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Annotatsioon 

Käesolev töö käsitleb lühiajalist sademete prognoosimist süvanärvivõrgu meetodiga. 
Töö eesmärgiks oli luua punktmõõtmiste andmetega sademete kvalitatiivse prognoosi 
mudeli prototüüp kasutades LSTM süvanärvivõrku.  

Töös kasutati Tallinn-Harku aeroloogiajaama tunnipõhiseid andmeid aasta 2011 
algusest aasta 2023 lõpuni. Andmetes olid esindatud aeg, sademed, tuul, 
õhutemperatuur, õhuniiskus, õhurõhk ja pilved. Andmed puhastati, standardiseeriti, 
ning koostati libiseva aknaga 15 tunnised valimid, kusjuures 12 tundi on kõiki 
parameetreid sisaldavad mineviku andmed, ning 3 tundi on prognoositavad sademe 
klassi (sajab/ei saja) väärtused. LSTM mudeli hüperparameetrite optimeerimiseks 
rakendati Optuna teeki. Optimeeritud mudeli hindamiseks kasutati 
tuvastustõenäosust (POD), valehäirete osakaalu (FAR) ning õiglast tabamismäära 
(ETS). Mudeli meetrikaid võrreldi püsivusprognoosiga ning meetrikate halvenemist 
võrreldi teiste masinõppe mudelitega (ConvLSTM, PredRNN ning PredRNN++). 

Tulemused näitasid, et loodud prototüüp lisas püsivusprognoosile tagasihoidlikku, 
kuid pidevat väärtust igal ajasammul. Samuti tuli välja, et LSTM tüüpi mudelite 
meetrikate väärtused halvenesid reeglina aeglasemalt, kui keerulisemad PredRNN 
tüüpi mudelite omad, erandiks oli käesoleva töö LSTM mudeli FAR, mis halvenes 
kiiremini, kui PredRNN++ mudelil. Parima mudeli meetrikate väärtused 1. tunnil olid 
POD = 0,70, FAR = 0,30 ning ETS = 0,49. 

Arutelus pakutakse lisaks ideid LSTM prognoosimudeli võimalikuks parandamiseks. 
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Abstract 

 This thesis addresses precipitation nowcasting using deep-neural network methods. 
The objective was to develop a prototype of a qualitative precipitation nowcasting 
model using an LSTM deep neural network relying mainly on in situ measurements. 

Hourly data from the Tallinn-Harku aerological station covering the period from the 
beginning of 2011 to the end of 2023 was used in the study. The dataset included time, 
precipitation, wind, air temperature, relative humidity, air pressure, and clouds. The 
data was cleaned, standardized and made into 15 hour samples using a sliding 
window; the first 12 hours consisted of past data for all parameters and the 
subsequent 3 hours represented the forecast precipitation class values (rain/no rain). 
To optimize the LSTM model, the Opuna library was used. Model performance was 
evaluated using the probability of detection (POD), false alarm ratio (FAR), and 
equitable threat score (ETS). The model metrics were compared with the persistence 
forecast, and the deterioration of the metrics was further compared with other types 
of machine learning models (ConvLSTM, PredRNN, and PredRNN++) from previous 
studies.  

The results showed that the developed prototype added modest but consistent value 
over the persistence forecast at each time step. It was also found that the performance 
metrics of LSTM-type models generally degraded more slowly than those of the more 
complex PredRNN-type models. An expectation was the FAR of the LSTM model 
developed in this study, which deteriorated faster than that of the PredRNN++ model. 
The metric values of the best model were POD = 0,70, FAR = 0,30 and ETS = 0,49. 

In the discussion, additional ideas are proposed for potential improvements to the 
LSTM forecasting model. 
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Lühendite ja mõistete sõnastik 

 

Andmete assimilatsioon numbrilise modelleerimise haru, mis kasutab tehnikaid 
vaatluste ja mudelite vaheliste vigade (erinevuste) 
vähendamiseks [1].  

ConvoLSTM   Convolutional Long Short-Term Memory  
    Konvolutsiooniline pikk lühimälu 

ETS    Equitable Threat Score 
    Õiglane tabamismäär 

FAR    False Alarm Ratio 
    Valehäirete osakaal 

LSTM    Long Short-Term Memory 
    Pikk lühimälu 

POD    Probability of Detection 
    Tuvastustõenäosus 

PPI    Plan Position Indicator 
    Kiire tasapinna nurga indikaator 

mõõtmistulemused, mis on saadud maapinnale 
projitseeritud ühe fikseeritud radarikiire tõusunurgal [2] 

PredRNN   Predictive Recurrent Neural Network 
    Ennustav korduv närvivõrk 

TS    Threat score 
    Tabamismäär 
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1 Sissejuhatus  

Ootamatu vihmasadu on igapäevane probleem. See häirib spordi tegemist, välisõhu 
üritusi, ehitust ja muud. Mõnda tüüpi sademed kujunevad ja muutuvad kiiresti 
(minutid kuni tunnid), mõjutades seejuures väikest piirkonda. Traditsiooniliste 
numbriliste ilmamudelite ennustamiseks kasutatavate andmete kogus on tohutu, 
mistõttu tehakse uusi ennustusi vaid mõni kord päevas. Selle aja jooksul võib juba 
olnud tekkinud sajupilv, ning ka sadu alanud. Lisaks võib selliste mudelite 
lahutusvõime jääda lokaalsete sademete jaoks liiga väikseks. On vaja lihtsamaid ja 
kiiremaid meetodeid ennustamiseks: lühiajaline prognoos ehk nowcasting.  
 
