
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Computer Engineering

Tallinn 2014

IAY70LT

Rando Rostok 111659

FAULT-TOLERANT 2D-ROUTING CONCEPT

FOR NETWORK-ON-CHIP BASED MANY-

CORE ARCHITECTURES

Master thesis

Supervisor: Thomas Hollstein

Professor

Dependable Embedded Systems

Co-Supervisor: Siavoosh Payandeh Azad

Research associate

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Arvutitehnika instituut

Tallinn 2014

IAY70LT

Rando Rostok 111659

KAHEDIMENSIOONILINE VEAKINDEL

MARSRUUTIMINE VÕRK-KIIBIL

BASEERUVATEL MITMIKTUUM

ARHITEKTUURIDEL

Magistritöö

Juhendaja: Thomas Hollstein

Professor

Dependable Embedded Systems

Kaasjuhendaja: Siavoosh Payandeh Azad

Teadur

3

Author’s declaration of originality

Author’s declaration of originality is an essential and compulsory part of every thesis. It

always follows the title page. The statement of author’s declaration of originality is

presented as follows:

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Rando Rostok

11.06.2014

4

Abstract

Kahedimensiooniline veakindel marsruutimine võrk-kiibil baseeruvatel mitmiktuum

arhitektuuridel

NoC based solutions are becoming more popular in industry, thus having an efficient

routing scheme is important. Before the 90s, the main problem was adaptivity and many

different algorithms were proposed since then to attack this problem. Today the main

topics concerning NoCs are fault tolerance and resource efficiency. Since links and

routers are dependent to each other in some way it is important to have some idea about

their state. In this thesis we propose a method which enhances NoC routing algorithm’s

fault tolerance. This approach is beneficial, when each router gets information about

faults in system and preventing packets to end up in dead end situations where further

paths are blocked. Each router should have only limited necessary information, which

helps keep memory occupation minimal. We also provide good metrics for calculating

adaptivity and dependability in routing algorithm. The problem with current metrics is

that faults are not considered. Adding fault tolerance can yield better reliability,

performance and efficiency for chip.

The thesis is in English and contains 65 pages of text, 6 chapters, 41 figures, 1 table.

5

Annotatsioon

Tänu viimaseaja suurele arengule riistvara maastikul on sardsüsteemidel baseeruvad

lahendused, kogumas aina enam popullaarsust. Suurenenud nõuded energia säästmisele,

töö- ning vea kindlusele on tinginud olukorra, mis sunnib üha enam riistvara tootjaid

vaatama tuleviku lahenduste suunas. Üks selliseid arhidektuure, mis järjest enam

kõlapinda saab on kiipsüsteem (SoC). Kiipsüsteem on arhidektuur, kus kõik riistvara

komponendid on paigutatud ühele kiibile. Kuna kiipsüsteemid on väga kinnised ning

piiratud mäluga, on väga tähtis, et süsteemi töö- ning veakindlus oleksid tagatud.

Kiipsüsteemides kasutatakse komponentide omavaheliseks suhtluseks erinevaid

kanaleid ning arhidektuure, millest märkimisväärseim on võrkkiip (NoC). Võrkkiip võib

tunduda alguses kui tavaline võrk kuid tegelikult on nad suhteliselt erinevad. Võrkkiip

on palju paremini kohandatav ning omab paremaid marsruutimis algoritme. Kuna

võrkkiibil on mälu ning voolu piirangud, on vaja meetodeid, mis suudavad tagada

optimaalse ressuriside kasutuse samal ajal ka süsteemi veakindluse ja võimsuse.

Probleem hetkel pakutavate lahendustega seisneb selles, et ei suudeta pakkuda meetodit,

mis oleks sama aegselt olla nii kohandatav, skaleeruv, veakindel kui ka suudaks toimida

ka suure arvu vigade korral.

Selle töö eesmärk on pakkuda välja meetod ummiku vabadele ning hästi

kohandatavatele marsruutimis algoritmidele. Pakutava meetodiga on võimalik tagada

kõrge veakindlus aste, võrkiibil baseeruvatele lahendustele. Kuna marsruutimis

algoritmide ligipääsetavus süsteemis esinevate vigade tõttu langeb, siis meie meetodiga

on võimalik see tõsta saja protsendini. See ei tähenda seda, et vigu suudetakse

parandada vaid seda, et vigaseid piirkondi suudetakse vältida. Kuna kohanevate

marsruutimis algoritmide üheks probleemiks on informatsiooni lokaalsus on meie

meetodi idee pakkuda lahendust, mis annaks ruuterile natuke rohkem globaalsemat

teavet.

Pakutav meetod baseerub ideel kus otsitakse ligipääsmatuid piirkondi, mille kohta käiv

informatsioon tagastatakse sellest sõltuvatele sõlmedele. Kui ruuteril on teave,

ligipääsmatute piirkondade kohta, on võimalik neid kas sootuks vältida või kui antud

6

piirkonnas asuvale sõlmele pole ühtegi alternatiivset teed, saab täielikult vältida sinna

pakettide saatmist. Kuna informatsiooni maht on piiratud siis kasutatakse erinevaid

funktsioone piirkondade optimiseerimiseks.

Meie meetod on kasutatav kõigi minimaalset teed kasutavate marsruutimis algoritmide

korral, olles piisavalt skaleeruv tänu tema limiteeritud ruuteri tabelitele. Meetodit saab

kasutada vaid võrgus, mis omab võrgusilma topoloogiat.

Testi tulemused näitavad, et meie poolt pakutud meetodiga on võimalik tõsta võrkiibil

baseeruvate süsteemide vea- ning sellega seoses ka töökindlus astet. Ligipääsmatute

piirkondade arvutamisel ei ohverdatud ühtegi tervet sõlme ning kõik võrgus paiknevate

vigadega (katkised lingid) seotud ruuterid omasid vastavat informatsiooni.

Probleem, millele proovime lisaks veel tähelepanu juhtida seisneb selles, et puudub

mõõtepuu, millega oleks võimalik määrata marsruutimis algoritmi efektiivsust juhul kui

süsteemis esinevad vead. Hetkel pakutavad valemid suudavad küll näidata kui kohanev

on algoritm aga ei anna adekvaatset teavet olukordade kohta kui süsteemis peaks

esinema vead.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 65 leheküljel, 6 peatükki, 41

joonist, 1 tabel.

7

Table of abbreviations and terms

SoC System on Chip

NoC Network on Chip

DoA Degree of Adaptivity

DoR Degree of Reachability

BIST Built in Self-Test

FPGA Field-programmable Gate Array

FIFO First in First out

VC Virtual Channel(s)

8

Table of Contents

Author’s declaration of originality ... 3

Abstract ... 4

Annotatsioon ... 5

Table of abbreviations and terms.. 7

Table of Contents ... 8

List of Figures ... 10

List of Tables .. 12

1. Introduction .. 13

1.1. Basic Properties of NoC Routing Algorithms ... 14

1.1.1. Deadlock Problem .. 14

1.1.2. Adaptivity ... 17

1.2. Introduction: Analysis of Routing Algorithms with respect to dependability . 19

1.2.1. XY .. 19

1.2.2. West-First ... 21

1.2.3. Odd-Even .. 21

1.2.4. DyXY ... 22

1.3. Metrics for Reachability .. 23

1.3.1. Static Reachability Metrics Calculation ... 24

2. State-of-the-art in Dependable Routing .. 26

2.1. Dependable Routing in Multi-Chip NoC Platforms .. 26

2.2. Multiple-Round Routing for 2D Network-on-Chip Meshes 27

2.3. A Fault-Aware, Reconfigurable and Adaptive Routing Algorithm for NoC

Applications .. 28

2.4. High Performance Fault-Tolerant Routing Algorithm for NoC-based Many-

Core Systems .. 29

2.5. Topology-Agnostic Fault-Tolerant NoC Routing Method 30

2.6. C-Routing: An Adaptive Hierarchical NoC Routing Methodology 31

3. Methodology ... 34

3.1. Limitations and assumptions ... 34

3.2. Dependable routing concept .. 34

3.2.1. System Health Map .. 35

3.2.2. Reachability Attributes ... 36

3.2.3. Local Information Accumulation ... 37

9

3.3. Fault propagation for dependable routing .. 37

3.3.1. Rectangle .. 37

3.3.2. Rectangle list .. 38

3.3.3. Rectangle optimization ... 38

3.3.4. Back propagation .. 40

3.4. Elaborative examples ... 45

3.4.1. Example 1 – Short wall of broken links ... 46

3.4.2. Example 2 – An island ... 51

3.4.3. Example 3 – Corners .. 56

4. Results .. 62

5. Conclusions & Future Work ... 63

5.1. Future Work ... 63

6. Bibliography ... 65

10

List of Figures

Fig. 1-1. A deadlock scenario © ACM 1992. ... 15

Fig. 1-2. The all possible turns and cycles in two-dimensional mesh © ACM 1992. 16

