to attack opportunities on the
extensions themselves. While Mozilla has made many changes to this infrastructure, like
disallowing unsigned software [12, section Timeline], there are still risks of undiscovered
flaws. Additionally, an article on Chrome browser security shows, that the developers
themselves can become victims of phishing attacks, which lead to a compromise of several
Chrome extensions in 2017. The attackers subsequently injected their own, malicious
Javascript into the applications, which the browsers then executed. [13]

2.3.1.2. Plug-ins The set of problems, that extensions come with, similarly exists for
browser plug-ins: Software technologies like Flash or Java have been known for the many
security issues, in connection to their browser plug-ins. Their exploitation very often leads
to a full browser or device compromise, like CVE-2012-0507 shows: A flaw in the Java
plug-in allowed malicious hackers to install botnet malware on the system [14].

2.3.1.3. The browser itself Looking at vulnerability databases like CVE Details, we
can see that Chrome and Firefox are amongst the top ranks for the number of distinct
vulnerabilities found [2]. With complex features like the Same Origin Policy (SOP) re-
striction or protections against Cross Site Scripting (XSS), edge cases in parsing and other
bugs can easily lead to a security flaw, that compromises the browser’s security.

2.3.1.4. Measurement As Acer and Jackson describe in their publication on browser
security metrics [15, p. 3], it is no good practice to measure exploit risk by just counting
the number of reported vulnerabilities per extension, plug-in or browser version, since this
does not take patch development or the severity of the flaws into account. They propose to
use an adapted risk score: Products or versions with at least one critical vulnerability are
relevant, others are not. (This uses the CVSS v.3.0 Severity Rating System, as explained
in [16].) We want to adapt this filtering and will attempt to block or protect browser
products, that qualify according to these metrics.

17

2.3.2. Fingerprinting

As Laperdrix, Rudametkin and Baudry explain, browser fingerprinting is the process of
collecting browser or system configuration data, that is then used to extract unique val-
ues, which allow the construction of a unique identifier. [17, section I] This has severe
implications for the privacy of a user: Instead of being identifiable by the IP address or
deliberately shared authentication tokens, webpages can use fingerprints to follow iden-
tities and browsing behaviour. Since the success of fingerprinting techniques depends on
the amount of entropy, that can be read from configuration parameters, it is necessary
to evaluate individual methods and their uniqueness, in order to understand the defence
process. The following paragraphs use data from Buljow et al. "Web Tracking: Mecha-
nisms, Implications, and Defenses" [18, p. 4, table II, section V] and will explain the most
relevant fingerprinting techniques more closely:

2.3.2.1. Device If the user’s browser has Adobe Flash installed and is permitting the
use, a website may obtain information about hardware, including mouse, keyboard, ac-
celerometer, touch functionality, microphone, camera or screen resolution data. The Flash
platform itself provides these access methods. [18, p. 9, section B]
A second device fingerprinting method lies in the analysis of Transmission Control Pro-
tocol (TCP) timestamp clock skew: A machine has a specific time offset, as compared
to a master time server. This offset stays constant and can be evaluated. However, it is
not precise enough to reveal identities or track users, since multiple devices can have the
same offset, especially when they were synchronized to a network time server. [18, p. 9,
section B]

2.3.2.2. Operating system Looking at operating system parameters, that create en-
tropy, we can find several data points via Javascript: We can identify the operating system
version and architecture, as well as system language, user-specific language, local time-
zone, date, screen resolution and screen color depth. [18, p. 9, section C]
Available system fonts can be found by using Flash plug-ins. An alternative method is the
analysis of fonts loaded via a CSS3 font-face rule in combination with Javascript. A third
technique is based on rendering fonts inside HTML5 canvases and evaluating the results.
[18, pp. 10-11, section E]
Next to the mentioned multimedia capabilities of the previous paragraph, Flash also al-
lows to check, if hard disk or printing access has been granted. [18, p. 9, section C]

18

Another plug-in, that was found in our source analysis, is Active X, a proprietary inter-
face from Microsoft. Since we focus on the open Mozilla Firefox in this thesis, we will
not further investigate this technology. (It is by default not supported.)

2.3.2.3. Browser Further entropy can be extracted from HTTP responses: One can
enumerate, what file types are supported by the browser and what preferred or accepted
languages are set. The User Agent HTTP header field also reveals the browser’s version.
Using Javascript, there is additional ways, how identification can be enhanced: Firstly,
the browser version can be determined by analysing CSS and HTML5 properties, that are
specific to certain releases. Secondly, a list of installed plug-ins can be obtained. [18,
p. 10, section D] Another creative technique to determine, if a website has been visited,
lies in evaluating the cache state of website elements: Pages, that have already been vis-
ited, are usually existent in the browser cache, which reduces loading time measurably.
[18, p. 7, section IV] Lastly, a combination of HTML5 canvas elements and Javascript al-
low the generation of very high entropy: Certain shapes and text fields are drawn onto the
canvas. The browser renders this image uniquely, as it is dependent on the used graphics
card, installed fonts, operating system, drivers and other components. The same technique
can be realised with the WebGL Application Programming Interface (API) [18, pp. 10-11,
section D]

2.3.2.4. Measurement Regarding the measurement of fingerprinting techniques one
possibility would be the analysis of anonymity set sizes: This means finding out, how
many browsers have the same fingerprint. One downside however is, that this metric de-
pends on the amount of samples collected, as it is impossible to predict, how fingerprinting
parameters are distributed on the Web. Laperdrix, Rudametkin and Baudry propose a bet-
ter means of quantifying fingerprints, namely normalized Shannon’s entropy [17, pp. 5-6.
section C]: Shannon’s entropy is defined as

H(X) := −
∑
i

P(xi) logbP(xi)

where b = 2 and thus the result in bits. This unit is still based on the overall amount of
samples. To get a value, that is comparable with different sizes, the entropy is divided by
the maximum entropy of the dataset size (N):

H(X)

log2 (N)

19

This normalized entropy is used by the previously mentioned authors and will be adopted
in our defence discussion as well.

2.3.3. Tracking

Tracking describes the process of monitoring the browsing behaviour of a user: The goal
is to find out, where a visitor comes from, where he goes next and what actions he possibly
performs on a page. While fingerprinting has a more passive nature, trying to find unique
parameters of the browser and its environment, tracking often stores identifiers on the
target device or actively communicates tokens between pages. The most common forms
of tracking will be explained as follows:

2.3.3.1. Session identifiers The most basic form of tracking lies in passing an identi-
fier via GET or POST request to the next page. While GET parameters are saved within
the history of the browser, the POST context will disappear after the transmission of
the request packet. A similar variant of this storage-free tracking uses the window.name
Document Object Model (DOM) element, which can store up to 2 MB of page values
and is resistant to reloading. In most cases, every visit of a page will generate a new
session identifier and the page owners have no means of linking previous page access to
the current one. [18, pp. 3-4, section A]

2.3.3.2. Cookies A more advanced way to track a user utilizes cookies. Cookies are
objects, that reside inside a browser’s internal storage. They can be set on a per-page basis
and will continue to be stored, even after a restart of the computer, provided, that the user
does not manually clear the cookie memory. Cookies can be combined with the previous
methods, to associate an authenticated identity with a tracking ID (via post forms) or to
communicate the ID to another website. The latter can not be done by the third-party
website, as the domain limitations of the cookie standard forbid access to values, that do
not lie within the own domain’s scope [19, section 4.1.2.3].

While cookies have been defined in the Request For Comments (RFC) 6265 document,
plug-in developers have created independent storage concepts for their own products.
This is why Adobe Flash allows pages to store data in so called Local Shared Objects. It
is interesting to note, that these items are accessible from all browsers on a machine and

20

thus have a system wide scope. They also have no default expiration date and are written
to disk memory. Similarly, Microsoft’s Silverlight plug-in provides isolated storage on a
per site basis. This store can only be deleted manually. The newer HTML5 also comes
with Local Storage objects, which does not require any plug-in to be installed. They are
cleared when emptying the standard browser cookie store. [18, pp. 6, section B]

2.3.3.3. Caches Another technique, that can be used for tracking, looks at data inside
browser caches. The intended purpose for these memory units is for pages to load faster:
Some page sources are saved and kept in memory. On a new request, these items do not
need to be downloaded again, since they are still available. In a tracking scenario, these
local files are used to analyse, if a page has been visited before and to extract user identi-
fication data. For the former, we can use Javascript to profile the loading time of a page.
Since already cached pages or page elements speed up the loading process significantly,
this speed improvement can be measured by the server. A similar variant of this technique
uses Javascript to make Domain Name System (DNS) requests. Already cached DNS en-
tries result in faster responses. It should be noted, that this technique uses the operating
system’s DNS cache, instead of a browser cache. Determining if a page has been loaded
before can also be achieved by analysing HTTP 301 redirect caches: In the case, that a
page has moved permanently to a new place, the browser will receive a permanent redi-
rect notice by the server. Every new request will be made directly to the new address. If a
browser thus requests only the new page location, we know, that it must have visited the
website before. [18, p. 7-8]
In order to obtain a user identifier, the following methods exist: Firstly, an identifier can
be embedded into an HTML file. After the page has been loaded from cache, this token
can be accessed via Javascript. Instead of hiding the identifier in the code itself, it is also
possible to transfer them within the Last-Modified and ETag fields of an HTTP header.
These parameters are usually used to identify, if cached content is outdated and needs
to be reloaded. Because of their size, identifying tokens can be embedded, though. The
most sophisticated technique to store identifying values is using the HTTP Strict Trans-
port Security (HSTS) cache to do so: The cache is originally used to store, that all future
connections to a host shall be made using HTTPS only. A server can communicate this
information with a special header parameter. The parameter allows to specify, what sub-
domains are included for the security policy. An attacker can take advantage of this by
creating fake subdomain values, that encode a user ID. This ID can later be brute-forced
via Javascript, by querying, what subdomain values are directly visited in HTTPS and
which ones still use HTTP. A more detailed explanation can be found in [20]. A last tech-

21

nique, that has been described in [18, p. 7-8] is Transport Layer Security (TLS) Session
cache analysis: A browser keeps another cache with HTTPS session tokens, which al-
lows him to establish future connections without having to execute a full TLS handshake,
which ultimately saves CPU and loading time. A page can monitor, whether these IDs are
re-used and thus infer, if a prior connection has been made or not.

