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Abstract 

The current thesis addresses issues in the field of digital testing. The presented 
work is focused on improving the efficiency of fault simulation methods that are 
widely used in the flow of designing tests for digital devices. Although the primary 
goal of fault simulation is assessment of quality of prepared test program, many 
test-related problems are strongly dependent on fault analysis. The tasks of test 
generation, fault diagnosis, optimization of built-in self test and test set compaction 
incorporate fault simulation as a part of process. Therefore the efficiency of fault 
analysis algorithm is an essential condition for solving the abovementioned tasks.  

The main contribution of the research is the improvement of stuck-at fault 
simulation. The thesis presents several approaches for conducting fault analysis of 
a circuit represented by a special class of binary decision diagrams. The simulation 
is performed on macro-level but with gate-level accuracy. In particular, novel 
single-pattern and parallel-pattern simulation algorithms are introduced. Finally, 
the application of fault simulation for the hierarchical analysis of dependability is 
studied. The performed experiments confirm that the efficiency of the proposed 
methods overcomes the state-of-the-art approaches.  

The thesis is based on the selected scientific papers published in journal and the 
proceedings of several international conferences. 
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Kokkuvõte 

Antud väitekirja teematika on seotud digitaalsüsteemide projekteerimisega ja 
testimisega. Doktoritöö peaeesmärgiks on rikete simuleerimise meetodite 
parandamine. 

Rikete simuleerimine ehk rikete analüüs on üks tähtsamaid ülesandeid 
digitaaltestimise valdkonnas, mille eesmärgiks on kindlaks teha, milliseid rikkeid 
on võimalik avastada etteantud testide abil. Kuna rikete analüüs kujutab endast 
sisuliselt protsessi, mis on aluseks paljude teiste testimisprobleemide lahendamisel 
(nt. testide kvaliteedi analüüsil, rikete diagnoosil, testide genereerimisel ja 
tihendamisel, süsteemide testkõlblikkuse hindamisel, isetestivate arhitektuuride 
projekteerimisel jne.), siis simulatsiooni kiirus on muutunud otsustavaks faktoriks 
loetletud ülesannete lahendamise ehk testide projekteerimise efektiivsuse tõstmisel. 

Käesoleva doktoritöö tulemusena on välja töötatud efektiivsed meetodid ja 
algoritmid konstantrikete simuleerimiseks digitaalseadmetes. Erinevalt teistest 
meetoditest töötavad väljaarendatud simulaatorid kõrgemal abstraktsel tasandil kui 
loogikalülituste tase (tagades samal ajal loogikalülituste taseme täpsuse) ning 
kasutavad originaalset struktuurselt sünteesitud otsustusdiagrammide (OD) teooriat 
skeemide analüüsil.  

Töö põhitulemused võib formuleerida järgmiselt. Esiteks on loodud OD teoorial 
põhinev deduktiivne algoritm rikete levimise analüüsiks skeemis ning selle 
algoritmi alusel ka vastav rikete simulaator. Teiseks on loodud uus ülikiire 
simulatsioonimeetod, mis võimaldab analüüsida rikkeid terve grupi testvektorite 
jaoks paralleelselt. Nimetatud meetodi uudsus seisneb erilise hargnemisanalüüsi 
meetodi väljatöötamises ning optimeeritud arvutusmudeli koostamises Boole’i 
diferentsiaalvõrrandite paralleelseks lahendamiseks. Eksperimendid näitasid, et 
võrreldes olemasolevate professionaalsete rikkesimulaatoritega, tõstab uus meetod 
tunduvalt rikete analüüsi kiirust. Rikete simulaatori rakendusena on väitekirjas 
välja töötatud originaalne hierarhiline meetod veakindluse hindamiseks, mis on 
üheks tsentraalseks ülesandeks usaldatavate süsteemide projekteerimisel. 

Väitekirja aluseks on võetud neli teadusartiklit, mis on publitseeritud ühes 
ajakirjas ja kolme rahvusvahelise tippkonverentsi kogumikus. 
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Chapter 1  

INTRODUCTION  

This introductory chapter gives an overview of the area addressed by current 
thesis. At first, the motivation for the work is given followed by the formulation of 
the problem and the outline of main contributions. The last part of the chapter 
describes the organization of the thesis. 

1.1 Motivation 

It is not an overstatement to designate the microelectronics as the one of the 
most rapidly developing industries in the world. The only half of the century has 
been passed since the first integrated circuit had been invented in sixties and 
already billions of ICs stuffed with millions of transistors are produced nowadays. 
The trend in the digital device development that has been held in accordance with 
the famous Moore’ law [1], [2] for past forty years gives the clear signals: the 
tendency is not going to stop since the microelectronic market constantly demands 
new devices with richer functionality, smaller dimensions and better performance. 

The success of digital electronics has made a deep impact on the society. The 
world of digital devices become tightly tied with the everyday life and made people 
be much more dependent on the correct functioning of surrounding electronics. The 
last statement brings the problems of reliability of digital devices in a front place, 
causing dependability to be even more vital than the added value of novel 
functionality: having a new feature in a mobile phone is certainly very desirable 
but only if this innovation will not lead to the failures in the basic functionality.  

The one of the solutions for the reliability issues is to perform comprehensive 
testing of the microelectronic product before the shipping it to end customer. 
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However the development of high quality tests had never been a simple task in 
digital world, is now turned into a real challenge because of the drastically grown 
complexity of integrated circuits. According to International Technology Roadmap 
for Semiconductors [3] increasing integration of microelectronic devices remains 
the key driver for enhancing the technology of manufacturing test. 

The well-known example illustrates that the straightforward test of functionality 
of a 32-bit adder by exhaustive verification of the correct operation for any 
combination of the operands will require at least 264 test steps to be executed. 
Indeed, even using a high-end test equipment, this operation will turn into several 
hundreds years of testing. However the development of advanced methods had 
allowed much more sophisticated devices such as microprocessors, ASICs, 
Systems-on-Chip, etc to be thoroughly tested. Nevertheless the permanent 
advances in the field of microelectronics demands continuous development of the 
test technology in order to cope with the increasing complexity of digital devices. 

The current thesis is focused on improving of fault simulation technique that is 
the one of the major issues in the area of digital test. Many test-oriented tasks 
solved during the digital device design flow are heavily relying on fault analysis. 
For instance test generation, test quality assessment, fault diagnosis, test set 
compaction, optimization of built-in self test controller and others problems 
typically incorporate fault simulation as an intermediate step. Certainly this gives a 
very clear motivation for the attempts to raise the efficiency of fault simulator: the 
more accelerated fault analysis is – the more comprehensively the aforementioned 
tasks could be performed.  

Although the successfulness of the designed device is influenced by very many 
different factors, but the availability of the efficient fault analysis tool could make a 
significant impact on reliability of the final product. 

1.2 Problem formulation 

Testing of microelectronic device is a special procedure that aims to check 
whether the device is working correctly or not. Typically test is conducted after 
device fabrication in order to ensure that no defects have been appeared in the 
device during this process.  

In general, testing procedure consists of set of test stimuli (also referred as test 
patterns) that are being applied to primary inputs of the device under test (DUT). 
At the same time the output responses are recorded and compared with the 
expected ones. If the output response mismatches with the reference, then it is said 
that a failure has occurred. The reason for the failure could be the presence of 
defect inside the manufactured device.  

However the real defects typically are not considered directly during the 
preparation of test but rather their behavior is simulated by fault models. The 
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subtask of fault simulation (also referred as fault analysis) has a goal of 
determining the effectiveness of test patterns in terms of the detectability of faults. 
For each of test patterns in the test set fault simulator is capable to determine which 
faults could be detected by applying the given test stimuli. 

Obviously the fault simulation can require a lot of CPU and memory resources. 
In contrast with logic (fault-free) simulation that is done in a one pass and has 
linear time complexity to the number of gates in the circuit under simulation, the 
fault analysis requires many copies of the same circuit (that imitate presence of 
different faults) to be simulated. Thus the straightforward approach to fault 
simulation is unfeasible in case of large circuits (or large test set). 

In this thesis the problem of stuck-at fault simulation of combinational (or scan-
path) circuits is addressed. In particular, the presented work attempts to improve 
the efficiency of the fault analysis methods in terms of time and memory required 
for the fault simulation of circuit. 

1.3 Thesis contribution 

The main contributions of the current thesis are outlined below. 

− The thesis introduces several techniques to perform fault simulation on 
Structurally Synthesized Binary Decision Diagrams (SSBDD). The usage 
of SSBDDs gives an opportunity to represent a gate-level design on a 
slightly higher abstraction level that immediately results in a higher speed 
of circuit evaluation.  

− An efficient single-pattern fault simulation method is proposed [I]. The 
algorithm is essentially based on the introduced technique of deductive 
fault list propagation through SSBDD graphs. A reconvergency analysis 
carried out prior to the simulation determines the most efficient way for 
simulating each part of the circuit. Besides this, fault-free simulation on 
SSBDD is used for reducing the list of potential faults.  

− The thesis introduces an efficient parallel-pattern fault analysis method. 
Two novelties are proposed here: the exact parallel critical path tracing 
algorithm on SSBDD model [II],[V] and the extension of the results of 
exact critical path tracing beyond the fanout-free regions [II], [III]. The 
latter uses a special calculation model to determine the detectability of 
fanouts. 

− The approach of construction of optimized calculation model was 
proposed [III], [VII]. The usage of optimized calculation model lessens the 
number of unnecessarily repeated computations thus results in a higher 
analysis speed of parallel-pattern fault simulator.  
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− The problem of the memory requirements for fault simulation was studied. 
A novel approach for reducing amount of memory for simulation is 
presented together with the results of experiments [III].  

− An approach for hierarchical dependability analysis is proposed [IV]. The 
method uses high-level Decision Diagrams for representation of circuit on 
register-transfer level and SSBDDs for lower-level description in order to 
determine the list of malicious faults.  

1.4 Thesis structure 

The presented thesis is organized in a form of overview of the research results 
that have been published in four scientific papers. The thesis has the following 
structure. 

Chapter 2 forms a background on the discussed topic and makes a review of the 
state-of-the-art in the corresponded area. Chapter 3 presents an overview of the 
research results based on the selected publications presented in the last part of the 
thesis. The conclusions and the perspectives for future work are drawn in 
Chapter 4. In the last part, the selected papers that lay in the basis of current thesis 
are presented. 
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Chapter 2  

BACKGROUND  

This chapter presents background information on the topics related to current 
research. The chapter begins with the brief introduction to the digital test concept 
followed by the review of the fault modeling technique. The notion of stuck-at 
faults is described since the fault simulation methods proposed in the thesis are 
intended to work with stuck-at fault model. Next, the classical fault simulation 
methods are considered and the review of state-of-the-art in this area is given. At 
the end of the chapter the various applications of fault simulators in the flow of 
digital design are analyzed. 

2.1 Introduction to digital test 

The ultimate goal of digital test is to ensure that the device under test (DUT) is 
functioning according to its specification. In contrast to the verification that checks 
the correctness of the model of a circuit, testing is performed after the device is 
physically manufactured. Test program is typically developed during the design 
cycle with the assumption that the design itself was already verified and is correct.  

During the test procedure a special test stimuli are applied to the primary inputs 
of DUT and the responses of the device outputs are analyzed (Figure 2.1). Because 
the fabrication process is not perfect, unintendent defects could incidentally appear 
in the DUT. As the result of defectiveness, the actually recorded responses could 
differ from the expected ones. In the latter case, it is said that the defect has 
manifested itself by a failure.  
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Generally speaking, testing helps to discriminate good devices from the faulty 
ones. In addition, a diagnosis of the failing device can be performed in order to 
identify the location and type of the defect. 

2.2 Fault modeling 

By a term defect an unacceptable physical deviation of digital circuit from the 
normal case is assumed [5], [6]. As it was mentioned before, the presence of defect 
in a circuit could manifest itself by a failure (i.e. erroneous behavior of device). 
However the wide diversity of physical defects that could lead to malfunction of 
digital devices makes it almost impossible to exactly classify and evaluate them.  
The list of some sorts of defects in digital circuits could include [6],[4]:  

− defects due to imperfection of manufacturing process 
(e.g. photolithographic errors, missing contact windows, parasitic 
transistors, incorrect spacing, misalignment, etc) 

− material defects (e.g. insufficient purity of surface, contamination) 
− age defects (e.g. electromigration)   
− package-related defects 

In view of the fact that working with large variety of physical defects is 
impractical, the fault models were introduced to offer simplified mathematical 
description of erroneous behavior. Hence, the term fault refers to the representation 
of a defect using a kind of abstraction. 

Although most of fault models neither provide direct correspondence between 
faults and defects nor exact description of erroneous behavior of circuit, they are 
very useful for generating and evaluating quality of tests. A good fault model needs 
to reflect the presence of defects inside circuit precisely enough and be efficient for 
usage with computational algorithms.  

Depending on their nature the fault models have been categorized by several 
levels of abstraction [4]. Defect-oriented fault models [10] are targeted to describe 

Device  
under test

 
(DUT) 

O
U
T
P
U
T
S

I
N
P
U
T
S 

TESTER

test stimuli output 
responses (test patterns) 

Figure 2.1: The concept of testing 
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the behavior of the defects of specific types, such as open and shorts between 
transistor lines. As result, defect-oriented fault models usually provide better 
conformity with the reality but demand sophisticated algorithms for processing. On 
the other hand, logical-level fault models that deal with the description of circuit at 
the level of logical signals are easier in processing. They are also independent on 
physical implementation of design. These facts have been made this class of 
models be commonly used in VLSI testing.  

Unfortunately there is no single model that is sufficient enough for modeling all 
the possible sorts of physical defects. In spite of this fact, many fault models were 
proposed so far [5]: stuck-at model, bridging fault models (dominant, 
wired-AND/-OR, dominant-AND/-OR), delay fault models (gate-delay, path-
delay), transistor-level fault models (stuck-opens, stuck-shorts [6]), models dealing 
with crosstalk faults [7], parametric fault models, etc. Indeed, there exist attempts 
to create generalized concepts (e.g. faults tuples [8]) that aim to incorporate several 
types of faults in a single model.  