Fig. 1-3. XY routing with turn model representation © ACM 1992 16

Fig. 1-4. Two virtual layers. ... 17

Fig. 1-5. Localization problem in adaptive routing. ... 18

Fig. 1-6. Problem with XY routing fault tolerance. ... 20

Fig. 1-7. Hybrid XY/YX and XY. .. 21

Fig. 1-8. Odd-Even algorithm representation. © Thomas Hollstein 22

Fig. 1-9. DyXY network representation © Danesthalab. ... 23

Fig. 1-10. Dependability metrics idea. ... 24

Fig. 2-11. Multi-Chip NoC and its configurations © 2012 IEEE. 27

Fig. 2-12. NMR-DOR algorithm, Example of turn legally and turn illegally intermediate

nodes. © IEEE 2009. .. 28

Fig. 2-13. Basic-RAFT different fault case reconfigurations © IEEE 2010. 29

Fig. 2-14. Packet routing examples in algorithm, with fault cases © IEEE 2013. 30

Fig. 2-15. Algorithm for Topology Agnostic routing method. 31

Fig. 3-16. A health map .. 36

Fig. 3-17. Our rectangle presentation ... 38

Fig. 3-18. Rectangle optimization, Expansion. .. 39

Fig. 3-19. Rectangle optimization, lossless merging. ... 39

Fig. 3-20. Lossy merging, a graph representation. ... 40

Fig. 3-21. Lossy merging, making bigger rectangles. .. 40

Fig. 3-22. Different areas in back propagation. .. 43

Fig. 3-23. Back propagation examples on different mesh areas. 43

Fig. 3-24. Case when back propagation is needed. .. 44

11

Fig. 3-25. A back propagating scenario. ... 45

Fig. 3-26. Example 1, health map. .. 46

Fig. 3-27. Example 1, propagation case 1. ... 47

Fig. 3-28. Example 1, propagation case 2. ... 47

Fig. 3-29. Example 1, no back propagation presentation. .. 48

Fig. 3-30. Example 1, propagation case 3. ... 49

Fig. 3-31. Example 2, an island case via health map representation. 51

Fig. 3-32. Example 2, propagation case 1. ... 52

Fig. 3-33. Example 2, propagation case 2. ... 53

Fig. 3-34. Example 2, propagation case 3. ... 54

Fig. 3-35. Example 2, propagation case 4. ... 56

Fig. 3-36. Example 3, health map representation. .. 56

Fig. 3-37. Example 3, propagation case 1. ... 57

Fig. 3-38. Example 3, propagation case 2. ... 58

Fig. 3-39. Example 3, propagation case 3. ... 58

Fig. 3-40. Example 3, propagation case 4. ... 59

Fig. 3-41. Example 3, propagation case 5. .. 61

12

List of Tables

Table 1. State of the Art comparison. ... 32

13

1. Introduction

Information technology is one of the most developing areas in the world today. As

much as the software is important, we cannot forget the underlining hardware which is

needed to run fancy, new and innovative software components. While software

developing in general has made huge step forward, towards more efficient, better

performance and more reliable solutions, hardware field have to catch up. For hardware

different kind of new approaches are developed and researched, such as hardware-

software co-design or different FPGA approaches. By doing so, we still have to

maintain high performance, relatively small size and good thermal conductivity. What is

the best approach to do it? Is like a million dollar question. It is a complex task with

different dependencies, so there is no easy way of doing it. System on Chip

architectures were developed by keeping in mind all those aspects. SoC is an embedded

system architecture which combines all the major hardware components into one chip.

Major hardware companies like AMD are already developing SoC architectures today.

It is interesting and innovative architecture which has its place in industry.

In SoC many different communication architectures can be used. The most promising

one seems to be Network on Chip architecture. Network on Chip is similar to regular

network and routing will be done via packet communication as well. Because SoC has

limited die and buffer space, it is important for those chips to have high fault tolerance

and reliability. Since in NoC all the data communication between system components

will be done over network, ideas based on regular networks can be used. Fault tolerance

is one of the key topics for today’s research projects and studies. To achieve good fault

tolerance we need to have good and adaptive routing algorithm. But even if we get high

adaptivity, there is a problem which does not have a good solution in current R&D

projects yet, which is the problem with broken links in network. One broken link can

disable a huge portion of the system and at the same time decrease reliability and fault

tolerance rate. Broken links could be hard to discover. Ideally good fault tolerance

method has to tolerate multiple faults, be scalable and have a minimal cost on both

system and implementation.

14

Our purposed method in this thesis is to develop a fault tolerance method for the NoC

based architectures. This new method has to be scalable and routing algorithm

independent. It has to be applied on deadlock free algorithms and to be able to tolerate

numerous faults.

1.1. Basic Properties of NoC Routing Algorithms

Network on Chip is a communication architecture used in SoC design. It is in constant

developing cycle and has been getting more audience in recent years. Each component

in network (i.e. IP core) has its own router which connects it to other components via

fixed wires. NoC can use either enchanted or regular mesh topology. NoC has simple

and more effective routing algorithms, less buffer memory, potentially more routing

lines and fixed topology. NoC is also more scalable and flexible but has certain power

and area limitations. It has two basic data transmission models: connection- and packet

oriented [9]. Each one has its advantages and disadvantages.

Routing in NoC is simpler and has less complexity than other architectures, algorithms

are also easier to implement, represent and test. Algorithms used in NoC can be either

deterministic or adaptive ([8], chapter 8, 10). Adaptive algorithms can use different

approaches, like routing tables or some mechanism to generate several alternative paths

for the packet. Because NoCs are usually used in limited, specific and closed systems

(i.e. SoC) one of the important factors which need to be considered carefully is fault

tolerance. It can depend on several attributes (i.e. adaptivity).

1.1.1. Deadlock Problem

In packet routing, especially in NoC design, one of the biggest problems that we need to

deal with is deadlock. Deadlock is a situation where packets do not reach their

destination because each waiting for the other [9]. It causes a situation where all of the

packets are stuck because all buffers are blocked. Deadlock scenario is shown on figure

(Fig. 1-1). Deadlock is a dramatic problem and usually caused by circular routing

configurations. Deadlocks can be evaded using either prevention/avoidance or recovery

methods. One of the easiest resolutions to prevent deadlocks is to prevent cycles in

routing ([9], chapter 14). Deadlocks can be also prevented by using virtual channels or

15

layers but it will also increase hardware costs. Some algorithms are able to recover from

deadlock situations.

Fig. 1-1. A deadlock scenario © ACM 1992.

The idea behind deadlock prevention is simple; if cycles can be avoided then deadlock

cannot occur. In order to perform this task we need to either avoid some turns in routing

model or use planar-adaptive methods [8]. Turns can be disabled by using partially

adaptive turn model algorithms, which prevent U-turns which can cause cycles. Planar-

adaptive methods are more focused with use of virtual channels or different routing

layers, these are also more expensive to implement than turn models ([9], chapter 4).

Turn Models

In the early 90’s multiprocessors and multicomputer solutions became more popular,

which was the motivation to wormhole packet switching which became available.

Despite many wormhole packet switch advantages one of its major disadvantage is the

problem with deadlocks. In year 1992, Glass and Ni developed a method called turn

model, which they claimed to be deadlock and livelock free while not sacrificing much

adaptivity of the algorithm [7]. They analyzed different packet routes and all possible

turns on 2D-mesh and found that when by prohibiting some paths deadlocks can be

avoided. They came up with an idea to prohibit certain (180 degree) turns to avoid

cycles in routing model. In every turn model usually 6 turns are allowed and 2 are

16

prohibited. The resulting routing algorithm is deadlock free while still being adaptive

enough. There are 16 different ways to combine turns on 2D-mesh (Fig. 1-2), where 12

of them are deadlock free solutions. XY routing can also be represented with turn

model, but it has only 4 turns allowed (Fig. 1-3). Common turn model based adaptive

algorithms are: West-First, North-Last, Negative-First and Odd-Even are all deadlock

free [7]. It is important to note that Odd-Even is the only algorithm in the list which is

fully adaptive [13].

Fig. 1-2. The all possible turns and cycles in two-dimensional mesh © ACM 1992.

Fig. 1-3. XY routing with turn model representation © ACM 1992

Planar-adaptive methods

Another possibility to prevent deadlocks is using planar-adaptive methods. However it

is more expensive than other approaches for avoiding deadlocks. Planar-adaptive

methods will introduce virtual channels, different routing layers and dimensions ([9],

chaper 4). This means, in order to avoid deadlock situation occurrences, packets will be

routed to another layer or dimension. But this should be performed very carefully since

multidimensional deadlocks can also happen which are much harder to detect than

single dimension deadlocks. Planar-adaptive routing methods are usually both dead- and

livelock free and usually with better performance than deterministic routing methods.

They increase channel throughput by distributing load due to use of different layers and

channels.As mentioned, planar-adaptive routing methods can be either:

1) Virtual layer based (usually maximum of 2 channels).

2) Multidimensional based (i.e. 3D Hypercube).

17

Fig. 1-4. Two virtual layers.