2.3.3.4. Measurement It is impossible to find out, if an identification token on a web-
page is used to authenticate a user for a legitimate page interaction or if that token is
exchanged with external parties to allow tracking. This means, that there is no clear way
of counting every single tracking element on a page and evaluating, how well defence
concepts work. However, we can focus on tracking, that is distinct in its intents and can
be identified as such: Roesner, Kohno and Wetherall observe in their paper "Detecting and
Defending Against Third-Party Tracking on the Web" [21, p. 8, table 3], that the major-
ity of pages they analysed (Alexa Top 500 from Sept. 2011) is using third-party storage
based tracking mechanisms. As previously described, this technique stores a cookie or
a similar object on the hard drive, which will commonly stay available after a browser
restart. We want to measure this persistent type of tracking and its defence by looking at
the browser storage memories and comparing the results with filtering tools in use. We
still want to discuss, how session identifier tracking and cache based tracking can be mit-
igated, but since most of these techniques are not detectable from outside of a server, it is
not possible to visualize defence efficiency.

2.4. Defence strategies

In the following we will evaluate, how the previously described attack types can be de-
fended. This chapter will be the foundation for our own browser configuration applica-
tion: Ideally we can find a set of tools and settings, that protects against each technique.
We can then combine this set with a user’s privacy preferences to generate an adapted
browser configuration.

22

2.4.1. Risk reduction for exploits

Based on the exploit risk level we defined in section 2.3.1.4, we now want to analyse, what
browser elements we need to block, in order to minimize the probability of our browser
getting compromised.
In the category of browser extensions, we want to refrain from using proprietary soft-
ware. Additionally, it seems a good practice to integrate only actively maintained projects:
While several smaller contributors to Mozilla’s extension library exist, these do not have
the capacities to quickly respond to security issues. Often the projects are outdated and
support is not guaranteed.

Looking at the security of plug-ins, Mozilla has already taken measures against a big
part of insecure software, by dropping NPAPI plug-in support in Firefox version 52 [22].
This means plug-ins like QuickTime, Java or Adobe Reader can not be used any more.
However, Mozilla still allows the use of Adobe Flash and Microsoft Silverlight, as the
only supported plug-ins. In section 2.3.2.1 and 2.3.3.2, we have found, that both these
plug-ins allow or extend fingerprinting and tracking of the user, while additionally being
known for their security risks [2]. This is why we want to disable these plug-ins, if the
user does not explicitly signal the need to use them.

Firefox allows to set the plug-in activation state via its internal configuration system [23]:

plugin.state.<name> → 0 | 1 | 2

0: Never Activate, 1: Ask to Activate, 2: Always Activate

We can thus disable the Flash and Silverlight plug-in, by setting the following values:

plugin.state.flash → 0

plugin.state.silverlight → 0

plugin.state.npctrl → 0 // Windows specific (Silverlight)

If we store these values in a separate Javascript file and place them inside the install
subdirectory (as specified in [24]), Firefox will execute our settings upon application start.

Regarding the security of the Firefox browser itself, we can make several adjustments
via the same configuration interface. The GitHub repository at [25] has been compiling
an extensive collection of parameters and optimised values since 2014, while still being

23

maintained as of March 2018. We will extract settings, that are relevant for our exploit
risk reduction in the following:

• As [25] mentions, DOM workers have had multiple vulnerabilities in the past. We
thus want to disable this technology.

• The WebTelephony API might be used to call high cost numbers or record phone
calls, which we want to prevent [26].

• As [27] shows, numerous security issues have been found in webGL, we therefore
disable this feature set.

• Unsafe JAR file types are blocked, in order to prevent a XSS attack possibility [28].

• The asm.js Javascript subset has had some critical security issues, as to be found in
[29]. Thus we will disable it.

• Shumway is Mozilla’s own Flash renderer. We turn off Flash, like previously ex-
plained and want to block this implementation as well.

• plugins.click_to_play allows us to force the user to explicitly enable a plug-in. This
option is improving security, as plug-ins can not execute without permission.

• We enable automatic extension updates.

• The firefox configurator allows to enable unsafe extension blocklists. We enable
this feature to protect the user from installing untrusted or insecure extensions.

• Disable the built-in PDF viewer, as some vulnerabilities have been found (see [30]).

• Enable automatic updating and update checks.

• Block reported webpages with malicious content.

• Enable Firefox Content Security Policy. This defends against some data injection
and XSS attacks.

• Enable Subresource Integrity. This makes sure, files fetched from Content Delivery
Networks can not be forged.

• Disable insecure versions of TLS.

Summarizing these items, we get the following list of key pairs, that need to be set:

24

user_pref("dom.serviceWorkers.enabled", false);

user_pref("dom.workers.enabled", false);

user_pref("dom.telephony.enabled", false);

user_pref("webgl.disabled", true);

user_pref("network.jar.open-unsafe-types", false);

user_pref("javascript.options.asmjs", false);

user_pref("shumway.disabled", true);

user_pref("plugins.click_to_play", true);

user_pref("extensions.update.enabled", true);

user_pref("extensions.blocklist.enabled", true);

user_pref("services.blocklist.update_enabled", true);

user_pref("pdfjs.disabled", true);

user_pref("app.update.auto", true);

user_pref("app.update.enabled", true);

user_pref("browser.safebrowsing.enabled", true);

user_pref("browser.safebrowsing.phishing.enabled", true);

user_pref("browser.safebrowsing.malware.enabled", true);

user_pref("security.csp.enable", true);

user_pref("security.sri.enable", true);

user_pref("security.tls.version.min", 1);

user_pref("security.tls.version.max", 4);

user_pref("security.tls.version.fallback-limit", 3);

2.4.2. Anti-Fingerprinting

In section 2.3.2 we have compiled the most common fingerprinting techniques, that are in
use. In order to defend against them, it is useful to look at the amount of entropy each of
them generates: Analysing, for instance, if cookies are enabled, yields two distinct values:
either yes or no. Revealing this one bit of entropy to an attacker will not make us unique
within the anonymity sets, that the Internet consists of, thus it is irrelevant to block this
parameter.

25

Laperdrix, Rudametkin and Baudry have made an evaluation of normalized Shannon’s
entropy per attribute (see 2.3.2.4), that we want to order and adapt for our purposes:

Attribute Norm. Ent. Example
List of plug-ins 0.718 Plugin 0: WebKit built-in PDF; ; .

User agent 0.550 Mozilla/5.0 (Macintosh; Intel Mac OS X [...]
List of fonts (Flash) 0.548 Abyssinica SIL,Aharoni CLM

HTML5 Canvas 0.475 190E04503900C8FB00612E06D6929400
Content language 0.344 en-us

Screen resolution (JS) 0.263 1920x1080x24
List of HTTP headers 0.247 Accept Cookie Accept-Language [...]

Renderer WebGL 0.205 Intel(R) Iris(TM) Graphics 650
Timezone 0.200 -60 (UTC+1)

Vendor WebGL 0.125 Intel Inc.
JS Platform 0.110 MacIntel

Table 1. Normalized Shannon’s entropy of Fingerprinting methods
(adapted from [17, p. 14, appendix A] and [17, p. 4, table I])

As we can see, the list of plug-ins has the highest amount of unique values. Fortunately,
Mozilla’s drop of NPAPI plug-ins from version 52 [22] reduces the entropy of this at-
tribute. We can furthermore minimize distinct values by setting the Firefox configuration
parameter plugins.click_to_play to true, since this removes all plug-ins (except Adobe
Flash) from the Javascript enumeration interface [31]. Going on, we have to look at
ways of making the user agent less unique. Paradoxically, faking the most prevalent
value can make a browser more unique, since the behaviour of its components does not
match the fake value: We can not simulate a Windows system, when we are using ma-
cOS, since this is easily detectable. Further investigating Firefox’s configuration pos-
sibilities, we are able to find the following: From version 55, Firefox contains the key
privacy.resist.fingerprinting, that, once set to true, will activate defence against a variety
of fingerprinting techniques [32]. These include:

• User agent: Changing the browser version to the last Extended Support Release.

• Fonts: Limiting system fonts to a restricted subset.

• HTML5 Canvas: Blocking Canvas image extraction entirely.

• Content language: Advising the user and setting en-us as the default.

• Screen resolution: Setting the screen resolution to the window dimensions, round-
ing window dimensions to a multiple of 200x100.→ This creates unrealistic screen

26

resolutions, thus we want to use the parameters privacy.window.maxInnerWidth

and privacy.window.maxInnerHeight, to simulate a more common 800x600 screen.
This is the best option, since individual defence elements can not be turned off.

• Timezone: Is changed to UTC time.

Comparing this with table 1, we can see, that only the list of HTTP headers, WebGL
and the Javascript platform are excluded. We disabled WebGL in section 2.4.1, which
leaves us only with HTTP headers and the Javascript platform. For these last two at-
tributes we could not find a suitable defence: Limiting HTTP headers would require to
block core functionality within Firefox, since some HTTP headers are being used for ad-
vanced communication with a server (e.g. X-DNS-Prefetch-Control). We could not find
browser extensions or configuration settings, that modify this functionality. Spoofing the
Javascript platform version is also not possible, since many functions are directly platform
dependent. We would have to limit the entire function set, in order to plausibly fake this
value.

