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Annotatsioon

Asukohapõhiste sotsiaalvõrgustike, nagu Foursquare, Facebook ja mitmesugused veebi-
ja veebirakendused, sealhulgas Netflix, YouTube, Spotify jne, populaarsus on kiiresti
kasvanud. Koos populaarsusega on ka huvipunktide (POI) tähtsus muutunud otsustavaks.
Raske on soovitada kasutajale huvitavaid objekte, mis võivad ka kasutajate tähelepanu
köita miljonite objektide, nt asukohtade, laulude, toodete hulgast. Käesolevas väitekirjas
teostame uuringu serendipity-põhise POI RS-i kontseptsiooni kohta, kasutades mõõdikuid
relevantsus, ootamatus ja uudsus ning arutame ka serendipity mõju POI RS-is. Asjakoha-
suse puhul kontrollime kasutaja varasemate check-in’ide sarnasust teiste kasutajatega ja
genereerime selle põhjal asjakohaseid nimekirju. Ootamatuse osas töötasime välja algo-
ritmi, mis arvutab ka ootamatute asjakohaste objektide tõenäosuse. Samuti kujundasime
algoritmi uudsuse mõõtmiseks, mis kasutab elemendi kontekstuaalset teavet ja määrab
elemendi uudsuse. Et näha meie algoritmi tõhusust, kasutasime kahte tuntud andmekogu-
mit ja tulemuslikkuse hindamiseks kasutasime 7 erinevat hindamismeetrit, sealhulgas
f-measure, precision, recall, coverage, ILDGeo, diversity ja fidelity. Meie pakutud mudel
on võrreldes tipptasemel mudelitega hästi toiminud.
Märksõnad: Soovitussüsteemid; Huvipunkt; Serendipity; Relevantsus; Ootamatus; Uud-
sus; Kontekstuaalne; f-measure; täpsus; tagasikutsumine; mitmekesisus; katvus; ILDGeo;
truudus.
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Abstract

The popularity of location-based Social Networks such as Foursquare, Facebook, and
various web and online applications including Netflix, YouTube, Spotify, etc. has been
booming. Along with the popularity, the importance of Point of interest (POI) has become
crucial too. It is difficult to recommend user interesting items which can also catch users’
attention from millions of items e.g. locations, songs, products. In this thesis, we use the
concept of serendipity to create POI RS using metrics relevance and unexpectedness, and
we also studied the impact of novelty on serendipity as well. For relevance, we check the
commonality of user past check-ins with other users and generate relevant lists based on
that. Regarding unexpectedness, we designed an algorithm that computed the probability
of relevant items which are unexpected as well. We also design the algorithm for novelty
metric, which uses the contextual information of the item and determines the novelty of
the item. To see the effectiveness of our algorithm, we used two well-known datasets,
and to evaluate performance, we used 7 different evaluation metrics including f-measure,
precision, recall, coverage, ILDGeo, diversity, and fidelity. Our proposed model has
performed well compared with state-of-the-art models.

Keywords: Recommender systems; Point of interest (POI); Serendipity; Relevance;
Unexpectedness; Novelty; Contextual; F-measure; Precision; Recall; Diversity; Coverage;
ILDGeo; Fidelity
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1. Introduction

Thousands of items, including videos, music, books, and other utilities are available from a
variety of online retailers. Because of the extensive selection of accessories, the store may
have products that suit the user’s tastes. However, having a vast range of items makes it
harder for users to choose the product they choose to purchase. Thus, having more options
does not necessarily mean that users will be satisfied [1].
Online stores use recommender systems (RS) to deal with such amounts of data. In this
report, the recommender system (RS) refers to a software tool that offers relevant and
unexpected items to the user. However, we will also see the impact of novelty along with
relevance and unexpected metrics as well.
There are two types of recommendation systems: personalized and non-personalized
systems [2]. Non-personalized RSs aim to recommend the same item to all users, while
on the other hand personalized RSs aim to recommend different items based on the user’s
profile. In this report, we mainly focus on personalized RSs.
These latter give recommendations while considering the user’s profile, which includes
the information and actions users have performed before. Recommendations can be given
base on:

� Ratings of the target user.
� Users’ ratings provided on items attributes.
� Both items’ attributes and users’ rankings [3].

A RS may recommend items to users who have a lot of items in common with the target
user. Another RS might suggest items that share a lot of characteristics with the target
user’s favorite items. One example will be if a user rates many horror movies, a movie RS
will offer more horror movies to the target user.
RSs adopted for different purposes depending upon the goal itself. The goal of RSs differs
based on each user’s target aim [4]. For example, a point of interest (POI) recommendation
system mainly considers the user’s preference expressed based on his/her history of visits
to generate recommendations.
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1.1 Research Motivation

In recent years, the emergence of a vast number of Location-Based Social Networks
(LBSNs), or online networks with location-based features, such as Foursquare, Flickr,
Facebook, Google+, and others, has profoundly altered our vision of environment and how
we communicate with it, thanks to the growth of Web 2.0 [5]. An LBSN is a form of online
social network in which the content is linked to our external environment. As a result, our
external environment and location have a significant effect on the framework of LBSNs,
as well as the quality of services offered to consumers and how their personal data are
processed. Indeed, LBSNs provide their users with a range of location-based applications,
such as transportation, weather, news, and recommendation services. These services are
particularly appealing to users who are dealing with a new or unfamiliar environment.
Consequently, these networks have created an increasing number of innovations, technolo-
gies, and services to assist their users in exploring and discovering this new environment.
Furthermore, since users have become familiar with connecting with web resources, a new
knowledge necessity has emerged.
In reality, the amount of personal data and resources exchanged on these LBSNs has
exploded in recent years [6]. On Flickr, for example, there are more than 112 million
users who generate over 3.5 million images every day [7]. As a result of the information
overload [8], users are finding it more difficult to locate what they are searching for in
their surroundings. For instance, a consumer searching for a restaurant in a foreign country
could become overwhelmed by the overwhelming amount of available data. Thus, over the
last few years, a variety of POI search engines have been created to meet this need.
RSs have emerged as an important technology for addressing the issue of information
overload. The main goal of RS is to offer assistance to users who need help to browse,
rating, or sorting the huge amount of data available on LBSNs. These systems are also
commonly used by online business channels in a broad range of contexts, including videos
on YouTube, Vimeo, movies on Netflix, Amazon prime, music on Spotify, Soundcloud
and POI can be found using applications like Foursquare. These sites are typically defined
by the vast amounts of shared data they manage, i.e. 350 million users on Twitter send
millions of messages every day, Amazon sells 350 million items, Spotify has 70 million
songs, and Netflix has more than 4,000 movies [9, 10]. The user who wants to browse,
scan or pick relevant online content faces severe functional limitations because of the large
number of candidate items to investigate. Indeed, without an effective online assistant,
navigating in these vast spaces becomes difficult. As a result, providing highly reliable
recommendation lists and effective screening methods become a top priority in this context.
Many RSs algorithms focus on the consistency that does not respond to the needs of users.
High accuracy means that the RS has a higher power of prediction but may lack the ability
to recommend unexpected and novel items. To gain consistency/accuracy, RSs recom-
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mend items relevant to the user’s taste/profile [11, 12]. In this report, we are interested
in serendipitous POI RSs which suggests relevant and unexpected items, but we will
discuss the impact of novelty metric as well. Following are the challenges for generating
serendipitous recommendations:

� There is no mutual agreement on the definition of serendipity in RSs and many
definitions have been proposed by former approaches [11, 13].

� It is difficult to understand why users consider an item as serendipitous [14].
� Serendipitous items are not frequent as relevant items since they must be relevant,

unexpected, and novel at the same time [11].

Since there is no mutual agreement on the definition of serendipity in RSs domain, in this
work we are focusing on the following research questions:

� How can we define serendipity in the context of POI RS?
� How can it be used to improve the quality of POI recommendations?
� And how does serendipity affect the precision, recall, f-measure, coverage, diversity,

and fidelity in the POI RS domain?

1.2 Contributions

We have designed a POI RS with a new approach using the concept of serendipity. For
that, we have designed algorithms for the metrics relevance, unexpectedness, and novelty.
After implementing these algorithms, we used accuracy metrics including precision, recall,
and f-measure, as well as beyond accuracy metrics like the coverage, ILDGeo, diversity,
and fidelity to evaluate the proposed RS.

1.3 Structure of the Thesis

Our thesis is structured as follows:

� Introduction: Our thesis is introduced in the first chapter. It details the research
motivation and the major goals of our work. It also summarizes the contributions
that we achieved throughout this thesis.

� Basic Concepts: The second chapter summarizes POI RS and its challenges and
sheds light on different POI RSs. Then, it concludes by describing the concept of
serendipity in the RS area.