As shown on figure (Fig. 1-4), each virtual layer can have its own routing model (i.e.

turn model) which can be applied to it. In each dimension a virtual channels can also be

used, but we have to keep in mind that due to higher functionality and extra memory

requirements, design cost will increase. Planar-adaptive methods can have a fixed

number of VC-s which are dependent on networks size and topology.

1.1.2. Adaptivity

Adaptivity is one attribute to consider when choosing routing algorithm for design. It

can provide us with information about reliability, fault tolerance and resource

efficiency. The higher the adaptivity, more paths are available for routing, this provides

possibility to avoid defected links, nodes and areas, also ability to shut down parts of the

chip for better power efficiency. In practice, adaptivity is a measure parameter, which

can be used also to compare different algorithms to see how well they perform. When

routing algorithm can find new path with most of the occurring irregularities then this

algorithm can be called fully adaptive. This however depends on different factors which

can decrease adaptivity. Most problems rise with broken link(s). Broken links can

decrease adaptivity value in real time and algorithms with high adaptivity can become

less adaptive or even non adaptive because of it. Also we introduce a solution how to

avoid or incapsulate this problem while not sacrificing algorithm adaptivity properties

of the network. We have to keep in mind that algorithms also have to be deadlock free.

Tradeoff between deadlock freeness and adaptivity is due to the fact that deadlock free

approaches can decrease adaptivity while high or fully adaptive approaches can cause

deadlocks.

18

One limitation with adaptivity is local information about the status of the network. Since

each router knows only information about its links to direct neighbors then packets

could end up on links with huge traffic on it. As shown on figure (Fig. 1-5) a node with

red stripes is the central point in routing case. Since its north link has some traffic while

east link is traffic free, packets will be routed towards east. It does not know that router

I has a faulty link in north and a flooded by heavy traffic link in east. Since router I

north link is blocked by fault, all the packets will be routed to east. Each packet on that

link will have higher latency because of misrouting. Situations like this can be avoided

if routers have more global and specified information about mesh.

Fig. 1-5. Localization problem in adaptive routing.

One of the drawbacks with adaptive algorithms is that packets could be sent to nodes

which in reality are unreachable. Since router does not know information about faults in

the network it will be sending packet if it is possible. If the node which packet sent for

is unreachable due to broken links or other faults in the system, packet(s) will never

reach their destination and information will be lost.

In next chapters we will discuss adaptivity in more details. To give a brief introduction

to adaptivity metrics, the basic idea behind it is calculate the combination of all possible

paths. This method was introduced by Glass and Ni.

Assume that (sx, sy) is the corditation of sorce node and (dx, dy) is the cordiation of

destination node, then adaptivity metric will be calculated by the folowing formula:

()

 ()

D

I

S

X

19

Where:

 | |

 | |

The bigger the S is the more adaptive algorithm is. We also did some research with

routing algorithms and tried to find out what can be the impact on adaptivity with

increasing number of faults in the system. The results have been described in next

chapters.

1.2. Introduction: Analysis of Routing Algorithms with respect to

dependability

Adaptivity and deadlocks are not only issues with routing algorithms. One of the

today’s major problems in routing comes when something (i.e. link, router or chip)

breaks. In this thesis we will be considering matters with broken link(s). Now the main

problem is how to evaluate our algorithm effectiveness and adaptivity after broken link

occurs. Also we need to find out what is the maximum possible amount of broken links

that system can tolerate while still being operational.

Before introducing dependability we need to first set few rules: 1) if possible, always go

towards x-direction first 2) use only minimal paths. All links in mesh structure are

somewhat dependable and adaptive routing algorithm can choose new link when the old

one breaks. Mathematically this can be presented by using probabilities. There is no

need for exact position where link is broken but instead we need to find out what is the

percentage of all the links that still are operational. Therefore each algorithm can have

its own dependability rating.

1.2.1. XY

It is most simplistic and basic NoC routing algorithm. Idea is to first go towards x-

direction and after x is reached move towards y-direction. Problem with XY algorithm

is that it is deterministic. There is no path diversity and there is always only one

possible path towards destination. If any link breaks then some nodes could become

inaccessible from that point. Any broken link especially on x-coordinate can potentially

disable a huge part of the system.

20

Fig. 1-6. Problem with XY routing fault tolerance.

As shown in figure (Fig. 1-6), the source loose access to the part of the network shown

in red which describes the fact that XY does not have any fault tolerance. This means

any broken link can cause real problems in system operation. Here we can see why

deterministic algorithms are not suitable for systems with fault tolerance requirements

in it.

Hybrid XY/YX

Thanks to XY deterministic structure, it can be easily used to combine different

methods. We also tried to find adaptive algorithm by making modifications to XY. Idea

is to change routing model to YX after fault occurred on path. It helps to overcome

some of the XY bottlenecks (Fig. 1-7) but it requires two extra virtual channels to be

deadlock free. There is the exception that a packet should never switch back to pervious

layer. The proposed hybrid algorithm achieves better results in some cases but since we

have changed the routing model to another XY, there is still same problem with

adaptivity and fault tolerance in the end.

21

Fig. 1-7. Hybrid XY/YX and XY.

1.2.2. West-First

West first is one of the most commonly used turn model algorithms, idea behind it is to

route packet first to west (if needed) and then adaptively N, E or S directions. It is

proven that any turn model based algorithm including West-First is deadlock free [7].

West first, like any other turn model algorithm (except for the case of Odd-Even), is

partially adaptive, which means that it can find a few but not all available alternative

paths. One of the problems with West-First algorithm is when link on west path is

broken then further routing on that destination cannot be made. This is the issue with all

of the partially adaptive algorithms, that in some point (i.e. fault occurrences) they will

find routing impossible.

1.2.3. Odd-Even

Odd-Even algorithm is the only fully adaptive turn model algorithm, which does not

need to use virtual channels. It has cheaper implementation costs but its structure makes

fault tolerance complicated. Odd-Even is interesting algorithm where mesh structure is

divided into two classes: odd columns and even columns [13]. First column is usually

even column with index number zero. Next to it is odd column with index number one

and so on. Every column has its own turn model with different allowed and prohibited

turns. Basic idea behind Odd-Even algorithm is to prevent U-turns. Finding

dependability value for Odd-Even algorithm is difficult because of different cases

needed to be considered. Odd-Even algorithm routing model is shown in figure (Fig.

1-8). It does not have any virtual channels in it.

22

Fig. 1-8. Odd-Even algorithm representation. © Thomas Hollstein

1.2.4. DyXY

Dynamic XY is a NoC routing algorithm which is both deadlock and livelock free. It is

similar to XY algorithm while being fully adaptive. DyXY is minimal routing

algorithm, which means that packet only travels along the shortest path. If there is more

than one path available, the least congested path will be taken. DyXY will use two

virtual channels (also known as planes). Depending on destination node’s x coordinate

with respect to source (either east or west) packet will be routed to certain X sub-

network or sub-plane. Figure (Fig. 1-9) shows complete network and its division into

separate sub-networks b and c which are –X and +X sub-planes. On both sub-networks,

routing will be done differently. On each sub-plane, all the turns are available with an

exception of turning backwards (i.e. from E plane towards W). One of the constraints

concerning adaptivity is that if packet reaches either x or y coordinate of destination

node, it will go straight towards other direction. This might be a problem when some

links are broken on that path [11], [15].

23

Fig. 1-9. DyXY network representation © Danesthalab.

1.3. Metrics for Reachability

As already mentioned in pervious sections there is a great need for descriptive metrics

for both adaptivity and dependability. In this section we will take a closer look into it

and describe a method to calculate this metric while considering link faults.

Glass and Ni developed adaptivity metrics based on their turn model. They proposed

metrics called Degree of Adaptivity (DoA) [7], which calculates the amount of

accessible paths divided by amount of total possible paths. Glass and Ni found out that

larger the amount of shortest paths that algorithm allows, the more adaptive is the

algorithm (see 1.1.2 for Glass and Ni, DoA formula).

As shown in pervious chapter, in XY algorithm, half of the system can be inaccessible

because of faults (Fig. 1-6). Even some XY modified variants like surrounding XY [10]

or our own proposed Hybrid XY/YX (Fig. 1-7) does not deliver adaptivity which will

be satisfying for us.

Deterministic algorithms also introduce a new problem which is congestion. Great

amount of the traffic will be routed through same paths because of broken links and

limited router information. However even adaptive algorithms suffer from bottlenecks

caused by faulty links, which can decrease their adaptivity. For example in West-First

algorithm you will need to go first towards west but when west path is faulty then

further routing cannot be made. DyXY and Odd-Even are probably most adaptive

algorithms. Calculating adaptivity value for Odd-Even is more complicated than for

24

other tested algorithms. Our experiments showed that DyXY was best algorithm with

satisfying adaptivity and reachability factor. DyXY is also more simple than Odd-Even,

however two virtual channels are still needed.

1.3.1. Static Reachability Metrics Calculation

Dependability is another attribute which can be compared and considered for routing

algorithm. Dependability has similarities with adaptivity but in the end they are

different. The idea is also based on probability theory. Assume that probability chance

of event A is P1 which occurs when the link is working. Probability chance of event B

is P2 which occurs when the link is not working. This can be used to construct formula.

