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1 Introduction
1.1 Background
Navigation and positioning has undergone substantial advancements since the introduc-tion of the compass in the 11th century. Throughout history, diverse approaches haveemerged for determining position and facilitating navigation, encompassing the utiliza-tion of landmarks, maps, celestial navigation, and more [6]. With the advent of electronictechnology, a new era in positioning and navigation commenced through the develop-ment of different Radio Frequency (RF) signal-based positioning systems. Among others,notable examples include the German Telefunken Kompass Sender, which relied on radiodirection finding, as well as ground-based hyperbolic multilateration systems like Gee inthe UK and Loran in the USA. These advancements eventually led to the establishment ofGlobal Navigation Satellite Systems (GNSS), providing global coverage [7].The first GNSS, the Global Positioning System (GPS), was developed by the UnitedStates Department of Defense in the 1970s and launched in 1978. Initially developedfor military purposes, GPS quickly became a civilian tool and has since become the mostwidely used GNSS in the world. Since then, other GNSS have been developed, includingRussia’s GLONASS (launched in 1982), China’s BeiDou (launched in 2000), and the Euro-pean Union’s Galileo (launched in 2011) [8]1. These GNSS utilize a network of satellitesorbiting the Earth to provide precise positional information to users on the ground, any-where in the world [9].While GNSS’ have been instrumental in improving navigation for outdoor environ-ments, their use is limited in indoor environments due to the signal attenuation causedby not having a direct propagation path to GNSS satellites and multipath effects causedby complex propagation conditions imposed in indoor environments [10]. This has led tothe development of Indoor Positioning Systems (IPS), which use alternative methods todetermine the position of users or assets indoors.The development of IPSs has opened up new possibilities for positioning and naviga-tion, especially in environmentswhere GNSS signals are unavailable or unreliable [11]. IPSshave been used in a variety of applications, including various location-based services [12],emergency response [13], asset tracking [14], etc. In recent years, there has been an in-crease in interest in IPS, driven by the growing demand for location-based services andthe increasing use of mobile devices [15].The subsequent subsection provides a short overview of the various signal types em-ployed in the operation of IPSs, presenting a brief exploration of their characteristics.
1.2 Signal Classification in Indoor Positioning Systems
As GNSS’ utilize RF signals in the localization process, there exist quite a few other sig-nals that may be leveraged to provide position estimates. This section provides a briefoverview of some of the most popular signals that are employed for IPSs, without goinginto the specific pros and cons of using each signal. Fig. 1 provides an overview of thesignal classification for indoor positioning systems presented in the scope of this thesis,the details of which are discussed further in this section. It is noteworthy that the clas-sification schemes employed in scientific publications for signal categorization in indoorpositioning systems often exhibit variations. Different papers adopt distinct taxonomies,resulting in discrepancies in how signals are classified. For instance, certain publications

1The launch date of Galileo was added here by the thesis’s author since the article by Hegartyand Chatre was published prior to the actual launch date.
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Figure 1: Classification of measured signals in indoor positioning systems.

list optical and vision systems separately [16], while others classify them under a broad"Light Based Localization" category [17].
Light: Although light is an electromagnetic signal just as the RF signals are, the under-lying technologies for ranging are quite dissimilar. Light-based technologies fall into twobroad domains: Infrared (IR), and Visible Light (VL). IR and VL applications are similar inprinciple: they both use emitted bursts of light which are detected with a photodiode totransfer information, the difference being in the portion of the electromagnetic spectrumused for transmission. VL uses the visible light portion of the electromagnetic spectrumand IR uses longerwavelengths thanVLwhich are not perceived by the humaneye. Opticaland vision systems, which employ one or both of them, position the subject by employingan image or video stream from a camera [18].
Radiofrequency: RF signals in indoor positioning typically cover the electromagneticspectrum from the kilohertz range of low-frequency Radio Frequency Identification (RFID)[19] up to 10.6 GHz used by UWB devices [20]. The position estimate is provided by as-sessing a certain parameter of the RF signal. Possible parameters include proximity de-tection based on demodulated signal used in RFID and Near Field Communication (NFC);Received Signal Strength Indicator (RSSI) value used in Zigbee, Wireless Local Area Net-work (WLAN), Cellular, and Bluetooth; and RF signal propagation time, typically used inUWB applications. In addition to range estimations, antenna arrays could be exploited todetermine the direction of a transmitter.
Inertial: Modern inertial systems utilize digital accelerometers and gyroscopes to de-termine the direction and movement based on acceleration in certain directions. Typi-cally, inertial technology is combined with information from other sensors [21]. This is thecase for Dead Reckoning (DR), where the future position is predicted by combining well-known position information (provided by another sensor) and themovement informationprovided by inertial sensors [22].
Sound: Sound signals consist of pressurewaves propagating in the air. The propagationtime and the speed of sound are used to give a range estimate; additionally, an arrayof microphones could be used to detect the direction of the transmitter, similar to oneof the previously mentioned RF methods. Sound-based technologies are arranged intotwo sub-categories: the more prevalent ultrasound and the lesser used audible soundtechnologies [23].
Atmospheric pressure: Although the atmospheric pressure measured by barometricsensors can only supply altitude difference information, not position estimates, it can stillbe used to augment other positioning methods to provide more robust and precise esti-mates [24, 25].
Mechanical: These sensors provide presence detection by means of physical interac-tion, i.e. pushing a button or a capacitive touch sensor located in specific locations [26]or by employing passive presence detection, i.e. smart floor applications using load cellsmeasuring the ground reaction force [27, 28].
Magnetic: This technology exploits magnetic field detection to attain a position es-timate. In addition to heading estimation via a compass, typically magnetic sensors are

12



used alongside the fingerprinting technique. Magnetic sensor technologies are dividedinto A) passive, which uses magnetic fields present naturally (earth’s magnetic field orfields induced by ferromagnetic materials used in building constructions); and B) active,which generates artificial magnetic fields using special transmitters [23].
1.3 Localization Techniques

The usage of localization techniques discussed in what follows is typically dictated by theunderlying technologies discussed above. Although various locating principles could beapplied singularly, the combination of several principles and therefore technologies canbe used to overcome the specific shortcomings of single techniques. This section statesthe main principles of operation for IPSs.
Triangulation: The triangulation technique uses the geometric properties of trianglesto calculate a position estimate relative to at least two known reference points. The refer-ence points (anchors) measure the direction from which a signal is received and calculatethe position of the mobile device (tag) using the known positions of the anchors and themeasured angles. The angles are typically acquired by sensor arrays: antenna arrays forRF and microphone arrays for sound-based signals [16].
Trilateration/multilateration: The trilateration technique utilizes the geometric prop-erties of circles to give a position estimate. The position estimate for a two-dimensionalspace is calculated with distance measurements to three known reference points [23].Scaling the system to estimate a Three-Dimensional (3D) position needs the availability ofat least 4 reference anchors [7]. When measuring 4 or more distances, the trilaterationtechnique is called multilateration. Although multilateration is typically used in RF-basedsystems, it could also be used in sound or light-based applications.
Fingerprinting: The position estimation in fingerprinting is performed independentlyof the previously discussed received signal angle or distance. The main principle of finger-printing is to collect a unique location-dependent characteristic (or a set of characteristics)of a signal to estimate the position of the device. There are two stages for location finger-printing: the offline (or training) phase where the mapping of characteristics to specificlocations is made, and the online phase, where the real-time signal characteristics arecompared to the offline data for location estimation [29]. Typical uses of this techniqueinclude RSSI mapping for WLAN and Bluetooth signals and magnetic field mapping formagnetic sensor-based applications.
Optical/Vision: This approach is where a position of a person or an object is deter-mined by identifying a marker or an object (person) from an image or video stream [23].Vision analysis can be performed in two different ways: fixed camera and mobile camerasystems. Fixed camera systems utilize image sensors with a known location, the target oftracking is identified from the image stream and is positioned relative to the camera’s lo-cation. Mobile camera systems make use of the mobile target with a camera: localizationis performed by identifying several markers, and landmarks or by extracting environment-specific features [16].
Proximity: The proximity sensing technique positions the target object with respectto a known area. The object’s presence in a particular area is sensed using a physical phe-nomenon with a limited range. The sensing could be carried out by physical interaction(touch sensors, pressure sensors, or capacitive sensors) [18], with more remote identifi-cation systems like NFC or RFID [21], detecting the presence via ranging data, or by visualdetection, as explained above.
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1.4 Performance Metrics
Several taxonomies have been proposed in the literature for benchmarking IPSs; the vari-ous proposed categories are summarized in table 1. This section provides a short overviewof the most commonly utilized metrics from the literature for designing, comparing, andevaluating various indoor location systems and the underlying technologies. These met-rics make it possible to compare and select a suitable solution based on the needs of aspecific application and the available resources.

Accuracy: The accuracy metric is one of the most prevalent and important metrics foran IPS since in most cases accuracy defines the applicability of a system for a specific usecase. Generally speaking, accuracy is defined as the average Euclidean distance betweenthe estimated and the true position [15, 30].
Precision: While accuracy considers only the mean value of distance errors, the preci-sion metric shows the repeatability, in other words, the closeness, of multiple measure-ments. The precisionmetric is often considered a part of the accuracymetric, naming it asthe performance of an IPS. As some literature defines precision as the standard deviationof the location error or Geometric Dilution of Precision (GDoP), the cumulative distribu-tion function (CDF) also serves as a clear way to assess the precision of a system [15].

Table 1: Taxonomies of indoor positioning system metrics.
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Accuracy/precision ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓Complexity ✓ ✓ ✓ ✓ ✓Scalability ✓ ✓ ✓ ✓ ✓ ✓Robustness ✓ ✓ ✓ ✓Cost ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓Security/privacy ✓ ✓ ✓ ✓ ✓ ✓User preference ✓Commercial availability ✓ ✓ ✓Limitations ✓ ✓ ✓Availability ✓ ✓Coverage ✓ ✓ ✓ ✓ ✓ ✓ ✓Power consumption ✓ ✓ ✓ ✓Update rate/delay ✓ ✓Central/local computing ✓

Complexity: Positioning systems have complexity in terms of software, hardware, andoperation factors [23, 33]. Software complexity represents the computational complexityof the positioning algorithms, and hardware complexity is the number of deployable in-frastructure elements. Operation factors describe the complexity of maintaining the dailyoperation of the IPS.
Scalability: Thismetricmay be defined on the basis of two dimensions: density and ge-ography. Density describing the maximum number of user terminals positioned per unitarea and time: the positioning signal channel may become congested or further infras-
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tructure will be needed to compute the location estimates. Geographic scalability refersto the availability to adjust the physical coverage area of the IPS by introducing additionaldevices [31].
Robustness: Robustness, or fault tolerance, is themeasure that describes the system’sresilience against various impairments, such that its performance is not degraded in awiderange of usage scenarios. Some publications also consider the LoS requirement as a partof the robustness metric, as opposed to stating it as a separate one [30].
Cost: Cost can take on several dimensions: financial, time, space, and energy. Forexample, the financial cost of the devices and their maintenance, deployment time, thedimensions of the devices (or the system in general), and the energy consumption of mo-bile devices. Typically the cost is closely related to the complexity metric [36].
Security/privacy: Privacy is an important metric concerning individuals using the sys-tem: in commercial applications, the users want to have full control over the usability oftheir location information. In a broad sense, the privacy metric can be divided into two:low and high. The former is the situation when location estimates are calculated in acentralized server and the latter is the opposite: location estimates are computed in theuser’s device [23].
User preference: The authors of [30] describe user preference as providing a com-fortable user experience, contributing to intuitive usage and lightweight and easily usablewearable devices.
Commercial availability: This metric covers if a system is research-oriented with lim-ited availability or readily obtainable as a commercially off-the-shelf product [35].
Limitations: Although the limitations of each system/technology can also be consid-ered as part of other metrics, [30] and [36] stated them as a separate category. Theselimitations are related to the propagation medium, the need for special infrastructure,the maximum number of available devices, etc. For example, [17] states that the largestconstraint for light and sound-based systems is the requirement of LoS.
Availability: Referred to as the percentage of time the IPS is functioning with therequired accuracy. This is subject to change on the basis of factors such as downtimefor maintenance, device battery charging, data traffic congestions, failures of devices,etc [31, 22].
Coverage: The physical area (surface area or room volume) the IPS is able to cover,providing the required accuracy. Coverage area could also be defined as one of 3 broadcategories: local, scalable, or global with the latter having a worldwide coverage area,such as a GNSS [31].
Power consumption: The metric, commonly referred to as power consumption, en-ergy consumption, energy efficiency, or battery life, is an important measure for the mo-bile user equipment, as these typically operate on battery power. Therefore, in order toincrease the use time, high energy efficiency is desired [17].
Update rate/delay: Reference [17] defines the update rate as the frequency of thelocation estimates for a system, while [34] also adds the notion of latency, in order todescribe the delays induced by utilizing multiple signal measurements, signal processing,etc.
Central/local computing: Finally, in [36] the authors stress the importance of whetherthe calculations are carried out in a centralized node or in the mobile devices themselves,referring to more consumed energy due to increased communications for a central com-puting node. On the other hand, local computing has the downside of needing additionalinformation for position estimation. The available literature has also categorized this pointunder the Security/Privacy category, albeit for other reasons.
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1.5 Ultra-Wideband Technology
Sincemanyworks in the literature extensively detail the strengths andweaknesses of eachwireless positioning technology [23, 31, 18, 22, 16, 34, 35, 17] discussed in Section 1.3, thecomparisons are not included in the scope of this thesis. Rather, the reasoning behind
shifting the focus on UWB technology is discussed.Research has shown that out of all of the wireless-based IPSs, UWB shows potentialas it is the most accurate non-hybrid positioning technology offering an accuracy of <30cm [15], with some implementations achieving as low as 2 cm accuracy [29], proving tobe the most accurate RF-based positioning technology [33]. Additionally, UWB is seen asa promising technology, as it is highly scalable, employing a rather low cost of hardwareand low energy consumption [37].Similarly, a number of research papers in recent years show that UWB is the secondmost popular wireless-based positioning technology after WiFi [38]. Traditional narrow-band systems could not distinguish multipath components, therefore they are suscepti-ble to fading effects, as well as having inferior time-domain resolution. UWB technologywith its nanosecond-range pulse duration provides resistance tomultipath effects, as wellas providing robustness against other communication devices and noise in the same fre-quency band [39, 22].On top of the increased research interest in recent years, UWB transceiver integratedcircuits (IC) have been included in numerous consumer products, such as smartphonesApple iPhone 11 models and up [40], Samsung Galaxy S21+ and up [41], to standards forsmart car keys [42], which are implemented, for example, in BMW vehicles [43].UWB can be used without licensing, as it operates in unlicensed parts of the RF spec-trum [21]. As opposed to some of the other positioning technologies based on light orsound signals, the RF waves of UWB propagate through various obstacles and even solidwalls [31]. In addition to the previously mentioned precise ranging capabilities, UWB canalso be used for high-rate data transmission [23].
1.6 Problem Statement and Research Questions
From the perspective of a wireless positioning system, the key performance metrics thatneed to be improved are robustness, accuracy, precision, computational complexity, andpower consumption. However, improving them is not a trivial task: often, boosting theperformance of one metric decreases another metric – some trade-offs have to be made.The study of these areas of possible improvement led to the identification of certain sub-topics (STx) that are relevant to wireless positioning:

1. ST1 Filtering of input and/or output data
2. ST2 Position estimation algorithms
3. ST3 Ranging protocols
4. ST4 Non-Line-of-Sight (NLoS) conditions
The identification of the sub-topics led to the formulation of five research questions.The research questionswith the corresponding sub-topics in parentheses are listed below:
1. RQ1How to improve location/ranging estimates in the case of noisymeasurements?(ST1, ST2, ST3, ST4)
2. RQ2 How to detect and possibly mitigate inaccuracies caused by NLoS? (ST4)
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3. RQ3 How to decrease the power consumption of the mobile node? (ST3)
4. RQ4 How to decrease air-time occupancy? (ST3)
5. RQ5 How to balance the inherent trade-offs in a real-time location system? (ST1,ST2, ST3, ST4)
These analytical questions focus on improvements by applying procedural, algorith-mic, or signal-processing principles to data originating from the positioning system. Thisis different from focusing on gains attained by altering the hardware or the low-level al-gorithms implemented in the integrated circuits, which is not in the scope of this thesis.

1.7 Contribution of the Thesis
To respond to the research questions presented in the previous section, the followingcontributions are presented in this thesis, noting that RQ5 applies to all the points below:

• Firstly, contributing towards RQ1, RQ3, and RQ4 is proposing the first novel AP-TWRprotocol for positioning systems. Although the AP-TWR protocol is designed withUWB in mind, its use is not explicitly limited to UWB technology. The proposedprotocol allows for flexible configuration of anchor roles in a system, defining thenumber of active-passive and passive-only anchors. The first of which determinesthe total number of packets in a ranging sequence, while the latter provides extrarange estimates without any additional cost to the air time. Reducing the air timeby transmitting fewer packets also lowers the power consumption of the tag. Thisflexibility permits the positioning system to adapt to various requirements, whetherit be prioritizing reduced air time (and power consumption), minimizing rangingerrors, or achieving incremental improvements in both aspects (Publication I).
• In the quest to improve on the previous results, the research is continued by furtherdeveloping the aforementioned protocol to provide an alternative way of calculat-ing AP-TWR range estimates. Both AP-TWR methods are paired with 3 of the mostcommon active ranging protocols to provide 6 distinct variations of AP-TWR proto-cols, which are compared to each other based on their theoretical accuracy, basedon numerical simulations. The most promising of which is also tested experimen-tally to validate the results (Publication II).
• Finding an answer to RQ1 and RQ2 was followed by testing and advancing the ro-bustness of the AP-TWR in LoS and NLoS propagation conditions. The previouslyused Least Squares (LS) method of finding the range estimates from the AP-TWRmeasurement matrix was compared to 6 other measurement matrix processingtechniques. The findings indicated that a few of the tested methods further en-hance the robustness of AP-TWR range estimates in NLoS scenarioswhen comparedto the LS method (Publication III).
• Similar to the previous contribution, RQ1 and RQ2 were addressed in the positionaccuracy context by introducing a novel Adaptive Extended Kalman Filter (A-EKF)positioning method, based on AP-TWR. The formulation of which was in turn basedon the comprehensive analysis of various possible NLoS cases given in the samepublication. The proposed A-EKF positioning method showed a drastic reductionof positioning errors which are caused by NLoS effects in industrial environments(Publication IV).
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1.8 Thesis Organization
The rest of the thesis is organized as follows:

Section 2 provides the background information on UWB positioning, detailing infor-mation on the most commonly used methods and protocols, and giving an overview ofthe state-of-the-art in this field. Section 3 presents the formulation, numerical simula-tions, and experiments of the proposed UWB Active-Passive Two-Way Ranging (AP-TWR)protocols. Section 4 introduces and experimentally analyzes the measurement matrixprocessing methods, which provide increased robustness to the AP-TWR range estimates.
Section 5 brings together the insights gained from previous research to propose a novelpositioning method based on the AP-TWR protocol. Finally, in Section 6, the thesis isconcluded, answering the posted research questions and offering future perspectives forresearch in this field.
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2 UWB Technology-Based Positioning
UWB is a radio technology that permits robust transmission of data across a large band-width, which exceeds 500 MHz or 20% of the carrier center frequency; considering this,UWB technology is robust and suited for high-density, high data rate, low power, andlow interference communications [44]. The IEEE 802.15.4a is an amendment to the IEEE802.15.4-2006 Standard for Low-Rate Wireless Networks [45] describing additional phys-ical layers to the original standard, which enables precise ranging for UWB devices [46].While [21, 47] provide an in-depth overview of UWB, readers interested in an extensiveoverview of UWB-related standards and organizations are encouraged to read the com-prehensive article by Coppens et al. in [48].

Despite the comparatively higher implementation costs associated with UWB, whichnecessitates the acquisition of additional devices unlike the widely adoptedWiFi technol-ogy, it outshines other technologies in terms of its remarkable accuracy and lower powerconsumption [49]. Moreover, thanks to its high bandwidth and therefore high tempo-ral resolution, UWB is more robust to multipath propagation effects than any other RFtechnology [33].
The possible methods for implementing positioning in a UWB system are A) the pre-viously discussed fingerprinting based on the Channel Impulse Response (CIR) or powerdelay profile, B) distance estimation via path loss on RSSI or C) by Angle of Arrival (AoA) es-timation. Although in their own right, thesemethods are sufficient for providing a positionestimate, they propose some challenges: indicated byMazhar et al. in [29], fingerprintingis a time-consumingmethod requiring building up a signal parameter database, which canchange over time in the positioning area; the RSSI method is very susceptible to interfer-ence caused by multipath propagation; finally, AoA estimation requires nodes equippedwith antenna arrays, which subsequently increases the size and cost of the devices.
The remaining prominent positioning techniques for UWB are referred to as follows:1) Time of Flight (ToF), also known as Time of Arrival (ToA) or Return Time of Flight (RToF),and 2) Time Difference of Arrival (TDoA). The first of which will be addressed as ToF for therest of the thesis. Thesemethods leverage the exceptional temporal resolution achievablein UWB technology [50], which will be presented in subsequent sections.
As a short introduction, ToF makes use of the relationship between the distance trav-eled and the propagation timewhen knowing the propagation velocity of the signal, whileTDoA employs the differences of arrival times of an emitted signal. Although TDoA enjoysa minimal impact on the traffic in the network, it, in turn, needs strict synchronizationbetween anchors. Estimating the ToF via Two-Way Ranging (TWR) methods allows forremoving stringent synchronization requirements between anchors while posing a draw-back by increasing the air time, compared to TDoA [51]. This in turn lowers the achievabletag density and raises the energy consumption in typical ToF methods [52]. Although the-oretical analysis and simulations show that ToF and TDoA are identical in their positioningperformance, some practical cases show the superiority of ToF methods [53]. Moreover,it is noted that ToF methods are superior when it comes to positioning outside the convexhull defined by the anchors, as it is more agnostic to measurement errors than TDoA [54].

2.1 Methods for UWB Positioning
This section presents the most prevalent methods which are used in UWB-based posi-tioning. There also exist other methods, such as positioning utilizing deep learning on theraw CIR [55], localization based on the analysis of RF signal fading [56], or hybrid systemscontaining multiple different methods [57], but these are not considered in the scope of
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this section, as they are very specific positioning implementations, whereas the followingintroduces the most well-known methods.
2.1.1 Time of Flight-Based Circular MultilaterationThe first time-based method is the previously mentioned ToF, which is based on the mea-sure of one-way propagation time from a transmitter to a receiver. For practical use in apositioning system, the ToF of a signal, t, is converted to a physical distance, d, by multi-plying the propagation time by the propagation velocity of the wave, c:

d = c · t, (1)
The approximate value of the speed of light is c ≈ 3 · 108ms−1 (for RF and light-basedsignals) and the speed of sound c ≈ 340ms−1 (for sound-based signals), although usingapproximate values introduces systematic errors in the calculations [51]. The values aregiven as rough estimates to show the cardinality of the two mediums, in reality, the wavevelocity depends on various environmental parameters [58].In Fig. 2, each of the distance values di corresponds to a circle centered on the cor-responding anchor Ai’s location (xi,yi). This allows the construction of a system of circleequations that, in an ideal case, intersect at the position of the located object T with co-ordinates (x,y). In the figure, the concept of circular trilateration is illustrated since thepositioning is done by utilizing three distance values [7]. Although similar, the term mul-tilateration is used for disambiguation in cases where four or more distances are used.It is important to note that the distance-based trilateration/multilateration is not ex-clusive to ToF methods, as it can also be employed for signal strength-based ranging aswill be explained in Section 2.1.4.

T(x, y)

A1(x1, y1)

A2(x2, y2)

A3(x3, y3)

d1 d2

d3

Figure 2: Geometrical representation of trilateration-based position estimation. Fixed anchor nodes
Ai located at (xi,yi)measure the corresponding distances di to the tag T. The position estimate (x,y)
of T is found as the intersection point of the circles constructed by (xi,yi) and their corresponding
distances di.

Mathematically, the circularmultilateration concept is described as a nonlinear systemof equations, which is solved for coordinates x and y of the node T to be located:



d1...
di


=




√
(x− x1)2 +(y− y1)2

...√
(x− xi)2 +(y− yi)2


 , i = 1, · · · ,N, (2)
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where N ⩾ 3 is the total number of anchor nodes used for the Two-Dimensional (2D)position estimation [51].Analytically, when dealing with underdetermined lateration cases, it can be seen fromFig. 2 that for the case N = 2 there can exist a maximum of 2 intersection points, fromwhich the true location of T can be inferred by setting geometrical constraints on thepossible location of the tag. A theoretical single intersection point exists in a degeneratecase, where the tag is located on the line which passes through both of the anchors. Evenin the case of N = 1, the location of the tag can still be found on a circle, allowing it todetect and measure proximity to an anchor.Since there exist multiple different protocols for ToF estimation, each with their up-and downsides [50], they are separately discussed later in Section 2.2.
2.1.2 Time Difference of Arrival-Based Hyperbolic MultilaterationThe second time-basedmethod is TDoA. Although TDoA also utilizes the propagation timeof signals, it examines the time differences at which the signal arrives at receivers ratherthan the absolute propagation time as in ToF. The time differences are then in turn calcu-lated to distance differences di −d1 via (1), where i = 2, · · · ,N, and N is the total numberof anchor nodes taking part in the position estimation. An equation system of hyperbolasis then constructed, and the location estimate (x,y) lies at the intersection of said hy-perbolic curves, the process which is called hyperbolic multilateration [7]. The geometricrepresentation of hyperbolic multilateration is illustrated in Fig. 3.

A1(x1, y1)

A3(x3, y3)

A2(x2, y2)

T(x, y)

d1 d2

d3

d2-d1

d3-d1

Figure 3: Hypebolic multilateration with TDoA measurements. Fixed anchor nodes Ai located at
(xi,yi) measure the signal propagation time differences with respect to the reference anchor A1.
A1 is chosen as the reference node since it is physically the closest to T. The time differences are
converted to distance differences d3 − d1 and d2 − d1. Gray dotted lines indicate the theoretical
distances di. The position estimate (x,y) of T is found at the intersection point of the hyperbolas
constructed by the locations (xi,yi) of anchors Ai and the distance differences d3 −d1 and d2 −d1.

In mathematical terms, finding the TDoA position estimate of node T entails the pro-cess of solving the following system of equations for x and y:



d2 −d1...
di −d1


=




√
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√
(x− x1)2 +(y− y1)2

...√
(x− xi)2 +(y− yi)2 −

√
(x− x1)2 +(y− y1)2


 , i = 2, · · · ,N, (3)

where N is the total number of anchors taking part in the TDoA-based hyperbolic positionestimation. Due to the time difference measurement concept, the underdetermined case
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N = 2 provides only a parabolic line on which the tag is located, while no information onthe position of T can be determined for N = 1 [51].In order to measure TDoA values, the anchors need to be tightly synchronized to eachother; for example, an offset of 1 ns translates to an error of 30 cm. On the other hand,since the tag only needs to transmit a single packet over the air for TDoA measurements,this amounts to substantial power saving on the tag hardware [59]. Additionally, transmit-ting only a single packet per positioning session provides the lowest possible utilization ofthe RF spectrum i.e. providing the lowest possible air time utilization.
2.1.3 Angle of Arrival-Based TriangulationAs opposed to time-based methods, AoA provides a measurement of the direction whicha signal originates from. It is necessary for the nodes to use antenna arrays to estimatethe AoA, which in turn requires separate RF front ends for the devices. This has a negativeeffect on the energy consumption, cost, and complexity of the devices. Another possibilitywould be to use directional antennas but this requires additional hardware as well. Incontrast to ToF and TDoA estimation, AoA requires only two anchor nodes along withtheir AoA estimates to provide a 2D position estimate. For a 3D estimate, only 3 nodeswith their AoA estimates are needed [51]. By providing both the azimuth and elevationangles, it becomes possible to obtain a 3D position estimate using only 2 anchors.Acquiring 2 direction values from two known anchor nodes allows calculating a posi-tion estimate, which is found at the intersection of the 2 Lines of Bearing (LoB) originatingfrom the known receivers. This concept is illustrated in the geometric representation inFig. 4, where anchor nodes Ai(xi,yi) measure their AoA values Θi to the position of themobile node T(x,y).

T(x, y)

A1(x1, y1)

A2(x2, y2)
𝛳1

𝛳2

Figure 4: Geometrical representation of triangulation-based position estimation with AoAmeasure-
ments. Fixed anchor nodes Ai located at their corresponding coordinates (xi,yi)measure the direc-
tions Θi from which the signal from node T arrives. The position estimate (x,y) for T is found at
the intersection point of the LOBs constructed by the anchor coordinates (xi,yi) and the measured
directionsΘi.

The same principle expressed in mathematical terms equates to solving for x and y inthe following system of linear equations:

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tan(Θ1)...
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, i = 1, · · · ,N, (4)
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where N ⩾ 2 is the total number of anchor nodes taking part in the AoA position estima-tion.Compared to other previously mentioned methods, AoA estimation is more complexand very sensitive to a multitude of factors, which cause errors in the position estimate.This is supported by practical comparisons of commercially available UWB-based position-ing systems, where a TDoA and AoA hybrid system achieved inferior performance whencompared to other TDoA and ToF systems [60]. Among other factors, the design of the an-tenna array geometry plays an important role in the estimation algorithm, whereas largeranchor-tag distances decrease the accuracy of the system [22].Although AoA position estimation can be performed using as low as N = 2 anchornodes, the cost reduction of removing one anchor (compared to ToF and TDoA) might notbe productive, as the addition of antenna arrays and extra RF components needed for AoAdrive up the cost and size of the receiving nodes. On the other hand, AoA estimation doesnot require strict synchronization between devices, in turn reducing the complexity of anAoA-based positioning system [61].Analytically, leaning on the geometrical representation of AoA (Fig. 4), positioningwithan underdetermined systemwhereN = 1, the tag’s location can be determined on the LoBdefined by the direction and the anchor location; in other words, the tag can theoreticallybe located on an infinite amount of locations on that line.
2.1.4 Received Signal Strength Indicator-Based Position Estimation
Distinguishing itself from the measurement of propagation time and angle, the RSSI pro-vides insight into the power level of a received signal. This signal property holds significantrelevance in wireless positioning systems, as it can be effectively utilized in two key ways.Firstly, the RSSI measure serves as a direct input for fingerprinting techniques, allowingfor the creation of signal strength maps and enabling location estimation based on signalcharacteristics. Secondly, the RSSI value can be employed as a distance estimator in tri-lateration (multilateration) algorithms, where the relative signal strengths from multiplesources are utilized to determine the position of the target device [62].To achieve distance estimation based on RSSI, a model is established to establish therelationship between the RSSI value and the corresponding distance. Numerous theoret-ical and empirical models have been proposed and investigated in the literature for thisspecific purpose. These models provide a means to map RSSI measurements to distanceestimates, facilitating positioning in indoor and outdoor environments [9].
2.2 ToF Estimation Protocols
The ranging protocols discussed in this sectionmake use of additional tag synchronizationconstraints or increased air time in order to provide ToF estimates, as opposed to the TDoAmethod, where only the anchors needed to be synchronized.The following notation for this section is adopted: τA is a timestamp value asmeasuredby nodeA; tA,B and tA,B′ are respectively the first and second time interval valuesmeasuredby node A while communicating with node B; tA↔B is the true propagation time i.e. ToFbetween node A and B; t̂A↔B is the estimate of the propagation time/ToF value.
2.2.1 One Way Ranging
In its simplest form, the ToF estimation can be carried out by a unidirectional messageexchange, One Way Ranging (OWR) [63], which is depicted in Fig. 5, where the time axisis pictured as horizontal black lines. UWB transceiver devices such as the Qorvo DW1000operate on the basis of accurately determining the timestamps of receiving/transmitting
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time instances [64], which are universally noted as τ in this section.TheOWRprotocol is as follows: tag nodeA initiates the ranging process by transmittinga packet at time instance τA, anchor node B receives the packet at time instance τB, fromwhich, the ToF estimate t̂A↔B (where the true ToF value is tA↔B) can be calculated by
t̂A↔B = τB − τA. (5)

A

B

tA↔B

𝜏A 𝜏B

Figure 5: Timing of One-Way Ranging protocol.

Importantly, nodes A and B both have to be synchronized in order to calculate thevalue of tA↔B [65], setting it apart from TDoA, where only the anchors need to be synchro-nized. Practically, this turns out to be extremely difficult, as all of the nodes are physicallyspaced far apart, which makes wired synchronization extremely impractical [50]. In orderto remove the need for synchronization, other methods are introduced, which are furtherdiscussed below.
2.2.2 Single-Sided Two-Way RangingThe Single-Sided Two-Way Ranging (SS-TWR) is introduced to remove the need for nodesynchronization at the cost of an additional packet in the ranging sequence. SS-TWR relieson a bidirectional packet exchange, which is illustrated in Fig. 6. Although SS-TWR (andfurther methods) internally rely on the receive/transmit timestamps, rather than usingthe timestamp difference, the notation of time interval values (e.g. t1, where t1 = τ2−τ1)is introduced and used further on in the thesis to keep the equations compact. The topicof relating the time intervals with timestamp differences is addressed in Appendix II ofpublication II.Node A initiates the ranging sequence by transmitting a packet, which node B receives.After a processing delay tB,A (read as the time interval measured by B, while communicat-ing with A), node B transmits its response. After receiving B’s response, A records the timeinterval tA,B. The ToF estimate t̂A↔B is then calculated via

t̂A↔B =
tA,B − tB,A

2
. (6)

Fig. 6 features a dotted line on the time axis, to emphasize the difference of time scalesof the ToF tA↔B and the measured time intervals tB,A and tA,B, as the former is in order oftens of nanoseconds, while the latter is in hundreds of microseconds [66].In order to analyze the clock offset error for SS-TWR, eq. (5c) of [66] is adapted to thenotation of this thesis, giving the following expression:
t̂A↔B − tA↔B = eA · tA↔B +

tB,A
2

(eA − eB), (7)
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Figure 6: Timing of Single-Sided Two-Way Ranging protocol.

where the ToF estimation error t̂A↔B − tA↔B is computed using the frequency deviations(typically measured in parts per million, PPM) eA and eB of nodes A and B, respectively.Since tB,A is several orders of magnitude larger than tA↔B, we see that it is the dominantfactor in determining the size of the error, which could translate into ranging errors ofseveral meters. The derivation and in-depth analysis of the error are given in [66].However, Dotlic et al. proposed using the Carrier Frequency Offset (CFO) method tomitigate the frequency offset errors for SS-TWR. A device such as the DW1000 transceiverinherently measures the relative clock offset of two communicating devices, making itpossible to correct the clock offset errors [67], therefore achieving a much smaller error:
t̂A↔B − tA↔B = eA · tA↔B. (8)

2.2.3 Symmetrical Double-Sided Two-Way RangingThe Symmetrical Double-Sided Two-Way Ranging (SDS-TWR) and the following protocolsadd an additional packet to the ranging sequence when compared to SS-TWR. The timingdiagram of SDS-TWR is given in Fig. 7.Similar to SS-TWR, SDS-TWR starts out with a packet transmitted by A, after which Bsends its reply. Here, the SDS-TWR protocol adds a third, final packet transmitted by nodeA, which concludes the ranging sequence. Here, both nodes record two separate timeinterval values, which are used to calculate the ToF estimate t̂A↔B with
t̂A↔B =

tA,B − tA,B′ + tB,A′ − tB,A
4

. (9)

A

B

tA,B

tB,AtA↔B

tA↔B

tB,A’

tA,B’. 

