Ep. 6.7 392

> TALLINNA POLUTEHNILISE INSTITUUDI TOIMETISED

ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

№ 392

ТЕПЛОЭНЕРГЕТИКА

Сборник статей

XV

ТАЛЛИН 1976

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

№ 392

1976

0.6.7

УДК 621

ТЕПЛОЭНЕРГЕТИКА

Сборник статей

ХУ

Таллин 1976

5.3.98 Lesli Nov Teadwellk Raamatukese III eeuste Akadeen © ТПИ, Таллин, 1976

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED

ТРУЛЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

₩ 392

1976

УДК 66.022:621.920.8:662.67 + 621.928.6:662.87: 662.67 + 662.87:662.67:66.014:66.017

> К.Я.Полферов, А.Н. Семенов, А.В. Прикк, Л.М. Шспуу, Н.В.Челищев, С.В. Иванов

ИССЛЕДОВАНИЕ МНОГОСТУПЕНЧАТОГО РАЗМОЛА СЛАНЦЕВ В ЛАБОРАТОРНЫХ УСТАНОВКАХ

Исследование многоступенчатого размола сланцев проведено ВТИ, ТШИ и Эстонглавэнерго.

Эстонские горючие сланцы, как и другие твердые топлива, представляют собой многокомпонентную оистему, основными составляющими которой являются органическая, карбонатная и песчаноглинистая части, содержащиеся в сравнимых количествах. Минеральная часть сланцев состоит из кальцита, доломита, кварца, ортоклаза, гидрослюды, марказита и др.

Особенностью эстонских сланцев является существенное отличие свойств отдельных компонентов по плотности, размолоспособности, структуре и минералогическому составу.

Указанные особенности дают основание полагать, что при подготовке эстонских сланцев к сжиганию весьма эффективным может быть ступенчатый метод их размола [I, 2].

Поэтому в 1971-72 гг. на стендовых установках ВТИ и ТПИ были проведены исследования многоступенчатого размола сланцев с целью выяснения возможности отделения трудноразмалываемых минеральных компонентов, снижения удельных расходов металла и энергии на размол и улучшения процесса сепарации. На стендовых установках был осуществлен принцип по авторскому свидетельству № 398272 "Установка для размола топлива" [2].

По данным [3-7] при размоле горичих сланцев в различных пылеприготовительных системах наблюдается концентрация материала с высокой плотностью в более тонких фракциях. На основе данных химического анализа золы в них концентрируются составляющие песчано-глинистой части - кварц. ODTOклаз и полевые шпаты, то есть основные калиесодержащие компоненты сланцев. В то же время при почти одинаковой плотности карбонатной и песчано-глинистой частей более MOHOлитные и относительно трудноразрушаемые (несмотря на TO. что размолоспособность кальцита выше размолоспособности кварца и ортоклаза) составляющие компоненты карбонатной части остаются в сравнительно крупных фракциях.

При многоступенчатом размоле сланцев можно ожидать, что компоненты песчано-глинистой части с мельчайшей струк-

В пылеотделители

Фиг. І. Схема четырехступенчатого размола.

турой выходят вместе с готовой пылью первых ступеней, а карбонатная часть накапливается в возврате сепараторов последних ступеней.

При проведении опитов на стенде ВТИ было соблюдено подобие отдельных конструктивных и режимных факторов промышленной установки, сооруженной в дальнейшем на Прибалтийской ГРЭС. Подобие всего процесса многоступенчатого размола на обеих стендовых установках не соблюдалось. Результаты этих опитов имеют, в основном, сравнительное значение. Они позволяют дать качественную характеристику процесса и выявить возможные тенденции на промышленной установке.

В многоступенчатой системе (фиг. I) вся масса исходного топлива, измельченная в размольной камере первой ступени, разделяется в сепараторе первой ступени на готовую пыль и возврат. Последний направляется во вторую ступень и т.д. На одноступенчатых лабораторных стендах ВТИ и TIM процесс многоступенчатого размола осуществляется как ряд повторящихся друг за другом циклов однократного размола M сепарации. Весь возврат из сепаратора, за исключением пробы, отобранной для ситового и технического анализов. является исходным топливом для последующего цикла. После каждой ступени размола проводилось отделение готовой пыли. Скорости вентилирующего воздуха при всех циклах размола одной и той же серии поддерживались одинаковыми.

Стенд ВТИ оборудован молотковой мельницей и инерционным сепаратором ВТИ новой конструкции. Готовый продукт улавливается в двух последовательно соединенных пылеотделителях - в циклоне и в рукавном фильтре.

Стенд ТШИ оборудован ШЕМ с центробежным сепаратором типа ЦККБ. Улавливание готовой пыли осуществлялось тремя последовательно соединенными пылеотделителями – двумя циклонами и электрофильтром.

На стенде ВТИ размалывался воздушносухой эстонский сланец фракции 2-8 мм, а на. стенде ППИ фракции 0-7 мм. Пробы пыли и возврата отбирались после перемешивания всего количества возврата и пыли, полученного за опыт. Далее полученные пробы подвергались ситовому и неполному техническому анализам.

Фиг. 2. Изменение выхода пыли, границы разделения се-паратора d_r, точности разделения E, зольности A^c, содержания углекислоты карбонатов (CO₂)_к, тон-кости по R₄₀ и показателя однородности m пыли и возврата по ступеням. І-стенд ВТИ, I серия; 2-стенд ВТИ, I серия; 3- отенд ТПИ, I серия; 4-стенд ТПИ, II серия и 5-пыль, уловленная в ру-кавном фильтре во II серии опытов на стенде ВТИ.

Всего проведено на стенде ВТИ три серии опытов и на стенде ТПИ две серии опытов по схеме многоступенчатого размола. Обширному изучению подвергались две серии опытов, проведенные на стенде ВТИ, и одна серия опытов стенда ТПИ.

Качественные характеристики готовой пыли и возврата по ступеням, а также основные характеристики работы сепараторов ступеней для трех серий опытов представлены в табл. І. По приведенным в табл. І и на фиг. 2 данным видно, что BHход готовой пыли из ступеней при одинаковых размольных камерах, сепараторах и скоростях воздуха постепенно уменьшается. При удалении всего возврата ІУ ступени наибольший относительный выход готовой пыли в І ступени - 63-40 % N наименьший в ІУ ступени - 12-4 %. По ходу ступеней наблюдается угрубление готовой пыли, особенно в опытах с молотковой мельницей на стенде ВТИ. Зольность пыли по ступеням (см. фиг. 2 и 5) практически постоянная. По ходу ступеней содержание углекислоты карбонатов в готовой пыли несущественно увеличивается при пробах П серии опытов на стенде ВТИ и существенно увеличивается в Ш серии опытов на стенде ВТИ, см. содержание СаО на фиг. 5. По ходу ступеней содержание балласта, А + (СО2),, возврата во всех ступенях превышает содержание минерального балласта в готовой пыли. По приведенным данным баланс золы и углекислоты карбонатов не CXOдится, так как возврат последней ступени удаляется И Ha стенде ВТИ уловленная в рукавном фильтре пыль не входит в состав готовой пыли В.

По приведенным в табл. 2 и на фиг. 3 данным наблюдается характерное для измельченных сланцев 🗠 -образное изменение содержания золы по ситовым фракциям пыли и возврата различных ступеней. Выпеописанное изменение зольности по ситовым фракциям, размолотых в четырехступенчатой установке сланцев, совершенно аналогично изменению зольности фракции пыли одноступенчатого размола, см. [3,4,5,6]. Влияние четырехступенчатого размола выражается лишь в изменении зольности в ситовых фракциях от 40 до 80 мкм пыли ступеней, которая увеличивается в сторону последних ступеней от 38 до 44 % (фиг. За). Кривая изменения зольности фракций пыли первой ступени лабораторной ШЕМ (стенд ТШИ) перемещена несколько влево по сравнению с подобной кривой для шыли MO-

Таблица

47,25 2I,30 45,I8 I4.82 I серия 0.88 IOO MILL 68 31.6I 52,35 І серия II с 36,63 6.77 Суммарный BTM 100 51 52,52 46,65 33,0 0,62 BTM 100 85 2I,50 47,53 98,32 96.02 51,62 I6.0I 47,53 2I.02 I,43 I,96 MILL 16°0 640 280 73 27,65(II) 34.I4 66,08 (PΦ) 30,28 ступень 73,88 52, IG 23,97 (P\$) 50, I5 (II) 64,5 93,2 0,88 I,85 I,II 150 370 225 8,0 BTM E. 62,67 35.24 73.28 47,33 54,68 92,82 2,06 64.0 1,00 OII BTM 400 OII IS 1 1 Отеосительный выход готовой пыли при удалении воего возврата IV ступени пылесистеми. (П) - пыль, удованения в циклоне и (РФ) - пыль, удовленней в рукавном фильтре. I9,42 20,92 45,88 91°11 98,35 97,29 47,02 46,84 0,86 I,29 I,87 MILL 70 890 340 6 28,44(11) 21,89 (Pd) 3I,33 67,95 (Pa) 53,05 29.81 73.II 50.77 52,9 90,6 2,I0 I3,4 0,67 0,98 400 BTM 175 68 Ш ступень 5I,29 58,I8 33.65 92,53 75,88 46,23 BTW 0,75 0,88 2,63 105 490 I20 6I 1 1 I8,9I 47,97 I3,43 89,86 94.64 46.83 48,46 2I,8I I,00 I.75 I,00 470 260 MILL 78 24 28,43(Ц) 54,90 3I,30 65,26 (PΦ) 26.04 64.92 50,96 (II) сепараторов ступеней 45,5 86,0 69.0 34,3 0,78 I,82 BTM II CTYREHL 310 155 20 1 46,73 54,44 34,7I 9I,35 76,81 50,9I 0,63 0,85 2,79 1 95 525 BIN 95 53 1 I4,90 91,49 85,56 47,72 46,53 2I,39 OI 6I 43,88 0,82 0,96 I,65 014 315 MIT 62 83 29,2I 26,08(II) 23,22 (Pb) 50,60 (II) 65,87 (P\$) 58,02 98,77 93,2 44,3 CTVIICHE 19.8 7,90 0,89 0,8I 2,41 IOO BTM 630 33 46,58 50,62 BTM по пол-В 80 , % 45,39 R⁸₂₀₀, % 30,78 R^a₂₀₀, % 76,49 R^d₈₀ . % 90,00 0,64 2,98 0,75 600 68 56 \$ 1 1 Тонкость возврата по пол-ным остаткам: о с циркуляции сепаратора,К Граница разделения сеца-MIRCAN ОТНОСИТЕЛЬНИЙ ВИХОД ГО-ТОВОЙ ПИЛИ (Прим.I), % Зольность готовой пили (прим. 2) А. % Однородность в логар.-нормальной сетке: готовой пнли, m^b Содержание углекислоты карбонатов $(CO_2)_{\rm K}^{\rm C}$, % AC. % MENN Медианный диаметр: готовой пыли, ds Условная кратность dr , MRM MULHI иции: йотовой а возврата т TOHROCTE IHI BOSBDATA de Примечания: в возврате возврата paropa,

Гранулометрические и технические характеристики исследуемых пилей и характеристики работи

Таблица 2

Данные гранулометрического анализа и озоления исследуемых пылей

Стенд ВТМ, I серия

	The second	зольность Ас, %	53,64	44,30	43,7I	40,84	44,79	50,06	47,37	50, 92	43,24	38,79		34,26		1		47,33
	B4	виход фрекций,	19,57	5,I6	7,50	5,I0	I5,05	I2,38	I0,54	II,42	7,62	4,45	I,09]	40.0	0,05]			I00,00
放		вольность А ^с , %	53,63	41,24	39,86	40,9I	43,22	49,48	49,44	47,45	44,38	39,63		23,92	10. 10.	20 20 81	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	46,23
упене	Ba	внход фракций,	2I,53	6,26	7,50	6,53	I3,99	I0,54	9,64	I0,70	10.7	4,5I	I,49]	6I*0	0,05	1		I00,00
Тотовая пидь ст	B	вольность А ^с , %	53,58	40,66	40,72	38,88	44,57	48,55	51,00	51,9I	42,79	38,66	36,93	DO AE	04.63			46,73
		виход фрекций,	25,53	5,50	8,94	5,59	II,63	8,I0	14.7	9,95	7,56	6,18	2,57	0,51	0,23]	1		100,00
	N 601	вольность. А ^с , %	53,36	38,50	37,51	38,46	44,30	49,50	51,05	49,56	46,56	44,19	36,46	31,58	28,19			46,58
	BT	внход фракций,	33,35	1.77	7,63	5,86	. 8,99	5,62	5,19	7,03	6,4I	6,24	3,94	I,28	69*0	\$ 1		I00'00
OULTRBO	BOJIBHOCTE,	Ac, %	53,53	35,80	37,6I	43.32		52.68		49.45		48, I9	48,79	49,86	50,IG	49,07	2	49,5I
Исходное 1	внход	фракции.	.3,82	0,57	0,57	0,29]	0,46 J	0,27	0,25	0,47	J 64.0	2,28	I8,98	I4,53	35,84	20,88		100,00
Плототи	Пределни фракций мкм		0-40	40-50	50-63	63-80	80-I25	I25-200	200-315	315-500	500-800	800-I250	I250-2000	2000-2500	2500-5000	> 5000		чету
15	п/п		н	8	8	4 .	5	9	4	8	6	IO	II	I2	I3	I4		Сред
										3								

Примечание: готовая пиль $B_{\rm T}{-}B_{\rm d}$ без пили, уловленной в рукавном фильтре.