There are two assumptions which have to be applied first:

1) Always use minimal path routing.

2) Always try to go towards x-direction first, if the link in x-direction is defect, go

to y-direction.

With those constraints we can construct basic idea behind this.

Fig. 1-10. Dependability metrics idea.

To explain it better, take a look at figure (Fig. 1-10). We assume that the probability of a

link to be broken, P, is 1/24. Assuming we have 1 broken link, the probability of going

towards x direction in our routing algorithm is 23/24 (because we still have 1/24 chance

that link is broken). When we need to go towards north the probability is 1/24 (because

25

23/24 chance that we are going towards favorable path and 1/24 we choosing second

path because link is broken).

If we have a fully adaptive algorithm like in our case then we can make following

calculation:

(

)

 (

) (

) (

)

 (

)

(

)

(

)

 (

)

((

)

 (

)

)

What we can see here is that if we assume we have a broken link in our system then

even with fully adaptive algorithm that will use only minimal (fixed) path lengths we

will never get 100% dependability value.

For simplicity of calculations, we ignore the negligible terms (from 2
nd

 term on) in the

summation and we can construct a general basic formula for adaptive algorithms which

we will call, Degree of Reachability (DoR):

() () ()

Where:

 ()
 ()
 ()

This formula provides us with some rough estimation of the networks state, while we

cannot use probability calculations as a base for our routing decision. For a routing

decision we need to know exactly which node is unreachable before we take a routing

decision.

26

2. State-of-the-art in Dependable Routing

A lot of the research projects, case studies and papers have been written in this field,

however quite a few projects describe this problem with fault tolerance more closely.

The problem with most of the researches is that they offer solutions which are limited,

have very specific use in field or have design flaws (for example, they are not deadlock

free). Also most of the solutions are using fault regions and/or many virtual channels

which will make routers more complex. For us, easy implementation, high performance,

deadlock freeness and multiple fault tolerance are the most important factors. In general,

papers can be divided into two main topics: local circumfusion strategies and global

approaches. Following I will give a brief overview on some of the promising methods

and approaches proposed in papers.

2.1. Dependable Routing in Multi-Chip NoC Platforms

Yoneda and Imai made approach specifically for automotive industry. They propose

two solutions, first a different NoC architecture a multi-chip NoC for automotive

industry and an algorithm. In automotive industry different car types has to have

different size of NoCs which is expensive. Multi-chip NoC combines different NoCs

together via off-chip links, in this way network is extended and chip is more fault

tolerant. One of the huge disadvantages with such approach is that it cannot preserve

full on-chip topology and missing links have to be considered as faulty links.

27

Fig. 2-11. Multi-Chip NoC and its configurations © 2012 IEEE.

Two routing methods proposed in this paper are gateway method and position-route

method. The concept behind these methods is to divide systems into base chips (2x2

meshes) with each one can have total 5 off-chip links. Two or four base chips can make

one cluster. Different clusters are connected with each other, as shown in figure (Fig.

2-11). Only one single component considered faulty, it can be link, router or chip. Each

cluster contains routers which communicate with neighbor clusters, called gateways. If

packet has to be routed outside of the current cluster, one of the gateways will be

chosen. Otherwise it will be routed via in-cluster routing. Some cluster configuration

can cause deadlock. In-cluster routing can tolerate single link or router fault. Other

method mentioned called Position-Route method, uses faulty rings, which are rectangles

which make alternative path around faulty component. Disadvantage of this method is

that non-faulty (healthy) nodes will be masked out [1].

2.2. Multiple-Round Routing for 2D Network-on-Chip Meshes

Method by Fu, Han et al. called NMR-DOR helps to reduce amount of sacrificed non-

faulty routers. It does not forbid any turn taken by the DOR routing. Main idea behind

this algorithm is to take advantage from turn-legally intermediate nodes. It finds out turn

legally intermediate node and skips non-legal node.

28

Fig. 2-12. NMR-DOR algorithm, Example of turn legally and turn illegally intermediate nodes. © IEEE

2009.

It uses adapted turn model only on turn legally nodes. At the beginning it is using DOR

turn-model and when intermediate node occurs a new turn model is adapted, basically

combining two turn models this way. On figure (Fig. 2-12) a basic behavioral scenario

is shown. Authors proofed that NMR-DOR method is deadlock free. With low fault

rate, a number of sacrificed routers can be kept fairy low. With an increase in faults,

sacrificed router rate will expand rapidly. Authors claimed that with maximum of two

virtual channels, increasing fault rate can be tolerated, but this is imposes extra cost for

the system [2]. The other drawback of this approach is sacrificing healthy routers.

2.3. A Fault-Aware, Reconfigurable and Adaptive Routing

Algorithm for NoC Applications

Valinataj and Mohammadi adaptive routing method, which uses only 2 virtual channels

to provide fully adaptive and fault-tolerant solution, is proposed here. Authors say that

methods with 3 or more virtual channels are not efficient in NoC due to power

limitation and area overheads. Two methods are proposed in this work, one Basic-

RAFT (The Reconfigurable, Adaptive and Fault-Tolerant method) which can tolerate

only single faults and Main-RAFT which is pervious modification and can tolerate

multiple faults. Idea behind this method is to route through reconfiguration which

means calculate contour with routers which are surrounding broken link and then define

new routing algorithm for each of those. Like shown in figure (Fig. 2-13)

reconfigurations are made based on different fault cases. Cases C2 and C5 will cause

deadlock if virtual channels are not used.

29

Fig. 2-13. Basic-RAFT different fault case reconfigurations © IEEE 2010.

Each router also has configurable register which stores local fault information. Router

makes decision based on fault- and traffic information and selects shortest path to route

packet. Main-RAFT uses similar ideology as Basic-RAFT but instead of 4 bit registers

it needs more (i.e. 12 bit register). It can also tolerate faulty routers and/or regions but

needs extra functionality in order to do that [3].

2.4. High Performance Fault-Tolerant Routing Algorithm for NoC-

based Many-Core Systems

Algorithm from Ebrahimi, Daneshtalab and Plosila which is based on fully adaptive

routing algorithm, core idea is to tolerate faults without losing performance. It requires

collecting the fault information from only four direct neighbor nodes. It is deadlock free

and uses two virtual channels, one for each dimension X and Y. This algorithm is able

to tolerate faults, using only available shortest paths. However when packet is either on

east-, west-, north- or south-ward, a non-minimal path will be used to bypass fault. This

method is mainly about hopping between different virtual channels, packets will be

routed first into one channel and when fault is bypassed then they will be switched to

another. Algorithm has to do constant calculations for values to minimal destination

between nodes and destination remaining [4]. This algorithm can tolerate up to 6 faults.

30

Fig. 2-14. Packet routing examples in algorithm, with fault cases © IEEE 2013.

2.5. Topology-Agnostic Fault-Tolerant NoC Routing Method

Wachter, Erichsen et al. promises features like topology-agnostic, full adaptivity, fault-

tolerance and scalability. Full operational diagram for algorithm is shown on figure

(Fig. 2-15). It has three steps to be made: seek, backtrack and clear & compute. Their

algorithm initiates seek mechanism when lastly sent packet has not reached its

destination. Seek will try to search for a new path and it will be done only once for each

missed packet. Seek is based on hop counter and every router stores seek requests in

their internal tables. Tables are not dependent on mesh size, instead table entries are

only related to maximum number of simultaneous seeks. When target router is found,

backtrack process will start. Backtrack packet will be sent towards source router, based

on payload information. When backtrack packet is not reached then target node is

unreachable or maximum number of simultaneous seeks are exceeded. Last step is to

check for invalid turns (which can cause deadlock) and if any occurs, then the algorithm

forces packet to use virtual channel(s) [5]. This approach uses routing tables and is not

scalable.

31

Fig. 2-15. Algorithm for Topology Agnostic routing method.

2.6. C-Routing: An Adaptive Hierarchical NoC Routing

Methodology

Puthhal, Singh, et al. proposed algorithm is partially adaptive routing algorithm which

prevents deadlock without using virtual channels. C-Routing combines XY and partly

adaptive routing depending on source and destination nodes. It check routing table for a

neighbor with minimum congestion and starts sending the packet. Neighbor node will

be chosen either randomly or with minimal cost. Algorithm has two different parts:

inter-cluster and intra-cluster routing. Depending on destination router cluster location,

different routing techniques will be applied [6]. This algorithm also use routing tables

and is not suitable for large networks.

Comparison between different routing algorithms is shown in Table 1. We compared

different aspects of proposed algorithms: virtual channels, scalability, deadlock freeness

etc.

32

Table 1. State of the Art comparison.

Method Number of

Virtual

Channels

Number of

tolerable

faults &

Fault

model

Deadlock

freeness

Pros Cons

Dependable

Routing in

Multi-Chip

NoC Platforms

0 1* link,

router or

chip.

Yes + Can distribute

traffic.