Figure 7: Timing of Symmetrical and Alternative Double-Sided Two-Way Ranging protocol.

The error expression for SDS-TWR is adopted from (18) of [68] to formulate
t̂A↔B − tA↔B =

1
2

tA↔B(eA + eB)+
1
4
(eA − eB)(tB,A − tA,B′), (10)
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from which we see that this expression will achieve a minimum when tB,A and tA,B′ areequal, canceling out the final term of (10), resulting in
t̂A↔B − tA↔B =

1
2

tA↔B(eA + eB). (11)
From the remaining term, we see that the clock offset errors of A and B are averaged.Although the clock drift error is brought down, ensuring the symmetry of tB,A and tA,B′in practice is rather challenging, while also making the whole packet exchange processlonger than fundamentally required [69].
2.2.4 Alternative Double-Sided Two-Way RangingThe need to eliminate the symmetry constraint of SDS-TWR motivated the developmentof the Alternative Double-Sided Two-Way Ranging (AltDS-TWR), proposed in [66].The two-way packet exchange of AltDS-TWR is identical to the SDS-TWR as seen inFig. 7, while the calculation of the ToF estimates t̂A↔B is carried out alternatively:

t̂A↔B =
tA,B · tB,A′ − tA,B′ · tB,A

2(tB,A + tB,A′)
(12a)

t̂A↔B =
tA,B · tB,A′ − tA,B′ · tB,A

2(tA,B + tA,B′)
(12b)

t̂A↔B =
tA,B · tB,A′ − tA,B′ · tB,A

tB,A + tB,A′ + tA,B + tA,B′
, (12c)

resulting in three separate equations to estimate the ToF. Following the denominator ofequation (12a), we see that it uses node B’s time interval, while the denominator of equa-tion (12b) includes the times of node A. Theoretically, it would be possible to use the timesof both, A and B, as is done in equation (12c), but this is undesirable, as the error of bothdevices remain included in the calculation. This is illustrated in the respective error ex-pressions
t̂A↔B − tA↔B = kB · tA↔B − tA↔B = eB · tA↔B (13a)
t̂A↔B − tA↔B = kA · tA↔B − tA↔B = eA · tA↔B (13b)
t̂A↔B − tA↔B = t̂A↔B −

kA · kB(tA,B · tB,A′ − tA,B′ · tB,A)
kA(tB,A + tB,A′)+ kB(tA,B + tA,B′)

, (13c)
where kA = 1+ eA and kB = 1+ eB. The proofs of the error expressions can be foundby following [66]. Calculating the ToF estimate via (12a) or (12b) yields errors (13a) (13b),respectively, which are in the same order of magnitude as the CFO corrected SS-TWR (8).Important to note that (13a) and (13b) suggest that the final ToF estimation error can bemade dependent on either node, offering the choice to base the calculations on the in-formation of the node with a more accurate clock source.
2.2.5 Asymmetrical Double-Sided Two-Way RangingJiang and Leung proposed the Asymmetrical Double-Sided Two-Way Ranging (ADS-TWR)protocol in [69]. Themain packet exchange concept is similar to SDS-TWR and AltDS-TWR,with the exception of setting the second reply time (tA,B′ for SDS and AltDS-TWR) to zero,as pictured in Fig. 8. This yields the calculation of the ToF estimate t̂A↔B by

t̂A↔B =
tA,B + tB,A′ − tB,A

4
, (14)
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for which the equivalent ToF error expression is written as
t̂A↔B − tA↔B =

1
2

tA↔B(eA + eB)+
1
4

tB,A(eA − eB). (15)
The second term of (15) is the dominant factor in the error, since tA↔B << tB,A, meaningthat the ToF error is greatly dependent on tB,A.

A

B

tA,B

tB,AtA↔B

tA↔B

tB,A’

Figure 8: Timing of Asymmetrical Double-Sided Two-Way Ranging protocol.

Additionally, ADS-TWR poses some limitations due to setting the second reply timezero, as it is practically impossible to ensure an instant reply, meaning that a certain replydelay will always exist [65, 68].
2.2.6 DiscussionThe used ranging protocol needs to accommodate the design needs of a ToF-based posi-tioning system. In other words, the choice of a ranging protocol is dictated by the specificuse case, depending on whether the positioning needs to take place in the mobile nodeitself (local positioning) or in a central server (central positioning), such that all of theneeded information is present at that specific localizing node.Furthermore, the choice of the initiator of a ranging session needs to be consideredaccordingly, to make sure that all the ranging data is present at the position estimator. Ifthe data is not inherently present, the protocol needs to be adjusted to communicate thedata back to the position estimator.Additionally, the amount of data needed to send over the air affects the payload du-ration, which in turn influences the total time spent transmitting/receiving each of thepackets. This length of time dictates the energy consumption of a tag [70] and the usageof the shared RF spectrum. Since the choice of ToF ranging protocol directly dictates theamount of data needed to transmit, it is a vital aspect to consider.The choice of the ranging protocol also determines the power consumption of a UWBdevice in other ways. For example, the popular Qorvo DW1000 UWB transceiver [64]consumes more current in the receive mode when compared to the transmit mode (re-spectively, 150mA vs 130mA in [50]), while the consumption in sleep or deep sleepmodesis multitudes lower (1 µA vs 50-100 nA, respectively) [70]. Consequently, in order to con-serve energy in the tag, the protocol must be chosen such that the tag does not have tooperate in transmit or receive modes for extended periods of time. The power consump-tion is reduced for tag-initiated protocols, as the tag can stay in a low power state untilwaking up by initiating the ranging sequence and returning to a low power state after theranging sequence has been completed.Although Publication II gives a short overview of some of the ToF ranging protocols,this section provides a more in-depth look at the protocols. Table 2 summarizes the most
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important aspects of each of the discussed ToF ranging protocols, utilizing an aggregatedtransmission of packets where possible, as this conserves the air time and also consumedenergy [71]. Meaning that if possible, the tag does not communicate with every singleanchor, but rather sends a single broadcast packet to all of the anchors. Both, the cen-tral and local positioning schemes are considered, assuming that the central positioningschemes utilize a separate data transport backhaul from the anchors to the server to min-imize the impact on the air time, while local schemes must utilize wireless data transport.The local/central schemes are in turn divided into categories for tag and anchor-initiatedranging sequences.All of the resulting sub-classes of ToF protocols are then analyzed by the number oftime interval values needed to send over the air (which dictate the length of the payload),most of which are dependent on the total number of anchors partaking in the ranging se-quence,N. The values in parentheses note the total number of time interval values, whichare sent in separate but naturally present packets in the protocol as the values withoutparenthesis denote the number of values sent in a single, final packet. Then the numberof packets in a protocol is given as a function of the number of anchors N and the needfor an additional (from a ranging standpoint redundant) packet to convey the needed in-formation back to the positioning node, dictated by the positioning scheme. After which,the total number of packets in the protocol sub-classes is given. The robustness penaltyof a system is a result in some of the sub-classes where the needed information is aggre-gated to, and transmitted from a single anchor (rather than sending the information fromall of the anchors separately), resulting in a single point of failure where the loss of thispacket renders the whole ranging sequence to be lost. Then, a rating (0 to 5 points) isgiven, 0 being the lowest score and 5 being the highest score for the applicability of theprotocol in that specific sub-class. The derivation of the rating system is given in Appendix5, alongside a figure used for the visualization of the protocols.While OWR and ADS-TWR bolster rather high ratings, they are not considered in thescopeof publications I - IV and in this thesis due to the constraint on the practicality of theiruse, as OWR requires strict synchronization between all nodes and ADS-TWR requires tohave zero reply time in its transmission.The following analysis of Table 2 in this section shifts the focus to the practically fea-sible protocols SS-TWR, SDS-TWR, and AltDS-TWR. It can be observed that the highest-rated ranging protocol for a local positioning system is tag-initiated SS-TWR, as it utilizesthe shortest payload, while also providing the lowest total number of packets with noadditional data transport packets and no robustness penalty.The results for the central positioning schemes are closer, with tag-initiated SS-TWR,AltDS-TWR, and SDS-TWR scoring 3.61, 3.36, and 2.79, respectively. Although SS-TWR andAltDS-TWR both utilize the same total amount of packets in a ranging sequence (N + 2),SS-TWR has a slight advantage on the number of data needed to transfer over the air(Nfor SS-TWR and 2N for AltDS-TWR). The SDS-TWR protocol sustains a lower rating, as thetotal number of packets in a ranging sequence is greatly increased to 2N +1.
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2.3 State-of-the-Art
According to Pascacio et al., ToF and TDoA methods, when viewed separately, are lesspopular than the RSSI technique, as ToF and TDoA techniques both separately amass 23%of the papers as compared to the RSSI topic at 38% [38]. When viewing ToF and TDoA asconsolidated time-based methods, we see that the combined research interest is higher(summing to 46%) than that of the RSSI method. This is due to the previously mentionedfact that utilizing the time-based methods in UWB is desired, providing higher accuracyand robustness against multipath.Since ToF and TDoA have their own pros and cons, the notion of passive TWR is in-troduced to address the downsides of both. Passive ranging makes use of the fixed andknown locations of anchors to provide ranging capabilities for passive anchors; those pas-sive anchors do not actively take part in the packet exchange between anchors and a tag,therefore not affecting the air time. The active TWR coupledwith passive ranging providesthe positioning system with the same number of input data at a significantly reduced airtimeoccupancywithout the need for synchronization, providing amiddle groundbetweenthe ToF and TDoA methods.Conventionally, positioning systems assume that the tag is within the convex hull de-fined by the locations of the anchors [72] because it is the area of the highest preci-sion [73]. As research has shown, the ToF-based positioning methods are more robustin positioning outside of the convex hull than TDoA methods [54]. An overview of thestate-of-the-art for passive estimation and the recent advances in ToF-based NLoS-robustpositioning is given in the next section.
2.3.1 Passive Estimation
In one of the seminal works presented by Fujiwara et al. in [72], where they developedand evaluated a hybrid UWB system, combining the usage of ToF and TDoA. This allowedfor reducing the number of needed anchors compared to TDoA, while also reducing theimpact of air time occupancy compared to ToF systems, but having a downside that thesynchronization of nodes is still needed.Next, Dotlic et al. proposed the CFO-correction and Asynchronous TDoA (A-TDoA)method, which permits the usage of a hybrid system, where the TDoA estimation func-tions without the use of synchronization between the anchors [67]. Similarly, Sidorenko
et al. addressed the problems of hardware delay uncertainty, signal power level and clockdrift in a ToF and TDoA fusion method [74].Thework of Fujiwara et al. was studied from a theoretical standpoint by Sahinoglu andGezici in [75], deriving a Maximum Likelihood Estimator (MLE) for the hybrid method andassessing its theoretical limits on the accuracy by deriving the Cramer-Rao lower bound.Building upon this, Gholami et al. propose amore robustmethod by acquiring the solutionfrom an intersection of convex sets frommeasurements, as the previously developedMLEmight converge to local minima.Gholami et al. further develop the usage of the ToF/TDoA hybrid system in [76, 77],to increase the number of tags as well as including them as TDoA estimators further con-tributing to the position estimation and improving on the accuracy.Wang and Xiong proposed the Two-Way Time of Arrival with Correction (TW-ToA-C) [78], in which they employ passive anchors listening in on anchor-initiated active SS-TWR messaging, in the presence of clock errors. By transmitting a correction packet af-ter a known correction time interval, the interval can be used to determine the relativeclock offsets of each node. The addition of an extra packet in the SS-TWR scheme allowsto greatly reduce the clock offset errors for both, the active and passive range estimates.
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Noting that the SS-TWRprotocol in this publication utilizes separate transmissions for datatransport, increasing the overhead of air time.
Similarly, Hepp et al. present and experimentally validate a quadcopter-mounted sys-tem,which positions the tag locatedoutside of the convex hull definedby the anchors [54].The authors utilize an anchor-initiated SDS-TWR, consisting of 4 packets in the ranging se-quence (the standard 3 packets of SDS-TWR plus a single wireless data transfer packetfrom the tag), while the passive anchors listen in on the transmissions, producing a pro-tocol that achieves lower air time and reduced clock errors.
Horváth et al. developed Passive Extended (PE) ranging [79] by combining passiveranging with anchor-initiated SDS-TWR, achieving higher accuracy of positioning with theaddition of the third packet in the SDS-TWR ranging sequence. With the addition of pas-sive anchors in the PE ranging, a 2D or 3D position estimate can be calculated with only3 exchanged packets in the ranging session, while active SDS-TWR needs respectively 9and 12 packets. For reference, the number of packets for other ranging protocols can becalculated using column Total packets of table 2, by substituting N = 3 for 2D positioningand N = 4 for 3D positioning. In [80] the same authors improved on the PE ranging byintroducing the alternative calculation of AltDS-TWR, making the protocol more robustagainst clock errors.
Shah andDemeechai proposed threeMultiple Simultaneous Rangingmethods (namedMSR1 to MSR3) in [81] which make use of an active anchor communicating with the tag,andmultiple passive anchors listening to the packet exchange. TheMSR1method employsa tag-initiated three-packet ranging sequence in which the tag sends the first and thirdpacketswhile the active anchor transmits the second one, effectively overcoming the tag’sincreased power consumption of anchor-initiated protocols. The MSR2 method employsa similar packet exchange with four packets, with the exception that the initiator is theanchor: the first and third packet is transmitted by the active anchor, and the second andthe fourth by the tag, as the extra packet is needed forwireless data transfer to the anchor.Additionally, a thirdmethod calledMSR3was proposed, which employs only a two-packetexchange initiated by the active anchor, further improving the air time efficiency of MSR1.Results show that the MSR methods offer a significant reduction of air time occupancy atthe expense of slightly higher ranging RMSE (compared to an active-only ranging protocol)while offering similar performance to Horváth’s AltDS-TWR-based PE ranging.
Mohammadmoradi et al. propose the Simultaneous Ranging andCommunication (SRAC)protocol, where they utilize, in addition to the specific ranging packets, the existing com-munication packets to provide passive range estimates [82]. The proposed schedulingalgorithm was experimentally validated to show that the measurement errors were wellunder 10 centimeters.
Chen et al. proposed the UWB-based PnPLoc (Plug & Play Localization), a scalable,synchronization-free TDoA-based positioning system in [83]. The resulting positioning sys-tem is a local scheme, i.e. the location estimation is performed on the tag, with the an-chors ranging between each other using AltDS-TWR while the tag passively acquires theTDoA values by listening to the transmissions of the anchors. This allows the tag to lo-cally provide a position estimate by remaining only in receive mode, while the AltDS-TWRprovides inter-anchor distances for the anchor deployment algorithm.
Shah et al. further explored the benefits of passive ranging by employing a similar con-cept in UWB antenna delay calibration, reducing the number of packets while maintainingsimilar accuracy as the manufacturer suggested method [84]. The use of MSR methodsallowed the development of a system that allows simultaneous ranging and antenna delaycalibration [85] and an altogether antenna delay-independent ranging protocol [86].
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2.3.2 Robust Estimators
Skipping ahead for a moment: since the AP-TWR protocols (proposed in Publications Iand II and detailed in Section 3) simultaneously provide multiple ranging values for eachanchor, somemethods for processing the resulting ranging values needed to be explored.While the timestamp measurement noise is Gaussian [59], the NLoS propagation condi-tions could still translate into rather large ranging errors [87], and some applicable meth-ods were investigated to lessen their impact of them.

Contrary to other ranging protocols, where the time series of the ranging value canbe filtered across temporally spaced samples, the AP-TWR measurement matrix process-ing offers the possibility to additionally filter ranging values obtained in a single rangingsequence, as the values are estimated practically simultaneously. This concept makes itsimilar to ensemble averaging [88], where sets of observations are averaged to reducethe effect of errors originating from individual sets. As the AP-TWR measurement matrixconcept is novel (in the sense that no previous research in this specific field was pub-lished before), and is now active and evolving, this section provides a non-comprehensiveoverview of applicable methods.
When estimating a constant from a vector of equally noisy measurements, one of themost trivial solutions is the LS estimation, as the solution simplifies to calculating the arith-metic average of all elements. In the case of a vector with measurements with variablenoise, such as in the rows of an AP-TWR measurement matrix (18), the weighted leastsquares (WLS) method can be used, where the reciprocals of noise covariance are usedas the weights, resulting in a weighted average [89]. Various methods of generating theweights for WLS are discussed in Section 4 and Publication III.
Compared to LS estimation, finding themedian of a set is considered amore robust es-timator, as it provides a fitting solution even in the presence of outliers [90]. This conceptis further explored in [91], employing a parametric outlier removal based on a set’s MeanAbsolute Deviation (MAD), providing a flexible and robust method of outlier removal.
Commonly used as a method for interpolating a continuous surface from sparse datapoints, the InverseDistanceWeighting (IDW)method can also beused as a one-dimensionalestimator by giving higher weights to values situated around the arithmetic mean of aset [92]. Similarly named, but an altogether different method of Distance Weighted Esti-mator (DWE) was proposed in [93] as an alternative to calculating a trimmedmean value.As opposed to IDW, the mean value of the set is not needed to calculate. Instead, theweights for WLS are formed on the basis of the average distance of an element to eachmember of the set.

2.3.3 NLoS Mitigation Based on Ranging and Residuals
Borras et al. proposed a binary decision framework consisting of 5 different test casesbased on modeling the range measurements corrupted by NLoS-induced systematic er-ror [94]. Since the information on the LoS and NLoS statistical parameters is needed, therunning estimates of these parameters are calculated. The running estimates of statisticalparameters in turn pose a problem for moving objects, as the parameters change overtime.

Chen’s Residual Weighting Algorithm (Rwgh) [95] offers an NLoS mitigation algorithmbased on the residuals of positioning, omitting the need for a priori information. The algo-rithm is based on forming every possible subset of the available ranging values, calculatingthe position estimate of each subset, finding the normalized residual, and weighting eachposition estimate with it to provide a final position estimate. Although the results show asignificant reduction in positioning errors, the computational complexity grows exponen-
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tially as the number of input distances increases.
The issue of the computational complexity is addressed by the further developmentsof the Rwgh: Select Residual Weighting (SRwgh) [96], Lower-Computational-Cost Resid-ual Weighting (LCC-Rwgh) [97], and Iterative Minimum Residual (IMR) [98] algorithms.Although the proposed methods significantly reduce the number of intermediate esti-mates of the final position estimate while also achieving comparable error performanceto the Rwgh, the computational complexity is still rather high, needing at least tens ofintermediate iterations, even for a small number of inputs [99]. Similarly, Yang and Wangreduced themean error of a Bluetooth/UWB hybrid RSSI model-based positioning systemwith their iterative take on weighting the range estimates with residuals [100].
Chan et al. proposed identifying the set of LoS range estimates and performing thepositioning with only those ranging values [101]. Firstly, a position estimate with all Ndistances is calculated, then a residual test is employed by comparing the residuals to aconstant threshold. If only a small fraction of the residuals are over the threshold, the finalposition estimate has been found. If not, then subsets ofN−1 anchors are formed and theprocess continues until the minimum amount of distance values is achieved (3 distancesfor 2D positioning, 4 for 3D positioning). This leads to additional latency and higher errorsin cases where the number of final distances is low, as omitting range estimates rids ofinput distances, where discarded NLoS distances could even contain valuable informationfor position estimation.
Silva and Hancke studied detecting the presence of NLoS from statistical parameterscalculated from residuals, such as mean, maximum, SD, and sum of squares [102]. Theresults suggest that the latter provides the best discrimination of NLoS presence using aNaive Bayes Classifier, offering very high accuracy, whereas the identification of individualNLoS range estimates provides low accuracy.
The authors of [103] proposed a through-the-wall ranging model, which uses the floorplans and the knowledge of the relative permittivity ofwalls to correct theNLoS range esti-mates and perform localization. Since the floor plans, wall thicknesses, and their relativepermittivity are highly site-specific, setting up such a system needs a sizable amount of

a priori information and/or time-consuming site surveying. Similarly, [104] used a knownmap layout to reduce the NLoS ranging error according to the position of the tag, anchors,and the obstacles in between.
2.3.4 NLoS Mitigation Based on Channel Impulse Response
A sizable amount of research has been conducted on the CIR of UWB devices. Using theCIR in UWB positioning has an upside as no historical time series data is not needed, asa CIR can be extracted per each tag-anchor pair separately during individual ranging se-quences. Papers such as [105, 55] utilize Convolutional Neural Networks (CNN) for posi-tion estimation directly from the extracted CIR, which provide promising results even inhigh NLoS conditions, but need large amounts of training data and are dependent on thepositioning environment.

Other works investigate the use of CIR statistics as an input to NLoS Detection andmitigation, such as [106] where smaller weights are assigned to NLoS-biased range esti-mates. Similarly, there exist several machine learning (ML) methods utilizing CIR statis-tics, such as Least-Squares Support-Vector Machines (LS-SVM) [107], Sparse Pseudo-InputGaussian Process [108], Expectation-Maximation Gaussian Mixture Model [109], geneticalgorithm-based feature subset selection SVM [110], CNN and Long Short-Term Memory(LSTM) [111], One-Dimensional Wavelet Packet Analysis with CNN [112], Multilayer Percep-tron (MLP) [113], Capsule Networks [114], Morlet Wavelet Transform and CNN [115], CNN
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and MLP [116], transformer deep learning model [117], etc.Kim et al. proposed a method to overcome the limitations that site-specific data poseto the deployment of a systemby performing LSTM training on raw CIR, to detect themag-nitude of NLoS errors and the variance ofmeasurements [118]. The corrected ranging dataalongside the classified error variance are then used as inputs to an EKF-based positionestimator.In addition to ML, some other methods of using raw CIR exist: NLoS detection usingfuzzy theory [119, 120], CIR-based fingerprinting [121], LoS/NLoS detection via probabil-ity density functions [122], optimal anchor selection by channel quality evaluation of theCIR [123], etc.
2.3.5 NLoS Mitigation Based on Received Signal Parameters
Wu et al. proposed an NLoS mitigation technique based on the path loss model of UWBsignals [124]. The method showed promising results but is impaired by the fluctuatingnature of the received signal power, as environmental factors such as obstacles, reflec-tions, etc. cause signal interference and attenuation, as is also the case for RSSI-basedpositioning methods.Schroeder et al. assumed that a sudden decrease of the Signal-to-Noise Ratio (SNR)indicates a move from an LoS to an NLoS environment, while an increase in SNR means amove from NLoS to LoS [125]. This infers the usage of historical time series data, introduc-ing latency to the positioning.Barral et al. introduced several ML methods for detecting and mitigating NLoS basedon averaged ranging and RSSI data; even though the accuracy and performance of mitiga-tion show promising results, the authors expressed doubts about the generality of suchmethods, as performance is rather dependent on the scenario and location on which thetraining data was captured [126].Anotherwell-researched area is the usageofUWB receive quality parameters reportedby the DW1000 transceiver [64]. Parameters such as first path amplitude points 1-3,preamble accumulation count, CIR amplitude, accumulator data noise standard deviation,etc. are used as inputs to numerous machine learning methods in [127, 128], logistic re-gression [129], devised power-performance metric-based decision [130], fuzzy inferenceof parameters [131]. Even though such methods show promising accuracy, the modelscan be rather dependent on the specific conditions where the data was captured in, astypically the papers train and validate their models based on data from the same environ-ment.
2.3.6 Discussion
The earliestworks regarding passive anchors inUWBpositioning systems include ToF/TDoAhybrid systems, which have higher implementation complexity, as the position estimationequations need to account for both positioning methods. Before the advent of the CFOcorrection, publications addressed correcting the clock offset errors by introducing addi-tional packets in the ranging protocol, decreasing the overall air time efficiency. On theother hand, many papers utilize anchor-initiated ranging protocols, which focus on in-creasing the air time efficiency but at the same time increase the energy consumption ofthe tag, translating to shorter battery life. Additionally, since the packet exchange is con-ducted between only a single active anchor and a tag, a critical point of failure is created,i.e. if the single active ranging exchangemalfunctions, all the accompanying passive rangeestimates are deemed to fail as well.Chen et al. proposed a UWB positioning system utilizing clever reversal of roles: the
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anchors range with each other while the tags listen to their packet exchange. This systemis limited by providing only a local positioning scheme, meaning that the positioning takesplace at the tag, providing a user the position information on only itself. In many cases,however, indoor positioning systems require a centralized approach, as a number of assetsneed to be tracked simultaneously in real-time. This includes use cases such aswarehousesafety and management [132], industrial manufacturing [133], logistics management [21],sports tracking [134], navigation of multiple unmanned aerial vehicles [135], etc.
In contrast to the state-of-the-art papers, the Active-Passive Two-Way Ranging pro-

tocols proposed in this thesis (Chapter 3, and Publications I and II) offer a generalized ap-
proach topassive ToF ranging,which allowsdefiningmultiple active-passive andpassive-
only anchors. This has several benefits for use in a central scheme positioning system,
as the generalized active-passive protocol allows a flexible choice between improved
air time efficiency and improved robustness/accuracy (or improvements to both) while
offering a lower power consumption for the tag, as the ranging sequence is initiated
by the tag. Depending on the specific implementation of the system, the passive range
estimates can be calculated in the anchor, in the central server, or partly in both. More-
over, the overall length of the protocol is optimized as well, so the least amount of data
is transmitted over the air, keeping the air time as low as possible. An additional upside
comes from the fact that the calculation of passive range estimates benefits from being
agnostic to systematic errors originating from calibration, as stated by Shah et al.

Range-based methods rely on a priori distributions of errors or have latency due torunning calculation of parameters. Along with raw CIR and signal parameter-based meth-ods, the range-basedmethods provide NLoS detection prior to position estimation. This isnot the case for residual-basedmethods, as they typically entail computationally complexiterative methods, calculating position estimates and comparing or weighting based onthe resulting residuals.
Regardless of the fact that the methods utilizing raw CIR samples provide rather highperformance for NLoS detection and mitigation, the scalability of said methods is poorwhen used in real-time applications. While small-scale and low update rate systems couldgreatly benefit from the raw CIR-based methods, increasing the number of tags or theirposition update rate degrades the real-time positioning performance, as extracting theCIR of a transceiver is a time-consuming process. Barral et al. [126] state that acquiring theCIR samples from an anchor could take about 300ms, which limits themaximum positionupdate rate to 3.33 Hz for one tag, meaning that each additional tag further reduces theachievable update rate. Since UWB positioning systems offer high update rates, such asthe Pozyx system with up to 60 Hz per tag [136], the raw CIR methods drastically reducethe potential of an UWB-based Real-Time Location System (RTLS).
Machine learningmodels offer accurateNLoSdetection andmitigation; however, thesemethods need large quantities of training data, which can also be site-specific. Thismeansthat the generated models are not applicable to a wide range of scenarios that the posi-tioning system may be subjected to. Although some methods manage to circumvent theproblem, they still need vast amounts of data to train a model, making the implementa-tion of said models quite a tedious process. Although the computational load of trainingmodels is not often discussed, it is highlighted by Jiang et al. [111], stating that their re-search required a high-end computer, which took over an hour of real computing time tocomplete a singlemodel. Assuming thatmodels have to be refined and re-trainedmultipletimes, this could amount to significant time consumption.
Compared to the state-of-the-art, the introduction of AP-TWR opens up new possi-

bilities for position estimation. Firstly, the addition of each active-passive anchor simul-
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taneously provides extra passive range estimates for all other anchors. This approach
enables independent filtering of the data for each ranging sequence, eliminating ad-
ditional filtering latency. In contrast, traditional methods filter temporally successive
samples, which can introduce additional latency. The range estimate filtering methods
made available by the usage of AP-TWR are addressed in more detail in Publication III.
Secondly, the AP-TWR measurement matrix concept allows the calculation of statisti-
cal parameters for each ranging sequence separately, paving the way to the Adaptive
Extended Kalman Filter (A-EKF) positioning in Publication IV. This method does not in-
troduce additional latency to the positioning, is computationally efficient and scalable,
and does not need any a priori information in order to reduce the effects of NLoS prop-
agation.

The following three sections give an overviewof the publications onwhich this thesis isbased. Section 3 presents the proposed generalized AP-TWR methods, Section 4 gives anoverview of the tested filtering methods for AP-TWR protocols, and Section 5 concludesthe overview of the publications by including the results of the previous publications intoformulating the proposed A-EKF positioning method.
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3 Proposed Active-Passive Two-Way Ranging Protocols
In this section, two separate generalized AP-TWR protocols are developed, which addressthe shortcomings of both the ToF and TDoA estimation-based positioning systems. Unliketraditional passive ranging methods which prioritize air-time efficiency, the generalizedAP-TWR protocols allow the flexibility to cater the protocol towards air-time efficiency, orincreased robustness and accuracy. This section provides the theoretical basis for the pro-posed AP-TWR protocols, which are validated by numerical simulations and experiments,and analyzed based on the achieved results. While the AP-TWR protocol developed inthis thesis has a primary focus on UWB technology, it is important to highlight that theprotocol is not solely restricted to UWB and can be applied to other technologies utilizingTWR as well.
This section is based on Publications I and II:

• T. Laadung, S. Ulp, M.M. Alam, and Y. LeMoullec, “Active-Passive Two-Way RangingUsing UWB,” in 14th International Conference on Signal Processing and Communi-
cation Systems (ICSPCS), pp. 1–5, IEEE, dec 2020

• T. Laadung, S. Ulp, M. M. Alam, and Y. Le Moullec, “Novel Active-Passive Two-WayRanging Protocols for UWBPositioning Systems,” IEEE Sensors Journal, vol. 22, no. 6,pp. 5223–5237, 2022
3.1 Proposed Protocols
The motivation for passive ranging comes from the need to overcome the limitations ofToF and TDoA methods. Namely, the increased air time of TWR-based ToF estimationmethods and the synchronization problem of TDoA are discussed in Section 2.Additionally, since the ToF-based positioning systems are more robust in positioningoutside of the convex hull of the anchors and ToF positioning offers better performancein underdetermined positioning cases, the decision towards a ToF-based protocol wasmade. Coupledwith the fact thatmanymodern non-consumer use cases require a centralscheme positioning and that it is desirable to keep the power consumption of the tags aslow as possible, a tag-initiated ranging sequence was selected.The resulting timing of the packet is illustrated in Fig. 9. The notation of the timeintervals on the figure corresponds to the same as in Section 2.2. Tag T initiates the rangingsequence by transmitting a ranging request packet, to which the i-th active anchor Airesponds with a ranging response packet, and the sequence is concluded with a rangingreport packet transmitted by T. While T and Ai actively partake in the packet exchangeand record the corresponding time intervals, the currently passive anchor Aj listens to thecommunication and records its own time intervals.Publication I firstly proposed an AP-TWR protocol, to which an alternative was pro-posed in Publication II. In order to avoid confusion between these two protocols, this sec-tion follows the nomenclature of Publication II, where these methods are referred to asActive-Passive Two-Way Ranging Methods 2 and 1 (AP2-TWR and AP1-TWR), respectively.According to the timing of AP-TWR protocols in Fig. 9, the total set of AP1-TWR ToFestimates per ranging sequence is expressed by

tT↔A j|Ai =





tT↔Ai, for i = j

tT↔Ai + tAi,T+tAi↔A j − tA j,Ai, for i ̸= j,
(16)
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Figure 9: Timing of the Active-Passive Two-Way Ranging protocol.

whereas the total set of ToF estimates for AP2-TWR is written as

tT↔A j|Ai =





tT↔Ai, for i = j

tAi,T + tT,Ai

2
+ tAi↔A j − tA j,Ai, for i ̸= j.

(17)

It can be observed that the notation of ToF estimates in AP-TWR protocols is substi-tuted by tT↔A j|Ai to reflect that each passive anchor Aj provides a ToF estimate of thepropagation time between itself and the tag during each and every Ai’s active messageexchange. This is made possible as the coordinates of each anchor are known; therefore,the inter-anchor ToF values tAi↔A j can be inferred from the relation in (1). The coordi-nates of the anchors can be obtained by a site survey process during the installation ofthe anchors, or by employing anchor coordinate self-calibration methods during whichthe inter-anchor distances are directly measured by the anchors themselves [47].
AP-TWR protocols function on the principle in which anchors that are currently notactively partaking in the packet exchange, listen to other transmissions, making themessentially active-passive anchors. Denoting the total number of active-passive anchorsas m and the number of additional passive-only anchors as k, meaning the total num-ber of anchors partaking in AP-TWR protocol is n = m + k, such that i ∈ {1,2, . . . ,m},

j ∈ {1,2, . . . ,n} and n ⩾ m. Therefore the set of obtained ToF estimates per each rangingsequence can be written as the ToF measurement matrix T:

T =




tT↔A1|A1 . . . tT↔A1|Am... . . . ...
tT↔An|A1 . . . tT↔An|Am


 , (18)

from which the final filtered ToF estimates can be calculated as the mean values of therows of T:
T =




tT↔A1...
tT↔An


 , (19)
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where tT↔A1 to tT↔An are the row vectors of (18):
tT↔A1 =

[
tT↔A1|A1 . . . tT↔A1|Am

]

...
tT↔An =

[
tT↔An|A1 . . . tT↔An|Am

]
.

