

723 ALUSTATUD 1937

TALLINNA TEHNIKAÜLIKOOLI
TOIMETISED

TRANSACTIONS OF TALLINN
TECHNICAL UNIVERSITY

TPyALI TAAAHHHGKOFO
TEXHHHECKOFO YRMBEPCHTETA

PROCESS AND CIRCUIT
MODELLING AND ANALYSIS

Electrical and Control Engineering XL

TALLINN 1990

CONTENTS

E. Kängsep. Non-Two-Port Characteristic Model of
Balanced Transmission Line 3

T. Parve. Vector Analysis of Signals by Means of
Lock-in Measurement Devices 11

R. Land. A Frequency Modulation in the Phase-Lock
Loop 19

0. Aarna. Balance Models for Continuous Process
Plant State Estimation 27

A. Kiitam. On the Selection of the Utility Function
for Process Adjustment 41

W. Kracht, Truth Valued Computing Processes and
Process Calculus: A Formalism for Describing
Programming Logic 55

isJW

Edited by E, K a 1 m

\

\ \

(C) Tallinn Technical University, 1990

3

No 722
TALLINNA TEHNIKAÜLIKOOLI TOIMETISED

TRANSACTIONS OP TALLINN TECHNICAL UNIVERSITY

E. Kängsep

NON-TWO-PORT CHARACTERISTIC MODEL
OF BALANCED TRANSMISSION LINE

Abstraat. This paper is an attempt to find a non--
two-port characteristic model of a balanced transmission
line for applications in time domain analysis. The
presented model is a more general case of the
convolution model of transmission line presented by
If. Yaltonen (1978) and used by other authors.

A balanced two-wire line in Fig. 1, (a) consists of two
symmetrical conductors and is described by the series
distributed resistance R and series distributed proper
inductance L (here values of R and L are the sum of these
values of both wires). M is the distributed coupled inductance
of the wires, G is the shunt distributed conductance, and 0 is
the shunt distributed capacitance. This transmission line can
be approximated by a circuit shown in Fig. 1, (b). The nodes
are separated by a small distance Az, and the node subscript (

locates the node on the line according to z=tAz. By Fig. 1,(b)
the circuit equations can be written as follows:

Au* t
= ,§Lz+ % Az ——- +M Az (1a)2dt dt

Au* = t -Az+£ Az —— +U Az (1b)2,4 2 ‘ 4 2 2 dt dt

"A“i -| A* it Itl + l
2 +<i+ *) (+ “f 1) (1o)

dh j..
-At

> t = -At 2 t=G Az ut+l +OAz —— (Id)
' dt

Fig.l. Balanced two-wire line (a) and its circuit model (b).

Here Atr.« = (

r.t + i
- l i.i (2a)

Äi2.t = *2,1+1 ~ *2.t * 2l> *

AUt = Ut+l
”U t (2o)

After the division of both sides of equations (1a)...(1d) by
the inorement Az we obtain:

Alt p t dI , . dtp.=t-t§ + ž — + M ' (3a)
Az '•* 2 2 dt dt

= ti + i +* —~ (3b)
Az fc,t d dt dt

Au. □ j *. dt. . dt_ .-v1 •■= f i
+

t) +(? + Jf) f 1 (3o)
AZ 2 2-* 2 I dt dt J

At, t At du
- —Lil = = G + G —ill (3d)

Az Az t+l dt
4

Let ub assume that the increment AZ approaches zero. The
left-hand side of (3a)...(3d) would approach partial
derivatives in respect to z. In the limit, (3a)...(3d) are
identical to (4a)...(4d), namely,

dll , n T di, Ö7 j,
—L=l tl +

?
+ Ä— (4a)

ÕZ
' 2 2Qt 0t

<?U_ n j 8t„ di
,

= iP i + 5 + *—l (4b)
dz 2 d 2dt dt

du n J ,
9{. 9t,,

= £ (t, + i P
) +(*+M)l + I (40

dz 2 1 2 2 Idt dt J

dt, di
_

0u
= = G u + C (4d)

dz dz dt

Here all voltages and currents are the functions of the time t
and of the distance from the beginning of the line Z.

Prom (4d) it follows that

tj = t 2 + 2 lf(t) (5)

for all Z = [o,7] (7 is line length) is a current
dependent on time only and independent of Z.

Then we can consider the two-port current t;

i = i 1 - tf{t) = t 2 + tf{t) (6)

and
I

,
= t + lfit) (7a)

i2
= i - ifit) (7b)

The current is the same direction part of currents on wires
of line (it is "a non-two-port current").

Replacing the currents in equations (4a)... (4d) by (7a) and
(7b), we obtain;

dll i p x dt p x dt -

= i § + (| +M) + i r f + (M -M) (Öa)
öz 2 2 öt 2 2 dt

5

ÖU_ R T R T dt _

—?
= l 5 + {U + Jf) (8b)

ÖZ 2 2 Qt f 2 2 dt

öu at
= R l + {L + 2M) (8o)

az dt
at au

= Gu + C (8d)
az at

Equations (8o) and (8d) are well-known transmission line
(telegraph) equations.

Equations (8a) and (8b) describe voltage below the beginning
and ending nodes.

Let us take

“/ -J (‘ i � <5 +»> -) “ »>

0

then from (8a) and (8b) we get

I I I
ur = J -ur + I<s-*>42+ v J I “ -

0 0 0

« tt, + (£ -I)Z+ i. § Z (10a)
f dt 2 2

-f«£- “/
- J<s-»>o* - v I I -

0 0 0

dt. j p
*U. i(f - JT) Z-t. g Z (10b)

* dt 2 2

Comparing (10a) with (10b) we obtain

u* + u* = 2 uf (11)
6

By port voltages at the beginning (utn) and the end (tt t) of
the line (see Pig. 1, (a)) we oan write

u. - u . =u*+ u* (12)in out 12

U. - U .

i, vTI OUt / *i o \
= g 03)

Fig. 2. A model of telegraph equations solution.

Solution of telegraph equations (80) and (8d) leads to the
model in Pig. 2 that is described by equations as follows;

W4 ’ * (2 V‘> + < l4a)

* V4)) (’*»)

lam ‘ Vo m * U »TL(t) ('sa)

„<) - yo<*> • “ou. (t) (15a)

Here denotes convolution, I tmj>(t) iB the impulse response
of matched transmission line. yQ

{ t) is the impulse response of
the characteristic admittance of line.

_ot bre"at
/—TZz't (t) = + 1 (t-t)- I. (&/ t-T2) (16)tmp S*zr 1

y0 (t) =YO { 0(t) + 1(t) ö e-at
{ I 1(öt) - I 0(M) } } (17)

1 r R G -I
where a = I +- I (18)

2 1 U2M C J

1 r R G ,

Ö = i f 1 (19)
2 1 Ir*-2Jf C >

7

8

1 = I / (L+2JOC (20)

/~Õ
=
/ (21)0 I*2M

Here 0(t) is the Dirac’s impulse function, 1(t) is the
Heaviside’s unit step function, IQ (t) and I 1 (t) are modified
Bessel’s functions of the first kind. R and L are the
transmission line series distributed resistance and
inductance, respectively, G and C denote the shunt distributed
conductance and capacitance, respectively. M is the
distributed coupled inductance of wires. T is the delay and YQ
is the characteristic admittance on infinite frequency.

Solution of equations (8a) and (8b) leads to the equations
(10),..(13). Circuit representation of these equations means
additional components, shown in Pig. 3, where

Fig. 3. A non-two-port model of balanced transmission line.

CONCLUSION

To us© this model in the oirouit analysis program for time
domain analysis of mixed lumped and distributed circuits, the
line must be replaced with an equivalent oirouit, shown in
Pig. 3.

Currents and voltages of sources and conductances of
characteristic admittances yQ

in each time step t can be
obtained by use of numerical calculation of convolutions.

9

The advantage of this modal is the possibility to simulate the
transmission line non-two-port behavior.

Here we do not discuss numerical methods for calculation of
convolution and required impulse responses. These problems are
a good matter for other papers and investigations.

REFERENCES

Vaitonen, M. (1978)» Computer-Aided Analysis of Mixed lumped
and Distributed Circuits in Time Domain. Prop. of lEEE
GAS Coni., New York.

uhle, K. (1983), Translentanalyse nlchtlinear dynamtscher
Netzwerke mit verlustbehaften elektrischen Leitungen.
Naohriohtenteohnik Elektronile, NTE 33, 12.

Mayer, D. (1901), tjvod do teorle eLektricküoh öbvodu. SNTL -

ALFA, Praha.

Kangsep, E. (1905), Simulace soustav se rosprostrenimi
parametru. Diplomova praoe, CVUT, Praha.

Kangsep, E. (1909), General Characteristic Model of Linear
Time-Invariant Two-Forts , TTÜ Toimetised. N 0.702,.702, Tallinn.

Dvrorsky, L. N. (1979), Modem Transmission Line Theory and
Applications-. John Wiley & Sons.

E. Kängsep

BALANSSEERITUD PIKA LIINI MITTEKAKSPORT-LAINEMUDEL

Kokkuvõte

Käesolev artikkel on katse leida balansseeritud pikkade liinide
mittekaksportmudel kasutamiseks ajaanalüüsil. Siin esitatud liini mu-

del on üldisem kui M, Valtoneni esitatud ja ka teiste autorite poolt
kasutatud pika liini konvolutsioonimudel.

11

No 722

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED

TRANSACTIONS OF TALLINN TECHNICAL UNIVERSITY

T. Parve

VECTOR ANALYSIS OF SIGNALS
BY MEANS OF LOCK-IN MEASUREMENT DEVICES

Abstract- The problem of determining the parameters
of the harmonics of alternating current signals by
measuring their module and phase or inphase and
quadrature components using different measurement
instrumentsespecially the lock-in amplifiers, is
discussed in this article.

INTRODUCTION

During the recent years a number of devices designed for
spectrum analysis have been put into production by different
firms (Tekelec, 1979; Ono Sokki, 1983; Hewlett-Packard, 1986a;
1986b; Wandel & Goltermann, 1987). Most of them are highly

modern measuring devices, where the newest technical solutions
and signal conversion methods, like the FFT, are used.
These devices also seem to be the best means for accom-
plishing vector analysis.

Nevertheless, in many cases the use of these devices is not
the best solution because of some specific features they have.
For example, what would you say about the possibility to use
a device for measuring the module and phase of a certain
harmonic, knowing that the device is able to characterize
the signal through 256 spectral lines and has a synchroni-

sation input? Can all these spectral lines be the harmonics
of the signal? And what does it mean from the point of view
of the signal conversion accuracy that the 13-bit A/D
converter is used?

Some new devices have specially been designed tor measuring

the magnitude and phase of signal harmonica (Solartron,
1986; NF Electronic Instruments, 1984; Dranets, 1986; North
Atlantic, 1986). These devices, being essentially of the same

kind as the ones mentioned above, have also many similar
characteristics. For example, the use of a 13-bit A/D
converter gives approximately 80 dB input dynamic range

that in many cases is not very much, especially if compared
\

with the 100 dB or even more of the lock-in amplifiers.

LOCK-IN AMPLIFIERS

Lock-in amplifiers are well known vector measuring in-
struments in the field of scientific research and technical
experiments (Meade, 1983). Though they have been widely used
for more than 30 years, new types of lock-in amplifiers
have appeared on the market almost every year, and are, there-
fore, easily obtainable for every experimentator Why then
not to use the lock-in amplifiers for harmonic analysis ?

The answer is that roost of them are designed to measure
only the first, and, possibly also the second harmonic of
the signal. The missing link between the signal source
and the lock-in amplifier is the frequency multiplier,

as shown in Fig.l. Hy setting the frequency multiplication
factor h of the frequency multiplier equal to the number

Figure 1. Block diagram of the harmonic vector analysis
system on the basis of lock-in amplifier and
lock-in frequency multiplier.

12

13

of the harmonic to be measured , one can accomplish the
harmonic analysis of the signal that has passed through

the object under the test. It is essential for vector
analysis that the phase relations between the output signal

of the frequency multiplier and the signal from the source
be kept precise (Min and Parve, 1988).

Still, there are some other problems arising, the most
significant of them is the sensitivity of the lock-in's

measurement channel to higher odd harmonics of the signal

to be measured (Min, 1984). This is due to synchronous
detectors (demodulators, rectifiers) used to realize the

correlator of the measured and the reference signals (to

multiply those signals).

THE HARMONIC SENSITIVITY OF LOCK-INS

The sensitivity of lock-in amplifiers to harmonics is nearly
negligible if more sophisticated means are used. For example,
the heterodyning lock-ins have the harmonic attenuation of
the order of 60 dB (Munroe, 1963). Another possibility is
to use harmonic rejecting synchronous demodulators in lock-ins
(Min and co-writers, 1981). In the case of stepwise ap-
proximation of sine typically 60 dB attenuation of the nearest
higher harmonica is achieved (NF Lock-in Amplifiers, 1985),

but some harmonics (in accordance with the used sine
approximation) have the same level as when using detectors,
i.e. the rectangular waveform (Sillamaa and Trumm, 1984).

So the user himself must take care of the methodical side of
measurement when a harmonic-ser.sitive lock-in device is used.
The problem is that there is no universal rule predicting
how the harmonic effects will affect the results of the
measurements. For some types of signals it is found that
the errors due to the harmonic effects do not exceed certain
limits (Sillamaa and Trumm, 1984). It is shown that errors
due to the sensitivity of ioek-ins to the harmonics do nd%
exceed a few per cent in the worst case and are only a few
tenth parts of per cent in most typical cases.

14

TABLE 1
Limits of the first harmonic measurement error

dependent on the shape (harmonic content) of the
signal and the signal conversion mode (sensitivity
of the signal converter to the higher harmonics)

* The sum of errors from 50 harmonics. The data given
in brackets are asymptotic values by Sillamaa and
Trumm, 1984.

The data given in Table 1 are valid for the first harmonic
measurement. The situation appears to be quite similar in
the case of higher harmonics. Let us presume at first that
the relative magnitude of the n-th harmonic An

= A / n , as
it is with the rectangular waveform. Then, if the harmonic
to be measured is of order h, the relative magnitude of it

\ = A
*
/ h

-

If the demodulator used for measuring the Ist harmonic of
the signal has sensitivity Sn to the higher harmonic of
the n-th order S

n
=S

4
/ n , as by stepwise approximation

of sine, the error of the magnitude measurement of the first
harmonic from the harmonic h

AA
*h

= V s
n /S.

=A
*
/

or in the relative form,

- V / A
.

= i / «•*-

Signal
con-
version
mode

Number
of
approx.
levels

Error limit*, %

Signal shape (spectrum type)

Step wave
(1/f spectrum)

Slope wave
(1/r spectrum)

Rect-
angular
mode

1 22.5 5.2

Approxi-
mated
sine
mode

2 5.1 (5.3) 0.48 (0.51)

3 2.0 (2.3) 0.14 (0.14)

4 1.1 (1.3) 0.06 (0.06)

5 0.6 (0.83) 0.03 (0.03)

15

If the same demodulator is used to measure the h-th higher

harmonic of the same signal, the error of measurement due to
the sensitivity of the demodulator to the n-th harmonic

can be expressed by the formula

A
i

KiAA = A ■ S = —•——

r>n nn n ,h- n n

or in the relative mode

6\n = /sh
= 1 / n -

So the errors due to the sensitivity of a stepwise approxi-

mated sine demodulator to the higher harmonics when measuring

either higher harmonic or the first harmonic are equivalent

if the signal spectrum is of 1 / f shape. The same can
be shown for some other types of spectra, e.g. for the

1/ f 2 shape.

The problem of subharmonic sensitivity of the system con-
sisting of a lock-in amplifier and a lock-in frequency multi-
plier is also quite complicated. For the lock-ins having

the 2f measurement regime, the subharmonlc sensitivity level
is typically normed at about 0.1 per cent (Land, 1988).

If If regime is used, low subharmonlc content of the frequency

multiplier output signal is required. This complicated problem

needs further discussion (Min and Parve, 1988; Land, 1988).

When using a lock-in amplifier phase and magnitude errors due
to phase shift and gain error of the preamplifier are also
to be taken care of. They become significant at the lower and

"1upper limits of the operating frequency range of the device,
and, of course, if the prefiltering is used for some reason.

)

It is quite well known that a phase shift caused by the
preamplifier is usually compensated by introducing a cor-
responding time delay circuit into the reference channel
of the device. It is effective for compensating the high

frequency phase lag of the preamplifier. Near the upper
limit of the operating frequency range the error appears

t.o stay quite significant because of the nonlinearity of the
amplifier phase lag frequency response.

Comonly the first order transfer function is used. So at the
operating frequency of 1/2 of the upper limit the magnitude

measurement error reaches the value of the order of -10 X
and the phase error appears to be nearly +2°.

CONCLUSIONS

1. Contemporary lock-in amplifiers can be used for vector
analysis of harmonics higher than the 2nd only if the
external phase stable frequency multiplier is used;

2. Better accuracy will be achieved if the used lock-in has
good attenuation of the harmonics, at least of the nearest
higher harmonics;

3. The subharmonic content of the frequency multiplier output
signal must be little enough to keep the measurement errors
from the first and other subhannonlcs below the accepted

level.

4. The frequency response of the preamplifier must be taken
into account when operating at relatively low and relatively

high frequencies.

REFERENCES

Model 7530 A Spectrum Analyzer. Tekelec Airtronlc Catalogue

Iknarnl 1979. Rockland - Tekelec Airtronlc, p. 106.
FT 512/S Real Time Spectrum Analyzer. Tekelec Airtronlc

Catalogue General 1979_ Rockland - Tekelec Airtronlc,
p. 106.

CF-300 portable FFT analyzer. Qno Sokki Dl gi ta l Tnntmiment.H
and Control Svatempi Cat. No. 1138-3. Japan, 1983.

16

HP 3562 A Spectrum Analyzer / Prospect. Hewlett-Packard Co.,
1986.

HP BS9QA Portable Spectrum Analyzer / Prospect. Hewlett -

Packard Co., 1986.
SNA-1 Spectrum and Network Analyzer / Prospect.. Wandel &

Goltermann Electronic Measurement Technology, Eningen,

BED. (Data Sheet N0.E.03.87/109/8).

Solartron 1260 Series Frequency Response Analyzers/ Prospect.

Solartron-Schlumberger, 1986.
Model S-5720 Frequency Response Analyzer. NF Electronic

Model 3110 Wide Band Phase Sensitive Voltmeter. Mesures.
1986, 10, 130. (Dranetz Co., Ü.S.A.)

Voltmetre de phase analyseur d'onde. Mesures. 1986, 8, 135.
(North Atlantic Industries, U.S.A.).

LI-570 Lock-in Amplifier. NF Lock-in Amplifiers. A Guide.
Japan, 1985, p. 7 - 10.

Meade, M. L. (1983), Lock-in amplifiers: Principles and appli-

cations. Peregrinus, London.
Min, M., and T. Parve (1988), Phase-locked signal processing

in vector analyzer. Signal Processing in Measurement:
Pcpc. 6th ICZ MKKO Symposium. IMEKO TC Series No. 16,
97 - 101. Nova Science Publishers, Commac, New York.

Min, M. (1984), Phase-locked signal processing in measure-
ment technique. Trans. Tallinn Techn. Only.. No. 583,
3-15, (in Russian, Special issue "Synchronous measuring

transducers: Theory, circuits and applications").

Munroe, D. M. (1983), The heterodyning lock-in analyzer.

Ithaco Corp-.. Bulletin.
Min, M., T. Parve, H. Harm, and T. Pungas (1981), Quadrature

stepwise frequency converter. Lf.S. Patent No. 4,409.555-
Sillamaa, H.,and T. Trunan (1984), Methodic Error Analysis of

a Synchronous Phase Detector with Multlstep Reference
Signal. Trans. Tallinn Techn. Unlv.. No. 583, 73 - 84,
(in Russian, special issue “Synchronous measuring trans-
ducers: Theory, circuits and applications").

Model 186 A Lock-in Amplifier. Operation manual EG&G Princeton
Applied Research Corp., 1975.

Land, R. (1988), Problems of Spectrum Analysis by Means of
Synchronous Transducers of Discrete Operation. Trane.
Tallinn Techn. Only.. No. 682, 57 -62, (in Russian).

17

18

T. Parve

SIGNAALI VEKTORANALÜÜS

SÜNKROONMÕÕTERI ISTADE ABIL

Kokkuvõte

Artiklis käsitletakse võimalust kasutada laialdaselt
levinud sflnkroondetektorlga mõötevõimendeid (sünkroonvolt-
meetreid) signaalide vektoranalüüsi teostamiseks. Peamine
tähelepanu on pööratud harmooniku vektorparameetrite mõõtmise
metoodilistele vigadele, mis sel juhul tekivad analüüsitava
signaali keeruka spektraalkoostise puhul.

19

No 722

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED

TRANSACTIONS OF TALLINN TECHNICAL UNIVERSITY

R. Land

A FREQUENCY MODULATION IN THE PHASE-LOCK LOOP

Abstract. This paper discusses operation principles of
the phase-lock loop influenced by frequency
modulation. The key specification points of phase-lock
loop for signal recovery are reviewed and. it is shown
how to compute frequency modulating effects. Examples
have been presented for examining a few practical
problems.

INTRODUCTION

The increasing requirements to the experiment and experimental

system parameters cause the trend to examine the familiar
solutions better. Frequency modulation in the phase-lock loop

is a phenomenon which has not received proper attention in
the literature. A classic phase-lock loop contains three basic
components (Fig. 1.): a phase detector (PD), a loop filter
(LPF) and a voltage-controlled oscillator (VCO) (Gardner,
1979; Meade, 1983). The PD output voltage is proportional to
the product of the amplitudes of two inputs and to cosine of

the phase between them. The output of the PD, proportional to
the phase error, is applied to the low-pass filter LPF, which
smooths out the ripple component and delivers a d.c.
voltage. Frequency of the VCO is determined by the control
voltage v. When the loop is locked, the control voltage is
such that the frequency of the VCO is exactly equal to the
frequency of the input signal.

Fig. 1. Basic phase-lock loop.

20

There are many requirements placed on loop filter in different

applications. These requirements are usually in conflict with

one another, and therefore a compromise is needed. Two

important characteristics of the filter contradicting each

other are that the bandwidth must be very small to reject the
large amount of noise and high frequency signal components,
and that the filter automatically tracks the signal frequency.

ESSENTIAL PRINCIPLES OF FREQUENCY MODULATION

In practice, there is an unwanted unsuppressed ripple at
double input frequency. Usually ignored, the ripple is still

a serious disturbance in many applications. For example, for
spectrum analysis by means of synchronous transducers of

discrete operation, the double frequency ripple causes
significant "subharmonic response" of the Harmonic Analyzer.

Ripple must be suppressed to prevent sidebands from appearing

on the VCO (Land, 1988).

Usually, when the loop is locked, some alternating drive
signal v in the input of VCO causes some voltage v., whichc a
must compensate the influence of v

=
.

If the modulating

frequency is too high, the compensating voltage v, cannot passa
the filter, and the alternating drive signal v causes the

C

frequency modulating of the VCO. All other frequency

components inside the filter bandwidth will be compensated by

v. and cause the phase modulation.
O

Next, let us investigate loop behaviour in the presence of
modulating voltage + <Pm) in the input of VCO. For
sinusoidal frequency modulation

u=U cos[« t + /3sin(w t + 4>) + 1, (1)o o m m o

where <i>o is natural frequency of VCO,
(3=Aiii /ta is modulation index,o m ’

A<*o is peak frequency deviation,
is modulating frequency,

4>m
is phase angle of modulating voltage and

<f> is phase angle of VCO frequency (Cartianu, 1964).

21

The modulated signal may be rewritten as

+ 00

u=U
Q E<7 (/?)cosC(wo+nwm

t + npm
+ (2)

n- -CD

where J (/?) is the Bessel function of the first kind of order
n

n (n=1,2,3,...) and it is equal to (Churchill, 1987)

.
, ~k „

n+ 2k
+00 (-1) ft

.7 (/?)= E (3)
k=o k!(n+k)! L 2 J

and

n
J (13)=(-l) (4)
- n n

Examining the expression (2), we note that there are all

spectrum components of frequency modulated signal. Spectrum of

signal (2) consists of the fundamental frequency co
q , and the

infinite number of sideband components placed symmetrically in
pairs with regard to main frequency w

O -n«m
- According to (3)

and (4), the lower and higher odd components are in paraphase.

The peak value of the n-th component is U J (.(3) and it is
o n

proportional to the value of the n-th order Bessel function

|«7 ((/3)] at modulation index ft.

The value of Bessel functions is founded by summation (3).

Increasing the modulation index ft more members are taken into
consideration to find the Bessel function value. In practice

the modulation index is not very large, and for ft«d.2 the
first sum term is used only. For this situation, computing

error is Iqbs than 1% for each order of Bessel function and
(3) can be written

J ((3)=
\ .1 ; (5)

(n)! 1 2 J

thus

22

<7o (/7) = 1.0 ft
J
±
(ft)=0.5 /31

</(/3)=0.125 /32
(6)

<7 /?
3

(ft)=0.0026 /34

That is, Bessel function i 7 (£) is a usual power function ifn
£<o.2.