In general every fault model falls into one of two classes: the class of multiple-
fault models and the class of single-fault models. When using single-fault model it 
is assumed that the only sole fault could exist in a circuit at a time. On the contrary, 
multiple fault models permit combinations of different faults to occur 
simultaneously. Obviously, the multiple-fault assumption increases the number of 
possible combinations of faults exponentially in comparison with single-fault 
model. For instance, if a fault model permits n different types of faults occur at m 
different fault sites, then for single-fault assumption the total number of faults in 
the model is (n x m). In case of multiple-fault model is considered, there exist 
((n + 1)m – 1) possible combinations of faults. Because the latter amount of faults 
is too large even for small values of n and m, the single-fault assumption is usually 
considered in practice. Fortunately, the experiments have shown that 100% 
coverage of single faults detects the most of multiple faults as well [4], [9]. 

2.2.1 Stuck-at faults 

The stuck-at fault model is the one most commonly used in digital testing. 
According to current prognosis made by [3] the stuck-at faults will remain to be the 
one of the fault models most utilized for the testing of microelectronics for next 
years. 

 The presence of stuck-at fault in a digital circuit permanently fixes the value of 
corresponded signal line to logic one (stuck-at 1, SA1) or logic zero (stuck-at 0, 
SA0). Although stuck-at faults can be straightforwardly interpreted as a short 
between signal net and ground (or power) line, many other defects manifest 
themselves as SA0 or SA1  [10].  

In general, there could be 3n – 1 various combinations of stuck-at faults in a 
circuit with n lines (each net could either be affected by presence of SA0 or SA1 or 
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do not contain any fault; the sole combination of totally fault-free circuit is 
excluded). However the single stuck-at model (SSA) that is commonly used in 
practice reduces this number to 2n faults. As the current work is focused on SSA-
based fault simulation issues, the only single stuck-at model is considered from this 
point. 

Even in case of single-fault assumption not all the faults need to be considered. 
For instance, two different faults could affect circuit in the exactly same way, i.e. 
be indiscriminate. Certainly the processing of both such faults is redundant, thus 
one of them could be dropped out of the list of faults to consider. The technique of 
reduction of the complete list of faults without losing the quality of defect coverage 
is called fault collapsing 

The algorithms of fault simulation are usually very sensitive to the total number 
of faults need to be handled: the less faults has been included into source fault list, 
the less time is required for their evaluation. Hence the possible reduction of fault 
list is very important, because it offers a kind of “pre-optimization” prior to 
execution of an algorithm itself. Some of well-known techniques of SSA collapsing 
are discussed below. 

2.2.2 Fault equivalence for SSA 

The reduction of fault list is possible by applying equivalent fault collapsing for 
SSA [5],[4],[11]. Assume we have single n-input AND gate to test. The presence 
of SA0 fault on any of gate I/O fixes the output of gate to logic zero (see 
Figure 2.2). This leads us to the conclusion that all SA0 faults for AND gate are 
equivalent (i.e. indistinguishable), and considering only one of them is enough. 
Strictly speaking, two faults are equivalent if their presence changes the output 
function of circuit in the exactly same way. 

As for SA1 there are no equivalent faults for inputs and outputs of AND gate. 
As result, due to equivalent fault collapsing, the number of non-equivalent faults 
for n-input AND gate decreases to (n + 2) out of (2n + 2). 

It could be shown [5],[11] that similar relations exist between faults for other 
types of gates, e.g. OR, NAND, etc. For inverter and buffer gates, each fault on 
input has the equivalent fault on gate output, i.e. the total number of collapsed fault 
2 out of 4 uncollapsed.  

AND 
SA0    SA1 

SA0    SA1 

SA0    SA1 SA0 SA1  

SA1 SA0 

Figure 2.2: Stuck-at fault equivalence

 
 

8



2.2.3 Fault dominance for SSA 

Let us consider two stuck-at faults f1 and f2 for 2-input AND gate in Figure 2.3. 
In order to detect f1 it is needed to apply the following stimulus for the gate inputs: 
A = 0 and B = 1 (this is the sole test vector for detection of f1). However, it is easily 
seen, that the same test vector detects the fault f2 as well. As result the following 
conclusion is drawn: the detection of fault f1 also detects the fault f2 (it is said that 
fault f2 dominates fault f1). However this statement is not reflexive because the 
detection of f2 will not necessarily indicate that fault f1 is also detected (e.g. in case 
of test pattern A=0 and B=0).  

Similar to equivalent fault collapsing, the dominant fault collapsing helps to 
reduce fault list further. For example, by using both fault collapsing techniques for 
n-input AND gate, only (n + 1) faults need to be considered. 

2.2.4 Single stuck-at fault collapsing for arbitrary circuit 

It has been proven that in case of fanout-free circuit the only fault sites on 
primary inputs need to be considered to test the circuit for all single stuck-at 
faults [11]. The example of such reduction is illustrated in Figure 2.4. Here the 
faults that can be removed are marked by a grayed background. The equivalence 
fault collapsing is illustrated by dashed lines, while the elimination of faults due to 
fault dominance is marked by dotted lines. 

The checkpoint theorem [11] states that for an arbitrary circuit, the only faults at 
primary inputs and fanout branches need to be detected in order to achieve 100% 

AND
f2=SA1 f1=SA1

0 A

1 
B

Figure 2.3: Example of fault dominance

AND

SA0   SA1

SA0    SA1
SA0   SA1OR 

SA0   SA1 

SA0 SA1

SA0   SA1 

Figure 2.4: Fault collapsing in fanout-free circuit
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fault coverage of the circuit. In Figure 2.5, a sample circuit with two fanout points 
is illustrated and the fault sites mandatory for consideration are marked.  

The proof of this theorem could be illustrated in the following way. If a circuit 
has fanouts, the fanout points split the circuit into several fanout-free regions 
(FFR). According to the previous statement, for each of the FFRs we need to test 
stuck-at faults at the inputs of the region. As the input of a FFR is either fanout 
branch (e.g. FFR 2 in Figure 2.5) or primary input (e.g. FFR 1) it could be stated 
that considering stuck-at faults in those fault sites is enough for complete single 
stuck-at testing of arbitrary circuit. The proof of both theorems is given in [11]. 

 

2.2.5 Contributions of current thesis 

Instead of performing explicit stuck-at fault collapsing on gate-level netlist, the 
fault simulation algorithms proposed in the thesis take advantage of usage of 
SSBDD graphs for circuit representation (see Section 3.1). Besides other features, 
SSBDD model provides automatic fault collapsing thus eliminates the procedure of 
checking whether a fault belongs to the collapsed list or not. 

2.3 Fault simulation 

In contrast with logic (fault-free, true-valued) simulation, the task of fault 
simulator is to evaluate the behavior of circuit in case of the presence of faults 
inside. In particular, fault simulator has to determine whether the output response 
of a circuit is changing due to the influence of a fault or not. A fault which effect 
propagates to primary outputs under current input stimulus is referred as detected 
by the current test pattern. 

Fault simulator typically works with a specific fault model. The input data of 
fault simulator is a set of test patterns together with the model of a circuit. In 
general case, the result of the execution of fault simulator is a fault table that shows 
what of the modeled faults are detectable by each of the given test patterns. In 

 
 
 

FFR 1 

 
 
 
 
 

FFR 2 
AND

OR OR 
AND

Figure 2.5: Example of fault collapsing in the circuit with reconvergent fanout 
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addition, fault coverage (i.e. number of detected faults with respect to the total 
number of faults) is calculated. 

The sections below present the brief description of the traditional fault 
simulation approaches and the review of the state-of-the-art. 

2.3.1 Serial fault simulation 

Serial fault simulation is the most simple and straightforward way to obtain 
fault table for a set of patterns. For every test pattern serial fault simulator 
evaluates fault-free version of circuit at first. Next, the circuit is modified to imitate 
the presence of a fault (such modification is called fault injection). The simulation 
process is conducted for the fault injected version of the circuit and the outputs 
responses of both faulty and fault-free copies are compared. The result of the 
comparison determines whether the fault is detectable by the given test pattern or 
not. After that, the injected fault is removed and the next fault is inserted. The 
whole procedure is repeated until all faults in the fault list have been simulated for 
the given test pattern. 

Obviously, serial fault simulation algorithm is very simple in implementation: 
the only capability to inject faults need to be added to any logic simulator for 
converting it to fault simulator. However, for m faults in circuit the pure serial 
implementation of fault simulation is at least (m + 1) times slower than just a true-
valued simulation.  

However there exist general optimizations that can be applied to overcome the 
inherited slowness of serial fault simulation. For instance, the fault equivalence and 
fault collapsing techniques that were discussed in the Sections 2.2.2 and 2.2.4 
decrease the number of total faults thus results in the immediate speed gain.  

Another optimization called fault dropping could be used for the situation when 
only overall fault coverage of the given test set is requested. For the simulation 
with fault dropping, the fault is excluded from the list of faults immediately after 
its detection. Because most of the faults are likely discovered by the first test 
patterns, the list of non-detected faults will shrunk very quickly and the simulation 
continues on small set of active faults. This property allows drastically speed-up 
fault simulation, however the capability to obtain fault table is lost in this case. 

It is also possible to slightly decrease the algorithmic complexity of serial fault 
simulator by putting gates of a circuit in levelized order. In the ordered netlist, all 
the elements driving values to the inputs of a specific gate are placed prior to this 
gate. Consequently, the injection of fault can only influence the gates located after 
the fault insertion point while the I/O values of preceding gates remain unaffected. 
For this reason, fault simulator has to evaluate only part of the faulty copy of the 
circuit instead of processing the whole gate list.  
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Usage of compiled-code simulation instead of evaluation of gate-level model is 
another well-known technique for increasing the simulation speed. In the latter 
case, the simulator produces a special program (or machine code directly) that is 
executed on host computer. The purpose of this program is to use native set of CPU 
instructions for emulation of the behavior of the circuit. Although direct execution 
is faster than evaluation of circuit model, this approach lacks the flexibility. The 
compiled program requires complete execution even if the states of the most of 
nets did not changed, thus making this approach inefficient for the circuits with a 
small part of signals changing at a time. In addition, this method has portability 
issues (the simulator needs to work in combination with external compiler or be 
able to synthesize machine code for different platforms). 

In spite of the speed inefficiency of serial fault simulators their simplicity 
allows to easily adapt them for usage with any kind of fault model. This is the main 
benefit of serial fault simulation in comparison with more complicated methods 
(the vast majority of fault simulators are not very flexible in handling different 
types of faults). However this approach lacks the efficiency on carrying out 
simulation on stuck-at fault model.  

2.3.2 Parallel fault simulation 

The fundamental idea of parallel fault simulation is to fully utilize the width of 
processor data word in order to reduce fault simulation time. For example, if host 
computer has 32-bit architecture then a logic operation on 32 binary variables can 
be performed simultaneously by execution of just one CPU instruction (e.g. AND, 
XOR, etc). The two types of parallel fault simulation are distinguished: parallel 
fault simulation (simulates many faults in parallel) and parallel pattern simulation 
(processes many patterns in parallel). 

The only small overhead of parallel simulation is introduced by the demand in 
conversion (packing) of several integer values into bits of a single data word 
(packet). However the additional CPU resources needed for packing and unpacking 
data are rather insignificant and can be neglected because of overall speed gain. 

All the optimization techniques that were discussed in the previous section are 
also applicable for parallel fault simulator. However the effectiveness of fault 
dropping is less in case of analysis of many faults in parallel. 

2.3.2.1 Parallel fault simulation 
An approach that utilizes the width of processor word for processing of multiple 

faults was firstly proposed in [13]. Assuming that each signal line can have either 0 
or 1 value, w signals can be processed simultaneously on a w-bit CPU. The 
injection of fault to specific circuit line is made by altering of certain bit of w-bit 
data word associated with the signal. As result, w different copies of the same 
circuit can be processed simultaneously.  
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The parallel fault simulation is illustrated in Figure 2.6 is performed for one test 
pattern (ABC=101) and three faults by using 4-bit packets: the first bit is used for 
fault-free simulation and the rest bits reflect the simulation results for injected 
faults f1, f2 and f3 respectively. The faults f1 and f3 are detected because the value of 
corresponded bit in the packet associated with the primary output differs from 
fault-free value. 

Comparing to the serial fault simulator this approach will increase the fault 
simulation speed in approximately (w – 1) times. 

As was mentioned before, the fault dropping could be significantly less 
effective when using parallel fault simulation. While serial fault simulator is 
capable to exclude fault just at time of its detection, parallel fault simulator does 
not terminate the simulation of a packet until all the faults that belong to this packet 
become detected. For example, if a packet contains one hard-to-test fault, the 
whole packet is kept in simulation run even if the remaining faults in the packet 
have been already detected. 

2.3.2.2 Parallel-pattern fault simulation 
On the contrary to parallel fault simulation parallel-pattern fault simulation 

technique takes advantage of bitwise parallelism for evaluating many test patterns 
simultaneously. The parallel-pattern simulation (also called Parallel Pattern Single 
Fault Propagation or PPSFP) was introduced by Waicukauski et al. in 1985 [14]. 

In PPSFP a sequence of test patterns is packed into w-sized data word where 
each bit corresponds to a separate pattern. The packet is simulated on fault-free 

OR OR 
AND

01 1 1 f1 , f3 detected 1 0 1 1 10 0 0

0 0 0 0 

1 0 1 1 

1 1 0 1 

0 0 1 0

1 0 0 01 0 1 0

1 0 1 0 

ff f1 f2 f3

Fault-free 
value

f2=SA0 

f1=SA0 

f3=SA0 

A 
B 

ANDC 

Test pattern (ABC):   101

Fault-affected 
values

Figure 2.6: Parallel fault simulation example
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circuit to obtain the values of primary outputs for the first w test patterns. Then for 
each fault in the fault list the following actions are repeated: 

1. fault is injected into circuit; 
2. parallel-pattern simulation is performed on faulty circuit; 
3. output responses are compared with the results of true-valued 

simulation; 
4. the fault is removed and the next fault is taken for consideration; 

The whole procedure is executed until all test patterns become simulated. 

The example depicted in Figure 2.7 conducts PPSFP simulation for 4 test 
patterns and a single fault. In the first run patterns are simulated in parallel for 
fault-free circuit, while the second run simulates the same patterns after injection of 
fault f1.  