� State of the art: The third chapter discusses the state-of-the-art of POI RSs. Then,

3



it describes serendipity related work. In the end, it summarizes the models we have
used to compare our proposed system.

� Approach: This chapter describes our approach to serendipity in the context of POI
RS. Then, it details the evaluation metrics we have used to measure the quality of
our result that we compare with baseline models.

� Conclusion and Future Work: This chapter summarizes our work with detailed
conclusions and discusses the future related work in serendipity-based POI RS.

4



2. Basic Concepts

2.1 Introduction

Foursquare and Facebook are two examples of location-based social networks (LBSNs)
who have emerged recently. When people visit a point of interest (POI), including a gym,
cafe, hotel, shopping center, or coffee shop, these web services enable them to check-in
and express their interactions with friends. These networks are expanding at a rapid pace.
Hence comes a need for a POI RS.
In this chapter we provide a POI RS overview, algorithms classification, some challenges
in RS, different POI RSs. In the end it will discuss the concept of serendipity in the context
of RSs.

2.2 POI-based Recommender Systems Overview

The primary goal of RSs is to provide users relevant suggestions [15]. Most of the cases,
items are supposed to be brand new or at the very least, items that he/she will not locate
on their own. These items are supposed to correspond to the user’s taste and thus lead
to a good user experience. That is why RSs use personalized analysis of a wide range of
options. Uniquely in contrast to an information retrieval system in which the user explores
the available space of options by straightforward queries, the RS does not know explicitly
what the user truly needs. As an outcome, there is no straightforward query, the RS will
only provide recommendations based on the user’s previous interactions with the system.
Due to this very reason RS gathers and examines all previous user’s preferences to foresee
future preferences.
Below are the definitions of terms and expression we used in the thesis:

Users: A user is someone who is registered on the LSBN. Each user have a profile
described by the collection of all his/her previous check-ins.
Point-of-Interest: A point-of-interest is a uniquely identified site or location that is
associated with a specific activity. In our thesis, a location is described by its latitude,
longitude, and category tag. The terms point-of-interest, item and location are used
interchangeably in this study to refer to the same thing.
Check-in: A check-in is the behavior of a user who interacted with (or visited) the POI.
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2.2.1 Algorithms Classification

As described above, different items are recommended by personalized algorithms based on
the specific user. It’s possible that two users would get separate suggestions [3].
RSs are now commonly used for a variety of reasons. Increased turnover is the target of
services which host RSs [16]. The methods for achieving the goal may vary depending on
the implementation scenario. Since the hosting service’s profit is dependent on user sales,
one RS can recommend very cheap or costly items over interesting ones to a user. Another
RS such as Telia or Elisa sell subscriptions, will recommend interesting items to the user
so that user will visit again. Hence the goal of RS will vary according to the need of the
business [4].
Filtering or retrieval techniques are often used to produce recommendations. The idea
behind these techniques is to avoid unnecessary information in the aspect of information
filtering (IF) or from databases in the case of information retrieval (IR).” Unwanted”
information refers to the elements that are the least applicable to the target user in the
context of recommendation. IF/IR-based suggestion methods take advantage of the
presumption that user interests and desires are related. A user is expected to choose
what other related users have selected in the past based on this premise. As a result,
the most intuitive approach is to gather information about user interests and compare
resemblances between user’s profiles, then use the established interest of related users to
create a prediction for the specific user. One of the most common classification emphases
on the utilization of users, items, and system interaction and divides algorithms into three
types: content-based, collaborative, and hybrid filtering, which will be discussed next. An
hierarchy of recommendation algorithm is given in fig 1.

Content-Based Filtering: Content-based algorithms (CB) attempt to match a user’s

Figure 1. Classes of Recommendation Algorithms [9].

profile with items characteristics. This is accomplished in two stages. First, the model
learns the tastes of the user’s based on the user’s previous history. This results in the
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portrayal of a user’s profile. After that it will rank the items that are most related to
the items that the user previously enjoyed [17]. This requires having a common item
representation for all items. This requires having a common item representation for all
items. In the end, based on this ranked list, the model recommends unexperienced items.
Item profiles and user profiles are typically described in CB filtering by a definition, such
as a collection of keywords or attributes. When it comes to literary texts, for example, the
keywords are the standard words of the vocabulary used inside the texts. Following the
model’s learning of each profile, the items are ranked using a similarity function.
Advantages and shortcomings: Since they are solely focused on content information
and do not need any prior interaction history. There are two benefits of this [18]. The first
CB approach ensures user independence by requiring no input from other users in order to
make a recommendation. CB approaches do not suffer from the cold-start issue as a result
of this: recommendations can be made also for new users or new items. Another benefit is
that the system is more transparent: it’s simple to understand why a decision was made
based solely on other items rather than other users.
CB processes, on the other hand, have three significant drawbacks. They can only suggest
items that are close to those that the consumer has already purchased. These approaches
do not consider non-similar items and therefore appear to suggest the same types of items
repeatedly, resulting in a lack of diversity but probably a lot of repetition. Another issue
is the feature extraction. The features are easy to derive from textual data because they
are simple and natural. This method, however, is not easily solved for complex data, for
example, due to privacy concerns. Furthermore, CB methods are unable to differentiate
between different items with the same features that might have different values for the user
[9].
Collaborative Filtering: As compared to CB methods, collaborative filtering (CF) does
not need item description. The word “collaborative” used here refers to how CF methods
allow suggestions of items selected by the target user’s most related users based solely on
users’ past encounters with the system [19]. The fundamental assumption is that users
who have previously shown similar actions will continue to do so in the future as well.
Therefore, since no extra detail, such as item description, is required, CF models are far
easier to understand than CB models. This broadens the reach of CF methods and makes
them more domain independent. Furthermore, since no personal information is needed,
CF methods provide a higher degree of privacy. Another benefit of CF is that the more
input the model gets, the more reliable the suggestion would be.
As shown in Table 1, collaborative approaches are classified as in two classes in literature
[20] 1) memory-based 2) model-based. Memory-based methods specifically manipulate
all the data in the user-rating matrix, while model-based methods only use a condensed
version of the matrix. Within memory-based methods, neighborhood-based methods
are the most often used: these methods take advantage of similarities between user and

7



item. Model-based systems are better customized, and for each user and item, it creates a
compact model. This involves continuous access to the entire dataset to generate recom-
mendations, which may pose significant problems as data volumes grow. Model-based
methods avoid this issue because they only include a compact data model. One distinc-
tion is that neighborhood-based models are better suited to modeling local correlations,
on the other side model-based approaches are better suited to modeling global relationships.

Table 1. Collaborative filtering classes: Advantage and disadvantages [9].

CF Class Techniques Advantages Shortcoming
Memory-
based

Neighbor-
based

Top-N de-
pending on
the user/item.

Fast and instinctive
implementation.

It is not necessary
to create a new model
when new data is avail-
able.

On small datasets,
provide fast recommen-
dations.

When the amount of data is
sparse, offer a low-quality
recommendation.

Since no user/item-content
model has been developed,
cold-start is an issue.

Scalability problem.

Model-
based

Clustering
Methods

Latent fac-
tors models

Bayesian
Networks

Probabilistic
Modeling

Handle the sparsity
and scalability issues
effectively.

Improve the accu-
racy of prediction.

Make recommenda-
tions more normal and
intuitive.

The cost of creating a model is
generally very high.

Possible to lose any cru-
cial information.

A balance between predic-
tion quality and scalability must
be found.

Hybrid Filtering: Finally, this class combines algorithms from the other two classes.
Based on finding that every model group has advantages and disadvantages; certain
approaches aim to balance the benefits and the drawbacks of various strategies. As a result,
hybrid models incorporate several suggestion approaches and consider both ratings and
attributes of items.
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2.2.2 Challenges

Typically, RS must deal with common issues relating to the consistency, quantity,
anonymity, and protection of data. In the following section, we recommend a brief
overview of these topics.
Sparsity: In general, the number of distinct items suggested by a RS is very large
compared to the total number of registered users. Thus, even the most active user would
be able to consume just a small portion of the available choices. It means that the user
matrix density is very low: the density normally ranges from 0:005% to 1.5% [9]. It is a
significant problem for a RS, which is supposed to make correct suggestions despite such
bad input. This problem is called the sparsity problem.
Scalability: A RS is supposed to provide recommendations as quickly as possible in an
environment where we are becoming more used to real-time communications and instant
access to information. Since RSs are often associated with massive user-item databases
(such as Alibaba, eBay, Facebook, YouTube etc.), they need a lot of computing power
to generate recommendations in real time (a couple of milli-seconds maximum.). This
demand needs the use of scalable approaches and effective data processing. Separating the
learning process (which is performed offline) from the suggestion phase (online) through
latent factors methods is a powerful solution.

Serendipity: Traditional RSs rely on users’ previous behaviors and interests to recommend
new items (e.g., books, places, etc.) to the users. As a result, there is a significant chance
that the recommended items (or almost identical) may have been already appreciated by
the user. When this phenomenon happens, it creates a problem called the serendipity
problem. To improve the recommendations of the recommender systems, we should
not only recommend new and relevant items, but we should endeavor to recommend
significantly different items from what the user already has in their interest space. This
phenomenon of surprising the user with a relevant but unique item is called serendipity. For
example, a user likes the locations which are related to natural scenery. Among millions
of locations, serendipitous POI RS will recommend the relevant and unexpected scenery
locations. And a user may not discover those locations by himself/herself. in this report,
we defined the serendipitous items to be relevant and unexpected to the users and but will
also discuss the impact of novelty metric along with relevance and unexpectedness as well.

2.2.3 Different POI Recommendation Systems

Many recommendation services, for example user recommendation, task recommendation,
and POI recommendation, are offered together in most of LBSN. POI recommendation is
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one of the most difficult problems that has gotten a lot of attention from both academics
and industry because of its business potential [9].
In the most common example, the POI RS receives a request that is solely based on the
user’s history. However, there are many more complex sub-problems that typically depend
on side knowledge to accomplish a similar task. In the following section, we will go
through related activities.
Next POI recommendation: The user’s inquiry in this situation is often influenced by the
user’s current position. This problem’s aim is to generate recommendations for the position
and location of the current user. This means, the system will take the visit sequences
into consideration [20]. Most current solutions to this issue, on the other hand, rely on
techniques and methods from traditional POI recommendation.
POI Itinerary Recommendation: Many methods have been suggested for recommending
a list of POIs that are subject to a time and/or financial budget. This is what the authors of
[21] looked into: they added two strong restraints to the NP-hard optimal route problem to
come up with a personalized approach. The authors in [22] suggest using a random walk
approach to optimize user’s touristic interactions between POI.
Time aware recommender system: The query that is obtained by the RS in this issue
solely depends on the user’s history. As with the previous challenge, the recommendation
must consider how user expectations change over time. To model temporal control, the
authors suggest a user-time-POI cube [23].

2.3 Concept of Serendipity

Serendipity is a complex phenomenon to research since it has an emotional dimension [24,
25]. Since serendipitous experiences are uncommon, it is difficult to describe serendipity
in RSs, and what kinds of items are serendipitous and why [26].
Serendipity has long been regarded as one of the most difficult terms to translate. Serendip-
ity is described as "the faculty of making fortunate discoveries by accident”, according to
the dictionary [27]. The term "discovery" refers to the novelty of serendipitous experiences,
whereas "fortunate" implies that the discovery should be relevant and unexpected.

2.3.1 Serendipity definitions

Here are some concepts in the relevant works on serendipity.

� Serendipity represents the "unusualness" or "surprise" of recommendations [28].
� Serendipity is the quality of being both "unexpected" and "useful" [29].
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For two factors, increasing serendipity reduces precision in general. First, users are
most likely to prefer things that are similar to what they already like, so many items are
useless outside of their profiles. Second, considering the number of unpopular items [4]
of poor quality, serendipity would probably lead to a rise in the number of items that are
irrelevant/useless. As described before, in this report, we defined the serendipitous items
to be relevant and unexpected to the users and but will also discuss the impact of novelty
metric along with relevance and unexpectedness as well.

2.3.2 Serendipity and recommender systems

Various concepts of serendipity have been suggested in the RS. According to these concepts
[30, 31], serendipity in recommender systems is described as the interestingness of items
and the surprise experienced by users when they receive unexpected recommendations.
As a result, in our thesis, we define serendipitous items by relevant and unexpected ones
to the users, but will also discuss the impact of novelty on serendipity as well. Though,
relevance is usually measured in terms of how well a recommendation matches the user’s
profile, determining the unexpectedness of a recommendation takes time. In the case of
the location recommender system, relevant recommendations could be natural scenery
locations which are similar to what the user has already visited but unexpected locations
will be those which surprise or catch user attention and the user may not discover those
locations on his/ her own.
To clarify the adopted meaning of serendipity, it is important to distinguish it from similar
concepts such as novelty and diversity.
The novelty of a knowledge is how new/novel is from what a person or community has
previously used. If a system that suggests an unfamiliar item, which a user might not find
on his/her own, to the active user, it’s considered a novelty [31].
The variety found in a list of recommendations is represented by diversity. Diversification
methods are commonly used to eliminate homogeneous lists, on which all the recom-
mended items are very similar to one another. If the user needs something different from
the standard, this will lower the overall output of the recommendation list because none
of the alternate recommendations would be liked. While diversity is not the same as
serendipity, there is a connection between the two concepts in the sense that presenting a
diverse list to the user will encourage unexpectedness [32].
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2.4 Conclusion

The purpose of RSs is to provide useful recommendations. In the context of POI RSs, its
approach has its own challenges and drawbacks. Different state-of-the-art methods will be
presented in the next chapter.
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3. State of the Art

3.1 Introduction

In this chapter, we start by discussing several start-of-the-art POI-related works in the
following section. Next, we overview serendipity related work in sub-section 3.3. Finally,
in sub-section 3.4, we summarize the baseline methods we selected to compare our results.

3.2 POI Related Work

The exponential growth of Location-based Social Networks (LBSNs), offers an excellent
opportunity to meet the high requirement for personalized Point-of-Interest (POI) RSs.
One such model SAE-NAD is proposed by [33], composed of a neighbor-aware decoder
(NAD) and a self-attentive encoder (SAE), as a new auto-encoder-based model for learning
nonlinear user-POI relations. Authors [33] proposed a neighbor-aware decoder (NAD)
that uses the inner product of POI embeddings and the radial basis function (RBF) kernel
to increase user’s reachability on identical and nearby neighbors of checked-in POIs.
Experiments have shown that this model outperforms several state-of-the-art baseline
models.
Since it’s difficult and important for recommendation systems to model user’s diverse
preferences based on their past behaviors. To make recommendations, previous approaches
used sequential neural networks to encode user’s experiences from left to right into
hidden representations. Regardless of their efficacy, authors of this paper [34] claim
that left-to-right unidirectional models are sub-optimal because of limitations such as
a) The power of hidden representation is limited by unidirectional architecture in the
user’s action sequences b) Sometimes they assume a rigidly ordered, not necessarily
realistic, sequence. They proposed BERT4Rec, a sequential recommendation model that
models user activity sequences using deep bidirectional self-attention. They use the Cloze
objective to the sequential recommendation to prevent information leakage and efficiently
train the bidirectional model, predicting random masked items in the series by jointly
conditioning on their left and right sense [34]. By having each item in past user behaviors
merge information on both the right and the left, they learn a two-directional model of
representation to make suggestions. After extensive testing, their model consistently
outperforms various state-of-the-art sequential models.
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Contextual knowledge, both spatial and temporal, is critical for understanding user be-
havior and prediction of user’s action. With the increasing capacity to collect data, more
temporal and spatial contextual data is collected in systems, making the location pre-
diction issue more relevant and feasible. Authors of this paper [35] pointed out that
some works suggested to solve this problem but each has its own constraints. They found
out that Factorizing Personalized Markov Chain (FPMC) is built on the assumption of
strong independence among different factors, which limits its performance. In predicting
future actions, Tensor Factorization (TF) faces the cold start problem. When compared
to PFMC and TF, the Recurrent Neural Networks (RNN) model performs well, but both
approaches struggle to model continuous-time intervals and geographic distance. They
extend RNN and propose Spatial-Temporal Recurrent Neural Networks as a fresh approach
(ST-RNN) [35]. With time-specific transients in each layer, ST-RNN can model local
temporal and spatial contexts. ST-RNN outperforms state-of-the-art approaches and can
model spatial and temporal contexts well, according to experimental findings on real
datasets.
In recent years, the focus of recommender system algorithm research has moved away
from matrix factorization techniques and their latent factor models and toward neural
approaches. However, some newer neural approaches integrate latent factor models into
more complex network architectures, owing to their proven strength. Authors in this paper
[36] mention that several researchers recently proposed a specific idea: consider potential
correlations between latent factors, i.e., embeddings, by applying convolutions over the
user-item interaction map. Contrary to what they stated in these articles, such interaction
maps do not share the properties of images where Convolutional Neural Networks (CNNs)
are particularly useful. Authors showed in [36] that the asserted improvements stated in the
literature cannot be attributed to CNNs’ ability to model embedding correlations, as argued
in the original articles, through analytical considerations and empirical evaluations. Besi,
additional performance evaluations show that all the recently examined CNN-based models
outperform existing non-neural machine learning techniques or traditional nearest-neighbor
approaches. On a broader level, their findings highlight major methodological issues in
recommender system research.
As mentioned at the start, the Points of Interest (POIs) recommendation has become a
vital challenge in assisting users in exploring their area/environment. Given the absence
of check-in data, geographical data provides an incentive to increase the accuracy of POI
recommendations. In [37], the authors mentioned matrix factorization methods which
provide efficient models for POI recommendation. However, in order to increase the accu-
racy of POI advisory processes, two major issues must be tackled. First, using spatial data
to capture both the user’s own geographic profile and the geographic popularity of a site.
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The second step is to use the geographical model in the matrix factorization methods. To
resolve these issues, this paper [37] proposes a POI recommendation approach focused on
a Local Geographical Model that takes into account both users’ and locations’ perspectives.
To that end, the authors suggested a geographical model that takes into account the user’s
primary area of activity as well as the importance of and position within that area. The
suggested local geographical model is then merged with the Logistic Matrix Factorization
to increase POI recommendation accuracy. The suggested method outperforms other
state-of-the-art POI recommendation approaches, according to experimental findings.

3.3 Serendipity Related Work

Graph-based techniques are gaining popularity because they allow for the capturing of
transitive associations between nodes (items), facilitating the discovery of correlations
[38]. The authors in[39] used a Random Walk model [40] called Random Walk with
Restarts (RWR) as a recommendation technique for finding serendipitous items, which
was improved by KI. Random Walk with Restarts Enhanced by Knowledge Infusion was
the name given to the resulting algorithm (RWR-KI). To predict user preferences, Random
Walk models use a correlation graph between items. The edges of the correlation graph
show the degree of correlation between items, while the nodes correspond to the items. Fill
in each entry with the correlation index between item pairs to create a correlation matrix.
The correlation index in [41] denotes the number of users who co-rated the item pair,
while the correlation index in [42] refers to the similarity of content between items. In the
random walk model, given a correlation graph and a starting point, such as a user-favorite
item, a neighbor of the starting point is randomly selected for a transition; then, a neighbor
of this point is recursively selected at random for a new transition. There is a chance of
returning to the starting node at each stage.

Building the correlation matrix using knowledge infusion: The idea for I is to use KI’s
keywords to measure the index of similarity between I and other items within the collection.
The authors used a content-based model where each item I in n-dimensional function space
is interpreted as a vector [43].
The vocabulary of the item set is the function space, which is composed of keywords
derived from item descriptions. For a query q, a ranking-based function is adapted, which
is based on a probabilistic retrieval system [44].

The process (the algorithm is shown in fig 2), for constructing the correlation matrix is
divided into three steps:

1. For item I j (step 5), choose the most representative features (keywords).
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Figure 2. Building the correlation matrix [39].

2. Using KI to get new keywords linked to I j by supplying such keywords as hints
(step 6).

3. Ij-related items are retrieved with the KI providing new keywords to enter the ranking
function (steps 7–10).

The correlation matrix is filled in using the scores calculated by the ranking function.
For the evaluation, the authors have defined and used the metrics as below:
Relevance: If the given rating by user u on item i is higher than the average value of
all ratings provided by u, then item i applies to a user u [39]. The following metric, as
shown below, describes the importance of the recommendation list L of size N, as the ratio
between the size of the subset of L that includes related objects and the size of L [39].

Relevance@N =
∑i∈L R(i)

N
(3.1)

R(i) =

{
1 if i is relevant
0 otherwise

(3.2)

Unexpectedness: on the other hand, can be characterized independently of the user using
certain common prediction criteria [45] such as popularity and item average ranking.
The ratio between the number of users who ranked i and the total number of users in
the dataset is used to determine the item’s popularity. If the item i’s popularity score is
lower than the average popularity measured over all items in the dataset, it is unexpected,
according to this criterion. The other criteria consider the ratings that have been given to
each item. The average user rating of Item i in the data set is the mean rating of the item.
Under this definition, the short head contains items with an average rating higher than the
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average rating calculated for all items in the dataset, whilst the long tail includes items
with an average rating lower than the average, i.e. items that are less preferred by users
and are most often unexpected. They discovered that 69% of items are unexpected while
using popularity, while the number of unexpected items drops to 44% when using average
rating [39]. If a criterion dependent on the rating is used, then this ensures it will be more
difficult to recommend unexpected items.
We define the unexpected metric N of size L, as the ratio of the size of the subset of L that
includes only unexpected items to the size of L [39].

Unexpectedness@N =
∑i∈LU(i)

N
(3.3)

U(i) =

{
1 if i is relevant
0 otherwise

(3.4)

Serendipity: The serendipity metric N of size L is defined below, as the ratio of the subset
size L that includes serendipitous items, those items will be both relevant and unexpected
at the same time [39].

Serendipity@N =
∑i∈L S(i)

N
(3.5)

S(i) =

{
1 if i is relevant
0 otherwise

(3.6)

The serendipity metric will contain both relevant and unexpected items. Authors of this
paper [39] use serendipity to evaluable whether the recommendation list is serendipitous.
However, to the best of our knowledge and research, we didn’t find any approach which
uses the concept of serendipity to generate recommendations.

3.4 Overview of Important Models

This section will give an overview of different baseline models we used to compare our
results.

3.4.1 STACP

Authors [46] proposed a model STACP, a Spatio-Temporal Activity Center POI recom-
mendation model that incorporates both user preferences and context. They build two
preference functions for each user in the user’s preference model to account for both
static and temporal preferences. Furthermore, the influence of geographical and temporal
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Figure 3. User’s spatio-temporal activity centers [46].

knowledge is combined in the user’s context model.
Let the set of users be U = u1,u2, ...,um, and the set of POIs be L = l1, l2, ..., ln. Let
m and n represent the number of users and points of interest, respectively. The user’s
visit-frequency can then be encoded in P(m∗n), with entries Ru,l ∈ P representing user
u ∈U’s previous POI check-ins to POI l ∈ L [46].

Spatio-Temporal Activity Centers

As shown in fig 3 that Users’ actions are centered, these centers vary depending on the
temporal information’s periodicity (see Figures 3 (b) and 3 (c)). [46] mentioned that this
phenomenon highlights a flaw in previous geographical and temporal models, which failed
to account for both geographical and temporal influences. The second feature of user
behavior, as seen in fig 3, is that users prefer to visit POIs that are close to their present
locations. They suggested the Spatio-temporal activity-centers model by combining these
two characteristics to model users’ check-in behavior. After that, given the temporal
multi-center set Cu,t of user u in time t, it will calculate the score of user u, visiting a POI l.
The multiplication of two terms is used to calculate each center. In the first term, the score
of the POI l that belongs to the center Cu,t is determined by the distance between the POI l
and the center Cu,t . The effect of check-in frequency Cu,t on the center Cu,t is denoted by
the second term.
After that, the multi-center activity function is defined as a linear interpolation applied to
two temporal states: working time and leisure time. We can describe other temporal states
using the model. It may use it to model weekday, weekend, weekly, or regular trends.

Activity Center Allocation

The users’ behaviors, as previously mentioned, follow a center-based pattern. Depending
on the temporal state, these centers vary. They proposed a temporal multi-center clustering
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algorithm among each user’s check-ins based on the Pareto principle [47] to model users’
actions in a Spatio-temporal manner since the most visited POIs only account for a few
users. First, it ranks all POIs Lu by check-in frequency for each user u and temporal state t.
Then, to establish an area, it chooses the most visited POI and combines it with all other
visited POIs within d kilometers of it. Let Nu represent the total number of check-ins for
user u, r represent the new region, and Nr,u represent the total number of check-ins for
user u’s current area. It uses a threshold of α to determine whether a center should apply to
a user’s profile. If (Nr,u/Nu)> α , then a new center is proposed. This process is repeated
until all the user u’s checked-in POIs have been covered.

Static and Temporal User’s Preferences

They used Matrix Factorization (MF) in two ways to model the user’s preferences based
on check-in data: a static model of a user preference (SMP) and a temporal model of a
user preference (TMP). To model the static behavior of users, SMP uses the conventional
matrix factorization model. Because of frequency matrix R, two low-rank metrics are the
objective of MF-based recommendation. Then, similar to a POI l, it calculated a predicted
recommendation score for a user u

To model users’ temporal behavior in TMP, in accordance with the various time states T,
the initial user POI frequency matrix R was subdivided into t sub-matrices, as inspired by
[48]. Then, only check-in activity occurring at the corresponding time status is used with
every submatrix. For instance, in this [46], they used t = 2 to represent working time and
leisure time.

3.4.2 LGLMFs

Local Geographical based Logistic Matrix Factorization is the proposed POI recommenda-
tion process (LGLMF) [37]. LGLMF is divided into two phases. A Local Geographical
Model (LGM) is being proposed in the first phase, focused on users as well as on locations.
They then merged the LGM with a Logistic Matrix Factorization (LMF) approach in the
second phase. To predict the preferences of users, the factorization model of the fused
matrix is used.