The output VCO signal in sophisticated nonsinusoidal

modulating frequency can be written

+00

u=Uo E t/(£1
) .7{£

2
) <7(£

3
)... cos[(wo +

1
p , r , q .

.
.

. =-00 F q

+p<J + rw + qco +.
..

)t + p 0 + r<£ + q£ +
‘ mi mz m 3 ml m 2 m 3

+ ...-H*>o], (7)

where w
,

w
,

to
~ . .

are the sinusoidal signals of Fourier
mi m 2 m 3

series terms. Examining expression (7), we note that here as
in (2) in the modulated signal the components ,

co ±ros ~.. exist. In addition, here are the intermodulatedO m 2

components, which are combined frequencies between u> , pto ,

O ml

r&>m 2, qum 3, -- . . The peak value of these components is
proportional to the product of Bessel functions in simple

signal, according to (2). At first it seems very capacious to
compute all these components, but in reality the Bessel
functions of higher order have neglible magnitude, and a large

number of the sum terms may be ignored.

In many experiments, the output signal of phase-lock loop does
not only appear at the fundamental excitation frequency, but
bears a harmonic relationship to it. A classic frequency

multiplying phase-lock loop is supposed to generate H
equidistant output pulses during a period of the input signal
(Fig.2). Applying this signal as a reference to the
multiplier, we can design a Harmonic Analyzer.

23

Fig. 2. Basic multiplying phase-lock loop.

Any modulating signal w at the input VCO of multiplying

phase-lock loop causes the frequency modulation of VCO

-i-OO

u=U £ J ((3)cost(H<*> +nw)t + n<p + o]. (8)
on tt) ton~- 00

Examination of the expression reveals that the VCO output
signal consists of the fundamental term Hw and the sidebands

components (n-1,2,3,...). The output of the Harmonic
Analyzer is the sum of each individual term of the Fourier
series multiplied by the input signal. If no higher harmonics,
except fundamental, are present at the input, it is easy to
show that the only multiplier product containing a d.c.
component is the one associated with the sidebands term

(n=1,2,3,...)
. All other products only contribute to

high frequency ripple and are suppressed.

In order to produce a d.c. response, however, the signal

must be coherent with one or more of the reference Fourier
components:

o) Hw - nw
TO

-o) = Hw - nw^

or

w H—l
TO

_

co n (9)
w H+l

TO
_

co “ n

We know that H and n are the integer, hence we can find
the critical value of modulating signal for each H and
n. The relationship between modulating frequency w and

TO
fundamental m (TABLE 1) determines the frequency giving

24

rise to the sideband components in the VCO output that are

coherent with the input fundamental frequency. We note that

fractional numbers in the Table are improbable for the greater
part of PLL, but theoretically possible in some original
applications.

TABLE 1 Critical Frequency Relationship wm
/w for

the Harmonic Analyzer.

In a well-designed phase-lock loop with a true multiplier the
casual signal does not occur in the input of VCO, there is
only the residual PD ripple at double input frequency. For
this situation and there are a few critical
combinations in the Table. For a switching multiplier the
modulating signal consists of even harmonics terms of Fourier
series (numbers 2,4,6,... in Table). Examination of the Table
reveals that the response to the fundamental, due to frequency
modulation in the phase-lock loop, occurs only for the
measurements of higher odd harmonics.

If we now consider the problem of measuring very small
nonlinear distortion of sine wave, the measurement uncertainty
is absolute, when the sensitivity to fundamental is comparable
with the real amount of higher harmonic. To decrease the
minimum detectable harmonic in practical systems, substantial
effort is needed to eliminate the modulation. One way to
suppress the modulating voltage is to use in the PLL a Sample
and Hold (S/H) circuit, which operates at the double input
frequency. The S/H circuit makes possible to reduce the
unwanted ripple component in the input of VCf> without
superfluous decreasing the bandwidth of the loop filter. The

CD

-J
05
Oi

0)

itk

Jk
M
itk

4k
•tk

OO
—3

01
itk USSMSSH 0)

05

05
05

05

e
3

CD

-J

Oi

05

\

.tk
\

05
N
M
\MMMM
M

3

H+l

CD
CD
-J
03

01
.tk

05
M

CD
-0
05
01
itk
05
M

X

•>5
CT;
O’
itk
05
M
M
M

e

e
3

~<5

Oi

05

t-*

\

05
\

M\
M\MMMM
M

1

£B

->3

Oi
itk

M
H*

\

M
W
H*
W

0)

05
05

03
05

03

-■3
05
01

01
H
H

tkMtk
itk
M
itk

itk

25

additional fundamental frequency suppressing in the input of
Harmonic Analyzer establish the acceptable total sensitivity

to the fundamental.

CONCLUSIONS

The phase-lock loop behaviour in presence of modulating

voltage in the input of VCO has been described. Theoretical
results have been complemented by simple examples to obtain a
quantitative understanding of frequency modulating effects in
phase-lock loops. The slightness of the modulating index in
most applications of the PLL reduces the Bessel function to a
usual power function and decreases the spectrum components
computing capacity. The critical modulating signal

frequencies, which determine the Harmonic Analyser response to
the fundamental have been presented. The Harmonic Analyzer

with the true or switching multiplier has response to the
fundamental only for the measurements of higher odd harmonics.

REFERENCES

Cartianu, Gh. (1964). Frequency Modulation. Meridiane,

Bucharest, (in Russian).

Churchill, R. V. (1987). Fourier Series and Boundary Value
Problems. 4th ed. McGraw Hill, New York.

Gardner, F. M. (1979). Phaselock Techniques. 2nd ed. Wiley,

New York.
Land, R. (1988). Problems of Spectrum Analysis by Means of

Synchronous Transducers of Discrete Operation.

Trans. Tallinn Tech, Unlv.. 682, 57-62,
(in Russian).

Meade, M. L. (1983). Lock-in Amplifiers: Principles and
Appl ications. Peter Peregrinus Ltd, London.

26

R. Land

SAGEDUSMODULATSIOON AUTOMAATSES
FAAS I SÜNKRONISATSIOONISÜSTEEMIS

Kokkuvõte

Automaatset faasisünkronisatsioonisüsteemi (AFSS) kasutatakse
laialdaselt sünkroonmuundite ning nende baasil loodud
harmooniliste analüsaatori juhtsignaalide formeerimiseks.
Artiklis vaadeldakse perioodilisest signaalist põhjustatud
parasiitset sagedusmodulatsiooni AFSS-is ja selle mõju
sünkroonmuundite kvaliteedinäitajatele. üldkujul on näidatud
siinuselise ja mittesiinuselise moduleeriva signaali mõju
väljundsignaali spektraalkoostisele ja spektrikomponentide
arvutus Besseli funktsioonide abil. Analüüsist selgub, et
reaalsetes AFSS-des väheneb arvutuste maht tunduvalt, sest
väikeste modulatsiooniindeksite korral lihtsustuvad Besseli
funktsioonid tavalisteks astmefunktsioonideks.

Harmooniliste analüsaatori kasutamisel kõrgemate harmooniliste
mõõtmisel on oluline teada AFSS-is esineva moduleeriva
sageduse väärtust. Nimelt tekib uuritava ja moduleeriva
signaali sageduste teatud vahekordadel moduleeritud
juhtsignaali külgribas spektraalkomponent, mille sagedus
langeb kokku analüüsitava signaali põhiharmoonilise
sagedusega, põhjustades sellega analüsaatori tundlikkuse
põhiharmoonilisele. Artiklis toodud tabeli põhjal on võimalik
vastavalt valitud sünkroonnmundi tüübile leida kriitiliste
modulatsioonsageduste väärtused ning selle põhjal otsustada,
millist tehnilist võtet kasutada nende modulatsioonsageduste
kõrvaldamiseks AFSS-ist.

27

No 722
TALLINNA TEHNIKAÜLIKOOLI TOIMETISED

TRANSACTIONS OF TALLINN TECHNICAL UNIVERSITY

O. Aarna

BALANCE MODELS FOR CONTINUOUS PROCESS PLANT STATE ESTIMATION

Abstract. This paper deals with a class of continuous process
plant (CPP) models designed to meet the requirements of plant
state estimation. CPP state estimation relies on the temporal and
spatial redundancy of information, incorporated in the results of
process measurements, in the measurement system topology, and
in the mass, energy, and momentum balance equations. This
redundancy is described mathematical]y by the plant state
estimation balance models, relating the plant state to the
measured variables. In this paper the genesis of two types of
CPP balance models: state prediction and state estimation models
is discussed. The relationships between stochastic systems with
dynamic and static states, CPP state prediction models and three
basic types of CPP state estimation models: static, quasi-
stationary, and dynamic balance models are studied. A simple flow
vessel model with one inlet and one outlet flow is used to
illustrate the main concepts.

INTRODUCTION

Continuous process plants (chemical plants, power plants, etc.) comprise a
variety of control problems for modern process control systems. The
problem of plant state estimation is critical for advanced model-based and
knowledge-based control concepts. This paper deals with a class of
continuous process plant (CPP) models designed to meet the requirements
of plant state estimation.

Mathematical formulation of the fundamental principles postulating the
conservation of momentum, energy, and mass for any given system

constitute the basis of their mathematical description (Stanislav, 1982).
During the last two decades a large number of publications have appeared
dealing with various aspects of using CPP models based on mass, energy,
and momentum balance principles for process measurement reconciliation
and rectification (Vaclavek, 1969; Mah, Stanley, and Downing, 1976; Aarna,
1978; Romagnoli and Stephanopoulps, 1980), gross error detection (Mah and
Tamhane, 1982; Serth and Heenan, 1986), and plant diagnosis (Watanabe and

28

Himmelblau, 1982). All these techniques use the CPP state estimation as a
primary tool.

CPP state estimation relies on the temporal and spatial redundancy of
information, incorporated in the results of process measurements, in the
measurement system topology, and in the mass, energy, and momentum
balance equations. This redundancy is described mathematically by CPP
state estimation balance models, relating the plant state to the measured

variables. The CPP state estimation balance models fall into three groups;
static, quasi-stationary, and dynamic, depending on the content of the
state vector and the nature of state equations (Aarna, 1985). Most of the

existing CPP state estimation applications are based on static balance

models. ,

Until now little attention has been paid to the problems of CPP state
estimation balance models genesis, typology, and comparative analysis
(Aarna, 1985). In this paper the genesis of two types of CPP balance
models: state prediction und state estimation models are discussed. The

relationships between stochastic systems with dynamic and static states
(Fathi, Ramirez, and Aarna, 1990), CPP state prediction models and three
basic types of CPP state estimation models: static, quasi-stationary, and
dynamic balance models are studied. A simple flow vessel model with one
inlet and one outlet flow is used to illustrate the main concepts.

Throughout this paper bold lower-case letters denote vectors and bold
upper-case letters denote matrices. The main variables are:

q - generalized flows,

p - parameters,

u - inputs,

v - measurement noise,

w - process noise,
x - system state,

y - outputs,

z - accumulations in the process elements.

Scalar entities aure denoted by lower-case letters with or without
superscripts.

29

MASS, ENERGY, AND MOMENTUM BALANCES IN CPP MODELING

A large variety of continuous processes is encountered in process

industries. The common feature among these processes is that some single-
phase or multiphase continuous medium is processed in a set of units (e.g.,
reactors, mixers, separators, distillation columns, etc.) connected together
by mass and energy flows, thus constituting a CPP. From the control
engineering point of view a CPP can be considered as consisting of a
technological process itself and a measurement system providing
temperature, flow, level, pressure, and other measurable signals.

If we divide a continuous process into a number of finite elements, each
capable of accumulating mass, energy, and/or momentum, then, the entire

process in terms of the inter-element flows, qa (t), can be modeled by a
linear set of algebraic equations:

Ro<Io(t) = 0 (1)

where Ao is an incidence matrix of the process multigraph describing the

adjacency of process elements and flows. The matrix Ao has dimensions (n*
n 9O), where n* is the number of process elements, n9o is the number of

generalized flows (total mass, components, energy, and momentum flows),
and n qo < n z .

Upon considering the integral relation between accumulations z(t) (total
amount of mass, components, energy, and momentum in the process
elements) and accumulation flows q»(t) (a subvector of g0(t)):

t

z(t) = z(to) + ga(t) dt (2a)
to

or

qa (t) = dz(t)/dt (2b)

and using the partitioning Ao = (A I) and g 0 = (g* gaT) T
, the system (1)

can be rearranged as

z(t) = Aq(t) (3)

where the flow vector g(t) has dimension n« = n qo - n* , and the
incidence matrix A has dimensions (n* . n,) , The only difference between

30

balance models (1) and (3) is that the former describes the static

(momentary) balance of generalized flows around the process elements while
the latter expresses the dynamic balance of these flows over an infinite

time interval. Both models are as exact us the process flow structure
(matrix A). The continuous process balance models in the form (1) or (3)
are quite useless and ineffective in control engineering applications. In the

following, model transformations are represented using two different
procedures.

The dynamic balances (3) can be transformed Ly substituting some or all
components of the flow vector q(t) by their models or constitutive
equations:

q(t) - g[*(t),u(t),p(t}] (4)

describing the cause - effect relations between the process flows g(t),
accumulations z(t), inputs u(t) (both controls and measurable disturbances),
and parameters p(t). Substituting (4) into (3) yields

s(t) = fr[z(t),u(t),p(t)] (5)

an ordinary CPP state prediction model. This name is due to the fact that
the model (5) describes the causal relationship between the process states
and its inputs, providing a means to predict the process state given an
initial state z(t?). Optionally, the output equations

y(t) = b[z(t),p(t)] + v(t) (6)

can be added to the model (5) and an additive process noise, w(t), can also
be associated with the state equations (5). Equations (5) and (6) comprise a
standard continuous-time state-space model of a lumped-parameter control
plant. Notice that the state vector of the model equations (5) and (6)
consists of only accumulation-type process variables.

Another way of proceeding from the process model (3) is to ignore the
cause - effect relationships among the components of vectors z(t), q(t),
u(t) and p(t), and describe the dynamic behavior of the flow vector q(t)
by some black box model, e.g., random walk model:

q(t) = tfg(t) (7)

where wq(t) is a nq-dimensional random process with known stochastic
properties. The system equations (3) and (7) plus the output equations
give us the following process model:

31

z(t) - Äq(t) (8a)

q(t) = Wgc(t) (8b)

y(t) = h[z(t),q(t),p(t)] f- v(t) (3c)

which cam be called a CPP state estimation model (Aarna, 1984). This model

does rot describe expHcitly any dependence of the process states on its

physical inputs and therefore has only a limited prediction power. However,

it gives us a clear description of the relations between process states
(accumulations z(t) and generalized flows g(t)) and measured outputs

(temperatures, flow rates, levels, pressures, concentrations, etc.). Notice

that the dimension of the state vector in the process state estimation modal

(8), (nz + ziq), is higher than the number of states, n*, in the process
state prediction model (5) and (6).

In discrete-time framework, the process state prediction model has the

form

z(t) = f[z(t-l),u(t-l),p(t-l)] + w(t) (9a)

y(t) = h[z(t),p(t)] + v(t) (9b)

and the process state estimation model is

z(t) = z(t-I) + (10a)

q(t) = q(t-l) + w q(t-l) (IGb)

y(t) = h[z(t),q(t),p(tj] + v(t) (10c)

where st_l is the sampling interval.

INTERPRETATION OF CPP BALANCE MODELS IN TERMS OF STOCHASTIC
SYSTEMS WITH DYNAMIC AND STA'IIC STATES

As shown in (Fathi, Ramirez and Aarna, 1990) a stochastic discrete-time
system with coupled dynamic and static models, and randomly varying
parameters can be represented by the following model:

xa(t) = U[t.Sd(t-l),x,(t-l),p(t-l)] + w,d (11a)

32

0 = + Wxs (11b)

p(t) = p(t-l) + Wp (11c)

y(t) = b[tjCd(t),Xß(t),p(t)] + v (Hd)

where

Xd ~ system state with slow dynamics

Xs - system state with fast dynamics

In continuous process control applications, the plant model (11) is usually
obtained via discretizing the corresponding continuous-time system model

Xd(t) = fdcft,Xd(t),x»(t),p(t)J + Wxdc (12a)

0 = fsft,Xd(t),Xs(t),p(t)J + w*s (12b)

p(t) = Wpc
_

(12c)

y(t) = b[tM(t),*m(t),p(t)] + v (12d)

where
t

fd[t,Xd(t-l),x«(t-l),p(t-l)J=Xd(t-l)+ £dcfr,Xd(r)
/
x*(r),p(r)Jdr (13a)

t-i

t

w*d = w*dc(r)dr (13b)
t-i

t

Wp = Wpc-(r)dr (13c)
t-i

The majority of continuous-time process models (12) are stationary, i.e., the
vector-functions fdcf.J,f»[.J, and h[.] do not depend explicitly on time.
Even in these cases, the discrete-time model (11) can be nonstationary.

The main interpretation of the state variables, Xd(t) and x»(t), in terms of
the CPP models, is that Xd(t) corresponds to the slowly-varying process
states, and x*(t) - to the fast-responding process states.

In this case, it is quite natural and essential to regard the static state
equations

33

0 = fa[t,Xd(t),Xß(t),p(t)] + Wxs (14)

as a limiting case of the corresponding continuous-time dynamic state
equations

Xa(t) = fa[t,Xd(t),Xa(t),p(t)] + W*s (15)

where Xa(t) = 0 or as a limiting case of the corresponding discrete-time
dynamic state equations

Xs(t) = Xa(t-l) + fa[t,Xd(t-l),Xs(t-l),p(t-l)J + Wx (16)

where Xg(t) = Xs(t-l). Thus, the main interpretation is that the model (11)
is a stochastic system with two distinctly separated groups of modes (slow
and fast) and randomly varying parameters.

Another way to interpret the set of static state equations (14) is that some
additional algebraic or transcendental relations are imposed upon the
dynamic state vector xa(t) and the parameters p(t) such as the
constitutive equations (4) (deterministic flow models). In many applications,
equation (14) in its explicit form,

Xt(t) = f.[t,Xä(t),Xs(t),p(t)] + Wifl (17)

simply defines some new entities of interest, Xs(t), as functions of x<j(t),
Xs(t), and p(t). Evidently, in this case, x*(t) can be called the static state
vector only conditionally.

_

. v\
Now let the system model be described by the following equations

Xd(t) = Afxd(t-I),x.(t-I),p(t-l)M(t-I) +

B[Xd(t-l),Xa(t-l),p(t-l)]Xw(t-l) + Wxd (18a)

0 = fa[xj(t),Xa(t),p(t)] + Wxb (18b)

p(t) = p(t-l) + Wp (13c)

y(t) = h[xd(t),Xg(t),p(t)] + v (18d)

where Af.J and B[.J are functional matrices of the proper dimensions. The
system (18) can be readily interpreted in terms of the CPP mass, energy,
and momentum balance models.

By a proper change of dynamic and static state coordinates

34

X’d(t) = R[xd(t),*,(t),p(t)]xd(t) (19a)

x's(t) = S[xd(t),xß (t),p(t)]xa (t) (19b)

where det Rf.J = 0 and det Sf.J = 0, the process model (18) can be

transformed into

x’d(t) = x'd(t-l) + B'(t-l)x' a(t-1) + w'xd (20a)

0 =fa[x'd(t),x"a(t),p(t)] + w’xs (20b)

p(t) = p(t-l) + Wp (20c)

y(t) = b'[x' d(t),x'a(t),p(t)] + v (20d)

where

B'(t-l) = st-iA (21)

The transformation (19) has the following semantics. The dynamic and static

state vectors of the initial quasi-linear process model (18) contain both
intensive and extensive process thermodynamic state variables. By using
equation (19), we transform the mixed system of process state variables
into exceptionally extensive system of state variables, i.e., x'd(t) = z(t)
accumulated amounts of total mass, components, energy, and momentum in
the process elements, and x' s(t) = q(t) generalized flows of total mass,
components, energy, and momentum.

Now let the dynamic state equations be

z(t) = x(t-l) + st-lAq(t-l) (22a)

«(t) = q(t-l) + w, (22b)

and define

Xd(t) = [x*(t) q*(t)]r, w*d = [Or wqr]r

Further, suppose that the static state equations (14) or (17) define:

- some dependent generalized flows Xä(t),

some additional process variables of interest x»»(t), related to
g(t), z(t), and p(t),

v
stationary mass energy, and momentum jalances (g«(t) = 0) in

some process elements.

35

Then, the set of equations

Xd(t) = G(t-l)xd(t-l) + Wxd (23a)

0 = fsfxd(t),Xs(t),p(t)J +. Wxb (23b)

P(t) = p(t-I) + w P (23c)

y(t) = h[xa (t),xa(t),p(t)] + v (23d)

where

lx Xat(t)
G(t-1) = x.(t)=

0 Ig Xgv(t)

represents a CPP dynamic balance model with partially stationary process
elements and known flow models. If all process elements are stationary,
then we obtain a quasi-stationary balance model with given flow models as

l(t) = q(t-l) + Wg (2,4 a)

0 = f#fq(t),x»(t),p(t)J + Uxa (24b)

P(t) = p(t-l) + Wp (24c)

y(t) = b[q(t),Xm(t),p(t)] + v (24d)

where the vector-function fsf.J also contains the stationary balance

equations

Aq(t) = 0 (25)

Static balance models are a special case of CPP model (24) without time-
varying generalized flows and parameters:

0 = f»fq(t),x»(t),p(t)J + Wxn (26a)

y(t) = b[q(t),Xa(t),p(t)] + v (26b)

Finally, the process state estimation model (10) can be interpreted as a
special case of the general stochastic system (11), where xa(t) = z(t), p(t)
= g(t), and the static state vector is absent. The above discussion shows
that the stochastic system model (11) has a wide variety of interpretations
and potential applications in the field of CPP and parameter estimation.

36

EXAMPLE

As a simple example of different state estimation balance models, we
consider a vertical cylindric vessel with one inlet liquid flow, qHt), and

one outlet flow, g2(t). The outlet flow from the vessel is governed by the

liquid hydrostatic pressure. The measured variables are the liquid level in
the vessel, yl(t}, and the inlet flow rate, y2(t). The following gives
dimensionless process state estimation models in the discrete-time form for
a sampling interval of one (s = 1).

The total mass balance around the vessel is described by

q'(tr- qHt) * q 2(t) = 0 (27)

Taking into consideration that

q‘(t) = z(t+l) - z(t) (28)

the momentary (static) total mass balance (27) can be expressed in a

dynamic balance form

z(t) = z(t-l) + qHt-1) - q2(t-D-- (29)

where z - total accumulated liquid mass in the vessel. The outlet mass flow
rate is related to the liquid mass in the vessel by

q2(t) = a z(t) + wi2 (30)

where a - a known parameter determined by the liquid viscosity and the
outlet pipe geometry.

According to the above assumptions we can derive two static balance
models for this sample problem: without deterministic flow models and with
known outlet flow model (30). In the first case the flow vessel static
balance model is

q*(t) - q 2(t) + q 2(t) = 0 (31a)

yHt) = c2qa(t) + vi (31b)

y2(t) = c2 q2(t) + v 2 (31c)

where y 1 = measured accumulation flow rate as a difference of two
consecutive level measurements (yJ,(t) = y2(t) - yHt-l)). c 1 - a known

37

parameter converting accumulated mass to liquid level, c 2 = a known
parameter converting inlet mass flow rate to measurable volumetric flow
rate. The flow vessel static balance model with known outlet flow model can
be expressed as

q*(t) - gift; + q 2(t) = 0 (32a)

g2(t) = a z(t) + w q2 (32b)

yH t) = c'q*(t) + v* (32c)

y!(t) = + v 1 (32d)

y2(t) = c2ql(t) + v 2 (32e)

Notice that the model (31) can be used to estimate the flows g«(t), gift)
and q2(t) while the model (32) contains also an accumulation variable z(t).
The models (31) and (32) are specific cases of a general static balance
model (26).

With the given set of measurable parameters the flow vessel static balance
models do not contain no spatial redundancy of information and therefore
the state estimation reduces to straightforward sequential use of the model

equations, e.g.

q*(t) = yl(t)/c 1 (33a)

qHt) = y2(t)/c2 (33b)

q 2(t) = gift) - g«(t) (33c)

where q m(t) and qHt) are selected as the independent flows and g 2(t) is
the dependent flow. The same is valid for the corresponding quasi-
stationary balance models, e.g.

g»(t) = q*(t~l) + w«« (34a)

qHt) = qHt-1) + w ql (34b)

yHt) = c2qHt) + v 1 (34c)

y2(t) = c2 gl(t) + v 2 (34d)

qHt) = qHt) + qHt) (34e)

38

which is a quasi-stationary counterpart of the static balance model (31).
The model (34) consists of two independent first-order models

gift) = gHt-l) + w* (35a)

y*(t) = + v* (35b)

for two independent flows, ga(t), and gHt), which can be estimated

separately as simple time-series using the first-order Kalman filter, and a
static balance model (34c) used to estimate the dependent flow, g1(t). This
means that our quasi-stationary sample model contains only temporal
redundancy of information.