Considering that the term tT↔Ai of (16) and (17) can be calculated by utilizing SS-TWR (6),SDS-TWR (9), or AltDS-TWR (12), a grand total of six slightly differing AP-TWRprotocols canbe defined: AP1 and AP2 SS-TWR, AP1 and AP2 SDS-TWR, AP1 and AP2 AltDS-TWR.
3.2 Simulations
This section provides the prerequisites and additional information on the simulations forall of the preceding AP-TWRmethods. As the numerical results for SS-TWR-based AP-TWRare also inherently included in Publication II, the results of Publication I are not explicitlydiscussed, but rather some general comments are given about the results of PublicationI. The simulations of both publications were run under specific preconditions, which arediscussed below.

The simulations of both publications are run such that only a single tag participatesin the ranging process with a given amount of anchors, while the packet losses due toanchor response collisions are omitted. The clock offset errors are omitted, as they canbe compensated by utilizing the CFO correction method. Systematic errors are omitted,as they can be removed by means of calibration. The propagation conditions are LoS, sothe noise follows a zero-mean Gaussian distribution, while other environmental effectsare omitted. The conversion between the ToF value and the distance is made with (1). Thetrue distances of each tag-anchor pair are calculated by and known to the simulator soft-ware. Each protocol utilizes the ToF measurement matrix (18) row-wise averaging by (19).All protocols are simulated for a total of 1000 iterations, each time placing the tag in anarbitrary location in the simulated room; each iteration consists of 1000 separate rangingsequences. The final results are presented as the range estimate RMSE in centimeters,rather than the ToF value RMSE, as the inputs to a position estimator are typically givenby distances in place of the signal propagation times.
Although most of the prerequisites are the same, the simulators of I and II differ tosome extent. The simulator of Publication I is written as a dedicated software script inPython and forms the baseline active and passive anchor ranging performance based onthe experimental values reported in [81]. The numerical tests were conducted in an arbi-trarily sized (600 by 400 by 250 cm) room defined in the software.
The software for Publication II, on the other hand, was written in the programminglanguage R and directly simulated the ToF time interval values for range estimation proto-cols. The baseline ToF estimation performance was acquired as the worst-case time mea-surement noise with a standard deviation of 150 ps of the DW1000 transceiver from [59],following a zero-mean Gaussian distribution, which was assumed for both the tag and theanchors. The numerical tests for this publication were also carried out in an arbitrarilysized virtual room (sized 500 by 700 by 250 cm).
Although the simulations of I and II were conducted on separate numerical testers andon different fundamental baseline performances, the results show similar performance.
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Figure 10: The numerical results for ranging RMSE of AP-TWR protocols proposed in Publication
II. The figures show the dependence of RMSE depending on the number of additional passive-only
anchors, k. Each sub-figure depicts a different number of active-passive anchors, m. The baseline
performance of the active ranging methods is pictured as constant lines, as these do not employ
passive ranging and therefore are not dependent on the number of passive-only anchors. Figure
from Publication II.

This is evidentwhen comparing Table 1 of Publication I2 and Figures 6 and 10 of PublicationII, where the trends of the performance are identical while the RMSE values differ bya maximum of 0.3 cm for lower m values. This slight discrepancy is easily explained bythe fact that Publication II assumed the worst-case time measurement error, while thepractical results of [81] achieved slightly better results as their devices did not operate onthe worst-case time measurement noise. For an exact comparison, refer to Fig. 3 of [81]and Fig. 5 of Publication II.The main numerical results of Publication II are shown in Fig. 10, which shows theranging RMSE values depending on k, i.e. the number of additional passive-only anchors3.The values of m, the number of active-passive anchors, is varied according to the titleof each sub-figure. The key takeaways from these results are discussed in the followingparagraphs.Although each additional active-passive anchor of everyAP-TWRprotocol adds a packetto the ranging sequence and therefore reduces air time efficiency, the ranging RMSE is also
2Note that in the body part of Publication I states that the value of passive-only anchors, k, isvaried from 1 to 10. The correct values of k are in the range of 0 to 9, and Table 1 correctly displaysthis.3Note that the caption of Fig. 6 in Publication II reads n as the number of additional passive-onlyanchors, the correct notation is k.
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Table 3: AP2-based SS-TWR example. Number of anchors n = m+ k = 6. Comparison with equiv-
alent SS-TWR with 6 anchors (RMSE: 3.180 cm, number of packets: 8). Amount of available range
estimates for both methods: 6. Table from Publication II.

m k RMSE RMSE relative No Air time relative(cm) change (%) packets change (%)6 0 2.120 -33.3 8 05 1 2.323 -26.9 7 -12.54 2 2.598 -18.3 6 -25.03 3 2.997 -5.8 5 -37.52 4 3.672 15.5 4 -50.01 5 5.192 63.3 3 -62.5

reduced at the same time. As the total number of anchors, n, directly defines the numberof available range estimates, we observe that each added passive-only anchor providesan additional range estimate at no additional cost to the air time, while slightly increasingthe RMSE. This is explained by the fact that passive range estimates typically offer slightlylower performance than their active ranging counterparts, as seen in Fig. 5 of PublicationII. Hypothetically the number of available range estimates, which have no effect on theair time, is limited only by the number of passive-only devices.The numerical results in Fig. 10 show that all AP2-TWR-based protocols outperformAP1-TWR protocols in every test scenario. This leads to the case m = 3, where the perfor-mance of every combination of AP2-TWR protocol surpasses SS-TWR andm = 6 (depictedon Fig. 10 of Publication II) where it exceeds the performance of all of the active rangingmethods. The same critical points can be observed for AP1-TWR protocols in m = 5 and
m = 10, respectively.The effect of AP-TWR protocols can be illustrated with a specific example given in Ta-ble 3. The table4 compares various AP2 SS-TWR m,k combinations (amounting to a totalof n= 6 anchors) to an equivalent 6 anchor SS-TWRprotocol. We discern that the extremecases m = 1,k = 5 and m = 6,k = 0 are aimed towards improving the air time (reductionof air time by 63.5%) and RMSE (reduction of RMSE by 33.3%), respectively. Some inter-mediate cases such as m = 4,k = 2 show simultaneous improvements on both metrics,reducing the air time by 25% and the RMSE by 18.3%.

The above paragraphs described the simulations of Publication II and their main re-sults, the subsequent section provides an overview of the corresponding practical exper-iments.
3.3 Practical Experiments
All of the experiments in the scope of this thesis were conducted using the Eliko UWBRTLS [137] system, built around the Qorvo DW1000 UWB transceiver [64]. The referencecoordinates of the anchors and the tag were measured using the Leica DISTO S910 laserdistance meter [138], mounted to the tripod adapter FTA 360S on the TRI120 tripod, aspart of the P2P Package [139]. The DISTO S910 offers a worst-case distance measurementaccuracy of ± 2 mm, which is well below the 1 cm ranging resolution of Eliko UWB RTLSdevices (verified experimentally), making it suitable for providing the best ground truthreference points in the context of this thesis.

4Publication II lists the second column header of Table 1 as n, while the correct term is k.
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Figure 11: An example of a small-scale setup of Eliko UWB RTLS. Figure from [140], with permission
from Eliko Tehnoloogia Arenduskeskus OÜ

Figure 11 depicts a typical Ethernet-based Eliko UWB RTLS setup, which is also repre-sentative of the setup used in the experiments conducted in this thesis, only at a smallerscale. The diagram illustrates a setup consisting of four UWB anchors and one tag. Theanchors are powered via Power over Ethernet (PoE) connected to a PoE-supported Ether-net switch, which is in turn connected to the position estimator i.e. central RTLS server,while the Ethernet cabling also doubles as the means of transporting the ranging data. Auser terminal connected to the server can be used to display the graphical user interfaceof the RTLS system, or stream the raw ranging data; the latter is used for the experimentsin this thesis.
The actual Eliko UWB RTLS system setup used in the experiments of Publications I, II,and III is shown in Fig. 12. The six anchors are circled in red, the tag in dark blue, andthe Leica DISTO S910 in light blue; the RTLS server is not visible in the photo because itis installed in a separate server room on the same floor. It is important to note that thetop right anchor was not included in the experiments of Publication II, as it had Ethernetconnectivity issues during the measurement campaign, while all of the six anchors wereincluded in the experiments of Publication I. Yellow post-it notes are attached to the an-chors and act as reflective surfaces for the Leica DISTO S910 at the approximate locationof the anchor antenna, per the installation guide of Eliko UWB RTLS [140]. The concrete-walled room is sized about 7.2 by 6 by 2.6 m, fitted out with tables and computers.
Similar to the numerical simulations, the experiment test positions of the tag are cho-sen such that LOS propagation conditions between the tag and the anchors are ensured.The measurements for Publication I were collected in a single run of about 7200 rang-ing sequences with m = 6,k = 0, from which the 21 possible combinations of m,k wereselected as subsets, for which the performance parameters were calculated.
The data for Publication II were collected separately for each of the 15 m,k combina-tions that were possible with a maximum of 5 anchors. The ranging data for each combi-nation was collected at 5 randomly chosen locations in the room, each of which consistedof at least 600 separate ranging sequences. The choice of the participating anchors forcases where m+ k < 5 was chosen at random by a dedicated data acquisition software
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Figure 12: Test setup for experiments in Publications I, II, and III.

Table 4: Experimental results of AP2 SS-TWR from Publication I. Achieved RMSE (cm) for all m,k
combinations possible with a maximum of 6 anchors. Table from Publication I.

HHHHHm
k 0 1 2 3 4 5

1 3.286 4.608 5.334 5.337 5.466 5.533
2 3.259 3.764 3.838 3.958 4.076
3 3.251 3.384 3.544 3.670
4 2.946 3.144 3.268
5 2.901 3.043
6 2.892

written in Python.
Additionally, the experiments of Publication II were run with only the AP2 SS-TWRprotocol as the results could be directly comparable to results of Publication I; it requiresthe least amount of data to transmit over UWB; and the numerical results show that theperformance is practically on the same level as the other AP2 protocols.
Due to a software bug impairing the performance of the devices at the time, Publica-tion II’s Table 2 listed the practical performance of AP2 SS-TWR as the standard deviation(SD) of ranging rather than the RMSE. This is due to the fact that the SD can be interpretedas the best-case RMSE value when the true distance is equal to the mean of the samples.Although the results showed somewhat similar trends to the numerical simulations, theexperimental results of Publication I are more representative and give a better compari-son with the numerical simulations, while also employingmore anchors. Therefore, in thescope of this section, the experimental results of Publication I are given in Table 4.
Comparing the results given in Fig. 10 and Table 4 it can be observed that althoughthe experiments show only about 0.4 cm higher RMSE on average, the overall trends dis-cussed in the previous section are also clearly present in practice. Therefore, the resultsof the experiments support the simulations, validating the functionality of the proposed
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AP2 SS-TWR method.For amore detailed analysis of the results, the reader is encouraged to read the resultssections of Publications I and II.
This section gave anoverviewof theUWBAP-TWR ranging protocols proposed in Publi-cations I and II, providing the theory of the protocols and validating it by numerical simula-tions and practical experiments. The following section outlines the AP-TWRmeasurementmatrix processing techniques, based on Publication III. In the remainder of the thesis, theSS-TWR-based AP2-TWRmethod is commonly referred to as the AP-TWR protocol for sim-plicity.
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4 AP-TWR Measurement Matrix Processing
This section covers some of the possible ways of processing the ToF measurement ma-trix values given by (18) in order to provide more robust range estimates as the inputsfor a positioning system. As the AP-TWR protocol along with the measurement matrix isa novel concept, some pre-existing methods put into a novel context were investigated.A portion of the exploredmethods is additionallymentioned in Section 2.3.2 of this thesis.
This section is based on Publication III:

• T. Laadung, S. Ulp, M. M. Alam, and Y. LeMoullec, “Performance Evaluation of UWBActive-Passive Two-Way Ranging Distance Estimation Matrix Weighting Methods,”in 12th International Conference on Indoor Positioning and Indoor Navigation (IPIN
2022), pp. 1–5, CEUR-WS, sep 2022

4.1 Explored Methods for AP-TWR Measurement Matrix Processing
The first and most intuitive method for measurement matrix processing is the LS estima-tion of a constant, which was also used in Publications I and II. The LS estimation of aconstant simplifies to calculating the arithmetic mean of samples. In the context of theAP-TWR ToF measurement matrix, we estimate ranging values row-wise; therefore, theLS estimation is performed via (19) by calculating the arithmetic mean of the rows.A more robust estimator in the presence of a small number of outliers is the median
(Med), i.e. the middle value separating the top and bottom half of a data sample. Tocalculate the final range estimates and following the rowvector notation of 20, themedianof the vector is written with the tilde accent:

T̂MED =




t̃T↔A1|A1:m...
t̃T↔An|A1:m


 . (20)

The Inverse Distance Weighting (IDW) method of [92] is an estimator of central ten-dency by providing higher weights to values closer to the arithmetic mean of the sample.It is calculated by

tT↔A j =





m

∑
i=1

(tT↔A j|Ai ·d−1
j,i )

m

∑
i=1

d−1
j,i

, if d j,i ̸= 0 for all i,

tT↔A j|A1:m, if d j,i = 0 for some i,

(21)

where
d j,i = |tT↔A j|Ai − tT↔A j|A1:m|. (22)

The following methods are based on theWeighted Least Squares (WLS) or colloquiallynamed the Weighted Mean (WM), which utilizes non-negative weights w j,i :

WM(tT↔A j|A1:m) =

m

∑
i=1

(w j,i · tT↔A j|Ai)

m

∑
i=1

w j,i

. (23)

45



The Distance Weighted Estimator (DWE), in essence, provides a weight w j,i, calcu-lated as the inverse of the average distance of an observation to other data points in thesample:
w j,i =

m−1
m

∑
l=1

|tT↔A j|Ai − tT↔A j|Al |
. (24)

The firstWLSmethod (WLS1) utilizes the active and passive anchor noise variances σ2
aand σ2

p , which can be found from the results of previous publications, where σa = 3.2 cmand σp = 5.5 cm. Therefore the weights can be calculated by

w j,i =





1
σ2

a
, for i = j

1
σ2

p
, for i ̸= j.

(25)

The formulation of the secondWLSmethod (WLS2) introduces aminute change in thenotation compared to Publication III. Firstly, the centered measurement matrix values c j,iare found by subtracting the row mean from each row:5
c j,i = tT↔A j|Ai − tT↔A j|A1:m. (26)

Then the column variances are found using the mean value of columns c1:n,i)
2 :

σ
2
i =

n

∑
j=1

(c j,i − c1:n,i)
2

n
, (27)

The variances are used for calculating theWLS2 weights w j,i, which are the equal for eachrow:
w j,i =

1
σ2

i
, for all j. (28)

As the previous method was based on the column variances, the third WLS method
(WLS3)makes use of the row variances σ2

j as well:

σ
2
j =

m

∑
i=1

c2
j,i

m
, (29)

noting that the row mean term is omitted from the calculation, as it is already subtractedin (26). The resulting row and column variances are combined into σ2
j,i by

σ
2
j,i =

σ2
j +σ2

i

2
, (30)

which permit the calculation of the WLS3 weights:
w j,i =

1
σ2

j,i
. (31)

5Publication III Section 3.6 claims that the centering is done via (9) of that publication; theoreti-cally, the correct way of centering is performedwith (26) of this thesis. The results of this publicationare not affected by this change.
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Figure 13: Results averaged across all test locations and propagation conditions: the RMSE
(lines+markers) and SD values (bars) of the explored methods. Figure from Publication III.

4.2 Practical Experiments of Publication III
The experiments of this publication were conducted with the Eliko UWB RTLS system inthe same conditions as outlined in Section 3.3, pictured in Fig. 12. As opposed to previouspublications, the experiments of Publication III also include NLoS measurements in orderto assess the performance of the different methods in more challenging circumstances.

The data acquisition was conducted by placing a tag in five randomly chosen locationsin the room, making sure that, by default, LoS propagation conditions were met betweeneach tag-anchor pair. At each location, an LoS and 2 separate NLoS tests were conducted,collecting a minimum of 1200 ranging sequences per test. The first NLoS test (NLOS1)was carried out where the propagation path between the tag and a certain set of anchorswas disrupted with a 40-by-20 cm, 0.8 mm thick metal sheet, while the second NLoS test(NLOS2) utilized a live human body to block the same paths. During both of the NLoStests, the element blocking the direct LoS path was placed approximately 5 cm away fromthe tag. The data of the m = 6,k = 0 AP-TWR protocol was captured from the Eliko RTLSserver using a custom Python script, while the data processing and performance analysiswas conducted via a dedicated script written in R.
Figure 13 presents the average RMSE (left-hand side vertical scale, data representedwith lines and markers) and SD values (right-hand side vertical scale, data representedwith bars) of the methods across all the LoS/NLoS tests and locations. To provide a base-line comparison, the performance of SS-TWR-based active ranging and AP-TWR passiverange estimates are separately presented, in addition to the explored methods.
Firstly focusing on the SD values of the methods, it can be noted that active rangingprovides the lowest SD values, and passive ranging provides the highest SD values, forexample in LoS propagation conditions respectively about 7 cm, and 13 cm. Med, IDW,and DWE provide SD values in the same range as the SS-TWR active ranging, while theWLS methods offer slightly higher values. Across the LOS/NLOS1/NLOS2 propagation con-ditions, no significant differences in the trends can be observed.
The RMSE, on the other hand, offers some other insights: here it can be seen thatthe SS-TWR active ranging achieves significantly inferior results when compared to theAP-TWR passive range estimates, across all of the propagation conditions (for example
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about 24 cm for SS-TWR active ranging, and the next least performing methodWLS2 witha lower value of about 21 cm). Noting that in NLOS1/NLOS2 conditions, the performancegap of the active and passive ranging is larger than in LoS. In LoS propagation conditions,all of the explored methods performed equally well, besting the passive range estimatesby about 2.2 cm RMSE. The performance in NLOS1 and NLOS2 conditions shows that theWLS methods offer up to about 1 cm higher RMSE when compared to LS, Med, IDW, andDWE methods.
The results show thatMed, IDW, and DWE offer the lowest SD, being in the same rangeas the active SS-TWR ranging. The best RMSE was achieved by LS, Med, IDW, and DWE,offering up to almost 7 cm better RMSE performance when compared to the active rang-ing. Accounting for both metrics, the best-performing methods are Med, IDW, and DWE.Although the computational complexity of each method was not explicitly discussed inthe Publication III, the equations for IDW (21) and DWE (24) analytically show that thenumber of calculations is higher, compared to finding the median of each row. For moreinformation on the exact test setup, the location- and propagation condition-specific re-sults, and additional analysis, the reader should refer to Publication III.
This section provided a summary of the AP-TWR ToF measurement matrix processingmethods explored in Publication III. The methods were tested experimentally, in LoS andtwo different NLoS propagation conditions, finding that theMed, IDW, and DWEmethodsprovide the lowest SD and RMSE out of all the testedmethods. Next, based on PublicationIV, the following section assembles the findings of the previous publications and ties themtogether to form a novel AP-TWR-based adaptive positioning method.
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5 AP-TWR Positioning
The AP-TWR protocol and the proposed measurement matrix processing methods werevalidated via tests and experiments which evaluated the performance of ranging. As theUWB ranging is also utilized in positioning, the effect of AP-TWR on positioning had notbeen quantified in previous publications. This section covers the usage of the AP-TWRprotocol to propose an Adaptive Extended Kalman Filter (A-EKF) position estimator forincreased positioning accuracy.
This section is based on Publication IV:

• T. Laadung, S. Ulp, A. Fjodorov, M. M. Alam, and Y. Le Moullec, “Adaptive ExtendedKalman Filter Position Estimation Based on Ultra-Wideband Active-Passive RangingProtocol,” Submitted to IEEE Access, 2023
5.1 Theoretical Background
The current section provides an overview of the theoretical background for utilizing theAP-TWR protocol in an RTLS. The position estimator based on the Extended Kalman Filter(EKF) and the mechanisms for penalizing longer distances and intermittent ranging valuesare given in separate subsections.
5.1.1 Active-Passive Two-Way RangingTaking the AP-TWR ToFmeasurement matrix (18), converting it to distances via (1) and giv-ing it a designator for time steps (k) (noting the difference between the k used in previoussections) we get the n-by-m AP-TWR distance matrix Tdk:

Td,k = cTk =




d1|1,k . . . d1|m,k... . . . ...
dn|1,k . . . dn|m,k


 (32)

Accounting for the results of previous publications, the range estimates for the positionestimator are found by taking the median (denoted by the tilde) of each row of Td,k:
Nk =

[
d̃1|1:m,k d̃2|1:m,k . . . d̃n|1:m,k

]T (33)
To formulate the adaptive EKF positioning method for AP-TWR, the row variances of Tdkmust be found at each time step, such that

Sk =
[
σ2

1|1:m,k σ2
2|1:m,k . . . σ2

n|1:m,k

]T
. (34)

The complete analysis of the effect of the individual NLoS propagation paths on the AP-TWR distance (and ToF) matrix values, which gives the basis for the calculation of rowvariances, is given in Publication IV.
5.1.2 Distance PenaltyEarlier publications [141, 118] have shown that as the distance increases, the error mag-nitude is also larger. Therefore it is desired to utilize the shorter distances with a higherweight in the position estimation process.As the EKF utilizes the weighting via observation/measurement noise variances (ex-plained in more detail in Section 5.1.4), the higher weighted inputs get lower variance
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values. This is conducted via a parametric exponential scaling vector Bk:
Bk =

[
esc·d̃1|1:m,k esc·d̃2|1:m,k . . . esc·d̃n|1:m,k

]T
, (35)

where the parametric scaling constant is calculated by sc =
lnsm

sd
, and interpreted as havinga scaling multiplier value of sm at a distance of sd , being a non-negative and a positive realnumber, accordingly.

5.1.3 Intermittency PenaltyThe second way of augmenting the EKF observation noise parameters is based on the hy-pothesis that intermittent ranging values provide more inaccurate inputs to the positionestimator. The intermittency penalty essentially gives lower weights to the sporadic rang-ing values, as the irregular resolving of distance valuesmight indicate adverse propagationconditions in the positioning environment.Although this method insinuates the usage of historical time-series data, the time de-lay effects on position estimation are negated. This is explained by not using any historicalranging data, but rather augmenting the measurement noise based on the occurrencesof missing data in the history.For the formulation of this method, we introduce two parameters: the look-back win-dow size ls and the intermittency multiplier lm. The first of which defines the length ofthe history as a positive integer, while the latter defines the magnitude of the noise vari-ance augmentation as a non-negative real number. In the case of lm = 0, no intermittencypenalty is applied. Noting the historical ranging values (spanning from the current sam-ple at k to the end of the look-back window k− ls + 1) of each anchor A1,A2, . . . ,AN ascorresponding sets:
A1,k = {dA1,k, dA1,k−1, . . . , dA1,k−ls+2, dA1,k−ls+1}
A2,k = {dA2,k, dA2,k−1, . . . , dA2,k−ls+2, dA2,k−ls+1}...
AN,k = {dAN ,k, dAN ,k−1, . . . , dAN ,k−ls+2, dAN ,k−ls+1},

such that each element of a set gets a value of 0 when the corresponding anchor is notpartaking in the ranging sequence at that specific time. Therefore, we get the number ofmissing ranging values within the window at time instance k for each anchor as
rA1,k = |x1 ∈ A1,k : x1 = 0|
rA2,k = |x2 ∈ A2,k : x2 = 0|...

rAN ,k = |xN ∈ AN,k : xN = 0|.
The number of missing ranging values at k is then used to calculate the set of noisevariance augmentation values at k:

Lk =
{

1+ lm
ls
· rA1,k, 1+ lm

ls
· rA2,k, . . . , 1+ lm

ls
· rAN ,k

}
. (36)

Then the final noise variance augmentationmatrix at time instance k can be expressedin column form as
Ck =

[
li1,k li2,k . . . lin,k

]T
, (37)

where li1,k, li2,k, . . . , lin,k represent the elements of the subset of set Lk, where i1, i2, . . . , inare the indices of the elements in the subset, which correspond to the anchors partakingin the ranging sequence at time instance k.
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5.1.4 Extended Kalman FilterIn order to provide a 3D position based on AP-TWR ranging, a suitable EKF position es-timator is formulated. Assuming a model of the position, velocity, and acceleration, thekinematics equations of each axis allow writing the state vector as:

Xk =




xk
yk
zk
vx

k
vy

k
vz

k
ax

k
ay

k
az

k




=




xk−1 +Ts · vx
k−1 +

T 2
s
2 ax

k−1 +
T 3

s
6 ωx

k−1

yk−1 +Ts · vy
k−1 +

T 2
s
2 ay

k−1 +
T 3

s
6 ω

y
k−1

zk−1 +Ts · vz
k−1 +

T 2
s
2 az

k−1 +
T 3

s
6 ω

z
k−1

vx
k−1 +Ts ·ax

k−1 +
T 2

s
2 ωx

k−1

vy
k−1 +Ts ·ay

k−1 +
T 2

s
2 ω

y
k−1

vz
k−1 +Ts ·az

k−1 +
T 2

s
2 ω

z
k−1

ax
k−1 +Ts ·ωx

k−1
ay

k−1 +Ts ·ωy
k−1

az
k−1 +Ts ·ωz

k−1




, (38)

where xk, yk, and zk are the coordinates of the tag at time step k, while vx
k, vy

k, and vz
k arethe according velocities; ax

k, ay
k, and az

k are the acceleration values, and Ts is the samplingperiod between consecutive time steps k− 1 and k. The final term of each componentof the model denotes the process noise of position ((T 3
s /6)ωk−1), velocity ((T 2

s /2)ωk−1),and acceleration (Ts ·ωk−1). Reiterating that in the context of this section and PublicationIV, k is the time step value, as opposed to the number of active-passive anchors used inthe formulation of the AP-TWR protocol in Section 3.
Writing the process noise as a vector wk−1 =

[
ωx

k−1 ω
y
k−1 ω

z
k−1

]T with a diagonal
covariance matrix of Qk−1 = diag(σ2

ax,σ
2
ay,σ

2
az), the formulation of the state vector canbe written in matrix form:

Xk = AXk−1 +Gwk−1, (39)
where A and G are the state and noise transition matrices, respectively:

A =




1 0 0 Ts 0 0 T 2
s
2 0 0

0 1 0 0 Ts 0 0 T 2
s
2 0

0 0 1 0 0 Ts 0 0 T 2
s
2

0 0 0 1 0 0 Ts 0 0
0 0 0 0 1 0 0 Ts 0
0 0 0 0 0 1 0 0 Ts
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




, (40)

G =




T 3
s
6 0 0

0 T 3
s
6 0

0 0 T 3
s
6

T 2
s
2 0 0

0 T 2
s
2 0

0 0 T 2
s
2

Ts 0 0
0 Ts 0
0 0 Ts




. (41)
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The observation vector is denoted as Zk, containing the AP-TWR ranging values andconsisting of the true distances d j,k with their corresponding additive noise terms vik attime instant k:

Zk =




z1,k
z2,k...
zn,k


=




d1,k + v1,k
d2,k + v2,k...
dn,k + vn,k


= Dk +Vk = HkXk +Vk, (42)

where Dk =
[
d1,k d2,k . . . dn,k

]T is the vector containing the true distances, Vk =[
v1,k v2,k . . . vn,k

]T is the observation noise vector with a diagonal covariance matrix
Rk = diag(σ2

d1,k
,σ2

d2,k
, . . . ,σ2

dn,k), and Hk is the Jacobian matrix, which is expressed by(44). Similar to (2), the distance vector can also be written as equations relating to thelocations of the corresponding anchors:

Dk =




√
(xk − x1)2 +(yk − y1)2 +(zk − z1)2√
(xk − x2)2 +(yk − y2)2 +(zk − z2)2

...√
(xk − xn)2 +(yk − yn)2 +(zk − zn)2


 . (43)

As (43) is nonlinear, it is linearized by taking the first-order Taylor expansion given by theappropriately-sized Jacobian Hk:

Hk =




∂d1,k
∂xk

∂d1,k
∂yk

∂d1,k
∂ zk

0 0 0 0 0 0
∂d2,k
∂xk

∂d2,k
∂yk

∂d2,k
∂ zk

0 0 0 0 0 0...
∂dn,k
∂xk

∂dn,k
∂yk

∂dn,k
∂ zk

0 0 0 0 0 0



, (44)

where the partial derivatives are
∂d j,k

∂xk
=

xk − x j√
(xk − x j)2 +(yk − y j)2 +(zk − z j)2

(45a)
∂d j,k

∂yk
=

yk − y j√
(xk − x j)2 +(yk − y j)2 +(zk − z j)2

(45b)
∂d j,k

∂ zk
=

zk − z j√
(xk − x j)2 +(yk − y j)2 +(zk − z j)2

. (45c)
Since, in the scope of this publication, the output position estimate is a 3D coordi-nate, there is a need for at least 4 range estimates in the input, such that the AP-TWRmeasurement matrix parameter n ≥ 4, otherwise the position estimation for that rangingsequence is not performed.Another special case is defined when the measurement matrix m = 1, which meansthat the measurement matrix consists of a single column, therefore it is directly used asan input to the EKF and the calculation of the row variances Sk from the measurementmatrix is not possible. In this case, the row variance matrix Sk is given as a column vector,repeating n times the default observation noise variance σ2

d .
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Algorithm 1 EKF positioning for AP-TWR protocol
Input: Td,k ∈ Rn×m, {sd ,σ

2
d ,σ

2
ax,σ

2
ay,σ

2
az} ∈ R>0, {sm, lm} ∈ R≥0, ls ∈ Z>0

Output: X̂k
Initialize: X̂0, P0

1: for k = 1,2, . . . ,∞ doAP-TWR ranging
2: if n < 4 then ▷ Less than 4 distances in input
3: skip
4: end if
5: if m > 1 then
6: Zk = Nk ▷ Observation vector
7: Calculate Sk ▷ Row variances
8: else
9: Zk = Td,k

10: Sk =
[
σ2

d,k
×n· · · · · ·

]T
▷ Assign default variance values

11: end if
12: Calculate Bk ▷ Distance penalty
13: Calculate Ck ▷ Intermittency penalty
14: Rk = diag(Sk ⊙Bk ⊙Ck) ▷ Hadamard productEKF Prediction
15: X̂−

k = AX̂k−1 ▷ State prediction
16: P−

k = APk−1AT +GQk−1GT ▷ State covariation predictionEKF Correction
17: Kk = P−

k HT
k (HkP−

k HT
k +Rk)

−1 ▷ Calculate Kalman gain
18: X̂k = X̂−

k +Kk(Zk −D−
k ) ▷ Correct the state estimate

19: Pk = P−
k −KkHkP−

k ▷ Correct the state covariance
20: return X̂k, Pk21: end for

Algorithm 1 presents the complete procedure for the proposed EKF positioning for AP-TWR protocol. As the EKF procedure itself consists of two phases, the prediction, and thecorrection, the algorithm pseudo-code differentiates the products of the prediction phasewith the minus (−) superscript.
5.2 Practical Experiments of Publication IV
The proposed AP-TWR A-EKF positioning was validated by conducting experiments in anindustrial environment at themanufacturing facilities of Krah Pipes OÜ [142], located nearTallinn, Estonia. The premises were chosen for the tests, as it provided adverse conditionsfor the positioning system, such as the presence of operating industrial machinery, metal,and concrete structures that interfere with LoS propagation, sub-optimal anchor place-ment due to the constraints on available installation locations, positioning the tag outsideof the 3D convex hull defined by the anchors, etc.Illustrated in Fig. 14, a part of the manufacturing facilities can be seen, with the LeicaDISTO S910 circled in cyan and the Eliko UWB RTLS tripod-mounted tag in dark blue. In thebackground, some of the aforementioned industrial equipment can be seen. For moredetails on the exact placement of the anchors, test points, additional information andfigures of the experimental setup, and parameter values, refer to Publication IV.
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Figure 14: The test environment of the experiments of Publication IV. Leica DISTO S910 is circled in
cyan, the tag is circled in dark blue.