+ Provides little

HW solution.

- Can mask non-

faulty routers.

A New

Multiple-Round

DOR Routing

for 2D NoC

Meshes

0 if low

fault rate. If

high fault

rate 2 VC

needed.

Many

faulty links

or routers

Yes + Can reduce

number of

sacrificed non-

faulty routers.

- Decreases

performance.

A Fault-Aware,

Reconfigurable

and Adaptive

Routing

Algorithm for

NoC

Applications

2 Basic-

RAFT for

single- and

Main

RAFT for

multiple

faulty links.

Yes + Supports

irregular

topologies.

+ Low cost

+ Able to balance

traffic

+ Does not

disable any faulty

component.

- Implementation

complexity

High

Performance

Fault-Tolerant

Routing

Algorithm for

NoC-based

Many-Core

Systems

2 Up to 6

faulty

nodes.

Yes + Supports High

Performance with

98% reliability.

- Not scalable.

Topology-

Agnostic Fault-

Tolerant NoC

Routing Method

2 for mesh

topology

more for

other

topologies.

Many links

and/or

routers.

Yes + Topology-

Agnostic

+ Provides decent

HW realization.

- Uses tables, not

scalable.

C-Routing: An

Adaptive

Hierarchical

NoC Routing

Methodology

0 Unknown Yes + Can balance

traffic.

- Partially adaptive.

- Uses routing

tables..

- No information

about fault

tolerance

* Router contains 4 links and chip contains 4 routers.

33

In conclusion, there are flaws and bottlenecks which specially standing out from the

comparison table (Table 1). We can classify these flaws and drawbacks in the following

groups:

 fault tolerance:

 The algorithms are either indistinct or cannot tolerate satisfied number of

faults.

 Also there are serious issues with some of the methods which can

sacrifice healthy nodes.

 Scalability:

 In some methods maximum network size is predefined.

 Some methods use routing tables, which will decrease both scalability

and performance.

 Virtual channels: While keeping VC amount low they can be beneficial,

however implementing them will require extra cost.

 Performance: this property of NoC is also an issue, especially with those

complex and table based methods. There was only one method [4] which

contributed into high performance while having problem with scalability.

None of the methods proposed can address all those problems, so it is necessary to

investigate a method to coupe with these problems all together. Our motivation for

developing new method was to avoid these flaws and have a more flexible solution

which can be applied in different cases.

34

3. Methodology

Our goal is to introduce a method which will enhance the routing algorithm with the

following properties:

 it should be able to tolerate any number of faulty links

 the amount of information stored in the each node should be limited and does

not grow with increase in size of network

 the amount of communications on network links should be limited

 the adaptivity of the routing algorithm should be preserved

 our method should cover all adaptive minimal path routing algorithms

In the following sections we will discuss the algorithm description and implementation

scheme.

3.1. Limitations and assumptions

In this project we assume:

 The Topology of the network is Mesh

 We have packet oriented transfer model due to its efficient resource

management

 Our chosen routing algorithm is Dy-XY

 Our network has a worm-hole flow control

 Each input port has 2 virtual channels.

 Our chip has an efficient testing mechanism built in it, for example BIST [12].

3.2. Dependable routing concept

While considering different papers and proposed methods we came up on the

conclusion that to achieve and keep high adaptivity value, routing algorithm needs some

enchantments. Our solution is a mixture of using virtual channels along with some

routing information tables. The main idea is to back propagate fault information from

the node with the faulty link to all routers which depend on it. This information can be

stored in a vector which will be stored on every router output channel. Each vector will

35

contain all the necessary fault information about the mesh. If the router wants to make a

routing decision, the routing algorithm can pre-check router “table” and use provided

information to act accordingly.

Each router should know only local information about their neighbors. There is no point

to back propagate all the information to every single router in mesh. With huge size

mesh structure it takes time while not being beneficial enough. The back propagation

will start if any fault occurs on a router link with the assumption that other links of the

router are healthy nodes. A rectangle will be calculated based on information about

working and faulty links. After all calculations are done, final list will be optimized due

to limited size of memory in routers. Optimizing aims to merge rectangles and remove

duplicates. Rectangle merging will be done using different mathematical methods,

including graph theory. Finally whole list will be back propagated to neighbor nodes.

3.2.1. System Health Map

Health map gives a good synopsis over system health status. It shows which links

and/or nodes are faulty and which are not. From there information about system health

status in general can be gathered.

Main problem with source routing based local accumulation methods proposed in

papers are with fault tolerance [1], [4]. The proposed methods are either having

limitations on the number of the faults that they can tolerate or they are not scalable.

This is actually problematic and our motivation with new method is to avoid such things

to happen. Our method’s aim is to improve this property and tolerate more faults in the

network. Concerning system health map is still required but we have to set more

flexible boundaries and toleration level before judging system either to be healthy or not

healthy.

36

Fig. 3-16. A health map

In our health map (Fig. 3-16), Gate-Level Fault model have been used, based on

outgoing links in network. If a link is broken, it is considered to be faulty. Stuck-at

faults, fault redundancies and delayed faults were not considered [14]. Parallel fault

occurrences, faults in the router control unit etc. are not considered.

3.2.2. Reachability Attributes

In our method we will be looking into non-reachability. We will store information

about regions that are not reachable via each list and we call the non-reachable

rectangles.

The main issue is; while it is good to have global information about whole network, in

the end there is a lot of information which 1) requires huge memory size 2) consists of

data which is not needed at that node.

Instead of doing global reachability analysis, in our approach it will be done locally in

routers. This way routers near faulty location have more information about faults but

routers further away from it will have very little or no information at all. This helps to

save memory and keeps only necessary information so performance will be also better.

Adaptivity has also an important part in reachability, especially when concerning fault

tolerance. Adaptive algorithm can tolerate more faults than deterministic.

37

3.2.3. Local Information Accumulation

As some of the research studies noted in previous chapter, to achieve highly adaptive

degree for the algorithm, some local information is needed which should be stored in

some tables in the node. If tables are too big then it consumes more buffer space

therefore such solution will be much more expensive. Another problem comes from

routing via routing table itself. If tables have huge amount of information in it, when

performing full analysis it will have impact on routing performance.

In our approach each router gets only limited information about its neighbor nodes. If a

link breaks then these nodes (or areas) impacted by these faults can be avoided, which

increases the adaptivity. The only information that is actually needed is description of

unreachable area. While 2D mesh is basically a matrix with x and y coordinates it is

possible to describe area with only few bits of information, while using basic

mathematic calculations. Another important constraint is about table size which should

be fixed. Table size should be as small as possible, because of NoC’s limited amount of

resources.

Using area and table optimization (see section 3.3.3) techniques enables us to reduce

and keep table sizes fairy small. But we have to understand that some of the information

can be lost by applying some of these techniques; if the tables are full and records can’t

be merged then we potentially can lose some healthy nodes.

3.3. Fault propagation for dependable routing

Our proposed method can be applied using any deadlock free, minimal path routing

algorithm and helps to recover some of its lost adaptivity. Basic idea behind this method

is, when a link breaks then a rectangle describing unreachable area will be generated

and back propagated to neighbor nodes. Rectangle propagation will continue until there

are no more routers which will depend on it.

3.3.1. Rectangle

What is a rectangle? It is a representation of area which is unreachable via current link.

Idea behind rectangle representation is that this needs to be easily understandable and

compact enough for the buffers to store. We try to propose a solution which is cost

38

efficient as possible but we found that some constraints had to be made. To achieve high

adaptivity and fault tolerance in NoC, some local information is needed. Our rectangle

representation is based on Cartesian location representation. We present each rectangle

by its upper left and lower right corner location (Fig. 3-17).

Fig. 3-17. Our rectangle presentation

3.3.2. Rectangle list

Each node’s outgoing link has one table associated to it, which holds predefined fixed

number of entries which is called rectangle list. This table stores rectangles that are

unreachable via current link. Routing algorithm has to check each link’s rectangle list to

get information about reachability on current path. Any node in faulty area (rectangle

list) can be avoided and a new path around it would be created.

To keep rectangle list minimal, some minimization and optimization functions has to be

applied. It is normal that duplications are not allowed and will be removed but merging

rectangles. Only optimized rectangle list will be back propagated to neighbors.

3.3.3. Rectangle optimization

Optimization is critical step needed to be performed in order to achieve good results. It

is necessary for meeting buffer memory requirements and keeping costs low.

Following cases are the main three optimization methods, which are preformed to

optimize rectangle list. First two optimization methods will be performed in any case

but third one is only for extreme cases when either rectangle list is full or no more

memory can be shared.

39

 Merging: if rectangles are right beside each other and have border with same

width or height, or one rectangle is located inside the other one, we can merge

them. Figure (Fig. 3-18) shows situation where two rectangles are merged

together.

Fig. 3-18. Rectangle optimization, Expansion.

