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Annotatsioon

Kaesolev to0 kasitleb lUhiajalist sademete prognoosimist stivanarvivorgu meetodiga.
To6 eesmargiks oli luua punktmddtmiste andmetega sademete kvalitatiivse prognoosi
mudeli prototiup kasutades LSTM slvanarvivorku.

Toos kasutati Tallinn-Harku aeroloogiajaama tunnipdhiseid andmeid aasta 2011
algusest aasta 2023 6puni. Andmetes olid esindatud aeg, sademed, tuul,
6hutemperatuur, 6huniiskus, 6hurdhk ja pilved. Andmed puhastati, standardiseeriti,
ning koostati libiseva aknaga 15 tunnised valimid, kusjuures 12 tundi on kdiki
parameetreid sisaldavad mineviku andmed, ning 3 tundi on prognoositavad sademe
klassi (sajab/ei saja) vaartused. LSTM mudeli hlperparameetrite optimeerimiseks
rakendati Optuna  teeki. Optimeeritud mudeli hindamiseks kasutati
tuvastustoendosust (POD), valehairete osakaalu (FAR) ning oOiglast tabamismaara
(ETS). Mudeli meetrikaid vorreldi pusivusprognoosiga ning meetrikate halvenemist
vorreldi teiste masinéppe mudelitega (ConvLSTM, PredRNN ning PredRNN++).

Tulemused naitasid, et loodud prototulp lisas pusivusprognoosile tagasihoidlikku,
kuid pidevat vaartust igal ajasammul. Samuti tuli valja, et LSTM tuupi mudelite
meetrikate vaartused halvenesid reeglina aeglasemalt, kui keerulisemad PredRNN
tulpi mudelite omad, erandiks oli kdesoleva t66 LSTM mudeli FAR, mis halvenes
kiiremini, kui PredRNN++ mudelil. Parima mudeli meetrikate vaartused 1. tunnil olid
POD =0,70, FAR = 0,30 ning ETS = 0,49.

Arutelus pakutakse lisaks ideid LSTM prognoosimudeli voimalikuks parandamiseks.



Abstract

This thesis addresses precipitation nowcasting using deep-neural network methods.
The objective was to develop a prototype of a qualitative precipitation nowcasting
model using an LSTM deep neural network relying mainly on in situ measurements.

Hourly data from the Tallinn-Harku aerological station covering the period from the
beginning of 2011 to the end of 2023 was used in the study. The dataset included time,
precipitation, wind, air temperature, relative humidity, air pressure, and clouds. The
data was cleaned, standardized and made into 15 hour samples using a sliding
window; the first 12 hours consisted of past data for all parameters and the
subsequent 3 hours represented the forecast precipitation class values (rain/no rain).
To optimize the LSTM model, the Opuna library was used. Model performance was
evaluated using the probability of detection (POD), false alarm ratio (FAR), and
equitable threat score (ETS). The model metrics were compared with the persistence
forecast, and the deterioration of the metrics was further compared with other types
of machine learning models (ConvLSTM, PredRNN, and PredRNN++) from previous
studies.

The results showed that the developed prototype added modest but consistent value
over the persistence forecast at each time step. It was also found that the performance
metrics of LSTM-type models generally degraded more slowly than those of the more
complex PredRNN-type models. An expectation was the FAR of the LSTM model
developed in this study, which deteriorated faster than that of the PredRNN++ model.
The metric values of the best model were POD = 0,70, FAR = 0,30 and ETS = 0,49.

In the discussion, additional ideas are proposed for potential improvements to the
LSTM forecasting model.
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1 Sissejuhatus

Ootamatu vihmasadu on igapaevane probleem. See hairib spordi tegemist, valisohu
uritusi, ehitust ja muud. Mdnda tuupi sademed kujunevad ja muutuvad kiiresti
(minutid kuni tunnid), mdjutades seejuures vaikest piirkonda. Traditsiooniliste
numbriliste ilmamudelite ennustamiseks kasutatavate andmete kogus on tohutu,
mistottu tehakse uusi ennustusi vaid moni kord paevas. Selle aja jooksul voib juba
olnud tekkinud sajupilv, ning ka sadu alanud. Lisaks vbib selliste mudelite
lahutusvdime jaada lokaalsete sademete jaoks liiga vaikseks. On vaja lihtsamaid ja
kiiremaid meetodeid ennustamiseks: lUhiajaline prognoos ehk nowcasting.

Masindppe, sh slUvadppe, populaarsuse kasv on toimunud ka ilmaennustuse
valdkonnas. Masindppe mudelite eelis on see, et isegi kui mudeli treening votab kaua
aega, siis treenitud mudeli ennustus on kordades kiirem kui traditsiooniline numbriline
mudel. Suurem osa suvadppe ja nowcasting mudeleid kasutavad ennustamiseks
satelliiti voi radarit; mudelid mis &pivad vaid maapealsetelt modtmistelt on
kirjanduses vahem esindatud.

To6 eesmargiks on sivanarvivorgu meetoditega luua sademete lUhiajalise kvalitatiivse
prognoosi LSTM (Long Short-Term Memory ehk pikk lihimalu) mudeli prototuup,
kasutades vaid kohalikke mdotmisi, see tdhendab ilma kaugseire andmeteta. Selline
mudel peab toetuma vaid lokaalselt mdddetud fulsikaliste suuruste vahelisele
seostele ning nende muutustele ajas.