	TILLITS		зольност) А ^с , %	53,56	42,5I	4I,5I	42,53	47,3I	46,73	40,34	3I,30	27,36		-1	1		44 1		47,37.
	Готовая	8	выход Фракций	39,IG	3,64	8,04	5,28	I4,55	I4,43	10,87	3,73	0,30	10000 -	1	1				100°00I
ШИ, I серия	Возврат сепаратора	G.4.	вольность А ^с , %	10 54	10,04	07 07	40,40		57,82	57,39	46,9I	4I,03	AD 60	38,74	37,50	34,74	, * . *		43,44
Стенд Т			внход Фрекций,	5	T, AU	4 70	07*1		I,68	16,7	24,18	25,76	TO DT	11,8I	3,19	3,90	1		00°00I
		G 4	зольность А ^с , %	56,79	51,38	52,71]	51,17 }	53,40]	54,79	55,78	55,6I	55,28	EA BE	52,2I	00 01	ec*00			54,68
			виход фракций	I,72	0° 99	I.77	2,70	8,5I	II,03	I3,3I	I8,53	I7,62	TE AD	7,14	I,03	0,25]	1		100°00I
	0. p a	13	зольность А ^с , %	54,5I	48,76	49,8I	47,89	50,36	54,03	54,36	52,90	52,40	00 44	50,86	44,97	50,79	1	•	5I,29
, Г серия	парат	0	внход фракций	2,33	6I,I	I,98	1,97	7,52	. 9, I3	.IO,96	I6,24	I6,6I	T79 AG	I0,88	2,23	I,5I	1		100°00I
Стенд ВТИ	par ce	G1 G2	зольность А ^с , %	53,79	47,53	46,62	46,80	49,5I	52,02	51,95	52,04	49,02	RT 80	50,83	50,7I	52,79			50,9I
	BOBB		выход фракций	2,66	I,38	2,36	2,25	6,95	7,59	9,62	I4,30	I5,I2	T7 56	I3,47	3,59	2,98	(JT*0		100°00I
			зольность А, %	53,55	45,66	45,37	45,92	48,94	51,81	50,82	50,27	51,85	5T 36	52,13	49,30	47,56			50,62
4			внход фракций,	3,90	I,50	2,2I	2,39	6,66	6,85	8,I9	I2,40	I3,36	TG SS	I4,58	4,95	5,33	[CT*T		100,00
	Пределы	фракций	MIKIM	0-40	40-50	50-63	63-80	80-I25	I25-200	200-315	3I5-500	500-800	RUN_TORN	1250-2000	2000-2500	2500-5000	0000	нее по	ету
I .	2	п/п		н	53	ß	4	S	9	6	∞ 10	6	TO	2 日	IZ	I3	14 14	Cpen	расч

11

Продолжение таблицы 2

Стенд ВТИ, П серия

₩ п/п	Пределы франций.	Возврат сепаратора									
	MEM		64	1700	64						
		Выход фракций, %	Золь- ность, А ^С , %	Выход фракций, %	Золь- ность, А ^С ,						
I	0-50	2,57	55,05	I.53	54,86						
2	50-63	I, 92	52,64	I,85	55,93						
3	63-100	5,06	52,6I	7,83	55,77						
4	100-160	4,96	54,43	8,15	54,10						
5	160-200	2,37	54,37	6,76	54,29						
6	200-315	7,17	54,20	16,23	53,7I						
7	315-400	4,47	53,69	9,64	53,94						
8	400-630	II,87	53,09	21,04	51,33						
9	630-1000	14,55	50,80	16,02	52,47						
IO	1000-1600	14,27	47,8I	8,35	49,59						
II	1600-2000	12,62	50,23	2,60	51,67						
12	2500-5000	14,04	58,75	-	-						
13	- 5000-7000	4,13	58,99		-						
Среди	нее по	100,00	52,90	100,00	52,93						

лотковой мельници (стенд ВТИ). Изменение зольности по фракциям возвратов ступеней имеет такой же характер, как изменение зольности фракций пыли, но в возврате наблюдаются слабее выраженные 🔨 -образные переходы (фиг. 36).

Представительную оценку однородности суммарной пыли многоступенчатой установки дает направление соответствущей зерновой характеристики на логариймически-вероятностной координатной сетке фиг. 4. Представленные на фиг. 4 ланные показывают, что однородность суммарной ныли на стенде BTN

a)

6)

Фиг. 3. Зольность фракций готовой инли (а), возврата сепаратора (б) ступеней и исходного топлива (а, б) лабораторных мельниц.

Фиг. 4. Зерновне характеристики суммарной готовой пыли лабораторного четырехступенчатого размола. І-стенд ВТИ, I серия; 2-стенд ВТИ, II серия; 3-стенд ТПИ, I серия; 4-стенд ТПИ, II серия; 5-линии преимущественного направления зерновых характеристик сланцев, измельченных в различных лабораторных и промышленных установках до различной тонкости [5, 8].

соответствует обычной однородности измельченных до такой же тонкости сланцев, см. линии 5 и I, 2 на фиг. 4. Однородность суммарной пыли на стенде ТШИ существенно выше обычной однородности, см. линии 5 и 3, 4 на фиг. 4. Показатели однородности m готовой пыли отдельных ступеней, приведенные на фиг. 2, подтверждают высокую однородность пыли, выпускаемой со стенда ТШИ. Следовательно, при четырехступенчатом размоле сланцев существует возможность для повышения однородности пыли. Характеристикой процесса сепарации является график разделения (график Тромпа), показывающий для каждой фракции крупности процентную долю того материала, который направляют в возврат сепаратора. На основе графика разделения определяют границу разделения d_т и точность разделения E [9,10]. Границей разделения называют размер таких частиц, которые наполовину направляются в возврат сепаратора. Величину точности разделения Е определяют как частное двух размеров частиц, соответствующих ординатам 65 и 35 % графика разделения. Сито, например, работает с максимальной точностью разделения, $\Xi = I$.

В исследованных опытах четырехступенчатого размола высоким точностям разделения Е сепаратора, см. линии З и 4 на фиг. 2, соответствуют высокие показатели однородности m готовой пыли, а малым точностям разделения, см. линии I и 2, соответствуют низкие однородности пыли.

Границы разделения d, в проведенных опытах, см. таблицу I и фиг. 2, имеют значения в интервале от 50 до 340 мкм, что указывает на пригодность примененных сепараторов ПЛЯ выпуска пыли различной тонкости. Согласно данным линий I и 2 на фиг. 2. границы разделения сепаратора для различных ступеней размола имеют значения в интервале 79-225 мкм. и по ходу ступеней наблюдается тенденция их увеличения. При первой серии опытов на стенде ПІИ, линия 3 на фиг. 2, при существенно больших значениях d, , от 260 до 340 мкм, не наблюдается вышеотмеченной тенденции. Как известно, величина границы разделения сепаратора d, зависит от скорости воздуха в сепараторе, от конструкции сепаратора и от состава мельничного продукта. Следовательно, увеличение d, по ступеням размола означает, что в названных опытах для различных ступеней размола суммарное действие скорости. KOHCTрукции и качества мельничного продукта по-разному влияет на процесс сепарации. При равных скоростях воздуха и одинакових конструкциях причиной изменения d, должно быть различное качество мельничного продукта ступеней размола.

Представленные на фиг. 5 данные о содержании химических компонентов в пыли и возврате показывают, что в сторону последних ступеней увеличивается содержание СаО и уменьшается содержание SiO₂, Al₂O₃ и K₂O. Содержание золы.

MgO, SO₃ и Fe₂O₃ не выражают четкой тенденции изменения по ступеням. Увеличенное содержание SiO₂, Al₂O₃ и K₂O показывает накапливание кварца, гидрослюд и ортоклаза в готовой пыли первых ступеней. Следовательно, возврат сепаратора и готовая пыль последних ступеней обогащаются карбонатной частью в виде кальцита и доломита, а готовая пыль первых ступеней обогащается песчано-глинистой и органической частью, что вполне соответствует ожидаемым результатам. Проведенный анализ подтверждает, что при многоступенчатом размоле компоненты с низкой размолоспособностью измельчаются в основном в последних ступенях, а в первых происходит интенсивный размол органической части и легкоразрушаемых компонентов.

Можно полагать, что в промышленных условиях, где процессы размола и сепарации (особенно последний) происходят более совершенно, отмеченное выше перераспределение составляющих компонентов сланцев протекает еще ярче. Это может явиться средством выделения из горючих сланцев в процессе их измельчения некоторой доли минерального балласта, что в свою очередь может оказать положительное влияние на работу парогенератора.

Исследование промышленной многоступенчатой молотковой мельницы в настоящее время ведется на Прибалтийской ГРЭС.

Выводы

Основные выводы из результатов стендового исследования многоступенчатого размола эстонских сланцев:

I. В многоступенчатой системе размола сланцев при одинаковых размольных камерах, сепараторах и скоростях воздуха в ступенях и при удалении возврата последней ступени выход готовой пыли по ступеням размола существенно уменьшается в сторону последних ступеней (см. фиг. 2).

2. Изменение зольности по ситовым фракциям пыли ступени происходит так же как по фракциям пыли обычного одноступенчатого размола сланцев (см. фиг. 3).

3. Однородность суммарной пыли четырехступенчатого размола сланцев на стендовых установках при некоторых режимах выше, чем однородность обычного одноступенчатого размола (см. фиг. 4).

4. При стендовом многоступенчатом размоле сланцев происходит заметное обогащение песчано-глинистой (терригенной) частью готовой пыли первых ступеней и обогащение карбонатной частью пыли и возврата последних ступеней (см. фиг. 5).

Литература

I.К.Я. Полферов. Установка для сулки и двухступенчатого размола материалов. Авторское свидетельство № 130332, 1960.

2. Н.В. Челищев, С.В. Иванов, К.Я. Полферов, Б.П. Алексеев, А.Н. Семенов, Х.О. Меелак, А.А. Отс, Л.А. Майсте, В.Г. Терентьев, Ю.А. Халлинг и Р.Г. Силламетс. Установка для размола топлива. Авторское свидетельство № 398272, 1973.

3. И.П. Э п и к. Влияние минеральной части сланцев на условия работы котлоагрегата. Эст.гос.изд., Таллин, 1961.

4. А. Китсник, Р. Кох. Содержание органического вещества и минералов в отдельных гранулометрических классах измельченного кукерсита. Известия АН ЭССР, том XШ, серия физ.-мат. и техн. наук, 14. 1964.

5. Л.М. Н й с п у у. О процессе размола сланцев в молотковых мельницах. "Тр. Таллинск. политехн. ин-та", серия А, № 232, 1966.

6. А.В. Прикк. Процесси размола и сепарации забалластированных горючих сланцев. Автореферат диссертации, Таллин, 1971.

7. И.П. Эпик, А.В. Прикк. О распределении минеральной части размолотых горючих сланцев в тонких фракциях пыли. Известия вузов "Энергетика", № 9, 1971.

8. Л.М. Н й с п у у, Н.С. Р о з а н о в. Гранулометрические свойства измельченных материалов. Сб. "Современные проблемы механики сыпучих материалов". ЦИНТИ Госкомзага СССР, М., 1969.