The flow vessel dynamic balance model can be expressed as

z(t) = z(t-l) + gi(t-l) - g2(t-l) (36a)

gHt) = + wii (36b)

g2(t) = g2(t-l) + w*2 (36c)

y2(t) = cl z(t) + v 1 (36d)

y2(t) = c2 g2(t) + v 2 (36e)

In the dynamic balance model with known deterministic outlet flow model
the equation (36c) is replaced by the equation (30). As shown in the
previous section, the state estimation model (36) with known deterministic
flow model can be interpreted as a special case of a stochastic system with
dynamic and static states, and randomly varying parameters where x<j = z,
Xb = q 2, p = ql. Notice that the dynamic state equation (36a) does not
contain any uncertainty due tc exactness of the mass balance. Fathi,
Ramirez, and Aarna (1990) show that an Extended Kalman Filter type
algorithm can be effectively used to estimate the state and parameters of
this kind of systems.

CONCLUSIONS

The main result of this paper is that all the known CPP state estimation
balance models can be treated as special cases of a stochastic system with

39

dynamic and static states, and randomly varying parameters. As a
generalization of existing static, quasi-stationary, and dynamic balance

models the corresponding CPP state estimation models with partially given
deterministic flow models appear as an intermediate class of models between

the "pure" state prediction and state estimation models. A more detailed
study of these models and their state estimation technique is the aim of

our further research.

REFERENCES

Aarna, 0, (1978). Dynamic chemical plant model and its application.
Preprints of the 7th Triennial IFAC World Congress, V01.2, Helsinki,
Finland, 279-286.

Aarna, O.A. (1984) Balance models for evaluating the state of chemical-
engineering systems. Automation and Remote... Control 45 (5), Part 2,
655-662.

Aarna, 0. (1985). Chemical plant state estimation. Transactions of Tallinn
Technical University 5 92, 17-38 (in Russian).

Fathi, Z., W.F.Ramirez, and O.Aarna (1989). Joint state and parameter
estimation/identification for systems with coupled static and dynamic
models. Report V, University of Colorado, Department of Chemical
Engineering, 88pp.

Mah, R.S.H., Stanley G.Mand D.M.Downing (1976). Reconciliation and

rectification of process flow and inventory data. Ind, Eng. Chem.

Process Des. Dev. 15, 175-183.

Mah, R.S.H. and A.C.Tamhane (1982). Detection of gross errors in process
data. AIChE Journal 28, 828-830.

Romagnoli, J.A., and G.Stephanopoulos (1980). On the rectification of
measurement errors for complex chemical plants. Chem. Eng. Sci. 35,
1067-1081.

Serth, R.W., and W.A.Heenan (1986). Gross error detection and data
reconciliation in steam-metering systems. AIChE Äfurnal 32, 733-742.

40

Stanislav, J.F. (1982). Mathematical Modeling of Transport Phenomena

Processes. Ann Arbor Science Publishers, Ann Arbor, Michigan.

Stanley, G.M. and R.S.H.Mah (1977). Estimation of flows and temperatures in
process networks. AIChE Journal 23 (5), 542-650.

Vaclavek, V. (1969). Studies on systems engineering 11.- On the application

of the calculus of observations in calculations of chemical
engineering balances. Coll.__Czechoslov. Chem. Commun. 34, 364-372.

Watanabe, K., and D.M.Himmelblau (1982). Instrument fault detection in a
system with uncertainties. Int. J. System Sci. 13, 137-158.

O. Aarna

Pidevate tehnoloogiliste protsesside

oleku hindamise bilansiimudelid

Kokkuvõte. Artiklis käsitletakse pidevate tehnoloogiliste
protsesside (FTP) oleku hindamiseks mõeldud mudelite klassi.
FTP oleku hindamine põhineb informatsiooni ajalisel ja

ruumilisel liiasusel, mis sisaldub tehnoloogiliste mõõtmiste
tulemustes, mõõtesüsteemi topoloogias ja massi, energia ning
liikumishulga bilansi võrrandites. Seda liiasust kirjeldatakse
matemaatiliselt protsessi oleku hindamise bilansimudelitega,
mis seovad protsessi olekut ja tehnoloogiliste mõõtmiste
tulemusi. Artiklis analüüsitakse FTP bilansimudelite kahe

tüübi -olekvt prognoosi ja oleku hindamise mudelite geneesi. On
uuritud seoseid dünaamiliste ja staatiliste oiekumuutujatega
stohhastil iste süsteemide, FTP oleku prognoosi mudelite ja
kolme oleku hindamise mudelite klassi (staatiliste,
kvaasistatsionaarsete ja dünaamiliste mudelite) vahel.
Vaadeldavaid põhimõisteid ja mudeleid illustreeritakse lihtsa,
ühe siseneva ja ühe väljuva vooga anuma kui FTP näitel.

41

No 722

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED

TRANSACTIONS OF TALLINN TECHNICAL UNIVERSITY

A. Kiitam

OH THE SELECTION OF THE UTILITY FUNCTION FOR
PROCESS ADJUSTMENT

Abstract. Some aspects concerning the application of
different utility functions for process adjustment are
discussed. It is argued that in case the specification
limits are vaguely defined,the conventional utility
functions based on yield or mean square error criteria
might not be the best choice. Some alternative utility
functions are considered, including dispersed utility
functions, which are based on additive stochastic
dependencies between quality parameters.

INTRODUCTION

A crucial task in any quality assurance program is the
formulation of an adequate utility function, which describes
the requirements to the product quality parameters in a proper
way. To select the utility function, one has to evaluate
customer needs and expectations, anticipated revenue from
selling the manufactured products, and sometimes the
computational complexity of the corresponding optimal
adjustment algorithm. Thus, the proper formulation of the

utility function can be a complicated task, and different
aspects of a specific situation must be taken into account. In
this paper we will discuss some aspects of the selection of
the utility function, primarily for the manufacturing process
adjustment (however, some considerations are also applicable
for statistical design centering). We will concentrate on the
"nominal-the-best" situation for the case when the product
quality is essentially determined by a one-dimensional
parameter. Let this quality parameter be y and the utility

42

function be g(y). The use of the utility function g(y) for

process adjustment leads to the optimal adjustment problem

I g(y)f(y , (1)
R x

where f(y,X) is the distribution density function for a random
variable y which depends on the adjustment parameter vector X.
Usually in (1) it is suitable to use process centering or

shift model f(y,X)=f(y-t), t=t(X), i.e. the influence of the

adjustment parameters X is representable through the shift t.
Then we obtain the optimum shift problem

J g(y)f(y-t)dy—max , (2)
R t

The solution of problem (2) gives the optimal shift value t*,
which implies the best process adjustment for given utility
function g(y). As y-t=e can be interpreted as process noise,
it is natural to assume zero mean M(e)=o for the density
function f (e).

We will first discuss the use of the well-known yield and mean
square error criteria. Second, we will list some alternatives
and third, consider the use of so-called dispersed utility
functions.

YIELD VERSUS MEAN SQUARE ERROR

The two widely used criteria for process adjustment are:
(a) yield maximization; (b) mean square error minimization
(Kapur and Wang,l9B7).

The use of parametric field as an adjustment criterion is
based on the concept of conformity to specifications. Products
are classified into two categories, as shown in Fig.l,a. Items
that conform to the specification limits are acceptable and
items outside the specification limits are not acceptable.

Thus, the quality evaluation has binary nature. All the items
whose quality parameter y lies between the lower specification

43

limit A and the upper specification limit B are estimated
equally good giving some income I. Unacceptable items are
estimated all equally bad resulting in some loss L. For the
solution of the optimum shift problem (2) we can fix the
values I=l and L=o. Thus, the yield criterion leads to the
utility function , shown in Fig.l,b:

1, A < y < B,
g(y)= * (3)

0, otherwise^

Fig.l. Yield criterion.

The use of mean square error (MSB) criterion is based on the
concept of some "nominal-the -best" value, which we denote as
target value T. The products with y=T have the best quality ,

and if y moves away from T, then the quality is not so good.
The loss in quality is described by a quadratic loss function.
Thus, as shown in Fig. 2, the utility function is

g(y)= -(y-T) 2
. (4)

Fig, 2. Mean square error criterion.

44

The use of different utility functions (3) and(4) in general
leads to different solutions for the optimum shift problem
(2). The use of yield criterion with the utility function (3)
leads to the equation

f(A-t*) = f(B-t*),
whose solution t* is the optimal shift. Geometrically it

implies the equal density condition, as shown in Fig. 3. For
symmetrical distributions with J(-e)=f(e) we obtain
t*=(A+B)/2.

Fig. 3. Optimal shift for yield and MStE criteria.

The use of the MSE criterion with the utility function (4)
leads to the solution t*=T. This implies that the shift is
determined so that the distribution mean for y coincides with
the target T, as shown in Fig.3,b.

So, the yield and MSE criteria result in the same solution if
the noise distribution density f(e) is symmetric and the
target value T coincides with the acceptance region center
(A+B)/2. Otherwise, the solutions differ from each other.
Thus, the underlying quality evaluation concepts for yield and
MSE criteria differ significantly, and in some cases this
leads to different process adjustment. Hence it makes sense to
discuss in seme details the objections related to the
application of those quality criteria.

45

The main objections to the application o£ the yield criterion
may be listed as follows:

-for the yield criterion it is assumed that the
acceptability region is uniquely defined and fixed. This
assumption might be incorrect, as often the tolerance limits
are vaguely defined or negotiable: they can be more tight or
more relaxed for different customers or different price/cost
situations. If we omit the overall standards and severe
customer cases, the tolerance limits are mostly determined as

a result of an optimization procedure, and the optimum is
mostly flat (in particular when handling the total losses of
the product and the consumer, or for in-process tolerances);

-if we are handling the parametric quality and parametric
yield, the natural initial assumption is that the quality
depends on y as a continuous function. This means that
discontinuity of g(y) in the points A and B is initially not
natural;

for the "nominal-the--best" situations it might be
inadequate to use the same value of g(y) within the tolerance
(A,B), since sometimes the products from the central part of

the tolerance can be sold with a higher price due to their

superior or more guaranteed quality, and the inferior products
farther off from the center can be sold with a lower price for
less critical applications. For in-process adjustment
problems, the items outside the tolerance limits can be
sometimes made acceptable by applying some additional
corrective processing or trim, which requires additional
expenses and therefore has lower value of g(y);

from the computational viewpoint, in case f(y) is a
truncated distribution density, there arise some difficulties
when computing the gradients needed in optimization algorithms
(Styblinski,l9B6};

the yield criterion is, especially in the high yield
cases, not sensitive to adjustment parameters in the
neighborhood of the optimum due to the flatness of the optimum
curve.

The objections to the application of the MSE criterion may be

listed as follows:

46

the main objection is that the use of the utility
function -(y-T) 2 implies too large losses when y differs from
T significantly, as g(y)-»-« if y-*-±«. This is not natural
from the economic point of view, since the fabrication of a

defective product does not imply infinite losses: if the
defective device is recognized and rejected, then the losses
are determined by a finite cost of product fabrication. This
aspect could be not critical when operating with theoretical
distributions having rapidly converging distribution tails.
But it becomes critical for heavy-tailed distributions and

when using sample data for process adjustment, as then the
outliers have strong influence on the results of optimization
and robustness properties of the utility function are needed;

the minor objection to quadratic utility function is
that it is complicated to have a clear economic interpretation
of the quadratic loss.

The above considerations permit to conclude that in some
cases, primarily due to the vagueness of quality
specifications or economic aspects, yield and MSB are not
satisfactory criteria for process adjustment. If so,
alternatives are needed.

SOME ALTERNATIVES

As related to the above discussion, we will now list some
recent alternative formulations of utility functions, which
take into account more economic and other details.

First, let us mention the limited square loss approach
(Taguchi, 1986; Adams and Woodall, 1989). The corresponding
utility function can be presented as shown in Fig. 4:

{L-(L/W 2)/(y-T) 2
, T-W < y < T+W

(5)
0, otherwise,

where L is the loss for the manufacturer due to the production
of nonconforming items and W is the tolerance width. Such an

47

utility function eliminates the complications related to the
infinity of losses when y-*-±«.

Fig. s, Piecewise constant
utility function.

Fig.4. Limited square
utility function.

Second, the differentiated quality groups approach. Which has
been considered by Abramov, Bernatskii and Zdor (1982),
Opalski and Styblinski (1986), Kiitam (1986b) and other
authors. The products are divided into several quality groups
characterized by different prices c± which are usually higher
in the neighborhood of the target value. This leads to
piecewise constant utility function, as shown in Fig.s. The

approach enables to evaluate better the economic results and

is due to its higher sensitivity especially useful for high
yield situations.

Third, the signal-to-noise (S/N) ratios as performance
criteria are considered by Taguchi (1986) and other authors.
For "nominal-the-best" situation S/N ratio SN>p is recommended:

SNf= -101ogi0T 2 = -10^°910(Vi 2/o2) / (6)
where y is the variation coefficient as the ratio of standard
deviation o to mean u. The motivation for the use of S/N ratio
is caused by the dependency between p and o, which occurs in
most cases. Correspondingly, the efficient use of S/N ratio is
based on an adequate process model (Leõn, Shoemaker and
Kackar, 1987; Box, 1988) and thus requires modeling analysis
for a specific process.

48

DISPERSED UTILITY FUNCTIONS

Let us now consider a class of utility functions which we call

dispersed utility functions. These functions are constructed

as dispersed modifications of some initial utility functions.
This dispersed utility function modification is based on a

stochastic dependency between the quality parameter observed
and another quality parameter w, for which an utility function
gH (w) is fixed. Such a dependency can be introduced in
different ways, including the following:

the in-process predictor case appears in multi-stage

manufacturing processes when in-process quality testing is

applied. In this case w is a quality parameter for final
product and y is a quality parameter observed after a
manufacturing stage; y is used as an in-process test variable
to predict the final quality parameter w (Kiitam, 198Sa). The

dependency between y and w is described by a model

w=f(y)+e, (7)
where f(y) is a fixed function and e denotes the noise
introduced in the intermediate manufacturing stages;

the measurement error case appears when the variable w
is observed Under the influence of the measurement error e
which has considerable dispersion (Sauer and Hoffmann, 1987).
The corresponding dependency model becomes

y=w+e, (8)
where w and e are independent stochastic variables;

the indirect measurement case leads to the above model

(7), where y is the initial quality parameter which is tightly
(with high correlation) related to y and which is much easier
to measure than y;

-the computational perturbation case appears when one
smoothes the initial nondifferentiable optimisation problem by
introducing an additional stochastic variable, in order to get
a problem with continuous gradients (Tang and Styblinski,
1988). This technique also leads to the model (8).

In the above cases the determination of the dispersed utility
function g(y) for y leads to the computation of an expectation

which is expressed as a convolution (Kiitam, 1986a):

49

g y(y)= M(g w(w)|y)= I g M (w)J(w| y)dw, (9)
R

where gw(w) is the utility function for w and f(wjy) is the
conditional distribution density for w at a given y.

As an example, let us consider a practically important case

when the dependence between w and y is described by a linear
model with Gaussian noise

w= a+by+e, (10)
where the noise e has zero mean and standard deviation o,
e~N(0,o), y and e are independent random variables, a and b

are model coefficients. Then the utility function g y(y) is
expressed as

9y(y)= (2x) -1 / 2 0~1 Ig
M(w) exp[-(w-a-by) 2/(20 2)] dw (11)

R
This formula gives g y(y) as a dispersed modification of g w (w).
For instance, if g w (w) is the tolerance function corresponding
to the yield criterion, i.e. gw (w)=l it <w < % and

gw (w)=o otherwise, we obtain

g y(y)= N 0 ((B w -a-by)/o)-NQ ((Aw-a-by)/o), (12)
x

where N o (x)=(2*) -1 / 2 1 exp(-t 2/2)dt.
-CD

The hat-shaped utility function (12) is shown in Fig. 6. When o
increases, the utility function g y(y) becomes more dispersed
and closer to the normal distribution density curve. The
normalized asymptotic shape of (11) does not depend on gw (y)
and coincides with the normalized normal distribution density
curve n o (y)=(2x) -1/ 2 exp(-y 2 /2).

Fig.6., Dispersed utility function (12)|.

50

In Fig. 7 two more examples of dispersed utility functions are

shown. The first one corresponds to the tolerance type g w (w)
and uniform noise distribution, the second one to the limited
square type g w(w) and normal noise distribution.

Fig .7, Two examples of dispersed utility function

The dispersed utility functions are applicable not only in the
most usual case when the utility function g(y) describes the
profit or revenue effect as a function of the quality
parameter y. They are also applicable in case when
interpreting y as a fuzzy quality parameter (Glazunov and
Lapidus, 1989). In this and other cases a serves as a
fuzziness or vagueness parameter: when o increases, yas a
quality parameter becomes more vague. The above asymptotic
case o-*-« , which leads to the normal density curve n 0 (y) as
a normalized utility function, has been recommended in complex
quality description cases as a desirability function in
(Harrington, 1965) and (Kalinina, Lapiga and co-authors,
1989),

As a background to the "dispersed quality window" based
utility functions use in "nominal-the-best" case with vaguely
defined specification limits, we can formulate corresponding
parametric quality evaluation considerations as follows:

51

1) it is natural to evaluate the quality as the highest
at the target/nominal value;

2) the quality is decreasing when moving away from the
target value, mostly due to some smooth continuous curve which
is close to symmetrical;

3) as the fabrication expenses are finite for non-
conforming product items, g(y) has plateau-like asymptotes,
i.e. g(y)-*-c=const when y-»-±®.

When comparing the utility functions mentioned above from the
computational point of view, the difference depends on
specific situation. For instance, the difference between the
yield and differentiated quality groups is computationally not
significant (Opalski and Styblinski, 1986). The computation of
dispersed quality functions is more complicated than the
computation of yield, but for the computation of the
corresponding gradients needed in optimal adjustment
algorithms the situation can be vice versa (Tang and

Styblinski, 1988). For analytical operations, the simplest
cases are MSE and yield, and the greatest complications arise
with dispersed quality functions, especially when their
additional truncation is necessary.

CONCLUSION

In this paper we have discussed some aspects concerning the
utility function selection for process adjustment. The
discussion permits to conclude that in cases the specification
limits are vaguely defined the conventional utility functions
corresponding to yield or mean square error criteria might not
be the best choice. There exist appropriate alternatives for
them, like limited square loss function or some dispersed
utility function (for instance, the hat-shaped function (12)
with a suitably selected vagueness parameter o).

REFERENCES

Abramov, 0. V., F. I. Bernatskii, V. V. Zdor (1982).
Parametric Correction cf Central Systems. Energoizdat,
Moscow (in Russian).

Adams, B. M., W. H. Woodall (1989). An Analysis of Taguchi's
On-Line Process-Control Procedure Under a Random-Walk
Model. Technome tries, v.30, n0 .4, pp. 401-413.

Box, G. E. P. (1988). Signal-to-Noise Ratios, Performance
Criteria, and Transformations (with Discussion and
Reply). Technometrics, v.30, no.l, pp.l-40.

Glazunov, A. V., V. A. Lapidus (1989). Flexible Quality
Control Methods for Fuzzy Quality Requirements.
Zavadskaya Laboratorija. n0.3, pp.Bs-89 (in Russian).

Harrington, E. C. (1965). The Desirable Function. Industrial

Qualicy Control. v.21, no.lo, pp. 124-131.

Kalinina, E. V., A. G. Lapiga et ai. (1989). Quality Optimiza-
tinn., Compl-fix. Products Himiya, Moscow (in
Russian).

Kapur, K. 0., C, J. Wang (1987). Economic Design of Specifica-
tions Based on Taguchi's Concept of Quality Loss

Functions. Quality: Design. Planning and Control (Winter
Annual Meeting of ASME, December 1987), pp. 23-36.

Kiitam, A. (1986a). Synthesis of Scalar Utility Functions for
Outputs of Stages of Multistage Technological Processes.

Trans . Tallinn Techn. Univ. n0.629, pp. 45-50 (in
Russian).

Kiitam, A. (1986b). Algorithmization of Some Scalar Optimal
Adjustment Tasks for Discrete Technological Processes.
Trans . Tallinn Techn. Univ.,. n0.629, pp,sl-68 (in
Russian).

Leõn, R. V., A. C. Shoemaker, R. N. Kackar (1987). Performance
Measures Independent of Adjustment. Technometrics. v.29,
n0.3, pp. 253-265.

Opalski, L. J., M. A. Styblinski (1986). Generalization of
Yield Optimization Problem) Maximum Income Approach. lEEE
Trans , CAD of Intaar. Circ. and Syst.. v. 5, n0.2, pp. 346-
360.

52

53

Sauer, W., W. Hoffmann (1987). Influence of Measurement Errors

jQxje.ad.en, Jg.36, H.4, 5.67-71 (in German).
Styblinski, M. A. (1986). Problems of Yield Gradient

Estimation for Truncated Probability Density Functions.
.lEJEE.._...3!x.ann-.---.CAD--- of Integr. Circ . and Syst. . v.5, no. 1,
pp.3o-38.

Taguchi, G. (1986). Introduction to.. Quality Engineering;

Plains, NY, Kraus Internat. Publications.
Tang, T.-S., M. A. Styblinski (1988). Yield Optimization for

Nondifferentiable Density Functions Using Convolution
Techniques . lEEE. Trans., CADIoI Intear .* Cir c ■ and-SYAt.*.,
v. 7, no.lo, pp. 1053-1067.

A. Kiitam

KASULIKKUSFUNKTSIOONI VALIKUST PROTSESSIHÄÄLESTUSEL

Kokkuvõte

On vaadeldud mõningaid erinevate kasulikkusfunktsioonide
rakendamise aspekte protsessihäälestusel. Väidetakse, et kui
tolerantsipiirid on määratletud ebamääraselt, ei pruugi
tavalised saagise või ruutkeskmJse vea kriteeriumil põhinevad
kasuiikkusfunktsioonid olla sobivaimad. On vaadeldud mõningaid
alternatiivseid kasulikkusfunktsioone, sealhulgas hajusaid,
mis põhinevad aditiivsetel stohhastil istel sõltuvustel
kvaliteediparameetrite vahel.

55

No 722

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED

TRANSACTIONS OP TALLINN TECHNICAL UNIVERSITY

W. Kracht

TRUTH VALUED COMPUTING PROCESSES AND PROCESS CALCULUS:

A FORMALISM FOR DESCRIBING PROGRAMMING LOGIC

Abstract. A new approach to describe programming logic and the
development of high level programming languages is proposed.
The approach is based on the concept of truth valued computing
process and process calculus. A truth valued process is con-
ceived as a logical function with a side effect. It expresses the
applicability of data transformation as well as the transformation
itself. Process calculus is presented as a generalization of predi-
cate calculus. Logical operators (not, and, or) are defined for
processes. Serial and parallel conjunction and disjunction of pro-
cesses are distinguished. All traditional program control state-
ments as well as several new control statements are interpreted
as formulas of process calculus. Interpretation and derivation
rules are discussed. The calculus is intended to serve as a basis
for the development of real time languages.

INTRODUCTION

There exist numerous general purpose and real time languages, but only a
small amount has found a wide use. Nevertheless, elaboration of new lan-
guages has continued.

The main feature of all early algorithmic languages is a purely pragmatic
development in view of possibilities of computers and the existing experi-
ence rather than explicit requirements, theoretical conceptions, and mathe-
matical formalism. The evolution cannot yield the best results, and, there-
fore, new approaches laid on more solid foundation are being searched long
since. Such approaches are, for instance, functional programming (Bacus,
1978; Hendersen, 1980) and logic programming (Kowalski, 1979; Lloyd, 1985).
Each of them yields a new language (Lisp, Prolog) based on explicit theo-
retical conceptions and mathematical formalisms. The languages belong to
the class of declarative languages.

56

Nevertheless, it is hardly possible or reasonable to solve all programming
tasks only on the ground of declarative languages. It seems, for instance,
that the development of real time and computer control systems calls for

new solutions also in the development of high level algorithmic (imperative)
languages, in particular, real time languages (Young, 1982). So far they all,

including Ada, have been developed on the ground of general purpose

languages, first of all, on the basis of Pascal.

Each programming language is, to a certain extent, a formal system (Kleene,
1952), although usually without deductive possibilities. But a formal system

has a real value only if it is a formalization for an informal theory. The

latter forms the theoretical foundation and an interpretation for the formal

system. The foundation is never defined explicitly for conventional pro-

gramming languages, but it is widely known, for instance, for Lisp and
Prolog (lambda calculus and Horn clauses logic). This is a feature and a
disadvantage of all general purpose and real time languages. However, the-

oretical foundations of real time systems and languages are in the stage of
establishing (Hoare, 1986; Fileman and Friedman, 1984).

This paper presents a new approach to the development of such languages.