Masinõppe, sh süvaõppe, populaarsuse kasv on toimunud ka ilmaennustuse 
valdkonnas. Masinõppe mudelite eelis on see, et isegi kui mudeli treening võtab kaua 
aega, siis treenitud mudeli ennustus on kordades kiirem kui traditsiooniline numbriline 
mudel. Suurem osa süvaõppe ja nowcasting mudeleid kasutavad ennustamiseks 
satelliiti või radarit; mudelid mis õpivad vaid maapealsetelt mõõtmistelt on 
kirjanduses vähem esindatud.  
 
Töö eesmärgiks on süvanärvivõrgu meetoditega luua sademete lühiajalise kvalitatiivse 
prognoosi LSTM (Long Short-Term Memory ehk pikk lühimälu) mudeli prototüüp, 
kasutades vaid kohalikke mõõtmisi, see tähendab ilma kaugseire andmeteta. Selline 
mudel peab toetuma vaid lokaalselt mõõdetud füüsikaliste suuruste vahelisele 
seostele ning nende muutustele ajas.  
 
Kuna töös kasutatavad parameetrid vajavad mõõtmiseks pigem väikseid sensoreid 
(suurim on pilvede mõõtmiseks vajalik seilomeeter), siis selline lähenemine 
võimaldaks luua kaasaskantava sensorite komplekti, mille saaks vajaduspõhiselt 
ümber liigutada. Näiteks oleks võimalik panna selline komplekt püsti Tallinna 
lauluväljakule ürituste eelselt sadu ennustama, või saaks ehitusfirma viia selle 
komplekti erinevatele objektidele. 
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2 Teoreetiline taust 

Ilmaennustuses laialdaselt kasutusel olevad numbrilised mudelid ei anna lühiajalisel 
prognoosimisel parimaid tulemusi. Selle peamine põhjus on prognooside tegemisele 
kuluv aeg: kõigepealt kulub mitmeid minuteid vajalike andmete kohale jõudmiseks [3], 
ning seejärel mõni tund arvutuste stabiliseerumiseks [4][5]. Selleks ajaks on 
ennustatav periood juba möödunud ning võib-olla sadama hakanud – hoovihmad 
võivad konvektsiooni teel tekkida minutitega [6]. Teine probleem on nende väike 
lahutusvõime. Sellised mudelid on paremini kohandatud ulatuslike sademete 
ennustamiseks, ning lokaalsed hoovihmad, mida esineb palju suvel, jäävad neil 
märkamata [7][5]. Lahutusvõime suurendamine pole efektiivne lahendus, sest selle 
tegemisega pikeneb prognoosi tegemise aeg eksponentsiaalselt [7]. 

Lühiajaline prognoos ehk nowcasting on ilmaennustuse meetod, mille eesmärk on 
prognoosida ilma 6 tunni ulatuses [7]. See on eriti oluline nii ohtlike loodusnähtuste -  
tornaadod, äkilised üleujutused, kiiresti kujunevad äikesetormid – kui ka väiksemate 
ohtude, nagu jäävihm või tihe udu, varajaseks märkamiseks [7]. Lühiajalise prognoosi 
tehnikad toetuvad tavaliselt maapealsetele mõõtmistele, radarile ning satelliidi 
andmetele [7], ning need mudelid on traditsioonilistest numbrilistest mudelitest 
lihtsamad, mis laseb neil lühikesel ajaskaalal efektiivselt töötada [3]. Küll aga langeb 
lühiajaliste prognooside täpsus palju kiiremini kui traditsioonilistel numbrilistel 
mudelitel, ning neid on mõistlik kasutada 6 tunni piires [8]. 

Peamised sademete lühiprognoosi tehnikad põhinevad ekstrapoleerimisel. See 
käsitleb sademeid kui sademete välja, mis ajas edasi liigub ning deformeerub [3]. 
Meetod tugineb Lagrangiane’i püsivuse eeldusele: sademete välja sisemine struktuur 
on konstantne ning kõik muutused on tingitud suurte õhuvooludega kaasaliikumise 
tõttu [8]. See eeldus on lihtsustus, mis töötab kõige paremini lokaalselt, kuid siiski 
erineb sageli palju tegelikkusest [8]. Üks probleemidest seisneb sademete välja 
kasvamises ning hääbumises [9][3]. On proovitud erinevaid lähenemisi selle meetodi 
täpsemaks tegemiseks, kuid pole leitud üldist lahendust, mis ei kaasaks kulukat 
andmete assimilatsiooni1 [8]. Sellest tulenevalt on hakanud uurima masinõpet kui 
võimalikku lahendust sellele probleemile [8]. 

On tõestatud, et süvaõppe mudelid on radari piltide ekstrapoleerimisel oskuslikumad, 
kui traditsioonilised Lagrangiane’i eeldusel põhinevad lühiprognoosi mudelid [10]. 
Süvaõppe mudelid saavad efektiivselt kasutada sageli värskendatavaid andmeid 
radaritelt, satelliitidelt ning teistelt vaatlussüsteemidelt [10]. Nad saavad hästi 
hakkama mitte-lineaarsete nähtuste, nagu hoovihmad,  kirjeldamisega – miski mida on 
numbriliste meetodite ning ekstrapolatsiooniga raske teha [10]. Eeliseks on ka kiirus: 

 
1 Andmete assimilatsioon on numbrilise modelleerimise haru, mis kasutab tehnikaid vaatluste ja 
mudelite vaheliste vigade (erinevuste) vähendamiseks [1]. 
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treenitud süvaõppe mudelil kulub superarvuteid kasutamata prognoosimiseks 
sekundeid [10]. 