2.4.3. Anti-Tracking

Going through section 2.3.3, we can see, that tracking uses three different approaches:
Firstly passing identifiers via GET or POST, secondly, using various forms of cookies to
store this data and thirdly using browser caches as a storage alternative. Filtering GET
or POST requests for tracking data is not very effective, as it is hard to determine, if a
parameter is a unique tracking ID or a regular value. Because of this, we will look at
a different defence approach: Tracking services rely on the concept, that their tracking
script is embedded by a large number of servers. As long as subsequent pages embed
the same script, the tracking company is able to track the history of a user. This tracking
system is enhanced by several trackers sharing their databases amongst each other. It is
highly impractical to frequently create new tracking systems, because pages need to em-
bed the new scripts, in order for this tracking to work. This means, that a continuously
updated blacklist is able to block most tracking services. Again, exploring the configura-
tion options of Firefox itself, we can find a tracking protection mode, that uses a blacklist
to block known tracking sites [33]. By modifying the urlclassifier.trackingTable value as
follows, the strict blocking list is used, which blocks all trackers known to Firefox:

privacy.trackingprotection.enabled → true

privacy.trackingprotection.pbmode.enabled → true

27

urlclassifier.trackingTable →
test-track-simple,base-track-digest256,content-track-digest256

This is a good alternative, also to compensate for the missing GET and POST filtering.
Next, we want to take a look at cookie tracking and how to protect against this method:

A basic measure is to only allow cookies from first parties. This means cookies, that are
not matching the domain name of the active window are blocked. Trackers can circumvent
this by opening third parties in a popup or redirecting to them [18, pp. 5-6]. Thus we want
to take further adaptations to limit tracking mechanisms: We want to set cookies to be
valid in the current session only [34]. This means they will be cleared, if the browser is
closed. Furthermore we block Flash cookies by completely disabling Flash. We also block
HTML5 and DOM storage by setting another configuration value [35]. Going through the
configuration possibilities of Firefox, there is an additional, useful item to make tracking
harder: First party isolation. This feature was adopted from the TOR browser and not only
limits cookies to the first party domain, but also caches, HTTP authentication and DOM
storage [3, section 4.5]. This covers all of the points we discussed in section 2.3.3.2. The
summarized Firefox configuration for enhanced cookie tracking protection thus looks as
follows:

network.cookie.cookieBehavior → 1 // first party only

network.cookie.lifetimePolicy → 2 // session only

dom.storage.enabled → false // disable DOM store

privacy.firstparty.isolate → true // first party isolation

As a last tracking protection part we want to cover cache based methods. Following [25],
we firstly want to disable offline page caching, by setting browser.cache.offline.enable→
false. Furthermore we want to remove all histories, caches and local storage upon browser
shutdown. This will also clear the redirect cache as well as TLS session IDs.

privacy.sanitize.timeSpan → 0 // clear the entire history

privacy.sanitize.sanitizeOnShutdown → true

privacy.clearOnShutdown.cache → true

privacy.clearOnShutdown.cookies → true

privacy.clearOnShutdown.downloads → true

privacy.clearOnShutdown.formdata → true

privacy.clearOnShutdown.history → true

privacy.clearOnShutdown.offlineApps → true

28

privacy.clearOnShutdown.sessions → true

privacy.clearOnShutdown.openWindows → true

privacy.cpd.offlineApps → true

privacy.cpd.cache → true

privacy.cpd.cookies → true

privacy.cpd.downloads → true

privacy.cpd.formdata → true

privacy.cpd.history → true

privacy.cpd.sessions → true

browser.helper.Apps.deleteTempFileOnExit → true

We can completely disable site caching by deactivating the caches themselves:

browser.cache.disk.enable → false

browser.cache.memory.enable → false

In order to prevent DNS cache tracking, we can disable this cache entirely [36]:

network.dnsCacheEntries → 0

network.dnsCacheExpiration → 0

We also want to disable auto filling HTML forms: signon.autofillForms→ false.

The last tracking technique, that we wanted to address is HSTS cache based tracking. As
HSTS itself is used to defend against protocol downgrades and more severe attacks (e.g.
Man-in-the-Middle traffic interception), we do not want to disable or clear this cache and
need to accept the tracking risk.

29

2.5. Current state of defence strategies and our contribution

Looking at existent research in the field of webbrowser privacy, we can see, that sources
like [17] or [18] have great depth, describing various attack concepts. As [18, p. 17-24]
clarifies, there are several tools available, that defend against one particular attack method,
however, there is only very few, that combine defence for multiple attack vectors. The
latter exclusively share a commercial background, which means, the user has to pay, in
order to use a proprietary (thus closed-source, non-transparent) solution.
Our approach has two main contributions to the existing set of defence projects: Firstly,
we implement an open-source application, that combines free-to-use tools and browser
configurations. Our tool therefore is a first alternative to using the paid applications.
Secondly, we attempt to include the user in the configuration process. The majority of
tools (e.g. AdBlock Plus, uBlock Origin) provide only an "on/off" interface, which leaves
actual functioning and configured defence unknown to the user. During our literature
and research analysis, we also found, that user-integration in the field of web browser
privacy has not been focused on particularly, which is why our work contributes to a
better understanding of this matter, by answering questions like: Can our idea allow for a
finer-grained adaptation of individual privacy demands? What limitations and challenges
does this way of configuration result in?

30

3. Survey: Analysing current browser configurations

In the previous chapter we have dealt with the definition of digital privacy. We compiled
a list of attackers and various attack types. Lastly we investigated, how a browser can be
configured in order to mitigate or protect against these risks. After gaining an understand-
ing of these various elements we want to proceed with our research question:

Can we improve browser privacy by integrating the user in the configuration process?

In order to do so, we want to analyse in a survey, how current browser configurations look
like and also how participants view online privacy, as well as our approach of implement-
ing a configurator application.

3.1. Survey design

We want to split the survey into two parts: One dedicated to information about the user,
the other focusing on the technical details of the corresponding browser.

3.1.1. User data

Firstly, we want to know the current work position and institution of the participant. We
can use the work position to understand, what the tasks of the user are.

As a next point we want to know, what media content needs to be viewed while browsing.
Since we disable Flash and other plug-ins, it is necessary to evaluate, if these technologies
are still in use by some individuals and we thus need to find alternative configuration
options. Some of our settings (like disabling DOM workers) also limit the functionality
on pages like Google Docs, which we possibly need to adapt to. The different media types
we question are: Video, Flash, Java, Browser Apps, Interactive Chats

After analysing the tasks and contents, the participant interacts with, we want to find out,
what privacy aspects are considered important. We made a list with the following options
(and explanations to them):

31

Fingerprinting, Anti-Tracking, Adblock, IP Anonymity, Highest possible risk reduction,

Anti-Cryptocurrency Mining

This covers our three main defence points, as well as some additional functionalities we
can think of.

Another essential question we wanted to ask is: How likely would you use an external
program to configure your browser? Here we try to understand, how the trust relationship
to an application, like the one we want to develop, is. The participant can answer on a
scale from one to five: very likely to not at all likely. Additionally, we offer to provide an
e-mail address, to participate in beta testing, once our program is ready.

3.1.2. Browser data

Regarding the browser settings we want to find out, if any parameters have been cus-
tomized and if so, what changes have been made. Firefox can be configured using con-
figuration files or additional tools like plug-ins and extensions.

The main file, configuration changes are saved in, has the name prefs.js [24]. Out of
security reasons the file content is not accessible online, which is why we ask the user to
manually upload it.

It is equally impossible to enumerate extensions from a browser. Because of that, we
also ask the user to submit a list of all installed extensions, that can be found in the
about:support section of Firefox.

3.2. Outcomes

Since the limited time frame of our thesis did not allow us to gather enough votes for a
statistically significant evaluation, we will focus on some qualitative observations in our
result set. A more detailed version of the survey results is attached in Appendix A.

32

3.2.1. Usability versus protection

Some of the answers showed, that technologies like Adobe Flash were still used. As
we saw in table 1, enabled Flash greatly increases the entropy for Fingerprints. Equally,
blocking DOM workers, like we do in our exploit reduction section, limits some of the
functionality of pages like Google Docs. These online apps were frequently marked to be
used by the participants.
This means we have to create an option to enable these technologies, while clearly ex-
plaining to the user, how the choices impact his browsing experience and privacy protec-
tion.

3.2.2. Trustworthiness of an external application

Secondly, we received mixed answers regarding the desire to use an external application
to configure one’s web browser. Even if we publish the source code of our program, it
will still be hard for non-technical users to verify, that it works and that is does not do
anything else.
For the testing phase we can omit trust problems, but in case the software becomes ad-
vanced enough to work with several browsers and usage scenarios, some kind of external
verification is beneficial.

3.2.3. Privacy intents versus actual configuration

Most interesting is the relation between the desired privacy aspects and how they are con-
figured in the browser: The participants who signalled, that they would like to be protected
against tracking, fingerprinting or advertisements often had very different configurations:
The typical pattern we found, is, that one main browser extension (like uBlock Origin,
McAfee Endpoint Security Web Control or Browsing Protection by F-Secure) enforces
basic protection against malware and unsafe sites via blacklist approach. The browser
configurations themselves did not contain any relevant changes.
This shows, that in our limited answer set, one of our research assumptions is true: The
configuration of web browsers is complex and often the users believe, that one tool will be
sufficient. The actual protection and initial privacy intents do not match. This leaves
a false sense of security.

33

4. Implementation of a configurator application

In the previous chapters we have dealt with attacks and defences on digital privacy in
the context of web browsing. We have selected methods to mitigate these threats. By
conducting a survey we could confirm our assumption, that there is a gap between desired
user privacy and actual browser configurations.
In the following we will design and implement an application, that is intended to close
or narrow this deviation. We will then evaluate our results and find a conclusion to our
research question.