An attempt is made to formalize programming on the example of classical

principles proposed by Hilbert for construction of formed (axiomatic) theo-
ries (Hilbert and Bernays, 1968; Kleene, 1952). It involves development of a
suitable theory of computing processes, formalization of the theory, and
extension of the formalism to a practical programming language.

The basic idea in our approach to evolve programming theory and lan-
guages taken over from the Hilbert's programme is associated with the
constructive (inductive) way to the development of formal systems. That is
why we call the approach constructive programming (CP), the theory CP-
theory, the language CP-language or COPAL (constructive Programming and
data Abstracting Language), and the whole system CP-system.

In this paper we discuss basic principles for the system construction and
the language design. Those principles mainly touch upon programming logic
(control flow in programs), which forms the logical framework of the whole
system. The rest of the theory is connected with data abstractions. Un-
fortunately, these problems cannot be discussed in this paper, except some
general notes.

57

A new instrument for describing and analyzing programming logic is pro-

posed. It is founded on the truth valued computing process concept intro-
duced as an extension of the predicate concept. The instrument is evolved
as a generalization of predicate calculus and called process calculus.

The presentation is purely theoretical. However, the theory is regarded as
a foundation for developing high level real time and computer control sys-
tem programming languages. The main requirements to real time languages,
such as reliability, generality, simplicity, easy readability, modifiability,
maintainability, efficiency, formal definability, etc. (Fisher, 19,78; Young,
1982; Smith and Wood, 1987) are taken into account at language design
based on the theory. Process calculus forming the logical framework of the

language (Copal) introduces intrinsical correctness and reliability into it.

The language itself cannot be described fully in this paper.

DATA OBJECTS AND TYPES. FUNCTIONS

The basic notions of CP-theory are the notions of data object, data type,
function and (truth valued computing) process. Three of them are dis-
cussed in this section, the last and the most important one, in the next
section.

Data object and type. The term ’data object', or, more precisely, 'finite
data object', is used to denote processing objects - data elements, struc-
tures and sets (sequences, lists, files). They are said to be finite because
only data objects with finite length, finite value range and a finite number
of elements may be represented in computer memory.

Strong data typing and data abstracting principles are fully accepted in
the V_ory, although not in quite the usual manner. Thereby, it is assumed
that each data object belongs to a class of objects called data type.

Data types are divided into two main categories - individual and collective
types. We call them also data entity and data set types (the term 'set' is
used in the abstract sense). The two categories of data types in the CP-
language correspond roughly to static and dynamic data types in the well-
known programming languages. Further, individual types are divided into
composed (structured) and atomary (primitive) types.

58

From the point of view of this investigation it is not essential which
particular data types we are dealing with. It is sufficient to suppose there

are certain different data types. In order to simplify presentation we
suppose all types below are data entity types, i.e. individual data types.

Moreover, it will do to take into account atomary types only, for instance,
natural, integer, fractional and mixed number types (do not wonder three
of them are not customary). Main features of our theory touching data

typing and abstracting are related to data semantics.

Semantical triangle. Data entities are represented in programs by variables
Introduced by explicit definitions. The expression for defining a variable v
of a type T has a conventional form (the sign would be conceived in the

sens® of 'belongs to'): -

v : T. (1)
The expression is interpreted in CP-theory on the example of Frege-

Church's semantical triangle (Church, 1956). So, we say the variable v de-
notes an, entity and expresses its meaning (the concept) related to the

type T, and the meaning describes the entity. At that, we assume the
meaning is represented in the computer by an explicit model called type
model (see below).

As a matter of fact, the expression (1) is considered as a composed form
(name) consisting of the common name (variable) v and the proper name
(constant) T. The denotation of v is the data entity (field), the concept,
the imagination of entities of the given type. For the computer the
imagination is represented by the type model. The denotation of T is just
the model, the concept, the general imagination of such models.

To map the interpretation (the semantical triangle) in the computer, it is
presumed that the variable v does not denote the data field itself, but a
pair of pointers (field'(v),type'(v)). The first of them refers to the actual
data field while the second one indicates the type model. Such reference to
data is an important element and feature in the theory.

Type model. The idea of an abstract data type in one's mind includes the
Imagination of the structure (domain) and semantics of data entities be-
longing to the type. In the computer, a data abstraction is usually mapped
as a multiprocedural program module in which the data structure and op-
erations on it are fixed.

59

Unlike to this, we assume that a data abstraction is represented by a

model consisting of two parts - structural and semantical parts. Schemati-
cally: Data abstraction = Structure + Semantics.

The structural part comprises only one element - structure model for the
type. It defines the data structure, (formal) parameters of the structure
(see below), and, indirectly, the domain of data entities belonging to the
type. The semantical part contains a number of elements called semantic
modules. Each of them defines a function, a predicate or a process on the

data entities of the type. Thus, in other words: Type model = Structure
model + Semantic modules.

As far as there exists only one structure model for each type model the

latter is identified by the former. In this relation the structure model is
called also simply the type model (in the strict sense). This was kept in
view above in the mapping of the semantical triangle.

An essential feature of the model is that all its elements are separately
defined and compiled, and that they are associated with each other logi-
cally but not physically. The model is assumed to be defined for all data

types including atomary ones. It may be constructed and extended step by
step starting with the structure model and continuing with the semantic
modules.

A structure model is represented as a tree (list). It consists of only one

node in the case of atomary types. Semantic modules are all one-procedural
program modules. Such modules for a data type all together form a par-

tially ordered set called semantic cluster. It is ordered by the relation
'module x is used in the definition (construction) of module y '. The struc-
ture model may be regarded as the root (the least) element of the set. The
cluster as a whole is stored in the semantical memory (knowledge base) of
the system.

Formation of data abstractions is an essential part of the theory. Unfortu-
nately, it cannot be discussed in more detail in this paper.

Parametriratiun of types. It is assumed that data types may have different
parameters. For instance, the type of vectors may be expressed in the
most general case in the form 'vector(n)[e : t]*, where n, e, t are formal
parameters denoting the number of elements, element name and type, resp.

60

It yields that the vector v of 10 real elements as a derived data type may
be defined so: v = vector(lo)[elem : real]. The value of all parameters for

a data type is represented in the structure model for the type.

However, in this paper, it is only essential that all numeric atomary types
have two boundary parameters and are expressed in the form of T<l,u>,

where T is a type name, I and u are formal parameters denoting lower and

upper bound of the value range for the type. Hence, the next definitions,

for example, are legitimate: natural<o,9>, i : integer<-100,100>, m :

mixed<-2.5,2.5>.

Function. A function is defined in the CP-language by the next scheme:
function f(xi, Xn)

xi : Ti, ...» Xn '• Tn
statement F

eodef (2)
where f is the name of the function to be defined, xi, xn are its formal
arguments, Ti, ..., Tn are types of the arguments, and F is a formula of
process calculus (see the next but one section) (eodef = end of definition).
Two first lines in the scheme form the head of the definition, the third
line - the body. The head (without the keyword 'function') is conceived as
the specification of the function, the body, or, more precisely, the formula
F, the definition itself.

The function f(xi, ..., Xn) is regarded as a generator of a dependent data
entity, say y, such that y = f(xi, ..., Xn) provided that y : Ti. In other
words, it is assumed that the data value y generated by a function always

belongs to the same type as the first argument of the function (there is
an exception, see below). Thus, a function is conceived as a mapping:

f : Ti x ... x Tn -> Ti (3)
(the sign 'x' stands for Cartesian product). At that, Ti, ..., Tn should be

interpreted as domains of variables xi, ..., Xn. The part 'Ti x ... x T n ->

Ti' in (3) is considered as the denotation of the type of the function f.
Hence, the types of the function f and of the value y of the function aure
distinguished. The expression (3) in whole is called the type expression for
the function F.

The type of function serves for identifying and distinguishing functions.
Two functions, say fi and fj, are said to be identical if and only if they
have the same name (fi = fj) and belong to the same type.

61

Conversion function. A conversion function (for data conversion) is a spe-
cial kind of one-argument functions. In case of atomary types, it is a
primitive function specified by the scheme:

conversion Ta'(x : Ti) eospec , (4)
where Ti and Tj sure the types of the argument x and the value y = T2'(x)
of the function (eospec = end of specification). The function is named by
the name of the type Tj to which an apostrophe (') is added. It is con-
ceived as the mapping Tj' : Ti -> T 2 (this is the exception: the type of
the value differs from the type of the argument).

TRUTH VALUED COMPUTING PROCESSES

Computing process. The term 'computing process', or, simply, 'process', is
used in our theory to denote any data transformation procedure applied to
one or more data entities. In general, the notion corresponds to the notion

of program unit or module (procedure, subroutine, and, also, concurrent
process), except function, in the conventional programming languages. How-
ever, the analogy reflects only the functional aspect of the notion. The
logical aspect is related to a property of algorithms.

As it is known, an algorithm or a program (there is no need to differen-
tiate these notions in given context) is an instruction that defines a com-
puting process for transformation of some argument data x into result data

y. Such process may be successful or unsuccessful depending on whether
the desired results may be derived from given argument data, or not
(certainly if the process is terminated at all). The algorithm is said to be
applicable in the former case and unapplicable in the latter one.

Validity of processes. The applicability of an algorithm is determined by
the successfulness of the computing process defined by the algorithm.
However, there is no need to differentiate these properties because an al-

gorithm may be conceived as the definition of a process while a computing
process may be regarded as an application of an algorithm (invocation of a
program). We leave the notion of algorithm aside and discuss the problem
in terms of abstract processes only. Thereby, we prefer to call the suc-
cessfulness of a process (applicability of an algorithm) simply validity and
say that a process is valid or invalid instead of speaking of it as suc-
cessful or unsuccessful. 1

62

(The term "validity1 has in our theory the meaning which is usually, in
mathematical logic, expressed by the term 'satisfiability'. Validity and sat-
isfiability is called total and partial validity in this paper.)

The main idea of our approach is that the validity of processes is treated
as a logical value, and, thereby, a process P to transform argument data
(entities) x into result data (entities) y is conceived as a truth valued

function with a side effect. Such process is denoted by P(x->y) or P(y<-x).
The main effect of the function involves the determination of the logical
value representing the validity of the process. The side effect is connected

with the transformation of x into y if the process is valid (it is not essen-
tial which of the two effects is called main or side effect). In other words,
the process is conceived as a mapping (of a mapping):

P s (X -> Y) -> L (5)
where X, Y are the types (domains) of argument and result data, and L =

(T,F}, i.e. logical values T (true) and F (false) are used to denote validity
and invalidity of the process, resp. However, such representation of pro-
cesses is somewhat simplified.

Definition of processes. In general, a process is defined by the scheme
having two forms - main and inverse forms;

process P(x->y'->z) process P(z<-y'<-x)
x : X, y : y, z : Z z : Z, y : Y, x : X
statement F statement F

eodef eodef (6)
where P is the name of the process to be defined, x, y, z are interface
variables of the types X, Y, Z, resp., and F is a formula of process calcu-
lus (see next section). As in case of scheme (2) two first lines in (6) re-
present the head (specification) of the process, the third line - the body.

Interface variables (formal parameters) of a process are divided into three

classes - argument or input variables (x), result or output variables (z)
and state or input/output variables (y). Only one parameter of each class
is shown in the scheme (6). Actually, some or all of the expressions x : X,
7 : y, z : Z may be replaced by a list of such expressions. The two
schemes differ from each other only by the order in which the variables of
different classes aure represented. The pairs of symbols '->' and '<-' are
used as separators between different classes of variables. Note that the
state variable (y) in the head of the definition (in both forms) is distin-
guished by an apostrophe (').

63

Process type. A process defined by (6) (both main and inverse forms) is
conceived as a mapping:

P : (X x y -> Y x Z) -> L . (7)
Again, the part '(X x Y -> Y x Z) -> V in the expression is considered as
the denotation of the type of the process P. The expression (7) in the
whole is called the type expression for the process P. Two processes, say

Pi and Pj, are said to be identical if and only if they have the same name
(Pi = Pi) and belong to the same type.

The scheme (6) is not complete, some details, such as environment interface
(I/O) and import parameters, are omitted and not discussed in this paper.

Specific cases. Three interface variables of different classes were shown in
the scheme (6). Actually, one or two of them may be omitted. Thus, there
are six particular cases of the scheme (6). They are the following (specifi-
cations of main and inverse forms and type expressions are shown):
1. P(x->z) x:X, z:Z P(z<-x) z:Z, x:X P : (X -> Z) -> L
2. P(x->y') x:X, y:Y P(y'<-x) y:Y, x:X P : (XxY -> Y) -> L
3. P(y'->z) y:Y, z:Z P(z<-y’) z:Z, y:Y P : (Y -> YxZ) -> L
4. P(y') y:Y P(y') y:Y P : (Y -> Y) -> L
5. P(->z) z:Z P(z<~) z:Z P : (0 -> Z) -> L
6. P(x) x:X P(x) x:X P : (X -> 0) -> L
Note. 0 denotes empty data type (domain).

Examples:
1. Asn(x->z) - assign x to z,

Eqt(z<-x) - equate z with x,
2. Put(x->y') - - put x into (set) y,
3. - Get(z<-y') - get z from (set) y,
4. Sort(y') Sort(y') - sort (set) y,
5. Setnull(->z) Setnull(z<-) - set z to be null,
6. Null(x) Null(x) - x is null.
Note. The variable y in the examples 2 - 4 is assumed to be of a data set
type, for instance, of type Stack(n){e : t}, Queue(n){e : t} or File(n){e : t}.

Evaluation process. In a specific case, a process P may not be connected
with any argument or state data entity, but after all generates some result
data. Such process corresponds to the specific case 5 described above. It
is called a process without arguments or evaluation process.

Predicate, The other, a more specific case is that a process P may not be
connected with any state or result data entity. It represents a logical con-
dition or predicate P(x) held on argument data x. We call such a process a
predicate. It corresponds to the specific case 6. However, I 9 the definition

64

of a predicate, the keyword process is replaced by the keyword predicate.
So a predicate is defined by the scheme:

predicate P(x)
x : X

statement C
eodef (7)

where C is a clause of process calculus (see next section). Hence, predi-
cates form a subclass of the class of processes.

Iteration procedure. Finally, there exists a very specific subset of pro-
cesses called iteration procedures to be used simultaneously as a process
and as a predicate in certain constructions. In general, it corresponds to
the specific case 4 mentioned above. However, it is defined by a specific
scheme described in a subsequent section.

Process interface. Presume a process (module) P is defined by the scheme
(6) (and stored in the semantical memory of the system). Suppose the pro-
cess is used (as an external procedure or subroutine) in another process
(module) R. The situation (invoking P in R) is described, in general outline,
in the conventional manner as follows (in two forms):
process R(...) process R(...)

statement statement

define ..., define ...,

a : X, s : Y, r : Z, a : X, s : Y, r : Z,

begin begin

P(a -> s' -> r) ' P(r <- s' <- a)

end end

eodef eodef (8)
where a, s, r are local variables of types X, Y, Z defined in R and used as
actual (argument, state and result) parameters of the process P (a, s, r
must not be obligatory local variables; some or all of them may be formal
parameters of the process R).

The scheme shows that the type of the called process P may be determined
in the calling process R (at the compile time) by the type of actual para-
meters and by the role in which they are used at the invocation (as an
argument, state variable or result). The name P and the process type to-
gether determine the process module to be searched in the semantical mem-
ory. Thus, module interface consistency is supported in the CP-system.

65

Notation. The functional notation is used in the system for presentation of

processes, predicates and functions. The notation is illustrated by the fol-

lowing list of examples:
(1) processes Asn(x->y) assign x to y y x

Eqt(y<-x) equate y to x y := x
Setnull(->x) set x to be null x := 0

(2) predicates Eq(x,y) x is equal to y x = y
Lt(x,y) x is less than y x < y
Null(x) x is equal to 0 x = 0

(3) functions* / sc(x) successor of x x'
sum(x,y) sum of x and y x + y

Process calculus. The calculus is proposed as a generalization of predicate
calculus in which the role of predicates is played by processes. It is dis-
cussed in detail in the following sections of the paper. In general outline,
it is characterized as follows.

(1) All logical operations, such as negation, conjunction and disjunction,
are defined for the processes. However, generalization is needed: con-
junction and disjunction of processes cannot be commutative operations.
Further, these operations have two different operational interpretations:
serial and parallel. Quantifiers (all, some) and descriptors (any, sole) are
also used in process calculus.

(2) Processes and predicates (actions and logical conditions) may be associ-
ated by means of logical operations to describe control flow in program
modules. So programming logic is represented as a whole.

(3) The validity of a composed process is determined by the validity of
component processes as a result of the process performance.

(4) The total and partial validity (validity and satisfiability, in usual terms)
of processes may be defined similar to those of predicates in set-theoreti-
cal interpretation of predicate calculus (Hilbert, 1968). Further, general
rules can be shown for the determination of the properties for the com-
posed processes by those for component processes. It means that certain
rules of inference may be introduced into process calculus.

THE FORMALISM OF PROCESS CALCULUS

Now we shall consider process calculus as a formal system and define the
main elements of the system.

66

Alphabet. The alphabet of the language (formal system) consists of symbols
for denoting the following objects: (1) data values, (2) data entities,

(3) data entity types, (4) functions, (5) processes (including predicates,

evaluation processes ai.d iteration procedures). They are represented below

by small and capital letters (used as mctasymbols). Actually (in the lan-

guage), they are represented by identifiers (names), data values - by nu-

merals and literals.

In addition, subsidiary symbols are needed for forming seven. l syntactic
constructions, denoting different operators and connectors, etc. They are
expressed by fixed sequences of symbols in bold - keywords of the lan-
guage, or by punctuation symbols. Part of them (keywords) are divided
into two, in a way, dual subclasses. Main subsidiary symbols are the next
(mutually dual symbols are separated by the sign '/’)•

(1) formation conjunctcrs: it/as, then/thus, else/othw, while/when do/try,
for, such, switch, case, define, denote;

(2) junction brackets: (,), begin, end;
(3) logical operators: not, deny, and/or, all/some, any/sole;
(4) junction qualifiers: ser, par,
(Some keywords are abbreviations: othw = otherwise, ser = serially, par =

parallel.)

Prae and bounded variables. Variables, as we know, denote processing ob-
jects, i,e. data entities. In our formalism, as in any other formal theory,

variables are divided into free and bounded variables (Kleene, 1952).

Module interface variables are all treated as free variables of the formula
F in, the module defined by (6). Their scope of influence comprises all the
body of the module. All other variables can appear in the body only as
bounded variables of different kind with restricted scope. They will be
discussed below. The binding means that the variable is bounded by an
operator, and that it is not defined (known) outside the scope but re-
garded as a free variable within the scope.

Terms. Terms are language elements referring to the (independent and de-
pendent) variables to be used as actual parameters of modiües, be. as ac-
tual arguments of functions and predicates or as actual arguments, states
and results of processes. They are divided into argument, state and result
terms.

67

Definition I (argument term).
1. A free argument and state variable are both argument terms.
2. It £(x) is an n-argunent function and a is a list of n argument terms

(n > 0), then f(a) is an argument term.

Definition 2 (state and result terms).
1. A free state variable is a state term.
2. A free result variable is a result term.

Clauses. Clauses are formal counterparts of elementary or composed predi-
cates for expressing logical conditions in program modules. They are con-
structed using previously defined predicates as constituents.

Definition 3 (elementary clause).
1. Constant predicates True and False are both elementary clauses.
2. If P(x) is an n-placed predicate and a is a list of n argument terms

(n > 0), then
P(a) (Cl)

is an elementary clause.

Definition 4 (clause).
1. An elementary clause is a clause.
2. If A is a clause, then so is

not A .
(C2)

3. If Ax, ...» An are clauses (n > 1), then
(ser Ai and ... and Aa) (C3.C)
(ser Ai or ... or An) (C3.D)

are both clauses ('ser' may be omitted).
4. If Ax, ..., An are clauses (n > 1), t-hen

(par Ax and ... and Aa) (C4.C)
(par Ai or ... or An) (C4.D)

are both clauses.

Formulas. Formulas are formed counterparts of elementary or composed pro-
cesses tor expressing data transformations and actions in program modules.
They are constructed using previously defined processes predicates, eval-
uation processes and iteration procedures as constituents.

Definition 5 (elementary formula).
1. An elementary clause is an elementary formula.
2. If P(x->y'->z) (P(2<-y'<-x)) is a (m,k,n)-nlaced process (i.e. a process

with m, k and n formal argument, state and result variables, resp.), a,
s, r are lists of m argument terms, k state terms and n result terms
(m > üor m = 0, k > oor Jt = 0, n > 0), then

P(a->s'->r) (resp. P(r<-s’<-a)) (FI)
is an elementary formula.

68

Definition 6 (formula).
1. An elementary formula is a formula.
2. If P is a formula, then so is

deny P .
(F2)

3. If vis a data entity symbol, tis a data type. Pi, ..., P n are formulas
(n > 1), then

define v : t begin ser Pi and ... and Pn end , (F3.C)
define v : t begin ser Pi or ... or PB end (F3.D)

are both formulas (the phrase 'define v : t 1 is not obligatory, the ex-
pression 'v : t' in the phrase may be replaced by a list of such ex-
pressions, the word 'ser' may be omitted).

4. If v, t. Pi, ..., Pn are the same as above, then
define v : t begin par Pi and ... and Pn end , (F4.C)
define v : t begin par Pi or ... or Pn end (F4.D)

are both formulas (the phrase ’define v : t' is not obligatory, the ex-
pression 'v : t' in the phrase may be replaced by a list of such expres-
sions).

5. If A is a clause and P, Q are formulas, then
if A then P else Q ,

(FS.C)
as A thus P othw Q (FS.D)

are both formulas (the phrases 'else Q' and 'othw Q' are not obligatory).
6. If s is a data entity symbol, t is a term of the natural type, a, ..., b are

natural values and Pa, ...»
Pjs, Q are formulas, then

if switch s = t : [a, ..., b]
then case (a) P«, ..., case (b) Pt else Q ,

(F6.C)
as switch s = t : [a,

...,
b]

thus case (a) P«, ..., case (b) Pb othw Q (F6.D)
are both formulas (the phrases 'else Q’ and 'othw Q' aure not obligatory).

7. If A is a clause and P is a formula, then
while A do P , (F7.C)
when A try P (F7.D)

are both formulas.
8. If x is a data entity symbol, t is a countable number type, a, b are val-

ues, constants or variables of the type, N is an iteration procedure de-
fined for the type. A, B are clauses, and P is a formula, then

for all N(x : t<a,b>) such A while B do P , (FB.C)
for some N(x : t<a,b>) such A when B try P (FB.D)

are both formulas (the phrases 'such A', 'while B' and 'when B' are not
obligatory).

9. If x, t, a, b, N, A, P are the same as above, then
for any N(x : t<a,b>) such A do P , (F9.C)
for sole W(x : t<a,b>) such A try P (F9.D)

are both formulas (the phrase 'such A' is not obligatory).

The phrase 'define v = t' in the formulas (F3) and (F4) is called the (local)
vajriable definition prefix. The phrases 'else Q' and ’othw Q' in (F5) and
(F9) are called the alternative suffixes, the phrase ’such A* in (F7) - (F8)
- the selection infix, and the phrases ’while D' and 'when D' in(F7) - the
continuation infixes.

69

Dual and quasidual forms. Clauses marked by labels with suffixes C and D
are called conjunctive and disjunctive forms (C- and D-forms), resp. They
are said to be mutually dual. The clause (Cl) may be regarded as C-form
or as D-form. It is said to be dual to itself. The same is valid for the
clause (C2).

Similarly, formulas marked by labels with suffixes C and D are called con-
junctive and disjunctive forms (C- and D-forms), resp. The formulas (F3.C)
- (F4.C) are called dual with respect to (F3.D) - (F4.D) while the formulas
(FS.C) - (F9.C) are called quasidual with respect to (FS.D) - (F9.D). The
formula (FI) may be regarded as C-form or D-form, and so is conceived to
be (quasi)dual to itself. The same is valid for the formula (F2).

Bounded variables. The variables introduced by the formulas (F6) and (F8)
- (F9) as well as the variables defined in the declaration prefix of the
formulas (F3) - (F4) are all bounded variables. We call them (proper)
bounded variables in the former case and local (bounded) variables in the
latter one. The variable s in the formulas (F6) is bounded by the selection
operator switch and called a selection variable. Its scope contains the com-
ponent formulas P a, ..., Pt> and Qof the formula. In the scope, the variable
may be used only as an argument term.

The variable x in the formulas (F8) - (F9) is bounded by the quantifiers
all, some (at least one), any (at most one) or sole (exactly one) and called
an iteration variable. Its scope contains the component clauses Ä, B and
the component formula P in the case of the formulas (F8), and the compo-
nent clause A and the component formula P in the case of formulas (F9).
Again, in its scope, the variable may be used only as an argument term.

Local variables and constants. The variable v in the formulas (F3) - (F4) is

said to be bounded by the definition operator define and called a local
(bounded) variable. Its scope includes the whole block begin ... end. But
unlike selection and iteration variables a local variable may be used in its
scope as an argument, state or result term.