2.1 Sademete ülevaade 

Iga aasta summaarne sajuga tundide arv on toodud joonisel 1.  On näha, et sademete 
sagedused võivad aastast aastasse palju erineda. Kõige vähem sajutunde (727) oli 
aastal 2014, mil sajutunnid moodustasid 8,3% kõigist tundidest, ning kõige rohkem 
(1192) aastal 2019, mil sajutunnid moodustasid 13,6% kõigist tundidest; keskmiselt 
sajab 962.5 tundi aastas. Terve perioodi jooksul sadas keskmiselt 11,2%-l tundidest.  

 
Joonis 1: Tallinn-Harku aeroloogiajaama sajuga tundide arv aasta kaupa 2011-2023 

Joonisel 2 on histogramm silutud keskmisest sajuga tundide arvust päeva kaupa; 
kuude esimesed päevad on tehtud tumesiniseks. Andmete silumiseks kasutati liikuva 
keskmise meetodit aknapikkusega 15 päeva. On näha sujuvat üleminekut hooajast 
hooaega. Kõige väiksem sajutundide osakaal oli mais 5,7%-ga ning kõige suurem 
detsembris, millal sadas 18,9% tundidest.  
 

 
Joonis 2: Tallinn-Harku aeroloogiajaama 2011-2023. aasta keskmine sajuga tundide arv päeva kaupa, silutud 

Joonisel 3 on toodud perioodi 2011-2023 vihma kestvuste histogramm. Enamik 
sademeperioode olid lühikesed: 39,5% sademe perioodidest kestis maksimaalselt 
ühe tunni, 22,3% kestis maksimaalselt 2 tundi. Viis korda kestis sadu rohkem kui 
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ööpäev. Saju pausidel (sajuga tundide vaheline aeg) on samamoodi geomeetriline 
jaotus (joonis 4), kuid see on palju raskema sabaga: 19,4% saju pausidest kestis 
vähemalt ühe, kuid vähem kui kaks tundi, ning kõige pikem vihma paus oli 535 tundi 
ehk üle 22 päeva 

 
Joonis 3: Perioodi 2011-2023 vihma kestvuste histogramm 

 

Joonis 4: Perioodi 2011-2023 vihmapauside kestvuste histogramm (n > 20) 
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3 Metoodika  

3.1 Andmete valimine ja töötlemine 

3.1.1  Andmete valimine  

Käesoleva töö andmed saadi Eesti Keskkonnaagentuuril [11] avaandmete portaalist 
Tallinn-Harku aeroloogiajaamast. Valiti 1 tunni mõõtmise intervalliga andmed. 
Andmete periood oli 2011. a algusest kuni 2023. a lõpuni. 
 
Valiti järgmised füüsikalised suurused:  
 

• Ühe tunni sademete summa, mm  
• Ühe tunni maksimaalne tuule kiirus, m/s  
• Viimase 10 minuti keskmine tuule kiirus, m/s  
• Viimase 10 minuti valdav tuule suund, °  
• Ühe tunni maksimaalne õhutemperatuur, °C  
• Ühe tunni minimaalne õhutemperatuur, °C  
• Õhutemperatuur täistunnil (hetkväärtus), °C  
• Suhteline õhuniiskus täistunnil (hetkväärtus), %  
• Õhurõhk merepinnal täistunnil (hetkväärtus), hPa  
• Alumiste pilvede kõrgus, m  
• Alumiste pilvede hulk, (0, 8)  
 

Täiendavalt lisati ka:  
 

• Tund, (0, 23) h  
• Päev aastas, (0, 364) või (0, 365) d 
  

Aasta ja päev on tsüklilised: 1. jaanuar ja 31. detsember, nagu ka kell 00:00 ja kell 
23:00, on üksteisega kõrvuti. Arvuliselt aga on 0 ja 364 või 0 ja 23 lõigu otstes, ning 
üksteisest väga erinevad. Selleks, et anda LSTM mudelile edasi nende tsükliline 

iseloom, võeti ajalistest suurustest lisaks   𝑠𝑖𝑛⁡(2𝜋 ∗ 𝑥

𝑛
⁡)  ja   𝑐𝑜𝑠⁡(2𝜋 ∗ 𝑥

𝑛
⁡), kus  x  tähistab 

muutuvat tunni/päeva väärtust, ning n maksimaalset tunni/päeva väärtust. Siinus-
koosinus paar kannab päeva ja tunni väärtused ühikringile. 

3.1.2 Andmete töötlemine  

Seilomeeteri mõõdetud pilvede andmed olid jagatud nelja kihti. Iga kihi kõrguse piirang 
oli seilomeetri maksimaalne mõõdetav kõrgus: esimeses kihis oli sellel tunnil kõige 
madalam mõõdetud kiht, mis võis olla ka 7,6 km kõrgusel kui sellest allpool pilvi ei 
olnud [12].  
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Käesolevas töös kasutati vaid kõige alumise kihi andmeid, sest sajupilvede baasid on 
reeglina alla 2 km kõrgusel [6]. Pilvede kõrguse andmetes võeti maksimum kõrguseks 
2000 m: kõrguse väärtused suuremad kui 2000 m võeti võrdseks 2000 m-iga. 
Grupeerides kõrged mittesajupilved, keskendus LSTM mudel rohkem sajupilvedele. 
Tühja taeva (pilvede kogus = 0) puhul pandi puuduva kõrguse asemele -1. Andmed 
järjestati aja järgi ning pandi andmeraamistikku; sademete mm väärtus tehti 
kahendväärtuseks (0 – ei saja, 1 – sajab). Kuna andmestik oli suur ning puuduvate 
andmetega ridu oli vaid 1,65%, siis need read eemaldati. Alles jäi 112 071 tunni 
andmed. 

3.1.3 Valimite moodustamine  

Enne valimite moodustamist andmed standardiseeriti, et suurte väärtustega 
füüsikalised suurused ei domineeriks. Selleks kasutati klassi 
sklearn.preprocessing.StandardScaler [13], mis viib iga füüsikalise suuruse jaotuse 
kujule, millel on keskväärtus 0 ja standardhälve 1. Standardiseerimisest jäeti välja 
sademed, pilvede hulk, ning siinus ja koosinus päevast ning tunnist, sest 
standardiseerimine oleks rikkunud nende kategoorilist või tsüklilist infot, ning ükski 
neist ei olnud domineerivate väärtustega. 

Käesolevas töös ennustati 12 mineviku tunni põhjal 3 tuleviku tundi; selleks libises üle 
originaal andmestiku 15 tunnine aken. Kõigepealt kontrolliti kas akna sees on ajalisi 
hüppeid. Kui hüpe esines, libises aken ühe tunni võrra edasi ning kontrolliti uuesti. 
Hüpete puudumisel lisati 12 esimest tundi sisendite massiivi, ning 3 viimast tundi 
väljundite massiivi, kusjuures sisendite massiivis olid olemas kõik füüsikalised 
suurused ja väljundite massiivis vaid sademete väärtused. Iga 12 + 3 h paar moodustas 
ühe valimi.  Kokku oli 104 186 valimit. 

Joonisel 5 on toodud valimite tuleviku tundide  sajab/ei saja (1/0) mustrite histogramm. 
Täielikult sajuta muster ‘000’ moodustab 82,4% kõigist mustritest. Sadu sisaldavatest 
mustritest on ‘111’ kõige sagedasem: kõigist mustritest moodustab see 5,3%, ning 
sajuga mustritest 30,1%. Teisel kohal sajuga mustritest on ‘001’, mida on peaaegu 
poole vähem, kui mustrit ‘111’. Kõige vähem esineb mustrit ‘101’, mis moodustab 0,7% 
kõigist mustritest, ning 4,0% sajuga mustritest. 



12 
 

 
Joonis 5: Valimite tuleviku tundide (3h) mustrite histogramm 

Andmed jagati treening-, valideerimis- ning testandmeteks ajalist järjekorda 
rikkumata. Jaotus oli järgmine: LSTM mudel treenis umbkaudu 2011-2019 andmetel, 
valideeris 2020-2021 andmetel, ning testis 2022-2023 andmetel. Ajalise järjekorra 
säilitamine oli oluline, sest valimid olid tehtud libiseva aknaga, ning andmeid segades 
satuks osaliselt identseid valimeid nii treening kui ka testandmetesse. Mustrite 
jaotumist treening-, valideerimis- ning testandmete vahel on näha joonisel 5. 

3.2 Sademete seosed teiste suurustega 

Joonisel 6 on füüsikaliste suuruste normaliseeritud histogrammid vastavalt sajab / ei 
saja klassile; musta punktiirjoonega on märgitud mediaanide väärtused. Joonise jaoks 
eemaldati pilvede kõrguste väärtustest -1, mida kasutati pilvede puudumise 
tähistamiseks. Suurimad erinevused klasside jaotuste vahel on suhtelisel 
õhuniiskusel, õhurõhul ja pilvede kõrgusel: sadu esineb kõrgema õhuniiskuse,  
madalama õhurõhuga ning madalatest pilvedest. On näha, et sademed esinevad 
natuke kõrgema tuulekiiruse, ning madalama õhutemperatuuriga. Loogiline seos on ka 
sademete ja pilvede hulga vahel: sademeid esineb suurema pilvede hulga korral. Aasta 
päeva trigonomeetrilistel väärtustel on samuti näha erinevusi saju ja mitte-saju klassi 
vahel. Tuule suuna histogrammid on peaaegu erinevusteta, ning tunni 
trigonomeetrilistel väärtustel erinevust ei esine. See ei tähenda veel, et need ei ole 
LSTM mudelile kasulikud. Joonisel on võrreldud iga suurust eraldi – need ei käsitle 
mitme parameetri koosmõju. 
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Joonis 6: Füüsikaliste suuruste normaliseeritud histogrammid vastavalt sajab / ei saja klassile 

3.3 LSTM mudeli arhitektuur ja optimeerimine 

Nagu ka andmete töötlemine, tehti LSTM mudeli treening ja optimeerimine 
programmeerimiskeeles Python integreeritud programmeerimiskeskkonnas 
PyCharm. Peamiselt kasutati teeke Pandas, NumPy, scikit‑learn, TensorFlow, Keras, 
Seaborn ja Matplotlib [14][15][13][16][17]18][19]. Koodi kirjutamisel ja vigade 
leidmisel kasutati tehisintellekti tekstirobotite ChatGPT ja Copilot abi [20][21].  

Mudel koosnes sisendkihist, mis võttis vastu sisendi kujuga 12 rida ja 15 tulpa, kahest 
järjestikkusest peidetud LSTM kihist ning väljundkihist mis väljastas ennustuse kujuga 
3 rida ja 1 tulp.  