 Lossless expansion: this optimization task is preformed to make list search

process faster. When two rectangles are beside each other and they can’t be

merged, smaller rectangle will be expanded into another. This will increase

rectangle area, while not sacrificing any healthy nodes. When routing algorithm

has to search the rectangle list, it will have higher probability to hit an entry

containing the destination node, because there are several rectangles with similar

information. This gives boost in performance. On figure (Fig. 3-19) a basic idea

behind this optimization is shown. This algorithm gives more benefit if we are

dealing with large rectangle lists.

Fig. 3-19. Rectangle optimization, lossless merging.

 Lossy expansion: this method, combines several smaller rectangles into bigger

ones. As can be realized from the methods name, we will lose some healthy.

40

This method is only used when it is necessary, when router memory is full or

rectangle list size limitations are met.

Fig. 3-20. Lossy merging, a graph representation.

At first, a graph will be made where each node on the graph represents a

rectangle. Weights on graph links will show number of cells which will be lost

when merging occurs between two rectangles. Nodes with lowest link weight

will be combined into a cluster (Fig. 3-20). Process will continue until router

memory requirements are met. On figure (Fig. 3-21) is shown, how much

information actually can be lost by combining two rectangles into bigger one.

Fig. 3-21. Lossy merging, making bigger rectangles.

3.3.4. Back propagation

Backtracking is an important component in our approach which takes care of sending

information received from neighbors, to neighbor nodes which are dependent on that

information. If routing component has information about a routing direction that leads

41

to a dead end with respect to a concrete path destination, then it can avoid this routing

decision completely and automatically calculate new and presumably routing decision.

After fault list is corrected and optimized then it will be propagated back to all neighbor

nodes. Propagation will be done depending on direction from where fault occurred. At

first rectangle list will be back propagated from node with broken link, to its neighbor

nodes. If some of them have dependences on path where fault occurred their lists will be

updated. In theory neighbors of neighbors are not affected (except for the case that, the

faulty region that they receive is on the node’s row or column) by fault because they can

route towards other paths and therefore they do not have to know unneeded information.

Our back propagation algorithm is designed for minimal path adaptive routing. Back

propagation scenario in our method is described below.

In our algorithm, for any given adaptive minimal path routing algorithm, we define:

 : list of reachable rectangles { }

 : old list of rectangles in Direction

 : list of rectangles in Direction

 : new list of rectangles in Direction

 : rectangles in direction

 : rectangles in direction

 : final set of rectangles (this is how the node sees the network)

To describe our algorithm for fault propagation, we present its pseudo-code

representation as follows:

42

 outgoing direction (Dependant on routing
algorithm):

 =

 entries in (forbidden rectangle list):

 = - part of which can be reached
via other directions

 =

 outgoing directions > :

 entries in list :

 = ()

 minimize .*

 outgoing direction : compute as the set union

of all .

 minimize .*

 If | | > # link entries, then:

 compress

 back propagate

Algorithm implementation is done a bit different, in Python language. The network

consists of two dimensional matrices and a health map. In back propagation algorithm it

is always assumed that network is faulty free at the beginning. Simultaneous faults

occurrence are not possible, and faults will be checked and processed one at a time.

While back propagating, new faults are not considered. Propagation process is done

using 2 stacks. First stack contains all the faults. For each fault, back propagation will

be done separately. Second stack holds nodes which require propagation rectangle. The

propagation process will be handled like a tree structure; we start from one fault, and

follow the neighbors until there is no more affected nodes and then we start from a new

branch and investigate it top-down. The details of implemented method is described

below.

43

Fig. 3-22. Different areas in back propagation.

Fig. 3-23. Back propagation examples on different mesh areas.

As you see on figure (Fig. 3-22) 8 different areas are shown on the mesh, from node

point of view. A rectangle in each area has different back propagation scenario. Areas 2,

4, 6 and 8 are acting similarly while others are different. If rectangle is in area 2, 4, 6 or

8, it has to be back propagated to all its neighbors except for the neighbor on that side

(Fig. 3-23, right). For example rectangle in area 2 has to be back propagated to all node

neighbors in W, E and S directions. Now if rectangle is in other areas (so called odd

areas) propagation has some differences. For example on figure (Fig. 3-23, left)

rectangle in area 1 has to be back propagated to node E and S neighbors only because

other neighbors are not dependent on it. Things are getting more complicated if

rectangle covers multiple areas. In that case intersection between different rectangles in

area has to be found and back propagation will be done only with intersections. To find

out actually what rectangle falls in odd areas we have to make intersections of

44

rectangles in two adjacent lists with the half-plane. As an example to find rectangles

located on North-East region, we make intersection between each two rectangles on

North and East lists and with the north east half plane (see figure Fig. 3-24). This

process should be performed for each half plane in odd areas.

Fig. 3-24. Case when back propagation is needed.

After intersections have been performed, we can initiate back propagation process.

Figure (Fig. 3-25) represents basic back propagation situation. Node marked with red is

unreachable due to faulty link. Its west neighbor eastern link is faulty so each of its

direct neighbors will be getting rectangle propagated to them. Now each of those nodes

will check do they have alternative paths to red node or not. If they do not have other

paths then they will propagate back to their neighbors. Nodes on the figure with red

arrows need to propagate information to their neighbors because they do not have any

alternative path and packet will be misrouted through them. If something is back

propagated to node which has faulty outgoing link then its list needs to be updated and

back propagated to its neighbors again.

45

Fig. 3-25. A back propagating scenario.

3.4. Elaborative examples

In order to demonstrate better our method behavior, some examples had to be made. In

this section some interesting examples are presented, these show our method strong

points. DyXY routing scheme (Fig. 1-9) will be used in simulation with an exception

that only one set of rectangle lists will be used on both planes. “ListOfSuccessors” is a

46

list which contains all the nodes which are dependent on fault. On each node a list of

potential neighbors should be calculated, which will be then visited and rectangle will

be propagated to them.

3.4.1. Example 1 – Short wall of broken links

In first example on 3x3 mesh network has two faulty links; North link on nodes 3 and 4.

Health map is shown on figure (Fig. 3-26). This example shows the case when list

information is needed to be updated. A scenario will be presented next.

Fig. 3-26. Example 1, health map.

Starting from Faulty node: 3

Nodes initial rectangle lists:

 north list: [[0, 2]]

 South list: []

 East list: []

 West list: []

ListOfSuccessors [4, 6]

----->SuccessorsList: [4, 6]

N N

47

Fig. 3-27. Example 1, propagation case 1.

Node 3 has a broken link on north direction. A rectangle [0, 2] to be added its north list

(Fig. 3-27, b) which is the whole half plane in the north of node 3. Intersection between

North plane [0, 0] and rectangle [0, 2] is [0, 0] which will be back propagated to nodes 4

and 6. (Fig. 3-27, a) according to our plane presentation (Fig. 3-22).

chosen node: 6

Nodes initial rectangle lists:

 north list: [[0, 0]]

 South list: []

 East list: []

 West list: []

ListOfSuccessors [7]

----->SuccessorsList: [4, 7]

Fig. 3-28. Example 1, propagation case 2.

N

N

 (a) (b)

 (a) (b)

N

N

48

Next node 6 will be selected from stack. Intersection between its North plane [0, 3] and

rectangle [0, 0] is [0, 0] (Fig. 3-28, b) which will be propagated back to node 7 (Fig.

3-28, a).

chosen node: 7

Nodes initial rectangle lists:

 north list: []

 South list: []

 East list: []

 West list: [[0, 0]]

ListOfSuccessors []

----->SuccessorsList: [4]

chosen node: 4

Nodes initial rectangle lists:

 north list: []

 South list: []

 East list: []

 West list: [[0, 0]]

ListOfSuccessors []

Fig. 3-29. Example 1, no back propagation presentation.

Since next elements in stack, nodes 7 and 4, do not have any intersections between lists,

no further propagation is needed. For exmple on figure (Fig. 3-29) is a case for node 4.

It has rectangle [0, 0] in its west list and nothing in its north list. According to our plane

presentation, rectangle is on node 4 North-West plane which means back propagation

has to go towards east and south (blue) and there hase to be intersection between

rectangles on north list and west list (purple).

49

Starting from Faulty node: 4

Nodes initial rectangle lists:

 north list: [[0, 2]]

 South list: []

 East list: []

 West list: [[0, 0]]

ListOfSuccessors [5, 3, 7]

----->SuccessorsList: [5, 3, 7]

chosen node: 7

Nodes initial rectangle lists:

 north list: [[1, 1], [0, 0]]

 South list: []

 East list: []

 West list: [[0, 0]]

ListOfSuccessors [8, 6]

----->SuccessorsList: [5, 3, 8, 6]

Fig. 3-30. Example 1, propagation case 3.

Here we have reached at the end of one branch in our tree, so we start with another

faulty node. Next fault in the network is on node 4’s north link. Rectangle [0, 2] will be

added into node 4’s north list. Rectangle [1, 1] will be calculated and back propagated

to nodes 3, 5 and 7 (Fig. 3-30, left). Node 7 will be selected from the stack, rectangle

[1, 1] will be added to its north list and back propagated to nodes 6 and 8.

N N N N

50

chosen node: 6

Nodes initial rectangle lists:

 north list: [[0, 0]]

 South list: []

 East list: [[1, 1]]

 West list: []

ListOfSuccessors []

----->SuccessorsList: [5, 3, 8]

chosen node: 8

Nodes initial rectangle lists:

 north list: []

 South list: []

 East list: []

 West list: [[1, 1], [0, 0]]

ListOfSuccessors []

----->SuccessorsList: [5, 3]

chosen node: 3

Nodes initial rectangle lists:

 north list: [[0, 2]]

 South list: []

 East list: [[1, 1]]

 West list: []

ListOfSuccessors [6]

----->SuccessorsList: [5, 6]

chosen node: 6

Nodes initial rectangle lists:

 north list: [[0, 0], [1, 1]]

 South list: []

 East list: [[1, 1]]

 West list: []

ListOfSuccessors []

----->SuccessorsList: [5]

chosen node: 5

Nodes initial rectangle lists:

 north list: []

 South list: []

 East list: []

 West list: [[1, 1], [0, 0]]

ListOfSuccessors []

51

Next in the stack is node 6 which rectangle [1, 1] will be added to its east list. Similar

process will happen to other nodes in the stack: 8, 5 then 3 which will be propagated to

6 also. No more further propagation is needed because same idea as shown on figure

(Fig. 3-29) applies.

It was just an easy and basic description about algorithm’s behavior. The main ideas

works on much complex cases as well.

3.4.2. Example 2 – An island

Our second example showing an interesting case, we call it island case. Island is the

situation where one node or area is inaccessible, because it is surrounded by faulty links.

In our case on a 3x3 network, upper right corner (node 2) is an island because node 1

outgoing east link and node 5 outgoing north links are faulty.

Fig. 3-31. Example 2, an island case via health map representation.

Starting from Faulty node: 1

Nodes initial rectangle lists:

 north list: []

 South list: []

 East list: [[2, 8]]

 West list: []

ListOfSuccessors [0, 4]

----->SuccessorsList: [0, 4]

N

E

52

Fig. 3-32. Example 2, propagation case 1.

At the beginning a fault on node 1 east link is dectected and rectangle [2, 8] to be added

into its list (Fig. 3-32, b). Propagations towards west (node 0) and east (node 4) has to

be made (Fig. 3-32, a). Rectangle which will be propagated is [2, 2], because node 4

rectangle [2, 8] in east list and its East plane [2, 2] intersection is [2, 2]. Nodes 4 and 0

will be added to the stack.

chosen node: 4

Nodes initial rectangle lists:

 north list: [[2, 2]]

 South list: []

 East list: []

 West list: []

ListOfSuccessors []

----->SuccessorsList: [0]

chosen node: 0

Nodes initial rectangle lists:

 north list: []

 South list: []

 East list: [[2, 2]]

 West list: []

ListOfSuccessors [3]

----->SuccessorsList: [3]

E

 (a) (b)

N

53

chosen node: 3

Nodes initial rectangle lists:

 north list: [[2, 2]]

 South list: []

 East list: []

 West list: []

ListOfSuccessors []

Fig. 3-33. Example 2, propagation case 2.

Node 4 and 0 are next in stack. For node 4 no further propagation is required, but node 0

will be propagating back to node 3 (Fig. 3-33, a). Rectangle [2, 2] will be propagated

because intersection between node 0’s East plane [1, 2] and east list rectangle [2, 2] is

equal to [2, 2] (Fig. 3-33, b). Node 3 will not propagate this list further since it has no

entry on its east list.

Starting from Faulty node: 5

Nodes initial rectangle lists:

 north list: [[0, 2]]

 South list: []

 East list: []

 West list: []

ListOfSuccessors [4, 8]

----->SuccessorsList: [4, 8]

E

 (a) (b)

N

54

chosen node: 8

Nodes initial rectangle lists:

 north list: [[2, 2]]

 South list: []

 East list: []

 West list: []

ListOfSuccessors [7]

----->SuccessorsList: [4, 7]

chosen node: 7

Nodes initial rectangle lists:

 north list: []

 South list: []

 East list: [[2, 2]]

 West list: []

ListOfSuccessors []

----->SuccessorsList: [4]

chosen node: 4

Nodes initial rectangle lists:

 north list: [[2, 2]]

 South list: []

 East list: [[2, 2]]

 West list: []

ListOfSuccessors [3, 7]

----->SuccessorsList: [3, 7]

Fig. 3-34. Example 2, propagation case 3.

Faulty north link on node 5 will be discovered next. Back propagation to nodes 4 and 8

will be made (Fig. 3-34, a). Node 8 will be chosen from stack and propagation towards

node 7 will be performed (Fig. 3-34, b). Next in the stack is node 7, which however do

 (a) (b) (c)

N N N

E E E

55

not have to propagate anything because its north link is still empty. Node 4 will be

chosen and propagates towards node 3 and 7 (Fig. 3-34). Rectangle [2, 2] will be

propagated, which is intersection between node 4 north and east lists.

chosen node: 7

Nodes initial rectangle lists:

 north list: [[2, 2]]

 South list: []

 East list: [[2, 2]]

 West list: []

ListOfSuccessors [6]

----->SuccessorsList: [3, 6]

chosen node: 6

Nodes initial rectangle lists:

 north list: []

 South list: []

 East list: [[2, 2]]

 West list: []

----->SuccessorsList: [3]

chosen node: 3

Nodes initial rectangle lists:

 north list: [[2, 2]]

 South list: []

 East list: [[2, 2]]

 West list: []

ListOfSuccessors [6]

----->SuccessorsList: [6]

chosen node: 6

Nodes initial rectangle lists:

 north list: [[2, 2]]

 South list: []

 East list: [[2, 2]]

 West list: []

ListOfSuccessors []

56

Fig. 3-35. Example 2, propagation case 4.

Node 7 will be chosen and rectangle [2,2] will be propagated towards node 6 (Fig. 3-35,

a). Node 6 will be chosen from stack but nothing will be backpropagated because no

intersection between node 6 east list and north list can be made. (Fig. 3-35, c). Next in

the stack is node 3 which will be chosen and its propagating back to node 6 (Fig. 3-35,

b). Lastly, a node 6 is in the stack, but again nothing well be back propagated.

3.4.3. Example 3 – Corners

Third example is showing a case where links are broken in such way, that they compose

a complex path. What we want to show here is that in many cases on such network

configuration, routing algorithms will be sacrificing healthy nodes. Our method will not

do it, instead it will mask out only unreachable nodes.

Fig. 3-36. Example 3, health map representation.

E

N N

 (a) (b) (c)

N N

E E

E

57

Starting from Faulty node: 6

chosen node: 5

Nodes initial rectangle lists:

 north list: []

 South list: []

 East list: [[7, 7]]

 West list: []

ListOfSuccessors [4, 9, 1]

----->SuccessorsList: [4, 9, 1]

Fig. 3-37. Example 3, propagation case 1.

Starting from node 6 which has faulty east link. Back propagation will be done similar

way like in pervious examples. Node 6 will be getting unreachable rectangle [3, 15] in

its east link. Intersection which will be back propagated to nodes 1, 4 and 9, is [7, 7]

(Fig. 3-37).

Starting from Faulty node: 9

Nodes initial rectangle lists:

 north list: [[7, 7]]

 South list: []

 East list: [[2, 15]]

 West list: []

ListOfSuccessors [8, 13, 5]

----->SuccessorsList: [8, 13, 5]

E

E

N N

58

Fig. 3-38. Example 3, propagation case 2.

Also the case with fault on node 9 east link, will be handled similar way. (Fig. 3-38)

Node 9 unreachable rectangle via east link is [2, 15]. Rectangle [10, 11] will be back

propagated to nodes 5, 8, 13 lists.

Starting from Faulty node: 14

Nodes initial rectangle lists:

 north list: [[0, 11]]

 South list: []

 East list: []

 West list: []

ListOfSuccessors [15, 13]

----->SuccessorsList: [15, 13]

Fig. 3-39. Example 3, propagation case 3.

Third case with node 14 which has faulty north link is quite different. First of all, node

14 will get rectangle [0 ,11]. Rectangle [2, 10] will be back propagated, because it is the

E

E

N N

E

E

N N

59

intersection between [0, 11] and [2, 10] (north plane)(Fig. 3-39, right). [2,2] will be

back propagated to nodes 13 and 15 (Fig. 3-39, left).

chosen node: 13

Nodes initial rectangle lists:

 north list: [[7, 7], [10, 11]]

 South list: []

 East list: [[2, 10]]

 West list: []

ListOfSuccessors [12]

----->SuccessorsList: [15, 12]

Fig. 3-40. Example 3, propagation case 4.

When node 13 is selected, back propagation with rectangle [10, 10] will be propagated

to node 12 only (Fig. 3-40, left). Unreachable rectangle in node 13 north list [10, 11] is

on its North-East plane (purple). Since east list also has rectangle [2, 10] which is on the

same plane, their intersection is [10, 10] (Fig. 3-40, right) will be back propagated to

west (according to planes). Futher propagation from nodes 12 and 15 will not happen

because they do not have any intersections between rectangles.

E

E

N N

60

Starting from Faulty node: 15

Nodes initial rectangle lists:

 north list: [[0, 11]]

 South list: []

 East list: []

 West list: [[2, 10]]

ListOfSuccessors [14]

----->SuccessorsList: [14]

chosen node: 14

Nodes initial rectangle lists:

 north list: [[0, 11]]

 South list: []

 East list: [[3, 11]]

 West list: []

ListOfSuccessors [13]

----->SuccessorsList: [13]

chosen node: 13

Nodes initial rectangle lists:

 north list: [[7, 7], [10, 11]]

 South list: []

 East list: [[2, 10], [3, 11]]

 West list: []

ListOfSuccessors [12]

----->SuccessorsList: [12]

chosen node: 12

Nodes initial rectangle lists:

 north list: [[7, 7], [10, 11]]

 South list: []

 East list: [[10, 10], [7, 7], [11, 11]]

 West list: []

ListOfSuccessors []

61

Fig. 3-41. Example 3, propagation case 5.

Last interesting case is with node 15 faulty north link. First node 15 north link will get

rectangle [0, 11]. Intersection between its East plane [3, 11] and rectangle [0, 11] is [3,

11] which will be back propagated to node 14, 13 and 12 (Fig. 3-41). From node 14

back propagation goes to node 13 because rectangle on its east list [3, 11] has

intersection between its north list rectangle [0, 11]. From node 13 also back propagation

to node 12 takes place. This case is more special than pervious because two rectangles

will be pack propagated. First rectangle [7, 7] which is intersection between north [7, 7]

and east [3, 11] and second rectangle [11, 11] which is intersection between north [10,

11] and east [3, 11]. From node 12, no further back propagations will be made.

E

E

N N

62

4. Results

Our method can discover unreachable areas and routing will not be made if node is in

that area. In case we need to send a packet to a node in unreachable area, remapping of

the algorithm is required. By implementing this method we can increase reachability to

1; if node is reachable then local neighbors will have this information already. If node is

on an island -an area which is surrounded by faulty nodes- then information will be

back propagated to all over the network. In this way, sending packets to unreachable

destinations cannot happen. This property also provides us with a tool to recover the lost

adaptivity for the routing algorithm.

Our method helps to achieve higher level of fault tolerance. For testing our algorithm

we used our own environment, described in pervious chapter. Different tests using

different mesh sizes were performed according to DyXY routing algorithm. The back-

propagation process takes longer time when either network size or number of faults

increase.

In the end our concept indeed imposes some extra cost to system. Increasing cost comes

from each individual outgoing link which has to have a fixed table in it. But it also

should give noticeable adaptivity boost which helps to increase reliability and fault

tolerance in the chip. It also should be more flexible and scalable because it is not

dependent on routing algorithm and fault rate. In some cases some information can be

lost due to lossy merging optimization.

63

5. Conclusions & Future Work

Our methodology described in this to develop a method which is scalable, routing

algorithm independent, fault tolerant (even with multiple faults). Our method is based

on the idea that reachability analysis will be done for each router separately so routers

will have only local information about the network state. This keeps table size and data

communication minimal.

One important task of our proposed algorithm is back propagating the information to

neighbor nodes. Not all the information is required. If node has alternative paths to

route, no back propagation process will be initiated.

Optimization is also important from resources stand point, mainly because of limited

memory in NoC. Some optimization tasks will be performed but one of the downside in

our approach is with area optimization when tables are full, then some of the healthy

nodes has to be sacrificed. We also proposed metrics, for calculating reachability and

dependability on routing algorithm, which takes into account occurring link faults.

Our proposed method enhances adaptive minimal path routing algorithms to tolerate

more faults. Experiment results show huge impact of our method on network

reachability and dependability. Performance is not affected and fault tolerance is

increased compared to regular routing algorithms.

5.1. Future Work

While in the end a lot were achieved, there is still room for improvements for the future.

Following topics will improve our method, and can be investigated in the future.

Reachability analysis versus other algorithms

We have proposed some metrics which can be improved and then used to calculate

reachability and adaptivity for the algorithm by taking all the faults into account. It is

necessary to adapt these metrics to different algorithms and see how results differ when

number of faults increase. Also comparison between results by using our developed

method and without it should also be performed.

64

Implications for Risk-minimized Task Mapping

Another area which also should be considered in future works is task mapping. Since

faults in network decrease number of all possible paths for the adaptive algorithm,

information about possible paths after some faults occurred is required. This

information can be used to map tasks according to system health map. If tasks are be

mapped on fault free areas as possible then this would give benefit to cost and

efficiency. While faulty areas will decrease efficiency and increase cost they should be

avoided as much as possible.

Another problem is with so called islands (shown in example 2). Island is area on the

mesh which is completely inaccessible. With our methodology it is possible to define

those areas and this information can be used to preform dynamic task mapping in

system. However this topic will need much more research in the future.

65

6. Bibliography

[1] T. Yoneda and M. Imai “Dependable Routing in Multi-Chip NoC Platforms

for Automotive Applications”, 2012

[2] B. Fu, Y. Han, H. Li and X. Li “A New Multiple-Round DOR Routing for

2D Network-on-Chip Meshes”, 2009

[3] M. Valinataj and S. Mohammadi “A Fault-Aware, Reconfigurable and

Adaptive Routing Algorithm for NoC Applications”, 2010

[4] M. Ebrahimi, M. Daneshtalab and J. Plosila “High Performance Fault-

Tolerant Routing Algorithm for NoC-based Many-Core Systems”, 2013

[5] E. Wachter, A. Erichsen, A. Amory and F. Moraes “Topology-Agnostic

Fault-Tolerant NoC Routing Method”, 2013

[6] M. K. Puthhal, V. Singh, M.S. Gaur and V. Laxmi “C-Routing: An Adaptive

Hierarchical NoC Routing Methodology”, 2011

[7] C. J. Glass and L. M. Ni “The Turn Model for Adaptive Routing”, 1992

[8] W. J. Dally and B. P. Towels “Principles and Practices of Interconnection

3Networks”, 2004

[9] J. Duato, S. Yalamanchili and L. Ni “Interconnection Networks: An

Engineering Approach”, 2002

[10] C. Bobda, A. Ahmadinia, M. Majer, J. Teich, S. Fekete, J. van der Veen

“DyNoC: A Dynamic Infrastructure for Communication in Dynamically

Reconfigurable Devices,” International Conference on Field Programmable

Logic and Applications, 24–26 August 2005, pp. 153–158.

[11] M. Li, Q. Zeng, W. Jone “DyXY - A Proximity Congestion-Aware

Deadlock-Free Dynamic Routing Method for Network on Chip”, 2006

[12] L. Wang, C. Wu and X. Wen “VLSI Test Principles and Architectures

Design for Testability”, Elsever, 2006

[13] Ge-Ming Chiu “The Odd-Even Turn Model for Adaptive Routing”,

IEEE Trans. Parallel and Distributed Systems 11(7), 729–738, 2000

[14] O. Novak, E. Gramatova and R. Ubar “Handbook of testing electronic

systems” CTU Printhouse Prague, 2006

[15] Daneshtalab Masoud “Exploring Adaptive Implementation of On-Chip

Networks”, PhD Thesis, 2011

	Author’s declaration of originality
	Abstract
	Annotatsioon
	Table of abbreviations and terms
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1. Basic Properties of NoC Routing Algorithms
	1.1.1. Deadlock Problem
	1.1.2. Adaptivity

	1.2. Introduction: Analysis of Routing Algorithms with respect to dependability
	1.2.1. XY
	1.2.2. West-First
	1.2.3. Odd-Even
	1.2.4. DyXY

	1.3. Metrics for Reachability
	1.3.1. Static Reachability Metrics Calculation

	2. State-of-the-art in Dependable Routing
	2.1. Dependable Routing in Multi-Chip NoC Platforms
	2.2. Multiple-Round Routing for 2D Network-on-Chip Meshes
	2.3. A Fault-Aware, Reconfigurable and Adaptive Routing Algorithm for NoC Applications
	2.4. High Performance Fault-Tolerant Routing Algorithm for NoC-based Many-Core Systems
	2.5. Topology-Agnostic Fault-Tolerant NoC Routing Method
	2.6. C-Routing: An Adaptive Hierarchical NoC Routing Methodology

	3. Methodology
	3.1. Limitations and assumptions
	3.2. Dependable routing concept
	3.2.1. System Health Map
	3.2.2. Reachability Attributes
	3.2.3. Local Information Accumulation

	3.3. Fault propagation for dependable routing
	3.3.1. Rectangle
	3.3.2. Rectangle list
	3.3.3. Rectangle optimization
	3.3.4. Back propagation

	3.4. Elaborative examples
	3.4.1. Example 1 – Short wall of broken links
	3.4.2. Example 2 – An island
	3.4.3. Example 3 – Corners

	4. Results
	5. Conclusions & Future Work
	5.1. Future Work

	6. Bibliography

