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Abstract 

The aim of this work is to discuss the theoretical basis of perceptual image hashing by 

proposing the image hashing framework and researching existing perceptual image hash 

functions. The research will show the main differences between perceptual and 

cryptographic hash functions and their applications scenarios. Moreover, we will take a 

closer look at a few image hashing techniques and describe them step by step. Work 

covers such important topics as the properties of the cryptographic and perceptual hash 

functions, distance/similarity metrics and content processing operations. The paper gives 

answers why popular cryptographic hash functions do not suit for perceptual image 

hashing, why other approaches are needed and how they can be implemented. 

The thesis consists of four parts, each describing its own objective: 

1.   Review cryptographic and perceptual hash functions, their properties and give 

examples of various applications scenarios. 

2.   Provide different distance/similarity metrics for the evaluation of robustness 

and the discriminative capabilities of image hashing schemes. 

3.   Propose the perceptual image hashing framework and describe all required 

steps to produce the final hash. 

4.   Describe three basic perceptual image hashing functions, give an overview of 

some other existing algorithms and propose the practical implementation of 

the described methods in MATLAB. 

The main conclusions are related to the importance of the perceptual image hashing; for 

example why it is more superior for image comparison instead of traditional 

cryptographic hash functions. Furthermore, the described perceptual hash functions were 

compared to verify the robustness and discriminative properties of the each and final 

results were listed in the overview table. The best of the described algorithms is also 

proposed in the conclusion, based on the provided overview under different CPO attacks 

and comparison in case of perceptually different images. 

This thesis is written in English and is 70 pages long, including 3 chapters, 32 figures and 

7 tables. 
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Annotatsioon 

Piltide pertseptuaalse räsimise rakendamise metoodikaid 

Antud töö eesmärgiks on arutada piltide pertseptuaalse räsimise teoreetilisi aluseid, tuues 

esile piltide räsimise raamistiku ja uurides olemasolevaid piltide pertseptuaalse räsimise 

funktsioone. Uuring näitab peamisi erinevusi pertseptuaalse ja krüptograafilise räsimise 

funktsioonide ja rakenduses kasutatavate variantide vahel. Samuti analüüsib autor 

mõningaid piltide räsimise tehnikaid ja kirjeldab neid sammude kaupa. Töö puudutab 

olulisi teemasid, nagu krüptograafilise ja pertseptuaalse räsimise funktsioonide omadusi, 

kauguse/sarnasuse mõõtmeid ja sisu töötlemisoperatsioone. Lõputöö annab vastuseid 

küsimustele, miks ei sobi populaarsed krüptograafilised räsimisfunktsioonid piltide 

pertseptuaalse räsimise jaoks ning miks on vaja kasutada teisi lähenemisi, ja kuidas oleks 

neid võimalik implementeerida. 

Lõputöö koosneb neljast osast, kus iga osa kirjeldab oma eesmärki: 

1.   Ülevaadata krüptograafilise ja pertseptuaalse räsimise funktsioone koos nende 

omadustega, ja tuua näited, mis demonstreeriksid piltide räsimisskeemasid. 

2.   Esitada erinevaid kauguse/sarnasuse mõõtmete jõulisuse ja piltide 

räsimisskeemade diskrimineerivate võimsuste hindamiseks. 

3.   Esitada piltide pertseptuaalse räsimise raamistiku ja kirjeldada kõiki vajalikke 

samme, et valmistada lõplikut räsi. 

4.   Kirjeldada kolm põhilist piltide räsimisfunktsiooni, anda ülevaadet teistest 

olemasolevatest algoritmidest ja pakkuda MATLAB-i abil kirjeldatud 

meetodite praktilisi implementatsioone.  

Põhilised  järeldused on seotud piltide pertseptuaalse räsimise tähtsusega; näiteks, miks 

see sobib piltide võrdluseks paremini kui traditsioonilised krüptograafilise räsimise 

funktsioonid. Järgnevalt olid võrreldud kirjeldatud pertseptuaalse räsimise funktsioonid, 

et võrrelda jõulikuse ja diskrimineerivaid omadusi, ja lõplikud tulemused olid nimetatud 

ülevaate tabelis. Kõige paremini kirjeldatud algoritm on samuti pakutud järelduses, mis 

on tehtud esitatud CPO rünnakutest ülevaate ja pertseptuaalselt erinevate piltide võrdluse 

alusel. 

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 70 leheküljel, 3 peatükki, 32 

joonist, 7 tabelit. 
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Table of abbreviations and terms 

2D Two Dimensional 

3D Three Dimensional 

BER Bit error rate 

CBIR Content-based image retrieval 

CCM Content changing manipulations  

CPM Content preserving manipulations 

CPO Content processing operations 

DCT Discrete Cosine Transform 

DFT Discrete Fourier Transform 

ED Euclidian Distance 

FPR False Positive Rate 

HD Hamming distance 

HVS Human visual system 

IDCT Inversed Discrete Cosine Transform 

MAC Message authentication codes 

NHD Normalized Hamming distance 

PHF Perceptual Hash Function 

TPR True Positive Rate 
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Introduction 

Background and motivation 

The fast technological advancement has led to the significant increase in multimedia 

information, especially in the recent years. The total amount of digital content has grown 

exponentially, and this number is still growing. We live in the world where almost 

everything can be digitalized and sent from one part of the world to another in just a 

matter of seconds. However, due to increasing availability of multimedia data in digital 

form, the number of tools to manipulate digital multimedia has also significantly 

increased. The content processing operation (CPO) became trivial, and many users of 

such tools modify the multimedia content almost each day. This tendency has lead to the 

need of finding the ways of authentication multimedia content to ensure trustworthiness 

or find the ways of identification. 

For this reason, many different authentication techniques have emerged to verify content 

integrity and prevent forgery [7]. But, of course, to decide whether of not the object is 

authentic or not we must take into account the type of that object. For example when 

authenticating an executable file in most cases it is essential that every single bit matches 

exactly the original one. For such tasks traditional cryptographic hash functions like MD5 

or SHA-1 are very well suited and enable to determine whether or not the compared 

objects are the same. But those are extremely sensitive, and 1-bit change in the input 

changes the output dramatically (also known as the “avalanche effect”) [9]. Can we use 

traditional crypto-hashing to meet the integrity and authentication requirements of digital 

images if considering an image as a data stream? 

There are, however, several reasons that impede the direct use of cryptographic 

techniques for solving multimedia security problems. Unlike textual data that is 

transmitted through a lossless medium, multimedia data like images (or audio, video, etc.) 

may be transmitted and stored using a lossy medium to save bandwidth and storage space 

[19]. Therefore, using traditional cryptographic hash functions for integrity verification 

or authentication of multimedia content has a problem that a single bit change in the 

content will significantly change the hash value. To analyze multimedia content, other 

hashing algorithms are preferable. 
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Furthermore, humans can easily distinguish multiple images and say whether or not those 

are the same. A computer, however, sees everything in a very different perspective, so 

this easy task for a human is quite complicated for a computer. Multiple images can have 

different digital representations but from the human perception they will all look the 

same. That leads us to the problem that multimedia content can be illegally distributed 

unnoticeably for the search algorithms if considering only the cryptographic hashing 

techniques. Data such as digital images can undergo various manipulations such as 

compression and enhancement. It makes impossible for traditional crypto-hashing to spot 

modified pictures and state that those came from the same source. 

Aim and Objectives 

The aim of this work is to discuss the practical applications of perceptual image hashing 

and try to answer why cryptographic hash functions do not suit for image hashing, and 

different method must be used. The whole research on this topic is divided into four 

objectives. The first, to compare cryptographic and perceptual hash functions, their 

properties, and various applications scenarios. The second, to provide different 

distance/similarity metrics for the evaluation of robustness and the discriminative 

capabilities of image hashing schemes. The third objective, to propose the perceptual 

image hashing framework and describe it. And lastly, the fourth objective is to describe 

three basic perceptual image hashing functions step by step and implement those using 

MATLAB. 

Outline 

The thesis consists of four chapters. The first chapter reviews cryptographic and 

perceptual hash functions, gives examples of various application scenarios and the 

properties of those hash types. The second chapter provides different distance/similarity 

metrics that can be used to evaluate the robustness and the discriminative capabilities of 

image hashing schemes. The third chapter proposes the perceptual image hashing 

framework and describes all required steps to produce the final hash. Also, it gives an 

overview of how image pre-processing can be done before the feature extraction. The 

fourth chapter describes three basic perceptual image hashing functions and also provides 

an overview of some other existing algorithms. Practical implementation of the described 

methods in MATLAB is also being proposed and outlined in the fourth chapter. 
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1.   Cryptographic & Perceptual Hash Functions 

The term hash functions originate historically from computer science, where it denotes a 

function that compresses a string of some uncertain size to a string of fixed length [26]. 

The data to be encoded is often called as the message, and the hash value is sometimes 

referred as the message digest or simply digest [10]. For this purpose many distinct types 

of hash functions exist, but in most cases they can be divided into two main groups: 

cryptographic and perceptual hash functions. However, it should be noted that the 

objective of a cryptographic hash function and perceptual ones are not exactly the same. 

Even though, sometimes the area where they are used can intersect, perceptual hash 

functions are entirely different concept compared to traditional cryptographic hash 

functions. 

This chapter covers the essential differences between both mentioned hash function 

(cryptographic and perceptual) types as well as their basic application scenarios. 

Furthermore, the fundamental properties of each described hash function type will be 

given with some explanations to summarize the core aspects of both in terms of image 

hashing. 

1.1.   Cryptographic Hash Functions 

Traditional cryptographic hash functions like MD5 or SHA-1 have only one particular 

goal: convert the source input (message) into a fixed-length bit string (hash). Very often, 

they are referred as (digital) fingerprints, checksums, or just hash values even thought all 

serve a slightly different purpose. There are, however, several reasons that actually 

impede the direct use of cryptographic techniques for solving multimedia security 

problems 

The cryptographic hash functions are considered to be practically impossible to invert, 

that is, to recreate the input data from its hash value alone. Of course, such statement 

about the inversion is not always true. In most cases, however, such cryptographic hash 

functions that cannot be inverted are often referred as one-way hash functions and are 

considered to be “the workhorses of modern cryptography” [1]. Such behavior deeply 

relies on the avalanche effect, where a tiny change in input value modifies the output 
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value drastically. This results in a completely different hash even if only the one bit of 

information was changed. 

Traditionally, data integrity issues are addressed by cryptographic hashes or message 

authentication functions. The simplest way to provide data authentication mechanism is 

to employ directly a traditional cryptographic hash function. A data authentication 

scheme using a cryptographic approach can be primarily categorized into two types 

according to the data integrity criteria: hard authentication and soft authentication. A hard 

authentication approach does not allow any bit changes on the input data, like a 

standardized cryptographic scheme such as message authentication code (MAC) or digital 

signature standard (DSS). To do this, a hard authentication scheme generates an 

authentication code from the input data and delivers it along with the data. During the 

verification process, the authentication code recalculated from the received data are 

expected to match exactly with the received authentication code as long as the received 

data or authentication code are not corrupted or manipulated in transit. 

Furthermore, with cryptographic hashes, the hash values are random. The message that is 

used to generate the hash acts like a random seed so that the same data will cause exactly 

the same result, but the different message will produce an entirely different hash. 

The cryptographic hash functions only tell you two primary things: if the hashes are 

different, then the data is different or vice-versa. As a result, the message integrity can 

only be validated when every bit of the message is unchanged [9]. Such behavior is the 

essential feature of this kind of hashing – extreme sensitivity to the input message and 

numerous application scenarios of cryptographic hash functions are based on this 

behavior. 

1.1.1.   Application Scenarios 

Cryptographic hash functions have many various applications. In most cases, however, 

they are used in the context of information security and in authentication where every bit 

of the compared messages need to be unchanged to verify their integrity.  Popular hash 

functions like MD5 or SHA-1 have many different application scenarios in digital signing 

or message authentication codes (MACs). 

The main application scenario that first comes to the mind when using traditional 

cryptographic hash functions – verifying the integrity of messages. For this case such 
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cryptographic hash algorithms like MD5, SHA-1 or SHA-2 are often being used. To 

determine if there were any changes made in the message (source), two hashes are usually 

generated: for the original message and the one that needs integrity verification. If the 

message that is being verified has even at least one single bit of information change, then 

the resulting hash will be entirely different from the original one. In addition, the same 

approach is used for verifying the integrity of files where the content of the file is 

considered to be as the input message when generating the hash. Moreover, the same 

concept can go for files or data identification. For example it is widely used in the source 

management systems like Git or Mercurial for identification of file content, changes, etc. 

to uniquely identify them. 

Another widely used application is the password verification. Instead of storing the 

original user passwords in the databases only the hashes of those are being stored and 

later compared with the generated hash from the password user uses during the 

authentication process. 

1.1.2.   Properties 

Cryptographic hash functions must preserve three main properties in order to ensure that 

they are efficient enough from the perspective of security and can withstand all known 

types of cryptanalytic attack [8]: 

1.   Pre-image resistance 

2.   Second pre-image resistance 

3.   Strong collision resistance 

Pre-image resistance: 

Also known as “one-way” function and means that for any given hash value ℎ, it should 

be hard and even impossible to find a message 𝑚 that would map to this output ℎ = 𝐻(𝑚) 

(where 𝐻 represents the cryptographic hash function that produces the final hash). This 

means that it should be easy to take a message 𝑚 and generate the hash ℎ value from it, 

but it is impossible to take a hash ℎ value to re-create the original message 𝑚. 

Second pre-image resistance: 
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Second pre-image resistance is also very often referred as “weak collision resistance”. 

Given a hash value ℎ and a corresponding message 𝑚', it should be impossible to find 

another message 𝑚( (where 𝑚' ≠ 𝑚() with the same hash value 𝐻 𝑚' = 𝐻 𝑚(  

(where 𝐻 represents the cryptographic hash function that produces the final hash). 

Strong collision resistance: 

It should be infeasible to find two distinct messages 𝑚' ≠ 𝑚( that will produce the same 

resulting hash values 𝐻 𝑚' = 𝐻 𝑚( . 

All three properties imply that a malicious adversary cannot replace or modify the input 

data without changing its digest. The level of security, however, of each property relies 

on various ways of how those are achieved. The  

1.2.   Perceptual Hash Functions 

Perceptual hash functions (PHF) are an entirely different concept compared to the 

traditional cryptographic ones. However, like a cryptographic hash function, a perceptual 

hash function is designed to take some message as an input and produce a fixed-length 

output, which is also called as a hash value or message digest. But in this case, the main 

idea is not to be very sensitive to the individual bits in the message but instead be sensitive 

to the differences in the “perceptual features” of the message. Unlike cryptographic 

hashing functions, the perceptual ones give you a sense of similarity between the two data 

sets. Unlike, the traditional cryptographic hash functions which produce the hash based 

on the content of the message, the perceptual hash functions generate the hash based on 

the “feature vector” extracted during the “feature extraction” process. In other words, 

perceptual hash functions generate the hash based on the distinctive features of the 

multimedia object instead of the data stream by itself. The message, however, can be any 

multimedia object, but for feature extraction it will require entirely different algorithms. 

Because the aim of this work is the perceptual image hashing let’s refer to the multimedia 

object as image. The various application scenarios or main properties of perceptual hash 

functions will not change even if other multimedia objects are used. The only differences 

will be in the feature extraction methods used to produce the feature vector. 

1.2.1.   Application Scenarios 
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There are many practical ways of using PHFs. An immediately obvious one is 

identification/search of multimedia object in large databases. It can be used search 

engines to find copyright violations or to maintain a database of illegal content like child 

pornography. At the moment of writing this work, there were many existing solutions that 

can identify illegal content by having a large database of hashes: 

§   EnCase Forensic from Guidance Software 

§   FTK (Forensic Toolkit) from Access Data 

§   X-ways from Software Technology 

§   DFF (Digital Forensics Framework) 

But if speaking about the images, those tools can be easily fooled just by slightly 

modifying the original images in order to change their cryptographic hashes. The 

perceptual hashing will be an excellent addition to that kind of software and furthermore 

will eliminate the need of having multiple hashes of the same images that are identical 

from the human perspective. 

Another practical use of image hashing is the content-based image retrieval (CBIR). It 

leads to very many opportunities for improving image search algorithms in the Internet, 

automate/simplify the process of making photograph archives or retail catalogs, integrate 

nudity detection filters etc. 

In addition to what was already mentioned perceptual image hashing can improve the 

image watermarking techniques that can be used for image authentication. The 

fundamental idea of watermarking is to embed invisible secondary data (watermarks) 

depending on the application, onto the digital images. As a result, all copies of the images 

containing the watermark can be used to tell whether the image is authentic or not and 

prove the ownership. The “perceptual features” of the image can be included in the 

watermarks that will not only increase the security of it but also can make much easier 

validity verification. 

1.2.2.   Properties 

Perceptual hash functions must preserve four main properties in order to ensure that it is 

efficient and secure at the same time: 

1.   Robustness 



18 

2.   Discriminability 

3.   Unpredictability 

4.   Compactness 

In order to easier get the idea let’s assume that 𝑂 is the original image and 𝑂 is a modified 

version of it but preserves the perceptual properties of the original one (𝑂). In other 

words, the 𝑂 and 𝑂 are the same images from the human perspective but different in 

cryptographic way. The 𝑀 stands for a completely different image from the original one 

(𝑂). Let 𝜃',  𝜃( two positive values that satisfy 0 < 𝜃', 𝜃( < 1. The perceptual hash function 

𝐻 produces a hash fingerprint with the length depending on a secret key 𝐾 [6]. 

Robustness: 

Robustness means that if the same key is used, perceptually similar images generate a 

similar hashes [12]. This property can be represented as the equation: 

 𝑃(𝐻 𝑂,𝐾 = 𝐻 𝑂,𝐾 ) ≈ 1 (1.1) 

In Equation 1.1, 𝑃 denotes probability. 𝐻 is the perceptual hash function that produces 

the final hash based on the input image 𝑂 and the secret key 𝐾. The 𝑂 is the modified 

version of the image with preserved perceptual properties of the original one (𝑂). The 

hash values of perceptual similar images should be the same or with very small similarity 

distances, even if the modified image (𝑂) was changed. In this case, the probability value 

should be equal or very close to 1. 

The robustness ensures that two perceptually identical images should have similar hashes. 

The modified version of the image can have compression artifacts, noise, and some other 

distortions. The main purpose of perceptually similar images is to be robust enough to the 

different CPOs like JPEG lossy transformation, rotation, noise, blurring etc. Perceptually, 

these images in human visual system (HVS) are identical, even though some of the bits 

were changed. The perceptual robustness of image hashing guarantees that these images 

have very similar hashes. 

Discriminability: 

Discriminability means that if the same key is used, perceptually different images 

generate the different hashes. This property can be represented as the equation: 
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 𝑃(𝐻 𝑂,𝐾 = 𝐻 𝑀,𝐾 ) ≈ 0 (1.2) 

In Equation 1.2, 𝑃 denotes probability. 𝐻 is the perceptual hash function that produces 

the final hash based on the input image 𝑂 and the secret key 𝐾. The 𝑀 is the completely 

different image. The hash values of different images should not be the same or with high 

similarity distance. In this case, the probability value should be equal or very close to 0. 

The discriminability ensures that two perceptually distinct images should have different 

hashes. In other words, the hashes of two completely different images should not be equal. 

There should be a very low probability close to 0 that two distinct images will produce 

the same hashes. 

Equal distribution of hash values (unpredictability): 

Unpredictability ensures that the attacker will not get the same hash for the original 

multimedia object by manipulating some of the modified multimedia object data bits. 

 𝐻 𝑂,𝐾 ; 𝑓6(1) ≈ 𝑓6(0) ≈ 0.5 (1.3) 

In Equation 1.3, 𝐻 is the perceptual hash function that produces the final hash based on 

the input image 𝑂 and the secret key 𝐾. Where 𝑓6 is the probability mass function for 

hash ℎ. With this property, the hash values should be equally distributed. 

Security is an important concern for hashing. This will make the procedure of hash 

generation secure enough to decrease the probability for the attacker to guess the secret 

key and estimate the correct hash value. For perceptual image hashing traditional 

cryptographic hash functions can be used or other different pseudo-randomization 

techniques can be incorporated into the image hash generation process by using secret 

keys [6]. 

Compactness: 

Compactness is another important property of almost any hashing scheme. This property 

can be represented as the equation: 

 𝑆𝑖𝑧𝑒(𝐻(𝑂, 𝐾)) ≪ 𝑆𝑖𝑧𝑒(𝑂) (1.4) 

In Equation 1.4, 𝑆𝑖𝑧𝑒 represents the amount of total bits.  𝐻 is the perceptual hash function 

that produces the final hash based on the input image 𝑂 and the secret key 𝐾. 
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The size of the hash if comparing to the original image should be significantly smaller. 

Compactness property solves the problem of having large databases and simplifies the 

process of searching. Furthermore, there is no need to restore the original image from the 

hash, but only take into account the “perceptual features” of it. 

1.3.   Comparison in Image Hashing 

A hash provides a compact representation of any data. Different kinds of hash functions 

have their characteristics and purposes. Even though, sometimes the area where they are 

used can be the same, each hash function type has its unique purposes. The traditional 

cryptographic hash functions are very sensitive to the input data where 1-bit change can 

cause an avalanche effect resulting in an entirely different hash. On the other hand, the 

perceptual hash functions are not very sensitive to small changes in the input data but are 

susceptible to the differences in the “perceptual features” of the compared object. 

Because of the extreme sensitivity to the input message, two cryptographic hashes can 

only be compared to determine whether or not they came from the same source. We 

cannot capture and measure the similarity them to ascertain if the sources are distinct or 

not. Traditional cryptographic hash functions only tell us one basic thing: if the input data 

is different or not. Such behavior results in various application scenarios in the context of 

information security and authentication, where even single bit change matters. But we 

can not use traditional crypto-hashing and digital signatures to meet the integrity and 

authentication requirements of digital images. Even though, it is still the simplest way to 

authenticate a digital image is by using the traditional cryptographic hash functions like 

MD5 or SHA-1 along with public key encryption algorithms such as the RSA [9]. 

As was already discussed above, the problem of using cryptographic hash functions for 

image hashing is the avalanche effect. For images, however, it is very common to undergo 

different CPO, lossy medium, compression, channel noise, etc. that will not change the 

image for HVS and will result in entirely different hash. The perceptual hash functions 

serve this goal much better. For this purpose, they are resilient to content preserving 

manipulations like compression, channel noise, etc., and at the same time are fragile 

enough to detect malicious manipulations [19]. Unlike cryptographic hash functions, they 

allow us to make comparisons between hashes to measure the similarities between the 
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sources and give us the sense of how “distant” they are. In the Chapter 2, we will look 

more closely on some of the similarity metrics for measuring the distance. 

However, due to the fact that the cryptographic hash functions are matured and well 

studied for more than a decade, it is a real challenge to design perceptual image hash 

functions that besides meeting the requirements of multimedia applications follow the 

security features of the first one [21]. To solve this problem, many studies were made. 

The one of the easiest ways of getting the secured version of the image hash is to use the 

one of the traditional cryptographic hash function alongside with the perceptual one in 

order to encrypt it as the final measure. But if talking solely about the image comparison 

task, then the cryptographic hash functions are not suited, and the use of only perceptual 

hash functions is encouraged. 



22 

2.   Distance/Similarity Metrics for Perceptual Hashes 

To evaluate the robustness and discriminative properties of the image hashing different 

distance/similarity metrics are required that will show the differences between two similar 

media objects. It is crucial in the image (or mostly for any other multimedia object) 

hashing because based on that we can claim if the images are the same or entirely 

different. When the hash is being generated from the image that needs to be verified 

whether or not it is in the database, the distance between each image must be calculated 

and compared. In other words, two hashes must show the distance of how “perceptually 

different” those images are. For this purpose, three most popular metrics is proposed that 

can be used for this task and are being described in this chapter. 

For better understanding the logic of each distance calculation technique, two hashes can 

be represented as Equations 2.1 and 2.2: 

 𝐻' = ℎ' 1 , ℎ' 2 , … , ℎ' 𝐿  (2.1) 

 𝐻( = ℎ( 1 , ℎ( 2 , … , ℎ( 𝐿  (2.2) 

where 𝐻' and 𝐻( are the hashes of two different images with particular hash length 𝐿. 

The hashes represent an array of bits ℎ. Depending on whether or not we are dealing with 

binary or decimal hashes, we can use different approaches of distance calculation. 

2.1.   Hamming distance 

The Hamming distance (HD) measures two binary hash vectors similarities by comparing 

those bit-by-bit and producing the number of bits which differ. It measures the minimum 

number of substitutions required to change one string into the other [4]. For example let’s 

assume that we have two binary strings (𝐴 and 𝐵), then the Hamming distance will be 

equal to Equations 2.3: 

 𝐻𝐷 = |𝐴E − 𝐵E| (2.3) 

where 𝐻𝐷 represents the Hamming distance, 𝐴 is the first binary string and 𝐵 is the 

second. The higher the result of Hamming distance, the more differences the compared 

strings have. In our case the string are hashes. If the Hamming distance of two hashes 
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equals 0, then the hashes are the same. The higher the result, the more differences two 

hashes have and they are more “distant” from each other. However, the Hamming 

distance cannot be more then the length of the string. Sometimes the number of characters 

is used instead of the number of bits. This means that it can consist of elements from 

alphabets or other number systems (Table 1). 

Table 1. Examples of finding the Hamming distance. 

A and B are the strings. Examples are given for binary system, Latin alphabet and decade system. 

A B Hamming distance 

0100100 0100100 0 

0100100 1100110 2 

karolin kerstin 3 

4391256 5341255 3 

Even though, as was shown in Table 1, even decade system or alphabet can be used, for 

our purpose only binary representation of compared data is needed when calculating the 

Hamming distance. Taking this into account, we can make an equation using XOR 

operator (⊕). In other words, we can denote 𝑎 and 𝑏 as two binary coded numbers of 

equal length. Then the Hamming distance will be equal to the number of ones in a ⊕ b 

[13]. By expanding and slightly adapting the basic Equation 2.3 we can get the full 

equation of Hamming distance for two binary hashes (Equations 2.4): 

 𝐻𝐷(𝐻', 𝐻() = ℎ' 𝑖 ⊕ ℎ( 𝑖
L

EM'

 (2.4) 

where 𝐻𝐷 represents the Hamming distance. 𝐻' and 𝐻( are the binary hashes of two 

different images with the same length 𝐿. ℎ' is the first binary hash bit, ℎ( is the second. 

For Hamming distance, the length of the both examined strings must be equal. 

In MATLAB the Hamming distance can be calculated using pairwise distance between 

two sets of observations (binary vectors with the same length) known as “pdist2” function 

and multiplied by the length of the first strings (Figure 1): 

HD  =  pdist2(A,  B,  'hamming')  *  length(A);  

Figure 1. Hamming distance using MATLAB. 
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where HD is the resulting variable of obtaining the Hamming distance. 𝐴 and 𝐵 are the 

two binary vectors equal in length. “pdist2” is the pairwise distance function between two 

sets of observations with metric specified as “hamming”. The result of “pdist2” must be 

multiplied by the length of one of the strings. 

2.2.   Normalized Hamming distance 

The Hamming distance can be normalized with respect to the length 𝐿 of the strings 

(Equation 2.5). Normalized Hamming distance is especially useful when we want to get 

the ratio of the elements that differ. In Table 2 are given the examples of getting the 

Normalized Hamming distance for binary system. By adapting the Equation 2.4 for 

Hamming distance, we can get the normalized version of it (Equations 2.5): 

 𝑁𝐻𝐷(𝐻', 𝐻() =
1
𝐿 ℎ' 𝑖 ⊕ ℎ( 𝑖

L

EM'

 (2.5) 

where 𝐻𝑁𝐷 represents the normalized Hamming distance. 𝐻' and 𝐻( are the binary 

hashes of two different images with the same length 𝐿. ℎ' is the first binary hash bit, ℎ( 

is the second. For Hamming distance, the length of the both examined hashes must be 

equal. 

For Normalized Hamming distance, the result is expected to be close to 0 for similar 

images and close to 0.5 for dissimilar ones. As more parts of a picture are changed, the 

manipulated image and the original image become more divergent. For an ideal hashing 

scheme, the normalized Hamming distance between the corresponding hashes should 

increase accordingly [6]. The maximum value of the normalized Hamming distance will 

be 1, but it is very unlikely that it will ever reach it in case of image hashing. That is the 

cause of why the value close to 0.5 is more truthful for dissimilar images. 

Table 2. Examples of finding the Normalized Hamming distance. 

A and B are the binary strings. Examples are given for binary system. 

A B Normalized Hamming 
distance 

0100100 0100100 0 

0100100 1100110 0.286 

0100100 1111111 0.714 
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0100100 1011011 1 

In MATLAB the Normalized Hamming distance can be calculated using pairwise 

distance between two sets of observations (binary vectors with the same length) known 

as “pdist2” function (Figure 2): 

NHD  =  pdist2(A,  B,  'hamming');  

Figure 2. Normalized Hamming distance using MATLAB. 

where NHD is the resulting variable of obtaining the Normalized Hamming distance and 

𝐴 and 𝐵 are the two binary vectors equal in length. “pdist2” is the pairwise distance 

function between two sets of observations with metric specified as “hamming”. The final 

result will be the Normalized Hamming distance. 

2.3.   Bit error rate 

Another very widely used distance metric is the Bit error rate also known as BER. In 

Table 3 are given the examples of getting it for binary system. BER can be represented 

as the following equation (Equations 2.6): 

 𝜌 ≔
𝑖
𝐿 (2.6) 

where 𝜌 represents Bit error rate. 𝑖 is the number of bit errors of the hash normalized by 

its length 𝐿. Furthermore, Bit error rate must be in the following range 0 ≤ 𝜌 ≤ 1 and 

𝑖 ∈    {0, 1, 2, … , 𝐿}. The result of the number of bit errors 𝑖 is the same as the Hamming 

distance between two different hashes and the final result equals to the Normalized 

Hamming distance. 

Table 3. Examples of finding the Bit error rate (BER). 

A and B are the binary strings. Examples are given for binary system. 

A B BER 

0100100 0100100 0 

0100100 1100110 0.286 

0100100 1111111 0.714 

0100100 1011011 1 
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Perceptually two identical images should have a value of BER close to 0, otherwise it 

should be approximately 0.5 [13]. Like with the Normalized Hamming distance, it is very 

unlikely that the Bit error rate will ever reach the maximum value of 1 for image hashing 

task, so the value 0.5 is more accurate for the dissimilar images. 

In MATLAB the Bit error rate can be calculated using “biterr” function (Figure 3): 

[num_bit,  ratio_bit]  =  biterr(A,  B);  

Figure 3. Bit error rate using MATLAB. 

where “num_bit” is the total number of bit errors and “ratio_bit” is the Bit error rate. 𝐴 

and 𝐵 are the two binary vectors equal in length. 

2.4.   Euclidean distance 

The common Euclidean distance (square root of the sums of the squares of the differences 

between the coordinates of the points in each dimension) serves for all Euclidean spaces 

[17]. It is suitable for non-binary vectors like integers. It is perfect for measuring 

similarity and discriminating capability between two hashes when it is not represented in 

the binary form. In Table 4 are given the examples of getting it for binary system. The 

Euclidean distance can be represented as the following equation (Equations 2.7): 

 𝐸𝐷(𝐻', 𝐻() = ℎ' 𝑖 − ℎ( 𝑖
(

L

EM'

 (2.7) 

where 𝐸𝐷 represents the Euclidean distance.  𝐻' and 𝐻( are the decimal hashes with the 

same length 𝐿. ℎ' is the first decimal hash bit, ℎ( is the second. For Euclidean distance, 

the length of the both examined hashes must be equal. The lower the Euclidean distance 

is, the closer the two hash values are. 

Table 4. Examples of calculating the Euclidean distance. 

A and B are the strings. Examples are given for binary system and decade system. 

A B Euclidean distance 

0100100 1100110 1.414 

4391256 5341255 5.196 
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In MATLAB the Euclidean distance can be calculated using pairwise distance between 

two sets of observations (decimal vectors with the same length) known as “pdist2” 

function (Figure 4): 

ED  =  pdist2(A,  B,  '  euclidean');  

Figure 4. Euclidean distance using MATLAB. 

where ED is the resulting variable of obtaining the Euclidean distance and 𝐴 and 𝐵 are 

the two decimal vectors equal in length. “pdist2” is the pairwise distance function 

between two sets of observations with metric specified as “hamming”. The final result 

will be the Normalized Hamming distance. 
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3.   Perceptual Image Hashing 

As was already stated during the comparison of traditional cryptographic and perceptual 

hash functions in Chapter 1.3, a simple way to authenticate a digital image is to use a 

cryptographic hash function like the MD5. However, the ways of how two compared hash 

function types behave are entirely different. While cryptographic hash functions are 

extremely sensitive to each bit, perceptual hash functions are sensitive only to perceptual 

features. Such behavior of perceptual hash functions makes them a perfect choice for 

image hashing and comparison based on the distinctive features of analyzed images. 

This chapter proposes the perceptual image hashing framework and describes the main 

three steps of a hash generation scheme. Furthermore, most widely used perceptual image 

hash functions are being defined starting from the most fundamental approaches and 

ending with more advanced one. 

3.1.   Framework 

After reviewing different digital image hashing algorithm designs, we can state that the 

design framework of digital image hashing depends on various application scenarios and 

the ways of how secure the hash must be. For example, if the digital image hashing 

algorithm is designed for content identification, it mainly should concern only the 

robustness property against different content-preserving manipulation (CPMs) that do not 

destroy the perceptual quality of the image. On the other hand, image authentication 

strongly relies on content-changing manipulations (CCMs) in the image content such as 

removal and object insertion, image hashes should be sensitive to these perceptually 

significant attacks. Depending on the threshold of the similarity we can variate the 

accuracy of the algorithm and decide whether we are dealing with the same image or with 

perceptually similar. 

Furthermore, the image hashing framework must consider how secure the whole process 

of obtaining the final hash can be. It is important because the perceptual image hash 

function are known and available to public it may result in using feature extraction alone 

susceptible to forgery attacks, even when the final hash is obtained by encrypting these 

features. The reason behind it is to decrease the chances for the attacker to create a new 

image with different visual content while still preserving the perceptual feature values 
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[6]. As was already mentioned in comparison between cryptographic and perceptual 

image hashing, for this purpose traditional cryptographic methods like MD5 still can be 

used to produce the final image hash. However, in most cases the use of cryptographic 

hashes is not justified because we will not be able to use the similarity metrics in 

comparison if the hash is irreversible. 

By taking into account the features described above and extending the basic idea of hash 

generation, the whole process of the perceptual image hashing can be generalized as 

activity diagram in Figure 5. 

 

Figure 5. Activity diagram of the perceptual image hashing framework. 

As depicted in Figure 5, hash is generated from the image data transmitted to the receiver. 

The image may be transmitted and stored using a lossy medium to save bandwidth and 

storage space [19]. Even in this case we will end up having an image that from the 

traditional cryptographic perspective in most cases will be different because some of the 

bits will differ. At the receiver’s end, the image hash is then generated from the received 

image and is the database lookup query is sent. If the same hash was found in the database, 

then we can state that the image was authenticated. On the other hand, if no exact match 

was found then the distance metrics like Hamming distance can be used in order to find 
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the hash we the smallest distance or the first occurrence depending on the specified 

threshold. If the “similarity score” is high (low distance between hashes), then we can 

state that the image is identified and we are dealing with perceptually similar one. Even 

though, the exact algorithm of how the system will behave depends strongly on the 

application scenarios, in most cases the activity diagram of perceptual image hashing will 

be the same. 

Of course, in the provided activity diagram the most important part is the hash generation. 

The whole process of obtaining the final image hash can be generalized into one simple 

scheme that consists of three steps: pre-processing, feature extraction and post-processing 

(Figure 6). 

 

Figure 6. Schema of obtaining the hash from the image. 

The robustness property of image hashing comes mainly from the 1st and 2nd steps. It 

depends on how accurate was the feature extraction process and what additional security 

measures against different CPO attacks were considered in the pre-processing step. Even 

though, the security is not the primary goal of this work; the perceptual image hashing 

framework must consider it and implement at least some basic security features. For this 

reason, the use of a secret key is proposed in each of the steps as illustrated in Figure 6. 

The idea is to make each step key-dependent resulting in completely random final hash 

that still can be used to get the distance metric between two different hashes produced by 

the same algorithm and the same keys. 

3.1.1.   Pre-processing 

 

Figure 7. Schema of pre-processing operations in the hash generation. 
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The main purpose of the pre-processing step (Figure 7) is to prepare the image for the 

future extraction. The idea is to minimize the amount of total data needed to be processed. 

In addition to that also increase the robustness of the future extraction to the noise and 

some other CPO like compression artifacts, etc. [6]. The same thing goes for the image 

color. The colored version should be transformed to grayscale in order to reduce the need 

of extra calculations required. Use of the additional color channels doesn’t affect accuracy 

very much in feature extraction but only make the total algorithm heavier. 

Table 5. Content-preserving and content-changing manipulations. 

Content-preserving manipulations Content-changing manipulations 

Noise addition Removing image objects 

Resolution reduction Adding new objects 

Compression and quantization Moving of image elements 

Scaling Changes of image characteristics: color, 
textures, structure, etc. 

Rotation Changes of the image background: day time 
or location 

Cropping Changes of light conditions: shadow 
manipulations etc. 

Changes of brightness hue and saturation  

Contrast adjustment  

Transmission errors  

In other words, the frequencies of the processed image must be reduced to the amount 

when they still preserve robustness property, but make the data required to analyze in the 

feature extraction step less. In addition to decreasing “calculation cost”, the pre-

processing step is also needed to standardize the whole process. 

In Table 5 are shown all CPO including content-preserving manipulation (CPM) and 

content-changing manipulation (CCM) that can be applied to the image [19]. 

                            a. Original                               b. Rotated                               c. Blurred 
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                   d. Color manipulations       e. JPEG lossy compression                   f. Noise 

     

Figure 8. Example of different CPO on the image “Baboon”. 

In Figure 8 are given an example of different CPO that that image hashing should be 

robust enough. The aim of the pre-processing step is to eliminate the differences as much 

as possible while preserving the properties needed for the image identification. For this 

action, the most common pre-processing operations that lower the frequencies while 

increasing the robustness property of an image are: 

1.   Blurring: a good way to ensure that the image will be robust enough to 

blurring distortions and especially strong against noises. For this purpose a 

traditional Gaussian filter can be used, which results in a blurry image and 

eliminates some of the image contents. It is an efficient way to lower the FPR. 

The blurring operation is a good way to reduce high-frequency components 

and alleviate influences of minor image modifications, e.g., noise 

contamination and filtering, on the hash values. 

2.   Resizing: a very common way of reducing the amount of data needed to be 

processed and at the same time also improve the robustness property because 

it is much easier to extract features from the image with standardized. It also 

a good and the fastest way to eliminate high frequencies and detail of the 

image. However, depending on the resulting size the image can have a higher 

FPR if reduced in the size too much. The most important is to use the bi-cubic 
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interpolation for image resizing because it the most suitable for the image 

hashing because it doesn’t “throw out” the necessary data that can result in a 

higher FPR. Furthermore, the image resizing is also a way to ensure that those 

images with different resolutions have the same or very similar hashes. The 

resizing also should be 𝑚×𝑚 dimensions, to ensure that the resulting hash is 

going to have a fixed size. In this work let’s use the size of 32x32 as the default 

one. 

3.   Colors reduction: the idea is also to lessen the total amount of data needed to 

be processed that is not required for the task of perceptual image hashing. The 

color reduction is a very standard for image hashing that provides a good way 

to increase the performance of the whole process. Change a 3D vector to 2D 

by removing the red, green and blue channels from the image and converting 

it to grayscale. In other words, we conduct color space conversion from RGB 

color space to YCbCr color space and take the luminance component for image 

representation [6]. For example, the conversion can be done by the following 

equation: 

 
𝑌
𝐶Y
𝐶Z

=
48.512 119.317 18.25
−37.797 −51.543 124
124 −53.124 7.543

𝑅
𝐺
𝐵
+

16
128
128

 (3.1) 

where 𝑅, 𝐺 and 𝐵 are the red, green and blue components of a pixel, and 𝑌, 𝐶Y 

and 𝐶Z are its luminance, blue-difference chroma and red-difference chroma, 

respectively [6]. 

4.   Color (Illumination) normalizations: this is the way of improving robustness 

to the brightness and changes in the gamma. For this purpose, a traditional 

Histogram equalization method can be used. 

Taking into account all the pre-processing operations that were described above, at the 

end of the pre-processing step we will end up having a small, grayscale and blurred 

version of the image with normalized color. All the highest frequencies were removed. If 

taking and example of the images from Figure 8 we will end up looking with something 

like this: 
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Figure 9. Pre-processed version of the image “Baboon”. 

Size 8x8. On the left is the original one, on the right is the magnified version of it. 

The figure above demonstrates the pre-processed version of the original image “Baboon”. 

The size of it is 8x8 pixels. That produces in total the value of 64 bits with a luminance 

component Y of YCrCb as the value of each bit. The luminance component contains the 

main structural and geometric information of the image. The example in Figure 9 is the 

most common way of pre-processing the image before feature extraction, however, it can 

vary depending on the perceptual hashing function. For example the size can be different 

or additional filtering method can be applied. 

%  Resizing  
img  =  imresize(img,  [8  NaN],  'bicubic');  
%  Blurring  
img  =  fspecial('gaussian',  [3  3],  2);  
img  =  imfilter(img,  filter,  'same');  
%  Color  reduction  
img  =  rgb2gray(img);  
%  Color  normalizations  
img  =  histeq(img);  

Figure 10. Pre-processing step using MATLAB before feature extraction. 

In Figure 10 is given the MATLAB example of the pre-processing step based on Figure 

7. The most important feature that the pre-processing step must preserve is that if the 

image were suffering from some small CPO attacks (Figure 8), the image would be 

normalized. The different CPO will produce the image that will most likely have a very 

similar values in each bit. At least the distance of each bit from the same perceptually 

identical images in most cases will not be very high, and the values will not differ very 

much. Especially that concerns when the one of the compared images had noise, blurring 

or JPEG lossy artifacts. Even the small rotation of the image will not change the values 

very much because the bicubic resizing will soften up the small differences. 

The order of each operation should not change because it can result in higher FPR. In 

many cases however the changing order will not affect the final result if the order is 
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preserved. But it is highly recommended to use it as is, and further research is required to 

consider which of the cases will have less FPR. 

However, the applying of Gaussian filter (blurring) should be considered to be done 

before the resizing step because it will produce the unwanted “dark border”. It can result 

in higher FPR if the main differences of the images are located near the border. In addition 

to that, it will also result in some detail loss. Furthermore, the use of the blurring before 

resizing will also make the image more robust to significant variations of sigma value in 

the Gaussian filter. 

   

Figure 11. Difference of using Gaussian filter after resizing (left) and before (right). 

In the Figure 11 is given an example of the pre-processed and magnified version of the 

image “Baboon” that was used before as an example in Figure 8. The original size of the 

image 8x8 pixels. On the left the Gaussian filter with the same properties is applied after 

resizing, which results in loss of some details and “dark border” appearance. On the right 

side is the same image but the Gaussian filter is applied before the resizing. This results 

in the much crisper image and the pixel colors are more distinct from nearby neighbors. 

Of course, the properties of the Gaussian filter can be adjusted to make an image on the 

left look more like the one on the right. But, in this case, a problem can appear that the 

Gaussian filter applied is not noticeably reducing the noise. 

But in most cases, the order of whole operations will not dramatically decrease the 

accuracy because the important part is still will be going in the feature extraction. 

Depending on different application scenarios and the perceptual image hash functions 

used the size and the blurring can be adapted to get different accuracy and the amount of 

data to be processed in the feature extraction step. For example for Average Hash this 

size is considered to be the most optimal [15], but for DCT the size of 32x32 is more 

recommended [14]. The advantage of applying dimensionality reduction techniques are 

mainly for robustness against noise addition, blurring and compression attacks [6]. 
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3.1.2.   Feature extraction 

 

Figure 12. Schema of feature extraction in the hash generation. 

The feature extraction step (Figure 12) is the most important. Based on the result it 

produces we can state if the whole perceptual image hashing algorithm is working 

correctly or not. This is the primary step required for content identification, and the 

extracted feature vector must be perceptually similar enough to find the same images and 

distinctive at the same time to notice the differences. In other words, the data produced 

in this step for two similar images must have a very little distance based on the proposed 

metrics in Chapter 2 while keeping the robustness and discriminability properties. 

The feature extraction can be done in many different ways, and there were many studies 

in this field to find a perfect perfect one. However this is most likely not possible because 

depending on the different application scenarios where it is used some of the algorithms 

will not be robust enough for some of the tasks but provide very good “performance 

score”. Or it could be an opposite situation, where the results of feature extractions are 

good but the speed of calculation is not enough for the use in production. 

The feature extraction for the perceptual image hashing is very often named as perceptual 

image hash functions because those are the core of the whole process. The same naming 

convention is used in this work, and all the studied perceptual image hash functions are 

described in Chapter 3.2. Furthermore, in the same Chapter 3.2 pre-processing and post-

processing operations are also included, because depending on the perceptual image 

function used they can slightly differ from each other. 
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3.1.3.   Post-processing 

 

Figure 13. Schema of post-processing operations in the hash generation. 

The step of post-processing should not result in any changes in the final hash from the 

point of view of interfering with the similarity properties of the analyzed image. The aim 

of this step is only to improve unpredictability and compactness properties of the 

perceptual hash function. 

Like in the pre-processing chapter, the most post-processing operations are also 

summarized and the most common are: 

§   Quantization: is required to make the resulting hash smaller. The Quantization 

stage in a perceptual image hashing system is very important to enhance 

robustness properties and increase randomness to minimize collision probabilities 

in a perceptual image hashing system [19]. The different popular approaches 

include interval quantization, binary quantization using ordinal measures or 

threshold for image hashing generation. 

§   Compression: the final step of a perceptual image hashing system, the binary 

intermediate perceptual hash string is compressed and encrypted into a short 

perceptual hash of fixed size. This stage can be ensured by cryptographic hash 

functions i.e. SHA series which generate the final hash of fixed size [20]. 

3.2.   Perceptual Image Hash Functions 

The feature extraction step strongly depends on the algorithms which can be used. For 

image hashing they are often called as perceptual image hash functions. The basic 

algorithms like Average and Difference Hashes, contain the main idea of how perceptual 

hashing works. While being fast, they are not very accurate as the DCT Based Hash, even 

though they work and show quite good results. Depending on different applications 

scenarios, the methods can vary depending on what is more required: the speed or 

accuracy. 
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The Average and Difference Hashes show an excellent performance results ([15] and 

[16]). However, they will mostly be good for finding similar images with and without 

watermarks or the thumbnail versions of them. The DCT Based hash is considered to be 

more complicated than the previously mentioned. 

3.2.1.   Average Hash 

This chapter covers the theoretical discussion on the Average Hash technique which is 

considered to be the most basic one. However, while being the simplest it still produces 

quite good results in terms of image comparison. 

With pictures, high frequencies give you detail while low frequencies show you structure. 

A large, detailed picture has lots of high frequencies, unlike the small ones [15]. For this 

purpose, our proposed hashing framework has the pre-processing step introduced in 

Chapter 3.1, and it has one single goal: eliminate high frequencies. They ways of how 

those are removed are the most traditional ones for images: blurring, resizing, colors 

reduction and normalization. For Average Hash the pre-processing operations can be the 

same as described earlier in Chapter 3.1.1, including all the described operations. 

   

Figure 14. Pre-processed image “Baboon” and the average color (126.84). 

As a result, we have ended up with the image that is 8x8 dimensions in size. That size is 

considered to be the most optimal for the task of image hashing [15], which results in the 

matrix of 64 bits required to be processed. 

As you might already guessed, the primary goal of the Average Hash is to find the average 

color of all those values by calculating the mean of the matrix. Each value in the matrix 

is just a luminance component Y of YCrCb, since it contains the main structural and 

geometric information of the image (Figure 17). 
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Figure 15. Luminance matrix of “Baboon” before applying Average Hash. 

By calculating the mean value of all luminance values presented in Figure 15, we can get 

the average color of the processed image. In this case, the average color will be 

approximately 127 (126.84). Now, we need to compare each element of the matrix to the 

average color we got before. As a result of this operation, we should get a new binary 

matrix with 64 elements where 1 and 0 represent the true and false values respectively. 

The same matrix can be represented as an image that is shown in Figure 16, where the 1 

is white, and 0 is black. 

 

Figure 16. Binary matrix of “Baboon” after applying Average Hash. 

As you might have already noticed in Figure 16, the result binary matrix has the shape of 

the original preprocessed image. You can clearly see the shape of the baboon. Now by 

getting the vector from the matrix starting from the top left and going to the bottom right, 

we should a 64-bit long hash. The resulting hash can be later compared with other hashes 
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of perceptually similar images to retrieve the “similarity score” based on the distance 

metrics like the Normalized Hamming distance or BER. 

0000000100000011001111110011110000111100100110001111101010111100  

Figure 17. Feature vector after applying Average Hash on image “Baboon”. 

For Normalized Hamming distance and BER, the distance of zero indicates that it is likely 

a very similar picture (or a variation of the same image). A distance that is a little bit 

higher than 0 means a few things may be different, but they are probably still close enough 

to be similar. But if the distance is closer to 0.5? That's probably a very different picture 

[15]. However, as was already mentioned in the Chapter 2, the maximum value of entirely 

different images is going to be the 1. But for image hashing task it is very unlikely that it 

will ever reach that value. It is possible only if the two images compared will be black 

and white. 

   

Figure 18. Image comparison before and after applying Average Hash. 

The most important property of this method is that its really fast and easy to implement, 

while at the same show quite very good results for this kind of task. 

The whole process of getting the average color from the image and comparing it with the 

original one can be done in MATLAB in 1 line: 

img_avg  =  (img  >=  mean2(img));  

Figure 19. Getting binary matrix in MATLAB based on Average Hash. 

In Figure 19, the “img” variable is the matrix with the luminance value of YCrCb gotten 

from the grayscale version of the image. As an output we will get a desired binary matrix. 

To compare, how accurate the Average Hash method is, let us take a look at the same 

image of the “Baboon” under different small CPO attacks (Figure 8), to show the quick 

idea of how accurate the Average Hash is. By generating the Average Hash for each of 

the cases, the resulting binary hashes we get can also be represented as the images. The 

result of this process can be found in the Appendix as Figure 32. On the left side are the 
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images being processed, on the right are the image representation of the binary hashes 

that the Average Hash function produce. The “similarity score” is computed based on the 

original image (a). 

For distance metrics to get the “similarity score” Hamming distance, and BER are used 

and compared with the original image (a). The higher Hamming distance, the more 

differences the image has and perceptually similar it is. Because the whole vector consists 

of 64 value, the maximum value for Hamming distance will be 64. That means that if the 

image has this metric close to 64, the image will be completely different. 

The same goes to BER, which will have the same value as the Normalized Hamming 

distance. The closer BER to 0, the more perceptually similar the image is, while closer to 

0.5 (technically closer to 1) defines that it is different. By varying the value of “similarity 

score”, we can set how accurate the results are going to be. 

As for comparison with entirely different images, the “similarity score” will be much 

higher. The Hamming distance that shows the score higher than 30 (𝐻𝐷 > 30) in this 

case means that the images are entirely different. In the same Figure 32, on the left side 

is the image being processed, on the right is the image representation of the binary hash. 

In brackets of each example the “similarity score” is pointed out compared to the original 

image (a). 

The whole results based on the examples provided show that the Average Hash algorithm 

is does a good job in image comparison. However the FPR for this method is considered 

to be the highest if compared to other methods [16]. This method shows not very good 

results in the case of rotation but is very robust to some color manipulations. 

3.2.2.   Difference Hash 

Another very similar to Average Hash approach is the Difference Hash, and it has the 

same strong and weak features: excellent performance [16] while being not very accurate. 

The accuracy, however, strongly depends on the application scenarios it is being used. In 

many cases the performance outstands the need for accuracy. Even though, the Average 

Hash can be used for image hashing it is still not very accurate. To improve that it was 

evolved into the Difference Hash to make the whole process more robust to different CPO 

and not affect the excellent performance of the Average Hash. 



42 

Like the Average Hash, is pretty simple to implement and is far more accurate than it has 

any right to be [16]. Taking the same image that was produced during pre-processing step 

in Figure 9, but, in this case, the size that will be used during the pre-processing will be 

8x9, instead of 8x8. Regardless of the image is stretched it will not affect the on 

“perceptual features” of the processed image. The main reason why such strange 

dimensions were chosen is to make the finding differences easier. 

  

Figure 20. Pre-processed image “Baboon” before applying Difference Hash. 

This size of the produced vector will be 72 bits. But at the end of the whole operation we 

will end up with the hash that will be only 64 bits in size. By comparing each row to the 

row below we will get as a result only 8 rows. That means at the end of processing we 

will get 64 bits of information instead of 72. To make it more clear let us have a look at 

the same image in Figure 20 represented as table of luminance values: 

 

Figure 21. Luminance matrix of “Baboon” before applying Difference Hash. 

Each value of each row must be compared to the values in a row below. In this case the 

row [81, 61, 12, 8, 28, 36, 73, 130] will be compared to [130, 109, 24, 8, 40, 57, 130, 

174]. The same will go for other rows. Each elements of the processed row must be 

compared individually. Extending the same example, 61 will be compared to 130, 61 to 



43 

109 etc. Depending on which value is higher or lower compared to the value from the 

row below, a new binary matrix can be produced. 

 

Figure 22. Binary matrix of “Baboon” after applying Difference Hash. 

Using the approach like in Average Hash we can get the feature vector from it: 

000100001100000011000011011001110111111100111100000110001100001  

Figure 23. Feature vector after applying Difference Hash on image “Baboon”. 

In order to get the similarity score the same distance metrics can be used: Hamming 

distance or BER. The same binary matrix in can be represented as the image, where 0 is 

black and 1 is white. For comparison the original one is also added: 

   

Figure 24. Example, of feature vector as image before and after Difference Hashing. 

In MATLAB the desired Difference Hash function can be done using iteration: 

result  =  [];  
for  k  =  1:(size(img)  -­‐  1)  
        result  =  [result;  img(k,:)  >=  img(k  +  1,:)];  
end  

Figure 25. Getting binary matrix in MATLAB based on Difference Hash. 

In Figure 25, the “img” variable is the matrix with the luminance value of YCrCb gotten 

from the grayscale version of the image. As an output (“result” variable) we will get a 
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desired binary matrix using Difference Hash method based on the rows comparison 

described above. 

However, the Difference Hash algorithm can be implemented not only using rows. 

Instead of them, the columns can be used. The only difference will be the size of the pre-

processed image. If in the case of rows we have used size of 8x9, then for columns size 

of 9x8 needed. The only thing that must be considered is that the method you are using 

to find the differences must be consistent. 

In order to verify the robustness property of the Difference Hash method let us take a look 

at the same image of the “Baboon” under different small CPO attacks (Figure 8) like we 

already did before when testing the Average Hash method. The Figure 33 in the Appendix 

also includes image representation of the resulted feature vector. The same thing goes for 

perceptually different images. The original image “Baboon” is compared to “Lena” and 

“Peppers”. The result can be found in the same Figure 33. 

The demonstrated examples above show that if compared to the Average Hash, the 

Difference Hash function seems to be much more accurate and more robust enough. The 

speed of both examined hash methods does not differ much, and both of them has shown 

the same speed in most cases. The Difference hash, however, is slightly better in terms of 

speed [16]. 

Table 6. Robustness comparison of Average Hash and Difference Hash. 

 Hamming distance 

 Average Hash Difference Hash 

Rotated 6 6 

Blurred 4 2 (better) 

Color manipulations 0 (better) 1 

JPEG lossy compression 2 1 (better) 

Noise 3 2 (better) 

Other manipulations 8 7 (better) 

The results in Table 6 compare both described hashes in case of different CPO attacks. 

As a distance metric, the Hamming distance is used. In case of CPO, the higher the value, 

the less accurate method is. In total, the results state that the Difference Hash method 

shows less FPR if compared to the Average Hash based on the provided example. Of 
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course, the tests were based only on one single image (“Baboon”) and is too early to state 

which method is better. But in overall the Difference Hash in most cases will outstand the 

Average Hash in terms of accuracy and will produce less FPR. The Average Hash 

method, however, has shown better result when comparing image that had some color 

manipulation attacks, but the result, in this case, does not differ much. 

3.2.3.   DCT Based Hash 

The Average and Difference Hashes have a simple idea behind and they are both are good 

for image comparison if considering the simplicity of how they work. But in most cases 

they are not very accurate. However, to make the feature extraction more robust a DCT 

Based Hash can be used. 

The DCT Based Hash uses the same approach like in Average Hash: find the mean values 

and compare. However, it extends the average approach to the extreme, using a Discrete 

cosine transformation (DCT) to reduce the frequencies [15]. The main idea behind it is to 

get the lowest frequencies of an image. After performing a DCT, we can eliminate the 

coefficients that represent high frequencies that the HVS is not very sensitive to. After 

that, we can find the mean values of the lowest ones and compare them to the acquired 

mean value of them. 

As you might already have guessed, the core of this feature extraction technique is DCT 

by itself. It is widely used in computer science, especially in image compression. For 

example, without DCT there wouldn’t be JPEG compression. The most amazing feature 

of DCT is that it later can be inverted back into the original image by using the Inversed 

Discrete cosine transformation (IDCT). Furthermore, it is a quite fast transform in terms 

of performance. For most images, much of the signal energy lies at low frequencies, 

which appear in the upper left corner of the DCT. However, various properties of the 

DCT can be utilized to create perceptual image hash functions. But the low-frequency 

DCT coefficients of an image are mostly stable under image manipulations [13]. 

The DCT uses only cosine functions while e.g. the discrete Fourier transform (DFT) uses 

both cosines and sines [13]. For an 𝑁 ∗ 𝑁 image, the DCT can be found using the 

following equation: 
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The Equation 3.1 above is the slightly adapted DCT-II, which is the most commonly used 

form of it. For perceptual image hashing we are going to use the DCT-II and refer simply 

as DCT. If you are using MATLAB, then the DCT can be applied to image like this: 

img  =  dct2(img);  

Figure 26. Discrete Cosine Transform (DCT) in MATLAB. 

In order to demonstrate, we can take the original image “Baboon” 512x512 pixels in size 

and get the DCT of it. The result is shown in Figure 27 below. 

          

                                   a. Original                                          b. After applying DCT 

Figure 27. Discrete Cosine Transform of the image “Baboon”. 

By using the IDCT we can get the same image from the DCT domain if needed. However, 

for perceptual image hashing that is not needed. But before using the DCT for feature 

extraction we must preprocess our image. For the DCT Based Hash we can used the same 

technique described in Chapter 3.1.1 with only one difference: we must resize the image 

to 32x32 instead of 8x8. This is really done to simplify the DCT computation and not 

because it is needed to reduce the high frequencies [15]. 
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To verify how DCT Based Hash is robust enough to different CPO attacks (Figure 8), let 

us take the same pictures of the “Baboon” we have tested earlier. For each case, we will 

generate the fingerprint. In order to demonstrate how the acquired fingerprints will look 

like, we will translate it into the images. The results of this procedure can be seen in the 

Appendix as Figure 34. 

The provided example shows that the fingerprint does not change very much from the 

original one in most cases. The Hamming distance shows the exact number of how many 

bits differ. The lower the value, the better is the algorithm. To carry on the tradition of 

using the same image “Baboon” let us also verify how this method will behave in case of 

perceptually different images by comparing it to “Lena” and “Peppers”. The results can 

seen in the same Figure 34. In this case, the different images must have the Hamming 

distance (HD) close to approximately 32 or even higher in some cases. The same thing 

goes with Bit error rate (BER), the value must be approximately 0.5 or higher for 

perceptually different images. The “similarity scores” for the examples in Figure 34 show 

that the DCT based hash has successfully found different images. 

Of course, we cannot state which algorithm is better based only on one example. But in 

order to give you the idea of which is more accurate based on provided example, let us 

compare DCT Based Hash to Difference Hash. The Difference Hash has shown much 

better results for images under typical CPO attacks if comparing to the Average hash, so 

in the Table 7 we will compare it to DCT Based hash. 

Table 7. Robustness comparison of Difference Hash and DCT Based Hash. 

 Hamming distance 

 Difference Hash DCT Based Hash 

Rotated 6 (better) 7 

Blurred 2 2 

Color manipulations 1 1 

JPEG lossy compression 1 0 (better) 

Noise 2 0 (better) 

Other manipulations 7 4 (better) 

In total, the results in Table 7 state that the DCT Based Hash method show less FPR if 

compared to the Difference Hash and the same thing goes with Average Hash. For the 
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provided example DCT Based hash is much more robust under different CPO attacks that 

other described before algorithms. It has shown the same or much better results in almost 

all cases. The strongest feature of the DCT Based hash is that it is robust to noise and 

JPEG lossy compression. However, in case of rotation the DCT Based Hash has shown 

less accurate score. In the case of different images, all hashes have successfully succeeded 

in the task and have shown the Hamming distance higher than 30. The small fluctuations 

in case of completely different images do not give much information on which algorithm 

is better. However, if considering the Hamming distance, then the Difference Hash have 

shown slightly better results for finding different images. 

3.2.4.   Other algorithms 

The described above algorithms are considered to be the most basic ones used in 

perceptual image hashing, but they give you a quite good idea of how perceptual hashing 

works. Furthermore, they show very impressive results even thought they seem to be quite 

simple. Most of the existing image hashing studies mainly focus on the feature extraction 

stage and use them during authentication, which can roughly be classified into the four 

following categories [19]: 

§   Statistic-based schemes: This group of schemes extracts hash features by 

calculating the images statistics such as mean, variance, higher moments, etc. 

§   Relation-based schemes: This category of approaches generates the hash based 

on features by making use of some invariant relationships of the coefficients of 

Discrete Cosine Transform (DCT) or Wavelet Transform (DWT). 

§   Coarse-representation-based schemes: In this category of methods, the 

perceptual hashes are calculated by making use of coarse information of the whole 

image, such as the spatial distribution of significant wavelet coefficients, the low-

frequency coefficients of Fourier transform, and so on. 

§   Low-level feature-based schemes: The hashes are extracted by detecting the 

salient image feature points. These methods first perform the DCT or DWT 

transform on the original image, and then directly make use of the coefficients to 

generate final hash values. However, these hash values are very sensitive to global 

as well as local distortions that do not cause perceptually significant changes to 

the images. 
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However, there also other ways of classification the PHF’s, but this classification seems 

to be much more accurate. Each of the proposed schemes have different approaches of 

perceptual image hashing, and this work cannot describe all of them and give examples. 

Some of them are more complex and give better results and less FPR, others take less 

calculation time but the results are of testing the robustness show that it can be improved. 

But all of them use can use the same perceptual image hashing framework. It is clear that 

designing an image authentication scheme that offers high robustness and tamper 

detection capability while being secure like a cryptographic hash function is a very 

challenging task. 

For example, for “Statistic-based schemes” a compact hash is proposed by Lou and Liu 

in [22]. They divide the image into non-overlapping blocks of 8x8 pixels and calculate 

the mean value of each block. The mean value is then quantized to get the image hash. A 

2-bit code is used to get four-level intensity quantization of the mean value of each block. 

For an image of size 256x256 pixels, the hash size reported is 2048 bits, tolerance to 

compression and to tamper localization capability [21]. 

In [23], a good example for “Relation-based schemes” was proposed Zhao. His image 

hashing scheme based on features obtained from color histogram. The image is first 

converted from RGB color space to HSI color space as HSI is more suitable to analyze 

the color perception features then the RGB model. Each component of HSI is then 

quantified to obtain a one-dimension vector that is further normalized to 24 elements and 

histogram of these elements is then obtained. The binary sequence obtained from the 

histogram is permuted using a secret key to obtain the final hash [21]. 

In [24], Monga and Evans proposed a very interesting way of getting the hash based on 

“Coarse-representation-based schemes” by using visually significant feature points. A 

wavelet-based iterative feature detection algorithm is used to extract these feature points. 

A feature vector is generated based on the extracted feature points. At first the input image 

is divided into overlapping circular/elliptical regions with randomly selected radii. These 

regions are then approximated as rectangles using water-filling like approach. The 

deterministic algorithm is then applied to the random rectangles to get the binary hash 

value [21]. 
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A fascinating example of “Low-level feature-based schemes” was presented by Tang in 

[25]. The proposed by him, method also has three stages. In the first stage, preprocessing 

of an input image is done in the way we are using in out work. In the feature extraction 

step, ring division is done by calculating the circle radius and the distance from each pixel 

to the image center. It is observed that the image contents of the original image’s ring 

were unchanged after rotation. In the final stage, the entropy of each ring is calculated to 

generate the image hash. The number of rings represents the length of the hash function 

[21]. 

3.3.   Summary 

The perceptual image hashing must address should address three important issues: 

robustness to non-malicious manipulations, ability to detect malicious tampering with 

localization capability and security [21]. Interestingly, all these issues are related to each 

other. For example, increasing robustness to non-malicious manipulations reduces the 

tamper detection capability and security of the overall scheme. Similarly, if the system is 

made very sensitive to detect malicious tampering, the robustness parameter will suffer 

[21]. 

In this chapter, we have tried to propose the framework that can be used in perceptual 

image hashing by generalizing the whole process of obtaining the hash from the image 

and comparing it with the database. The core of the framework, however, is the hash 

generation that consists of only three steps: pre-processing, feature extraction and post-

processing. The pre-processing step usually is needed only to prepare the image for the 

feature extraction and to standardize the image for easier calculations. Even though, the 

pre-processing step also covers some of the basic techniques to enchase the robustness 

qualities, the main purpose of it is the standardization. The robustness property of image 

hashing arises from robust feature extraction. The post-processing mainly is needed only 

for final hash generation to quantize the extracted feature vector. Furthermore, it also can 

be used to enhance the security of the final hash by using traditional cryptographic 

hashing techniques if needed. However, in most cases this is unneeded step and strongly 

depends on the ways of which algorithms are used. 

In addition to the framework and hash generation schemes, different feature extraction 

techniques also known as the perceptual image hash functions were proposed and 
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described. Each defined hash method has its advantages and accuracy threshold. 

However, in most cases based on the evaluation of the results of how each method 

behaves under different CPO attacks and in case of different images, the DCT Based Hash 

has shown the best results if comparing to the Average and Difference Hash methods. For 

evaluation process the BER and Hamming distance were used and results were provided 

in the comparison table when describing each method. Furthermore, other approaches of 

perceptual image hash functions were mentioned and were generalized into four main 

groups. 
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4.   Implementation in MATLAB 

The previous chapter discussed and reviewed the theoretical background behind some of 

the perceptual image hash functions and also the proposed framework. This chapter 

covers the actual implementation of the described perceptual hash functions in 

MATLAB: Average, Difference and DCT Based. The implementation considers using 

the proposed hash generation scheme. However, the post-processing step is intentionally 

omitted, because the described algorithms do not cover post-processing operations in 

terms of security based on traditional cryptographic hash methods. Because, in most 

cases, it will make the hash irreversible. We will not be able to compare distances between 

two irreversible hashes in the current solution. However, the implementation covers the 

security aspect as well by implementing the secret key usage. Furthermore, the proposed 

perceptual image hash algorithms does not need any additional quantization steps because 

they all produce the same fixed size binary hash equal to 64 bits. For current 

implementation the both feature extraction and post-processing steps can be generalized 

into one method: process(). 

The main program that is being used throughout the whole work is MATLAB, which is 

the high-level language and interactive environment that makes the signal and image 

processing much easier. In some of the previous chapters some basic code snippets in 

MATLAB were already introduced, however, the final implementation is described in 

this chapter and the code is provided in the Appendix. 

4.1.   Structure 

The whole implementation of each described earlier hash function and distance metrics 

are divided into separated classes which are defined in MATLAB as “classdef” blocks. 

Each so called “classes” are completely separate from each other so no connections 

between them are actually needed. The whole project implementation structure can be 

divided into four different classes that will hold all the logic. In addition to that, several 

extra scripts are also provided in the Appendix that simply test out the use of those classes. 

Also an additional class Image is provided in the Appendix, as the helper for image 

loading and magnification used in the testing scripts. However, it does not hold any 

logical purpose for the whole implementation was created only to simplify the testing 

scripts creation. 
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4.2.   Distance/similarity metrics 

 

Figure 28. DistanceMetrics class. 

The DistanceMetrics class plays a very important role to calculate the distance between 

two hashes. Because the final hashes are binary, the Euclidian distance is omitted, 

however it can be easily added as the new method and the code for it was already provided 

before in Figure 4. 

The class implements different distance/similarity metrics for perceptual hashing based 

on the theoretical discussion earlier in Chapter 2. The code of calculation each distance 

was already introduced in the description of those methods and all use the internal 

MATLAB functions. The class by itself has a constructor that requires two parameters: 

first and second hashes to compare which are represented as the binary vectors. By calling 

the desired method we can the distance value between both hashes. 

4.3.   Perceptual image hash functions 

Each of the described perceptual hash function method consists of the same parameters 

and methods. In MATLAB the access level of parameters can be configured, but in our 

case all are represented as public to ease the debugging. The methods of each class 

represent the perceptual hashing framework hash generation scheme. However, the post-

processing step was intentionally omitted as was already mentioned before. 

The method process() is using the secret key in perceptual image hash function class to 

generate the vectors. It using control random number generation using the internal 

MATLAB function rng() to get the same random numbers based on the key which 
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represents the seed. After image feature extraction the produced binary matrix is shuffled 

using the internal methods randperm() and reshape() to get the desired effect. Of course, 

the rng() function is firstly applied with the same key before getting the random numbers. 

By varying the key value we can produce completely random binary hashes that still can 

be compared with the hashes produced using the same method if know the key. 

4.3.1.   Average Hash 

 

Figure 29. AverageHash class. 

The AverageHash class (Figure 29) implements the Average perceptual image hash 

function, which was theoretically discussed earlier in Chapter 3.2.1. In pre-processing 

step which is represented as the preprocess() function is doing the following procedure: 

1.   Blurring the original image. 

2.   Resizing it to 8x8 using bicubic interpolation. 

3.   Converting it into grayscale if needed. 

4.   Normalizing the color using the internal histeq() function. 

The resulted matrix 64 bits in size is saved into the local class variable Preprocessed. 

After calling the process() function the Average Hash algorithm is applied and the new 

binary matrix is shuffled using the same control random number generation method and 

saved to local class variable Processed. As a final measure the binary vector is produced 

from the matrix and save to variable Hash. 

To enhance the security even more, the Average hash can also use the same reshuffling 

method in the preprocess(). The mean value will not change and it will not affect on 

comparison results but the resulting vector will be more secure. 
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4.3.2.   Difference Hash 

  

Figure 30. DifferenceHash class. 

The DifferenceHash class (Figure 30) implements the Difference perceptual image hash 

function, which was theoretically discussed earlier in Chapter 3.2.2. In pre-processing 

step which is represented as the preprocess() function is doing the following procedure: 

1.   Blurring the original image. 

2.   Resizing it to 9x8 using bicubic interpolation. 

3.   Converting it into grayscale if needed. 

4.   Normalizing the color using the internal histeq() function. 

The resulted matrix 72 bits in size is saved into the local class variable Preprocessed. 

After calling the process() function the Difference Hash algorithm is applied and the new 

binary matrix with 64 bits in size is shuffled using the control random number generation 

method and saved to local class variable Processed. Then the binary matrix is converted 

into the binary vector and saved as the hash into the Hash variable. 

  



56 

4.3.3.   DCT Based Hash 

  

Figure 31. DCTBasedHash class. 

The DCTBasedHash class (Figure 31) implements the DCT Based perceptual image hash 

function, which was theoretically discussed earlier in Chapter 3.2.3. In pre-processing 

step which is also represented as the preprocess() function the image is being prepared 

for the feature extraction process: 

1.   Blurring the original image. 

2.   Resizing it to 32x32 using bicubic interpolation. 

3.   Converting it into grayscale if needed. 

4.   Normalizing the color using the internal histeq() function. 

The resulted matrix 1024 bits in size is saved into the local class variable Preprocessed. 

After calling the process() function the DCT is applied and the lowest frequencies are 

extracted from the top left corner (8x8). The resulted 64 bit matrix is then converted into 

the vector and the mean value is calculated omitting the first value to eliminate complete 

flat surfaces (colors). By using the same approach as the Average Hash, each value is 

compared to the mean value to quantize the data. The resulted 64 bits in size matrix is 

shuffled using the control random number generation method and saved to local class 

variable Processed. 
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Summary 

In this thesis, the goals are pointed out to find the differences between cryptographic and 

perceptual hash functions, study different distance/similarity metrics, propose the image 

hashing framework and investigate different perceptual image hash functions. 

The author has reviewed both cryptographic and perceptual hash functions. Furthermore, 

the author has defined three main properties of cryptographic and four for perceptual hash 

functions. For both of them were given different application scenarios and also were 

mentioned the main differences between them. Each defined property was briefly 

described, and some examples were proposed. 

In addition, the author has also investigated different distance/similarity metrics that can 

be used in perceptual image hashing to evaluate the robustness and discriminative 

capabilities of image hashing schemes and has provided the ways how they can be 

calculated. In total four metrics were proposed and at least two of them were used in 

experimental results for evaluation. 

Furthermore, the author has proposed the perceptual image hashing framework that 

consists of all required steps to produce the final hash. Each step is described, and some 

examples were given to explain the main purpose. In addition, three basic perceptual 

image hash functions that can be used during the feature extraction were proposed and 

analyzed. For each method were given examples of how robust each of the described 

methods is by analyzing the same image under different content processing operations. 

The final results of the robustness and discriminative capabilities of the described 

methods were compared, and the most accurate of the proposed methods was found. 

In the end, the author describes an implementation of the perceptual image hashing in 

MATLAB using the theoretically discussed earlier distance/similarity metrics and three 

perceptual image hash functions. The final code of the whole implementation the author 

has added in the Appendix and included the script used for evaluation. 
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Kokkuvõte 

Antud lõputöös on esitatud eesmärgid, et leida erinevuse krüptograafiliste ja 

pertseptuaalse räsimise funktsioonide vahel, õppida erinevaid kauguse/sarnasuse 

meetrikaid, pakkuda piltide räsimise raamistikke ja uurida piltide pertseptuaalse räsimise 

funktsioone. 

Autor on vaadanud nii krüptograafilisi kui ka pertseptuaalse räsimise funktsioone. Samuti 

on autor defineerinud krüptograafia kolm põhilist omadust ja pertseptuaalse räsimise neli 

funktsiooni. Mõlema jaoks oli antud erinevad rakendamise stsenaariume ja 

nendevahelised põhilised erinevused olid samuti mainitud. Iga defineeritud omadus oli 

lühidalt kirjeldatud ja mõned näited olid esile toodud. 

Lisaks on autor uurinud erinevaid kauguse/sarnasuse meetrikaid, mida on võimalik 

kasutada piltide pertseptuaalsel räsimisel, mida on võimalik kasutada jõulisuse ja piltide 

räsimisskeemade diskrimineerivuse võime hindamiseks, ja on esitanud võimalusi, kuidas 

neid on võimalik arvutada. Kokku oli esitatud neli meetrikat ja vähemalt kaks nendest 

olid kasutatud eksperimentaalsete tulemuste hindamiseks. 

Samuti on autor pakkunud piltide pertseptuaalse räsimise raamistiku, mis koosneb 

kõikidest vajalikkudest sammudest, et tekitada lõplikut räsi. Iga samm on kirjeldatud ja 

mõned näited on antud, et seletada põhilisi funktsioone. Lisaks autor pakub kolm põhilist 

piltide pertseptuaalse räsimise funktsioone, mida on võimalik kasutada omaduste 

ekstraheerimise jooksul, olid esitatud ja analüüsitud. Iga meetodi jaoks olid antud mõned 

näited ja uuritud, kui jõuline on iga kirjeldatud meetod, analüüsides sama pilti erinevate 

sisu töötlemise operatsioonide rakendamisel. Kirjeldatud meetodite jõulikusse ja 

diskrimineerivuse võimsuse lõplikud tulemused olid võrreldud ja kõige täpsem pakutud 

meetoditest oli leitud. 

Antud töö lõpuks kirjeldab autor piltide pertseptuaalse räsimise implementatsiooni 

MATLAB-s kasutades varem teoreetiliselt arutatud kauguse/sarnasuse meetrikaid ja 

kolm piltide pertseptuaalse räsimise funktsioone. Tervikliku implemetatsiooni lõpliku 

koodi on autor lisanud lisasse ning samuti lisas hindamiseks kasutatavat skripti. 
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Appendix 1 – Additional Figures 

               

a. Original     b. Rotated (BER: 0.094, HD: 6) 

               

c. Blurred (BER: 0.063, HD: 4)    d. Color manipulations (BER: 0, HD: 0) 

               

e. JPEG lossy compression (BER: 0.031, HD: 2)  f. Noise (BER: 0.047, HD: 3) 

               

g. Other manipulations (BER: 0.13, HD: 8)   h. “Lena” (BER: 0.58, HD: 37) 

          

i. “Peppers” (BER: 0.5, HD: 32) 

Figure 32. Average Hash behavior in case different images and CPO. 
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a. Original     b. Rotated (BER: 0.09, HD: 6) 

               

c. Blurred (BER: 0.03, HD: 2)    d. Color manipulations (BER: 0.02, HD: 1) 

               

e. JPEG lossy compression (BER: 0.02, HD: 1)  f. Noise (BER: 0.03, HD: 2) 

               

g. Other manipulations (BER: 0.11, HD: 7)   h. “Lena” (BER: 0.56, HD: 36) 

   

i. “Peppers” (BER: 0. 53, HD: 34) 

Figure 33. Difference Hash behavior in case different images and CPO. 
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a. Original     b. Rotated (BER: 0.11, HD: 7) 

               

c. Blurred (BER: 0.03, HD: 2)    d. Color manipulations (BER: 0.02, HD: 1) 

               

e. JPEG lossy compression (BER: 0, HD: 0)  f. Noise (BER: 0, HD: 0) 

               

g. Other manipulations (BER: 0.06, HD: 4)   h. “Lena” (BER: 0.52, HD: 33) 

   

i. “Peppers” (BER: 0.46875, HD: 30) 

Figure 34. DCT Based Hash behavior in case different images and CPO. 
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Appendix 2 – Code in MATLAB 

The Average Hash function implementation described in Chapter 4.3.1 and 

theoretically discussed in Chapter 3.2.1: 

classdef AverageHash 
  
    % AVERAGEHASH  Performs hash generation using Average Hash 
technique. 
    % 
    % Description 
    % RESULT = AverageHash(IMG); 
    %   IMG    - image to process 
    %   RESULT - AverageHash object 
  
    % Authored May 2015 by Victor Popkov 
  
    properties 
        Image 
        Key 
        Preprocessed 
        Processed = [] 
        Hash 
    end 
  
    methods 
        function obj = AverageHash(Image, Key) 
            % class constructor 
            if (nargin > 0) 
                obj.Image = Image; 
                obj.Key = Key; 
            end 
        end 
  
        function obj = preprocess(obj) 
            % pre-processing 
  
            % Blurring 
            filter = fspecial('gaussian', [3 3], 2); 
            obj.Preprocessed = imfilter(obj.Image, filter, 'same'); 
            % Resizing 
            obj.Preprocessed = imresize(obj.Preprocessed, [8 NaN], 
'bicubic'); 
            % Color reduction 
            [rows, columns, channels] = size(obj.Preprocessed); 
            if channels > 1 
                obj.Preprocessed = rgb2gray(obj.Preprocessed); 
            end 
            % Color normalizations 
            obj.Preprocessed = histeq(obj.Preprocessed); 
  
            % Security (shuffle) 
            if obj.Key ~= 0 
                rng(obj.Key, 'twister'); 
                rng(obj.Key + randi([1, numel(obj.Preprocessed)]), 
'twister'); 
                new_order = randperm(numel(obj.Preprocessed)); 
                obj.Preprocessed = 
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reshape(obj.Preprocessed(new_order), size(obj.Preprocessed)); 
            end 
        end 
  
        function obj = process(obj) 
            % processing 
  
            % Getting feature matrix 
            obj.Processed = (obj.Preprocessed >= 
mean2(obj.Preprocessed)); 
  
            % Security (shuffle) 
            if obj.Key ~= 0 
                rng(obj.Key, 'twister'); 
                rng(obj.Key + randi([1, numel(obj.Preprocessed)]), 
'twister'); 
                new_order = randperm(numel(obj.Processed)); 
                obj.Processed = reshape(obj.Processed(new_order), 
size(obj.Processed)); 
            end 
  
            obj.Hash = double(obj.Processed(:)'); 
        end 
    end 
  
end 

 

The Difference Hash function implementation described in Chapter 4.3.2 and 

theoretically discussed in Chapter 3.2.2: 

classdef DifferenceHash 
  
    % DIFFERENCEHASH  Performs hash generation using Difference Hash 
technique. 
    % 
    % Description 
    % RESULT = DifferenceHash(IMG); 
    %   IMG    - image to process 
    %   RESULT - DifferenceHash object 
  
    % Authored May 2015 by Victor Popkov 
  
    properties 
        Image 
        Key 
        Preprocessed 
        Processed = [] 
        Postprocessed 
        Hash 
    end 
  
    methods 
        function obj = DifferenceHash(Image, Key) 
            % class constructor 
            if (nargin > 0) 
                obj.Image = Image; 
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                obj.Key = Key; 
            end 
        end 
  
        function obj = preprocess(obj) 
            % pre-processing 
  
            % Blurring 
            filter = fspecial('gaussian', [3 3], 2); 
            obj.Preprocessed = imfilter(obj.Image, filter, 'same'); 
            % Resizing 
            obj.Preprocessed = imresize(obj.Preprocessed, [9 8], 
'bicubic'); 
            % Color reduction 
            [rows, columns, channels] = size(obj.Preprocessed); 
            if channels > 1 
                obj.Preprocessed = rgb2gray(obj.Preprocessed); 
            end 
            % Color normalizations 
            obj.Preprocessed = histeq(obj.Preprocessed); 
        end 
  
        function obj = process(obj) 
            % processing 
  
            % Difference hash 
            for k = 1:(size(obj.Preprocessed) - 1) 
                obj.Processed = [obj.Processed; obj.Preprocessed(k,:) 
>= obj.Preprocessed(k + 1,:)]; 
            end 
  
            % Security (shuffle) 
            if obj.Key ~= 0 
                rng(obj.Key, 'twister'); 
                new_order = randperm(numel(obj.Processed)); 
                obj.Processed = reshape(obj.Processed(new_order), 
size(obj.Processed)); 
            end 
  
            obj.Hash = double(obj.Processed(:)'); 
        end 
    end 
  
end 

 

The Difference Hash function implementation described in Chapter 0 and theoretically 

discussed in Chapter 3.2.3: 

classdef DCTBasedHash 
     
    % DCTBasedHash  Performs hash generation using Discrete cosine 
transform. 
    % 
    % Description 
    % RESULT = DCTBasedHash(IMG); 
    %   IMG    - image to process 
    %   RESULT - DCTBasedHash object 
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    % Authored May 2015 by Victor Popkov 
  
    properties 
        Image 
        Key 
        Preprocessed 
        Processed = [] 
        Postprocessed 
        Hash 
    end 
  
    methods 
        function obj = DCTBasedHash(Image, Key) 
            % class constructor 
            if (nargin > 0) 
                obj.Image = Image; 
                obj.Key = Key; 
            end 
        end 
  
        function obj = preprocess(obj) 
            % pre-processing 
  
            % Blurring 
            filter = fspecial('gaussian', [3 3], 2); 
            obj.Preprocessed = imfilter(obj.Image, filter, 'same'); 
            % Resizing 
            obj.Preprocessed = imresize(obj.Preprocessed, [32 32], 
'bicubic'); 
            % Color reduction if required 
            [rows, columns, channels] = size(obj.Preprocessed); 
            if channels > 1 
                obj.Preprocessed = rgb2gray(obj.Preprocessed); 
            end 
            % Color normalizations 
            obj.Preprocessed = histeq(obj.Preprocessed); 
        end 
  
        function obj = process(obj) 
            % processing 
  
            img = obj.Preprocessed; 
  
            img = dct2(img, [32 32]); 
  
            img = img(1:8, 1:8); 
  
            vector = img(:)'; 
            vector = vector(2:length(vector)); 
            mean = mean2(vector); 
  
            img = (img >= mean); 
  
            obj.Processed = img; 
  
            % Security (shuffle) 
            if obj.Key ~= 0 
                rng(obj.Key, 'twister'); 
                new_order = randperm(numel(obj.Processed)); 
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                obj.Processed = reshape(obj.Processed(new_order), 
size(obj.Processed)); 
            end 
  
            obj.Hash = double(obj.Processed(:)'); 
        end 
    end 
  
end 

 

The Distance/Similarity metrics implementation theoretically discussed in Chapter 2: 

classdef DistanceMetrics 
  
    % DISTANCEMETRICS  Performs distance/similarity calculation for 
    %                  two hashes. Available: 
    %                    - Hamming distance (HD) 
    %                    - Normalized Hamming distance (NHD) 
    %                    - Bit error rate (BER) 
    % 
    % Description 
    % RESULT = DistanceMetrics(HASHONE, HASHTWO); 
    %   HASHONE - the main hash 
    %   HASHTWO - the second hash to compare with first one 
    %   RESULT  - DistanceMetrics object 
  
    % Authored May 2015 by Victor Popkov 
  
    properties 
        HashOne 
        HashTwo 
        HD 
        NHD 
        BER 
    end 
  
    methods 
        function obj = DistanceMetrics(HashOne, HashTwo) 
            % class constructor 
  
            if (nargin > 0) 
                obj.HashOne = HashOne; 
                obj.HashTwo = HashTwo; 
            end 
        end 
  
        function obj = HammingDistance(obj) 
            % Hamming distance (HD) 
  
            obj.HD = pdist2(obj.HashOne, obj.HashTwo, 'hamming') * 
length(obj.HashOne); 
        end 
  
        function obj = NormalizedHammingDistance(obj) 
            % Normalized Hamming distance (NHD) 
  
            obj.NHD = pdist2(obj.HashOne, obj.HashTwo, 'hamming'); 
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        end 
  
        function obj = BitErrorRate(obj) 
            % Bit error rate (NHD) 
  
            obj.BER = biterr(obj.HashOne, obj.HashTwo) / 
length(obj.HashOne); 
        end 
    end 
  
end 

 

Code used to generate the hashes and calculate the distance for evaluation purposes. 

Hashed are represented as the images and are magnified x8: 

source   = 'examples/thesis/images'; 
dest     = 'examples/thesis/hashed/average'; % average, difference, 
dct 
dest_ext = '@8x.png'; 
  
algorithm = @DCTBasedHash; % Choose algorithm to use (AverageHash, 
DifferenceHash, DCTBasedHash) 
  
key = 175; % if equals 0, then no security 
  
images = dir(fullfile(source, '*')); 
  
% Original image hash 
o = algorithm(imread(fullfile(source, 'original.png')), key); 
o = o.preprocess(); 
o = o.process(); 
  
for k = 3:numel(images) 
    img = imread(fullfile(source, images(k).name)); 
  
    [pathstr, name, ext] = fileparts(images(k).name); 
  
    % Hashing algorithm 
    f = algorithm(img, key); 
    f = f.preprocess(); 
    f = f.process(); 
  
    file = Image(fullfile(pathstr, [ name dest_ext ]), dest); 
    file = file.setContent(f.Processed); 
    file.magnify(64).save(); 
  
    d = DistanceMetrics(o.Hash, f.Hash); 
    d = d.NormalizedHammingDistance(); 
    d = d.HammingDistance(); 
    d = d.BitErrorRate(); 
  
    fprintf('   %s:\n   %s, BER: %s, HD: %s, NHD: %s\n\n', 
images(k).name, num2str(f.Hash, '%1d'), num2str(d.BER), num2str(d.HD), 
num2str(d.NHD)); 
end 
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clearvars images o k img pathstr name ext f d file; 

 

Image class used to simplify the process of image loading and magnification: 

classdef Image 
  
    properties 
        Directory 
        Filename 
        Content 
    end 
  
    methods 
        function obj = Image(Filename, Directory) 
            % class constructor 
            if(nargin > 0) 
                obj.Filename  = Filename; 
                obj.Directory = Directory; 
            end 
        end 
  
        function obj = setContent(obj, content) 
            obj.Content = content; 
        end 
  
        function obj = magnify(obj, size) 
            obj.Content = imresize(obj.Content, [size NaN], 
'nearest'); 
        end 
  
        function save(obj) 
            imwrite(obj.Content, fullfile(obj.Directory, 
obj.Filename)); 
        end 
    end 
  
end 