9. И.П. Эпик, А.В. Прикк, Л.М. Нйспуу. Изучение работы сепаратора пылеприготовительной установки. "Тр. Таллинск. политехн. ин-та", серия А, № 277, 1969, с.3--16.-

IO. В. Кайзер. Новые конструкции насыпных воздушных сепараторов. Сб. докладов "Тр. Европейского совещания по измельчению", М., 1966, с. 520-550. K. Polfyorov, A. Semyonov, A. Prikk,L. Ôispuu, N. Tchelychtchev, S. Ivanov

Investigation of Multi-Stage Oil-Shale Grinding in Laboratory Stands

The paper is concerned with laboratory stands, experimental procedure and some outcomes of the oil-shale multistage grinding investigation. Ash content and carbonate carbonic acid of grinding product and sieve fractions of it are under investigation. Grain composition and the results of complete chemical analysis of the grinding product are given. Separatory characteristics of the oil-shale multi-stage grinding in two different test stands are depicted.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED

ТРУЛЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

№ 392

I976

УДК 621.18:536.33

И.Р. Микк, Т.Б. Тийкма

ОПРЕДЕЛЕНИЕ ИНТЕТРАЛЬНОЙ ИЗЛУЧАТЕЛЬНОЙ СПОСОБНОСТИ ПОВЕРХНОСТЕЙ НАГРЕВА ПАРО-ГЕНЕРАТОРОВ

Среди важнейших научно-технических проблем теплообмена в технологических процессах важное место занимают задачи, связанные с теплообменом излучением.Перенос энергии излучением играет существенную роль в работе тепловых энергетических установок (парогенераторов, высокотемпературных камер сгорания и т.д.).

Теоретические основы расчета переноса энергии излучением развиты довольно хорошо и возможности проведения расчетов в последнее время в связи с бурным развитием вычислительной техники расширились.

Однако, ни один из таких расчетов не возможен без использования радиационных характеристик конструкционных материалов и рабочих тел, участвукщих в переносе энергии излучением.

В работах С.Г. Агабабова, Б.А. Хрусталева, И.Н.Кононелько, Э.С. Карасина, Р. Смитта, Л. Гликсмана, Н.Ф.Малкахай и др. [I...7] изучены радиационные свойства топочных шлаков и золовых отложений разного топлива и разных типов парогенераторов. Результаты этих работ показывают, что стецень черноты поверхностей парогенераторов зависит от типа и химического состава используемого топлива, от температуры поверхности и от структуры отложения (кристаллического или аморфного).

Численно степень черноты золовых отложений, приведенная в этих работах, изменяется в пределах 0,35...0,95, что значительно шире, чем приведенный в нормативном методе расчета парогенераторов [12] интервал степени черноты (0,68 ...0,85).

Упомянутые здесь авторы в основном изучали материал золовых и плаковых отложений, удаленный или собранный с поверхностей нагрева и следовательно, полученные ими образцы уже не имели такой структуры поверхности, как у работающей поверхности нагрева. Однако, известно, что степень черноты поверхности сильно зависит от ее структуры и состояния, подтверждением этого являются работы С.Агабабова [8], Р. Смитта и Л. Гликсмана [6].

В данной работе рассматривают опытную установку и методику определения интегральной полусферической излучательной способности поверхностей нагрева парогенераторов. Образцами исследования являются вырезки из труб поверхностей нагрева или элементи специального пробоотборника, на которых сохранился слой золового или шлакового отложения, возникшего в процессе работы парогенератора.

Опити ведутся методом стационарной электрокалориметрии в интервале температур поверхности образца 700 ... 1100 К.

Основной частью установки является вакуумная печь с термостатированной (водоохлаждаемой) боковой стенкой (4, фиг. I), внутренний диаметр которой 270 мм и высота 500мм.

Специальные торцевые водоохлаждаемые фланцы (3,8), которые электрически изолированы от камеры резиновой прокладкой и капроновыми втулками под болтами, образуют токоподводы, между которыми натянут вольфрамовый или молибденовый нагревательный элемент (5) в виде прутка диаметром З... 5 мм. Верхний токоподвод (3) соединен с фланцем (2) через гибкий провод между шайбой и втулкой, опиракщимися на цилиндрическую пружину. Такая конструкция предотвращает прогиб нагревателя при термическом расширении. Сжатие пружины регулируется найкой на токоподводе. TOKOподводы изготовлены из меди и их контакт с нагревателем осуществляют при помощи гаек, которые при вворачивании на токоподвод прижимают медные конические сухари к TODILY верхнего токоподвода и к стержню нагревателя. Охлаждение

токоподвода осуществляется радиацией от последнего к цилиндрической части верхнего фланца. Верхний токоподвод закрыт герметичным колпаком (I). Конструкция токоподводов обеспечивает пропускание через нагреватель тока до 500 А.

В центральной части по длине на нагревателе выделен измерительный участок, длину которого определяют канавки на нагревателе, куда привязаны вольфрамовые или молибденовые потенциальные выводы (9). Длина измерительного участка выбрана по экспериментально полученному соотношению, так что длина практически изотермического участка нагреваемого электротоком стержня составляет не более 0, I его длины.

На нагреватель устанавливается исследуемый образец, который центрируется огнеупорными втулками и упирается через фарфоровый цилиндр на коническую гайку нижнего токоподвода.

Конструкция калориметра схематически изображена Ha фиг. І. Для измерения температуры стенки образца (7) C наименьшими искажениями температурного поля в стенке и B термоприемнике термопары вмонтированы в просверления вдоль стенки труби. Технически удается эти просвердения сделать не глубже, чем 60 мм, что требует при общей длине образца 200 мм и диаметра 32...42 мм для выравнивания температурного поля по длине калориметра применения KOMпенсационного цилиндра (6) с диаметром равным лиаметру образца и длиной 100 мм. Компенсационный цилиндр уплиняет образец со стороны ввода термопар.

Степень черноти несдуваемого плотного слоя отложений определяют на образцах, вырезанных из поверхностей нагрева. Сицучие, слабосвязанные отдожения отделяются от трубы при вырезке из парогенератора и при сверлении отверстий под термопар. При изучении таких отложений и продуктов десублимации легко возгоннющихся составляющих золы используют элементы специального зонда-пробоотборника (фиг. 2), на которые в газоходах парогенератора собирают слой отложения. Элементом пробоотборника является вышеописанный калориметр с термопарами, по показаниям которых в процессе собирания пробы проверяется температура

Фиг. 2. Зонд - пробоотборник.

стенки элемента. При помощи сжатого воздуха поддерживают эту температуру на уровне температуры стенки поверхности нагрева в районе собирания пробы. Пробоотборник имеет водоохлаждаемий держатель длиной I,5 м,через который подается к элементу сжатый воздух и при помощи которого поддерживают элемент в газоходе котла продольно потоку газов. Процесс пробоотбора длится около 30 мин. Элемент пробоотборника легко снимается с головки прибора отворачиванием гайки на трубе подачи воздуха.

Провода термопар и потенциальных выводов выведены из вакуумной камеры через двойные прокладки верхнего фланца (2). Термопары соединены через переключатель (20) и термостат холодного спая НУЛЬ-В (I9) с потенциометром ШІ--63 (I8). Перепад напряжения на измерительном участке определяют цифровым милливольтметром Ф220/I (I0).

Нагреватель питается через специальный силовой трансформатор (17), напряжение первичной обмотки которого регулируется регулятором напряжения РНО-5-250 (16). Проходящий через нагреватель ток измеряют амперметром ЭЛА (15) через трансформатор тока УТТ-6м (14).

В камере создается разрежение не менее, чем 10⁻⁴торр системой вакуумных насосов, состоящей из диффузионного высоковакуумного насоса H-IC (IЗ) и форвакуумного насоса ВНМ-46Iм (I2). Вакуум контролируется прибором ВИТ-2 (II).

При давлении ниже 10⁻⁴ торр конвективный теплообмен практически мало влияет на общий теплообмен, следовательно, нагретое тело в камере рассеивает мощность только издучением.

При стационарном калориметрировании радиационный поток от образца определяют по электрической мощности, рассеиваемой на измерительном участке калориметра:

$$q = I U / \pi l d$$
 BT/M², (I)

гле

- I ток, проходящий через нагреватель А;
- U перепад напряжения на измерительном участке В;
- l длина измерительного участка м;
- d наружный диаметр образца м.

Так как боковая стенка камеры охлаждаемая и зачернена напыленным в вакууме вольфрамом, то она поглощает практически всю падающую энергию и ее собственное излучение по сравнению с излучением образца ничтожное.

Это позволяет определить излучательную способность по формуле (2), полученной из закона Стефана-Болымана:

$$\epsilon = q / \sigma_0 T^4, \tag{2}$$

где Со – коэффициент излучения абсолютно черного тела (а.ч.т.) Вт/м²К⁴:

Т - температура поверхности образца К.

Ключевой проблемой при изучении радиационных свойств тонких слоев плохих проводников тепла, к которым относятся и золовые отложения и шлаки, является измерение температуры поверхности исследуемого образца.

Попытка измерить температуру Т термопарой, хотя бы и из тончайшей проволоки, приводит к существенным погрешностям, потому что практически неизвестным остается место нахождения спая и технически неосуществима прокладка проводов термопары по изотермическому сечению на поверхности без разрушения последней.

Радиационные и оптические пирометры требуют образования модели а.ч.т. в стенке калориметра, что неосуществимо в тонкой стенке плохого проводника тепла, где перепад температуры достигает нескольких десятков градусов. При данной системе нагрева калориметра дном дырчатой модели а.ч.т. был бы нагреватель, что делает использование модели бессмысленным. Кроме того, радиационные и оптические пирометры имеют низкий класс точности.

Единственным бесконтактным объективным методом измерения температуры поверхности несерого диэлектрика (золовые отложения являются несерыми излучателями, что показано Б.А. Хрусталевым [2] и И.Н. Конопелько [4]), является многоканальная цветовая пирометрия, которая практически еще слабо развита для измерений при температурах ниже 1000 К.

В данной работе применен косвенный метод определения температуры поверхности образца, который основывается на некоторых упрощающих предпосылках.

Шаг по температуре между двумя последующими режимами выбирается не более IO К.В таком интервале температур предполагается, что теплофизические и оптические свойства исследуемого слоя отложений не зависят от температуры. Искодя из этого можно составить систему уравнений, описнвающую радиационный перенос тепла от образца и теплопередачи через образец.

$$q_{ii} = \epsilon \sigma_0 T_i^4$$

$$q_{ii+1} = \epsilon \sigma_0 T_{i+1}^4$$

$$q_{ii} = K(T_i^* - T_i)$$

$$q_{ii+1} = K(T_{i+1}^* - T_{i+1})$$

где

- порядковый номер режима опыта;
- степень черноты (излучательная способность);

(3)

- К коэффициент теплопередачи, учитывающий тепло– проводность слоев отложения и окиси, а также контактные термические сопротивления между слоями. Вт/м²•К;
- Г^{*} температура, измеренная термопарой в стенке образца.

Систему уравнений, подобную системе (3), можно составить и для режимов і и і – І. Если выразить температуру поверхности образца Ті как арийметическую среднюю двух значений Ті, полученных при решении системы (3) для режимов і – І и і, а также і и і + І, получается значение Ті, при котором учтена линейная зависимость є и К от температуры. После алгебраических преобразований можно найти выражение для температуры поверхности Ті, в которое входят измеряемые величины q. и Т*. Для і-ого режима:

$$\Gamma_{i} = \frac{1}{2} \left[\frac{T_{i-1}^{*} - T_{i}^{*} \frac{q_{i-1}}{q_{i}}}{\sqrt[4]{\frac{q_{i-1}}{q_{i}}} - \frac{q_{i-1}}{q_{i}}} + \frac{T_{i+1}^{*} - T_{i}^{*} \frac{q_{i+1}}{q_{i}}}{\sqrt[4]{\frac{q_{i+1}}{q_{i}}} - \frac{q_{i+1}}{q_{i}}} \right].$$
(4)

Значения Т_і служат начальными приближениями при решении уравнения

$$q_{i} = T_{i}^{4} \sigma_{0} \sum_{\kappa=0} b_{\kappa} T_{i}^{\kappa} , \qquad (5)$$

где b_{κ} - коэффициенты полинома $\varepsilon = f(T_i);$ m - степень полинома.

Коэффициенты b_{κ} найдены методом наименьших квадратов, используя соотношения (2), куда входят значения T_i из формулы (4). Степень полинома т определяют из условия минимума среднеквадратичного отклонения зависимости $\varepsilon = f(T)$.

Уравнение (5) решается численным методом Ньютона в отношении T_i. Это уравнение учитывает зависимость степени черноты от температуры и тем самым наиболее правдоподобно отражает исследуемое физическое явление. Следовательно, получена возможность определения излучательной способности поверхности золового или шлакового отложения измерением температуры в стенке цилиндрического образца и теплового потока от его поверхности.