Thanks to its parallelism, PPSFP method is almost w times more effective than 
serial fault simulation. Moreover, unlike parallel fault simulator, PPSFP does not 
have the effect of degradation of speed gain offered by fault dropping. The 
drawback of PPSFP approach is the limitation in use only with combinational 
circuits. For sequential design the state of the circuit should be computed before 
applying the next test pattern. However this condition is not held for test patterns 
that are simultaneously processed. 

2.3.3 Concurrent fault simulation 

Concurrent fault simulator [15] is essentially based on the idea of event-driven 
logic simulation. The simulator exploits the hypothesis that typical fault effect 

f1 detected 

p1
1 p1

2 p1
3 p1

4

fault-free 

packet 

Test patterns: 
0 1 0
t1 t2 t3

0
t3

A
0 0 1 0B
1 0 1 0C
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3 p0
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1 0 1 0 
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B 

C AND

f1=SA1 
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0 1 0 0 0 1 0 1
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Figure 2.7: Parallel-pattern single fault propagation
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f1 detected 

results in differences for a small part of circuit. Consequently the only affected 
ion.  region need to be analyzed for fault detect

In concurrent simulation each gate in a circuit has a set of associated bad gates 
(i.e. virtual copy of a gate in case of a presence of fault f). Besides the fault id, a 
bad gate also contains faulty signal values on its I/O. The bad gates in the sample 
circuit in Figure 2.8 are drawn by dashed lines. 

Initially concurrent fault simulator creates bad gates for the faults with fault site 
in the same gate (such bad gate is called fault origin gate). In the example these are 
the bad gates created for faults f1

 (OR1), f2 (INV, AND2) and f3 (AND2). With the 
fault effect propagation other bad gates could replicate from the original gates 
(these gates are called fault effect gates). 

Concurrent simulation is performed pattern by pattern. A test pattern is applied 
by emerging events on primary inputs of circuit (e.g. A, B and C). The whole 
simulation process consists of consequent evaluation of events (changes of signals) 
on good and bad copies of gates.  

Evaluation of events occurred at good gates computes fault-free values of 
signals. If an event on output of a fault origin bad gate causes signal to be different 
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from fault-free value, then this bad gate become visible (i.e. creates fault effect). 
The fault origin bad gates OR1/f1, INV/f2 and AND2/f 2 in Figure 2.8 are visible.  

ate 
cau

effect gate converges to its original good 
gat

ls as well as for handling non-standard fault models. 
Mo

el implementation 
of 

tive fault simulation (firstly proposed in [18]) is completely different in 
ethods described above. Deductive algorithm relies on logic 

mulation is still needed but 
als). 

nse of circuit. Therefore the ultimate 
go

And vice-versa, fault origin gate become invisible if presence of fault does not 
change its output value (e.g. AND2 gate with the fault f3 is invisible because its 
output coincides with fault-free value).  

Propagation of the fault event by visible bad gate to the input of destination g
ses a new fault effect gate to be diverged and added to the list of bad gates (e.g. 

INV/f2 diverges a new fault effect bad gate AND1/f2). Diverged gates propagate the 
effect further. On the contrary, a fault 

e if signals on its inputs are indistinguishable of fault-free values. Finally, a fault 
becomes detected in case if the effect of this fault reaches the primary outputs of 
circuit (f1 in Figure 2.8).  

Concurrent fault simulator is more flexible than other fault simulation methods 
because the rules of events evaluation, changing bad gate visibility, diverging and 
converging fault effect gates could be adapted to process the circuit description on 
different abstraction leve

reover, the elimination of unneeded computation for the parts of circuit not 
affected by a fault considerably increases the efficiency of the method. However 
storing many copies of bad gates at run time is a potential memory problem, 
because the size of the lists is not known prior to the simulation. 

A variation of concurrent fault simulation referred as differential fault simulator 
[16] utilizes the analogous event-driven technique but requires minimal amount of 
memory for implementation. Unlike the previous method, differential fault 
simulation deals with single fault at a time. There exists a parall

differential fault analysis algorithm [17] that speed-ups the fault detection 
process. 

2.3.4 Deductive fault simulation 

Deduc
comparison with the m
reasoning rather than pure simulation (however the si
only to compute fault-free values of sign

In deductive fault simulation a fault set Sx is associated with each signal line x. 
A fault f belongs to the fault set Sx if the presence of the fault f in circuit flips the 
state of signal line x. Thus a presence of fault f in the set associated with primary 
output indicates that f changes the output respo

al of deductive simulator is to eventually construct fault sets for primary outputs 
of circuit and unite them into final set of detected faults POoSR o ∈= ,∪ .  

In Figure 2.9 the example of deductive fault simulation is given (with only 
active three faults: f1, f2 and f3). 
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SK={f1, f2} 

A proced educing Sx fault sets is conducted as follows. As the first step, 
the initial fa  inputs (e.g. y the 
immediate inclusion of faults on the inputs of circuit. Next, the evaluation of gates 
begins in the direction ts. For the single gate 
with known fault sets on its inputs, deductive simulator derives a fault set for gate 
ou

 appearance of 
log

 out of the sets SF and SG by using the formula above. 

2. Ic ∉∅ (e.g. some inputs may hold controlli se, a fault 
propagates through the gate only if its effect was propagated to every 
controlling input while self-masking effect (the appearance of the same 

ure of d
ult sets are formed for the primary SA and SC) b

 from primary inputs to primary outpu

tput (this process is referred as fault propagation). Then the fault at output is 
included (activated) in the propagated list of fault (fault activation). 

Consider the procedure for propagation fault sets in general. During gate 
evaluation deductive fault simulator distinguishes between the gate inputs holding 
controlling values (set of gate inputs Ic) and non-controlling values (set of gate 
inputs Inc). A controlling value of a gate is the value that defines the value of gate 
output: for example a controlling value for AND gate is 0 (because

ic 0 at least on one of the inputs of AND gate forces its output to go into logic 0 
state), a controlling value for OR gate is 1, etc. Then two cases are recognized: 

1. Ic∈∅ (i.e. all gate inputs hold non-controlling values). This means, that the 
fault effect observed on any of inputs will propagate to gate output (i.e. 
fault that belongs to any of fault sets of gate input is observable at gate 
output). For this case the target fault set S’ is calculated using the following 
equation: 

∪
ncIi

iSS
∈

=′  

In the example in Figure 2.9 the fault set for the output of AND1 gate is 
constructed

ng value). In this ca
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Figure 2.9: Deductive f imulationault s
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fault effect at any non-controlling inputs of the gate) is absent. The 
respective fault set S’ for gate output is derived as: 

∪∩
ncc Ij

j
Ii

i SSS
∈∈

−=′  

The application of this rule is illustrated by deriving fault set SO from the 
sets SK and SL. 

Finally, to obtain the complete fault set S, the potential fault at corresponded 
signal line (i.e. gate output) need to be activated, i.e. added to the fault set: 

linesignalcurrentatfSS ___∪′=  

The described procedure continues until the construction of fault sets for all 
pri

∈

The deductive fault simulation is extremely powerful in comparison with 
sim

ulator spends most of CPU time 
on logic operations over fault sets (union, intersection and complementation).  

 

 considered as critical if change of its value 
cau

al path tracing starts with the primary output. Since primary output is 
ess

nues until all 
the

simulation. In the example in Figure 2.10 critical path tracing discovers signal line 

mary outputs is finished. As the last step, fault sets associated with primary 
outputs are united into single set of detected faults ∪ oSR = . 

POo

ulation-based approaches due to the fact that all faults are processed in a single 
run (for given test pattern) avoiding re-simulations of the same circuit. However 
during the simulation process deductive fault sim

2.3.5 Critical path tracing 

As an alternative to the fault simulation, critical path tracing (CPT) algorithm 
[19] does not conduct any simulations except true-valued one. Instead of that, 
critical signal lines are traced starting from primary outputs towards inputs of
circuit.  

During path tracing, a signal line is
ses a flip of the state of primary output. As result, a stuck-at fault that is 

associated with the critical line (SA0 if the value of signal line is logic 1, SA1 
otherwise) should be immediately added to the list of detected faults. 

Critic
entially critical, it is added to the list of critical nets and the tracing continues for 

gate that drives the output. The inputs of the gate are evaluated to determine 
whether they affect any of critical nets or not. By the result of such evaluation, the 
inputs of gate may be added to list of critical nets. The tracing conti

 nets are evaluated (or until no critical nets under evaluation remained). 

The process of critical path tracing is presented in Figure 2.10 (the critical nets 
are marked by bold lines). Note that for exact results, CPT need to be stopped by 
reaching fanout. Otherwise the fault-masking effect could spoil the results of 
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F=1
K=1

C to be critical in respect to primary output. However the fault effect diverges at 
fanout W continues to propagate by both fanout branches E and I. Finally, the 
ph

m special handling of reconvergent fanouts.  

ated parallel-pattern fault 
sim

ficiency of PPSFP by the reduction of unnecessary simulated 
are

is based on stem-region analysis [22]. For each fault in reconvergent 

enomena of fault masking becomes apparent at reconvergency point Y, where 
fault effects on both lines K and L cancel (mask) each other hence stopping the 
fault propagation. 

 Critical path tracing algorithm provides linear complexity (in respect to the 
number of nets) within fanout free region of circuit. Unfortunately original 
implementation of critical path tracing cannot straightforwardly handle fanout 
reconvergencies hence providing only approximate fault coverage. In order to 
obtain exact results, critical path tracing algorithm should either be restricted by 
fanout free region or perfor

2.3.6 Review of state-of-the-art 

The methods presented in the previous sections can be characterized as basic 
types of fault simulation algorithms. However a number of sophisticated 
optimizations were proposed so far in order to achieve better efficiency of fault 
analysis. Below we will outline some of the attempts to build powerful algorithms 
for fault simulation. 

Antreich and Schulz have proposed an acceler
ulation method [20]. The key idea of the algorithm is to reduce the number of 

fanout stems to be unnecessarily re-simulated by identifying of independent fanout 
branches.  

Harel et al. [21] suggested to use a dominator concept (in terms of graph theory) 
for improving the ef

as of circuit. Another proposed optimization of the paper is implementation of 
priority queues for maintaining the list of gates waiting for evaluation. 

Another improvement of parallel fault simulation method proposed by Maamri 
and Rajski 
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Figure 2.10: Critical path tracing technique
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 fanout-free 
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itical-path tracing inside FFRs and efficient 
im

vide the solution for handling 
ver

ar time. The 
me

ction 
wi

 another approximate method of fault 
sim

out the approach determines a stem-region which limits the simulation area. The 
stem-region is bounded by so-called exit lines that form a set of disjoint cones 
(from exit-line to primary outputs). If fault is detected on exit line and this line is 
critical the further simulation is not needed. For fault anslysis inside

ions the method uses CPT technique. 

Test-detect fault simulation algorithm proposed by Roth [23] requires faults on 
gate lines to be evaluated in a backward levelized order. Hence for each fault, the 
gates that occur later in the order are already considered. This gives the opportunity 
to stop the simulation of a fault if the propagation path of this fault is converged to 
a single gate. The further elaboration of this method [24], results in test-detect 
algorithm refined for parallel use. 

Lee and Ha have proposed the efficient version of PPSFP-type simulator [25] 
that is exploits the idea of eliminating of unnecessarily simulated regions on early 
stages of fault simulation. This is achieved by examining the detectability of faults 
and exclusion the following regions out of simulation in case if no faults are 
detectable at the output of currently simulated FFR or stem region. The method 
also enhanced with usage of cr

plementation of stack of gates under evaluation. 

Saab have presented parallel-concurrent fault simulator [26] that relies on the 
approach of concurrent simulation but simultaneously processes fault groups 
instead of single faults. The technique for partitioning faults into fault groups 
reduces time needed for processing of events in concurrent simulator. 

Takahashi et al. have extended deductive fault simulation approach for the case 
of multiple stuck-at fault model [27]. Authors pro

y large number of fault combinations by using Boolean functions (represented 
with the help of shared BDDs) thus cutting down the memory requirements.  

Wu and Walker have proposed critical path tracing method [28] that allows to 
perform exact CPT on a circuit with reconvergencies in nearly-line

thod is based on traditional CPT supplemented with a special set of rules to 
handle various cases of reonvergencies. 

The method of approximate fault analysis called fault sampling was proposed in 
[29] for reducing the efforts of fault simulation. The method works in conjun

th fault simulator to determine the detectability of randomly picked sample of 
faults (i.e. subset of fault list) and extrapolate these results by using means of 
probabilities theory.  

Jain and Agrawal have proposed
ulation. Statistical fault analysis [30] uses results of fault-free simulation for 

producing fault coverage estimation. During logic simulation the number of 
occurrences of 0- and 1-values for each signal line and number of cases when gate 
input is sensitized to the gate output are counted. Basing on these values, statistical 
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l 
dev

med for 
con

ll have certain drawbacks that 
slow down the analysis speed. The major disadvantage of deductive fault 

ations on large fault sets 
and 

fau

gle signal line). However several approaches have been proposed 
to 

 concurrent and differential simulators do not 
pro

of sophisticated rules and cannot be applied for parallel processing of patterns. 

lt analyzer computes the probability of each fault to be detected. However the 
both approximate methods cannot provide the exact data about fault detectability. 

Besides the conventional approaches, many challenges have been made to 
increase the speed of fault simulation by delegating part of the process to specially 
developed hardware accelerators [31], [32]. Many of such attempts utilize 
reconfigurability of FPGA to emulate the whole circuit under test in 
reprogrammable logic [33], [34], [35]. However these techniques require additiona

ices to be attached to host computer thus narrowing their applicability. 

Recently a new dimension in the area of accelerating fault simulation speed is 
being thoroughly explored [36], [37]. The key idea of the approach is to use 
standard off-the-shelf hardware that is capable for parallel processing to accelerate 
the well-known fault simulation algorithms. Typically, graphical processing units 
(which likely contain hundreds of separate processing cores) are program

current execution of basic operations needed to run simple fault simulation 
algorithms (e.g. parallel fault simulation or PPSFP). 

2.3.7 Problems with fault simulation algorithms 

Although the techniques considered in this section are equipped with 
sophisticated algorithms for fault simulation, they sti

simulation (Section 2.3.4) is the demand of complex oper
that decrease the speed of deductive reasoning. However fault equivalence 

lt dominance relationships (Section 2.2.4) can assist in reducing the total 
number of faults. 

Straightforward implementation of parallel-pattern fault analysis (Section 
2.3.2.2) results in unnecessary simulation of the parts of circuit that are not affected 
by a fault. Also re-simulation is performed for the regions that have already been 
simulated under the same conditions (for instance, if propagation of effect of a fault 
converges to a sin

reduce this overlap ([20],[21],[22],[24],[25]), they cannot pretend to completely 
eliminate the unneeded simulation. 

In the latter sense concurrent and differential simulators (Section 2.3.3) are 
more efficient since they simulate only “active” parts of circuit. However these 
methods are generalized for any types of circuit description and fault models and 
do not exploit the advantage of gate-level combinational stuck-at fault simulation. 
In addition, the parallel versions of

vide speed gain comparable with the gain obtained by PPSFP simulators. 

Although critical path tracing (Section 2.3.5) is very powerful technique 
because it offers linear-time complexity, it cannot handle fanout reconvergencies. 
The proposed exact critical path tracing for arbitrary circuit [28] is based on a set 
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2.3.8 Contributions of current thesis 

In this thesis we are attempting to improve deductive (Section 3.2) and parallel-
pattern (Section 3.3) fault simulation approaches. In contrast with the methods 
described above we propose to perform fault simulation on a network of macros 
instead of processing logic gates (see Section 3.1).  

As it was mentioned before, the speed of deduction algorithm directly depends 
 n on. In the thesis we propose fault list 

s the method that is intended to avoid 
sop

elerated by parallel processing 
and

ussed in subsections 2.4.2, 2.4.4 and 2.4.5 since the 
process of fault analysis is required to be performed many times in a cycle.  

 

ry task 
of any fault simulator. In addition the fault simulators are capable to build a 

of discovered faults for each test pattern. The 
latter is necessary for the task of diagnosis. 

on the umber of faults taken for considerati
reduction technique (Section 3.2.1) as well a

histicated fault list deduction for certain parts of circuit (Section 3.2.3). 

Parallel-pattern fault analysis approach that is proposed in the current work 
essentially incorporates parallel critical path tracing technique. In comparison with 
traditional CPT, the proposed method has been acc

 the use of macro-level description of circuit (Section 3.3.1). Moreover, the 
method of parallel critical path tracing is extended for circuit with reconvergencies 
using a special calculation model (Section 3.3.3 and 3.3.4) that helps to escape 
unnecessary re-simulations. 

2.4 Applicability of fault simulation 

In the following subsections the main test-related tasks that require intensive 
use of fault analysis are outlined. This helps to reveal the relevance of the problem 
of fault simulation performance. The speed of fault simulator is especially crucial 
while solving the tasks disc

2.4.1 Test quality evaluation 

An essential task of fault simulator is to evaluate quality of the supplied test 
program. The quality is measured in terms of fault coverage with respect to the 
specific fault model. Fault coverage indicates the ratio of faults discovered by test 
patterns in respect to the total number of faults in the model. Calculating the fault 
coverage and reporting the list of detected and undetected faults is the prima

complete fault table with the lists 

2.4.2 Test generation 

The fault simulator is often used in conjunction with Automatic Test Pattern 
Generation (ATPG) process in order to verify the generated test pattern 
(Figure 2.11). This is especially applicable to different types of random pattern 

 
 

22



Fault 
simulatorNetlist

generators (e.g. [38], [39], [40]) which typically cannot prove whether the 
produced test pattern detects any of new faults or not.  

Genetic algorithms of ATPG ([41], [42]) use fault simulator to compute the 
 f  the generation process. There exist many other types of 

simulation-based ATPG (e.g. [43], [44]) that demand tight interaction with fault 
sim

 of fault simulators is the problem of diagnosis. 
Th

ng the system or improving the production yield. 

The diagnostic information assists to determine the source and location of fault 
efect. One of the well-known 

methods to perform diagnosis is to use fault dictionary (this technique is also 
ref

fitness unction that adjusts

ulator to achieve the results. 

Even in case of deterministic ATPG that target a specific fault (or faults), the 
fault simulation is applied as a kind of a post processing. In the latter case it helps 
to reveal the information about other faults (besides the targeted ones) possibly 
discovered by the test pattern. 

2.4.3 Fault diagnosis and fault dictionaries 

Another area of applicability
e testing of a device helps to decide whether the DUT is functioning correctly or 

not. However if the device fails to pass the tests, there is still no information about 
the cause of malfunction or probable location of defects. Nevertheless such info 
could be vital in case of repairi

thus narrowing the suspected area and type of d

erred as cause-effect analysis [5], [4]). The fault dictionary contains a list of 
symptoms (i.e. failed test patterns and their output responses) and a specific fault 
(or group of suspected faults) associated with each symptom.  

ATPG Test pattern

Fault 
coverage

not sufficient sufficient

update list of 
discovered faults

ATPG 
completed 

Figure 2.11: Fault simulator in conjunction with ATPG

 
 

23



In Figure 2.12 a fault dictionary is co tr te f circuit under 
diagnosis. During diagnostic test, the information about failed test patterns is 
recorded by a tes agnostic program 
searches the fault dictiona reports with the 
dia

pping. 

 coverage. This is done for the sake of 
ost of storage of patterns in 

ue referred as test compaction is capable to achieve 
go

ation of the test quality. The 
red

se the efficiency of the test pattern. Indeed the intelligent 
sub

ns uc d or sample 

ter together with the test result. Then a di
ry for the corresponding symptom and 

gnosed fault. 

A fault dictionary is straightforwardly built out of the fault table: for every fault 
the test patterns that detect this fault need to be stored as a fault symptom. The fault 
table in its turn is built by fault simulation which needs to be conducted without 
usage of fault dro

2.4.4 Test compaction 

Usage of fault simulator can also help to optimize already available test 
program without decreasing the fault
lessening the cost of test application time and the c
tester memory. The techniq

od results on reduction of initial test pattern set.  

Test compaction exploits several fundamental ideas [11]. First, the method 
removes the test patterns that do not contribute into detection of new faults. In 
other words, if a test pattern detects faults that have been already detected by other 
test patterns, it can be removed without degrad

undant test patterns can be identified by carrying out fault simulation of test set 
in reversed-order. 

Another approach is based on the fact that ATPG typically targets a specific 
fault and thus lefts many of primary inputs undefined [45]. Hence by filling-in 
values for the unassigned inputs (don’t care positions) test compaction algorithm 
attempts to increa

stitution of don’t cares with the 0 and 1 can significantly raise the number of 
fault detected by single test pattern.  

OR 
AND

A 

B 
F P P P SA0@A 
P F P P SA1@A, SA1@B 
F 

t1 t2 t3 t4

Suspected 
faults 

Symptom 

C 
P F P SA0@C 

SA0@B P P F P Test pa s:  
t1=101, t2=001, t3=011, t4=100

ttern
P P F SA1@C P 

Figure 2.12: Fault diagnosis  c via fault di tionary
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However the latter approach is heavily relied on fault simulator because it 
requires many runs of fault simulation over the different variations of test pattern 
set. This results from the fact that test compactor needs to choose the optimal 
substitution of undefined bits by zeros and ones. 

y of self-testing. BIST is very 
mber of advantages [4] including excellent test 

ctures of device, native at-speed testing, instant test 
app

llocated on 
the

ploration of the search space of BIST controller needs to be performed 
to 

oduces an application of fault simulation technique as 
last part of the thesis, fault analysis is 

alicious faults (see 
ability of design. 

e to perform hierarchical 
fault simulation (on RTL and macro-level) in order to determine the fault coverage 
of functional testing. In [IX], the presented tool has been supplemented with the 

2.4.5 Built-in self test 

Built-in Self Test (BIST) is a widespread DFT technique which enables a 
silicon device with the additional functionalit
attractive because it provides a nu
access to the internal stru

lication, low testing cost, ability to test device over its lifespan, etc.  

A typical Logic BIST controller consists of a special pseudo-random test pattern 
generator (PRPG) and response analyzer. A version of Logic BIST that combines 
PRPG together with the set of pre-defined deterministic patterns is called Hybrid 
BIST approach. However the latter requires additional memory to be a

 device. 

In the process of design of BIST controller an engineer is faced with number of 
challenges, e.g. the selection of optimal parameters for PRPG [5], [46] or 
delimitation of the bounds between deterministic and pseudo-random test [47]. As 
result, an ex

achieve the better fault coverage or solve the tradeoff between the size of 
additional memory and the quality of test. Similarly to the previous task, the search 
for optimal solution normally requires many cycles of the fault simulation to be run 
under various conditions. 

2.4.6 Contributions of current thesis 

The current thesis intr
well. In Paper IV presented in the 
incorporated into the procedure of composing the list of m
Section 3.4) that is used in analysis of depend

The focus of co-authored papers ([VIII], [IX] and [X]) is a laboratory 
environment for research in the area of digital testing. Although, this topic have 
been not included into the main scope of current thesis we will try to outline the 
purposes and main features of the developed tools below. 

The main goal of the presented tools is to study the different aspects of design 
and test using relatively small illustrative examples. In particular, in [VIII] the 
system for investigating issues of register-transfer level design and test is 
presented. In addition to wide set of features, it is capabl
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po

r summary 

 fault analysis. 

The first part has briefly specified the goal and concept of testing of digital 
and defects have been explained and the fault 

lin died. The main emphasis was made on the 
des

nt. Instead, fault analysis is used as an auxiliary 
ste

advance in fault analysis speed can 
sig

ssibility to measure and evaluate the effectiveness of various implementations of 
BIST controller. 

Furthermore, the software package of laboratory tools [X] has been enhanced 
with the system that is capable to study the influence of real defects and draw the 
correlations between physical defects and fault models. 

2.5 Chapte

The purpose of this chapter was to provide reader with the background 
information needed to understand the basic principles of

device. Next the notations fault 
mode g issues have been stu

cription and properties of stuck-at fault model that is used in simulation 
methods described in the thesis. 

The approaches described in the chapter represent the main types of fault 
simulation. The chapter briefly introduces with the advanced techniques that are 
intended to optimize fault simulation process.  

It is also important to understand that fault simulation is a not standalone 
problem of test quality assessme

p of other test-oriented tasks. Indeed, several applications described in the last 
part of the chapter require many iterations of fault simulation for achieving the 
satisfactory results. The latter fact gives especially clear motivation for improving 
efficiency of fault simulator, since even small 

nificantly influence the overall time spent on finding the optimal solution. 
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Chapter 3  

OVERVIEW OF RESEARCH  

RESULTS  

This chapter gives an overview of the research results presented in Papers I-IV. 
The scope of the research is mainly focused on improving fault simulation methods 
for combinational circuits (or circuits enhanced with scan-path) with the usage of 
stuck-at faults for modeling defects. However, the intermediate steps of research 
were published in larger extent of papers (including [V], [VI] and [VII]), we have 
selected only four publications that contain the most important achievements. 

The first paper that is called “Efficient Single-Pattern Fault Simulation on 
Structurally Synthesized BDDs” addresses the problem of single-pattern fault 
analysis. The paper studies the possibility to perform fault simulation on macro-
level by introducing the version of deductive fault propagation algorithm refined 
for SSBDD model. Moreover, the paper proposes to use fault-free simulation on 
SSBDD for shrinking the set of initial fault list. Another contribution of the article 
is the idea to use topological analysis prior to fault simulation for accelerating 
propagation process for certain parts of the circuit. Since the implementation of the 
proposed method was not finished in the moment of publishing, the paper contains 
rather preliminary data, experimental results and estimations of the potential speed-
up. The overview of Paper I together with final results is given in Section 3.2. 

The next two papers are devoted to improving parallel-pattern simulation 
approach. The paper called “Ultra Fast Parallel Fault Analysis on Structurally 
Synthesized BDDs” presents several contributions. First, parallel critical path 
tracing algorithm is proposed for SSBDD graphs. This had allowed to use parallel 
CPT technique inside the fanout-free regions but on macro-level instead of gate-
level. Another result is an approach to extend results of critical path tracing beyond 

 
 

27



FFRs with the help of Boolean differentials. The latter requires building of a 
special calculation model in the phase of topological analysis of circuit. The 
presented method has achieved significant speed-up in comparison with other 
simulation tools. 

The next paper that is called “Parallel Exact Critical Path Tracing Fault 
Simulation with Reduced Memory Requirements” continues to improve the 
technique proposed in Paper II. Two novelties are introduced: the way of 
optimization of calculation model and an approach for splitting the model into parts 
for carrying out simulation iteratively. The former results in higher simulation 
speed while the latter reduces overall memory consumption of fault simulator. 

Since the both papers basically address the same topic and logically supplement 
each other, their overview is presented under the single Section 3.3. 

The last paper titled “Hierarchical Calculation of Malicious Faults for 
Evaluating the Fault-Tolerance” is not directly devoted to fault simulation but 
rather to the application of fault analysis. In particular, the approach is intended for 
generation of malicious fault list used in dependability analysis. The fundamental 
idea of the method is to use hierarchy of Decision Diagrams to represent (and 
analyze) circuit on multiple levels of abstraction. This gives an opportunity to cope 
with the complexity problems but, at the same time, preserves the accuracy of gate-
level evaluation. The brief overview of Paper IV is presented in Section 3.4.  

Before proceeding with the description of the research results, it was decided to 
give an overview of SSBDD model that is used to represent circuit on macro level 
(Section 3.1). This is required since the presented algorithms rely on SSBDD 
graphs for carrying out fault simulation.  

In addition, Section 3.5 summarizes the results of experiments carried out to 
compare the proposed fault simulation methods with each other and state-of-the-art 
tools. This is done because the experimental data published in Papers I-IV have 
been obtained on different platforms hence are not easily comparable.  

3.1 Representation of circuit on macro-level 

In contrast with the conventional approaches that use gate-level netlist for 
describing of a digital circuit on logical level, the methods presented in the thesis 
use a slightly higher level of abstraction called macro-level. A circuit on macro-
level is described by using a special form of Binary Decision Diagrams (BDDs). 

Structurally Synthesized BDDs (SSBDDs) firstly proposed in 1976 [48] have 
been successfully used in the field of design and test. Unlike the traditional 
BDDs [49], [50], the distinctive feature of SSBDD is the ability to keep the 
information about the structure of a modeled circuit (whereas traditional BDDs 
represent only a logical function). Besides this, SSBDD model has linear 
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complexity in respect to number of gates in original circuit (the worst-case 
complexity of traditional BDDs is exponential). Furthermore, in [51] it was proven 
that the size of SSBDD model is always smaller than the size of logic-level netlist 
it has been generated from.  

Another property of SSBDD model is a built-in fault collapsing for stuck-at 
fault model [52]. The latter feature makes SSBDD be especially attractive for 
usage in conjunction with stuck-at fault model and avoids the performing fault 
collapsing explicitly. On the other hand, fault resolution remains the same as with 
gate-level models that use fault collapsing technique described in Section 2.2.4. 

A comprehensive research that had been made to study the applicability of 
SSBDDs in the field of testing of digital circuits have found it feasible to use the 
model for tasks of test generation [53], logic and multi-valued simulation [52], 
timing simulation [54],[55], design error diagnosis [56], etc. The preliminary 
comparison of a serial fault simulation on macro and gate levels [52] had shown 
the potential of the SSBDD-based approach also for fault analysis. In the current 
thesis we attempt to extend the usage of SSBDD model for advanced fault 
simulation techniques. 

Structurally Synthesized Binary Decision Diagram is a planar, acyclic BDD that 
is obtained by superposition of elementary BDDs for logic gates. While traditional 
BDDs are generated by Shannon's expansions that extract the function of the logic, 
SSBDD models extracts both, function and data about structural paths of the 
circuit. A digital circuit is modeled as a system of BDDs, where for each of 
tree-like fanout-free regions a separate SSBDD is generated. 

An SSBDD G is a triple (M, X, Γ), where M is a set of nodes, X(m) is a function, 
which defines line variables labeling the node m and  Γ(m, e) is a function, which 
gives the successor node of m with X(m)=e, e∈{0, 1}. The set of nodes M=MN∪MT 
is divided into a set of nonterminal nodes MN={m0,..,mk} and a set MT that contains 
0- and 1-terminals nodes (mT0 and mT1 respectively). 

SSBDD graphs for gate-level digital circuits are created as follows. Starting 
from the output of the FFR, logic gates are recursively substituted by their 
respective elementary BDDs. The procedure of superposition terminates in those 
nodes, which represent a primary input or a fanout branch. 

In Figure 3.1 a logic circuit with an output line Y and its corresponding SSBDD 
graphs are depicted. Note, that the direction of an edge (down or right) corresponds 
to respective 0- or 1-label (thus labels are omitted). The illustrated terminals nodes 
(0- and 1-nodes) can be also omitted: the exiting the BDD downwards corresponds 
to 0 and rightwards to 1. In addition, SSBDD nodes can also be labeled by inverted 
variables (e.g. 1C  in Figure 3.1). 

Let us denote Γ(m, e) by me. Then m0 is the successor of m for the value X(m)=0 
and m1 is the successor of m for the value X(m)=1. By the value assignment, we 
say that the edge between nodes m  and me is activated. Consider a situation where 
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FFR 1 

all the variables X(m) are assigned by a Boolean vector Xt∈{0,1}n  to some value. 
The edges activated by Xt form an activated path lact=(m0, …, mT) from the root 
node m0 to one of the terminal nodes mT∈MT. The bold edges in Figure 3.1 indicate 
the activated paths inside SSBDD for current input vector. 

. 
The edges activated by X

There also exists a directed path l through all non-terminal nodes. The latter 
path levelizes the nodes by numerical labels n(m) so that each m∈M has label n(m) 
with number higher than its predecessors on path l. There is one-to-one mapping 
between the nodes in SSBDD and signal paths of circuit. For instance, the node D1 
in Figure 3.1 corresponds to signal path with the beginning in fanout branch D1 to 
the output Y.  

There also exists a directed path l through all non-terminal nodes. The latter 
path levelizes the nodes by numerical labels n(m) so that each m∈M has label n(m) 
with number higher than its predecessors on path l. There is one-to-one mapping 
between the nodes in SSBDD and signal paths of circuit. For instance, the node D

In SSBDD graph stuck-at faults are modeled at non-terminal nodes. The 
presence of a fault inside the node m∈MN permanently fixes the successor node to 
m0 (down edge) for SA0, or m1 (right edge) for SA1, regardless of the value X(m). 
Thanks to one-to-one correspondence between the nodes and signal paths, stuck-at 
fault modeling on SSBDD is almost identical to fault collapsing technique 
described Section 2.2.4 (this has been shown in [52]). 

In SSBDD graph stuck-at faults are modeled at non-terminal nodes. The 
presence of a fault inside the node m∈M

To conclude with, we will outline the main advantages of SSBDD model. First, 
the model allows to rise the level of abstraction of circuit representation from the 
set of gates to more coarser network of macros. At the same time, the gate-level 
accuracy is preserved since the fault resolution remains the same as for collapsed 
stuck-at fault model for gate-level circuits. Moreover, the automatic fault 

To conclude with, we will outline the main advantages of SSBDD model. First, 
the model allows to rise the level of abstraction of circuit representation from the 
set of gates to more coarser network of macros. At the same time, the gate-level 
accuracy is preserved since the fault resolution remains the same as for collapsed 
stuck-at fault model for gate-level circuits. Moreover, the automatic fault 
collapsing integrated in SSBDD model, avoids the explicit checking whether a 
fault is included into the collapsed list or not. 
collapsing integrated in SSBDD model, avoids the explicit checking whether a 
fault is included into the collapsed list or not. 

t form an activated path lact=(m0, …, mT) from the root 
node m0 to one of the terminal nodes mT∈MT. The bold edges in Figure 3.1 indicate 
the activated paths inside SSBDD for current input vector. 

1 
in Figure 3.1 corresponds to signal path with the beginning in fanout branch D1 to 
the output Y.  

N permanently fixes the successor node to 
m0 (down edge) for SA0, or m1 (right edge) for SA1, regardless of the value X(m). 
Thanks to one-to-one correspondence between the nodes and signal paths, stuck-at 
fault modeling on SSBDD is almost identical to fault collapsing technique 
described Section 2.2.4 (this has been shown in [52]). 
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Figure 3.1: A circuit and its SSBDD representation 
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3.2 Single-pattern fault simulation 

This section presents a novel approach for conducting single-pattern fault 
lation on SSBDD prehensive description of the 

 an outline of key aspects and 
presents final results that have not been published in the original paper. 

 
ful

or each FFRs 
D 

3.2

ardly by 
consequent evaluation of graphs corresponding to the primary outputs of circuit. 

de me is 
 The 

sim

sig

a graph that are traversed by 
fault-free simulator establish an activated path inside the graph. Obviously, 

simu model. Although the com
method is provided in Paper I, this section gives

Unlike parallel-pattern fault simulation methods (Section 2.3.2.2), the presented 
technique is most efficient for the cases when only one (or few) patterns need to be 
simulated at a time. The latter condition lessens the attractiveness of parallel-
pattern fault analysis because the efficiency of parallelism cannot be exploited in

l extent. In particular, single-pattern fault analysis is especially relevant for 
simulation of synchronous sequential circuits as well as for the problems of test 
pattern generation and test compaction (Sections 2.4.2 and 2.4.4). For these tasks 
the next pattern is typically issued only after the analysis of the fault detectability 
of the preceding pattern. Moreover, unlike parallel-fault analysis (Section 2.3.2.1) 
the presented algorithm has no limitations on using of fault dropping. 

In general, the proposed algorithm consists of the following steps: 

1. Fault-free simulation on SSBDD and identification of fault candidates 
2. Topological analysis to determines the type of reconvergency f
3. Activation of faults and propagation of fault lists through SSBD

.1 Fault-free simulation on SSBDDs and fault list reduction 

Fault-free simulation on SSBDD model is performed straightforw

The nodes are traversed starting from the root node m0. Each successor no
selected depending on the value of variable X(m) that labels the node.

ulation of each SSBDD graph ends by reaching one of the terminal nodes mT. 
However if the value of non-terminal node depends on the other SSBDD (i.e. node 
is not a primary input) the simulation recursively proceeds to the underlying graph. 

During fault-free simulation the two goals are achieved: true values are 
determined for internal signal lines (by path activation in SSBDD) and the 
candidate faults are identified. The proposed single-pattern fault simulation method 
rely on the logical operations with fault sets, hence the sizes of fault lists 

nificantly influence the overall speed of the method. For this reason, keeping the 
number fault candidates as less as possible is vital.  

We propose to reduce the number of potential faults by applying the following 
rules:  

− As it was mentioned above, the nodes of 
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the only faults with sites at the nodes that belong to the activated path can 
affect the result of graph evaluation. For instance, the fault at node B 

t

− 

H
faults in
success

The  the algorithm is provided in Paper I. 

to two stages 
fault activati out 

the 
o  the fault set for the output 

of 

at is used for propagation of fault lists 
thr

s. 
m. 

FR. 

(Figure 3.1) cannot change the traversed path under current vector X  thus 
does not influence the output value Y. 
In case if a SSBDD avoids recursive evaluation, all the nodes of the graph 
are excluded from the list of potential fault sites. However, a true-value 
simulation is still needed in order to ensure the correct function of fault 
propagation algorithms. 

− If the value of successor function of a node does not equal to the output 
value of graph the fault at this node cannot affect the result of graph 
evaluation (e.g. node C1 in Figure 3.1). This comes from the property of 
planarity of SSBDDs. 

owever for a single test pattern there is no need to consider both SA0 and SA1 
 each fault site. Instead, the only single fault (i.e. the one that changes the 

or node) should be taken into account.  

complete description of

3.2.2 Deductive fault propagation on SSBDDs 

The deduction-based fault analysis procedure can be divided in
on and fault propagation (Section 2.3.4). Fault activation finds 

which of the faults with the locations in fault candidate nodes of FFR affect 
output f this FFR. Fault propagation in its turn derives

FFR from the lists of faults on its inputs.  

The activation of faults is done straightforwardly. We can either invert the 
corresponded node (to imitate fault) and re-simulate SSBDD (see Paper I), or 
perform critical path tracing on SSBDD (see Section 3.3.1).  

Below we propose deductive algorithm th
ough FFR represented by SSBDD graph. First we define notations as follows: 

• M1 - set of nonterminal nodes at the activated path lact 
• m’= mX(m)  m”= m⎤ X(m) 
• mTF  – terminal node that corresponds to faulty value of FFR { mTF∈ MT | 

X(mTF)≠ ⎤f(Xt)} 
• S(m) – fault list propagated to m from previous SSBDD

 faults propagated inside SSBDD to node • L(m) – temporary list of
• N(m) – set of nodes succeeding node m in directed path l through all the 

nodes of SSBDD 
• R – resulting set of the faults propagated to the output of F

 
 

32



The following observations lay in the basis of the algorithm: 

1) faults in fault propagation list S(m) of a non-terminal node m that belong to 

   (1) 
(\)

mNk

kL  

2) if a fault in temporal list of a node m that does not belong to activated path 

 

3) if fault in t path is 

(3) 

After performin -t inal nodes, the fault list 
ass

   (4) 

The overall alg DD is 
pro

Ø 

1 then 
 L(n), for n∈N(m).  

 

) 
)) 

ropagation of faults on SSBDD has advantage over classical 
ate-level deductive fault simulation because it does not require evaluation of gate 

type and inputs. Instead of that, the propagation is done on uniform model using 

activated path lact are added to the temporal list L of a faulty successor node. 
However the temporal list should not contain the faults already propagated 
to the succeeding nodes in the graph. 

L(m”) = L(m”) ∪  S(m)  

∪
)(

)(()()( mSm"Lm"L
∈

∪=

lact is not included into fault propagation list S of this node, then such fault 
is added to the temporal fault list L of a true-value successor node. 

L(m’) = L(m’) ∪ (L(m) \ S(m))   (2)

emporal list of a node that does not belong to activated 
included into fault propagation list S of this node then such fault is added to 
the temporal fault list L of a faulty-value successor node 

L(m”) = L(m”) ∪ (L(m) ∩ S(m))   

g the above-listed steps for all non erm
ociated with terminal node that corresponds to the faulty value of the graph is 

treated as the resulting set of propagated faults: 

R = L(mTF)   

orithm of deductive for fault list propagation on SSB
vided below: 

 R =Ø 
 for each m∈MN
  L(m)=
 end for 
 for each m∈MN

  if Mm∈
   T =∪
   L(m”)= L(m”) ∪ (S(m) \ T)
  else    
   
   

L(m’)= L(m’) ∪ (L(m) \ S(m)
L(m”)= L(m”) ∪ (L(m”) ∩ S(m

  end if 
 end for 
 R = L(m ) TF
 

The deductive p
g
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s e 
co  graph 
will require fewer steps than evaluation of corresponded gate-list. 

sults of execution of algorithm. At the end, the set R contains the 
fau

propagation of fault lists 
through a circuit. However in Paper I it was pointed out, that for some parts of 

aster methods. For 
 of circuit that 

cat

(S(mi)∩S(mj))=∅ , where mi,mj∈MN, i≠j 

mall set of rules. Moreover, the complexity of SSBDD is always less than th
mplexity of corresponded gate-level netlist, thus processing of SSBDD

The preliminary version of the same algorithm that is presented in Paper I is 
less compact because it does not generalize the notion of temporal sets L also for 
terminal nodes.  

Figure 3.2 illustrates the example of fault list propagation through SSBDD. 
Bold lines represent next successor for each of the node. In Figure 3.2a the state of 
the fault sets after evaluation of nodes A and B is depicted whereas Figure 3.2b 
shows the final re

lts that propagate to the output of corresponded FFR. 

3.2.3 Circuit analysis and fault list propagation cases 

Normally, deductive algorithm is required for the 

circuit sophisticated deductive propagation can be replaced by f
this reason, we propose to perform a special analysis of topology

egorizes each of FFR into one of three types described below (see examples 
in Figure 3.3). 

1) There is no fanout that converges at SSBDD (Figure 3.3a) hence no fault can 
appear on different inputs simultaneously: 

A 

C 

B 

S(A)={f1, f2} S(B)={f3} S(A)={f1, f2} S(B)={f3} 

D 

Y 

S(С) 1 } 
L(C)={f1, f2} S(D)={f4} 

={f 1

A B

C

Y 

DS(С 1} 
L(C)={f1, f2} S(D)={f4}

L(D)={f1}

1 
)={f

0 0 
L(0)={f2} 

Figure 3.2: Example of deductive fault effect propagation on SSBDDs 

b) a) 

L(1)={f3} 

L(1)={f1, f3} 

faults nd f3 propagated:  f  a1

R=L(1)={f1, f3}
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As result the propagation of fault lists can be performed in the moment of fault 
activation. If fault activated at a node changes the result of SSBDD evaluation, the 
fault list associated wi  together with the 
activated fault.  

s:  

ether the fault list associated with the fanout propagates to 
output rsion of all 
nodes co odes, the propagation of 
fault lists e description of concurrent 
alg

of 
proposed approach. However, the data published in Paper I is rather result of 

i actual comparison of fault simulation speeds has 
mes from the fact that the implementation 

of 

th this node is propagated through graph

2) FFR is a reconvergency of a fanout located just behind, i.e. there is no other 
FFR between the fanout point and this FFR (Figure 3.3b). The fault effect 
propagated to such fanout will indispensably affect all the nodes corresponded to 
reconvergent line

S(mi)= S(mj), for mi,mj that correspond to the fanout branches 

(S(mi)∩S(mj))=∅, for the rest mi,mj∈MN, i≠j 

To determine wh
of FFR, the simulation of graph should be repeated with the inve

rresponding to recovergent lines. For the rest of n
 is made exactly as for the previous case.  Th

orithm that is used for propagation is provided in Paper I. 

3) For the rest of circuit (FFRs with arbitrary reconvergencies, Figure 3.3c) 
deductive algorithm is applied. 

FFRA

CA

Fi  Types of reconverge

3.2.4 Experimental results 

A number of experiments were conducted in order to confirm the feasibility 

prelim nary estimation while the 
not been included into the article. This co

the proposed method had not been finished prior to the publishing. In this thesis 
we will try to fill this gap by providing the final experimental results. 

The experiments on potential fault list reduction had shown that only 40% of 
total faults sites (in average for ISCAS’85 benchmarks [61]) need to be considered 
during single-pattern fault simulation. Moreover, due to the fault collapsing 

gure 3.3: ncies 

a) b) c) 

 
 
 

FFR B
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pri
in

mary 
puts

fanout A 

primar
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overlap 

y 
puts
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pro

en from the table, the large portion 
of 

reconv. 
econv. 

depth = 1 deep reconv. 

vided by the SSBDD model itself (66% in average for ISCAS’85) the number 
of faults reduces to 26%. Since the only one stuck-at fault per fault site (either SA1 
or SA0, depending on fault-free value of signal line) need to be activated, the size 
of fault list collapses by 2 times, down to 13%. 

The distribution of SSBDD graphs according to the types described in 
Section 3.2.3 is presented in Table 3.1. These are the final results in contrast to the 
estimation carried out in Paper I. As it can be se

SSBDDs does not require the application of deductive algorithm. For 31% of 
graphs (in average) the fault list can be propagated by means of faster concurrent 
algorithm or directly together with the fault activation. 

Table 3.1: Distribution of SSBDD graphs by type of reconvergency 

circuit total SSBDDs SSBDDs w/o max r

c432 96 58 60% 0 0% 38 40% 
c499 187 41 22% 32 17% 114 61% 
c880 151 75 %  50 8 5% 68 45% 
c1355 291 73 25% 0 0% 218 75% 
c1908 248 79 32% 22 9% 147 59% 
c2670 430 196 46% 15 3% 219 51% 
c3540 378 129 34% 11 3% 238 63% 
c5315 633 204 32% 43 7% 386 61% 
c6288 1488 303 20% 0 0% 1185 80% 
c7552 920 212 23% 5 1% 703 76% 

 

Th arison ed of s -pa ethod with several 
other fault simulators is presented in Table 3.4 (see Section 3.5). Even though in 
case of 10000 test patterns the results of single-pattern fault simulation are worse 
tha

The main contribution of Paper I is a novel single-pattern fault simulation 
c BDD. The results, published in Paper I are basing on 
inary and estimate the potential of the proposed approach. 

Ho

e comp o ef sp ingle ttern fault analysis m

n for parallel-pattern approach, in the analysis of fault detectability of a single 
test pattern the proposed algorithm becomes more advantageous.  

3.2.5 Conclusions 

approa h that uses SS
prelim  observations 

wever in the current thesis we have included the final measurements of the 
actual efficiency of this method. Finally, it turned out that the proposed 
optimizations are capable to reduce the list of fault candidates by 87% and avoid 
sophisticated deductive propagation in 39% of cases (in average). The speed gain 
of single-pattern algorithm (see Table 3.4) was about 3.6 times in comparison with 
parallel-pattern analysis for the case when the patterns are available one-by-one. 
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3.3 Parallel-pattern fault simulation 

In this section the shortened description of parallel-pattern fault analysis 
 

t suitable for the tasks where 
large amount of test patterns need to be processed. This is especially relevant for 
bu

t are virtually 
ind

(Section 2.3.5) is a very 
powerful mechanism for analyzing detectability of faults. Below we are proposing 

path tracing approach for SSBDD 
model. The described technique has been presented in Paper II. 

rresponding signal 
lin

t node of Gy. Therefore D(m0) represent the 
value of y in  values 
of terminal ti . 

2) 

m are 
processed in the direct order as follows: 

methods proposed in Paper II and Paper III is given. In contrast to single-pattern
approaches, parallel-pattern fault simulation is mos

ilding fault dictionaries for diagnosis, evaluation of test quality or adjusting 
parameters of BIST controller (see Sections 2.4.1, 2.4.3 and 2.4.5).  

The presented approach partially relies on SSBDD model: it uses SSBDD to 
perform parallel critical path tracing (CPT) inside FFRs and exploits the automatic 
fault collapsing provided by the model. However the techniques that are used to 
extend the results of critical path tracing for an arbitrary circui

ependent on the underlying representation of circuit. 

3.3.1 Critical Path Tracing on SSBDDs 

Traditional Critical Path Tracing (CPT) technique 

an algorithm that implements parallel critical 

Parallel CPT on SSBDD is conducted as follows. At first, parallel fault-free 
simulation is performed to determine output value of FFR. Then, fault candidates 
are identified by parallel evaluation of active paths inside SSBDD. Finally, CPT 
itself is conducted to recognize which nodes of SSBDD (and co

es) are critical to the output of the respective FFR. Below all the three steps are 
explained. 

1) In order to simulate a test set T=(t1, …, tn) on Gy representing a FFR y=f(x), 
we start from the node with the highest label n(m), and repeat the vector 
operation for each of the nodes: 

D(m) = (x(m)∧ D(m1))∨ (x(m)∧ D(m0))  (5) 

The obtained D(m) values can be interpreted as a result of path activation 
in Gy in case if m would be a roo

calculated for the root node graph Gy. Note that the itial
 nodes are: D(m )=00...0 and D(m )=11…1 respec velyT0 T1

For each test pattern tk∈T, the nodes m in Gy are found which belong to the 
activated paths Lk. Only the nodes belonging to active path may influence 
the value of y(tk). Hence, only the nodes m∈Lk may be the candidates for 
fault detection. To find the candidates for fault detection, the nodes 
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L(m1) = L(m1) ∨ [L(m)∧x(m)],   (6) 
L(m0) = L(m0) ∨ [L(m)∧ )(mx ]. 

he initial values are: L(mT
m  k
path activated by

3) In the last  
which nodes k ability of 

1m    (7) 

Simi n gate-level, this approach has linear-time 
complexity in respect to the number of nodes i se, the 
applicability of the proposed technique is restr e es not 
contain

0)=11...1 and L(mi)=00...0 for all other nodes 
i∈M. The value of Lk(m)=1 means that m ∈ L , i.e. the node m belongs to 

t the test pattern k.  

llel critical path tracing to find out at stage, we carry out para
of activated paths L  the faults are detected. Detect

faults at m in the FFR represented by Gy at the output y is calculated by 
using the following formula: 

()(()()( 0 DmDmLmS ⊕∧= )))(

The fault at node m is detected by tk iff the value of the vector component 
Sk(m) is 1.  

lar to critical path tracing o
in SSBDD graph. L kewi

icted by the r gion that do
 reconvergencies.  
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X(A)={0,0,1,1} 
D(A)={0,1,1,1} 
L(A)={1,1,1,1} 
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Figure 3.4: Parallel crit g on SSBDDs ical path tracin

a) 

D(1)={1,1,1,1}

D(0)={0,0,0,0} 

X(D)={0,1,0,1} 
D(D)={0,1,0,1}
L(D)={1,1,0,0} 

D(C)={0,1,0,0} 

X(B)={1,0,1,0} 
D(B)={1,1,1,0} 
L(B)={0,0,1,1} 

X(C)={1,1,0,0} 

L(C)={1,1,0,1} 

A

C

B

D

Y 

S(A)={1,0,1,0} 

1 

0 

S (B)={0,0,1,0}

S(D)={1,1,0,0}
S(C)={0,1,0,1} 

fault at node D is detected 
by 3rd test pattern 

b) 

node B is activ
b

ated 
y 3rd test pattern 

 



An example of calculating the vectors D(m), L(m) and S(m) for 4 test patterns is 
illustrated in Figure 3.4. In the first part (Figure 3.4a) vectors D(m) and L(m) are 
calculated by using vector of values X(m). The results of calculation can be 
interpreted as follows: D3(A)=1 means that the fault-free value of output y is equal 
to 1 for the third test pattern. The value L3(B)=1 indicates that node B is activated 
by third test vector. 

Figure 3.4b shows the final result of CPT for given SSBDD. For example, the 
value 1 in third position of vector S(B) (i.e. S3(B)=1) is interpreted as detectability 
of fault at B by 3rd test pattern. In other words, during the application of this test 
pattern the value of output y differs from the fault-free value if the value of signal 
line D has changed due to the fault. 

3.3.2 Extending the results of CPT beyond FFRs 

Parallel critical path tracing on SSBDD described above computes the 
detectability of faults inside FFR. In order to perform fault analysis on an arbitrary 
circuit we need to generalize these results beyond fanout-free regions. The latter is 
done with the aid of partial Boolean differentials. In this overview only the final 
results are presented, while the explanations are provided in Paper II and Paper III.  

Consider fanout-free region Fy depicted in Figure 3.5a. Its schematic 
representation is illustrated in Figure 3.5b where the edges denote paths inside 
circuit without fanouts and the nodes are fanout-free regions. 

Let us define YkX as the sensitivity of output y to the signal change at line x 
(which is a kth input of FFR).  Then Y1X=1 iff change of x flips the value of y (in 
terms of Boolean derivatives described in Paper II this corresponds to the 

notation 1=
∂
∂
x
y

). The value YkX can be obtained by evaluation of expression (7), 

with m corresponding to kth input of FFR (see previous subsection). 

To compute the sensitivity Y1Z for the case of two consecutive FFRs 
(Figure 3.6), the sensitivities Y1X and X2Z need to be calculated first and the final 
sensitivity Y1Z is computed by the conjunction: 

Y1Z= Y1X ∧ X2Z    (8) 

y 
Fy

x

 

…

1 

2 

n 

X
1

Y2

… n

Figure 3.5: Critical path tracing in FFR 
a) b) 
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In Figure 3.7 the case of reconvergent fanout is illustrated. If variables xj…xn are 
not influenced by x, then according to the theorem proven in Paper II, the 
derivative is calculated by using the following expression: 

),...,,,...,( 1
1 nj

i
iy xx

x
x

x
x

xxFy
x
y

∂
∂

⊕
∂
∂

⊕⊕=
∂
∂

 (9) 

Assuming there are no reconvergencies between x and x1 as well as between x 

and x2, then the values 
x

x
∂
∂ 1 and 

x
xi

∂
∂

 are obtained by using of (7) or (8). Similarly 

we can denote the results of (9) in shorter form: 

YX = Fy(Y1X, YiX)     (10) 

The resulting value YX will reflect the sensitivity of output y to the presence of 
fault at fanout x.  

This result can be generalized for the case of nested reconvergencies and 
consequently be applied to an arbitrary circuit with any set of reconvergencies 
(see Paper II). 

Fy 

xn 

 f1(x, …) 

fi(x, …) 

x1 

xi 

x

y 

1
i Y X

 f1

 fi

xj n

Figure 3.7: Reconvergent fanout 

a) b) 
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Figure 3.6: Consecutive  FFRs 
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3.3.3 Construction of calculation model 

parallel critical path tracing 
l simulation (see Section 2.3.2) for 

ana

tion. The basic solution is to restrict the 
are

particular, we propose to explicitly construct 
cal

utputs separately thus resulting in the 
set

 nodes and Γ represents the following mapping on set N: 

put i of the node x∈N,   

cies FSy (for every primary 
output y etermined first.  

As it was already mentioned, for an arbitrary design 
needs to be augmented with some sort of paralle

lyzing circuit beyond FFRs. Indeed, the latter typically brings in an unnecessary 
re-simulation of already simulated gates. 

However several optimizations have been proposed in order to reduce the 
amount of redundantly performed simula

a simulated for detection of a fault by the gates physically reachable from the 
fault site. The more advanced methods help to identify the “stop-points” where the 
parallel fault analysis can be interrupted [20],[22],[23],[24] or prune the 
unnecessary simulated regions [21].  

In this section we are presenting a distinctive method for fault simulation of 
circuit with reconvergent fanouts. In 

culation model that is used to compute the detectability of each fanout. This 
approach not only avoids the unneeded simulation of the area that is not reachable 
by fault effect, but also tends to lessen the number of repeated calculations. The 
formulas described in the previous subsection are used as basic building blocks of 
calculation model for computing sensitivities between signal lines.  

Two types of calculation model have been proposed: non-optimized model 
(Paper II) and the optimized one (Paper III).  

Let us consider a construction of non-optimized model first. A non-optimized 
model is constructed for each of the primary o

 of sub-models.  

Consider the reconvergency graph G=(N, Γ) of example circuit in Figure 3.8 
where N is the set of

• Γ(x) ⊂ N is a set of successor nodes of node x ∈ N,  
• Γ -1(x) ⊂ N is a set of predecessors of node x ∈ N, 
• Γ -1(xi) ⊂ N is a predecessor node connected to the in
• Γ *(x) ⊂ N is a transitive closure of Γ(x), and 

-1• Γ * -1(x) ⊂ N is a transitive closure of Γ (x). 

By topological analysis the sets of reconvergen
) and the set of converging points (CP) are d

FSA={1,2,3}, FSB={0,2,3}, CP={A, B, C}  
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1 
A1 2 

Then the formulas are constructed in the following way. For each primary 
output y the nodes are evaluated consequently in the direction from the output to 
primary inputs. The following steps are performed for each node n under 
evaluation: 

1) For each ith input of corresponding FFR the sensitivity formula NiM is 
created, where node m=Γ -1(ni).  

Example: for node A (Figure 3.8) three formulas A11, A24, A35 are created. 
Because there are no reconvergencies between n and m, the sensitivity 
formulas also correspond to sensitivities of A1, A4 and A5.  

If a node n does not belong to set FSy, then for each m∈Γ(n) the formula is 
constructed by using the rule (8) of two consecutive paths (n,m) and (m,y):  

YN=YM ∧ MN.  

Note, because node m has been evaluated before node n, the sensitivity 
formula YM had been already created. 

Example: consider node С (while construction of sub-model for output B). 
The formula BC=B4∧4C is constructed in order to compute the sensitivity 
of node B in respect to fault at node C.  

2) If a node n belongs to set FSy, then the converging paths are traced back 
towards primary outputs and for each of converging point m the respective 
formulas corresponding to (9) are created.  The arguments for the formulas 
are constructed directly during the trace (in the similar way as for the 
previous cases but with exception is that sensitivity is computed in respect 
to inputs of converging FFR instead of primary output). 

Example: consider analysis of node 1 (while constructing of sub-model for 
output A). This node has the only converging point at FFR corresponding 
to primary output A. Tracing back to primary output A results in two 
converging paths (1,A) and (1,C),(C4),(4,A). Correspondingly, the formula 
A1=FA(A11, C1∧4C∧A24) is constructed during this step. 

2 

1 3 2 C 4
3 

1 53 2 

Figure 3.8: Reconvergency graph for example circuit 

0 B3 
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Finally the computed sensitivities are united for all of primary outputs in order 
to compute the general detectability of fanouts. For instance, the detectability of 
fault at node 1 can be expressed as a union of sensitivities A1 and B1. 

The complete calculation model constructed for reconvergency graph in 
Figure 3.8 is presented in Table 3.2. In the left and right parts of the table, the 
formulas relating to sub-models for primary outputs A and B are given respectively.  

The first column of each part indicates the number of step during the evaluation 
of the model. Note that some formulas require several steps for evaluation (here we 
treat the calculation of single sensitivity, each operation of conjunction or 
disjunction and evaluation of formula for reconvergent fanout as separate steps). 
However different steps are processed with unequal amount of time, the total 
number of steps in the model help to roughly estimate its complexity. The second 
column of each part contains the name of a node which evaluation resulted in the 
construction of formula in the third column. 

Table 3.2: Calculation model 
For output A For output B 

step n sensitivity formula step n sensitivity formula 
1 A A11 (A1) 27 B B14 (B4) 
2 A A24 (A4) 28 B B25 (B5) 
3 A A35  (A5) 29 B B30  
4 5 513 (53) 30 C BC=B4∧4C 
5 4 41C (4C) 31 3 B3=FB(C33∧4C∧B4, 53∧B5) 
6 C AC =A4∧4C 35 2 B2=FB(C22∧4C∧B4,32∧53∧B5) 
7 C C11 (C1) 40 1 B1=BC∧C1 
8 C C22 
9 C C33 (С3) 41 0 B0=FB(20∧C2∧4C∧B4, 

20∧32∧53∧5B, B0) 
10 3 A3=FA(C3∧4C∧A4, 53∧A5) 
14 3 312 (32) Union of sensitivities for all outputs 
15 2 С2=FC(С22, 32∧C32) 48 0=A0∪B0 
17 2 A2=FA(C2∧4C∧A4,32∧53∧A5) 49 1=A1∪B1 
22 2 210  (20) 50 2=A2∪B2 
23 1 A1=FA(A11, C1∧4C∧A4) 51 3=A3∪B3 

52 C=AC∪BC 26 0 A0=A2∧20 53 4=A4∪B4 
 

The consequent evaluation of formulas eventually gives us the sensitivity values 
for all fanouts in the circuit. Note that all calculations could be carried out on 
vectors instead of single values thus making the model be fully suitable for 
parallel-pattern processing. 

The key advantage of the proposed method is an ability to effectively handle 
nested reconvergencies. For example, the calculation of detectability of fault in 
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fanout node 0 on primary output B (step 41), also involves the calculation of 
detectability of the same fault in converging node C. However, instead of re-
simulation of corresponded FFR, the result of evaluation of sensitivity formula C2 
is used (step 15). 

3.3.4 Construction of optimized model 

The calculation model presented above has the evident drawback as it allows 
relatively large part of computations to be repeated. In particular it comes out of 
the fact that the process of construction is done separately for each of the primary 
outputs. In addition while converging paths are traced back the arguments of 
sensitivity formulas for reconvergent fanouts are likely to overlap. For example, 
the operation of conjunction C3∧4C is performed several times (steps 10 and 31 in 
Table 3.2). Hence, the research conducted in [VI], [VII] was aimed to further 
optimization of the model. 

In [VI] it was proposed to concurrently construct a unified model for all primary 
outputs. Furthermore, the concepts of activity and sensitivity vectors have been 
proposed in [VII] together with the method which lessens the overlap in 
calculations. Finally, the approach was generalized in [III] (Paper III). 

Below we will describe the process of construction of optimized calculation 
model. First, the additional topological analysis is performed in order to build the 
following sets of nodes for reconvergency graph:  

• OUT – set of nodes corresponded to primary outputs 
• RO – set of nodes that corresponds to reconvergent fanouts 
• For each x∈RO, the set RI(x) is also constructed which contains the 

convergent nodes of fanout x. 

Optimized model is constructed for all outputs jointly. For this purpose, all the 
nodes N of reconvergency graph G are levelized and put into ordered set N*. First, 
the ordered set N* includes all primary outputs of circuit. Then, each node n∈ N is 
included into set N* as soon as Γ(n)∈ N* becomes valid. 

For the example of reconvergency graph in Figure 3.8 the following sets are 
constructed:  

OUT={A, B}, RO={0, 1, 2, 3},  

RI(0)={B}, RI(1)={A}, RI(2)={C,B,A}, RI(3)={B,A}, 

N*= {A,B,5,4,C,3,2,1,0} 

The formulas of optimized calculation model are distinguished by their types as:  

• activity vectors – express the sensitivities of internal nodes of 
reconvergency graph, 
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• partial sensitivity vectors – express detectability of fault at one of the 
primary outputs, 

• full sensitivity vectors that express the global detectability of fault on any of 
primary outputs. 

For each node n of the levelized set N* the formulas are constructed in the 
following way (this procedure is briefly described in Paper III and more 
thouroughly in [VII]). 

Step 1: Construction of activity vectors. 

Let define set M as M=Γ(n), set Pnested of pairs (x,y), Pnested=∅ and set M’=∅. 

Step 1a:  

for each node m∈ M and y∈Γ(n) construct the activity vector YiN=YiM∧MN if 
there exist nodes x∈RO and y∈RI(x) such that for subgraph G’ consisting of 
nodes N’=(Γ*-1(y) ∪y)∩(Γ*(x)∪x): 

a) m∈N’, n∈N’ (i.e. nodes n and m belongs to converging path between x 
and y) 

b) G’ does not contain other nested reconvergency subgraph G’’(N’’, Γ), 
N’’⊂N, with n∈ N’’,m∈ N’’ except that the reconvergencies that are 
formed by pairs of nodes in set Pnested. 

For constructed activity vector YiN=YiM∧MN the i is selected with accordance 
of Γ -1(mi)=n.  

If y∈OUT and y∉RI(n), then constructed activity vector is also partial 
sensitivity vector YiN. 

Example: Consider the example in Figure 3.8, in case of evaluation of node C 
(n=C). Then, the node 4 is the sole node m in set M. The y=A, x=3 and y=B, 
x=3 can be selected to satisfy the conditions a) and b). As result two activity 
vectors (for nodes A and B) are constructed: A2C=A4∧41C and B1C=B4∧41C. 
As nodes A and B also belong to set of primary outputs and not the converging 
points of C, the constructed activity vectors are also partial sensitivity vectors 
AC and BC. 

 

Step 1b: for subgraphs G’ selected in the previous step with x=n, the activity 
vector YN=FY(…) is constructed. Again, if y∈OUT this activity vector is also 
represents partial sensitivity vector. The pair (x,y) is added to set Pnested and the 
node y is added to set M’. 

Example: Consider the evaluation of node 3. During Step 1a the following 
subgraphs have been selected G’(2,A), G’(2,B), G’(3,A) and G’(3,B). Thus 
activity vectors B3=FB(B13, B23) and A3=FA(A23, A33) are constructed. As node 
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A and B also belong to set of primary outputs the constructed activity vectors 
are also partial sensitivity vectors A3 and B3. 

 

To handle nested reconvergencies the steps 1a and 1b are iteratively repeated 
with new set M=M’ and M’=∅. 

Step 1c: for x=Γ -1(nk) activity vectors NkX are constructed for all k. If n∈OUT 
then the constructed vectors are also partial sensitivity vectors. 

Example: Consider the evaluation of node С. Three activity vectors C11, C22 
and C33 are constructed.  

 

Step 2: Construction of partial sensitivity vectors. 

 for all nodes y∈OUT∩Γ*(n), the partial sensitivity vectors are constructed 
(by using formulas (8) and (10)) for y that were not handled in the Step 1. 

 

Step 3: Construction of full sensitivity vector. For each node n, full sensitivity 
vector is constructed by the following formula: 

∪(YkN), yk∈OUT | yk∈Γ*(n) 

 

Example: For node 1 the full sensitivity vector is constructed as a union of partial 
sensitivity vectors A1 and B1: 1=A1∪B1. 

 

The resulting optimized calculation model for reconvergency graph in 
Figure 3.8 is presented in Table 3.3. The formulas marked by “*” are sensitivity 
vectors whereas others are activity vectors. 

It can be easily seen from the comparison of Table 3.2 and Table 3.3 that the 
optimized calculation model requires fewer steps (41 versus 52) for evaluation 
hence speeding up the whole fault simulation process.  
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Table 3.3: Optimized calculation model 
step n formula step n formula 
1 A A11  (A1*) 21 3 B23=B25∧513 
2 A A24  (A4*) 22 3 B3*=FB(B13, B23) 
3 A A35  (A5*) 23 3 3*=A3∪B3 
4 B B14  (B4*) 24 3 312 
5 B B25  (B5*) 25 2 C32=C33∧312 
6 B B30 26 2 C2=FC(C22, C32) 
7 5 5*=A5∪B5 27 2 B12=B1C∧C2 
8 5 513 28 2 B22=B23∧312 
9 4 4*=A4∪B4 29 2 B2*=FB(B12, B22) 
10 4 41C 30 2 A22=A2C∧C2 
11 C A2C=A24∧41C  (AC*) 31 2 A32=A33∧312 
12 C B1C=B14∧41C  (BC*) 32 2 A2*=FA(A12, A22) 
13 C C*= AC∪BC 33 2 2*=A2∪B2 
14 C C11 34 2 210 
15 C C12 35 1 A21=A2C∧C11 
16 C C33 36 1 A1*=FA(A11, A21) 
17 3 A23=A2C∧C13 37 1 1*=A1∪B1 
18 3 A33=A25∧513 38 0 A0*=A2∧210 
19 3 A3*=FA(A23, A33) 39 0 B20=B22∧210 
20 3 B13=B1C∧C13 40 0 B0*=FB(B20, B30) 
   41 0 0*=A0∪B0 
 

3.3.5 Reducing the memory requirements for fault simulation 

Obviously, the presented method of parallel-pattern fault simulation needs extra 
memory for storing the formulas of calculation model. This issue can easily restrict 
the applicability of the approach with circuits of a large size. Figure 3.9 illustrates 
the empirical study of the sizes of optimized calculation models for the selected 
benchmarking circuits. It can be seen from the diagram that the memory 
consumption is growing with the circuit size.  

In Paper III, a method has been proposed that is able to reduce the impact of 
memory requirements by splitting the calculation model into several parts. The 
algorithm that is described in Section 4 of Paper III is rather straightforward but it 
confirms the viability of the idea (see experimental data in Section 5 of Paper III).   

The approach proposes to partition the set of primary inputs PI into a number of 
non-overlapping subsets Bi⊂PI. For each of the constructed subsets Bi, a partial 
reconvergency graph Gi⊂G, where set Ni consists of nodes x∈Ni for which the 
following condition is satisfied: Bi ∩ Γ*-1(x)≠∅. 
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Figure 3.9: Memory requirements for fault simulation

The fault simulation with reduced memory requirements is performed in several 
iterations. Each pass starts with the creation of formulas for reconvergency sub-
graph Gi and construction of a partial calculation model. During the evaluation of 
the model, the detectability of fanouts corresponding to nodes x∈Ni is determined. 
Then the partial model is deleted, freeing the memory for construction of formulas 
for the next partial reconvergency sub-graph Gi+1.  

It is very likely that an overlap occurs between pairs of sets Ni and Nj of partial 
reconvergency sub-graphs. As result, this method introduces a certain overhead: 
the construction and evaluation of some formulas that correspond to the nodes 
falling into the overlapped area is done several times.  

Let us consider the schematic illustration of the circuit structure in Figure 3.10. 
The set of primary inputs for this example is PI={i1, i2, i3} and the example 
partition of inputs is };,{ 321 iii=π . This partition splits the circuit structure into 
two overlapping slices and leads to construction of two partial reconvergency sub-
graphs (G1 and G2) with the overlapped set of nodes N12=N1∩N2.  

i1 o1

G1
i2 o2

Primary 
inputs 

Primary 
outputs 

G2

overlap 

o3

i3 o4

Figure 3.10: Schematic representation of circuit structure 
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Certainly there is no need to construct full sensitivity vectors and partial 
sensitivity vectors for the nodes belonging to N12 twice. Instead, the sensitivity 
vectors need to be constructed only once either for G1 or for G2. However, the 
activity vectors still are constructed for both cases as they can be used in 
calculation of sensitivities for nodes not belonging to N12. The latter, is the source 
of overhead introduced by the splitting of calculation model. 

As for the current implementation, no analysis is conducted to find out which of 
the activity vectors corresponding to the nodes in overlapping area can be 
constructed only for specific partial reconvergency graphs. However such analysis 
that is planned for future work will certainly decrease the overhead. Further 
investigation is also required for the ways of selection of partition π to minimize 
the size of overlapped area. However, for currently conducted experiments, the 
partition π was selected randomly taking into account only the amount of available 
memory. 

3.3.6 Overview of experimental results 

The method of parallel-pattern simulation that uses non-optimized model has 
demonstrated speed-up in fault analysis in comparison with commercial tools 
(see Paper II). However, the experiments presented in [VI] had shown improved 
scalability because of construction of joined model for all primary outputs. 

The final approach presented in Paper III had achieved the best results due to 
optimization of repetitive formulas inside the calculation model. The conducted 
experiments (section 5 of Paper III) had shown the advantage of the method in 
comparison with other fault simulators. The achieved speed gain was about 4.8 
and 53 times (in average) for the circuits selected from the different benchmark 
sets. The overall comparison of the both simulation methods is given in 
Section 3.5. 

Considering the memory reduction, the carried out preliminary experiments had 
illustrated the feasibility of this approach for sort of the circuits. For example, the 
size of memory needed for simulation of the largest circuit of ISCAS’89 [63] 
decreased almost by four times while the overhead in simulation speed was less 
than two times. However the experiments also shown that the current approach is 
not universal: for certain circuits the size of memory used by fault simulator 
reduced insignificantly (less than by 25%). Nevertheless the average decrease of 
memory consumption is more than half and the average cost of such reduction is 
the degradation of fault simulation speed by 2.5 times. 

3.3.7 Conclusions 

The fundamental result of Paper II and Paper III is a novel approach for parallel 
exact critical path tracing for combinational circuits or scan-path designs. The main 
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idea of the method is to perform topological analysis of circuit in order to create a 
model for calculating of Boolean differentials. Thanks to the parallelism and 
optimization of the calculation model, the speed of fault simulation was 
considerably increased in comparison with other fault analysis techniques. 

 In case of very large circuits, the proposed technique can require large amount 
of extra memory for storing the formulas of calculation model. To reduce the 
memory consumption, the method for splitting the simulation process into several 
iterations was proposed. However, the latter method requires further improvement. 

3.4 Hierarchical calculation of fault injection sites 

The topic of research that is described in Paper IV is different from the issues 
discussed above since it concerns the problem of dependability analysis. However 
the presented method is tightly bounded with fault analysis technique. 

Generally speaking, a dependable system that is equipped with capabilities for 
error detection and recovering typically requires a comprehensive testing of fault 
tolerance mechanisms along with the conventional test. Fault injection technique is 
the one of the methods for evaluation of the quality of fault tolerance mechanism of 
a system. The method suggests to perform injection of faults and study the results 
of system behavior in the presence of faulty component. 

A simulation-based fault injection technique considered in the paper is used for 
analysis of dependability during the phase of the design of digital systems. 
However there is a problem of the selection of the subset of faults for injection and 
further study. In general, a presence of a fault not necessarily results in the 
erroneous behavior of a system (such faults are considered as not critical). But for 
testing of fault tolerance facilities, the critical (malicious) faults (that lead to 
malfunction of system on application level) are definitely preferable for evaluation. 

In contrast with the methods that are using HDL-based approaches (e.g. [58], 
[59]), the key idea of the paper is to use multi-level circuit modeling with the help 
of Decision Diagrams (DD). In particular, High-Level Decision Diagrams 
(HLDDs) are used for description of circuit on a higher abstraction level while 
SSBDD represent circuit on lower-level. As result, the method excellently copes 
with the complexity (in contrast to pure gate-level models) and provides gate-level 
accuracy at the same time. 

However the presented approach requires conversion of HDL description of 
system into hierarchical DD-model, the current paper is not focused on this issue. 
The study on this topic was carried out in [60]. 

The comprehensive description of the proposed method together with the 
illustrative examples is provided in Paper IV.  
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3.5 Overall experimental results 

In this section the overall results of experiments for both single-pattern and 
parallel-pattern fault analysis methods are presented and compared with other fault 
simulators. Below we are illustrating only the final results while the more detailed 
information can be found in Papers I-III. 

The experiments have been carried out on single UltraSPARC IV+ 1500MHz 
platform under control of SunOS operating system. The results for linear critical 
path tracing method by Wu et al. published in [28] had been obtained on 
Pentium 2.8GHz processor. For every circuit, 10000 test patterns were simulated 
by each tool. The fault dropping was deactivated hence complete fault table was 
obtained in each case. No memory constraints were applied during fault analysis. 

The first column of Table 3.4 contains the circuits selected from three different 
benchmark sets: ISCAS’85 [61], [62], ISCAS’89 [63] and ITC’99 [64], [65]. The 
sequential circuits of ISCAS’89 and ITC’99 were substituted by their 
combinational versions (with cut-out flip-flops). The next column represents the 
size of each circuit (in terms of the number of 2-input gate equivalents). 

The next group of columns contains the number of seconds spent by each of 
fault simulators for building fault table. Columns 3 and 4 illustrate the simulation 
results of proposed parallel-pattern simulator with optimized and non-optimized 
calculation models respectively. The results of single-pattern fault analysis are 
presented in Column 5.  

For the illustrative purposes, Column 6 contains the results of parallel-pattern 
simulation in case if test patterns are available one-by-one (i.e. Column 6 contains 
the results of Column 3 multiplied by 32). This allows the “normalized” 
comparison between parallel-pattern and single-pattern approaches. 

As for comparison with other methods, four different fault simulators were 
selected. FSIM (Column 7) is an efficient PPSFP simulator described in [25] which 
was modified for usage without fault dropping. C1 and C2 (Columns 8 and 9) are 
state-of-the-art commercial parallel-pattern simulators that are incorporated into the 
test development toolsets from major CAD vendors. The simulation results 
obtained in [28] are provided in Column 10. 

The last row presents an average speed-up achieved by parallel-pattern fault 
simulator (Column 3) in comparison with others. Except for Column 6, the average 
speed gain of single-pattern fault simulation is presented when comparing with the 
results of Column 6. 

According to Table 3.4, the proposed parallel-pattern fault simulator had shown 
the best results in terms of simulation time. However in case of single-pattern 
applications of fault simulator the method described in Section 3.2 becomes more 
efficient. 
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Table 3.4: Overall experimental results 

Proposed methods Commercial and 
academic fault simulators 

Circuit Size, 
gates Parallel- 

pattern 
(optim.) 

Parallel-
pattern 

(non-opt)

Single-
pattern

Parallel-
pattern 
/single 

FSIM C1 C2 Wu 

c1355 518 0.3 0.4 2.5 9.6 0.2 1.7 9 638 
c1908 618 0.4 0.6 2.5 11.2 0.6 3.0 12 638 
c2670 883 0.4 0.5 4.1 13.1 0.8 2.2 24 555 
c3540 1270 0.9 1.3 5.0 28.5 2.0 7.4 43 763 
c5315 2079 0.8 0.9 9.4 24.3 1.4 5.6 57 1254 
c6288 2384 7.4 14.8 26.0 237.4 12.1 27.8 284 4267 
c7552 2632 1.2 1.9 16.3 37.8 2.7 8.1 88 1467 
s13207 3214 2.0 2.6 32.0 64.6 N/A 5.6 70 N/A 
s15850 3873 2.7 5.2 47.7 85.8 N/A 12.1 111 N/A 
s35932 12204 5.7 6.4 433.4 183.7 N/A 23.6 390 N/A 
s38417 9849 7.0 11.1 267.9 225.0 N/A 31.4 310 N/A 
s38584 13503 6.4 9.3 336.0 205.4 N/A 23.2 320 N/A 
b14 9150 14.5 35.9 78.2 463.0 N/A 49.2 N/A N/A 
b15 8877 26.6 48.3 116.3 849.9 N/A 39.1 N/A N/A 
b17 31008 77.8 233.3 1152.3 2488.6 N/A 117.7 N/A N/A 
Average speed gain 
by parallel-pattern 

fault simulator 
1 1.6 17.1 3.6* 1.5 4.7 43 1189 

3.6 Chapter summary 

In this chapter the overview of the research results published in Papers I-IV has 
been presented together with the overall experimental results.  

The first part of the chapter provides a description of SSBDD model that is used 
by the proposed fault simulation methods. Next, the main contributions and results 
of research have been described. This had included the shortened description of 
single-pattern and parallel-pattern fault simulation algorithms as well as a brief 
introduction to an approach for dependability analysis. Finally, the results of 
experiments with the proposed methods have been presented and the comparison 
with other approaches has been made. 
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Chapter 4  

CONCLUSIONS  

Fault simulation is a widely used task in the flow of design of digital systems. 
Although the primary goal of fault simulation is to estimate the quality of test 
program, it is incorporated into many other test-related tasks as an auxiliary step. 
Numerous methods of fault simulation for different fault models, circuit types and 
abstraction levels have been proposed so far.  

The presented work mainly addresses the problem of fault simulation of 
combinational circuits on well-known stuck-at fault model. Several novel 
approaches that attempt to increase the efficiency of fault simulation (in terms of 
CPU time and memory consumption) have been proposed in the thesis.   

In the following sections the main contributions of the work are outlined and the 
perspectives for future research are discussed. 

4.1 Contributions 

The contributions of the presented work are summarized below. 

The fault simulation algorithms introduced in the current thesis work with 
macro-level circuit descriptions represented with the help of Structurally 
Synthesized Binary Decision Diagrams. This had allowed to exploit the advantages 
of SSBDD model that is successfully utilized in other test-related problems also for 
fault simulation. The usage of higher abstraction level instead of gate-level ensures 
the immediate gain of circuit evaluation speed but keeps the accuracy of evaluation 
in conformity with gate-level models. Prior to this work, only basic fault simulation 
techniques were realized for SSBDD model, e.g. serial fault analysis and pure 
PPSFP. However they had proven to be more efficient than their gate-level 
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analogues. The current work makes one step forward introducing more 
sophisticated algorithms of fault analysis on Structurally Synthesized BDDs. 

A novel single-pattern fault simulation approach has been proposed. The 
method is based on introduced deductive fault list propagation algorithm through 
SSBDD graphs. The topological pre-analysis of a circuit under simulation is 
carried out in order to determine circuit parts that do not require deductive 
reasoning but rather simpler propagation algorithms. In addition, the technique for 
shrinking the list fault candidates is proposed for the sake of accelerating the 
overall simulation speed. Together, the drawn ideas form an efficient single-pattern 
fault simulator.  

The experiments have shown that the proposed optimization technique is able to 
reduce the size of list of potential faults to only 13% of uncollapsed size.  
Moreover, thanks to the topological pre-analysis, it became evident that deductive 
propagation can be avoided for ~39% of SSBDD graphs in circuit (in average). 
However the achieved simulation speed is mediocre in comparison with the 
proposed parallel-pattern approaches, single-pattern simulation is very suitable for 
the tasks that demand simulation of test patterns one-by-one. In the latter case, the 
fastest parallel-pattern approach is outperformed by 3.6 times. 

The thesis introduces a parallel-pattern fault simulation method. Two novelties 
are proposed here: the parallel critical path tracing algorithm on SSBDD model and 
the technique for simulating circuit beyond fanout-free regions with the help of 
Boolean differentials. The conducted experiments have shown that the proposed 
method overcomes other fault simulation techniques. In particular, the speed-up 
is 4.7 and 1.5 times in comparison with commercial and academic tools 
respectively. 

The problem of the memory consumption has been studied for the case of 
parallel-pattern fault simulation and an approach for reducing the memory 
requirements has been presented. However the proposed idea is not universal, the 
experiments had shown its viability for certain types of circuits. The best achieved 
result was in cutting down memory consumption by 73% while the speed of 
simulation decreased only by 1.7 times. The average results are 48% and 2.5 times 
respectively. 

An approach of dependability analysis with the help of Decision Diagrams has 
been proposed. The method targets construction of a list of malicious faults that are 
intensively used in fault tolerance analysis. The idea is based on using hierarchy of 
DDs for representation of circuit on multi-levels: High-Level DD model for 
register-transfer level and SSBDDs for gate-level. The presented conception 
enables to avoid the complexity problems of pure logic-level description, but at the 
same time performs malicious fault analysis with the gate-level accuracy.  
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4.2 Future work 

This section outlines the most important issues that require further investigation 
for improving of the proposed techniques. 

First of all, the experiments presented in the current thesis had been carried out 
on benchmark circuits of relatively small size: the largest circuit under simulation 
contains less than hundred of kilo gates. Obviously, we plan to measure the speed 
of both proposed methods by using industrial-sized benchmarks that consist of 
millions of gates. This is required for study of the scalability of the proposed 
techniques.  

The experiments that reveal the influence of fault dropping have been left out of 
scope of current thesis. However, since this technique is frequently used to 
accelerate fault analysis such experiments have to be additionally conducted to find 
out which of the methods provides better performance with fault dropping. 

The memory requirements of the proposed parallel-pattern simulation algorithm 
certainly demand further investigation. The abovementioned method of relaxing 
memory constraints provides rather straightforward solution and leaves a room for 
further improvements. 

At the same time the conception of splitting of fault simulation model into parts 
can be also applied for parallelization of fault simulation over several workstations 
(or several processor cores). The usage of capabilities of such parallelization could 
bring the presented fault simulation approach to a new level of performance. 

Certainly a standalone gate-level fault analysis typically is not a major issue in 
the digital design field nowadays. Instead, various applications demanding efficient 
fault simulation engine have to be tried. One of the promising ways is to go on 
higher levels of abstraction and build a fault simulation tool that uses hierarchical 
approach. In this case, the presented methods can be utilized as an efficient lower-
level simulator. Another direction is to acquire more experience in acceleration of 
other simulation-dependent tasks by incorporation of fast fault analysis algorithms.  

The presented technique for creation of lists of malicious faults demonstrates 
the one of possible applications of fault analysis. However, the further 
development of this direction requires the creation of a tool that is capable to 
handle all levels of hierarchy: HLDD and SSBDD. Then, more comprehensive 
experiments need to be carried out to estimate the effectiveness of the proposed 
method. 
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