Local Geographical Model

Let the set of users be U = u1,u2. . . . ,um, and the set of POIs P = p1, p2, . . . , pn. Then,
with m users and n POIs, let C be a user-POI check-in frequency matrix. The value Cu,p

C displays the user u’s check-in frequency at the POI p. Following that, the problem of
personalized top-N POI recommendation is formally described as follows.
Given a user-POI check-in frequency matrix C and a set of POIs P that have been visited
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Figure 4. Local geographical Model [37].

by the user u, identify X = p1, p−2, ..., pn, a set of POIs ordered based on the probability
of a user’s visit in the future such that |X |6 N and X ∩Pu = φ .
The proposed spatial model accounts for both user and location geographical influences. We
can model geographic details from the user’s perspective by considering their activity area.
From the position point of view, the number of check-ins made in the neighbor of a selected
POI can be calculated as geographical information. As a result, a location’s agreeability in
relation to its neighbors can be determined. The proposed LGM’s pseudocode is shown in
fig 4. The algorithm is made up of three internal loops that model geographical data. In
both the first and second loop, the area of a user’s model from (lines 2–5), and the third
loop, taking into consideration neighborhood POI visits (lines 6–10), compute the chance
of a user preferring POIs [37]. It will find each user’s high activity location (which may
be the user’s residence area) in order to model the user’s area. From the user’s perspective
(user’s high activity region), it will look for unvisited POIs near that user, and α shows
the range in kilometers line (5). Furthermore, for each user based on in-region POI, the
effect of the checked-in neighboring POIs whose distance from unvisited POIs is less
than γ meters (location’s perspective) will be considered (lines 7-10). Line 10 represents
the locality of POI, where Lup stands for the number of u visited neighbor p and | Pu|
represents the length of POIs user u has visited.
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Constructing the Matrix Factorization Model

Considering the existing local geographical model (LGM) as additional contextual details,
a novel matrix factorization approach based on logistic Matrix factorization (LMF) is
proposed. Two low-rank matrices found by the MF-based recommendation, include the
user-factors matrix V and the item-factors matrix L, whose inner product approximates
matrix C. Each V row represents a user’s vector of behaviors, while each L row represents
the act of item properties.
Assume that eu,p is the number of times user u has checked in on POI p (user u prefers
POI p), and that V and L are two latent variables for users and POIs, respectively. Then, it
calculates the probability that the user u preference on the POI p.
Finally, the proposed LGM is integrated into the matrix factorization model which will
calculate the probability of user u who will visit POI p. Using the proposed probability
function, we can give a list of POI recommendations for each user. It’s worth noting that,
unlike the LMF approach, the proposed LGLMF model incorporates contextual data into
the recommendation process by combining the proposed LGM [37].

3.4.3 Rank-GeoFM

The proposed ranking-based factorization approach for POI recommendation is presented
in this method [49]. First, it will introduce how to optimize the POI recommendation
problem by first planning it as a rating objective function. Finally, it applies the model to
the recommendation of time-aware POIs.

Ranking Based Geographical Factorization

Preference Ranking Objective Function: it will begin by defining an aim function for
POI recommendation. Because of the sparsity of check-in data, authors have designed
the aim function by fitting the user’s preference rankings for POIs, rather than fitting
user check-in frequencies, as conventional factorization methods do. [49] believe that the
higher the check-in frequency, the more a user prefers the POI; and that unvisited POIs are
less favored than those that have been visited. They developed a method to calculate the
incompatibility between the inferred rankings and the rankings generated by a factorization
model based on their intuition. They calculated the incompatibility in particular for a given
user u and POI l. After that, it counts the number of POIs that, according to the check-in
results, should be ranked lower than l for user u, but are ranked higher by the factorization
model. The number of POIs that are incorrectly ranked higher than l for user u is then
measured, and this is referred to as "ranking incompatibility" [49].
Then, for learning a factorization model, they designed a preference ranking objective
function. They suggested the objective function for minimizing, which requires a function
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to turn the ranking incompatibility with a loss since a successful factorization approach can
minimize the ranking incompatibility as often as possible. It will add up all the losses for all
the user-POI pairs to calculate the total loss. The number of losses at each rank point (from
1 to r) for the incorrectly-ranked POIs is then calculated, with each position i was given a
loss 1/i. One advantage of this objective function is that it can deal with data sparsity. All
the other POIs, which are often unvisited POIs, decide the rating incompatibility of a POI l
for a consumer (because a user often visits very few POIs). As a result, although they are
overlooked in traditional MF, the unvisited POIs contribute to learning the model. As a
result, it solves the sparsity issue of check-in data by using the objective function rather
than directly fitting zero check-ins.
Geographical Factorization Model: This subsection will explain a method that is used
for calculating the recommendation score using geographical factorization. This factor-
ization model can identify a user’s interests through POIs. Furthermore, it considers the
impact of the geographical background on POI recommendations. On the one hand, they
use matrices to parametrize the latent factors of users and POIs in a dimensional space.
They used these in the same way as conventional matrix factorization approaches are used
to model the user’s own preferences. It implements an additional latent factor matrix and
uses it to model the interaction between users and POIs in order to account for geographic
influence. It considers per POI l k-nearest neighbors. It assumes that users would visit
nearby POIs. Since each row of the matrix reflects the effect probabilities, it will be
normalized.
Assume that the parameters of the geographical factorization model have already been

learned. It calculates a recommendation score for user u and POI l. Then it calculates
the user preference score and also calculates the geographical impact score, which indi-
cates how much a user likes a POI because of its surroundings. It constrains the latent
factors of our model into a ball, which acts as a regularizer [50], to avoid the over-fitting
problem. They constrained the latent factors of different parameters into a small ball with
radius C and αC. To balance the contributions of user preference and geographical effect
ratings, it implements the hyper-parameter α . As a result, balancing the contributions of
user-preference and geographical effect scores to the final recommendation score can be
achieved by tuning the hyperparameter.
The proposed Ranking based Geographical Factorization Method (Rank-GeoFM) is shown
in fig 5. It iterates through all the user-POI check-in pairs in the algorithm, updating the
latent factors until the procedure converges (lines 3-16). The sampling process is first per-
formed in each iteration, given a user-POI pair, in order to estimate ranking incompatibility
and get one POI sample (lines 6-8). Using the stochastic gradient descent (SGD) method,
it updates the related latent factors based on the estimate of ranking incompatibility and
the sampled POI (lines 9-15). The revised latent factors are checked for norm constraints,
and those that violate the constraints are predicted (line 16).
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Figure 5. Rank-GeoFM algorithm [49].

Time-aware POI Recommendations: This section shows how to easily generalize this
approach to include different types of contexts. It considers time-aware POI recommenda-
tions.
It extends two additional terms to capture the temporal component in order to measure the
recommendation score. One term is temporal popularity score, which shows whether this
POI is common during the specified time period. The other term is the temporal effect
score. Thence, the popularity of a POI during a onetime slot is often affected by other
time slots that are nearby. Aside from the two additional concepts, it implements three
more latent factor matrices. It parameterized the latent factors of time slots as a matrix T,
as well as two additional latent factor matrices L2 and L3 for POIs, where L2 is used to
model interactions with time slots for temporal popularity score, and L3 is used to model
interactions with near or related time slots for temporal influence score. It also creates a
matrix M and normalizes M into a matrix with each row representing a probability vector.
They calculate the recommendation score of POI l given a user u and a time slot t.
To prevent over-fitting, norm constraints are applied, similar to the POI-user environment.
The algorithm, as shown in fig 5, can easily be modified to suggest POIs that are time-aware.
To update the latent factors, it iterates over all user-time-POI tuples.

23



3.5 Conclusion

There are different state of the art models presented in this chapter. For example, a novel
model STACP which jointly models the geographical and temporal influence of the user’s
check-in behavior along with user’s temporal information and user’s preference on POIs
and it works well in large datasets. In contrast, a novel LGLMF model considers both
users and locations point of view of geographical information. We also discuss the ranking
based factorization method called Rank-GeoFM which learns the factorization by fitting
the users preference ranking for POIs and also how this algorithm can be generalized for
time-aware POI RS.
This thesis presents a novel serendipity-based POI RS algorithm to give user’s relevant
and unexpected recommendations and to evaluate our model we used 7 different metrics.
A detailed introduction of our proposed model is given in the following section.
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4. A Serendipity-based Algorithm for POI Rec-
ommendation

4.1 General Idea

In this chapter, we propose a novel Serendipity-based point of interest recommendation
system which aims to recommend relevant and unexpected POI. For this, we design two
metrics, relevance, and unexpectedness. For each user, the system measures the similarity
among other users who have similar tastes and extract uncommon POIs, which in this
case apply to the user. As for the unexpectedness, for each user, it considers its past and
relevant POIs and measures the probability of which we rarely visited together POIs. We
consider the remaining POIs serendipitous to the user. However, to analyze the impact of
the novelty component, we include it in the serendipity definition. We compare the got
results based on the 2 components serendipity algorithm and the three components one.
We discuss all the details about our approach in this chapter.

4.2 Serendipity-based Recommendation Approach

In this section, a detailed approach to the serendipity-based recommendation is discussed
with metrics Relevance, Unexpectedness, and Novelty.
First, we split the dataset into a training and testing set with a ratio of 70 and 30%. Then
make a pair list of users and his/her visited locations. After that, we used defined relevance
metrics.
Relevance: Serendipity can be assessed in a variety of ways. As for relevance, one of the
serendipity’s components. In this paper, we define relevance in the Algorithm 1.

The Relevance algorithm, as shown below, starts by using each user in the test set and
checks if user u exists in the training set (line 2) then extracts its visited POIs line (line 3).
After that, if loop trough for each user, locations pair (k, visited locations) in the training
set (line 4) and put constraint if both users are not same (line 5) then extract the common
and uncommon locations between them and if the length of common locations >= α

then if will recommend all the uncommon locations to that user u (line 6-9). Based on the
factor α , the relevance list will vary.
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Algorithm 1: Relevance
1- for each user u in test_set do

2- if u in training_set then
3- Extract visited_locations of u
4- for k, l in training_pair do

5- if if k != u then
6- Extract Common_Locs of user u and k
7- Extract uncommon_locs of user k
8- if len(common_locs) >= α and len(uncommon_locs)!= 0 then

9- Relevant_List of locations for each user
end

end
end

end
end

Unexpectedness: Serendipity, according to Kaminskas and Bridge, has two components:
unexpectedness and significance [51]. Unprecedentedness, according to the authors [38],
represents how dissimilar a suggested item is to a user profile. Kaminskas and Bridge
proposed two pair-wise similarity measures to quantify unexpectedness: point-wise mutual
knowledge and content-based similarity. Based on the number of users, who have visited
both items and each item separately, point-wise mutual knowledge, defined in Equation
4.1, shows how similar two items are [51].

PMI(i, j) =
log2

p(i, j))
p(i)p( j)

−log2 p(i, j)
(4.1)

Where p(i) is the probability of visiting the item i, and p(i, j) is the probability of visiting
the items i and j, together. PMI value ranges from−1 to 1, where−1 shows that two items
never visited together and 1 shows that two items i, j are visited together. Since we want
the items to be unexpected, it will extract the items which are in the range PMI >=−1
and PMI < 0. Algorithm 2 is used for unexpectedness computation.
From line-1, it will take each user u in the test set and check if it exists in the training set
and extracts visited locations of u and if that user u exists in the relevant list then extract
its relevant list of locations line (1-5). For each location i in the relevant locations of u, it
will check if i exists in the locations visited by users. Then, it will calculate the probability
of location i denoted as p(i) line (6-7). After that for each visited location j of user u, such
that location i and j are not the same and j exists in the list of locations which are visited
by users, it then calculates p( j) and also the number of users who visited location i and
j together line (8-11). If it is greater than 0 then it will calculate the p(i, j) and its PMI
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Algorithm 2: Unexpectedness
1- for each user u in test_set do

2- if u in training_set then
3- Extract visitedlocations_o f _u
4- if u in Relevant_List then

5- Extract relevant_locations_of_u
6- for r i in relevant_locations do

5- if i in each location_visited_by_users then
6- Extract number_of_users who visited i
7- calculate p(i)
8- for r j in visited_locations_of_u do

9- if i! = j and j in each location_visited_by_users then
10- calculate p(j)
11- calculate users who visited i__ j
12- if len(users who visited i__ j)! = 0 then

13- calculate p(i, j)
14- calculate PMI(i, j)
15- if PMI−1 and PMI <0 then

16- tempList.append(u, i, j, PMI)
end

end
end

end
17- Relevance_Unexpected_List.extend(tempList)
18- templist.clear

end
end

end
end

end
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value with the formula as shown in the equation 4.1 If the PMI >=−1 and PMI < 0 then
it means that locations are never visited together (12-16). Then, it will find unexpected
locations for each relevant location in the list (c.f, Lines 17-18). In the end, the resulting
list will be relevant and unexpected at the same time.
Novelty: The novelty metric was suggested by Vargas and Castells [52]. The metric is
based on a user’s distance from previously consumed items (user profile) [51].

novdist1
va (i,u) = min j∈Iudist(i, j) (4.2)

dist(i, j) = 1− sim(i, j) (4.3)

The distance between items i and j is denoted by dist(i, j), as shown in equation 4.3,
where sim(i, j) denotes any similarity between i and j (sim(i, j) ∈ [0,1]). In our model,
we use the word similarity using spaCy library based on category tags. spaCy model tells
us how two words are close to one another, semantically. If items i and j have higher
similarity close to 1, it means that the distance between i and j is less. So, for novelty, we
put a constraint to check whether the distance >= 0.5, which gives us un-similar items.
Algorithm 3 is used for the novelty computation.
In the Novelty Algorithm 3, it will take each user u in the test set and compare if it exists
in the training set and in Relevanceandunexpected list then extracts the visited locations
of u and relevantandunexpected locations of u (lines 1-4). Then, for each location l in the
relevant_and_unexpected_locations_o f _u, if l does not exist in the visited locations of u
then for each loc c in the visited locations it will extract the tags for both location l and c

(lines 5-10). After that, it will find the semantic similarity between two tags l and c using
the spaCy library and then calculate the distance line (11-12). In the end, it will check if
the distance >= 0.5. So, two locations are not similar, then we add the location l to the
list (lines 13-14). Resulting recommendation list will be relevant, unexpected and novel at
the same time to the user u.

4.3 Experimental Evaluation

4.3.1 Experimental Setup

The hardware and software environment of experiment are shown in Table 2
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Algorithm 3: Novelty
1- for each user u in test_set do

2- if u in training_set and u in Relevance__Unexpected List then
3- Extract visited_locations of u
4- Extract relevant_and_unexpected_locations for u
5- for l in relevant and unexpected locations of u do

6- if l not in visited_locations then
7- for c in visited_locations do

8- if (l in location_tag_list) and (c in location_tag_list) then
9- Extract tag for Location_l
10- Extract tag for Location_c
11- find the similarity using spaCy lib between above

obtained two tags
12- calculate the distance = 1- similarity
13- if distance0.5 then

14- Relevance_Unexpected_&_novel_List.append(u, l)
end

end
end

end
end

end
end

Table 2. System used to run our models

Programming language Python3.7

Software Anaconda (Spyder)

Ram 8 GB

Processor number and frequency i7-9750H 2.60 GHz-4.50 GHz
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4.3.2 Dataset Description

We used two real-world datasets from Flickr Tallinn and New York Foursquare LBSNs.
Tallinn dataset comprises 15,376 check-ins made by 1,853 users on 429 POIs with 13
categories and a sparsity of 98.06%. On the other hand, the New York dataset consists of
227,428 check-ins made by 1,083 users on 38,333 POIs with 250 categories and sparsity
of 99.45%. Every check-in contains a user-id, POI-id, time, geographical coordinates, and
category tag. We split each dataset into 70% and 30% ratio, where the 70% is used for
training purposes, while the remaining 30% is for testing.
As mentioned in chapter 1 that there is no mutual agreement on the definition of serendipity.
So, in this thesis we used metrics relevance and unexpectedness to obtain our results,
however, to see the impact of novelty along with relevance and unexpectedness, we also
got results with novelty metric as well.

4.3.3 Evaluation Metrics

As for evaluation metrics, we used 7 metrics including Precision, Recall, F-measure,
Coverage, ILDGeo, Diversity, and Fidelity.
Among all the recommended POIs we choose the best POIs based on the popularity of each
POI defines as k best POIs. We calculated the results with the value of k = {5,10,15,20}.
The number of positive recommended items divided by the number of actual items known
as recall, while the number of positive recommended items divided by the number of
recommended items known as precision.
The Precision is defined in Equation 4.4 [53].

Precision@k =
1
M ∑

u∈U

∣∣Reclistk
u ∩ActualListu

∣∣∣∣ActualListk
u
∣∣ (4.4)

The Recall is defined in Equation 4.5 [53].

Recall@k =
1
M ∑

u∈U

∣∣Reclistk
u ∩ActualListu

∣∣
|ActualListu|

(4.5)

The F-measure is defined in Equation 4.6 [53] as:

30



F−measure@k = 2∗ Precision@k ∗Recall@k
Precision@k ∗Recall@k

(4.6)

The term "coverage" [54] refers to how well the system covers the entire set of POIs. As
defined in Equation 4.7, the coverage is specified as the percentage of POIs that appear in
all users’ Recommendation lists (Reclist), where Reclist refers to user u’s recommendation
list of length k.

Coverage@k =

∣∣Uu∈U RecListk
u
∣∣

|POI|
(4.7)

For each user, ILDGeo calculates the pair-wise dissimilarity of POIs in the recommendation
list as defined in Equation 4.8 [55]. To calculate the geographical diversity, we measured
the dissimilarity using Equation 4.9.

ILDGeou@k =
∑(i, j)∈RecListk

u
dissim(i, j))∣∣RecListk

u
∣∣∗ (∣∣RecListk

u
∣∣−1)

(4.8)

dissim(i, j) = kmDistance(loci , loc j) (4.9)

where kmDistance is the kilometer distance between two POIs calculated using the
longitude and the latitude.

Diverse categorical aspects are shown by DivCat (c.f. Equation 4.10). It counts the number
of distinct categories included in each user’s recommended list [55]. Since the POIs can be
tagged as the same categories, then Cat is the category to which the POI belongs.

DivCatu@k =
∣∣∣Ui∈ RecListk

u
Cati

∣∣∣ (4.10)

To test the recommendation explainability, the fidelity measure (c.f. Equation 4.11) [56]
is defined as the percentage of explainable items in the recommended list as defined in
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Equation 4.12 [55].

Fidelityu =

∣∣RecListk
u ∩Explainableu

∣∣∣∣RecListk
u
∣∣ (4.11)

Explainableu =Uv∈NeighboruNeighborv (4.12)

Where neighbor u refers to other users who have visited the most common POI. We set
the value of neighbors, in our case the common user locations denoted as α , differently
for each dataset which is shown in the result section. The term "visited" refers to all the
points of interest (POIs) that v has visited. In our case, the relevance list for each user u is
explainable. Hence, in our case, it accounted for max fidelity=1 each time.

4.3.4 Evaluation Results

To evaluate the performance of our model, we used 7 different metrics including f-measure,
recall, precision, coverage, ILDGeo, diversity and fidelity. Three metrics f-measure, recall
and precision, results are shown in the graphs below as Result@k, k ∈ {5,10,15,20}.
We conducted these results using the metrics Relevance and Unexpectedness. The effect
of parameter α , which donates the representation of common locations among users, on
the performance of our model is shown in the rest of this subsection.

Evaluation of Serendipitous Recommendation based on Relevance and Unexpected-
ness

In this subsection, we conducted our experiments on the results got by defining the
serendipity using the relevance and the unexpectedness. Below are the results for the
Tallinn dataset for different values of the parameter α .
Figure 6 shows the performance of our model by varying the parameter α , which defines
the threshold fixed to extract the similar users to the target one based on their common
locations. As described before, the precision measures the number of recommended
items that belong to the actual list [53]. However, the recall measures the number of
recommendations that are made out of all the actual list [53]. The F-measure of the system
represents the harmonic mean of the precision and recall [57]. Initially, when the value
of α = 1 for Result@k = 5, the precision value equal to 0.0567 is considered low as
compared to the recall value equal to 0.1164. Here, the f-measure value was equal to
0.0763. At α = 2 the precision increased to reach 0.0726, the recall decrease to 0.1204,
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and the f-measure has reached 0.0906. Our goal here is to find the optimal value of α

which can be found via the f-measure to balance out both precision and recall. So, when we
set the parameter of graph Results@k = 5 to α = 5, we get the best value of the F-measure
equal to 0.09917 with a precision of 0.1121 and a recall of 0.0888. The same is the case
of Results@10, we get the best value when we set α = 5 to get an f-measure of 0.1034,
a precision equal to 0.0847, and a recall equal to 0.1325. For the graph Result@15, we
obtained optimal values with an f-measure equal to 0.09907, a precision equal to 0.07155,
and a recall value equal to 0.1610. At the last, for Results@20, when α = 5, the f-measure
was equal to 0.0903, when the precision and recall were equal to 0.0607 and 0.1759
respectively.
Figure 7 depicts the performance of our model by varying the value of α for the New

Figure 6. Performance of our model for different values of parameter α [Tallinn dataset].

York dataset. For the graph, Results@5 at α = 4 the got precision is equal to 0.0311
which can be considered quite high as compared to both recall and f-measure equal to
0.0029 and 0.0054 respectively. Nevertheless, our goal is to balance the precision and
recall metrics. By increasing the value of α the values of all the metrics are increasing
as well and we got the best results at value α = 10, with an f-measure equal to 0.0176, a
precision of 0.0481, and a recall equal to 0.0108. For the graph Results@10, the optimal
values are obtained also at α = 10, with an f-measure, a precision, and a recall equal to
0.0196, 0.0383, and 0.01317 respectively. Equally, for the Results@15 and Results@20,
we got the best accuracy values at α = 10.
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Figure 7. Performance of our model for different values of parameter α [New York
dataset].

As we have obtained the optimal values of α = 5 and α = 10 for Tallinn and New York
dataset respectively, we will use the same values on the rest of this chapter for the beyond
accuracy evaluation.
The diversity represents how diverse the recommended items are in terms of their cate-
gories. This measure is calculated by having a union of all the unique categories in the
recommendation lists. As we can see from figure 8, the value of diversity is increasing
with the increase of the value of k. It means that when the recommendation list increases;
it yields users more diverse items to explore.

Figure 8. Comparison of diversity between Tallinn and New York dataset (left to right)

The coverage represents the total number of unique items in the whole recommendation list
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Figure 9. Comparison of Coverage between Tallinn and New York dataset (left to right)

Figure 10. Comparison of ILDGeo between Tallinn and New York dataset (left to right)

for each user. As we can see from figure9, the coverage value is increasing as the value of
k increases. It can be explained by the increase in the item number in the recommendation
list with the value of k. In addition, figure9 (left for Tallinn) has higher coverage than
figure9 (right for New York), because the number of items/POIs is much higher in the New
York dataset.

The ILDGeo metric reflects the average kilometer distance between all the recommended
items. Thus, when the distance is low, the system is more likely to recommend items that
are closer to the users.

From figure 10 (left for Tallinn), the ILDGeo value for k = 5 is 169.47, being the lowest.
So, the recommended locations are close to the users. When the value of k gets increased
k = 10, k = 15, k = 20, the value of ILDGeo also got increased as well 258.53, 275.55,
and 270.07 respectively. However, for figure 10 (right for New York), our approach has
the highest value of ILDGeo with a value of 570.29 for k = 5. With the increase of k

to 10, 15, 20, the value of ILDGeo decreases to 560.64, 550.84, and 542.35 respectively.
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Figure 11. Comparison of Fidelity between Tallinn and New York dataset (left to right)

The behavior of ILDGeo values is different for Tallinn and New York datasets since our
system is recommending items based on relevance and unexpectedness not based on the
geographical location of each item.

The fidelity measure shows how many explainable/relevant items we have in our recom-
mended list. Explainable items are those which are extracted from users based on the
commonality of the visited locations (called relevance in our Relevance algorithm 1). Since
our recommendation list includes only relevant items, the fidelity value of our approach is
always equal to 1 no matter the dataset, as shown in figure11.

Performance Evaluation against Competitor Models

In the following, we perform a comparison of our model with other baseline models for
Tallinn and New York datasets.
As we see from figure 12 (left for Tallinn), our system (Serendipity model) is consistently
performing well in precision as compared to competing models, for k = 5, 10, 15, and 20
with the respective values equal to 0.1121, 0.0847, 0.0715, and 0.0607. It means that our
system is providing more precise recommendation lists as compared to others. Competing
models’ values for k = 5, 10, 15, and 20 are as follows. First, for the Rank-GeoFM
model the values were 0.005423, 0.005552, 0.005552, and 0.005326 respectively. For the
LGLMF model, we obtained the respective values 0.0612, 0.0423, 0.0333, and 0.02788.
Finally, the STACP model’s results were equal to 0.04222, 0.0320, 0.0255, and 0.0214
respectively.
In addition, for the New York dataset, c.f. figure 12 (right for New York), our system is
also performing consistently well as compared to competing models for different values
of k = 5, 10, 15, 20 with the respective values equal 0.0481, 0.0383, 0.0305, and 0.0278.
However, competing model’s values for k = 5, 10, 15, 20 are as follows. For example,
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Figure 12. Comparison of Precision between Tallinn and New York dataset (left to right)