Mudeli hüperparameetrite tuunimiseks kasutati Optuna teeki [22]. Kokku tuuniti 
kaheksat hüperparameetrit: mõlema LSTM kihi neuronite arv, väljalangemise määr 
(dropout rate), rekurrentne väljalangemise määr (recurrent dropout rate), 
õppimiskiirus, partii suurus, gamma ja alfa. Väljalangemise määra parameetreid 
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kasutatakse mudeli treeningandmetel üleõppimise ärahoidmiseks [23]. Gamma ja alfa 
on BinaryFocalCrossentropy kaofunktsiooni (loss function) parameetrid, mis aitavad 
saju ja mitte-saju klasse võrdsustada: gamma > 0 puhul keskendub mudel rohkem 
raskemini ennustatavatele valimitele ning alfa > 0.5 teeb saju klassi kaalu suuremaks 
[24]. Väljalangemise määrade, gamma ja alfa puhul jäeti Optunale võimalus need välja 
lülitada, st valida vastavalt väärtused 0, 0, 0 ja 0.5. Optimeerimise eesmärgiks seati 
maksimeerida õiglast tabamismäära (Equitable Threat Score ehk ETS). 

Optimeerimiseks tehti 100 katset, kusjuures iga katsel treeniti mudelit maksimaalselt 
40 epohhi. Treeningu kontrollimiseks ja kiirendamiseks pandi peale varajane 
peatamine: kui 7 epohhi pole validatsiooni kadu paranenud vähemalt 1e-5 võrra, 
treening lõppeb ning salvestatakse selle katse parimad hüperparameetrid.  

Olles leidnud parimad hüperparameetrid, treeniti nendega lõplik LSTM mudel. Seekord 
pandi piiriks 100 epohhi, ning varajane peatumine sama minimaalse paranemisega 30 
epohhi. 

3.4 LSTM mudeli hindamine 

3.4.1 Püsivusprognoos 

LSTM mudeli kasulikkuse hindamiseks võrreldi seda püsivusprognoosiga (persistence 
forecast). See on üks lihtsamatest prognoosi meetoditest, mis ennustab alati, et 
järgmine päev või tund tuleb täpselt samasugune nagu praegune päev või tund. 
Püsivusprognoos on kõige usaldusväärsem lühikese aja jooksul, ning ennustuse 
täpsus väheneb märgatavalt, kui prognoosiperiood pikeneb. Konvektsioonist tingitud 
sademete püsivusprognoos hakkab halvenema juba 5ndast minutist ning väiksemad 
äikesetormid võivad juba 30 minuti jooksul palju muutuda [3].  

Käesolevas töös koostati püsivusprognoos järgmiselt: iga valimi viimane, ehk 12nda 
tunni sademete väärtus võeti ennustuseks ehk järgneva kolme tunni väärtuseks.  

LSTM Mudeli ja püsivusprognoosi meetrikate võrdluseks kasutati oskusskoori (Skill 
Score) 

𝑆 =
𝑠𝑓 − 𝑠𝑟

𝑠𝑝 − 𝑠𝑟
 

kus sf on mudeli ennustuse meetrika väärtus, sr on võrreldava ennustuse (püsiv-
prognoosi) meetrika väärtus ning sp on meetrika parim väärtus. Oskusskoori parim 
väärtus on 1, kusjuures 0 tähendab, et mudeli ennustus ei ole parem võrreldavast 
prognoosist [25]. 

Mudeli võrdlemiseks teiste uuringute mudelitega vaadati meetrikate halvenemist. 
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3.4.2 Hindamismeetrika 

Alapeatükis 3.2.1 selgus, et sajuta tundide osakaal on oluliselt suurem kui sajuga 
tundide osakaal. Eeldades sajuga tundide suurimat osakaalu (detsembri keskmine 
18,9%), saavutaks mudel täpsuse 0,81 ka siis, kui see ennustaks igal tunnil sajuta ilma. 
Seetõttu kasutati hindamismeetrikaid, mis keskenduvad vaid positiivsele klassile: 
tuvastustõenäosus (Probability of Detection ehk POD), valehäirete osakaal (False 
Alarm Ratio ehk FAR) ning õiglane tabamismäär (ETS).  

LSTM Mudel tagastas iga tunni prognoosi tõenäosusena sündmuse esinemiseks. 
Tõeväärtuste (0 või 1) saamiseks tuli ennustusi kõigepealt teisendada. Selleks valiti 
läve väärtus, millest suurema tõenäosusega tunnid liigitati saju (1) ning väiksema 
tõenäosusega sajuta (0) klassi. Täpsete läveväärtuste määramine on alapeatükis 4.1. 

Kõiki meetrikate arvutamiseks tuli kõigepealt koostada sagedustabel ennustustest ja 
tegelikest väärtustest, kus 0 tähistas negatiivset klassi ehk saju puudumist, ning 1 
positiivset ehk saju klassi. Tabelis 1 on toodud tüüpilise sagedustabeli struktuur; vale 
positiivne ja vale negatiivne on mudeli eksimused. 

Tabel 1: Sagedustabel ennustustest ja tegelikest väärtustest 

 Tegelik 1 Tegelik 0 

Ennustatud 1 
Õige Positiivne 

(ÕP) 
Vale Positiivne 

(VP) 

Ennustatud 0 Vale Negatiivne 
(VN) 

Õige Negatiivne 
(ÕN) 

 

POD näitab kui palju tegelikest sündmustest õigesti ennustati. 

𝑃𝑂𝐷 =
Õ𝑃

Õ𝑃 + 𝑉𝑁
 

POD jääb lõiku [0, 1], parim tulemus on 1. 

 FAR näitab kui palju ennustatud sündmustest olid valed. 

𝐹𝐴𝑅 =
𝑉𝑃

Õ𝑃 + 𝑉𝑃
 

FAR jääb lõiku [0, 1], parim tulemus on 0. 

Õiglane tabamismäär hindab üleüldist sündmuse ennustamise oskust, karistades nii 
vale positiivseid kui ka vale negatiivseid. Õiglane tabamismäär on sarnane tavalisele 
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tabamismäärale (Threat score ehk TS), kuid on selgem hinnang mudeli oskusele, sest 
see eemaldab mõju, mis tuleks juhuslikust ennustamisest [26].  

ETS arvutatakse järgmiselt: 

𝐸𝑇𝑆 = ⁡
Õ𝑃⁡ − 𝑅

Õ𝑃⁡ + 𝑉𝑃 + 𝑉𝑁 − 𝑅
 

kus  

𝑅 =
(Õ𝑃 + 𝑉𝑃)(Õ𝑃 + 𝑉𝑁)

Õ𝑃 + 𝑉𝑃 + 𝑉𝑁 + Õ𝑁
 

on juhusliku ennustuse oodatud õigete positiivsete arv. 

ETS jääb lõiku [− 1

3
, 1], parim tulemus on 1, ning 0 näitab, et mudel polnud juhuslikust 

ennustusest parem, ehk mudeli prognoos on oskusetu [26]. 

Meetrika väärtuste halvenemise arvutamiseks kasutati valemit 

𝐻 =
𝑎 − 𝑙

𝑎
∗ 100% 

kus  a  on meetrika algväärtus ning  l  on meetrika lõppväärtus.  
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4 Tulemused 

Optimeeritud LSTM mudeli täpne struktuur on leitav lisast 1. Parim tulemus saavutati 
8ndal epohhil. 
Optimeerimise käigus valiti parimaks positiivse klassi kaaluks 0,77, negatiivne klass 
sai kaaluks seega 1 – 0,77 = 0,23. Algne klasside jaotus oli: sadu – 11,2% ning mitte-
sadu – 88,7%, peale kaalude lisamist oli uus efektiivne klasside jaotus: sadu – 29,7% 
ning mitte-sadu – 70,3%. 

4.1 LSTM mudeli ning püsivusprognoosi ennustuste tulemused ja 
meetrikad 

LSTM mudeli tagastatud tõenäosuste väärtused ei ole kalibreeritud, kuid kuna 
eesmärgiks on kvalitatiivne, mitte tõenäosuslik prognoos, siis piisab vaid läve 
tuunimisest [27].  

LSTM mudeli ETS arvutamiseks valiti kõigepealt iga tunni jaoks lävi, mis maksimeeris 
ETS väärtuse (joonis 7). Selleks leiti iga tunni prognoosi väärtuste vahemik ning arvutati 
ETS välja 100s võrdse vahega kohas; iga tunni maksimaalsele ETS väärtusele vastav 
koht valiti  selle tunni läve väärtuseks. Joonisel on märgitud iga tunni jaoks ETS suurim 
väärtus. Parimad läve väärtused tundidele 1-3 olid vastavalt 0,48, 0,43 ning 0,41. POD 
ja FAR arvutati samuti nende lävede järgi (tabel 2). Tabelis 3 on toodud LSTM mudeli 
meetrikate halvenemised protsentides erinevate ajasammude kohta. Kõik meetrikad 
halvenevad esimesel ajasammul kõige rohkem; 2. tunnilt 3ndale minnes on kahjud 
väiksemad. 

 
Joonis 7: LSTM mudeli ETS väärtus sõltuvalt läve valikust tundide kaupa 

Tabelis 4 on toodud POD, FAR ja ETS väärtused püsivusprognoosi jaoks. Ühe tunni 
piires on meetrikad parima tulemusega võrreldes juba mõõdukalt langenud. 
Suhteliselt kõrge POD on tõenäoliselt tingitud sellest, et 12+3 tunni valimites on 
3‑tunniste sadu/mitte-sadu mustrite hulgas ‘111’ kõige sagedamini esinev sadu 
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sisaldav muster (joonis 5). Kuna püsivprognoosi ennustused järgivad andmestiku 
jaotust, siis ennustatud VP-d ja VN-d on ligikaudu võrdsed, ning POD ja FAR summa on 
iga tunni jaoks 1. 

Tabel 2: LSTM mudeli Läve, POD, FAR ja ETS väärtused tundide kaupa 

 1. tund 2. tund 3. tund Parim tulemus 

POD 0,70 0,62 0,61 1 

FAR 0,30 0,46 0,56 0 

ETS 0,49 0,35 0,28 1 

Lävi 0,48 0,43 0,41  

 

Tabel 3: LSTM mudeli meetrikate halvenemised (%) vastavalt ajasammudele 

 1. → 2. 2. → 3. 1. →  3. 

POD 11,4 1,6 12,9 

FAR 53,3 21,7 86.7 

ETS 28,6 20,0 42,9 

 

Tabel 4: Püsivusprognoosi POD, FAR ja ETS väärtused tundide kaupa 

 1. tund 2. tund 3. tund Parim tulemus 

POD 0,69 0,56 0,48 1 

FAR 0,31 0,44 0,52 0 

ETS 0,48 0,33 0,26 1 

 

4.2 LSTM mudeli ja püsivusprognoosi võrdlus 

Tabelis 5 on toodud mudeli meetrikate oskusskoorid võrreldes püsivusprognoosiga. 
Mudeli oskus paistab kõige rohkem välja POD väärtuste võrdluses: igal ajasammul 
prognoosib LSTM mudel püsivprognoosist rohkem sademetega tunde õigesti, eriti 
domineerib see viimasel tunnil.  
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Tabel 5: Mudeli meetrikate oskusskoorid võrreldes püsivprognoosiga 

 1. tund 2. tund 3. tund 

S (POD) 0,03 0,14 0,26 

S (FAR) 0,03 -0,04 -0,07 

S (ETS) 0,02 0,02 0,03 

Samas ilmneb FAR väärtuste põhjal, et parem POD väärtus saavutatakse osaliselt vale 
positiivsete arvu suurenemise arvelt. Teisel ja kolmandal tunnil on FAR oskusskoor 
negatiivne, mis tähendab, et LSTM mudel ennustab sademeid tihemini kui neid 
tegelikkuses esineb. See näitab, et mudel prognoosib saju tegelikust pikemat kestvust. 

Paljudes olukordades on sademete ennustamata jätmine (VN) rohkem kahju, ohtu või 
ebamugavust tekitavad kui valehäired. Nendes kontekstides võib POD väärtust 
olulisemaks pidada kui halba FAR väärtust.  

Mudeli ETS oskusskoor on igal ajasammul püsivusprognoosist natuke kõrgem. See 
näitab, et mudel lisab vähest kuid stabiilset väärtust. 

4.3 Võrdlus uuringutega 

4.3.1 PredRNN++ kasutades radaripilte 

Uuringus [28] on kasutatud videoprognoosi süvaõppemudelit PredRNN++ (Predictive 
Recurrent Neural Network ehk ennustav korduv närvivõrk) ning kahe polarisatsiooniga 
S-kanali (S-band) Doppler radari piltide seeriat, et ennustada tuleviku piltide seeriat 
ühe tunni ulatuses. Uuringus sooviti luua mudel, mis toetaks teisi lühiprognoosi 
meetodeid. Kasutati andmeid 2015 märtsist 2019 lõpuni ainult ühtelt madalalt 
mõõtekõrguselt (0,5°  Plan Position Indicator - PPI2 ehk kiire tasapinna nurga 
indikaator), kusjuures iga pildi vahel oli 15 minutit. Prognoositi 10 pildi seeria põhjal 10 
tuleviku pilti (150 minutit), valimid olid moodustatud libiseva aknaga. Lisa 90 minutit 
ennustati mudeli prognoosi halvenemise visualiseerimiseks. PredRNN++ mudel 
treeniti superarvutil, ning võttis umbes 240 tundi. Klasside tasakaalustamist ei 
kasutatud.  

Mudeli hindamiseks kasutati kõiki käesolevas töös kasutatud meetrikaid: POD, FAR ja 
ETS. Skooride saamiseks kasutati igal pikslil teatud läve väärtust. Kõigepealt võrreldi 
PredRNN++ tulemusi tegelike radaripiltidega (tabel 6), läve väärtus oli mõlemal juhul 
madal 1dBZ. Tabeli 6 ja käesoleva töö LSTM mudeli tulemuste (tabelis 2) halvenemiste 

 
2 PPI – mõõtmistulemused, mis on saadud maapinnale projitseeritud ühe fikseeritud radarikiire 
tõusunurgal [2]. 



20 
 

võrdlused on toodud tabelis 7, kus on arvutatud iga meetrika halvenemise protsent 
LSTM mudeli jaoks ühe tunni ning PredRNN++ jaoks 45 minuti möödudes. 

Tabelist 7 on näha, et isegi kui PredRNN++ mudeli FAR halveneb aeglasemalt, langeb 
selle üldine prognoosioskus (ETS) lühema aja jooksul märgatavalt kiiremini kui LSTM 
mudelil. POD halvenemised on sarnasema kiirusega, kuid LSTM mudel säilitab ka seda 
natuke paremini. 

Tabel 6: Uuringu [28] (tabel 2) PredRNN++ mudeli meetrikate tulemused 

 15 min 30 min 45 min 60 min Parim tulemus 

POD 0,90 0,86 0,83 0,79 1 

FAR 0,45 0,53 0,59 0,62 0 

ETS 0,46 0,37 0,31 0,21 1 

 

Tabel 7: Uuringu [28] PredRNN++ mudeli ja LSTM mudeli meetrikate halvenemised (%) 

 POD FAR ETS Ajaline samm 

LSTM 11,4 53,3 28,6 1 h → 2 h 

PredRNN++ 12,2 37,8 54,3 15 min → 45 min 

 

4.3.2 PredRNN ning ConvLSTM kasutades kohalikke sademete andmeid 

Uuringus [9] on kasutatud ConvLSTM (Convolutional Long Short-Term Memory ehk 
konvolutsiooniline pikk lühimälu) ja PredRNN mudeleid, mis treeniti 1835 
automatiseeritud ilmajaama 1-minutilise lahutusvõimega sademete (mm) andmete 
peal. Puuduvad andmed asendati kasutades ajaliselt ja ruumiliselt lähimate naabrite 
andmeid. Uuringu eesmärk oli luua 6 minutilise ajaloo põhjal 2 tunni ulatuses väga 
täpne mudel. Andmed olid aastatest 2013 kuni 2021 ning ilmajaamade andmed 
interpoleeriti ühtlasele ruudustikule. Klasside tasakaalustamist ei tehtud, kuid prooviti 
kahte erinevat andmestikku: vaid tugevaid sademeid sisaldav andmestik ning algne 
puhastatud andmestik, millega treenitud mudeleid kasutatakse käesolevas töös 
võrdluseks. 

Uurimuses kasutati hindamiseks peamiselt ETS meetrikat, mis leiti sarnaselt [28] 
uurimusele üle ruudustiku pinna. Võrdluseks prooviti viit erinevat läve väärtust 
sademete klassifitseerimiseks, ning nelja erineva perioodi pikkusega ajaloo andmeid. 
Käesolevas töös valiti võrdlemiseks uurimuse kõige pikema treeningperioodi (8 aastat) 
parimad tulemused – need vastasid kõige madalamale läve väärtusele 0,1 mm. Tabelis 
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8 on võrdluseks toodud kõigi võrreldavate mudelite ETS meetrika väärtuste 
halvenemised prognoosiaja pikenemisel.  

On näha sarnaseid tulemusi eelmise alapeatükiga: PredRNN tüüpi mudeli ETS väärtus 
langeb palju kiiremini, kui lihtsamate LSTM tüüpi mudelitel. Kõige vähem langes 
ConvoLSTM ETS väärtus.   

Tabel 8: LSTM mudeli ning Uuringu [9] (tabel 2) mudelite ETS väärtused ja halvenemine 

 1. tund 2. tund Halvenemine (%) 

ConvLSTM 0,33 0,25 24,2 

PredRNN 0,49 0,21 57,1 

LSTM 0,49 0,35 28,6 
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5 Arutelu 

Tulemused näitavad eelkõige LSTM mudeli stabiilsust prognoositava ajahorisondi 
pikenedes: 

- see lisas püsivusprognoosile väikest, kuid järjepidevat väärtust; 

- selle POD ja ETS väärtused langesid aeglasemalt kui PredRNN++ mudeli omad 
uurimuses [28].  LSTM mudelil säilitab sademete tundlikkuse kauem; 

- uurimuses [9] oli LSTM mudel taaskord ETS meetrika puhul PredRNN tüüpi mudelist 
järjekindlam. Alla jäi LSTM mudel oma sugulasele ConvLSTM mudelile, mis toetab 
järeldust, et lihtsam LSTM tüüpi mudel võib olla ka suurema müraga andmete, nagu 
uuringu [9] suurema ajalise ja ruumilise lahutusvõimega andmed, puhul täpsuse 
püsivuses parem. 

Tulemuste põhjal saab järeldada, et keerukamad ja suurema ajalise lahutusvõimega 
mudelid ei taga tingimata stabiilsemat prognoosi, vaid ajahorisondi pikenedes võib 
täpsus hoopis kiiremini langeda [28][9]. Käesolevas töös kasutatud lihtne LSTM 
lähenemine võib aidata usaldusväärsemalt ületada lõhe lähimate tundide vahel, mida 
traditsioonilised numbrilised mudelid piisavalt hästi veel prognoosida ei suuda [3]. 
Rohkemate eksperimentideta ei ole võimalik kindlalt öelda, mis kõige rohkem tulemusi 
mõjutas, sest võrdlemiseks kasutatud uurimustes oli käesoleva tööga palju erinevaid 
aspekte: ajaline lahutus, tasapinnaline või punktipõhine ennustus, kasutatud andmed 
ning mudelid. Seetõttu piirduti ka vaid halvenemise analüüsimisega (tabelid 7 ja 8).  

Ideed lokaalse LSTM mudeli parandamiseks või edasiseks eksperimenteerimiseks on 
suuresti piiratud saadavalolevate füüsikaliste suuruste ning nende mõõtmis-
sagedustega. Esimeseks mõtteks on proovida suuremat ajalist lahutust, kuid 
keskkonnaportaali avaandmetes on praegu 1 tunnist väiksema sagedusega vaid 10 
minuti tuule ning sademete andmed [29].  See lisaks tõenäoliselt mudelile müra, kuid 
tuleks analüüsida, kas saadud kasu on suurem.  

Teine idee on lisada õhupuhtuse parameeter, sest sademe tilgad moodustuvad 
väikeste tuumade ümber, mis on sattunud pilve [7]. Seda parameetrit Eesti 
ilmajaamades ei mõõdeta. 

Kolmandaks tuleks teha dimensionaalsuse vähendamist ehk eemaldada mitte- või 
väheolulised füüsikalised suurused. Selleks saab kasutada näiteks permutatsiooni või 
eemaldamise meetodit: permutatsiooni meetodil segatakse ükshaaval iga parameeter 
ära, eemaldamise meetodil eemaldatakse kordamööda parameetreid; peale iga 
eemaldust või segamist mudel treenitakse ning pärast hinnatakse kui palju iga 
füüsikaline suurus oskust lisas [30][31]. 
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Lisad 

Lisa 1 – Optimeeritud mudeli struktuur  
 

best_model = Sequential() 

best_model.add(Input(shape=(n_timesteps, n_features))) 

 

best_model.add( 

    LSTM( 

        43, 

        return_sequences=True, 

        dropout=0.07028726141306774, 

        recurrent_dropout=0.0515254853751841 

    ) 

) 

 

best_model.add( 

    LSTM( 

        58, 

        return_sequences=False, 

        dropout=0.07028726141306774, 

        recurrent_dropout=0.0515254853751841 

    ) 

) 

 

best_model.add(Dense(3, activation='sigmoid')) 

 

best_model.compile(optimizer=Adam(learning_rate=0.009150114118798836, 

                   loss=keras.losses.BinaryFocalCrossentropy( 

                       apply_class_balancing=False, 

                       alpha=0.773732098296195, 

                       gamma=2.716007422792222) 

                   ) 

 

 

 

checkpoint = ModelCheckpoint( 

    # PATH, 

    monitor='val_loss', 

    save_best_only=True, 

    mode='min', 

    verbose=1 

) 

 

early_stop = EarlyStopping(monitor='val_loss', patience=30,  

       min_delta=1e-5, restore_best_weights=True, 

       mode='min') 

 

 

 

result = best_model.fit(X_train, y_train, 

                        validation_data=(X_val, y_val), 

                        batch_size=32, 

                        epochs=100, 

                        shuffle=False, 

                        callbacks=[early_stop, checkpoint], 

                        verbose=2) 
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