В формуле (4) содержатся комплексы типа q_{i+4}/q_i , которые близки к единице из-за малых разностей между смежными режимами опыта, что является основной идеей данной методики. Инструментальная точность измерения q_i является сравнительно низкой (1,5%), следовательно, появляется случайный разброс опытных данных q_i , что делает формулу (4) "нестабильной". Практическое применение формулы (4) возможно лишь после сглаживания опытных данных в виде $q_i =$ = $f(T_i^*)$. При этом измерение температуры считают точным (инструментальный класс точности 0,05%).

Для сглаживания необходимо представить зависимость $q_i = f(T_i^*)$ в виде полинома, полученного методом наименьших квадратов, так как известные из литературы [9, IO] формулы сглаживания выбраны для постоянного шага аргумента (T^*), что не осуществимо при данной методике.

Как отмечает 0.А.Сергеев [II], несмотря на недостатки, представление экспериментальных данных в виде полиномов является в настоящее время основным для теплофизических исследований.

Практика таких расчетов подтверждает, что с ростом степени полинома дисперсия ряда сначала уменьшается, проходит через минимум, а затем возрастает. Следовательно, первым приемом сглаживания является нахождение оптимальной (с минимальной дисперсией) степени полинома $q_i = f(T_i^*)$, пос-

ле этого исключают точки, которые дают среднеквадратичное отклонение больше инструментальной погрешности измерения радиационного потока q. Получают полином $q = \sum_{k=0}^{m} c_k T^{*k}$, рассчитанные по которому значения q, входят в формулу (4).

По описанному выше алгорифму составлена программа для ЭВМ "Минск-22". Программа сглаживает опытные данные, определяет по формуле (4) начальные приближения Т; и наконец решает уравнение (5), определяя издучательную способность образца.

Практические расчети показали, что оптимальной степенью полинома при сглаживании является m = 2...4 и количество точек, подлежащих исключению из-за большой дисперсии, составляет в среднем IO % от общего количества опытных точек.

По приближенным оценкам погрешность определения излучательной способности составляет 5 %. Из этого 2 % – инструментальная погрешность (по классам точности приборов) и в среднем 3 % составляет ошибка от неучитывания при решении системы (I) температурной зависимости теплофизических и радиационных свойств исследуемого образца. Точнее всего є определена при средних режимах опыта.

Литература

I. С.Г. А г а б а б о в. Излучательная способность топочных плаков."Теплоэнергетика",№ 8, I958. с. 56-60.

2. Б.А. Хрусталев, А.М. Раков. Исследование спектральных излучательных свойств золовых отложений пылеугольной топочной камеры. Двухфазные потоки и вопросы теплообмена. Изд. "Наука", М., 1970, с. 121-128.

3. В.В. Митор, И.Н. Конопелько. Исследование степени черноты золовых отложений и некоторых огнеупорных материалов. "Теплоэнергетика", № 10, 1970, с.41-43.

4. И.Н. Конопелько. Спектральная степень черноты золовых отложений в топках котлоагрегатов. "Энергомашиностроение", № II, 1972, с. I2-I4. 5. А.А. А б р ю т и н, Э.С. К а р а с и н а. Степень черноты и поглощательная способность золовых отложений в топках котельных агрегатов. "Теплоэнергетика", № 10, 1970, с. 43-46.

6. R.A. S m i t h, L.R. G l i c k s m a n. Radiation properties of slag. Paper Amer. Soc.Mech.Eng.No.WA/PWR-7, 1969, 12 p.

1969, 12 p.
7. M.F.R. Mulcahy, J. Boorv, P.R.C. Goa r d. Fireside deposits and their effect on heat transfer
in a pulverized fuel-fired boiler. J. Inst. Fuel, No.4,
1969, pp. 412-419.
8. C.T. Aradado B. Влияние фактора шерохова-

8. С.1. А габабо в. Елияние фактора шероховатости на радиационные свойства тел. "Теплофизика высоких температур", № 4, 1970, с. 770-773.

9. Л.З. Румшински и й.Математическая обработка результатов эксперимента. "Наука", М., 1971, 192 с.

IO. К. Ланцоп. Практические методы прикладного анализа. Физматгиз, М., 1961, 524 с.

II. О.А. Сергеев. Метрологические основы теплофизических измерений. Изд. стандартов, М., 1972, 154 с.

I2. Тепловой расчет котельных агрегатов. "Энергия", М., 1973, 295 с.

I. Mikk, T. Tiikma

The Determination of the Total Emittance of Fireside Deposits of Boilers

Summary

In this paper a method of laboratory determination of the total hemispherical emittance of fireside deposits of pulverized-fuel-fired boilers is carried out. The experimental technique operating under steady-state radial heat flow conditions and probe collecting technique have been described.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДІ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

№ 392

I976

УДК 536.35

В. Варес. И. Микк, Т. Тийкма

ТАБЛИЦЫ КОЭФФИЦИЕНТОВ ДЛЯ ВЫЧИСЛЕНИЯ ЛУЧИСТЫХ ПОТОКОВ СОЕСТВЕННОГО ИЗЛУЧЕНИЯ НЕИЗОТЕРМИЧЕСКОГО ОБЪЕМА

В работах [1,2] разработаны принципы расчета теплообмена излучением в системах, заполненных полупрозрачной неизотермической средой. Для этого предполагается, что температурное поле, а следовательно, и поле функций излучения (например, формулы Стефана-Больцмана или Планка) известны. После разложения функций излучения по направлению луча около выбранной точки в ряд Тэйлора уравнение переноса лучистой энергии упрощается и его интегрирование по членам разложения дает коэфрициенты, которые зависят только от оптико-геометрических свойств среды.

В случае постоянного (усредненного) коэффициента ослабления луча, если пренебречь расстоянием, умножая эти величины на коэффициент ослабления луча – X = KX, и т.д., можно перейти к безразмерным координатам и линейным размерам.

В этом случае плотность полусферического потока собственного излучения, падающего на точку (М) на окружающей оболочке, может быть определена для двухмерного поля температуры по формуле

$$\epsilon(M)J^{*}(M) = \sum \mu_{ij} \epsilon_{ij} R^{-(\iota+j)} J^{(\iota,j)}(M) .$$
 (I)

В формуле (I) ƒ(M) и J^(ij)(M) являются собственно функцией излучения и ее частными производными по относительным координатам (p₁, p₂), характеризукщим двухмерное температурное поле. Функции J и J^(ij) определяются по температуре среды в точке (M). Относительные координаты р₄ и р₂ определяются, как отношение безразмерной координаты к безразмерной характерной длине R(p₄/R, p₂/R) или как квадраты этих величин. Величина ε(M) – степень черноты излучающего объема, а величины ε_{ij} – коэффициенты неизотермичности объема. Для постоянного значения коэффициента ослабления луча к будет ε(M)=ε_{оо}. Поэтому в приближенном расчете, когда используется усредненное значение

к, принимается также $\varepsilon(M) = \varepsilon_{00}$. Коэффициенты μ_{ij} определяются геометрией излучающей системы и выбором координатных систем. Выражения для произведений $\mu_{ij} \varepsilon_{ij}$ можно получить путем сопоставления формулы (I) с выражением (см. фиг. I)

Фиг. І. Схема цилиндрической системы с обозначениями.

$$\epsilon(M) J^{*}(M) = \sum_{-\frac{\pi}{2} - \frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{4}{12} + \frac{\pi}{2}} \frac{\frac{1}{\pi} \left(1 - e^{-s} \sum_{-\frac{m}{12}}^{s^{m}}\right) C_{i+j}^{i} \left(\frac{\partial^{i+j} J}{\partial \varphi^{i} \partial z^{j}}\right) \cos^{2+i} \beta \sin \beta \cos \alpha d\alpha d\beta, \quad (2)$$

где s – безразмерная длина луча; α, β – углы направления луча; Сі́_{i+i} – биномальные коэффициенты. Козффициенты Di определяются из условия

$$\mathcal{N}_{ij} = \left(\mathcal{N}_{ij} \, \mathcal{E}_{ij}\right)_{R \to \infty} \,. \tag{3}$$

Нередко представляется целесообразным ввести в расчет эффективную температуру и соответственную функцию излучения J^{*}, которая получается из (I) делением всех членов на $\epsilon_{00}(v_{1i} = \epsilon_{1i}/\epsilon_{00})$:

$$J^{*}(M) = \sum \mu_{ij} \gamma_{ij} R^{-(i+j)} J^{(i,j)}(M).$$
(4)

Таблицы коэффициентов неизотермичности

В данной работе приводятся таблицы коэффициентов μ_{ij} , ϵ_{ij} и ν_{ij} для излучающах объемов, имеющих виды бесконечного цилиндра и плоского слоя, схемы которых приведены на фит. 2. Для описания температурного поля выбраны соответственно следукцие относительные координаты: $p_i = (r/R)^2$, $p_2 = Z/R$ – для цилиндра и $p_i = y/R$, $p_2 = z/R$, R = h/2 – для плоского слоя. В таблице I приведены значения коеффициентов μ_{ij} для случая, когда координата p_4 отсчитывается от оси (плоскости) симметрии системы. Когда отсчет координаты p'_4 начинается от стенки, тогда следует брать абсолютные значения приведенных в таблице I значений μ_{ij} .

В таблице 2 приведены значения коэффициентов ε_{ij} для цилиндрического объема. Они получены интегрированием на ЭЦВМ функций (2) с последующим сопоставлением их с (I) и (3). При этом $s = 2R\cos cos \beta$. Для малых значений безразмерного диаметра D = 2R. В таблице 3 приводятся более удобно интерполируемые величины $v_{ij} / R^{i+j/2}$.

В таблице 4 приведены значения коэффициентов ε_{ij} для плоского слоя. Формулы для определения этих коэффициентов получены в результате интегрирования формулы (2), при s = h/cosβcosα и представляются в следующем виде:

$$\mu_{ij} \epsilon_{ij} = (-1)^{i} 2 C_{i+j}^{j} \sum_{m=0}^{j/2} (-1)^{m} C_{j/2}^{m} \left[E_{3+i}^{4+m} (0) - P_{i+j} (E_{3+i}^{4+m} (h)) \right],$$
(5)

где С_{i+i} и С_{j/2} – биномальные коэффициенты.

Символом Рі+; обозначается полином

$$P_{i+j}(E_{3+i}^{i+m}) = \sum_{m=0}^{i+j} \frac{x^n}{n!} E_{3+i-n}^{i+m},$$
(6)

а функции $E_{\kappa}^{m}(x)$ определяются через известные $E_{\kappa}(x)$ – функции (см. [3], с. 419), как

$$E_{\kappa}^{1} = E_{\kappa},$$

$$E_{\kappa}^{2} = \frac{1}{2}(E_{\kappa} + E_{\kappa+2}),$$

$$E_{\kappa}^{3} = \frac{1}{8}(3E_{\kappa} + 2E_{\kappa+2} + 3E_{\kappa+4}),$$

$$E_{\kappa}^{4} = \frac{1}{16}(5E_{\kappa} + 3E_{\kappa+2} + 3E_{\kappa+4} + 5E_{\kappa+6}),$$

$$E_{\kappa}^{5} = \frac{1}{128}(35E_{\kappa} + 20E_{\kappa+2} + 18E_{\kappa+4} + 20E_{\kappa+6} + 35E_{\kappa+8}).$$
(7)

Расчет коэффициентов ε_{ij} был выполнен на ЭЦВМ по формулам (3), (5), (6) и (7) с предварительным определением функций $E_{\kappa}(x)$ по рекуррентным соотношениям исходя из табличных значений функции $E_i(-x)$ [4]. Для малых значений аргумента в таблице 5 приведены величины $\nu_{ij}/R^{i+j/2}$, которые более удобно интерполируются в этой области.

Некоторые методические указания

I. Эффективность предлагаемого метода зависит от однозначности и от сходимости последовательности производных функций излучения $J^{(i,j)}$ в формулах (I) и (4). Келательно, чтобы эта последовательность имела хорошую сходимость или имела бы конечное число производных. Нередко могут, однако, даже очень элементарные функции не удовлетворять этому условню. Например, последовательность произведений от функции $J = p^{-i}$ вообще не сходится. В таких случаях рекомендуется предварительно аппроксимировать функцию J полиномом, имеющим конечное (и не очень большое) число производных по p.