The source code, final project files and a short documentation will be hosted at:
https://github.com/arauschecker/UBPrivacy

4.1. Requirements analysis

Firstly, we want to revise the knowledge and understanding, that we have acquired un-
til now and come up with a set of requirements, that forms the foundation for further
decisions towards a working application.

4.1.1. User model

The average user, that we want to develop for, does not have a very deep understanding
of the technicalities behind the configuration of a browser. Thus we need to create a
Graphical User Interface (GUI), with clear annotations and simple mechanics.

Meetings with BHC Laboratory OÜ (cyber security consulting & solutions) have shown,
that there is an additional interest in using the program to configure multiple machines
automatically. Therefore we want to provide an additional "headless" mode, where the
configuration will be installed non-graphically and without user interaction.

34

https://github.com/arauschecker/UBPrivacy

4.1.2. Operating system compatibility

The next important point we need to consider, is operating system compatibility. All
major web browsers run on the three platforms Windows, macOS and Linux/Unix, which
we should optimally be doing as well.

Since GUIs usually require OS dependent libraries, the best option lies in choosing JAVA
as a programming language. The graphical components will run on all three system types
and specific OS adaptations can be made within the classes (e.g. file path differences). We
will end up with a portable .JAR executable, that holds all our resources. An installation
will therefore not be required.

4.1.3. Browser compatibility

Similar to the previous operating system requirement, we also need to support major web
browsers. While the limited time frame made us choose to configure Mozilla Firefox only,
the design of the application should still account for an extension with other browsers.

4.1.4. Extensibility

A last requirement, that plays an important role in the program development is extensi-
bility: With the ever growing amount of features in today’s browsers, the attack surface
expands as well. The use of clean abstraction layers and modular interfaces should ensure
easy updates of our application in the future.

4.2. Application design

In the following we will combine the discussed requirements and previous defence strate-
gies into a more detailed software model. On the basis of which the actual application
will be developed.

35

4.2.1. Separation of concerns

Our program can be split into two distinct parts: Firstly we want to ask the user how
he likes to use his browser and what privacy aspects he deems important. Secondly, we
configure the browser according to the recorded answers.

The element, that connects these two processes is a common data source: The initial user
survey feeds answers into our data base, the configurator section uses this information to
adapt browser settings and generate a configuration.

We want to adopt this modularity in our application design: Every module becomes a
single package inside our JAVA implementation, that holds all respective classes:

Figure 1. Package model: View, Database & Browser configurator

4.2.2. View

The view consists of three main window components, that transition to each other: An
introductory screen, the user survey and a screen, that proceeds with the configuration.

Figure 2. View - Class diagram

In order to guarantee the extensibility of the program, it seems impractical to store the
survey questions inside the source code. Instead, we save them inside our database and

36

iterate over all rows. The label, that loads the question element supports HTML. Therefore
we can add formatting and additional paragraphs, to annotate the question and make it as
easy to understand, as possible.

4.2.3. Database

For the database we decided to use the Singleton pattern: the class method getInstance()

returns a reference to the Database instance. Only one Database object can exist. Inter-
nally we use SQLite and store the entire data structure in a file. This way we do not need
to start a Structured Query Language (SQL) server, thus save resources and guarantee
portability.

Figure 3. Database - Class diagram

The database contains two tables, to store questions and answers of the survey:

Column name type
id INTEGER (auto increment, primary key, not null)

question TEXT (not null)
uid INTEGER (default: -1, not null)

Table 2. SQL Structure of Table: SurveyQuestions

The id parameter is a Primary Key in the question table and a Foreign Key in the answer
table. On this way we connect the answer to the question. If we want to clear all answers
or modify them, we just need to operate on SurveyAnswers.

The parameter uid is an identifier, that is used to connect configurator code to a question.
This will be further explained in the following section.

37

Column name type
id INTEGER (primary key, unique)

answer VARCHAR(20)

Table 3. SQL Structure of Table: SurveyAnswers

4.2.4. Configurator

The Browser package contains the core of our application, the browser configurator. After
the user has answered the initial survey, this component will adapt the browser settings.

We create a class structure, that is mirroring the functionality of the actual objects: The
Browser class is abstract and passes on a ConfigManager object and a configure() method
to its subclasses. The Browser class itself can hold browser specific information, such
as file destinations. It represents the actual browser and offers to be configured with the
respective method.

Figure 4. Configurator - Class diagram

The ConfigManager class is able to access the database, as well as its callee, the browser.
The configure() method imports the answers from the database and connects the questions
to configuration code.

38

List<Integer> uids = getUIDsFromDB();
java.lang.reflect.Method method;

for(Integer uid : uids){
try{

String answer = getAnswerFromDB(uid);
method = this.getClass().getMethod("configure_"+uid,

String.class);
method.invoke(this, answer);

} catch (NoSuchMethodException e) {
// No method... take the next uid.

} catch (IllegalAccessException e) {
e.printStackTrace();
return false;

} catch (InvocationTargetException e) {
e.printStackTrace();
return false;

}
}

Figure 5. Configurator code invocation using JAVA’s Reflect API

In order to keep the actual configuration code as clean as possible, we decided to use
JAVA’s Reflection API to connect a question to code, using its uid: For all questions inside
the database, we fetch their uids and execute existing methods, that match it. Example:
Question 1 has the uid 11. The configure() method automatically calls configure_11(), in
case the method exists. This is achieved with the above code listing.

In the FirefoxConfigManager class we are then able to specify the configuration format
and behaviour for a positive or negative question answer.

4.2.5. Question design

After describing the main design decisions behind our application, there is one last point,
that remains: Reducing our several defence strategies into short and easily understandable
questions and splitting the configuration keys into respective blocks.

The following questions have made the selection into the final program. Comments on
our choices are appended.

39

1. Do you need to use Adobe Flash?
As explained in section 2.4.1, we want to disable Flash to reduce the attack surface
regarding exploits. However, the results of the survey we conducted show, that
some participants still need to use these NPAPI plug-ins. We want to allow the
user to choose himself, but also warn him about the connected risks. We note, that
HTML5 technology has replaced Flash for common video playback and should
only be used, if no alternatives exist.

2. Do you need to use Microsoft Silverlight?
This plug-in is, similarly to Flash, also used by some users. We want to apply the
same policy as to the previous question.

3. Do you want to block dangerous websites?
Positively answering this question will activate the content filtering, that is a part of
the configuration subset of section 2.4.1: browser.safebrowsing components filter
malware and phishing sites and alert the user upon visit.

4. Should we disable experimental and possibly unsafe features?
This question will toggle the remaining restrictions we compiled in section 2.4.1.
Unnecessary, experimental functionality will be shut off.

5. Do you want to reduce your browser fingerprint?
This question turns on our anti-fingerprinting mechanisms. We explain shortly, how
fingerprinting allows Internet services to recognize a system and also explain, that
this will only reduce the fingerprint, as a full defence is practically impossible.

6. Do you want to block common advertisements?
This item will block basic advertisers as a side effect of the tracking protection,
described in section 2.4.3. We will enable only the common, instead of the strict

block list.

7. Do you want to use enhanced tracking protection?
Positively answering this question will enable the advanced tracking protection, that
uses the strict blocking list. We will set additional parameters, that we discussed in
section 2.4.3, like cookie lifetime and behaviour, as well as disk caches and DNS
caching.

8. Do you want to remove personal data upon browser shutdown?
This last question will add the privacy.clearOnShutdown configuration components
to the browser, which clears all personal information, when the browser is closed.

40

4.3. Testing

We used the previous sections to discuss the requirements of our application and imple-
mented a tool, based on our design decisions. Now we want to verify, that all components
work as expected and analyse results on how user privacy is affected in different configu-
ration scenarios.

4.3.1. Exploit risk

Here we want to check, if plug-ins are correctly deactivated when question one and two
are negated. Furthermore we want to verify, if additional components are disabled, when
question four is answered positively. (questions: see section 4.2.5)

For question one (regarding Adobe Flash), we include the configuration parameter plu-

gin.state.flash→ 0, if the user does not signal the need to use the plug-in.

Upon starting the browser we are presented with an error message by Firefox:

Figure 6. Firefox start-up - Configuration loading error

Further investigating the cause, we find, that Firefox could not load the parameter because
we accidentally enclosed the value in double quotes. Removing these and directly setting
pref("plugin.state.flash", 0); works without problems.

Retrying our configuration, the browser start-up now succeeds. Checking Firefox’s inter-
nal status page about:plugins, we can see, that Flash is now deactivated:

41

Figure 7. Firefox post-configuration plugin overview - Flash disabled

As a next step we check Firefox’s internal about:support page, that shows us, which
configuration parameters were loaded. We can verify, that all our custom items were
successfully loaded.

4.3.2. Fingerprinting

Regarding our anti-fingerprinting measures we can obtain from Firefox’s about:support

page, that our parameters have been loaded. However, checking some of the finger-
printing attributes of section 2.4.2, we can see, that the adaptations, that Firefox’s pri-

vacy.resist.fingerprinting mode is supposed to implement, have not changed (e.g. the
time zone is set to our regional value and HTML5 canvases are still loaded).

Investigating this issue, we see, that the parameter privacy.resist.fingerprinting is over-
written by privacy.resistFingerprinting:

Figure 8. Firefox fingerprinting parameter overload issue

On Mozilla’s support pages we can find both parameter names used [32], however, in
our understanding, resist.fingerprinting appears to be deprecated and resistFingerprinting

preferred. To fix our overloading issue, we thus update our application to use only the
latter in the configurator.

The fingerprinting protections are now correctly activated, so we want to analyse, how our
adapted configuration compares to default settings. For this evaluation the Panopticlick
project of the Electronic Frontier Foundation is a good choice [37]: They fingerprint the

42

same parameters, that we selected in our defence and have collected around 1.4 million
fingerprints at the time of writing this thesis.

We execute the online fingerprinting test found at https://panopticlick.eff.org [37] with
the default installation configuration of Firefox to generate the pre-defence results, then
use our application to install a protective configuration and test again, to generate the
post-defence values:

Panopticlick displays the Shannon’s entropy per attribute and also the dataset size, which
allows us to calculate the, data size independent, normalized entropy, as we explained in
section 2.3.2.4. The dataset size was ~1,400,500, which yields a maximum entropy of
20.42 bits.

Attribute Norm. Ent. (Entropy) Pre Norm. Ent. (Entropy) Post
List of plug-ins 0.42 (8.59) 0.06 (1.25)

User agent 0.35 (7.17) 0.29 (5.58)
List of fonts (JS) 0.29 (5.84) 0.36 (7.40)
HTML5 Canvas 0.48 (9.72) 0.21 (4.24)

Content language 0.21 (4.25) 0.05 (0.92)
Screen resolution (JS) 0.12 (2.45) 0.44 (9.07)
HTTP Accept header 0.26 (5.29) 0.10 (2.02)

WebGL hash 0.65 (13.23) 0.12 (2.48)
Timezone 0.15 (3.16) 0.15 (3.16)

Table 4. Fingerprinting results (normalized Shannon’s entropy) pre and post defence
(Windows 10)

As we can see, the list of plug-ins, user agent, HTML5 canvas, content language, HTTP
Accept header and WebGL hash have greatly improved in their entropy. However, we can
also observe significant degradations regarding list of fonts and screen resolution entropy.

For the list of fonts, the reason can be directly found in the value, that Panopticlick reports
(see Appendix B): The fingerprinting defence removes Arial Black from the list of fonts.
While Mozilla’s defence strategy helps to eliminate custom fonts in the listing, it seems,
that this font should be kept in the list.

The increased screen resolution entropy is a far more complex problem, if we look into
the reasons behind Mozilla’s defence: A website can use the screen.availWidth / .avail-

Height Javascript properties to determine the screen dimensions. However, it is important
to note, that this returns the dimensions minus interface features like taskbars [38]. This
means, that an attacker can easily identify systems with custom interface elements (espe-

43

cially Linux distributions with custom interfaces). In order to reduce this hidden entropy,
Mozilla sets window resolution = screen resolution. This way the attacker can not extract
this kind of information. Spoofing the JS values is not a valid alternative, since the screen
dimensions can be double checked via CSS min and max properties.

While the handling of this multifaceted problem is still discussed and "needs_revision" on
the bug report boards of Mozilla [39], we need to accept the overall degradation this brings
for Windows and macOS systems, even if they commonly do not use custom interfaces.

We opened a support request on the Firefox forums to create an option to turn off the
screen spoofing behaviour.

4.3.2.1. Conclusion Looking at the fingerprinting defence results we can say, that we
have made overall improvements in entropy. The majority of privacy plug-ins and tools,
that are used (e.g. AdBlock, uBlock Origin, Ghostery) work using blacklists and do not
implement fingerprinting protections at all. Only the TorBrowser [3] takes extensive mea-
sures against this form of identity tracking. Thus, our configuration is a first step towards
making it harder to track users on the Internet. However, it is important to note, that we
focused on a limited set of attributes and some of them could not be defended out of cur-
rent limitations in the browser’s implementation. Additionally, pages like Panopticlick do
not use all fingerprinting techniques, that are available (e.g. audio fingerprinting). This
means, that, despite our efforts, it will still be possible to fingerprint the browser, based
on a wider set of attributes.

In our opinion, the protection is strongly dependent on the average defence efforts: As
long as the majority of Internet users does not use fingerprinting protections, the adver-
tisement companies have no need to broaden their fingerprinting techniques.

Another interesting perspective to analyse, is long-term fingerprint characteristics: At-
tributes like window size give good entropy to identify a browser during one session, how-
ever, upon restart, the exact same window size is not guaranteed. Also within a session,
the user might resize the window. While defence against all fingerprinting techniques is a
continuous challenge, a focus on long-termed defence has more potential: Looking at the
attributes, that return a constant value, there is clearly fewer items. By blocking all these
methods (e.g. HTML5 canvas hash, WebGL rendering hash), it becomes considerably
harder to identify a browser and link sessions.

44

4.3.3. Tracking

As we showed in section 2.3.3.4, cookie tracking is the most prevalent form of tracking.
Secondly, it is practically impossible to measure tracking defence for tracking techniques
like session identifier transmission. Thus we want to compare our defence efforts assess-
ing cookie tracking improvements only. In order to do so, we want to utilize Lightbeam,
a tool by Mozilla, that lists third-party cookies, while browsing the Internet [40].
To simulate common user behaviour, we want to visit the 30 most visited sites in the
United States, according to the Alexa rankings [41]. We filter websites, that contain adult
content. A full list of the pages we use, can be found in Appendix C. We visit each page
and wait until it has fully loaded. Then we continue with the next one.

Figure 9. Mozilla Lightbeam graph - Firefox default configuration

For the default configuration, Lightbeam displays 350 third party entities. The graph
shows our visited sites as circles and the third parties as triangles. The main observation,
that we can make, is, how well interconnected the pages are. This means, that a big
number of third party cookie domains were shared by different sites.

45

As explained in section 2.3.3, these third parties are able to exchange user browsing be-
haviour and now know, which pages have been visited and in which order, also what
content has possibly been clicked.

Figure 10. Mozilla Lightbeam graph - Firefox full privacy configuration

After we run our application and choose the highest privacy settings, a second series of
page visits yields 150 third party entries. This is a more than 50% decrease in third party
cookies. Evaluating the new graph, we can also see, that the dense mesh reduced itself
to considerably fewer connections. We can see several pages, that are individual, cut-off
entities, which means, that no cookie data is shared with others. (This does not mean,
that the sites did not exchange user data on different ways, though. Only cookie domain
shares can be tracked with Lightbeam.)

Conducting another tracking test on Panopticlick’s website, we can see, that Firefox’s
own tracking protection does not block advertisers of the "acceptable ads" program, which
means, that the above results can be improved even more by installing a stricter filtering
plug-in.

46

4.3.3.1. Conclusion Summarizing these measurements, it can be said, that the black-
listing approach visibly reduces the amount of trackers and especially the connectivity
between them. Firefox’s blacklist creates a good foundation for tracking defence, while
even stricter lists could enhance the degree of protection. Another interesting option to
increase the efficiency of tracker blocking could be a machine learning approach: Li, et
al. identify, that the vast majority of trackers use long cookie lifetimes and also the value
length differs from non-tracking cookies [42, Fig. 1]. In their publication, they are able to
identify tracking cookies with 99.4% precision [42, section 8].

4.3.4. Headless mode

As mentioned in section 4.1.1, system administrators had interest in using our tool to
configure browsers in an automated way. Therefore we implemented a headless mode,
that will directly trigger the configuration routine of our application and skip the execution
of the GUI.

We used the Apache Commons CLI [43] to create an extensible command-line interface:

Figure 11. Headless mode of our application - usage overview

Using the -c switch, the program executes its configuration routine, provided, that the
database contains answers for all questions. Otherwise the configuration is aborted.

Figure 12. Headless mode of our application - automatic configuration

4.3.5. Usability vs privacy

Apart from solely testing the correct functioning of our application and comparing values
on test pages, it is necessary to assess, how our privacy adaptations impact usability on

47

the most common websites. Therefore, we want to re-use the Alexa top 30 selection, that
we have made and evaluate, which sites show errors in content rendering. We visit every
site and test the main functionalities it has to offer.

• No issues found (multimedia contents, login, main functionality working):
google.com, youtube.com, facebook.com, reddit.com, amazon.com, wikipedia.org,
yahoo.com, twitter.com, ebay.com, linkedin.com, imgur.com, chase.com, office.com
(full online office suite was tested), microsoftonline.com, live.com, tumblr.com,
craigslist.org, bing.com, paypal.com, nytimes.com, pinterest.com, microsoft.com

• instagram.com: The page is blank and does not render. Looking at the Javascript
debugger, we can see TypeError: message: "T.a.getLocalStorage(...) is null". This
hints to Instagram requiring DOM storage to work. Changing the configuration
parameter dom.storage.enable→ true fixes the rendering issues.

• twitch.tv: Chat and navigation elements of the page work, video content is not
played back. The debugger shows several errors like: WebGL warning: Failed to

create WebGL context or "https://s0.2mdn.net/instream/video/client.js" was blocked,

because the tracking protection is active. After testing various configuration set-
tings, we could get the page to work by modifying dom.storage.enabled → true
and dom.workers.enabled→ true.

• espn.com: Needs dom.storage.enabled → true and dom.workers.enabled → true
for video content to work.

• diply.com: The "home" page did not load fully. This could be fixed by enabling
DOM storage with dom.storage.enabled→ true.

• wikia.com, cnn.com: Videos do not work. Setting DOM storage fixes playback.

• imdb.com: Video navigator buttons do not work. Setting DOM storage fixes this.

• netflix.com: Was not tested, because accounts require a paid subscription.

4.3.5.1. Conclusion Summarizing the usability aspects we can say, that 22 out of 29
pages had no problems with their rendering. The main issue, that occurred was limited
video content playback. This happened due to pages attempting to save player elements
within the DOM storage, which failed because we had disabled it. Interestingly, we had
no problems using more complex sites like the Microsoft Office suites. The problematic

48

websites all hosted entertainment media. Introducing another question "Is video content

a high priority for you?" into our application, can address these problems.

4.3.6. Beta testing and user interview

After verifying these various aspects of our program, we ran a beta test, in order to better
understand the application from a user perspective. We distributed the application to some
of our survey participants and conducted interviews, while they were using the tool for
the first time or after they had tested it themselves. In the following we will discuss some
aspects, that were new or enhanced our perspective:

• Varying technical understandings: Wording our application questions, we at-
tempted to keep the complexity level and technical depth as low as possible. In-
dividuals, with basic background on browser security had no problems answering.
However, especially users with no prior interest in digital privacy had difficulties to
understand various terms and often wanted more examples or details on the topic.
This means, that we need to either begin our application’s survey with a user cat-
egorization, based on contextual knowledge or find ways of displaying additional
annotations, when they are needed.

Some users also did not know, how to answer questions, that they deemed irrelevant.
Here we got the recommendation to mark and preselect preferred answers, so they
can be skipped, if desired.

• Question complexity & user interest: Similar to the previous point, we discov-
ered, that, the question complexity level directly correlated to the attention span and
interest of the user: If the questions were too hard to understand, the participants
quickly lost motivation to continue answering. We received comments, that some
visual elements and a question progress bar would make the answering process less
monotonous. Apart from this idea we think, that, again, user categorization could
aid in matching the complexity levels more closely.

• Trust & application design: Some users reported, that the Java buttons in the
application looked less trustworthy, as they were different to the classical Windows
design. Font selection, image quality and layout were also considered important in
forming the trust relation towards the application.

49

While most of these elements can be adapted quickly, it is interesting to see, that
the overall interface design plays such a big factor in trusting the application. We
did not realize the weight of this in our previous steps.

A second reported factor, was, that the configured browser did not display any
metrics on the effectiveness of the defence, which made some individuals won-
der, whether the program was functioning correctly. This is an important point,
that needs to be treated in the future. While an own browser extension (e.g. button
with counter) could be a good starting point for a solution, it is a great challenge
to find a statistic, that is easily understandable by the user and sums up all defence
components, that we implement.

• Answer semantics: Some participants indicated, that it was confusing for them,
when semantics of answers changed throughout the questions: This means, that
’yes’ should always allow an action or have a positive connotation, while ’no’
should always block or have restrictive meaning. An easy example is the ques-
tion "Do you want to block Flash?": Answering ’yes’ would restrict in this case.
Rewording the question to "Do you want to allow Flash?", answering ’no’ would
now act restrictively. This needs to be consistent throughout the application.

• Accessibility: A last aspect, that we found was, that some users tried to resize the
window, while the font size stayed constant. We received comments, that the font
size should then increase automatically, so the interface content becomes readable
more easily.

50

4.3.6.1. Improved user interface mockup Taking these previous insights into ac-
count, we want to propose an improved user interface. The initial version of our ap-
plication looks as follows:

Figure 13. Our privacy configurator application - survey view

51

Our updated interface idea can be seen in the following:

Figure 14. Proposal of an improved application interface - survey view

On the left we introduce a question overview, so the user knows how many questions
remain and where he is at the moment. The main panel now includes an image, that
relates to the topic, which makes the overall reception of the view less monotonic. We
reworded ’yes’ and ’no’ to more representative answers and made space for additional
annotations regarding the answers.

The limited time frame of the thesis did not allow us to implement the design update.
Despite this, we wanted to give a short outline, how the look could be improved in the
future.

52

5. Conclusion and outlook

The thesis started with an analysis of digital privacy in the context of web browsing. By
discussing possible attack surfaces and their defence strategies, it became clear, that effec-
tive protection requires several configuration steps and a technical understanding of the
threats. In a survey, it then evaluated, how users set up their browsers and what privacy as-
pects were considered relevant. While the small answer set did not allow for quantitative
measurements, it was still evident, that the expected protection frequently deviated from
actual browser settings. In order to enhance individual privacy, the thesis then came up
with a new defence concept to narrow this gap: Instead of forcing users to adapt browser
settings themselves, a configurator program asks for browsing behaviour and usage in-
tents. Then an automated configuration takes place.
Looking at the results of the research, it can be said, that the application greatly reduced
configuration complexity. Comparing default settings with our adapted configurations,
we can register protection improvements in all addressed sections (exploit risk, finger-
printing & tracking). While our current adaptations certainly do not represent the best
possible defence, the application allows future refinements, due to its modular design.
Critical aspects of our concept were: Firstly, a relocated problem of trust: While the user
initially needs to trust extensions and Internet pages to tell him how to adapt a browser to
his privacy interests, he now needs to allow an external application to run and configure
his device. In the survey, it became apparent, that this is problematic and some individuals
are critical in their approval. Secondly, it is challenging to quantify defence efforts: In
the section of fingerprinting several individual entropy improvements do not necessarily
reduce the overall browser entropy, since attackers can combine attributes. In the field
of anti-tracking, it is hard to detect certain forms of tracking and thus complex to verify
protection effectiveness or compare defence concepts. This ultimately means, that the
user is lacking a metric to understand, how well the program achieves protection, which
also feeds back into the trust issue. This opens up an interesting new topic for research.
Overall, our solution shows great potential and emphasizes, that the, often limited, under-
standing of the user needs to be addressed responsibly. It also poses as a good alternative
to proprietary or commercial protection software.

A similar attempt at improved user inclusion is currently being tested by Mozilla in their
"Contextual Identity Project" [44]: It extends common browser tabs to allow the user to
choose, what kind of activity they will perform (e.g. banking, shopping or work). Differ-
ent privacy and configuration levels are then applied. At the time of writing, the extension

53

did not include active filtering or defence of attacks we discussed, but instead uses a clear
separation of tab contexts to achieve better protection. We think, that a combination of our
configuration and application efforts with this project could result in a promising defence
solution.

5.1. Future work

As it was not possible to implement all of our ideas in the limited time frame of the thesis,
some particularly interesting, but still missing components are listed in this last section:

• Browser extension integration: For Firefox it was possible to realise a protection
concept by modifying internal settings only. However, other browsers do not have
these extensive configuration possibilities. This is why it is necessary to allow
installing extensions as a part of the configurator process. They could then also be
used to extend Firefox, enhancing the existent configuration parameters.

• Extending browser support: We limited our work on a defence configuration for
Mozilla Firefox. In the future other browsers like Google Chrome or Microsoft
Edge need to be supported.

• Quantifying privacy & protection: A privacy score or some kind of metric needs to
be found, that allows the user to easily understand, how well he is protected (also,
how different configurator answers influence this protection).

• Reporting function for website usability issues: In the thesis we only observed is-
sues with video playback on some of the tested pages. Especially, if the defence
system is enhanced with browser extensions, the user should be able to report us-
ability problems to the developer, so they can be fixed.

• User interface optimization: As outlined in section 4.3.6.1, there is great potential in
enhancing the trust towards the application by improving its interface design. The
presentation of the questions correlates directly with a user’s motivation to answer
correctly and deal with the topic of digital privacy.

54

References

[1] G. Greenwald, E. MacAskill, and L. Poitras. (2013). Edward snowden: The
whistleblower behind the nsa surveillance revelations., [Online]. Available:
https://www.theguardian.com/world/2013/jun/09/edward-
snowden-nsa-whistleblower-surveillance (visited on 02/12/2018).

[2] CVE Details Security Database. (2018). Top 50 products by total number of "dis-
tinct" vulnerabilities, [Online]. Available: https://www.cvedetails.com/
top-50-products.php?year=0 (visited on 02/18/2018).

[3] M. Perry, E. Clark, S. Murdoch, and G. Koppen. (2018). The design and implemen-
tation of the tor browser [draft], [Online]. Available: https://torproject.
org/projects/torbrowser/design/ (visited on 02/18/2018).

[4] Y. Onn, M. Geva, Y. Druckman, A. Zyssman, R. L. Timor, I. Lev, A. Maroun, T.
Maron, Y. Nachmani, Y. Simsolo, et al., “Privacy in the digital environment,” Haifa
Center of Law & Technology, 2005.

[5] A. Maurushat, Disclosure of Security Vulnerabilities: Legal and Ethical Issues.
Springer Science & Business Media, 2014.

[6] C. Fuchs, “The anonymous movement in the context of liberalism and socialism.,”
Interface: A Journal on Social Movements, vol. 5, no. 2, 2013.

[7] W. Al-Saqaf, “Breaking digital firewalls: Analyzing internet censorship and cir-
cumvention in the arab world,” Örebro university, 2014.

[8] D. S. Evans, “The online advertising industry: Economics, evolution, and privacy,”
Journal of Economic Perspectives, vol. 23, no. 3, 2009.

[9] J. R. Mayer and J. C. Mitchell, “Third-party web tracking: Policy and technology,”
in Security and Privacy (SP), 2012 IEEE Symposium on, IEEE, 2012, pp. 413–427.

[10] B. Hill. (2012). Is preventing browser fingerprinting a lost cause? W3C, [On-
line]. Available: https://www.w3.org/wiki/images/7/7d/Is_
preventing_browser_fingerprinting_a_lost_cause.pdf (vis-
ited on 03/16/2018).

[11] R. S. Liverani and N. Freeman. (2009). Abusing firefox extensions, [Online]. Avail-
able: https://www.defcon.org/images/defcon- 17/dc- 17-
presentations/defcon-17-roberto_liverani-nick_freeman-
abusing_firefox.pdf (visited on 02/28/2018).

[12] The Mozilla Foundation. (2018). Add-ons/extension signing, [Online]. Available:
https://wiki.mozilla.org/Add-ons/Extension_Signing (vis-
ited on 02/28/2018).

[13] M. Maunder. (2017). Psa:4.8 million affected by chrome extension attacks tar-
geting site owners, [Online]. Available: https://www.wordfence.com/
blog/2017/08/chrome-browser-extension-attacks/ (visited on
02/28/2018).

[14] The Mozilla Foundation. (2012). Why an outdated java plugin is so serious, [On-
line]. Available: https://blog.mozilla.org/security/2012/04/
06/why-an-outdated-java-plugin-is-so-serious/ (visited on
02/28/2018).

[15] M. Acer and C. Jackson, “Critical vulnerability in browser security metrics,” Pro-
ceedings of W2SP, 2010.

[16] National Institute of Standards and Technology. (2015). National vulnerability db -
vulnerability metrics, [Online]. Available: https://nvd.nist.gov/vuln-
metrics/cvss (visited on 03/01/2018).

55

https://www.theguardian.com/world/2013/jun/09/edward-snowden-nsa-whistleblower-surveillance
https://www.theguardian.com/world/2013/jun/09/edward-snowden-nsa-whistleblower-surveillance
https://www.cvedetails.com/top-50-products.php?year=0
https://www.cvedetails.com/top-50-products.php?year=0
https://torproject.org/projects/torbrowser/design/
https://torproject.org/projects/torbrowser/design/
https://www.w3.org/wiki/images/7/7d/Is_preventing_browser_fingerprinting_a_lost_cause.pdf
https://www.w3.org/wiki/images/7/7d/Is_preventing_browser_fingerprinting_a_lost_cause.pdf
https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-roberto_liverani-nick_freeman-abusing_firefox.pdf
https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-roberto_liverani-nick_freeman-abusing_firefox.pdf
https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-roberto_liverani-nick_freeman-abusing_firefox.pdf
https://wiki.mozilla.org/Add-ons/Extension_Signing
https://www.wordfence.com/blog/2017/08/chrome-browser-extension-attacks/
https://www.wordfence.com/blog/2017/08/chrome-browser-extension-attacks/
https://blog.mozilla.org/security/2012/04/06/why-an-outdated-java-plugin-is-so-serious/
https://blog.mozilla.org/security/2012/04/06/why-an-outdated-java-plugin-is-so-serious/
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss

[17] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the beast: Diverting
modern web browsers to build unique browser fingerprints,” in IEEE Symposium
on Security and Privacy (S&P 2016), IEEE, 2016.

[18] T. Bujlow, V. Carela-Español, J. Solé-Pareta, and P. Barlet-Ros, “Web tracking:
Mechanisms, implications, and defenses,” arXiv preprint arXiv:1507.07872, 2015.

[19] A. Barth. (2011). Http state management mechanism, Internet Engineering Task
Force, [Online]. Available: https://tools.ietf.org/html/rfc6265
(visited on 02/12/2018).

[20] M. Davidov. (2012). The double-edged sword of hsts persistence and privacy, [On-
line]. Available: https://www.leviathansecurity.com/blog/the-
double-edged-sword-of-hsts-persistence-and-privacy (vis-
ited on 03/09/2018).

[21] F. Roesner, T. Kohno, and D. Wetherall, “Detecting and defending against third-
party tracking on the web,” in Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, USENIX Association, 2012.

[22] Firefox Site Compatibility Working Group. (2016). Plug-in support has
been dropped other than flash, [Online]. Available: https : / / www .
fxsitecompat.com/en-CA/docs/2016/plug-in-support-has-
been-dropped-other-than-flash/ (visited on 03/12/2018).

[23] Firefox Support Forum. (2014). Why are plugins reverting back to ’always activate’
after i set them to ’ask to activate’, [Online]. Available: https://support.
mozilla.org/en-US/questions/1019124 (visited on 03/12/2018).

[24] Mozilla. (2015). A brief guide to mozilla preferences, [Online]. Available:
https : / / developer . mozilla . org / en - US / docs / Mozilla /
Preferences/A_brief_guide_to_Mozilla_preferences (visited
on 03/12/2018).

[25] pyllyukko. (2018). User.js - firefox configuration hardening, [Online]. Available:
https://github.com/pyllyukko/user.js (visited on 03/13/2018).

[26] Mozilla. (2014). Webapi/security/webtelephony, [Online]. Available: https://
wiki.mozilla.org/WebAPI/Security/WebTelephony (visited on
03/13/2018).

[27] Context Information Security. (2011). Webgl - a new dimension for browser ex-
ploitation, [Online]. Available: https://www.contextis.com/blog/
webgl-a-new-dimension-for-browser-exploitation (visited on
03/13/2018).

[28] MozillaZine. (2017). Network.jar.open-unsafe-types, [Online]. Available: http:
//kb.mozillazine.org/Network.jar.open-unsafe-types (vis-
ited on 03/13/2018).

[29] Mozilla. (2015). Mozilla foundation security advisory 2015-29, [Online]. Avail-
able: https://www.mozilla.org/en-US/security/advisories/
mfsa2015-29/ (visited on 03/13/2018).

[30] National Vulnerability Database. (2015). Cve-2015-2743 detail, [Online]. Avail-
able: https://nvd.nist.gov/vuln/detail/CVE- 2015- 2743
(visited on 03/13/2018).

[31] B. Lassey. (2015). Bug 1186948, [Online]. Available: https://hg.mozilla.
org/integration/mozilla-inbound/rev/21d15da870e8 (visited
on 03/14/2018).

[32] Mozilla. (2018). Security/fingerprinting, [Online]. Available: https://wiki.
mozilla.org/Security/Fingerprinting (visited on 03/13/2018).

[33] ——, (2018). Security/tracking protection, [Online]. Available: https : / /
wiki.mozilla.org/Security/Tracking_protection (visited on
03/18/2018).

56

https://tools.ietf.org/html/rfc6265
https://www.leviathansecurity.com/blog/the-double-edged-sword-of-hsts-persistence-and-privacy
https://www.leviathansecurity.com/blog/the-double-edged-sword-of-hsts-persistence-and-privacy
https://www.fxsitecompat.com/en-CA/docs/2016/plug-in-support-has-been-dropped-other-than-flash/
https://www.fxsitecompat.com/en-CA/docs/2016/plug-in-support-has-been-dropped-other-than-flash/
https://www.fxsitecompat.com/en-CA/docs/2016/plug-in-support-has-been-dropped-other-than-flash/
https://support.mozilla.org/en-US/questions/1019124
https://support.mozilla.org/en-US/questions/1019124
https://developer.mozilla.org/en-US/docs/Mozilla/Preferences/A_brief_guide_to_Mozilla_preferences
https://developer.mozilla.org/en-US/docs/Mozilla/Preferences/A_brief_guide_to_Mozilla_preferences
https://github.com/pyllyukko/user.js
https://wiki.mozilla.org/WebAPI/Security/WebTelephony
https://wiki.mozilla.org/WebAPI/Security/WebTelephony
https://www.contextis.com/blog/webgl-a-new-dimension-for-browser-exploitation
https://www.contextis.com/blog/webgl-a-new-dimension-for-browser-exploitation
http://kb.mozillazine.org/Network.jar.open-unsafe-types
http://kb.mozillazine.org/Network.jar.open-unsafe-types
https://www.mozilla.org/en-US/security/advisories/mfsa2015-29/
https://www.mozilla.org/en-US/security/advisories/mfsa2015-29/
https://nvd.nist.gov/vuln/detail/CVE-2015-2743
https://hg.mozilla.org/integration/mozilla-inbound/rev/21d15da870e8
https://hg.mozilla.org/integration/mozilla-inbound/rev/21d15da870e8
https://wiki.mozilla.org/Security/Fingerprinting
https://wiki.mozilla.org/Security/Fingerprinting
https://wiki.mozilla.org/Security/Tracking_protection
https://wiki.mozilla.org/Security/Tracking_protection

[34] ——, (2013). Cookie preferences in mozilla, [Online]. Available: https://
developer . mozilla . org / en - US / docs / Mozilla / Cookies _
Preferences (visited on 03/19/2018).

[35] ——, (2010). Dom.storage.enabled, [Online]. Available: http : / / kb .
mozillazine.org/Dom.storage.enabled (visited on 03/19/2018).

[36] Stackoverflow. (2013). Firefox invalidate dns cache [closed], [Online]. Available:
https://stackoverflow.com/questions/13063496/firefox-
invalidate-dns-cache (visited on 03/20/2018).

[37] Electronic Frontier Foundation. (2018). Panopticlick, [Online]. Available: https:
//panopticlick.eff.org (visited on 04/05/2018).

[38] W3 Schools. (2018). Screen availwidth property, [Online]. Available: https:
//www.w3schools.com/jsref/prop_screen_availwidth.asp
(visited on 04/05/2018).

[39] Mozilla TorProject. (2012). Weird screen sizes reported by panopticlick, [On-
line]. Available: https://trac.torproject.org/projects/tor/
ticket/4810 (visited on 04/05/2018).

[40] S. Gibbs. (2013). Mozilla’s lightbeam firefox tool shows who’s tracking your on-
line movements, [Online]. Available: https://www.theguardian.com/
technology / 2013 / oct / 28 / mozilla - lightbeam - tracking -
privacy-cookies (visited on 04/06/2018).

[41] Alexa Internet Inc. (2018). Top sites in united states, [Online]. Available: https:
//www.alexa.com/topsites/countries/US (visited on 04/06/2018).

[42] T.-C. Li, H. Hang, M. Faloutsos, and P. Efstathopoulos, “Trackadvisor: Taking
back browsing privacy from third-party trackers,” in International Conference on
Passive and Active Network Measurement, Springer, 2015, pp. 277–289.

[43] The Apache Software Foundation. (2017). Commons cli, [Online]. Available:
https://commons.apache.org/proper/commons-cli/ (visited
on 04/07/2018).

[44] Mozilla. (2017). Security/contextual identity project/containers, [Online]. Avail-
able: https : / / wiki . mozilla . org / Security / Contextual _
Identity_Project/Containers (visited on 04/11/2018).

57

https://developer.mozilla.org/en-US/docs/Mozilla/Cookies_Preferences
https://developer.mozilla.org/en-US/docs/Mozilla/Cookies_Preferences
https://developer.mozilla.org/en-US/docs/Mozilla/Cookies_Preferences
http://kb.mozillazine.org/Dom.storage.enabled
http://kb.mozillazine.org/Dom.storage.enabled
https://stackoverflow.com/questions/13063496/firefox-invalidate-dns-cache
https://stackoverflow.com/questions/13063496/firefox-invalidate-dns-cache
https://panopticlick.eff.org
https://panopticlick.eff.org
https://www.w3schools.com/jsref/prop_screen_availwidth.asp
https://www.w3schools.com/jsref/prop_screen_availwidth.asp
https://trac.torproject.org/projects/tor/ticket/4810
https://trac.torproject.org/projects/tor/ticket/4810
https://www.theguardian.com/technology/2013/oct/28/mozilla-lightbeam-tracking-privacy-cookies
https://www.theguardian.com/technology/2013/oct/28/mozilla-lightbeam-tracking-privacy-cookies
https://www.theguardian.com/technology/2013/oct/28/mozilla-lightbeam-tracking-privacy-cookies
https://www.alexa.com/topsites/countries/US
https://www.alexa.com/topsites/countries/US
https://commons.apache.org/proper/commons-cli/
https://wiki.mozilla.org/Security/Contextual_Identity_Project/Containers
https://wiki.mozilla.org/Security/Contextual_Identity_Project/Containers

Appendix A Survey: Users & browser configurations

Work
position

Desired media
content

Desired privacy
components

Installed
extensions

Trust
for ext.
app

Sysadmin Video, Flash,
Browser Apps,
Interactive Chats

Ad-Block, Anti-
Tracking, Anti-
Fingerprinting

uBlock Origin very low

Technical
consul-
tant

Video, Flash,
Browser Apps

Ad-Block, Anti-
Crypto-Mining,
Anti-Tracking,
Anti-Fingerprinting

McAfee End-
point Security
Web Control,
uBlock Origin,
NoScript

medium

Student Video, Browser
Apps, Interactive
Chats

Ad-Block, Anti-
Crypto-Mining

AdBlock plus low

Security
officer

Video, Browser
Apps, Interactive
Chats

Ad-Block, Anti-
Crypto-Mining,
Anti-Tracking,
Anti-Fingerprinting

Browsing pro-
tection by F-
Secure

medium

Table 5. Survey results: User & browser configurations

58

Appendix B Panopticlick fingerprinting results & values

The dataset size during our measurements was 1,400,500 (rounded 2 digits).

Attribute Entropy Value
List of plug-ins 8.59 Plugin 0: Shockwave Flash; Shockwave Flash 29.0

r0; NPSWF64_29_0_0_113.dll; (Adobe Flash
movie; application/x-shockwave-flash; swf) (Fu-
tureSplash movie; application/futuresplash; spl).

User agent 7.17 Mozilla/5.0 (Windows NT 10.0; Win64; x64;
rv:59.0) Gecko/20100101 Firefox/59.0)

List of fonts (JS) 5.84 Arial, Arial Black, Calibri, Cambria, Cambria
Math, Comic Sans MS, Consolas, Courier, Courier
New, Georgia, Helvetica, Impact, Lucida Console,
Lucida Sans Unicode, Microsoft Sans Serif, MS
Gothic, MS PGothic, MS Sans Serif, MS Serif,
Palatino Linotype, Segoe Print, Segoe Script,
Segoe UI, Segoe UI Light, Segoe UI Semi-
bold, Segoe UI Symbol, Tahoma, Times, Times
New Roman, Trebuchet MS, Verdana, Wingdings,
Wingdings 2, Wingdings 3 (via javascript)

HTML5 Canvas 9.72 496c84b5f8e9ab3efe48e7997fc90384
Content language 4.25 de

Screen resolution (JS) 2.45 1920x1080x24
HTTP Accept header 5.29 text/html, */*; text/html, */*; q=0.01 gzip, deflate,

br de,en- US;q=0.7,en;q=0.3
WebGL hash 13.23 31fa886316b233029eb0df09cd4446c1

Timezone 3.16 0

Table 6. Fingerprinting results & values - Windows 10 - Pre defence

59

Attribute Entropy Value
List of plug-ins 1.25 undefined

User agent 5.58 Mozilla/5.0 (Windows NT 6.1; Win64; x64;
rv:52.0) Gecko/20100101 Firefox/52.0

List of fonts (JS) 7.40 Arial, Calibri, Cambria, Cambria Math, Comic
Sans MS, Consolas, Courier, Courier New, Geor-
gia, Helvetica, Impact, Lucida Console, Lucida
Sans Unicode, Microsoft Sans Serif, MS Gothic,
MS PGothic, MS Sans Serif, MS Serif, Palatino
Linotype, Segoe Print, Segoe Script, Segoe UI,
Segoe UI Light, Segoe UI Semibold, Segoe UI
Symbol, Tahoma, Times, Times New Roman, Tre-
buchet MS, Verdana, Wingdings, Wingdings 2,
Wingdings 3 (via javascript)

HTML5 Canvas 4.24 a273d6a847f0e2a57fa0161158f12fed
Content language 0.92 en-US

Screen resolution (JS) 9.07 800x600x24
HTTP Accept header 2.02 text/html, */*; q=0.01 gzip, deflate, br en-

US,en;q=0.5
WebGL hash 2.48 00000000000000000000000000000000

Timezone 3.16 0

Table 7. Fingerprinting results & values - Windows 10 - Post defence

Attribute Entropy Value
List of plug-ins 1.25 undefined

User agent 11.51 Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12;
rv:59.0) Gecko/20100101 Firefox/59.0

List of fonts (JS) 7.01 Andale Mono, Arial, Arial Black, Arial He-
brew, Arial Narrow, Arial Rounded MT Bold,
Arial Unicode MS, Comic Sans MS, Courier,
Courier New, Geneva, Georgia, Helvetica, Hel-
vetica Neue, Impact, LUCIDA GRANDE, Mi-
crosoft Sans Serif, Monaco, MYRIAD PRO,
Palatino, Tahoma, Times, Times New Roman, Tre-
buchet MS, Verdana, Wingdings, Wingdings 2,
Wingdings 3 (via javascript)

HTML5 Canvas 10.31 ad41d887798c19615a24c636a0f6ded2
Content language 4.25 de

Screen resolution (JS) 2.45 1920x1080x24
HTTP Accept header 5.29 text/html, */*; q=0.01 gzip, deflate, br de,en-

US;q=0.7,en;q=0.3
WebGL hash 10.6 fcd420b0eab7c0c17e7b6ab5963be11f

Timezone 3.16 0

Table 8. Fingerprinting results & values - macOS Sierra 10.12.6 - Pre defence

60

Attribute Entropy Value
List of plug-ins 1.25 undefined

User agent 11.03 Mozilla/5.0 (Macintosh; Intel Mac OS X 10.13;
rv:52.0) Gecko/20100101 Firefox/52.0

List of fonts (JS) 7.01 Andale Mono, Arial, Arial Black, Arial He-
brew, Arial Narrow, Arial Rounded MT Bold,
Arial Unicode MS, Comic Sans MS, Courier,
Courier New, Geneva, Georgia, Helvetica, Hel-
vetica Neue, Impact, LUCIDA GRANDE, Mi-
crosoft Sans Serif, Monaco, MYRIAD PRO,
Palatino, Tahoma, Times, Times New Roman, Tre-
buchet MS, Verdana, Wingdings, Wingdings 2,
Wingdings 3 (via javascript)

HTML5 Canvas 4.24 a273d6a847f0e2a57fa0161158f12fed
Content language 0.92 en-US

Screen resolution (JS) 18.83 800x598x24
HTTP Accept header 2.02 text/html, */*; q=0.01 gzip, deflate, br en-

US,en;q=0.5
WebGL hash 2.48 00000000000000000000000000000000

Timezone 3.16 0

Table 9. Fingerprinting results & values - macOS Sierra 10.12.6 - Post defence

61

Appendix C Alexa top 30 sites - United States

(Without pages containing adult content.)

• google.com

• youtube.com

• facebook.com

• reddit.com

• amazon.com

• wikipedia.org

• yahoo.com

• twitter.com

• ebay.com

• netflix.com

• instagram.com

• linkedin.com

• twitch.tv

• imgur.com

• espn.com

• craigslist.org

• (www.)office.com

• (login.)

microsoftonline.com

• live.com

• diply.com

• wikia.com

• tumblr.com

• cnn.com

• chase.com

• bing.com

• paypal.com

• nytimes.com

• pinterest.com

• imdb.com

• microsoft.com

62

	Introduction
	Privacy in a current context
	Research problem
	Research question
	Limitations
	Outline

	Related work
	Definition of privacy and security
	Attacker model
	Malicious hackers
	Governments
	Advertising companies
	Conclusion and scope of defence

	Known attacks
	Exploits
	Fingerprinting
	Tracking

	Defence strategies
	Risk reduction for exploits
	Anti-Fingerprinting
	Anti-Tracking

	Current state of defence strategies and our contribution

	Survey: Analysing current browser configurations
	Survey design
	User data
	Browser data

	Outcomes
	Usability versus protection
	Trustworthiness of an external application
	Privacy intents versus actual configuration

	Implementation of a configurator application
	Requirements analysis
	User model
	Operating system compatibility
	Browser compatibility
	Extensibility

	Application design
	Separation of concerns
	View
	Database
	Configurator
	Question design

	Testing
	Exploit risk
	Fingerprinting
	Tracking
	Headless mode
	Usability vs privacy
	Beta testing and user interview

	Conclusion and outlook
	Future work

	Appendix Survey: Users & browser configurations
	Appendix Panopticlick fingerprinting results & values
	Appendix Alexa top 30 sites - United States