Figure 13. Comparison of recall between Tallinn and New York dataset (left to right)

the Rank-GeoFM approach achieved the respective results equal to 0.001251, 0.001460,
0.001529, and 0.001356. In terms of recall value, figure 13, our system is consistently
improving for graph (left for Tallinn) and gives almost the same recall value as of the
STACP model. Values of recall are 0.088, 0.1325, 0.1610, and 0.1759 for k = 5, 10, 15,
20 respectively. However, competing models’ values for k = 5, 10, 15, 20 are lower. For
example, for the Rank-GeoFM model, the values were 0.011636, 0.022496, 0.036070,
and 0.046361, respectively. However, for the LGLMF model, we got the respective values
0.19005, 0.24855, 0.2837, and 0.3079. Finally, the STACP model’s results were equal to
0.0905, 0.13404, 0.156087, and 0.175198 respectively.
In addition, for New York dataset (c.f. figure 13 (right for New York), our system is
outperforming all the competing models and continuously improving as well. Values of
recall are 0.0108, 0.0131, 0.0138, and 0.0166 for k = 5, 10, 15, 20 respectively. However,
competing models’ values for k = 5, 10, 15, 20 are lower than the one got with our ap-
proach. For example, the Rank-GeoFM achieved, respectively, results equal to 0.000114,
0.000284, 0.000515, and 0.000625 .
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Figure 14. Comparison of f-measure between Tallinn and New York dataset (left to right)

As described before, our goal is not to look only for precision or recall values but is to
balance both metrics and the f-measure gives us that balance. As depicted in figure 14 (left
for Tallinn), our model is performing very well as compared to the competing models. With
the increase of k value, our system gives us the best f-measure values. Values for k = 5, 10,
15, 20 are 0.9917, 0.1034, 0.0990, and 0.0903 respectively. However, competing models’
values for k = 5, 10, 15, 20 are as follows. For example, the Rank-GeoFM model gives the
following respective values 0.0073, 0.0089, 0.0096, and 0.0095. Also, for the LGLMF
model, we obtained the values equal to 0.0925, 0.0723, 0.0596, and 0.0511 respectively.
For figure 14 (right for New York), our model is also performing consistently well as
compared to the competing models. For k = 5, 10, 15, 20 values are 0.0176, 0.01960,
0.0191, and 0.0207 respectively. With the increase of k, the f-measure values are also
increasing. Thence, our system has a better balance between precision and recall. However,
the competing models’ values for k = 5, 10, 15, 20 were worse. For instance, The
LGLMF model f-measure values were equal to 0.00417, 0.00742, 0.00818, and 0.00942
respectively.

As for diversity, that shows how diverse recommendation items are in terms of their
categories, figure 15 (left for Tallinn) proves that our system is continuously improving
in terms of diversity for different values of k. For values of k = 5, 10, 15, and 20, our
approach achieve good diversity results equal to 0.5384, 0.6153, 0.6923, and 0.7692
respectively. However, the best diversity results were given by the Rank-GeoFM model
which achieved a 100% diversity for k = 5, 10, 15, and 20. Furthermore, as sketched in
figure 15 (right for New York), the diversity of our model is continuously increasing as
well. For values of k = 5, 10, 15, 20 values are 0.272, 0.38, 0.488, and 0.572 respectively.
However, for the New York dataset, the competing models’ achieved better results for this
evaluation metric. The best results were obtained with Rank-GeoFM model as well with
the diversity values equal to 0.872, 0.928, 0.944, and 0.952 respectively.
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Figure 15. Comparison of diversity between Tallinn and New York dataset (left to right)

Since our system recommends items that are relevant and unexpected at the same time
without considering their diversity. Items may belong to the same category as other items.
By looking at figure 15, our system is continuously improving in terms of diversity.

For the comparison of the coverage metric results with the competing models, we can
see from figure 16 that the coverage for our model is increasing by incresing k. As the
coverage represents how many POIs our systems have covered among all the POIs. As for
figure 16 (left for Tallinn) k = 5, 10, 15, and 20, our system coverage values are equal to
0.1212, 0.24009, 0.3403, and 0.4009 respectively.
And for figure 16 (right for New York) our model has lowest coverage among competing
models. For values of k = 5 ,10 ,15, and 20, we obtained only 0.00519, 0.0106, 0.0174,
and 0.02431 respectively. However, the Rank-GeoFM model coverage achieved 0.10964,
0.20134, 0.280463, and 0.34922 respectively.
As described before, our system recommends items which are relevant and unexpected at
the same time, it can recommend the same items to multiple users, hence accounting for
lower overall coverage.

As depicted in figure 17 (left for Tallinn), our system has the lowest ILDGeo values for
different k values. It means that our system is recommending items closer to the user as
compared to other models’ ILDGeo values. The lowest the ILGDeo values, the closer the
recommended items are to the user. For values of k = 5, 10, 15, 20 ILGDeo values are
169.47, 258.53, 275.55, and 270.07 respectively.
Moreover, as shown in figure 17 (right for New York), our system has the lowest ILDGeo
values compared to other models for New York dataset too. For example, the highest
ILDGeo values were obtained with the Rank-GeoFM model with respective values equal
to 6304.78, 6408.42, 6375.34, and 6402.80 respectively for k = 5, 10, 15, 20.
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Figure 16. Comparison of coverage between Tallinn and New York dataset (left to right)

Figure 17. Comparison of ILDGeo between Tallinn and New York dataset (left to right)

As shown in figure 18 (left and right), our model has a consistent max fidelity value of 1.0
for both datasets. The reason is that since fidelity tells us the number of relevant items in a
recommended list and sine our system recommends only relevant/unexpected items, the
resulting recommended list is always relevant and unexpected to a user as well. Hence,
accounted for max fidelity.
While observing competing models’ fidelity values, we notice that their values are decreas-
ing.
For example, as seen in figure 18 (left for Tallinn and right for New York), the competing
models’ values for k = 5, 10, 15, and 20. For instance, for New York dataset, the STACP
model fidelity decreased from 0.32781 for k = 5 to reach 0.19699 for k = 20.

Evaluation of Serendipitous Recommendation based on Relevance, Unexpectedness,
and Novelty

In this section, we study the impact of incorporating the novelty metric into the serendipity
definition based on the Tallinn dataset. We use the metric of novelty along with relevance
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Figure 18. Comparison of Fidelity between Tallinn and New York dataset (left to right)

Figure 19. Performance of our model by including the metrics (Relevance and Unexpect-
edness) and the metrics (Relevance, Unexpectedness, and novelty) for different values of
parameter α

and unexpectedness to generate recommended items considered serendipitous since they
are relevant, unexpected, and novel at the same time.
Figure 19 shows the performance comparison for two variants of our approach using

the metrics (Relevance, unexpectedness) and the metrics (Relevance, unexpected, and
novelty) for k = 20. As seen from figure 19 (left), when the value of α = 1, the f-measure,
precision, and recall are equal to 0.0525, 0.0296, and 0.2331 respectively, as compared
to figure 19 (right) when the f-measure, precision, and recall are equal respectively to
0.0190, 0.0115, and 0.0546. We got the lowest values by including the novelty metric
to the serendipity computation. For example, when we set α = 2, the values are lower
for graph (right) as compared to graph(left). The optimal parameter for figure 19 (left)
is α = 5, with an f-measure, a precision, and a recall of 0.0903, 0.0607, and 0.17595
respectively, as compared to figure 19 (right) with the respective values 0.05446, 0.0416,
and 0.0788. The same for α = 5, figure 19 (left) shows better results with an f-measure,
a precision, and a recall of 0.0878, 0.0672, 0.126 respectively, as compared to figure 19
(right) with the respective values equal to 0.059, 0.049, and 0.0745.
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To sum up, the novelty impact is negative for generating serendipitous POIs based on the
Tallinn dataset.

4.4 Conclusion

In this chapter, we discussed in the detail our algorithms for relevance, unexpectedness,
and novelty. By using the relevance and unexpectedness of the metric on two datasets,
we notice that our model is behaving better than compared to other models in terms of
f-measure, precision, recall, fidelity, ILDGeo and also observed the impact of other metrics
as well. Later, we include the metric novelty and observed that it has a negative impact on
the results.
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5. Conclusion and Future Work

In this thesis, we suggested a novel Serendipity-based POI RS model which aims to
recommend user relevant and unexpected POIs. This model uses relevance metric to
recommend relevant POIs to each user based on his/her check-in history and among that
recommended relevant list, it computes the unexpectedness of each POI using the metric
Unexpectedness. Experimental results using two different datasets, mainly Flickr Tallinn
and New York Foursquare, show that our model is performing well in terms of accuracy
and beyond accuracy evaluation. In addition, we studied the impact of incorporating the
novelty metric in the definition of the serendipity along with relevance and unexpectedness.
The obtained results based on the Tallinn dataset showed that the novelty does not have a
good impact on our model.
As future work, we plan to apply our approach on large scale datasets and enhance the
efficiency of the algorithm, which can handle large datasets with ease. For new users and
items, our future goal is to provide recommendations for that as well by solving the cold
start problem. At last, our goal is to incorporate more user related information into our
algorithm which can be extracted from online social networks.
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