2. Для объемов маленькой оптической плотности ухудшается сходимость формул (I) и (4) и затрудняется их использование. Поэтому для значений оптической плотности от 0, I до 2,0 составлены специальные таблицы 3 и 5. В предельном случае (R = 0) можно учесть, что поглощение лучистой энергии в объеме отсутствует и эффективное значение функции определяется как

$$J^{*}(M) = \frac{1}{\pi} \int_{-\frac{\pi}{2} - \frac{\pi}{2}}^{+\frac{\pi}{2} + \frac{\pi}{2}} J \cos^{2}\beta \cos \alpha d\alpha d\beta.$$
(8)

З. Для объемов большой онтической плотности сходимость формул (I) и (4) значительно улучшается. Кроме того можно для Ј выбирать более простые анпроксимирующие полиномы, имеющие хорошее соответствие с Ј только в пристенном слое с безразмерной толщиной примерно в одну единицу.

Пример

В поперечном сечении цилиндрической топки температурное поле газовой среди характеризуется параболическим законом распределения температури от значения $T_0=2000$ К в центре топки до $T_c=1000$ К около стенки. Определить для топки с безразмерным диаметром D = 4 (безразмерный характерный размер R = D/2 = 2) эффективную температуру и собственное излучение газового объема. Предполагается, что излучение серое.

Для цилиндрического объема $p_1 = (r/R)^2$ и $T = T_0(1-p_1/2)$. Следовательно, для функции Ј получаем

$$J = \sigma_0 T^4 = \sigma_0 T_0^4 (1 - p_1/2)^4.$$
(9)

Дифференцирование Ј по р; дает у стенки (р; = 1) следущие внражения:

$$J^{00} = \frac{1}{16} \sigma_0 T_0^4, \quad J^{(10)} = -\frac{1}{4} \sigma_0 T_0^4, \quad J^{(20)} = +\frac{3}{4} \sigma_0 T_0^4,$$
$$J^{(30)} = -\frac{3}{2} \sigma_0 T_0^4, \quad J^{(40)} = +\frac{3}{2} \sigma_0 T_0^4.$$

По таблицам I и 2 получим:

 $\mu_{00} = +I$, $\mu_{10} = -4/3$, $\mu_{20} = +2$, $\mu_{30} = -I6/5$, $\mu_{40} = +I6/3$,

Таблица І

Коэфициенти и 1, цля цилиндрического объема и плоского слоя

	Плоский слой	+H/4 +H/5 +H/5	+5/8 -2/3 +7/10	+15/32 -2/3 +7/8	+5/64	91/2+	+7/I28
	-	0	2	4	Ľ		8
	لاً المراجع ال محمد محمد محمد محمد محمد محمد محمد محمد	0 10	400	~~~~~ ₩	0+	4 02	0
	Плоский слой	+1 -2/3 +1/2	-2/5 +1/3 -2/7	+1/4 -2/5 +1/2	-4/7	+I/8	-2/7
	Ilurianin. 0056M	+1 -4/3 -2+	-I6/5 +I6/3 -64/7	+1/4 +3/5 +3	-32/7	+T/8	-4/7
	 	0		N			4
1 1 1	- 1	OHQ	ຒ <i>4</i> ⊧ເນ	OHO	e	0	I

C2		-				
R L 3						
a C a	10 ³ E 04	င္ စလ္လွ္လွ္လွ်လ္လ က်က္လ က်က္လ	335 435 526 605 605	672 727 809	888888 888888 8888888888 8888888888888	922 931 938 938
	10 ³ £ 22	0 0H4H	228855 228	98 122 172	198 223 247 271	294 316 337
	103 840	о ооо н	245日	80000 H	840 80 80 80 80 80 80 80 80 80 80 80 80 80	92 104 128 128 128
	10 ³ E 12	0 0 40 00	272 272 272	319 4403 363	474 505 532 557	8010 800 800 800 800 800 800 800 800 800
BMG	10 ³ E ₃₀	၀ ၀မက 	249000 249000	70 1256 1256	144 164 203	222 240 258 276
KOPO OOS	10 ³ E 02	162 162 162 162 1939	554 648 7721 778	00000000000000000000000000000000000000	918 940 948	955 964 964
HUDBENC	10 ³ E 20		119 154 189	224 258 320 320	349 376 426 426	448 469 488 506
для цили 3) ² , р ₂	10 ³ E 10	10054 10054 2655	337 402 506	548 585 617 645	670 691 727	742 756 779
TH Eij (p,=(r/1	10 ³ E ₀₀	0 596 773 773 7730 814	869 905 9469 9469 9469 9469 9469 9469 9469 946	958 973 973	984 986 986 9886	166 166 866
เลยับัต เต						
Kc	Q	о о ъ́нно о	4 ບິບ ຍັບ ບິ	ດ, ນ ດັນທ≱	6°5 8'7'5	9,5 10,5 10,5

	2					
5 7 4	10 ³ V ₀₄ (R)	264 377 374 374	364 364 358 358	353 348 337	330 324 317 310	2888633 28886333 2888633 2888633 2888633 2888633 2888633 2888633 2888633 2888633 2888633 2888633 286633 2886
	10 ³ V ₂₂ (R) ⁻³	1111	1222 1	nunun Linun	77777 77777	4411 77 77 77 77 77 77 77 77 77 77 77 77 7
	103 V40 (R)4	1111	нннн	ынны	нннн	нннн
объема	10 ³ v ₁₂ (R) ⁻²	202138 20238	8883	800000 800000 800000000000000000000000	92999	හිතිහිති
NTGROTO	10 ³ v ₃₀ (R) ⁻³	1111	2888	2222 2		HOOO
literaturatu 1	10 ³ v ₀₂ (R)	221 374 422	457 484 505 521 521	533 542 552 88 852 89 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	220 220 220 220 220 220 20 20 20 20 20 2	5522 548 53833 5383 53835 53835 53755 53755 53755 53755 53755 53755 537555 537555 537555 5
2) Hu	10 ³ v ₂₀ (R) ⁻²	8888	80 779 87	752	46 772 772 772	200 068 068 00 00 00 00 00 00 00 00 00 00 00 00 00
Vij R ^{-(i+j/}	10 ³ v ₁₀ (R) ⁻¹	373 371 369 367	365 361 361 361 361 361	3203356 34803353 34803355	345 342 3370 3370 3370	338 338 338 338
100 1	10 ³ E ₀₀	94 251 317	377 430 478 521	2280 2380 2380 2380 2380 2380 2380 2380	7500 7500 7500	768 785 800 814
фициенты						
Ψo aŭ	0	0000 H004	0000 0000	00HQ 0HHH	нннн ©4Ю0	тнна 0000

C

O L H H J O

E

1

۱

4 03 Таблиц

> RITH ILIOCKOFO CJIOH £ij Коэффициенты

	104E14	539 1424 2594	3864 5090 6182 7102	7844 8423 8863 9191	9430 9603 9725 9812	9872 9913 9941 9961
and and and	104832	အလုပ္လွာလူင္ရ ၇၀၀ ၁၇၀ ၁၇၀ ၁၇၀ ၁၇၀ ၁၇၀ ၁၇၀ ၁၇၀ ၁၇၀ ၁၇၀	1751 2752 3828 4890	5873 6738 7471 8072	8551 8926 9213 9429	9590 9794 9794 9855
	10 ⁴ £ 50	118 366 366	823 1486 2313 3240	4202 5138 6006 6781	7448 8008 8466 8833	9123 9347 9519 9648
	1048.04	5755 5087 5087	6383 7406 8177 8739	9140 9419 9612 9742	9830 9889 9927 9953	0466 0866 0866 0866
	10 ⁴ E ₂₂	41 373 1135 2232	34.85 4733 5870 6844	7638 8264 8744 9103	9366 9557 9693 9789	9856 9902 9934 9934
	104540	0 66 98 17 1027	1894 2925 4015 5076	6046 6893 7603 8181	8639 8995 9266 9470	9620 9730 9810 9867
	10 ⁴ E ₁₂	282 1352 2869 4439	5835 6974 7852 8503	8972 9302 953I 9688	9794 9864 9911 9942	9963 9976 9984 99984
1	10 ⁴ E ₃₀	62 1273 2430 2430	3713 4964 6085 7030	77793 8388 8840 9175	9420 9597 9722 9809	9870 9941 9940
1	1045.02	0 3739 5698 7145	8146 8812 9247 9526	9703 9815 9885 9929	9956 9973 9983 9983	99996 99998 99998 99998
	1048 20	348 348 3145 4735	6109 7205 8642 8642	9075 9376 9584 9724	9818 9881 9923 9923	9968 9979 9987 9987
	104 8 10	0 4127 6067 7441	8364 8366 9352 9596	9749 9845 9904 994I	9964 9978 9986 99926	6666 6666 6666 6666 6666 6666 6666 6666 6666
1	104 800	5568 5866 9397	9674 9821 9901 9945	6966 69666 69666	26666 26666 26666 26666 26666 26666 26666 26666 26666 26666 26666 26666 26666 26666 26666 26666 26666 26666 26666	000001 000001
1	ر د ا	<mark>ณ ณ</mark> ทัศ า 00	∿	ວາດ [*] ດ	8.7.7°	10,50 g

Таблица 4 (продолжение)

	40 ⁴ E 08	0 838 838 1751 2832	3962 505I 6038 6893	7607 8186 8645 9000	92270 94773 99662 99808 999808 999808 999808 999808 999808 999808 999808 999808 999808 999808 999808 999808 999808 999808 999808 999800000000
	10 ⁴ E 26	222314 0 222314 0 222314 0	1157 1916 2804 3754	4705 5607 6425 7142	7751 82555 8664 88664 8989 92444 9588 9700 9700
	1045 44	1139300	316 665 1175 1833	2606 3446 4310 5153	5950 5663 77296 86736 88736 9219
I append append appendix	1046.62	00000 00000	92 488 870	1384 2014 2734 3509	4303 5084 55826 5508 6508 8115 8115 8502
	1046 80	000HE-	31 212 422 422	736 1164 1698 2323	3015 37415 37415 52111 522111 55300 55377 7113 7622
	104E 16	0 274 805 1613	2612 3697 4774 5773	6656 7404 8019 8510	8895 9577 9850 9850 9896 9896 9896
	104 8 34	0 1222 384 384	846 1508 2331 3252	4206 5136 5999 6770	7436 79936 8454 8823 9114 9512 9543 9643
	1045 52	389900 399900	280 606 1735	2495 3331 4194 5044	5846 5574 77719 8628 8628 8941 9192
1 000 000 000 1	1048 70	တ္လလဝဝဝ	106 258 527 927	1459 2106 2838 3621	4418 5197 5197 55197 55197 77208 8182 8182 8558
	10 ⁴ E 06	0 324 1194 2395 3708	4973 6098 7043 7803	8395 8844 9178 9422	9597 9722 9870 9870 99412 99412 9974
	1045.24	0 119 461 1088	1959 2985 4065 5114	6072 6909 7612 8184	8640 9264 9468 9468 9728 9808 9866
	10 ⁴ 542	32689100 3261100	752 1382 2181 3091	4045 4983 5861 6650	7334 79114 8769 8769 9072 94888 9625
	104E60	1123000	320 658 1171 1834	2613 3459 4327 5174	5968 5968 7319 7319 7319 7319 7319 7319 7319 7319
	٦		ດ, ບາ ຊຸມູ່ມີນ	<mark>ດ ດາ</mark> ຍັດເມືອ	000000 240

Alter State	5		E. F.				
a Q	10 ⁴ v ₁₄ (R	31550 19311 13996 11223	9480 8027 7343 6618	6023 5522 5090 4713	4378 4078 3807 3561	3335 3128 2937	2760
T M M	10 ⁴ v ₃₂ (R) ⁴	2356 2202 2202	2118 2032 1944 1857	1771 1687 1605 1525	1448 1374 1302 1234	1168 1105 1045	988
Ta	104v ₅₀ R) ⁵	- 1321 1196 11196 1116	1043 976 913 855	801 751 704 659	507 507 507	475 444 416	389
	10 ⁴ v ₀₄ (R) ⁻²	54156 33213 24152 19450	16512 14467 12937 12937 11735	10754 9930 9223 8606	8060 7571 7129 6726	6358 6018 5704	5413
TO CJOH	10 ⁴ .y ₂₂ (R) ⁻³	4630 5088 4970 4826	4667 4500 4159 4159	3988 3654 3493	3332 3332 3032 3032 3332 3332 3332 3332	2756 2624 2500	2376
IA LIJOCKC	104 240 (R) ⁻⁴	3940 3350 3126 2928	2747 2580 2426 2281	2146 2018 1899 1786	1680 1581 1487 1398	1315 1236 1162	E601
-(i+jı2)	3 104 V ₁₂ (R) ⁻²	7805 8633 8502 8322 8322	8114 7889 7654 7412	7169 6925 6683 6444	6208 5978 5753 5534	5322 5116 4916	4723
M VIJR	104-V30(R)	8106 7091 62775	5924 5593 5006 5006	4737 4482 4242 4015	3800 3404 3222	3050 2732 2732	2586
£ 00	10 ^{4,} V ₀₂ (R) ⁻¹	953I 10672 10580	I0460 I0313 I0146 9966	97776 9580 9380 9178	8975 8772 8570 8570 8371	8174 7980 77990	7604
ффициенть	10 ⁴ \v20 (R) ⁻²	I30I2 I1635 I1039 I0499	10001 9536 9098 8684	8292 7919 7565 7227	6906 6599 6307 6028 6028	5763 5510 5268	5038
Ko	104 V ₄₀ (R) ⁻¹	I4737 I3674 I3195 I2757	IZ347 II1959 II1238 II1238	10575 10575 10262 9962	9672 9393 9124 8865	8615 8374 8142	8164
	10 ⁴ E 00	1838 2961 3999 4854	5568 6169 6679 7114	7486 7806 8082 8321	8528 8708 89655 9002	9121 9226 9317	9397
	ء	0000 H004	0000 0000	00 1 1 1 1 0	ннн 0.409	111 1000	2,0