In the first stage of experiments, ranging data was captured in 30 separate stationarypoints in the factory, with a tag mounted on a tripod. At each point, the true coordinateof the tag was surveyed with the Leica DISTO S910, and AP-TWR ranging data was cap-tured for 30 seconds, resulting in data containing about 300 separate AP-TWR rangingsequences.To validate the stationary experiment results, a second set of measurements weretaken with a moving tag mounted on a tripod attached to a shelf trolley. The lines drawnon the factory floor were used as a reference for a true movement track and the trolleywas used to follow this track as closely as possible, a photo of this experiment can be seenin Fig. 2 of Publication IV.The experiments compared the proposed A-EKF method against the benchmarks ofAP-TWR and SS-TWR in terms of 2D and 3D RMSE across 30 test points, as seen in Fig. 15.Overall, the A-EKF method demonstrated robustness in the industrial environment, per-forming at a similar or lower error level compared to the baselinemethods. The proposedmethod significantly reduced errors at high-error test points of the benchmarks, providinga large reduction in absolute error values.Comparing the A-EKF method to AP-TWR, it consistently achieved lower RMSE in both2D and 3D positioning at most test points. The proposed method effectively mitigatedthe adverse effects of NLoS conditions encountered in the industrial environment. Simi-larly, when compared to SS-TWR, the A-EKF method showcased improved 2D positioningperformance, greatly reducing errors at specific test points.On average, the A-EKF method outperformed both AP-TWR and SS-TWR in terms ofRMSE, achieving significantly better results in both, 2D and 3D. In 2D positioning, the pro-posed method achieved almost 1.6 times better performance than the next best method(SS-TWR), while in 3D positioning, it achieved over 3 times lower RMSE than the next bestmethod (AP-TWR).The experiments involving a moving tag aimed to validate the results obtained fromthe stationary tests and assess the impact of initialization on position estimates. Objec-
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Figure 15: The 2D and 3D positioning RMSE results of the stationary tests of Publication IV. Figure
from Publication IV.

tive error metrics were not calculated due to the requirement of knowing the true tagcoordinates at each time step. The movement traces (seen in Fig. 5 of Publication IV) ofthe testedmethods demonstrated that both the A-EKF and AP-TWR consistently providedmore accurate results in the z-axis, as was also observed in the 3D RMSE graphs in Fig. 15.However, in certain segments, deviations from the true track were higher, particularly inthe presence of obstacles such as the mezzanine floor and pipe manufacturing mandrels.Notably, the A-EKF method exhibited significantly lower deviations compared to SS-TWRand AP-TWR, reducing maximum errors by approximately 9 times.
Overall, these findings support the efficacy of the A-EKF method in maintaining accu-rate position estimates regardless of the tag staying stationary or moving in the environ-ment, even in the presence of challenging propagation conditions. The proposed methodshowcases superior performance compared to the benchmark methods, particularly inmitigating large position deviations caused by obstructions and environmental factors.The A-EKFmethod shows promise for enhancing localization systems in industrial settingsand offers the potential for more accurate and reliable positioning outcomes.
This section provided the theoretical background, experimental validation, and the re-sults of the A-EKF positioning method based on the AP-TWR range estimates, proposedin Publication IV. The experiments, conducted in an industrial environment, showed theefficiency of the proposedmethod as it considerably reduced the positioning errors, com-pared to the baseline EKF methods. The following section provides the concluding re-marks, answers the research questions raised in the first part of this thesis, and providessome future perspectives on the research direction.
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6 Conclusion
The culmination of the research presented in this PhD thesis revolves around the formu-lation and investigation of the AP-TWR protocol in UWB positioning systems. This chapterserves as an abbreviated conclusion, drawing upon the key findings and contributionsmade through the four research papers presented within the scope of this thesis. By ad-dressing the fundamental challenges and exploring novel methodologies, the aim was toadvance the field of UWB positioning systems and pave the way for enhanced accuracyand reliability in real-world applications.Firstly, this section offers an overview of the conducted research. Secondly, it ad-dresses the research questions initially posed in the introduction, providing answers andinsights gained through the investigations. Lastly, it outlines the future perspectives andpotential avenues for further advancement in the field of AP-TWR in UWB systems, identi-fying areas for future research anddevelopment. Together, these components consolidatethe contributions made in this thesis and shed light on the implications and possibilitiesthat lie ahead in UWB positioning systems.6
6.1 Summary
This section provides an overview of this PhD thesis focused on the development andanalysis of AP-TWR protocols in UWB positioning systems. The thesis explores the ad-vantages and limitations of UWB technology, specifically the ToF and TDoA methods, andintroduces the concept of passive ranging as a solution to address their drawbacks. Theresearch consists of four papers that propose, test, and analyze novel AP-TWR protocols,leading to the development of a robust positioning method A-EKF.The first research paper presents the generalized AP-TWR protocol for UWB and val-idates its performance through numerical simulations and experiments. The second pa-per introduces an alternative approach to calculating AP-TWR range estimates, combiningmultiple active ranging methods to create six distinct AP-TWR methods. These methodsare compared through simulations, and themost promising approach is further tested ex-perimentally. In the third paper, the robustness of AP-TWR range estimates is addressedby applying variousmeasurementmatrix processing techniques, which are evaluatedwithexperimental testing. The findings from these papers are then consolidated in the fourthpaper, which proposes an A-EKF-based positioning method using AP-TWR.The significance of the AP-TWR protocol is highlighted by its distinct features. Unlikeexisting passive ranging methods that focus solely on improving air time efficiency, AP-TWR provides a generalized approach that allows UWB positioning systems to prioritizeimprovements in air time efficiency, ranging accuracy, or both. The results from the re-search papers demonstrate that AP-TWR yields more accurate range estimates comparedto equivalent active-only ranging protocols, leading to more precise position estimates.Moreover, the proposed A-EKF positioning method based on AP-TWR offers robust andefficient positioning without requiring any additional information about the propagationchannel or causing time delays.

6The English language of this chapter has been co-edited with ChatGPT [143].
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6.2 Research Questions
The research questions proposed in Section 1.6 of this PhD thesis are answered below.

RQ1. How to improve location (ranging) estimates in the case of noisy measure-
ments?Section 1.6 of this thesis has highlighted several sub-topics that are pertinent to en-hancing the accuracy of range or position estimates in wireless positioning systems. Thesesub-topics encompass filtering techniques, position estimation algorithms, different rang-ing protocols, and the detection and mitigation of NLoS conditions.Traditionally, these sub-topics have been addressed individually through the applica-tion of advanced filtering methods, experimentation with various position estimation al-gorithms, exploration of different ranging protocols, error modeling, and employment ofmachine learning methods for NLoS detection and mitigation, among others. However,the proposed AP-TWR protocol offers a novel approach that enables simultaneous treat-ment of these sub-topics. Unlike conventional approaches that apply filtering to subse-quent ranging values, the AP-TWR protocol performs filtering of ranging samples withineach ranging sequence. Consequently, this protocol offers two-fold benefits: reductionof measurement noise impact and avoidance of filtering time delays that are typically en-countered.As the following research questions delve into the mentioned sub-topics in greaterdepth, the discussion pertaining to those aspects is elaborated upon in the answers tothose specific research questions.

RQ2. How to detect (and mitigate) inaccuracies caused by NLoS?Various techniques are employed for NLoS detection, such as statistical analysis, ma-chine learning algorithms, and signal processing methods. Once NLoS is detected, mitiga-tion strategies can be applied, including error modeling, geometric-based algorithms, andadvanced filtering techniques. By effectively identifying andmitigating NLoS effects, UWBpositioning systems can enhance their performance in challenging indoor environments,leading to more reliable and precise location estimates.The research papers presented in this thesis have demonstrated that the inherent in-formation provided by the measurement matrix of AP-TWR range estimates can be lever-aged to detect and mitigate errors arising from NLoS propagation conditions. By integrat-ing this capability into a position estimation algorithm, such as the proposed A-EKF, theaccuracy of position estimates can be significantly enhanced, effectively incorporating allof the aforementioned sub-topics.Therefore, the contributions and findings of this research provide a comprehensiveframework that addresses the challenge of improving location (ranging) estimates in thepresence of noisymeasurements. The AP-TWRprotocol, in conjunctionwith the A-EKF po-sitioning method, not only reduces the impact of measurement noise and filtering timedelays but also enables the detection andmitigation of errors caused byNLoS propagationconditions. This integrated approach represents a significant advancement in the field ofwireless positioning systems and opens avenues for further research and development inthis area.
RQ3. How to decrease the power consumption of the mobile node?In the context of UWB technology, the reduction of power consumption in the mobilenode, specifically the tag, is a critical consideration due to its reliance on battery opera-tion. The preservation of energy is essential to extend the operating time of the tag. This
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PhD thesis has addressed this concern by exploring design choices for a ranging protocolthat minimizes the energy consumption of the tag. Section 2.2.6 of the thesis provided acomprehensive overview of these design choices, which were consistently implementedthroughout the development of the AP-TWR protocol, resulting in enhanced energy effi-ciency for the overall system. Moreover, the inherent flexibility of the AP-TWR methodallows the positioning system designer to optimize power consumption by selectively in-volving a limited number of anchors in the active ranging process, further contributing tothe reduction of energy consumption by the tag.
RQ4. How to decrease air-time occupancy?This research question is closely intertwined with the previous one, and some aspectsof the answer have already been covered. However, let’s briefly reiterate the key pointshere. The duration of air-time occupancy is directly influenced by the specific protocolused in the positioning system. Whether we consider TDoA or ToF estimation-based po-sitioning methods, the choice of the ranging technique plays a vital role in determiningthe amount of time devices need to communicate wirelessly. As we discussed earlier inthe context of energy consumption, the design choices embedded in the AP-TWR proto-col are aimed at reducing energy usage, which naturally leads to a reduction in air-timeoccupancy. What makes the AP-TWR protocol particularly advantageous is its adaptabil-ity, enabling system designers to strike a balance between minimizing air-time occupancyand allocating additional air time to enhance the precision of ranging (position) estimates.
RQ5. How to balance the inherent trade-offs in a real-time location system?Balancing the inherent trade-offs in a real-time location system poses a complex chal-lenge for system designers. The optimization of competing objectives, including accuracy,latency, energy efficiency, and scalability, requires a comprehensive and multifaceted ap-proach. The research question explores this fundamental dilemma and seeks to provideinsights into achieving an optimal balance in real-time wireless location systems. Whilethere is no single definitive answer to this question, as it largely depends on the specificneeds and requirements dictated by system designers, the thesis delves into various con-siderations and factors that inform the decision-making process.In answering this question there is a need for system designers to answer several keyquestions specific to their requirements. Factors such as the number of devices (anchorsand tags), device density, coverage area, propagation conditions, position update rate, re-quired accuracy, etc. play crucial roles in determining the trade-offs and making informeddecisions.In short, the question still remains open as there is no singular answer to how to bal-ance the trade-offs in a real-time location system. Only through an in-depth analysis of thespecific needs, positioning algorithms, ranging protocols, and filtering techniques, systemdesigners can navigate the complexities and achieve high-performance wireless locationsystems operating in real-time scenarios.
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6.3 Perspectives
The contributions and results achieved in this PhD thesis pave the way for further devel-opments in the field of AP-TWR and the A-EKF positioning method based on it. Thesefindings open up new possibilities and directions for future research and advancementsin indoor positioning systems.One potential avenue for exploration is the utilization of AP-TWR in calibrating theantenna delays of UWB devices. While passive ranging has already made strides in thisarea, the integration of AP-TWR for antenna delay calibration holds promise for achievingimproved results.Additionally, Publication IV focusedonproposing theA-EKF position estimationmethodwithout delving into the optimal parameters for its implementation. Investigating andidentifying the optimal parameters for the A-EKF method could be a small yet significantdirection for future research, leading to enhanced performance and accuracy.The NLoS error analysis of AP-TWR range estimation presented in Publication IV servesas a foundation for the A-EKF method. Exploring the specific error cases and develop-ing techniques to detect and mitigate these errors can contribute to the developmentof a more robust and accurate positioning system. By addressing NLoS errors, the A-EKFmethod can further improve its performance in challenging environments.Furthermore, integrating theA-EKF positioningmethodwith aGNSS is another promis-ing direction for future work. This integration would enable the creation of a seamlessindoor-outdoor positioning system, providing accurate and reliable location informationacross different environments. By combining the strengths of A-EKF and GNSS, users canbenefit from enhanced positioning capabilities for a wide range of applications.In conclusion, the research conducted in this thesis sets the stage for future advance-ments in AP-TWR and the A-EKF positioning method. Exploring antenna delay calibration,optimizing parameters, addressing NLoS errors, and integrating with GNSS are just a fewpotential directions for future research that can further enhance the accuracy, robustness,and versatility of indoor positioning systems.
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Abstract
Active-Passive Two-Way Ranging Protocol for Positioning Sys-
tems
Ultra-Wideband (UWB) indoor positioning has emerged as a significant area of interestfor both consumers and researchers, with its use becoming increasingly prevalent. Theintegration of UWB chips into various devices has opened up new possibilities for preciseand efficient indoor positioning, making it a popular choice for a wide range of applica-tions. The high temporal resolution offered by UWB devices has led to the developmentof several positioning methods, each with its unique advantages and challenges.7Among the various UWB-based positioning methods, Time of Flight (ToF) and TimeDifference of Arrival (TDoA) are particularly noteworthy. These time-based methods fullyexploit the high temporal resolution of UWB devices, enabling accurate and efficient po-sitioning. However, both ToF and TDoA have their strengths and weaknesses, which areaddressed by introducing the concept of passive ranging, which aims to mitigate the lim-itations of both of these methods.The PhD thesis presents a pioneering first contribution in the formof theActive-PassiveTwo-Way Ranging (AP-TWR) protocol. In the scope of this thesis, the AP-TWR is developedwith UWB inmind, although it should be noted that the AP-TWRprotocol is not exclusivelylimited to UWB technology. This protocol stands out from existing passive ranging meth-ods by offering a unique level of flexibility. It allows for the customization of anchor roleswithin a system, enabling the specification of the number of active-passive and passive-only anchors. The active-passive anchors determine the total count of packets in a rangingsequence, while the passive-only anchors provide additional range estimates without anyincrease in air time. What sets AP-TWR apart from the state-of-the-art passive rangingmethods is its ability to adapt to a variety of requirements. While conventional meth-ods strictly prioritize air time reduction, AP-TWR offers the flexibility to cater to differentneeds. It can focus on reducing air time and consequently, power consumption, minimiz-ing ranging errors, or making incremental improvements in both aspects. As an exampleof improving both at the same time, the decrease of air time occupancy by 12.5% andthe ranging Root-Mean-Square-Error (RMSE) by 7.4% was experimentally shown for oneof the multiple possible AP-TWR configurations (m = 5,k = 1).As a second contribution, the thesis further advances the field by refining the previ-ously proposed AP-TWR protocol and introducing an alternative method for calculatingAP-TWR range estimates. This development expands the application of the protocol, pair-ing both methods with three of the most commonly used active ranging protocols. Thispairing results in six unique variations of the AP-TWR protocol.These variations are then compared based on their theoretical accuracy through nu-merical simulations, providing a comprehensive performance analysis of the air time oc-cupancy and the ranging RMSE. The most well-rounded method, as determined by thesecomparisons, undergoes further experimental testing to validate the simulation results.The relative decrease of RMSE and air time by 18.3% and 25%, respectively was shownwith the AP-TWR (m = 4,k = 2).The third key contribution of this thesis lies in the rigorous testing and enhancementof the AP-TWR protocol’s robustness under both Line-of-Sight (LoS) and Non-Line-of-Sight(NLoS) propagation conditions. The study involved a comparative analysis of the pre-viously used Least Squares (LS) method for deriving range estimates from the AP-TWRmeasurement matrix against six other measurement matrix processing techniques. The

7The English language of this abstract has been co-edited with ChatGPT [143].
74



results of this comparison revealed that in LoS most of the methods performed similarly.While several of the testedmethods demonstrated improved robustness of AP-TWR rangeestimates in NLoS scenarios compared to the baseline Single-Sided Two-Way Ranging (SS-TWR), achieving upwards of 19% reduction of ranging RMSE.The fourth and final contribution of this thesis pivots from the previous focus on rangeestimates to address position accuracy. This is achieved through the introduction of anovel Adaptive Extended Kalman Filter (A-EKF) positioning method, which is based on theAP-TWR protocol.The formulation of the A-EKF positioningmethod is rooted in a comprehensive analysisof various potential Non-Line-of-Sight (NLoS) scenarios. The implementation of this inno-vative A-EKF positioning method has demonstrated a significant reduction in positioningerrors caused by NLoS effects, particularly in challenging industrial environments. A num-ber of 3D positioning experiments showed an average reduction of positioning RMSE by 3times, achieving 0.224 m, when compared with the next-best method, while the absolutemaximum error was reduced by 9 times (from 4.5 m to a maximum of 0.5 m).This thesis makes strides in the field of UWB positioning systems through the de-velopment of the Active-Passive Two-Way Ranging (AP-TWR) protocol and the AdaptiveExtended Kalman Filter (A-EKF) positioning method. These advancements contribute tomore accurate indoor positioning, opening up new avenues for further research and de-velopment in this field. The potential for future enhancements to thesemethods promisesto further refine the accuracy and efficiency of UWB positioning systems.
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Kokkuvõte
Aktiiv-passiivne kaugustemõõtmise protokoll positsioneerimis-
süsteemidele
Ülilairiba tehnoloogial (Ultra-Wideband, UWB) põhinev siseruumides positsioneerimineon viimastel aastatel kujunenudmuuhulgas üheks perspektiivikamaks uurimussuunaks niiteaduses kui ka äratanud huvi kommertstarbijate seas. UWB kiipide laiem levik on avanudtee uudsete täppis-sisepositsioneerimise süsteemide ning nendel põhinevate asukohapõ-histe teenuste arenguni. UWB tehnoloogia kasuks räägib kõrge ajaliste pulsside eristusvõi-me, mille tõttu on võimalik suure täpsusega määrata objektide asukohti.

UWB tehnoloogiat on mitmeti võimalik rakendada positsioneerimise protsessis, pike-malt peatumata teistel meetoditel, on eelmainitud ajaliste pulsside eraldusvõime tõttukõige mõistlikum rakendada leviaja põhist (Time of Flight, ToF) või leviaegade erinevusepõhist (Time Difference of Arrival, TDoA) positsioneerimist. Mõlema meetodi puhul ek-sisteerivad ka omad positiivsed ja negatiivsed küljed, millest viimaste leevendamiseks onkasvutusele võetud passiivsed kauguste mõõtmise protokollid.
Esmalt kirjeldab käesolev doktoritöö uudse Aktiiv-Passiiv Kauguse Mõõtmise Proto-kolli (Active-Passive Two-Way Ranging, AP-TWR) välja arendamist. Kuigi antud doktoritööraames on AP-TWR välja arendatud silmas pidades UWB tehnoloogiat, on olulinemainida,et antud protokolli kasutus ei ole siiski piiratud ainult UWB’ga. Välja arendatud protokollpakub paindlikkust mõõteseadmete rollide ning nende arvu määramisel, mistõttu defi-neeritakse kahte tüüpi ankurseadmed: aktiiv-passiiv seadmed ning passiivseadmed. Esi-mesed neist osalevad aktiivseltmõõtmisprotsessis ning kuulavad teiste seadmete suhtlustkui nad ise pole saaterežiimis, teised neist aga pakuvad positsioneerimiseks lisainformat-siooni ilma, et aktiivselt osaleksid paketivahetuses. Kui muud teaduskirjanduses levinudprotokollid on suunitletud kauguse mõõtmise protokollis eetriaja (seekaudu ka tarbitudenergia) kokkuhoidmisele, siis AP-TWR puhul on tegemist protokolliga, mida saab mugan-dada vastavalt süsteemi täpsuse või eetriaja kokkuhoidmise vajadustele. Esimeses tea-dusartiklis toodud üks mitmest võimalikust AP-TWR protokolli konfiguratsioonidest (kusaktiiv-passiivankruid on 5 ning passiivankruid 1), näidati katseliselt, et AP-TWR’i kasutusvähendas kauguse mõõtmise ruutkeskmist viga 7.4%, samal ajal vähendades eetris saateloldud aega 12.5%.
Teise panusena uuriti antud teemat edasi, pakkudes välja alternatiivse aktiiv-passivkauguse mõõtmise arvutusmeetodi. Kõrvutades kahte välja pakutud aktiiv-passiv proto-kolli koos enamlevinud aktiivsete leviaja mõõtmise meetoditega, pakuti teadustöös väljakuus erinevat varianti aktiiv-passiiv kaugusemõõtmise protokollist, mis kõrvutati üksteise-ga arvutikatsetes saavutatava ruutkeskmise mõõtmisvea ning eetrikasutuse seisukohalt.Saavutatud ruutkeskmise mõõtevea tulemuste ning eetrikasutuse seisukohalt valiti parimmeetod ning veenduti selle toimimises ka katseliselt: 4 aktiiv-passivankru ning 2 passii-vankruga positsioneerimissüsteemiga suudeti saavutada ruutkeskmise vea vähenemine18.3% ning eetriaja vähenemine 25%.
Kolmandaks uurimuse suuremaks suunaks oli AP-TWR kaugusemõõtmiste maatriksierinevate töötlemismeetodite jõudluse uurimine, eesmärgiga muuta antud meetod veel-gi vastupidavamaks erinevatest allikatest tulenevatele mõõtemüradele. Teadusartikli raa-mes uuriti lisaks eelnevalt kasutusel olevale vähimruutudemeetodile kuute erinevat tööt-lemisemeetodit. Meetodite kõrvutamiseks kauguse mõõtmise ruutkeskmise vea aluselsooritati UWB seadmetega katsed kolmes levikeskkonnas: takitsuseta otselevi, levitingi-mused kus kahe seadme vahel oli takistuseks metallplaat ning tingimused kus takistavaksteguriks oli inimkeha. Võrreldes ekvivalentse aktiiv-kaugusmõõtmise protokolliga Single-
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Sided Two-Way Ranging (SS-TWR), leiti, et taktistusteta levi puhul suudavad kõik meeto-did pakkuda sarnast täpsust. Erinevused tulid aga sisse takistatud leviteekondadel, millepuhul suudeti ruutkesmist viga vähendada kuni 19%.Neljanda ning viimase panuse andis teadusartikkel, mis esmalt koondas enesesse eel-nevate panuste teadmised, sellel põhjal formuleeris põhjaliku ülevaate erinevate veail-mingute kooslustest mida tekitavad leviteekonna takistused ning omakorda selle põhjalpakkus välja uudse Adaptiivse Laiendatud Kalmani Filtri (Adaptive Extended Kalman Filter,
A-EKF) põhise positsioneerimise meetodi. A-EKF meetodi valideerimiseks sooritati katsedtööstuslikus keskkonnas milles asus mitmeid leviteekonda segavaid tegureid nagu suuredmetallist toruvormid, lakke paigaldatud liikuv kraana, tehase inventar jne. Kolmemõõt-melise positsioneerimise katsete tulemused näitasid, et välja pakutud A-EKF positsionee-rimismeetod saavutas positsioneerimise ruutkeskmise vea 0.224 m, mis oli üle 3 korraparem kui sellest järgmine meetod, seejuures vähendades osades asukohapunktides ilm-nenud maksimaalset 4.5 m suurust viga lausa 9 korda, saavutades maksimaalseks kõrva-lekaldeks rasketes levitingimustes maksimaalselt umbes 0.5 m.Käesolevas doktoritöös pakuti välja ning arendati edasi uudne kaugustemõõtmise pro-tokoll ning integreeriti see uudsesse A-EKF positsioneerimismeetodisse, mis võimaldassaavutada täpsemaid kauguste mõõtmise ning sisepositsioneerimise tulemusi, sealjuu-res võimaldades ka kokku hoida eetriaja ning energiatarbe arvelt. Antud töö avab uuedvõimalused tulevasteks teadustöödeks, täiendamaks eelmainitud AP-TWR protokolli ningsamaaegselt panustades, loomaks täpsemaid ning efektiivsemaid UWB sisepositsioneeri-mise lahendusi.
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Tallinn, Estonia

{taavi.laadung, muhammad.alam, yannick.lemoullec}@taltech.ee, sander.ulp@eliko.ee

Abstract—This paper proposes a generalized approach com-
bining two-way ranging (TWR) and passive ranging methods,
called active-passive two-way ranging (AP-TWR). The proposed
approach offers a generalized solution for a wide range of
anchor configurations in positioning systems. The possibility to
define active-passive and passive-only anchor roles allows scaling
the system to improve the root-mean-square-error (RMSE) of
the ranging estimations and the air time occupancy. Practical
experiments show that with the proposed method consisting of 5
active-passive anchors and a single passive anchor, the RMSE
is improved by 7.4% and the air time occupancy by 12.5%
as compared to the single-sided TWR method with a 6 anchor
configuration. Moreover, simulation results show that a maximum
theoretical RMSE improvement of 31.7% can be achieved with
the proposed setup.

Index Terms—UWB, two-way ranging, passive ranging

I. INTRODUCTION

The market for a wide range of location-based services
(asset tracking, object locating, navigation, etc.) has been
growing over the last years. The demand for ubiquitous access
to these services has pushed for the development of indoor
positioning systems, as opposed to classical Global Navigation
Satellite Systems (GNSS) which typically operates outdoors.
Indoor propagation conditions have raised new challenges
for positioning systems: requirement for high accuracy, low
interference towards other systems, robustness to multi-path
effects, etc [1].

Ultra-Wideband (UWB) technology-based indoor position-
ing systems are becoming more popular over the last years.
This is primarily due to their achievable accuracy of posi-
tioning as well as their robustness to multipath effects and
presence of obstructions [2]. The most widely used range-
based methods for UWB positioning are ToA (Time of Arrival)
and TDoA (Time Difference of Arrival). The former is used
to calculate distance by measuring the round-trip time of a
ranging packet, and the latter employs synchronized anchors
to calculate the distance differences of a tag to several anchors.
Since ToA does not need clock synchronization between
anchors, the complexity of these systems is generally lower
[3].

Since employing ToA requires more air-time occupancy due
to a larger amount of packets transmitted per ranging session

This project has received funding from the European Union’s Horizon
2020 Research and Innovation programme under grant agreement No 951867.
This research has also been supported in part by the European Regional
Development Fund, and in part by the Study IT in Estonia Grant.

and also depending on the ranging rate, the number of tags
operating in a positioning system becomes limited [4]. To push
the limitation, state of the art passive ranging schemes should
be implemented, where the system consists of a single active
anchor which is transmitting, and a number of passive anchors
which are in dedicated receive mode. These passive methods
allow decreasing the number of transmitted packets, effectively
decreasing the air time and allowing more tags to operate in
a system.

This paper proposes a generalized method which combines
active and passive ranging to provide a flexible positioning
system configuration. Depending on the requirements, the final
configuration could be oriented towards better ranging pre-
cision, shorter protocol, or a balanced configuration offering
slight improvements to both. The main principle is providing
the active anchors with the functionality of passive ranging,
making them so-called active-passive anchors. This ranging
scheme allows each active-passive anchor to provide several
range estimates during a single ranging sequence, compared
to a single range estimate provided by conventional active
ranging. Furthermore, the addition of passive-only anchors
provides even more range estimates without increasing the
number of transmitted packets, theoretically removing the
limit to the maximum number of anchors participating in
ranging. Depending on the number of active-passive anchors,
the passive-only anchors also provide multiple measurements
per ranging sequence, making them more precise.

The structure of this paper is as follows. Section II provides
the state-of-the-art works on passive ranging; Section III de-
scribes the main idea of passive two-way ranging (TWR) and
proposes the active-passive TWR (AP-TWR) method; Sections
IV and V provide the numerical and experimental results of
the proposed method, respectively. Finally, the conclusions are
drawn in Section VI.

II. RELATED WORKS

This section gives an overview of the state of the art
related to the usage of passive ranging schemes in UWB based
systems.

Fujiwara, Mizugaki, Nakagawa, Maeda and Miyazaki [5]
developed a seminal UWB ToA/TDoA hybrid positioning
system, which reduces the needed number of anchors and
packet exchanges in a positioning sequence. Sahinoglu and
Gezici [6] give a theoretical analysis of the ToA/TDoA hybrid
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method provided in the previous paper. Although the usage
of a hybrid system gives more accurate position estimations,
the proposed system consisted of only 2 anchors. This would
mean that only a 2-dimensional position estimation could be
derived by setting geometric constraints for the tag location.

Gholami, Gezici, Rydström and Ström [7] develop a max-
imum likelihood estimator (MLE) in conjunction with the
hybrid ToA/TDoA for position estimation. Due to the si-
multaneous usage of ToF and TDoA, the proposed system
needs complicated post-processing, combining range and time
difference based positioning methods. In [8], [9] the previous
idea is expanded, so not only the anchors, but also the tags
provide the TDoA values by acting as passive listeners. Al-
though, this method provides improved performance in terms
of position estimation root-mean-square-error (RMSE), the
implementation raises some practical limitations. Firstly, in
order for the tags to provide the TDoA values, they should be
in receive mode at all times, which drains the batteries quicker
than being in sleep mode in between data transmissions.
Furthermore, the tags would need a priori knowledge of the
location of anchors, or in the case of a centralized positioning
system, the TDoA values need to be communicated to a
positioning server, requiring more time spent transmitting.

A mixture of symmetric double-sided two-way ranging
(SDS-TWR) and passive ranging, called Passive Extended
(PE) ranging, is presented by Horvath, Ill and Milankovich
[10]. The PE ranging increases the accuracy of ranging at
the cost of adding a single packet to a positioning sequence,
when compared to standard passive ranging. The same authors
further improved on PE ranging by introducing an alternative
calculation to the method in [11], providing more robustness
against time measurement errors in nodes. In addition to the
added packet, the practical implementation of said method is
again bounded by the battery life of tags, as the ranging is
initiated by the anchor, meaning the tag has to be in constant
receive mode, rather than sleeping in between rangings.

The three Multiple Simultaneous Ranging (MSR) methods
presented by Shah and Demeechai [12] employ a single active
and multiple passive anchors to estimate the distances to a
tag during a single positioning sequence. The main idea is to
provide the estimated anchor-to-tag distances with the lowest
possible airtime occupancy. While reducing the number of
needed packets in a positioning sequence, MSR method 1
also tackles the previously mentioned practical limitations by
setting the tag as the ranging session initiator. Results show
that the airtime occupancy is reduced at the cost of range
estimation RMSE. Although, the protocol length is reduced
by using this method, the authors only focus on the case of a
single active anchor and k number of passive anchors,

This paper proposes a ranging scheme which combines ac-
tive and passive ranging to provide a system configuration with
m active-passive anchors and k passive anchors. Depending on
the requirements of the system, a network could be constructed
to optimize the range estimate RMSE, the length of protocol
or providing a balancing point in between.

III. RANGING METHODS

This section describes the main idea of passive ranging and
the proposed AP-TWR method.

A. Passive Two-Way Ranging

Passive ranging is based on the assumption of having
anchors at a fixed, known location, so the distances between
each anchor can be calculated beforehand. In the scope of this
paper, a tag-initiated single-sided two-way-ranging (SS-TWR)
method is used for the active transmission, the clock offsets
are not considered as they can be compensated for SS-TWR
[13]. This method allows the tag to remain in sleep mode to
conserve its battery charge when not ranging.

Figure 1 describes the TWR method using passive anchors
that do not participate in active packet exchange, the notation
is as follows:
• t�/ is �-th time interval measured by node /
• t•↔◦ is time of flight (ToF) from node • to node ◦

Tag T initiates the ranging sequence with a ranging request.
Upon receiving it, anchor A responds with a ranging reply
after processing time tIA. The tag in turn sends out a ranging
report after its own processing time tIIT , while the passive
listening anchor L receives all the packets and records the
corresponding timestamps.

Note that the value of tA↔L can be calculated with (1) via
speed of light c since the physical distance dA↔L between A
and L is known.

t? =
d?
c
⇔ d? = ct? (1)

Fig. 1. Passive ranging packet exchange

The ToF value from T to L, tT↔L can be calculated in
two ways: by using the 1st and 2nd, or 2nd and 3rd packet
exchange, respectively, as can be seen from Fig. 1:

tT↔L = tT↔A + tIA + tA↔L − tIL (2a)

tT↔L = tIIL + tA↔L − tT↔A − tIIT (2b)

Then the sum of (2a) and (2b) becomes

2tT↔L = 2tA↔L + tIA − tIL + tIIL − tIIT (3)
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Since tIT + tIIT = tIL + tIIL , rearranging it so that tIIT = tIL +
tIIL − tIT and substituting it into (3), then by simplifying it
becomes

tT↔L =
tIA + tIT

2
+ tA↔L − tIL (4)

Equation (4) serves the basis for passive ToF measurement,
employing dedicated active and passive anchors. It is also
a simplified form of Multiple Simultaneous Ranging (MSR)
Equation (16) published in [12].

B. Proposed Method

The proposed method takes the concept described in Section
III-A and generalizes it, so a total of m active anchors and n
passive anchors take part in the ranging process, noting that
the active anchors simultaneously take part in passive ranging
as well. In order to develop the generalized equation for the
proposed method, some changes to the notation of equations
presented in Section III-A had to be made:
• tTi - ith time interval measured by tag T
• tAi - processing time of active anchor i
• tLi - passive anchor time interval of ith active anchor
• tAi↔Aj - ToF from anchor i to anchor j
• ti,j - ToF from tag to passive anchor j while listening on

anchor i’s transmission
This also is illustrated in Figure 2. Note that the report packet
which contains the information from ranging is omitted from
the figure.

Similar to previous Section, the tag T starts the ranging
sequence by transmitting a ranging request packet to active
anchor Ai, which responds after its reply processing time tAi.
The tag records the round-trip time corresponding to anchor i
as tTi, while the passive anchor Aj measures the time intervals
corresponding to anchor i as tLi. tAi↔Aj denotes the ToF
value from anchor i to anchor j. Finally, the estimated ToF
from tag T to listener anchor Aj while listening to anchor Ai’s
transmissions is denoted as ti,j .

The first part of (5) corresponds to active ranging employing
the SS-TWR method [13]. The second part illustrates passive
ranging, which is the product of generalizing (4). The resulting
equation covers active-passive ranging for a total of n anchors
from which m are active-passive anchors, making the number
of passive-only anchors as k = n−m.

ti,j =





tTi − tAi

2
, for i = j

tTi + tAi

2
+ tAi↔Aj − tLi, for i 6= j

(5)

where i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n} and n > m. The
constraint of n > m is introduced to eliminate sub-optimal
cases. Assuming the anchors are not power constrained, there
is no added cost for anchors to listen to other transmissions.
So it is sensible to receive every active ranging packet.

Equation (5) allows to construct a m by n matrix each
ranging sequence, where the ToF estimates from active ranging
lay on the main diagonal, and passive rangings off the main
diagonal:

Fig. 2. Proposed generalized active-passive ranging. T initiates sequence, A1

and Ai respond, Aj listens.

M =



t1,1 . . . t1,m

...
. . .

tn,1 tn,m


 (6)

Equation (6) enables row-wise averaging to reduce the effect
of range estimation noise. The resulting values correspond
to averaged anchor-to-tag ToF values, which can be used as
inputs for position estimation.

IV. NUMERICAL SIMULATION RESULTS

This section provides an overview of the numerical simu-
lation results for the proposed active-passive ranging scheme.
The performance of the range estimation, as well as the impact
on air-time occupancy are considered.

A. Ranging Performance

The ranging performance was assessed by conducting
Monte Carlo simulations over 1000 iterations, each consisting
of 1000 separate ranging sequences. During each iteration, the
anchors and tag were placed at random positions in a simulated
600 by 400 by 250 cm room. Each ranging sequence, the
measurement matrix was constructed with (6) and the active
and passive range estimations were averaged row-wise to
reduce the effect of measurement noise. Finally, the RMSE
values were calculated.

In order to evaluate the performance of AP-TWR, the fol-
lowing assumptions were made to the numerical simulations:
propagation condition is line-of-sight (LoS), range estimation
noise follows a Gaussian distribution, clock errors are omitted,
calibration errors are omitted, distances between anchors are
known and exact, ToF values in (6) are converted to distances
via (1), baseline active and passive anchor performance values
taken from [12].
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TABLE I
ACTIVE-PASSIVE RANGING ESTIMATED RANGE RMSE (CM), NUMERICAL SIMULATION RESULTS

HHHHm
k 0 1 2 3 4 5 6 7 8 9

1 3.159 4.236 4.539 4.682 4.768 4.822 4.860 4.891 4.913 4.931
2 2.997 3.211 3.313 3.370 3.410 3.437 3.459 3.474 3.487 3.496
3 2.620 2.704 2.752 2.783 2.807 2.825 2.836 2.846 2.856 2.861
4 2.342 2.384 2.411 2.431 2.446 2.456 2.466 2.473 2.479 2.483
5 2.132 2.157 2.174 2.187 2.196 2.206 2.212 2.218 2.223 2.226
6 1.968 1.984 1.996 2.006 2.013 2.019 2.023 2.028 2.032 2.035
7 1.838 1.848 1.857 1.864 1.869 1.874 1.878 1.881 1.884 1.886
8 1.728 1.737 1.744 1.748 1.753 1.757 1.759 1.762 1.764 1.766
9 1.638 1.643 1.649 1.652 1.656 1.659 1.662 1.664 1.666 1.667

10 1.559 1.564 1.568 1.571 1.574 1.576 1.578 1.581 1.582 1.583

TABLE II
ESTIMATED RANGE RMSE (CM) EXPERIMENTAL RESULTS FOR THE PROPOSED ACTIVE-PASSIVE RANGING.

HHHHm
k 0 1 2 3 4 5

1 3.286 4.608 5.334 5.337 5.466 5.533
2 3.259 3.764 3.838 3.958 4.076
3 3.251 3.384 3.544 3.670
4 2.946 3.144 3.268
5 2.901 3.043
6 2.892

Table I presents the results of numerical simulations. The
results show the final RMSE values (cm) depending on the
number of active-passive anchors m and the number of addi-
tional passive-only anchors k. The case of m = 1 and k = 0
represents the performance of an active anchor utilizing only
SS-TWR.

Each additional active-passive anchor decreases the result-
ing RMSE. This can be seen in case k = 0 where increasing
the number of active-passive anchors m in the range of 1...10
the RMSE decreases from 3.159 cm to 1.559 cm as well as
each case up to the maximum of k = 10 where the RMSE
values decrease from 4.931 cm to 1.583 cm, respectively. Fur-
thermore, additional passive-only anchors increase the RMSE,
which can be seen for each case where m = const, increasing
the number of passive-only anchors k from 1 to 10. Although
passive anchors have less precision than active anchors with
TWR, employing 3 active-passive anchors provides a situation
where all added passive anchors perform better than an active
anchor with TWR.

B. Air Time Occupancy
The air time occupancy, or protocol length, is measured

as the total number of packets transmitted per single ranging
sequence in the scope of this paper.

The AP-TWR method proposed in this paper entails the tag
initiating a ranging sequence with a ranging request packet
and concluding it with a ranging report. From the standpoint
of air time efficiency, it is not reasonable to transmit a separate
ranging report packet to each of the active anchors, so the
range estimation results are aggregated and broadcast as a
single report packet. Thereby, SS-TWR systems consisting of
N active anchors transmit a total of N + 2 packets in each

ranging sequence: a ranging request, a ranging reply and N
packets corresponding to each actively transmitting anchor.

The minimum number of range estimates needed for a 3-
dimensional position estimation is 4. Therefore, a standard
TWR application (with 4 active-only anchors) requires the
transmission of at least 6 packets per ranging sequence.
However, compared to AP-TWR case m = 3 and k = 1, the
number of packets transmitted is 5, since there are 3 active-
passive anchors. In this example, compared to standard TWR,
the protocol length and measurement RMSE both decrease by
16.7% (number of transmitted packets decrease from 6 to 5)
and 14.4%, respectively.

V. EXPERIMENTAL RESULTS

This section presents the outcome and analysis of exper-
imental tests, which were conducted to validate the simula-
tion results. The experiments were conducted with Decawave
DW1000 UWB IC [14] based devices: 6 anchors and 1 tag,
ensuring that LoS propagation conditions were met between
all devices.

Table II presents the resulting RMSE values dependent on
the number of active-passive anchors m and the number of
additional passive anchors k. With the available 6 anchors it
is possible to compose all combinations from 6 active-passive
anchors to 1 active-passive + 5 passive anchors. Although the
experimental system shows slightly inferior performance than
in the simulations, it can be seen that starting from case m =
4, the RMSE starts to overtake the standard SS-TWR case
(m = 1, k = 0).

The simulation results showed that using 3 active-passive
anchors, along with data averaging, the precision of ranging is
improved for each additional passive anchor, when compared
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to regular TWR. The preliminary experimental results provide
lower performance compared to simulations, showing that 5
active-passive anchors and 1 passive-only anchor provide a
7.4% decrease in RMSE and 12.5% decrease of air time
compared to SS-TWR with 6 anchors (number of transmitted
packets decreased from 6 to 5). Despite this, it is fair to say
that experimental results support the results of the simulations.

VI. CONCLUSION AND FUTURE WORKS

This article proposed a method for combining active and
passive ranging in an UWB network, providing a generalized
equation for active-passive and passive-only anchors. The pro-
posed AP-TWR concept allows each active anchor to simul-
taneously act as a passively ranging node, in addition to extra
passive-only anchors. Furthermore, all anchors gain additional
measurements based on the number of active-passive anchors.
This information can be averaged to increase the precision
of ranging, which is demonstrated in the simulation and
experimental results. Moreover, the proposed method allows
to reduce the air time by making use of passive-only anchors,
with no impact on the number of range estimations per ranging
sequence.

The numerical results show that for an example case of 4
anchors, compared to SS-TWR, the AP-TWR method (with
3 active-passive anchors and 1 passive-only anchor) provides
a decrease of RMSE by 14.4% and the air time by 16.7%
by decreasing the number of transmitted packets from 4
to 3. The RMSE or air time efficiency could be further
improved by respectively increasing or decreasing the number
of active-passive anchors in a system. The addition of passive-
only anchors provides more range estimates while the air
time efficiency is not hindered. The results also show that
a configuration of 3 active-passive anchors along with any
number of passive anchors provides more precise ranging
estimates than an active SS-TWR method.

The simulation results were validated by experimental tests.
The tests indicated that the active-passive ranging method
performed as it should, with only a slight decrease in per-
formance compared to simulations. Results showed that, for
example utilizing 5 active-passive anchors and 1 passive-only
anchor the RMSE and air time decreased 7.4% and 12.5%
respectively, when compared to 6 anchor SS-TWR.

The experimental results show that for future works there is
still room for improvement in the practical system. Alongside

striving for better performance, the table presented in Section
V could be expanded to match the 10-by-10 table of numerical
results. The performance of active-passive ranging could be
further improved by employing weighted averaging on range
estimations. The proposed method should also be implemented
into a positioning system to assess the impact on position
estimates.
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Abstract—This paper proposes two general active-passive
two-way ranging (TWR) methods: AP1-TWR and AP2-TWR.
The proposed methods rely on 2 types of anchors: active-
passive and passive-only. The first type actively takes part
in packet exchange and listens to transmissions of other
active-passive anchors, and the second type only listens.
Pairing these concepts with active single-sided (SS), symmet-
rical double-sided (SDS), and alternative double-sided (AltDS)
TWR methods provides a total of six different active-passive
methods. As a result of assigning different numbers of the two anchor types, the range estimation root-mean-square-
error (RMSE), or the air time efficiency, or both, can be improved. Simulation results show that AP1-TWR surpasses
the performance of the best active two-way ranging method by employing 10 active-passive anchors, while AP2-TWR
surpasses the same mark with only 6 active-passive anchors. Further results validate and show that, compared to
AP1-TWR, the AP2-TWR gives a relative improvement of range estimation RMSE about 10 to 20% in every configuration,
making AP2-TWR the overall better performing method. Without a loss in the number of available range estimates, both
methods could also increase the air time efficiency by keeping the number of active-passive anchors to a minimum while
increasing the amount of passive anchors.

Index Terms— Ultra-wideband technology, UWB ranging, ranging protocol, two-way ranging, active-passive ranging,
passive ranging.

I. INTRODUCTION

COMPARING previous [1] and more recent [2] sur-
vey articles covering various indoor positioning systems

shows that in recent years the research interest in Ultra-
Wideband (UWB) based indoor positioning has grown. UWB
is an attractive technology having low power consumption,
high immunity to interference from other devices, ability to
penetrate various obstacles, short pulse duration for increasing
robustness to multipath, and providing localization accuracy
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up to decimeter level in indoor scenarios [3]. The level of
interest in UWB positioning is also demonstrated by its various
applications for industrial [4], emergency [5], soldiers and first
responders [6], unmanned aerial vehicle (UAV) [7], sports [8],
and sensor fusion [9] positioning and navigation, to name a
few.

The possible methods for positioning in an UWB system
include fingerprinting based on the channel impulse response
or power delay profile, distance estimation via path loss
on received signal strength indicator (RSSI) or by angle of
arrival (AOA) estimation. Although in their own right these
methods are sufficient for providing a position estimate, they
have some downsides. As indicated in [10], fingerprinting
is a time consuming method requiring building up a signal
parameter database, which can change over time with the
positioning area; the RSSI method is very susceptible to
interference caused by multipath propagation; finally, AOA
estimation requires nodes equipped with antenna arrays, which
subsequently increases the size and cost of the devices.

The remaining and more attractive positioning methods
for UWB are called 1) time of flight (TOF), which is also
called time of arrival (TOA), and 2) time difference of arrival
(TDOA). TOF makes use of the relationship between the
distance travelled and the propagation time when knowing
the propagation speed, while TDOA employs the differences
of arrival times of an emitted signal [11]. Although TDOA
enjoys a minimal impact to the traffic in the network, it in turn

1558-1748 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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needs strict synchronization between anchors. Estimating the
TOF via two-way ranging (TWR) methods allows removing
stringent synchronization requirements between anchors while
posing a drawback by increasing the air time, compared to
TDOA [12]. This in turn lowers the achievable tag den-
sity and raises the energy consumption in TOA/TOF meth-
ods [13]. Although, theoretical analysis and simulations show
that TOA/TOF and TDOA are identical in their positioning
performance, some practical cases show the superiority of
TOA/TOF methods [14]. Pascacio et al. found that among
researchers of indoor positioning, the topic of TOA/TOF is
quite more popular than TDOA, although the reasons of the
popularity were not investigated [15]. In order to take advan-
tage of the relaxed synchronization requirements of TWR
methods, while reducing the air time and power consumption,
the notion of passive ranging with TWR is introduced. These
methods incorporating passive ranging essentially provide a
middle ground between TOF and TDOA position estimation
by utilizing the positive sides of TDOA and reducing the
negative effects of TWR methods.

Fujiwara et al. proposed a TOF/TDOA hybrid positioning
system based on UWB transceivers developed in [16]. The
system utilized a combination of single-sided two-way ranging
(SS-TWR) TOF measurement by an active anchor, and a
TDOA measurement employing a passive anchor, calculat-
ing the second TOF value using the TDOA measurement.
By setting a geometric constraint to the possible location of
a tag, the positioning system was able to provide a position
estimate with only 2 anchors, with which it enabled to also
reduce the number of communication times compared to TOF
systems. Sahinoglu and Gezici expanded on the system in [17],
and introduced a combination of multiple active and passive
nodes with a maximum likelihood estimator (MLE), provid-
ing improved accuracy at reduced number of transmissions
compared to conventional TOF systems.

Horváth et al. proposed Passive Extended Asymmetric
Double-Sided Two-Way Ranging (PE-ranging) in which they
combine passive ranging proposed by [18] with symmet-
rical double-sided two-way ranging (SDS-TWR) [19]. This
combination allowed to increase the ranging accuracy com-
pared to previous SS-TWR-based passive ranging at the
expense of adding a packet to the active ranging sequence.
In [20] the same authors replaced SDS-TWR with Alterna-
tive Double-Sided Two-Way Ranging (AltDS-TWR), to elim-
inate the response delay time constraint that exists in
SDS-TWR.

Shah et al. present in [21] three methods of passive ranging
coupled with active ranging. The three methods achieve similar
ranging performance to previous methods with the same
or lower air time occupancy depending on the initiator of
the ranging. This and the previous methods mainly aimed
to reduce the air time of ranging methods by introducing
passive ranging, only occasionally improving ranging accuracy
by presenting new active ranging schemes. Additionally, the
concept of a single active anchor proposes a single failure
point where the disruption in the communication between the
active anchor and tag also renders the passive range estimates
incorrect, or even worse – losing the range estimates of that
sequence altogether.

The authors of [22] expanded and generalized on
Shah et al.’s concept to include multiple active-passive
anchors alongside the passive anchors, calling it Active-
Passive Two-Way Ranging (AP-TWR). Introducing hybrid role
active-passive anchors, which also listen in on other transmis-
sions when they themselves are not transmitting. Simulations
and experimental results showed that the proposed method
allowed to flexibly increase ranging accuracy even higher than
the active ranging method could, while still offer reduced air
time occupancy. Additionally, the problem of the single failure
point was remedied by introducing multiple active-passive
anchors ranging with the tag. However the paper only focused
on using SS-TWR as the active ranging method, without
considering other methods to improve ranging accuracy.

This paper extends on the active-passive two-way ranging
(AP-TWR) method proposed by us in [22] to include previ-
ously overlooked active methods SDS-TWR and AltDS-TWR
to further improve the method’s ranging performance. In addi-
tion to this AP-TWR method, we also propose a new cal-
culation method for passive range estimates in conjunction
with active methods SS-TWR, SDS-TWR and AltDS-TWR,
providing a second active-passive TWR method. Both of the
investigated AP-TWR methods allow to choose a combination
of active-passive and passive-only anchors to improve ranging
accuracy and air-time efficiency compared to an equivalent
active ranging method.

The remainder of the article is organized as follows.
Section II provides the theoretical part of the active rang-
ing methods. The formulation of the proposed active-passive
methods is given in Section III; in Section IV we explain
the concept of the measurement matrix which assembles
the results of active-passive ranging and is the basis of the
ranging accuracy improvement. Sections V and VI present the
basis and the results of numerical and experimental results,
respectively. Finally, a conclusion is drawn in Section VII.

II. ACTIVE RANGING METHODS

This section presents the time-based active ranging meth-
ods which are used in practical UWB based positioning
systems. These methods calculate an estimate of the time
of flight (TOF) between two nodes by utilizing two-way
packet exchanges. The resulting time of flight estimates can
be converted to physical distance estimates by using

ŝ = c · t̂, (1)

where ŝ is the distance estimate, t̂ the TOF estimate and c is
the speed of light.

A single range estimate is acquired by utilizing a specific
ranging method between an anchor and a tag. This implies that
the number of range estimates per tag is directly dependent on
the number of anchors with which the tag communicates. This
is critical for positioning, as at least three range estimates are
needed for a position estimate [23]. Moreover, having a larger
number of range estimates also allows to lower the location
estimation noise [24].

Sang et al. analyzed the errors of single-sided (SS), symmet-
rical double-sided (SDS), asymmetrical double-sided (ADS)
and alternative double-sided (AltDS) two-way ranging (TWR)
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Fig. 1. Single-sided two-way ranging packet exchange.

methods in [25]. All stated active methods, excluding ADS-
TWR, are considered in this paper. ADS-TWR was omitted
since it requires the last response delay time to be zero, which
is unattainable in practical systems [21].

A. Single-Sided Two-Way Ranging
The IEEE 802.15.4a is an amendment to the IEEE 802.15.4

standard which introduced additional physical layers, which
enabled precise wireless ranging [26]. In the standard, one
of the specified ranging methods was Single-Sided Two-Way
Ranging (SS-TWR), on which Sahinoglu and Gezici gave an
overview and analysis in [27].

The SS-TWR method provides a TOF estimate by exchang-
ing two packets between nodes. The method is illustrated in
Fig. 1, where node A begins the sequence by simultaneously
activating a timer and transmitting a packet to node B, which
propagates through the air for its time of flight of tA↔B . Upon
arrival, node B responds after its response delay time tB,A,
which can be interpreted as the time interval measured by
B, communicating with A. After propagating again for tA↔B ,
node A receives the response and stops its timer, providing the
round-trip time tA,B , interpreted as the time interval measured
by A in communication with B.

Generally the response delay time of nodes (in this specific
case tB,A) is several orders of magnitude larger than the TOF
tA↔B [28]. The dotted lines of the time axis in Fig. 1 are used
to denote the differences of scale.

The TOF between nodes A and B, tA↔B , can then be
calculated by

tA↔B = tA,B − tB,A

2
. (2)

B. Symmetrical Double-Sided Two-Way Ranging
IEEE 802.15.4a standard also specified, in addition to

SS-TWR, a second ranging method called Symmetrical
Double-Sided Two-Way Ranging (SDS-TWR). Compared to
SS-TWR, SDS-TWR adds an additional packet to the ranging
sequence. The introduction of the third packet to the ranging
sequence allows to improve ranging accuracy [27], [28].

The packet exchange procedure for SDS-TWR is demon-
strated in Fig. 2. As can be seen, the exchange of the first two
packets is the same as in SS-TWR, discussed in Section II-A.
After successfully receiving node B’s response, node A trans-
mits the third packet after its processing delay tA,B ′ (also
interpreted as the second time interval measured by A when
communicating with B). After propagating for tA↔B , the final

Fig. 2. Symmetrical- and alternative double-sided two-way ranging
packet exchange.

packet arrives at B, where the round-trip time of the last 2
packets, tB,A′ , is recorded.

Similarly to Fig. 1, the larger time scale of response delay
times tB,A and tA,B ′ in Fig. 2 are illustrated by the dotted
lines.

The four time intervals measured by nodes A and B can be
used to estimate the TOF between them:

tA↔B = tA,B − tA,B ′ + tB,A′ − tB,A

4
. (3)

The error analysis of SDS-TWR presented in [25], [28]
found that in order to minimize the TOF estimation error,
A and B’s response delays (tB,A and tA,B ′ ) have to be equal,
hence the name symmetrical double-sided TWR. In a practical
positioning system with multiple nodes it means that the
final response packets to each node cannot be aggregated
into a single response, raising the total number of packets
in a ranging sequence. The effect on the air-time efficiency is
further discussed in Section V-C.

C. Alternative Double-Sided Two-Way Ranging
The AltDS-TWR method utilizes the same exact packet

exchange protocol as SDS-TWR, pictured in Fig. 2. The
specifics of this protocol are discussed in the previous sub-
sections.

The difference between SDS-TWR and AltDS-TWR
becomes evident with the alternative derivation of the calcu-
lation of TOF proposed by Neirynck et al. in [28]:

tA↔B = tA,B · tB,A′ − tA,B ′ · tB,A

2(tB,A + tB,A′)
(4a)

= tA,B · tB,A′ − tA,B ′ · tB,A

2(tA,B + tA,B ′)
(4b)

= tA,B · tB,A′ − tA,B ′ · tB,A

tB,A + tB,A′ + tA,B + tA,B ′
. (4c)

As a result, the four measured time intervals can be used to
provide a TOF estimate in three distinct ways. The estimate
can be calculated either by having node B’s (4a), node A’s
(4b) or both nodes’ (4c) measured time intervals in the
denominator.

The error analysis of [25], [28] found that the alternative
calculation of AltDS-TWR removes the symmetry constraint
of response delays which hindered the SDS-TWR method. In a
multiple-node system the dismissal of the symmetry constraint
in turn allows to aggregate the final packets of node A to a
single packet, reducing the total number of packets transmitted
in a ranging sequence [29]. Additionally, using (4a) or (4b)
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Fig. 3. A single ranging sequence for active-passive methods utilizing SS-TWR and AltDS-TWR with aggregated tag response. Tag T initiates the
ranging sequence with a ranging request packet; anchors A1 to Ai receive it and answer with a ranging response. After receiving all responses,
T ends the ranging sequence with a ranging report packet. Anchor Aj listens to all packet exchanges and records corresponding time intervals.

permits to improve the TOF estimation performance if node
B or node A has a better timing reference, respectively. If the
nodes have clock sources with the same timing performance,
the TOF estimate can also be obtained by (4c).

On account of offering the previously discussed improve-
ment to SDS-TWR, AltDS-TWR has replaced it in the
latest amendment to the IEEE 802.15.4 standard. The
IEEE 802.15.4z amendment now specifies SS-TWR and
AltDS-TWR as the main TOF-based ranging methods [30].

III. PROPOSED ACTIVE-PASSIVE RANGING METHODS

In this section we introduce two methods to provide ranging
capabilities for passive anchors, which are also called listeners.
Since the location of each anchor is fixed and known, the a
priori information, in conjunction with information obtained
during the ranging sequence, is used to passively provide
estimates of distance between a listener and tag. The two
proposed methods are collectively called the Active-Passive
Two-Way Ranging (AP-TWR) due to the fact that the devel-
oped passive ranging capabilities are used in conjunction with
existing active methods.

The proposed methods utilize a tag-initiated ranging
sequence to provide the longest possible sleep time for the
tag between consecutive ranging sequences. Employing an
anchor-initiated ranging sequence was not considered, since
the tag would have to be in a constant receive mode, which
would reduce the tags battery life. For example, the widely
used [31] Qorvo/Decawave DW1000 transceiver IC consumes
more power during receiving than transmitting, let alone
being asleep [32]. This constraint is introduced since tags are
typically battery-operated and need to conserve power where
possible.

This in turn means that an assumption is made i.e. anchors
are not power-constrained, allowing them to remain in transmit
or receive mode without sleeping between ranging sequences.
The notion is justified by the fact that generally anchors are a
part of fixed infrastructure, having dedicated data and supply
power lines, not running on batteries.

Since the anchors are not limited by supply power, it is
practical to listen to every packet exchange that it receives,
to provide additional information for ranging. This applies not
only to the passive anchors, but to active anchors as well:
when active anchors are not transmitting they can listen to
transmissions between the tag and other active anchors. This
allows for the distinction between active-passive and passive-
only anchors.

In the scope of this paper the following abbreviations for
system node names is adopted to help describe the principles
of AP-TWR methods. Anchors numbered 1, 2, i , which are
actively participating in ranging, are abbreviated as A1, A2
and Ai, accordingly. The passive anchor is noted as Aj, and
the tag as T.

A. Active-Passive Two-Way Ranging Method 1
This section proposes active-passive TWR method 1

(AP1-TWR), which exploits an active ranging method’s packet
exchange protocol alongside with knowledge about the anchor
locations to provide passive range estimates alongside with
active ranging results.

Fig. 3 represents a ranging sequence of AP-TWR methods
utilizing SS-TWR and AltDS-TWR with aggregated tag report
packet. Tag T starts the sequence with a ranging request,
to which all active anchors A1 to Ai answer with a response.
When T has received all responses, it ends the sequence with
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Fig. 4. A single ranging sequence for active-passive methods SDS-TWR without aggregated tag response. Tag T initiates the ranging sequence with
a ranging request packet; anchors A1 to Ai receive it and answer with a ranging response. After receiving responses from the anchors, T transmits
an anchor-specific report packet after delaying its response time equal to the anchor’s processing time. Anchor Aj listens to all packet exchanges
and records corresponding time intervals.

a broadcast ranging report packet which is received by each
anchor. Passive anchor Aj listens in on the packet exchanges
in the air and registers the corresponding time intervals of
packet arrivals. Note that the final packet broadcast by T is an
aggregated packet containing a response to all anchors; in this
way T does not have to respond to each anchor individually
so the effect on air time is reduced. This is discussed in more
detail in Section V-C.

Fig. 4 gives the ranging sequence for AP-TWR methods
utilizing the SDS-TWR. Although the packet exchange is
similar to that of Fig. 3 for the first part of the sequence, the
final responses sent by the tag are sent to individual anchors
separately, to adhere to the response time symmetry constraint
discussed in Section II-B. This means that the final response
packets cannot be aggregated to a single one to reduce the
air time.

The following notation of time intervals is used to describe
the AP-TWR methods. The TOF between node A and B is
represented by tA↔B . Note that in Fig. 3 and 4 the TOFs are
only labelled on the first packet but the same notation applies
for TOFs in responses and in the report packet; this choice
makes the figure less cluttered. The notation of tA,B is used to
describe the time interval measured by node A, corresponding
to packet exchange with node B. Since each active anchor
measures two different time intervals associated with the same
node, the distinction of the second time interval is made by
adopting the notation tA,B ′ .

The only differences between SS-TWR/AltDS-TWR and
SDS-TWR based AP-TWR approaches is the notation of the
listening anchor Aj’s time intervals. In case of Fig. 3 depicting
SS-TWR and AltDS-TWR based method, Aj records the time
intervals corresponding to each active anchor (tAj,Ai ), and the
tag’s final aggregated response tAj,T . For the SDS-TWR based

approach, the final response packets are sent to each anchor
separately, so Aj records the time intervals corresponding to
each active anchor (tAj,Ai ) plus the tag’s response to each of
the anchors (tAj,T ,Ai ).

Similar to active method, depicted in figures 1 and 2 and
discussed in Section II, the time axis on Fig. 3 and 4 include
the dotted lines to note time scale differences of tag and
active anchor response delay times and the TOFs between
nodes.

In order to have a generalized approach for AP1-TWR,
we shall focus on the interaction between tag T, active anchor
Ai and passive anchor Aj. It can be observed from both, Fig. 3
and Fig. 4 that the following time intervals are equal:

tT ↔Ai + tAi,T + tAi↔Aj = tT ↔Aj + tAj,Ai . (5)

Rearranging (5) for tT ↔Aj and adopting the notation of
tT ↔Aj |Ai , we get

tT ↔Aj |Ai = tT ↔Ai + tAi,T + tAi↔Aj − tAj,Ai (6a)

tT ↔Aj |Ai = tT ↔Ai + τAi,1 − τAi,0 + tAi↔Aj

− τAj,Ai − τAj,0, (6b)

where tT ↔Ai is the TOF between T and Ai, estimated by an
active ranging method, and tAi↔Aj is the a priori known TOF
from Ai to Aj. The rest of the terms in Eq. (6a) represent
the calculation using the specific time intervals on Fig. 3, and
Eq. (6b) presents the same calculation using timestamp nota-
tion as per Appendix II. The time interval notation of eq. (6a)
can be used instead of the timestamp notation in eq. (6b), since
the time base of each transmitting device can be converted to
the time base of the receiver via Carrier Frequency Offset
estimation method proposed by Dotlic et al. in [33]. This is
further explained in Appendix II.
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The notation of tT ↔Aj |Ai is adopted instead of tT ↔Aj ,
to clarify that the TOF from tag T to listener Aj is calculated
by using the data from active anchor Ai. This adaptation allows
the calculation of TOF between tag T and listener Aj during
each Ai’s ranging session.

Since (6a) covers only the passive ranging results, the total
set of ranging data acquired in a single ranging sequence can
be expressed as:

tT ↔Aj |Ai =
{

tT ↔Ai , for i = j

tT ↔Ai + tAi,T +tAi↔Aj −tAj,Ai , for i �= j,
(7)

where the first part corresponds to active ranging (since an
anchor cannot listen to its own ranging session) and the second
part to passive ranging using time interval notation. Note that
the term tT ↔Ai exists in both parts, meaning that the passive
ranging is directly dependent on the active method with which
the TOF is acquired.

Since active ranging can be utilized either by SS-TWR,
SDS-TWR, or AltDS-TWR, the term tT ↔Ai can be substituted
by (2), (3) or (4), respectively. The substitution provides three
distinctive active-passive methods called AP1 SS-TWR, AP1
SDS-TWR and AP1 AltDS-TWR.

B. Active-Passive Two-Way Ranging Method 2
The second active-passive two-way ranging method

(AP2-TWR) utilizes the same packet exchange sequence as
AP1-TWR, but makes use of different measured time intervals
to provide passive range estimates.

Fig. 3 illustrates the packet exchange protocol for
AP2-TWR, and was already explained in detail in
Section III-A. The figure allows us to observe that both
of the following equalities hold:

tT ↔Aj + tAj,Ai = tT ↔Ai + tAi,T + tAi↔Aj (8a)

tT ↔Aj + tT ,Ai ′ + tT ↔Ai = tAi↔Aj + tAj,T − tAj,i . (8b)

Adding 8a to 8b, and solving for tT ↔Aj , we get the
following expression:

tT ↔Aj = tAi,T + tAj,T − tT ,Ai ′

2
+ tAi↔Aj − tAj,Ai . (9)

According to Fig. 3 we know that tAj,T = tT ,Ai + tT ,Ai ′ .
Substituting it into (9) and adopting the notation of tT ↔Aj |Ai

yields the final form for the passive part of AP2-TWR:
tT ↔Aj |Ai = tAi,T + tT ,Ai

2
+ tAi↔Aj − tAj,Ai (10a)

tT ↔Aj |Ai = τAi,1 − τAi,0 + τT ,Ai − τT ,0

2
+tAi↔Aj − τAj,Ai + τAj,0, (10b)

where Eq. (10a) presents the AP2-TWR passive TOF estimate
calculation via time interval notation, and Eq. (10b) with
timestamp notation from Appendix II. The term tAi↔Aj refer-
ring to the known TOF between Ai and Aj for both equations.

Similarly to Section III-A, this notation is introduced to
emphasize that the TOF from passive anchor Aj to tag T
can be calculated using every active anchor’s ranging data.
In addition, both time interval and timestamp notations are

valid for the calculations, due to the possibility to translate the
clock time bases between devices, explained in Appendix II.

The above proof applies to SS-TWR or AltDS-TWR based
AP2-TWR methods, however we arrive to the same exact
result using SDS-TWR as well. The proof for this is presented
in Appendix I, where we show that utilizing the former and the
latter methods for AP2-TWR, accordingly produce the same
exact results in (10a) and (18).

Equations (10a) and (18) cover only the passive part of the
ranging sequence. To define all the active and passive ranging
data of a single ranging sequence, we express it as:

tT ↔Aj |Ai =
⎧
⎨
⎩

tT ↔Ai , for i = j
tAi,T +tT ,Ai

2
+tAi↔Aj − tAj,Ai , for i �= j,

(11)

where, again, the first part corresponds to an active rang-
ing method and the second part corresponds to passive
ranging with time interval notation. Similarly to III-A, the
active ranging can be utilized either by SS-TWR, SDS-TWR,
or AltDS-TWR, meaning that tT ↔Ai can be substituted by (2),
(3) or (4), respectively. This produces the active-passive meth-
ods AP2 SS-TWR, AP2 SDS-TWR and AP2 AltDS-TWR.

Although the main concept of AP2-TWR was already
published in [22], that paper did not consider employing the
SDS-TWR and AltDS-TWR methods. Only the effects of
AP2 SS-TWR was simulated and shown to work in practical
experiments.

IV. MEASUREMENT MATRIX

After a ranging sequence has occurred, all the estimated
TOF values of the AP-TWR methods can be expressed as
an n by m measurement matrix T , where m is the number
of active-passive anchors and n the total number of anchors,
making the number of passive-only anchors as k = n − m:

T =
⎡
⎢⎣

tT ↔A1|A1 . . . tT ↔A1|Am
...

. . .
...

tT ↔An|A1 . . . tT ↔An|Am

⎤
⎥⎦ , (12)

where, per (7) and (11), the active distance measurements lay
on the main diagonal, and the passive measurements off the
diagonal. T is an n by m matrix, meaning that we acquire a
total of n · m raw range estimates for each ranging sequence,
whereas an active-only method could only deliver m range
estimates.

Each row of T contains the set of TOFs between an anchor
and tag acquired during a ranging sequence. To express the
coherence of these sets, we denote the rows of (12) as n
vectors:

tT↔A1 = [
tT ↔A1|A1 . . . tT ↔A1|Am

]

...

tT↔An = [
tT ↔An|A1 . . . tT ↔An|Am

]
.

Considering that each vector contains m estimates of the
same TOF value, we can filter the noise by finding the mean
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value of each row vector, such that

T =
⎡
⎢⎣

tT↔A1
...

tT↔An

⎤
⎥⎦ , (13)

where T is a column vector containing n elements of filtered
TOFs from tag to every anchor, effectively providing a set
of range estimates as inputs for a positioning engine. This
filtering takes place during each ranging sequence.

It is important to understand that for AP-TWR methods,
as can be seen by the number of elements of (13), the total
quantity of anchors n, directly defines the number of range
estimates. At the same time, m only defines the cardinality of
the row vectors of T , affecting only the calculation of mean
values in (13). On the other hand, active-only ranging methods
with m range estimates do not offer the filtering of a single
ranging sequence’s TOF values, the filtering can only be done
with values of temporally consecutive ranging sequences.

V. SIMULATIONS AND RESULTS

In the following subsections we give the background of the
simulation tool, present the preconditions, and compare the
simulated methods from the standpoint of range estimation
root-mean-square-error (RMSE) and air-time efficiency.

A. Background and Conditions
In order to run the simulations for the proposed methods,

a dedicated software tool was developed in R programming
language. The software simulates all the required time inter-
vals to calculate the various combinations of active and passive
TOF estimates using (7) and (11).

Although the software does not simulate a full physical
layer, the response times of each anchor are delayed separately
to avoid collisions at the tag. Moreover, since only a single
tag is simulated, a multiple access scheme for the tags is
not implemented in the scope of this paper. Accounting
these points, the events of packet loss are omitted from the
simulations.

The simulations were carried out in a virtual room
sized 500 cm × 700 cm × 250 cm. The combinations of
AP-TWR methods were simulated for 1000 separate iterations.
During each iteration, the tag and anchors were placed at ran-
domly generated positions in the virtual room. Each iteration
in turn consisted of 1000 separate ranging sequences.

In order to assess and compare the ranging performance of
the methods, the range estimate RMSE is calculated using the
following equation:

RM SEd =

√√√√√√

N∑

i=1

(di − dt )
2

N
, (14)

where di denotes the i -th range estimate, dt the true range,
and N the total number of range estimates.

The propagation conditions are set as line-of-sight, so the
time measurement noise follows Gaussian distribution with
a time measurement noise standard deviation of 150ps. The

standard deviation is taken as the worst case scenario reported
by McElroy et al. in [34] for Qorvo/Decawave DW1000.

Clock offset errors are omitted, since they can be compen-
sated for, as Dotlic et al. proposed in [33]. All simulated nodes
are assumed to have the same timing reference performance,
meaning the 150ps standard deviation applies to both, the tag
and anchors. Tag and anchor distance calibration errors are
omitted, assuming that they are calibrated correctly.

The inter-anchor distances needed to calculate the pas-
sive range estimates are known and exact since anchors are
assumed to be as a part of a fixed infrastructure with known
locations (see Section III). Therefore, the inter-anchor TOFs
can be found via the relation expressed by (1).

Each AP-TWR method utilized measurement matrix
row-wise averaging by (13) to provide final TOF estimates.
The TOF estimates were converted to distances using (1),
to provide the final RMSE results in centimeters.

Section III stated that both of the described AP-TWR
methods can be used in conjunction with each of the active
methods. Since in the scope of this paper, tag and anchors
are assumed to have the same timing reference performance,
we calculate AltDS-TWR method with (4c). As a total we
simulate a combination of six active-passive methods: com-
bining (7) and (11) with (2), (3), and (4c), we accordingly get
AP1 and AP2 SS-TWR, AP1 and AP2 SDS-TWR, AP1 and
AP2 AltDS-TWR.

B. Ranging Performance
In this section, the ranging performance of AP1 SS-TWR,

AP1 SDS-TWR, AP1 AltDS-TWR, AP2 SS-TWR, AP2
SDS-TWR and AP2 AltDS-TWR is presented and discussed.
The performance of these methods is compared in terms of
range estimation RMSE in centimeters instead of TOF value,
since distance is the final product of the ranging process in a
practical sense.

Firstly, the individual performance of each active and
passive method is observed separately. This is illustrated
in Fig. 5, where the RMSEs of active methods SS-TWR,
SDS-TWR, ADS-TWR, and passive parts of AP1 SS-TWR,
AP1 SDS-TWR, AP1 AltDS-TWR and AP2-TWR methods
are presented. Compared to AP1 methods, only a single
combination of AP2-TWR is displayed, since this method is
independent of the active ranging TOF estimation, as discussed
in Section III.

The results show that at 2.25 cm RMSE, SDS-TWR has
the best performance of all of the active methods, closely
followed by 2.43 cm RMSE for AltDS-TWR; a bit further
behind we find SS-TWR with 3.18 cm RMSE. Out of the
passive methods we see that AP2-TWR performs the best
with 5.51 cm RMSE, outperforming the next best, AP1
SDS-TWR, by a margin of 1.23 cm. Closely following it,
we find AP1 ADS-TWR with 6.81 cm and last we find AP1
SS-TWR with an RMSE of 7.11 cm.

The individual results show that the best performance can be
obtained using SDS-TWR for active ranging and AP2-TWR
for passive ranging, while the least performing methods are
SS-TWR and AP1 SS-TWR, respectively.
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Fig. 5. Ranging performance of active and passive ranging methods.

Fig. 6 presents the graphs of total system RMSE depending
on the number of additional passive anchors, k, for each
proposed active-passive method coupled with a measurement
matrix averaging by (13). The individual graphs correspond to
different values of m – the number of active-passive anchors.
The methods are benchmarked against active-only SS-TWR,
SDS-TWR and ADS-TWR methods, which are rendered as
constant lines. They are depicted as constant lines since these
methods do not provide passive ranging, they are therefore
agnostic to the number of passive anchors.

The following trend for each method can be observed:
system RMSE increases with each increment of the k value.
This means that every additional passive range estimate value,
which is supplied at no cost to the number of packets in a
ranging sequence, contributes to an increase of the system
RMSE. However, increasing m in turn decreases the system
RMSE at the cost of an added packet in the ranging sequence.
The impact of the method type and used anchor types on the
air time is further discussed in Section V-C.

All AP2-TWR based methods outperform AP1-TWR based
methods in every case of m, k value. For example from case
m = 3 (Fig. 6 c) and upwards, AP2-TWR methods provide
about 10 to 20 % decrease in RMSE when compared to
AP1-TWR, depending on the specific case and method chosen.
Cases below m = 3 still offer a decrease in RMSE, but the
gain is less uniform across the graphs.

In both AP methods, it can be seen that employing
AltDS-TWR and SDS-TWR active ranging methods yield
almost identical RMSE, while also performing better than
SS-TWR. It is important to note that the AP2 SS-TWR is
inferior to AP2 SDS-TWR and AP2 AltDS-TWR by a slight
margin of about 0.01 to 0.30 cm, which means all three AP2
methods provide almost the same performance. For AP1-TWR
methods it can be seen that SS-TWR based method lags
behind AltDS-TWR and SDS-TWR by a larger margin of
about 0.10 to 0.50 cm. Aligning with the results of individual
active and passive anchor performance, AP2 SDS-TWR and
AP2 AltDS-TWR yield the lowest RMSE values while AP1
SS-TWR yield the highest ones, at every m, k value.

Fig. 6 c, m = 3 shows a breaking point where all the
AP2-based active-passive methods have surpassed the rang-
ing performance of active-only SS-TWR. Further increasing

TABLE I
AP2 SS-TWR EXAMPLE, TOTAL NUMBER OF ANCHORS

n = m + k = 6. COMPARED TO ACTIVE-ONLY SS-TWR WITH 6
ANCHORS (RMSE: 3.180 cm, NUMBER OF PACKETS IN RANGING

SEQUENCE: 8). NUMBER OF AVAILABLE RANGE ESTIMATES: 6

the number of active-passive anchors, we can see that all
AP1-based active-passive methods achieve performance supe-
rior to active-only SS-TWR at m = 5. Accordingly for the
same case, AP2-based methods have passed the performance
of active AltDS-TWR. Case m = 10 illustrates that all
the active-passive methods have surpassed every active-only
method. Appendix III presents Fig. 10, where we can see that
m = 6 is the critical value where all AP2-TWR methods catch
up with the best performing active method SDS-TWR.

Table I presents an example case of AP2 SS-TWR com-
pared to active-only SS-TWR. The example is constructed
such that for both methods the total number of anchors is n =
m +k = 6, where AP2 SS-TWR allows a total of six different
active-passive and passive-only anchor m, k combinations. The
results are compared to active-only SS-TWR which operates
at 3.180 cm RMSE with 6 anchors. This specific case was
selected since: 1) the amount of data to transmit is lower (refer
to Section V-C); 2) according to Fig. 6, the RMSE cost of
using AP2 SS-TWR instead of AP2 SDS or AP2 AltDS-TWR
is only in the range of about 0.01 to 0.1 cm; 3) the results are
directly comparable to what was published in [22].

It is important to reiterate that the number of available range
estimates for active-only methods is defined by the number of
active anchors, but for AP methods it is dependent on the
total number of anchors, as was discussed in Section IV.
Additionally, all anchor combinations resulting n < 3 are
unusable from the standpoint of positioning, since it was
determined in Section I that providing a position estimate
requires at least three range estimates. For the specific example
drawn in Table I the number of available range estimates is 6
for all combinations.

The results show that depending on the m, k combinations,
the RMSE of AP2 SS-TWR can increase up to 63.3% (m = 1,
k = 5) or decrease down to −33.3% (m = 6, k = 0), compared
to SS-TWR. Accordingly, while the air time is decreased by
down to −62.5% or left unchanged at 0%. The table shows the
critical point where moving from 2 to 3 active-passive anchors
in AP2 SS-TWR starts to provide constantly better RMSE
results than active-only SS-TWR. The choice of m, k provides
a flexibility to steer the system towards increased accuracy or
decreased air time while providing the same number of range
estimates. The intermediate cases and the interplay with air
time efficiency is further discussed in Section V-C.

C. Air Time
The air time efficiency of an UWB system can be assessed

by two main categories: the amount of data to be transmitted
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Fig. 6. Ranging performance of active-passive methods with measurement matrix averaging. The graphs are plotted to show each method’s
dependence of RMSE on n - the number of additional passive-only anchors. Each individual graph represents a different value for m - the number of
active-passive anchors. The performance of active methods is pictured as constant lines, since they do not depend on number of passive anchors.

over the air and the number of packets needed to transmit
per each ranging sequence. The quantity of transmitted data
directly impacts the effective length of the packet in bits, while
a higher number of transmitted packets increases the total time
spent transmitting in each ranging sequence.

Demanding applications where a large quantity of tags
needs to be located simultaneously, the air-time occupancy and
ranging rate may become a limiting factor to the maximum
number of tags. Desirably both of the defining air time
efficiency parameters should be kept to a minimum, since they
dictate the maximum number of tags that can operate in a
given area [13].

According to equations (3) and (4) in
Sections II-B and II-C we see that in the case of ADS-TWR
and AltDS-TWR the TOF from tag to anchor is calculated
using four different variables. Two of these values are
measured by the tag and need to be communicated back to
the corresponding anchor. Since equation (2) for SS-TWR
only needs a single time interval value from the tag to
calculate the TOF, this effectively means that half as much
information needs to be communicated back to corresponding
anchors. This concept comes to play when the amount
of transmitted data is limited or the shortest possible
packet is desired. Since the spectrum is a shared resource,
a shorter packet allows to increase the device density due

to less time spent transmitting and resulting in a shorter
protocol.

Since the packets also contain varying length overhead
in the form of preambles and headers etc., it is difficult to
quantify the effect of transmitted data on the total length of a
packet and therefore on the whole ranging sequence. Due to
this, Fig. 7 only illustrates the total number of data fragments
needed to communicate to anchors over the air, depending on
the number of active anchors in a system. It can be seen that
SS-TWR provides the lowest amount of data to be transmitted
by the tag.

Furthermore, the second important part of air time efficiency
is the number of packets in a ranging sequence. When con-
sidering a tag-initiated sequence with aggregated response as
discussed in III and depicted in Fig. 3, the total number of
packets in a sequence can be calculated as Na = m + 2.
Where N consists of a ranging request packet sent by the
tag, m number of replies from each active anchor and an
aggregated ranging report packet sent by the tag. The number
of packets for a non-aggregated response would be calculated
as Nna = 2m + 1, where the sequence consists of a ranging
request sent by the tag, m responses from each active anchor
and m ranging reports sent by the tag. In conclusion, the
aggregated response packet saves us from transmitting Nna −
Na = 2m + 1 − (m + 2) = m − 1 packets. The described
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Fig. 7. Number of time interval values transmitted over the air by the
tag, depending on the number of active anchors.

calculations of the number of packets in a sequence applies to
both active-only and active-passive methods, depending only
on the number of anchors actively taking part of the ranging.

It is important to reiterate the fact discussed in Section II-B
that due to the response delay symmetry constraint the final
packet of a SDS-TWR ranging session cannot be aggregated to
a single one. This means that all methods (including AP-TWR
methods) incorporating SDS-TWR transmit Nna = 2m + 1
packets in a single ranging sequence. Meaning SDS-TWR has
a disadvantage of transmitting more packets in cases where
m > 1.

The strengths of active-passive methods come to play with
the addition of passive-only anchors. Passive-only anchors
provide extra range estimates between themselves and the tag,
while the number of packets in a ranging sequence is defined
only by the number of active-passive anchors. This combats
the main shortcoming of increased air time of TWR methods
compared to TDOA methods, as discussed in Section I.
Theoretically it would be possible to provide an unlimited
amount of range estimates with only 3 packets in a ranging
sequence when m = 1 and k −→ ∞, only limited by the
number of physical anchor devices.

The example in Table I showed that depending on the m,
k values in this case, the air time of AP2 SS-TWR can be
decreased down to −62.5% compared to SS-TWR. The pre-
sented air time results are not only specific to AP2 SS-TWR:
they also expand to other AP methods with aggregated packets
with the same m, k values. This leaves out the methods which
are based on SDS-TWR, since the relative air time change
is calculated differently on the account of using unaggregated
response packets.

Case m = 6, k = 0 the RMSE of ranging values is at its
lowest with a −33.3% reduction compared to SS-TWR. The
number of active-passive anchors is the same as the benchmark
SS-TWR, at m = 6 with the number of transmitted packets
at 8, giving no advantage of air time reduction. The other
extreme case where m = 1, k = 5, the RMSE is at its
highest of 5.192 cm with an increase of 63.3% compared to
SS-TWR. This time the air time is at its lowest with 3 packets
transmitted, giving an air time reduction of −62.5% compared
to 8 packets transmitted in SS-TWR. The intermediate cases
show that a middle ground where improvements for both

parameters can be found. For example m = 4, k = 2 where
both, the RMSE and air time, are decreased by −18.3% and
−25%, respectively. Once again, the trends become obvious:
each additional passive-only anchor increases the RMSE while
the air time is decreased, and each additional active-passive
anchor decreases the RMSE while adding a packet to the
ranging sequence.

These results also align with the previous study placing our
results between the simulation and experimental performance
given in [22].

VI. EXPERIMENTAL RESULTS

The following section gives an overview of the practical
experiments conducted. For the practical experiments the
AP2 SS-TWR solution was selected as it requires the least
amount of information and packets sent over the air and is
comparable to the performance of the AP2 SDS-TWR and
AP2 AltDS-TWR. The background information, experimental
set up description and the results and analysis of the practical
experiments utilizing AP2 SS-TWR are given in the following
paragraphs. The results are analyzed from the standpoint of
ranging performance.

A. Test Setup
The experiments took place at Tallinn University of

Technology (TalTech), Thomas Johann Seebeck Department
of Electronics. The tests were conducted using Eliko UWB
RTLS [35], based on the Decawave/Qorvo DW1000 UWB
transceiver. The test system composed of 5 anchors and
a single tag.

The anchors and tag were placed in arbitrarily chosen
locations in the U02-406 classroom at TalTech, making sure
that a visual line of sight between all devices exists. This is
illustrated on Fig. 8, where the anchors are marked with blue
color and the tag marked with red.

The Leica DISTO S910 laser distance meter [36] was used
to survey the true coordinates of the anchors and the tag
relative to the front left corner of the classroom when entering
it. The position of the laser distance meter is marked with
yellow color in Fig. 8.

With 5 anchor network configuration the total number of
possible m, k combinations is 15. For each combination 5
separate tests were performed to avoid outliers, and from each
test 600 rangings were collected.

The captured ranging data packets in the form of text
files were processed and analyzed using a dedicated software
written in the programming language R.

The practical performance of the AP2 SS-TWR was evalu-
ated using σ , the standard deviation, as opposed to RMSE.
This choice was made to eliminate the impact of device
calibration errors and other static errors during measurements.
The calculation of RMSE and standard deviation is similar:
for RMSE the term dt in (14) refers to the true distance, but
in the calculation of standard deviation in (15) the term d is
the mean value of all samples. This way the standard deviation
reflects the best case RMSE value, assuming that the sample
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Fig. 8. The physical layout of the experimental setup. In the photograph, the five anchors are circled with blue, the single tag with red, and the Leica
DISTO S910 laser distance meter with yellow. The approximate location from which the photograph was taken is marked with a camera symbol in
the diagram.

TABLE II
EXPERIMENTAL RESULTS: AP2 SS-TWR RANGING STANDARD

DEVIATION (cm) FOR A MAXIMUM NUMBER OF n = 5 ANCHORS

mean value is equal to the true distance:

σd =

√√√√√√

N∑

i=1

(di − d)2

N
. (15)

It is also important to note that care was taken to monitor
the sample mean values and the true distances to each anchor
during all measurement sessions. This was done to verify that
the practical measurement results conformed to real world
anchor-tag distances, confirming that the method under test
produces practically viable ranging results.

B. Experimental Results
This section presents the experimental results of AP2 SS-

TWR, compares it with the performance attained in simula-
tions and gives the analysis of said differences.

As also stated in the previous section, the practical results
are presented as σ , the standard deviation of the measure-
ments, which can be interpreted as the best-case RMSE value.

Table II presents the achieved AP2 SS-TWR method mea-
surement standard deviation in centimeters for all allowed m,
k combinations for a total number of n = 5 anchors. For the
practical experiments, the baseline SS-TWR performance of
case m = 1, k = 0 is taken as the average standard deviation
of active ranging across the whole measurement campaign.
In order to compare the experimental results, Table III presents
the theoretical results for the same m, k combinations.

The results and the main trends of the theoretical results
were discussed in Section V-B. The following analysis focuses
on the experimental results in Table II.

TABLE III
SIMULATION RESULTS: AP2 SS-TWR RANGING RMSE (cm) FOR A

MAXIMUM NUMBER OF n = 5 ANCHORS

An overall trend can be observed, where the experimental
results are comparable to the simulation results. Increasing the
number of passive-only anchors k, the standard deviation of
ranging results also increase.

The cases of m = 1 and m = 2 show that the practi-
cal AP2 SS-TWR functions better or similar compared to
the simulation results, validating the method. The increased
performance can be attained to the simulations assuming the
worst case scenario for time measurement standard deviation
discussed in Section V-A, while the practical system surpasses
this performance.

For cases where m > 2 the experimental results show higher
standard deviation than the simulation results. The differences
between the experimental and theoretical results are further
discussed in the following paragraphs.

In order to analyze performance differences of the practical
and simulated AP2 SS-TWR, two of the most notable cases
were selected to illustrate the reasons. Based on Table II, the
positive case of m = 2, k = 3 selected since the performance
increased compared to previous m = 1 case, and the worst
case of m = 5, k = 0 selected to reflect the worst overall
performance.

Table IV represents the standard deviations in centimeters of
the individual elements of the measurement matrix across all
samples collected for case m = 5, k = 0. The column headers
denote the transmitting anchor in the order of participating
in the ranging sequence, while the row headers note the
listening anchor. The standard deviation of each anchor’s
active measurement lays on the main diagonal.

Similarly to Table IV, the standard deviations of the indi-
vidual elements of the measurement matrix for case m = 2,
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TABLE IV
EXPERIMENTAL RESULTS. MEASUREMENT MATRIX STANDARD

DEVIATIONS (cm) ACROSS ALL MEASUREMENTS FOR m = 5, k = 0.
TRANSMITTING ANCHORS HEXADECIMAL IDS DEPICTED COLUMN

WISE, LISTENING ANCHORS IDS ROW WISE, ACTIVE MEASUREMENTS

ON MAIN DIAGONAL

TABLE V
EXPERIMENTAL RESULTS. MEASUREMENT MATRIX STANDARD

DEVIATIONS (cm) ACROSS ALL MEASUREMENTS FOR m = 2, k = 3.
TRANSMITTING ANCHOR DEPICTED COLUMN WISE, LISTENING

ANCHORS ROW WISE, ACTIVE MEASUREMENTS ON MAIN DIAGONAL

k = 3 are presented in Table V, where again transmitting
and listening anchors are displayed column and row wise,
respectively.

Inspecting the active measurement standard deviations on
the main diagonal of both of the tables, it can be seen that the
values typically increase for each next active measurement in
the ranging sequence. This is also confirmed by viewing the
average standard deviation for active measurements of both
cases: m = 5, k = 0 has 5 active measurements with an
average standard deviation of 3.056 cm, while m = 2, k =
3 has a an average standard deviation of 2.317 across the 2
active measurements per ranging sequence. Comparing with
the SS-TWR RMSE of 3.18 cm from Fig. 5, we observe that
the Eliko UWB RTLS offers better active ranging performance
than simulations suggest.

Although the passive measurement standard deviations posi-
tioned off the main diagonal show slightly higher standard
deviation compared to the simulated passive measurement
RMSE of 5.51 cm stated on Fig. 5, there are some pas-
sive measurements that achieve better results. Among others
achieving as low as 4.378 cm passive measurement standard
deviation for anchor A5 listening on A2 in Table V.

On average, the standard deviation of passive measurements
for m = 5, k = 0 is 6.263 cm and 5.530 cm for m = 2, k = 3.
The former providing a higher standard deviation due to the
higher errors in the final column of Table IV.

Overall, the standard deviations for measurements between
practical and simulation results are comparable. The differ-
ences could be attributed to additional error sources from
protocol timing errors, surrounding environment effects or
device orientation propagation effects. For future work, the
sources of errors could be researched and investigated.

VII. CONCLUSION

This article proposed an alternative calculation method
for active-passive ranging and additionally expanded on the
previous work done in [22] by including SDS-TWR and
AltDS-TWR active methods with the proposed active-passive

method, which was previously assessed only using SS-TWR.
The proposed active-passive TWR methods called AP1 and
AP2, respectively, were both paired with active ranging meth-
ods SS-TWR, SDS-TWR and AltDS-TWR. All of the six com-
binations of methods were validated by running simulations
and comparing their range estimation RMSE and air time.

The results showed that all three AP2-TWR methods
consistently outperform AP1-TWR methods by about 10
to 20%, depending on the chosen m, k. The SDS-TWR
and AltDS-TWR variants perform almost identically, while
exceeding SS-TWR’s RMSE performance in both of the
corresponding AP-TWR methods. Interestingly, depending on
m, k values in AP2-TWR, the other active TWR variants
outperform SS-TWR by only a maximum of 0.30 cm RMSE.
Briefly, from the standpoint of range estimate RMSE, the
best performing active-passive method is a tie between AP2
SDS-TWR and AP2 AltDS-TWR, with AP2 SS-TWR follow-
ing very closely behind.

In addition to the range estimate RMSE, the amount of data
needed to transmit and air time efficiency were also discussed
as important performance indicators. It was found that in order
to provide the shortest packet, i.e. the least amount of data
needed to transmit from the tag, the SS-TWR is found to be
most desirable requiring half as much data to be transmitted,
compared to other active methods.

The air time efficiency was assessed as the number of
packets exchanged in a ranging sequence. It was also found
that in order to optimize the air-time efficiency for active TWR
methods, an aggregated packet exchange protocol needs to be
employed. Out of all the methods, unfortunately, SDS-TWR
is the only one that does not support packet aggregation due
to its symmetrical response delay time requirement.

The air time efficiency can be further improved with the
introduction of AP-TWR methods. The AP-TWR methods
can provide the same amount of range estimates with less
packets exchanged when compared to an equivalent active
TWR method. As stated before, depending on the choice of
m, k, the RMSE could be simultaneously lowered as well.

The AP2 SS-TWR method was chosen as a well-rounded
example, offering a good balance between RMSE perfor-
mance, number of transmitted data, and air time efficiency
compared to other AP-TWR variants. Comparing it with an
equivalent 6 anchor SS-TWR active method, the example
m = 4, k = 2 showed a relative decrease of RMSE and air
time by −18.3% and −25%, respectively. Sacrificing air time,
the RMSE could be further reduced down to −33.3% (m = 6,
k = 0); or vice-versa yield in RMSE, so the air time could be
reduced down to −62.5% (m = 1, k = 5).

The practical experiments with AP2 SS-TWR verified the
validity of the method and the results were comparable to the
simulation results.

For future works, the practical performance of the other pro-
posed active-passive methods could be evaluated. Additionally,
the current practical experiments could be expanded and their
performance assessed in non-line-of-sight conditions. Finally,
the AP methods could be enhanced by additional measurement
matrix analysis and processing to provide better performance
and robustness of ranging.
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Fig. 9. Timestamps in SS-TWR and AltDS-TWR based active-passive methods. Each device records timestamps at packet transmission or reception
times, relative to their local counter. These timestamp values can in turn be used to find the specific time intervals utilized in the proofs of AP-TWR
methods proposed in this article.

TABLE VI
CORRESPONDENCE OF TIME INTERVAL NOTATION ON FIG. 3 TO THE TIMESTAMP NOTATION ON FIG. 9, DEPENDING ON THE SOURCE DEVICE

APPENDIX I
PROOF FOR SDS-TWR BASED AP2-TWR

The SDS-TWR based AP2-TWR method on Fig. 4 allows
us to observe that both of the following equalities hold:

tT ↔Aj + tAj,Ai = tT ↔Ai + tAi,T + tAi↔Aj (16a)

tT ↔Aj + tT ,Ai ′ + tT ↔Ai = tAi↔Aj + tAj,T ,Ai − tAj,i . (16b)

Adding 16a to 16b, and solving for tT ↔Aj , we get the
following expression:

tT ↔Aj = tAi,T + tAj,T ,Ai − tT ,Ai ′

2
+ tAi↔Aj − tAj,Ai . (17)

According to Fig. 4 we know that tAj,T ,Ai = tT ,Ai + tT ,Ai ′ .
Substituting it into (17) and adopting the notation of tT ↔Aj |Ai

yields the final form for the SDS-TWR based AP2-TWR
passive TOF estimate:

tT ↔Aj |Ai = tAi,T + tT ,Ai

2
+ tAi↔Aj − tAj,Ai . (18)

Again, similarly to Section III-A, the notation of tT ↔Aj |Ai is
introduced to emphasize that the TOF from passive anchor Aj
to tag T can be calculated using every active anchor’s ranging
data. It can also be seen that the final form of (18) is the same
as (10a).

APPENDIX II
TIMESTAMPS IN AP-TWR

In the scope of this paper, the proof of AP-TWR methods
is presented by using the notation of time intervals, as can
be seen in Fig. 3. This notation is introduced to keep the

intermediate equations concise. However, in practical trans-
ceivers such as the Qorvo/Decawave DW1000, on transmission
or reception of an UWB frame each device returns a specific
timestamp relative to its own internal counter instead of a time
interval, marking that the devices have their own time base due
to the clock offsets between them.

The Carrier Frequency Offset (CFO) estimation proposed
by Dotlic et al. in [33] allows the clock offset values of a
transmitter-receiver pair to be estimated, therefore the time
base of the transmitter can be translated to the time base of
the receiving device.

This concept is illustrated on Fig. 9, in which the ranging
sequence is identical to the one pictured on Fig. 3, differing
only by the notation used in the time axes of the devices. The
former utilizing the timestamp, and the latter resorting to time
interval notation for the time axes of each device.

On Fig. 9, the timestamps are universally marked by τ ,
the disambiguation is made by the components presented in
its subscript. The first component of the subscript marks the
device which returns its current timestamps. For T and Aj, the
second component marks the device the transmission origi-
nates from, and for A1 and Ai, the second component marks
the number of the timestamp corresponding to packet exchange
with T, since active anchors have two-way communication
with the tag.

Comparing the notation of Fig. 3 and Fig. 9, it can be
seen that a bijection between the two exists. This is further
illustrated in Table VI, where in each row, a device’s recorded
time interval lengths on Fig. 3 is put into correspondence with
the specific timestamps of Fig. 9. The bijection is valid if and
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Fig. 10. Ranging performance of active-passive methods with measurement matrix averaging. Number of active-passive anchors m = 6 . . .9.

only if the timestamps are in the same time base, which can be
achieved using the aforementioned CFO estimation method.

Practical transceivers such as the DW1000 internally mea-
sure time in the form of timestamps [32]. In order to calculate
range estimates they need to forward the measured time values
as timestamp differences i.e. time intervals, so the conversions
stated in Table VI need to be done in the devices. This is also
the reason why the time interval notation is mainly used in
the equations presented in this paper.

APPENDIX III
ADDITIONAL SIMULATION RESULTS

See Fig. 10.
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Abstract
This paper explores least squares (LS), median (MED), inverse distance weighting (IDW), distance
weighted estimator (DWE) and three different weighted least squares (WLS) methods for Ultra-Wideband
(UWB) active-passive two-way ranging (AP-TWR) measurement matrix estimation. The proposed
methods were tested with practical experiments in line-of-sight (LOS) and two different non-line-of-
sight (NLOS) conditions, and were benchmarked against an active-only single-sided two-way ranging
(SS-TWR) method.

The results show that the proposed methods MED, IDW and DWE achieve comparable standard
deviation values, while outperforming the root-mean-squared-error (RMSE) of SS-TWR ranging by up to
14.3% in LOS and 19.08% in NLOS conditions. The experiments validate that the MED, IDW and DWE
methods for AP-TWR are NLOS-robust and achieve better RMSE performance than active-only SS-TWR
ranging.

Keywords
Active-Passive Two-Way Ranging, Ultra Wideband, Line-of-Sight, Non-Line-of-Sight

1. Introduction

During recent years, Ultra-Wideband (UWB) technology based positioning has been considered
as an attractive and one of the most promising method to provide various location-based services.
The increased interest for UWB can be explained by various traits that it offers: in addition to
positioning, it can be also be used for data transfer, it provides high robustness to multipath, it
does not strictly require line-of-sight (LOS) conditions, and it provides high accuracy in the
order of centimeters [1].
Typically, UWB positioning is based on exploiting the propagation time of radio frequency

signals due to the usage of temporally very short pulses. The main time-based methods are Time
of Flight (ToF), which estimates the propagation time between two nodes, and time difference
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of arrival (TDoA), which estimates the differences of arrival time of a signal between multiple
nodes [2].

TDoA offers an air time advantage, where only a single packet per position estimate is needed,
which decreases the overall energy consumption of the system and could theoretically support
a high device density in the service area. The main disadvantage of TDoA is that the anchors of
a system need to be synchronized very accurately, adding to the complexity of the system. Time
of flight (ToF) estimates are typically achieved via two-way ranging (TWR) methods, which
remove the need for tightly synchronized anchors at the expense of additional air time. This in
turn increases the energy consumption and lowers the tag density in the service area [3].
In order to overcome the shortcomings of both methods, a compromise is found by using

passive anchor nodes to assist in the positioning process. The estimates supplied by passive
nodes allow to reduce the number of packets a system has to transmit in a TWR sequence,
effectively allowing to reduce the energy consumption and increase the air time efficiency, while
still benefiting from the relaxed anchor synchronization requirement.
For example, Hepp et al. in [4] provide an anchor-initiated active-passive ranging protocol,

mounted on a quadcopter. Horváth et al. proposed another passive ranging method used in
conjunction with double-sided (DS) TWR with an alternative calculation method for increased
robustness [5]. These methods have been more focused on increasing the air time efficiency.
Although the seminal concept of tag-initiated Active-Passive Two-Way Ranging (AP-TWR)

was published in [6], the concept of generalized tag-initiated AP-TWR was introduced in [7].
This method was further expanded in [8] to include an additional passive ranging method and
assess the performance of AP-TWR in conjunction with different active ranging methods.

Themain idea of AP-TWR is to employ a priori information about anchor locations to calculate
extra passive range estimates in addition to standard TWR estimates, without any additional
impact on the air time. When maximum air time efficiency is not critical, the system can be
scaled such that multiple active anchors are used, so the ranging performance can be increased.
The achieved range estimates can then be arranged in a measurement matrix, which holds all the
ranging data for a single ranging sequence. The previous papers have only utilized averaging
of the measurement matrix rows to provide final range estimates, without looking into other
methods. Additionally, the experiments were exclusively in line-of-sight (LOS) propagation
conditions [7, 8].
In this paper we investigate methods to further improve AP-TWR range estimation via the

manipulation of the resulting measurement matrix. These methods are then compared in various
locations, in LOS and two separate non-line-of-sight (NLOS) propagation conditions. The rest of
this paper is structured as follows: in Section 2 we give the theoretical background for AP-TWR,
Section 3 lists the estimation methods to process the measurement matrix, Section 4 provides
information on the experimental test setup, Section 5 presents the experimental results and the
analysis; finally, the conclusions are drawn.

2. AP-TWR

AP-TWR defines two types of anchors, active-passive and passive-only, the former taking
part of the ranging via standard TWR methods and listening to other transmissions while



not transmitting. The second type of anchors only listen to ongoing transmissions in the air,
providing range estimates without actively partaking in them.

The work in [8] defined separate AP1-TWR and AP2-TWRmethods, where the results showed
that AP2-TWR is the better performing method. Therefore, in the scope of this paper we will
be focusing on this method, while calling it just AP-TWR in order to avoid confusion.

The UWB ranging protocol is pictured in Fig. 1, where tag T initiates a ranging sequence by
starting its internal timer and transmitting an UWB frame to active anchor Ai, which starts its
timer and responds after its processing time 𝑡𝐴𝑖,𝑇. Upon receiving Ai’s reply, T sends out a final
UWB frame after its processing time 𝑡𝑇 ,𝐴𝑖′ . Passive anchor Aj listens in on all the transmissions
during the ranging sequence and records the corresponding times.

All the relevant time intervals for AP-TWR are described in more detail after the introduction
of (1). As per Fig. 1 and [8], the AP-TWR employing Single-Sided Two-Way Ranging (SS-TWR)
active method is described as

𝑡𝑇↔𝐴𝑗|𝐴𝑖 =
⎧⎪

⎨
⎪
⎩

𝑡𝑇 ,𝐴𝑖 − 𝑡𝐴𝑖,𝑇
2

, for 𝑖 = 𝑗

𝑡𝐴𝑖,𝑇 + 𝑡𝑇 ,𝐴𝑖
2

+ 𝑡𝐴𝑖↔𝐴𝑗 − 𝑡𝐴𝑗,𝐴𝑖, for 𝑖 ≠ 𝑗,

(1)

where 𝑡𝑇↔𝐴𝑗|𝐴𝑖 is the calculated time of flight (ToF) between the tag T and the 𝑗-th passive
anchor Aj, while the 𝑖-th active anchor Ai is partaking in the ranging sequence. This distinction
is made because a single passive anchor can produce an estimate of the ToF between T and Aj
following each Ai’s response. In the special case where 𝑖 = 𝑗, only the active range estimate
can be calculated; in this case it is calculated using SS-TWR. This is done by time intervals 𝑡𝐴𝑖,𝑇
- the time interval measured by Ai corresponding to reception of T, and 𝑡𝑇 ,𝐴𝑖 - time interval
measured by T corresponding to the reception of Ai. In other cases, the passive estimate is
calculated using the above mentioned 𝑡𝐴𝑖,𝑇, 𝑡𝑇 ,𝐴𝑖, the known ToF between Ai and Aj - 𝑡𝐴𝑖↔𝐴𝑗,
and 𝑡𝐴𝑗,𝐴𝑖 - the time interval measured by Aj corresponding to the reception of Ai.

Calculating all possible 𝑡𝑇↔𝐴𝑗|𝐴𝑖 values via (1) results in the following 𝑛-by-𝑚ToFmeasurement
matrix T:

𝑇 = [
𝑡𝑇↔𝐴1|𝐴1 … 𝑡𝑇↔𝐴1|𝐴𝑚

⋮ ⋱ ⋮
𝑡𝑇↔𝐴𝑛|𝐴1 … 𝑡𝑇↔𝐴𝑛|𝐴𝑚

] , (2)

where {𝑖 ∈ ℤ ∶ 1 ≤ 𝑖 ≤ 𝑚}, {𝑗 ∈ ℤ ∶ 1 ≤ 𝑗 ≤ 𝑛} and the total number of anchors 𝑛 consists of the
number of active-passive anchors 𝑚 and passive-only anchors 𝑘, such that 𝑛 = 𝑚 + 𝑘.
It can be observed that the ToF estimates achieved via active TWR methods are located on

the main diagonal of T, and the passive estimates of AP-TWR are situated off the main diagonal,
so rows {𝑗 ∈ ℤ ∶ 𝑚 < 𝑗 ≤ 𝑛} contain only passive ToF estimates.
The active SS-TWR method, as a result of its shorter measurement period, provides a lower

relative motion induced error than the effectively longer Asymmetric Double-Sided Two-Way
Ranging (ADS-TWR). The larger error is on account of including the final frame of the tag in
the calculation of the range estimate [9].



It can be observed from Fig. 1 that the duration of the frame exchange regarding the calcula-
tion of the passive range estimates is in the same range as SS-TWR, since the time intervals
incorporating the third UWB frame of the tag are not used in (1). Therefore we can assume
that the relative motion error for AP-TWR passive range estimates is lower than ADS-TWR, for
example.

Figure 1: AP-TWR: Message exchange of tag T and active anchor Ai, while passive anchor Aj listens to
the transmissions.

Moreover, assuming that the total length of the ranging protocol is in the order of milliseconds,
we can infer that the error originating from the tag’s relative movement to the anchors can
altogether be omitted [10, 11].

AP-TWR cases 𝑚 > 1 produce a ToF estimate matrix (2) consisting of more than one column
and row, where the elements of each row are individual estimates of the true ToF between T and
Aj, 𝑡𝑇↔𝐴𝑗. Considering all the above, we can assume that elements of each row are independent
estimates of 𝑡𝑇↔𝐴𝑗, the values of which can be considered as constants for the duration of a
single ranging sequence.

The number of rows show the number of unique distance measurements between the tag and
anchors, and the values in each row are separate estimates of a single anchor-to-tag distance
value. That is, the number of columns represents the number of measurements that can be
processed to provide a final range estimate for that specific anchor. The row values need to be
processed in order to provide a more accurate, precise and robust final distance estimate.
The following section focuses on the methods of estimating the values of 𝑡𝑇↔𝐴𝑗 from the

measurement matrix presented by (2).

3. Estimation methods

This section describes the methods of processing the raw measurement matrix values to achieve
the final distance values as inputs for a positioning system. Many of the described methods



employ estimation of 𝑡𝑇↔𝐴𝑗 via calculating a weighted arithmetic mean, differing by only how
the weights are generated.
The weighted mean (WM) of the 𝑗-th row of the measurement matrix can be expressed as:

𝑊𝑀(𝑡𝑇↔𝐴𝑗|𝐴1∶𝑚) =

𝑚
∑
𝑖=1

(𝑤𝑗,𝑖 ⋅ 𝑡𝑇↔𝐴𝑗|𝐴𝑖)

𝑚
∑
𝑖=1

𝑤𝑗,𝑖

, (3)

where 𝑤𝑗,𝑖 are the non-negative weights corresponding to each of the measurement matrix
element 𝑡𝑇↔𝐴𝑗|𝐴𝑖. The special case where all the weights are equal, the solution simplifies to a
standard arithmetic mean:

𝐴𝑀(𝑡𝑇↔𝐴𝑗|𝐴1∶𝑚) =

𝑚
∑
𝑖=1

𝑡𝑇↔𝐴𝑗|𝐴𝑖

𝑚
, (4)

which will be discussed in the following Section.

3.1. Least Squares

In order to better describe the concept, we deconstruct the measurement matrix (2) to a set of 𝑛
row vectors:

𝑡𝑇↔𝐴1 = [𝑡𝑇↔𝐴1|𝐴1 … 𝑡𝑇↔𝐴1|𝐴𝑚]
⋮

𝑡𝑇↔𝐴𝑛 = [𝑡𝑇↔𝐴𝑛|𝐴1 … 𝑡𝑇↔𝐴𝑛|𝐴𝑚]
(5)

The problem of estimating the value of a constant using Least Squares (LS) is reduced to
finding the mean value of the individual elements of the input vector [12]. The method is
desirable because no additional information of the ToF estimates is needed and thus calculating
weights is not needed.

As stated above, the LS solution for estimating a constant simplifies to calculating the
arithmetic mean by applying (4) to (5):

̂𝑇𝐿𝑆 = [
𝑡𝑇↔𝐴1|𝐴1∶𝑚

⋮
𝑡𝑇↔𝐴𝑛|𝐴1∶𝑚

] , (6)

where ̂𝑇𝐿𝑆 is a vector containing 𝑛 final LS estimates of the ToF between the tag and the anchors.

3.2. Median

Like in the previous section, we adopt the vector notation of (5) to provide the solution of the
next method.

Then the vector of final ToF estimates can be found as the median values of each vector of (5)
as follows:



̂𝑇𝑀𝐸𝐷 = [
̃𝑡𝑇↔𝐴1|𝐴1∶𝑚

⋮
̃𝑡𝑇↔𝐴𝑛|𝐴1∶𝑚

] , (7)

where the tilde accent notes the mathematical operation of median, which does not require
extra information on measurements, while being a more robust estimator in presence of outliers
than LS.

3.3. Inverse Distance Weighting

The Inverse Distance Weighting (IDW) method was introduced by Shepard in [13], which was
devised as an interpolation function to produce a continuous surface from discrete data points.
Following the idea of Shepard, we take the liberty to rewrite the concept of IDW into the

context of the current paper:

𝑡𝑇↔𝐴𝑗 =

⎧
⎪⎪⎪

⎨
⎪⎪⎪
⎩

𝑚
∑
𝑖=1

(𝑡𝑇↔𝐴𝑗|𝐴𝑖 ⋅ 𝑑−1𝑗,𝑖 )

𝑚
∑
𝑖=1

𝑑−1𝑗,𝑖

, if 𝑑𝑗,𝑖 ≠ 0 for all 𝑖,

𝑡𝑇↔𝐴𝑗|𝐴1∶𝑚, if 𝑑𝑗,𝑖 = 0 for some 𝑖,

(8)

where
𝑑𝑗,𝑖 = |𝑡𝑇↔𝐴𝑗|𝐴𝑖 − 𝑡𝑇↔𝐴𝑗|𝐴1∶𝑚|. (9)

Equation (9) is the first-order distance function of 𝑡𝑇↔𝐴𝑗|𝐴𝑖. Since we are working in one
dimension, the value of the distance function 𝑑𝑗,𝑖 is calculated as the absolute value of the
difference of 𝑡𝑇↔𝐴𝑗|𝐴𝑖 and the arithmetic mean of row 𝑗.

The value of 𝑑𝑗,𝑖 is in turn used in the calculation of the first-order IDW estimate by (8), where
the order is specified by the magnitude of the negative exponent of 𝑑𝑗,𝑖. Larger exponent values
effectively give larger weight to ToF estimates which are closer to the arithmetic mean.

3.4. Distance Weighted Estimator

Dodonov and Dodonova introduced the Distance Weighted Estimator (DWE) in [14], which
provides a robust estimate of central tendency without the need of separately calculating a
mean value.

Adopting our notation to (9) of [14], we get the expression to calculate the DWE weights as
follows:

𝑤𝑗,𝑖 =
𝑚 − 1

𝑚
∑
𝑙=1

|𝑡𝑇↔𝐴𝑗|𝐴𝑖 − 𝑡𝑇↔𝐴𝑗|𝐴𝑙|
(10)



where each of the weights are calculated as the inverse mean distance of 𝑡𝑇↔𝐴𝑗|𝐴𝑖 and other
elements of row 𝑗. These weights are in turn used in (3), to provide the set of final ToF estimates
𝑡𝑇↔𝐴𝑗.

3.5. Weighted Least Squares 1

The solution to Weighted Least Squares (WLS) estimation reduces to weighting the measured
values with their corresponding noise variance, keeping in mind that the noise for each mea-
surement is considered zero-mean and independent [12].
Firstly, we consider the theoretical noise variance values as the basis for the weights to

calculate an estimate for the WLS1 method.
Considering the results of [6, 8], we can assume that active ranging (SS-TWR and AltDS-TWR,

respectively) performs at about 3.2 cm root-mean-square error (RMSE) and passive ranging of
AP-TWR in the range of 5.2 to 5.5 cm RMSE.

The RMSE values are presented in centimeters to reflect the final product of ranging, as
opposed to providing the RMSE in picoseconds for the ToF measurements. Both representations
can be used interchangeably, since the ToF time 𝑡𝑇 𝑜𝐹 and the distance value 𝑑 are related to
each other via the propagation speed 𝑐 (in this case, the speed of light) through the expression
𝑑 = 𝑐 ⋅ 𝑡𝑇 𝑜𝐹.

As the WLS solution employs weighting based on the noise variance, the WLS1 weights for
the measurement matrix can be written as

𝑤𝑗,𝑖 =

⎧
⎪

⎨
⎪
⎩

1
𝜎2𝑎

, for 𝑖 = 𝑗,

1
𝜎2𝑝

, for 𝑖 ≠ 𝑗,
(11)

where 𝜎2𝑎 is the variance of the active measurements, and 𝜎2𝑝 is the variance of the AP-TWR
passive measurements. The calculated weights 𝑤𝑗,𝑖 are in turn used in (3) for the calculation of
the final estimate.
The calculation of RMSE and standard deviation is somewhat similar, where the former is

calculated using the known true value and the latter employing the sample mean value [8].
Therefore when the true value is equal to the sample mean, the RMSE and standard deviation
values are also equal. Assuming the same data, but where the true value is not equal to the
sample mean, the RMSE value is higher than the standard deviation of the data set.

Therefore in the scope of this paper we assume the value of standard deviation for the passive
range estimates at 𝜎𝑝 = 5.5 cm, and for active estimates 𝜎𝑎 = 3.2 cm, inferred from the RMSE
results of previous papers.

3.6. Weighted Least Squares 2

Following the approach of weights calculated using the theoretical variances, we propose the
second method of weighted least squares (WLS2).



Firstly, we find each elements’ distance from their corresponding row mean of the ToF
measurement matrix 𝑇 by adopting (9). By doing so, we formulate a mean-shifted measurement
matrix 𝑇𝑆:

𝑇𝑆 = [
𝑑1,1 … 𝑑1,𝑚
⋮ ⋱ ⋮

𝑑𝑛,1 … 𝑑𝑛,𝑚
] . (12)

Since the newly formed 𝑇𝑆 is centered around its mean values, we can calculate column-wise
variances:

𝜎2𝑖 =

𝑛
∑
𝑗=1

(𝑑𝑗,𝑖 − 𝑑1∶𝑛,𝑖)2

𝑛
, (13)

where 𝑑1∶𝑛,𝑖 is the mean value of column 𝑖 of (12) and 𝜎2𝑖 are the calculated column-wise variances.
Then the according weights can be calculated as

𝑤𝑗,𝑖 =
1
𝜎2𝑖

, for all 𝑗. (14)

The weights calculated by this method are the same for each row of the measurement matrix,
changing only with each successive ranging sequence. Similarly to the previous section, the
resulting weights are then used in (3) for the final ranging estimates.

3.7. Weighted Least Squares 3

In this section, we propose a third method for Weighted Least Squares (WLS3), for which the
noise variance-based weights are also calculated for each row separately.

In order to calculate the final weights, the measurement matrix needs to be centered via (12)
and the column-wise variances calculated, similarly to the previous section. Then the row-wise
variances of 𝑇𝑆 need to be calculated as well:

𝜎2𝑗 =

𝑚
∑
𝑖=1

(𝑑𝑗,𝑖 − 𝑑𝑗,1∶𝑚)2

𝑚
, (15)

where 𝑑𝑗,1∶𝑚 is the mean value of row 𝑗, and 𝜎2𝑗 is the row-wise variance of the measurement
matrix. Following the calculation of 𝜎2𝑖 and 𝜎2𝑗 , we then combine them into 𝜎2𝑗,𝑖 by the following
expression:

𝜎2𝑗,𝑖 =
𝜎2𝑗 + 𝜎2𝑖

2
. (16)

Based on (16), we can then calculate the weights by

𝑤𝑗,𝑖 =
1
𝜎2𝑗,𝑖

, (17)

which are in turn used as weights in (3) for the final AP-TWR ranging estimates.
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Figure 2: Representation of the test room setup in XY-plane. Anchors are marked with red circles and
the test locations of the tag with green triangles.

4. Test Setup

In order to assess the performance of each of the previously specified methods, practical
experiments were conducted. In this section we describe the preliminaries for the experiments.

The tests were ran in a 7.2 m by 6 m university laboratory roomwith concrete-walls, furnished
with desks and computers. The UWB system used for experiments was the Eliko UWB RTLS
[15] consisting of 6 active-passive anchors and a single tag. The active and passive range
estimates were gathered via a laptop connected to the ranging engine of the Eliko UWB RTLS.

The active range estimates were attained using SS-TWR, and the passive estimates via the AP-
TWR passive method described in Section 2. The gathered estimates were post-processed using
a custom script written in R, implementing all the methods described in Section 3. Additionally,
the script also calculates various statistical parameters, including RMSE and standard deviation,
which are the basis for the results presented in Section 5. Apart from the proposed estimation
methods, no additional filtering or trimming was applied to the measurement matrix.

The true coordinates of the anchors and of the tag at various positions were measured with
a Leica Disto S910 laser distance meter [16]. In addition, the anchor-tag true distances were
also verified with the Leica Disto S910, in order to calculate some of the needed performance
parameters.
The data was gathered with a tag installed on a tripod at 5 arbitrarily chosen points in the

room, which are marked on Fig. 2 alongside the locations of the anchors; the anchors are

Table 1
Test setup: anchors (Ax) subjected to NLOS in the 5 test locations (Loc x).

Loc 1 Loc 2 Loc 3 Loc 4 Loc 5
A1, A2, A4, A5 A2, A4 A1, A2, A4, A5 ALL A3, A6



marked with red circles and the locations of the tag with green triangles.
In each location 3 separate tests were conducted: one line-of-sight (LOS) test and two separate

non-line-of-sight (NLOS) tests. The NLOS tests were conducted by disrupting the LOS between
anchors and a tag by either a 40 cm by 20 cm, 0.8 mm thick sheet of metal (NLOS1) or a human
body chest area (NLOS2), placed at a distance of about 5 cm from the tag. Note that for both
NLOS tests, the propagation paths to the same exact anchors were disrupted to have a fair
comparison of the different NLOS conditions. Table 1 gives the details of NLOS tests, i.e. which
anchors have NLOS propagation conditions at each of the test locations.
During each separate test, data from a minimum of 1200 separate ranging sequences were

collected. Considering that the setup consisted of AP-TWR 𝑚 = 6, 𝑘 = 0, this amounts to at a
minimum of 43200 raw range values across all the captured measurement matrices.

5. Experimental Results

The results of the experiments are given in Fig. 3, where the RMSE and standard deviation (SD)
values for each of the test locations is given, depending on the propagation conditions. Fig. 3 a,
b and c give the RMSE values for LOS, NLOS1 and NLOS2, respectively. Fig. 3 d, e, f give the
respective SD values for the same propagation conditions. Additionally, a zoomed-in region of
each of the sub-figures is given four location 4 since the traces can be placed quite densely.
Alongside the seven proposed methods (LS, Med, IDW, DWE, WLS1, WLS2, WLS3), the

performance of active-only (SS-TWR) and AP-TWR passive-only ranging estimates from the
same exact measurements is also given. They are separately pictured in order to give a baseline
comparison of the performance of the proposed methods.

It can be observed from Fig. 3 a - c that the RMSE of passive measurements is almost always
lower than the active-only method, with the exception of locations 1 and 2 in Fig. 3 a. On
the other hand, the results for SD show the opposite: active-only estimates outperform the
passive-only methods in every single test and location by a very slight margin. This is also in
line with the results attained in previous publications regarding AP-TWR [6, 7, 8].
Although in regards of SD, the proposed methods’ performance always places between the

active and passive-only methods, the RMSE values show that many of the proposed methods
provide better results than even the baseline better-performing passive-only estimates.

The average SD across all locations, depending on the method used, is shown as the bars on
Fig. 4. From these results we can again see that the active estimates provide the lowest SD,
while the passive estimates perform the least. The results from all three propagation condition
tests show that utilizing the MED, IDW or DWE methods provide comparable performance to
the most precise active-only estimates.

Across all locations the average RMSE values of LOS, NLOS1 and NLOS2 conditions depending
on the method are given in Fig. 4, pictured by the lines+markers. The following analysis focuses
on the RMSE improvements compared to a active-only SS-TWR method (Active method RMSE
of Fig. 4), which achieved an RMSE of 24.209 cm in LOS, 36.006 cm in NLOS1 and 37.123 cm in
NLOS2.

The WLS3 method provides the lowest RMSE of all the methods in LOS conditions at 20.742
cm (decrease of 14.3%), followed closely by IDW (20.785 cm, decrease of 14.14%) and DWE
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Figure 3: Results of experiments at each individual location. Parts a, b, c present the RMSE of the
proposed methods in LOS, NLOS1 and NLOS2 propagation conditions; parts d, e, f present the respective
standard deviation (SD) values. Lower is better for all of the figures, note the different scales on each
figure.

(20.795 cm, decrease of 14.10%), up to the least performing method of WLS2 (21.064 cm, decrease
of 13.00%). The results show that in LOS conditions all of the proposed methods perform
similarly, with a difference of 0.322 cm between the best and worst performing method.
NLOS1 conditions showed the best performing method to be MED at 29.135 cm RMSE

(decrease of 19.08%), followed by DWE at 29.169 cm (18.99% decrease) and IDW at 29.210 cm
(18.87% decrease), with the lowest performing method WLS1 at 30.727 cm (14.66% decrease). It
can be observed that in NLOS1 the absolute difference of the best and least performing methods,
at 1.592 cm, is larger than in LOS.
NLOS2 conditions produced similar results where MED achieved the best results at 32.183

cm (13.31% decrease), followed by DWE at 32.190 cm (13.29%) and IDW at 32.251 cm (13.12%)
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Figure 4: The average RMSE (lines+markers) and SD values (bars) for the proposed methods across all
locations, depending on the tested propagation conditions. Lower is better.

with WLS1 landing at the last place with 33.157 cm RMSE (decrease of 10.68%). Similar to the
previous result, the absolute difference of the methods is lower than NLOS1 but is still about 3
times as large as in LOS with 0.974 cm.
In terms of RMSE, the LS, MED, IDW and DWE methods show millimeter level differences

between each other in LOS and NLOS, providing essentially the same performance. Coupled
with the fact that MED, IDW and DWE offer comparable SD performance to active estimates, it
can be claimed that the MED, IDW and DWE methods are the best-suited measurement matrix
estimation methods.
Compared to results shown in previous papers reporting on AP-TWR [6, 7, 8], the attained

RMSE values were slightly higher than expected. This is partly due to the fact that earlier
papers ran only LOS tests, so naturally the added NLOS would provide degraded performance
due to the impairment of propagation conditions, but the reported LOS results showed slightly
lower performance as well.
This could be explained by some systematic errors introduced in the system. These errors

could be attributed to imperfect calibration of antenna delays, range bias (effect of signal strength
to the reported ranging value) [17], multipath propagation [18] or even errors originating from
the physical orientation of the devices in regards to each other [19].

6. Conclusion

The experiments validated that all of themethods decrease the ranging RMSE in LOS propagation
conditions, while also showing that NLOS propagation conditions do not break down the
methods but rather increase the performance in demanding propagation conditions.

Results also showed that the selection of the specificmethod is not so critical in LOS conditions,
as all the methods perform equivalently. The two tested NLOS conditions showed that in both,
absolute values and relative decrease of RMSE, are further increased by selecting the appropriate



method, meaning that the choice of methods becomes more crucial for real-life applications
experiencing mixed LOS/NLOS conditions.

In LOS, all the methods perform almost identically - achieving up to 14.3% lower RMSE when
using WLS3 method compared to SS-TWR. NLOS conditions showed that up to 19.08% decrease
of RMSE can be achieved compared to SS-TWR by employing MED to the measurement matrix,
whereas the LS, IDW and DWE methods’ performance lies within a few millimeters of it.

Comparing with the standard deviation of the best-performing SS-TWR active ranging, it
was observed that the MED, IDW and DWE achieve comparable results, implicating that the
precision of these methods is approximately on the same level. Meaning that these methods
offer no significant degradation of the precision when compared to the active-only ranging.

In conclusion, across the tested LOS, NLOS1 and NLOS2 propagation conditions the methods
MED, IDW and DWE showed similar SD, while providing considerably higher RMSE perfor-
mance compared to SS-TWR. Taking into account these results it can be claimed that either
one of the MED, IDW or DWE methods are sufficient for the AP-TWR measurement matrix
estimation, while showing that these methods are also robust in NLOS conditions.
For future work, new experiments could be conducted in larger and more complex en-

vironments with harsher multipath effects present. Moreover, additional locations and tag
orientations should be investigated to average out the device orientation errors and tests with
varying number of active-passive anchors (𝑚) should be conducted to see how it affects the
performance of the proposed methods.
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ABSTRACT This paper first presents a comprehensive analysis of Non-Line-of-Sight (NLoS) error
cases in the Ultra-Wideband (UWB) Active-Passive Two-Way Ranging (AP-TWR) protocol. Based on
this analysis, we then propose the Adaptive Extended Kalman Filter (A-EKF) positioning method,
utilizing variances calculated from AP-TWR range estimates, which are adapted based on the distance
and intermittency of the range estimates. The proposed method needs no training data, nor any additional
information about the environment the system is deployed in and does not yield any additional time delays.
Based on experiments conducted in an industrial environment, the results show that the proposed method
outperforms standard non-adaptive AP-TWR and active-only Single-Sided Two-Way Ranging (SS-TWR)
methods in both stationary and movement tests. The stationary tests show that on average the proposed
A-EKF method provides more than three times lower Root-Mean-Square-Error (RMSE) than the next best
method (AP-TWR) in 3D positioning, while SS-TWR consistently performs worse by about 0.4 m in the
z-axis. Additionally, the movement tests confirm the findings of the stationary tests and show that the
challenging propagation conditions of the testing environment cause maximum errors at about 4.5 m for
AP-TWR and SS-TWR, whereas the proposed A-EKF managed to mitigate these effects and reduce the
error by 9 times, resulting in a maximum error of 0.5 m.

INDEX TERMS A-EKF, AP-TWR, EKF, Position Estimation, SS-TWR, UWB

I. INTRODUCTION

ULTRA-WIDEBAND (UWB) is a term used for radio
communication that covers a bandwidth of over 500

MHz or 20% of the carrier center frequency. With the IEEE
802.15.4a-2007 amendment to the original IEEE 802.15.4-
2006 standard, additional physical layers were introduced,
which enabled precise ranging for UWB devices [1].

Utilizing UWB technology provides several benefits. The
first one is the reduced interference with other narrowband
wireless technologies thanks to the low transmission power
of the wideband signal [2]. Another benefit of UWB is
the nanosecond-range duration of the signal pulses, which
reduces the effect of multipath as the signals from multiple

propagation paths can be determined and filtered out accord-
ingly [3]. Additionally, the high temporal resolution allows
for centimeter-level ranging by utilizing Time of Flight (ToF)
estimation by various Two-Way Ranging methods or using
the Time Difference of Arrival (TDoA) method [4].

Like Bluetooth or WiFi, UWB also relies on the propa-
gation of Radio Frequency (RF) waves, allowing it to func-
tion effectively even in Non-Line-of-Sight (NLoS) situations,
although with diminished performance [2], [5]. In contrast,
indoor positioning systems based on light, vision, or infrared
technologies are unable to operate in these conditions [6].

To reduce the accuracy/precision penalties induced by
NLoS propagation conditions, numerous NLoS detection
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and/or mitigation methods have been proposed [7]. In the
literature, these strategies typically fall into three distinct but
not mutually exclusive categories which are briefly discussed
in the following paragraphs.

Firstly, channel statistics-based methods exploit the ad-
ditional information about the propagation channel itself.
These methods may use the various channel state parame-
ters directly supplied by UWB transceiver chips (i.e. Qorvo
DW1000 [8]) or the raw Channel Impulse Response (CIR)
values. The former provides quickly accessible values, while
the latter entails more time-consuming processes to extract
the CIR [9].

Krishnan et al. employed machine learning (ML) methods
(Multi-Layer Perceptron and Boosted Decision Trees) with
the DW1000 supplied parameters of first path power and
total received power to achieve a classification accuracy of
up to 87% [10]. Similarly, [11] utilized readily available
signal parameters reported by the DW1000 transceiver chip
and proposed classifiers based on Gaussian Distribution and
Generalized Gaussian Distribution models, outperforming
multiple state-of-the-art ML techniques. The authors of [12]
put forward a Neural Network model, which was trained
on distance measurements, the running standard deviation of
these measurements, and several received signal parameters.
The purpose was to derive weights for a weighted least
squares position estimator, aiming to minimize the impact
of NLoS. In addition to ML, various other methods have
been researched, such as fuzzy inference of NLoS parame-
ters combined with adaptive Kalman filtering [13], utilizing
logistic regression for NLoS detection [14], and devising a
power-performance metric based on the estimated first path
power and the total received power [15].

A sizable amount of research has been conducted by
using the raw CIR: NLoS detection via Capsule Networks
[16], proposing an NLoS-induced outlier-aware positioning
method based on multilayer perception [17], signal decom-
position by One-Dimensional Wavelet Packet Analysis in
conjunction with Convolutional Neural Networks (CNN)
[18], Transformer deep learning model [19], combining the
Multilayer Perceptron with CNN to reduce calculation com-
plexity [20], overcoming the problem of site-specific models
by conducting Long Short-Term Memory training to predict
NLoS error magnitude and variance of measurements [21],
to name a few of the latest. In addition to ML and deep
learning, other methods utilizing the raw CIR are explored:
NLoS detection using fuzzy comprehensive evaluation [22], a
weighted particle filter based on probability density functions
of Line-of-Sight (LoS)/NLoS correlation coefficients [23],
and adaptively selecting the optimal anchors based on the
channel quality indicators [24].

Although the methods based on raw CIR typically offer
higher accuracy than methods based on the readily available
channel parameters, they propose a drawback on the scalabil-
ity of a positioning system as the extraction of the raw CIR
values from the transceiver is a time-consuming process [9].

Moreover, employing ML models requires large amounts of
high-quality training data, which makes the data-gathering
process tedious, while the training and implementation of
models could turn out computationally expensive [20], [25].

Secondly, the position estimate-based category is with the
broadest reach, covering methods that use position estima-
tion residuals, redundancy of ranging estimates, environment
(geometrical and propagation) data, or time series of position
estimates.

In [26], Chen proposed the seminal Residual Weight-
ing (Rwgh) algorithm, in which the position estimates and
their residuals are calculated with every possible range es-
timate combination. The final position estimate is found as
a residual-weighted linear combination of the intermediate
position estimates. Jiao et al. improved on the work of Chen,
lowering the computational cost by introducing an iterative
approach to residual weighting [27]. Given N range esti-
mates, this method calculates position estimates and residuals
with N − 1 combinations, choosing the one with the lowest
average residual. It then selects the subsets until possible and
calculates the final weighted position estimate based. Even
though the computational complexity is reduced compared
to Chen’s algorithm, the method still requires in the order of
tens of intermediate position estimate calculations to provide
a final estimate.

Similar to the previous methods, [28] utilized the ranging
residuals to propose an iterative residual test to identify
and use only the detected LoS distances for positioning.
Excluding NLoS distances, particularly in situations where
multiple anchors are affected by the NLoS conditions, may
lead to the inadvertent dismissal of crucial data for accurate
positioning. In [29], the authors detected the presence of
NLoS from statistical parameters calculated from the ranging
residuals. While the general detection of Non-Line-of-Sight
(NLoS) presence in positioning demonstrated high accuracy,
discerning individual NLoS range estimates became more
challenging as the accuracy decreased.

In [30] the authors addressed NLoS-corrupted measure-
ments by detecting points of intersection with known ob-
stacles present in a room. Subsequently, they computed
correction terms based on these intersections to rectify the
inaccuracies caused by NLoS effects. Similarly, Silva et al.
utilized the geometric floor plan of the positioning environ-
ment, alongside information about the surrounding walls’
composition, to propose a through-the-wall ranging model
for positioning [31]. As this information is highly specific to
the positioning environment, the setup of such a positioning
system needs extra steps, such as acquiring floor plans or
site surveying and matching them to the specific refractive
indices of the walls of the positioning environment.

Thirdly, range-based methods utilize the time series of
ranging values to detect and mitigate NLoS-induced position
errors, for example by using the running variance of range
estimates or a known probability density function for Line
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of Sight (LoS)/NLoS detection [32]. Applying such meth-
ods requires a priori error distributions or introduces time
latency to the detection [22]. Furthermore, without additional
constraints, the running variance method could lead to false
classification if the tag is moving during the estimation
process [33]. Momtaz et al. proposed a statistical method of
detecting and eliminating the NLOS errors with lower com-
putational complexity and increased accuracy [34], allowing
for a more scalable solution than the previously mentioned
Rwgh algorithm. As a downside, this method requires a
specific online training phase, in which the noise term has to
be measured. In order to circumvent some of the restrictions
caused by extracting the CIR samples from the transceiver
chip, Barral et al. opted to use the received signal value in
conjunction with ranging data as features for multiple ML
techniques for LoS/NLoS classification [9].

A. CONTRIBUTIONS
The advent of the UWB Active-Passive Two-Way Ranging
(AP-TWR) protocol researched in [35], [36] opens up a
new way of providing robust positioning in the presence
of NLoS conditions. The following paragraphs outline the
contributions of this paper.

While previous studies have focused on the performance
of AP-TWR ranging, this paper goes further to examine how
AP-TWR range estimates affect positioning accuracy. The
proposed AP-TWR-based positioning method is validated
and benchmarked in a real industrial environment to assess
its performance.

The formulation of the proposed positioning method in-
volves a thorough analysis of different NLoS error cases
of AP-TWR, a novel contribution that has not been ex-
plored in the existing literature. Utilizing the redundant range
estimates of AP-TWR allows for the calculation of range
estimate noise variances, which is based on the previous
analysis representative of NLoS propagation conditions. The
noise variance is coupled with the proposed distance and
intermittency penalties and used as input parameters to an
Extended Kalman Filter (EKF) to provide a novel NLoS-
robust and accurate positioning method.

The uniqueness of the proposed method lies in its avoid-
ance of computationally expensive iterative NLoS detection
techniques, lack of reliance on channel statistics or CIR
information, independence from acquiring large datasets and
labeling for model training, retention of all ranging data by
not discarding any information, absence of latency issues
typically found in methods computing running parameters,
and the ability to operate without any knowledge about the
environment, such as the composition and placement of walls
or obstructions in a room. The proposed method stands out as
a scalable, relatively easy-to-implement, and accurate NLoS-
robust positioning solution, capable of efficiently adapting
to various environments and ensuring reliable performance
even in challenging propagation conditions.

T

Ai

tT,Ai_

tAi,T

tT↔Ai_

tAi,T’

tT,Ai’. 

Aj
tT↔Aj tAj,Ai tT↔Aj

tAi↔Aj.

tT↔Ai

FIGURE 1. The Active-Passive Two-Way Ranging protocol. Tag T starts the
ranging process by transmitting a packet, to which the active anchor Ai
responds, after which T finishes the ranging sequence with a final transmitted
packet. The passive anchor Aj listens to the active transmission in the air and
calculates its passive range estimate.

The rest of the paper is organized as follows: Section II
gives the theoretical background of the AP-TWR protocol,
Section III presents the effects of NLoS on the AP-TWR
range estimates and formulates the proposed method based
on it, Section IV describes the environment and the param-
eter values used in the experiments, Section V provides the
analysis of the results, and Section VI concludes this paper.

II. ACTIVE-PASSIVE TWO-WAY RANGING
The AP-TWR protocol packet exchange diagram is pictured
in Fig. 1, where the mobile device (tag T) starts the ranging
sequence by transmitting a ranging request packet. Upon
receiving that packet, the current active anchor Ai responds
after its processing time tAi,T , which T promptly receives
and records the round trip time interval tT,Ai. The final
ranging report packet sent by T is irrelevant from the stand-
point of producing time interval values; rather it is used to
communicate the tT,Ai values back to the anchors for final
range calculation. Meanwhile, the passive anchor Aj listens
to the packet exchange of T and Ai and records the time
interval between receiving T’s first packet and Ai’s response,
tAj,Ai.

The resulting values are used in calculating the AP-TWR
Time of Flight (ToF) estimates via:

tT↔Aj|Ai =





tT,Ai − tAi,T

2
, for i = j

tT,Ai + tAi,T

2
+ tAi↔Aj − tAj,Ai, for i ̸= j,

(1)
where the first part corresponds to the active ranging by
Single-Sided Two-Way Ranging (SS-TWR), and the second
part is used to calculate the passive range estimates, hence the
name AP-TWR. The resulting term tT↔Aj|Ai is the estimated
ToF between T and Aj, calculated with the information ac-
quired from listening to Ai’s active ranging. The ToF between
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Ai and Aj, tAi↔Aj , is considered known as the anchors
are part of a fixed infrastructure, with known coordinates.
Therefore tAi↔Aj can be measured by ranging between the
anchors or calculated theoretically.

The values of the active anchor index are in the range of
1 ≤ i ≤ m and the index for passive anchors is 1 ≤ j ≤
n, where the total number of additional passive-only anchors
is l = n − m, such that n ≥ m, meaning that the active
anchors act as passive anchors while they are not actively
transmitting.

The resulting ToF estimates are converted to range esti-
mates via the expression dj|i = c · tT↔Aj|Ai, where c is
the wave velocity in the propagation medium. In this case,
we assume the velocity to be the speed of light in vacuum
c ≈ 3 · 108 m/s, as UWB is based on radio-frequency elec-
tromagnetic waves. Designating k as the temporal measure
i.e. the ranging sequence number, we get the AP-TWR range
estimate measurement matrix at time step k as Td,k :

Td,k =



d1|1,k . . . d1|m,k

...
. . .

...
dn|1,k . . . dn|m,k


 . (2)

Previous studies [35], [36] have solely focused on evalu-
ating the performance of the AP-TWR, based on the ranging
Root-Mean-Square Error (RMSE). However, in this paper,
we extend the evaluation to include the precision of position
estimates as the primary consideration. Additionally, a novel
position estimation algorithm based on the EKF is proposed,
aiming to further enhance the performance. The specific
contributions of this paper were explained in more detail in
Section I.

III. PROPOSED METHOD
This section provides the theoretical background and formu-
lation of the proposed AP-TWR-based Adaptive Extended
Kalman Filter (A-EKF) positioning system. The following
subsections present the essential information about the ef-
fects of NLoS on AP-TWR range estimates, the mechanisms
for penalizing the inputs based on the distance and the
intermittency of the range estimates, and finally the theory
and the algorithm formulation of the proposed method.

A. EFFECT OF NLOS TO AP-TWR ESTIMATES
In order to quantify the effect of NLoS on AP-TWR es-
timates, (1) is analytically observed when arbitrary NLoS
one-way bias factors β are introduced into the equations,
depending on the severity of the NLoS case. Noting that
for the formulation of this specific AP-TWR NLoS analysis,
all other sources of errors are omitted. Table 1 presents the
seven cases of errors possible for the trio of T, Ai, and Aj.
The different NLoS propagation paths are viewed as separate
cases between the tag and active anchor (T ↔ Ai), the tag and
the passive anchor (T ↔ Aj), the active and passive anchors
(Ai ↔ Aj), and all possible combinations thereof. Each case
introduces a specific set of bias factors β to the propagation
times tT↔Ai, tT↔Aj , and tAi↔Aj .

In the context of Table 1, the variables with the hat (̂·) are
affected by the NLoS bias, whereas the equivalent variables
without the hat (·) are the true values, unaffected by the bias.
The fourth column presents the NLoS-affected term(s) of Eq.
(1), referenced to Fig. 1. The final two columns present the
net effect of NLoS on the active and passive range estimates
of AP-TWR, respectively.

The results of Table 1 show that in Cases 1, 4, 6, and 7,
the active range estimate is additively impaired by a factor
βT↔Ai due to the existing NLoS path between T and Ai.
Interestingly, the passive range estimates are unaffected by
the NLoS between T and Ai, as its bias term cancels out in
the calculation of the passive range estimates.

On the other hand, the passive range estimates are similarly
affected by NLoS in pairwise Cases 2 & 4, 3 & 6, and 5
& 7. Noting that an obstruction between Ai and Aj (Cases
3, 5, 6, 7) causes a negative βAi↔Aj NLoS term to emerge,
which could translate to an altogether negative NLoS bias in
the passive range estimates, as opposed to a strictly positive
NLoS bias for standard active ranging protocols [37], [38].

The effects of NLoS presented in Table 1 align with the
observed error cases for TDoA defined by Zandian and
Witkowski in [39], while also expanding on it by adding the
NLoS link between the active and passive anchor.

The presence of variable NLoS biases in the AP-TWR
estimates can be used to one’s advantage, as the rows of
(2) may contain estimates from many anchors with vari-
ous propagation conditions between them and the tag. This
translates into fluctuating range estimates in the rows of the
measurement matrix, the measure of which can be expressed
by the row variances σ2

j|1:m,k corresponding to each time step
k, expressed in matrix form:

Sk =
[
σ2
1|1:m,k σ2

2|1:m,k . . . σ2
n|1:m,k

]T
. (3)

Previous research [36] has shown that taking the medians
of the AP-TWR measurement matrix rows provides robust
range estimates for positioning, therefore we denote the final
range estimates of each time step k in matrix form as:

Nk =
[
d̃1|1:m,k d̃2|1:m,k . . . d̃n|1:m,k

]T
, (4)

where the tilde markers denote the mathematical operation
of median across each row d1|1:m,k . . . dn|1:m,k of (2). The
values of (4) act as the input to the EKF position estimation.

B. DISTANCE PENALTY
Research has shown that the accuracy of position estimation
may be impaired because the ranging error magnitude has
a distance-dependent component [7], [21]. However, some
results show that this relationship is not exactly linear [5].

As a way to give higher weights to shorter distances,
we propose a parametric exponential scaling coefficient
esc·d̃j|1:m,k , where the scaling constant is defined as sc =
ln sm
sd

. It is calculated via user-set parameters sm and sd such
that the exponential scaler provides a multiplier of sm at
distance sd.
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TABLE 1. The AP-TWR errors in various NLoS cases between the devices.

Case NLoS path Bias factor(s) Affected term in equations Calculation of t̂T↔Ai|Ai Calculation of t̂T↔Aj|Ai

1 T↔Ai βT↔Ai
t̂T,Ai = tT,Ai + 2βT↔Ai,
t̂Aj,Ai = tAj,Ai + βT↔Ai

tT↔Ai|Ai + βT↔Ai -

2 T↔Aj βT↔Aj t̂Aj,Ai = tAj,Ai − βT↔Aj - tT↔Aj|Ai + βT↔Aj

3 Ai↔Aj βAi↔Aj t̂Aj,Ai = tAj,Ai + βAi↔Aj - tT↔Aj|Ai − βAi↔Aj

4 T↔Ai,
T↔Aj

βT↔Ai,
βT↔Aj

t̂T,Ai = tT,Ai + 2βT↔Ai,
t̂Aj,Ai = tAj,Ai − βT↔Aj + βT↔Ai

tT↔Ai|Ai + βT↔Ai tT↔Aj|Ai + βT↔Aj

5 T↔Aj,
Ai↔Aj

βT↔Aj ,
βAi↔Aj

t̂Aj,Ai = tAj,Ai − βT↔Aj + βAi↔Aj - tT↔Aj|Ai − βAi↔Aj + βT↔Aj

6 T↔Ai,
Ai↔Aj

βT↔Ai,
βAi↔Aj

t̂T,Ai = tT,Ai + 2βT↔Ai,
t̂Aj,Ai = tAj,Ai + βAi↔Aj + βT↔Ai

tT↔Ai|Ai + βT↔Ai tT↔Aj|Ai − βAi↔Aj

7
T↔Ai,
T↔Aj,
Ai↔Aj

βT↔Ai,
βT↔Aj ,
βAi↔Aj

t̂T,Ai = tT,Ai + 2βT↔Ai,
t̂Aj,Ai = tAj,Ai + βAi↔Aj + βT↔Ai − βT↔Aj

tT↔Ai|Ai + βT↔Ai tT↔Aj|Ai − βAi↔Aj + βT↔Aj

The resulting values corresponding to each distance are
then expressed as the exponential scaling vector:

Bk =
[
esc·d̃1|1:m,k esc·d̃2|1:m,k . . . esc·d̃n|1:m,k

]T
, (5)

which is used to modify the measurement noise vector in
the AP-TWR A-EKF positioning scheme. The usage of the
scaling vector is further explained in Section III-D.

C. INTERMITTENCY PENALTY
The UWB range estimates can be impaired by intermittent
noise, multipath, and obstacles in the environment the system
is operating in [40]. As a result of some or many of the
aforementioned effects, the range estimates supplied by the
UWB system might arrive intermittently.

To establish the intermittency penalty method, we hypoth-
esize that the intermittent values are inherently less accurate,
as the intermittent values show that the system works on
the edge of its detection limit in the ranging process. We
set forward two parameters, a positive integer ls and a non-
negative real number lm, i.e., the time history length, and the
intermittency multiplier, respectively.

Representing all the historical ranging values as sets on
numbers with a cardinality of ls, corresponding to all anchors
in the system A1, A2, . . . , AN at time step k, we get:

A1,k = {dA1,k, dA1,k−1, . . . , dA1,k−ls+2, dA1,k−ls+1}
A2,k = {dA2,k, dA2,k−1, . . . , dA2,k−ls+2, dA2,k−ls+1}

...
AN,k = {dAN ,k, dAN ,k−1, . . . , dAN ,k−ls+2, dAN ,k−ls+1}.

The elements of the sets of time history values assume
the value of 0 in the case where a specific anchor does not
produce a range estimate at that time instance. So, at each
time instance, we get the number of missing range estimates
in the history window for each anchor:

rA1,k = |x1 ∈ A1,k : x1 = 0|
rA2,k = |x2 ∈ A2,k : x2 = 0|

...
rAN ,k = |xN ∈ AN,k : xN = 0|.

The resulting numbers of missing values are in turn used
to calculate the total set of intermittency penalty multipliers
for each anchor in the system, for each time step value k:

Lk =
{
1 + lm

ls
· rA1,k, . . . , 1 + lm

ls
· rAN ,k

}
. (6)

Similar to (5), the intermittency penalty multiplier vector
at time instance k is then formulated as:

Ck =
[
li1,k li2,k . . . lin,k

]T
, (7)

such that the values li1,k, li2,k, . . . , lin,k are elements of
the subset of Lk and i1, i2, . . . , in are the indices of the
subset elements, marking the specific anchors providing their
corresponding range estimates at time instance k.

Since only the intermittency penalty magnitude and not
the input positioning data is dependent on time series history,
no extra time-domain latency is introduced to the positioning
process.

D. EXTENDED KALMAN FILTER
The literature encompasses a wide range of position esti-
mation algorithms, spanning various Linear Least Squares
(LLS), Nonlinear Least Squares (NLS), and multiple
Bayesian Filter approaches, to name a few [41]. Among these
methods, the EKF has demonstrated excellent performance in
LoS scenarios while outperforming other methods in NLoS
conditions, on par with the performance of the Unscented
Kalman Filter (UKF) [42]. Furthermore, the EKF exhibits
lower complexity, resulting in calculation times that are more
than three times shorter than those of the UKF [39]. Consid-
ering these factors, the EKF was selected as the foundation
for the method proposed in this paper.

Furthermore, in the scope of this paper, a single-model
approach is utilized due to the absence of information re-
garding whether the tag is moving or stationary. However,
incorporating sensors that provide additional information on
the tag’s movement/stationary state could enable adopting
a multi-model approach. For instance, the switch to a zero-
velocity model could be considered for cases where the tag is
detected to be stationary [43].

Following previous works [21], [44], we expand the posi-
tion, velocity, and acceleration model of EKF to three dimen-
sions (3D). We do so by expressing the corresponding values
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at each time step as Xk, and tying them with information
from the previous time step k − 1 using the appropriate
kinematics equations:

Xk =




xk

yk
zk
vxk
vyk
vzk
axk
ayk
azk




=




xk−1 + Ts · vxk−1 +
T 2
s

2 axk−1 +
T 3
s

6 wx
k−1

yk−1 + Ts · vyk−1 +
T 2
s

2 ayk−1 +
T 3
s

6 wy
k−1

zk−1 + Ts · vzk−1 +
T 2
s

2 azk−1 +
T 3
s

6 wz
k−1

vxk−1 + Ts · axk−1 +
T 2
s

2 wx
k−1

vyk−1 + Ts · ayk−1 +
T 2
s

2 wy
k−1

vzk−1 + Ts · azk−1 +
T 2
s

2 wz
k−1

axk−1 + Ts · wx
k−1

ayk−1 + Ts · wy
k−1

azk−1 + Ts · wz
k−1




,

(8)
where at time step k the coordinates, velocities, and ac-
celeration values for each of the three axes are defined
as

{
xk yk zk

}
,
{
vxk vyk vzk

}
, and

{
axk ayk azk

}
, re-

spectively. The kinematics equations and sampling time Ts

are used to express the dependency of values at time step k
from values at k − 1. The last terms of each row represent
the position (T 3

s /6)wk−1, velocity (T 2
s /2)wk−1, and accel-

eration (Ts · wk−1) noise of the model, respectively.
The process noise can be rewritten as a vector wk−1 =[

wx
k−1 wy

k−1 wz
k−1

]T
with a covariance matrix Qk−1 =

diag(σ2
jx, σ

2
jy, σ

2
jz). Therefore, the state vector (8) can be

expressed as a series of matrix calculations, such that:

Xk = AXk−1 +Gwk−1, (9)

where matrix A is the state transition matrix and is written
as:

A =




1 0 0 Ts 0 0
T 2
s

2 0 0

0 1 0 0 Ts 0 0
T 2
s

2 0

0 0 1 0 0 Ts 0 0
T 2
s

2
0 0 0 1 0 0 Ts 0 0
0 0 0 0 1 0 0 Ts 0
0 0 0 0 0 1 0 0 Ts

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1




, (10)

and G represents the noise transition matrix as:

G =




T 3
s

6 0 0

0
T 3
s

6 0

0 0
T 3
s

6
T 2
s

2 0 0

0
T 2
s

2 0

0 0
T 2
s

2
Ts 0 0
0 Ts 0
0 0 Ts




. (11)

The AP-TWR range estimates zj,k are placed in
the observation/measurement vector Zk, which con-
sists of the sum of the true distance vector Dk =

[
d1,k d2,k . . . dn,k

]T
and the observation noise vector

Vk =
[
v1,k v2,k . . . vn,k

]T
. The latter of which has a

covariance matrix of Rk = diag(σ2
d1,k

, σ2
d2,k

, . . . , σ2
dn,k

) :

Zk =




z1,k
z2,k

...
zn,k


 =




d1,k + v1,k
d2,k + v2,k

...
dn,k + vn,k


 = Dk+Vk = HkXk+Vk.

(12)
The vector Dk can be rewritten in the form of circle equa-

tions, where the centers are defined by the anchor coordinates{
xj yj zj

}
:

Dk =




√
(xk − x1)2 + (yk − y1)2 + (zk − z1)2√
(xk − x2)2 + (yk − y2)2 + (zk − z2)2

...√
(xk − xn)2 + (yk − yn)2 + (zk − zn)2


 . (13)

Because the resulting equations are nonlinear, the first-
order Taylor expansion is utilized for linearization, to pro-
duce the Jacobian matrix Hk :

Hk =




∂d1,k

∂xk

∂d1,k

∂yk

∂d1,k

∂zk
0 0 0 0 0 0

∂d2,k

∂xk

∂d2,k

∂yk

∂d2,k

∂zk
0 0 0 0 0 0
...

∂dn,k

∂xk

∂dn,k

∂yk

∂dn,k

∂zk
0 0 0 0 0 0



,

(14)
such that the partial derivatives are calculated at each time
step k as:

∂dj,k
∂xk

=
xk − xj√

(xk − xj)2 + (yk − yj)2 + (zk − zj)2
(15a)

∂dj,k
∂yk

=
yk − yj√

(xk − xj)2 + (yk − yj)2 + (zk − zj)2
(15b)

∂dj,k
∂zk

=
zk − zj√

(xk − xj)2 + (yk − yj)2 + (zk − zj)2
. (15c)

E. PROPOSED ADAPTIVE EKF METHOD
The proposed positioning method is described in the al-
gorithm’s pseudocode in Alg. 1, which consists of three
distinct phases: AP-TWR ranging, EKF prediction, and EKF
correction. The algorithm is also visualized as a flowchart in
Fig. 2.

As a first step, the EKF initial state and state covariance
matrices need to be initialized; this part is described in more
detail in Section IV. After initialization, the first phase is
launched, where the AP-TWR measurement matrix is ac-
quired. Since the coordinate is calculated for three axes, a
minimum of four input range estimates is needed. Otherwise,
the position estimation process is skipped for this time step.

When the number of columns of the measurement matrix
is larger than one i.e., m > 1, the row medians (4) and
variances (3) are calculated. In the other case, the measure-
ment matrix is directly taken as the observation vector and an
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Algorithm 1 EKF positioning for AP-TWR protocol
Input: Td,k ∈ Rn×m, {sd, σ2

d, σ
2
jx, σ

2
jy, σ

2
jz} ∈ R>0,

{sm, lm} ∈ R≥0, ls ∈ Z>0

Output: X̂k

Initialize: X̂0, P0

1: for k = 1, 2, . . . ,∞ do
AP-TWR ranging

2: if n < 4 then ▷ Less than 4 distances in input
3: skip
4: end if
5: if m > 1 then
6: Zk = Nk ▷ Observation vector
7: Calculate Sk ▷ Row variances
8: else
9: Zk = Td,k

10: Sk =
[
σ2
d

×n· · · · · ·
]T

▷ Assign default variance
11: end if
12: Calculate Bk ▷ Distance penalty
13: Calculate Ck ▷ Intermittency penalty
14: Rk = diag(Sk ⊙Bk ⊙Ck) ▷ Hadamard product

EKF Prediction
15: X̂−

k = AX̂k−1 ▷ Predict state
16: P−

k = APk−1A
T +GQk−1G

T ▷ Predict state cov.
EKF Correction

17: Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)

−1 ▷ Kalman gain
18: X̂k = X̂−

k +Kk(Zk −D−
k ) ▷ Correct state estimate

19: Pk = P−
k −KkHkP

−
k ▷ Correct state cov.

20: return X̂k, Pk

21: end for

appropriately-sized row variance vector Sk is constructed by
repeating a default observation noise variance, σ2

d. Then the
distance and intermittency penalty vectors are calculated, and
the observation covariance matrix Rk is formed as a diagonal
matrix composed of the Hadamard product of vectors Sk,
Bk, and Ck.

In the following phase, the state and its covariance matri-
ces are predicted, noting that the predicted values are marked
with a "minus" superscript. Finally, the Kalman gain is com-
puted and used to correct the state estimate and covariance
providing a position estimate for that time step.

We adopt the naming convention used in previous studies
[45], [46] that refer to the Kalman Filter as adaptive when the
covariance matrices Q and R are dynamically modified. Ac-
cordingly, we introduce our approach as the Active-Passive
Two-Way Ranging Adaptive Extended Kalman Filter (AP-
TWR A-EKF) positioning method.

IV. EXPERIMENTAL SETUP
This section provides an overview of the experiments to
validate the proposed AP-TWR A-EKF positioning method.

The experiments were conducted using the AP-TWR pro-
tocol implemented in the Eliko UWB RTLS system [47],
which is based on the Qorvo DW1000 UWB transceiver chip

FIGURE 2. The flowchart of the proposed AP-TWR A-EKF method.

[8]. The true coordinates of the anchors’ and tag’s locations
were surveyed using the Leica DISTO S910 laser distance
meter, which provides three-dimensional coordinates [48].

The Eliko UWB RTLS was deployed in an industrial
environment, at the premises of Krah Pipes OÜ [49] which
specializes in producing large thermoplastic pipes. The fac-
tory premises were selected for conducting the experiments
as they provide challenging conditions for the positioning
system and the proposed method. These conditions include
1) restrictions on the placement of the anchors: most of the
anchors have to be mounted near the ceiling, thus the tag
is almost always positioned outside the 3D convex hull of
the anchors; and 2) the presence of large metal and concrete
objects obstructing the propagation path, etc.

The factory environment of the experiments can be seen
in Fig. 3 where the Leica Disto S910 is marked in cyan, the
two visible anchors in red, and the tag in dark blue color.
Additionally, an industrial crane is mounted on rails on the
ceiling, but it cannot be seen clearly: only the hook block of
the crane is visible in the upper center part of the photo. The
Leica DISTO S910 was installed on a concrete mezzanine
floor, with a height of about 4.5 meters from the ground floor,
such that it could provide the tag and anchor’s true location
across the whole area. The locations of the anchors, measured
with the Leica DISTO S910, are given in Table 2.

The first set of tests was conducted with a stationary tag,
mounted on a tripod, at 30 separate test points across the
factory. The locations of the test points (TP), anchors (A),
and the Leica DISTO S910 can be seen in Fig. 4. At each of
the 30 test points the AP-TWR range estimates were captured
for 30 seconds, using a tag with an update rate of 10 Hz,
providing data from approximately 300 ranging sequences.

VOLUME X, 2023 7
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FIGURE 3. Setup for the movement tests in the industrial environment. Visible anchors A1 and A6 are circled in red, the Leica DISTO S910 in cyan, and the
tripod-mounted tag on the shelf trolley in dark blue. The tag is moved in reference to the lines on the factory floor.

TABLE 2. The coordinates of the anchors used in the experiments.

Anchor x (m) y (m) z (m)
A1 0.17 -0.05 4.50
A2 47.52 -6.67 10.5
A3 29.63 0.10 4.50
A4 23.62 10.37 10.05
A5 41.59 4.28 9.98
A6 17.65 0.51 7.50
A7 47.52 14.66 10.68
A8 11.32 4.46 9.99

The second set of experiments was conducted to validate
the results of the stationary tests. The experiment was per-
formed with a moving tag which was mounted on a tripod,
attached to a shelf trolley. The tag was moved throughout
the factory with reference to the printed lines on the floor,
where the critical points, i.e. turning points, are previously
surveyed to provide a reference true track. The shelf trolley
and the reference lines are also visible in Fig. 3. The data was
captured throughout the movement process for 99 seconds,
resulting in data of 990 separate ranging sequences.

The parameter values of the AP-TWR A-EKF used in the
experiments are given in Table 3. The Eliko UWB RTLS was
configured such that the maximum number of active anchors
mmax of AP-TWR protocol is 6. Although the intermittency
and distance penalty parameters were chosen heuristically, it
is likely that the chosen values are sub-optimal, not providing
the best achievable positioning performance for the proposed

method. Finding the optimal parameter values could be con-
sidered in future work.

TABLE 3. The parameters for the proposed AP-TWR A-EKF positioning
method used in the experiments.

Parameter Value
mmax 6
sd 100 m
ls 6
lm 100
σ2
d 0.01 m2

σ2
jx, σ

2
jy , σ

2
jz 0.01 m2/s6

Ts from tag clock
x0, y0, z0 from true position
vx0 , v

y
0 , v

z
0 0 m/s

ax0 , a
y
0 , a

z
0 0 m/s2

P0 I9

The default observation noise variance σ2
d and the process

noise covariance values of Qk−1 are inferred from [21]. The
sampling interval Ts was extracted from the tag’s internal
clock during each ranging sequence.

The very first step of the EKF process requires initializing
the values of the initial state vector X0 and the state covari-
ance matrix P0. The initial coordinates

{
x0 y0 z0

}
of the

state vector are given as the true coordinate measured by the
DISTO S910 for all of the tested EKF variants, which are
discussed in the following paragraphs. This is done to give
all the methods the same initial conditions and to eliminate
the additional errors from converging to the correct location
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FIGURE 4. The test setup plan. Test point locations are marked with numbered "TP" markers in dark blue, anchor locations with numbered "A" markers in red, and
the location of the Leica DISTO S910 laser distance meter is marked with a cyan circle.

when the initial position is set to the coordinate origin, for
example. The initial speed and acceleration values for each
axis are set to zero. The initial state covariance matrix P0 is
set as a 9-by-9 identity matrix, corresponding to the size of
the state vector.

The proposed A-EKF positioning method is compared to
the baseline EKF methods, accordingly using standard AP-
TWR range estimates (4) and SS-TWR active-only range
estimates as input. The exact same dataset is utilized for all
of the comapred methods, as both the SS-TWR and AP-TWR
range estimates are inherently present in it, making the results
of different methods directly comparable. The initial state,
initial covariance, and Qk−1 matrix values are the same as
stated in Table 3, whereas the diagonal of the appropriately-
sized Rk matrix is filled with the default variance σ2

d values.
The data acquisition was performed via a custom Python

script that interfaces with the Eliko UWB RTLS server,
extracts the required UWB range estimate packets, and saves
them to a text file. Then a custom script written in R was
used to parse and process the data, as well as to calculate
the range estimates and the metrics for all three methods.
Although this specific implementation provides the results by
post-processing the range estimates, the proposed system is
able to work in real-time applications.

The comprehensive dataset with supplemental materials
and detailed explanations is uploaded to the IEEE Dataport
repository and can be found in [50].

V. RESULTS
This section provides the results of the stationary and moving
experiments and the analysis thereof.

A. STATIONARY TESTS
The results of the stationary experiments are given in Fig. 5,
where the 2D and 3D Root-Mean-Square-Error (RMSE) of
the SS-TWR, standard AP-TWR EKF, and the proposed A-

EKF positioning method are given across all of the 30 test
points.

Firstly, focusing on the 2D results, it can be seen that
for most cases all of the tested methods provide comparable
performance at approximately 0.15 m RMSE. The SS-TWR
EKF shows a more uniform performance across the test
points, with an exception at TP1 and TP8, where the 2D
RMSE is significantly higher than usual, obtaining values of
0.49 m and 1.97 m, respectively. The higher RMSE of TP8 is
a result of the blocking of the LoS of the tag and A1, A6 due
to large pipe mandrels made of metal, visible in the upper-
left side of Fig. 3, while in TP1, the direct propagation path
to anchor A7 is obstructed by the mezzanine floor.

The differences for the standard AP-TWR EKF are more
diverse, as in test points 1, 3, 5, 8, 9, and 29 the 2D RMSE
obtains significantly higher values than normal, ranging from
0.53 m (TP1) up to 4.98 m (TP3). Although the reasons
are not as evident as for SS-TWR EKF, the analysis pre-
sented in Table 1 suggests that AP-TWR range estimates
are impaired because of the compound NLoS effects of
different propagation paths encountered during each ranging
sequence. The effects could be a result of a combination
of the aforementioned pipe mandrels, the overhead crane
blocking propagation paths between anchors, all of the assets
in the factory, etc.

As both, the standard AP-TWR and SS-TWR, methods
do not provide the EKF with any additional information
on the measurement noise that may be present, the input
distances are treated as equal and the distances with larger
error contribute to an increase in the positioning error.

The proposed AP-TWR A-EKF positioning method, on
the other hand, is robust against the adverse propagation
conditions present in the industrial environment. The pro-
posed method typically performs at a similar or lower error
level than the baseline methods, whereas the largest differ-
ences come into play at the previously mentioned high error
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FIGURE 5. The 2D and 3D RMSE results across all the stationary test points.

test points of the baselines. The following analysis gives
an overview of the behavior of A-EKF compared to other
methods in the most significant test points.

At the high-error test points 1, 3, 5, 8, 9, and 29 of AP-
TWR, the proposed A-EKF method reduces the RMSE re-
spectively by 0.387, 4.902, 2.370, 1.617, 0.904, and 0.501 m,
providing a large reduction in the absolute values of errors in
every one of the high error test points. One minor drawback
can be identified at test point 25, where the proposed method
provides slightly lower performance than the baseline AP-
TWR, with according RMSE of 0.445 m and 0.220 m. In
terms of 2D RMSE, the proposed method performs better
than AP-TWR in 18 of the 30 test points.

Comparing the proposed method to the SS-TWR in terms
of 2D RMSE, it can be observed that the errors at TP1 and
TP8 are reduced by 0.343 m and 1.863 m, correspondingly.
Even though the proposed method provides slightly higher
2D errors at TP5 and TP25, the opposite is true for the
3D case where the A-EKF provides slightly better RMSE
performance than SS-TWR. In conclusion, the proposed
method provides a lower RMSE than SS-TWR at 17 of the
30 test points.

Although the test points show rather similar trends in the
3D RMSE, we see that in typical cases not involving the
large error test points, the proposed method alongside the

AP-TWR provides consistently about 0.4 m lower RMSE.
All of the high error test points 1, 3, 5, 8, 9, and 29 of

AP-TWR are again subsequently reduced by 0.597, 4.890,
2.378, 5.117, 1.565, and 0.340 m using the proposed method.
Comparing the 3D results, it is evident that the proposed A-
EKF method provides a reduction in RMSE at half of the test
points when compared to AP-TWR, including the previously
mentioned points where the error magnitude was reduced
significantly.

Similarly, the high error points 8 and 14 of SS-TWR are
also mitigated by the proposed method, which reduces 3D
RMSE by 5.074 and 0.763 m, correspondingly. Moreover,
the A-EKF outperformed the SS-TWR positioning in 29 out
of the 30 test points, providing moderately higher RMSE at
only TP9.

On average, the tested methods achieved the following
RMSE in 2D positioning: AP-TWR 0.492 m, SS-TWR 0.238
m, and A-EKF 0.149 m, meaning that the proposed method
achieved almost 1.6 times better performance in 2D as the
next best method, the SS-TWR. The 3D results showed the
average RMSE of the methods to be AP-TWR 0.693 m,
SS-TWR 0.765 m, and A-EKF 0.224 m, showing that the
proposed method achieved over 3 times lower RMSE than
the next best method i.e, AP-TWR.
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FIGURE 6. The movement paths of the second set of tests. The upper figure displays the tested methods’ x and y coordinates, while the lower figure displays the
z-coordinate across the ranging sequences. The critical points of the true movement path are marked with consecutive purple dots noted as MP on the respective
figures. Note that on the z-coordinate plot, the movement path critical points are marked approximately in regards to the sequence number, as the shelf trolley
needed to be stopped and its direction adjusted for the next segment of the movement.

B. MOVEMENT TESTS

The experiments with a moving tag were conducted to vali-
date the results achieved by the stationary tests to show that
the initialization of the methods does not affect the position
estimates. Due to the inherent requirement of knowing the
true coordinate of the tag at each time step, the calculation of
objective error metrics becomes infeasible as the necessary
devices to acquire an accurate time series reference track
were unfortunately unavailable to the authors. As a conse-
quence, the resulting analysis should be approached with
caution as it solely presents the visual movement paths of
the tested methods without calculating objective performance
parameters in regards to the true movement track.

Fig. 6 presents the results of the movement tests, which
were described in detail in Section IV. Noting that although

the x-y coordinate plot is zoomed in for clarity such that A2

is not visible, the anchor still took part in the experiments. To
facilitate the presentation of the 3D data, it was partitioned
into two distinct graphs: a two-dimensional representation
depicting the x-y plane of the factory floor, and a depiction
of the z-coordinate variation corresponding to the ranging
sequence number.

The previously surveyed critical movement points are
marked with numbered purple dots (MP), connected by pur-
ple lines to indicate the true track of the movement. The ap-
proximate locations of arrival at the critical points are marked
with corresponding purple dots in the z-coordinate graph.
The locations on the z-coordinate figure are approximate
because at each critical point, the shelf trolley was stopped to
re-position it for the next section of the movement, so parts of
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the plots also correspond to brief stationary moments during
the movement.

The movement traces in Fig. 6 support the results achieved
in the stationary test, where the proposed A-EKF and the
standard AP-TWR method consistently provide more accu-
rate results in the z-axis, as was evident in the 3D RMSE
graphs in Fig. 5.

In the first segment of the movement, all of the methods
show slightly higher deviation from the true track, especially
in the z-axis. This increased noise can be explained by the
presence of the mezzanine floor on the right side, since in the
first segment the tag is moved in parallel and almost under
the mezzanine floor, obstructing the LoS paths to anchors 2,
5, and 7.

The next 3 movement segments show rather similar per-
formance for all of the methods, keeping in mind that the
SS-TWR method consistently shows about 0.5 m lower z-
coordinate value compared to the true track, than other meth-
ods.

The final movement segment is impaired by the same pipe
mandrels discussed in the previous section, as can be seen by
the large deviations from the true track of the SS-TWR and
AP-TWR methods. These fluctuations achieve a maximum
of about 4.5 m in the x-y plane and about 1 m in the z-axis,
whereas the proposed A-EKF positioning method deviates by
a maximum of 0.5 m in both the x-y plane and the z-axis,
reducing the maximum errors by about 9 times.

VI. CONCLUSION
This paper presented a comprehensive overview and analysis
of the possible NLoS error cases that may be encountered
with the usage of the UWB AP-TWR protocol. This analysis
was the basis for the proposed A-EKF method, which was ex-
perimentally tested in an industrial environment and bench-
marked against EKF position estimators based on active-only
SS-TWR and standard AP-TWR range estimates. The pro-
posed method can be used in real-time applications and does
not require any additional information on the environment,
signal properties, error models, statistics, or training data, or
cause any additional time delays in the position estimation
process.

Although in 2D the tested methods typically operated with
the same performance, a part of the test points provided
unfavorable propagation conditions for the UWB system,
inducing large errors for standard AP-TWR (maximum about
5 m error) and SS-TWR (maximum about 2 m error), which
the proposed A-EKF method mitigated, reducing errors with
a maximal of less than 0.5 m. On average, the A-EKF
provided almost 1.6 times lower RMSE that the next best i.e.,
the SS-TWR positioning method.

Similar trends were apparent in the 3D RMSE results as
well, with the exception that the SS-TWR method provided
consistently about 0.4 m inferior results than the other meth-
ods. The large errors of some test points are also present in
the 3D results, with a maximum of about 5.4 m for both the
SS-TWR and AP-TWR methods, while the A-EKF provided

a maximum error of only 0.9 m. Across all of the test points,
the average RMSE of the proposed method was more than 3
times lower than the next method, AP-TWR.

The movement tests confirmed the validity of A-EKF
stationary tests by showing that the largest errors of AP-TWR
and SS-TWR, caused by the presence of various assets in
the factory, are reduced ninefold. Both sets of experiments
showed the robustness of the proposed A-EKF positioning
method with its ability to drastically reduce large errors
caused by the propagation conditions.

While the current study has demonstrated the effectiveness
of the A-EKF method, further investigation is warranted
to identify and determine the optimal parameters for this
approach. In-depth analyses and experimentations should
be conducted to explore the impact of different parameter
configurations on the method’s performance, accuracy, and
robustness. This exploration will contribute to refining the
A-EKF algorithm.

The current paper has presented an overview of AP-TWR
NLoS error cases. However, a more comprehensive and de-
tailed analysis is required to identify and characterize spe-
cific NLoS error scenarios. In-depth investigations should be
conducted to explore the possibilities of developing strategies
to detect and mitigate these specific NLoS cases effectively.
This analysis should encompass a broader range of envi-
ronmental conditions, and diverse deployment scenarios to
enhance the understanding and mitigation of AP-TWR NLoS
errors.
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Appendix 5
This Appendix presents the derivation of the rating system for ToF estimation protocolspresented in Section 2.2. The analyzed ToF estimation protocols are given in Fig. 16, wherethe packet exchange procedure of OWR, SS-TWR, SDS-TWR, AltDS-TWR, and ADS-TWRToF estimation protocols are presented, based on the initiator of the ranging process.For the sake of brevity, the visual representation of the protocols depicts a single A, but inactuality, the total number of anchors,N, is 3. The dotted line is indicative of the additionaldata transfer packet, which is needed in some local/central positioning cases, as is notedin Tab. 2.The overall rating system of Tab. 2 was devised such that the following classes wereseparately rated: the initiator of the ranging process, the number of time interval valuesneeded to transmit, the inclusion of a robustness penalty, and the total number of packetsneeded to transmit. Each class was assigned a maximum number of points that can beachieved, which were uniformly distributed among the possible options in that class, suchthat the best gets the maximum points, while the worst gets zero. The sum of the scoresachieved in individual classes gives the final score.The ranging sequence initiator was assigned a maximum of 2 points, such that a tag-initiated ranging sequence gets 2 points, while the anchor-initiated ranging gets zero. Thereasoning behind this choice is explained in Section 2.2.6, as the Qorvo DW1000 UWBtransceiver consumes the most energy in the receive mode, contributing to the largestpart of the energy consumption of a tag.The total number of packets sent during a ranging sequence was also assigned a maxi-mum of 2 points, as this dictates the number of transmissions, therefore the time spent inthe nextmost energy-consuming state - transmitmode. Moreover, the air time occupancyof the protocol is also dependent on the number of transmissions. Therefore, transmit-ting only a total of 1 packet per ranging sequence results in a rating of 2, while transmitting
2N +2 packets gives a rating of zero.The robustness penalty was given a maximum of 0.5 points, such that not having thepenalty bolstered 0.5 points while having it resulted in 0. Similarly, the number of timeinterval values needed to transmit over the air resulted in a 0.5-pointmaximum, such thattransmitting a single value over the air was awarded 0.5 points, while transmission of 2Nvalues resulted in 0. The lower weight of this parameter was chosen, as [70] suggeststhat the payload size, although not the dominant factor, still contributes to the powerconsumption of a tag.
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Figure 16: Visual representation of ToF estimation protocol packet exchange process, based on the
initiator of the ranging sequence. The visuals depict three separate anchors as a single A.
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