Constants (more precisely, local constants) may be introduced in the same
manner as local variables, i.e. by means of an appropriate declaration pre-
fix to the formulas (F3) - (F4). Such prefix was not mentioned above, but
actually it is foreseen: "denote c = t'(d)", where c is a data entity symbol,
t' is a converion function for the data type t, and d is a data value (for

70

example, denote pi = real'(3.l4)
...

). The scope of the constant c also in-
cludes the whole block begin ... end. In the scope, a constant may be used

only as an argument term. As in the case of local variable the expression’
c = t'(d)’ may be replaced by the list of such expressions.

CONTROL LOGIC ELEMENTS AND PROCESS NETS

Now let us go to the interpretation of the formulas as statements of the
programming language represented by the formalism. In this relation we
speak of the clauses and formulas also as of predicates and processes that
they actually denote. In current section we introduce tools for the inter-
pretation. Particular formulas are interpreted in subsequent sections.

Dynamic performance of processes and predicates may be simulated by
means of Petri nets. However, we use for this purpose special kind of Petri
nets that we call process nets. Before we can proceed to explain their

features some general questions must be discussed.

Simple and composed processes. A process (predicate) is called simple if it
is defined by the elementary formula (FI) (resp. clause (Cl)), inverse if it
is defined by the formula (F2) (clause (C2)), and composed otherwise. In
turn, a composed process (predicate) is called compound if it is defined by
(F3) or (F4) (resp. (C3) or (C4)), and complex otherwise (there are no com-
plex predicates). A compound process (predicate) consists of two or more
component processes (predicates). It may be defined as a serial or parallel
junctions of component processes - (F3), (F4) (resp. component predicates
- (C3), (C4)). A junction may be a conjunction or a disjunction.

Unlike compound processes, a complex process consists of one or more
component processes as well as one or more component predicates. Pro-
cesses defined by (F5) and (F6) are called selection processes with two or
multiple choices, resp., by (F7) and (F8) - indefinite and definite iteration
processes, and by (F9) - an approbation process.

Concurrency. The formalism is related to the representation of not only se-
quential but also concurrent processes and predicates. Concurrent pro-
cesses (predicates) are represented as components in parallel junctions of
processes (predicates) defined by formulas (F4) (resp. clauses (C4)).

71

The concurrency is regarded to be relative rather than absolute, and
treated as a virtual (conceptual) concurrency. The relativity means that we
cannot say is a particular process (predicate) a concurrent or sequential
one, or not, but we can say are two (or more) component processes
(predicates) of a composed process mutually concurrent or sequential, or
not. The virtuality means that each of concurrent components (of a com-
posed process) is regarded to be performed on its own virtual processor.

Performance states and levels. In order to describe the dynamic perfor-
mance of processes and predicates more precisely different performance
states and levels of processes are distinguished. We say that each process

(predicate) is executed on a performance level L (L = 0,1,2,...), and that a
(composed) process itself and its component processes are all executed in
the process performance state while its component predicates are executed
in the predicate performance state (substate) of one and the same or of
different levels. Agree to denote the process and predicate states for the
level L by S(L) and s(L), resp.

The performance state and level for a process (predicate) are determined
by the following rules:
1. The process defined by a main module (program) is performed in the

state S(0), i.e. in the state S on the level L = 0.
2. If a complex process is performed in the state S(L), then its component

processes are performed in the same state S(L) while component predi-
cates are performed in the state s(L).

3. If an inverse process (predicate) is performed in the state S(L) (resp.
in the state s(L)), then the process (resp. predicate) to be inverted is
performed in the same state S(L) (resp. in the state s(L)).

4. If a serial junction of processes (predicates) is executed in the state
S(L) (s(L)), then the component processes (predicates) of the junction
are performed in the same state.

5. If a parallel junction of processes (predicates) is executed in the state
S(L) (s(L)), then the component processes (predicates) of the junction
are performed in the state S(L') (s(L’)), where L' = L + 1.

Thus, the transfer to the next performance level is caused only by the
performance of parallel junctions of processes and predicates. The levels
may be treated as concurrency levels. If the junction performed on the
level L consists of n components, then n concurrent processes (predicates)
are performed on the level L' = L + 1.

Process net. A process net is a particular Petri net introduced for the in-
terpretation of formulas and clauses of process calculus. It is intended to

72

be a strict and complete model for describing control flow at the perfor-

mance of the formulas. It has a number of features:

(1) Places in the process net are divided into action (main) and control
(subsidiary) places.

(2) Action places have one input and two output transitions, in the partic-
ular case - one output transition. They are foreseen for mapping predi-
cates and processes, and are denoted by symbols for the predicates (A)
and processes (P) they are representing (Fig. 1, panels 1.1, 1.2). Action
places have one output transition in the case of totally valid or invalid
predicates and processes (panels 1.3, 1.4).

(3) Control places have one input and one output transition. They are
foreseen for representing specific control functions, and are denoted
by special symbols including the empty symbol (Fig. 1, 2.1 - 2.3). They
will be discussed below.

Fig. 1. Elements of process nets.

73

(4) A transition in a process net may be one with conjunctive or disjunc-
tive input logic (Fig.l, panels 3.1, 3.2), or with conjunctive or disjunc-
tive output logic (panels 3.3, 3.4).

(5) Each place may hold at most one token.

Process nets for all clauses and formulas (they are discussed in the next
section) have the same general property as their main elements (action
places) - they have one input transition and two output transitions (Fig. 1,
panel 4). It is assumed that for each net there exists one place outside the
net from which an arc is incident on the input transition of the net, and

two places (outside the net) on which arcs from the output transitions
terminate (dotted circles in Fig. 1). The initial arrangement of tokens is

always assumed to be defined so as it is shown in Fig. .1, i.e. represented
by a token in the outside input place (the outside places are not shown

further).

Simulation rules for process nets are as follows:
1. A transition with conjunctive (disjunctive) input logic which has a token

in each (resp. at least in one) of its input places is enabled.
2. Any enabled transition may be chosen to fire.
3. Firing a transition with conjunctive (disjunctive) output logic consists

of removing the only token from each of its input places and putting
one token to each (resp. to one) of its output places.

Validity test variable. In our formalism, the performance of a composed

process depends on the validity of both component predicates and pro-
cesses of the composed process. The validity of a composed process can be
determined dynamically during the performance of the process. This is one
of the most important features of the language.

In order to describe control flow during the performance of a (composed)
process in detail a logical variable V for testing validity of processes and
predicates is assigned to tokens in the process net for the process. Agree
to denote the value of the variable in the states S and s by V(S) (V(S) =

T,F) and V(s) (V(s) = t,f), resp.

Mapping and testing simple predicates and processes. A simple predicate A
and process P is mapped in process nets actually so as shown in Fig. 2
(panel 1). The mappings are trivial process nets. Note that all transitions
in the nets are labelled in a certain way by a value of the test variable V,
and that there are two possibilities to label transitions in the nets, one for

74

C- and the other for D-form of the clause and formula (Fig. 2, left and

right shapes).

Fig. 2. Elementary predicates and processes

Speaking informally, the labels t and f in the case of predicate A (T and F

in the case of process P) at the output transitions of the nets mark which
of them fires if the predicate (process) is proved to be true (valid) or
false (invalid). The label t or f (T or F) at the input transition shows to
which output one of another predicate (process) place the input transition

may be connected. Formally, the labels are actually represented as the val-

ues of the test variable V for testing validity of predicates and processes.
The value of the variable at the'output transition V" is connected with its
value at the input transitions V in C- and D-forms of the nets as follows:

V" = V & A V" = V* v A
V" = V 4 P v" = V’ v P

i.e. by the use of conjunction in the case of C-form and disjunction in the
case of D-form of the mappings. It yields how a totally valid (A = t, P = T)
or invalid (A = f, P = F) predicate and process must be mapped in the
process nets (Fig. 2, panel 2).

Simulation. the test variable V is introduced to simulate passing
tokens through the action places depending on the validity of predicates
and processes. To simulate control flow fully, it was needed to introduce

75

control places into process nets. The value of the test variable V may

change not only in the action places but also in some control places.

Control places. There are three groups of control places (Fig. 1, panels 2.1
- 2.3). The functions of the groups are:
(1) passing and inversion of the test variable V without any changes in

the performance level and state (2.1);
(2) transfer to the next performance level L'= L + 1, and return to the

previous level L with no changes in the performance state and in the
value of the test variable (2.2);

(3) transfer to the predicate performance state (may be with changing the
truth value of the test variable), and return to the process perform-
ance state with the previous value of the test variable with no changes
in the level (2.3).

Iteration procedures. An iteration procedure is a special one parameter

process to be used in formulas (F8) - (F9) in order to generate values of
the iteration variable x, and to terminate the iteration. Iteration procedures
must not be confused with iteration processes. An iteration procedure is a
component of all iteration processes defined by the formula (F8) as well as
of approbation processes defined by the formula (F9).

An iteration procedure is involved to be defined by means of the language
(formalism). But it is reasonable to allow an iteration procedure to be de-

fined only for countable data types. Actually, it is necessary to define two
iteration procedures for such types, one for the ascending and the other
for the descending of the iteration variable in certain limits. We call them

Next and Prev (previous), resp.

The iteration procedures Next and Prev for the natural type (nat) are de-
fined as follows:

iteration Next(x : nat<a,b>)
init Eqt(x<-a) -/ x ;= a
step as Lt(x,b) -/ x< b

thus Eqt(x<-sc(x)) -/ x := x + 1
eodef

,
—x, (9)

iteration Prev(x : nat<a,b>)
init Egt(x<-b) -/ x := b
step as Gt(x,a) -/ x> a

thus Eqt(x<-pd(x)) -/ x := x - 1
eodef , (10)

where a, b are the lower and upper bounds of the value range, Eqt(x<-y),
bt(x,y), Gt(x,y), sc(x), pd(x) are modules (a process, two predicates and
two functions) defined for the type.

76

The expression 'x : nat<a,i»' in the head of the procedures has the mean-
ing 'x belongs to the interval [a,b]'. However, the procedure Next(x :

nat<a,b>) is intended to support the ascending of the iteration variable x
in the interval [a+l,b] while the procedure Prev(x : nat<a,b>) is foreseen
to support the descending of the variable in the interval [a,b-l].

The body of the definitions consists of two parts - the iteration initiation
and step parts. It is assumed that the process defined in the former part
is performed once before the execution of the iteration (or approbation)
process in which the procedure is contained (initiation step) while the pro-
cess defined in the latter is performed before each execution of the pro-
cess contained in the body of the iteration (approbation) process (iteration
step). The termination of iteration in these processes is determined by the
process defined in the latter part; the iteration is terminated if the pro-
cess is proved to be invalid (see the interpretation of the formula (FS.D)
in the next section).

INTERPRETATION OF FORMULAS

In this section., the performance of all formulas of process calculus as pro-
gramming statements is interpreted by means of process nets. Interpreta-

tion of clauses is not discussed because it is very close to the interpreta-
tion of similar formulas.

Inverse process. The performance of an inverse process by (F2)
R = deny P

does not differ from the performance of the process P itself, except when

Fig. 3. Inverse processes.

77

the validity of R is defined inverse (denied) to the validity of P. For this
appropriate passing places (Fig. 1, panel 2.1) are added to the output
transitions of the place for P (Fig. 3).

Serial junctions of processes. The performance of a serial conjunction
(F3.C) (in case of n = 2, Pi = P, Pj = Q)

R = begin ser P and Q end
begins with the execution of P and continues with the execution of Q, if P
is valid (T) (Fig. 4, panel 1). If Q is also valid (T), then the performance
of R ends and it is proved to be valid (T). Otherwise, i.e. if P or Q are in-
valid (F), R is proved to be invalid (F).

Fig. 4. Serial and parallel junctions of processes

78

Unlike this, the performance of a serial disjunction (F3.D)
R = begin ser P or Q end

begins with the execution of P and continues with the execution of Q, if P
is invalid (F) (Fig. 4, panel 1). If Q is also invalid (F), then the perform-

ance of R ends and it is proved to be invalid (F). Otherwise, i.e. if P or Q
are valid (T), R is proved to be valid (T).

The presence or absence of declaration prefixes in (F3) (and (F4)) has no

influence on the nets for the formulas. Note the coincidence of net shapes
for C- and D-forms of the formulas discussed here and below.

Parallel junctions of processes. The performance of a parallel conjunction
(F4.C) (in the same case as above)

R = begin par P and Q end

begins with the initiation of P and Q simultaneously (Fig. 4, panel 2). They
run concurrently until both (ail) are terminated successfully (T) or until
one of them is terminated unsuccessfully (F) (the other(s) is (are) then

immediately interrupted). R is proved to be valid (T) in the former case
and invalid (F) in the latter.

The performance of a parallel disjunction
R = begin par P or Q end

also begins with the initiation of P and Q simultaneously (Fig. 4). They run
concurrently until one of them is terminated successfully (T) (the other(s)
is (are) at that immediately interrupted) or until both (all) are terminated
unsuccessfully (F). R is proved to be valid (T) in the former case and in-
valid (F) in the latter.

As it was discussed above, the performance of parallel junctions begins

and ends on one level (L) while the component processes are performed on
the next level (L + 1). The transfer to the next level and return to the
previous level are represented by means of appropriate transfer places

(Fig. 1, panel 2.2).

Selection processes. The meaning of the selection (FS.C)
R = if A then P else Q

is clear. If A is true (t) and P is valid (T) or A is false f) and Q is valid
(T), then R is valid (T) (Fig. 5, panel 1). Otherwise, R is invalid (F).

79

The meaning of the selection (FS.D)
R = as A thus P othw Q

is similar and the validity of R is the same as for the previous process
(Fig. 5). A difference between the last two formulas appears if the phrases
'else Q’’ and 'othw Q' are omitted. In this case, if A is false (f), then the
former is valid (T) while the latter is invalid (F) (Fig. 5, panel 2).

Note that these (Fig. 5) and all subsequent nets contain places for transfer
to predicate performance state s and return to the process performance
state S (Fig. 1, panel 2.3).

Fig. 5. Selection prdcesses.

Fig. 6. Processes with multiple choice.

80

81

Processes with multiple choice. The performance of the selections with mul-
tiple choice (F6)

R - if switch s= t : [a, b]
then case (a) Pm, ..., case (b) Pb else Q

R = as switch s= t : [a, b]
thus case (a) P«, case (b) Pb othw Q

is described by nets in Fig. 6 (panel 1 and 2 as shove) where the condi-
tion 's = t : [a, b]' (standing for 's (= t) belongs to the set {a, ..., b}')
is denoted by C. Both formulas mean that depending on the value of s one
of the processes mentioned must be performed. The whole process R is
valid if the selected process is found valid (panel 1). The difference be-
tween the two formulas appears if the phrases 'else Q' and 'othw Q’ are
omitted (panel 2). It is the same as in the case of the formulas (F5).

Indefinite iteration processes. The meaning of the formula (F7.C)
R - while A do P

would be clear (Fig. 7). The process P is repeated while A is true and P is
valid. The iteration is interrupted if A becomes false or P becomes invalid.
R is valid in the former case and invalid in the latter.

Fig. 7. Indefinite iteration processes.

82

The formula (F7.D)
R = when A try P

is also related to the iteration of P (Fig. 7). However, now P is repeated
while A is true but P itself is invalid. Such iteration is interrupted if A
becomes false or P becomes valid. R is invalid in the former case and valid
in the latter.

Definite iteration processes. The performance of iterations by (F8) is ex-
plained in Fig. 8 (panels 1 and 2). One can presume the nets are repre-
sented for the formulas:

Fig. 8. Definite iteration processes (to be continued).

83

R = for all Next(x : nat<a,b>) such A while B do P,
R = for some Next(x : nat<a,b>) such A when B try P,

i.e. N and t<a,b> are replaced by Next (or Prev) and nat<a,b>, resp. Re-
member how the iteration procedure Next (Prev) was defined above. The

places I and S in the nets (Fig. 8) are mappings for the processes defined
in the initiation and step phrases in the definition of the procedure.

The first formula calls for the execution of P for all x from the interval

[a+l,b] such that A holds while B is true. R is proved to be invalid only if

P is found invalid for some x from the interval (provided A and B are both

true). In all other cases R is proved to be valid. It is valid also if the in-
terval is empty (a = b) (panel 1).

The second formula calls for the execution of P for some x from [a+l,b]
such that A holds while B is true. R is proved to be valid only if P is
found valid for some x. In all other cases R is proved to be invalid in-
cluding if the interval is empty.

Fig. 8. Definite iteration processes (continued).

84

Note that the procedure Next causes the ascending of the variable x in the

interval [a+l,b] while the procedure Prev causes the descending of the
variable in the interval [a,b-l]. Note also that the procedures Next and

Prev are defined so (see (9) and (10)) that they become invalid (false) at
the end of the iteration process.

The interpretation of the formula (F8) in the case when the phrases with
conditions A and B are omitted need no explanation (Fig. 8, panel 2).

Approbation processes. The interpretation of approbation processes by (F9)
is explained in Fig. 9. Again, the interpretation becomes easier to under-

stand after replacements mentioned above:

R = for any Next(x : nat<a,b> such A do P,
R = for sole Next(x : nat<a,b> such A try P.

Fig. 9. Approbation processes

85

Both formulas call for the execution of P for the least x (for the greatest x
in the case of procedure Prev instead of Next) from the interval such that

A holds. In both cases, R is proved to be valid if P is found valid for
such x. A difference appears it there exists no x ouch that A holds or the

interval is empty. Then the first process is valid while the second is in-
valid. If the phrase with condition A is omitted, then P is performed for
the first (last) x from the corresponding interval.

Fig. 10. Formulas of process calcculus.

86

VALIDITY, REGULARITY AND EQUIVALENCE

Validity. Validity of all composed processes and predicates defined in the

formalism may be expressed by means of formulas of predicate calculus (in
the conventional sense and notation). In fact, validity of predicates defined
in our formalism may be expressed by means of formulas of proposition
calculus using only negation, conjunction and disjunction operations. But
to express validity of processes all means of expression of predicate cal-
culus including quantifiers are necessary. At that a generalization is

needed - conjunction and disjunction of processes are not commutative op-
erations except those in parallel junctions.

Validity expressions for formulas of process calculus (Fig. 10) are shown in
Fig. 11. Note that the expressions for junctions (F.3) - (F.4) do not depend

on whether they are serial or parallel. Validity expressions for the clauses
are like the expressions for the similar formulas.

Regularity. Let us consider a process net for a formula (Fig. 3 - Fig. 9).
Observe the passage of tokens through the main places of the net during
the simulation of the formula provided the simulation is started from the
initial arrangement of tokens (Fig. 1, panel 4). The passage may be repre-
sented by a regular expression.

Regular expressions for the formulas of process calculus (Fig. 10) are
shown in Fig. 12. Note that the expressions for the (quasi)dual forms cure
coincident. The meaning of C, I and S in expressions for formulas (F6),
(F8) and (F9) is the same as above (see also Fig. 6, 8 and 9). Expressions

for clauses are like these for similar formulas.

Equivalence. Two formulas of process calculus are said to be logically

equivalent if their validity expressions (as formulas of predicate calculus)
are equivalent. For instance, the formulas (F3.C) and (F4.C) as well as the
formulas (F3.D) and (F4.D) are logically equivalent (provided the commuta-
tivity of parallel junctions is not taken account of).

Two formulas are said to be eventually equivalent if regular expressions
for them (as expressions for regular events) are equivalent. For instance,
all C-forms are eventually equivalent to corresponding D-forms.

87

Two formulas are called equivalent if they are logically and eventually
equivalent.

Fig. 11. Validity expressions for formulas.

Fig. 12. Regular expressions for formulas.

Examples.

1. The formulas (FS.C) and (FS.D) as well as the formulas (F6.C) and (F6.D)
are equivalent provided the phrases 'else Q' and 'othw Q' are not omitted.

2. The formulas
for all N(x : t<a,b>) for some N(x : t<a,b>)

such A do P , such A try P
sure equivalent respectively to the formulas
for all N(x : t<a,b>) for some N(x : t<a,b>)

do if A then P , try as A thus P .

3. The formulas < ,

for all Next(x : nat<a,b>) for some Next(x : nat<a,b>)
do P ,

try P
are equivalent respectively to the next formulas
define x : nat<a,br define x : nat<a,b>
begin Eqt(x<-a) begin deny Sqt(x<-a)
and while Lt(x,b) or when Lt(x,b)

do begin Eqt(x<-sc(x)) try begin deny Eqt(x<-sc(x))
and P \ or P
end end

end , end
provided the iteration procedure Next is defined by (9).

\

88

89

DERIVATION SCHEMES

Lastly, let us consider briefly how derivation schemes (deduction rules)
are introduced into the formalism.

General notes. As it is known, a formal theory, for instance, the theory of

(natural) numbers, may be represented as a set of axioms and theorems
ordered by the relation 'a theorem X is deduced from an axiom or theorem
Y by a'rule of inference'. Axioms represent basic relations in the set of

abstract objects to which the theory is applied (numbers in case of num-
ber theory) and so formalize their semantics. Theorems express derived
relations in the set. The rules of inference (for example, modus ponens)
serve to define a subset of formulas interpreted as totally valid ones. They

are defined in the metatheory of the theory (Kleene, 1952), describe logical
tools used to construct the theory and so formalise conclusion process in
it.

Approximately the same principles are used in our approach. We consider a

set of processes defined for a data entity type as an analogue to a
homogeneous theory (such as number theory). At that, the role of axioms is

played by the primitive processes predefined for the type, the role of
theorems - by derived processes, and that of deduction rules - by the

derivation schemes discussed below.

However, there are some features. Firstly, unlike formalization of theories,
in programming, we are interested in derivation of formulas interpreted not
only as totally valid but also as partially valid ones. Secondly, all data
types are finite classes of objects, i.e. all data entities take a value from a
finite domain of values. Thus we can speak immediately of total and partial
validity of formulas instead of speaking of their deducibility and irrefuta-
bility. Further, semantics of data entities belonging to a data type is re-
presented by the functions defined for the type rather than by primitive
processes. Lastly, the logical tools are based on process calculus but not
on predicate calculus as they are in all formal theories.

Validity and invalidity. In previous sections, it was shown how the suc-

cessfulness (validity) of the process defined by a formula may be deter-
mined as a result of the performance of the process. Now the problem is
how the total or partial validity of a composed formula (process) may be
derived from the properties of the component ones, or, in terms of pro-

90

gramming practice, how the total or partial validity of processes (program
modules) may be determined at the compilation time.

A formula of process calculus is called partially valid (invalid) if it is valid

(resp. invalid) for some value of its argument and state variables, and to-
tally valid (invalid) if it is valid (invalid) for all values of its argument
and state variables. A formula is called neutral if it is partially valid and
partially invalid simultaneously, or, what is the same, if it is not totally

valid and totally invalid (not totally valid = partially invalid, not totally
invalid = partially valid).

Surely, it is natural to speak of the validity or invalidity of composed for-

mulas depending on the validity or invalidity of component formulas
(processes) only, i.e. discarding component clauses (predicates).

Derivation schemes. Proceeding from the validity expressions of composed
processes discussed in the previous section it is easy to understand, for
instance, that all composed (not inverse) C-forms are totally valid formulas
and all composed D-forms are totally invalid ones provided the component
formulas are of that kind. Further, it is clear that the formulas (F7.C) -

(F9.C) are partially valid and the formulas (F7.D) - (F9.D) are partially in-
valid independently of the validity of the only component formula (P).
These simple conclusions are not exceptional. The derivation schemes pre-
sented below are all based on such elementary facts.

To determine the class a particular formula belongs to (totally valid, totally
invalid or neutral) two different schemes are assigned to it. To express
them we introduce four metapredicates (F denotes a formula):

PVAL{F} = 'F is partially valid', PINV{F} = 'F is partially invalid',
TVAL{F} = 'F is totally valid', TINV{F) = 'F is totally invalid'.

Now derivation schemes may be represented as follows.

FI. TVAL{P} TINV{P}

TVAL{P} TINV{P}

F2. TVAIj{P} TINV{P}

TlNV{deny P} TVAL{deny P}

F3-F4. TVAL{Pi(y)} and
... and

TVAL{Pn(y)}

TVAL{define v : t
begin Pi(v)
and
and Pn(v)
end}

TlNV{Pi(y)} or
or

TlNV{Pn(y)>

TlNV{define v : t
begin Px(v)
and
and Pn(v)
end}

F5.1 TVAL{P} and TVAL(C}

TVAL{if A then P else Q}

TINV{P} and TINV{Q}

TlNV{if A then P else Q)

F5.2 PVAL{if A then P}

TVAL{P}

TVAL{if A then P}

F 6.1. ...

F 6.2. ...