 $\varepsilon_{00} = 0,946, \ \varepsilon_{10} = 0,506, \ \varepsilon_{20} = 0,189, \ \varepsilon_{30} = 0,054, \ \varepsilon_{40} = 0,011.$

Собственное излучение по формуле (I):

$$q_{\mu cob} = \varepsilon_{00} J_{a\phi\phi}(M) = \sigma_0 T_0^4 (0, 946 \cdot \frac{I}{I6} + \frac{4}{3} \cdot 0, 506 \cdot \frac{I}{2} \cdot \frac{I}{4} + 2 \cdot 0, 189 \cdot \frac{I}{4} \cdot \frac{3}{4} + \frac{I6}{5} \cdot 0, 054 \cdot \frac{I}{8} \cdot \frac{3}{2} + \frac{I6}{3} \cdot 0, 011 \cdot \frac{I}{16} \cdot \frac{3}{2}) = \sigma_0 T_0^4 (0, 05912 + 0, 08433 + 0, 07088 + 0, 03240 + 0, 00550) = 0,25223 \sigma_0 T_0^4 = 0,25223 \cdot 5,67 \cdot 20^4 = 229000 \text{ Br/m}^2.$$

Эффективную температуру получим равной

$$T_{\theta\phi\phi} = \sqrt[4]{q_{c0\delta}/\epsilon_{00}\sigma_0} = \sqrt[4]{229000/0,946^{\circ}5,67^{\circ}10^{-8}} = 1437 \text{ K}.$$

Литература

I. И. Микк, В. Померанцев. О лучистом теплообмене в канале при непостоянной температуре излучающей среды. Изв. АН Эстонской ССР. Том 19, физика, математика, 1970, № I, с. 100-104.

2. И. Микк. К расчету неизотермического объемного излучения. Изв. АН Эстонской ССР. Том 22, физика, математика, 1973. № 3. с. 296-203.

3. А.С.Невский. Лучистый теплообмен в печах и топках. Издание 2-е, исправленное и дополненное, М., 1971, 439 с.

4. Таблицы интегральной показательной функции, АН СССР, 1954.

V. Vares, I. Mikk, T. Tiikma

Tables of Coefficients for the Calculation of the Self-Radiation of the Nonisothermical Volume

Summary

In this paper tables of nonisothermical coefficients for volumes as endless cylinder and flat layer are given. Here are also offered some methodological instructions for use of the tables.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED

ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

₩ 392

I976

УДК 536.244:621.181.8

А.Ю. Вески, Р.А. Круус

О ТЕПЛООТДАЧЕ ТРУБНОГО ПУЧКА ПРИ АСИММЕТРИЧЕСКОМ ОМЫВАНИИ

В теплообменных аппаратах могут встречаться случаи, когда угол входа потока в трубный пучок у отличается от нуля, т.е. имеется дело с асимметрическим обтеканием пучка (см. схему фиг. 4). Такое направление потока имеет часто место в новерхностях нагрева, установленных на выходе из топки парогенераторов.

Существующие данные по конвективной теплоотдаче трубных пучков найдены для симметрического обтекания пучка, т.е. при § = 0°.

В настоящей работе экспериментально исследовали теплоотдачу коридорного трубного пучка в интервале углов входа & от 0° до 45° при разных шагах S, между рядами и S₂ между трубами в ряду. Исследования проводились в дианазоне числа Re от 5000 до 25000. Конвективную теплоотдачу исследовали на моделях трубных пучков, состоящих из I4-трубных рядов, которые располагались в аэродинамическом канале. Исследовали теплоотдачу среднего ряда пучка, который состоял из калориметров регулярного теплового режима.

Калориметри общей длиной 450 мм была составлены из ияти стальных цилиндров диаметром 16 мм, которые была соединены между собой резьбовым соединением. Для измерения темна охлаждения в сверлении по оси цилиндров закладывали хромель-ноцелевые термопары, спай которых приваривали к металлу средней части калориметров.

Аэродинамический канал (фиг. I) состоял из основного разомкнутого канала и соединенного с его рабочей частью кругового канала. Круговой канал служил для создания потока горячего воздуха, которым подогревались калориметры регулярного режима. Переключение рабочей части канала в открытый и круговой каналы производилось при помощи шиберов (фиг. 1).

Фиг. I. Схема опытной установки. I-шибер I; 2-экранированная термопара; 3-трубка Прандтля; 4-рабочий участок аэродинамического канала; 5-шибер 2; 6-решетка; 7-модель трубного пучка; 8-электрические нагреватели; 9-вентилятор кругового канала; IO-шибер 3; II-круговой канал.

После нодогрева модели до температуры 80-90 °С открывали шибера I и 2, закрывали шибер 3 и охлаждали модель нучка при определенной скорости воздуха. При помоши многоточечного самонищущего потенциометра ЭШІ-09 фиксировали температуру t калориметров, имитирукщих I-ую, 3-ю, 5-ую, 8-ую, 10-ую и 12-ую трубу среднего ряда пучка. Запись температуры труб производилась за определенные промежутки времени так, чтобы получилось 10-20 измерений в интервале темиератур 70-35 °C. Температура набегающего воздушного потока t, в разных опытах была при этом -5 - +15 °C. Tenneратура воздуха измерялась перед пучком при помощи экранированной термопары и ручного потенциометра.

Методом наименьших квадратов находили темп охлаждения в уравнении: $\ln \delta = C - m\tau$,

The product of the state of the second

где τ - время; $\mathfrak{H} = t - t_b$; \mathfrak{C} - константа.

Средний по периметру и длине рабочей части калориметра козффициент теплоотдачи определялся по формуле:

4-s2/d=1,25,

ФИГ.

$$\alpha = m \frac{c}{S\psi},$$

где

С - теплоемкость средней части калориметра;

 ψ – коэффициент неравномерности распределения температуры калориметра (ψ практически не отличается от единицы, так как критерий Βί < 0,05);

S - поверхность средней части калориметра.

Калориметры подобной конструкции применены нами и в других работах и подученные результаты хорошо совпадают с результатами, полученными калориметрами стационарного режима [1,2].

При обработке данных поправку на излучение не учитывали, так как температура калориметрируемых труб во время измерений отличалась от температуры труб соседних рядов и от температуры стенок канала не более IO К.

Измерение скорости потока ∨ производили перед пучком при помощи трубки Прандтля. Скорость потока в пучке w находили по формуле

$$w = \frac{vh}{h-nd}$$

где h - высота канала;

п – количество рядов поперек потока;

d - диаметр трубы.

Физические константы в критериях Re и Nu определяли при температуре набегающего потока. Все расчеты производили на ЭЦЕМ "Минск-22".

На фиг. 2 и 3 представлены графики опытных данных, характеризующие зависимость теплоотдачи от порядкового номера трубы в ряду при разных межтрубных шагах и углах входа. Видно, что при асимметрическом омывании теплоотдача существенно выше, чем при симметрическом.

Кроме того, распределение тепловосприятия между трубами в ряду при асимметрическом течении иное, чем при симметрическом. Так при s₂/d = I,0 и $\chi = 0^{\circ}$ имеет место понижение тепловосприятия в направлении потока (фиг. 2, кривая 2 и фиг. 3, кривая I). В случае асимметрического обтекания теплоотдача тесного ряда труб более равномерна и мало зависит от порядкового номера трубы в ряду.

Как известно, при больших межтрубных шагах s₂/d теплоотдача труб ряда начиная с третьего практически не зави-

сит от порликового номера трубя. Асимметрическое расположение труб причиняет возникновение неравномерности распределения тепловосприятия между трубеми. В ряду появляются трубы максимальной теплоотдачи, значение которой может превынать теплоотдачу тех же труб при симметрическом обтекании даже дважщы. В большинстве случаев трубы с максимальной теплостдачей располагаются где-нибудь в середине ряда. HODANковый номер таких труб зависит от относительного шага Mexду рядами S,/d и связан с местом поворота основного потока в межтрубные каналы. Очевидно, при достаточно **GOTTEROM** количестве труб в ряду теплоотдача последних труб при асимметрическом обтекании уже мало отличается от теплоотдачи при симметрическом обтекании. По нашим опытным данным влияние угла входа самое существенное на теплоотдачу труб с поряпковым номером от 7-и до 12-и.

Фиг.6. Зависимость средней теплоотдачи ряда от угла

EXOLUTION INTO THE PART OF VILLE **EXOLUTION BILLET ALL PART OF VILLE EXOLUTION BILLET I** AND **CONTACT I** $2 - s_1/d = I0$, $s_2/d = I$, 25: 3 - Re = 5000; **I** 2 - Re = I2600; $5, 6 - s_4/d = I0$, $s_2/d = I, 0: 5 - Re = 5000$; 6 - Re = I2600.

На фиг. 4-8 представлены опытные данные, характеризуюшие среднюю теплоотдачу от 3-ей до 12-ой труби ряда. Видно, что небольшое отклонение от параллельности трубного ряда и направления набегающего газового потока ((= 4°) почти He влияет на теплоотдачу. Дальнейшее увеличение угла входа уже заметно увеличивает коэффициент теплоотдачи. Например. при $\chi = 8^{\circ}$, $s_2/d = 1,25$ m Re = 5000 козффициент теплоотдачи B I,3 раза превышает коэффициент теплоотдачи при 1 = 0°. B меньшем темпе продолжается увеличение теплоотдачи при уве-

Фиг.7. Зависимость средней теплоотдачи ряда от межтрубного шага s_2/d . $s_1/d = 10$. I - $\chi = 8^{\circ}$, Re = I2600; 2 - $\chi = 8^{\circ}$, Re = = 5000; 3 - $\chi = 0^{\circ}$, Re = 5000.

Фиг. 8. Зависимость средней теплоотдачи ряда от шата можду рядами s₁/d. Re = 5000, s₂/d = I,25.

личении χ до 30-45[°], причем в интервале $\chi = 30-45[°]$ влияние χ ничтожное. В конечном итоге увеличивается средняя теплоотдача от 3-ей до I2-ой трубы с увеличением χ от 0[°] до 45[°] приблизительно в I,5 раза. Заметно, что если трубы в ряду расположени тесно, т.е. $s_2/d \approx I,0$, влияние изменения угла входа меньше, чем при наличии заметных промежутков между трубами. Это и естественно, так как при асимметрическом омнвании и $s_2/d > I,0$ часть газа направляется через щели между трубами в ряду. Это увеличивает теплообмен в части периметра трубы, который при симметрическом омывании располагается в тени предыдущей трубы и омывается малоактивным потоком. Из геометрических нараметров больше всего на теплообмен влияет нараметр s_2/d , как это установлено и в других работах при $\chi = 0^{\circ}$ [3,4,5]. Например, при увеличении s_2/d от I,0 до I,25 ($\chi = 8^{\circ}$, Re = 5000) имеет место увеличение Nu в 2 раза (фиг. 7). Зато от параметра s_4/d средняя теплоотдача ряда зависит незначительно (фиг. 8).

Выводы

I. Асимметрическое обтекание коридорных трубных пучков значительно увеличивает конвективную теплоотдачу.

2. Асимметрическое обтекание вызывает появление заметной неравномерности в распределении тепловосприятия между трубами в ряду. Исключением являются пучки с тесным расположением труб в ряду ($s_2/d \approx I,0$), где наблюдается противоположный эффект.

Литература

I. Р.А. Круус. Исследование конвективной теплоотдачи ширмовой поверхности нагрева. "Тр. Таллинск.политехн. ин-та", серия А. 16 240, 1966.

2. В.А. Локшин, А.Я. Антонов, С.И. Мочан, О.Г. Ревзина. Обобщение данных по теплообмену при поперечном обтекании чистых гладкотрубных пучков. "Теплоэнергетика", № 5, 1969.

3. Р.А. Круус, И.Р. Микк. О конвективной теплоотдаче ряда труб. Известия ВУЗов, "Энергетика", № 6, 1968.

4. А.Ю. Вески, Р.А. Круус, И.Р. Микк. О конвективной теплоотдаче поперечно-обтекаемой ширмы. "Тр. Таллинск.политехн. ин-та", серия А, № 265, 1968.

5. А.Ю. В е с к и, И.Р. М и к к. Исследование конвективной теплоотдачи ширм при разных углах атаки газового потока. "Тр. Таллинск. политехн. ин-та", серия А, № 316, 1971.

A. Veski, R. Kruus

About Convective Heat Transfer of Tube Banks in Asymmetrical Flow

Summary

In this paper the results of the studies on the in-line tube bank models and the experimental technique are presented. Heat transfer was studied at different angles of the gas flow into the tube bank and at different tube pitches. It turned out that the angle being increased, the average convective heat transfer increases by 1,5 times.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED TPJIH TAJJINHCKOFO IIOJINTEXHIYECKOFO ИНСТИТУТА

№ 392

1976

УДК 621.43.037.3:621.181.7

Л.Э. Вальдма, В.А. Кудрявцев, П.К.Каллас

КОЛЕБАНИЕ РАСХОДА СПЕЧЕННЫХ ЦЕНТРОБЕЖНЫХ РАСПЫЛИТЕЛЕЙ

Центробежные распилители используются в паровых котлах в газотурбинных и жидкостных реактивных двигателях, в химической технологии и пр.

При эксплуатации распылителей предъявляются определенные требования к точности их ГИдравлических характеристик. Например, ОСТ 24.836.01 [1] позволяет максимальное колебание расхода центробежных распылителей мазута ±5 %. В практике мощных тепловых электростанций такой допуск считается завышенным.

В настоящее время распылители в СССР и за рубежом изготовляют главным образом из стали механической обработкой. Имеются также данные о распылителях, изготовленных метопом листовой штамповки [2]. Как показали многократные проверки, обнчно заводами-изготовителями не обеспечивается требуемая точность по расходу (производительности). Напоимер, испытания опытных партий распылителей ФМа52000 πο ОСТ 24.836.01, изготовленных заводом "Ильмарине", показали на водяном стенде колебание расхода в пределах от 0 до +10 ...+15 % и во многих случаях неравномерное распределение капель в факеле. Особенно важно, что при проверке стабильности характеристик распыла после короткого периода эксплуатации наблодалось резкое ухудшение качества распыла и увеличение расхода мазута в результате быстрого изнашивания камеры завихрения и соплового отверстия [3, 4].

В Таллинском политехническом институте после длительных испытаний разработаны спеченные износостойкие распылители из твердого сплава, которые сохраняют все свои гидрав- лические и расходные характеристики стабильными в течение года эксплуатации. Спеченные распылители изготовляют методом порошковой металлургии, при этом основными операциями являются: прессование, спекание и алмазное шлифование соплового отверстия.

Известно [5], что колебание расхода центробежных распылителей определяется по формуле:

$$\frac{\Delta G}{G} = 1,33 \frac{\Delta d_c}{d_c} + \frac{1,34}{n} \frac{\sum_{i=1}^{i=n} \Delta_i d_{ix}}{d_{ix}} - \frac{0,67}{n} \frac{\sum_{i=1}^{i=n} \Delta_i R}{R},$$

где d_c – номинальный диаметр сопла; d_{bx} – номинальный диаметр входных отверстий; R – номинальный размер плеча закручивания; Δd_c – действительное отклонение для d_c; $\Delta_i d_{bx}$ – действительное отклонение для d_{bx}; $\Delta_i R$ – действительное отклонение для R.

Из формулы видно, что относительный расход распылителя уменьшается при выполнении входных отверстий и плеча закручивания с отклонениями одинакового знака, что при механической обработке достичь трудно. При изготовлении распылителей методом порошковой металлургии распылитель копирует геометрию инструмента (пуансона). Отклонения геометрических размеров готового распылителя могут возникнуть главным образом за счет неравномерной усадки прессовки во время спекания. Если усадка превышает номинальную или меньше ес, то отклонения Δid bx и ΔiR получают одинаковый знак, т.е. в какой-то мере эти отклонения компенсируют друг друга. Ввиду того, что сопловне отверстия распылителей всегда шлифуются, сравнивая два метода - механической и порошковой металлургии, следует, что относительное изменение расхода спеченных распылителей меньше. чем механически обработанных распылителей.

Разработанные типы спеченных центробежных распылителей производительностью 6 т/ч, 5 т/ч и 2,5 т/ч при давлении 3,5 Мн/м² (35 атм) подвергали испытанию на водяном стенде Всесоюзного теплотежнического института и на электростанциях СССР: на Конаковской ГРЭС, Литовской ГРЭС и на Дукомльской ГРЭС. Стендовые испытания показали колебание расхода

Фиг. І. Спеченные центробежные распылители.

±3 %, угол факела соответствовал нормали, т.е. 85 ⁰, дисперсность распыла соответствовала стандарту. Некоторые опытные партии работали в котлах электростанций в течение года и показали стабильные характеристики без обнаружения износа. Спеченные центробежные распылители показаны на фиг. I

Внводы

I. Применение спеченного твердого силава в качестве материала центробежных распылителей позволяет повысить точность гидравлических характеристик и сохранить их стабильность в эксплуатации.

2. Опытные твердосплавные распылители имеют колебание расхода ±3 % и сохраняют стабильные характеристики распыла в течение одного года при распыливании топочного мазута.

Литература

I. Форсунки стационарных паровых котлов. Министерство тяжелого, энергетического и транспортного машиностроения.М., 1970, 97 с.

2. Л.М. Цирульников, Л.Б. Королева, А.П. Рыбаков, Ю.В. Стужин, О.А.Тасс. Штампованные центробежные форсунки для распыления мазута. "Электрические станции", № I, 1971. с. 62-64.

3. Л.Э. Вальдма, Л.Р. Паккас, Э.Х. Арумээль, Ю.Ю. Пирсо, В.А. Козьяков. Характер эрозии центробежных распылителей мазутных форсунок. Ж."Энергомашиностроение", № 2, 1974, с. 41-43.

4. Л.Э. Вальдма, Л.Р. Паккас, Э.Х. Арумээль, В.А. Козьяков. Абразивность топочного мазута. "Тр. Таллинск. политехн. ин-та", № 322, Таллин, 1972, с. 79-86.

5. В.А. Бородин, Ю.Ф. Дитякин, Л.А.Клячко, В.И. Ягодкин. Распиление жидкостей. "Машиностроение", М., 1967, с. 263. L. Valdma, V. Kudryavtsev, P. Kallas

Change in the Fluid Flow of Sintered Centrifugal Sprayers

Summary

Using cermet as a material for centrifugal sprayers allows to obtain higher hydraulic characteristics and retain them stable during operation.

The experimental sintered centrifugal sprayers had the fluid flow tolerance ± 3 % and showed stable operation during a year in atomizing black oil.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

₩ 392

I976

УДК 621.181.7:662.9:621.762

Л.Э.Вальдма, Я.А.Хенно, В.А.Кудрявцев, П.К. Каллас, У.Ю. Рандмер

ОПРЕДЕЛЕНИЕ ГЕОМЕТРИЧЕСКИХ РАЗМЕРОВ СПЕЧЕННЫХ ЦЕНТРОБЕЖНЫХ РАСПЫЛИТЕЛЕЙ

B настоящее время для распыливания топлива большое распространение получили центробежные распылители, главным образом ввиду своей компактности и малых затрат энергии. Для определения геометрических размеров по требуемой производительности (расходу), давлению и углу раскрытия факела имеются несколько методов расчета центробежных распылителей [I. 2. 3. 4. 5]. Для инженерных расчетов наиболее распространен метод В.А. Павлова и Я.П. Сторожука [5]. Однако, предлагаемые эмпирические формулы довольно сложны и в практике электростанции проще вести расчет распылителей для идеальной жидкости []] с дальнейшей проверкой их Ha стенде. Даже расчет для идеальной жидкости вызывает трудности из-за того, что не известен коэффициент расхода,который можно определить только графически (формула 2).

При разработке центробежных спеченных распылителей в лаборатории порошковой металлургии ТШИ для упрощения их расчета оказалось целесообразным разработать номограмму, с помощью которой можно по заданной производительности, давлению и углу раскрытия факела определить непосредственно геометрические размеры распылителя для идеальной жилкости без определения коэффициента расхода. После проверки расшылителя на водяном стенде приходится только уточнять диаметр соплового отверстия.

Кроме того, разработана номограмма для определения допусков размеров по допускаемым колебаниям расхода.

Известно [6], что параметры центробежного распылителя: R -расстояние от оси сходного канала; $r_c -$ радиус сопла; $f_{bx} -$ площадь поперечного сечения входного канала; n -число входных каналов; G -массовый расход топлива через распылитель в единицу времени; A -геометрическая характеристика распылителя; $\mu -$ коэффициент расхода; $\varphi -$ коэффициент заполнения сопла; $\alpha -$ угол раскрытия факела; $s = \frac{r_m \delta}{r_c} -$ безразмерный радиус вихря на срезе сопла; $\beta -$ начальное давление топлива; $\varphi -$ плотность топлива; $\beta -$ угол между направлением входного канала и осью сопла – связаны между собой уравнениями:

$$A = \frac{Rr_c\pi}{nf_{\beta x}} \sin\beta, \qquad (I)$$

$$G = \pi r_c^2 \mu \sqrt{2\rho p}, \qquad (2)$$

$$\mu = \sqrt{\frac{\varphi^3}{2-\varphi}},\tag{3}$$

$$A = \frac{(1-\varphi)\sqrt{2}}{\varphi\sqrt{\varphi}}, \qquad (4)$$

$$\mu = \sqrt{1 - \mu^2 A^2} - s \sqrt{s^2 - \mu^2 A^2} - s \sqrt{s^2 - \mu^2 A^2} - \frac{1}{2} \sqrt{$$

$$-\mu^{2}A^{2}\ln\frac{1+\sqrt{1-\mu^{2}A^{2}}}{S+\sqrt{S^{2}-\mu^{2}A^{2}}},$$
(5)

$$tg\frac{d}{2} = \frac{2\mu A}{\sqrt{(1+s)^2 - 4\mu^2 A^2}}.$$
 (6)

Геометрическими параметрами распылителя, принадлежащими, прежде всего, определению, можно выбрать величины Γ_c и $R_4 = \frac{R \sin \beta}{\eta f_{6x}} = \frac{R \sin \beta}{s_{6x}}$. Из формул (5) и (6) следует, что величину s можно исключить из рассмотрения, выражая ее из (6) через μ , A, α и подставляя полученную функцию $s = s(\mu, A, \alpha)$ в (5). Если после этого из (5) при помощи (3), (4) исключить μ , A, заменяя их соответствукщими функциями $A = A(\varphi)$, $\mu = \mu(\varphi)$, то получим, что коэффициент заполнения сопла φ определяется углом раскрытия α , т.е. является функцией последнего. Переписав (I) в виде $A = \pi \cdot R_4 r_c$, получим, что из (I) и (2) можно при заданных α , G, р и φ однозначно определить геометрические параметры распылителя R_4 и r_c .

Однако (I) – (6) не позволяют явно выгажать R_{4} , r_{c} как функции от G, α , p, φ (это происходит ввиду того, что из (3)–(6) нельзя выражать функцию $\varphi = \varphi(\alpha)$ в явном виде). Поэтому обычно [6] применяется следующий многоступенчатый метод. Сначала по заданному α при помощи графика или таблиц определяется φ , затем при помощи (3) и (4) вычисляются A, μ (или сразу по одной номограмме определяются φ , A, μ) и тогда из (I), (2) вычисляются R_{1} , r_{c} . Чтобы избавиться от применения номограммы, предлагается следующая функция для определения коэффициента заполнения сопла как функция от α :

 $\varphi = \begin{cases} (1590 - 16, 53 \alpha + 0, 042 \alpha^2) \cdot 10^{-3}, & 110^0 \le \alpha \le 150^0 \\ (1072, 7 - 6, 76 \alpha - 0, 004 \alpha^2) \cdot 10^{-3}, & 40^0 \le \alpha < 110^0 \end{cases}$

Приведенная функция (7) позволяет вычислить φ в области $40^{\circ} \leq \alpha \leq 150^{\circ}$ с двумя верными знаками. Например, при $\alpha = 80^{\circ}$ $\varphi = (1072, 7-6, 76, 80-0, 004, 80^{\circ}). 10^{-3} = 0, 51.$

Дальнейший ход расчета совпадает с вышеприведенным. Предлагается два пути прямого нахождения величин R₁, r_c как функции от G, α, р, ę.

Первый путь – номограмма. Предлагаемая номограмма (фиг. I) позволяет при фиксированных значениях р = 35 атм, ρ = = 0,9 г/см³ прямо по заданным α и G определить R₄ и r_c в следующих пределах изменения величин α и G :

 $40^{\circ} \le \alpha \le 150^{\circ}$; 300 kr/4 $\le G \le 50000$ kr/4. Hanpimep, npi $\alpha = 85^{\circ}$, $\alpha = 5000$ kr/4, nonythm $r_c = 4,6$ mm, $R_4 = 0,16$ I/mm.

Приведенная номограмма позволяет также решать не только обратную задачу, но и более общую – при задании любых двух из четырех величин G, α , r_c и R₁ можно однозначно определить две остальные. Например, при R₁ = 0,5 I/мм, G = 2000 кг/ч, получим α = II0⁰, r_c = 4,5 мм.

Если величины р и ρ отличаются от значений p = 35 атм, $\rho = 0,9$ г/см³, то значения расхода G надо умножать на коэффициент $\sqrt{\frac{p.q}{3.5.c.9}}$ (следует из уравнения (2)).

Во-вторых, предлагаются функции, которые определяют зависимости $r_t = r_t(G, \alpha), R_i = (G, \alpha)$:

$$r_{c} = \frac{\sqrt{G}}{100} \left[1,236(\frac{\alpha}{100})^{7} - 116,697 \text{ ch} \left(\frac{\alpha}{1000}\right) + 118,23e^{\frac{\alpha}{2000}} \right].$$

$$R_{1} = \frac{1}{\sqrt{G}} \left[3,456 \left(\frac{\alpha}{100} \right)^{7} + 15,374e^{\frac{200}{200}} - \frac{20,141}{e^{\frac{\alpha}{200}}} \right]$$

Величины р и ρ опить фиксированы: $\rho = 35$ атм, $\rho = 0,9$ г/см³ и при отличных от этих значений ρ , ρ расход G надо умнохать на коэффициент $\sqrt{\frac{p \cdot \rho}{35 \cdot 0,9}}$. При изменении величин α , G в пределах $40^{\circ} \leq \alpha \leq 150^{\circ}$; 300 кг/ч $\leq G \leq 50000$ кг/ч, приведенные формулы позволяют вычислить r_c , R_1 с двумя верными знаками.

Hanpumep, npu $\alpha = 85^{\circ}$, G = 5000 kr/v получим: $r_c = \frac{\sqrt{5000}}{100} \left[1,236(\frac{85}{100})^7 - 116,697 \text{ ch}(\frac{85}{1000}) + 118,23 \text{ e}^{\frac{85}{2000}} \right] = 4,67 \text{ (MM}),$

 $R_{4} = \frac{I}{\sqrt{5000}} \left[3,456(\frac{85}{100}^{7}) + 15,374 e^{\frac{85}{200}} - \frac{20,141}{e^{\frac{85}{200}}} \right] = 0,16(1/MM).$

Кроме того предлагается номограмма для онстрого нахождения отклонений в параметрах центробежных распылителей. Известно [6], что отклонения в параметрах центробежного распылителя связаны между собой уравнением:

$$\frac{\Delta G}{G} = 1,33 \frac{\Delta d_{c}}{d_{c}} + 1,34 \frac{\Delta d_{bx}}{d_{bx}} - 0,67 \frac{\Delta R}{R},$$

где d_с - номинальный диаметр сопла;

d_{bx} - номинальный диаметр входных отверстий;

 ΔG , Δd_c , Δd_{bx} , ΔR – действительные отклонения соответственно для G, d_c , d_{bx} , R.

Предлагаемая номограмма (фиг.2) позволяет найти значения четвертой из величин $\frac{\Delta d_{6x}}{d_{6x}}, \frac{\Delta d_c}{d_c}, \frac{\Delta R}{R}$ и $\frac{\Delta G}{G}$, если задани произвольные три в следующих пределах изменения:

$$0 \leq \frac{\Delta d_c}{d_c} \leq 0.05; \quad 0 \leq \frac{\Delta d_{bx}}{d_{bx}} \leq 0.1; \quad 0 \leq \frac{\Delta R}{R} \leq 0.1,$$

 $-0, I \leq \frac{\Delta G}{G} \leq 0,25$. Поясним применение номограммы на примере. Пусть, например, заданы $\frac{\Delta d_{bx}}{d_{bx}} = 0,03$, $\frac{\Delta d_c}{d_c} = 0,0I$, $\frac{\Delta R}{R} = 0,03$. Сначала надо из заданных параметров выбрать такие два, которые отмечены на двух соседних сторонах номограммы; в настоящем примере такими будут $\frac{\Delta d_{bx}}{d_{bx}}$ и $\frac{\Delta d_c}{d_c}$. Найдем на номограмме точку, где $\frac{\Delta d_{bx}}{d_{bx}} = 0,03$, $\frac{\Delta d_c}{d_c} = 0,0I$ (при этом следует двигаться перпендикулярно соответствующим осям), и двинемся по проходящей через эту точку линии параллельно наклонной прямой (наклон вправо вниз) до пересечения прямой 0-0, откуда дальще по линии параллельно другой чаклонной прямой (наклон вправо вверх) до горизонтали $\frac{\Delta R}{R} = 0,03$. Из точки пересечения проведем вертикальную прями $\frac{\Delta R}{R} = 0,033$, т.е. 3,3%.

Выводы

I. Номограмма I позволяет по заданной производительности, давлению и углу раскрытия факела определить геометрические размеры распилителя.

2. Номограмма 2 позволяет, исходя из требования по колебанию производительности распылителя назначить допускаемые отклонения для геометрических размеров.

Литература

I. Г. М. Абрамович. Прикладная газовая динамика. Гостехиздат, М., 1951.

2. З.И. Геллер. Мазут как топливо. "Недра", М., 1965.

3. З.И. Геллер, М.Я. Морошкин. Методика расчета и конструкция центробежных форсунок для распыления топочных мазутов. "Теплоэнергетика", № 4, 1963.

4. Камеры сжигания газовых турбин. Сб.статей под ред. Я.П. С т о р о ж у к а. ЦНИИТМ, 1969. 5. В.А. Павлов, Я.П. Сторожук. Расчет и конструирование механических форсунск."Энергомалиностроение," № 3, 1966.

6. В.А. Бородин и др. Распыливание жидкостей. "Машиностроение", М., 1967.

> L. Valdma, J. Henno, V. Kudryavtsev, P. Kallas, U. Randmer

Determination of Geometrical Dimensions of Sintered Centrifugal Sprayers

Summary

A nomograph for determining the geometrical dimensions of centrifugal sprayers has been worked out, provided the working pressure, fluid flow, angle of fluid spray and density of the fluid are known.

The second nomograph enables to determine the tolerances of the geometrical dimensions of sprayers, if the fluid flow tolerance for centrifugal sprayers is known.

Содержание

I.	К.Я.Полферов, А.Н. Семенов, А.В. Прикк, Л.М. Шйспуу, Н.В.Челищев, С.В. Иванов. Иссле- дование многоступенчатого размола сланцев в лабораторных установках.	3
2.	И.Р. Микк, Т.Б. Тийкма. Определение интег- ральной излучательной способности поверхно- стей нагрева парогенераторов	19
3.	В.А. Варес, И.Р. Микк, Т.Б. Тийкма. Таблицы коэффициентов для внчисления лучистих потоков собственного излучения неизотермического объе- ма	31
4.	А.Ю. Вески, Р.А. Круус. О теплоотдаче труб- ного пучка при асимметрическом омывании	45
5.	Л.Э. Вальдма, В.А. Кудрявцев, П.К. Каллас.Ко- лебание расхода спеченных центробежных распыли- телей	55
6.	Л.Э. Вальдма, Я.А. Хенно, В.А. Кудрявцев, П.К. Каллас, У.Ю.Рандмер. Определение геомет- рических размеров спеченных центробежных рас- пылителей.	61

Таллинский политехнический институт. Труды ТПИ № 392. ТЕПЛОЭНЕРГЕТИКА. Сборник статей ХУ. Редактор Х. Лоот у с. Техн. редактор В.Ранник. Соорник утвержден коллегией Трудов ТПИ 25 марта 1975 г. Подписано к печати 9 февраля 1976 г. Бумага 60х90/16. Печ. л. 4,5+0,25 приложение. Уч.-изд. л. 3,9. Тираж 350. МВ-01815. Ротапринт ТПИ, Таллин, ул. Коскла, 2/9. Зак. № 282. Цена 39 коп.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED TPYJH TAJJINHCKOTO HOMMTEXHNYECKOTO NHCTNTYTA

№ 392

1976

ТЕПЛОЭНЕРІЕТИКА Сборник статей ХУ

УДК 66.022:621.920.8:662.67+621.928.6:662.87: 662.67+662.87:662.67:66.014:66.017

> Исследование многоступенчатого размола сланцев в лабораторных установках. Полферов К.Я., Семенов А.Н., Прикк А.В., Ыйспуу Л.М., Челищев Н.В., Иванов С.В. "Труды Таллинского политехнического института", \$392, 1976. с. 3-18.

Описани лабораторине стенди, методика и некоторые результати исследования многоступенчатого размола эстонских горичих сланцев. Исследуются содержания золы и углекислоти карбонатов в измельченных продуктах и ситовых фракциях этих продуктов. Приведены данные зернового состава и полного химического анализа продуктов размола, а также сепарационные характеристики многоступенчатого размола сланцев в двух различных стендах.

Таблиц - 2, фигур - 5, библиография - 10 названий.

УДК 621.18:536.33

Определение интегральной излучательной способности поверхностей нагрева нарогенераторов. Микк И.Р., Тийкма Т.Б. "Трудн Таллинского политехнического института", # 392, 1976, с. 19-29.

Приведена методика лабораторного определения степени черноты (коэффициента издучения) загрязненных золовыми отложениями поверхностей нагрева парогенераторов. Описывается опытная установка, работакцая в режиме стационарного радиального теплового потока, также описывается зонд-пробоотборник для получения проб отложений – продуктов десублимации легко возгоняющихся составляющих золы.

Фигур - 2, библиография - 12 названий.

УДК 536.35

Таблицы коэффициентов для вычисления лучистых потоков собственного излучения неизотермического объема. Варес В.А., Микк И.Р., Тийкма Т.Б. "Труды. Таллинского политехнического института", № 392, 1976, с. 31-44.

Приведены таблицы коэффициентов неизотермичности излучающих объемов, имеющих виды бесконечного цилиндра и плоского слоя, а также некоторые методические указания для вычисления лучистых потоков при помощи предлагаемых таблиц.

Таблиц - 5, фигур - 2, библиография - 4 названия.

УЛК 536.244:621.181.8

О теплоотдаче трубного пучка при асимметрическом омывании. Вески А.Ю., Круус Р.А., "Труды Таллинского политехнического института", № 392, 1976, с. 45-54.

В статье приведены результаты исследования модели коридорного трубного цучка и методика эксперимента. Теплоотдачу исследовали при разных углах входа газа в трубный пучок и при разных межтрубных шагах. Выяснилось, что при увеличении угла входа средняя конвективная теплоотдача пучка увеличивается до I,5 раза.

Фигур - 8, библиография - 5 названий.

УДК 621.43.037.3:621.181.7

Колебание расхода спеченных центробежных распылителей. Вальдма Л.Э., Кудрявцев В.А., Каллас П.К. "Труды Таллинского политехнического института", № 392. 1976. с. 55-59.

Приводятся данные о возможности повышения точности и стабильности гидравлических характеристик, в частности, колебания расхода с помощью применения в качестве материала распылителя спеченного твердого сплава.

Фигур - I, библиография - 5 названий.

УДК 621.181.7:662.9:621.762

Определение геометрических размеров спеченных центробежных распылителей. Вальдма Л.Э., Хенно Я.А., Кудрявцев В.А., Каллас П.К., Рандмер У.Ю. "Труды Таллинского политехнического института", № 392, 1976. с. 61-68.

Приводятся номограммы для расчета и конструирования спеченных центробежных распылителей и определения допусков размеров, исходя из требования по колебанию расхода.

Фигур - 2, библиография - 6 названий.

Цена 39 коп.

and and and

1