Kuna t66s kasutatavad parameetrid vajavad moéotmiseks pigem vaikseid sensoreid
(suurim on pilvede mootmiseks vajalik seilomeeter), siis selline lahenemine
vbimaldaks luua kaasaskantava sensorite komplekti, mille saaks vajaduspdhiselt
Umber liigutada. Naiteks oleks vdimalik panna selline komplekt pusti Tallinna
lauluvaljakule Urituste eelselt sadu ennustama, vbi saaks ehitusfirma viia selle
komplekti erinevatele objektidele.



2 Teoreetiline taust

Ilmaennustuses laialdaselt kasutusel olevad numbrilised mudelid ei anna luhiajalisel
prognoosimisel parimaid tulemusi. Selle peamine pdhjus on prognooside tegemisele
kuluv aeg: kdigepealt kulub mitmeid minuteid vajalike andmete kohale joudmiseks [3],
ning seejarel moni tund arvutuste stabiliseerumiseks [4][5]. Selleks ajaks on
ennustatav periood juba médédunud ning vdib-olla sadama hakanud - hoovihmad
vbivad konvektsiooni teel tekkida minutitega [6]. Teine probleem on nende vaike
lahutusvoime. Sellised mudelid on paremini kohandatud ulatuslike sademete
ennustamiseks, ning lokaalsed hoovihmad, mida esineb palju suvel, jaddvad neil
markamata [7][5]. Lahutusvdime suurendamine pole efektiivhe lahendus, sest selle
tegemisega pikeneb prognoosi tegemise aeg eksponentsiaalselt [7].

Lahiajaline prognoos ehk nowcasting on ilmaennustuse meetod, mille eesméark on
prognoosida ilma 6 tunni ulatuses [7]. See on eriti oluline nii ohtlike loodusnahtuste -
tornaadod, akilised uleujutused, kiiresti kujunevad aikesetormid — kui ka vaiksemate
ohtude, nagu jaavihm vai tihe udu, varajaseks markamiseks [7]. Luhiajalise prognoosi
tehnikad toetuvad tavaliselt maapealsetele mdodtmistele, radarile ning satelliidi
andmetele [7], ning need mudelid on traditsioonilistest numbrilistest mudelitest
lihtsamad, mis laseb neil luhikesel ajaskaalal efektiivselt tootada [3]. Kull aga langeb
lUhiajaliste prognooside tapsus palju kiiremini kui traditsioonilistel numbrilistel
mudelitel, ning neid on maistlik kasutada 6 tunni piires [8].

Peamised sademete lihiprognoosi tehnikad pdhinevad ekstrapoleerimisel. See
kasitleb sademeid kui sademete valja, mis ajas edasi liigub ning deformeerub [3].
Meetod tugineb Lagrangiane’i pusivuse eeldusele: sademete valja sisemine struktuur
on konstantne ning kdik muutused on tingitud suurte dhuvooludega kaasaliikumise
tottu [8]. See eeldus on lihtsustus, mis tootab kdige paremini lokaalselt, kuid siiski
erineb sageli palju tegelikkusest [8]. Uks probleemidest seisneb sademete vilja
kasvamises ning hadbumises [9][3]. On proovitud erinevaid lahenemisi selle meetodi
tapsemaks tegemiseks, kuid pole leitud Uldist lahendust, mis ei kaasaks kulukat
andmete assimilatsiooni’ [8]. Sellest tulenevalt on hakanud uurima masindpet kui
voimalikku lahendust sellele probleemile [8].

On téestatud, et siivadppe mudelid on radari piltide ekstrapoleerimisel oskuslikumad,
kui traditsioonilised Lagrangiane’i eeldusel pdhinevad lihiprognoosi mudelid [10].
Suvadppe mudelid saavad efektiivselt kasutada sageli varskendatavaid andmeid
radaritelt, satelliitidelt ning teistelt vaatlusslsteemidelt [10]. Nad saavad hasti
hakkama mitte-lineaarsete nahtuste, nagu hoovihmad, kirjeldamisega - miski midaon
numbriliste meetodite ning ekstrapolatsiooniga raske teha [10]. Eeliseks on ka kiirus:

' Andmete assimilatsioon on numbrilise modelleerimise haru, mis kasutab tehnikaid vaatluste ja
mudelite vaheliste vigade (erinevuste) vdhendamiseks [1].
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treenitud slUvadppe mudelil kulub superarvuteid kasutamata prognoosimiseks
sekundeid [10].

2.1 Sademete iilevaade

Iga aasta summaarne sajuga tundide arv on toodud joonisel 1. On ndha, et sademete
sagedused voivad aastast aastasse palju erineda. Kdige vihem sajutunde (727) oli
aastal 2014, mil sajutunnid moodustasid 8,3% koigist tundidest, ning kdige rohkem
(1192) aastal 2019, mil sajutunnid moodustasid 13,6% kdigist tundidest; keskmiselt
sajab 962.5 tundi aastas. Terve perioodi jooksul sadas keskmiselt 11,2%-l tundidest.

1000+

Sajuga tundide arv

Joonis 1: Tallinn-Harku aeroloogiajaama sajuga tundide arv aasta kaupa 2011-2023

Joonisel 2 on histogramm silutud keskmisest sajuga tundide arvust pdeva kaupa;
kuude esimesed paevad on tehtud tumesiniseks. Andmete silumiseks kasutati liikuva
keskmise meetodit aknapikkusega 15 paeva. On naha sujuvat Uleminekut hooajast
hooaega. Kdige vaiksem sajutundide osakaal oli mais 5,7%-ga ning kdige suurem
detsembris, millal sadas 18,9% tundidest.

Keskmine sajuga tundide arv

&P
e e X
A R v c)e?'\ &

Kuu

Joonis 2: Tallinn-Harku aeroloogiajaama 2011-2023. aasta keskmine sajuga tundide arv paeva kaupa, silutud

Joonisel 3 on toodud perioodi 2011-2023 vihma kestvuste histogramm. Enamik
sademeperioode olid lUhikesed: 39,5% sademe perioodidest kestis maksimaalselt
Uhe tunni, 22,3% kestis maksimaalselt 2 tundi. Viis korda kestis sadu rohkem kui



O06paev. Saju pausidel (sajuga tundide vaheline aeg) on samamoodi geomeetriline
jaotus (joonis 4), kuid see on palju raskema sabaga: 19,4% saju pausidest kestis
vahemalt Uhe, kuid vahem kui kaks tundi, ning kdige pikem vihma paus oli 535 tundi
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Joonis 3: Perioodi 2011-2023 vihma kestvuste histogramm
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Joonis 4: Perioodi 2011-2023 vihmapauside kestvuste histogramm (n > 20)



3 Metoodika

3.1 Andmete valimine ja tootlemine

3.1.1 Andmete valimine

Kaesoleva t06 andmed saadi Eesti Keskkonnaagentuuril [11] avaandmete portaalist
Tallinn-Harku aeroloogiajaamast. Valiti 1 tunni mddtmise intervalliga andmed.
Andmete periood oli 2011. a algusest kuni 2023. a l6puni.

Valiti jargmised fuusikalised suurused:

e Uhe tunni sademete summa, mm

e Uhe tunni maksimaalne tuule kiirus, m/s

e Viimase 10 minuti keskmine tuule kiirus, m/s

e Viimase 10 minuti valdav tuule suund, °

e Uhe tunni maksimaalne 6hutemperatuur, °C

e Uhe tunni minimaalne 6hutemperatuur, °C

« Ohutemperatuur taistunnil (hetkvaartus), °C

e Suhteline 6huniiskus taistunnil (hetkvaartus), %
e Ohuréhk merepinnal taistunnil (hetkvaartus), hPa
e Alumiste pilvede kérgus, m

e Alumiste pilvede hulk, (0, 8)

Taiendavalt lisati ka:

e Tund, (0,23)h
e Paevaastas, (0, 364) véi (0, 365) d

Aasta ja paev on tsuklilised: 1. jaanuar ja 31. detsember, nagu ka kell 00:00 ja kell
23:00, on Uksteisega korvuti. Arvuliselt aga on 0 ja 364 voi 0 ja 23 Lldigu otstes, ning
Uksteisest vaga erinevad. Selleks, et anda LSTM mudelile edasi nende tsukliline
iseloom, vOeti ajalistest suurustestlisaks sin (2m * %) ja cos (2m * % ), kus x tahistab
muutuvat tunni/pdeva vaartust, ning n maksimaalset tunni/pdeva vaartust. Siinus-
koosinus paar kannab péeva ja tunni vaartused Uhikringile.

3.1.2 Andmete tootlemine

Seilomeeteriméddetud pilvede andmed olid jagatud nelja kihti. Iga kihi kdrguse piirang
oli seilomeetri maksimaalne moddetav kdrgus: esimeses kihis oli sellel tunnil kdige
madalam mdddetud kiht, mis vdis olla ka 7,6 km kdrgusel kui sellest allpool pilvi ei
olnud [12].
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Kaesolevas t00s kasutati vaid kdige alumise kihi andmeid, sest sajupilvede baasid on
reeglina alla 2 km kdrgusel [6]. Pilvede kérguse andmetes voeti maksimum korguseks
2000 m: koérguse vaartused suuremad kui 2000 m vdeti voérdseks 2000 m-iga.
Grupeerides korged mittesajupilved, keskendus LSTM mudel rohkem sajupilvedele.
Tuhja taeva (pilvede kogus = 0) puhul pandi puuduva kérguse asemele -1. Andmed
jarjestati aja jargi ning pandi andmeraamistikku; sademete mm vaartus tehti
kahendvaartuseks (0 — ei saja, 1 — sajab). Kuna andmestik oli suur ning puuduvate
andmetega ridu oli vaid 1,65%, siis need read eemaldati. Alles jai 112 071 tunni
andmed.

3.1.3 Valimite moodustamine

Enne valimite moodustamist andmed standardiseeriti, et suurte vaartustega
fausikalised suurused ei domineeriks. Selleks kasutati klassi
sklearn.preprocessing.StandardScaler [13], mis viib iga fuusikalise suuruse jaotuse
kujule, millel on keskvaartus 0 ja standardhalve 1. Standardiseerimisest jaeti valja
sademed, pilvede hulk, ning siinus ja koosinus paevast ning tunnist, sest
standardiseerimine oleks rikkunud nende kategoorilist vdi tsuklilist infot, ning Ukski
neist ei olnud domineerivate vaartustega.

Kéesolevas t6ds ennustati 12 mineviku tunni pohjal 3 tuleviku tundi; selleks libises ule
originaal andmestiku 15 tunnine aken. Kdigepealt kontrolliti kas akna sees on ajalisi
hlppeid. Kui hlpe esines, libises aken Uhe tunni vdrra edasi ning kontrolliti uuesti.
Hilpete puudumisel lisati 12 esimest tundi sisendite massiivi, ning 3 viimast tundi
valjundite massiivi, kusjuures sisendite massiivis olid olemas kdik flusikalised
suurused javaljundite massiivis vaid sademete vaartused. Iga 12 + 3 h paar moodustas
uhe valimi. Kokku oli 104 186 valimit.

Joonisel 5 ontoodud valimite tuleviku tundide sajab/ei saja (1/0) mustrite histogramm.
Taielikult sajuta muster ‘000’ moodustab 82,4% kdigist mustritest. Sadu sisaldavatest
mustritest on ‘111’ kdige sagedasem: koigist mustritest moodustab see 5,3%, ning
sajuga mustritest 30,1%. Teisel kohal sajuga mustritest on ‘001’, mida on peaaegu
poole vahem, kui mustrit ‘111°. Kdige vahem esineb mustrit ‘101’, mis moodustab 0,7%
kdigist mustritest, ning 4,0% sajuga mustritest.
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Joonis 5: Valimite tuleviku tundide (3h) mustrite histogramm

Andmed jagati treening-, valideerimis- ning testandmeteks ajalist jarjekorda
rikkumata. Jaotus oli jargmine: LSTM mudel treenis umbkaudu 2011-2019 andmetel,
valideeris 2020-2021 andmetel, ning testis 2022-2023 andmetel. Ajalise jarjekorra
sailitamine oli oluline, sest valimid olid tehtud libiseva aknaga, ning andmeid segades
satuks osaliselt identseid valimeid nii treening kui ka testandmetesse. Mustrite
jaotumist treening-, valideerimis- ning testandmete vahel on ndha joonisel 5.

3.2 Sademete seosed teiste suurustega

Joonisel 6 on fuusikaliste suuruste normaliseeritud histogrammid vastavalt sajab / ei
saja klassile; musta punktiirjoonega on margitud mediaanide vaartused. Joonise jaoks
eemaldati pilvede kdérguste vaartustest -1, mida kasutati pilvede puudumise
tahistamiseks. Suurimad erinevused klasside jaotuste vahel on suhtelisel
Ohuniiskusel, 6hurdhul ja pilvede kdrgusel: sadu esineb kdrgema 6&huniiskuse,
madalama 6hurbhuga ning madalatest pilvedest. On néha, et sademed esinevad
natuke kdrgema tuulekiiruse, ning madalama dhutemperatuuriga. Loogiline seos onka
sademete ja pilvede hulga vahel: sademeid esineb suurema pilvede hulga korral. Aasta
paeva trigonomeetrilistel vaartustel on samuti naha erinevusi saju ja mitte-saju klassi
vahel. Tuule suuna histogrammid on peaaegu erinevusteta, ning tunni
trigonomeetrilistel vaartustel erinevust ei esine. See ei tahenda veel, et need ei ole
LSTM mudelile kasulikud. Joonisel on vorreldud iga suurust eraldi — need ei kasitle
mitme parameetri koosmaju.
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Joonis 6: Fuusikaliste suuruste normaliseeritud histogrammid vastavalt sajab / ei saja klassile

3.3 LSTM mudeli arhitektuur ja optimeerimine

Nagu ka andmete todtlemine, tehti LSTM mudeli treening ja optimeerimine
programmeerimiskeeles Python integreeritud programmeerimiskeskkonnas
PyCharm. Peamiselt kasutati teeke Pandas, NumPy, scikit-learn, TensorFlow, Keras,
Seaborn ja Matplotlib [14][15][13][16][17]18][19]. Koodi kirjutamisel ja vigade
leidmisel kasutati tehisintellekti tekstirobotite ChatGPT ja Copilot abi [20][21].

Mudel koosnes sisendkihist, mis vdttis vastu sisendi kujuga 12 rida ja 15 tulpa, kahest
jarjestikkusest peidetud LSTM kihist ning valjundkihist mis valjastas ennustuse kujuga
3ridaja 1 tulp.

Mudeli huperparameetrite tuunimiseks kasutati Optuna teeki [22]. Kokku tuuniti
kaheksat huperparameetrit: mélema LSTM kihi neuronite arv, valjalangemise maar
(dropout rate), rekurrentne valjalangemise maar (recurrent dropout rate),
Oppimiskiirus, partii suurus, gamma ja alfa. Valjalangemise maara parameetreid
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kasutatakse mudeli treeningandmetel Uledppimise drahoidmiseks [23]. Gamma ja alfa
on BinaryFocalCrossentropy kaofunktsiooni (loss function) parameetrid, mis aitavad
saju ja mitte-saju klasse vérdsustada: gamma > 0 puhul keskendub mudel rohkem
raskemini ennustatavatele valimitele ning alfa > 0.5 teeb saju klassi kaalu suuremaks
[24]. Valjalangemise maarade, gamma ja alfa puhul jaeti Optunale vbéimalus need vélja
lulitada, st valida vastavalt vaartused 0, 0, 0 ja 0.5. Optimeerimise eesmargiks seati
maksimeerida diglast tabamismaara (Equitable Threat Score ehk ETS).

Optimeerimiseks tehti 100 katset, kusjuures iga katsel treeniti mudelit maksimaalselt
40 epohhi. Treeningu kontrollimiseks ja kiirendamiseks pandi peale varajane
peatamine: kui 7 epohhi pole validatsiooni kadu paranenud vahemalt 1e-5 vdrra,
treening loppeb ning salvestatakse selle katse parimad hlperparameetrid.

Olles leidnud parimad huperparameetrid, treeniti nendega l6plik LSTM mudel. Seekord
pandi piiriks 100 epohhi, ning varajane peatumine sama minimaalse paranemisega 30
epohhi.

3.4 LSTM mudeli hindamine

3.4.1 Pisivusprognoos

LSTM mudeli kasulikkuse hindamiseks vorreldi seda pusivusprognoosiga (persistence
forecast). See on Uks lihtsamatest prognoosi meetoditest, mis ennustab alati, et
jargmine paev voi tund tuleb tadpselt samasugune nagu praegune paev vdi tund.
Pusivusprognoos on koige usaldusvadrsem luhikese aja jooksul, ning ennustuse
tapsus vaheneb margatavalt, kui prognoosiperiood pikeneb. Konvektsioonist tingitud
sademete pusivusprognoos hakkab halvenema juba 5ndast minutist ning vaiksemad
aikesetormid voivad juba 30 minuti jooksul palju muutuda [3].

Kaesolevas t60s koostati pusivusprognoos jargmiselt: iga valimi viimane, ehk 12nda
tunni sademete vaartus voeti ennustuseks ehk jargneva kolme tunni vaartuseks.

LSTM Mudeli ja pusivusprognoosi meetrikate vordluseks kasutati oskusskoori (Skill
Score)

kus sr on mudeli ennustuse meetrika vaartus, s, on vdrreldava ennustuse (pusiv-
prognoosi) meetrika vaartus ning s, on meetrika parim vaartus. Oskusskoori parim
vaartus on 1, kusjuures 0 tdhendab, et mudeli ennustus ei ole parem vdrreldavast
prognoosist [25].

Mudeli vordlemiseks teiste uuringute mudelitega vaadati meetrikate halvenemist.
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3.4.2 Hindamismeetrika

Alapeatukis 3.2.1 selgus, et sajuta tundide osakaal on oluliselt suurem kui sajuga
tundide osakaal. Eeldades sajuga tundide suurimat osakaalu (detsembri keskmine
18,9%), saavutaks mudel tapsuse 0,81 ka siis, kui see ennustaks igal tunnil sajutailma.
Seetdttu kasutati hindamismeetrikaid, mis keskenduvad vaid positiivsele klassile:
tuvastustéendosus (Probability of Detection ehk POD), valehairete osakaal (False
Alarm Ratio ehk FAR) ning diglane tabamismaar (ETS).

LSTM Mudel tagastas iga tunni prognoosi tdenaosusena stindmuse esinemiseks.
Toevaartuste (0 voi 1) saamiseks tuli ennustusi kdigepealt teisendada. Selleks valiti
lave vaartus, millest suurema téenaosusega tunnid liigitati saju (1) ning vaiksema
tdendosusega sajuta (0) klassi. Tapsete lavevaartuste maaramine on alapeatukis 4.1.

Koiki meetrikate arvutamiseks tuli kdigepealt koostada sagedustabel ennustustest ja
tegelikest vaartustest, kus 0 tahistas negatiivset klassi ehk saju puudumist, ning 1
positiivset ehk saju klassi. Tabelis 1 on toodud tlupilise sagedustabeli struktuur; vale
positiivne ja vale negatiivhe on mudeli eksimused.

Tabel 1: Sagedustabel ennustustest ja tegelikest vaartustest

Tegelik 1 Tegelik O
Oige Positiivne Vale Positiivne
Ennustatud 1 (©P) (VP)
Vale Negatiivne Oige Negatiivne
Ennustatud 0 (VN) (ON)

POD naitab kui palju tegelikest sundmustest digesti ennustati.

POD = —
OP +VN

POD jaab l6iku [0, 1], parim tulemus on 1.

FAR naitab kui palju ennustatud sundmustest olid valed.

FAR = ———
OP +VP

FAR jaab Loiku [0, 1], parim tulemus on 0.

Oiglane tabamismaér hindab Uleiildist sindmuse ennustamise oskust, karistades nii
vale positiivseid kui ka vale negatiivseid. Oiglane tabamismé&ar on sarnane tavalisele
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tabamismaarale (Threat score ehk TS), kuid on selgem hinnang mudeli oskusele, sest
see eemaldab mdju, mis tuleks juhuslikust ennustamisest [26].

ETS arvutatakse jargmiselt:

OP —R

ETS = <
OP +VP+VN—R

kus

R (OP + VP)(OP + VN)
~ OP+VP+VN+ON

on juhusliku ennustuse oodatud digete positiivsete arv.
ETS jaab loiku [— %, 1], parim tulemus on 1, ning 0 naitab, et mudel polnud juhuslikust
ennustusest parem, ehk mudeli prognoos on oskusetu [26].

Meetrika vaartuste halvenemise arvutamiseks kasutati valemit

H =

* 100%

kus a on meetrika algvaartus ning [ on meetrika ldppvaartus.
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4 Tulemused

Optimeeritud LSTM mudeli tdpne struktuur on leitav lisast 1. Parim tulemus saavutati
8ndal epohhil.

Optimeerimise kaigus valiti parimaks positiivse klassi kaaluks 0,77, negatiivne klass
sai kaaluks seega 1 - 0,77 = 0,23. Algne klasside jaotus oli: sadu — 11,2% ning mitte-
sadu - 88,7%, peale kaalude lisamist oli uus efektiivne klasside jaotus: sadu - 29,7%
ning mitte-sadu -70,3%.

4.1 LSTM mudeli ning plisivusprognoosi ennustuste tulemused ja
meetrikad

LSTM mudeli tagastatud tdenaosuste vaartused ei ole kalibreeritud, kuid kuna
eesmargiks on kvalitatiivne, mitte tdendosuslik prognoos, siis piisab vaid lave
tuunimisest [27].

LSTM mudeli ETS arvutamiseks valiti kdigepealt iga tunni jaoks lavi, mis maksimeeris
ETS vaartuse (joonis 7). Selleks leiti iga tunni prognoosi vaartuste vahemik ning arvutati
ETS valja 100s vordse vahega kohas; iga tunni maksimaalsele ETS vaartusele vastav
koht valiti selle tunni lave vaartuseks. Joonisel on margitud iga tunni jaoks ETS suurim
vaartus. Parimad lave vaartused tundidele 1-3 olid vastavalt 0,48, 0,43 ning 0,41. POD
ja FAR arvutati samuti nende lavede jargi (tabel 2). Tabelis 3 on toodud LSTM mudeli
meetrikate halvenemised protsentides erinevate ajasammude kohta. Kéik meetrikad
halvenevad esimesel ajasammul kdige rohkem; 2. tunnilt 3ndale minnes on kahjud
vaiksemad.

0.7

0.6
0.4+

ETS

0.2
0.1 1

0.0~

-0.1 . . . — - .
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Lavi
Joonis 7: LSTM mudeli ETS véaartus séltuvalt lave valikust tundide kaupa

Tabelis 4 on toodud POD, FAR ja ETS vaartused pisivusprognoosi jaoks. Uhe tunni
piires on meetrikad parima tulemusega vorreldes juba moéddukalt langenud.
Suhteliselt kérge POD on tdéendoliselt tingitud sellest, et 12+3 tunni valimites on
3-tunniste sadu/mitte-sadu mustrite hulgas ‘111’ kdige sagedamini esinev sadu
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sisaldav muster (joonis 5). Kuna pusivprognoosi ennustused jargivad andmestiku
jaotust, siis ennustatud VP-d ja VN-d on ligikaudu vérdsed, ning POD ja FAR summa on
iga tunni jaoks 1.

Tabel 2: LSTM mudeli Lave, POD, FAR ja ETS vaartused tundide kaupa

1. tund 2. tund 3. tund Parim tulemus
POD 0,70 0,62 0,61 1
FAR 0,30 0,46 0,56 0
ETS 0,49 0,35 0,28 1
Lavi 0,48 0,43 0,41

Tabel 3: LSTM mudeli meetrikate halvenemised (%) vastavalt ajasammudele

>2. 2.5 3. 1.5 3.
POD 11,4 1,6 12,9
FAR 53,3 21,7 86.7
ETS 28,6 20,0 42,9

Tabel 4: Pisivusprognoosi POD, FAR ja ETS vaartused tundide kaupa

1. tund 2. tund 3. tund Parim tulemus
POD 0,69 0,56 0,48 1
FAR 0,31 0,44 0,52 0
ETS 0,48 0,33 0,26 1

4.2 LSTM mudeli ja pusivusprognoosi vordlus

Tabelis 5 on toodud mudeli meetrikate oskusskoorid vorreldes pusivusprognoosiga.
Mudeli oskus paistab kdige rohkem valja POD vaartuste vordluses: igal ajasammul
prognoosib LSTM mudel pusivprognoosist rohkem sademetega tunde Oigesti, eriti
domineerib see viimasel tunnil.
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Tabel 5: Mudeli meetrikate oskusskoorid vérreldes plsivprognoosiga

1. tund 2. tund 3. tund
S (POD) 0,03 0,14 0,26
S (FAR) 0,03 -0,04 -0,07
S (ETS) 0,02 0,02 0,03

Samas ilmneb FAR vaartuste pdhjal, et parem POD vaartus saavutatakse osaliselt vale
positiivsete arvu suurenemise arvelt. Teisel ja kolmandal tunnil on FAR oskusskoor
negatiivne, mis tahendab, et LSTM mudel ennustab sademeid tihemini kui neid
tegelikkuses esineb. See naitab, et mudel prognoosib saju tegelikust pikemat kestvust.

Paljudes olukordades on sademete ennustamata jatmine (VN) rohkem kahju, ohtu voi
ebamugavust tekitavad kui valehaired. Nendes kontekstides voib POD vaartust
olulisemaks pidada kui halba FAR vaartust.

Mudeli ETS oskusskoor on igal ajasammul pusivusprognoosist natuke kdrgem. See
naitab, et mudel lisab vahest kuid stabiilset vaartust.

4.3 Vordlus uuringutega

4.3.1 PredRNN++ kasutades radaripilte

Uuringus [28] on kasutatud videoprognoosi sivadppemudelit PredRNN++ (Predictive
Recurrent Neural Network ehk ennustav korduv narvivdrk) ning kahe polarisatsiooniga
S-kanali (S-band) Doppler radari piltide seeriat, et ennustada tuleviku piltide seeriat
Uhe tunni ulatuses. Uuringus sooviti luua mudel, mis toetaks teisi lUhiprognoosi
meetodeid. Kasutati andmeid 2015 martsist 2019 lopuni ainult Uhtelt madalalt
mootekorguselt (0,5° Plan Position Indicator - PPI> ehk kiire tasapinna nurga
indikaator), kusjuures iga pildi vahel oli 15 minutit. Prognoositi 10 pildi seeria pdhjal 10
tuleviku pilti (150 minutit), valimid olid moodustatud libiseva aknaga. Lisa 90 minutit
ennustati mudeli prognoosi halvenemise visualiseerimiseks. PredRNN++ mudel
treeniti superarvutil, ning vottis umbes 240 tundi. Klasside tasakaalustamist ei
kasutatud.

Mudeli hindamiseks kasutati koiki kdesolevas t6ds kasutatud meetrikaid: POD, FAR ja
ETS. Skooride saamiseks kasutati igal pikslil teatud lave vaartust. Kdigepealt vorreldi
PredRNN++ tulemusi tegelike radaripiltidega (tabel 6), lave vaartus oli mélemal juhul
madal 1dBZ. Tabeli 6 ja kdesoleva t66 LSTM mudeli tulemuste (tabelis 2) halvenemiste

2 PPl - méétmistulemused, mis on saadud maapinnale projitseeritud (he fikseeritud radarikiire
téusunurgal [2].
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vordlused on toodud tabelis 7, kus on arvutatud iga meetrika halvenemise protsent
LSTM mudeli jaoks Uhe tunni ning PredRNN++ jaoks 45 minuti méddudes.

Tabelist 7 on ndha, et isegi kui PredRNN++ mudeli FAR halveneb aeglasemalt, langeb
selle Uldine prognoosioskus (ETS) luhema aja jooksul margatavalt kiiremini kui LSTM
mudelil. POD halvenemised on sarnasema kiirusega, kuid LSTM mudel sailitab ka seda
natuke paremini.

Tabel 6: Uuringu [28] (tabel 2) PredRNN++ mudeli meetrikate tulemused

15 min 30 min 45 min 60 min Parim tulemus
POD 0,90 0,86 0,83 0,79 1
FAR 0,45 0,53 0,59 0,62 0
ETS 0,46 0,37 0,31 0,21 1

Tabel 7: Uuringu [28] PredRNN++ mudeli ja LSTM mudeli meetrikate halvenemised (%)

POD FAR ETS Ajaline samm
LSTM 11,4 53,3 28,6 1Th>2h
PredRNN++ 12,2 37,8 54,3 15 min 2 45 min

4.3.2 PredRNN ning ConvLSTM kasutades kohalikke sademete andmeid

Uuringus [9] on kasutatud ConvLSTM (Convolutional Long Short-Term Memory ehk
konvolutsiooniline pikk Whimalu) ja PredRNN mudeleid, mis treeniti 1835
automatiseeritud ilmajaama 1-minutilise lahutusvdéimega sademete (mm) andmete
peal. Puuduvad andmed asendati kasutades ajaliselt ja ruumiliselt lahimate naabrite
andmeid. Uuringu eesmark oli luua 6 minutilise ajaloo pdhjal 2 tunni ulatuses vaga
tapne mudel. Andmed olid aastatest 2013 kuni 2021 ning ilmajaamade andmed
interpoleeriti Uhtlasele ruudustikule. Klasside tasakaalustamist ei tehtud, kuid prooviti
kahte erinevat andmestikku: vaid tugevaid sademeid sisaldav andmestik ning algne
puhastatud andmestik, millega treenitud mudeleid kasutatakse kdesolevas to0s
vordluseks.

Uurimuses kasutati hindamiseks peamiselt ETS meetrikat, mis leiti sarnaselt [28]
uurimusele Ule ruudustiku pinna. Vordluseks prooviti viit erinevat lave vaartust
sademete klassifitseerimiseks, ning nelja erineva perioodi pikkusega ajaloo andmeid.
Kaesolevas t6os valiti vordlemiseks uurimuse kdige pikema treeningperioodi (8 aastat)
parimad tulemused — need vastasid kdige madalamale lave vaartusele 0,1 mm. Tabelis
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8 on vordluseks toodud kodigi vorreldavate mudelite ETS meetrika vaartuste
halvenemised prognoosiaja pikenemisel.

On naha sarnaseid tulemusi eelmise alapeatukiga: PredRNN taupi mudeli ETS vaartus
langeb palju kiiremini, kui lihtsamate LSTM tudpi mudelitel. Kdige vahem langes
ConvolLSTM ETS vaartus.

Tabel 8: LSTM mudeli ning Uuringu [9] (tabel 2) mudelite ETS vééartused ja halvenemine

1. tund 2. tund Halvenemine (%)
ConvLSTM 0,33 0,25 24,2
PredRNN 0,49 0,21 57,1
LSTM 0,49 0,35 28,6
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5 Arutelu

Tulemused naitavad eelkdige LSTM mudeli stabiilsust prognoositava ajahorisondi
pikenedes:

- see lisas pusivusprognoosile vaikest, kuid jarjepidevat vaartust;

- selle POD ja ETS vaartused langesid aeglasemalt kui PredRNN++ mudeli omad
uurimuses [28]. LSTM mudelil sailitab sademete tundlikkuse kauem;

- uurimuses [9] oli LSTM mudel taaskord ETS meetrika puhul PredRNN tutpi mudelist
jarjekindlam. Alla jai LSTM mudel oma sugulasele ConvLSTM mudelile, mis toetab
jareldust, et lihntsam LSTM tudpi mudel vdib olla ka suurema muraga andmete, nagu
uuringu [9] suurema ajalise ja ruumilise lahutusvdéimega andmed, puhul tapsuse
pusivuses parem.

Tulemuste pdhjal saab jareldada, et keerukamad ja suurema ajalise lahutusvdéimega
mudelid ei taga tingimata stabiilsemat prognoosi, vaid ajahorisondi pikenedes voib
tapsus hoopis kiiremini langeda [28][9]. K&esolevas tods kasutatud lihtne LSTM
lAhenemine voib aidata usaldusvaarsemalt Uletada l6he ldhimate tundide vahel, mida
traditsioonilised numbrilised mudelid piisavalt hasti veel prognoosida ei suuda [3].
Rohkemate eksperimentideta ei ole voimalik kindlalt 6elda, mis kdige rohkem tulemusi
madjutas, sest vordlemiseks kasutatud uurimustes oli kdesoleva todga palju erinevaid
aspekte: ajaline lahutus, tasapinnaline vdi punktipdhine ennustus, kasutatud andmed
ning mudelid. Seetottu piirduti ka vaid halvenemise anallilisimisega (tabelid 7 ja 8).

Ideed lokaalse LSTM mudeli parandamiseks voi edasiseks eksperimenteerimiseks on
suuresti piiratud saadavalolevate fluusikaliste suuruste ning nende mootmis-
sagedustega. Esimeseks mdtteks on proovida suuremat ajalist lahutust, kuid
keskkonnaportaali avaandmetes on praegu 1 tunnist vaiksema sagedusega vaid 10
minuti tuule ning sademete andmed [29]. See lisaks tdenéoliselt mudelile mura, kuid
tuleks analuusida, kas saadud kasu on suurem.

Teine idee on lisada 6hupuhtuse parameeter, sest sademe tilgad moodustuvad
vaikeste tuumade Umber, mis on sattunud pilve [7]. Seda parameetrit Eesti
ilmajaamades ei mdodeta.

Kolmandaks tuleks teha dimensionaalsuse vahendamist ehk eemaldada mitte- vai
vaheolulised fuusikalised suurused. Selleks saab kasutada naiteks permutatsiooni voi
eemaldamise meetodit: permutatsiooni meetodil segatakse Ukshaavaliga parameeter
ara, eemaldamise meetodil eemaldatakse kordamodda parameetreid; peale iga
eemaldust voi segamist mudel treenitakse ning parast hinnatakse kui palju iga
fausikaline suurus oskust lisas [30][31].
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Lisad

Lisa 1 — Optimeeritud mudeli struktuur

best model = Sequential ()
best model.add (Input (shape=(n_timesteps, n_ features)))

best model.add(
LSTM (
43,
return_ sequences=True,
dropout=0.07028726141306774,
recurrent dropout=0.0515254853751841

)

best model.add(
LSTM (
58,
return sequences=False,
dropout=0.07028726141306774,
recurrent dropout=0.0515254853751841

)
best model.add (Dense (3, activation='sigmoid'"))

best model.compile (optimizer=Adam(learning rate=0.009150114118798836,
loss=keras.losses.BinaryFocalCrossentropy (
apply class balancing=False,
alpha=0.773732098296195,
gamma=2.716007422792222)

checkpoint = ModelCheckpoint (
# PATH,
monitor="val loss',
save best only=True,
mode="min"',
verbose=1

)

early stop = EarlyStopping(monitor='val loss', patience=30,
min delta=le-5, restore best weights=True,
mode="min")

result = best model.fit (X train, y train,
validation data=(X val, y val),
batch size=32,
epochs=100,
shuffle=False,
callbacks=[early stop, checkpoint],
verbose=2)
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Lisa 2 — Lihtlitsents loputoo reprodutseerimiseks ja loputoo uldsusele
kattesaadavaks tegemiseks

Mina, Marili Arus

1. Annan Tallinna TehnikaUlikoolile tasuta loa (lihtlitsentsi) enda loodud teose
»oademete luhiajaline prognoos masindppe abil®, mille juhendaja on Sander Rikka,

1.1 reprodutseerimiseks Oputdd sédilitamise ja elektroonse avaldamise
eesmargil, sh Tallinna Tehnikaulikooli raamatukogu digikogusse lisamise
eesmargil kuni autoridiguse kehtivuse tahtaja loppemiseni;

1.2 Uldsusele kattesaadavaks tegemiseks Tallinna  Tehnikaulikooli
veebikeskkonna kaudu, sealhulgas Tallinna Tehnikallikooli raamatukogu
digikogu kaudu kuni autoridiguse kehtivuse tahtaja ldppemiseni.

2. Olen teadlik, et kaesoleva lihtlitsentsi punktis 1 nimetatud 6igused jaavad alles ka
autorile.

3. Kinnitan, et lihtlitsentsi andmisega ei rikuta teiste isikute intellektuaalomandi ega
isikuandmete kaitse seadusest ning muudest digusaktidest tulenevaid digusi.
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