F 7. PVAL{ while A do P}

TVAL{P}

TVAL{ while A do P}

FB, PVAL{£or all N(t : ~.)
such A(t) while B(t)
do P(t)}

TVAL{P(x)}

TVAL{for all N(t : ...)
such A(t) while B(t)
do P(t)}

TlNV{Pi(y)} and
... and

TINV(Pn(y)}

TlNV{define v : t
begin Px(v)
or
or Pn(v)
end}

TVAL{Pi(y)} or
... or

TVAL{Pn(y)}

TVAL{define v : t
begin Px(v)
or
or Pa(v)
end}

TINV{P} and TINV{Q}

TlNV{as A thus P othw Q}

TVAL{P} and TVAL{Q}

TVAL{as A thus P othw Q }

PlNV{as A thus P}

TINV{P}

TlNV{as A thus P}

PlNV{when A try P}

TINV{P}

TlNV{when A try P}

PlNV{for some N(t : ...)

such A(t) when B(t)
try P(t)}

TINV{P(x)}

TlNV{for some W(t : ...)

such A(t) when B(t)
try P(t)}

91

92

F9. PVAL{for any N(t : ...)
such A{t)
do P(t)}

TVAL{P(x)}

TVAL{for any N(t :

such A(t)
do P(t)}

PlNV{for sole N(t : ...)
such Ä(t)
try P(t)}

TINV{P(x)}

TlNV{for sole K(t : ...)
such Ä(t)
try P(t)}

Notes. P(x), P(y) denote a formula which may (but does not have to
obligatorily) contain a free argument variable x, or a free argument, state
or result variable y. Schemes for conjunctions and disjunctions of

processes do not depend on whether the junctions are serial or parallel
ones. Schemes for the formulas (F6.C) and (F6.D) are not shown. They are
generalizations of those for the formulas (FS.C) and (FS.D), resp.

Simple processes. We have shown how the total validity and invalidity (and
also neutrality) of composed formulas are determined in virtue of those for

component formulas. If the component formulas are themselves composed
the properties for them may be determined, in turn, in the same manner,
and so on up to elementary formulas denoting simple processes.

A simple process represents a process module previously defined in the

language and stored in the semantical memory of the system for further

use. As a matter of fact, such process is simple (elementary) only from the
point of view of the process in definition of which it is denoted by an el-
ementary formula. Actually, it may be a composed process. We call such

processes nonprimitive. They play the same role in CP-system as already
proved theorems in the argument of new theorems in construction of formal
theories.

Primitive processes. A simple process may also be purely elementary, i.e.
an elementary process that cannot be defined in the language. It is
introduced as a predefined process. Such processes are called primitive. As
already mentioned, they are analogues to axioms in formal theories.

Actually, only one primitive process is necessary for each data type: the
assignment process. It may be introduced as Asn(x->y) (assign x to y) or
Eqt(y<-x) (equate y with x). The process is evident to be totally valid
(provided x and y belong to one and the same data type).

93

The assignment (or equation) process plays the same role in process cal-
culus as the equality relation Eq(x,y) in predicate calculus. In particular,
we can speak of reflexivity, symmetry and transitivity of the process;

Asn(x->x), Asn(x->y) => Asn(y->x), Asn(x->y) & Asn(y->z) => Asn(x->z).

CONCLUSION

We have introduced the notion of abstract process and presented it

through a logical function with a side effect. The notion means simultane-

ously an algorithm (program) and the computing process defined by the

algorithm. The main effect of the logical function represents the applicabil-
ity of the algorithm (the validity of the process) while the aide effect is
related to the data processing defined by the algorithm.

We have also discussed the main elements of process calculus: logical oper-

ations on processes, application of quantifiers and descriptors to the ar-
guments of processes, association of predicates and processes, etc. We have

shown that all traditional program control statements as well as several

new statements may be interpreted as formulas of process calculus.

The semantics of the formulas were interpreted by means of a special kind
of Petri nets called process nets as well as of validity arid regularity ex-
pressions. In addition, deduction schemes for the derivation of totally and

partially valid (invalid) formulas were discussed. So the calculus was pre-
sented as a general and universal instrument for description and analysis
of logic in programming and also as a high level programming language

In this paper we have been able to discuss only some basic ideas of our
approach to the formalization of programming - ideas of constructive pro-
gramming. They have chiefly been connected with programming logic. Many

other fundamental problems have been neglected, first of all, formation of

abstract data types (concepts). All special items, for instance, such as
synchronization of parallel processes and data communication between them
related to the real time applications, have also been omitted.

Process calculus forms a new, strict theoretical basis for the treatment of

logical correctness and reliability in programming. This is essential from
the point of view of programming real time, distributed computer control
and embedded systems.

94

REFERENCES

Bacus, J. (1978). Can Programming be Liberated from the von Neumann
Style. A Functional Style and Its Algebra of Programs. Comm. ACM,
21. 8, 613-641.

Church, A. (1956). Introduction to Mathematical Logic, I. Princeton, New
Jersey.

Fisher, D. A. (1978). DoD's Common Programming Language Efforts. Com-
puter, March, 1978, 25-30.

Fileman, R. E. and D. P. Friedman (1984). Coordinated Computing, Tools and
Techniques for Distributed Software. McGrew-Hill.

Henderson, P. (1980). Functional Programming. Application and Imple-
mentation. Prentice-Hall, Englewood Cliffs, N.J.

Hilbert, D. and P. Bernays (1968). Grundlagen der Mathematik, I. 2nd ed.
Springer, Berlin.

Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice-Hall
International, London.

Kleeno, S. C. (1952). Introduction to Metamathematics. Van Nostrand, New
York.

Kowalski, R. (1979). Algorithm = Logic + Control. Comm. ACM, 22, 1, 424-436.
Lloyd, J. W. (1985). Foundations of Logic Programming. Springer, Berlin.
Smith, D. J. and K. B. Wood (1987). Engineering Quality Software. Elsevier

Applied Science, London.
Young, S. J. (1982). Real Time Languages; Design and Development. Nor-

wood, New York.

W. Kracht

Tõeväärtusega arvutusprotsess ja protsessiarvutus:
formalism programmeerimistoogika kirjeldamiseks

Kokkuvõte

Töös tutvustatakse uut lähenemist programmeerimisloogika kir-
jeldamiseks ja kõrgkeelte arendamiseks. Lähenemine põhineb
tõeväärtusega arvutusprotsessi mõistel ja sellele mõistele ra-
jatud protsessiarvutusel. Sellist protsessi mõistetakse kui
kõrvalefektiga loogilist funktsiooni. Temaga väljendatakse
mingi andmeteisenduse algoritmi rakendatavust ja seda teisen-
dust ennast. Protsessidele rakendatakse loogilisi tehteid ja
kvantoreid. Eristatakse protsesside jada- ja rööpkonjunkt-
sioone ja -disjunktsioone. Protsessiarvutuse valemitena inter-
preteeritakse kõiki programmeerimises tuntud juhtimislauseid,
samuti ka uusi, töös defineeritud juhtimislauseid. Protsessi-
arvutuse valemite semantika esitatakse eri liiki Petri võrkude
abil, samuti avaldistega, mis esitavad nende kehtivust
(tõeväärtust) ja regulaarsust. Tuuakse deduktsiooniskeemid,
mis määravad täielikult ja osaliselt kehtivate ja ka rnitteke-
htivate valemite klassid. Protsessiarvutus pakutakse välja kui
teoreetiline baas reaalaja programmeerimiskeelte edasiaren-
damiseks .

TannHHHOKHä Texunecoi yHHBepcHTBT
Tpyahi TTY hfe 722
MOflE/IHPOBAHHE H AHAIIK3 FIPOUECCOB H lIEITEfI
SaeKTpOTCXHHKa H fUSTOMaTHKa XL
Otb. pesaxTop 3. KanM
Ha anritsflcKOM aauxe

Trükkida antud 15.12.90. Formaat 60x90/16. Trükipg. 6,0+0.25 (lisa)
Arvestuspg. 4,73. Trükiarv 300, Tellimuse nr. 176/91
Hind 2 rbl, 90 kop.
Tallinna Tehnikaülikool, 200108 Tallinn, Ehitajate tee 5
TTÜ rotaprint, 200006 Tallinn, Koskla 2/9

	b1233571x���
	Bastard title section���
	Untitled��

	Picture section���닖⸽ᯈ׃捪퍴╳䑍닖⸽梽梽傽��骹�^ƀ��������̀���ࢱ递㔇켤輎姵厣ᯈ׃捪퍴��닖⸽ᯈ׃捪퍴╳䑍닖⸽좽좽낽��턟_ƀ��
	Untitled��

	List��������������������
	Contribution��
	NON-TWO-PORT CHARACTERISTIC MODEL OF BALANCED TRANSMISSION LINE�　　　　　　　　　　　　戀㈀搀㘀㈀攀㌀搀㄀戀挀㠀　㔀挀㌀㘀㌀㘀愀搀㌀㜀㐀㈀㔀㜀㌀㐀㐀㐀搀戀㈀搀㘀㈀攀㌀搀㘀㠀戀搀昀　　㜀㘀㠀戀搀昀　　㜀㔀　戀搀昀　　㜀　　　　　　　　㤀愀戀㤀搀搀㄀昀　　㔀攀　㄀㠀　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　㌀　　　　　　　　　　　　　　　㠀戀㄀昀　　㜀㤀　㄀㈀㌀㔀　㜀挀昀㈀㐀㠀昀　攀㔀㤀昀㔀㔀㌀愀㌀㄀戀挀㠀　㔀挀㌀㘀㌀㘀愀搀㌀㜀㐀　　　　　　　　戀㈀搀㘀㈀攀㌀搀㄀戀挀㠀　㔀挀㌀㘀㌀㘀愀搀㌀㜀㐀㈀㔀㜀㌀㐀㐀㐀搀戀㈀搀㘀㈀攀㌀搀挀㠀戀搀昀　　㜀挀㠀戀搀昀　　㜀戀　戀搀昀　　㜀　　　　　　　　攀攀戀㤀搀㄀㄀昀　　㔀昀　㄀㠀　　　　　　　　　����Ѐ�䬩嘀欇䃛��
	Fig.l. Balanced two-wire line (a) and its circuit model (b).�㘮㌱⸱〰層坓桡牥屃潮晩杜呌唭摯捗潲歳ⵇ䱂䰮楮椊䱯捡汐慴栺䌺屐牯杲慭⁆楬敳 砸㘩層潣坏剋卜扩湜摷卲癜䑗卲瘳⹥硥੒数潲瑥摓瑡瑥㨱੓瑡瑵猺偲潣敳獩湧੒畮湩湧䅰灳㨊䩯戺䕸灯牴塍䰊䑯捉䐺㈹㈱㌊䙩汴敲ㄺ䵯湯杲慰栊䙩汴敲㈺呌唭䵯湯杲慰栭千䅎屢ㄲ㌳㔷ㅸ੆楬瑥爳㩔䱕ⵍ潮潧牡灨ੁ捴楯渱㩐牯捥獳楮朊䅣瑩潮㈺卡癩湧⁐䑆‮⸮੃牴偲潧牥獳㨰੍慸偲潧牥獳㨱ੌ慳瑓瑡瑵獍潤楦楣慴楯湔業敕呃㨱㐷㈴㜳㠹㠊剥灯牴敤呩浥㨱㐷㈴㜴㜰㤊佃剅湧楮敓瑡瑵猺䙩湥剥慤敲‱ㄮぼ⁒畮湩湧⁯渠汯捡氠浡捨楮攠簠畮汩浩瑥搠捨慲慣瑥牳⁬敦琮簠佃删扩湡物敳⁶敲獩潮㨠㘮㤮ㄮ㈳੓瑡牴呩浥㨱㐷㈴㜳㠹㠊✠坈䕒䔠卥牶楣敎慭攠㴠❟偒佄㍟䑗卲瘳当牶彐剏䐳⹴硴✀䐳⹴硴✀硴✀
	Fig. 2. A model of telegraph equations solution.�匀㴀∀㄀　㔀㈀∀ 嘀倀伀匀㴀∀㈀㈀㈀㜀∀ 圀䤀䐀吀䠀㴀∀㈀㜀∀⼀㸀ഀ਀ऀऀऀऀऀऀ㰀匀琀爀椀渀最 䤀䐀㴀∀倀㘀　开匀吀　　㌀　㠀∀ 䠀倀伀匀㴀∀㄀　㜀㤀∀ 嘀倀伀匀㴀∀㈀㄀㠀㤀∀ 圀䤀䐀吀䠀㴀∀㤀㐀∀ 䠀䔀䤀䜀䠀吀㴀∀㌀㄀∀ 䌀伀一吀䔀一吀㴀∀昀椀爀猀琀∀ 圀䌀㴀∀　⸀㤀㤀∀ 䌀䌀㴀∀㜀　　　　∀⼀㸀ഀ਀ऀऀऀऀऀऀ㰀匀倀 䤀䐀㴀∀倀㘀　开匀倀　　㈀㠀　∀ 䠀倀伀匀㴀∀㄀㄀㜀㌀∀ 嘀倀伀匀㴀∀㈀㈀㈀㜀∀ 圀䤀䐀吀䠀㴀∀㈀㔀∀⼀㸀ഀ਀ऀऀऀऀऀऀ㰀匀琀爀椀渀最 䤀䐀㴀∀倀㘀　
	Fig. 3. A non-two-port model of balanced transmission line.�ࠀ�䕋椆���尀甀　　㐀㘀尀甀　　㘀㤀尀甀　　㘀㜀尀甀　　㈀攀尀甀　　㈀　尀甀　　㌀㐀尀甀　　㈀攀尀甀　　㈀　尀甀　　㐀挀尀甀　　㘀㤀尀甀　　㘀搀尀甀　　㘀㤀尀甀　　㜀㐀尀甀　　㘀㔀尀甀　　㘀㐀尀甀　　㈀　尀甀　　㜀㌀尀甀　　㜀㄀尀甀　　㜀㔀尀甀　　㘀㄀尀甀　　㜀㈀尀甀　　㘀㔀尀甀　　㈀　尀甀　　㜀㔀尀甀　　㜀㐀尀甀　　㘀㤀尀甀　　㘀挀尀甀　　㘀㤀尀甀　　㜀㐀尀甀　　㜀㤀尀甀　　㈀　尀甀　　㘀㘀尀甀　　㜀㔀尀甀　　㘀攀尀甀　　㘀㌀尀甀　　㜀㐀尀甀　　㘀㤀尀甀　　㘀昀尀甀　　㘀攀尀甀　　㈀攀Ā�﷿�������㘹㔵㈠塍䱎佄䔰㘹㔵㌠塍䱎佄䔰㘹㔵㐠塍䱎佄䔰㘹㔵㔠塍䱎佄䔰㘹㔵㘠塍䱎佄
	BALANSSEERITUD PIKA LIINI MITTEKAKSPORT-LAINEMUDEL��嘀�����ḃ�㠯搀頌䈇怗��닖⸽ᯈ׃捪퍴╳䑍닖⸽࠷࠷ഀ਀웨्ր��������̀���蠵ᡵ㈇♛閈幡ᯈ׃捪퍴��닖⸽ᯈ׃捪퍴╳䑍닖⸽样样倷匀㴀�ㅎր��������̀���젽递㔇ₘ딤졨켘ᯈ׃捪퍴��닖⸽ᯈ׃捪퍴╳䑍닖⸽젷젷뀷㄀⸀⻩鄰≏ր��������̀���ꠛ胺ࡵ▚쭞㹟似ᯈ׃捪퍴��ഀ਀
	Untitled�RITUD PIKA LIINI MITTEKAKSPORT-LAINEMUD

	VECTOR ANALYSIS OF SIGNALS BY MEANS OF LOCK-IN MEASUREMENT DEVICES�⼯睷眮汯挮杯瘯獴慮摡牤猯慬瑯⽮猭瘲⌠桴瑰㨯⽷睷⹬潣⹧潶⽳瑡湤慲摳⽡汴漯瘲⽡汴漭㈭〮硳搢⁸浬湳㩸汩湫㴢桴瑰㨯⽷睷⹷㌮潲术ㄹ㤹⽸汩湫∾ഊ़䑥獣物灴楯渾ഊउ㱍敡獵牥浥湴啮楴㹰楸敬㰯䵥慳畲敭敮瑕湩琾ഊउ㱳潵牣敉浡来䥮景牭慴楯渾ഊउ़晩汥乡浥㸮ⸯ䅣捥獳⽢ㄲ㌳㔷ㅸ弰〸㤮瑩昼⽦楬敎慭放ഊउ㰯獯畲捥䥭慧敉湦潲浡瑩潮㸍ਉ़佃剐牯捥獳楮朠䥄㴢佃剐剏䍅卓䥎䝟ㄢ㸍ਉउ㱰牥偲潣敳獩湧却数㸍ਉउ़灲潣敳獩湧卯晴睡牥㸍ਉउउ㱳潦瑷慲敃牥慴潲㹃䍓⁃潮瑥湴⁃潮癥牳楯渠印散楡汩獴猠䝭扈Ⱐ䝥牭慮礼⽳潦瑷慲敃牥慴潲㸍ਉउउ㱳潦瑷慲敎慭放䍃匠摯捗潲歳㰯獯晴睡牥乡浥㸍ਉउउ㱳潦瑷慲敖敲獩潮㸶⸹ⴱ⸲㌼⽳潦瑷慲敖敲獩潮㸍ਉउ़⽰牯捥獳楮杓潦瑷慲放ഊउ़⽰牥偲潣敳獩湧却数㸍ਉउ㱯捲偲潣敳獩湧却数㸍ਉ
	Figure 1. Block diagram of the harmonic vector analysis system on the basis of lock-in amplifier and lock-in frequency multiplier.�ꐆ썧쁞ꐅ壐밃ⓥꐆ䡗剖㤇샑밃㓥ꐆ戕锍偟ꐅパ밃䓥ꐆ吺평ࡸㄇ밃哥ꐆ熣蟽恽ㄇ꣗밃擥ꐆ늙ꐅ飒밃瓥ꐆℾ旰䡁䘇룜밃蓥ꐆ썧遡ꐅÝ밃铥ꐆ䡗剖㤇䃟밃ꓥꐆ戕锍ズꔇ裟밃듥ꐆ吺평ꁸㄇ郝밃쓥ꐆ熣蟽{ㄇ샚밃퓥ꐆ늙삺ꔇ胡밃ꐆℾ旰衖䘇냞밃ꐆ썧ꔇ밃Ӧꐆ䡗剖悏㤇ࣛ밃ᓦꐆ戕锍䃈ꔇ꣠밃ⓦꐆ吺평灷ㄇ僛밃㓦ꐆ熣蟽큹ㄇ䣝밃䓦ꐆ늙郆ꔇ飛밃哦ꐆℾ旰ࡎ䘇탟밃擦ꐆ썧킶ꔇკ밃瓦ꐆ䡗剖삉㤇�蓦ꐆ戕锍낾ꔇ⃞밃铦ꐆ吺평硴ㄇ죡밃ꓦꐆ熣蟽遾ㄇ밃듦ꐆ늙샃ꔇ棞밃쓦ꐆℾ旰ၨ䘇밃퓦ꐆ썧킿ꔇ㣡밃ꐆ䡗剖�㤇惠밃ꐆ戕锍傻ꔇ⣜밃ӧꐆ吺평⡿ㄇ烜밃ᓧꐆ熣蟽聱ㄇ壙밃ⓧꐆ늙肸ꔇꃙ밃㓧ꐆℾ旰䘇밃䓧ꐆ썧Ⴙꔇᣠ밃哧ꐆ䡗剖㤇烥밃擧ꐆ戕锍邽ꔇტ밃瓧ꐆ吺평끲ㄇ磚밃蓧ꐆ熣蟽䡳ㄇ⣥밃铧ꐆ늙惀ꔇ飤밃ꓧꐆℾ旰렚긇⃧밃듧ꐆ썧ꃂꔇ棧밃쓧ꐆ䡗剖�㤇룥밃퓧ꐆ戕锍ꔇæ밃ꐆ吺평ꡫ̇䣦밃ꐆ熣蟽̇胪밃Өꐆ늙⃐ꔇ郦밃ᓨꐆℾ旰뀢긇죪밃ⓨꐆ썧Øꔇ壢밃㓨ꐆ䡗剖ꂆ㤇僤밃䓨ꐆ戕锍ꃋꔇ밃哨ꐆ吺평ၫ̇ꃢ밃擨ꐆ熣蟽遡̇냧밃瓨ꐆ늙탈ꔇ�蓨ꐆℾ旰‪긇䃨밃铨ꐆ썧フꔇ裨밃쓨ꐆ䡗剖䂌㤇ᣩ밃퓨ꐆ戕锍郘ꔇ밃ꐆ吺평࡮̇밃ꐆ熣蟽㡯̇磣밃өꐆ늙샌ꔇࣤ밃ᓩꐆℾ旰䠵긇탨밃ⓩꐆ썧Ïꔇ惩밃㐍ꔆ祬�낖밃ч嬆봬腨颗㣪밃㓩ꐆ䡗剖삄㤇꣩밃䓩ꐆ戕锍ეꔇャ밃哩ꐆ吺평ꁮ̇샣밃擩ꐆ熣蟽ひ̇밃瓩ꐆ늙ヌꔇ밃蓩ꐆℾ旰※긇士밃铩ꐆ썧烎ꔇ࣭밃쓼ꐆ䡗剖肍㤇棰밃퓼ꐆ戕锍胓ꔇ샬밃ꐆ吺평䡩̇ï밃ꐆ熣蟽⁥̇�ӽꐆ늙惒ꔇ⣮밃ᓽꐆℾ旰㣎괇ძ밃⓽ꐆ썧烗ꔇ밃瀡ᘆ頞ᘆ〫ᘆꀠᘆ�ᘆ
	Untitled��

	SIGNAALI VEKTORANALÜÜS SÜNKROONMÕÕTERIISTADE ABIL�嘀�
	A FREQUENCY MODULATION IN THE PHASE-LOCK LOOP�〠〮〰‷⸰㤠㈰㠮〰‱㘳⸰〠呭ഊ㌠呲ഊ㰰〲戾⁔樍੅名ੑഊ焍ੂ名਷⸶㐠〮〰‰⸰〠㤮㘴′ㄷ⸲㠠ㄶ㈮〰⁔洍ਲ਼⁔爍਼〰㑦〰㉣〰㈸〰㉣〰㌷〰㈸〰㐹〰㉣㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㘮〸‰⸰〠〮〰‶⸲㐠㐱⸰〠ㄵ㐮㐲⁔洍ਲ਼⁔爍਼〰㌶〰㐴〰㐸〰㉥〰㌷〰㔳〰㌲〰㌷〰㈶〰㍢〰㉢〰㉢〰㉥〰㐴㸠呪ഊ䕔ഊ儍਀����������������������������������ጀ�ꄩ嘀瀏���
	Fig. 1. Basic phase-lock loop.�㐴〰㔵〰㑣〰㐱〰㔴〰㐹〰㑦〰㑥〰㈰〰㐹〰㑥〰㈰〰㔴〰㐸〰㐵〰㈰〰㔰〰㐸〰㐱〰㔳〰㐵〰㉤〰㑣〰㑦〰㐳〰㑢〰㈰〰㑣〰㑦〰㑦〰㔰〰〰㌰㈰㌰㉥㌰㌰㈰㌷㉥㌰㌹㈰㌲㌰㌸㉥㌰㌰㈰㌱㌶㌳㉥㌰㌰㈰㔴㙤つち㌳㈰㔴㜲つち㍣㌰㌰㌲㘲㍥㈰㔴㙡つち㐵㔴つち㔱つち㜱つち㐲㔴つち㌷㉥㌶㌴㈰㌰㉥㌰㌰㈰㌰㉥㌰㌰㈰㌹㉥㌶㌴㈰㌲R騇퀗㔇
	Fig. 2. Basic multiplying phase-lock loop.��Ā�Ā�啳敲慬偡ഀ���ऀ���ऀ�䷂蘇䐀�䐀�䵅佗Ā��Ȁ��쀀��F��Ā�╳䑍닖⸽힊௜ꃌณ⎨�㰉䀍뽢䚷熻��Ā�﷿�������䥄㨲㤲ㄳ੆楬瑥爱㩍潮潧牡灨੆楬瑥爲㩔䱕ⵍ潮潧牡灨ⵓ䍁乜戱㈳㌵㜱砊䙩汴敲㌺呌唭䵯湯杲慰栊䅣瑩潮ㄺ偲潣敳獩湧ੁ捴楯渲㩃牥慴楮朠偄䘠灡来‹㤠潦‱〰੃牴偲潧牥獳㨹㠊䵡硐牯杲敳猺㄰《䱡獴却慴畳䵯摩晩捡瑩潮呩浥啔䌺ㄴ㜲㐷㌸㤸੒数潲瑥摔業攺ㄴ㜲㐷㐵㠰਀윆ၰง냼윆ง磾윆灲ง탽윆ばง烽윆偰ง䃽윆
	Untitled��

	SAGEDUSMODULATSIOON AUTOMAATSES FAASISÜNKRONISATSIOONISÜSTEEMIS�　　　　　　　　　　　　戀㈀搀㘀㈀攀㌀搀㄀戀挀㠀　㔀挀㌀㘀㌀㘀愀搀㌀㜀㐀㈀㔀㜀㌀㐀㐀㐀搀戀㈀搀㘀㈀攀㌀搀㘀㠀戀搀昀　　㜀㘀㠀戀搀昀　　㜀㔀　戀搀昀　　㜀　　　　　　　　㤀愀戀㤀搀搀㄀昀　　㔀攀　㄀㠀　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　㌀　　　　　　　　　　　　　　　㠀戀㄀昀　　㜀㤀　㄀㈀㌀㔀　㜀挀昀㈀㐀㠀昀　攀㔀㤀昀㔀㔀㌀愀㌀㄀戀挀㠀　㔀挀㌀㘀㌀㘀愀搀㌀㜀㐀　　　　　　　　戀㈀搀㘀㈀攀㌀搀㄀戀挀㠀　㔀挀㌀㘀㌀㘀愀搀㌀㜀㐀㈀㔀㜀㌀㐀㐀㐀搀戀㈀搀㘀㈀攀㌀搀挀㠀戀搀昀　　㜀挀㠀戀搀昀　　㜀戀　戀搀昀　　㜀　　　　　　　　攀攀戀㤀搀㄀㄀昀　　㔀昀　㄀㠀　　　　　　　　　����Ѐ�䬩嘀欇䃛��
	BALANCE MODELS FOR CONTINUOUS PROCESS PLANT STATE ESTIMATION��㘮㌱⸱〰層坓桡牥屃潮晩杜呌唭摯捗潲歳ⵇ䱂䰮楮椊䱯捡汐慴栺䌺屐牯杲慭⁆楬敳 砸㘩層潣坏剋卜扩湜摷卲癜䑗卲瘳⹥硥੒数潲瑥摓瑡瑥㨱੓瑡瑵猺偲潣敳獩湧੒畮湩湧䅰灳㨊䩯戺䕸灯牴塍䰊䑯捉䐺㈹㈱㌊䙩汴敲ㄺ䵯湯杲慰栊䙩汴敲㈺呌唭䵯湯杲慰栭千䅎屢ㄲ㌳㔷ㅸ੆楬瑥爳㩔䱕ⵍ潮潧牡灨ੁ捴楯渱㩐牯捥獳楮朊䅣瑩潮㈺卡癩湧⁐䑆‮⸮੃牴偲潧牥獳㨰੍慸偲潧牥獳㨱ੌ慳瑓瑡瑵獍潤楦楣慴楯湔業敕呃㨱㐷㈴㜳㠹㠊剥灯牴敤呩浥㨱㐷㈴㜴㜰㤊佃剅湧楮敓瑡瑵猺䙩湥剥慤敲‱ㄮぼ⁒畮湩湧⁯渠汯捡氠浡捨楮攠簠畮汩浩瑥搠捨慲慣瑥牳⁬敦琮簠佃删扩湡物敳⁶敲獩潮㨠㘮㤮ㄮ㈳੓瑡牴呩浥㨱㐷㈴㜳㠹㠊✠坈䕒䔠卥牶楣敎慭攠㴠❟偒佄㍟䑗卲瘳当牶彐剏䐳⹴硴✀䐳⹴硴✀硴
	Pidevate tehnoloogiliste protsesside oleku hindamise bilansiimudelid��尀甀　　㐀㘀尀甀　　㘀㤀尀甀　　㘀㜀尀甀　　㈀攀尀甀　　㈀　尀甀　　㌀㠀尀甀　　㈀攀尀甀　　㈀　尀甀　　㐀㐀尀甀　　㘀㔀尀甀　　㘀㘀尀甀　　㘀㤀尀甀　　㘀攀尀甀　　㘀㤀尀甀　　㜀㐀尀甀　　㘀㔀尀甀　　㈀　尀甀　　㘀㤀尀甀　　㜀㐀尀甀　　㘀㔀尀甀　　㜀㈀尀甀　　㘀㄀尀甀　　㜀㐀尀甀　　㘀㤀尀甀　　㘀昀尀甀　　㘀攀尀甀　　㈀　尀甀　　㜀　尀甀　　㜀㈀尀甀　　㘀昀尀甀　　㘀㌀尀甀　　㘀㔀尀甀　　㜀㌀尀甀　　㜀㌀尀甀　　㘀㔀尀甀　　㜀㌀尀甀　　㈀　尀甀　　㈀㠀尀甀　　㘀㌀尀甀　　㘀昀尀甀　　㘀攀尀甀　　㜀㐀尀甀　　㘀㤀尀甀　　㘀攀尀甀　　㜀㔀尀甀　　㘀㔀尀甀　　㘀㐀尀甀　　㈀㤀尀甀　　㈀攀Ā�﷿�������방剪剪Ъ剪⠪剪䰪剪瀪剪鐪剪렪剪㐧剪�剪+剪␫剪䠫剪氫剪逫剪됫剪�
	OH THE SELECTION OF THE UTILITY FUNCTION FOR PROCESS ADJUSTMENT�　　　　　　　　　　　　戀㈀搀㘀㈀攀㌀搀㄀戀挀㠀　㔀挀㌀㘀㌀㘀愀搀㌀㜀㐀㈀㔀㜀㌀㐀㐀㐀搀戀㈀搀㘀㈀攀㌀搀㘀㠀戀搀昀　　㜀㘀㠀戀搀昀　　㜀㔀　戀搀昀　　㜀　　　　　　　　㤀愀戀㤀搀搀㄀昀　　㔀攀　㄀㠀　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　㌀　　　　　　　　　　　　　　　㠀戀㄀昀　　㜀㤀　㄀㈀㌀㔀　㜀挀昀㈀㐀㠀昀　攀㔀㤀昀㔀㔀㌀愀㌀㄀戀挀㠀　㔀挀㌀㘀㌀㘀愀搀㌀㜀㐀　　　　　　　　戀㈀搀㘀㈀攀㌀搀㄀戀挀㠀　㔀挀㌀㘀㌀㘀愀搀㌀㜀㐀㈀㔀㜀㌀㐀㐀㐀搀戀㈀搀㘀㈀攀㌀搀挀㠀戀搀昀　　㜀挀㠀戀搀昀　　㜀戀　戀搀昀　　㜀　　　　　　　　攀攀戀㤀搀㄀㄀昀　　㔀昀　㄀㠀　　　　　　　　　����Ѐ�䬩嘀欇䃛��
	Fig.l. Yield criterion.���
	Fig,2. Mean square error criterion.���
	Fig. 3. Optimal shift for yield and MStE criteria.��嘀�
	Fig. 4. Limited square utility function.�䘇Ā�Ā�Ā�啳敲㄀㈀␀���ࠀꁴ㣈씃ࠀ�䕋椆縀�ﰀ�縀�尀甀　　㜀　尀甀　　㜀㈀尀甀　　㘀昀尀甀　　㘀㜀尀甀　　㜀㈀尀甀　　㘀㄀尀甀　　㘀搀尀甀　　㘀搀尀甀　　㘀㔀尀甀　　㘀㔀尀甀　　㜀㈀尀甀　　㘀㤀尀甀　　㘀搀尀甀　　㘀㤀尀甀　　㜀㌀尀甀　　㘀戀尀甀　　㘀㔀尀甀　　㘀㔀尀甀　　㘀挀尀甀　　㜀㐀尀甀　　㘀㔀Ā�﷿�������㄀ⴀ㌀㘀㐀㌀　㈀㌀㜀㤀㌀ⴀ㈀㘀㌀　㄀㔀㘀　㤀㔀ⴀ㄀㤀㠀㤀㄀㈀　㤀㠀㜀
	Fig.s, Piecewise constant utility function.�〰㘵〰㈰〰㜵〰㜴〰㘹〰㙣〰㘹〰㜴〰㜹〰㈰〰㘶〰㜵〰㙥〰㘳〰㜴〰㘹〰㙦〰㙥〰㉥〰〰㐶〷〱〰〰〰〱〰〰〰〱〰〰〰㔵㜳㘵㜲㌱〰㌲〰㈴〰〰〰〰〰〰〰〸〰愰㜴㌸挸挵〳〸〰〰〰㐵㑢㘹〶㝥〰〰〰晣〰〰〰㝥〰〰〰㕣〰㜵〰㌰〰㌰〰㌷〰㌰〰㕣〰㜵〰㌰〰㌰〰㌷〰㌲〰㕣〰㜵〰㌰〰㌰〰㌶〰㘶〰㕣〰㜵〰㌰〰㌰〰㌶〰㌷〰㕣〰㜵〰㌰〰㌰〰㌷〰㌲〰㕣〰㜵〰㌰〰㌰〰㌶〰㌱〰㕣〰㜵〰㌰〰㌰〰㌶〰㘴〰㕣〰㜵〰㌰〰㌰〰㌶〰㘴〰㕣〰㜵〰㌰〰㌰〰㌶〰㌵〰㕣〰㜵〰㌰〰㌰〰
	Fig. 6., Dispersed utility function (12)|.��Ā�Ā�啳敲慬偡ഀ���ऀ���ऀ�䷂蘇䐀�䐀�䵅佗Ā��Ȁ��쀀��F��Ā�╳䑍닖⸽힊௜ꃌณ⎨�㰉䀍뽢䚷熻��Ā�﷿�������䥄㨲㤲ㄳ੆楬瑥爱㩍潮潧牡灨੆楬瑥爲㩔䱕ⵍ潮潧牡灨ⵓ䍁乜戱㈳㌵㜱砊䙩汴敲㌺呌唭䵯湯杲慰栊䅣瑩潮ㄺ偲潣敳獩湧ੁ捴楯渲㩃牥慴楮朠偄䘠灡来‹㤠潦‱〰੃牴偲潧牥獳㨹㠊䵡硐牯杲敳猺㄰《䱡獴却慴畳䵯摩晩捡瑩潮呩浥啔䌺ㄴ㜲㐷㌸㤸੒数潲瑥摔業攺ㄴ㜲㐷㐵㠰਀윆ၰง냼윆ง磾윆灲ง탽윆ばง烽윆偰ง䃽윆
	Fig .7, Two examples of dispersed utility function��嘀�

	KASULIKKUSFUNKTSIOONI VALIKUST PROTSESSIHÄÄLESTUSEL�㘀䔀ⴀ㐀䈀㐀㔀ⴀ㐀䄀　㔀ⴀ㤀　㤀㐀ⴀ䘀䐀㌀䈀䐀㔀㔀䄀㔀㔀㤀㄀紀尀吀礀瀀攀䰀椀戀�戀䌀氀猀椀搀㌀㈀��������̀���࣪希l�Ā���۪堌!�����ࠀ�������Ā���Ǫꔍm�����̀���������଀�ᳪꈍ��젔汴�᫪갍�ࠕ汴᠕汴Ā�����������ࠀ�������Ꮺꬍo�젛⨈������ࠀ���濪뜍"�尀刀䔀䜀䤀匀吀刀夀尀唀匀䔀刀尀匀ⴀ㄀ⴀ㔀ⴀ㈀㄀ⴀ㌀㘀㐀㌀　㈀㌀㜀㤀㌀ⴀ㈀㘀㌀　㄀㔀㘀　㤀㔀ⴀ㄀㤀㠀㤀㄀㈀　㤀㠀㜀ⴀ㄀㄀　㔀���绪耍r�쀝⨈��̀���������̀�秪贍ė�磪踍
	Untitled��

	TRUTH VALUED COMPUTING PROCESSES AND PROCESS CALCULUS: A FORMALISM FOR DESCRIBING PROGRAMMING LOGIC�〰㔷〰㑢〰㐸㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㤮㈴‰⸰〠〮〰‷⸳㜠㌳⸰〠㔲〮㜰⁔洍ਲ਼⁔爍਼〰㔹〰㐴〰㑦〰㑣〰㐷〰㑣〰㔷〰㕣㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㠮㔰‰⸰〠〮〰‶⸸〠㘵⸰〠㔲ㄮ㈸⁔洍ਲ਼⁔爍਼〰㔲〰㐹㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㔮㔱‰⸰〠〮〰‷⸰㤠㜶⸷㈠㔲ㄮ〰⁔洍ਲ਼⁔爍਼〰㌵㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㠮㐰‰⸰〠〮〰‶⸸〠㠴⸷㈠㔲ㄮ㈸⁔洍ਲ਼⁔爍਼〰㑣〰㔶㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㠮㌹‰⸰〠〮〰‶⸸〠㤶⸰〠㔲ㄮ㈸⁔洍ਲ਼⁔爍਼〰㐷〰㐸〰㐹〰㑣〰㔱〰㐸〰㐷㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㠮㠶‰⸰〠〮〰‶⸸〠ㄲ㘮㜲‵㈱⸲㠠呭ഊ㌠呲ഊ㰰〴挰〵㄰〵㤰〴㠰〵㔰〵㘰〴㠾⁔樍੅名ੑഊ焍ੂ名ਸ⸱㤠〮〰‰⸰〠㜮㘵‱㔸⸷㈠㔲〮㜰⁔洍ਲ਼⁔爍਼〰ぢ〰㐷〰㐸〰㔱〰㑣〰㐸〰㐷〰っ㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㠮㜷‰⸰〠〮〰‷⸳㜠ㄹ㌮〰‵㈱⸲㠠呭ഊ㌠呲ഊ㰰〵㜰〵㈾⁔樍੅名ੑഊ焍ੂ名ਸ⸶㘠〮〰‰⸰〠㘮㠰′〵⸲㠠㔲ㄮ㈸⁔洍ਲ਼⁔爍਼〰㔷〰㑢〰㐸㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㤮㈴‰⸰〠〮〰‷⸳㜠㈲ㄮ〰‵㈰⸷〠呭ഊ㌠呲ഊ㰰〵㤰〴㐰〴昰〴挰〴㜰〴挰〵㜰〵挾⁔樍੅名ੑഊ焍ੂ名ਸ⸵〠〮〰‰⸰〠㘮㠰′㔳⸰〠㔲ㄮ㈸⁔洍ਲ਼⁔爍਼〰㔲〰㐹㸠呪ഊ䕔ഊ儍਀ഊ儍਀㔱〰㐷㸠呪ഊ䕔ഊ儍਀ਲ਼⁔爍਼〰㔷〰㑢〰㐸㸠呪ഊ
	Fig. 1. Elements of process nets.�捪퍴��捪퍴ᯈ׃捪퍴╳䑍닖⸽梆騇梆騇傆騇炆騇﫾䬹傀Ҁ��������̀���袐騇퀗㔇⑂힏㿁ꢧᯈ׃捪퍴����ᯈ׃捪퍴╳䑍닖⸽좆騇좆騇낆騇��컾眹䢁Ҁ��������̀���䡿騇ࡵ⋝ڕ뷷ᯈ׃捪퍴��닖⸽ᯈ׃捪퍴╳䑍닖⸽⢇騇⢇騇ႇ騇��싾挹ংҀ��������̀���袊騇胺ࡵꅮ窼孟걳ᯈ׃捪퍴��닖⸽ᯈ׃捪퍴╳䑍닖⸽袇騇袇騇炇騇
	Fig. 2. Elementary predicates and processes�匀爀瘀㌀⸀攀砀攀��蠄괃昆ā�����⌀�����ᄀ�����脀�����䌀�����耀�����䈀�������
	Fig. 3. Inverse processes.�瑸쎘㥏�଼�ㅠ汯捡�┺�㲜�ㅤ浡硰൭χ�渀� 湡浥窄�渠�ױ灯獴攞鷋�琑�笊�·Ɛ��Գ֙�ϗԳ֙��fȒ�ȋԄȂȂȄ軿倇移�ʠ��偦䕤@
�٦﹦�ৗά怂¿鿷����������ࢄ�����ࡨ�ȖȀ��~ƔơƥƩƱƹǵțȟȳɔəɜɣɪɶʅʒʖʜʥˇˋ˝̠
	Fig. 4. Serial and parallel junctions of processes���嘀
	Fig. 5. Selection prdcesses.�餇郮餇伬ëʀ��������̀���⣓餇ࡵ퓏鱑࿄橪ᯈ׃捪퍴��닖⸽ᯈ׃捪퍴╳䑍닖⸽餇餇탮餇餇쪓第ìʀ��������̀���棤餇递㔇쿞೎⏱爇ᯈ׃捪퍴��닖⸽ᯈ׃捪퍴╳䑍닖⸽䣯餇䣯餇ワ餇僯餇�本íʀ��������̀���죪餇壺ࡵ텡紶㑤蒨ᯈ׃捪퍴��닖⸽ᯈ׃捪퍴╳䑍닖⸽
	Fig. 6. Processes with multiple choice.�铽瀆Ā�Ā�Ā�啳敲�挅℀���ࠀꁴᣇ씃ࠀ�봵椆爀��爀�尀甀　　㜀　尀甀　　㜀㈀尀甀　　㘀昀尀甀　　㜀㐀尀甀　　㜀㌀尀甀　　㘀㔀尀甀　　㜀㌀尀甀　　㜀㌀尀甀　　㘀㤀尀甀　　㘀㄀尀甀　　㜀㈀尀甀　　㜀㘀尀甀　　㜀㔀尀甀　　㜀㐀尀甀　　㜀㔀尀甀　　㜀㌀尀甀　　㘀㔀尀甀　　㘀挀尀甀　　㈀攀Ā�﷿���
	Fig. 7. Indefinite iteration processes.�铽瀆Ā�Ā�Ā�啳敲�挅℀���ࠀꁴᣇ씃ࠀ�봵椆爀��爀�尀甀　　㜀　尀甀　　㜀㈀尀甀　　㘀昀尀甀　　㜀㐀尀甀　　㜀㌀尀甀　　㘀㔀尀甀　　㜀㌀尀甀　　㜀㌀尀甀　　㘀㤀尀甀　　㘀㄀尀甀　　㜀㈀尀甀　　㜀㘀尀甀　　㜀㔀尀甀　　㜀㐀尀甀　　㜀㔀尀甀　　㜀㌀尀甀　　㘀㔀尀甀　　㘀挀尀甀　　㈀攀Ā�﷿���
	Fig. 8. Definite iteration processes (to be continued).�㠮㈸⁔洍ਲ਼⁔爍਼〰㌷〰㐴〰㔱〰㔱〰㉢〰㉢〰㉢〰㌲〰㉥〰㉢〰愶㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㤮㐹‰⸰〠〮〰‶⸸〠㠸⸲㠠ㄷ㠮㈸⁔洍ਲ਼⁔爍਼〰㌷〰㐸〰㕢〰㔸〰㔱〰㐸〰㐶〰㔲〰㑣㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㘮ㄱ‰⸰〠〮〰‵⸳㤠ㄳ㔮㈸‱㜸⸱㌠呭ഊ㌠呲ഊ㰰〵挰〲戰〲戰〲㔰〴㠰〵㌰〴㘰〲戰〳㜰〲㔰〳㜾⁔樍੅名ੑഊ焍ੂ名਷⸴㠠〮〰‰⸰〠㘮㈴‴ㄮ〰‱㜰⸴㈠呭ഊ㌠呲ഊ㰰〳㜰〵㌰〵挰〴㐰〴戰〴挾⁔樍੅名ੑഊ焍ੂ名਷⸹㤠〮〰‰⸰〠㜮〹‶㘮㜲‱㜱⸰〠呭ഊ㌠呲ഊ㰰〳㜰〳㜰〳挾⁔樍੅名ੑഊ焍ੂ名਴⸳㌠〮〰‰⸰〠㘮㠰‸㔮㜲‱㜱⸲㠠呭ഊ㌠呲ഊ㰰〴戰〴㤰〴㠾⁔樍੅名ੑഊ�������瑹灥⤮d⁢礠
	Fig. 8. Definite iteration processes (continued).���
	Fig. 9. Approbation processes�郮餇伬ëʀ��������̀���⣓餇ࡵ퓏鱑࿄橪ᯈ׃捪퍴��닖⸽ᯈ׃捪퍴╳䑍닖⸽餇餇탮餇餇쪓第ìʀ��������̀���棤餇递㔇쿞೎⏱爇ᯈ׃捪퍴��닖⸽ᯈ׃捪퍴╳䑍닖⸽䣯餇䣯餇ワ餇僯餇�本íʀ��������̀���죪餇壺ࡵ텡紶㑤蒨ᯈ׃捪퍴��닖⸽ᯈ׃捪퍴╳䑍닖⸽꣯餇꣯餇郯餇
	Fig. 10. Formulas of process calcculus.�铽瀆Ā�Ā�Ā�啳敲�挅℀���ࠀꁴᣇ씃ࠀ�봵椆爀��爀�尀甀　　㜀　尀甀　　㜀㈀尀甀　　㘀昀尀甀　　㜀㐀尀甀　　㜀㌀尀甀　　㘀㔀尀甀　　㜀㌀尀甀　　㜀㌀尀甀　　㘀㤀尀甀　　㘀㄀尀甀　　㜀㈀尀甀　　㜀㘀尀甀　　㜀㔀尀甀　　㜀㐀尀甀　　㜀㔀尀甀　　㜀㌀尀甀　　㘀㔀尀甀　　㘀挀尀甀　　㈀攀Ā�﷿���
	Fig. 11. Validity expressions for formulas.�〰㘱〰㜴〰㘹〰㙦〰㙥〰㈰〰㜰〰㜲〰㙦〰㘳〰㘵〰㜳〰㜳〰㘵〰㜳〰㈰〰㈸〰㘳〰㙦〰㙥〰㜴〰㘹〰㙥〰㜵〰㘵〰㘴〰㈹〰㉥〰〰
	Fig. 12. Regular expressions for formulas.��Ā�Ā�啳敲慬偡ഀ���ऀ���ऀ�䷂蘇䐀�䐀�䵅佗Ā��Ȁ��쀀��F��Ā�╳䑍닖⸽힊௜ꃌณ⎨�㰉䀍뽢䚷熻��Ā�﷿�������䥄㨲㤲ㄳ੆楬瑥爱㩍潮潧牡灨੆楬瑥爲㩔䱕ⵍ潮潧牡灨ⵓ䍁乜戱㈳㌵㜱砊䙩汴敲㌺呌唭䵯湯杲慰栊䅣瑩潮ㄺ偲潣敳獩湧ੁ捴楯渲㩃牥慴楮朠偄䘠灡来‹㤠潦‱〰੃牴偲潧牥獳㨹㠊䵡硐牯杲敳猺㄰《䱡獴却慴畳䵯摩晩捡瑩潮呩浥啔䌺ㄴ㜲㐷㌸㤸੒数潲瑥摔業攺ㄴ㜲㐷㐵㠰਀윆ၰง냼윆ง磾윆灲ง탽윆ばง烽윆偰ง䃽윆

	Tõeväärtusega arvutusprotsess ja protsessiarvutus: formalism programmeerimistoogika kirjeldamiseks�㌰㌶㌹㌰㌰㌶㘶㌰㌰㌶㘵㌰㌰㌲㌰㌰㌰㌷㌰㌰㌰㌷㌲㌰㌰㌶㘶㌰㌰㌶㌳㌰㌰㌶㌵㌰㌰㌷㌳㌰㌰㌷㌳㌰㌰㌶㌵㌰㌰㌷㌳㌰㌰㌲㌰㌰㌰㌲㌸㌰㌰㌶㌳㌰㌰㌶㘶㌰㌰㌶㘵㌰㌰㌷㌴㌰㌰㌶㌹㌰㌰㌶㘵㌰㌰㌷㌵㌰㌰㌶㌵㌰㌰㌶㌴㌰㌰㌲㌹㌰㌰㌲㘵㌰㌰0〰㌰〰㌶〰㌶〰㕣〰㜵〰㌰〰㌰〰㌷〰㌵〰㕣〰㜵〰㌰〰㌰〰㌶〰㘵〰㕣〰㜵〰㌰〰㌰〰㌶〰㌳〰㕣〰㜵〰㌰〰㌰〰㌷〰㌴〰㕣〰㜵〰㌰〰㌰〰㌶〰㌹〰㕣〰

	Picture section����닖⸽ᯈ׃捪퍴╳䑍닖⸽梽梽傽��骹�^ƀ��������̀���ࢱ递㔇켤輎姵厣ᯈ׃捪퍴��닖⸽ᯈ׃捪퍴╳䑍닖⸽좽좽낽��턟_ƀ�
	Untitled�erial and parallel junctions of process

	Chapter�̀���ျ㔇壺ࡵ外ꗍ颅ﾍᯈ׃捪퍴����ᯈ׃捪퍴╳䑍닖⸽뀱㔇뀱㔇頱㔇
	Picture section���닖⸽ᯈ׃捪퍴╳䑍닖⸽梺梺傺��窹紟Vƀ��������̀���袵㡿㈇㺺絷檯ᯈ׃捪퍴��닖⸽ᯈ׃捪퍴╳䑍닖⸽좺좺낺��亹焟Wƀ��
	Untitled��

	Statement section���
	Untitled�erial and parallel junctions of process

	Illustrations���0㘵0㈰���������쁓餇젗쨇ᡊ餇İ㘷İ㘹᠘؇ࡔ餇젙쨇䁒餇��������0㙦0㜴栎؇衒餇䠧쨇끑餇��������0㙦
	Untitled�SFUNKTSIOONI VALIKUST PROTSESSIHÄÄLESTU
	Untitled��
	Fig.l. Balanced two-wire line (a) and its circuit model (b).���㘮㌱⸱〰層坓桡牥屃潮晩杜呌唭摯捗潲歳ⵇ䱂䰮楮椊䱯捡汐慴栺䌺屐牯杲慭⁆楬敳 砸㘩層潣坏剋卜扩湜摷卲癜䑗卲瘳⹥硥੒数潲瑥摓瑡瑥㨱੓瑡瑵猺偲潣敳獩湧੒畮湩湧䅰灳㨊䩯戺䕸灯牴塍䰊䑯捉䐺㈹㈱㌊䙩汴敲ㄺ䵯湯杲慰栊䙩汴敲㈺呌唭䵯湯杲慰栭千䅎屢ㄲ㌳㔷ㅸ੆楬瑥爳㩔䱕ⵍ潮潧牡灨ੁ捴楯渱㩐牯捥獳楮朊䅣瑩潮㈺卡癩湧⁐䑆‮⸮੃牴偲潧牥獳㨰੍慸偲潧牥獳㨱ੌ慳瑓瑡瑵獍潤楦楣慴楯湔業敕呃㨱㐷㈴㜳㠹㠊剥灯牴敤呩浥㨱㐷㈴㜴㜰㤊佃剅湧楮敓瑡瑵猺䙩湥剥慤敲‱ㄮぼ⁒畮湩湧⁯渠汯捡氠浡捨楮攠簠畮汩浩瑥搠捨慲慣瑥牳⁬敦琮簠佃删扩湡物敳⁶敲獩潮㨠㘮㤮ㄮ㈳੓瑡牴呩浥㨱㐷㈴㜳㠹㠊✠坈䕒䔠卥牶楣敎慭攠㴠❟偒佄㍟䑗卲瘳当牶彐剏䐳⹴硴✀䐳⹴硴✀
	Fig. 2. A model of telegraph equations solution.�.��嘀�
	Fig. 3. A non-two-port model of balanced transmission line.�.���㘮㌱⸱〰層坓桡牥屃潮晩杜呌唭摯捗潲歳ⵇ䱂䰮楮椊䱯捡汐慴栺䌺屐牯杲慭⁆楬敳 砸㘩層潣坏剋卜扩湜摷卲癜䑗卲瘳⹥硥੒数潲瑥摓瑡瑥㨱੓瑡瑵猺偲潣敳獩湧੒畮湩湧䅰灳㨊䩯戺䕸灯牴塍䰊䑯捉䐺㈹㈱㌊䙩汴敲ㄺ䵯湯杲慰栊䙩汴敲㈺呌唭䵯湯杲慰栭千䅎屢ㄲ㌳㔷ㅸ੆楬瑥爳㩔䱕ⵍ潮潧牡灨ੁ捴楯渱㩐牯捥獳楮朊䅣瑩潮㈺卡癩湧⁐䑆‮⸮੃牴偲潧牥獳㨰੍慸偲潧牥獳㨱ੌ慳瑓瑡瑵獍潤楦楣慴楯湔業敕呃㨱㐷㈴㜳㠹㠊剥灯牴敤呩浥㨱㐷㈴㜴㜰㤊佃剅湧楮敓瑡瑵猺䙩湥剥慤敲‱ㄮぼ⁒畮湩湧⁯渠汯捡氠浡捨楮攠簠畮汩浩瑥搠捨慲慣瑥牳⁬敦琮簠佃删扩湡物敳⁶敲獩潮㨠㘮㤮ㄮ㈳੓瑡牴呩浥㨱㐷㈴㜳㠹㠊✠坈䕒䔠卥牶楣敎慭攠㴠❟偒佄㍟䑗卲瘳当牶彐剏䐳
	Untitled��
	Figure 1. Block diagram of the harmonic vector analysis system on the basis of lock-in amplifier and lock-in frequency multiplier.�ꔆ늙ᢆ밃谄ꔆℾ旰䠹됆肇밃鰄ꔆ썧U좇밃간ꔆ䡗剖ࠣ뀆悆밃밄ꔆ戕锍끖밃찄ꔆ吺평棋옆塿밃�ꔆ熣蟽磅옆む밃ꔆ늙쁤ࢁ밃ﰄꔆℾ旰례됆킅밃అꔆ썧恡ꢆ밃ᰅꔆ䡗剖蠑뀆ꁿ밃Ⰵꔆ戕锍 밃㰅ꔆ吺평ꃄ暴⢂밃䰅ꔆ熣蟽샋暴뢂밃尅ꔆ늙삀밃氅ꔆℾ旰ဴ젆傁밃簅ꔆ썧聢颁밃谅ꔆ䡗剖젡뀆碀밃鰅ꔆ戕锍健�밃갅ꔆ吺평飇暴䢃밃밅ꔆ熣蟽裍暴炂밃찅ꔆ늙ၣ��ꔆℾ旰頴젆₄밃ꔆ썧せ낄밃ﰅꔆ䡗剖ࠔ뀆梄밃ఆꔆ戕锍밃ᰆꔆ吺평暴뢋밃Ⰶꔆ熣蟽胐暴삉밃㰆ꔆ늙䁠ࢊ밃䰆ꔆℾ旰쁐젆�将ꔆ썧ၬႈ밃氆ꔆ䡗剖ꠔ뀆炋밃簆ꔆ戕锍聫밃谆ꔆ吺평죈暴ら밃鰆ꔆ熣蟽暴�밃갆ꔆ늙ꁬ梍밃밆ꔆℾ旰遍젆ꂈ밃찆ꔆ썧큩䢌밃�ꔆ䡗剖䠕뀆傊밃ꔆ戕锍邌밃ﰆꔆ吺평⣋暴肐밃ఇꔆ熣蟽磀暴袎밃ᰇꔆ늙끟颊밃Ⰷꔆℾ旰灜젆밃㰇ꔆ썧恼낍밃䰇ꔆ䡗剖뀆₍밃將ꔆ戕锍밃氇ꔆ吺평룎暴䂎밃簇ꔆ熣蟽ᣑ暴킎밃谇ꔆ늙p⢋밃鰇ꔆℾ旰쁡젆ᢏ밃갇ꔆ썧灯墈밃밇ꔆ䡗剖蠛뀆㢐밃찇ꔆ戕锍끱悏밃�ꔆ吺평像暴ꢏ밃ꔆ熣蟽ꣁ暴밃ﰇꔆ늙끺碉밃ఈꔆℾ旰硥젆좐밃ᰈꔆ썧큲ꢘ밃Ⰸꔆ䡗剖栓뀆좙밃㰈ꔆ戕锍뢔밃䰈ꔆ吺평䃂暴࢓밃專ꔆ熣蟽ࣄ暴颓밃氈ꔆ늙恳梖밃簈ꔆℾ旰塣젆傓밃谈ꔆ썧ぶ낖밃鰈ꔆ䡗剖ꠙ뀆�밃갈ꔆ戕锍悘밃밈ꔆ吺평䃕暴ᢘ밃찈ꔆ熣蟽㣘暴⢔밃�ꔆ늙遰밃ꔆℾ旰桊팆밃ﰈꔆ썧偷㢙밃ᓗꐆ䡗剖제뀆を밃ⓗꐆ戕锍ꁾ䢕밃㓗ꐆ吺평棙暴炔밃䓗ꐆ熣蟽샞暴䂗밃哗ꐆ늙ⁱ邕밃擗ꐆℾ旰堖팆�瓗ꐆ썧ၵₖ밃ヵ䜆둉唆䃹䜆㑅唆�
	Fig. 1. Basic phase-lock loop.�㙣〰㘱〰㜳〰㈰〰㙦〰㘶〰㈰〰㜰〰㜲〰㙦〰㘳〰㘵〰㜳〰㜳〰㈰〰㘳〰㘱〰㙣〰㘳〰㘳〰㜵〰㙣〰㜵〰㜳〰㉥〰〰㤴晤㜰〶〱〰〰〰〱〰〰〰〱〰〰〰㔵㜳㘵㜲〰㥡㘳〵㈱〰〰〰〰〰〰〰〸〰愰㜴ㄸ挷挵〳〸〰〰〰扤㌵㘹〶㜲〰〰〰攴〰〰〰㜲〰〰〰㕣〰㜵〰㌰〰㌰〰㌷〰㌰〰㕣〰㜵〰㌰〰㌰〰㌷〰㌲〰㕣〰㜵〰㌰〰㌰〰㌶〰3ݵ湩〲
	Fig. 2. Basic multiplying phase-lock loop.��Ā�Ā�啳敲慬偡ഀ���ऀ���ऀ�䷂蘇䐀�䐀�䵅佗Ā��Ȁ��쀀��F��Ā�╳䑍닖⸽힊௜ꃌณ⎨�㰉䀍뽢䚷熻��Ā�﷿�������䥄㨲㤲ㄳ੆楬瑥爱㩍潮潧牡灨੆楬瑥爲㩔䱕ⵍ潮潧牡灨ⵓ䍁乜戱㈳㌵㜱砊䙩汴敲㌺呌唭䵯湯杲慰栊䅣瑩潮ㄺ偲潣敳獩湧ੁ捴楯渲㩃牥慴楮朠偄䘠灡来‹㤠潦‱〰੃牴偲潧牥獳㨹㠊䵡硐牯杲敳猺㄰《䱡獴却慴畳䵯摩晩捡瑩潮呩浥啔䌺ㄴ㜲㐷㌸㤸੒数潲瑥摔業攺ㄴ㜲㐷㐵㠰਀윆ၰง냼윆ง磾윆灲ง탽윆ばง烽윆偰ง䃽윆
	Fig.l. Yield criterion.���
	Fig,2. Mean square error criterion.�　　㘀㔀　　㘀搀　　㈀　　　㘀昀　　㘀攀　　㈀　　　㜀㐀　　㘀㠀　　㘀㔀　　㈀　　　㘀㈀　　㘀㄀　　㜀㌀　　㘀㤀　　㜀㌀　　㈀　　　㘀昀　　㘀㘀　　㈀　　　㘀挀　　㘀昀　　㘀㌀　　㘀戀　　㈀搀　　㘀㤀　　㘀攀　　㈀　　　㘀㄀　　㘀搀　　㜀　　　㘀挀　　㘀㤀　　㘀㘀　　㘀㤀　　㘀㔀　　㜀㈀　　㈀　　　㘀㄀　　㘀攀　　㘀㐀　　㈀　　　㘀挀　　㘀昀　　
	Fig. 3. Optimal shift for yield and MStE criteria.��嘀�
	Fig. 4. Limited square utility function.�䘇Ā�Ā�Ā�啳敲㄀㈀␀���ࠀꁴ㣈씃ࠀ�䕋椆縀�ﰀ�縀�尀甀　　㜀　尀甀　　㜀㈀尀甀　　㘀昀尀甀　　㘀㜀尀甀　　㜀㈀尀甀　　㘀㄀尀甀　　㘀搀尀甀　　㘀搀尀甀　　㘀㔀尀甀　　㘀㔀尀甀　　㜀㈀尀甀　　㘀㤀尀甀　　㘀搀尀甀　　㘀㤀尀甀　　㜀㌀尀甀　　㘀戀尀甀　　㘀㔀尀甀　　㘀㔀尀甀　　㘀挀尀甀　　㜀㐀尀甀　　㘀㔀Ā�﷿�������㄀ⴀ㌀㘀㐀㌀　㈀㌀㜀㤀㌀ⴀ㈀㘀㌀　㄀㔀㘀　㤀㔀ⴀ㄀㤀㠀㤀㄀㈀　㤀㠀㜀
	Fig.s, Piecewise constant utility function.�〰㈰〰㘶〰㙦〰㜲〰㈰〰㜹〰㘹〰㘵〰㙣〰㘴〰㈰〰㘱〰㙥〰㘴〰㈰〰㑤〰㔳〰㜴〰㐵〰㈰〰㘳〰㜲〰㘹〰㜴〰㘵〰㜲〰㘹〰㘱〰㉥〰〰〰〰㔶〰〰〰
	Fig. 6., Dispersed utility function (12)|.��Ā�Ā�啳敲慬偡ഀ���ऀ���ऀ�䷂蘇䐀�䐀�䵅佗Ā��Ȁ��쀀��F��Ā�╳䑍닖⸽힊௜ꃌณ⎨�㰉䀍뽢䚷熻��Ā�﷿�������䥄㨲㤲ㄳ੆楬瑥爱㩍潮潧牡灨੆楬瑥爲㩔䱕ⵍ潮潧牡灨ⵓ䍁乜戱㈳㌵㜱砊䙩汴敲㌺呌唭䵯湯杲慰栊䅣瑩潮ㄺ偲潣敳獩湧ੁ捴楯渲㩃牥慴楮朠偄䘠灡来‹㤠潦‱〰੃牴偲潧牥獳㨹㠊䵡硐牯杲敳猺㄰《䱡獴却慴畳䵯摩晩捡瑩潮呩浥啔䌺ㄴ㜲㐷㌸㤸੒数潲瑥摔業攺ㄴ㜲㐷㐵㠰਀윆ၰง냼윆ง磾윆灲ง탽윆ばง烽윆偰ง䃽윆
	Fig .7, Two examples of dispersed utility function��嘀�
	Untitled��
	Fig. 1. Elements of process nets.�갯턟팟힟킟풗荒侀見綥빊罞徭뾠꿑忔ퟪ⿩韵⯺۽啽ꏾ骾䥿巟겿ꅯ퇟풷嗢﨎綧ﺾ빋�ố῀轊纨群Ύ鿀佔繊ḥ뿨鿩ﯵ쿵ͤ맾ֹ弿꡿ꤟ튿툏썏䑾괟톿톏降ﴤ祎．⺻窀㲨羯ﾠﾨﾤﾬﾢﾪﾦﾮﾡﾩ鿒俫翩柴덺蕞ꦟ폏멣耧�൪ゃᯂ퀌�೓뀌輑柔㉪᭵豋貺䘽ꎾ熩熙퇀桨㐲ᨛ䶌Ꙇ㎣뤑漤ᢉ䚒퇂桩됲娛霛涌뛆ᕆ㯣䪣뷑쇨栤ᬩ蛗縣悤ᩁ⏍࠙鶌칆ឣ
	Fig. 2. Elementary predicates and processes�〰㜲〰㙦〰㘳〰㘵〰㜳〰㜳〰㈰〰㙥〰㘵〰㜴〰㜳〰㉥〰〰慣㉦搱ㅦ搳ㅦ搷㥦搰㥦搴㤷敡㑦改㑦敢捦攸换昴攵晡戳晡㜳晡ち㝤愵扥㑡㝦㕥㕦慤扦愰慦搱㕦搴搷敡㉦改敢昴㤷昵昵晡㉢晡〶晤㔵㝤愳晥㥡扥㐹㝦㕤摦慣扦愱㙦搱摦搴户敡摢昴户昴户昵㜷昴㜷昵敤晡㝢晡づ㝤愷晥扥扥㑢摦㑤ㅥ搱昷攸ㅦ挰㡦㑡㝥愸㝦愴敦搵昷改ㅦ敢㥦挰㑦㔴㝥㑡ㅥ㈵扦攸㥦改晢昵捦昵〳㘴戹晥〵戹㕦㍦愸㝦愹ㅦ搲扦搲て挳㑦㐴㝥慤ㅦ搱扦搱㡦敡摦敡挷昴攳晡〹晤㈴㜹㑥晦づ㉥扢㝡㠰㍣愸㝦慦晦愰晦愸晦愴晦慣
	Fig. 3. Inverse processes.�ㅅ㘰ݵ湩ㅅ㘱ݵ湩ㅅ㘲ݵ湩ㅅ㘳ݵ湩ㅅ㘴ݵ湩ㅅ㘵ݵ湩ㅅ㘶ݵ湩ㅅ㘷ݵ湩ㅅ㘸ݵ湩ㅅ㘹ݵ湩ㅅ㙁ݵ湩ㅅ㙂ݵ湩ㅅ㙃ݵ湩ㅅ㙄ݵ湩ㅅ㙅ݵ湩ㅅ㙆ݵ湩ㅅ㜰ݵ湩ㅅ㜱ݵ湩ㅅ㜲ݵ湩ㅅ㜳ݵ湩ㅅ旷瘎渇�㜵ݵ湩ㅅ㜶ݵ湩ㅅ㜷ݵ湩ㅅ㜸ݵ湩ㅅ㜹ݵ湩ㅅ㝁ݵ湩ㅅ㝂ݵ湩ㅅ㝃ݵ湩ㅅ㝄ݵ湩ㅅ㝅ݵ湩ㅅ㝆ٗ杲慶
	Fig. 4. Serial and parallel junctions of processes��嘀�
	Fig. 5. Selection prdcesses.�㒡䝞兞䥶慂噹乡솘蒾գ䫳ꂜ粨䘙衧⟒ᇾ鿪ﻟƪ帄眄홿១踐㬉鸺룹❂裤鞕䷪풱꥓㮌⬪ϛ焌䩤읱錊㯤靍Ⲽ킇鎡磙ꈉ჎Ħ엀똈ﭰ᫐�넘왓꒯旮䋨ꌙ傝Ө흢ꠊ舱ጒ牊誧ᙁ罌䬘弾煒楂밒버심᧓፲诇疐睊晃ꇙ邽ࠊ⁰喏摒అ轷㬹�뀧립逍햔녓�鳠嘡៞♀䔒炘擎ㇿ㮃奔渴㴥휂坄珜㫍샺权쮊�䲂㑒ဧ䃩
	Fig. 6. Processes with multiple choice.�㌀㌀㌀㜀㌀　㌀　㌀㌀㌀　㌀　㌀　㌀㔀㘀㌀㌀　㌀　㌀㜀㌀㔀㌀　㌀　㌀㌀㌀　㌀　㌀　㌀㌀㌀　㌀　㌀　㌀㌀㌀㜀㌀　㌀　㌀㌀㌀㈀㌀　㌀　㌀㔀㘀㌀㌀　㌀　㌀㜀㌀㔀㌀　㌀　㌀㌀㌀　㌀　㌀　㌀㌀㌀　㌀　㌀　㌀㌀㌀㘀㌀　㌀　　　㌀㌀　㜀㜀㔀㘀攀㘀㤀㌀　㌀㈀����ሀ�ꄩ넀꠲郍㌀　㌀　㌀㔀㘀㌀㌀　㌀　㌀㜀㌀㔀㌀　㌀　㌀㌀㌀　㌀　㌀　㌀㌀㌀　㌀　㌀　㌀㌀㌀㘀㌀　㌀　㌀㌀㌀㤀㌀　㌀　㌀㔀㘀㌀㌀　㌀　��
	Fig. 7. Indefinite iteration processes.�㌀㌀㌀㜀㌀　㌀　㌀㌀㌀　㌀　㌀　㌀㔀㘀㌀㌀　㌀　㌀㜀㌀㔀㌀　㌀　㌀㌀㌀　㌀　㌀　㌀㌀㌀　㌀　㌀　㌀㌀㌀㜀㌀　㌀　㌀㌀㌀㈀㌀　㌀　㌀㔀㘀㌀㌀　㌀　㌀㜀㌀㔀㌀　㌀　㌀㌀㌀　㌀　㌀　㌀㌀㌀　㌀　㌀　㌀㌀㌀㘀㌀　㌀　　　㌀㌀　㜀㜀㔀㘀攀㘀㤀㌀　㌀㈀����ሀ�ꄩ넀꠲郍㌀　㌀　㌀㔀㘀㌀㌀　㌀　㌀㜀㌀㔀㌀　㌀　㌀㌀㌀　㌀　㌀　㌀㌀㌀　㌀　㌀　㌀㌀㌀㘀㌀　㌀　㌀㌀㌀㤀㌀　㌀　㌀㔀㘀㌀㌀　㌀　��
	Fig. 8. Definite iteration processes (to be continued).�㠮㈸⁔洍ਲ਼⁔爍਼〰㌷〰㐴〰㔱〰㔱〰㉢〰㉢〰㉢〰㌲〰㉥〰㉢〰愶㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㤮㐹‰⸰〠〮〰‶⸸〠㠸⸲㠠ㄷ㠮㈸⁔洍ਲ਼⁔爍਼〰㌷〰㐸〰㕢〰㔸〰㔱〰㐸〰㐶〰㔲〰㑣㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㘮ㄱ‰⸰〠〮〰‵⸳㤠ㄳ㔮㈸‱㜸⸱㌠呭ഊ㌠呲ഊ㰰〵挰〲戰〲戰〲㔰〴㠰〵㌰〴㘰〲戰〳㜰〲㔰〳㜾⁔樍੅名ੑഊ焍ੂ名਷⸴㠠〮〰‰⸰〠㘮㈴‴ㄮ〰‱㜰⸴㈠呭ഊ㌠呲ഊ㰰〳㜰〵㌰〵挰〴㐰〴戰〴挾⁔樍੅名ੑഊ焍ੂ名਷⸹㤠〮〰‰⸰〠㜮〹‶㘮㜲‱㜱⸰〠呭ഊ㌠呲ഊ㰰〳㜰〳㜰〳挾⁔樍੅名ੑഊ焍ੂ名਴⸳㌠〮〰‰⸰〠㘮㠰‸㔮㜲‱㜱⸲㠠呭ഊ㌠呲ഊ㰰〴戰〴㤰〴㠾⁔樍੅名ੑഊ�������瑹灥⤮d⁢礠
	Fig. 8. Definite iteration processes (continued).�嘀�
	Fig. 9. Approbation processes�䟐䡺㴝䕯ꂣ�㪆㰺階ꏹ뒀躧፨↝䢋栱鵄⟓ቚ੗팩琪鵆ꟃ㏩跴⚸拷智஝䵯ꕳ�㪏�藌௠믡藴幺᾽鼮ꈏ퀇行綔⺦䯨援燺ѽ鈮薫鮟虋窗퇥靖嵁埒嗴禺骾䃗퀗晴嵇徦⭴ͽ镮꒯텍몙빁럐㟩嚺趾䗟ꛯ큷羽�矒⺺鯮脫ꄿꐟ톽琟ﶘ繂㾥鿑ﷴ獺聾䄏툯凞㵌뾦䟨㟴⣽阞ꏇ窒繇뾧㿐Ῡ俴柺௽闾䙿ꝿ퀿窚﹅
	Fig. 10. Formulas of process calcculus.���
	Fig. 11. Validity expressions for formulas.�〰㜲〰㙦〰㘳〰㘵〰㜳〰㜳〰㘵〰㜳〰〰㐷搰敢攸㐸㝡㍤ㅤ㐵㙦愰愳攱扡摣ㅣ㍡㠶收搲㍣㍡㤶㡥愳昹戴㠰㡥愷ㄳ㘸㈱㥤㐸㡢㘸㌱㥤㐴㈷搳ㄲ㕡ち㔷敡㤶搳㈹㜴㉡㥤㐶愷挳攵扡㌳改㡤昴㈶戸㘲昷㘶㝡ぢ㥤㑤㙦愵㜳攰戲摤戹昴㜶㍡㡦摥㐱攷挳㠵捣ぢ攰敡摤扢攱昲摤㠵昴㕥㝡ㅦ扤㥦㉥愲て搰〷改㐳昴㘱晡〸㝤㤴㉥愶㑢攸㘳昴㜱晡〴㝤㤲㉥㠵慢㥢㥦㠶㑢㝡㤷搱攵昴㔹晡ㅣ㕤㐱㔷搲㔵昴㜹扡㥡扥㐰搷搰ㄷ改㕡晡ㄲ㕤㐷㕦愶敢改㉢㜴〳㝤㤵㙥愴慦搱㑤昴㜵扡㤹扥㐱户搰㌷改㔶扡㡤扥㐵摦愶敦搰㜷
	Fig. 12. Regular expressions for formulas.��Ā�Ā�啳敲慬偡ഀ���ऀ���ऀ�䷂蘇䐀�䐀�䵅佗Ā��Ȁ��쀀��F��Ā�╳䑍닖⸽힊௜ꃌณ⎨�㰉䀍뽢䚷熻��Ā�﷿�������䥄㨲㤲ㄳ੆楬瑥爱㩍潮潧牡灨੆楬瑥爲㩔䱕ⵍ潮潧牡灨ⵓ䍁乜戱㈳㌵㜱砊䙩汴敲㌺呌唭䵯湯杲慰栊䅣瑩潮ㄺ偲潣敳獩湧ੁ捴楯渲㩃牥慴楮朠偄䘠灡来‹㤠潦‱〰੃牴偲潧牥獳㨹㠊䵡硐牯杲敳猺㄰《䱡獴却慴畳䵯摩晩捡瑩潮呩浥啔䌺ㄴ㜲㐷㌸㤸੒数潲瑥摔業攺ㄴ㜲㐷㐵㠰਀윆ၰง냼윆ง磾윆灲ง탽윆ばง烽윆偰ง䃽윆
	Untitled� model of telegraph equations solution.
	Untitled�ptimal shift for yield and MStE criteri
	Untitled��

	Tables�䤇��������s wi��������颙븆ꀥ䤇袞㜈棷頇
	Untitled�ptimal shift for yield and MStE criteri
	Untitled��

