
TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Computer Engineering

IAF70LT
Eduard Mubarakšin 122081IASMM

LARGE SCALE DISTRIBUTED ENTERPRISE

COMPUTING SYSTEM INFRASTRUCTURE SETUP

AND MANAGEMENT AUTOMATION

ARCHITECTURE
Master Thesis

Jaak Kõusaar

M.Sc.

Raimund-Johannes Ubar

D.Sc.

Tallinn 2016

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references to
the literature and the work of others have been referred to. This thesis has not been presented
for examination anywhere else.

Author: Eduard Mubarakšin

[Wednesday 25th May, 2016]

2

Abstract

With the move from monolithic applications to more agile microservice verticals, the number
of applications in a company is on the increase. This means that infrastructure will need to
keep up with the increased number of requests, hosts to manage and reduced time to market
what means less time to setup each application.

In order to accelerate application landscape creation and processes involved with it, the over-
all application lifecycle is revised. Intention is to illustrate how configuration management
tools can automate the infrastructure platform by combining different aspects of development
into an orchestrated architecture compiled of existing building blocks. The key feature in this
process being automation and re-usage in order to create a process that can cope with legacy
systems, yet be agile enough to adapt to future technologies.

This thesis is written in English and is 77 pages long, including 12 chapters, 40 figures and 5
tables.

3

Annotatsioon

Suuremahulise Äriettevõte Hajusa Arvutisüsteemi Infrastruktuuri Seadistamise ja
Haldamise Arhitektuur

Agiilne revolutsioon ja liikumine monoliitsetelt rakendustelt teenusorienteeritud ning mikro-
teenuste suunas, on veebirakenduste tarkvaraarenduse tempot ning nõudlust tunduvalt tõst-
nud. Suuremõõtmelistes firmades, kus iga rakendus on äri kriitilne ning informatsioon tund-
lik, ei saa ettevõte pilve arhitektuurile korraga üle minna. Selle tõttu pidades jääma ajutiselt
vanamoelisema, virutaalmasinatel põhineva arhitektuuri juurde.

Firmasisese klastri haldamine pole agiilset revolutsiooni läbi teinud. Esimene katsetus selles
suunas on Devops, mis üritab infrastruktuuri muudatusi parandada ja protsesse automatiseer-
imisega kiirendada. Selleks, et seda edukalt teha, on enne vaja saada põhjalik ülevaade
protsessidest ja otsustest, mis leiavad aset infrastruktuuris rakenduse eluea ajal. Uuritakse
mis võimalusi praegused automatiseerimise ja konfiguratsiooni-haldamise tööriistad paku-
vad. Kuidas neid ärakasutades muuta olemasolevad protsessid agiilsemaks ning modernse-
maks. Pakkudes kõigile osalistele automaatikaga kaasnevat mugavust, ning klientidele kind-
lat teenuse kättesaadavust, mida pakub kaasaegne virtualiseeritud infrastruktuur.

Töö annab ülevaate rakenduse elukäigul kaasnevatest protsessidest. Tutvustab turul ole-
vate konfiguratsiooni manageerimis-tarkvara pakutud võimalusi. Lõpptulemusena pakutakse
välja jaotatud tiimidele sobiliku raamistiku kirjelduse, mis praktilise juhendina võimaldaks
parandada koostööd ja vähendada manuaalse töö osakaalu infrastruktuuri ülespanekul, man-
ageerimisel ja haldamisel. Näidates praktiliselt juba implementeeritud näidete põhjal kuidas
olemasolevate protsesse automatiseerimine aega säästab, tõstes kvaliteeti ja tagades töökind-
lust.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 77 leheküljel, 12 peatükki, 40 joonist,
5 tabelit.

4

Table of Abbreviations and Terms

API Application Programming Interface
APZ Application Zone
ASM Application Security Manager
BO Business Owner
BU Business Unit
CI Continuous Integration
CM Configuration Management
DMZ De Militarized Zone
DSL Domain Specific Language
ES Elasticsearch
HDD Hard Disc Drive
HW Hardware
OPI Operational Instructions
OS Operating System
PO Product Owner
QA Quality Assurance
SCM Source Control Management
SOAP Simple Object Access Protocol
STS System Test Staging
SYS System Test
UAT User Acceptance Test
VM Virtual Machine

5

Contents

1 Introduction 11
1.1 Purpose . 12
1.2 Objectives . 13
1.3 Organization of the Thesis . 14

2 Business Process and Needs Description 15
2.1 Application Lifecycle Stages . 15
2.2 Deployment Lifecycle . 18

2.2.1 Weekly Release Cycle . 18
2.2.2 Release Cycle . 19
2.2.3 Hotfix Release Cycle . 20

2.3 Stakeholder Identification . 21
2.4 Needs Assessment . 22

2.4.1 Infrastructure . 23
2.4.2 Developers and Devops . 24
2.4.3 Support and Help Desk . 26
2.4.4 Product Owners . 27

3 Needs Analysis 28
3.1 Needs listing . 29
3.2 Analysis of needs listing . 31

4 Automation tools 32
4.1 Distribution and Fields of Usage for Automation Tools 32
4.2 Proposed Tools Listing . 34

5 Configuration Management Tools 35
5.1 Comparison of Configuration Management Tools 36

5.1.1 Puppet Labs Puppet . 36
5.1.2 SaltStack . 36
5.1.3 Chef . 37
5.1.4 Red Hat Ansible . 37

5.2 Selection of Main Tools . 39
5.3 Puppet Overview . 40
5.4 Ansible Introduction . 41

5.4.1 Ansible Overview . 41

6

6 Loadbalancers 44
6.1 F5 Networks Big IP . 46

7 Process Control Systems 47
7.1 Init.d . 47
7.2 Supervisord . 48
7.3 Monit . 49
7.4 Init.d, Monit and Supervisord Comparision 50

7.4.1 HTTP Interfaces of Process Control Systems 51

8 Automation Tool Integration 53
8.1 Ansible Tower . 54
8.2 Ansible and Jenkins Integration . 56

9 Automated Documentation 58
9.1 Documentation Centralization Automation 59

10 Infrastructure Scaffolding 63
10.1 Application Platform Implementation Process 63
10.2 Application Roll-out on the Platform via Ansible 66
10.3 Real Life Benefits of Automation . 70

11 Container Technology 72

12 Conclusions 74

References 75

7

List of Figures

1 Application Lifecycle Steps. 15
2 Weekly Release Process. 18
3 Release Cycle Process. 19
4 Hotfix Release Process. 20
5 Organization of Stakeholders. 21
6 Organizational hierarchy. 22
7 Main Needs of Divisions. 28
8 Mapping of Responsibilities to Functional Units. 31
9 Mapping of Responsibilities to Proposed Tool Sets. 32
10 Proposed Tools for Platform Tasks. 34
11 Selection of Tools for Main Tasks. 39
12 User and Process Runtime Encapsulation. 40
13 Basic Terminology of Ansible. 42
14 Structural Hierarchy of Ansible Files. 43
15 Use Cases of Loadbalancers. 44
16 Green Blue Zero Downtime Deployment Pipeline. 45
17 Cyclic Zero Downtime Deployment Pipeline. 45
18 Supervisord.conf Snippet. 48
19 Supervisord Managed Application Configuration Example. 48
20 Monit Managed Application Configuration Example. 49
21 Supervisord HTTP Interface. 51
22 Monit HTTP Interface. 52
23 Ansible Tower User Interface - Inventories Screen. 54
24 Ansible Tower User Interface - Job Templates Screen. 55
25 Jenkins Job Configuration - Execute Shell Build Step. 56
26 Jenkins Job Configuration - Parametrized Build. 57
27 Jenkins Jobs Screen - Ansible Role Job. 57
28 Self Documentation Framework Conception Illustration. 59
29 Excerpt From Metrics Gathering Role. 60
30 Infrastructure Search Page Screenshot Displaying Search Result of One Server. 61
31 Kibana Dashboard Displaying Indexed Data, Filtered by Environments. . . . 62
32 Progress Visualization Documentation. 65
33 Ansible Command Line Calls. 66
34 Application Site Roll Out. 66

8

35 Application Rollout. 67
36 Ansible Playbook - rollout-batchapps-systemtest.yml. 68
37 Ansible Playbook - Task Included in Backend Deployment. 68
38 Application Infrastructure Automation Structure 69
39 Manual Deployment Procedure. 71
40 Virtual Machines and Containers. 73

9

List of Tables

1 Description of Fields of Assignments. 33
2 Automation Tool Distribution by Declarative or Imperative Approach. 35
3 Comparison of Process Control Systems. 50
4 Decision and Decider Listing. 64
5 Estimated Time Consumption Comparison. 70

10

1. Introduction

Keeping clients pleased with software development requires rapid and steady stream of new
features released to the consumers. Quick time to market for new business needs. High
level of Quality Assurance to avoid bugs reaching clients with quick response to bugs with
hotfixes in case a bug is discovered. Achieving high quality of releases would be very difficult
without releasing often and getting constant feedback from testers and users. Especially in
IT businesses where the clients need new features on the market and they need the features
live as soon as possible.

These new requirements for speed from the business units has caused the “agile revolution”.
Making the software development more agile needs a lot of changes in the workflows of
the company. Majority of the improvements are targeted at the software developers them-
selves and the business processes surrounding them. Some times over-looking the processes
involved with infrastructure.

To achieve a quick time to market, and to please the clients, it is first essential to please the
developers by offering them the best available tools. Not only having in mind the integrated
development environment and agile coaching, but also providing a good infrastructure where
the staging and test environments to run on. Push-button deployments, continuous integration
and automated test-suits are only few key words of the possible ways to ease the life of the
developers and become truly agile from start-to-end of an application life cycle.

To achieve fast pace and guarantee high quality of released software, the infrastructure needs
to support the developers and work hand in hand with agile methods. Provide a smooth
transition throughout the test environments while giving comprehensive and comparable test
results between different stages. However that is not where agility ends for infrastructure.
Automation does not end with only the development process and providing tools to get the
developed artifacts tested for maturity and then to release.

The agility infrastructure needs to provide has a large role in providing the means for scalabil-
ity, maintainability and high availability. Making it easy to get the application to production.
Provide updates and hotfixes swiftly with minimal or zero downtime. Adapt to increases
in usage and quick disaster recovery. Provide transparency for the developers and support
personnel to find and fix problems quicker via monitoring and performance profiling tools.

11

The pipeline from zero-to-application in an infrastructure can over time turn into a complex
process. Due to large segregation between functional units and people leaving the company.
Having a clear high-level understanding of the whole process is vital to understand the bottle-
necks in the process. An overview of currently used tools and the values they provide to the
stakeholders can give good insight to further improve the overall agility of the process and
thus reduce the time-to-market. Making convenient tools and approaches available to more
of the teams.

In addition having an overview of solutions already used in the company is important to keep
teams from re-inventing the wheel. Keeping things more similar across different distributed
teams. This leads to a more uniform setup making the life of both Developers and DevOps
easier. Such approach makes server setups easier to predict and maintain, while uniforming
the company application landscape.

1.1. Purpose

The purpose of this thesis is to map and capture the needs of more prominent functional units
within a larger-than-average software development company. Analyze the needs and the
workflows involved with the individual functional units. Investigate the currently available
and used solutions for process automation. Describe a functional work flow for an agile cor-
porate application infrastructure creation architecture that provides as much value as possible
for each functional unit.

Keeping in mind maintainability, usability and circumventing limitations set by the available
infrastructure or business processes already in place. The resulting analysis would serve as
documentation for existing and possible future improvements alongside with a comparison
of benefits what moving to automation has brought. The practical examples are taken from
application infrastructure of Kuehne+Nagel and as such, only a general overview is given
with some details being not open for discussion.

12

1.2. Objectives

This master’s thesis has the following objectives listed below.

• Distinguish the major roles in the application lifecycle what are affected the most.

• Capture and describe the main tasks of the major roles distinguished.

• Describe the needs of the roles to establish a common understanding of the process.

• Introduce the currently available tools that satisfy the needs of the stakeholders.

• Propose a possible solution for a smooth application lifecycle management architecture
capable of providing a pipeline from zero to application.

• Illustrate the key stages of setting up a working solution.

• Practically show the advantages and benefits provided by automation, compared to
manual methods.

• Investigate container technologies as a future possibility.

13

1.3. Organization of the Thesis

This dissertation gives an overview of the usage possibilities of the application configuration
management tools in an automation-driven application landscape creation workflow. Thesis
is organized as follows. Chapter 2 introduces the general application lifecycle related pro-
cesses, captures the main stakeholders in the process and the needs they have to improve their
work.

Chapter 3 analyzes the needs captured in Chapter 2 and maps the different requirements to
the tasks and units in the organization that are responsible for carrying out the task.

Chapter 4 introduces the tools chosen for each group of tasks. In chapters 5 to 8, selected
tools are introduced closer and compared to one another.

Chapter 9 highlights an automation-based documentation approach concept that is integrated
into the general workflow and scripting approach.

Chapter 10 gives a practical example of the infrastructure scaffolding approach, describing
the usage of the automation tool in with an easy use-case. Compares the automated approach
with manual methods, proving that there is no way forward without automation.

In Chapter 11 container-based technologies are introduced that simplify the complexity of an
application landscape creation by using containerization. Reasoning why this technology is
promising, but needs time to mature.

Chapter 12 gives a summary of this dissertation.

14

2. Business Process and Needs Description

The following section will be dedicated to describing the processes that take place during the
application life cycle and thus generate the requirements for infrastructure. The following
topics will be covered. The release cycle process and different environments behind them.
Needs that build up the continuous integration and QA framework for the company. The
work flow executed at each step and the importance of each stage.

2.1. Application Lifecycle Stages

Simplified model of stages an application will go through in its lifetime will be used and
analyzed to identify the main actors in the application life cycle for needs analysis. The most
common steps and work flows involved with each step will be introduced. The steps are
described by The Agile System Development Life Cycle [1]. The main stages are listed on
Figure 1 and each stage will be detailed in the following section.

Concept Inception

Construction
iterations

Transition
Production

Retirement

Figure 1. Application Lifecycle Steps.

15

Concept

The pre-project planning phase is the stage where the initial business needs are gathered
from the clients. During this stage, the business opportunity is defined. Business owner or
an in-organization consultant, with the largest knowledge of the business area is appointed.
Business owner will be responsible for the well being of the business side of the project. The
role will provide valuable information for the development along the life of the project.

Inception

Project initiation or inception phase is where the development team is either appointed to
a project. Or a new team is created. The team lead, developers and the BO start working
together on the first possible to release features. Functional requirements are created and
business rules are established by architects. The development environments are set up either
on existing infrastructure, or new hardware is provisioned. Continuous integration pipelines
are set up and testing infrastructure is created according to the teams choice of tool set.

Construction Iterations

The main development process is the main state in what an active application would be in.
The team keeps implementing requests for features in the release cycle. Developers and
testers keep improving the test suits with the evolving software. Fix and maintain the pro-
duction ready code base. The software base is kept up to date and updated to latest available
technologies and infrastructure changes. Being that latest Java versions and the features pro-
vided by it for instance. Quality assurance keeps the code free of bugs. Provides a tactile
confirmation that the system behaves correctly with the changes and fulfills both old and new
business rules. The DevOps keep the infrastructure operating under constant work load and
maintains the system to avoid stoppages. Maintenance is carried out in all environments.

Transition

The deployment phase is the stage where the release goes live. In this stage, all the integration
is done. The release is tested across all available testing environments by the developers. QA
guarantees functionality and carries out regression tests. The defects found by QA are fixed
by developers and re-tested for confirmation. The users of the software are trained and user
acceptance tests are carried out buy the BU.

16

New software is released at the end of each development cycle either by a release plan. Or
urgent issues are fixed via a hotfix process initiated by the product owner. Once the developers
have fixed the issue and QA confirmed the fix is production safe, the hotfix is applied. The
transition phase and requirements for CI will be described closer in an upcoming section.

Production

The actual value proposition to the clients. The software developed to fulfill the business
needs is released and kept in production. Customer support monitors the application and
service life signs. Reacts 24/7 to incidents and provides customer facing support. Gathers
the bug reports from clients and monitors application logs for common known issues that are
not fixed. Act according to instructions or previous experience. The bug reports gathered
from the users are reported to developers and BU. According to the importance and effect to
the clients, either hotfixes are released or less critical issues are added to the backlog for the
next release. Infrastructure keeps the provisioned application servers up to date and in good
health, taking care of any problems that could cause downtime. DevOps keep the application
up to date and make required changes as the application develops along its life cycle.

Retirement

End of life cycle. The application is either discontinued or replaced by a new vertical. The
existing users are migrated to the new application if there is a successor to the discontinued
application. The existing application goes to maintenance mode where no development is
done. Alternatively the application is shut down completely. And the successor application
starts its life cycle in production stage.

17

2.2. Deployment Lifecycle

Aside the general application life cycle. The deployment related processes, that focus on full
delivery process[2], is considered a large part of day to day life. The deployment pipeline is
one of the largest target for automation and provide the largest benefit to the stakeholders in-
volved. In the following section an overview of application transition phase related processes
and use-cases are described.

2.2.1. Weekly Release Cycle

The simplest transition stage is a single environment deployment. As an example, a weekly
Systemtest environment deployment is illustrated on Figure 2, where the latest features that
are planned for this release are tested daily on lower environments. If all tests pass, the issue
or story is allowed to be merged to the test branch and is delivered to the corresponding test
environment for intermediate testing or user acceptance testing.

BuildBranch

Develop
ment

Test

Environment Tasks

Integration

Staging

Systemtest

Perform integrationtests
Start Staging build

Merge to test

Perform regression tests
Allow weekly systemtest release

SYS Weekly
Run UAT

Merge to production

Int Nightly

STS Nightly

Figure 2. Weekly Release Process.

The weekly delivery to an environment, that is designed to be as close to production as
possible, is part of the agile methodology to release and test often as possible on environments
that mimic production. Systemtest, being the scaled down copy of production environment is
the in house sandbox for customer demos, load tests and overall functional tests. During the
whole release cycle, the latest artifacts are deployed daily to lower environments and weekly
to systemtest. This goes on through out the release cycle until the deadline to release the
features to clients and a stable release candidate is established.

18

2.2.2. Release Cycle

The main development revolves around a release cycle what involves periodical release of
production ready features to clients. Figure 3 illustrates the cyclic movement of features
from trunk to production branch.

BuildBranch

Develop
ment

Test V+1

Environment Tasks

Integration

Staging

Systemtest

Preproduction

Production

Int Nightly Perform integrationtests
Create new Test branch

Increment development version

Perform regression tests

SYS Release Release stabilisation
Establish release candidate

Code freeze
Perform Deployment and Rollback

For Test V+1

Perform Deployment and Rollback
for Test branch RC

STS Nightly

Test

Perform Deployment of
new version

Test Branch becomes
Production

Production

Figure 3. Release Cycle Process.

During a release, the version in trunk is incremented and all environments get deployed to
a new release version. At each environment change, regression- and integration-tests are
executed to guarantee that the release will provide the new functionality and not break the
already existing features. Deployment and rollback tests are executed on Preproduction and
Systemtest environments, to prepare for the worst-case-scenario on production environment
to make sure no data is compromised with the rollback.

19

2.2.3. Hotfix Release Cycle

In case of more urgent issues [3], the problem is addressed with a hotfix. If the product
owner classifies the issue as an emergency or critical issue then the issue will be fixed in the
current sprint with high priority and pushed to production via a hotfix procedure. Hotfix pro-
cedure involves a sped-up development cycle and quicker passing through different staging
environments. In order to reach production in a timely manner. The steps in the process are
illustrated on Figure 4. With less urgent issues, the bug is fixed with accordance to the sprint
planning.

BuildBranch

Develop
ment

Test

Production

Environment Tasks

Integration

Staging

Systemtest

Production

Int Nightly Perform integrationtests
Merge to test

Perform regression tests
Arrange out of order SYS test

SYS Release Re test the issue
Merge to production branch

Prod Branch

Fix the bug.
Merge to trunk

Re test the issue on Preprod
if possible

Re test the issue on Hotfix
if possible

Release to clients

STS Nightly

Preproduction

Hotfix

Figure 4. Hotfix Release Process.

20

2.3. Stakeholder Identification

From the short overview of the application lifecycle we can distinguish four larger groups of
functional units with the largest impact on the whole project. The chosen actors are listed
below.

• Product Owners

• Development and Devops

• Infrastructure

• Support

So far the whole focus has been on the agile development perspective, but for the purpose
of this thesis the focus will be shifted little to the infrastructural aspect of the project life
cycle. In the following paragraph a short overview of the lifecycle from the infrastructure
side is given in order to understand the importance of infrastructure in the agile workflow. As
a by product of shifting towards the infrastructure, the importance of developers decreases a
little. Making the key role in the infrastructural changes the DevOps. As DevOps team is the
main drivers in infrastructure changes and inter-department communications. Their change
in importance is introduced on Figure 5.

Product owners

Developers

Infrastructure

Support and operationsDevops

Figure 5. Organization of Stakeholders.

21

2.4. Needs Assessment

In a large software development company, during its life cycle, the application passes through
a variety of different divisions within the company. Each division having its own internal
workflows, needs for specific information and different outputs of their work. What all in
conjunction provide the required output of keeping a modern application infrastructure up to
date and running smoothly. Development at high pace and at good quality. Problems found
and solved quickly without causing harm or business impact to clients.

Gaps in the information flow between different divisions within the company can lead to
slowing down progress in the general work flow. That in turn causes deadlines to come
up causing lack of time that causes temporary solutions, that with time become permanent
solutions. In worst case scenarios they become the undocumented parts of legacy software
that will make updates and migrating difficult. Lack of documentation turn maintenance more
complicated and problematic while decreasing the overall observability and fault tolerance.

To avoid such miss communication caused stoppages and to ease the process in distributed
teams, the needs of all parties will be described. With the goal to establish common ground
and understanding of the process. To establish the requirements for the whole pipeline the
architecture setup will need to go through in order to provide a smooth information flow
between all parties. Locate the essential bottlenecks that would benefit the most from au-
tomation and provide the most functionality to the stakeholders.

Product Owners
Developers and DevOps

Infrastructure
Support and Opertations

Providing business needs
Application setup and development

Guaranteeing OS and HW availability

Providing customer facing support

Figure 6. Organizational hierarchy.

The needs of larger divisions, illustrated on Figure 6 will be introduced in the following
sections. The hierarchy goes from top to bottom, where the higher level has more influence
over the lower level. Each division has an equally important part and value to the whole end
product. The work quality at each level can prove costly to the rest.

22

2.4.1. Infrastructure

Larger companies can afford the expenses of owning their own data-center or to provision
their own hardware in-house. Though having higher initial cost, this approach can pay off
in the longer run once the enterprise scale grows or if the information is sensitive or busi-
ness critical. Use of in-house HW does also introduce the need to monitor, maintain and
manage the hardware. Consolidating hardware and distributing resources like HDD space,
Memory, computational resources etc. Securing the HW from outside attacks is also the task
at this level. Due to security consideration, all root level operations are done in this division
following best security practices.

Below are listed the most important tasks performed by infrastructure.

� Provision of Hardware
� Creation of Virtual Machines in accordance to the specification
� Installation of OS
� Maintaining the OS and security updates
� Managing and maintaining root level services
� Governing host access (users and access rights)
� Guarantee uptime of application hosts and surrounding systems

The greatest values for infrastructure would be ease of use of the automation tool. A tool, that
would easily allow to bring a large number of hosts into a predefined state. As an example, a
group of users, or install certain packages without the need to carry out manual tasks on the
provisioned hosts. It should also be capable to provide an overview of the hosts in the system
without the need of an external documentation tool. The tool should be as mature and stable
as possible, provide support for both current and future technologies.

23

2.4.2. Developers and Devops

The values provided by the previous tier create the base on what to setup and run the applica-
tions. The applications provide the main value proposition of the whole company. To provide
some service or an commerce platform to the client base. Developers and DevOps set up the
infrastructure on what the full development pipeline, starting from test environments, build
pipeline, documentation tools and many other components that are a part of developer’s day
to day life run.

Developers

Developers are the ones who provide the largest value to the company by fulfilling the busi-
ness needs of clients. For the developers, a well maintained work flow is of utmost impor-
tance. The developed code base would not provide any revenue without the platform to serve
the software to the clients for usage. An user friendly CI pipeline that provides a smooth
transition from local environment all the way to production shortens the time to release. The
possibility to test the code base on an actual environment with all the test suits improves the
quality of code and lessens the possibility of problems on production.

The most important tasks performed by developers are listed below.

� Development of the code base
� Creating test suits to guarantee code quality
� Fix not noticed bugs with minimal delay
� Provide new features

24

DevOps

The definition of “devops” varies from company to company, but the tasks “devops” do tend
do be similar in most cases. Devops is the force that keeps the process flowing. Maintain-
ing the test environments and production. Taking care of deployments and application host
setups. Maximizing automation and providing simple to use, large scale application deploy-
ments for the teams. Setting up tools for the developers and supporting them in case of
technical problems across all environments. Devops have usually the largest knowledge of
the application infrastructure and distribution of environments.

The most important tasks performed by DevOps are listed below.

� Setup of new verticals
� Modernizing legacy applications
� Automate manual processes
� Simplify the development process
� Application landscape creation and management

25

2.4.3. Support and Help Desk

Support and help desk provides the customer facing support and issue management. Problem
and bug issue are captured and forwarded to the developers. They are also responsible for
round-the-clock application maintenance and carrying out simpler tasks to return the appli-
cation to a responsive state after an incident or an issue. If there is an issue or a problem with
either application performance or infrastructure, then support should be the first to find out
of it and act immediately or notify the key personnel to take preliminary action.

The most important tasks performed by support are listed below.

� Incident communication and issue management
� Capturing bug reports
� Application monitoring
� Application restarts and recovery
� Monitoring dashboards and react immediately
� Provide useful information of issues to the developers
� Provide useful information to the BU

26

2.4.4. Product Owners

Product owners are responsible for the value provided to the clients. If some aspect of the
product is not working or temporarily out of order, then they are the ones who will have
to respond for it. They need to have the latest statistics available to them. Product owners
need the usage statistics of users and other market segment vital info to see what to pursue
and what feature requests to prioritize. On that information, they decide what aspects of the
current product are doing well, and what needs to be improved. In close co operation with
the client and developers, they work towards a better understanding of the client needs and
how to implement them.

The most important tasks performed by product owners are listed below.

� Give feedback to the clients
� Prioritize issues and bugs, identify blocking issues
� Gather new requirements
� Organize trainings for new features
� Gather statistics and analyze quarterly results

27

3. Needs Analysis

From the overview in the previous section, the actual needs of the functional units will be
analyzed. The needs will be approached from an infrastructural aspect. An overview will be
given what each segment needs and expects from the infrastructure for a smooth and agile
workflow. The initial expectations and information flow is displayed on Figure 7. The figure
shows information flow between functional units. Illustrating how complex and multi-layered
the dependencies between different departments are. First the needs will be listed and then
analyzed in order to allocate responsibilities to departments.

Infrastructure

Business
Unit

Support and
Operations Developers

Provisioned HW
HW maintenance
Guaranteed uptime
Access to hosts

Access to hosts

Budget for HW
Specification

Specification
Requirements

Documentation
OPI-s

Requests for software
Requests for changes

Customer facing support
Incident management

Devops

Development Tools
Application setup
Continuous improvements

Requests for
changes

and
improvements

Maintained HW
Cooperation with changes

Fulfilment of business
requirements

Figure 7. Main Needs of Divisions.

28

3.1. Needs listing

Infrastructure

Infrastructure is the unit whose main responsibility is to provision and guarantee high avail-
ability of the hardware. They mainly need a clear description from the team of what they need
and how much of it. The provisioned hardware needs to be described and ordered ahead of
time. The BU confirms the costs, if not the HW order is changed until all parties are satisfied.
Once an agreement of cost and performance is reached, the infrastructure will have the task
of actually providing the best possible solution for provisioning, considering the available
clusters, the limitations and the needs of the team.

The workflow for HW provisioning is usually fairly well streamlined with modern clusters
and enterprise-class hypervisor software. The more complicated part is the clustering, storage
and networking of the provisioned HW. Provisioning is done in accordance to the require-
ments given by architects and developers.

Maintaining the provisioned HW is one of day to day tasks of infrastructure. Generally due
to security reasons, giving out root-level access on hosts is not considered good practice in
large scale enterprises. Using process control systems and user encapsulation is preferred due
to security reasons.

The largest value for this tier would be an automation tool that would enable managing a
large number of hosts with ease. The tool should be able to bring a system to a desired
state without the need to do any special actions. The tool should also be able to enforce the
state and prevent changes that are not agreed upon with the HW maintainers. Thus keeping
things in check and under control, with changes being documented in change requests. The
actual changes carried out by people who have experience in performing changes and thus
guaranteeing quality, maintainability, security and functionality.

29

Developers and Devops

Developers is the tier that uses the hardware provisioned by the infrastructure. For this tier, it
is not important what is done with the HW, as long as it works and the software on it provides
a good and stable working environment. The developers themselves ideally develop on their
local machines and not interfere with other environments. Thus developers rely on the quality
of the continuous integration for their day to day work throughout the application life cycle.
Having a good CI pipeline with as much tools as possible is essential. Having access to
documentation on the application hosts and related resources is also of high importance as
it increases the transparency for the developers and enables them to solve their problems on
their own or to provide better information on the issue to the infrastructure.

Devops is the tier that provides most of the tools for CI and development support tools.
Setting up testing infrastructure, application monitoring, and artifact delivery to application
hosts. Having an automation tool to help this process would help to scale and speed things
up, doing anything manually should be avoided. An automation tool with modularity and
re-usage would be of great benefit.

Support

From the supports point-of-view, the greatest values are access, documentation and infor-
mative checks that provide insight on the actual health and state of the system. The checks
and information sources are set up by the developers and devops. The better the information
source, the better can support react, provide information on the issues and try to solve the
issues. Providing more value to the company.

Business owners

The business owners have the least direct communication with the infrastructural side, but
they have the highest impact when something is behind schedule or not working. For the BU,
the greatest value is the best quality of work the infrastructure, developers and support can
do. The smooth cooperation and workflow of the rest of the teams is the ultimate value a well
coordinated process description can provide.

30

3.2. Analysis of needs listing

The free-form listing of inter-department needs and information flow from the previous sec-
tions gives the overview required making it possible to map the main building blocks in the
process. The final largest responsibilities, the functional unit responsible for setting up the
infrastructure in that segment and the user of the final product is illustrated on Figure 8 and
explained in the following section.

Used bySetupResponsibility

HW

OS

Software

Application

Service

CI

Infrastructure

Devops

Developers

BU
BU D

e
v
s

I
n
f
r
a

D
e
v
o
p
s

S
u
p
p
o
r
t

Figure 8. Mapping of Responsibilities to Functional Units.

The largest responsibilities and working areas illustrated on the Figure 8 emerged from the
description of workflows in the previous sections. From the overlap in the setup section, it is
visible, that the entire workflow can be segmented into two large fractions. The HW and OS
level management being one of them and application software development and configuration
management / deployments the second. The Figure above illustrates six largest layers in
application landscape. HW provisioning, OS management, OS software management, CI
pipeline, application setup, application runtime and service level. Shows who is responsible
for setting up the services and tools related to that layer and who uses the final result. From
the responsibility to functional unit mapping the tools that suit the workflow for each division
can be evaluated.

31

4. Automation tools

In the following sections, currently available and more mature tools for automation of tasks
will be listed, alongside with proposed areas of usage for the tools.

4.1. Distribution and Fields of Usage for Automation Tools

Based on the needs and the largest task groups described in the previous sections and from
the mapping of usage and responsibilities shown on Figure 8 . The following segmentation of
tools to operations illustrated on Figure 9 is proposed. The tasks described in the illustration
will be further explained on Table 1.

Maintained byToolResponsibility

HW

OS

Software

Application

Service

CI

Infrastructure
configuration
management

Development
configuration
management

CI Tools

Process control
D
e
v
s

I
n
f
r
a

D
e
v
o
p
s

LB

Figure 9. Mapping of Responsibilities to Proposed Tool Sets.

The two largest assignments and the best candidates of automation are infrastructure and
configuration management. Ideally, this could be done with one tool and separate reposito-
ries. Considering the possible contextual differences in managing UNIX-based hosts versus
automating application configurations. One tool might be too limiting for one task or too
overwhelming for the other task. Keeping in mind the simplicity of use and fast utilization.
The possibility of using separate tools is explored. On top of that supporting applications
that will end up dictating the day to day life of everyone in the company could be managed

32

by the same tools in similar fashion as production applications. Always using one tool for
tasks in a certain responsibility range will provide scalability and ease of use. Especially if
supporting tools are managed in a standardized manner, making it easy to handle and manage
for everyone who is familiar with the setup methods used.

Description of fields of assignments

Tool Class Area of Automation

Process Control Systems
• Management of service runtime

Loadbalancers
• Directing traffic to the production applications and
distribute load
• Zero downtime deployments

Continuous integration tools
• Build control and automation

Development configuration
management

• Application landscape creation and configuration

Infrastructure configuration
management

• OS setup and management

Table 1. Description of Fields of Assignments.

The Table above gives examples of the general task the tools in Figure 9 have.

33

4.2. Proposed Tools Listing

The tools proposed are based on the existing solutions and already established work flows.
The following tools listed below on Figure 10 will be evaluated to see what combination
allows achieving the smoothest infrastructure setup and management architecture.

Proposed toolsResponsibility

HW

OS

Software

Application

Service

Configuration Management tools

CI

Puppet

Jenkins

Monit Supervisord F5

Anible Tower

Salt Chef Ansible

Init.d

Figure 10. Proposed Tools for Platform Tasks.

The tools were chosen for comparison as some of them have already been experimented with
within the company. Some tools have set foot in the industry and thus are rooted in the work
flow of developers. The selection of more mature and widely supported tools was chosen.

The tools are used for configuration management, continuous integration work flows, appli-
cation management and load balancing. Where the underlying configuration management
tool would be used to set up, maintain, configure and manage all other aspects of the infras-
tructure.

34

5. Configuration Management Tools

Configuration management tools are software solutions to automate VM setup and configu-
ration related workflow. There are two types of configuration management tools out on the
market at current times. Declarative and imperative [4], both having their own positive and
negative sides. The different approaches and thus the different behaviors stem from the cod-
ing language the tool is written in. The approach of the more popular automation tools is
given in Table 2.

Distribution of Configuration management tools

Declarative Imperative

Puppet Ansible

Salt Chef

Table 2. Automation Tool Distribution by Declarative or Imperative Approach.

The difference in approach the tool uses leads to differences in coding-style and also on the
determinism of the execution. In declarative approaches, the required final state is described
and reaching the state is left to the underlying framework to sort out. Meanwhile, with
imperative approach, the required state is reached by executing a list of commands one after
another in a certain order to end up with the required outcome.

In terms of automation tool behavior it means that declarative approach can lead to some
disambiguation in the execution of tasks to reach the required outcome. Meanwhile for im-
perative approach the sequence of execution is much more deterministic, but leaves more
room for corner cases and requires defensive coding with error handling in more complex
cases to guarantee success.

Depending on the underlying programming language used by the tool and overall maturity
of the tool. The one large limiting factor on the selection is the semantical and syntactical
express-fullness of the DSL or coding language used in the tool. For both DevOps and devel-
opers it is essential to have as low learning curve as possible. Enabling people to start using
the tool with minimal delays and that the created automation would be easy to comprehend
and modify. Without the need to go over long documentation and reference manuals. At the
same time be flexible enough to orchestrate complex sequences of actions.

35

5.1. Comparison of Configuration Management Tools

For automation of infrastructure setup and configuration management, the tools listed in Ta-
ble 2 will be investigated closer. A small overview of each tool will be given as well as a
comparison of main features.

5.1.1. Puppet Labs Puppet

Puppet has been around the longest and thus is the most mature with the best modules and
support for other tools. A basic puppet setup consists of a puppetmaster install and client
agents on each orchestrated node. The clients pull periodically from the master the latest
definition of the state the node needs to be in by interpreting the state from the instructions in
its data stores called PuppetDB and Hiera. This data store keeps track of all the changes and
facts that need to be done for the node to be in the corresponding state. The puppet agents
can also work in push mode, in order not to wait for the pull to occur in case of more urgent
cases.

Getting up and running with puppet can take a little longer as the syntax and basic logic needs
to be understood before making any real changes. And as Puppet has an object oriented di-
rection in mind with great emphasis on re-usage. The trail of inclusions can in time get very
long and confusing to new comers.This ultimately defeating the point of easy comprehen-
sion. The other point of concern is the modules. As it is with open source a lot of different
implementations can do the same thing in different ways with a slight variation. This can
lead to incompatibilities between the different modules and cause non deterministic results.

5.1.2. SaltStack

Salt has been around for five years and in the last years has picked up its development pro-
cess being one of the largest opensource projects on GitHub for a while. Written in Python
and having a simple structure composing of masters, minions, state files, grains, pillars and
modules. States, grains and pillars are basically YAML structured data, that describes the end
state of the system. More dynamic things such as parametrized templates can be described
via jinja markup. Or by implementing a custom module in python.

36

The documentation, if it is available is detailed, but troublesome to work through. Due to its
rapid development, some of the features are not even properly documented at all. The initial
getting started documentation and examples are good to get going, making it easy to buy into
the features. Only later to discover that the complexity of orchestration in multi-tier wait and
retry scenarios can turn time consuming to develop.

5.1.3. Chef

Chef is a tool with a lot of large scale clients using it. Written in Ruby and Erlang, makes it
very flexible and capable. The drawback neing that the developers need to know ruby. For
use with ruby on rails applications deployments it is thus very convenient and applicable. For
others, due to the language base, can be considered as too much overhead. The second issue
with Chef is the large segmentation of different state descriptions into different files. This
makes the configuration very multi level and not transparent at the beginning.

The documentation is very structured and detailed [5]. Explaining all the basic concept from
the beginning. Good documentation makes things easier to get going if the user already
is familiar with Ruby DSL. Chef uses a puppet like pull feature and master to chef client
hierarchy. But does not make use of the imperative approach as puppet does, making it more
transparent when it comes to ordering of executions.

5.1.4. Red Hat Ansible

Ansible is the youngest of the group, lately purchased by Redhat. Utilizing a masterless
push-based configuration runs, makes it one of the most light-weight, easy to manage and set
up configuration management tool of the selection. The agentless design enables for every
developer to have its own sandbox, or to make changes from his own local machine. Ansible
has a simple, yet flexible enough structure to achieve complex behavior and orchestration.
Written in Python and using a very custom DSL for orchestration files, makes it sometimes
frustrating to use as the developer have to rely on examples to see how the syntax exactly
goes. However, the documentation is usually adequate and has plenty of examples included.
More often than not, the documentation and examples could be more detailed and have more
explanations.

37

The learning curve of Ansible is linear and people can understand and make additions to ex-
isting play books without much effort. Moving on from there is relatively easy as there are
a lot of examples and even more different modules to use and take example from. Writing
custom modules is easy and is not limited to Python only. Ansible modules support basically
anything that can be executed on the host and can return a YSON formed return with addi-
tional values on the call. Alternatively Ansible can simply make use of the OS level return
values to decide the success or fail on its own.

38

5.2. Selection of Main Tools

Considering the most basic features of the configuration management tools, taking into con-
sideration their main strengths, weaknesses and characteristics. Considering the underlaying
hardware and the usage of it. Keeping in mind the existing segmentation and distribution of
responsibility within the company. The following tools were chosen.

Team that manages the HW and the developers are segregated with different levels of access
for each department. This sets separate limitations to the tools that can be chosen. Setting
different general use cases for the tools. Since the underlaying HW is an ESX cluster based
VM-s and their number will keep rising within the cluster. Then the team that will manages
the hosts will have a dedicated task to keep the machines in pristine order, up to date and
secure. As a dedicated task the learning curve of the tool is not that important, but the
longevity of the setup is. This makes Puppet the best option being the most mature offering.

For the development teams, using Puppet would be a little too overwhelming and time con-
suming. Ansible as the most light weight and agile option is the best fit for application
configuration related automation activities. Providing enough tools and opportunities for au-
tomation, yet being easy and logical enough for developers to manage and improve once the
DevOps is done with initial setup. So the final selection of CMT is illustrated on 11.

Selection of toolsResponsibility

HW

OS

Software

Application

Service

CI

Puppet

Ansible

Figure 11. Selection of Tools for Main Tasks.

39

5.3. Puppet Overview

Puppet, with its very mature infrastructure as code approach and pull based master-slave
setup, is more suitable for more classical VM based clusters. The puppet agents periodically
keep pulling the latest manifests and guarantee, that the desired state of infrastructure is
achieved. Constantly running agents make enforcing policies and ground rules easy because
puppet will keep enforcing it at root level, making manual changes temporary, forcing the
requirement to perform changes via puppet.

Setting up the basics for the hosts would be executed via puppet classes. Each host has its
own classes included to the host, depending on the requested software on it and requirements
set to the host. Shared mounts and other root-level host specifics like user management
and enforced application administrator and application runtime user encapsulation. Other
policies can include creation of dedicated partitions or directories with corresponding user
rights. THis sets up the infrastructure for an upcoming Ansible run even on a basically stock
host. Eliminating the need to worry about the lack of root rights on the host for Ansible users.
The enforced user hierarchy and user encapsulation is illustrated on Figure 12.

Host

~/user
User

~/appadmin

/opt/progs/
/dataexchange/
/garbage/
/data/

(appadmin) NOPASSWD: ALL

/opt/progs

(appuser) NOPASSWD: ALL

sudo su - appadmin

sudo su -appuser

SSH

Figure 12. User and Process Runtime Encapsulation.

As puppet is strictly used for host preparation, maintenance and OS level software provision-
ing. Details of puppet will not be further explored as the Puppeteered infrastructure can be
taken as a black-box that takes in requirements such as a software list, users and other OS
level requests. Puppet management needs to be done ahead of application setup time and can
be considered a standardized building block in the application roll out life cycle.

40

5.4. Ansible Introduction

Ansible is the tool responsible for the majority of application related activities. Can be con-
sidered as the main building block for infrastructure on top of the puppet managed layer.
Used by both DevOps and the developers, if they choose to take the responsibility. Based
on experience, the larger portion of developers, if possible would prefer to leave the infras-
tructure for someone else to take care of. The more active developers like to improve on top
of existing solutions if they can, but refuse to take responsibility. Very few would take the
responsibility of a full development and deployment pipeline.

5.4.1. Ansible Overview

In the architecture, Ansible is enclosed into a non-elevated user rights range. Meaning no
root level commands are executed due to enforcing company security policy. This can be
viewed as limiting factor. In reality it needs tight cooperation with the other division and
this in essence leads to cross-team code reviews. As neither side would allow any half-ways
working solutions or clutter in their shared responsibility range.

Ansible with its agentless design only needs to have SSH keys for the user in place, this is
done via Puppet. Other prerequisite is user switching rules for enforced user encapsulation.
Without the rules Ansible run can hang without timeout in some cases, as it waits for user
switching password. The user switching problem is taken care of by a Puppet base user class
enforced user encapsulation.

Ansible is easy to start with and get going as the majority of the information can be kept in
one file that describes the general layout of the application in the infrastructure. This file is an
Inventory file that holds the grouping of hosts. The inventory file can also be used for storing
host specific variables and parameters. Keeping in mind the not mentioned fact that Ansible
variables have global visibility scope if they are declared in inventory files. This can prove
problematic when one role is ran twice on the same host with different parameters, causing
only one set of the parameters apply to both runs.

An inventory file is accompanied by a site file that holds the list of roles that need to be
applied to the host. The roles contain tasks. Each task is basically an execution of some

41

SCM

Workstation

Ansible

Dedicated host

Ansible

Inventory
[knloginapps]
dehamsl485.int.kn

[knloginapps:vars]
#Host specific
environment_stage=systemtest
application_user=knlogin
application_admin=jadmin]

site-file

Playbook

Role

Task 2

Task 1

node dehamsl485.int.kn

Figure 13. Basic Terminology of Ansible.

command. The tasks can be iterated and executed conditionally. With ansiblt 2.0 the entire
structure of a role can now be even more complex and easy to create with the introduction of
blocks, that also enable try catch type of approach to deal with situations.

The outcome of each task can be captured via a register call, what enables access to a lot
of information returned by the task. The information is in json format and each part can be
addressed individually to use as conditionals or parameters for other tasks. Accompanied
with other constructs like polling and waiting until conditions are reached, gives ansible roles
a great deal of flexibility and control over the orchestration carried out on the node.

The most basic terminology of ansible is illustrated on Figure 13. This illustration does not
include the Ansible vault for encrypting sensitive information and custom modules are not
yet introduced, the basic terminology on the figure was explained in the section above.

42

One possible way to structure Ansible files for a project would be as illustrated on Figure
14. The placement of inventory files can be altered and inventories moved to subdirectories,
grouped by environments to enforce structuring. This structure aims to keep the setup as flat
as possible avoiding separate files. The Figure also gives a short overview of the role of each
file in the Ansible structure.

Commands

Roles

Vault

Inventory

Inventory-site.yml

Library

Role Files

Meta

Tasks

Templates

group_vars All

hostgroup

module Custom modules written in Perl, Python, Bash …

command.yml Call to the custom module with Ansible wrapping and
custom behaviour if needed.

Static files that need to be copied to the destination
node alongside with the application.

main.yml File to describe dependencies and required pretasks

main.yml
task.yml

Main level file to include the roles to the playbook
Role file that contains the sequence of tasks

template.yml
Jinja2 markup supporting template files, called,
placed and filled by tasks in the role

Paramaeter defaults or facts that are true to all hosts

Parameters for hosts in a certain group

task.yml

task.yml

secret.yml Encrypted file that contains confidential values that
can be accessed via Ansible vault

File that contains the hosts, definitions of groups of of
hosts and groups of groups.

File that can be named a playbook, containing all the
roles that need to be included on the hosts in the
hostgroup.

Figure 14. Structural Hierarchy of Ansible Files.

A more complete example will be given in the Infrastructure Scaffolding section where the
role of Anisble in the application landscape creation and deployment pipeline is introduced.
That section will explain how Ansible acts as an automation glue to bring everything together
and provide overall value to the personnel and the company, along with a more complete
example.

43

6. Loadbalancers

Loadbalancers play a major role in the application infrastructure[6] by providing the required
prerequisites for high availability. This is achieved by distributing the load between the nodes.
In case of a node failure, LB makes the failure transparent by automatically removing the
node from the pool and re-distributes the load between active nodes. Loss of session for some
clients can occur in case if the sessions are not serialized due to size or other implementation
related limitations. Or if the sessions are not cached in the loadbalancer to recover the session
on other nodes.

With the onset of more agile development and rapid expansions, combination of using both
hardware and software loadbalancers to give more flexibility to the teams has gained popu-
larity. Both approaches are illustrated on Figure 15 where vertical 1 shows the combination
of HW LB and software LB. Meanwhile vertical 2 is a pure HW loadbalancing solution.

VM1
Software

Loadbalancer

VM2

App 1

VM3

App 2

Loadbalancing pool

VM2

App 1

VM3

App 2

Loadbalancing pool

H
ardw

are
Virtualization

Vertical 1 Vertical 2

Figure 15. Use Cases of Loadbalancers.

Using software LB is a valid approach for infrastructure as service solutions, but for more
classical VM based solutions. The usage of software loadbalancers is a concern as it intro-
duces a new level of complexity and a single point of failure to the infrastructure. The benefit
of it on the other hand is that the team has more control of their applications and deployment
related processes. The draw back is that in case of problems the recovery systems need to be
in place and configured ahead of time.

44

The way to utilize the loadbalancers in production, either a combination of HW and SW or
pure HW solutions, does not define the way of doing deployments. Both solutions leave
enough room for play and provide enough capabilities to do deployments in any way chosen.
The latest popular deployment model is “green blue pool” deployments. The procedure is
depicted on Figure 16. The pool is divided into two groups and only one of them is active.
Update is carried out on the disabled group and after that the LB redirects traffic to the
updated pool. This approach allows for very flexible deployment procedures. Also enables
very rapid rollbacks in case of problems arise. The drawback of implementing this model
on dedicated VM based infrastructure is that one of the pools is not utilized all the time and
consumes resources.

Vertical1:green1 v1.0

Vertical1:blue1 v2.0

Vertical1:blue2 v2.0

Vertical1:blue1 v2.0

Vertical1:blue2 v2.0

Update on Blue Switch active to blue,
let old session time out on green

Vertical1:blue1 v2.0

Vertical1:blue1 v2.0

Update on Green

Vertical1:green2 v1.0

Vertical1:green1 v1.0

Vertical1:green2 v1.0

Vertical1:green1 v3.0

Vertical1:green2 v3.0

Figure 16. Green Blue Zero Downtime Deployment Pipeline.

A more suitable deployment model for dedicated VM based infrastructure is a cycle based
rollout procedure. This approach is show on Figure 17. This involves disabling and enabling
of nodes or pool members [7] and updating the applications in a predetermined order. This
procedure can take longer due to being forced to wait twice for sessions to time out. The
benefit of this is that all dedicated HW for the vertical is always available to the client.

Vertical1:node1 v1.0

Vertical1:node2 v1.0

Vertical1:node3 v1.0

Vertical1:node4 v1.0

Disable Group 1

G
roup 1

G
roup 2

Active sessions tim
e out on G

roup 1

Vertical1:node1 v2.0

Vertical1:node3 v1.0

Vertical1:node4 v1.0

Update on Group 1

G
roup 1

G
roup 2

Disable G
roup 2, enable G

roup 1

Update on Group 2

G
roup 1

G
roup 2

Active sessions tim
e out on G

roup 2

Enable G
roup 2

Vertical1:node2 v2.0

Vertical1:node1 v2.0

Vertical1:node2 v2.0

Vertical1:node3 v2.0

Vertical1:node4 v2.0

Figure 17. Cyclic Zero Downtime Deployment Pipeline.

45

6.1. F5 Networks Big IP

The cornerstone of any modern IT infrastructure is the connection to the outer world. This
is in most cases some sort of a loadbalancer. One of the most widely spread provider of HW
loadbalancers is F5 Networks, that up to this date has reached the “Cisco” level in the appli-
cation delivery controllers solutions. Meaning it is an authority in the industry. Large client
base, good documentation, support and solid performance, makes it a good choice. Most
larger enterprises already having a box or two in their server park. Updating into familiar ter-
ritory on business critical hardware without making any drastic changes in the infrastructure
does make sense.

Other benefits Big IP products provide include dedicated HW for computation heavy tasks
like SSL acceleration and encryption/decryption to provide improved performance and longevity.
Dedicated HW makes the F5 provided package a very good all round solution what should
make a solid statement to advise against software loadbalancing within the internal network.
Using only HW LB makes the infrastructure more transparent, perform better and have less
points of potential failure. Additionally providing enhanced security by the ASM[8] module
that takes care of attack vectors before they ever reach the application.

The other benefit of F5 networks products, due to its large client base, it also has a lot of
support by third party tools. One of them being the BIG-IP Ansible modules [9]. These
modules enable delegating Application pool Node management commands via ansible roles
to the F5 BIG-IP LTM pools via iControl SOAP API. Giving Ansible all the required control
and information to perform all the required actions to switch nodes in a pool to disabled state
and to get the current session count of desired node, making Ansible a fully autonomous fire
and forget tool for deployments.

The only blocking factor here being that the features are made available via a Python library
that is currently not installed by default. Since the loadbalancer is a very important and
mission critical piece of hardware, changes in loadbalancers need to be thoroughly tested and
verified long in advance. This task that is not done in Kuehne+Nagel F5 setup, thus making
the final step of fully autonomous, zero downtime deployments at current time unavailable.

46

7. Process Control Systems

Process Control Systems in OS level process management context stands for means of man-
aging a program runtime in a more convenient way than in a basic way [10] of manually
executing a startup command. Most tools used to support development come with included
means of executing the pre-compiled binaries. The developed software need in most cases
a tomcat instance to to be started to serve the content, or in the case of integrated packages
such as bootspring applications, only need the java executable and a few configuration flags
to run [11].

Manually executing startup commands is out of the question in an automated environment.
That is why software comes with startup scripts included and developed applications prefer-
ably have a standardized configuration and startup executable. The executables are not much
use without means of conveniently managing the runtimes of the applications. There are mul-
tiple ways to interface these startup scripts with OS level services and make the applications
start up automatically with the server and enable management.

The following sections will introduce a selection of basic process control systems.

7.1. Init.d

One of the oldest and basic ways of accomplishing application process management is by
using the same method Linux starts (and stops) all its subsystems via init.d[12]. This modular
and organized startup of subsystems is a part of the OS and thus is readily available to use
on any host out of box. The drawback of it being an integrated part of the OS booting
sequence is that root level access is required to make the application into a subsystem. This
does guarantee the startup of the application alongside with the host and makes service calls
available to the subsystem, making it easy to manage the runtime. Since init.d subsystem is
basically a standardized shell script, this makes it a flexible tool for those who are competent
with Bash scripting. Being a part of the OS for a long time and the specific use of the
init.d does make it a very limited tool in the sense of additional features such as remote
execution or integration into other tools. The other major drawback is that init.d is only a
tool to guarantee the starting of processes alongside with the OS. The subsystem provides no
process monitoring to make sure the process remains up and running.

47

7.2. Supervisord

A more modern Process Control System is Supervisord [13]. Initially used as a process
watcher for monitoring long-running scripts and processes that are integrated as services and
can fail silently. Supervisord provides fairly good flexibility and above all, easy configuration
and usage. Once Supervisord has been installed on the host, it is very easy to configure it,
even without root level access. It can be restarted and used by the owner of the socket file
making it convenient to use for both automation tools and support personnel.

Configuration of supervisor is straight forward, consisting of two files. One file for supervisor
specific and other for supervised application related parameters. The most outstanding lines
of supervisord configuration is brought on Figure 18. The most important being on line 3
where the socket ownership is determined, allowing for non root operation of supervised
applications, but not the supervisord process itself.

1 [u n i x _ h t t p _ s e r v e r]
2 f i l e = / v a r / run / s u p e r v i s o r . sock ; (t h e p a t h t o t h e s o c k e t f i l e)
3 chmod=0700 ; s o c k e t f i l e mode (d e f a u l t 0700)
4 chown= jadmin : j admin ; s o c k e t f i l e u i d : g i d owner
5
6 [i n c l u d e]
7 f i l e s = / o p t / k n l o g i n / s u p e r v i s o r d . d / ∗ . i n i

Figure 18. Supervisord.conf Snippet.

The supervised application configuration is taken from .ini files from the directory configured
in supervisord.conf file, shown on line 7 in the Figure 18. In the ini file, either the startup
command or startup script is given. In case of a script, “stopasgroup” needs to be set in order
to pass the stop call to the spawned process. There is no built in way for custom behavior on
stopping of the application. This is a limiting factor that can be circumvented with developing
a custom module.

1 [program : e l a s t i c s e a r c h]
2 command =/ o p t / p r o g s / e l a s t i c s e a r c h / b i n / s t a r t u p . sh
3 d i r e c t o r y = / o p t / p r o g s / e l a s t i c s e a r c h /
4 u s e r = k n l o g i n
5 s t d o u t _ l o g f i l e = / d a t a / l o g / e l a s t i c s e a r c h / app . l o g
6 s t d e r r _ l o g f i l e = / d a t a / l o g / e l a s t i c s e a r c h / app−s t d e r r . l o g
7 a u t o s t a r t = t rue
8 a u t o r e s t a r t = t rue
9 s t o p a s g r o u p = t rue

10 s t a r t s e c s =5

Figure 19. Supervisord Managed Application Configuration Example.

48

7.3. Monit

A similar solution is provided by Monit [14]. Monit is a compact solution that utilizes al-
ready existing tools such as the init subsystem, upstart and systemd. By using existing OS
level blocks, Monit manages to provide as much functionality as possible out of box and
without the need for external plugins or extra software. Monit can also utilize run-level
scripts to manage services that enables customized actions on both shutdown and startup of
applications. The features make Monit very light weight, yet very flexible tool. The custom
behavior on top of process management introduces additional options not only for reactive
actions, but also proactive tools like metrics monitoring and notifications. In addition to that
Monit provides basic functionality for automatic recovery and smoke-testing.

IN order to spawn processes as other user, the daemon needs to be started at root level. The
calls to application management then need to be executed at root level as well. There is no
built in capability to enable management by other users. This can be circumvented by adding
custom sudo rules to enable calls to that service for support personnel.

Application related configuration is more complicated compared to supervisord, as illustrated
on Figure 20. The additional complexity on the other hand enables more control over the ap-
plication execution and behavior. Introducing such benefits as custom actions on shut down.
As shown on lines 2-4 on Figure 20. Configuration also enables http calls and testing for
certain content with options to alert or try additional actions. Besides application related
monitoring, host metrics can be monitored to discover basic problems with storage and avail-
able resources before they cause an impact.

1 check p r o c e s s e l a s t i c s e a r c h wi th p i d f i l e / o p t / p r o g s / e l a s t i c s e a r c h 2 / p r o c e s s . pid
2 group e l a s t i c
3 s t a r t program = " / o p t / p r o g s / e l a s t i c s e a r c h 2 / b i n / s t a r t u p . sh " as " k n l o g i n "
4 s t o p program = " / o p t / p r o g s / e l a s t i c s e a r c h 2 / b i n / shutdown . sh " as " k n l o g i n "
5
6 check h o s t e l a s t i c s e a r c h _ h o s t w i th a d d r e s s l a o d i k e . i n t . kn
7 i f f a i l e d u r l h t t p : / / l a o d i k e . i n t . kn :9200 wi th t i m e o u t 60 s e c o n d s t h e n a l e r t
8 group e l a s t i c
9

10 check h o s t e l a s t i c s e a r c h _ c l u s t e r _ h e a l t h wi th a d d r e s s l a o d i k e . i n t . kn
11 i f f a i l e d u r l h t t p : / / l a o d i k e . i n t . kn : 9 2 0 0 / _ c l u s t e r / h e a l t h
12 and c o n t e n t == ’ g r e e n ’
13 wi th t i m e o u t 60 s e c o n d s
14 t h e n a l e r t
15 group e l a s t i c
16 check f i l e s y s t e m r o o t f s w i th p a t h / o p t

Figure 20. Monit Managed Application Configuration Example.

49

7.4. Init.d, Monit and Supervisord Comparision

The main differences of the three PCS are brought out on Table 3

Comparison of Init.d, Supervisord and Monit

Init.d Supervisord Monit

Root level process Yes Yes Yes

Non-root level management Yes Yes Yes*

Non-root level configuration No Yes** Yes**

HTTP interface No Yes Yes

LDAP integration No No No

Custom startup scripts Yes Yes Yes

Custom shutdown scripts Yes No Yes

Application smoke testing No No Yes

Automatic restart No Yes Yes

Restart retries back off No Yes Yes

Free of charge in corporate usage Yes Yes No

Support for additional plugins No Yes*** No

*needs custom sudoers rule

**needs custom configuration

***can be developed into supervisord

Table 3. Comparison of Process Control Systems.

From the comparison of the three, supervisord comes out as the one best fit for the task of
a basic and simple process control system. Allowing non root level configuration and man-
agement. Easy to use commandline call and very easy to template and update configuration.
This makes supervisord the most suitable tool for both automation and support personnel use.
All more complex cases or corner cases can be addressed either via developing more func-
tionality directly into supervisord or can be bypassed by using Ansible in a more intrusive
manner.

50

7.4.1. HTTP Interfaces of Process Control Systems

The two more modern process control systems, Monit and Supervisord also have a user
friendly front end. This would enable developers and QA to conveniently manage the ap-
plication without the need to log in to the hosts and not deal with terminal tools if they so
wish. The only drawback with both is that though both have password protection enabled in
the configuration. Then they both use static passwords and neither has native LDAP plugins
or support.

This means that if to wish to integrate the functionality into the existing infrastructure, then
this would need to be done via third party tools. The easiest option is to use Apache loopback
with corresponding LDAP plugins on apache side. Using this solution would enable precise
control over the access and convenience to the users.

Figures 21 and 22 illustrate the web front ends of both applications on an example of an
Elasticsearch instance supervision. Both interfaces provide basic feedback of the state of
supervised process. Both provide basic measures to manage the process as well. With Monit’s
additional functionality, the interface is also a little more informative with giving an overview
of the host metrics and the custom checks configured. Supervisord web frontend on the other
hand enables quick access to the stdout of the supervised application, what can be a quick
information source.

Figure 21. Supervisord HTTP Interface.

HTTP interfaces, thou being a convenient feature, would get too confusing and troublesome
to manage with large numbers of hosts and applications. Each web interface of each host
would need to be separately addressed to get access to the management layer. All the in-
terfaces would need separate listing and documentation. This would introduce a new level
of complexity that would limit scalability. The web interface can also be considered as an

51

attach vector, thus not thinkable of applying in production. Enabling this feature could be
considered only on lower level environments that are not business critical.

Considering the facts, it is more beneficial and easier for longevity to stick to the larger scale
tools for visual feedback and use the PCS tools for only the basic tasks and keep all the
monitoring in dedicated corporate tools.

Figure 22. Monit HTTP Interface.

52

8. Automation Tool Integration

The goal of automation is to help smooth out the workflow and decrease the amount of time
and effort put into tedious tasks. Freeing up time to focus on more important tasks. Full
automation has two sides to it. If left without any supervision or ways of managing, can lead
to problems. Having visual feedback and convenient control over the automation is almost
as important as the automation itself. Having precise control over the runs, clear overview
the results and have instant access to the debugging is vital to increasing the transparency.
Debugging is vital to provide quick solutions when a corner case or an unforeseen exception
is reached.

As puppet is used for lower levels that are developed and tested to run and reach a certain
state. Developed and used by a separate team, then the tools used for that are not discussed.
The much more broadly used tool Ansible, and the roles created for that, will be used cross-
teams and much more frequently. In a lot of different use cases and thus need a way for
scheduling and overview of Ansible runs. Get visual feedback from the run results and good
overview of what happened. With means to debug and alter the job if needed.

53

8.1. Ansible Tower

Ansible has a very feature rich tool for centralizing and managing Ansible runs. The list of
features and provided benefits is extensive[15] making it a very viable option for manage-
ment and information source of Ansible runs and results. Tower being provided by the same
company as Ansible, makes it very tightly integrated with good coding conventions of inven-
tory files and host facts. Providing a good overview of the existing infrastructure out of box.
Having somewhat support for LDAP[16], makes user management easier and life of users a
little easier, not needing to remember yet another credential.

The dashboard view enables graphical inventory management illustrated on Figure 23 and
job scheduling. In addition the built in REST API allows for centralized command execution
and integration with other tools to make things easier to integrate and automate.

Figure 23. Ansible Tower User Interface - Inventories Screen.

The drawback with the user interface at its current state is the lack of parametrized runs.
Currently it is not convenient to set parameters before each run. It is required to edit the job
template before the run to achieve a different run. To circumvent that, a lot of job templates
for different use cases will need to be created and at that point, the UI will get cluttered
and hunting or searching for the required job is not a welcome addition to the work flow.
Figure 24 illustrates the situation where to have the basic functionality of starting stopping
and restarting a group of applications needs 3 different jobs, even thou the task is achieved
with one single role that is run with different parameters.

54

Figure 24. Ansible Tower User Interface - Job Templates Screen.

Despite Tower providing an opportunity packed with features. The developers do not find the
idea of yet another extra step in the pipeline too pleasing. The LDAP integration only enables
automatic user creation. Team grouping and job access still needs to be done manually.
This can be considered as unnecessary managerial overhead. The jobs need to be created
and configured manually even thou the command line equivalent calls that were used during
creation and testing already exist. So from pure work flow related reasons Tower, thou being
a promising tool, has too many prerequisites for integrating into the day to day work of a Java
developer.

Tower is also a tool that is still in development and experiencing all sorts of changes and
improvements. With that, also a few problems. As during our limited testing time it ran
into problems with terminated jobs remaining as stray processes. Finished jobs sometimes
hanging and then leading to performance issues of the tower host itself. Needing manual
maintenance to keep things moving. By now the issues are probably ironed out, but the
initial impression was promising, but the resulting work flow was a little disappointing. The
other aspect talking against tower is the cost. At $70 a node a year, then it can get a little
costly at large scale and costly to begin with if the developers see it as an extra hoop to jump
through.

55

8.2. Ansible and Jenkins Integration

Hudson/Jenkins has been around for a while and has matured over its time. Becoming one
of the go to solutions continuous integration services for software development. Having been
around for this long, a lot of developers are used to it and consider it as one of the essential
tools in their day to day jobs. Thou suffering from performance problems time to time, it
is still very widely used and is very common in Java development pipelines. Among the
multitude of its other plugins, Jenkins also has an Ansible plugin[17].

The setup of the plugin is easy and needs an ansible installation on the server to run. After
the plugin is configured it enables basic inventory definition and to execute Ansible tasks as
a job build step. The other way to utilize Ansible in an easy and out of the box way is to
simply use the Ansible as a command line call as is illustrated on Figure 25. This call can be
parametrized via Jenkins built in features as is shown on Figure 26. Creating easy to manage
and use jobs that take parameters and can be called by other jobs at certain steps and with
according tags is in the skill set of most of the people in the industry.

Figure 25. Jenkins Job Configuration - Execute Shell Build Step.

This all enables easy to manage parametrized jobs that can be called by other jobs or by
developers to achieve a certain task that is needed. As previously stated, Figure 26 illustrates
the Jenkins built in parametrization support. By using this feature achieving a user friendly
front end for an Ansible role is very straight forward. A resulting Jenkins job that interfaces
an Ansible role with all the parameters is shown on Figure 27.

The benefit of this is that it makes the push button automation seamless and invisible for
the developer. Integrates it to the existing work flow. And with ansible role run based return
values, that interface with Jenkins’ default shell return value interpretation also enables failed
states and visual feedback of the run. As Ansible is called as a command line call by Jenkins,
then this also means that the build log automatically captures the stdout of the Ansible role

56

run. Making the results and debugging info readily available within Jenkins. The readily
available capabilities of Jenkins and the familiarity the developers have with Jenkins leads
this to be the closest fit for current times. Until a more beneficial tool comes along that is
enough to make the developers open for a change.

Figure 26. Jenkins Job Configuration - Parametrized Build.

Figure 27. Jenkins Jobs Screen - Ansible Role Job.

57

9. Automated Documentation

One large part of any development process is documentation. With automation the important
role of documentation more often than not takes a back seat. Due to the large-scale and
urgent needs of requesters. Documentation is sometimes left lagging behind. This leads
to outdated information. Unknown and undocumented processes and sometimes even false
understandings and miss communications.

Automation tools such as Puppet or Ansible can be viewed as code. The best way to document
code has been within the code itself. Comments should be a normal and everyday part of any
Puppet manifest or Ansible role, task or module. The coding documentation and effort should
be coordinated within the team itself in accordance to the available resources and time. To
provide the best possible solution for code documentation.

Automation tools allow to go beyond code documentation. Automation tools and the descrip-
tions in them are a great information source on the actual state of the infrastructure. One such
example is network visualizers that self explore and mark down the network to provide use-
ful information. Using that information in documentation can provide up to date information
[18]. More importantly, fee up people. In similar fashion, with a little help, Ansible inven-
tories can provide an excellently comprehensive overview of projects and their machines.
The same goes for Puppet manifests. This information is readily available for those who are
familiar with either of the tool.

Making this information easily accessible from one place that centralizes all the information
available on the node. Can make things more transparent and easy to follow for everyone
concerned. Especially if the useful information already exists somewhere in an abstract way
and can automatically gathered. Especially in the case of automation tool DSL having certain
constructs how to define something. Or has a certain way of returning information after an
automation run.

Ansible is a great opportunity of gathering facts on hosts. It has a lot of useful constructs to
gather information that can be captured and saved during a playbook run. So taking a step
from documentation via code comments. Towards active facts gathering and centralizing as
a coding habit can not only simplify the documentation effort, but also provide a lot of useful
information readily available for other parties improving the infrastructure transparency.

58

9.1. Documentation Centralization Automation

In modern IT infrastructure the ways of how to represent and store data has evolved. There
is numerous methods of how to gather information. One new way to index, search and re-
trieve data is Elasticsearch[19]. Elasticsearch is an abstraction layer implemented in java to
utilize the full-featured text search engine benefits provided by Apache Lucene[20]. The high
performance indexing and search capabilities provided by Lucene. Combined with Elastic-
search’s widely adapted and easy to use API that has implementations in most wide-spread
programming languages. Among them being Python[21], Ruby[22] and somewhat support
for indexing directly in bash[23].

Elasticsearch
Index

Application host

Ansible Puppet

Manifest file
Documentation

role

Gather
metrics

{
 "_index": "hosts",
 "_type": "host",
 "_id": "dehamsl1.int.kn",
 "_version": 3,
 "_score": 1,
 "_source": {
 "name": "dehamsl1.int.kn",
 "environment": "systemtest",
 "metrics": {
 "CPU": "1",
 "memory": "0",
 "space_used": "1.5",
 "provisioned_space": "7.2",
 "os": "CentOS release 6.2 (Final)"
 }
 "description": "Desctiption from manifest."
 }
}

Inventory file Manifest Parsing

Application

/data/log/application

ELK
Stack Link to the logs in

kibana

application.properties
application.version=n

Deployment role

Figure 28. Self Documentation Framework Conception Illustration.

This easy to use and widely supported way to index data provides the perfect opportunity to
create a sort of a multi agent based data acquisition system to help ease the documentation ef-
fort. Figure 28 illustrates the conception where multiple different sources, and programming
language based components offload helpful information to a central ES index.

59

The following Ansible role on Figure 29 illustrates the basics of registering values and then
using a bash call to create the index for host related information. And since the key for the
index will be the hostname itself, then there is no need to check if the index is already created
or not and makes data gathering easy. This index can then be updated and by other roles
or by that matter any other function or build job that can provide useful information. For
instance the playbook that installs and sets up logstash shipper for an application has enough
information in the roles to add a link to the Kibana dashboard that contains the relevant
information for this application.

− − −
− h o s t s : a l l

g a t h e r _ f a c t s : no

t a s k s :
− name : Get h o s t name

command : uname −n
r e g i s t e r : hos t_name

− name : Get CPU c o u n t
s h e l l : ’ c a t / p roc / c p u i n f o | g r ep " p r o c e s s o r " | wc − l ’
r e g i s t e r : h o s t _ c p u

− name : Get T o t a l memory
s h e l l : f r e e −g | g r ep Mem | sed −r ’ s | ^ ([^ .] +) . ∗ $ | \ 1 | ; s | ^ [^0 −9]∗ ([0 −9]+) .∗ $ | \ 1 | ’
r e g i s t e r : host_memory

.

.

.
− name : C r e a t e i n i t i a l i n d e x f o r h o s t w i th b a s i c m e t r i c s

s h e l l : ’ c u r l −XPUT h t t p : / / a n t i o c h o s . i n t . kn : 9 2 0 0 / h o s t s / h o s t / { { host_name . s t d o u t }} −d
’ ’ {" name " : "{{ host_name . s t d o u t } } " , " e n v i r o n m e n t " : "{{ e n v i r o n m e n t _ s t a g e } } " ,
" m e t r i c s " : { "CPU " : "{{ h o s t _ c p u . s t d o u t } } " , " memory " : "{{ host_memory . s t d o u t } } " ,
" s p a c e _ u s e d " : "{{ h o s t _ u s e d _ s p a c e . s t d o u t } } " , " p r o v i s i o n e d _ s p a c e " :
"{{ h o s t _ p r o v i s i o n e d _ s p a c e . s t d o u t } } " , " os " : "{{ h o s t _ o s . s t d o u t } } " ,
" h o s t _ i p " : "{{ h o s t _ i p . s t d o u t } } " } , v e r s i o n : " " } ’ ’ ’

d e l e g a t e _ t o : 1 2 7 . 0 . 0 . 1

Figure 29. Excerpt From Metrics Gathering Role.

Once the information is indexed. Representing it can be done in a lot of ways as again ES has
a lot of compatibility with a lot of other tools and programming languages. And creating an
implementation for visualizing the front end can be done in many ways. The way I went for
the proof of concept was to use the ES javascript support[24] with a simple Angular based
site to display the index search results. The resulting search page is illustrated on Figure 30.
Thou similar results can be achieved using other methods.

60

Figure 30. Infrastructure Search Page Screenshot Displaying Search Result of One Server.

A much easier way to display and search for indexed data is Kibana[25]. Kibana is typically
used for data analytics and visualizing data. But also for full text search in application logs.
It is already very widespread and thus it means that people are used to the work flow related
to the introduction of Kibana. Making it easy to provide additional value via a dashboard
that provides an overview of information available on the hosts in a project, or the whole
infrastructure. A dashboard implementation that simply filters application hosts by their en-
vironments is shown on Figure 31. To someone who is familiar or has previous experience
with working with Kibana, finding and filtering information would cause no problems.

61

Figure 31. Kibana Dashboard Displaying Indexed Data, Filtered by Environments.

By changing the way we consider documentation and use the building blocks provided by
automation tools. Changing our mindset and scripting/coding style to keep in mind the ad-
ditional benefits of indexing aspects of information bits about the infrastructure. We can
improve the amount of documentation like information accessible to people with one simple
search and spare the frustration of hunting in outdated wiki pages or long forgotten docu-
ments about orders of machines. Providing a clearer view on the infrastructure and improving
communication.

62

10. Infrastructure Scaffolding

In the previous sections we have gone over the largest steps an application will go through
in its life cycle. The reasons behind the need to be able to release often and without effort
cyclically. The main needs people in a team have, the expectations they have from other
people and surrounding teams. The building blocks of the possible solution to the cross-team
effort known as application landscape.

Building blocks like loadbalancers, Process control systems, configuration management tools.
All with having a goal in mind to create a pipeline of orchestration. One that would enable
to create a smooth information flow from inception to production. From zero to application
with the help of a common understanding of the process. The decisions that need to be done
and communicated to other teams ahead of time.

10.1. Application Platform Implementation Process

The process to a successful application vertical kick off is down to smooth information flow
between the requesters and executers. In large scale companies that have multiple projects
running in its enterprise the process can over time become poorly documented and the issue
only gets worse with distributed teams that do not have the convenience of going straight to
the management or the corresponding team to discuss the problems directly.

This can be a real problem to new teams that can lack the insider information to manage
on their own. To avoid such situations and to improve the efficiency of existing teams. An
infrastructure scaffolding is given. As a reference guide to align the efforts to common base
blocks on what to start from. Even thou the steps are familiar to everyone in the chain of
implementation. It often seems that there is a lack of high level understanding of the whole
process outside their own scope.

63

Table 4 illustrates at high level the process from inception to implementation in a large dis-
tributed enterprise with teams across the world.

Project Vertical Scaffolding Flow

Decision Executors

Requirements BU and Developers

Cost BU and Cost center

Hardware and storage Infra Team

Clustering/Provisioning Infra Team

Network zones Infra Team, based on BU Requirements

Firewall Rules and Loadbalancing Network Team, DevOps, Developers

Application rollout DevOps and Developers

Table 4. Decision and Decider Listing.

Requirements are captured in the Inception phase, setting the time frame for implementation
and the basic information for the rest of the process to go on with. Setting the needs for all
the infrastructure. As infrastructure reflects directly the business needs. The predicted load
and frontend/backend distribution in the Infrastructure. The storage requirements and the
distribution of storage, that sets limitations to clustering of the VM-s. Clustering in a ESX
cluster based infrastructure can decide the performance and data latency of the provisioned
VM-s. The clustering also depends on the network zone of the host. Changing this by mi-
grating the host from one zone to the other is easy, thou it will change the host IP, rendering
the existing firewall rules useless. Once all the infrastructure related tasks are done, applica-
tion landscape related processes can start. Heavy co operation between Infrastructure team
DevOps and Developers ensures rapid implementation.

Having a good overview of the overall state of current events is essential to eliminate miss
communications and bottlenecks. Also having the information readily available can enable
escalation of tasks even if the original requester or implementer is not available at the mo-
ment. Visualizing the existing information in easy to comprehend block diagrams can be an
convenient way to convey the progress. This will introduce some effort in manual documen-
tation. Compared to the alternative, what is sending countless mails to people in different
teams. The investment is worth the effort. Figure 32 is a real life example how documen-

64

tation effort helped re-align inter department communication. How the initial information
forwarded from management was not complete. And as our team works on the information
provided to us, this could have had set back a time sensitive project. With proper grouping of
Ansible inventories, combined with a firewall rule checking role. A dependency graph could
be generated automatically from the available information that is hidden in Ansible. Making
it theoretically possible to automate the reporting.

APZ DMZ

F5 Private portion F5 Public portion

Test
Production

kuehne-nagel.comint.kn

F5

PROD
DB

TEST
DB

tm-frontend1

tm-frontend2

tm-backend

tm-backend

vgm-test.kuehne-nagel.com

vgm.kuehne-nagel.com

VIP
tm-frontend1

tm-frontend2

VIP

VIP

vgm-test.int.kn

(a) Initial missing information on integra-
tiontest

APZ DMZ

F5 Private portion F5 Public portion

Test
Production

kuehne-nagel.comint.kn

F5

PROD
DB

TEST
DB

tm-frontend1
dehamsl1227.int.kn

tm-frontend2
dehamsl1228.int.kn

tm-backend
dehamsl1230.int.kn

tm-backend
dehamsl1231.int.kn

vgm-test.kuehne-nagel.com

vgm.kuehne-nagel.com

VIP
TBA

tm-frontend1
dehamsl1225.int.kn

tm-frontend2
dehamsl1226.int.kn

VIP
TBA

VIP

vgm-test.int.kn

TEST
DB

tm-backend
dehamsl1229.int.kn

tm-frontend1
dehamsl1223.int.kn

tm-frontend2
dehamsl1224.int.kn

VIP

IntegrationVIP
10.61.220.106

vgm-int.int.kn

jenkins master
dehamsl1125.int.kn

jenkins slave
dehamsl1126.int.kn

C
I

Deploy to envs

FW requests need to be re created
due to the host move within DMZ

(b) Update, Int and build server information
provided

APZ DMZ

F5 Private portion F5 Public portion

Test
Production

kuehne-nagel.comint.kn

F5

PROD-DB
vgmp1-s1.db.int.kn
vgmp1-s2.db.int.kn

:1521

TEST-DB
vgmt1-s1.db.int.kn
vgmt1-s2.db.int.kn

:1521

tm-frontend1
dehamsl1227.int.kn

tm-frontend2
dehamsl1228.int.kn

tm-backend
dehamsl1230.int.kn

tm-backend
dehamsl1231.int.kn

vgm-test.kuehne-nagel.com

vgm.kuehne-nagel.com

VIP
TBA

tm-frontend1
dehamsl1225.int.kn

tm-frontend2
dehamsl1226.int.kn

VIP
TBA

VIP

vgm-test.int.kn

INT-DB
vgmd1-s1.db.int.kn
vgmd1-s2.db.int.kn

:1521

tm-backend
dehamsl1229.int.kn

tm-frontend1
dehamsl1223.int.kn

tm-frontend2
dehamsl1224.int.kn

VIP

IntegrationVIP
10.61.220.106

vgm-int.int.kn

jenkins master
dehamsl1125.int.kn

C
I

Deploy to envs FW requests need to be re created
due to the host move within DMZ
RT#: 47037086jenkins slave

dehamsl1126.int.kn

M
onitoring

appdynamics.int.kn
appdynamics-test.int.kn

VGM
VGM_TEST

DEVSUP-688

RT#: 48442532

RT#: 48443312

RT#:49535410

(c) Progress and critical tickets

APZ DMZ

F5 Private portion F5 Public portion

Test
Production

kuehne-nagel.comint.kn

F5

PROD-DB
vgmp1-s1.db.int.kn
vgmp1-s2.db.int.kn

:1521

TEST-DB
vgmt1-s1.db.int.kn
vgmt1-s2.db.int.kn

:1521

tm-frontend1
dehamsl1227.int.kn

tm-frontend2
dehamsl1228.int.kn

tm-backend
dehamsl1230.int.kn

tm-backend
dehamsl1231.int.kn

vgm-test.kuehne-nagel.com

vgm.kuehne-nagel.com

VIP
TBA

tm-frontend1
dehamsl1225.int.kn

tm-frontend2
dehamsl1226.int.kn

VIP
TBA

INT-DB
vgmd1-s1.db.int.kn
vgmd1-s2.db.int.kn

:1521

tm-backend
dehamsl1229.int.kn

tm-frontend1
dehamsl1223.int.kn

tm-frontend2
dehamsl1224.int.kn

VIP

IntegrationVIP
10.61.220.106

vgm-int.int.kn

jenkins master
dehamsl1125.int.kn

C
I

Deploy to envs FW requests need to be re created
due to the host move within DMZ
RT#: 47037086jenkins slave

dehamsl1126.int.kn

M
onitoring

appdynamics.int.kn
appdynamics-test.int.kn

VGM
VGM_TEST

DEVSUP-688

RT#: 48442532

RT#: 48443312

RT#:49535410

RT#:49738394

(d) Final state, all functionality available

Figure 32. Progress Visualization Documentation.

65

10.2. Application Roll-out on the Platform via Ansible

Once the application platform is established by the Puppeteers, then the platform can be
populated via an Ansible playbook run. Also referred to as site run or simply application
landscape roll out. This is achieved via a command line call shown on line 1 on Figure 33.
The command calls ansible playbook with the corresponding user followed after the -u tag.
Utilizing the inventory specified after -i. What in this example is Systemtest inventory. The
roles in the playbook or also referred to as the site file are ran on the hosts in the inventory.
Figure 34 gives an overview of the content of the files and the information they contain.

1 a n s i b l e −p laybook −u emuba raks in −k − i s y s t e m t e s t s y s t e m t e s t −s y t e . yml
2 a n s i b l e −p laybook −u emuba raks in −k − i s y s t e m t e s t r o l l o u t −b a t c h a p p s−s y s t e m t e s t . yml

−e v e r s i o n = 6 . 3 . 1 2

Figure 33. Ansible Command Line Calls.

systemtest

systemtest-site.yml
 . . .
jobhandlers
- hosts: node1
 roles:
 - { role: knloginjobhandler,
 node_identifier: dataextract,
 app_dir: knlogin-jobhandler,
 port_range: 101,
 min_java_heap: 1024m,
 max_java_heap: 3072m,
 max_java_permsize: 256m
 }
 . . .

 . . .
[node1]
komanos.int.kn

[node2]
kineas.int.kn

[jobhandlers:children]
node1
node2

[knloginbatchservers:children]
importers
jobhandlers
knlebo-importers
 . . .
[knloginservers:vars]
#Host specific
environment_stage=systemtest
application_user=knlogin
application_admin=jadmin
 . . .

Figure 34. Application Site Roll Out.

The snippets in on Figure 34 illustrate the
bare minimum for the easiest use case of
rolling out a back end java application. The
parameters for the roles are defined in the
role call if they are individual for a group.
Alternatively the same parameters can be
over written in host variables directly in the
inventory files. Doing this introduces clut-
ter into the inventory. With the other option
being creating a separate file for variables.
Such an approach increases the level of lay-
ers and can lead to loss of overview. Ulti-
mately it is up to the coder to decide how to
approach this. In our implementations, the
verticals are light weight. Keeping the rele-
vant information in the inventory file while
keeping the hierarchy as flat as possible thus
has more benefits than drawbacks. As this is
mostly a cosmetic decision and has no func-
tional impact, then the current decision is to
keep things as flat as possible.

66

The roles ran against the inventory that are required to set up a back end application landscape
is illustrated on Figure 35. The one role called in the play book has a dependency on a
role. The role included has sub dependencies. This all enables precise orchestration and
ensures that all required tasks are included and executed. Ansible self enforces defensive
coding of play books. Firstly by providing good blocks to build checks on and secondly
by automatically evaluating each return value of every task. If the return value signals an
OS level failure or just the return value is not 0 Ansible will react to that, mark the host
as failed. Stops executing on the node and on parallel nodes. Simply failing the job can
have consequences in case of more important roles. So defensive coding and error handling
is advised. In role tasks that check if all parameters are defined and targets of the role are
present. But on application roll out runs, a clean run without any errors is a guarantee of a
functional result.

knloginjobhandler dependencies
knloginbatchserver
supervisord-startup

knloginbatchserver

aosmanagedbatchserver

aosmanaged

dependencies aosmanagedbatchserver

dependencies aosmanaged

Tasks: Set in place housekeeping script
Set in place java jdk to {{ bin_directory }}

Tasks: Create management layer directories
Copy over static management files

Tasks: Create directories for common files
Copy over and populate common keyfiles

Tasks: Create application directories and soft links
Enable housekeeping for vital directories
Add application startup script from template
Create deployment directories

supervisord-startup Tasks: Determine the configuration file for supervisord
Create application ini file for spervisord
Update supervisord

Figure 35. Application Rollout.

67

The command line call on line 2 on Figure 33 is a separate play book for application man-
agement and deployment. This is a simplified example not including the F5 modules as
currently the Ansible modules for F5 are still to be introduced to the production load bal-
ancer. The play book in the command is illustrated on Figure 36 and calls the roll out play
that does not make any changes to the landscape. Thus it does not include any roles. Instead
it includes commands that contain tasks that are needed for orchestration.

1 # make custom modules a v a i l a b l e
2 − h o s t s : k n l o g i n b a t c h s e r v e r s
3 r o l e s :
4 − cus tom_modules
5 # s t o p a l l t h e b a t c h apps
6 − i n c l u d e : commands / k n l o g i n _ n g / s top−b a t c h a p p s . yml
7 # d ep lo y a l l t h e b a t c h apps
8 − i n c l u d e : commands / k n l o g i n _ n g / deploy−b a t c h a p p s . yml
9 # s t a r t up t h e b a t c h a p p l i c a t i o n s

10 − i n c l u d e : commands / k n l o g i n _ n g / s t a r t −b a t c h a p p s . yml
11 # check s t a t u s of a p p l i c a t i o n s
12 − i n c l u d e : commands / common / c h e c k s t a t u s −b a t c h a p p s . yml h o s t g r o u p = k n l o g i n b a t c h s e r v e r s
13 # Get t h e v e r s i o n of a p p l i c a t i o n s
14 − i n c l u d e : commands / common / get−v e r s i o n s . yml h o s t g r o u p = k n l o g i n b a t c h s e r v e r s

Figure 36. Ansible Playbook - rollout-batchapps-systemtest.yml.

The main commands called in the figure above and their overview is given on the Figure 37.
In this case only the basic behavior is needed as back end applications are asynchronous and
their momentary downtime is invisible for clients.

stop-batchapps.yml Tasks: Call the corresponding application stop in supervisord

deploy-batchapps.yml Tasks: Call the deploy-batchapp.yml with corresponding parameters
deploy-batchapp.yml Tasks: Clean deployment directory

Make sure it was cleaned
Copy over new file
Make sure the file is in place
Deploy the application to a new vers

start-batchapps.yml Tasks: Call the corresponding application start in supervisord

checkstatus-batchapps.yml Tasks: Call supervisord to confirm the status of the application

get-versions.yml Tasks: Call the snippet of code to get the application version on
the host what parses the current version

Figure 37. Ansible Playbook - Task Included in Backend Deployment.

68

Putting all the available information to good use is where automation makes the difference.
Using all the available building blocks to quickly and reliably go from zero to application.
With a lot of automation implemented via Ansible, making it the heart of the application
rollout process. Figure 38 illustrates a more complete deployment and management pipeline
that serves the needs of all stakeholders.

F5

NFS share

Vertical:Node1 Vertical:Node2

Pool switching

Application version
changeDowntime

Artefacts and management

Ansible
roles

Source

Ansible

Figure 38. Application Infrastructure Automation Structure

Puppet with enforcing security updates and user credentials. Managing root level services
and guaranteeing that the host is always ready for usage. Followed by Ansible in tight sym-
biosis. Making all other pieces of the puzzle available to use in a seamless yet transparent
manner. Ansible modules taking care of loadbalancer management, application version up-
dating in a rolling manner. Making deployments seamless and not noticeable for clients.
Setting downtimes for hosts in Centreon to avoid unnecessary alerting of support personnel.
Sending Application version change related information to Appdynamics toolset for business
reporting. Freeing up Developers and DevOps engineers from having to manually carry out
updates on production.

69

10.3. Real Life Benefits of Automation

Real life benefits of automation can be substantial. As an example, the time spent on System
test environment weekly deployment will be illustrated over the progress from legacy manual
methods to scripted orchestration. Finishing up with a full application management pipeline
via Ansible. The initial landscape consisted of 3 hosts and 12 applications, with virtually no
automation. Consisting of manually transferring artifacts to a distribution server. Distributing
the artifacts from that host to the nodes and carrying out the deployment related processes
and housekeeping. The downtime window for this process was 1 hour and with all the tasks
included. usually took around 50 minutes of terminal usage in best case scenario.

The first step towards automation was writing shell wrappers to get rid of manual execution
to save time spent on mind numbing tasks. This enabled to cut time on the simpler use cases
and invest more time into further improvements. Figure 39 illustrates the process with the
acceleration scripts. This basically reduced the effort to running 3 scripts on 3 hosts. Taking
the time from 1 hour down to 15 min of executing and maintenance.

With the introduction of new infrastructure and visualization, Ansible was introduced. Once
the orchestration was completed it takes only one parameter change for an autonomous de-
ployment job to run. Minimizing the deployment effort even further, despite the increase in
number of managed servers. As the number of nodes increases Ansible will still deliver a
consistent execution times per node.

Comparison of manual process, scripted and Ansible

Manual Scripted Ansible

Number of hosts 3 3 7

Number of applications 15 15 15

Terminal usage time 50 15 5

Time per node 16 2
3

5 5
7

Table 5. Estimated Time Consumption Comparison.

As can be seen from the Table 5 the efficiency has increased dramatically even in the easiest
use case and shows the benefits of automation. The simple roles used to orchestrate the basic
use case are also used in more complex use scenarios. Meaning that re-use of roles will
further save the development time too. Not only the benefit of push button automation.

70

Figure 39. Manual Deployment Procedure.

71

11. Container Technology

Introducing automation tools and streamlining the processes involved with infrastructure pro-
vided a massive step forward in manageability, maintainability and decreased time spent on
the tasks involved. Leading to virtually no manual operations on the hosts themselves. Pro-
viding major improvements compared to manual solutions. Moving on from automation, the
next big improvement and major trend for the future can be considered containerization[26].

Before this can happen a different trend that is already taking the hearts and minds of agile
developers and architects in major companies. The move from monolithic applications and
application verticals towards more light weight microservices [26]. What is in its essence the
next step forward from Service oriented architecture solutions.

Microservices are considered easier to limit their boundaries, and thus making them easier
to localize and apply some form of container technology on them. This is especially true to
applications that follow the twelve factor application principals [27]. The guidelines try to
steer application developers towards good principals and common grounds to develop easy
to containerize applications.

There are some very promising technologies out there on the market that such as Docker
and distributed system kernel such as Apache Mesos along with DCOS running on top of
it. Providing a lot of simplifications and optimizations compared to VM and Virtualized OS
approach [28]. This being an emerging technology. Trying to promise almost as much Java
did in its time with write once, run anywhere. This promise has still not really been delivered
to this date by Oracle [29].

Container technologies provide benefits compared to more classical VM based approach.
They enable simpler application management and basically automatic application setup with
the “just run my app” principal. All the user has to do to get a container up and running is
to pull the image and starting it up. As a container is a self sustained setup, then there is
nothing to configure on the application host. The second benefit is the easier management
as containerisation is, in effect, OS-level virtualisation as opposed to VMs, which run on
hypervisors, each with a full embedded OS. This difference between VM-s and containers is
illustrated on Figure40.

72

ContainersVirtual Machines

Bare Metal

Virtual Host

Virtualized Host

Libs, Utiliteise & Tools

Application

Bare Metal

Docker capable OS

Libs, Utiliteise & Tools

Application

Figure 40. Virtual Machines and Containers.

On the other side containerization does introduce new problems and uncertainty[30]. One
example of an old problem in a new shape is sprawl[31]. Since it is easy to pull a container,
set it up, do some modifications. Re upload it and set it up again. In no time the benefit of
easy use can turn into a sea of unmanaged containers as developers do not usually have the
habits of administrators. The second concern is security. As Docker daemon runs at root
level and no one is ever sure how trusted the current software solution is and how trusted the
available containers on docker hubs really are.

The third limiting factor against container technology is that to avoid VM sprawl, a unified
image is currently used and maintained all the VM-s in the ESX cluster to keep things easy
to manage and up to date. The problem with that is the version of kernel is patched up to all
the security threats, but it still does not change the fact that the kernel is not the latest on the
market. Thus not supporting container technologies. An updated image is in the working but
as the update is a large task, it will take time in a large scale enterprise where each application
is business critical.

As the investment in current solution is already done and is working reliably, providing all
the required benefits and keeping all the stakeholders content. Then there is no plan with
current OS to move to container technologies.

73

12. Conclusions

To modernize a process that is a common effort of a large group of people in the company,
starting from non technical people in the business unit, all the way to developers and hard-
ware administrators. We first need to get an overview of the whole flow of information in the
process of creating an application infrastructure. Only understanding and improving agile
methods will not give maximum benefits unless infrastructure is modernized too. Modern-
ized not in the sense of switching to virtualization, but in the sense of improving the overall
communication and automation.

With more classical VM based infrastructure that has additional complexity of maintaining
dozens of VM-s and Operating systems on top of them. With wide selection of applications
deployed on them. This is a large effort unimaginable without automation. Proper usage of
automation is and will continue to save countless hours of manual labor. With modern large
scale enterprises where one application can span dozens of hosts, managing this would be
impossible manually.

It is not an option to go on without automation, but if done light heartedly, without having
the bigger picture in mind. Blind automation can lead to large segregation, unstandardized
scripts and generally an unmaintainable sequence of hacks that keep introducing more hacks
to address the corner cases. To avoid this, getting familiar with the general processes sur-
rounding application life cycle, release cycle and application infrastructure building blocks
is vital. This has led me to a better understanding of the whole process and the pieces to the
automation puzzle.

The multi level shared responsibility infrastructure management model described in the the-
sis is already giving benefits with more relaxed deployments. Easier to manage and more
transparent configuration management with less time spent on individual nodes, doing man-
ual changes. It is far from final and will continue to be developed and improved, but it is
certain that automation and configuration management tools are here to stay and the DevOps
culture will continue to bring agile methods to infrastructure, with a goal to establish a full
framework of easy to follow guidelines from zero to application.

74

References

[1] The agile system development life cycle. Accessed: 2016-04-25. [Online]. Available:
http://www.ambysoft.com/essays/agileLifecycle.html

[2] Going beyond scrum. disciplined agile delivery. Accessed: 2016-05-02. [Online]. Avail-
able: https://www.disciplinedagileconsortium.org/resources/documents/beyondscrum.
pdf

[3] The bradley bug chart. Accessed: 2016-05-02. [Online]. Available: http:
//www.scrumcrazy.com/file/view/ScrumBug-613.pdf/347475346/ScrumBug-613.pdf

[4] Declarative vs. imperative models for configuration management: Which is really
better? Accessed: 2016-05-02. [Online]. Available: https://www.upguard.com/blog/
articles/declarative-vs.-imperative-models-for-configuration-managementf

[5] An overview of chef. Accessed: 2016-05-20. [Online]. Available: https://docs.chef.io/
chef_overview.html

[6] Load balancing 101: Nuts and bolts. Accessed: 2016-05-08. [Online]. Available:
https://f5.com/Portals/1/Cache/Pdfs/2421/load-balancing-101-nuts-and-bolts-.pdf

[7] Disabling nodes or pool members for maintenance (11.x - 12.x). Accessed: 2016-05-
08. [Online]. Available: https://support.f5.com/kb/en-us/solutions/public/13000/300/
sol13310.html

[8] Big-ip application security manager. Accessed: 2016-05-19. [Online]. Available:
https://f5.com/products/modules/application-security-manager

[9] Existing ansible big-ip modules. Accessed: 2016-05-19. [Online]. Available: https:
//devcentral.f5.com/Portals/0/Cache/Pdfs/2807/existing-ansible-big-ip-modules.pdf

[10] Job control basics. Accessed: 2016-05-09. [Online]. Available: http://www.gnu.org/
software/bash/manual/html_node/Job-Control-Basics.html#Job-Control-Basics

[11] Installation as an init.d service (system v). Accessed: 2016-05-09. [Online]. Avail-
able: http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/
#deployment-service

[12] Designing integrated high quality linux applications. Accessed: 2016-05-09. [Online].
Available: http://www.tldp.org/HOWTO/HighQuality-Apps-HOWTO/boot.html#9.4

75

http://www.ambysoft.com/essays/agileLifecycle.html
https://www.disciplinedagileconsortium.org/resources/documents/beyondscrum.pdf
https://www.disciplinedagileconsortium.org/resources/documents/beyondscrum.pdf
http://www.scrumcrazy.com/file/view/ScrumBug-613.pdf/347475346/ScrumBug-613.pdf
http://www.scrumcrazy.com/file/view/ScrumBug-613.pdf/347475346/ScrumBug-613.pdf
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-managementf
https://www.upguard.com/blog/articles/declarative-vs.-imperative-models-for-configuration-managementf
https://docs.chef.io/chef_overview.html
https://docs.chef.io/chef_overview.html
https://f5.com/Portals/1/Cache/Pdfs/2421/load-balancing-101-nuts-and-bolts-.pdf
https://support.f5.com/kb/en-us/solutions/public/13000/300/sol13310.html
https://support.f5.com/kb/en-us/solutions/public/13000/300/sol13310.html
https://f5.com/products/modules/application-security-manager
https://devcentral.f5.com/Portals/0/Cache/Pdfs/2807/existing-ansible-big-ip-modules.pdf
https://devcentral.f5.com/Portals/0/Cache/Pdfs/2807/existing-ansible-big-ip-modules.pdf
http://www.gnu.org/software/bash/manual/html_node/Job-Control-Basics.html#Job-Control-Basics
http://www.gnu.org/software/bash/manual/html_node/Job-Control-Basics.html#Job-Control-Basics
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#deployment-service
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#deployment-service
http://www.tldp.org/HOWTO/HighQuality-Apps-HOWTO/boot.html#9.4

[13] Supervisor: A process control system. Accessed: 2016-05-09. [Online]. Available:
http://supervisord.org/#supervisor-a-process-control-system

[14] Easy, proactive monitoring of processes, programs, files, directories, filesystems and
hosts. Accessed: 2016-05-11. [Online]. Available: https://mmonit.com/monit/

[15] Compare tower editions. Accessed: 2016-05-15. [Online]. Available: https:
//www.ansible.com/tower-features

[16] Using ldap with tower. Accessed: 2016-05-15. [Online]. Available: http:
//docs.ansible.com/ansible-tower/2.2.0/html/administration/using_ldap.html

[17] Ansible plugin. Accessed: 2016-05-15. [Online]. Available: https://wiki.jenkins-ci.org/
display/JENKINS/Ansible+Plugin

[18] Documenting jello: How we automated our infrastructure documenta-
tion. Accessed: 2016-05-17. [Online]. Available: http://thecache.trov.com/
documenting-jello-how-we-automated-our-infrastructure-documentation/

[19] Elasticsearch architectural overview. Accessed: 2016-05-17. [Online]. Available: https:
//buildingvts.com/elasticsearch-architectural-overview-a35d3910e515#.od18ycj2y

[20] Apache lucene core. Accessed: 2016-05-17. [Online]. Available: https://lucene.apache.
org/core/

[21] Python elasticsearch client. Accessed: 2016-05-17. [Online]. Available: https:
//elasticsearch-py.readthedocs.io/en/master/

[22] Elasticsearch::api. Accessed: 2016-05-17. [Online]. Available: https://github.com/
elastic/elasticsearch-ruby/tree/master/elasticsearch-api

[23] An elasticsearch development workflow with curl and bash. Accessed:
2016-05-17. [Online]. Available: http://asquera.de/development/2013/07/10/
an-elasticsearch-workflow/

[24] Elasticsearch.js - javascript api. Accessed: 2016-05-18. [Online]. Available:
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/index.html

[25] How to use kibana dashboards and visualizations. Accessed: 2016-
05-18. [Online]. Available: https://www.digitalocean.com/community/tutorials/
how-to-use-kibana-dashboards-and-visualizations

76

http://supervisord.org/#supervisor-a-process-control-system
https://mmonit.com/monit/
https://www.ansible.com/tower-features
https://www.ansible.com/tower-features
http://docs.ansible.com/ansible-tower/2.2.0/html/administration/using_ldap.html
http://docs.ansible.com/ansible-tower/2.2.0/html/administration/using_ldap.html
https://wiki.jenkins-ci.org/display/JENKINS/Ansible+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Ansible+Plugin
http://thecache.trov.com/documenting-jello-how-we-automated-our-infrastructure-documentation/
http://thecache.trov.com/documenting-jello-how-we-automated-our-infrastructure-documentation/
https://buildingvts.com/elasticsearch-architectural-overview-a35d3910e515#.od18ycj2y
https://buildingvts.com/elasticsearch-architectural-overview-a35d3910e515#.od18ycj2y
https://lucene.apache.org/core/
https://lucene.apache.org/core/
https://elasticsearch-py.readthedocs.io/en/master/
https://elasticsearch-py.readthedocs.io/en/master/
https://github.com/elastic/elasticsearch-ruby/tree/master/elasticsearch-api
https://github.com/elastic/elasticsearch-ruby/tree/master/elasticsearch-api
http://asquera.de/development/2013/07/10/an-elasticsearch-workflow/
http://asquera.de/development/2013/07/10/an-elasticsearch-workflow/
https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/index.html
https://www.digitalocean.com/community/tutorials/how-to-use-kibana-dashboards-and-visualizations
https://www.digitalocean.com/community/tutorials/how-to-use-kibana-dashboards-and-visualizations

[26] A computer weekly buyer’s guide to containers and microservices. Ac-
cessed: 2016-05-24. [Online]. Available: http://www.computerweekly.com/ehandbook/
A-Computer-Weekly-buyers-guide-to-containers-microservices

[27] The twelve-factor app. Accessed: 2016-05-24. [Online]. Available: http://12factor.net

[28] Easy docker deployments with mesosphere dcos on azure. Ac-
cessed: 2016-05-24. [Online]. Available: http://www.slideshare.net/mesosphere/
easy-docker-deployments-with-mesosphere-dcos-on-azure-59961329

[29] Write once, debug everywhere. Accessed: 2016-05-24. [Online]. Available:
http://electronicdesign.com/embedded/write-once-debug-everywhere

[30] The ugly side of container technology. Accessed: 2016-05-24. [Online]. Available: http:
//searchsoa.techtarget.com/blog/SOA-Talk/The-ugly-side-of-container-technology

[31] Virtualization sprawl (vm sprawl). Accessed: 2016-05-24. [Online]. Available:
http://whatis.techtarget.com/definition/virtualization-sprawl-virtual-server-sprawl

77

http://www.computerweekly.com/ehandbook/A-Computer-Weekly-buyers-guide-to-containers-microservices
http://www.computerweekly.com/ehandbook/A-Computer-Weekly-buyers-guide-to-containers-microservices
http://12factor.net
http://www.slideshare.net/mesosphere/easy-docker-deployments-with-mesosphere-dcos-on-azure-59961329
http://www.slideshare.net/mesosphere/easy-docker-deployments-with-mesosphere-dcos-on-azure-59961329
http://electronicdesign.com/embedded/write-once-debug-everywhere
http://searchsoa.techtarget.com/blog/SOA-Talk/The-ugly-side-of-container-technology
http://searchsoa.techtarget.com/blog/SOA-Talk/The-ugly-side-of-container-technology
http://whatis.techtarget.com/definition/virtualization-sprawl-virtual-server-sprawl

	Introduction
	Purpose
	Objectives
	Organization of the Thesis

	Business Process and Needs Description
	Application Lifecycle Stages
	Deployment Lifecycle
	Weekly Release Cycle
	Release Cycle
	Hotfix Release Cycle

	Stakeholder Identification
	Needs Assessment
	Infrastructure
	Developers and Devops
	Support and Help Desk
	Product Owners

	Needs Analysis
	Needs listing
	Analysis of needs listing

	Automation tools
	Distribution and Fields of Usage for Automation Tools
	Proposed Tools Listing

	Configuration Management Tools
	Comparison of Configuration Management Tools
	Puppet Labs Puppet
	SaltStack
	Chef
	Red Hat Ansible

	Selection of Main Tools
	Puppet Overview
	Ansible Introduction
	Ansible Overview

	Loadbalancers
	F5 Networks Big IP

	Process Control Systems
	Init.d
	Supervisord
	Monit
	Init.d, Monit and Supervisord Comparision
	HTTP Interfaces of Process Control Systems

	Automation Tool Integration
	Ansible Tower
	Ansible and Jenkins Integration

	Automated Documentation
	Documentation Centralization Automation

	Infrastructure Scaffolding
	Application Platform Implementation Process
	Application Roll-out on the Platform via Ansible
	Real Life Benefits of Automation

	Container Technology
	Conclusions
	References

