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1 Introduction

The electric power system has continuously been evolving since the first power station’s
establishment at the end of the 19th century. The transformers, developed in 1885, rev-
olutionised the alternating current (AC) transmission and distribution system capable of
carrying electricity from generating stations. Initially, electric machines and appliances
were designed from the perspective of cost-effectiveness, and their efficiency was not a
prime concern for the manufacturers. However, as the demand grows with a more com-
petitive market, performance and efficiency parameters start playing their role. Today,
the power system is an interconnection of generation, transmission, and distribution sub-
systems and responsible for maintaining the quality and reliability of the power supply.

Power quality refers to the supply voltage and similarly current quality. According to
the Institute of Electrical and Electronics Engineers (IEEE) standard 1159, electromagnetic
phenomena that describe voltage and current in a power system at a specific time and
location is defined as power quality [1]. Electromagnetic disturbances referring to the
deviation of any parameter outside the expected range would reduce power quality and
could lead to problems in the power system that could prevent normal operation of end-
user equipment. Most often, supply voltage quality is considered as most critical due
to its impact reaching towards more load endpoints and directing their operation. One
critical attribute of supply voltage and current is related to maintaining their waveform
near sinusoidal with rated values at instantaneous and steady-state conditions.

The distortion of current and voltage waveforms started emerging in the power sys-
tem back in the early 20th century [2]. The initial problems included telephone inter-
ference, electric motor overheating, and power system over voltages due to harmonic
distortions [3]. The power quality term started to appear in the literature in the 1970s
when electronic-based circuits started to emerge in the electrical loads [4]. These circuits
contain diodes, thyristors, transistors, and other nonlinear and switching devices.

The International Electrotechnical Commission (IEC) defines power quality in terms of
electromagnetic compatibility (EMC). The IEC 61000-1-1 standard states that an electri-
cal system’s ability to function satisfactorily in its electromagnetic environment without
adding any electromagnetic disturbance to anything within the environment defines its
electromagnetic compatibility [5]. The electromagnetic disturbances can deteriorate the
operation of electrical equipment or system up to a level of misoperation or malfunction.
Therefore a power quality problem can be defined as any problem caused by supply volt-
age or current deviations that could result in the inferior performance of the end-user
equipment or even failure [6].

AC grid-fed electrical equipment is designed to operate with the standard voltage
waveform, a sinusoidal shape at rated magnitude and frequency. Therefore, electrical
devices can malfunction as a result of significant deviations in the voltage waveform. One
of the common reasons, though, which can lead to voltage waveform distortion, is current
flow through the network source and line impedance. As electronic devices draw a non-
linear current rather different from a standard sinusoidal waveform, this distorted current
waveform affects the wave shape of the voltage on the network impedance components.
Such an effect causes voltage waveform deterioration and power quality problems. The
inrush and short circuit current is also a reason for these waveform distortions.

Power quality problems are classified based on the specific property of the problem.
The IEC 61000-2-5 defines three categories, as shown in Table 1.1. These electromagnetic
disturbances degrade the quality of current and voltage waveforms in the power system.
The power quality should be high, and all characteristics maintained within operational
boundaries to ensure the network’s reliability. In a broader sense, the electric power sys-
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tem in addition to good power quality would have to provide compliance to electromag-
netic compatibility aspects to all the network elements.

Table 1.1 - Phenomena responsible for electromagnetic disturbances [5]

Phenomena Types

Harmonics, interharmonics
Signaling voltage

Voltage fluctuations

Voltage dips

Voltage imbalance

Power frequency variations
Induced low-frequency voltages
DC components in AC networks
Magnetic fields

Electric fields

Conducted

Low frequency

Radiated

Conducted
Radiated
Electrostatic discharge
Nuclear electromagnetic pulse

High frequency

The low-frequency phenomena described in Table 1.1are momentary disturbances that
propagate through the power system for a few nanoseconds to 3 seconds except harmon-
ics. The harmonics refer to the sinusoidal currents or voltages with frequencies that are
an integral multiple of the power system frequency. In ideal terms, the power system is
expected to provide distortion-free sinusoidal current and voltages. The harmonics distur-
bance typically penetrates the power system near the end-user vicinity in high frequencies
and lasts until mitigated by altering the source impedance; therefore, considered steady-
state electromagnetic disturbances. They interact with the network impedance and alter
the current and voltage waveform. As a result, all the users connected to the network
are affected by these harmonic disturbances. The complex waveform generated across
harmonic sources is a mix of the fundamental frequency and higher frequency harmonic
components. The distorted voltage waveform can be expressed as Eq. (1.1).

V(t) = Vysin(@t + O1) + Vaysin(or + 1) + ... Vypsin (@f + 9,) (1)

In the past, researchers mainly focused on harmonic distortions in industrial and com-
mercial electrical networks; however, the recent advances in power electronics have en-
abled manufacturers to make energy-efficient appliances. These electronic domestic ap-
pliances are significantly affecting the power quality of the residential networks. Further-
more, the zero-energy buildings with photo-voltaic (PV) distribution generation and elec-
tric vehicles (EV) are prone to deteriorate the residential distribution grid’s power quality
by adding additional current harmonics. IEC standard 61000-3-2 provides harmonic lim-
its for maximum current harmonic emission from individual equipment, while 61000-2-2
provides maximum voltage harmonics and total harmonic distortion limits at the point of
common coupling (PCC).

Lower order harmonics (less than 2 kHz) are given more attention towards voltage dis-
tortions in the grid. The main reason is that current harmonic emission from the nonlinear
loads lies in these frequency ranges that correspond to the most voltage deviations. The
lower order harmonics are recurrent and will propagate in the system; however, there
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are some known countermeasures. As the share of power electronic-based equipment
increases, the harmonic filters could become necessary to ensure harmonic current emis-
sion limits by the devices.

The high-frequency harmonics in the range of 2 - 150 kHz are referred to as supra-
harmonics. The term high frequency is used for signals in the range of 3 to 30 MHz
by the international telecommunication union (ITU); hence the term supraharmonics is
adopted for high-frequency harmonics. This additional term is defined because the dis-
tortion caused by supraharmonics shows a broadband characteristic compared to the
narrow-band properties of low-frequency harmonic distortions [7]. The propagation of
supraharmonics is different in the sense that they tend to flow between connected de-
vices and cannot be aggregated like low order harmonics. Studies have shown that by
increasing the number of nonlinear devices, the current spectrum’s magnitude decreases
between 40-50 kHz at the point of delivery but increases for individual devices [8, 9].
Therefore, supraharmonics are more difficult to quantify numerically. However, because
of the undesirable repercussions such as malfunction and lifetime reduction of the de-
vices, the upper limits on superharmonic emission in the network are essential [10]. The
traditional harmonic analysis approach might not provide the best accuracy for suprahar-
monics [8, 11]. Supraharmonics are not primarily researched in this thesis, and the scope
of this thesis is only limited to lower order harmonics only.

1.1 Motivation

The modern power system dynamics are changing swiftly because of the evolution in en-
ergy generation and consumption trends. The increase in the number of distributed gen-
eration units such as PV and proliferation of power electronic based loads will contribute
towards high harmonic emission in the residential grids. Although the magnitude of the
harmonic distortion of individual devices load current waveforms may be minimal, their
collective impact could be significant to impose limits for the network power delivery ca-
pacity, for example keeping in mind the operation of the transformers. Traditional loads
such as incandescent lamps are gradually replaced by compact fluorescent lamps (CFL),
and now a transition towards a more efficient light-emitting diode (LED) lamp is underway.
Electric motor-based appliances efficiency is improved by adopting invert-based drives
that can support various working modes. The harmonic emission profile of each working
mode can be different.

Furthermore, harmonic current cancellation and variation because of thermal stabil-
ity, and cable impedance make the voltage’s levels estimation task even more complex.
On the other hand, an accurate assessment of harmonic emission for present and future
loads is critical for the network operators to improve the capacity and planning for addi-
tional investments. The effectiveness of quantifying and designing harmonic mitigation
measures also relies on the accuracy of these estimations.

The harmonic current and voltage estimation accuracy can only be improved by con-
sidering the variation and uncertainties associated with load and network. The network
parameters are dynamic, and the load connected to it is changing continuously through-
out the day. Because of modern nonlinear device's stochastic nature of utilisation, it is
not easy to model their usage and operational behaviour. Many studies are available re-
lated to power flow modelling, but the nonlinear load modelling and stochastic current
harmonic estimations are relatively contemporary. The classical residential load models
are developed to predict energy consumption patterns; therefore, unable to estimate cur-
rent harmonic emissions mainly because of their low time resolution. Usage patterns for
the majority of the household devices depend on occupant behaviour. Several social and
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economic factors influence the behaviour of a person and their living style. The residential
building’s architecture, climate conditions, and the type of electrical appliances are major
contributors that can affect energy consumption.

In order to develop a harmonic estimation model that can represent an authentic pic-
ture of the residential network, respective uncertainties have to be taken into account
that has been generally neglected or not considered in the previous models available in
the literature. The random harmonic estimations can support to study of the impact of
regulatory policy changes and network planning decisions.

1.2 Thesis objective

This thesis aims to develop a probabilistic current harmonic estimation model capable of
including different uncertainties related to network and load for the low voltage distribu-
tion network. In contrast to previous approaches to evaluating harmonic emission impact
based on the measurement of network or loads, the prime focus of the thesis will be to
estimate current harmonics with actual load variation and dynamic network conditions.
The main research targets are as follows:

1. Statistical modelling of the loads to generate usage patterns of different household
loads with a high temporal resolution.

2. Research and analysis of recent harmonic estimation models and factors that can
affect the harmonic emission of loads in the network.

3. Development of a measurement approach capable of power quality measurements
at different voltage waveform.

4. Evaluation of the accuracy of the measurement system using signal processing tech-
niques.

5. Analysis of the variations in current harmonic emission due to thermal stability by
nonlinear loads.

6. Estimation of the effect of cable impedance on the current harmonics.

7. Analysis of current harmonics emission profile of nonlinear loads operating in dif-
ferent working modes.

8. Classification of loads based on circuit topologies and comparison of their harmonic
emission profile.

9. Development of probabilistic harmonic estimation algorithm that can address both
magnitude and phase variations.

10. Estimation of the harmonic emission difference under technology evolution of end-
user loads in the residential buildings.

11. Analysis of the impact of future loads on harmonics in the low voltage networks.

1.3 Hypothesis
The primary hypothesis of the thesis are as follows:

e The increase in the penetration of nonlinear loads will increase the current har-
monic emission levels in the low voltage network that will compromise the net-
work’s capacity and reliability.
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e The stochastic approach is suitable for harmonic estimation as it can include neces-

sary uncertainties and variations related to network and load operation.

1.4 Scientific novelties

The scientific novelties of the thesis are described as follows:

1.

Probabilistic load usage models are developed based on the bottom-up approach
using device-level measurement data. Different surveys are also used for improving
user behaviours to enhance the capability of the model to provide realistic results.
The model is unique with its simplified approach and provides high-resolution vari-
ations to support harmonic emission estimations.

. Anew method is presented to evaluate the accuracy of power quality measurement

system.

. Accuracy and uncertainties such as time-dependent variations and the impact of

network impedance on the current harmonic emissions are evaluated.

. A bivariate harmonic modelling approach is used to include the effect of both mag-

nitude and phase variations in the current harmonic estimations.

. The network uncertainties are included in the model by taking into account the

effect of grid-side voltage variations on the harmonic emission profile of different
household devices.

. The model can also be used to analyse harmonic cancellation as the phase angles

are included in the current harmonic’s probabilistic estimation.

. The model provides an accurate and simplified approach in comparison to the tradi-

tional harmonic estimation model based on standard probability density functions.

1.5 Practical novelties

The practical novelties of the thesis are as follows:

1.

The current harmonic emission estimation is based on the real-time variability of
load usage in residential buildings; therefore, it provides a realistic impact of elec-
tronic loads in the LV residential network.

. The effect of voltage waveform distortions on the harmonic emission provides a

range of probable values of current harmonics in the LV network.

. The additional impact on the harmonic emission for high electric vehicle penetra-

tion in the low voltage network is estimated.

. The influence of the electronic circuit topology on current harmonic emission is

estimated.

. The impact on power consumption and harmonic emission by technological ad-

vancements, such as replacing incandescent lamps and compact fluorescent lamps
with LED lights, is provided.
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1.6 Thesis outline

Chapter 2 provides an introduction to the harmonic distortions. The sources of har-
monics and their effect on the power system are described. A literature review of
existing techniques of current harmonic modelling is discussed.

Chapter 3 presents the methodology used to construct the harmonic estimation
model for the low voltage residential network.

Chapter 4 focuses on stochastic modelling of residential electrical appliance usage
patterns. It also provides the method to evaluate the electrical vehicle load profiles.

Chapter 5 investigates the inaccuracies and uncertainties that may effect the out-
come of harmonic estimation model. It also address the method to evaluate mea-
surement system accuracy.

Chapter 6 provides different results by using the harmonic estimation models. The
impact of technological advancements, circuit topologies, electrical vehicles and
nonlinear devices in the low voltage network is discussed.
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2 Literature review

2.1 Current harmonics and waveform distortions

The waveform distortions are steady-state deviations from the ideal sinusoidal signal and
are considered as one of the most critical electromagnetic disturbances in the power sys-
tem. These distortions include both current and voltage waveform distortions. The volt-
age distortions affect the end-user equipment, and the current distortions generated by
the end-user equipment affect the network voltage.

These periodic distortions can be decomposed into the sum of a fundamental com-
ponent of the frequency and harmonics. The harmonics refer to the sinusoidal waveform
that is an integral multiple of the fundamental component’s frequency. Ideally, the power
utility should provide only sinusoidal voltages and currents that do not have any distor-
tion component. The current harmonics are generated when a load draws a nonlinear
current that is not changing proportionally to the voltage in the power system, which in
turn affects the voltage across the load.

J.B.J. Fourier proposed in 1822 that any signal that is continuous and periodic over
time interval T can be represented as an aggregation of a DC component, a fundamental
frequency component, and higher frequency components as given by Eq. (2.1).

= Z ay cos (nt) + by sin (nwt)] (2.1)

Here o is the fundamental frequency of the function y(¢) in radians. The ay is the dc
component while a,, and b,, are the Fourier series’s coefficient and can be calculated by
Egs. (2.2), (2.3) and (2.4).

a0 = % [ Zx(a)t)d(a)t) 2.2)
an =+ 7 x(er)cos (naor)d(or) (2.3)
by = / " x(@r)sin (nor)d(wr) (2.4

Eq. (2.1) can also be written as a series of phase shifted sine terms as follows.

i dy sin (not + ;)] (2.5)
where,
dy = \/ak+Db2 (2.6)
and,
Y, = tan~! {z—"} (2.7)
n

Eq. (2.1) can also be written in terms of magnitude A,, and phase ¥, as indicated by Eq.
(2.8)

Yu=ao+ i [A, cos (nwt) + ,] (2.8)

n=1
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By using trigonometric identity cos (ot + ) = cosccos B — sinasin 3, Eq. (2.8) can be
written as follows.

o

Yn=ao+ i [Acos(nwt)cos(V,)] — Z [Ay sin (not)sin(D,)] (2.9)

n=1 n=1

Therefore, in the vector form, the nth harmonic can be represented by Eq. (2.10)
AnZDy = an + jby (2.10)

The magnitude A,, and phase 9, can be calculated by using Eq. (2.11) and (2.12) respectively.

A, =\/a2+b? (2.11)

8, = tan~! [%} (2.12)
;

Eq. (2.1) can also be written in complex from and is shown by Eq. (2.13).
y(t) =Y cae” (2.13)
n=1

where, .
ay — jby
2
The ¢, can also be calculated using Eq.(2.15).

= forn>0 (2.14)

_ l 4 jnwt
= [ x(@ne" ™ d(a) (2.15)

Eq. (2.13) can be integrated over an infinite period, and as a result, values between har-
monic frequencies will tend towards zero value. The component ¢,, will now be a con-
tinuous function and the resultant relation is known as Fourier transform as shown by
Eq. (2.16).

Y, = / Y(1)e T d(wr) (2.16)
Yy is a complex function and called the spectral density of y(z).
Yr = Re(Yy)+ jImg(Yy) (2.17)

The amplitude and phase spectrum can be obtained by Eq. (2.18) and Eq. (2.19) respec-
tively.

V= \JRe(¥p)2 + jimg(¥)? (2.18)
i [ ImgYy

O =tan || —>L 219

s=tan [Rer] (249)

As in digital signal processing, the data is recorded by sampling in the time domain. For
the frequency domain analysis of discrete data, the Fourier transform can be represented
as summation of discrete signals as shown in Eq. (2.20).

oo

Yo=Y |a()e2n (2.20)

—oo
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Figure 2.1 - Nonlinear current draw by a LED lamp

here t; = 1/ f, is sampling interval and f; is the sampling frequency. In MATLAB and other
computational softwares, Fourier transform of a discrete signal is calculated by using dis-
crete Fourier transform (DFT). The frequency domain results are also discrete for DFT and
can be calculated by using Eq. (2.21).

N—1
Y, = % Zo[x(rn)e*ﬂ”k"/'v] (2.21)

where N is the number of samples in time and frequency domain.

Using the Fourier transform, the distorted voltage can be decomposed into harmonics
with frequencies that are integral multiple of fundamental component. Fig. 2.1 shows
the nonlinear current draw by a typical LED lamp while Fig. 2.2 shows the decomposed
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Figure 2.2 - Harmonic components of the current draw by a LED lamp
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harmonic components.

Another important term that quantifies a signal’s overall distortion is known as total
harmonic distortion (THD). It provides the ratio of the aggregated magnitude of each har-
monic component to the fundamental component’s magnitude. The THD of a signal Y can
be calculated as using Eq. (2.22).

Z;:Z (Ynz)

THDy = %
1

(2.22)

2.2 Sources of current harmonics

The harmonic sources are electromagnetic or semiconductor electrical devices that draw
nonsinusoidal currents and are commonly known as nonlinear loads. The electromagnetic
nonlinear devices include stationary and rotating electrical machines such as transform-
ers, motors, and generators. The harmonic emission from these devices depends on the
design and material properties used in the construction. The harmonic content added
by electromagnetic devices is often less compared to semiconductor-based power supply
units [12]. The electronic loads contain switching devices and can generate a significant
amount of harmonic content in the power system; therefore, considered as major sources
of harmonics. Electronic devices’ share is increasing rapidly every year as they are now
an integral part of the power supplies. All modern appliances include switch-mode power
supplies (SMPs) to improve efficiency and power management. A typical SMPS contains a
rectifier, and its harmonic emission depends on the filter and power factor correction cir-
cuit topologies. The energy-efficient lamps such as CFL and LEDs contain power electronic
based driver circuit and contribute towards harmonic emission.

With the impending building regulation in the EU to move towards buildings with
nearly zero energy consumption using on-site renewable electricity generation, the cur-
rent harmonic emission of customer endpoints will potentially be escalated further be-
cause of the large three-phase power supply inverter units (photo-voltaic and battery
storage). The penetration of electric vehicles will also increase with time and draw current
from the grid by nonsinusoidal waveforms as they charge their batteries during a stay at
home through power electronic circuits. Thus current harmonic estimation in a distribu-
tion network is a complex set of problems defined not only by the present state of loads
but also includes future perspectives of potential load device profiles.

2.3 Harmonics effect of power system

Presence of small nonsinusoidal components cannot be basically avoided, as a waveform,
in any case, would include some nonsinusoidal noise. However, in an AC power supply
system, distortions from either voltage or current sinusoidal waveform can raise several
concerns.

The high-frequency harmonic components interact with the power system compo-
nents such as capacitors and transformers to produce additional losses and heat in them.
Some of the common problems caused by the harmonics are:

1. The high-frequency harmonics can cause excessive currents in capacitors leading to
overload up to a point where capacitors in the power factor correction units can be
destroyed. Capacitor current is linearly dependent on the harmonic voltage com-
ponent; thus, higher-order voltage harmonics impose more heating stress than the
main component.
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2. Capacitors inherently define resonant frequency as a result of their interaction with
the power system inductance. High voltage distortion can occur if the current har-
monic’s frequency matches the supply system’s resonant frequency [4].

3. Transformers are heated because of the additional losses caused by the harmonics
and results in reduced efficiency and life span. Furthermore, the insulation can be
degraded because of the additional stress.

4. The voltage harmonics can also saturate the transformer core and the unsymmet-
rical properties of the harmonics also contributes to this cause [13, 14].

5. The harmonic voltages produce harmonic flux in the motor that does not contribute
to motor torque. The motor’s efficiency is decreased under the influence of voltage
harmonics, and additional heat, noise, and vibration are produced [4, 15].

6. The transmission line losses increase, and their capacity is reduced because of the
increase in skin and proximity effects. Harmonic currents can cause a voltage drop
across the impedance of the system and increase the dielectric stress of the cables
[16].

7. The measurement instrument can show errors as they are calibrated on sinusoidal
current and voltages [17].

8. The protection equipment in the power system can malfunction because of the har-
monics. The relay operation can be disturbed. The circuit breakers tripping points
may also shift due to extra heating in the solenoids caused by the harmonics [13].

9. The harmonics also affects the operation of household appliances. The computer,
televisions, and lighting are affected by voltage harmonics [17].

In order to limit the adheres effects that could lead to damage or danger, the power sup-
ply waveforms are rather limited in the harmonic content permitted. For example, total
harmonic distortion for voltage waveform needs to be under 8% for residential areas, in
order for the power supply to be considered reliable [18].

2.4 Relevant standards

Both IEEE and IEC have provided the guidelines for the limits, mitigation, and measure-
ments of harmonics in their standards. The summary and description of different stan-
dards related to harmonics are listed below.

1. EN 50160: Provides the low, medium and high voltage supply characteristics such
as variations, harmonics, transients, flickers, dips and, swells in the public networks
[18].

2. IEEE 519-2014: Provides the recommendations to control harmonic in the electric
power system, including details of the harmonic measurement procedure and rec-
ommended harmonic limits [1].

3. IEC 61000 1-4: Discusses sources, effect, and mitigation of the power frequency
conduction for the range of up to 2 kHz [19].

4. IEC 61000 2-1: Provides information about different disturbances, including har-
monics [20].
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5. IEC 61000 2-2: Defines the compatibility levels of conducted voltage disturbances
in the range of up to 150 kHz in the public access power supply networks [21].

6. IEC 61000 2-4: Defines the compatibility levels of conducted voltage disturbances
for industrial sites [22].

7. IEC 61000 2-5: Defines description and classification of electromagnetic environ-
ments, including power supply networks and the phenomena associated with dis-
turbances [23].

8. IEC 61000 3-2: Provides harmonic current emission limits for equipment with a
current rating of less than 16 A [24].

9. IEC 61000 3-4: Guidelines for voltage distortion and fluctuation for the equipment
with current rating of 16 A or less [25].

10. 1EC 61000 3-12: Provides harmonic current emission limits for the equipment con-
nected to a low voltage network with a current rating of 16 A to 75 A [26].

11. IEC 61000 4-7: Provides harmonic current emission limits for the equipment con-
nected to the low voltage network with rated current greater than 16 A [27].

12. IEC 61000 4-13: Covers the measurement and testing procedure for for the verifi-
cation of the device’s immunity to voltage harmonics [28].

13. IEC 61000 4-30: Defines the measurement methodology of power quality parame-
ters and interpretation of the measurement results in the AC supply system [29].

2.5 Review of harmonic estimation models

The impact of harmonic voltage’s levels on the distribution network can be studied by us-
ing harmonic estimation models. An important task for the network operator is to main-
tain voltage level emissions within limits in the network; therefore, a realistic estimation
of current harmonics emission is critical. A detailed harmonic analysis could provide in-
sight into the power system behaviour under voltage and current distortions.

Several models are available in the literature to estimate the current harmonics in the
power system. These models can be categorized into numerical and probabilistic models
[Iv].

2.5.1 Numerical models

The numerical models are based on the electrical parameters of the loads. The loads can
be classified based on the circuit topologies, and current, voltage and impedance values
are used to formulate the harmonic estimation model in frequency or time domain.

Frequency domain models The frequency-domain models are easier to compute and
consider the frequency domain attributes of the electrical equipment. The simplest fre-
qguency domain model is the current source model based on the magnitude and phase
measurement of each current harmonic under consideration. Any nonlinear load can be
represented by the sum of constant current sources for each harmonic frequency [30].
Each current harmonic source is independent of the input voltage. This model cannot
analyse the effect of the voltage distortions on current harmonics [31]. As the voltage
waveform in a distribution network changes continuously depending on the type and
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amount of connected load, current source models are not effective for harmonic anal-
ysis.

The Norton models address this problem by considering the admittance matrix. The
model parameters are estimated by switching the operating condition of the power sys-
tem as shown in Fig. 2.3. The current and voltage harmonics will be changed (I; , to I ,
and Vi, to V,,) and are used to estimate the model parameters from Eqs. (2.23) and
(2.24).

A
Vn Zhn lhn

Figure 2.3 - Norton equivalent model

V n*V n
Zhy = -2t 11 (2.23)
12.n*11,n
Vln
Ih,=——1 2.24
n Zhn 1,n ( )

Although this approach provides some advantages over the current source model, it
cannot consider the cross dependency of harmonics. The harmonic currents only depend
on the corresponding voltage harmonics and not on the voltage waveform itself. This
shortcoming was improved by using a crossed frequency admittance matrix in the Norton
coupled (NC) model. The estimated harmonic currents using this model will not only de-
pend on voltage harmonics of the same frequency but on the other frequencies as well.
Eq. (2.25) and (2.26) represents the mathematical form of the NC model.

I=YxV (2.25)
sz Zz | ):22 Z 23 ... sz ‘ZZm
Ll =11 Y2 Yz oo Yam|. |y (2.26)
Inm i;nl ?112 ? n3 s i;nm Vnm

The verification and comparison of frequency-domain models are presented in [32, 33].
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Time-domain models The time-domain models are based on the load’s actual circuits
and give a rather complete information about the harmonic emission profile. However, it
is challenging to model every load connected to the grid using its circuit schematics. The
time-domain harmonic analysis approach is applied to nonlinear loads categorised based
on their circuit topologies in [31]. Most electronic devices contain switch mode power
supplies; therefore, equivalent time-domain models of SMPS are made. The current har-
monic estimation was provided on simulated and measured waveforms. A similar model
is used for computer loads connected to a single transformer [34]. The results show har-
monic cancellation and voltage waveform distortion at the transformer. The mathematical
models of low power compact fluorescent lamps were made to study harmonic penetra-
tion in [35]. The voltage and current waveforms were recorded and analysed using circuit
simulation software. Although able to present an accurate harmonic analysis approach,
the time-domain models have limited application as it is challenging to model every load
connected to the grid using its circuit schematic.

2.5.2 Stochastic models

Distinctive load models In the distinctive load modelling approach, the load connected
to the network is categorised based on their electrical properties, and the probability dis-
tribution of each group is defined to estimate the overall harmonic emission. For example,
the network load can be divided into linear or nonlinear devices. These devices can be ad-
ditionally split up based on circuit topology and power quality characteristics. A similar
probabilistic harmonic analysis model was proposed in 1987 [36]. The model categorised
nonlinear loads into four categories based on the switching state and operating mode.
The harmonic aggregation analysis was performed using the Monte-Carlo approach with
probability density functions (PDF) of harmonic magnitude and phase angles. Based on
the appliance measurement data and their usage patterns, a harmonic analysis approach
is used to study the harmonic impacts of the household appliance in the low voltage dis-
tribution grid [37]. The results obtained from the harmonic model is then compared with
the real-time measurements of the network. A similar bottom-up probabilistic harmonic
estimation modeling approach is presented in [38]. The model generates household appli-
ance’s usage patterns based on occupant behavior, and the appliance’s equivalent circuits
are used to analyse the harmonic emission. The simulation results of harmonic loads are
compared with the actual grid measurement results to extract correlated data. In another
study, a probabilistic model to analyse waveform distortions was presented under the in-
fluence of high penetration of electric vehicles (EV). The authors highlight this approach’s
importance as uncertainties associated with the EV charging patterns can be easily ac-
counted [39]. The single and three-phase nonlinear loads are divided into groups based
on their current THD in [40]. The participation of these load groups were obtained based
on energy usage patterns at different times of the day. The author selects the customer
database parameters by assuming that the data of any particular device type belongs to
a normal distribution. The voltage distortion in the low voltage network was evaluated
based on this probabilistic method.

Measurement based models In the measurement-based models, current harmonics
emission is analysed from the probability distributions of harmonic current measurement
data. The measurements could be taken at the electrical appliance level in a bottom-up
approach, and aggregated harmonic analysis could give the harmonic estimation at the
point of common coupling. In the top-down approach, measurements are taken at the
distribution transformer. In both cases, extensive measurement data is usually compared
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with an appropriate probability distribution. The voltage distortion in the distribution net-
work was estimated by using Monte Carlo simulation of aggregated harmonic currents in
[41]. The measurement data assume to fit a normal distribution. The harmonic currents
are measured for the residential and commercial loads at the point of common coupling
in [42]. The measurements are divided into low, medium, and high demand subgroups
and compared with normal distribution and uniform distributions.

2.6 Stochastic modelling methodologies

Two different approaches can be used to construct a probabilistic model based on the
type and amount of data [X]. The first approach could be termed as a parametric model
where a finite set of data parameters can be compared with predefined distributions. In
the second non-parametric approach, the model is based on distributions calculated from
the data itself [43].

Parametric approach The parametric models mostly employ normal distribution de-
fined by mean and variance. The probability density function of a normal distribution
is indicated by Eq. (2.27).

1 _ew?
Px = NorTe Xe 202 (2.27)
no

Here o is the standard deviation, and u is the mean value of x.

In the early harmonic models, normal distribution was used to describe both magni-
tude and phase angles as independent variables. However, this assumption is not accu-
rate for harmonic analysis. Therefore, a joint or bivariate probabilistic approach is more
effective where the estimated variable depends on the probability density function of two
variables. In [30], the load current for residential buildings is estimated using beta bivari-
ate distributions. In [31, 32], joint normal distribution (JNB) is used for the forecasting of
harmonic emissions. The parameters of the normal joint distribution, o (standard devia-
tion) and u (mean value) are calculated by using Egs. (2.28) and (2.29) using the complex
components of the current i, and i.

Moy = H (2.28)
y
[ 0%y oliniy)
R EASRY 22

Fig. 2.4a shows the 15th harmonic current when normal distribution fitting parameters
are applied in a complex plane for a display monitor. The individual probability density of
the real and imaginary parts of the current harmonics is shown by red and blue lines,
respectively. The green circle enclosed the part of the distribution responsible for 95 per-
centile of the estimated values. Although the joint probability distribution provides better
results than the individual normal distribution for x and y values; however, it can be ef-
fective only when both components are linearly dependent. The nonlinear devices with
multiple operating modes result in different harmonic currents. The resultant distribution
fit of these devices could be very different from the normal distribution. Fig. 2.4b shows
the 9th harmonic current spread of a personal computer (PC) stress test in a complex
plane where three different clusters are clearly visible. The normal joint distribution can-
not represent this data efficiently. This problem can be addressed by clustering the data
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and apply JNB to respective clusters. This approach is known as a multivariate normal mix-
ture and provides a more flexible distribution fit [44]. The distribution mixture approach
is used in [45] to study power quality impact in low voltage distribution. The PDF of the
current harmonics are calculated by finite normal distribution components with their as-
sociated weights. The drawback of this approach is that the model requires predefined
cluster information.

>
c (=4
I Q
8 a
> 2z
B 2
© ©
8 s ,
o \\)\\ o A /(/
-51.5 > ke o 2
. B a2 oy e <
516 7517\\\\ e 1 W /(// )
51 a\)\\»/ -9 <18 \x‘/ 2
Current, img. (mA) 0 Current, real (mA) Current, img. (mA) 8 Current, real (mA)
(a) 15th harmonic current of display monitor (b) 9th current harmonic spread of PC

Figure 2.4 - Joint probability distribution applied to harmonic currents drawn by monitor and PC [X]

Non-parametric models A non-parametric adaptive kernel density estimation (KDE) with
aplug-in bandwidth selection approach is presented in [46]. The KDE algorithm designates
probability distribution for every data point using a kernel function and bandwidth, also
known as the smoothing parameter, indicated in Eq. (2.30).

1 1 % (h—hy)
= — Ky,(h—h,) = — K——— (2.30
Ph Nn; b(h—hn) Ny & 5 )

Here, p;, provides the PDF of i for N observations. K is the kernel and b is the band-
width. The sum of kernels provides the total probability density of a variable. The op-
timal bandwidth selection is critical in a KDE model. A large bandwidth will smooth the
probability density curve but results in fewer data points in each kernel. As a result, infor-
mation about data variation will be lost. The optimal methods for finding bandwidth are
presented in [47].

The KDE algorithm, along with the Monte-Carlo simulation, is used to estimate har-
monic load flow in [43] and [48]. However, harmonic current magnitude and phase angles
are estimated independently, which will provide inaccurate phasors data results. A joint
distribution from the KDE algorithm can generate better results where multidimensional
vectors represent the parameters. In Fig. 2.5a, the KDE is applied to the 5th harmonic
current measured during the PC stress test. This method requires intensive calculations,
and high computational power is needed for even a small scale harmonic analysis.

Empirical bivariate histogram (EBH) distribution is another approach that divides data
into predefined bins. The EBH distribution data is normalized by using Eq. (2.31) to create
a probability density mesh.

C(x,y)

= (2.31)
N-W,-W,

Pxy

Here p., is the probability density of a bin at (x,y), C(x,y) are the number of samples
in the bin and W,, W, defines the area of the bin. N defines the total number of data
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Figure 2.5 - KDE and histogram distribution applied to the 5th harmonic current of a PC [X]

points. Fig. 2.5b shows the histogram distribution applied to the 5th harmonic current
of a PC under stress test. The advantage of EBH over KDE distribution is that it requires
less computational power, however, both EBH and KDE distribution generate unused data
space in the PDF when clusters are present in the data. Data sampling for these techniques

is quite challenging.
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3 Methodology

Household current harmonic emission estimation and modeling could be affected by sev-
eral factors, including network configurations, load variations, and measurement uncer-
tainties [49]. The modern electronic equipment has various operating modes, and their
current harmonic spread is irregular with clustered data. The probabilistic approach of
modelling current harmonics has the advantage of tackling any sporadic variations. Vari-
ous stochastic models to estimate the current harmonics described in the previous chap-
ter have several limitations in terms of accuracy or computational complexity. Most often,
predefined probability distribution functions, such as normal distribution or joint-normal
distribution, are compared with the current harmonic measurement data. This approach
is not appropriate for the majority of the measurement data as they show different dis-
tribution spreads with clusters. The KDE and histogram distribution algorithms require
bandwidth selection and become inefficient for clustered data. Load variations also have
a significant impact on the current harmonics emission but mostly ignored in the existing
models. Most appliances also have dynamic harmonic emission profiles because of a vari-
ous operating modes. Therefore, the harmonic estimation methodology must be capable
of addressing different uncertainties to reflect a realistic outcome.

3.1 Proposed stochastic harmonic estimation model

A stochastic harmonic estimation (SHE) model is proposed in this thesis to evaluate the
impact of current harmonics emission in the low voltage residential network. The mea-
surement data of end-user appliances is modelled with an empirical bivariate probability
distribution approached. The bivariate analysis provides the impact of both magnitude
and phase variation on harmonic estimations. The stochastic load usage patterns are gen-
erated based on the device level measurements and survey data.

The model consists of three parts; device usage model (DU), measurement database,
and bivariate harmonic current (BHC) model. The model will simulate the required num-
ber of houses for a given number of days to estimate harmonic currents magnitude and
phase angles generated by each household appliance and electric vehicle [IV].

The household appliances and EVs are measured by using a controllable power supply
on different voltage waveforms. In the BHC model, the current harmonic magnitude data
is used to generate the empirical cumulative distribution function (ECDF) for all harmonics
under consideration. The ECDF will group the data into bins along with their probabili-
ties based on the predefined resolution. Each magnitude group is then mapped with the
phase groups generated by a separate ECDF for the harmonic phase data. A Monte Carlo
simulation is used, and all houses are populated with the appliance stock. During each it-
eration, the DU model generates the usage pattern of each appliance or EV by comparing
uniform random numbers with the respective distribution functions. All end-user devices
are simulated individually, and the total harmonic emission of an individual household is
aggregated after each iteration. The aggregation of the current harmonics is performed in
a complex plane by vector addition; therefore, the model provides the real and complex
(X and Y) harmonic components for all devices. The algorithm of the model is described
with a flow chart, as shown in Fig. 3.1. The dotted lines separate the model’s input simula-
tion parameters, including the number of houses and days. The DU and BHC models are
shown by red and green dotted boxes.
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Figure 3.1- Flow chart of the proposed model [IV]
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3.1.1 Measurement database
The measurement database will include current harmonic measurements of different do-
mestic loads. It will consist of measurements of appliances with different operating modes
at various voltage waveforms. Sinusoidal, peak top, flat top, and real-time grid voltage
waveforms are used as an input. For the real-case grid voltage waveforms, a low volt-
age residential network is measured at 5-minute intervals for a day to record the voltage
harmonic magnitude and phase angles.

A test bench has been developed for the measurements of loads with support of up to
16 loads at a time. The sockets are connected to a controllable supplied bus-bar through
relays. A control box controls the relays and consists of a DC power supply and transistor
switches. A National Instruments data acquisition module (DAQ) is used to provide the
digital inputs to the control box and analogue reference signal to the controllable power
supply. Two different controllable power supplies, 4 kVA Chroma 61505 and 1.7 kVA Omi-
cron C356 are used to generate desired voltage waveform. Power supplies are controlled
via reference signal Vg provided by the DAQ.

V,
Vg = o X Vcoef (3.1)

Vrange

Here, Ve s is 7.072, and Vg is 300 V. A MATLAB program is used to generate this refer-
ence voltage and digital signals for the control box through the DAQ module. Amplitude
and phase angles for each odd harmonic are used to synthesise the programmable power
supply’s reference signal. Eq. (3.2) is used to calculate the V,,, from the given amplitude
and phase angle of the fundamental and odd harmonics up to the 19th harmonic.

N
Vour = ¥, V2 X Ay SIn(27 fits + Oy (3.2)

n=1

Here, A, is the RMS value of harmonic magnitude and f;, is its frequency. The ¢, is the
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Figure 3.2 - Measurement setup [IV]
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phase difference between the harmonic and the fundamental component. ¢, is the sam-
pling interval for which the calculation has to be made. It is calculated from the sampling
frequency f; as shown in Eq. (3.3).

1
S
The sampling frequency can be calculated by the time duration T',,, of the waveform to be
generated and the number of samples in that interval N as shown by Eq.(3.4).

tg (3.3)

fs= = (3.4)

This setup has enabled us to generate a pure sinusoidal voltage with a sampling frequency
of 100 kHz. For power quality measurements, A-Eberle PQ-BOX 200 is used to record
harmonic magnitude and phase angles with 41 kHz sampling frequency. The PQ-BOX 200
is capable of recording power quality data with a 1-second resolution. The 1-second data is
based on the average values calculated at 200-ms according to IEC 61000-4-30 standard.
Fig. 3.2 shows the block diagram of our measurement setup.

3.1.2 Bivariate harmonic current model

The bivariate harmonic current modelling approach is suitable for harmonic analysis of
loads with the dynamic profile of harmonic emission and also capable of addressing dif-
ferent uncertainties responsible for current harmonics variations. The current harmonics
of individual appliances will be modeled using ECDF. In the first step, the ECDF for the real
part of the current in the complex domain is calculated. Each group of this ECDF is further
mapped with the complex part of variable’s data group, and the ECDF of each bivariate
data group is calculated. The resolution of the ECDF determines the accuracy of the har-
monic estimation model. ECDFs for both real and imaginary components are calculated
using Eq. (3.5).

1 m
pn(X <x)=— Z I[x; < x] (3.5)
mi3
Here p,, is the cumulative probability function of m groups. The I is called indicator func-
tion and has two possible values as shown by Eq. (3.6).

1 forx <x

0 forxy>x (3.6)

Ix <x]= {

Fig. 3.3 shows the how ECDFs of real and imaginary components of the current har-

monics can be used to create distributions in the complex plane. The red line shows the

ECDF of the real component of the harmonics and each blue line indicates the ECDF of the
imaginary components at each group of the real component ECDF.

3.1.3 Device usage model

An efficient current harmonic estimation model should take into account the load varia-
tion in the distribution grid. Harmonic injection in a network at a given time depends on
the type and amount of load connected to the grid on that particular instant. However,
the load prediction is a complex task as it is difficult to estimate when the consumer will
use a particular appliance. The occupant behavior of using electrical appliances is chal-
lenging to model as it depends on many factors. Occupants interact with the electrical and
nonelectric systems installed in the building, thus, altering the energy usage patterns [50].
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The International Energy Agency (IEA) also regards occupant actions as the primary cause
of controlling the environmental parameters to maintain a comfortable living atmosphere
[51]. These occupant actions are responsible for 71% variation in the building’s energy con-
sumption [52]. However, various factors influence the resident’s behavior, including their
age, income, social status, and cultural background [53]. The building structure, insulation
quality, climate conditions also play their role. Therefore, universal occupancy modeling
is near to impossible.

The electricity consumption models can be broadly classified into three categories:
top-down models, bottom-up models, and hybrid models [VI]. The top-down modeling
approach is based on data collected on the macro-level. It may include an electricity
billing database, national census, or survey data. The researchers have frequently used
the Time Use Survey (TUS) data collected in Europe, Britain, and America for their energy
consumption models. These surveys collect data from the targeted groups based on dif-
ferent parameters. The models based on similar data have many drawbacks and lack the
capability to provide a detailed analysis of the physical behavior of the building systems.

The bottom-up models are based on physical measurements at the device or building
level. Nevertheless, these models provide accurate information regarding energy con-
sumption in a building but are complicated to construct due to the involvement of sev-
eral variables. These variables include occupancy, occupant behavior, climate conditions,
building structure, and an extensive database of appliance’s measurements. As it is diffi-
cult to consider each variable in detail, a compromise is required to make a specific model
for a particular research problem. Another approach is to combine the benefits of both
bottom-up and top-down approaches to improve efficiency. These models are termed as
hybrid models [54].

A residential electricity consumption model to estimate current harmonic emissions
from the building is required. Therefore, a high-resolution bottom-up model is required
to provide usage patterns of domestic appliances that can be compared with the power
quality measurements. Fig. 3.4 shows the abstract diagram of the device usage model for
residential buildings. For this purpose, a residential building in Estonia is measured at the
device level for one month. The data is used to construct a probabilistic model to estimate
the switching behavior of the appliances. The model consist of active occupancy pro-
files, appliance stock in the households, and the electricity consumption measurements
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as shown in Fig. 3.4.
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Figure 3.4 - Abstract diagram of the harmonic estimation model [IV]

Active occupancy profiles are created based on the electricity consumption of the ap-
pliance that comes under the direct influence of the occupant’s activities. Usage of light-
ing, media, kitchen, cleaning, and laundry appliances directly depends on the occupant’s
behavior. Electricity consumption meter data has been used for occupancy modelling in
many studies [55, 56, 57, 58]. A similar approach is used here to create a two state active
occupancy profile. ECDFs are created for both weekdays and weekends occupancy sta-
tus based on the electricity consumption data. A survey related to the occupant’s daily
activities is also used to improve these occupancy profiles.

Every household has a different set of appliances depending on the family size, ge-
ographical location and socioeconomic status. Appliances are also available from differ-
ent manufacturers with various specification. Manufacturers introduce new models every
year with improved functionality and energy ratings. The appliance ownership informa-
tion can be extracted from several surveys conducted on national level in different coun-
tries. A domestic energy model is created on the bases of common appliance provided
by national ownership statistics for United Kingdom (UK) in [59]. Similar surveys are also
conducted in Europe, and USA.

The device usage model will provides the information when a particular appliance is
switched ON in the house. The ECDFs are used to generate switching and duration interval
of each appliance in the house. The total electricity consumption of a single housing unit
can be determined from the Eq. (3.7).

D n

E= Z Z [Py X dy] + [Psg % ds4] (3.7)
day=1 |ap=1

Here P,, shows the active power of the appliance ap in its working mode and Py, is its
active power consumption in the standby mode. d,, and d,, are the time duration of the
appliance operating in active or standby mode during a day.
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Figure 3.5 - Voltage waveforms used for current harmonics measurements [IV]

3.2 Measurement database

The measurement database contains the current harmonic measurements of different
household appliances operating at different working modes on various voltage waveforms.
We have used sinusoidal, peak top, flat top, and real-time grid voltage waveforms as an
input to measure current harmonics.

For the real-time grid voltage waveforms, a low voltage residential network is mea-
sured at 5-minute intervals for a day to record the voltage harmonic magnitude and phase
angles. Fig. 3.5 shows the voltage waveform used to measure the current harmonic emis-
sion from the household appliances using the measurement test bench.

The harmonic current estimation model is based on the power quality measurement
data of the appliance portfolio. The device usage patterns are compared with each house-
hold appliance’s harmonic current profiles. The model can be used to evaluate total har-
monic emission of multiple house as shown by Fig. 3.6.
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Figure 3.6 - Harmonic current estimation of multiple households [IV]
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4 Device usage modelling

The harmonic emission in the low voltage residential grid is stochastic in nature because of
the random states of the load. A load can be in an ON or OFF state at a particular instance
during a day. Furthermore, modern loads, such as washing machines and dishwashers,
also have different operating modes. The occupant behaviour and preference also af-
fect the amount of load connected to the network. Therefore, a bottom-up stochastic
modelling approach is required to estimate usage patterns that could provide informa-
tion about various domestic load’s state and operating modes.

With every passing year, more efficient versions of appliances will be available. It is,
therefore, essential to make the device usage model compatible with future advance-
ments. A feasible approach is to make a model that will estimate only the usage pattern
of all electrical appliances in a house instead of their output power at any given time.
This approach would require a detailed analysis of the working of the appliance and how
the dwellers are using them. Appliance ownership surveys are regularly conducted in
different counties and provide the ownership share of major appliances in households.
Researchers frequently use this data to construct their energy models. An energy model
developed for households in the United Kingdom (UK) has selected the most common
residential building appliances based on national ownership statistics in the UK [60].

Household appliances can be grouped into cold appliances, standby appliances, ac-
tive appliances, and continuous appliances [61]. Table 4.1 shows some of the standard
appliances found in the residential buildings. All these appliances are used and work in a
different way when compared with each other. Hence, a different approach is required to
model each of them.

Table 4.1 - Categories of household appliances [VII]

Type Appliances

Cold appliances Refrigerators, freezers and heating or cooling systems
Entertainment units: TV units, sound systems, gaming
consoles, computers

Laundry appliances: irons, cloth washers and dryers

Standby appliances

Active appliances Kitchen appliances: cookers, dishwashers, blenders, mixers
Cleaning appliances: vacuum cleaners
Transport Electric vehicles, electric scooters

4.1 Occupancy model

Occupant activities are the primary reasons for the high variation in residential electricity
demand. Occupant behaviour affects the electricity demand in the residential building
actively and passively. For example, when the building is occupied, demand variations for
lighting, heating, and cooling are the passive effects that alter electricity consumption.
The impact of active occupancy includes the occupant’s interaction with the thermostat
setting, usage of the electrical appliance, window blinds settings, and windows or door
opening to improve indoor environment quality.

Demand sharing is an important aspect to consider during occupancy modelling. The
increase in occupancy level in the residential buildings does not increase the electricity
demand in the same proportion. The reason behind it is the sharing of appliances such as
lighting and heating among occupants. The occupancy data is difficult to record because
of privacy concerns, and therefore reliable data-sets are not available. An alternative ap-
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proach is to use electricity demand data to determine the occupancy parameters. The
electricity consumption data of appliances that come under the direct influence of occu-
pants can reflect the occupancy status of a building with reasonable accuracy [58, 62]. The
two-state or binary occupancy models based on electricity consumption data is presented
in [63]. The model can detect occupancy states in residential and commercial buildings
using non-intrusive learning algorithms on aggregated electricity consumption data. A
more straightforward approach is to use smart meter data installed at the device level
to record appliance electricity consumption. Several studies have proposed occupancy
models based on the electricity consumption data-set obtained through smart meters
[64, 56, 65, 66].

A similar approach is used and the device-level electricity consumption data is con-
verted into two-state occupancy profiles. The electrical appliances are categorized as
interactive and noninteractive loads. The interactive loads include entertainment units,
lighting, dishwashers, washing machines and other plug-in appliances, while refrigerator
and heating are considered as noninteractive loads. The electricity consumption data of
noninteractive load is regarded as the background load with a relatively consistent range
and can be calculated by the following relation.

n m
P(t)="Y Pr+ ) Pa (4.1)
NIL=1 sd=1

Here P, is the background load equal to the sum of power consumption Py;;, of n non-
interactive devices and standby power P,; of m interactive device operating at time .
During any time in a day, the instantaneous power consumption Pr(¢) of a residential unit
includes the individual electricity consumption of both Interactive and noninteractive ap-
pliances.

N M
Pr()=") Pu+ Y Pur (4.2)
IL=1 NIL=1
P;; and Py, are the power consumption of any individual interactive and noninteractive
loads, respectively. A residential building has active occupants if the instantaneous power
consumption of the residential building is greater than the maximum value of the back-
ground load consumption, as shown by Eq. (4.3).

0,(r) {1 when Pr(t) > Py(max) (4.3)

0 when Pr(t) < P,(max)

Fig. 4.1 shows the electricity consumption of a household on a weekday. The top graph
shows the load of background appliances, and the middle graph shows the load of inter-
active devices. The red line shows the binary state occupancy curve. The high value of
occupancy indicates the presence of active occupants in the house. The occupancy de-
tection algorithm extracts the binary occupancy profiles from the measurement of house-
hold electricity consumption data. The data is divided into morning, evening and day time
occupancy cycles. For each cycle, the initial and final time interval of the occupancy cycle
is stored. The data will provide start time 7,. and the duration D,. of each occupancy
cycle. Empirical distributions are used to construct a stochastic occupancy model.

Empirical distributions is a probability distribution based on observed data. They can
be visually represented as empirical histograms. For a given data-set X;,X>,....X,, the
empirical distribution function p,(x) places mass 1/n in the n points. If y; < y, < y3 are
the order of the observed random sample and no observation is equal to each other, then
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pn(x) can be defined as:
0 forx <y
pnlx) = k/n foryp <x <y
1 when x > y
Herek=1,2,...,(n— 1) and mathematically it can be defined as:
1 n
pul(x) = — Z KX, <x}
Ly
where I is the indicator function
1 forXy<x
11X, < = -
[Xie < { 0 forX;>ux

Occupancy

(4.4)

(4.5)

(4.6)

The empirical distribution and histogram of the start time T, for the evening occu-
pancy cycle is shown in Fig. 4.2. Similarly, the empirical distributions for the occupancy
cycle duration D, is determined. The occupancy is determined for each day using a Monte
Carlo simulation by generating a random number x;; [0 1] from a uniform distribution in
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each iteration. 7,. and D, are estimated by comparing the random number with the
respective ECDFs using the following equation.

Y=y (1—xU_xl)+yz<1—x2_xU) (4.7)
X2 — X1 X2 — X1

Where x| and x; are the probabilities for y; and y;.

4.2 Lighting load

Lighting consumes a significant portion of the total end-user electricity consumption in
the residential sector. It is highly variable because of its dependence on the solar cycle,
irradiance factor, building design, and dweller’s preference for lighting needs. Building
indoor environment, aesthetics, number and size of the windows also play a vital role in
the amount of lighting used. Therefore, the lighting load of different apartments in the
same building can be very different from each other. An efficient lighting model must also
be capable of tackling daily and annual variations in the lighting demand with the seasonal
and solar cycle variation.

A residential building can have several lamps, depending on the floor size. The power
rating and light output of each lamp could be different. The selection of a lamp by the
customer is influenced by the price tag, power ratings, lumens, and light quality. However,
they are not aware of the lamp characteristics, power quality information, and design
technology.

A lighting switching-based strategy is proposed in this thesis that can provide a high-
resolution model based on a residential building’s measurement data. Usage patterns of
light switches are modelled instead of lighting power demand. This model can simulate
the lighting usage of each lamp at a high time resolution of 1-minute.

For the lighting load, a single sub-meter provided the aggregated power consumption
of all the lights in the building. The aggregated consumption data of lighting load is decom-
posed to find individual lamp’s usage profiles using clustering. The clusters are compared
with the active power of unique lamps in the building to find each lamp’s usage patterns.
The total consumption is further divided into three intervals: morning, day and evening
cycles. The measurement data shows an identical usage pattern during these intervals.
The consumption patterns during weekdays and weekends were also different.

The usage pattern of each lamp is divided into switching and noise events. A switching
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event occurs when the lamp is used for more than 10 minutes. Usage interval of less than
10 minutes is accounted for a noise event. The switching and noise events during the
morning, day, and evening intervals are calculated for all the lamps.

A Markov chain model is used to determine the type of event. The Markov chain is a
stochastic approach that describe a sequence of possible event where the probability of
the future event depends only on the present state. For the s¢, 51,52, ..., s, possible states
of a random variable, the nth state can be calculated using Eq (4.8).

P(Xy =sn | Xn—1 =5n—1) = p(Xp = $n| Xo = 50, X1 =S1,-e0s X = Sn) (4.8)

Since there are only two states of a light event; therefore, for every time stepr =1,2,..,N,
the event must have any of the two states as shown in Fig. 4.3.
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Figure 4.3 - Transition probability of lighting events

After each event at time step # to ¢ + 1 the transition probability p; will determine the
next event going from state i to j. The transition probability is defined by the Eq. (4.9)

P1 9o
The transition probabilities will vary and selected from the precalculated groups based
on the measurement data. As the lighting usage depends on the active occupancy in a
building, the occupancy model is used to determine the morning, day and evening lighting
interval’s start time and duration.

The empirical distribution functions for the number of switching events, noise events
and their duration during each lighting interval for all days is calculated using Eq. (4.6) and
Eq. (4.7). The duration of each switching event d, and noise events d,,; can be used to
find the total lighting demand of each house for a day with 1-second resolution, as shown
by Eq. (4.10).

pi(if) = {p 0 ‘“} (4.9)

n n

Pr=Y (dg, xPu)+ Y, (dns X Py) (4.10)

sw=1 ns=1
The lighting power consumed during each switching and noise events Py,, and P, can be
calculated by Eq. (4.11) and Eq. (4.12).

Py x T (4.11)

=
™=

Py, =

o
Il
~
Il

P x Ty (4.12)

=

I
(ngE
M=

=
]L
~
I

1

40



The T; and Ty are the time duration for each individual switching and noise event,
respectively. A Monte-Carlo approach is used by selecting random lamps based on the
light output needed in each room. The light output is calculated by the type of lamps used
in the building measured for the data collection. During each run, lamps were selected
randomly form uniform distribution. Fig. 4.4 shows the mean, and 90th percentile values
of power consumption of LED lamp usage in 60 houses.
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Figure 4.4 - Lighting power consumption of 60 houses (only LED lights)

4.3 Cold appliances

The cold appliance includes freezers, refrigerators and heating equipment. These appli-
ances are controlled by thermostat settings and operate continuously in a cyclic manner.
The energy consumption of cold appliances is relatively constant over a daily basis and,
therefore, easier to model. The influencing factor on energy consumption of these ap-
pliances is user preference and ambient temperature. The electric operation of the cold
appliance is categorized into high power P,; and low power P, cycles. The variation in
both cycle’s time duration depends on the influencing factors and can vary in a prede-
fined range based on the measurement data. For example, in the case of refrigerators or
freezers, the length of operating cycles depends on the thermal efficiency of the storage
compartment, the amount of food storage, and the frequency of opening the door [60].
When the residential building is actively occupied, human interaction alters the duration
of operating cycles of cold appliances. The high power and low power cycle duration’s are
separately calculated for both occupancy states. The total power consumption of a cold
appliance can be calculated by using the following equation.

1

N M
Peota = Z <Z d Xth Z d XP[()W) (4-13)
n=1 m=1

Of:()
The duration d,, and d,,, are obtained from their ECDF’s calculated during both occupancy
states using Eq. (4.5) and Eq. (4.7).
4.4 Standby appliances

Standby appliances include entertainment devices such as television sets, speakers, gam-
ing consoles and IT equipment, including computers, printers, etc. These devices have a
low power standby mode that helps the user to start the device immediately by pressing
a button. The power consumption in the standby mode is almost negligible in compari-
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son to the active mode. However, patterns of both modes are required to simulate the
behaviour of standby appliances.

The active mode duration depends on occupancy and occupant’s behaviour. For ex-
ample, it is more likely that entertainment devices will be used during the evening period
on weekdays. Similarly, computer or laptops usage also depends on occupant behaviour.
This usage pattern of each standby appliance varies and, therefore, should be simulated
individually. The Eq. (4.14) represents the power consumption of a standby appliance for
a day.

Pr =Py + Py (4.14)

Where Py and Py, are the power consumption during device usage and in standby mode
and can be calculated using Eq. (4.15) and Eq. (4.16), respectively.

M=

PH = | (dH X Ph)| for Of =1 (4.15)

1

3
Il

Py=|) (duxP)| forO;=0 (4.16)

M=

Here dy and d,,; are the duration of device usage and standby cycles and calculated by
their ECDF’s using Eq. (4.5) and Eq. (4.7).

4.5 Active appliances

All other household appliances that do not fall into the above mention categories are
termed active appliances. These appliances are difficult to model as their usage patterns
depend on the individual user preferences and behaviour. These appliances are further
categorised based on their relation to the type of occupant activities. Time-series power
consumption data is used to determine each appliance’s ON and OFF time in the house.
The operating duration of a device is calculated based on 7oy and torr.

D; = torr —ton (4.17)

The data of the time values at which a particular device is turned ON during the mea-
surement data of 1 month is clustered to determine the ON-time groups. The clustering
is based on dividing N data points into & clusters in which each data point belongs to the
cluster with the minimum distance from its centroid. The centroid of each cluster depends
on the mean value of the data points assigned to that cluster.

A set of m data points (1), ...,t<’”) grouped into a few cohesive clusters. The vectors
for each data point ) € R” are given without labels. The algorithm will predict k cen-
troids and a label ¢ for each data point. The k-means clustering algorithm is a two step
algrothim. In the first step, the centroids are selected randomly u;, o, ..., € R"* and
then minimize the objective function indicated by Eq. (4.18).

m K
T=Y 'Y Cu It — (4.18)
u=1k=1
where,
1 if t* € kth cluster
Cuk = . (4-19)
0 otherwise
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During each iterating, first J is minimized with respect to {,; and the centroids are
considered as constant. In the second step, the J is minimized with respect to 1. The
centroids are updated after assigning values to the clusters in each step. Therefore, the
(m—1)th stepis:

AT 1 if k= argmin;||t* — ;||
= [u — 2 E — J J (420)
9 Cuk L; kg'l Gut | il Suk {0 otherwise

The 1" is assigned to a cluster based on the least squared distance from its centroid. The
mth step is:

aJ S Yoy G 1"
——=2Y Qi (" —w) =0= pyy = TL120—
8uk =1 . ’,:1=1 Cuk
The probabilities are assigned to each ON-time group to determine from the cluster-
ing. If there are N data points, then the probability assigned to each cluster P, is based on

the number of data points n; belong to that cluster.

(4.21)

ng
Po= (4.22)

The data point in the clusters are used to construct the empirical distribution using Eq. (4.5)
and Eq. (4.7).

4.5.1 Laundry appliances

The washing machines and dryers have high variation in their usage, and their usage pat-
terns are modelled over weekly rather than on a daily basis. The usage of laundry appli-
ances depends on the occupant decision to use them. Modern washing machines have
various operating modes for different washing cycles. A typical washing cycle includes
water heating, spinning, washing and rinse sub-cycles. The power consumption and har-
monic emission of each cycle are also different and therefore challenging to model. The
usage patterns are modelled without taking into account various operating modes. The
power consumption and harmonic emission variation for different operating modes will
be performed in the harmonic estimation model.

The device-level electricity consumption data indicates that usage of laundry appli-
ances is more frequent on weekends. However, usage frequency could vary from zero to
multiple values. The usage times are clustered into groups using Eq. (4.18) and probabili-
ties are assigned to each group. The usage time is selected from the group based on the
Markov chain model. The power consumption of the washing machine can be calculated
using the following relation.

N dn
Pramary=1Y_ Y ()| forO;=1 (4.23)
n=1t=1
Here d,, is the duration of each washing cycle.

4.5.2 Kitchen appliances

The kitchen appliances include dishwashers, stoves, blenders and mixers. The usage pat-
terns of dishwashers and stoves are more consistent as they follow the eating schedule of
the occupants, while the usage patterns of remaining kitchen appliances are more random
during active occupancy. The duration of usage of kitchen appliances is mostly variable
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except for dishwashers. The dishwasher can be operated in various modes, and duration
of each mode can be different. However, it is more likely that occupants are habitual to se-
lect a single operating mode most of the time, while other operating modes are selected
rarely. Few kitchen appliances have more frequent usage during the morning period, such
as coffee makers and toasters.

The eating schedule is simulated during the evening time based on the occupancy pro-
files. The cooking time is selected based on a random selection between short, medium
and long time values required for the recipe. The start times are selected from a normal
distribution applied to a particular house’s probable eating schedule.

1 _
e
oV2arm

Bl

(")
p(T,) =] ° /| forOp=1 (4.24)
Where u is the mean cooking time and ¢ is the variance. The cooking duration is selected
using the same method. The kitchen appliances are selected based on the assumed prob-
ability of usage. The duration of usage for each appliance is also selected from the proba-
bility matrix assigned to each device. The appliances like food processor and blender has
low usage time while the electrical cooker has high usage time.

During the morning time, the breakfast schedule is estimated using Eq. (4.24). The
usage of coffee machine and toaster are assigned based on the device usage probability
matrix.

4.5.3 Cleaning and other plug-in appliances

The usage of a cleaning appliance such as a vacuum cleaner is random when the building
has active occupancy. The probability of using cleaning appliances by the occupant is more
during weekdays evening period and on weekends. The usage time is also variable every
time. In addition to vacuum cleaners, other plug-in appliances used by the occupants dur-
ing 30 days of measurements are modelled together as power outlets for plug-in devices
is measured using a single meter. The devices are separated later by matching the power
consumption of individual plug-in appliances with the measurement data.

The device usage times are clustered using Eq. (4.18). The probabilities are assigned to
each cluster based on the number of elements in each cluster. The ECDFs are calculated
for the device usage duration and the usage times for each cluster using Eq. (4.5) and
Eq. (4.7).

Fig. 4.5a and Fig. 4.5b shows the device usage patterns on a weekday and weekend.
While simulating several houses, appliance are added based on the appliance stock data
obtained by Estonian household survey.

4.6 Electric vehicles

The transport sector is a significant contributor to GHG emissions. Road transportation
has the largest share and accounts for almost 75% of the total emission from the trans-
port sector. Passenger vehicles are the primary contributors, with a CO2 emissions share
of more than 45%. With the transport sector primarily relying on fossil fuels for energy
sources, policymakers are encouraged to shift towards alternative technologies to reduce
emissions and improve energy efficiency practices. The electrification of the transport
sector provides a sustainable alternative to achieve these targets. Electric vehicles (EVs)
provide high conversion efficiency with the potential to use renewable sources to deliver
the energy needed. However, the increasing penetration of EVs also presents new chal-
lenges for the existing power system infrastructure [lIl].
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Figure 4.5 - Device usage patterns generated by the DU model

The growth in the share of EVs is increasing rapidly during the last decade, and the
global stock of EVs is now more than thirty million vehicles [67, 68]. This number is ex-
pected to increase rampantly in the coming years because of the favourable policies. The
payback price of an EV is also likely to decrease to five years in comparison to combustion
engine vehicles [69].

High EV penetration can impact the performance of the electrical distribution net-
work. The additional battery charging load may overload the distribution transformers
and cables. The EV battery chargers are power electronic based circuits and inject current
harmonics in the distribution network. The increase in harmonic content may affect the
network component’s performance and the loads connected to that network[70, 71]. The
major impact of the EV battery charging will be on the low voltage residential networks.
It is expected that the majority of EV users will prefer slow overnight home charging be-
cause of its convenience [69]. The lack of availability of the EV charging infrastructure
also contributes to this regard. Nearly 90% of the EV charging is performed using the
home-based charger because of its cost-effectiveness [72]. The public charging infrastruc-
ture contributes to only 4% of EV charging, and the ratio of EVs to public chargers is also
decreased during the last few years [73, 74].

It is crucial to assess the impact of EV charging on the power system network, espe-
cially at the low voltage distribution side. The high charging demand during peak hours
may bottleneck the transmission and distribution network performance even with suf-
ficient electric power generation capacity in the system [75]. Therefore representative
mathematical models are required to estimate the impact of high EV penetration in the
distribution network. These models could provide valuable input for the optimal planning
and up-gradation of the distribution networks.
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The researchers have employed several approaches to formulate the EV usage models
to evaluate the technical and economic aspects of the mass adoption of EVs [76]. These
models often are able to output the charging demand profiles of EVs. One approach
utilises the existing transport data provided by various travel surveys to estimate the EV
usage impact on charging energy demand. The main drawback of this approach is that the
traditional vehicle’s dynamics are somewhat different compared to the EVs, such as driv-
ing range and charging time. An alternative approach is to conduct studies based on the
behaviour of individual EV consumers; however, that may require significant resources.
On the other hand, a hybrid approach may provide better results by using data from both
travel surveys and EV measurement databases.

This section provides a mathematical model to estimate the EV load based on the daily
travel activities of the individuals. The model is based on the data related to the travel pat-
terns of the individual car owners from a travel survey and the EV charging power quality
measurement portfolio. It provides charging profiles and state of charge (SOC) of EVs us-
ing a Monte-Carlo simulation. Individual trips are modelled based on the travel behaviour
of commuters that generates the trip requirements. The model provides EV load profiles
by considering the randomness and variance in the distance, travel time and commute
modes. The measurement-based charging characteristics provides the capability to esti-
mate harmonic emission, network overloading and unbalancing under various charging
schemes.

4.6.1 Overview of the existing models

Various methodologies are available in the literature to model EV usage patterns and
charging profiles in the spatial or temporal dimension. Existing EV usage mathematical
models, primarily rely on travel surveys, parking data, and vehicle ownership statistics,
provide both qualitative and quantitative attributes of EV integration [77]. These models
provide valuable information for policymakers to assess the impact of EV growth on the
environment, energy markets and economy.

EV user behaviour is influenced by the socioeconomic status of the users, regional
traffic conditions, energy pricing, policy decisions and climate conditions. The travel pat-
terns are stochastic in nature as the variables such as travel distance and travel time are
highly variable and depend on the nature of the trip. The four-state approach has been
widely discussed in the literature for transport modelling problems [78]. Trips are gener-
ated based on the daily activities of commuters in each region in the first step. The nature
of the trip is decided based on the point of origin and ending point. The origin point of
the trips are called production end, and the ending points are labelled as attractions. Trips
can be modelled on a regional or individual level, while the origin and final ending points
are mostly home. The second step of the four-state approach is to define trip origin and
destination. Generally, trips are originated from one zone of a city and will end at a nearby
zone, while few trips have attracted to the zones at a moderate distance. The probability
of the trips ending at far-off zones is usually low. Travel modes are selected in the third
step and define the type of vehicles and number of travellers. The routes are predicted in
the final step.

The disadvantage of the four-state model is that it does not consider traveller activities
that may affect the trip parameters. In reality, households include multiple residents from
various age groups, and their daily activities are responsible for generating trip demands.
The most common trips are home to work, home to shopping, and leisure or holiday activ-
ities. The commuter’s daily activities only affect the trip generation part of the four-state
approach, while the other states have little or no influence. This approach is used to eval-
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uate the traffic flow, economic impacts of EV or electricity demand forecasting [79].

A better EV usage modelling approach should take account of the daily activities of
the commuters. These activities can provide a framework to create a model capable of
generating EV travel patterns based on user preferences and behaviours. These activity-
based EV load models can provide more realistic data about the battery charging trends
of EV users. This modelling approach is divided into two categories; direct use of observed
activity-travel schedules (DUOATS) and activity-based models (ABM) [76, 78].

In the DUOATS model, travel statistics for the existing vehicles are used to model the
EV usage patterns. Travel surveys conducted in various countries are available and pro-
vide valuable data related to the travel patterns of individuals. Web-based surveys are
also used to generate energy usage profiles of EVs [80]. The survey participant provided
their travel log, including the number of trips, commute time, and travelled distance. US
Household Travel Survey (HTS) is also used to develop a Monte Carlo based EV model to
estimate the additional electricity demand for the battery chargers [81]. Outgoing and
incoming trip timings are converted into charging demand. Another EV model used a
probabilistic approach to generate charging profiles using empirical distribution functions
for the data extracted from the HTS survey [82]. Swiss mobility survey is also used to esti-
mate the EV charging impacts on the distribution grids in Switzerland [83]. Similarly, mul-
tivariate probabilistic approach is used to determine the impact of large scale EV charging
based on travel survey statistics in New Zealand. DUOATS models provide reliable out-
comes but are primarily based on travel surveys conducted for conventional car owners;
therefore, they do not consider variables related to EV usage, such as driving range and
battery charging characteristics.

The ABM models are based on a set of activities influencing the travel behaviour of
the people. It models the trips using individual’s activity patterns that can be affected
by the traveller’s personal preferences rather than the nature of the trips. Various so-
cioeconomic factors influence the travel behaviour of individuals. The travel schedules
are generated within the model in the ABM approach, while the DUOATS approach relies
on external travel schedules. Several models are available in the literature that uses the
activity-based approach to estimate the influence of EV mass adoption. The household
activity model is used to generate the load profiles of plug-in hybrid electric vehicles under
uncontrolled charging scenarios, in [84]. The model provides the charging load of PHEV
and also estimates the electricity consumption of other domestic appliances. The impact
of vehicle-to-grid (V2G) from the EVs on the distribution grid is also estimated by using an
activity-based modelling approach [85]. The travel logs and occupant household activities
that may influence their travel decision are used to develop a four-stage ABM model that
can simulate the electricity demand required for battery charging of EV load in Belgium
[86, 87]. In another study, data from the travel survey is used to define probability density
functions of trips by considering the parameters such as incoming time, outgoing time and
distance covered in a trip to make EV usage patterns [88, 89, 90]. The generated travel
patterns are compared with the EV charging data such as SOC and charging profiles.

The travel demand based on household activities can also be simulated using transport
simulation software. The impact of PHEV penetration on the distribution grid is evaluated
using a transport simulator TRANSIMS in [91]. MAT-Sim is another multi-agent transport
simulation that can handle large scale traffic flow. The impact of EV penetration in Switzer-
land is analysed based on travel activities in [92]. The model is only suitable to study the
effects of PHEV and lacks to handle critical variables such as the driving range factor.
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Table 4.2 - Daily indicators for domestic travel [93]

Domestic travel indicator Average value per day
Number of domestic trips per person 2.89

Travel expense per person 41.4 (euros)

Total journey time per person 65.5 (minutes)
The average distance of a trip 14.3 (km)
Average travel time per km 22.7 (minutes)

4.6.2 Methodology

The overview of the existing EV models in the previous section confirms the effective-
ness of the ABM modelling approach because its flexibility and bottom-up structure can
handle domestic activity-based travel behaviour. EV home charging is expected to have a
significant impact on the low voltage residential grids. As the majority of the EV owners
are expected to charge their vehicles at home in the evening, as it will be convenient and
cost-effective, the electricity demand in the residential is likely to increase during the peak
hours. The EV model aims to simplify the load estimation limited to the residential grids.

The input data for the model is selected from the national traffic survey (NTS), and EV
user travel patterns are categorised based on the most common travel activities. The prob-
ability distribution function is defined for the incoming and outgoing trips. Trip chaining is
employed to estimate the travelled distance and the timing of the incoming and outgoing
trips. Battery charging decision depends on the SOC evaluated at the end of each trip.
The charging will occur when the SOC drops below a certain threshold or vehicles do not
have sufficient battery resources to make the next trip.

The NTS is carried out in Finland every six years and collects yearly travel data for all
days and seasons from 30,000 people [93]. It provides information about the mobility
patterns of Finnish people, such as the activities responsible for trip generations, trans-
portation modes, and travel preferences of different population groups. The survey par-
ticipants are requested to provide background information about their gender, age, type
of residence, family members, driving licence information, income, employment status
and vehicle ownership. Additional questions include the information about the location
of their home, workplace, school, other preferred destinations and their ideal means of
travel. Table 4.2 provides the daily indicators for domestic trips.

4.6.3 Travel activities

The trips are categorised based on the daily domestic activities responsible for generating
trip needs. Most popular trips are associated with educational and work-related activities.
The other everyday activities responsible for trip demand includes shopping, holiday trip
and, leisure activities. Table 4.3 describes the number of trips and distance travelled for
most frequent daily activities. The travel activities during the weekdays are quite similar,
and the most common trips are for educational and work-related activities. The trips re-
lated to other activities also follow similar patterns during the weekdays. The visits have
a low occurrence in the first five days of the week, while the number of work and school
trips also drops significantly over the weekend. On the other hand, the trip demand for
leisure and visit related activities increases over the weekends. The frequency of shop-
ping trips is almost identical for all days of the week except Sunday. Similarly, business
trips also have a high frequency on weekdays. This data from the NTS survey provides a
good base to formulate the EV model on the assumption that the activities responsible
for travel demand would remain the same for EV users.
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Table 4.3 - Weekly travel information for different trips [93]

Day | Work | School | Business | Shopping | Visits | Leisure | All
Number of trips
Monday 0.64 0.27 0.13 1.02 0.04 0.69 2.79
Tuesday 0.62 0.26 0.14 114 0.03 0.71 2.9
Wednesday | 0.65 0.29 0.16 112 0.03 0.75 3.01
Thursday 0.65 0.27 0.13 1.09 0.03 0.64 2.8
Friday 0.54 0.25 (OR]] 1M 0.04 0.68 2.72
Saturday 0.13 0.01 0.03 1.03 0.05 0.88 213
Sunday 0.12 0 0.02 0.58 0.06 0.81 1.59
Average 0.48 0.19 0.1 1.01 0.04 0.74 2.56
Distance traveled for each trip (km)

Monday 15.8 7.74 34.04 6.87 40.48 11.18 116.11
Tuesday 16.73 6.04 33.94 6.6 4911 11.94 124.36
Wednesday | 14.92 6.29 36.77 6.87 38.56 9.6 13
Thursday 17.53 7.82 37.55 6.34 5717 11.84 138.25
Friday 15.28 7.54 58.2 8.3 80.08 19.12 188.52
Saturday 16.55 25.16 53.21 7.99 48.22 19.48 170.59
Sunday 13.13 69.81 95.58 9.03 65.46 16.56 269.56
Average 15.98 7.27 41.39 7.3 55.14 14.43 141.52

4.6.4 Departure times

Three activities are defined from the activity-based travel data summarised in Table 4.3.
The first category is termed “Work and school” (WS) and is the most frequent trip during
the weekdays. These trips have very low variation in the travelled distance, outgoing and
incoming timings. The second category is defined as “Shopping and business” (SB). These
trips are also quite frequent during the weekdays; however, variations in the trip timings
and travelled distance are high compared to the WS trips. The daily frequency of these
trips also varies. The last category is labelled as “Leisure and vacation” (LV). These trips
have high dispersion as the trip timing and length have high variations.

NTS survey also provides the average length of the trips for various travel activities.
Table 4.3 presents the data related to distance travelled during different trips. For the
trips related to educational activities, it is assumed that commuters are doing university
or vocational studies; therefore, longer trip distances are linked with these activities in
contrast to travelling to the local school. Business trips are also supposed to have simi-
lar characteristics to work-related trips, such as visiting a specialised commercial facility.
Shopping trips with a long travel distance have low probability and are mostly expected
to end at a shorter length. The same assumption is valid for the LV trips. However, these
trips have a low probability of occurrence in comparison to the SB trips. Fig. 4.6a shows
the outgoing time for each travel activity on a weekday. For the EV model, outgoing time
data is converted into WS, SB, and LV activities, as shown in Fig. 4.6b.

Fig. 4.6b does not show any differentiation between Individual time distributions for
incoming and outgoing trips for various trip activities. However, such parameters are criti-
cal for accurate EV load modelling. Furthermore, the time resolution of the data provided
by the NTS survey is relatively low, and data interpolation is applied to improve time res-
olution.
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Figure 4.6 - Departure time frequency per hour [lll]

4.6.5 Incoming trip estimation

Battery charging of electric vehicles will occur when the vehicles reached home, and the
SOC level drops below a certain threshold. The probability distributions for the incoming
trips is therefore critical for the EV load modelling. Multiple peaks can be observed from
the time distribution of trips for different travel-related activities as shown in Fig. 4.6b. The
morning and evening peak of trip starting time can be assumed as outgoing and incoming
time distributions for the WS trip category. This assumption is supported by the low prob-
ability of nighttime work-related trips. The spread of the evening peak is relatively large in
comparison to the morning peak. T-location-scale distribution can be applied to morning
and evening peaks to define the probability density functions of incoming and outgoing
trip times. Fig. 4.7 shows the morning and evening peak probability distributions defined
for incoming and outgoing trips. Eq. (4.25) represents the PDF of the t-location-scale dis-
tribution.

atasl) (2
_ 2 o/ 1-(3) 4.25
p(x,v,o, 1) T x T(3) [ ) |72 (4.25)

Here o and u determine the scale and location of the distribution while v defines its shape.
The t-location-scale distribution approaches a normal distribution as v tends to positive
infinity; however, the smaller values of v results in heavier tail.

LV trip timing distribution in Figure 4.6b also shows two peaks. The magnitude of
the evening peak is significantly higher than the morning peak and indicates the leisure
activities of the commutes during the evening after work or school related activities. The
mean time spends by the commuters at the leisure activities is assumed to be 180 minutes.
The time duration of leisure activities is estimated by the Poisson distribution, and its PDF
can be calculated using the following relation.

X

A
p(x|A) = ;e‘k (4.26)

Here A indicates the variance of the Poisson distribution while e represents the Euler’s
number. Distance travelled during different travel activities is another critical parameter
for EV load modelling. The NTS survey also provides the average trip distance for various
travel activities at different times during the day. Figure 4.8a represents the average dis-
tance for various travel activities extracted from the NTS survey. Based on this data, the
probability distributions of the distance travelled for WS, SB, and VH travel activities are
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Figure 4.7 - Probability plots of outgoing and incoming trip for WS travel activity [lll]

defined. Fig. 4.8b shows the distance travelled for the travel activities used in the EV load
model. Poisson and log-normal distributions provide a close fit to the data related to the
travelled distance. Eq. (4.27) represents the PDF of a log-normal distribution’s probability
density function. i and o shows the value of the mean, and variance, respectively.
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Figure 4.8 - Trip distance frequency per hour for different travel activities [Ill]

4.6.6 Electric vehicle characteristics

EV modelling also depends on the various characteristics of electric vehicles, such as bat-
tery capacity and driving range. It is crucial to select an appropriate mix of different EVs
available in the market. Several EV models are available in the market offered by various
auto manufacturers; however, the number of EV users is still low compared to traditional
combustion engine-based cars. EV’s power quality measurement data is also not readily
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Table 4.4 - Summary of the measured EVs [ll1]

Number | Type | Battery capacity (kWh) | Driving range (km) | THDI %
EV1 BEV 22 170 4.8
EV 2 BEV 16.8 100 7.2
EV 3 BEV 31 160 2.8
EV 4 BEV 40 220 1.7
EV5 BEV 14.5 171 8.4
EV 6 PHEV 1.2 50 3.1
EV7 BEV 18.7 165 2.4
EV 8 PHEV 9.4 36 2.5
EV9 BEV 17.6 145 4.4
EV 10 BEV 58 335 71
EV 11 PHEV 8.8 26 2.4

available, and it’s not feasible to measure every EV available. A careful selection of vehi-
clesis crucial to model the charging profiles of EVs accurately. The remaining travel-related
parameters are expected to follow similar trends in the future.

Eleven different EVs are selected, including BEV and PHEV, and an equal share is as-
sumed in the EV load model. These vehicles are selected based on their share in the
current EV market. Table 4.4 shows different characteristics of the selected EVs used in
the model.

EV charging characteristics play a crucial role in the charging profiles. A typical battery
charger draws current that could be constant, ramp-up or ramp down depending on the
battery SOC. Fig. 4.9 shows the charging current drawn by the EVs at different SOC levels
of their batteries.
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Figure 4.9 - Charging current levels during charging span of 0 % - 100 % of the full charge [ll1]

The energy consumption during the trips is assumed to be 180 Wh/km and is based
on data provided by the EV manufacturers. The assumption is expected to be valid for
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future models as well because of the high energy conversion values of the current EVs.
The climate conditions and terrain variations may significantly impact battery energy con-
sumption values but are not considered. The battery evaluation is performed after the
end of each trip, and the SOC level is estimated as the vehicle arrives home. The level
of SOC is analysed before generating the parameters for the next trip. The EV will go for
battery charging if the battery does not have enough resources to make the next trip.

4.6.7 Daily routine estimation

The NTS survey categorised the commuters based on gender and age groups. This data is
used to estimate the number of people using private cars for their daily trips related to WS
travel activities. The remaining people are assumed to be on vacation, retired or engaged
in other travel activities. Random seed numbers are assigned to each vehicle owner to
estimate its daily travel activities. Initially, the more consistent routine parameters are
assigned and are used as an input for the EV model to generate daily trip activities. A
vehicle schedule is created using the daily trip parameters. After the routine travel activity
estimation, the other activities are estimated based on their daily probabilities. Vehicle
daily activities are evaluated using ten different states. The first state is defined as the
home state, while each travel activity (WS, SB, VL) has three states; outgoing state, at the
activity, and incoming state.

The battery utilisation is calculated during the incoming and outgoing state of a trip.
The incoming state always ends at home, and SOC will drop depending on the battery utili-
sation during the trip. The battery utilisation depends on the distance travelled during the
outgoing and incoming state of the trip. During the home state, the SOC level will deter-
mine whether the EV required charging or have sufficient resources to make the next trip.
If the next trip is scheduled for the next day and SOC is below the threshold, the vehicle
will be charged until the battery is full. Monte-Carlo simulation is used to simulate the EV
charging profiles for any given number of EVs. Following steps are performed during each
iteration.

e Step 1: Estimate the probability of the routine travel activity (WS).

e Step 2: Determine the probabilities of the other travel activities (SB or VL) after the
routine activity is complete.

e Step 3: Calculate the distance travelled for all travel activities during the outgoing
and incoming state.

e Step 4: Duration for all WS, SB, and VL activities .

e Step 5: Battery utilisation and the SOC after each trip.

e Step 6: SOC threshold when EV owner always charges the vehicle.
e Step 7: Probability of the owner to charge after incoming state.

Fig. 4.10 shows the algorithm of the EV load model. For each day, travel activities re-
sponsible for trip generation are estimated. The trip parameters are determined for each
travel activity, including outgoing time, distance, battery utilisation, duration, and the in-
coming time based on their probability distribution functions. The battery evaluation is
performed to calculate SOC after each trip. Any given number of EVs can be simulated to
generate their charging profiles for the required number of days.

53



Assume SOC increase
until next departure [«
or until SOC = 100%

Add number of
trip points for the
day (100 = 1.0 trips)

More days to
simulate?

>
©
©
[}
£
k]
Main routine = SB or VH £
ain routine = SB or s
Main routine = WS pet
L g
-
Subtract 100
trip points
More than 100 trip
. -tz | - S points left
Subtract 100 . Calculate time .
trip points ! of departure 1
[P * ..................... g e . I IR -~
H P12 ) ) ; " .
H HEL R ¥ luati | VH or SB trjp evaluation
Calculate time R fip evaluation HE. LU RS
of departure i § T .
il= |
] P a Calculate time .
Calculate exact | 5 of retun start I Is the departure
distance for trip =3P ! before 22:00?

"Trip evaluation

Assign average speed
of travel H
) il SOC below
i Ca|CL(lj|€;¥e trip i level of tole- Is there resouce
H end time | rance? available for trip?
i P2
L * ......... K | ) .
©
Calculate resource I 5 :
used & SOC on arrival I g Calculate next time I
¥ 18 of departure : Subtract 100
Calculate time | * I trip points
of return start . Assume SOC increase | *
until next departure |
or until SOC = 100% : Add the trip
__________________ P calculated

I Battery chafging |
\ .

Figure 4.10 - Algorithm of the EV charging profile model [lll]

4.6.8 Results
The EV load model is capable of simulating charging profiles and load for any number
of EVs. To evaluate its performance, 50 EVs are simulated over 100 days to estimate their
charging load. The model estimated the daily schedule of each vehicle and SOC after each
trip. The measurement data of eleven electric vehicles is used to estimate the charging
currents. The current values are assigned based on the SOC level of the vehicle. The total
EV load will be the aggregation of charging currents of all vehicles charging at a given time.
The model can provide EV load under various charging schemes. Aggregated charging
load based on two different charging schemes, unmanaged charging and managed charg-
ing, is presented in this section. In the first scenario, the load of 50 vehicles is estimated
using the unmanaged charging scheme, where the EV owners can charge their vehicles
at any time during the day. Fig. 4.11a shows the mean and 90th percentile values of the
charging current of 50 EVs over 100 days. The black and red lines show the mean and
90th percentile values of the number of vehicles charging at different times during the
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day. The EV load starts increasing from mid-day and reaches its peak value between 17:30
to 18:30. Most EV owners start charging their vehicles as soon as they arrive from their
routine travel activity. The mean and 90th percentile values of the maximum number of
EVs charging at any time during a day are 34 and 42, respectively. After 18:00, the EV
load starts decreasing gradually and becomes half of peak charging demand level around
24:00. The mean and 90th percentile values of the number of EVs charging is reduced to
less than 10 after 03:00, while the load curve reaches its minimum value between 06:00
and 08:00.
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Figure 4.11 - Electrical vehicle load curves estimated by the model [ll1]

The EVs are forced to charge during the off-peak time to reduce the peak load in the
managed charging scheme. Figure 4.11b shows the mean load curve of 50 vehicles charg-
ing over 100 days. The EV charging now starts at 20:00, and the load curve increases to
its maximum mean and 90th percentile values of 38 and 44, respectively. The load curves
decrease abruptly from 22:00 on-wards, and the mean and 90th percentile values of the
number of vehicles charging are reduced to 14 and 22 EVs, respectively.

The EV load model provides reliable load curves under various charging scenarios.
Additional charging load for any given number of EVs can be estimated for a distribution
network. The model can provide data for the network operators to optimise their network
planning for the future EV load. It can also be used to estimate current harmonic emissions
by using power quality measurement data.

The RMS charging current of 50 EVs is estimated here using the EV load model and
power quality measurement data. The EVs are measured on sinusoidal voltage using the
measurement test bench described in section 3.1.1. The charging currents are assigned
to the EVs based on their SOC level, and aggregated values of the total RMS current of
EVs are calculated for the unmanaged charging scenarios. The mean and 90th percentile
values of the RMS current drawn by 50 vehicles of a 100 days is shown in Fig. 4.12a. The
peak RMS current could exceed 180 A during the evening. As a result, an additional 42
kW power is required to tackle the EV load of 50 vehicles in a distribution grid, as shown
in Fig. 4.12b.

The EV load model provides a simplistic approach to estimate charging or harmonic
currents while flexible enough to tackle any amount and type of EVs. The power consump-
tion results follow similar trends of the EV load estimated in other studies [94, 88, 89, 90].
However, the proposed EV load model offers improved flexibility and a simple approach
with fewer variables. The results also confirm the NTS travel survey data’s applicability

55



I l‘
1 1
150 I WA i A ]
g 1 30f
b= g
5 =25F
£100 5
3 M £ 20p
2 2 I\
o
g
o

ey -
P il WARY 4 L L 0 o ek e L |
0400 0800 12:00 16:00  20:00  24:00 04:00 0800  12:00  16:00  20:00  24:00
Time of the day Time of the day
(a) EVs charging current (b) EVs power consumption

Figure 4.12 - Unmanaged charging scenario results [lll]

compared to the other travel surveys used in various studies to model EV charging pro-
files.
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5 Accuracy and uncertainties

The stochastic modelling of harmonics can be affected by various uncertainties and in-
accuracies related to the load and network behaviour. The composition of the load con-
nected to the network is continuously changing all the time. Several linear and nonlinear
loads with various circuit topologies are used by the end-users. It will result in a dynamic
harmonic emission profile of each house connected to the LV network. Harmonic current
injecting at the point PCC s also affected by the harmonic cancellation. The supply voltage
harmonics and network impedance further affect the current harmonics.

The probabilistic harmonic estimation models used different assumptions and random
variables; therefore, a certain level of inconsistency is present in the outcome. As the
models are based on measurement datasets, therefore, inaccuracies in the measurement
process are also reflected in the harmonic estimation results. The chapter discusses the
impact of different uncertainties related to the load and network.
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Figure 5.1 - Schematic of the measurement accuracy evaluation method

5.1 Measurement accuracy

The stochastic harmonic estimation models rely on individual device’s power quality mea-
surements at various distorted voltages. These measurements are performed using con-
trollable power supplies and power quality analysers under a controlled environment. The
precision of the measurement systems is vital as it will affect the harmonic estimation
model’s result. The laboratory instruments are used for various research and academic
tasks, and therefore measurement setup reliability is crucial. The reliability of the mea-
surement results depends on how often the system involved in the measurement proce-
dure is calibrated. The calibration measurement of the measurement systems is a costly
procedure performed by accredited organisations.

A two-step method is proposed using signal processing and metrology techniques to
evaluate the accuracy of the measurement setup. The detail of different components of
the measurement system is already discussed in section 3.1.1, and it consists of a power
quality analyser, PQ-Box 200, and auxiliary equipment, including a controllable power
supply and data acquisition module. The system’s accuracy includes the uncertainties
added by the auxiliary equipment while generating desired distorted signals and inaccu-
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racies of the power quality analyser.

In the first step, the performance of the primary power quality analyser is compared
with a reference calibrated measurement device in a certified metrology laboratory. Mul-
tiple current waveforms are generated using the calibrator CP11B. The output of the CP11B
was applied to the primary winding of the current transformer 1509. The current values
were measured at the secondary winding of the current transformer by means of the sam-
pling watt-meter SWM3458. The watt-meter consists of two synchronised multi-meters,
Agilent 3458A, current shunts and the software PowerLF (v1.2). The same measurements
are also performed using the primary power quality analyser simultaneously, as shown in
Fig. 5.1. The difference between the individual harmonics RMS and phase angles is listed in
Table 5.1and 5.2. The bold values indicate the maximum difference for the current magni-
tude or phase angles recorded between the measurements from the reference instrument
and the primary instrument.

In the second step, the accuracy of the system setup is evaluated. As illustrated in Fig.
5.1, a similar setup is used, but the calibrated reference instrument in this scenario is a
Keysight 34465A. It is capable of recording current and voltage waveform at a sampling
frequency of 50118 Hz. A 12-ohm shunt is used for the current harmonic’s measurement.
Discrete Fourier transform (DFT) is performed over a 1-second recorded waveform to ex-
tract current or voltage harmonics. The RMS values of harmonics are compared to find
the difference between the primary and reference instrument measurements. Table 5.3

Table 5.1 - RMS difference (%) between reference and primary instruments

Harmonics | Signal 1 | Signal 2 | Signal 3 | Signal 4 | Signal 5

Order no. Current (%)
1 0.05 -0.01 0.17 0.15 0.26
3 -0.36 -0.24 -0.32 -0.33 -0.32
5 -0.37 -0.29 -0.36 -0.36 -0.35
7 -0.38 -0.39 -0.37 -0.38 -0.37
9 -0.41 -0.40 -0.40 -0.41 -0.40
1 -0.47 -0.33 -0.46 -0.47 -0.45
13 -0.55 -0.38 -0.53 -0.55 -0.53
15 -0.64 -0.51 -0.63 -0.65 -0.63
17 -0.74 -0.55 -0.74 -0.74 -0.73
19 -0.83 -0.58 -0.82 -0.84 -0.82

Table 5.2 - Phase difference (absolute) between the reference and primary instruments

Harmonics | Signal 3 | Signal 4 | Signal 5

Order no. Degrees
3 0.30 0.20 0.41
5 0.37 0.20 0.54
7 0.47 0.22 0.71
9 0.58 0.26 0.88
1 0.70 0.30 1.06
13 0.81 0.35 1.24
15 0.93 0.40 1.42
17 1.05 0.44 1.61
19 117 0.49 1.80
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shows the difference in the measurements performed by the primary instrument by us-
ing the same set of input data used in the previous experiment. The correction difference
indicates the variation between the data set entered in MATLAB to generate reference
signal and the measurement results. This correction difference is also adjusted by using
the calibration difference from Table 5.1.

Table 5.3 - Correction difference for the primary instrument

DATASET Lab measurements differences Correction
Harmonic Primary instrument | Reference instrument (%)
components (%) (%) (%) ?

0.0448 -0.5459 -0.0108 -0.6045
0.0368 0.1357 0.0566 0.5008
0.0281 0.2401 0.1564 0.6214
0.0198 0.3533 0.2551 0.7478
0.0135 0.4298 0.4250 0.8556
0.0099 0.7339 0.6368 1.2094
0.0081 0.8972 0.8999 1.4545
0.0072 11666 1.2018 1.8192
0.0065 1.5424 1.5553 2.2942
0.0057 1.9114 1.9545 2.7498

The correction difference reflects the uncertainties and noise added by the auxiliary
equipment as the inaccuracy of the primary instrument is already considered. To evalu-
ate the accuracy margins, additional calculations are performed using the measurements
results obtained from the reference instrument, Keysight 34465A. The recorded signals
were obtained using the digitisation option, and DFT is performed. Any uncertainty or
noise added by the system will also propagate into the frequency domain and must be
taken into account. For this purpose, a simulation is performed in MATLAB by generating
the same synthetic signals after adding additional noise. The noise is calculated by using
calibration parameters of the Keysight 34465A and are shown in Table 5.4.

Table 5.4 - Noise parameters

Uncertainty e Contribution to
Sensitivity R
Components k=1 Coefficient Uncertainty
(A) (A)
Minimum RMS measurement (/,,,;) | 0.001443376 1 0.001443376
Calibration correction (Cor) 0.00265 1 0.00265
Linearization error (Linc) 0.00025913 1 0.00025913
Resolution effect of ADC (Res) 0.031558351 1 0.031558351
Long term stability (LS) 0.004618802 1 0.004618802
Stability (Srab) 0.043272403 1 0.043272403
The noise can be calculated using Eq. (5.1).
U = \/ s + Cor? + Linc? + Res? + LS? + Stab? (5.1)

A Monte-Carlo simulation is performed in MATLAB with fifty thousand iterations to de-
termine the effect of the noise element in the frequency domain. During each iteration,
each input signal is calculated by adding random noise using the following relation.
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Table 5.5 - Estimated uncertainties

Calibration Device Method Average
. RMS Uncertainty | Uncertainty | Uncertainty | Difference
Harmonics ’
U Ug U, Ug
Current (A) Current (uA)
H1 0.014174 97.82 15.41 20.78 86.70
H3 0.006201 97.79 3.39 10.68 32.66
H5 0.002688 97.45 0.68 1.44 38.04
H7 0.001278 97.38 1.09 0.87 36.01
H9 0.001008 98.30 0.17 3.46 46.54
H11 0.000831 97.71 0.12 115 61.55
H13 0.000774 97.34 0.29 1.73 77.68
H15 0.000415 97.89 0.17 0.87 54.69
H17 0.000252 97.82 3.84 0.58 39.22
H19 0.000244 97.59 0.07 0.87 47.48
I= [ﬁ X i X SIN(27C fof + 0) + (1 X uggn) — %}) (5.2)

Here, r € [0,1] is a uniform random number, and i,, and 6, are the magnitude and phase
angle of each harmonic. DFT is performed, and the calibration uncertainty is determined
by using standard deviation using Eq. (5.3).

1 M
Ue = M Z |Im_,u|2
m=1

Where M is the number of observations and U is the mean of the current harmonic. The
measurement setup is used to measure the same signals by the primary and the refer-
ence instrument. The current harmonics are generated individually and measured three
times to include any possible variations. The uncertainty of measurement and reference
instrument is determined using equation Eq. (5.4).

(5.3)

 Ivax — Iuax]|
Uy = ——Fr—
2V3

An additional parameter, average deviation, is also used to calculate the accuracy mar-
gin of the measurement system. The average deviation between the measurement results
obtained from primary and reference instrument is calculated by Eq. (5.5).

(5.4)

=T
a 2\/§

Here, I,,; and @ are the average values of current measured by the primary and the
reference instrument. Different uncertainties estimated for the current minimum levels
measured or generated by the measurement system is listed in Table 5.5.

The total accuracy margin for the measurement system for is calculated using the fol-
lowing relation.

(5.5)

Up—1 = \/uc2 +uy?+ ui,z +u,? (5.6)

The accuracy margins for the current minimum levels measured and generated by the
measurement system are listed in Table 5.6. k = 1 and k = 2, respectively, show the 66 and
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Table 5.6 - Accuracy margins of the measurement system
H1 [H3 [ H5 [H7 [ H9 | H11 | H13 | H15 [ H17 [ H19
Current (uA)

133 | 104 | 105 | 104 | 109 | 115 | 125 | 112 | 105 | 109
266 | 207 | 209 | 208 | 218 | 231 | 249 | 224 | 211 | 217

[}
N =—-

= =x

95 confidence interval accuracy. However, measurements uncertainties observed during
experiments are relatively low.

5.2 Probabilistic accuracy

Several probabilistic approaches can be used for current harmonic estimation models
based on various power system variables and uncertainties. The probability distribution
choice to classify the input data has implications for the model’s computational complex-
ity and accuracy [95].

The impact of statistical methodologies on various research problems related to the
electric power system is widely addressed in the literature [96, 97]. The probability dis-
tribution for the input data is selected based on the goodness of fit and ease of usage.
The normal distribution is extensively used because of its simple computation and appli-
cation. The other standard distributions are beta, Wei-bull, log-normal and exponential
distributions. However, in harmonics and load modelling, associated random variables can
be interdependent in many cases. The inter-dependency of these random variables can
be positive or negative. For example, harmonics magnitude and phase angles are highly
interdependent. In load modelling, inter-dependency on several variables has to be con-
sidered while modelling the usage pattern of end-user appliances. Empirical distribution
functions are more suitable for harmonic and load modelling because of their flexibility
and accuracy. However, the computational time and complexity will be increased but can
easily be handled with simulation software and modern-day computational power.

The empirical distribution can describe any data with finite points. For n independent
random numbers (X;,X5,....Xy), the empirical distribution function py : R — [0,1] is a
step function with a step size of 1/N with values less than or equal to X.

__ finite points in a sample data < X

N (5.7)

pn(X)

N
pN(X) = % Y 1(x, <X) (5.8)
n=1

Where I(X,, < X) is an indicator function and will be equal to 1if (X,, < X) only and zero
otherwise.

The selection of distribution fit for stochastic models is highly critical as it will directly
affect the model’s outcome. A wrong choice may result in inaccurate estimation. A com-
parison between empirical distribution and distribution selection based on goodness of fit
has been made to estimate the impact of probabilistic distribution selection for the data.
The selected data contains lighting usage duration in the evening interval between 5 PM
to 12 AM. Distributions are applied to compare the effectiveness of empirical distribution
against the distributions selected based on goodness of fit.

Fig. 5.2 shows the histogram of the data. A distribution is selected using the MATLAB
distribution fit function. The red curve shows the best fit distribution for the data. The
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Figure 5.2 - Selected data-set with best fit probability distribution

PDF of the selected distribution is used to generate a thousand random samples. The
histogram of this simulated data is shown in Fig. 5.3. The top graph shows the histogram
of the original data, and the middle graph shows the histogram of the simulated data using
the PDF of best-fit distribution. A clear difference can be observed, which indicates that
this selection will generate inaccurate data samples in a stochastic model.

Original data
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Figure 5.3 - Comparison of simulated data using different distributions

The empirical distribution is applied to the lighting usage duration data, and a thou-
sand random samples are generated. The histogram of the simulated data using empirical
distribution function is shown in the bottom graph of Fig. 5.3. The comparison with the
original data shows a close resemblance in contrast to the best-fit distribution simulated
results. As the harmonic emission data can be highly variable with clusters, empirical dis-
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tribution is preferred over other distribution functions in this thesis.

5.3 Harmonic aggregation accuracy

In a distribution network, several loads are connected at PCC. According to Kirchhoff’s
current law (KCL), the sum of currents entering or leaving a node is equal to zero. There-
fore, it is possible to add harmonics components of all currents drawn by various loads
to determine the resulting current at PCC. The harmonic currents at the same frequency
may have a different phase angle and magnitudes. Therefore, the aggregation may in-
crease or decrease the resultant harmonic current, and this effect is known as harmonic
cancellation [IX].

The effect of harmonic cancellation for household loads has been studied in [98, 99,
100, 101]. The cancellation depends on the load types and configurations. Although har-
monic summation and cancellation are inevitable in the real-time scenario, however, in
mathematical simulations, the cancellation may generate different results because of the
inaccuracies and limitations of the measurement device and its results. Therefore, a com-
parison of real-time measurement data and mathematical aggregation of harmonic cur-
rents can provide the range of uncertainties for the harmonic aggregation model.
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Figure 5.5 - Phase error of harmonic current [IX]

An experiment has been performed to assess the accuracy of mathematical aggrega-
tion of harmonics using LED lamps. Sixteen LED lamps have been selected with power
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ratings of 7 - 13 W. Two different controllable power supplies are used in this experiment.
The first measurement was performed using Chroma 61505 power supply. 230 V sinu-
soidal voltage has been generated by using the setup described in section 3.1.1. The power
supply and LED lamps were warmed up for an hour to eliminate any variation due to ther-
mal instability. The magnitude and phase angles of current harmonics were measured
using A-Eberle PQ-box 200.

All sixteen lamps were measured individually and in various combinations. A total of
137 combinations were used to switch ON different LED lamps at the same. The switching
was performed using the digital signals for relays generated by the DAQ box. During each
combination, magnitude and phase angles were recorded for a 1-minute duration at a
resolution of 1-second.

The results of the mathematical aggregation of all combinations are compared with
the actual measurement data. The magnitude difference is presented in percentage, while
the phase difference is shown in degree. Fig. 5.4 shows the magnitude difference be-
tween mathematical aggregation and measurement results. The difference for the low
order harmonic is between 0.5 to -2.5% for 95th percentile values, while the difference
for higher-order harmonics is between -6 to 2.5%. A few exceptions show a magnitude
difference of 10% for the 17th and 19th harmonic.

For 95th percentile values, the phase angles show a difference of -0.5 to 2 degrees
for the low order harmonics, as shown in Fig. 5.5. The mean difference is only between
-0.25 to 0.5 degrees. The mean and 95th percentile values difference between the phase
angles reach almost 2 and 4 degrees for higher-order harmonics, respectively.

The second experiment is performed using Ormicron 356 power supply which provides
less output variation in comparison to Chroma 61505. The Omicron has a low power rating
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Figure 5.8 - Harmonic current content for 3rd to 9th harmonic order in relation to the number of
lamps in a combination [IX]
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Figure 5.9 - Harmonic current content for 11th to 19th harmonic order in relation to the number of
lamps in a combination [IX]

and cannot supply current to more than two LED lamps at the same time; therefore, only
two lamp combinations are used to evaluate the aggregation error. The box plotin Fig. 5.6
and Fig. 5.7 shows the difference between magnitude and phase angles of measured val-
ues and mathematical aggregated values. The box’s upper edge shows 95th percentile
values, while the lower edge shows the 5th percentile. The red centre dotted line shows
the mean difference. The whiskers are extended towards extreme values.

The magnitude difference is shown in percentage, and the mean difference is less than
0.002%. The maximum difference for the 19th harmonic is almost 0.21%. The maximum
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phase difference is between -0.3 to 0.65 degrees, while the mean difference is reaching
a maximum value of 0.1 degrees. The graph shows that the difference increases from the
lower order to higher-order harmonics.

Fig. 5.8 shows the harmonic cancellation effect. The harmonic content is shown in
the percentage relative to the fundamental component for each lamp. As the number of
lamps increases in a combination, the average value of the low order harmonics decreases
and is shown by black lines. The average reduction is between 4-5% for low order harmon-
ics, while the higher-order harmonics show an average reduction of 8-10%. It shows that
higher-order harmonics have a widespread in contrast to low order harmonics. Fig. 5.9
shows the harmonic cancellation for higher order harmonics.

5.4 Device operating mode variations
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Figure 5.10 - Harmonic current variation of washing machine

The advancement in power electronics has enabled manufacturers to improve the
functionality and power management of the appliances. Electric motors are an integral
part of many household devices such as washing machines, blenders, vacuum cleaners,
and air conditioners. Induction motors were the only choice for many years until the
commercial availability of power electronic converters. These days many appliances con-
tain DC motors with drives that provide better speed and torque control. Mostly, pre-
programmed device operating modes are provided by the manufacturer and each mode
consist of several sub-cycles. For example, a typical operating mode of a modern wash-
ing machine consists of heating, spinning, washing and rinsing sub-cycles. The harmonic
emission of the device in each sub-cycle is different, and for harmonic estimation models,
the measurement of the entire working cycle must be taken into account. Fig. 5.10 shows
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the variation in current harmonics for a complete washing cycle of a washing machine.
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Figure 5.11 - Harmonic current variation of a dishwasher

The fundamental component shows large values between 4-10 minutes because of the
heating sub-cycle. The harmonic current variation is in a constant range between 10 to 35
minutes during the washing sub-cycle. In the rinse sub-cycle, the harmonic currents are
changing continuously in a cyclic manner. The 3rd and 5th harmonic variation during the
heating and washing cycle is approximately the same because it does not affect the high-
frequency currents. The cyclic variations can also be observed in the rinse cycle for the
3rd and 5th harmonic current. Another example of a similar device is a dishwasher. Fig.
5.11 shows the variation in fundamental, 3rd and 5th harmonic current of a dishwasher.

5.5 Impact of thermal stability

The studies related to harmonic analysis and estimations have considered uncertainties
like harmonic cancellation and network uncertainties; however, time-dependent varia-
tions of the harmonic currents due to thermal stability are often neglected. A recent study
reported notable variation in current harmonics magnitude and phase angles of LED lamps
when 230 V sinusoidal voltage is applied [VIII]. The LED lamps contain rectifier circuits and
draw a nonlinear current waveform. The study concludes that using measurements per-
formed during the period when LED lamps were unstable leads to a significant error in
harmonic current estimation.

LED lamps and switch-mode power supplies are measured on sinusoidal voltage to ob-
serve the impact of thermal stability on current harmonics variation. The measurement
setup described in section 3.1.1is used for this experiment. The measurements were per-
formed for one hour, and current harmonics magnitude and phase variations were ob-
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served.

5.5.1 Thermal stability time estimation

The current harmonic magnitude and phase angles measured during the experiment were
analysed to find stability time. Odd current harmonics up to the 19th harmonic are con-
sidered in this experiment. The power supply may add unwanted small variation in the
harmonics, and it can affect the current harmonics measurements [102]. To avoid these
variations and to simplify the process, the trend fitting curves are applied to all current
harmonics and phase angle variations over time. This approach has enabled us to calcu-
late the stability time as the magnitude, and phase angles of all current harmonics observe
an exponential rise or decay with time. Eq. (5.9) shows the exponential curve fitting that
is applied to the magnitude and phase angles variations [I].

y=dy x "7 +Ahs (5.9)

Eq. (5.9) provides the values of fitting curve y for each value of original data x. Here,
Ahy is the final value of the magnitude or phase when the device becomes fully thermally
stable. The difference between the initial value of magnitude or phase (during 1st minute)
and the final value is represented by dy;, as given by Eq. (5.10).

dpn = Ahy — Ah, (5.10)

The time constant 7 in Eq. (5.9) is the time required by the exponent to decay by 1 /e or
grow by the factor e. The time constant is calculated by using Eq. (5.11) for all the harmonics
up to the 19th.
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Figure 5.12 - 9.5W (type A) LED lamp magnitude (RMS) variations over time and trend curves [l]
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Where Ty is the time when the magnitude or phase angle reaches 80% of the final value.
T, is the starting time, and its value is, therefore, 1. The ¥ is the difference between 80%
of the final value of magnitude or phase and the initial value, as indicated by Eq. (5.12).

Y = Ahgoq, — Ah, (5.12)

After finding the time constant, the stability time of a device can be estimated. is assumed
to have reached thermal stability after duration of 3 time-constants from the power-on
and can be calculated by Eq. (5.13).

T,=3x1 (5.13)

Fig. 5.12 shows the current magnitude (RMS) and trend fitting curve for a 9.5 watt
LED lamp. The green line indicates the RMS values of the current for fundamental and
odd harmonics up to the 19th. The blue line is the trend fitting curve applied by using
Eq. (5.9). The time constant 7 is indicated by the red dot and calculated by using Eq. 5.11.
The thermal stability time T is shown by the black dot and is calculated by Eq. 5.13. The
trend curves provide a close fit to the original current data and have applied to all the
LED lamp’s magnitude and phase variations to estimate their thermal stability time. The
stability time T will change if we changed ¥ in Eq. 5.10.

5.5.2 Thermal stability impact on LED lamps

The measurement results of 163 LED lamps available in the market were used to evaluate
their thermal stability time. The LED lamps were classified based on the driver circuit
topology. Table 5.7 summarises the average price per watt, average light output efficacy,
the number of lamps measured, and the number of manufacturers for each LED type used
in this study.

Table 5.7 - LED lamp characteristics [I]

Type1 | Type2 | Type 3 | Type 4 | Total
No. of lamps 140 15 4 4 163
No. of manufacturers 27 7 2 1 28
Average price (euro/W) | 0.53 0.51 0.4 0.45 0.48
Lumens (Im/W) 90 81 82 92 86

Almost 88% of the measured LED lamps have the current waveform of type A as shown
in Fig. 5.13 with a pink line. Such a lamp driver circuit contains a simple rectifier circuit.
The conduction time of type B LED is greater than type A. The current waveform of type
B LED lamp is shown by the black line in Fig. 5.13.

The C type LED laps has a square shape current waveform and is shown by the green
line in Fig. 5.13. A constant current regulator maintains a constant flow of current over
wide range of voltage[103]. Type D LED lamps contain power factor correction (PFC) cir-
cuits and their current waveform is closest to the sinusoidal, as shown by the red line in
Fig. 5.13.

During each measurement cycle, sixteen LED lamps were connected to the test bench.
Each lamp is measured over one hour and switched automatically for each measurement
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Figure 5.13 - Current waveform drawn by different types of LED [I]

cycle. The distance between the LED lamp measured in each cycle was more than 1 m from
the lamp measured in the previous cycle to maintain a constant temperature. The lamps
are connected through relays, and only one lamp is switched ON during each measure-
ment cycle. It will eliminate additional primary and secondary harmonics due to several
loads sharing the same power source [104]. The data extracted for analysis comprises
THDI, current harmonic magnitude and phase angles, active power, reactive power, and
power factor. Current waveforms are also recorded for each LED lamp. The THDI of the
LED lamp changes continuously until it becomes thermally stable. The THDI of a thermally
stable LED lamp is different than the initial value of THDI when it is turned ON. This dif-
ference can be up to 10%. Figure 5.14a shows the histogram of the percentage difference
between thermally stable and cold LED lamps. For the majority of the lamps (95%), the
difference in THDI before and after thermally stability is between 2 and 8%. Only 3.6% of
lamps have less than 1% difference, and 1.84% have more than 10% difference.
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Figure 5.14 - THDI variations of LED lamps [I]

The percentage difference in THDI between thermally stable and cold states increases
with the increase of the active power of the lamps. A total of 163 LED lamps are divided
into five groups based on the active power. The group G1include LED lamps with power
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ratings between 3.3 to 5 W. Similarly, in groups G2, G3, G4 and G5 LED lamps with power
ratings between 5.1to 7W, 7.1to 9 W, 9.1to 12 W, and 12.1to 20 W are included, respectively.
Fig. 5.14b shows the box plot of percentage difference in THDI between cold and thermally
stable LED lamps of all groups. The central line indicates the median, and the bottom and
top edges of the box indicate the 10th and 90th percentiles. The whiskers are extended
to extreme values. It is clear from Fig. 5.14b that as the power of the lamp increases, the
percentage difference of THDI between thermally stable and cold lamps also increases.
The G1and G2 groups show a relatively large variation as most of the type A lamps include
in these groups.

Thermal stability time variations The stability time 7} of all the current harmonic mag-
nitude and phase angle are estimated by applying trend fitting curve using Eq. (5.9). The
trend curves provide a close fit to the original current data and have applied to all the
LED lamps to find out the thermal stability time of each lamp. The stability time T, will
change if vis changed in Eq. (5.11). The y is selected by using 80% of the final value. How-
ever, ¥ value can be changed by changing Ahggg, in Eq (5.12), with 70 or 90% of the final
value (Ah799, Ahggg). However, the magnitude variation will become less than 1% as it
reaches 80% of the final value. Similarly, the stability time of the phase angles can be
calculated. This procedure is applied to the measurement data of all 163 LED lamps, and
thermal stability time is estimated for current harmonics magnitude and phase angles.

The trend fitting curve has enabled to estimate the thermal stability time T of all the
LED lamps. The thermal stability time may depend on many factors like temperature, lamp
driver topology, the variation in the magnitude or phase angles of current harmonics, and
the active power of the lamp. To investigate the reason that may influence this variance,
a comparison between thermal stability time T of all LED lamps with active power and
day is made.
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Figure 5.15 - Box plot of stability time [I]

The box and whisker plot for the magnitude of the current harmonics against the sta-
bility time is shown in Fig. 5.15a. The box top edge represents 95th percentile, and the
bottom edge is equal to 5th percentile of the T values. The line between the top and
bottom edge of the box shows median values. The upper whisker is extended to 99th
percentile value, and the bottom whisker represents 1 percentile value. The plot shows
that for 95th percent of the lamps, the magnitude of all harmonics becomes stable bellow
40 minutes. The fundamental magnitude becomes thermally stable quickly than most of
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the higher-order harmonics except for the 9th and 11th harmonic. However, the upper
whisker of the 9th and 11th harmonic is more than 55 minutes in contrast to the funda-
mental where it is less than 45 minutes. The 5th, 13th and 15th harmonic have the most
significant spread between 5 to 95th percentile values of T;. The stability time extends up
to 38, 37 and 36 minutes for 5th, 13th, and 15th harmonic respectively.

The phase angles, on the other hand, have a different spread in comparison to the
magnitude. Fig. 5.15b shows the box and whisker plot of the phase angles versus the ther-
mal stability time for the odd harmonics. The 3rd and 5th harmonics have the highest
value of the stability time 7, around 33 minutes at 95th percentile. For the 7th to 19th
harmonic the T, is between 31 to 27 minutes for 95th percentile of LED lamps. The upper
whiskers of 3rd to 7th harmonic lies between 53 to 58 minutes. Therefore, it can be con-
cluded that the phase angles of 95% of LED lamps get thermally stable before 35 minutes.
The maximum time required for some lamps to have stable phase angles is 58 minutes.
The magnitude takes more time to get stable and 95% of LED lamps have a stable mag-
nitude before 40 minutes. The magnitude takes 5 minutes more time to get stable in
comparison to the phase angles. The maximum time taken by the lamps to have stable
magnitude for all the harmonic is 56 minutes.
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Figure 5.16 - Boxplot of active power against thermal stability [I]

The stability time may also be affected by the power of the LED lamp, although it is not
a valid assumption for all LED lamps. Some high power LED lamps have shorter stability
times in comparison to the low power LED lamps. However, the overall trend shows that in
general high power LED lamps have a slightly higher thermal stability time in comparison
to the low power LED lamps for the fundamental and higher harmonics. Fig. 5.16 shows
this trend. All 163 LED lamps are divided into five groups. The group one contains LED
lamps with power between 3.3 to 5 watts. Similarly, groups 2, 3, 4 and 5 contain LED
lamps with active power between 5.1 to 7 watts, 7.1 to 9 watts, 9.1 to 12 watts, and 12.1 to
20 watts respectively. The box and whisker plot is made for fundamental and higher-order
harmonics for the aggregate data of LED lamps in each group. The individual harmonics
are represented by different colors as shown in Fig. 5.16. The top of the box indicates 75th
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percentile value and the bottom indicates 25th percentile. The circle between the box
represents the median value. The whiskers are extended up to the most extreme data
points and outer circles represent out-liners.

It is evident from the Fig. 5.16, the median value for the fundamental component in-
creases linearly from around 5 minutes for group 1to 22 minutes for group 5. Hence, there
is more than a three times increase in the median value of fundamental magnitude from
group 1to group 5. Similarly, the 3rd and 5th harmonics show a similar trend with 0.76
and 2.3 times increase respectively. The 7th harmonic shows an increase in the median
value up to group 4, but then it decreases for group 5. The higher harmonics do not show
an increasing or decreasing trend. However, the overall trend of the 25 to 75 percentile
boxes shows an upward moment from group 1 to group 5. The large spread of stability
time indicates its dependence on factors related to lamp architecture. These factors in-
clude cooling and electrical structures of LED lamps. However, Fig. 5.16 shows a general
trend of anincrease in the thermal stability time as the LED lamp’s active power increases.

The dy;, in eq. (5.10) shows the difference between 80% of the final value of magnitude
or phase and the initial value. It means that if the d, is large than the difference between
the harmonic magnitude or phase angle is more between thermally stable state and cold
state. Fig. 5.17 shows the plot of percentage change between 80% of the final value and
the initial value (% d,;) against the stability time. Different markers are used to indicate
types of LED lamps based on their current waveform. The colors are used to indicate the
power of the lamp. Although most lamps in this study are of type A, the trend between
percentage dy;, and thermally stability time is independent of the LED lamp types based
on the current waveform.

Fig. 5.17 shows the percentage change in d4; against thermal stability time for the
fundamental and higher-order odd harmonics. The green circle in each plot indicates the
majority trend. The fundamental component of magnitude shows an incremental linear
trend. The 3rd, 7th, and 15th harmonics also show a similar trend to the fundamental
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component. The trend for 5th harmonic is somewhat linear but the growth is very flat.
It means most lamps with a low d,;, percentage of magnitude also have a higher stability
time. The 9th harmonic has a high concentration of stability time between 10 and 20
minutes. Also, the percentage of dyj, is between 1-10% during the stability time. Hence
the trend is close to a uniform distribution of stability time between 10-20 minutes for
different values of dy; percentage. The 11th and 19th harmonic has a linear incremental
trend but between 8 to 13 minutes, the percentage of the d,;, has a wide range of 1to 15
percent. For the 17th harmonic, the trend is indicates a linear increase in thermal stability
time against a change in dy;, percentage.

To evaluate the impact of thermal stability on harmonic current estimation, device
usage model is used to generate lighting usage profiles for 60 houses. A Monte-Carlo
approach is used by selecting random lamps based on the light output needed in each
room. The light output is calculated by the type of lamps used in the building measured
for the data collection. During each run, lamps were selected randomly form uniform
distribution. The cold and thermal stable measurements for each lamp were used to find
the current harmonics for 60 houses during each run. The number of lamps in each house
may vary from 5 to 11.

1 1 T
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95 Percentile thermally stable values

< Mean cold values
e4r Mean thermally stable values
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Figure 5.18 - Estimated fundamental current difference for cold and thermally stable measurements

[

Fig. 5.18 shows the fundamental component variation of lighting usage in 60 houses.
The bold black line shows the mean value of the fundamental current when thermally
stable values are used in the simulation model for calculation. The red line shows the
mean value when cold lamp measurement data is used. The difference is more notice-
able during the evening peak. It is evident from Fig. 5.18 that the mean value difference
is quite significant. Therefore, the cold measurements will result in inaccuracy in the es-
timation of current harmonics. The boundary of the light grey shaded area indicates the
95th percentile values of the 100 run Monte-Carlo model simulation when cold lamps
measurements are used. The dark grey area boundary indicates the 95 percentile values
of fundamental current magnitude when thermal stable values are used. A comparison
is made between the harmonic currents estimated using measurements with thermally
stable and normal values with a cooling effect in a previous study, but the results show a
negligible difference [VIII]. Although lamp cooling may affect the current harmonics, how-
ever, the mean variation will be between black and red lines as shown in Fig. 5.18.

Fig. 5.19 shows the difference between the mean current magnitude estimated using
cold and thermally stable measurements for the higher-order harmonics. All current har-
monics show a significant difference in the magnitude estimated using cold and stable
values. The 7th and 9th harmonic current magnitude show a higher value for thermally
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stable measurements in contrast to the cold measurements. For the remaining harmon-
ics, the estimated current magnitude is higher when the value of the cold measurement
is used.

Therefore, for an accurate estimation of power quality indexes, the thermal stability
of the lamps is critical; otherwise, it could lead to noticeable deviations in the estima-
tion. Hence, the measurements for the estimation of the current harmonic emission levels
should be taken once the LED lamps become thermally stable.
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Figure 5.19 - Higher harmonic current difference for cold and thermally stable measurements [I]

5.5.3 Thermal stability of switch mode power supplies

Switch-mode power supplies (SMPS) are widely used as industrial, commercial and do-
mestic loads. These nonlinear devices inject current harmonics, and their aggregated im-
pact on power quality in the distribution grid could be devastating. The electronic loads
may also be categorised based on the topologies of their SMPS circuits [I1].

Various studies about the harmonic emissions of SMPS loads are available in the lit-
erature. The phenomena of harmonic cancellation for multiple SMPS operating at the
same time is studied in [105]. The harmonic emission of these SMPS is aggregated using
a Monte Carlo simulation. The harmonic cancellation was more prominent in the SMPS
with high power ratings. In another study, the losses due to harmonic emission from SMPS
in commercial buildings are evaluated [106]. Harmonic emissions from modern electronic
load result in overheating of cables, neutral conductor overloading and power factor re-
duction. The wiring losses were shown to have increased by nearly 250%. The study
estimates additional losses due to harmonic emission from the switch-mode power sup-
plies. A significant portion of the electronic load includes personal computers that contain
switch-mode power supplies. The harmonic losses caused by SMPS inside personal com-
puters can increase up to 2.4 times compared to the resistive load.

The majority of the studies related to harmonic emission from SMPS have considered
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Table 5.8 - Switch-mode power supplies (SMPS) characteristics [I1].

Power subply no Input current | Output current | Output voltage
PRIy no-. AC (A) DC (A) DC (V)
1 0.83 5 24
2 0.63 5 24
3 0.30 2 24
4 0.60 1.3 24
5 0.70 1.3 24
6 0.67 2.5 24
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Figure 5.20 - Current waveform drawn by SMPS (a) Type 1 (b) Type 2 [ll].

the impact of harmonic cancellation and circuit topology variation; however, the effect
of thermal stability is generally ignored. The thermal stability of the electronic circuit
may cause time-dependent variations of the harmonic currents that can contribute to
significant errors in the harmonic estimation results [l1].

The switch-mode power supplies can be categorised based on the type of filters used.
The majority of the power supplies that are less than 75 W do not include any PFC cir-
cuits. However, the high power SMPS employs active or passive filter circuits to improve
the power factor and reduce harmonic emissions. The devices with passive PFC include
large inductors to reduce current variations due to switching circuits. The active power
factor correction circuits inject fewer harmonics in comparison to passive power factor
correction circuits.

The impact of thermal stability on the variation of current harmonic emission from
SMPS is presented here. Six single-phase power supplies are selected from various man-
ufacturers in the range of 30 W to 120 W. The detailed specification of the power supplies
is listed in Table 5.8. The current waveform drawn by these power supplies depends on
their circuit topologies; therefore, categorised into two groups. Fig. 5.20 shows the cur-
rent waveform of both types of switch-mode power supplies. Type 2 SMPS shows a typical
current waveform drawn by rectifier circuits that do not include any filtering circuits. In
contrast, type 1 power supplies contain passive filters and have a different current wave-
form. A programmable electronic load is used, and a 60% rated load current is applied to
all SMPS for the power quality measurements.

The measurement setup described in section 3.1.1 is used to test all six SMPS on 230
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Figure 5.21 - Histogram of total current harmonic distortion (THDI) difference between cold and
stable state of all power supplies [I1].

V sinusoidal voltage. The measurement is performed for 60 minutes with a rated load
of 60% using a controllable electronic DC load TENMA 72-13210. Currents harmonics and
THDI measurements are analysed to estimate the impact of thermal stability. The abso-
lute percentage difference in the THDI measurements of the power supplies during the
cold and thermally stable states are shown in Fig. 5.21. During the first five minutes, the
measurements are referred to as cold state measurements, while the stable state indicates
when the THDI variation is less than 0.25%. Power supply 1and 2 show the THDI difference
between the cold and thermally stable state of 1.2% and 0.6%, respectively%. However,
significant variations in the THDI values between cold and stable states are shown by the
remaining power supplies. The highest THDI variation was about 21% for the 5th power
supply, while third and sixth power supplies show the THDI difference between 18 to 19%
between cold and stable states. The fourth power supply shows a THDI difference of al-
most 15%.

Trend curves are used to estimate the stability time of all power supplies. Eq. (5.9) is
used to apply exponential trend curves for variations in the phase and magnitude of the
current harmonics for all power supplies. The stability time is calculated using Eq. (5.13).
The magnitude variation in the fundamental current and odd harmonics for the third
power supply is shown by Fig. 5.22. The green and blue lines show the measurement
data and trend curve, respectively. The time constant is indicated by the red dot, while
the black dot shows the stability time. This approach is applied to the current harmon-
ics magnitude and phase variations for all power supplies, and thermal stability time is
evaluated.

Type 2 power supplies show relatively high variations in harmonic magnitude and
phase compared to type 1 power supplies. The magnitude difference of less than 1% was
observed between cold and stable states for type 1 power supplies. The first power supply
has shown the most considerable difference of 1.2% for the fundamental and 17th current
harmonic magnitude. On the other hand, the second power supply shows the 1.7% differ-
ence in the 11th harmonic magnitude. The type 2 power supplies have shown a significant
difference in the phase and magnitude, especially for the higher harmonics. The highest
difference of 194% was observed in the magnitude of the 17th harmonic current for the
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Figure 5.22 - Current harmonic magnitude variation over time for power supply 3 [I1].

third power supply.

The maximum, minimum and average difference between the values of current har-
monic magnitudes of type 2 power supplies are shown in Table 5.9. The phase variations
of harmonic currents at cold and stable states are also less in type 1 power supply. A dif-
ference of only 1-degree was observed for the 3rd, 5th and 7th harmonic current in power
supply one, while the second power supply has shown the 1-degree phase difference for
the 15th, 17th, and 19th harmonic current. On the contrary, type 2 power supplies have
shown a noteworthy phase difference in current harmonics measured at cold and stable
states.

Table 5.9 - Difference between cold and stable state current harmonics magnitude for type 2 SMPSs

(%) [1n].

Current harmonics magnitude difference

Harmonics | F H3 | H5 | H7 | H9 H11 | H13 | H15 H17 | H19
Minimum | 04 | 01 | 0.8 | 2.3 | 4.5 7.6 1.8 | 176 | 26.2 | 11
Maximum | 1.6 | 1.4 | 3.7 | 75 | 13.4 | 23.8 | 43.4 | 88.2 | 194.7 | 97.0
Average 08|06 |20 |52 ]100 | 17.6 | 30.0 | 54.7 | 105.4 | 39.9

The phase variation between cold and stable states of type 2 power supplies is signif-
icantly higher. The third power supply shows slightly fewer phase variations between 1 -
2 degrees among all type 2 SMPS. The remaining power supplies have phase variations in
the range of 2 to 35 degrees. As the harmonic cancellation depends on the phase angles
of harmonics, the IEC 61000-3-2 standards do not define any limits for phase variation
and may result in inaccurate harmonic estimations.

The stability time for current harmonics magnitudes of all power supplies is shown
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in Fig. 5.23a. The magnitude stability time for type 1 power supplies is significantly less
as they show minor variations in harmonic magnitudes at cold and stable states. The
stability time of power supply 1 and 2 for up to the 7th harmonics is between 20 and 43
minutes. However, the 11th and 13th harmonics took more than 60 minutes to stabilise
for the power supply 2. All other magnitudes of current harmonics for these two power
supplies are less than the magnitude stability time of type 2 power supplies.
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Figure 5.23 - Stability time of current harmonics for all SMPS [I1]

Type 2 power supplies have a stability time range of 20-40 minutes except for the 17th
harmonic of the third power supply. The third and sixth power supplies show a similar
trend of the current harmonic magnitude stability time. The fourth and fifth power sup-
plies also follow the same trend; however, their stability time is less in contrast to the third
and sixth power supplies. The harmonic phase stability of all power supplies for harmon-
ics up to the 19th is shown by Fig. 5.23b. The majority of the power supplies have achieved
phase stability in less than 35 minutes except for a few high order harmonics.

The stability time is independent of the active power of the SMPS. The relation be-
tween the active power and the stability time of the magnitude of the current harmonic
is shown by Fig. 5.24 . Interestingly, SMPS with high active power has less stability time
than SMPS with low active power consumption. This trend is more noticeable for the
higher-order harmonics.

In the real-time scenario, the harmonic current estimations could be affected signifi-
cantly by the thermal stability of the loads. The probabilistic harmonic estimation models
rely on the measurement data and may lead to errors in the harmonic estimation when
thermal stability is not considered. The percentage difference in the RMS current calcu-
lated at the cold and thermally stable state for all six power supplies is shown in Fig. 5.25.
Type 1 power supplies show a relatively small difference of nearly 1% while type 2 power
supplies show a difference of more than 8% between RMS current calculated at the cold
and stable states. The fifth and sixth power supply shows the maximum difference of more
than 13%. Consequently, in the distribution network, many power supplies operating in
anidle or working state, the estimation of current harmonics would result in an erroneous
outcome because of their time-dependent thermal variation.
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Figure 5.24 - Current harmonic stability time (T, ,;,.) variation against active power of all SMPS [Il].

5.6 Impact of cable impedance

Various lengths of cables are associated with each domestic, commercial, and industrial
load in a distribution network. Cables may alter the magnitude or phase angle of the
current harmonics. However, the extent to which the installation cable length may affect
the power quality is not reported in the literature. An experiment is performed using LED
lamps with different cable lengths to evaluate the impact of installation cables on current
harmonics. The LED lamps are selected as their current harmonic emission profile is quite
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Figure 5.25 - Current RMS difference between Cold and Stable state [ll].
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stable. The results are compared with the measurements taken using the same lamps
without cables [XI].

Four different LED lamps and three cable lengths are used in this experiment. A 230 V
sinusoidal input voltage is applied, and harmonic phase angles and magnitude up to the
19th harmonic are measured. The characteristics of the LED lamps used in this study are
summarised in Table 5.10. The current waveform drawn by all four LED lamps when pure
sinusoidal voltage is applied is shown in Fig. 5.26a.

Table 5.10 - Summary of LED lamp parameters [1]

Lamp No. | Energy ratings | Power (W) | Lumens (Im) | THDI | Price (€)
1 A+ 6 470 136.04 4
2 A+ 12 1055 150.69 5
3 A+ 12 1055 137.42 4.5
4 A+ 6 470 133.51 3.5
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(a) Current waveform drawn by the LED lamps (b) LED lamps THDI (%) difference for different cables

Figure 5.26 - Current waveforms of lamps and their THDI difference with cables [XI]

The cables used in this experiment are three core-stranded 3G 1.5 mm with 10, 30,
and 110-meter lengths. The LED lamps are also tested by using the cable parameters for
a 1000 meter long cable. All LED lamps are warmed for 1 hour to make sure there is no
variation in the measurement results due to thermal stability issues.

LED lamps are tested on different cable lengths, and THDI, current harmonics magni-
tude, and phase angles were measured and compared with the results without cables.
A difference of 0.2 to 1% in THDI was observed when lamps were measured using differ-
ent cable lengths. Fig. 5.26b shows the absolute percentage change in the THDI when
measurements for all LED lamps with three different cables are compared with measure-
ments without cables. For the lamp 1, 2 and 3, the THDI difference has increased as the
cable length increase. However, in the case of lamp 3, the THDI difference with 10 m cable
is more in comparison to 30 m and 110 m cables.

The current harmonics magnitude shows a maximum difference of 3% between mea-
surements taken with and without cables. The magnitude variation in fundamental com-
ponents of the current up to the 11th harmonics is relatively small. The mean value and
90th percentile values of the magnitude difference is less than 0.25% and 1.5%, respec-
tively, as shown in Fig. 5.27a. The lower and upper boundary of the dark grey box rep-
resents the 10th percentile and mean values, respectively. The upper boundary of the
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Figure 5.27 - Boxplot of current harmonics difference with cables [XI]

light grey box shows the 90th percentile values. The lower and upper whiskers extend
to the extreme low and high values. The higher current harmonics from the 13th to the
19th shows more variation. The mean value of percentage change is between 0.7 to 0.9%
with and without cables. The 90th percentile value of magnitude difference is also more
in comparison to lower harmonics and is between 1.5% to 2.5%. The phase difference of
current harmonics is up to 11 degrees when cables are used with LED lamps, as shown
in Fig. 5.27b. The mean difference of the phase angle for the 3rd harmonic is 3 degree
and more than the mean difference of higher harmonics. The variation in the phase angle
increases as we observed from the 5th to the 19th harmonic. The mean difference in-
creases from 1 degrees for the 5th harmonic to 3 degrees for the 19th harmonic. The 90th
percentile of phase difference also shows an incremental increase from 2 to 10 degree
from the 5th to the 19th harmonic. For the 3rd harmonic, the 90th percentile of phase
difference is 5 degree.
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Figure 5.28 - Current magnitude difference for all LED lamps with different cables [XI]
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Fig. 5.28 shows the variations of current magnitude percentage difference for all lamps
from 3rd to the 19th harmonic when measurements at different cables length are com-
pared without cables. The variation of each lamp is different from the other and there is
no general trend of harmonic current variation. The lamp 1 and 4 have same power con-
sumption but different variation in current harmonics. The lamp 1 shows less difference
in harmonic current variation in comparison with other lamps. This percentage difference
in magnitude also increases from 3rd to the 19th harmonic gradually. Also, it shows an in-
crease in the magnitude difference as the cable length increases. The 4th lamp although
has the same power consumption as of lamp 1 but shows a different trend for magnitude
variations. There is no specific pattern observed, however, the magnitude difference is
more for the 3rd to 11th harmonic and less for 11th to 19th harmonic in comparison to
lamp 1. Similarly, the lamp 2 and 3 have same power consumption but the percentage of
magnitude difference with and without cables does not show a similar trend. The lamp 3
shows a significantly large difference from 3rd to 11th harmonic in contrast to lamp 2. For
the higher harmonics, lamp 2 shows more difference in the current magnitude than lamp
3.

The phase difference of the current harmonics for different lengths of the cables is
shown in Fig. 5.29. For lamp 1, the difference tends to increase as the length of the cable
is increased while lamp 2 shows a decrease in phase angles as cable length increases. The
lamp 4 shows significantly more deviations in the phase angles in contrast to lamp 1. The
phase deviation for lamp 4 is between 1to 5 degrees while for lamp 1 its between O to 1
degrees. The lamp 2 and 3 shows a different trend and phase difference is more for 10m
and 30 m cable in comparison to the 110 m cable. Except for the 15th harmonic, lamp
2 shows a large phase deviation for the 30 m cable while the phase difference is nearly
same for 10 m and 110 m cables. On the other hand, the lamp 3 shows the almost same
difference for 10 m and 30m cable but a significantly lower phase deviation for the 110 m
cable.
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Figure 5.29 - Phase (degree) difference for all LED lamps with different cables [XI]
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Table 5.11 - Current harmonics difference for 1000m cable [XI]

Magnitude difference

THDI| Iy I3 I5 I7 lg 111 113 Ii5 117 l19

Lamp 1|3.3% | 0.5% | 0.4% |1.3% [2.9% | 5.6% | 9.4% |10.6% | 10.1% | 12.1% | 15.8%
Lamp 2|5.9% |-0.2% | 0.5% | 2.1% | 4.9% | 9.8% | 17.3% | 21.8% | 21.3% | 23.9% | 30.4%
Phase difference
THDI| ¢1 | ¢3 | ¢s | ¢7 | @9 | ¢t | @13 | ¢15s | ¢17 | @9
Lamp 1| 3% 0° 3° 1 6° ] 8°|2°| 1n° 1.3 | 13° 15° 18 °
Lamp2|59%| 0° 5°19°113° |16°| 18° | 16° | 10° | 20° | 23°
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Figure 5.30 - Current waveform with and without cable of lamp 2 [XI]

To observe the effect of large cable length on current harmonics, electrical parame-
ters of 1000 m long cable are used for current harmonics measurements. The electrical
parameters were measured for a 3 m long 1.5 mm 3G stranded cable. The inductance,
capacitance and resistance values are calculated. These values are used to estimate the
inductance and resistance of a 1000 m long cable. The inductance value is 135 pH, and
the resistance is 13.3 ohms. The capacitance value is ignored as its effect is negligible. The
inductance and resistance were connected with lamp 1 and lamp 2, and measurements
were performed to observe the variation in the current harmonic spectrum. The current
waveform shows a significant change when compared with the current waveform drawn
by the lamp without any installation cables, as shown in Fig. 5.30. The THDI for both lamps
shows a change of 3 and 6% when compared to the results without cables. The fundamen-
tal current shows a change of 0.5 and 0.2% for lamp 1 and 2, respectively. The percentage
difference for both lamps increases for the higher harmonics. The magnitude and phase
difference for both lamps are indicated in Table 5.11. The maximum difference was for the
19th harmonic for both lamps. The current magnitude shows a change of 15% and 30%,
respectively, for lamp 1and 2. The phase deviation is also 15 to 20 degrees for both lamps.

5.7 Network uncertainties

The amount and type of load connected to the network are changing continuously. The
voltage at the PCC is directly affected by the supply voltage in the MV line supplying the
distribution transformer, as well as load current itself due to voltage drop on resistance
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Table 5.12 - Harmonic content of voltage waveforms

and reactance. The voltage may also increase or decrease in the weak networks. These
voltage variations will affect the load and its harmonic emission profile. Therefore, the
harmonic emission of a constant load will also be different under dynamic network con-

ditions.

Figure 5.31 - Different voltage waveforms
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Compact fluorescent lamps (CFL) were measured on different voltage distortions to
evaluate the effect of network voltage variations. A total of eight different voltage profiles
are used, and the harmonic content of each waveform is listed in Table 5.12. Fig. 5.31 shows
the signal cycle of each voltage waveform.

The device usage model is used to simulate the lighting load of 60 houses. Each house
is populated with random CFL lamps from the measurement portfolio, and aggregated
harmonic emission is estimated using Monte Carlo simulation. The harmonic measure-
ment results for a single voltage distortion are used during each iteration, and the ag-
gregated harmonic are estimated. Fig. 5.32 shows the aggregated 3rd and 5th harmonic
current of 60 houses for a day. The results indicate a significant difference in the har-
monic content at few voltage distortions. Therefore, it is essential to analyse the impact
of network uncertainties on harmonic emission in the low voltage network.
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Figure 5.32 - Comparison of harmonic emission on different voltage distortions
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6 Harmonic aggregation models for LV Networks

The type and number of nonlinear loads are increasing in residential networks contin-
uously. It is crucial to evaluate the harmonic emission impact of these devices on the
operation of the distribution network. These evaluations would also be vital for planning
the new or up-gradation of the existing networks to accommodate the high penetration
of nonlinear loads, including EVs and PV based electricity generating units. However, the
complexity associated with the network and loads influences the harmonic emission and
propagation through the network. A bottom-up harmonic aggregation approach is used
to estimate the current harmonic emission profile for the stochastic load usage models
developed in chapter 4. The result would provide an estimate of the current harmonic
emission in the presence of current and future nonlinear loads for different voltage dis-
tortions.

6.1 Methodology

The total load connected to the residential network is changing continuously depending
on the consumer’s usage behaviour. It will result in a dynamic harmonic emission pro-
file of individual households. The network condition, including voltage magnitude and
waveform distortions, also affects the load’s harmonic emission profile. Therefore, the de-
terministic estimation of current harmonics is not effective, and a probabilistic approach
can provide a border perspective for the network planners and operators. In this chapter,
stochastic load usage profiles are used to estimate the aggregated impact of the nonlinear
loads on the current harmonic emission. Time series plots are used to show the range of
current harmonics magnitude estimated at different times during a day.

The harmonic emission of a device depends on many factors, including its operating
technology, circuit topologies and power ratings. The outdated technologies such as in-
candescent lamps, cathode ray tube (CRT) based televisions (TVs) were not energy effi-
cient in comparison to their modern-day counterparts but had harmonic emission of low
intensity or with little variance. Present devices include high efficiency nonlinear power
supplies and the harmonic emission can be different for the devices having the same
power ratings but different circuit topologies. The residential LV networks are composed
of several individual households containing numerous devices with different usage be-
haviour depending on the dweller’s occupancy, socioeconomic status, and building struc-
tures. The harmonic emission of the network will be the aggregated sum of harmonic
currents of individual devices connected to the network. The aggregated sum depends
on the magnitude and phase angles of the harmonic vectors. The aggregation of several
appliances will result in harmonic cancellation depending on the phase angles. The dy-
namic network conditions may affect the magnitude and phase variations of the current
harmonics injected by the loads.

A Monte-Carlo approach is used to calculate the mean and 95th percentile values of
aggregated harmonic emission of devices simulated over several days. This approach pro-
vides a range of harmonic magnitudes likely to exist at a particular time of the day. 60
houses are simulated over 100 days and each house has assigned appliances based on
the ownership statistics provided by the national surveys. Simulation is performed to es-
timate the impact of technology evolution, circuit topology and high EV penetration on
the harmonic emission profiles in the LV residential network.
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6.2 Impact of technology on current harmonic emission

The improvement in the efficiency of electrical appliances can reduce the overall electric-
ity consumption by 27% [107]. Policy making institutions are promoting practices that can
improve energy efficiency to reduce power consumption. The European parliament has
also emphasised the importance of adopting energy-efficient appliances and lighting in
its regulation [108].

The advancement of electronics has enabled the appliances manufacturer to replace
inefficient technologies such as incandescent lamps and CRT TVs to improve performance
and reduce power consumption. To provide an effect on harmonic current emission by
the gradual replacement of efficient appliances, the impact of LED and CFL penetration in
the low voltage residential grid is estimated [XII].

Lighting ingests a significant part of electricity in residential, commercial, and indus-
trial electricity consumption. Incandescent lamps have been in use for many years as a
conventional light source. However, they have a short life span and poor efficiency. Dur-
ing the last two decades, most incandescent lamps are replaced by CFL and LED lights.
The share of IL lamps was almost 77% in the UK residential lighting market by 2010, while
the CFL share was only 6.7% [109]. Similarly, in the United States (US), 96% of the homes
still have at least one IL, and 13% of households have all lamps of incandescent type [110].
The projections indicate a significant shift in the lighting market towards LED lamps in the
last few years. LED lamps share will increase from 3% for indoor lamps in the US to 42%
by the end of 2020. By the end of 2030, the projected LED lamps share for indoor and
outdoor installations is expected to be 81% and 99%, respectively. LED lamps will replace
46% of all indoor lights and 75% of all outdoor lights in the US by the end of 2020. The
penetration of LED lamps in Europe is around 46% of the total installed lighting by 2020
[111]. It shows the significant potential of LED lamps in the future.

The mass adoption of CFL and LED lamps will significantly affect the utility grid in terms
of power quality. A comparison has been presented between CFL adoption in the grid and
incandescent lamp usage in [112]. The CFL lamps are divided into good, average, and poor
categories based on the driver circuit topology. The author reports a significant saving in
power consumption by using any type of CFL. However, poor quality CFL injects more har-
monics in the distribution network than good quality CFL as it does not include any filters
in the driver circuit. The reduction of peak current and losses was observed while replac-
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Figure 6.1 - Harmonic current comparison of IL, CFL and LED [XII]
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ing incandescent lamps with CFL and LED [113]. The experiment was performed in the
laboratory-based residential building model; however, the building’s actual lighting usage
patterns were not considered. In another study, a comparison has been made between
harmonic emission by CFL and LED lamps in the distribution network [114]. The measure-
ments were taken for 50 LED lamps usage simultaneously and, therefore, do not represent
real-time lighting usage in a building. The author reported that few LED lamps cause a DC
in the network. Measurements of different combinations of incandescent, CFL, and LED
lamps were performed to compare the effect on power quality in [115]. The measurement
results are also used in a computer simulation of a distribution network to compare CFL,
LED, and IL usage in the grid. The results show poor power factor and high total harmonic
current distortion for CFL and LED lamps. Most of the studies available in the literature
show various limitations. The building models have not considered the real-time lighting
usage patterns by the occupants. The lamp’s thermal stability affects the current harmon-
ics magnitude and phase angles that could affect the power quality estimation [I]. Also,
the harmonic cancellation may vary the results under different combinations of load. The
harmonic current magnitude could be varied between 2.5 to 5%, and phase angles may
vary between 2 to 3% for different combinations of LED lamps [IX].

To evaluate the impact of energy-efficient lamp integration in the residential network,
194 lamps, including LED, CFL, and IL, were measured on sinusoidal voltage. LED, CFL, and
IL lamps with the same lumen output are selected to compare the current harmonic emis-
sion from different lighting technology. Fig. 6.1 shows the current harmonic magnitude
comparison of different lamps with the same light output. The graphs show the percent-
age of current harmonic RMS relative to the lamp’s total RMS current. This will provide
the comparison of the share of fundamental component in the total RMS current. Both
CFL and LED lamps show a significant 3rd, 5th, and 7th harmonic component. The IL lamp
shows a higher fundamental component in contrast to LED and CFL but shows no higher
harmonics.

The lighting usage model is used to generate each lamp’s switching profiles for all 60
houses. Six different scenarios are created in which each house is populated with a differ-
ent mix of LED, CFL, and IL.

1. Scenario 1: 30% IL and 70% CFL
2. Scenario 2: 10% IL, 20% LED and 70% CFL

3. Scenario 3: 70% CFL and 30% LED
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Figure 6.2 - Fundamental current estimated for 60 households lighting load with different scenarios
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4. Scenario 4: 50% CFL and 50% LED
5. Scenario 5: 30% CFL and 70% LED
6. Scenario 6: 10% CFL and 90% LED

During each scenario, lamps are selected based on the same light output to have a fair
comparison of current harmonic emission and power consumption. Fig. 6.2 shows the
fundamental current drawn by 60 houses for different scenarios. The peak current during
the evening interval has been significantly reduced by the replacement of IL with CFL and
LED lamps.

The peak current was in the range of 14-16 A for 30% IL usage and dropped to 10-12
A range for 10% IL usage. For the remaining scenarios, all IL are replaced by CFL and LED
lamps. As a result, a significant reduction in peak current is observed and now in the
range of 4 to 6 A. In the last four scenarios, LED lamps are gradually replacing the CFL
with a 30% share in scenario three, towards a 90% share in scenario six. The peak current
also dropped with an increasing share of LED lamps in the houses. Fig. 6.3 and Fig. 6.4
shows the graph of current harmonics from 3rd to 9th for different scenarios. Although
the power consumption of IL is significantly higher than CFL and LED, but it behaves like
a resistive load. The 3rd harmonic current is lowest for scenario 1, with a 30% share of IL
and 70% CFL. When only LED and CFL combinations are used to evaluate the 3rd harmonic
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Figure 6.3 - Comparison of 3rd and 5th harmonic emission from lighting for different scenarios [XII]
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current magnitude, scenarios with higher shares of CFL inject higher 3rd harmonic current.
As the CFLs are replaced with LED lamps, the 3rd harmonic current magnitude also drops.
A similar pattern is observed for the 5th harmonic current, where scenarios with a higher
share of IL generate less harmonic current. The 7th and 9th harmonic current increases
with the increase in the percentage of LED lamps. For the 6th scenario, the 7th and 9th
harmonic current is higher as the share of LED lamps is 90% in the houses.

It is clear from the results that although energy-efficient lamps consume significantly
less power but are responsible for harmonic injection in the grid. Both CFL and LED lamps
use a similar driver circuit and include rectifiers. However, LED lamps are more energy-
efficient and consume 50% less electricity for the same light output. As a result, the 3rd
and 5th harmonic magnitude were more for the scenarios with a greater CFL share than
LED lamps in the houses. For higher harmonics, LED lights generate more harmonic con-
tent in contrast with CFL.

6.3 Impact of circuit topology on current harmonic emission

6.3.1 Classification based on circuit topology

Similarly to other electronic loads the LED and CFL lamps can be classified based on the
internal circuit topologies of the power supplies. The classification can be based on the
type of power factor correction circuits employed in the power supplies and their design
topology [116, 117, 118, 119]. To observe the impact of the circuit topology employed inside
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Figure 6.4 - Comparison of 7th and 9th harmonic emission from lighting for different scenarios [XII]
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the power supplies on the current harmonic emission, over 200 LED lamps are tested
and classified based on their current waveforms and internal topology of the driver cir-
cuit. Fig. 6.5a shows the current waveform drawn by LED lamps with four different driver
circuits.

Type A The bold pink line in Fig. 6.5a shows a plus-like current waveform drawn by the
type A LED lamp. This type of LED driver is based on a full-wave rectifier circuit. The PFC
circuits are not used and a large smoothing capacitor controls the out-voltage ripples [117].
These circuits may also include an input EMI filter to reduce electromagnetic interference.
The THDI values of type A circuits are high, as shown in Fig. 6.5b. The box’s top and bot-
tom lines indicate 90th and 10th percentile values, while the middle line shows the mean
value of the THDI. The upper and lower whiskers are extended towards the maximum and
minimum values. Most CFL and low-quality LED lamps contains a similar circuit in their
drivers.

Type B Type B LED driver circuits include a Zener diode Dz that limits the LED lamp’s
forward voltage, as shown in Fig. 6.6. The black dotted line shows the current waveform
drawn by these LED lamps in Fig. 6.5a. The rectifier starts to conduct around zero crossings
of the input voltage and continues until the input voltage reached the peak value. The
increase in conduction time will decrease the THDI values of these lamps in comparison
to type A, as shown in Fig. 6.5b. The red boxplot shows the mean, 10th and 90th percentile
values that are significantly lower than the type A LED. Most commercially available LED
lamps contain these types of driver circuits.

Type C The current drawn by the C type LED lamps have a square shape, as shown by
the green dotted line in Fig. 6.5a. The circuit contains a constant current regulator (CCR).
It provides a constant current flow over a wide voltage range and therefore protects the
LED [103]. Their THDI values spread is lower than the type B LED driver circuits, although
the mean values are nearly the same, as shown in Fig. 6.5b. The lower number of type C
lamp availability during power quality testing may also result in a higher mean value.

Type D The current waveform drawn by type D LED is close to sinusoidal and shown by
the orange dotted line in Fig. 6.5a. These LED driver circuits contain a power factor cor-
rection (PFC) converter [119]. The resistor can also be added to the LED string to minimise
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Figure 6.5 - Current waveform and THDI of LED lamps with different driver circuit topology
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the current difference. Type D LED driver circuit shows the lowest THDI values in compar-
ison to the other three types, as shown in Fig. 6.5b. This topology is common in modern
high-power energy-efficient appliances.

6.3.2 Comparison of harmonic emission

Monte-Carlo simulation is used along with the lighting usage model to evaluate the impact
of power supplies circuit topology on the current harmonic emission. Over 200 LED lamps
with different power ratings are measured on a 230 V sinusoidal voltage and categorised
based on their circuit topology. Table 6.1 summarises the average price per watt, average
light output efficacy, the number of lamps measured, and the number of manufacturers
for each LED type used in this study. The circuit topology for different types of LED lamps
are shown in Fig. 6.6.

Table 6.1 - LED lamp portfolio summary [1]

Type 1| Type 2 | Type 3 | Type 4 | Total
No. of lamps 160 18 12 15 205
No. of manufacturers 27 7 4 6 34
Average price (euro/W)| 0.53 | 0.55 | 0.53 | 0.60 | 0.55
Lumens (Im/W) 90 85 88 91 88

In order to compare the harmonic emission of different topologies, LED lamps are
selected based on similar power ratings. 60 houses are simulated, and during each run,
all homes are populated with an equal share of 6, 9 and 12 Watt lamps of a single topology.
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The current harmonics are aggregated by vector addition in the complex plane using both
real and imaginary components of each harmonic. The results of individual odd harmonics
up to the 19th are compared for different LED driver circuit topology. Fig. 6.7 shows the
total RMS current drawn by 60 houses for different LED driver topologies. The solid line
shows the mean value while the dotted line indicates the 90th percentile values of the
RMS current drawn by 60 houses for 100 days. The evening peak shows that RMS current
of type A LED lamps indicated by blue line is higher in comparison to the other lamps. The
type C LED lamps have drawn the lowest RMS current.
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Figure 6.7 - RMS current of 60 houses over 100 days for different LED driver topologies

Fig. 6.8a shows the mean and 90th percentile absolute values of the 3rd harmonic
current drawn by 60 houses for 100 days. The type A LED lamps have significantly higher
values of the 3rd harmonic current with a peak value of more than 1.5 A while type D
lamps have the lowest value among all four types of LED lamps and has a peak value
of only 0.5 A. The type B and C shows the second and third highest values for the 3rd
harmonic respectively. The mean values of type B LED has a maximum value of 1 A which
is 28% less than type A LED lamps and 35% more than type C LED lamps.

For the 5th harmonic current, type A LED lamps shows substantially higher values in
contrast to the other types, as shown in Fig. 6.8b. The maximum value of the mean and
90th percentile values for type A LED lamps are exceeding 1 and 1.5 A, respectively. The
remaining three types show very less 5th harmonic emission in comparison to type A LED
lamps. The mean values in the evening peak are in the range of 0.2 - 0.3 A for type B, Cand
D lamps and show similar trends for the 5th harmonic. A similar trend can be observed
for the 7th harmonic where type A LED lamps show significantly large values than other
types. The mean and 90th percentile values of the 7th harmonic during the evening peak
exceeds 1A, for type A LED lamps while the harmonic emission of the remaining lamps is
in the range of 0.2 to 0.3 A for both mean and 90th percentile values.

The 9th harmonic emission show a similar pattern with type A LED lamps having the
highest emission followed by type C LED lamps. The emission patterns of type B and D
are close to each other, however, type D LED shows slightly higher values in comparison
to type B.

6.4 Impact of EV integration on current harmonic emission

The rapid integration of EV technology is leading towards large-scale vehicle electrifica-
tion. The EV charging is based on power electronic circuits and will result in additional
load and harmonic emission in the low voltage residential network. This imminent in-
crease in charging load is urging stakeholders to plan up-gradation in the electric power
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system infrastructure. However, for efficient planning to support the additional load, an
accurate assessment of the electric vehicle load and power quality indices is required. Al-
though several EV models to estimate the charging profile and additional electrical load
are available. Still, they cannot provide a high-resolution evaluation of charging current,
especially at higher frequencies. For an accurate assessment of the EV charging impact on
the LV network’s operation, cautious evaluation of charging modes under supply voltage
variation should be considered. As several EVs are available in the market offered by var-
ious manufacturers, it is a challenging task to evaluate the power quality index of every
vehicle. A typical EV battery charging cycle consists of two modes: constant current (CC)
and constant voltage (CV) mode. The charging at home can take several hours; therefore,
an increase in EV penetration will significantly increase the LV network load.

The charging decision of an EV is a stochastic process and depends on several factors
related to its owner’s travel pattern. The EV load model is developed to estimate the
charging load using travel statistic in the chapter 4. The EV load model and the power
quality measurement data of EV charging at different voltage distortions are used to es-
timate the additional charging current and current harmonic emission in the residential
network.

6.4.1 EV characteristics

The PQ measurement data of EVs is measured in the laboratory using the test setup de-
scribed in section 3.1.1. The vehicles are measured on the sinusoidal, flat top and pointed
top voltage waveforms. Some data is also included from the PANDA database. The sum-
mary of the vehicle’s characteristics is listed in Table 6.2.

Table 6.2 - Summary of EV characteristics [V]

Number | Type | Battery capacity (kWh) | Driving range (km)
EV1 BEV 22 170
EV2 BEV 16.8 100
EV3 BEV 31 160
EV4 |BEV 40 220
EV5 BEV 14.5 171
EV6 PHEV 1.2 50
EV7 |BEV 18.7 165
EV8 PHEV 9.4 36
EV9 BEV 17.6 145
EV10 |BEV 58 335
EV11 |PHEV 8.8 26

6.4.2 Simulation results
The EV load model is used to simulate usage patterns of 50 EVs for 100 days. The EVs are
selected randomly (uniform distribution) from Table 6.2 for each consumer. The current
harmonics are aggregated in the complex plane using both magnitude and phase angles
of each current harmonic. To observe the impact of supply voltage distortions, the cur-
rent harmonic data recorded at different supply voltage waveform is used to simulate the
overall impact of EV charging in the residential grid.

The magnitude of individual harmonic currents of EVs are mostly greater than the ag-
gregated sum of typical household appliances. Therefore, the large scale EV integration
will significantly increase the current harmonic emission in the low voltage distribution
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network. The impact of voltage waveform distortions on the individual harmonics is pre-
sented in Fig. 6.9. The vectors of the 3rd harmonic current shows that the spread will
change slightly for the flat top voltage waveform while the harmonic spread is nearly
identical for sinusoidal and pointed top voltage waveforms. The harmonic spread for 5th
harmonic on pointed top voltage waveform is almost shifted 180 in contrast to sinusoidal
or flat top voltage waveform for majority of the EVs. On the flat top voltage waveform,
the 5th harmonic current is slightly increased in magnitude; however, the phase angles
are almost same as on sinusoidal voltage waveform. The 7th harmonic current spread on
pointed top voltage waveform shows a significant change in terms of magnitude in com-
parison to sinusoidal or flat top voltage profiles. The 9th harmonic shows a wide spread
for different EVs but the change in magnitude or phase in not very high for different volt-
age waveforms [V].

High ownership of 83% is selected while simulating the EV load in the residential grid.
It means 50 out of 60 houses owns an EV. The EVs are assigned randomly from the list
provided in Table 6.2. The EV load model is used to simulate the travel activities to gen-
erate charging profiles based on the distance travelled during each trip. For each EV, the
outgoing and incoming times of each trip during a day is estimated. The final destination
is assumed to be the home. Based on the distance travelled during each trip, the state
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of charge of the battery is estimated. The decision of charging depends upon the state of
SOC. While the EV is at home and does not have sufficient SOC to make a new trip, the
EV charging will take place. The simulation is performed for weekdays only, therefore,
the EV charging takes place during the evening time. Fig. 6.10 shows the mean and 90th
percentile values of total RMS current for different voltage distortions.

The bold lines indicate the mean values while the dotted line shows the 90th per-
centile value of the RMS current. The RMS values does not show a significant variation
for different voltage waveforms and only slight variation can be observed. The mean and
90th percentile values of 3rd harmonic current drawn over 100 days for 50 EVs is shown
in Fig. 6.11a. No significant variation in the 3rd harmonic current can be observed be-
tween sinusoidal and pointed top voltage waveforms, however, the values on flat top
voltage waveforms are significantly less for both mean and 90th percentile values. The
mean value increases to its maximum value of 7 A around 21:30. The mean values on flat
top voltage waveform at the same time is only 4.5 A which 33% less. The 5th harmonic
emission values are more for flat top voltage waveform as shown in Fig. 6.11b. On sinu-
soidal voltage waveform, the 5th harmonic current has lowest values during the 24 hours.
The values slightly increase on pointed top voltage waveform shown by black bold line
in Fig. 6.11b. The mean and 90th percentile values of the 5th harmonics crosses 4.5 and
5.5 A, respectively, during the evening peak. On the sinusoidal and pointed top voltage
waveforms, the mean value increases to a maximum value of 2 and 3 A only.

The 7th harmonic emission on pointed top voltage waveform is very high in compar-
ison to sinusoidal and flat top voltage waveforms as shown in Fig. 6.11c. The mean value
exceeds 4 A for pointed top voltage waveform during the evening peak while the mean
values at sinusoidal and flat top voltage waveforms are around 1 A. The values for the 9th
harmonic current are more on the flat top voltage waveform with the mean value crossing
1 A during the evening time. For sinusoidal and pointed top voltage waveform, the mean
values of the 9th harmonic are quite close during the whole day with the maximum value
of 0.83 A. Fig. 6.11d shows the mean and 90 percentile values of the 9th harmonic current
on different voltage distortions.

6.5 Aggregated impact of nonlinear devices on current harmonic emis-
sion in LV network

Mostly all modern appliances include power electronic converters, including refrigerators,
dishwashers and washing machines. The converters and electronics circuits inside mod-
ern and future appliances may significantly impact the current harmonic emission levels;
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therefore, it is essential to evaluate their impact. The usage profiles of different domes-
tic appliances generated using the DU model have made the harmonic estimation model
compatible with any present and future variant of the home appliances.

6.5.1 Appliance stock
The number and type of appliances in a house depend on occupant needs and prefer-
ences. Researchers have used various national surveys about appliance ownership in res-
idential building to construct their energy models. CREST model has used appliances from
a set of 33 common appliances found in the residential building based on national own-
ership statistics in the UK [60]. American housing survey , English housing survey and Es-
tonian household energy consumption survey are examples of similar surveys conducted
on a national level to determine the household energy consumption trends [120, 121, 122].
For harmonic estimation, the household appliances are selected from the appliance
ownership statistics provided by the Household Energy Consumption Survey (HECS)
[122]. The HECS results were based on the data collected in 2010 from more than 6000
homes in different parts of Estonia. The data was collected by interviewing the
occupants face to face and, therefore, more reliable. The list of most common
appliances, along with their ownership share, is presented in Table 6.3.

Table 6.3 - Appliance ownership data

Type of the appliance Share %
Refrigerator 99
Vacuum cleaner 93
TV 97
Washing machine 89
Electric cooker 72
Microwave oven 61
Coffee machine 21
Electric storage water heater 37

The majority of the household include refrigerators, vacuum cleaners and television
sets, as their ownership share in more than 96%. Washing machines also have high own-
ership while electric cookers have a 72% ownership. The other cooking appliances include
microwave ovens and coffee machines, with an ownership share of 61% and 21%, respec-
tively.

Apart from the appliances in Table 6.3, the other common household appliance’s own-
ership has been assumed. The list of these appliances with assumed ownership statistics
is provided in Table 6.4.

Table 6.4 - Assumed ownership data

Type of the appliance | Assumed ownership share %
Blender 40
Hand blender 30
Toaster 40
Kettle 70
Food factory 20
Floor heaters in WC 35
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6.5.2 Measurement and simulation
Fifteen common household appliances presented in Table 6.3 and 6.4 are measured in
the laboratory on different voltage distortions to record their current harmonic emission.
Based on the current harmonic emission profiles, the appliances are divided into static
appliances and dynamic appliances.

The static appliances have a nearly constant harmonic emission profile under a con-
stant operating mode. These devices include vacuum cleaners, refrigerators, floor heaters,
kettles, electric cookers and other kitchen appliances. The operating mode may include
the thermostat or power mode settings of a device. The interaction of occupants with the
operating mode of static appliances is limited. Therefore, it is assumed that the harmonic
profile of these appliances does not change for the entire length of their operation.

The dynamic appliances have a high variation in their harmonic emission profile. These
devices include washing machines and dishwashers. They operate for a fixed length de-
pending on the operating mode selected by the user. A single usage cycle can be divided
into sub-cycles such as heating, spinning and rinsing etc. The harmonic emission of these
sub-cycles can be very different and explained in section 5.4. These devices are measured
over the full complete operating cycle. The dynamic current harmonic profiles of the de-
vices are used in the simulation to estimate the aggregated impact of current harmonics
by 60 houses.

Itis also assumed that all houses only have LED TV sets as the old models such as LCD,
plasma, CRT are rarely used these days. The harmonic emission of LED TV also changes
in a small range during their operation. The TVs are measured over 1 hour by playing
a video with a constant volume setting. The complex values of harmonics are selected
using bivariate harmonic modelling approach to simulate of the TV load of 60 houses.

Numerous models of each appliance are available in the market and households with
various power ratings and utility. It a challenging task to measure several models of an
appliance. The measurement database is improved by using the PANDA (equiPment hAr-
moNic DAtabase) database that provides current harmonic measurements of different
household appliances.

60 houses are populated with fifteen appliances based on the ownership data. A
Monte Carlo approach is used to simulate 60 for 100 days using the appliance usage data
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generated from the DU model. Each current harmonic is aggregated using vector addition
in complex plane. Harmonic emission of the lighting and EVs is simulated separately and
aggregated into the appliance’s current harmonics. Fig. 6.12 shows the mean and 90th
percentile values of the total RMS current drawn by lighting, appliances and EVs by 60
houses for 100 days. The red bold and the dotted line show the mean and 90th percentile
values of the total RMS current of appliances and lighting only. Both morning and evening
peaks are visible. The morning peak load is high because of the frequent usage of wa-
ter heater between 06:00 to 09:00. The blue bold and dotted line show mean and 90th
percentile values of combined total RMS current of EVs, lighting and appliances load. It
shows the impact of unmanaged charging of EVs on the distribution grid. The total RMS
current has been increased by nearly 174% when EV load is taken into account.

Fig. 6.13 shows the 3rd, 5th, 7th, and 9th harmonic current drawn by lighting, appli-
ances and EV load. The harmonic emission comparison of sinusoidal, flat top, and pointed
top voltage distortions can be observed. The flat-top voltage distortion has increased the
5th harmonic current significantly. The peak value has been increased almost 2 and 1.4
times in comparison to harmonic emission on sinusoidal and peak top voltage, respec-
tively. The pointed top voltage distortion has a major impact on the 7th harmonic. The
maximum value has been increased by nearly 120% and 50% from the values on sinu-
soidal and flat top voltage waveforms. Fig. 6.13 provides an estimate of harmonic current
emission for nonlinear loads in the LV residential network. The 3rd harmonic could be
between 7 and 11 A during the evening peak for 60 houses connected to the network. The
harmonic cancellation could be observed for 9th harmonic current at pointed top voltage
distortion. The aggregated 9th harmonic current of the EV load is cancelling and reducing
the 9th harmonic current in the low voltage network. Similarly, the 5th, 7th, and 9th har-
monic currents can be intherange of 1-4 A, 1- 3 A, and 0.3 - 2 A, respectively. The impact
on high-order harmonic can also be observed using this harmonic estimation model.
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7 Conclusions and future work

7.1 Conclusion

This doctoral thesis provides a stochastic approach to estimate harmonic propagation
in the low voltage network. So far, most of the available models have provided a top-
down measurement approach or offer the worst-case aggregated harmonic emission im-
pact from the network’s nonlinear load. The load and network conditions, however, are
changing continuously in an LV network. An accurate assessment must consider various
uncertainties and the stochastic nature of the load itself but also variations in the distri-
bution network. The probabilistic approach can provide a better estimation of the impact
of nonlinear loads in the distribution network. Therefore, a stochastic current harmonic
estimation model is developed based on devices’ usage patterns and power quality mea-
surements of various appliances on different voltage distortions.

Within the present thesis, a device usage model was elaborated with a target to have
sufficient capability and granularity for power quality analysis. The core of this model is
relying on the device usage model, developed to generate the usage patterns of various
household appliances with fine time resolution. The device-level measurement data and
the results of multiple surveys are used to construct a bottom-up stochastic device usage
model. The appliances were categorised based on the nature of their usage and operating
principles. The main groups of load devices included lighting, EV and domestic loads with
nonlinear characteristics. Each of these groups had specifics and were considered sepa-
rately. For lighting and domestic appliances, it is presented that the empirical stochastic
approach is the favourable one. The lighting model was presented with more detail, to
include the manageability of short-duration operation scenes. For this, a Markov chain
model was selected to reflect the frequent switching of the different lamps. However,
the EV load model is based on a totally different set of assumptions where trip distance,
incoming and outgoing times are estimated from the probability distribution functions de-
fined for each variable. The device usage model is flexible enough to include any current
or future model of load devices.

The measurement data is used to provide an estimation of the current harmonic emis-
sion. Every load device is presented with its characteristic harmonic patterns, respective
to their operating modes. Some of the domestic devices are really low-power loads which
are pushing the measurement methodology to the limits. The effect of various inaccura-
cies and uncertainties on the harmonic current measurement and estimation is discussed
in detail. The accuracy of the measurement setup is determined using signal processing
techniques. The current and voltage waveforms are recorded using a calibrated instru-
ment, and signal processing results are compared with the measurement results obtained
from the primary measurement device. The results confirm the repeatability and accuracy
of the harmonic current measurements. Here several other considerations emerge that
could affect measurement result accuracy for the modelling output. The thesis discusses
the dispersion estimation due to the thermal stability of operating load devices and net-
work topology effects. It is presented that the thermal stability conditions hold the key
for more accurate harmonic estimation. In the cold state, the LED lamps, for example,
produce THDI in the range of 2% to 15%, different from the stable state. The dispersion ef-
fect is observed for the modelling outcome, and it is presented that warmed-up state load
measurements provide a better accuracy margin. Thus, loads measurements would have
to be done using warmed-up loads operating for at least 60 minutes before measurement.

For the distribution network harmonic current emission estimation, the measurement
data would be used along with the load utilisation patterns. Different load connection
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points and various supply voltage waveforms would be supplied to loads. The thesis also
presents an estimation of deviations due to cable length variation. The cable presence
variations are relatively low; however, the noticeable effect is seen for longer cables. The
magnitude variations up to 30% have been observed for higher current harmonics when
the longer cable length is attached during measurements. Similarly, phase angles could
vary up to 20 degrees.

The harmonic estimation model’s flexibility provides various opportunities to study
several impacts of nonlinear loads on the distribution network. The technological ad-
vancements of the loads also affect the current harmonic emission. The thesis provides
a case example comparison of LED and CFL penetration impact on current harmonics in
the distribution network. The impact of circuit topologies on harmonic emission has been
studied, and results show that harmonic filters and power factor correction circuits can
reduce the current harmonics. Another model usage case example shows the influence
of the high penetration of EVs on the distribution network. The unmanaged charging will
drastically increase the load and harmonic currents in the distribution network. The EV
load model is used to generate the charging schedule. The power quality measurement
data at various voltage distortions are used to estimate the current harmonic emission
range in the LV network. The aggregated harmonic emission from most common house-
hold appliances and EVs is estimated using the device usage model and measurement
data. The results provide a range for harmonic currents during the day under various net-
work uncertainties.

The results from various case studies demonstrate the effectiveness and flexibility of
the harmonic estimation model developed. With input data inaccuracies discussed, it is
pointed out that the main variation in the results would be originating due to device usage
model output. It is also expected for the real distribution networks and load variation of
the domestic household. Results indicate that in the statistical approach, the results pro-
vide stable harmonic current margins for a high number of simulated days. The stochastic
model relying on the Monte-Carlo method and provides the occurrence probability for
extreme values. Thus the model is appropriate to use for the estimation of critical param-
eters.

The model provides a vital tool to estimate harmonic emissions. The results are of
great importance for improving the low voltage network operation characteristics by en-
hancing performance in harmonic propagation estimation from nonlinear loads. These
estimations are essential to support the network operators to plan up-gradation or expan-
sion of their network, especially considering the imminent nonlinear devices penetration
in the grid (inverters, battery storage devices).

7.2 Future work

The distribution networks, especially on the LV levels, face abrupt and complex set of
challenges. On the one hand, the policymakers encourage everyone to provide their effort
towards a more sustainable power supply network. The proposals include building near-
zero energy dwellings, high renewable production capacity, more modern and efficient
loads and domestic electric energy storage. All this includes powerful nonlinear power
supply units, converters and inverters. The distribution network has to support these units
and continue operating under specified operating characteristics, i.e., providing sufficient
hosting capacity.

The rapid turn to support the Green Deal and climate neutrality targets will put more
pressure on the distribution grids. The hosting capacity of more powerful units will likely
see limits resulting in the limitation of the new technologies until improved. Therefore,
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the load model essentially provides a base to evaluate the impact of various policies and
technologies on the performance of power supply systems. It allows testing solutions
such as energy conservation, distributed generation, smart buildings, electric vehicles and
smart grids. These estimations could provide valuable information about the significance
of these policies on the power system operation prior to real-time implementation.

The model as presented in this thesis does not incorporate, at this time, PV produc-
tion data. Similarly, battery storage possible implementation would be feasible if not a
mandatory part of the future development. At this time, the model can be used to eval-
uate the effect of demand-side management on the peak load and current harmonics. It
may include scheduling large loads such as EVs to reduce evening peaks. The model could
be extended to include commercial loads to observe their impact on harmonic emission.
The effect of seasonal variation can also be added to estimate the harmonic current range
for the whole year.

Another range of topics is to extend the model to include a stochastic network model.
This could be proposed based on the current harmonic estimation model results. The cur-
rent and voltage values may provide network impedance values at different frequencies.
The network parameters and load model will provide the influence of harmonics on the
grid operation parameters. A more detailed voltage waveform influence to load current
harmonics emission model is already under development.
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Abstract
Measurement Based Approach for Residential Customer Stochas-
tic Current Harmonic Modelling

This thesis provides a stochastic methodology to evaluate the low-voltage distribution net-
work’s current harmonic levels due to the operation of nonlinear loads. With the advance-
ment of power electronics, nearly every household device contain nonlinear circuits. High
penetration of nonlinear power electronic loads with on-site electricity generating units
could deteriorate the distribution grid’s voltage quality to a critical level for operation. The
current harmonics injected by different nonlinear loads affect voltage distortions.

The thesis addresses current harmonic level estimations using a probabilistic bottom-
up modelling approach. One of the core parts of the model is the device usage model
that provides the lighting load, electric vehicle and general domestic appliances usage pat-
terns for the households. The device usage model allows the modelling of the stochastic
nature of the domestic load. Measurement-based data is collected for the devices to be
connected to the grid for harmonic current values estimations. Lighting model presented
through switching schedule of the lamps, electric vehicle model through travel activity
characterisation and domestic appliances with the custom probability distribution func-
tions in the proposed methodology.

Measurement device uncertainty assessment is carried out to support the measure-
ment results and provide a clear indication of the sufficient accuracy margin. Another
set of uncertainty is observed in the load’s thermal stability and operating behaviour re-
sponsible for significant variation in the harmonic currents of the load device. Warm-up is
advised prior to any device harmonic current emission measurement. Various uncertain-
ties related to networks and loads are considered.

Case examples of the model developed include estimation on the impact of the high
penetration of electric vehicles on harmonic emission. The influence of circuit topologies
of nonlinear loads is also estimated. The replacement of appliances with their efficient
power substitutes to reflect the impact of continuous increase of the nonlinear device’s
penetration is also discussed.
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Kokkuvote
Mootmispohine lahenemine olmetarbijate vooluharmooniku-
te juhusliku esinemise modelleerimiseks

Kaesolev doktoritoo esitab madalpinge-jaotusvorkudes mittelineaarsete koormuste talit-
lusega kaasnevate vooluharmoonikute tasemete hindamise stohhastilise metoodika. Eri-
nevate mittelineaarsete tarvitite poolt vooluharmoonikute sisestamine mojutab jaotus-
vorgu pingemoonutusi. Jouelektroonika arengute tulemusena sisaldab iga kodutarviti mit-
telineaarset toiteallikat. Suur jouelektroonikal pohinevate koormuste maar vorgus ning
kohalike elektrienergia tootmisseadmete lisamine voib halvendada jaotusvorgu pingekva-
liteeti talitluse seisukohast kriitilise tasemeni.

Doktoritd6 kasitleb vooluharmoonikute tasemete hindamist Iabi tdendosusliku ldhe-
nemisega alt-liles modelleerimise. Selle mudeli (iks tuumosa on seadmete kasutusmu-
del, milline esitab valgustuskoormuse, elektrisdidukite laadimise ja Gldistatud kodusead-
mete kasutusmustrid majapidamise kontekstis. Seadmete kasutusmudel véimaldab ka-
sitleda kodutarvitite kasutamise stohhastilist iseloomu. Mootmistel pohinevad lahteand-
med on koondatud vorku Gihendatavate seadmete harmoonikute tasemete hindamiseks.
Viljapakutud metodoloogia esitab valgustuse mudeli lilitamise ajastuse, elektrisdidukite
mudeli labitud teekonna iseloomustuse ja kodutarvitid eri-jaotustihedusfunktsioonidena
alusel. Mootetulemuste toetamiseks ja mootetapsuse piisavale tasemele selge hinnangu
andmiseks viiakse labi mooteseadmete madramatuse hinnang. Taiendavaid maaramatu-
se komponente vaadeldakse seadme soojuslikus talitluses ja talitlusviisides, millised poh-
justavad olulist vooluharmoonikute taseme varieeruvust. Vooluharmoonikute emissiooni
mootmisele eelnevalt soovitatakse seadmetele to6temperatuurile soojenemist. Vaadel-
dakse vorgu ja seadmete ihendustega seotud maaramatust.

Valja to6tatud mudeli kasutamise naitejuhtumiteks on elektriautode korge osakaalu
moju harmoonikute emissionile. Samuti hinnatakse mittelineaarsete koormuste ahelate
topoloogiate moju. Et kajastada jatkuvat mittelineaarsete tarvitite osakaalu kasvu méju,
kasitletakse ka tarvitite viljavahetamist vastavate energiatbhusamate toodete vastu.
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Abstract

This paper presents the variation in current harmonics injected by the LED lamps and their effect on harmonic estimation in the
low-voltage network. Lighting consumes a significant portion of total electricity consumption in residential, commercial and
industrial sectors. The energy-efficient lights, for example, light-emitting diode lamps, are reducing this share significantly
over the last few years. These nonlinear LED lamps are the source of current harmonics and reduce the power quality in the
low-voltage grid. The estimation of the magnitude by which they affect the power quality is essential for network operators.
However, the thermal stability of the lamps is a prime consideration for the accurate assessment of the power quality. This
paper investigates the effect of thermal stability on current harmonics injected by LED lamps.

Keywords Power quality - Harmonics - Thermal stability - LED lamps - Lighting modeling

1 Introduction

Commercial and home appliances are now more energy
efficient with improved energy ratings. However, energy-
efficient appliances often include nonlinear power electronic
units that can contribute to poor power quality by sourc-
ing non-sinusoidal current, thus adding load of the current
harmonics. It is, therefore, necessary to estimate the mag-
nitude by which they can influence the power quality in a
low-voltage (LV) network.

One of the major areas where energy efficiency brings
immediate impact would be lighting, as it consumes 19%
of the total electricity in the world and 14% in the EU [1].
Lighting accounts for more than 20% of total electricity con-
sumption in the residential sector [2]. The wide dissemination
of energy-efficient lights, for example, LED lamps in recent
years, has shrunk the lighting power consumption. The dwin-
dling prices and improved reliability have made them very
popular amid residential consumers. Policies to scale down
inefficient lamps in different countries also contributed in
this regard [3]. Many countries, including, for example, EU,
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Ehitajate tee 5, 19086 Tallinn, Estonia

Published online: 05 January 2021

Australia, Canada, Colombia, Russia, and Malaysia, have set
policies aimed at prohibiting the sale of inefficient lamps [4].
Better life cycle cost and absence of mercury makes LED an
efficient and environment-friendly lamp [5].

The selection of a lamp by the customer is influenced
by the price tag, power ratings, lumens, and light quality.
However, they are not aware of the lamp characteristics,
power quality information, and design technology. Incandes-
cent lamp (IL) was the most popular choice for many years,
although they have poor efficiency. Slightly better technolo-
gies, such as halogen (HL) or discharged lamps [6], latter
including fluorescent (FL) and compact fluorescent (CFL)
lamps, are more energy-efficient and have a longer life span
in comparison with IL. Apart from all the efforts by govern-
ments and policy-making institutes, many households still
have inefficient lamps.

During the last decade, LED lamps are getting more pop-
ular because of more competitive prices, better efficacy, and
improved light quality. In 2012, the share of CFL and LED
lamps in the UK residential sector was 7.9% and 0.2%,
respectively [7]. The projected growth of LED lamps market
share indicates that by 2020, 42% of the indoor and 75% of
the outdoor lamps will be LED. The LED uptake will further
increase to 81% of the total indoor lamps and 99% of the total
outdoor lamps by 2030. In Europe, the LED penetration will
be in the range of 42—46% of the total lamps installed by
2020 [8].
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Both CFL and LED lamps include power electronic cir-
cuits and reduce power quality by adding nonlinear current
load in the network, which in turn can be one of the main
reasons for voltage distortions. The presence of a sine wave-
form in the distribution network voltage is one of the critical
power quality indexes. As the voltage becomes distorted from
the sine wave, the periodic deviations are characterized as
harmonics. The presence of significant share of voltage har-
monics can lead to several unwanted consequences, such
as decrease of transformer lifetime and reliability of the
distribution line [9], even up to malfunction of protection
equipment such as relays and circuit breakers; the capaci-
tor banks can be overloaded because of their low impedance
at higher frequencies; electrical equipment including motors
may produce additional noise and vibration; added interfer-
ence in communication lines may be observed [10]. Very
often, the reason for the distorted voltage is high distorted
load current in the network components, lines, and transform-
ers. Itis therefore vital for the distribution network operator to
assess, how the power quality indexes are met during the net-
work operation. One of the key inputs to this is the estimation
of expected distorted current levels, i.e., current harmonic
levels.

Although the current harmonic load by individual LED
lamp is minimal, but the overall effect of all the lamps oper-
ating in the distribution network can be significant. Still, there
are a lot of challenges to estimate and mitigate the harmon-
ics caused by the lamps as well as, for example, the other
high-power power electronic devices such as inverters.

While the LED lamps can be considered rather stable units
in their illuminance, initial research has shown that their
power ratings tend to be variable in time [11]. The varia-
tions can be explained by their inherent process of heating
up to their stable thermal operating point, related also to their
internal losses. It is evident that this heating process would
result in variations both in the fundamental power draw but
also relates to the levels of the load current harmonics.

This paper focuses on the aspects of the LED lamps,
especially related to the thermal stability of the load cur-
rent harmonics. The magnitude of the inaccuracies due to
the thermal stability of the LED lamps in the measurement
and estimation of power quality is discussed in this paper.
In Sect. 2, a literature overview is presented. A detailed
overview of led lamps has been provided concerning effi-
ciency, types, and performance in Sect. 3. The various
performance indicators of LED lamps have been compared
with CFL and IL. Types of LED lamps have been catego-
rized based on the circuit topologies and current waveforms
drawn by the LED lamps. In Sect. 4, a measurement setup
used to evaluate the power quality indexes of the LED lamps
is described. The current harmonics and phase angles anal-
ysis approach to estimate the thermal stability of the LED
lamps is discussed in Sect. 5. The results of the comparison
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between thermal stability time and other vital parameters are
presented in detail. Section 6 shows the difference between
current harmonics estimation with or without thermal stabil-
ity is taken into consideration. The conclusions are discussed
in Sect. 7.

2 Literature overview

Literature reports are available on the effect of large-scale
penetration of energy-efficient lamps in the distribution grid.
The implication of the mass adoption of CFL on the New
Zealand distribution system is presented in [10] where the
effect of CFL on the grid was presented with a bottom-
up Norton equivalent model of the distribution grid. It was
reported that although the active power saving was the same
for all CFLs, the lamps with filters had lower harmonic losses.
Different proportions of CFL, LED, and IL were considered
for lighting load applied to a distribution grid using computer
software in [12]. It is described that while LED lamps have
the lowest power factor, but total current harmonic distortion
(THD;) was less in comparison with CFL. A CFL is mod-
eled, and MATLAB simulation is used to study the impact
of large-scale adoption of CFL in the LV distribution grid
[13]. However, in this study, only one lamp is considered,
and therefore, harmonic cancellation was not included in the
study. The results show the negative impact on power qual-
ity, reduced power factor, and harmonic distortion. Another
set of results to compare THD; and power consumption for
different lighting technologies is made in another study [14]
indicate that LEDs had higher THD; values than CFL. Here,
still different types of LED lamps were not considered. A
comparison between IL load and CFL load presented in
[15] reported possible distribution transformer overloading
by 30% in the case of the CFL load due to the high current
harmonic levels.

The aforementioned studies have to be observed in their
limitations and usually do not provide generalization on a
level that would provide reasonable accuracy for analyzing
the effects of added LED lamps in the distribution network.
Furthermore, the detail level is not so fine to take into account
different heating models of the LED units. Only a few recent
studies done on the adoption of energy-efficient lamps in the
distribution network report aspects of thermal stability on the
operation. A distribution grid simulation is used to assess the
effect of CFL and LED penetration where lamps were stabi-
lized for 15 and 30 min, respectively, in [16]. High voltage
distortion was reported, and THD, was even above the limits
defined in the standard IEEE 519-1992 for the unbalanced
network. CFL lamps were measured at room temperature and
cold state in [17] to evaluate the effects on the distributed grid.
A computer model of the distribution grid is used to compare
the effect of CFL adoption in the grid. An increase in the odd
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Table 1 IEC Class C harmonic

limits Harmonics (h)

P >25
Current harmonic limit (%)

P <25
Harmonic current per watt (mA/W)

3 30 x p.f 34

5 10 1.9

7 7 1

9 5 0.5

11 3 0.35
13 3 3.85/h

current harmonics except for the Sth and 7th harmonics due to
harmonic compensation is reported. Harmonic current levels
observed for LED lamps during dimming operation in [18]
had used lamps switched for 10 min to stabilize them before
measurement. The study concludes an increase in the har-
monic levels with an increase of dimming angle to reduce
the brightness. High-power (25 W) street LED lamp was
measured in [19] to compare power quality issues with other
lamps. Measurement was taken after the steady-state warm-
up of the lamp, where it failed to achieve a steady-state even
after 30 min because of its dependence on temperature. The
power factor was 0.96, and a current was nearly sinusoidal.
In the current harmonic spectrum, 3rd harmonic was the most
dominant 5.4% of the fundamental following 9th, 13th, and
15th harmonics with 2.5%, 1,6%, and 1.25%, respectively.
The results were compared with more powerful street light
LEDs of 68 W and 144 W. The magnitude of current har-
monics and THD; were much higher in the latter case.

In the incandescent lamps, over 90% of the input power is
lost in the form of heat [20]. The efficacy and lifetime have
been increased by adding halogen gas in the incandescent
lamps, resulting in two times longer lifespan and 70% better
efficacy in comparison with IL [21]. Still, these lamps are
of resistive load type and usually are not associated with
particular nonlinear characteristics.

A typical CFL lamp could have a 15 times longer life span
and use 70% less energy in contrast to IL [22]. However,
their operation requires lamp driver circuits that act as non-
linear load and are the source of current harmonics. While
electromagnetic lamp drivers are recyclable and have bet-
ter reliability and longer life span, their poor efficiency and
lower power factor [23] make electronic lamp driver more
favorable with better input power factor, lower THD; and
ability to eliminate the flickering effect of the lamps.

The LED lamps are the semiconductor-based light sources
and require a constant current to generate stable and efficient
light output. Their light color is managed by types of materi-
als used as coatings to generate visible light. These materials
are known as luminescent and convert parts of input energy
into the electromagnetic waves in the visible, ultraviolet, or
infrared spectrum [24]. The other method is an RGB (red,

green, blue) system that utilizes a mixture of red, green and
blue LEDs to produce white light. The RGB systems are
more complicated because of the electrical control system
involved [25]. In an LED lamp, radiation emission is almost
negligible, and heat is mainly removed through conduction
or convection methods. Therefore, heat sinks are present in
most of the high-power LED lamps.

The lamp driver circuits provide a (near) constant DC cur-
rent source to the LED string and are the most critical part
of the lamp. Rectification and current control refer to power
electronic circuits that operate as nonlinear load. This means
they will inject load current harmonics into the grid. This
may also depend on the supply voltage. The distortion of the
voltage waveform may further alter the harmonic emission
profile of the nonlinear loads [26].

To limit the possible effects of the high levels of harmonic
currents, IEC 61000-3-2 standard states limits to electrical
equipment harmonic current emissions. The lighting equip-
ment falls under Class C, while based on active power
consumption, a distinction is made for ratings from 5 to 25 W
and greater than 25 W. Table 1 shows the harmonic current
limits percentage to the fundamental for load greater than
25 W. The lamps less than 25 W must observe one of the
following conditions.

— The harmonic currents shall observe the power limits
shown in Table 1.

— The 3rd and 5th harmonic currents should not exceed
86% and 61% of the fundamental frequency, respectively

— The THD must not be greater than 70%, and the 3rd, 5th,
and 7th harmonic currents must be equal or below 35%,
25% and 20%, respectively [27].

While the IEC 61000-3-2 standard does not indicate any
limits for the harmonic angles, the harmonic current addition
or cancellation may result in unexpected current harmonic
emissions. The current harmonic levels for the lamps can
be high, as pointed out in [28]. Levels of injection from the
commercially available LED and CFL lamps depend on the
control strategy and topology of the power supply. Newer
lamps include filters and power factor correction circuits to
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Table2 LED lamp portfolio
summary

Type 1 Type 2 Type 3 Type 4 Total
No. of lamps 140 15 4 4 163
No. of manufacturers 7 2 1 28
Average price (euro/W) 0.53 0.51 0.41 0.45 0.48
Lumens (Im) 81 82 92 86

reduce current harmonics and improve the power factor. In
another study, the performance of LED lamps was monitored
for normal voltage and voltage sags [27]. The experiment
results show THD; values from 30 to 175% for the LED
lamps. THD; injection depends on the type of filter used in
the lamps. For the active filter, valley-filled circuits, and pas-
sive filters, the THD; injection was found between 30-35%,
63-70%, and 100-175%, respectively. It has been proposed
that LED lamps could be classified based on the types of
components present in the LED driver circuit. A typical LED
driver circuit contains rectifier circuits that convert primary
AC supply to low-voltage DC. For a constant current supply
to the LED, the DC-DC converter is used. Electromagnetic
interference (EMI) filter and power factor correction (PFC)
filters may also be present to improve the current waveform.

3 LED lamp overview

For this study, measurement results of 163 LED lamps avail-
able in the market were used, and the shape of the current
waveform when pure sinusoidal voltage is applied was used
for classification. Table 2 summarizes the average price per
watt, average light output efficacy, the number of lamps mea-
sured, and the number of manufacturers for each LED type
used in this study. The circuit typology for different types of
LED lamps is shown in Fig. 1.

Almost 88% of the measured LED lamps have the current
waveform of type A as shown in Fig. 2. It is a pulse-like
shape and similar to the CFL current waveform [29]. Such
a lamp driver circuit contains a rectifier circuit, a DC-DC
converter to regulate the input voltage to the LED and EMI
filters. In type B LED shown in Fig. 2, the rectifier starts
to conduct around zero crossings of the input voltage and
continues until the input voltage reached the peak value. It
has 50% more conduction time than type A LED. The Zener
diode D, limits the forward voltage to the LED. Variations in
the input voltage can affect the DC voltage at the LED in these
lamps [29]. The current drawn by the C type has a square
shape, as shown in Fig. 2. The circuit contains a constant
current regulator (CCR). It provides a constant current flow
over a wide voltage range and therefore protects the LED
[30]. The current waveform drawn by type D LED in Fig. 2
is close to sinusoidal, which is achieved through active power
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factor correction (PFC) converter [31]. The resistor can also
be added in the LED string to minimize the current difference
[32].

4 Measurement setup

A test bench has been developed for this experiment. It con-
sists of sixteen lamp sockets connected to a bus-bar through
relays. The relays are controlled by the control box consists
of a DC power supply and sixteen transistor switches. It pro-
vides a 12 V DC voltage to the relays when a digital input is
applied to the transistor switch. A National Instrument (NI)
data acquisition module (DAQ) is used to provide the digital
inputs to the control box and analog reference signal to the
controllable power supply. A 4-kVA Chroma 61505 power
supply is used in this experiment. This power supply is pro-
grammable and can be controlled via reference signal VREF.

VREF = Vvoiut % Veoef M
RANGE

Here, Vi gef is 7.072 and VR ANGE 1s 300 V. A MATLAB
program is used to generate this reference voltage and digital
signals for the control box through the DAQ module. Ampli-
tude and phase angles for each odd harmonic are used to
calculate the reference signal for the programmable power
supply. Equation (2) is used to calculate the V¢ from the
given amplitude and phase angle of the fundamental and odd
harmonics up to the 19th harmonic.

n
Vout = Y V2 x Ai sin@ fity + i) )
i=1

Here, A; is the RMS value of harmonic magnitude and
fi is its frequency. The «; is the phase difference between
the harmonic and the fundamental component. f; is the sam-
pling interval for which the calculation has to be made. It is
calculated from the sampling frequency f; as shown in Eq.

Q).

ty = — (3)
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Fig.1 Schematics of different types of LED lamps

The sampling frequency can be calculated by the time dura-
tion 7, of the waveform to be generated and the number of
samples in that interval N as shown by Eq. (4).

=X
.S_Tm

“
This setup has enabled us to generate a pure sinusoidal volt-
age with a sampling frequency of 100 kHz. For power quality
measurements, A-Eberle PQ-BOX 200 is used to record har-
monic magnitude and phase angles with 41 kHz sampling
frequency. The PQ-BOX 200 is capable of recording power
quality data with a 1-s resolution. The 1-s data are based
on the average values calculated at 200 ms according to
IEC 61000-4-30 standard. The experiments were performed
under a constant laboratory environment at 24°C with an
unforced ventilation system. Figure 3 shows the block dia-
gram of our measurement setup.

2a-2a

5 Measurement and analysis

We have used our measurement setup to test 163 LED lamps.
During each measurement cycle, sixteen LED lamps were
connected to the test bench. Each lamp is measured over 1
h and switched automatically for each measurement cycle.
The distance between the LED lamp measured in each cycles
was more than 1 m from the lamp measured in the previ-
ous cycle to maintain a constant temperature. The lamps are
connected through relays, and only one lamp is switched
ON during each measurement cycle. It will eliminate addi-
tional primary and secondary harmonics due to several loads
sharing the same power source [34]. The data extracted for
analysis comprises THD;, current harmonic magnitude and
phase angles, active power, reactive power, and power factor.
Current waveforms are also recorded for each LED lamp.
The THD; of LED lamp changes continuously until it
become thermally stable. The THD; of a thermally stable

@ Springer



Electrical Engineering

Current Waveform Drawn by LED Lamps
T T T

Voltage Waveform

—— Type A LED Current
- = = Type B LED Current |4 0.1
= Type C LED Current
...... Type D LED Current

0.05

Voltage
Current

&

. .
5ms 10 ms 15 ms 20 ms

Time

Fig.2 Current waveform drawn by different types of LED

LED lamp is different than the initial value of THD; when
it is turned ON. This difference can be up to 10%. Figure 4a
shows the histogram of the percentage difference between
thermally stable and cold LED lamps. For the majority of
the lamps (95%), the difference in THD; before and after
thermally stability is between 2 and 8%. Only 3.6% of lamps
have less than 1% difference, and 1.84% have more than 10%
difference.

The percentage difference in THD; between thermally sta-
ble and cold states increases with the increase of the active
power of the lamps. A total of 163 LED lamps are divided
into five groups based on the active power. Figure 4b shows
the box plot of percentage difference in THD; between cold
and thermally stable LED lamps of all groups. The central
line indicates the median, and the bottom and top edges of
the box indicate the 10th and 90th percentiles. The whiskers
are extended to extreme values. It is clear from Fig. 4b that
as the power of the lamp increases, the percentage differ-
ence of THD; between thermally stable and cold lamps also
increases. The (3-5) W and (7.1-9) W groups show a rela-
tively large variation as most of the type A lamps include in
these groups.

5.1 Thermal stability time estimation

The current harmonic magnitude and phase angles measured
during the experiment were analyzed to find the stability time
of each LED lamp. We have considered up to the 19th cur-
rent harmonic magnitude and phase angles in this study. The
power supply may add unwanted small variation in the har-
monics, and it can affect the current harmonics measurements
[35]. To avoid these variations and to simplify the process, the
trend fitting curves are applied to all current harmonics and
phase angle variations over time. This approach has enabled
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us to calculate the stability time as the magnitude and phase
angles of all current harmonics observe an exponential rise
or decay with time. Equation (5) shows the exponential curve
fitting that is applied to the magnitude and phase angles of
LED lamps.

y=dyx e 4 A; 16))

Equation (5) provides the values of fitting curve y for each
value of original data x. Here, Ay is the final value of the
LED lamp magnitude or phase when the lamp becomes fully
thermally stable. The difference between the initial value of
magnitude or phase (during 1st minute) and the final value
is represented by d4, as shown by Eq. (6).

da=As— A, ©)

The time constant t in Eq. (5) is the time required by the
exponent to decay by 1/e or grow by the factor e. The time
constant is calculated by using Eq. (7) for all the harmonics
up to the 19th.

== Tgi)n( f”y : !
da
where Ty is the time when the magnitude or phase angle
reaches 80% of the final value. 7}, is the starting time, and its
value is, therefore, 1. The y is the difference between 80%
of the final value of magnitude or phase and the initial value,
as indicated by Eq. (8).

y = Agon — Ao (8)

After finding the time constant, the stability time of the LED
lamp can be estimated. LED lamps will become thermally
stable when Eq. (5) is decayed by 1/3e or increased by 3e.
It will be equal to 37. Hence, the stability time 7 can be
calculated by Eq. (9).

Ty =3xT1 O
5.2 Thermal stability time variations

The stability time 7 of all the current harmonic magnitude
and phase angle is estimated by the same approach. As an
example, Fig. 5 shows the current magnitude (RMS) and
trend fitting curve for a 9.5 watt (type A) LED lamp. The
green line indicates the RMS values of the current for funda-
mental and odd harmonics up to the 19th. The blue line is the
trend fitting curve applied by using Eq. (5). The time constant
7 is indicated by the red dot and calculated by using Eq. (7).
The thermal stability time 7 is shown by the black dot and
is calculated by Eq. (9). The trend curves provide a close fit
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to the original current data and have applied to all the LED
lamps to find out the thermal stability time of each lamp.
The stability time 7, will change if we changed y in Eq. (6).
In our study, we have selected y by using 80% of the final
value. However, y value can be changed by changing Agog,

BBHW  (5.1-7)W (7.1:9)w (9.1-12)W (12.1:20)w
LED lamp power
(b)

in Eq. (8), with 70-90% of the final value (A70%—Ag0%).
However, the magnitude variation will become less than 1%
as it reaches 80% of the final value. Similarly, we can find
the stability time of the phase angles for the fundamental
and odd harmonics. Figure 6 shows the original data, trend
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Fig.5 A 9.5W (type A) LED lamp magnitude (RMS) variations over time

fitting curve, the time constant t, and stability time 7 for
the phase angles of fundamental and up to the 19th odd har-
monic. This procedure is applied to the measurement data of
all 163 LED lamps, and thermal stability time is estimated
for current harmonics magnitude and phase angles.

The trend fitting curve has enabled us to estimate the ther-
mal stability time 7 of all the LED lamps. The thermal
stability time may depend on many factors like temperature,
lamp driver topology, the variation in the magnitude or phase
angles of current harmonics, and the active power of the lamp.
To investigate the reason that may influence this variance, we
have compared thermal stability time 7 of all LED lamps
with active power and d4.

The box and whisker plot for the magnitude of the current
harmonics against the stability time is shown in Fig. 7a. The
box top edge represents 95 percentile, and the bottom edge is
equal to 5 percentile of the T values. The line between the top
and bottom edges of the box shows median values. The upper
whisker is extended to 99 percentile value, and the bottom
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whisker represents 1 percentile value. The plot shows that for
95% of the lamps, the magnitude of all harmonics becomes
stable below 40 min. The fundamental magnitude becomes
thermally stable quickly than most of the higher-order har-
monics except for the 9th and 11th harmonics. However, the
upper whisker of the 9th and 11th harmonics is more than
55 min in contrast to the fundamental where it is less than
45 min. The 5th, 13th, and 15th harmonics have the most
significant spread between 5 and 95 percentile values of 7.
The stability time extends up to 38, 37 and 36 min for 5th,
13th, and 15th harmonics, respectively.

The phase angles, on the other hand, has a different spread
in comparison with the magnitude. Figure 7b also shows the
box and whisker plot of the phase angles versus the thermal
stability time for the fundamental and odd harmonics. The
fundamental component has the highest value of the stability
time 7 around 33 min at 95 percentile. It is very close to
the 3rd and 5th harmonics. For the 7th to 19th harmonics,
the 7 is between 31 and 27 min for 95 percentile of LED



Electrical Engineering

3rd Harmonic

5th Harmonic

7th Harmonic

112 118 - 5
g g original data §
5 5 116 Trend curve 2 o
g g @®  Time Constant g
~-114 ~ 114 ® Stability Time ~
[ [ [
] 7] ? 45
8 S112 S
o o o
-116 - - ) 110 - - ) -20 - - )
0 20 min 40 min 60 min 0 20 min 40 min 60 min 20 min 40 min 60 min
TIME TIME TIME
9th Harmonic 11th Harmonic 13th Harmonic
~-115 150 —_
[ [ o 40
° o o
g g g
S S 140 S
@ @ o 30
@ @ @
< -130 c =
= & 130 &
-135 , , _ , : ) 20 , ; )
0 20 min 40 min 60 min 0 20 min 40 min 60 min 0 20 min 40 min 60 min
TIME TIME TIME
15th Harmonic 17th Harmonic 19th Harmonic
- 70 . 180 .80
M © M
o e e
Y Y 9 %0
& -9 @ 160 a
£ £ £
o o o
-100 , , , 150 , . , 40 , , ,
0 20 min 40 min 60 min 0 20 min 40 min 60 min 20 min 40 min 60 min
TIME TIME TIME
Fig.6 A 9.5W (type A) LED lamp phase variations over time
60 minF T T T T T T T T T T 3 60 min F T T T T T T T T T T |
85 minF T T 1 55 min T J
) - 1 1 ! 1 1 1T
50 minf + I - 1 i : T 7] 50 min 1 1 1 : i
g4smng — : ” 1 1 | ; 1 Rasmint : 1 1 i i
E sominf ! ! ! ! ! ! 1 1 F L ! ! I |
> 1 1 i 1 ) i > 40 min : 1 1 1 T T 1 L
= 35minp ! } 1 1 = 35minf ! A 1 1 ! 1 1
o . 1 | =} i 1 1
S 30minf 1 1 S30mint
»n ) 7]
g 25 minf 1 g 25 min 1
E 20 min| 1 E 20 min 1
= 15minf 1 1 = 15minf 1
10 minf 1 10 min - 1
5minf 1 1 5 min - i 1 i
- L = - = - = = - -+ L 4 o L
1st 3rd 5th  7th 9th 11th 13th 15th 17th 19th 1st 3rd 5th  7th 9th 11th 13th 15th 17th 19th
Harmonics Harmonics
(a) (b)

Fig.7 Box plot of stability time against a harmonics magnitude and b harmonics phase angles

lamps. The upper whiskers of fundamental to 7th harmonic
lies between 53 and 58 min. Therefore, it can be concluded
that the phase angles of 95% of LED lamps get thermally
stable before 35 min. The maximum time required for some
lamps to have stable phase angles is 58 min. The magni-
tude takes more time to get stable and 95% of LED lamps
have a stable magnitude before 40 min. The magnitude takes

5 min more time to get stable in comparison with the phase
angles. The maximum time taken by the lamps to have stable
magnitude for all the harmonic is 56 min. Figure 8 shows
the stability achieved over time for the magnitude and phase
angles from fundamental to the 19th harmonic for all the LED
lamps. During the first 10 min, the percentage of LED lamps
with a stable magnitude is more than the lamps with stable
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phase angles. For the phase angle, 24-29% of LED lamps
have achieved thermally stable for some or all harmonics
during the first 10 min. On the other hand, the lamps with
stable RMS values are between 32 and 58% for few or all
harmonic during the same time. After 20 min, the total per-
centage of lamps with thermally stable magnitude and phase
angles are in the same range. Now, 57-87% of LED lamps
have achieved stability for the magnitude of one or more har-
monics. The phase angle is stable for 67-76% of LED lamps
for any odd harmonic. After 30 min, 88-97% of lamps have
stable magnitude harmonics, and 90-96% have stable phase
angles.

5.3 Stability time and active power

The stability time may also be affected by the power of
the LED lamp, although it is not a valid assumption for all
LED lamps. Some high-power LED lamps have shorter sta-
bility times in comparison with the low power LED lamps.
However, the overall trend shows that in general high-power
LED lamps have a slightly more thermal stability time in
comparison with the low-power LED lamps for the funda-
mental and higher harmonics. Figure 9 shows this trend. All
163 LED lamps are divided into five groups. The group one
contains LED lamps with power between 3.3 and 5 W. Sim-
ilarly, groups 2, 3, 4, and 5 contain LED lamps with active
power between 5.1-7 W, 7.1-9 W, 9.1-12 W, and 12.1-20 W,
respectively. The box and whisker plot is made for funda-
mental and higher-order harmonics for the aggregate data of
LED lamps in each group. The individual harmonics are rep-
resented by different colors as shown in Fig. 9. The top of the
box indicates 75 percentile value, and the bottom indicates
25 percentile values. The circle between the box represents
the median value. The whiskers are extended up to the most
extreme data points and outer circles represent outliners.

It is evident from Fig. 9 that the median value of funda-
mental increases linearly from around 5 min for group 1 to
22 min for group 5. Hence, there is more than a three times
increase in the median value of fundamental magnitude from
group 1 to group 5. Similarly, the 3rd and 5th harmonics show
a similar trend with 0.76 and 2.3 times increase, respectively.
The 7th harmonic shows an increase in the median value up to
group 4, but then it decreases for group 5. The higher harmon-
ics do not show an increasing or decreasing trend. However,
the overall trend of the 25-75 percentile boxes shows an
upward moment from group 1 to group 5. The large spread
of stability time indicates its dependence on factors related to
lamp architecture. These factors include cooling and electri-
cal structures of LED lamps. However, Fig. 9 shows a general
trend of an increase in the thermal stability time as the LED
lamp’s active power increases.

@ Springer

5.4 Stability time and dg

The d4 in (6) shows the difference between 80% of the final
value of magnitude or phase and the initial value. It means
that if the d4 is large, then the difference between the har-
monic magnitude or phase angle is more between thermally
stable state and cold state. Figure 10 shows the plot between
percentage change between 80% of the final value and the
initial value (% d 4 ) against the stability time. Different mark-
ers are used to indicate types of LED lamps based on their
current waveform. The colors are used to indicate the power
of the lamp. Although most lamps in this study are of type
A, the trend between percentage d4 and thermally stability
time is independent of the LED lamp types based on the
current waveform. Figure 10 shows the percentage change
in d4 against thermal stability time for the fundamental and
higher-order odd harmonics. The green circle in each plot
indicates the majority trend. The fundamental component of
magnitude shows an incremental linear trend. The 3rd, 7th,
and 15th harmonics also show a similar trend to the funda-
mental component. The trend for Sth harmonic is somewhat
linear, but the growth is very flat. It means most lamps with
a low d4 percentage of magnitude also have a higher sta-
bility time. The 9th harmonic has a high concentration of
stability time between 10 and 20 min. Also, the percentage
of d4 is between 1 and 10% during the stability time. Hence,
the trend is close to a uniform distribution of stability time
between 10 and 20 min for different values of d4 percentage.
The 11th and 19th harmonic has a linear incremental trend
but between 8 and 13 min, the percentage of the d4 has a
wide range of 1-15%. For the 17th harmonic, the trend is
indicated by two circles. The upper circle contains more data
and hence shows a slow incremental linear change of thermal
stability time against a substantial change in d4 percentage.
The lower circles have fewer values but have a more rapid
linear increase of stability time against d4 percentage.

6 Effect on harmonic estimations

The lighting load has a significant share in the total end-users
electricity consumption in the residential sector. Therefore,
switching to energy-efficient lamps has a substantial impact
on energy savings. To observe the current harmonics and the
impact of thermal stability in the residential sector, we have
constructed a lighting usage model. This model is based on
the real-time measurement of lighting load in a residential
building, occupancy profiles, and the number of lamps in
the building. This model can simulate lighting usage of each
lamp at a high resolution of 1 min in the residential building.

Lighting load modeling in the residential buildings is a
challenging task. Lighting load is highly variable in nature
and depends on many factors, including the building struc-
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ture, occupancy profile, weather, and solar cycles [36]. We
have used a bottom-up approach to formulate a model based
on end-user appliance usage patterns. A residential building
is measured with sub-meters at the device level for a month.
The power consumption data are analyzed to study the usage
patterns of each device. For the lighting load, a single sub-

meter provided us the aggregated power consumption of all
the lights in the building.

The aggregated consumption data for lighting load are
compared with the active power of individual lamps in the
building to find the usage patterns of each lamp. The total con-
sumption is further divided into three intervals: morning, day,
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Fig. 10 dj4 (%) against time for all LED lamp types
and evening cycles. The measurement data shows an iden-  ble values and is given by Eq. (11).
tical usage pattern during these intervals. The consumption
patterns during weekdays and weekends were.also dlfferen.t. 1 for x; <x
The occupancy profiles were created by studying the electri- — 1[xi <tI=1) g o =~ (11)
1

cal appliance usage data that comes in direct contact with the
occupants. For example, lighting, cooking, washing, clean-
ing, and media appliances are the active appliances used by
the occupants directly. The usage pattern of each lamp is
divided into switching and noise events. A switching event
occurs when the lamp is used for more than 10 min. When the
lamp is used for less than 10 min, it is accounted for a noise
event. The switching and noise events during the morning,
day, and evening intervals are calculated for all the lamps.
Based on this input data, a statistical model is formulated to
determine the lighting load in a residential building.

Empirical distribution function (ECDF) is used to calcu-
late the probability density function of occupancy profiles,
the number of switching and noise cycles in the morning,
day, and evening intervals. Equation (10) is used to calculate
the ECDFs.

Pn(sz)=%Zl[xisz] (10)

i=l

Here n is the sample size of possible values and 1[x; < t]is
the indicator function. The indicator function has two possi-
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Therefore, by calculating all the data less or equal to the given
value x, we can find the probability P, by dividing it with the
sample size. The ECDFs for the number of switching events
and noise events are calculated for each interval for all days.
The duration of each switching event Dy,, and noise events
dps 1s used to find the total lighting demand of each house
for a day with the 1-s resolution, as shown by Eq.(12).

n n
Pr = Z (DszPsw)+Z(dnsXPns)

sw=1

12)

ns=1

The lighting power consumed during each switching and
noise events Py, and P, is calculated by Eq. (13) and
Eq. (14).

n m
Poy=Y > PLxT, (13)
s=1 L=1
n m
Pug= Y3 PLxTy (14)
N=1L=I



Electrical Engineering

7 T T
95 Percentile Cold Values
6 [ 95 Percentile Thermally Stable Values
Mean Cold Values
51 Mean Thermally Stable Values
Tt
t
1)
=
S
o 3

0
00:00 6:00

12:00

18:00

24:.00

TIME (Hr)

Fig. 11 Estimated fundamental current difference for cold and thermally stable measurements

The Ty and Ty are the time duration for each individ-
ual switching and noise event, respectively. A Monte Carlo
approach is used by selecting random lamps based on the
light output needed in each room. The light output is cal-
culated by the type of lamps used in the building measured
for the data collection. During each run, lamps were selected
randomly form uniform distribution. The cold and thermal
stable measurements for each lamp were used to find the cur-
rent harmonics for 60 houses during each run. The number
of lamps in each house may vary from 5 to 11.

Figure 11 shows the fundamental component variation of
lighting usage in 60 houses. The bold black line shows the
mean value of the fundamental current when thermally stable
values are used in the simulation model for calculation. The
red line shows the mean value when cold lamp measurement
data are used. The difference is more noticeable during the
evening peak. It is evident from Fig. 11 that the mean value
difference is quite significant. Therefore, the cold measure-
ments will result in inaccuracy in the estimation of current
harmonics. The boundary of the light grey shaded area indi-
cates the 95 percentile values of the 100 run Monte Carlo
model simulation when cold lamps measurements are used.
The dark grey area boundary indicates the 95 percentile val-
ues of fundamental current magnitude when thermal stable
values are used. A comparison is made between the harmonic
currents estimated using measurements with thermally stable
and normal values with a cooling effect in a previous study,
but the results show a negligible difference [11]. Although
lamp cooling may affect the current harmonics, the mean
variation will be between black and red lines as shown in
Fig. 11.

Figure 12 shows the difference between the mean cur-
rent magnitude estimated using cold and thermally stable
measurements for the higher-order harmonics. All current
harmonics show a significant difference in the magnitude
estimated using cold and stable values. The 7th and 9th har-
monic current magnitudes show a higher value for thermally
stable measurements in contrast to the cold measurements.
For the remaining harmonics, the estimated current magni-
tude is higher when the value of the cold measurement is
used.

Therefore, for an accurate estimation of power quality
indexes, the thermal stability of the lamps is critical; oth-
erwise, it will lead to significant errors in the estimation.
Hence, the measurements should be taken once the LED
lamps become thermally.

7 Conclusion

A detailed analysis of the time-dependent variation in the har-
monic current emission by LED lamps during power quality
measurements is discussed in this paper. It is evident that the
difference between the measurements taken in the cold state
and the thermally stable state is quite significant. This will
result in a substantial error while estimating the magnitude
of current harmonics in the real-time scenarios where a large
number of LED lamps are involved. The thermal stability
time is independent of the type of LED driver circuit topol-
ogy as different types of LED lamps show a similar range of
stability time. However, stability time depends on the active
power of the lamp. High-power lamps show more difference
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Fig. 12 Higher harmonic current difference for cold and thermally stable measurements
between the current harmonics magnitude and phase angles References

measured at the cold and thermally stable state. The THD;
difference between a cold and thermally stable state of LED
lamps also increases with the active power. Therefore, the sta-
bility time tends to be higher for more powerful LED lamps.
95% of LED lamps have stable current harmonics magnitude
and phase angles after 40 and 35 min, respectively. Therefore,
majority of the LED lamps under 25 W achieve a thermally
stable state in 40 min. The maximum time taken by the lamp
to become thermally stable was 57 min. However, the lamps
with active power more than 25 W may take more time to get
thermally stable. LED lamps with significant differences in
the current harmonics at cold and thermally stable state have
longer stability time.

A lighting usage model is used to observe the effect of time
variation of current harmonics in the distribution grid. The
results show a notable difference for estimated fundamen-
tal and odd current harmonics for sixty houses. Therefore,
the time-dependent variations in current harmonics measure-
ments lead to a significant error, and LED lamps should be
warmed for 60 min before performing power quality mea-
surements.
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Featured Application: The time-dependent variations in current harmonic emission from switch
mode power supplies are often not considered during power quality measurements. It can affect
the results of the current harmonic estimation models as switch-mode power supplies constitute
a significant portion of domestic, commercial, and industrial electrical loads.

Abstract: This paper presents the time-dependent variance in the current harmonics emission
by power supplies during power quality measurements. Power quality problems are becoming
more significant with the adoption of power electronic-based circuits such as power supplies.
The switch-mode power supplies are widespread as industrial, commercial, and domestic
electrical loads. They draw non-sinusoidal current from the utility and inject current harmonics.
Therefore, they are the reason for poor power quality and reduction in the power factor. The current
harmonics emission from these power supplies depends on the circuit topology, operating conditions,
and filter inside them. The harmonic emission estimations are critical for network operators; however,
various uncertainties have made it a complicated task. The time-dependent stability affects the
magnitude and phase angle of the harmonic current measurements and estimation of power quality
indices. This paper investigates the variation in current harmonics emitted by the power supply
during the initial unstable period under constant load and operating conditions.

Keywords: power quality; switched-mode power supplies; thermal stability; total harmonic
distortion; current harmonics

1. Introduction

Power quality issue is becoming critical for the network operators and electrical equipment
manufacturers in the last few years. The electronics-based switching devices are burgeoning and
escalating the current harmonics emission level in the electric supply system. With the enhancement in
power electronics, the efficiency of domestic, commercial, and industrial electronic equipment has been
boosted with a substantial reduction in their size. Almost every modern electrical equipment, such as
personal computers (PC), battery chargers, household appliances, large commercial and industrial
electrical systems encompasses a converter based power supply. These power supplies incorporate
rectifiers and nonlinear components, thus polluting the distribution system with current harmonics.
Therefore, current harmonic estimation is critical for power quality assessment. Probabilistic models
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for current harmonic estimation are based on the measurements of the electrical loads [1] and most
of the non-linear loads can be modeled as different switch-mode power supplies [2]. However,
the time-dependent stability of the current harmonics generated by the power supplies may alter the
outcome of such estimations. This paper deals with the deviation in the current harmonics magnitude
and phase angles of switch-mode power supplies over time under constant load and input voltage.

The direct current (DC) power supply takes input from the utility or local DC source such as
a battery. It maintains an interminable voltage level within the designed current limits and can be
regulated or unregulated. The regulated power supplies uphold the output voltage close to the desired
nominal value for the variations in voltage, load current, and temperature [3]. The switch-mode
power supplies (SMPS) are regulated power supplies and contain alternating current to direct current
(AC-DC) converters. Because of the nonlinear components in the SMPS, they are the source of power
quality problems and feed current harmonics in the network.

These current harmonics prompt voltage distortion and the power factor reduction in the network.
The current harmonics and voltage distortion cause overloading of the transformers. Their lifespan is
reduced, and reliability is compromised. Excessive harmonic emission overheats electrical appliances
and causes additional noise. Moreover, protection equipment, such as relays and circuit breakers,
can also malfunction. Apart from polluting the network, these harmonics also affect the performance
of SMPS itself [4]. Therefore, it is essential to estimate the impact of current harmonics emission in
the network added by nonlinear power supplies. However, various uncertainties are associated with
the power system that may affect the power quality estimations. Supply voltage variation and load
operating modes can alter the harmonic emission in the grid [5]. The components present inside
various electrical appliances may provide a variation because of material properties [6]. The aging of
the components also affects the output [7]. The variation in power system operating conditions also
results in variation of the network impedance [8,9]. However, uncertainties in the measurement of
power quality indices like thermal stability of the components and transients are mostly ignored in the
harmonic estimation models available in the literature.

Since SMPS are widely used in industrial, commercial and domestic loads, their collective impact
could be devastating. Household loads in a residential distribution grid can be categorized into the
linear load and the electronic load. However, electronic appliances are responsible for the majority of
the current harmonic emission. These devices can be modeled as SMPS loads. Household appliances
are categorized based on the SMPS circuit topologies in [2]. Consequently, for an accurate power
quality assessment, every uncertainty during measurements of SMPS should be taken into account.

Several studies are available related to harmonic emission associated with the SMPS load.
The harmonic cancellation between multiple SMPS operated at the same time has been presented
in [10]. A Monte Carlo simulation is used to aggregate numerous SMPS loads. The author concludes
that harmonic cancellation is more prominent in high power SMPS. The losses due to harmonic current
injected by SPMS in a commercial building are discussed in [11]. The harmonic losses generated by
modern electronics in the commercial buildings are responsible for neutral conductor overloading,
overheating of the cables, and power factor reduction. The author projected an 8 kW of additional
losses due to harmonic loading caused by SMPS. It will increase the total building wiring losses by
up to 250%. The wiring loss caused by personal computers without harmonic elimination is 2.4 times
compared to resistive loads. The comparison of electromagnetic interference in the grid due to series
and parallel configuration of SMPS load is presented in another study [12]. A computer simulation
is used to estimate the noise effectuated by SMPS in [13]. Topologies of SMPS are simulated to find
the dimension that can impede noise emission defined by the standards. A Simulink model is used
to scrutinize the current harmonics generated by the SMPS in another study [14]. The nonlinear
loads can be imitated as parallel harmonic current sources with magnitude and phase angles [15].
A total harmonic distortion between 150% to 200% for different 3-phase balanced and unbalanced
schemes was reported. The harmonic current injection was influenced by the number of equipment,
circuit topologies, and type of equipment. The imbalance of the phase lines also altered the harmonic
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injection. The current harmonic generation due to SMPS inside computers and other electronic
equipment and the harmonic mitigation effects in the large office building is presented in [16].

Although, the studies mentioned above have considered uncertainties like harmonic cancellation,
none of them discuss the effect of time-dependent variations of the harmonic currents due to thermal
stability. A recent study reported significant variation in current harmonics magnitude and phase
angles of LED lamps when pure sinusoidal voltage is applied [17]. LED lamps also contain rectifier
circuits and draw a current waveform similar to the SMPS. The study concludes that by using
measurements performed during the period when LED lamps were unstable leads to a significant
error in harmonic current estimation.

This paper presents the results of the harmonic current variation of different industrial switch
mode power supplies under constant load and operating conditions. A comprehensive overview
of SMPS is presented in Section 2. The details of the experimental setup are described in Section 3.
Section 4 includes a detailed analysis of the experimental results and framework to estimate the
stability time of the power supplies. A comparison of the stability time of power supplies is also
described in this section. Conclusions are presented in Section 5.

2. SMPS Overview

The SMPS converts AC to DC power by using switching devices, inductors, and capacitors.
They deliver stable power to many industrial, commercial, and domestic electrical systems proficiently,
as they contain rectifier circuits, consequently drawing non-sinusoidal current from the grid. As a
result, they have low power factor and power quality [18]. SMPS are common in computers and
battery chargers of different home appliances. A typical computer SMPS operates at 220V and draws
input current with a total current harmonic distortion (THD;) of 80%, and the power factor around
0.6 [19]. The block diagram of an SMPS is shown in Figure 1. The electromagnetic interference (EMI)
filter reduces the high-frequency noise, and the inrush current limiter protects the circuit from the
initial current surge due to capacitor charging. Most high power SMPS also contains a power factor
correction circuits (PFC) to improve voltage regulations. The rectifier converts the input AC power to
DC using switching devices like a diode, Insulated gate bipolar transistor IGBT, or MOSFET. The DC
to DC converter is used to convert the input DC from one voltage level to another.

Inrush Current oo Rectifier DC-DC Load
Limiter Converter

Switching Control

Figure 1. Block diagram of a typical switch-mode power supply.

The latest development in power electronics has enabled us to produce more efficient DC
power supplies with improved power factor and stable output [20]. Modern design possesses low
conduction losses and synthesizes near sinusoidal current waveform leading to fewer problems related
to power quality. The SMPSs are classified based on the converters, power factor correction circuits,
and type of switching control strategy [21]. The converter topology classification includes buck, boost,
buck-boost, and multilevel converters [3]. The control strategies include pulse width modulation
(PWM), proportional integral derivative (PID), sliding mode control (SMC), adaptive control,
and neural network controllers. Many other control strategies are also employed and discussed
in the literature [22]. The single-stage power supplies are widespread as they implement power
conversion using a single switching circuit and simple control [23]. However, in computers and other
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advanced applications, the single-stage power supplies are inadequate because of the stress across
the switch and poor voltage regulations [22]. The SMPS in computers provides multiple DC outputs,
and PFC circuits are used in the first stage for improving power factor and harmonics in the input
current [24,25]. The impact of computer power supplies and other electronic equipment on the network
has been discussed in [26]. Similar studies have also estimated the impact of computer power supplies
and other new harmonic sources on the grid [27,28]. Most computer power supplies incorporate
passive PFC circuits due to strict emission standards [29]. Researchers have proposed several designs
with improved PFC for SMPS used in computer applications [30,31]

SMPS can be classified based on the type of filter circuits. Mostly low power SMPS (less than
75W) does not contain any PFC circuits. The high power SMPS may contain active or passive PFC.
The devices with passive PFC contain a large inductor to smooth the variations in the current. On the
other hand, devices with active PFC encompass an additional DC-DC converter. The SMPS with active
PFC generates fewer harmonics than SMPS with passive PFC.

We have selected six single-phase SMPS from different manufacturers in the range of 30 W
to 120 W. Table 1 shows the detailed specification of all six SMPS. The power supplies are categorized
into two types based on the shape of the input current waveforms. Figure 2 shows the current
waveform of both types of SMPS. Type 1 power supplies include passive filtering circuits to improve
the power factor. The current waveform drawn by type 2 power supplies shows that they contain
typical rectifier circuits without filters. We have applied 60% of the rated load current using the
programmable electronic load to the power supply and recorded the input current drawn by the SMPS.

Table 1. Switch-mode power supplies (SMPS) characteristics.

Input Output  Output

No. Manufacturer Model Current Current Voltage
AC(A) DC(@A) DC(V)

1 ABB, Ziirich, Switzerland CP-E 0.83 5 24

2 Dran, Chinfa Electronics, Taiwan  120-24x 0.63 5 24

3 Entrelec,Germany Systron 2A 0.30 2 24

4 Omron, Kyoto, Japan S8VS-03024 0.60 1.3 24

5 Siemens logo, Munich, Germany  6EP1331-1SH03 0.70 1.3 24

6 Siemens, Munich, Germany 6EP1332-1SH71 0.67 2.5 24

400 T T T 400

3001

2001

100

0

Voltage
Current
Voltage
Current

-1001

-2001

-300[

. . . -400 . . .
5ms 10 ms 15ms 20 ms 0 5ms 10 ms 15 ms 20 ms

Time Time

(a) (b)
Figure 2. Current waveform drawn by SMPS (a) Type 1 (b) Type 2.



Appl. Sci. 2020, 10, 7806 50f12

The current harmonic limits are defined in the International Electrotechnical Commission (IEC)
61000-3-2. The SMPS less than 600 W comes under class D equipment. Table 2 represents the maximum
allowed harmonic current and harmonic currents per watt for odd harmonics [32].

Table 2. Current harmonic limits for class D devices.

Harmonic Order (h) Maximum Permissible Maximum Current
Harmonic Current per Watt (nA/W) Harmonic Limit (A)

3 34 2.30

5 1.9 1.14

7 1 0.77

9 0.5 0.40

11 0.35 0.33

13<h <39 3.85/h 0.15(15/h)

3. Measurement Setup

We have measured six SMPS for 60 min with our test bench and evaluated their THD; and
current harmonics. The test bench involves a personal computer (PC), a 4kVA controllable power
supply Chroma 61505 (Chroma system solutions, USA), a data acquisition (DAQ) module (National
Instrumentation, United States), controllable electronic DC load TENMA 72-13210 (Premier Farnell,
United Kingdom) and power quality measurement device a-eberle PQ-Box 200 (A-Eberle, Germany).
The PQ-Box 200 can record at 200 ms resolution according to the standards IEC 61000-4-30 for CLASS A.
These 200 ms data points are aggregated to 1-s interval data available to extract from the PQ-Box
200. Relays are used to switch all SMPS automatically. A control box is designed to provide 12V
DC to the relays. The 50 Hz reference waveform for the power supply is generated with a sampling
frequency of 100 kHz using MATLAB program through the DAQ module. The DAQ module is capable
of generating an analog signal corresponding to the digital input. This reference signal (V;f) has
enabled us to generate a pure sinusoidal voltage through the programmable power supply as defined
by Equation (1).

Vo
Vian e

Vrf = X Veo (1)

Here, Viange is 300 V and V, is 7.072. The digital inputs to switch the relays are also generated
using the same the MATLAB program via the DAQ module. The reference signal is calculated by
using the relation indicated by Equation (2).

n
Vour = Y V2 x A;sin(27fits + ;) )
i=1

A;j and «a; are the root mean square values of the harmonics and its phase difference from the
fundamental frequency, respectively. The harmonic frequency is shown by f; and sampling interval
by ts. The number of samples needed for the specific duration (T},) of the voltage output from the
controllable power supply can be calculated by Equation (3).

n="Ty X fs 3)

Here f; is the sampling frequency and its value is 100 kHz. The controllable DC electronic load is
used to operate each SMPS with 60% of its rated capacity. Figure 3 shows the block diagram of our
test setup.
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Figure 3. Block diagram of the measurement setup.
4. Results and Discussion

The measurement setup is used to test all six SMPS on pure sinusoidal voltage. The measurement
is performed for 1 h, and 60% of the rated load is applied to each SMPS. The THD;, current harmonics
magnitude, and phase angles are analyzed. Figure 4 shows the absolute percentage difference between
the THD; measured when the power supplies are in the cold state and stable state. The term “cold
state” indicates the first five minutes of the measurements, and the “stable state” indicates the duration
when the harmonic current variation is less than 0.25%. The first two power supplies indicate only
1.2% and 0.6% difference between the THD; measurements at the cold and stable state. However, the
remaining power supplies have shown a significant difference between THD; values at the cold and the
stable state. The fifth power supply shows the highest variance of 21%. Both third and fifth SMPS have
a variation of 18 to 19% between cold and stable state. Similarly, the fourth SMPS shows a difference
of 14.8%. Hence, Figure 4 indicates that type 1 SMPS shows a minimal difference in contrast to type
2 SMPS.

25 T T T T T T

- N
o o

THDi difference (%)
o

1 2 3 4 5 6
Power Supply

Figure 4. Histogram of total current harmonic distortion (THD;) difference between cold and stable
state of all power supplies.

To estimate the stability time of power supplies, we have used the curve-fitting approach to the
current harmonic amplitude and phase angle variations over time. An exponential trend curve is
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applied to the current harmonics magnitude, and phase angles up to the 19th harmonic. Equation (4)
is used to calculate the parameters of the trend line using measurement data of the current harmonic
magnitude and phase angle.
(~15) 4
+ Ystable 4
Ystable i the current magnitude or phase value in the stable state. The delta /\; is the difference between
the current harmonic magnitude or phase angle in the cold state and the stable state and calculated by
Equation (5).

TL:AiXE

Ai = Ystable — Ycold (5)

The time constant in Equation (4) Tc is the time taken by the exponential trend curve to increase
or decrease by the factor e. It is calculated by using Equation (6).
Tfinal — Teola

TC - 1— 11’1(1 _ 1*(75t%€77001d) (6)

The stability time (Tsqp;) Of the current harmonic magnitude and phase angle is three times of
the time constant (T¢). Figure 5 shows the current magnitude variation of the fundamental and odd
harmonics up to the 19th for the third power supply. The green line shows the measured harmonic
current, and the blue line indicates the applied trend curve. The red dot indicates the time constant,
and the black dot shows the stability time. A similar approach is applied to the phase angles of odd
harmonics up to the 19th, as shown in Figure 6.
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M
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; 0.034
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Figure 5. Current harmonic magnitude variation over time for power supply 3.
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Figure 6. Current harmonic phase variation over time for power supply 3.

The difference between the cold and stable values of harmonic current magnitude and phase
angles are more significant for type 2 power supplies. For type 1 power supplies, most of the current
harmonics have less than 1% difference in the magnitude. The maximum difference observed for the
fundamental and 7th harmonic for the first power supply is 1.2%. The power supply 2 shows the
maximum difference of 1.7% for the 11th harmonic. Conversely, the type 2 power supplies exhibit
a noteworthy difference, especially for the higher-order harmonics. The maximum difference was up
to 194% for the 17th harmonic of power supply 3. Table 3 shows the minimum, maximum, and average
deviation of cold and stable current harmonics magnitude for type 2 power supplies. The phase
angle variation between cold and stable state is also less for type 1 power supplies. The first power
supply only shows more than 1-degree variation for the 3rd, 5th, and 7th harmonic. On the other
hand, power supply two shows phase angle variation of more than 1 degree for 15th, 17th and 19th
harmonic. The type 2 power supplies show a significant deviation of phase angles between the cold
and stable state measurements. Power supply three shows less phase angle variation of between
1-2 degrees among all type 2 power supplies. The other power supplies show a variation of 2 to 35
degrees, increasing from low to higher-order harmonics. Although the IEC 61000-3-2 standards do not
define any limits for phase angle variation, the harmonic cancellation depends on current harmonics
phase angles.

Table 3. Difference between cold and stable state current harmonics magnitude for type 2 SMPSs (%).

Current Harmonics Magnitude Difference
F H3 H5 H7 H9 H11 H13 H15 H17 H19

Minimum 0.4 0.1 0.8 23 4.5 7.6 11.8 17.6 26.2 11.1
Maximum 1.6 14 3.7 7.5 13.4 23.8 43.4 88.2 194.7 97.0
Average 0.8 0.6 2.0 52 10.0 17.6 30.0 54.7 105.4 39.9

Harmonics

Figure 7a shows the magnitude stability time for all power supplies from fundamental to the 19th
odd harmonic. Since the variation between cold and stable state magnitude values for type 1 power
supplies is less than type 2, the stability time for type 1 power supplies is also less for most of the
current harmonics. The power supply 1 and 2 have maximum stability time for the fundamental and
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odd harmonics up to the 7th between 20 and 43 min. However, the 11th and 13th harmonic took more
than 60 min to stabilize for the power supply 2. All other magnitudes of current harmonics for these
two power supplies are less than the magnitude stability time of type 2 power supplies.

Magnitude stability time Phase stability time
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Figure 7. Stability time of current harmonics for all SMPSs (a) Magnitude (b) Phase.

The stability time for type 2 SMPS is in the range of 20 to 40 min, except for the 17th harmonic
of power supply 3. The stability time of power supply 3 and 6 is quite close for most of the current
harmonic magnitude. Similarly, the stability time of current harmonics magnitude for power supply 4
and 5 also follows the same trend but less than the power supply 3 and 6. Figure 7b shows the plot
for phase angle stability for the odd harmonics for all switch-mode power supplies. Power supply 2
shows the highest value of stability time. For other power supplies, most of the current harmonics
achieved stable phase angles before 35 min, except for the few high order harmonics.

The stability time is independent of the active power of the switch-mode power supplies.
Figure 8 shows the graph of the active power of the power supplies against the stability time for all
current harmonics magnitude up to the 19th harmonic. However, it is interesting to note that power
supplies with high active power have less stability time on average in comparison to the power supplies
with low active power consumption. This trend is more prominent for the higher-order harmonics.

The overall impact of thermal stability on harmonic current estimation could be significant in
the real-time scenario. A similar study had indicated a notable difference for the harmonic current
estimation for light-emitting diode (LED) lamps. The RMS current of LED lamps in a stable state was
significantly different in comparison to the RMS current in a cold state [10].

Stochastic harmonic estimation models are based on the measurement results of the current
harmonics of the electrical appliances. As thermal stability affects the measurement results, it may lead
to a significant error in the harmonic analysis results. Figure 9 shows the percentage difference between
the current RMS calculated at a cold and stable state for each power supply. Power supply 1 and 2 are
type 1; therefore, it shows a small difference of about 1% between cold and stable states. All type 2
power supplies show a significant difference of more than 8% between current RMS values at a cold
and stable state. Power supplies 5 and 6 show the maximal difference of more than 13%. Consequently,
in a real-time scenario with many power supplies operating in an idle or working state, the estimation
of current harmonics would result in an erroneous outcome because of their time-dependent variation.
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Figure 9. Current RMS difference between Cold and Stable state.

5. Conclusions

As the nonlinear loads are proliferating in the grid, the accurate assessment of power quality
problems is becoming vital. The variation in current harmonics for the switch-mode power supplies
has been discussed in this paper. The power supplies are categorized into two groups based on the
filter circuits. The type 1 power supplies contain filtering circuits, while type 2 power supplies are
without filters. The difference between cold and stable state measurements of current harmonics
magnitude and phase angles are more significant for type 2 power supplies contrary to type 1.
The THD; values of SMPS also vary with time until they become stable. The power supplies
without filters show more difference between THD; measurements in the cold state and stable state.
The THD; variation was between 15 to 20% for type 2 power supplies and 0.5 to 1.2% for type 1 power
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supplies. The maximum time taken by power supplies to have stable current harmonics was 85 min.
The absolute difference between cold and stable measurements was more prominent for higher-order
harmonics for power supply without harmonic filters. For power quality estimation in the real-time
scenario where a large number of power supplies have been involved, this difference may result in
a significant error. Therefore, it is recommended to perform power quality measurements when the
power supplies become stable. Future work will include power supplies with more rated power and
other electronics-based equipment to assess time-dependent variation in harmonic emission.
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Abstract: The uptake of electric vehicles (EV) is increasing every year and will eventually replace the
traditional transport system in the near future. This imminent increase is urging stakeholders to plan
up-gradation in the electric power system infrastructure. However, for efficient planning to support
an additional load, an accurate assessment of the electric vehicle load and power quality indices
is required. Although several EV models to estimate the charging profile and additional electrical
load are available, but they are not capable of providing a high-resolution evaluation of charging
current, especially at a higher frequency. This paper presents a probabilistic approach capable of
estimating the time-dependent charging and harmonic currents for the future EV load. The model
is based on the detailed travel activities of the existing car owners reported in the travel survey.
The probability distribution functions of departure time, distance, arrival time, and time span are
calculated. The charging profiles are based on the measurements of several EVs.

Keywords: activity based modelling; EV charging current; EV load model; managed charging; SOC;
unmanaged charging

1. Introduction

The climate change and energy security concerns are pushing policy-making institutes
towards setting strict targets towards reducing greenhouse gasses (GHG) emissions and
dependency on fossil fuels. The transport sector consumes 58 % of the total oil, while
67% of fossil fuel is used to generate electricity [1]. Electric vehicles (EV) are promising an
efficient replacement of the conventional transportation system. For a sustainable future
with less dependency on fossil fuels and to meet the world’s energy demand, the adoption
of electric vehicles and renewable energy is essential. As EV’s adoption is encouraged
to meet energy security and climate-related targets, some challenges are also associated
with their rapid integration. It would typically mean reinforcements to the existing grids
to support the additional charging load. The EV charging is based on power electronic
circuits that can compromise the network’s sustainability by adding harmonic pollution.
In planning such changes, the future load due to vehicle fleets would need to be known.
A probabilistic EV usage model, based on the traffic surveys and the actual vehicle-driven
data, can provide estimation of the EV charging load in the distribution grid.

Governments and automobile manufacturers are pushing towards developing efficient
designs of electric vehicles. In 2017, electric vehicle’s total stock increased to 3 million,
including both battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV).
This number is expected to surge up to 13 million by 2020 and 130 million by 2030 [2,3].
This growth is anticipated because of the improved life cycle of EVs and a decrease in the
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prices. The payback time of EV is expected to reduce from currently 20 years to 5 years
compared to internal combustion engine vehicles (ICEV) [4]. However, along with several
advantages, this rampant growth of EVs will possess several challenges related to the grid
capacity to support this additional load.

The integration of the EVs in the electricity distribution network is quite challenging
as it requires additional infrastructure and investment. Because of the inadequate charging
infrastructure, it is expected that the majority of the EVs owners will charge their vehicles
at homes [4]. The impact of the EVs on the distribution network is widely discussed in the
literature. The large residential distribution networks may not be sized for additional EV
load added by the customers [5,6]. Therefore, the additional EV charging load is foreseen
to affect the power system directly. The unmanaged charging will result in overloading of
existing transformers, increase in the losses and power quality problems [7,8].

Despite the improved power electronics circuit, the EV charging load is mostly dis-
torted with high total harmonic distortion up to the range of 60-70% [9]. The major problem
of additional current drawn by the EV chargers is the increase of heating in transformers.
The increased high-frequency harmonic current will result in losses because of nonuniform
current distribution in the transformer winding. These harmonic currents also increase the
losses in the cables. The current in the neutral conductor also increases [10,11].

To assess the impact of EV integration on the electric power system, and optimal
planning of the investments, accurate forecasting of the EV ownership and usage is critical.
Mathematical models of EV usage can provide a detailed insight into their impact on
the power system grid operation, environment, and economics. The EV model provides
charging profiles to estimate additional electricity load introduced by the EV charging
in the distribution grid. The researchers have used different approaches to construct EV
charging profiles [12]. In the first approach, simulation models of EV usage are made that
are based on available data related to transportation patterns. In the second approach,
real-time studies are carried out to understand the behavior of EV usage of individual
customers [13]. While real-time studies require significant resources, the simulation models
have a limited domain based on the type and amount of data. However, a hybrid approach,
where the simulation model is based on the real-time EV usage and measurement along
with transportation surveys, is more effective and flexible.

This paper proposes a mathematical model to determine EV’s daily usage behavior
based on the travel survey conducted in Finland. The commuter’s daily routine from
the travel survey is used, and a stochastic model has been developed to provide trip de-
tails and the state of charge (SOC) of the EVs. The utilization patterns will be based on
the daily activities statistics to estimate each vehicle’s state of charge upon home arrival.
The charging load current patterns will be elaborated using recorded charging data of
different vehicles used for the model. The Monte Carlo approach is used to determine the
charging load curves of the EVs. The model will provide options to model charging load
upon commute mode, type and length variance in the temporal space. With such varia-
tions, different models can be created to estimate charging load in different locations and
conditions. The detailed state of charge statistics for different vehicles will also allow using
the model for estimating the harmonic emissions, unbalancing, and overload conditions.
Furthermore, this model can be used in both unmanaged and managed charging (peaks
limiting) scenarios with small modifications for different motivators (price, availability,
etc.). In the current paper, the scope will be limited to unmanaged and managed charging
on weekdays, with the assumption that owners would charge their EVs as soon as they
arrive home from the last travel activity. The paper’s organization is as follows: Section 2
provides a brief overview of the existing methodologies used by the researcher to develop
the EV models. The purpose methodology used in this study is described in Section 3.
The results of the mathematical model are discussed in Section 4, while Section 5 presents
the conclusion.
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2. Overview of the Existing Models

The researchers have used various methodologies to model EV usage and their charg-
ing behavior, both in temporal and spatial dimensions. The various factors associated
with the EV user behavior has made the EV modeling quite complicated. The climate
and traffic conditions affect the EV user’s behavior and alter the travel time and distance.
Socioeconomic factors, market behavior such as electricity pricing, and policy decisions,
including subsidies, influence the electric vehicles” user behavior and charging patterns.

The EV models usually exploit traffic surveys, vehicle ownership statistics, and park-
ing data as a base to make a mathematical model that can provide qualitative and quantita-
tive insights into EV usage and its environmental and economic impact [14]. The modeling
approach depends on the research targets and the scope of the study. The models used to
evaluate car ownership and annual driven distance are used to forecast the transportation
demand and attribute that influence vehicle manufacturer and energy companies business.
A similar model, based on a household travel survey (HTS), is used to predict vehicle
ownership in Singapore [15]. These models can help the policymakers to estimate the
growing demand for EVs but do not provide detailed insight into the vehicle’s charging
behavior and actual usage patterns.

The four-state approach has been widely discussing in the literature for transport
modeling problems [16]. In the first step, the trips are generated in a region based on
commuter’s daily activities. Trip purpose defines the nature of the trip by indicating
the starting and ending point. The trip’s starting point is termed as the production end,
while the ending point is called attractions. Most trips have their origin or destination
as home. Trips are modeled on personal, household, or zonal level. Typically trips are
originated from the household because of the activity demands associated with the dwellers.
Therefore, the majority of the trips can be defined as home to work, home to others, and
non-home based trips. The trip ends are combined geographically into full trip lengths by
defining the second step’s origin and destination. The general assumption is that most of
the trips originated in a certain zone of a city will be attracted to the surrounding zones
while some are attracted to the zones at a moderate distance. Only a few trips are destined
for the far-off zones. The mode of travel is selected in the third step. A commuter can
use a personal vehicle, shared vehicle, or public transport to fully or partially complete
the trip. In the final step, the routes taken by the travelers are predicted. The four-state
model lack to accommodate the activities affecting trip behavior. The travel activities affect
the trip generation part only while the other states have less or no influence. A four-step
transport model consists of trip generation, trip distribution, transportation mode, and
route selection for travel activities is presented in [17]. The authors determined traffic flow,
electricity demand, and the economic impact of EVs.

A better approach to model daily EV usage is to consider the daily travel activity of
the commuters. The daily or weekly travel patterns provide a framework that can model
EV usage based on the lifestyle of the users and their travel behavior. These activity-based
modeling approaches can provide the user’s charging behavior that may help to observe
the effect of EV charging on the electric power network. The EV models based on the
trip behavior can be divided into two categories; direct use of observed activity-travel
schedules (DUOATS) and activity-based models (ABS) [12,16].

The DUOATS method uses external travel patterns previously developed for the
existing cars to model EV usage and charging behavior. Various travel surveys conducted
in different countries provide data related to the user’s individual travel behavior. A web-
based survey was used in California (US) to generate energy usage profiles of plug-in
hybrid electric vehicles in [18]. The participants provide details of their travel using a car for
one day. The information includes the number of trips, traveling time for each trip and the
distance covered. Another study used the Monte Carlo approach to estimate the electricity
demand of EVs using the US Household Travel Survey [19]. The arrival and departure
times of vehicles on weekdays are converted in charging demand. A probabilistic approach
has been used to determine the charging profiles using empirical cumulative distribution
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functions in [20]. The authors also used HTS data and employed queuing theory to estimate
when a particular EV required charging. The EV charging impact of the Swiss distribution
grid has been presented in [21]. The travel patterns were based on the mobility survey
conducted in Switzerland. A large-scale EV charging model based on travel statistics
in New Zealand used a multivariate probabilistic approach [22]. The authors report an
increase in the peak electricity demand in the case of unmanaged EV charging. Although
the DUOATS models based on the travel surveys provide reliable outcomes, most travel
surveys are based on the conventional car owners and do not include specific details related
to EVs, such as charging behavior.

The activity-based modeling (ABM) approach employs a collection of activities that
may influence people’s travel behavior. It enables to model the trips based on individual’s
activity patterns that can be affected by the behavioral preferences rather than individual
trips. Several factors, including social and economic structures, influence travel behavior.
The travel schedule is generated within the ABM model in comparison to DUOATS,
which relies on external travel schedules. In [23], the household activity model is used to
generate PHEV load profiles under an unmanaged charging scenario. The model relates
the charging load of PHEV to the electricity consumption of other household appliances.
Another activity-based modeling approach analyzed the vehicle-to-grid (V2G) impact on
power flow of the distribution grid [24]. A dynamic ABM four-stage model has been
developed based on the travel diaries and supporting data-set for household activities that
can influence travel decisions [25]. This model is further used to simulate the electricity
demand of EVs in Belgium [26]. Traffic survey data are used to generate probability density
functions (PDF) of trip related parameters such as arrival time, departure time and distance
to make EV usage patterns in [27-29]. These travel patterns are later compared with actual
EV charging data to generate SOC and EV load profiles.

Transport simulation software can also simulate domestic activity-based travel be-
havior. A similar study used TRANSIMS to estimate the effect of PHEV penetration on
electricity demand [30]. Another approach simulated traffic flow using multi-agent trans-
port simulation (MAT-Sim), a software capable of simulating large-scale transport model.
The MAT-Sim based model is used to generate EV penetration scenarios in Switzerland
based on the trip and activities in [31]. The model lacks to take account of the driving range
factor; therefore, suitable for PHEV only.

3. Methodology

Based on the overview of the existing models provided in the previous section, the
ABM modeling approach is more flexible and can address the user activity and travel
behavior interdependence with ease of aggregation because of its bottom-up approach.
The electric power grid, planning, and perspective load estimations are expected to affect
residential areas because of EV’s home charging. Due to the expected charging upon
home arrival at the end of the day by the majority of vehicle owners, it will be the most
convenient option. The model here aims to simplify the load estimation limited only for
residential grids.

In our proposed model, direct data input from the national traffic survey (NTS) is
used to categorize the car owner’s travel patterns into different categories.The probability
distribution for arrival and departure times of each travel activity is defined. A trip of
the chain is used to evaluate the distance traveled and the time at which the outgoing
and the incoming trip took place. The charging decision depends on the SOC of the EV
that is calculated based on the distance traveled by the vehicle during different trips. The
charging would occur when the vehicle reaches home and does not have enough SOC for
the next trip.

The NTS is carried out in Finland every six years [32]. The survey collects one-
year travel data, including all days and seasons, from 30,000 people aged six and above.
The survey provides details about the mobility of Finnish people, including the reasons
for the trips, modes of transportation, and differences in mobility between population
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groups. In order to understand the background of mobility, participants have been asked
for different background information. The background information has been used to
determine, for example, the respondent’s age, gender, the form of residence, household
members, use and ownership of a passenger car, driving license management, employment
and earnings. As complementary data, regional characteristics related to the location of
homes, workplaces, schools/kindergartens, study places, second homes, and destinations,
as well as information on how the journey would have been folded by public transport or
passenger car. Table 1 shows the daily indicators for domestic trips.

Table 1. Daily indicators for domestic travel [32].

Domestic Travel Indicator Average Value per Day
Number of domestic trips per person 2.89

Travel expense per person 41.4 (euros)

Total journey time per person 65.5 (min)

The average distance of a trip 14.3 (km)
Average travel time per km 22.7 (min)

3.1. Travel Activities

The daily trips are categorized based on the activities responsible for the trip’s need.
The majority of the trips are related to work or education and shopping. The other activities
include business-related trips, leisure activities, and visits or vacation trips. Table 2 shows
the number of trips and distance traveled for all trip purposes.

The data shows that the travel activities from Monday to Friday are very similar.
The work and school trips dominate these days. All other trips also follow a similar pattern.
The visits have a lower share in the first five days of the week. The work and school trips
drop significantly over the weekend; however, both visits and leisure trips have increased
on weekends. The shopping trip frequency is almost the same for all days of the week
except Sunday. The frequency of business trips is also on the higher end during weekdays.
The travel activity data provides an excellent base to model the EV trips by assuming that
the travel pattern would remain the same for the Evs.

Table 2. Weekly travel information for different trips [32].

Day Work School Business Shopping Visits Leisure All

Number of trips

Monday 0.64 0.27 0.13 1.02 0.04 0.69 2.79
Tuesday 0.62 0.26 0.14 1.14 0.03 0.71 29
Wednesday  0.65 0.29 0.16 1.12 0.03 0.75 3.01
Thursday 0.65 0.27 0.13 1.09 0.03 0.64 2.8
Friday 0.54 0.25 0.11 1.11 0.04 0.68 2.72
Saturday 0.13 0.01 0.03 1.03 0.05 0.88 2.13
Sunday 0.12 0 0.02 0.58 0.06 0.81 1.59
Average 0.48 0.19 0.11 1.01 0.04 0.74 2.56
Distance traveled for each trip (km)
Monday 15.8 7.74 34.04 6.87 40.48 11.18 116.11
Tuesday 16.73 6.04 33.94 6.6 49.11 11.94 124.36
Wednesday  14.92 6.29 36.77 6.87 38.56 9.6 113
Thursday 17.53 7.82 37.55 6.34 57.17 11.84 138.25
Friday 15.28 7.54 58.2 8.3 80.08 19.12 188.52
Saturday 16.55 25.16 53.21 7.99 48.22 19.48 170.59
Sunday 13.13 69.81 95.58 9.03 65.46 16.56 269.56

Average 15.98 7.27 41.39 7.3 55.14 14.43 141.52
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Frequency

3.2. Departure Times

We have defined three travel activities based on the six travel activities mentioned in
Table 2. The details of these activities are provided below.

e “Work and school” (WS), is described as the most likely routine trip. The departure
and arrival times of these trips will have only slight dispersion, and this will be carried
out for all weekdays practically with no exceptions. The trip length will also have
rather a low variance for a particular vehicle.

*  “Shopping and business” (SB) is also a routine trip; however, the dispersion of the
likeliness of such a trip will be greater. Furthermore, the average trip length will vary
to a greater extent. There could also be several trips of the same type on the same day.

e “Leisure and vacation” (LV) has the most variance included. It means both variance
in trip length as well as trip probability and start-time variance. These trips also tend
to be one of the longest ones.

The average trip lengths for each travel activity are also available from the traffic
survey. The data for the trips distance have been presented in Table 2. For the WS activity,
it is assumed that the driver of the vehicle will be participating in vocational or university-
level studies. This means a longer trip to the location rather than to the local school. The SB
include two activities; shopping and business trips. It is assumed that private business
trips are similar to work-related business trips, for example, visiting a specialized shop
at a longer distance. The probability of a long trip is low, and it will be tied together
with the distribution of the shopping activities (expected at a shorter distance) length and
probability. Similar is valid for the VL activities; however, these activities are less probable
than the SB. The departure times for each activity are available in the NTS survey. Figure 1a
shows the departure time for each travel activity on a weekday. The data is converted into
WS, SB, and LV activities, as shown in Figure 1b.

2.5 T 2.5
Work School WS
== == =Business == == = Shopping - = =SB
= Vi Lei
ol isit = eisure ol -~ % Lv H
7,7 N
N7 >
15} 2157 1
[T}
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0.5 051 1
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Time Time
() (b)

Figure 1. Frequency of departure per hour (a) Data from NTS survey (b) Data used in the model.

The distribution of the departure times from Figure 1b shows trips cannot distinguish
as outgoing or incoming trips for each travel activity. For EV modeling, both incoming and
outgoing trips are essential to estimate charging profiles. The time resolution of the initial
data is also low, with a 1-h resolution. Therefore, the data interpolation is used to improve
the resolution.

3.3. Incoming Trip Estimation

The estimation of an incoming trip to home is critical to model EV charging profiles.
The vehicle charging will be initiated once the vehicle returns home and does not have a
sufficient battery charge for the next trip. However, the travel activity information does
not provide details about the outgoing and incoming trips. Two distinctive peaks are
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Probability

0.35

visible in the WS departure frequency shown in Figure 1b. By assuming a low number of
night-shifts workforce, the morning peak will likely indicate the outgoing trips to work,
and the evening peak represents the incoming trips from work to home. This assumption
will provide us separate distributions for incoming and outgoing WS trips. The evening
incoming trips have more spread over a longer time span than the morning outgoing
rate. The t location-scale distribution is used to define both incoming and outgoing WS
trips separately, as shown in Figure 2. This distribution helps to model data that have a

normal distribution with heavier tails. The PDF of the t-location-scale distribution can be
calculated by using Equation (1).
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Here v is the shape parameter and o defines the scale. y determine the location of
the PDF and I' is the gamma function. As the v approaches towards positive infinity the

f(x,v,0, 1) tends towards the normal distribution. The smaller values of v results in a
heavier tail.
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Figure 2. Probability plots of outgoing and incoming trip for WS travel activity.

The LV activity distribution in Figure 1b also shows twin peaks; however, the relation

is not straightforward. The higher evening activity in the LV trip frequency is likely due
to the vehicle owner’s leisure activities after work. The average time at a leisure activity
(after the arrival to the place and before the departure from the place) has been observed as

3 h. The duration for the LV activities is calculated using Poisson distribution, as shown in
Equation (2).

X

fxln) = 2ot @

The A in Equation (2) shows the variance of the distribution. The detail of the travel
distance for different trip activities is also available from the NTS survey. Figure 3a shows
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1000

the average distance traveled in kilometers at a different time of the day for various travel
activities mentioned in the NTS survey. This data is converted into WS, SB, and VH
travel activities used in this model, and the average distance traveled for each activity at a
different time of the day is shown in Figure 3b. For each trip, the distance is calculated using
Poisson and log-normal distribution defined for the trip distance. Equation (3) represents
the log-normal distribution’s probability density function, where y represents the mean
and variance is indicated by o.

In(x) — u)?
fm = xa;z?e"p(‘( ) ®)

3.4. Electric Vehicle Characteristics

Another challenging task is to define the electric vehicle mix. Although new EV
models are introduced in the market by the major auto manufacturer, EV adoption is still
low. The performance evaluation data of these EVs is also not readily available. Therefore,
it is a complex task to select the EVs for developing a model in the perspective of future
vehicles, and results can be highly inaccurate. However, most of the daily routines likely
remain the same; the travel distances would be identical, and vehicle utilization would
remain the same. As the energy distribution would be similar in the future; therefore,
the charging power limits and current drawn by the EV’s is expected to be in the same
range. Therefore it could be assumed that the vehicle charging would remain to follow
identical patterns as of today.
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Figure 3. Trip distance frequency per hour for different travel activities (a) From NTS survey (b) Data used in the model.

In this study, the vehicle mix is created by assuming an equal share of each electric
vehicle in the network. Seven different vehicle types are selected, including three Plug-
in hybrid vehicles (PHEV) with relatively long electrical driving distance. The EVs are
selected based on the ease of market availability. The different parameters of the Evs used
in this model are described in Table 3.

Table 3. Type and electrical parameters of the EVs used in the model.

Parameter EV1 EV 2 EV3 EV4 EV5 EVe6e EV7
Type PHEV PHEV PHEV BEV BEV BEV BEV
Electric-motor power (kW) 111 51 60 80 40 16 16
Charging current RMS (A) 14.9 12.7 9.7 103 10.3 13 13
Battery capacity (kWh) 17.1 10.3 8.8 24 16 16 16

Electric range (km) 61 53 54 117 127 127 127
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The EV charging would vary based on the different charging patterns; current ramp-
up, constant current range, and ramp-down at the end of the charge. Therefore charging
current depends on the state of charge (SOC) of the EV. Figure 4 shows the SOC of the EVs
used in charging profile modeling in this study. EV 6 and 7, although from different car
manufacturers, shows a similar SOC curve as they employed similar specifications for the
battery and electric motor.

Energy used by a vehicle for a driven range is assumed to be 180 Wh/km. This
assumption is applied after considering the EV manufacturer’s data and future vehicles
are expected to provide a similar range as the motor and drives are already quite efficient.
The variance in energy consumption also depends on the climate conditions, terrain, and
region but is not considered in this study. The SOC of an EV is estimated after its arrival at
home. For the next trip assigned by the generated travel activity, the SOC is analyzed. If
the EV battery SOC drops below the required level for the next trip, the EV will go under
the charging state. The EV SOC will be checked before any trip for their estimated range;
in case there is not enough energy in the battery for completing the trip, the vehicle will be
assumed not to take the trip.

16 T T T T
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S 6
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Figure 4. Charging current levels during charging span of 0-100% of the full charge.

3.5. Daily Routine Estimation

The vehicle owners are categorized based on age group and gender in the NTS survey.
This data is used to evaluate the number of people going for daily WS travel activity.
The remaining vehicle owners are assumed to be on vacation, to be retired, or engaged
in other travel activities. For estimating the daily routines for the selected population of
vehicles, an array of random seed numbers are assigned to each of the vehicles. In the
first step, the permanent routine parameters are created. These routine parameters are
used in the later stages for the specification of the daily action. The permanent routine
parameters are used to generate the vehicle schedule for each simulated day. The vehicle
will be assumed to leave home following the similar outgoing time distribution assigned
for each travel activity. If the travel activity is WS, then returning from work will take
place during the time following the WS incoming distribution. The other activities after
the daily routine will be estimated for each day based on the probabilities of the SB and
WS actions. A total of ten different vehicle states are used to describe the vehicle activity.
The first state is termed as the home state, while for each type of activity (WS, SB, VL) there
will be three states—outgoing, at activity and, incoming state. The vehicle’s utilization
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will be calculated when the vehicle is in outgoing or incoming states for a trip activity.
The incoming state is assumed to always end at home. When the vehicle returns home,
the SOC will be dropped because of the trip’s energy consumed. The SOC is determined
based on distance travel during the trip obtained in Section 3.3. The amount of charge left
in the EV battery will determine whether the vehicle can leave to other activity or required
charging before the next trip. If the next trip is scheduled for the next day, then the vehicle
will be charged until full SOC. The EV load for the given number of EVs is estimated using
the Monte Carlo approach. The steps during each iteration are as follows.

e  Step 1: Determine the probability of outgoing and incoming for WS travel activity;
e Step 2: Probability of SB or VL travel activity after WS is complete;

. Step 3: Distance traveled for all WS, SB, and VL activities;

. Step 4: Duration for all WS, SB, and VL activities;

e  Step 5: EV utilization and the SOC after each trip;

®  Step 6: SOC tolerance level, when owner always charges the vehicle;

*  Step 7: Probability of the owner to charge after every incoming trip.

The flow chart of the algorithm is shown in Figure 5. During each day, the trip activity
is determined for each trip. The departure time, distance, average speed, and trip duration
is determined based on each parameter’s probability distribution. At the end of each trip,
SOC is calculated, and the battery charging decision is made. Another VH or SB trip could
also take place if the departure time is less than 22:00, and SOC is enough to support the
trip. Any given number of EVs can be simulated for the required number of days.
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Figure 5. Algorithm of the EV charging profile model.
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4. Results and Discussion

The EV model can be used to estimate the load and charging profiles for the required
number of EVs and days. To evaluate the outcome of the model, the Monte Carlo approach
is used to simulate usage of 50 EVs for 100 days. For each day, vehicle’s daily schedule is
estimated. The vehicle’s daily schedule will provide the vehicle’s battery SOC information,
including the SOC after arrival at home. Based on the SOC, the respective charging current
value is specified for each vehicle, and charging power is calculated for the time instance.
Using the charging power, the SOC is calculated for the next time-step until the completion
of the charging (SOC = 100%). The total charging current will be the sum of charging
currents of all vehicles at any given time.

The model is capable of evaluating the EV load under two charging scenarios. In the
first case, an unmanaged charging approach is used where the EV owner can charge the
vehicle at any time during the day. Figure 6a shows the EV load for the unmanaged
charging scenario. The red dotted line shows the 90th percentile value for the number of
vehicles undercharging at a given time, while the black line shows the mean value. The EV
load starts appearing around 12:00 and increases exponentially to the maximum value of
the charging load. The maximum charging load is around 18:00, as most people came back
from the daily routine activities and charged their vehicle. The mean and 90th percentile
value of the maximum load is 34 and 42, respectively. The EV load starts decreasing after
18:00 to almost half at 24:00, where the mean and 90th percentile values of the charging
vehicle are 14 and 22, respectively. Both mean and 90th percentile values of the charging
load are less than ten after 3:00, and the load curve continues to decrease and reaches the
minimum value between 06:00 and 08:00.
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Figure 6. EVs load curve for (a) Unmanaged charging (b) Managed charging.

For the managed charging scenario, the EV owners are forced to charge from 20:00 on-
wards, and the load curve is shown in Figure 6b. As expected, the maximum load is more
in comparison to the unmanaged charging scenario. The mean and 90th percentile charging
load is decreased from their maximum value of 38 and 44 to 14 and 22 EV charging at
24:00. The load curve continues to decrease until it reaches a minimum value between
04:00 and 08:00.

The model provides a fast and optimized way to find the expected load curves of
EVs under managed (time-driven) and unmanaged charging scenarios. These load curves
provide the base to estimate additional current drawn by the electric vehicles during
charging in the distribution grid. The estimation is critical for the network operators to
plan additional investment to improve the network capacity that can handle EV charging.
Additionally, the current harmonic emission by this additional charging load can also be
estimated. As a test case, we have estimated the RMS current drawn by the EV charging
using the load curves estimated by the model for the unmanaged charging scenario.
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The EVs are measured at 230 V sinewave using power quality analyzer. The detail
of the measurement setup is provided in [33,34]. The charging current at different SOC is
assigned to the EVs and aggregated to find the total current drawn by the EV load at any
given time during a particular day. The power consumed by the EV load is also calculated.
Figure 7 shows the mean and 90th percentile values of charging current and power for
unmanaged charging of 50 vehicles for 100 days.

The results show that the range of current drawn by EV charging could reach 183A
in a distribution grid where 50 EV are present and employ home charging. It means an
additional 42 kW power is required in the peak hours during the evening. The model
can provide results for any given number of EVs under different charging scenarios.
The model’s EV power consumption estimations follow EV load estimated in [22,27-29].
Particularly, the peak load values and peak load time period, and the load curve form
follow nearly identical trends. However, the proposed model provides better flexibility
and a simple approach with fewer variables. The results also validate the applicability
of the NTS travel survey effectiveness in comparison to the other travel surveys used in
various studies to model EV usage patterns.
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Figure 7. For unmanaged charging scenario (a) EVs charging current (b) EVs power consumption.

5. Conclusions

A travel activity-based EV model is presented in this paper based on the National
Travel Survey results conducted in Finland. The model provides a simpler and flexible
approach and can handle various EVs and travel activities. The travel activity data is
used to define three different travel activities during the weekdays. The probability dis-
tribution function of the distance traveled, travel time, departure, and arrival time for
incoming and outgoing trips are calculated based on the survey data. The EV model is
capable of providing the charging load under managed and unmanaged charging scenarios.
The model can be also be used to evaluate the load and power quality aspects, including
current harmonics and power factor, for the EV integration in the balanced or unbalanced
distribution network. Although, at the moment, the scope is limited to home charging of
the EVs, however, the model can easily be extended to include charging stations. The model
is flexible enough to integrate future models of EVs, including BEV and PHEV.
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Abstract. This paper presents a bottom-up bivariate analysis approach to estimate current harmonics by taking account of network
and load variations. The current harmonics assessment in the presence of existing and future nonlinear loads is vital to study
their impact on the distribution grid. The traditional harmonic analysis models consider only stable loads while neglecting the
harmonic interaction among the devices. Modern nonlinear loads operate under different working modes and configurations. Ther-
mal stability, harmonic cancellation, and dynamic network parameters influence the current harmonic estimations. In this paper,
a probabilistic approach is presented to model harmonic emission in the low voltage distribution grid under network and load
uncertainties. A case study is used to demonstrate effectiveness of the proposed model.

Key words: probabilistic assessment, network uncertainties, current harmonics, load modelling.

1. INTRODUCTION

Current harmonic emission is becoming a critical power quality issue as the uptake of nonlinear devices
in the distribution grid is increasing. Rampant electricity demand, fluctuating fuel prices, and greenhouse
gas (GHG) emission is pushing the manufacturer of electrical equipment toward energy-efficient design.
Consequently, all modern household appliances incorporate electronic-based converters. These devices draw
non-sinusoidal currents and cause voltage distortion in the distribution grid. High penetration of electric
vehicles and smart buildings will further increase the share of nonlinear devices in the coming years.
The primary task of the network operators is to maintain power quality within the limits for the network
and, therefore, a realistic estimation of current harmonics is critical. This paper presents an overview of a
probabilistic approach to estimate current harmonics in the low voltage (LV) distribution grid in the presence
of different uncertainties.

The power quality indicates an aggregated effect of electromagnetic disturbances that can degrade the
voltage and current waveforms. One of the critical parameters of power quality is the sine waveform of the

* Corresponding author, migbal @taltech.ee
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network voltage. The periodic variations from the sinewave, characterized as harmonics, are responsible for
the voltage waveform deterioration. As the share of these voltage harmonics increases, the reliability of the
network is imperiled. The current and voltage distortions may lead to several problems in the distribution
network. The incremental higher frequencies amplify the proximity and skin effects in the cables. The
performance and life span of transformers, cables, and other network components may be reduced because
of the added stress [1,2]. The network protection equipment and electrical appliances can malfunction due
to these unwanted harmonics [3]. Furthermore, the neutral conductor can be overloaded and it leads to
undesirable consequences in the network [4]. The capacitor banks can also fail as the higher frequencies
can alter their impedance [5]. Therefore, details about harmonic sources and their effect on the network
are vital for the network operators to understand the power system’s smooth operation within the limits of
power quality indices.

Although sufficient literature is available related to power flow modelling, nonlinear load modelling and
stochastic current harmonic estimations are relatively contemporary. The classical residential load models
are developed to predict energy consumption patterns and are, therefore, unable to estimate current harmonic
emissions mainly because of their low time resolution. Due to the stochastic nature of the modern nonlin-
ear devices, it is not easy to model their usage and operational behaviour. Typically, a general overview is
presented based on assumptions and limited measurements of the harmonic currents. On the other hand,
several uncertainties are associated with a probabilistic approach for harmonic estimation. Domestic electri-
cal appliances can operate in different modes and the harmonic emission profile could be very different for
each mode. Thermal stability associated with electronic devices causes variation in the current harmonics,
leading to an inaccurate assessment of power quality indices [6]. The harmonic cancellation also occurs
as voltage or current harmonics are aggregated by geometrical vector addition because of the phase angles
associated with them [7]. As a result, the aggregated harmonic content at the point of common coupling
(PCC) may increase or decrease [8]. The assumptions and uncertainties linked with harmonic analysis lead
to an inefficient modelling approach with inaccurate harmonic estimations.

This paper provides a framework of probabilistic modelling of current harmonics with nonlinear loads
in the distribution network. The model relies on comprehensive power quality measurements and a proba-
bilistic approach to model the harmonic current magnitude and phase angles. The electrical appliance usage
patterns were developed to evaluate a nonlinear device’s impact on the grid by the residential occupants.
The load measurements were performed at different voltage waveforms, including sine wave, to observe the
harmonic cancellation impact on harmonic aggregation. The harmonic analysis approach at different volt-
age levels will provide an insight into the real-time effect of electronic load on the network. The network
impedance provides the way to calculate harmonic emission limits and is often estimated by using short cir-
cuit impedance [9]. The modern electronic load contains additional passive components that may affect the
network impedance. The current harmonic measurements of electronic loads with different voltage wave-
forms will enable us to estimate the change in the load’s impedance at various frequencies. Figure 1 shows
how to estimate the change in network impedance when the electronic load is connected at the point of

(a) Network schematics (b) Waveform of current and voltage
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Fig. 1. Current and voltage waveforms at the PCC.
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common coupling at a particular frequency. In the first stage, the voltage Vpcc and the current Ipce from the
network at the PCC are measured before connecting the load. The current I, (150 Hz) is then injected and
new measurements of the voltage V- and the current I}, are taken at the PCC. The network impedance
can be detected at the frequency f by using Eq. 1:

!
_ Vece —Vece

Z
! IIIJCC - IPCC

ey

The existing harmonic estimation methods are presented in Section 2. Accuracy and uncertainties are anal-
ysed in Section 3 and Section 4 describes the proposed modelling approach for current harmonic estimation.
A case study used to evaluate harmonic emission from the lighting load in the distribution grid is introduced
in Section 5. Conclusions are presented in Section 6.

2. HARMONIC ESTIMATION METHODS

The distribution network is designed to provide sinusoidal voltage to the consumers. The modern nonlinear
loads distort the voltage by adding current harmonics. A detailed harmonic analysis could provide insight
into the power system behaviour under these voltage and current distortions. Researchers have made dif-
ferent models to estimate the current harmonics for the residential network. These models can be classified
into time or frequency domain equivalent load models or measurement-based models.

The frequency-domain models are easier to compute and consider the frequency domain attributes of
the electrical equipment. The simplest frequency domain model is the current source model based on the
current magnitude and phase measurement of each harmonic under consideration. Any nonlinear load can
be represented by the sum of constant current sources for each frequency [10]. Each current harmonic
source is independent of the input voltage. However, in the distribution grid, the voltage distortions can alter
the harmonic emissions of electrical equipment [11]. As the voltage waveform in a distribution network
changes continuously depending on the type and amount of the connecting load, current source models are
not effective for harmonic analysis. The Norton model addresses this problem by considering the admittance
matrix. The model parameters are estimated by switching the operating condition of the power system with
the assumption that the impedance and current of the Norton model will be constant and will not change
with the shape of the voltage waveform. Two different sets of current and voltage harmonics are used to
estimate the model parameters by means of Eq. 2 and Eq. 3:

V;: - Vh
= 2
n.h I}" A 2)
Vi
In,h = m 71/1~ (3)

Here, Z, 1, and 1, ;, are the impedance and current of the Norton equivalent model for the harmonic # cal-
culated by using two sets of current and voltage measurements Vj, I, and V;, I;. Although this approach
provides some advantages over the current source model, it is unable to consider the cross dependency of
harmonics. The harmonic currents only depend on the corresponding voltage harmonics and not on the
voltage waveform itself.

This shortcoming was improved by employing a crossed frequency admittance matrix in the Norton
coupled (NC) model. The estimated harmonic currents using this model will depend not only on the voltage
harmonics of the same frequency but also on the other frequencies. Eq. 4 and Eq. 5 represent the mathemat-
ical form of the NC model. The verification and comparison of frequency-domain models are presented in
[12,13].

T=YxV, @)
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The time-domain models are based on the load’s actual circuits and provide in-depth information about
the load harmonic emission profile. A time-domain harmonic analysis approach was applied to nonlinear
loads categorized based on their circuit topologies in [11]. Most electronic devices contain switch mode
power supplies (SMPSs), for which reason time-domain models equivalent to the SMPS were created. The
current harmonic estimation was provided on simulated and measured waveforms. In another study, a har-
monic model was formulated for computer loads connected to a single transformer [14]. The results show
harmonic cancellation and voltage waveform distortion at the transformer. The mathematical models of low
power compact fluorescent lamps (CFLs) were made to study harmonic penetration in [15]. The voltage
and current waveforms were recorded and analysed by means of circuit simulation software. Although the
time-domain models provide an accurate harmonic analysis approach, they have limited application as it is
challenging to model every load connected to the grid using its circuit schematic.

In the electrical model-based approach, the load connected to the network is categorized based on their
electrical properties, and the probability distribution of each group is defined to estimate the overall har-
monic emission. For example, the network load can be divided into linear or nonlinear devices. These
devices can be additionally categorized according to circuit topology and power quality characteristics. A
similar probabilistic harmonic analysis model was proposed in 1987 [16]. The model categorized nonlin-
ear loads into four categories based on the switching state and operating mode. The harmonic aggregation
analysis was performed using the Monte Carlo approach with probability density functions (PDFs) of har-
monic magnitude and phase angles. Based on the appliance measurement data and their usage patterns, a
harmonic analysis approach was applied to study the harmonic impacts of the household appliance in the
low voltage distribution grid [17]. The results obtained from the harmonic model were then compared with
the real-time measurements of the network. A similar bottom-up probabilistic harmonic estimation mod-
elling approach was presented in [18]. The model generated a household appliance’s usage patterns based
on occupant behaviour, and the appliance’s equivalent circuits were used to analyse the harmonic emission.
The simulation results of harmonic loads were compared with the actual grid measurement results to extract
correlated data. In another study, a probabilistic model to analyse waveform distortions was presented under
the influence of high penetration of electric vehicles (EVs). The authors highlight the importance of this
approach as uncertainties associated with the EV charging patterns can be easily accounted for [19]. The
single and three-phase nonlinear loads were divided into groups based on their current THD (total harmonic
distortion) in [20]. The participation of these load groups was obtained based on energy usage patterns at
different times of the day. The author selected the customer database parameters by assuming that the data
of any particular device type belonged to a normal distribution. The voltage distortion in the low voltage
network was evaluated based on this probabilistic method.

In the measurement-based models, current harmonic emission is analysed from the probability distribu-
tions of harmonic current measurement data. The measurements could be taken at the electrical appliance
level in a bottom-up approach, and aggregated harmonic analysis could provide the harmonic estimation
at the point of common coupling. In the top-down approach, measurements are taken at the distribution
transformer. In both cases, extensive measurement data is usually compared with an appropriate probability
distribution. The voltage distortion in the distribution network was estimated by using Monte Carlo sim-
ulation of the aggregated harmonic current in [21]. The measurement data was assumed to fit a normal
distribution. The harmonic currents were measured of residential and commercial loads at the point of com-
mon coupling in [22]. The measurements were divided into low, medium, and high demand subgroups and
compared with the normal distribution and uniform distributions.
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Two different approaches can be applied to construct a probabilistic model based on the type and amount
of data [23]. The first approach could be termed as a parametric model where a finite set of data parameters
can be compared with predefined distributions. In the second non-parametric approach, the model is based
on distributions calculated from the data itself [24]. The parametric models mostly employ the normal
distribution defined by mean and variance. The probability density function of a normal distribution is
indicated by Eq. 6:

fim xS ®)
Y V2no? .
Here, o is the standard deviation and p represents the mean value of x.

In the early harmonic models, the normal distribution was used to describe both magnitude and phase
angles as independent variables. However, this assumption is not accurate for harmonic analysis. Therefore,
a joint or bivariate probabilistic approach is more effective where the estimated variable depends on the
probability density function of two variables. In [10], the load current for residential buildings was estimated
using beta bivariate distributions.In [11,12], the joint normal distribution (JNB) was employed for the fore-
casting of harmonic emissions. The parameters of the normal joint distribution, ¢ (standard deviation) and
U (mean value) are calculated by Eq. 7 and Eq. 8 using the complex components of the current i, and iy:
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Figure 2a shows the 15th harmonic current when normal distribution fitting parameters are applied in a
complex plane for a display monitor. The individual probability density of the real and imaginary parts of the
current harmonics is indicated by red and blue lines, respectively. The green circle encloses the part of the
distribution responsible for 95 percentile of the estimated values. Although the joint probability distribution
provides better results than the individual normal distribution for x and y values, it can, however, be effective
only when both components are linearly dependent. The nonlinear devices with multiple operating modes
result in different harmonic currents. The resultant distribution fit of these devices could be very different
from the normal distribution. Figure 2b shows the 9th harmonic current spread of a personal computer (PC)
stress test in a complex plane where three different clusters are clearly visible. The normal joint distribution
cannot represent this data efficiently. This problem can be addressed by clustering the data and applying the
JNB to respective clusters. This approach is known as a multivariate normal mixture and provides a more
flexible distribution fit [25]. The distribution mixture approach was applied in [26] to study power quality
impact in low voltage distribution. The PDFs of the current harmonics were calculated by finite normal
distribution components with their associated weights. The drawback of this approach is that the model
requires predefined cluster information.
An adaptive kernel density estimation (KDE) with a plug-in bandwidth selection approach is presented
in [27]. The KDE algorithm designates probability distribution for every data point using a kernel function
and bandwidth, also known as the smoothing parameter, indicated in Eq. 9:

1Y 1 (h—h)
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Here, f;, provides the PDF of & for N observations. K is the kernel and b is the bandwidth. The sum of
kernels provides the total probability density of a variable. The optimal bandwidth selection is critical in a
KDE model. A large bandwidth will smooth the probability density curve but results in fewer data points
in each kernel. As a result, information about data variation will be lost. The optimal methods for finding
bandwidth are introduced in [28]. The KDE algorithm, along with the Monte Carlo simulation, was used to
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Fig. 2. Joint probability distribution applied to harmonic currents drawn by the monitor and PC [23].

estimate harmonic load flow in [24] and [29]. However, harmonic current magnitude and phase angles were
estimated independently, which would provide inaccurate phasor data results. A joint distribution from the
KDE algorithm can generate better results where multidimensional vectors represent the parameters. In
Fig. 3a, the KDE is applied to the 5th harmonic current measured during the PC stress test. This method
requires intensive calculations, and high computational power is needed for even a small-scale harmonic analysis.

Empirical bivariate histogram (EBH) distribution is another approach that divides data into predefined
bins. The EBH distribution data is normalized by using Eq. 10 to create a probability density mesh:

C(x,y)
P,=—277 1
YN-We- W, (10)

Here, Py, is the probability density of a bin at (x,y), C(x,y) are the number of samples in the bin and Wy, W,
defines the area of the bin. N defines the total number of data points. Figure 3b demonstrates the histogram
distribution applied to the 5th harmonic current of a PC under stress test. The advantage of EBH over KDE
distribution is that it requires less computational power. However, both EBH and KDE distributions generate
unused data space in the PDF when clusters are present in the data. Data sampling for these techniques is
quite challenging.

(a) KDE distribution (b) Histogram distribution
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Fig. 3. KDE and histogram distributions applied to the 5th harmonic current of the PC [23].
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3. ACCURACY AND UNCERTAINTIES

Current harmonic emission could be affected by several factors, including network configurations, load
variations, appliance parameters, and measurement uncertainties [30]. The power system uncertainties are
widely addressed in the literature. The network uncertainty includes variation in supply voltage, frequency,
and resonance. They are difficult to model as various factors, including generation, dispatch, and network
topologies, affect the estimations [31,32].

The load connected to each bus in the distribution network is comprised of various linear and nonlinear
loads. During different times in the day, various loads are connecting and disconnecting to the buses. The
researchers use varied stochastic approaches to predict network load behaviour [33,34]. Modern electrical
appliances work in various modes that generate different harmonic emission profiles. Different parameters
associated with the appliances also vary due to the variations incorporated during the manufacturing process
[35]. The environmental conditions and aging of the equipment play their role as well [36].

The measurement uncertainties are associated with the environment, measuring instrument uncertainties,
and variations in the test equipment. As the current harmonic profiles vary under different operating modes
of the devices, the measurement results should include these variations. The supply voltage distortion also
alters the current harmonics of different loads. Therefore, it is challenging to measure specific electrical
equipment on different modes under different supply variations. The thermal stability also changes the
current harmonics of the electrical appliances. The thermal stability effect on light-emitting diode (LED)
lamps shows a significant variation in current harmonics during the stability time. The effect of current
harmonic estimation displays a significant error as well [37]. Similarly, power supplies also show a more
than 20% and 12% variation in the THD and the total RMS current, respectively [38]. Likewise, the harmonic
current cancellation affects the outcome of harmonic analysis. The higher-order harmonic indicates a more
prominent reduction if the harmonic cancellation is taken into account [7]. The harmonic currents are also
affected by the cable impedance [39]. Therefore, all of these uncertainties should be included in the model
to estimate current harmonic emission.

4. PROPOSED STOCHASTIC MODELLING APPROACH

The modern electronic equipment operates in different modes, and their current harmonic spread is irreg-
ular with clustered data. The probabilistic approach of modelling current harmonics has the advantage of
tackling any sporadic variations. The stochastic models to estimate the current harmonic described in the
previous section have several limitations in terms of accuracy or computational complexity. Most of the
models use a normal distribution or joint normal distribution fit, not appropriate for most of the current har-
monic measurement data as they show different distribution spreads. The KDE and histogram distribution
algorithms require a bandwidth selection and become inefficient if the data has clusters.

A novel empirical bivariate probability distribution (EBPD) approach is applied in this research as a
part of the proposed bivariate stochastic (BS) model to estimate the current harmonics in the low voltage
network. The current harmonic magnitude data is used to generate the empirical cumulative distribution
function (ECDF) for the harmonics under consideration. The ECDF will provide the groups of the real and
complex components with their probabilities. The model consists of three parts: appliance usage model,
measurement database, and empirical bivariate harmonic current model. The algorithm of the model is de-
scribed with a flow chart in Fig. 4.

The model will simulate the required number of houses for a given number of days to estimate the
magnitude and phase angles of the harmonic currents generated by each house appliance. During each
day, all houses are populated with the appliance stock, and the current harmonics of every appliance are
estimated using the EBPD model. The appliance stock and usage pattern of that appliance are provided by
the appliance usage (AU) model further described in this section. Every appliance is simulated individually,
and the total harmonic emission of an individual household is aggregated in each iteration. The harmonic
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Fig. 4. Flow chart of the proposed model.

currents are aggregated in a complex plane. Therefore, the model also estimates real and complex (X and
Y) components of each current harmonic.

4.1. Appliance usage model

An efficient current harmonic estimation model should take into account the load variation in the distribution
grid. Harmonic injection in a network at a given time depends on the type and amount of the load connected
to the grid on that particular instant. However, the load prediction is a complex task as it is difficult to esti-
mate when the consumer is going to use a particular appliance. The occupant behaviour of using electrical
appliances is challenging to model as it depends on many factors. Occupants interact with the electrical and
nonelectric systems installed in the building, altering thus the energy usage patterns [40]. The International
Energy Agency (IEA) also regards occupant actions as the primary cause of controlling the environmental
parameters to maintain a comfortable living atmosphere [41]. These occupant actions are responsible for
71% variation in the building’s energy consumption [42]. However, various factors influence the resident’s
behaviour, including their age, income, social status, and cultural background [43]. The building structure,
insulation quality, climate conditions also play their role. Therefore, universal occupancy modelling is near
to impossible.

The electricity consumption models can be broadly classified into three categories: top-down models,
bottom-up models, and hybrid models [44]. The top-down modelling approach is based on data collected
on the macro-level. It may include an electricity billing database, national census, or survey data. The
researchers have frequently used the Time Use Survey (TUS) data collected in Europe, Britain, and America
for their energy consumption models. These surveys collect data from the targeted groups based on different
parameters. The models based on similar data have many drawbacks and lack the capability to provide a
detailed analysis of the physical behaviour of the building systems.

The bottom-up models are based on physical measurements at the device or building level. Nevertheless,
these models provide accurate information regarding energy consumption in a building but are complicated
to construct due to the involvement of several variables. These variables include occupancy, occupant be-
haviour, climate conditions, building structure, and an extensive database of appliance’s measurements. As
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it is difficult to consider each variable in detail, a compromise is required to make a specific model for a
particular research problem. Another approach is to combine the benefits of both bottom-up and top-down
approaches to improve efficiency. These models are termed as hybrid models [45].

We need a residential electricity consumption model to estimate current harmonic emissions from the
building. Therefore, a high-resolution bottom-up model is required to provide usage patterns of domestic
appliances that can be compared with the power quality (PQ) measurements. Figure 5 illustrates the abstract
diagram of our appliance usage model for residential buildings.

For this study, a residential building in Estonia is measured at the device level for one month. The data
is used to construct a probabilistic model to estimate the switching behaviour of the appliance. The model
consists of active occupancy profiles, appliance stock in the households, and the electricity consumption
measurements as shown in Fig. 5.

Active occupancy profiles are created based on the electricity consumption of the appliance that comes
under the direct influence of the occupant’s activities. The usage of lighting, media, kitchen, cleaning, and
laundry appliances directly depends on the occupant’s behaviour. Electricity consumption metre data has
been used for occupancy modelling in many studies [46—49]. A similar approach is applied here to create a
two state active occupancy profile. ECDFs are created for both weekdays and weekends occupancy status
based on the electricity consumption data. A survey related to the occupant’s daily activities is also used to
improve these occupancy profiles.

Every household has different appliances depending on the family size, geographical location and so-
cioeconomic status. Appliances are also available from different manufacturers with various specifications.
Manufacturers introduce new models every year with improved functionality and energy ratings. The appli-
ance ownership information can be extracted from several surveys conducted on national level in different
countries. A domestic energy model was created on the basis of a set of common appliances based on
national ownership statistics for the United Kingdom (UK) in [50]. Similar surveys are also conducted in
Europe and the USA.

The appliance usage model (AU) will provide the information when a particular appliance is switched
ON in the house. The ECDFs are used to generate switching and duration intervals of each appliance in the
house. The total electricity consumption of a single housing unit can be determined from the Eq. 11:

E= i [i(Paxda)—k(Psxds)} (n

day=1 |[ap=1

Here, P, denotes the active power of the appliance ap in its active mode and P is its active power in the
standby mode. d, and d; are the time duration of an appliance operating in active or standby modes during
a day.
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Fig. 5. Abstract diagram of the appliance usage model.
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4.2. Measurement database

The measurement database contains the current harmonic measurements of different household appliances
operating at different working modes on various voltage waveforms. We have used sinusoidal, peak-top,
flat-top, and real-time grid voltage waveforms as an input to measure current harmonics.

For the real-time grid voltage waveforms, a low voltage residential network is measured at 5-minute
intervals for a day to record the voltage harmonic magnitude and phase angles. Figure 6 shows the volt-
age waveform used to measure the current harmonic emission from the household appliances using the
measurement test bench.

The measurement test bench consists of a PC with MATLAB program and a data acquisition (DAQ)
module from National Instruments to generate a reference signal for the controllable power supply. The
reference signal Vi has enabled us to generate the required voltage waveform Vy using Eq. 12:

VO _ VR X Vrange )
Ve

Here, Vyunge is 300 V and V¢ is 7.07. Vg is generated by using the voltage harmonic magnitudes and phase
angles by means of Eq. 13:

(12)

n
Vou = ¥, V2 x A; sin(27fits + ). (13)
i=1

Here, A; represents the root mean square values of the voltage harmonics and ¢; indicates the phase differ-
ence from the fundamental frequency. f;, #; is the harmonic frequency for the ith harmonic and sampling
interval, respectively. The sampling frequency of the reference signal is 100 kHz and it is indicated by f;.
Figure 7 demonstrates the schematic of the measurement setup.

The harmonic current estimation model is based on the power quality measurement data of the appliance
portfolio. The device usage patterns from Section 3.1 are compared with the harmonic current profiles of
each household appliance. The model can be used to evaluate the total harmonic emission of a multiple
house as illustrated in Fig. 8.

4.3. Empirical bivariate harmonic current model

The empirical bivariate harmonic current modelling approach is suitable for harmonic analysis of loads with
the dynamic profile of harmonic emission and is also capable of addressing different uncertainties responsible
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Fig. 6. Voltage waveforms used for current harmonics measurements.
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Fig. 8. Harmonic current estimation of multiple households.

for current harmonic variations. The current harmonics of individual appliances will be modelled by means
of the ECDF. In the first step, the ECDF for the real part of the current in the complex domain is calculated.
Each group of this ECDF is further mapped with the complex part of the variable’s data group, and the
ECDF of each bivariate data group is calculated. The resolution of the ECDF determines the accuracy of the
harmonic estimation model. ECDFs for both real and imaginary components are calculated using Eq. 14:

1 m
pn(X <x)=—} 1 <1]. (14)
k=1

Here, p,, is the cumulative probability function of m groups. The 1 is called indicator function and has two
possible values as shown by Eq. 15:

- 1 forxg <x
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Figure 9 demonstrates how ECDFs of real and imaginary components of the current harmonics can be used
to create distribution of the current harmonic in the complex plane. The red line shows the ECDF of the real
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Fig. 9. EBPD applied to the Sth harmonic of the PC under stress test [23].

component of the harmonics and each blue line indicates the ECDF of the imaginary components at each
group of the real component’s ECDF.

5. CASE STUDY OF HARMONIC ESTIMATIONS

The proposed bivariate stochastic model was used to estimate current harmonic emission from the lighting
load in the low voltage residential grid. The lighting usage profiles were made utilizing the AU model with
a 1-minute resolution. The lighting measurements from the measured residential building were analysed for
this purpose. The active occupancy profiles and electricity consumption data were the inputs of our lighting
usage model. Total lighting load was segregated into the usage profile of each switch to control the electrical
lights in the building. The load curves were divided into morning, day, and evening cycles. Each cycle was
simulated separately.

The ECDFs were created to generate the probability distribution function of the switching and noise
events. The switching events occur when a lamp is turned ON for more than 10 minutes. All events with a
lamp usage of less than 10 minutes are considered noise events. The time duration of switching and noise
events for all lamps in a house can be aggregated to find the total lighting power demand. Equation 16 can
be used to calculate the total energy consumed by each lamp during any cycle in a residential building:

T m

E=Y | Y @oxm)+ Y (x| 16)

t=1 | se=1 ne=1

Here, E; is the total energy consumed by a lamp in one cycle of T minutes duration with m and n switching
and noise events, respectively. d,. refers to the duration of each switching event and d,, is the duration of
one noise event. The 60 houses were simulated for 100 days, and each house was populated with different
LED lamps depending on the lumens needed in each room. The usage pattern from the AU model provided
the time at which a particular lamp would switch ON as well as the ON time duration. A Monte Carlo based
approach was applied to calculate the current harmonics injected by the lighting from all the 60 houses. The
lamps operate in a single working mode (ON or OFF state) if dimming circuits are not used. Therefore,
bivariate harmonic estimation is simplified. The lamps were measured on different voltage waveforms.
These waveforms were regenerated using the measurement test bench described in Section 4.3. Lamps were
warmed up for 1 hour to eliminate the measurement variation because of thermal instability. The voltage
waveforms included sinusoidal, peak-top, flat-top, and real grid waveforms during different times of a day.
The probabilities were assigned to each voltage waveform, as shown in Table 1.
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Table 1. Waveform probability used in the model

Waveform Probability
Sinusoidal 0.15
Flat-top 0.06
Peak-top 0.04
Grid waveform 1 0.25
Grid waveform 2 0.25
Grid waveform 3 0.25

After selecting the voltage waveform during each iteration, the real components of the current harmonics
were selected for the particular voltage waveform. In the next step, the complex component of the current
harmonics was generated based on the group assigned to the selected real component. The real and imag-
inary components of current harmonics for all lamps were generated for a day with 1-second resolution.
Figure 10 illustrates the total RMS current drawn by the lighting usage of 60 houses. The bold black line
shows the mean value of the RMS current, and the blue dotted line indicates the 90 percentile value of the
RMS current consumed by the lighting in 60 houses. The minimum value of the RMS current drawn by the
lighting usage in all 60 houses is illustrated by the red dotted line.

The high-frequency current harmonics can also be estimated in a similar process. Figure 11 shows the
3rd, 5th, 7th, and 9th current harmonic represented by black, red, blue, and green colours, respectively. The
bold line indicates the mean value, and the dotted line shows the 90th percentile value.
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Fig. 10. Total RMS current estimated for the lighting load of 60 houses for 100 days.
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Fig. 11. Harmonic current estimation of the lighting load of 60 houses for 100 days.

The results reveal the effectiveness of the proposed approach as it is simple to evaluate, and any uncer-
tainty could be added at any step. The model provides flexibility to evaluate present and future appliances
by expanding the measurement database with power quality measurements of devices on different voltage
waveforms.

6. CONCLUSIONS

A novel bottom-up stochastic model to assess the current harmonic emission is presented in this paper.
The bivariate empirical distribution approach is used to model harmonic currents. It provides a simple
and flexible option to evaluate different aspects of harmonic emission in the distribution grid. The model is
capable of handling any uncertainty associated with the distribution grid by considering its stochastic nature.

The stochastic approach has made the model more efficient in handling variations and uncertainties
than the traditional numerical or probabilistic methods. The bivariate approach is applied to model current
harmonics, making the model capable of processing data with high variations and clusters.

An appliance usage model is also presented based on the real-time measurements at the device level. The
occupancy and appliance stock data can be used to create usage profiles of different electrical appliances in
a residential building. Thermal stability, cable impedance, and grid side variation are considered during the
measurements. The model is flexible to include additional future loads such as electric vehicles. It provides
an accurate assessment of the power quality aspects from the perspective of the low voltage distribution
under dynamic load and network conditions. The case study provides the effectiveness of the model by
estimating the current harmonic emission due to the lighting load of sixty houses. The measurement database
could be extended in the future by including measurements of different household appliances.



204 Proceedings of the Estonian Academy of Sciences, 2021, 70, 2, 190-206

ACKNOWLEDGEMENTS

This work was supported by the Estonian Research Council grant PSG 142. The publication costs of this
article were covered by the Estonian Academy of Sciences.

REFERENCES

1. Pierce, L. W. Transformer design and application considerations for nonsinusoidal load currents. IEEE Trans. Ind. Appl., 1996,
32(3), 633-645.

2. Shareghi, M., Phung, B. T., Naderi, M. S., Blackburn, T. R. and Ambikairajah, E. Effects of current and voltage harmonics on
distribution transformer losses. In Proceedings of the IEEE International Conference on Condition Monitoring and Diagnosis,
Bali, Indonesia, September 23-27, 2012. 1EEE, 2013, 633-636.

3. Czarnecki, L. S. Comments on active power flow and energy accounts in electrical systems with nonsinusoidal waveforms and
asymmetry. [EEE Trans. Power Delivery, 1996, 11(3), 1244-1250.

4. Watson, N. R,, Scott, T. L. and Hirsch, S. J. J. Implications for distribution networks of high penetration of compact fluorescent
lamps. IEEE Trans. Power Delivery, 2009, 24(3), 1521-1528.

5. Clement-Nyns, K., Haesen, E. and Driesen, J. The impact of charging plug-in hybrid electric vehicles on a residential distribution
grid. IEEE Trans. Power Syst., 2010, 25(1), 371-380.

6. Igbal, M. N., Jarkovoi, M., Kiitt, L. and Shabbir, N. Impact of LED thermal stability to household lighting harmonic load current
modeling. In Proceedings of Electric Power Quality and Supply Reliability Conference (PQ) & Symposium on Electrical
Engineering and Mechatronics (SEEM), Kdrdla, Estonia, June 12—15, 2019. IEEE, 2019, 1-6.

7. Jarkovoi, M., Igbal, M. N. and Kiitt, L. Analysis of harmonic current stability and summation of LED lamps. In Proceedings of
Electric Power Quality and Supply Reliability Conference (PQ) & Symposium on Electrical Engineering and Mechatronics
(SEEM), Kdrdla, Estonia, June 12-15, 2019. 1EEE, 2019, 18957598.

8. Hansen, S., Nielsen, P. and Blaabjerg, F. Harmonic cancellation by mixing nonlinear single-phase and three-phase loads. JEEE
Trans. Ind. Appl., 2000, 36(1), 152—-159. https://doi.org/10.1109/28.821810

9. Chakravorty, D., Meyer, J., Schegner, P., Yanchenko, S. and Schocke, M. Impact of modern electronic equipment on the
assessment of network harmonic impedance. [EEE Trans. Smart Grid, 2017, 8(1), 382-390.

10. Henao-Muioz, A. C. and Saavedra-Montes, A. J. Comparison of two mathematical models for nonlinear residential loads. In
Proceedings of the 17th International Conference on Harmonics and Quality of Power (ICHQP), Belo Horizonte, Brazil, October
16-19, 2016.

11. Blanco, A. M., Yanchenko, S., Meyer, J. and Schegner, P. Impact of supply voltage distortion on the current harmonic emission
of non-linear loads. DYNA, 2015, 82(192), 150-159.

12. Koch, A. S., Myrzik, J. M. A., Wiesner, T. and Jendernalik, L. Evaluation and validation of Norton approaches for nonlinear
harmonic models. In Proceedings of IEEE Grenoble Conference PowerTech, Grenoble, France, June 16-20, 2013. IEEE, 2013,
1-6.

13. Almeida, C. F. M. and Kagan, N. Harmonic coupled norton equivalent model for modeling harmonic-producing loads. In
Proceedings of the 14th International Conference on Harmonics and Quality of Power — ICHQP 2010, Bergamo, Italy, September
26-29, 2010. IEEE, 2010, 1-9.

14. Ahmed, E. E., Xu, W. and Zhang, G. Analyzing systems with distributed harmonic sources including the attenuation and diversity
effects. IEEE Trans. Power Delivery, 2005, 20(4), 2602-2612. https://doi.org/10.1109/TPWRD.2005.855441

15. Cunill-Sola, J. and Salichs, M. Study and characterization of waveforms from low-watt (<25 W) compact fluorescent lamps with
electronic ballasts. IEEE Trans. Power Delivery, 2007, 22(4), 2305-2311.

16. Baghzouz, Y. and Tan, O. T. Probabilistic modeling of power system harmonics. /EEE Trans. Ind. Appl., 1987, 1A-23(1), 173~
180.

17. Ye, G., Nijhuis, M., Cuk, V. and Cobben, J. F. G. Stochastic residential harmonic source modeling for grid impact studies.
Energies, 2017, 10(3), 372. https://doi.org/10.3390/en10030372

18. Salles, D., Jiang, C., Xu, W., Freitas, W. and Mazin, H. E. Assessing the collective harmonic impact of modern residential loads—
Part I: methodology. IEEE Trans. Power Delivery, 2012, 27(4), 1937-1946. https://doi.org/10.1109/TPWRD.2012.2207132

19. Caramia, P., Proto, D., Russo, A. and Varilone, P. Probabilistic harmonic analysis for waveform distortion assessment of low
voltage distribution systems with plug-in hybrid electric vehicles. In Proceedings of the Ist International Conference on Energy
Transition in the Mediterranean Area (SYNERGY MED), Cagliari, Italy, May 28-30, 2019. IEEE, 2019, 1-6.

20. Au, M. T. and Milanovi¢, J. V. Establishing harmonic distortion level of distribution network based on stochastic aggregate
harmonic load models. IEEE Trans. Power Delivery, 2007, 22(2), 1086-1092. https://doi.org/10.1109/TPWRD.2007.893193

21. Au, M. T. and Milanovié¢, J. V. Stochastic assessment of harmonic distortion level of medium voltage radial distribution network.
In Proceedings of the 9th International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden,
June 11-15, 2006. IEEE, 2007, 1-6.

22. Au, M. T. and Milanovi¢, J. V. Development of stochastic aggregate harmonic load model based on field measurements. /EEE
Trans. Power Delivery, 2007, 22(1), 323-330. https://doi.org/10.1109/TPWRD.2006.881455

23. Jarkovoi, M., Kiitt, L. and Igbal, M. N. Probabilistic bivariate modeling of harmonic current. In Proceedings of the 19th International
Conference on Harmonics and Quality of Power (ICHQP), Dubai, United Arab Emirates, July 6-7, 2020. IEEE, 2020, 1-6.



M. N. Igbal et al.: Bivariate stochastic model of current harmonic analysis 205

24.

25.

26.

217.

28.

29.

30.

3

—_

32.

33.

34.

35.

36.

37.

38.

39.

40.

4

sy

42.

43.

44,

45.

46.

47.

48.

49.

50.

Nasrfard-Jahromi, F. and Mohammadi, M. Probabilistic harmonic load flow using an improved kernel density estimator.
International Journal of Electrical Power and Energy Systems, 2016, 78, 292-298. https://doi.org/10.1016/j.ijepes.2015.11.076
Ray, S. and Lindsay, B. G. The topography of multivariate normal mixtures. Ann. Stat., 2005, 33(5), 2042-2065.
https://doi.org/10.1214/009053605000000417

Meyer, J. and Schegner, P. Characterization of power quality in low voltage networks based on modeling by mixture distributions.
In Proceedings of the 9th International Conference on Probabilistic Methods Applied to Power Systems, PMAPS, Stockholm,
Sweden, June 11-15, 2006. IEEE, 2007.

Botev, Z. 1., Grotowski, J. F. and Kroese, D. P. Kernel density estimation via diffusion. Ann. Statist., 2010, 38(5), 2916-2957.
https://doi.org/10.1214/10-A0S799

Weglarczyk, S. Kernel density estimation and its application. ITM Web of Conferences, 2018, 23, 00037.
https://doi.org/10.1051/itmcont/ 20182300037

Nasrfard-Jahromi, F. and Mohammadi, M. A sampling-based method using an improved nonparametric density estimator for
probabilistic harmonic load flow calculation. Turk. J. Elec. Eng. Comp. Sci., 2016, 24, 51113-5123.
https://doi.org/10.3906/elk-1505-197

Li, Z., Hu, H., Wang, Y., Tang, L., He, Z. and Gao, S. Probabilistic harmonic resonance assessment considering power system
uncertainties. [EEE Trans. Power Delivery, 2018, 33(6), 2989-2998.

. Sainz, L. and Balcells, J. Harmonic interaction influence due to current source shunt filters in networks supplying nonlinear

loads. IEEE Trans. Power Delivery, 2012, 27(3), 1385-1393.

Barmada, S., Musolino, A., Raugi, M. and Tucci, M. Analysis of power lines uncertain parameter influence on power line
communications. /EEE Trans. Power Delivery, 2007, 22(4), 2163-2171. https://doi.org/10.1109/TPWRD.2007.900305

Preece, R. and Milanovi¢, J. V. Efficient estimation of the probability of small-disturbance instability of large uncertain power
systems. /[EEE Trans. Power Systems, 2016, 31(2), 1063-1072.

Abu-Hashim, R., Burch, R., Chang, G., Grady, M., Gunther, E., Halpin, M. et al. Test systems for harmonics modeling and
simulation. /EEE Trans. Power Delivery, 1999, 14(2), 579-587. https://doi.org/10.1109/61.754106

Morales, J. M. and Pérez-Ruiz, J. Point estimate schemes to solve the probabilistic power flow. IEEE Trans. Power Syst., 2007,
22(4), 1594-1601. https://doi.org/10.1109/TPWRS.2007.907515

Pinceti, P. and Prando, D. Sensitivity of parallel harmonic filters to parameters variations. /nt. J. Electr. Power Energy Syst.,
2015, 68, 26-32.

Igbal, M. N., Kiitt, L., Asad, B., Shabbir, N. and Rasheed, I. Time-dependent variations in current harmonic emission by LED
lamps in the low-voltage network. Electr. Eng., 2020, 101(25), 1277-1293.

Igbal, M. N, Kiitt, L., Asad, B., Vaimann, T., Rassolkin, A. and Demidova, G. L. Time dependency of current harmonics for
switch-mode power supplies. Appl. Sci., 2020, 10(21), 7806.

Igbal, M. N. and Lauri, K. Impact of cable impedance on the harmonic emission of LED lamps. In Proceedings of the 21st
International Scientific Conference on Electric Power Engineering (EPE), Prague, Czech Republic, October 19-21, 2020. IEEE,
2020, 1-5.

Sun, K., Yan, D., Hong, T. and Guo, S. Stochastic modeling of overtime occupancy and its application in building energy
simulation and calibration. Build. Environ., 2014, 79, 1-12. http://dx.doi.org/10.1016/j.buildenv.2014.04.030

. Yoshino, H., Hong, T. and Nord, N. IEA EBC annex 53: Total energy use in buildings—analysis and evaluation methods. Energy

Build., 2017, 152, 124-136. https://doi.org/10.1016/j.enbuild.2017.07.038

Sonderegger, R. C. Movers and stayers: The resident’s contribution to variation across houses in energy consumption for space
heating. Energy Build., 1978, 1(3), 313-324.

Feng, X., Yan, D. and Hong, T. Simulation of occupancy in buildings. Energy Build., 2015, 87, 348-359.
http://dx.doi.org/10.1016/j.enbuild.2014.11.067

Igbal, M. N. and Kiitt, L. End-user electricity consumption modelling for power quality analysis in residential building. In
Proceedings of the 19th International Scientific Conference on Electric Power Engineering (EPE), Brno, Czech Republic, May
16-18, 2018. 1EEE, 2018, 1-6.

Ofetotse, E. L., Essah, E. A. and Yao, R. Domestic energy models: complexities in defining specific tools. In Proceedings of the
International Conference of SuDBE2013, Chongqing, China, October 2528, 2013.

Causone, F., Carlucci, S., Ferrando, M., Marchenko, A. and Erba, S. A data-driven procedure to model occupancy and
occupantrelated electric load profiles in residential buildings for energy simulation. Energy Build., 2019, 202, 109342.
https://doi.org/10.1016/j.enbuild.2019.109342

Tekler, Z. D., Low, R. and Blessing, L. Using smart technologies to identify occupancy and plug-in appliance interaction patterns
in an office environment. JOP Conf. Ser.: Mater. Sci. Eng., 2019, 609(6), 062010.

Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E. and Irwin, D. Private memoirs of a smart meter. In BuildSys’10: Proceedings
of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, Zurich, Switzerland, November 2,
2010. ACM, New York, NY, 2010, 61-66.

Kleiminger, W., Beckel, C. and Santini, S. Household occupancy monitoring using electricity meters. In UbiComp 2015:
Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, September
7-11, 2015. ACM, New York, NY, 2015, 975-986.

Richardson, I., Thomson, M. and Infield, D. A high-resolution domestic building occupancy model for energy demand simulations.
Energy Build., 2008, 40(8), 1560-1566.



206 Proceedings of the Estonian Academy of Sciences, 2021, 70, 2, 190-206

Madalpinge-jaotusvorgus esinevate vooluharmoonikute kahemo6tmeline stohhastiline
modelleerimine

Muhammad Naveed Igbal, Lauri Kiitt, Kamran Daniel, Marek Jarkovoi, Bilal Asad ja
Noman Shabbir

On esitatud kahemodtmeline stohhastiline analiiiis vooluharmoonikute hindamiseks alt-iiles viisil, mis ar-
vestab vorgu ja koormuste muutumist. Vooluharmoonikute hindamine praeguste ja tulevikus rakedatava-
te mittelineaarsete koormustega on oluline, et médrata nende mdju jaotusvorgule. Traditsioonilised har-
moonikute analiitisi mudelid arvestavad ainult piisivaid koormusi ja jdtavad korvale harmoonikute omava-
helise mdju. Soojuslik stabiilsus, harmoonikute tiihistamine ja vorgu diinaamilised parameetrid mdjutavad
samuti vooluharmoonikute hinnanguid. Antud artiklis on esitatud tdenédosuslik lihenemine, millega mo-
delleerida vooluharmoonikute emissiooni madalpinge-jaotusvorkudes vorgu ja koormuse médramatuse kor-
ral. Esitatud mudeli tShusust on nédidatud juhtumipdhise analiilisiga.
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Abstract: The EV penetration in the low voltage residential grids is expected to increase rapidly in
the coming years. It is expected that EV consumers will prefer overnight home charging because of
its convenience and lack of charging infrastructure. The EV battery chargers are nonlinear loads and
likely to increase the current harmonic emission in the distribution network. The imminent increase
of EV load requires upgrading or managing the existing power system to support the additional
charging load. This paper provides the estimation of the current harmonic emission of the EV
charging load at different voltage distortions using the stochastic EV load model. The impact of EV
charging on the distribution transformer is also presented.

Keywords: electric vehicle; harmonics; transformer derating; power quality

1. Introduction

The transport sector is responsible for 24% of the total CO, emission globally, while
road transportation has the largest share and accountable for 75% of the emission from
transport. The major contributors are passenger and cargo vehicles, with a share of 45.1%
and 29.4% [1]. Fossil oil is the primary energy source by providing nearly 92% of the energy
demand for transportation. However, rising CO, emissions and unstable oil prices have
paved the way for alternative technologies such as electric vehicles (EV). Using alternative
green energy, the electrification of transport could provide a sustainable solution to address
the greenhouse-gas-emission reduction objectives. The EVs provide zero-emission and a
high energy conversion efficiency in contrast to traditional combustion engines. However,
the rapid high integration of the EVs could pose a severe bottleneck for the existing electric
distribution systems as the EV charging infrastructure is still inadequate. At the same time,
the overnight home charging of EVs can challenge the network capacity. The EV battery
chargers are power electronic-based converters and draw nonlinear currents, thus inject
current harmonics into the power supply system. Even with the improved circuits and
power factor corrections, the harmonic content after the mass adoption of EVs would be
much higher because of the high EV charging current compared to the other domestic or
commercial load.

The uptake of EVs has been increased significantly during the last few years, and more
than seven million electric vehicles are now in use worldwide [2]. The ambitious policies
set by several countries to support the electrification of the transport sector expected to
increase EV deployment in coming years. These policies include incentives to decrease the
high upfront cost and the development of widespread charging infrastructure. As a result,
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the growth in EV stock was nearly 40% in 2019; however, the total global EV stock is still
only less than 1% of all the passenger cars in use. The share of EV in total yearly car sales
is about 2.6%. Due to the favourable government policies in different countries, the EV
uptake is expected to increase to 50 million active units by 2025 and 140 million by the end
of 2030.

Private home chargers are nearly 90% of the total low duty electric vehicle chargers
installed worldwide [3]. The primary reason for their popularity is the cost-effectiveness
and ease of use associated with home chargers. Furthermore, incentives and electricity
prices also support home charging. The majority of the EV customers in large EV markets,
such as Norway, United Kingdom (UK), United States (US), Japan and China, prefer home
charging. It requires no additional infrastructure, and EVs can be charged from the existing
electrical sockets. The public charging infrastructure is still not adequate, while only 4% of
fast EV chargers are installed worldwide by the end of 2019. The ratio of the number of
public chargers to the total number of EVs also shows a slight decline in recent years [4,5].

It is critical to evaluate the ramifications of uncontrolled EV charging on the distribu-
tion network. High penetration of EV could affect the capacity and performance of the
local power supply network. The constraints on the network can be addressed by adding
additional capacity or improve the utilisation of installed capacity. The high EV load may
challenge the network’s reliability by overloading distribution lines and substation during
peak hours [6,7]. Even with abundant electricity generation within the region, the impact
of EV charging may bottleneck the transmission and distribution system as it may not have
enough capacity to handle this additional charging load. The variability of traditional resi-
dential load provides flexibility to the grid. The residential building’s load factor is around
20%, while the aggregated load factor of several houses at the distribution transformer may
be approximately 30%. However, EV charging could follow relatively consistent patterns
as customers would like to charge their vehicle after home arrival. Range anxiety can also
contribute here, and the drivers will prefer to charge their EVs overnight for the next day
trip even when the battery has sufficient charge [8-10].

Large-scale EV charging can impact the distribution networks in terms of high har-
monic distortions, voltage regulation, and transformer overloading. EV batteries require
DC for charging; therefore, power electronic converters are employed for AC to DC con-
version and charging control. These converters present nonlinear load to the distribution
grid as they draw non-sinusoidal currents with high-frequency harmonics. The harmonic
emission of an EV charger depends on the circuit topology of the converter. Although
the modern battery chargers provide low total current harmonic distortion (THDi) with
harmonic content under the limits defined by the relevant standards, the high penetration
of EV may result in large aggregated harmonic currents. It may result in high voltage dis-
tortion that can affect the performance and harmonic emission of the other loads connected
to the network. The voltage and current distortions negatively impact the power grid by
introducing additional losses in the transmission and distribution cables [11]. The perfor-
mance of network components such as transformers will reduce [12]. Electrical appliances
and network protection equipment such as relays could malfunction under the influence of
harmonics [13]. Therefore, to understand the impact of additional EV charging load on the
network, the assessment of harmonic emission is vital for network designers and operators.

This paper provides an assessment of EV harmonic emission in the distribution
network based on a stochastic EV usage model. The EV usage model generates the state of
charge (SOC) and load profiles for the given number of EVs. Monte Carlo approach is used
to estimate the harmonic emission of the EV load and harmonic emission. The impact of
EV charging load on the distribution transformer is also estimated for uncontrolled and
controlled charging scenarios. Section 2 provides an overview of the existing literature
related to EV harmonic emission estimations. The methodology used in this paper is
explained in Section 3. EV usage model is described in Section 4 and EV current harmonic
emission estimations are provided in Section 5. The conclusions are presented in Section 6.
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2. Impact of EV on Harmonic Emission

The impact of EV on the capacity and performance of power system has been widely
discussed in the literature. It was found that EV charging load will likely match the peak
demand hours in the residential grids [14]. Many countries have sufficient generation
capacity to handle additional battery charging load for high EV penetration [15]. However,
the capacity of transmission and distribution is insufficient, especially during peak demand
hours. Load flow analysis is performed to determine the effect of PHEV charging on
the power system losses in [16]. It has been found that for a 30% penetration of PHEV,
the network capacity become insufficient to support the additional charging load. The dis-
tribution lines also need replacement to support the additional charging load while the
voltage deviations are increased up to 10%. In [17], the framework is presented for an
intelligent distribution system capable of handling EV charging that can determine the
charging schedule and grid operating conditions for the next day. However, the number of
EVs required to charge at any particular time is a stochastic process and must be treated
accordingly to formulate the EV load. A comparison of uncontrolled, off-peak and smart
charging of EV is presented in [18]. A 20% EV penetration increases the peak load by
almost 35% for unmanaged charging scenario, while smart charging provides a better
grid utilisation. The authors emphasise that a sufficient generation capacity is not a valid
parameter to assess the capability of the regional grid to handling EV load.

In [19], a charging strategy is proposed to optimise the grid capacity utilisation
in the residential grid. The authors have assumed Poisson distribution to estimate the
number of vehicles that arrive in the evening for charging at residential parking lots.
The normal distribution is used to estimate the state of charge (SOC) of the incoming
vehicles. A charging strategy is proposed by evaluating the number of incoming vehicles
and their SOC level and assigning an appropriate charging schedule to avoid evening
peaks. However, the estimation of incoming vehicles and SOC is somewhat complex and
depends on several factors influenced by the travel patterns. Queuing theory is used to
model the charging demand of PHEV in [20]. A random number of PHEV are selected to
charge on commercial fast-charging stations or in the residential grid during each iteration.
The probability distribution functions are selected based on the data for the charging
demand, and power flow analysis is used to analyse the impact of PHEV charging on the
distribution grid. The study implies the effect of charging current on the distribution grid;
however, high-frequency harmonics are not considered. The impact of EV charging on the
residential distribution network is studied in [21]. The authors have modelled the EV load
by selecting a constant SOC and fixed charging time to simulate the worst-case scenarios.
The impact of current harmonics injected during EV battery charging on the distribution
system is estimated in [22]. Although the current harmonics ranges are not estimated at
different times during the day, the study provides a relatively simple tool to evaluate the
impact of harmonics on transformer ageing.

The aforementioned studies provide valuable insight into EV penetration on LV and
MYV grids; although, several simplifications were found while modelling the EV load and
SOC. The EV demand in the residential grid depends on several factors, including state
of charge (SOC) of EV, owner’s decision to charge his vehicle and the time required for
charging. These events are stochastic in nature and are influenced by the driver’s travel
patterns or electricity tariff structure. National surveys are used to gather information
regarding drivers travel pattern and preferences could provide the foundation of the
stochastic modelling of EV load [23].

In [24-26], EV charging strategies are proposed to improve voltage unbalance, net-
work overloading and cost reductions. The controlled and smart charging can improve the
network operation significantly without having an additional impact. However, the practi-
cal implementation of these strategies is not expected anytime sooner, and uncoordinated
charging may be the only mechanism for the time being.
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3. Methodology

The travel patterns are the primary influencing factors to estimate the EV load and
charging time in a distribution grid. Vehicle usage depends on several factors related to
consumer socioeconomic status, where the driving patterns are interrelated to the vehicle
ownership and number of occupants in each household. Many studies have assumed the
random number of vehicles charging at different parking lots in the residential networks.
In fact, the number of EVs present in a residential grid and connected to the grid for
battery charging will be different at distinct times during the day. Several variables will
contribute to the amount of EV load connected to the grid, such as EV arrival time at home,
the number of the trip made during a day, distance travelled during each trip and SOC
after the trips.

The selection criteria to estimate the arrival time for the incoming vehicles for charg-
ing is crucial to evaluate a realistic impact of charging currents in the distribution grid.
Few studies have used queuing theory approach to determine the incoming vehicle for
charging at the parking lots in the residential grid, while the Poisson distributions are
used to estimate the arrival time [20,27]. Since the nature of various trip by EVs could
be different, multiple distributions should be defined to estimate the arrival time of the
EVs. Furthermore, the charging decision of EVs depends on the SOC that must be de-
cided based on the distance travelled and energy consumption by the EV during different
trips. The daily driving distance of vehicles depends on the driver’s routine activities that
create the demand for the trips. Therefore, the destination and travel distance are highly
stochastic, and the researchers most often use the average trip distance to create EV usage
models [28-30]. Travel surveys could provide valuable information in this regard.

The harmonic emission of EVs depends on the charging characteristics that typically
include the battery charger circuit topology, network voltage waveforms, and charging time
of the battery. The measurement of a selective set of EVs on different voltage waveform
may provide a valuable data set because of the identical technology used in the battery
chargers in the same time span.

4. EV Usage Model

An EV usage model is developed to estimate the harmonic emission from EV penetra-
tion in the distribution grid. The model is based on the data extracted from the national
traffic survey (NTS) conducted in Finland. The survey provides data about people mobility
using different modes of transportation. It gathers yearly travel data from 30,000 people
and provides various travel related statistics. The information related to travel utilising
private cars, such as daily distance travelled by individuals, total daily trips, everyday
activities that generate the need for trips, and trip starting times, are used in the model.
The trip of chain approach is employed to evaluate different parameters of each trip using
appropriate probability distributions. A Monte-Carlo simulation is used to simulate the EV
trips based on the most common activities responsible to generate trip demand for a given
number of days. The charging of EV is decided on the SOC level at the end of each trip.
The algorithm of the EV usage model is shown in Figure 1. The details of the EV usage
model are presented in [31].

Trips are generated in response to people’s everyday activities, including work, school,
travel, and leisure. We have selected three major activities for our EV load model. The most
likely trip on weekdays is related to travel to work or school (WS). These drips have very
low variation in terms of timing and distance. The second category of trips is related to
shopping or business (SB) associated activities with significant variation for the trip starting
time and travelled distance. The last category of trips is linked with leisure or vacation (LV).
In contrast, these trips have a significantly high variance for both start-time and travelled
distance and less likely to happen, especially on weekdays.
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Figure 1. EV usage model algorithm.

The probability distribution functions (PDF) of three essential parameters, trip start-
time, trip distance and trip end-time, are defined for different trip categories that provide
the base of the EV load model. During each iteration, the number and type of trips are
selected for each day. In the next step, the trip characteristics such as start time, end time
and distance travelled are estimated from their PDFs. In the last step, battery evaluation is
performed after the end of each trip. The SOC is determined based on the energy consumed
by the vehicle during the trip.

Figure 2a shows the start-time of different trip categories chosen from the NTS survey,
where multiple peaks can be observed. This data is split up into incoming and outgoing
trips, and probability distributions are defined for each travel activity. Figure 2b shows the
outgoing and incoming time distributions for WS trips extracted from the NTS survey data.
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Figure 2. Frequency of trips at different times (a) Data obtained from the survey (b) Probability distribution of outgoing
and incoming trip for WS travel activity [31].

T-location scale distribution is used as it provides a close fit to the incoming and
outgoing time data. The probability distribution function of t-location-scale distribution is
shown by Equation (1).
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Here p and o represent the location and scale of the PDF while I' is the gamma function.
v is the degree of freedom, and its lower values generate heavier tails. As the value of
v increases, t-location-scale distribution approaches a normal distribution. A similar
approach is applied to other trip activities to construct a PDF of the start time and end time
of trips.

The incoming time of a trip depends on the distance travelled and time spent at the
activity for which the trip demand is generated. Duration of leisure and shopping activities
is calculated using Poison distribution, where the average time at the leisure and shopping
activities is selected randomly between 120-180 and 20-60 min, respectively. The following
relation shows the PDF of a Poisson distribution.

AX
fl) = Zpet

Here A shows the variance and e is Euler’s number. The data of average distance
travelled for various trip activities at different times of the day is also taken from the NTS
survey and is shown here in Figure 3. The distance travelled for each trip is estimated by
using log-normal or Poisson distributions. The PDF of a log-normal distribution is shown
by Equation (3).

o
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u and o in Equation (3) represents the mean and variance of the input data. The NTS
survey provides the data for the number of trips for each activity per day and average trips
per day. This data is used to evaluate the probability of trip as shown in Figure 4.
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Figure 3. Distance frequency at different times during the day (a) Work, school and business related activities (b) Shopping,
visits and leisure related activities.
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Figure 4. Total number of trip and their probability per day.

5. EV Harmonic Emission Estimation

Accurate evaluation of the EV battery charging impact on the distribution grid requires
understanding of charging characteristics dynamics under different operating modes and
supply voltage variations. It’s a challenging task because several manufacturers are offering
EVs in various sizes and battery capacity. The advancement in power electronics has
led to notable changes in terms of the design and performance of EV battery chargers.
The majority of commercially available EVs are equipped with level 2 chargers and are
charged using slow overnight home charging as public fast-charging infrastructure is
still inadequate [32]. These chargers provide high efficiency over a wide range of supply
voltage variations, including active power factor correction (a-PFC) circuits. Their harmonic
emission is well under the limits provided by the standards, and total current harmonic
distortions is less than 15% [33,34].

A measurement setup has been made to evaluate the current harmonic emissions of
the EV battery charger under various voltage distortions. The setup consists of a 4 kVA
controllable power supply Chroma 61505, and the reference signal is provided by the data
acquisition module from National Instrument (NI). Figure 5 shows the block diagram of
the measurement setup. The voltage distortions are created using a MATLAB program by
providing voltage harmonic magnitudes and phase angles as listed in Table 1.

Reference Relay
Signal Signal

—
@)
Q
o

recccscccces
cecccscccscee
SjuU3aWINSEIN
uaun)

Voltage
Measurements

=====--=» PQ Measurements ¢------

Figure 5. Measurement setup block diagram.
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Table 1. Voltage waveform used for EV power quality measurements.
Harmonics Voltage Waveform 1 Voltage Waveform 2 Voltage Waveform 3
RMS (V) Phase (Degree) RMS (V) Phase (Degree) RMS (V) Phase (Degree)

H1 230 - 229.89 0 229.85 0
H3 - - 5.450 0 6.620 0
H5 - - 3.827 180 4.730 180
H7 - - 2.040 0 1.440 180
H9 - - 0.565 180 - -
H11 - - 0.308 180 - -
H13 - - 0.557 0 - -
H15 - - 0.375 180 - -
H17 - - 0.050 0 - -
H19 - - 0.182 0 - -

The power supply is controlled by a reference signal using the following relation.

\%
Vg = V. — x Vcoef (€]
range

The values of Viange and Voo is 300 V and 7.072, respectively. V, is generated at a
sampling frequency of 100 kHz using the following equation.

n
Vo = Z \/5 X Up sin(27'[fhts + “h) ®)
i=1

where, v, is the RMS value of harmonic magnitude and f}, is its frequency. «), represents
the phase difference of the harmonic from the fundamental component of the voltage
waveform. The sampling interval ¢, is calculated using the sampling frequency fs as shown

by the following relation
1 1

fs  N/T

Here, T is the time duration of the generated waveform and N is the number of
samples in that interval. A-Eberle PQ box 200, capable of providing 1-second data averaged
over 200 ms recordings, is used to record the current harmonics magnitude and phase
angles. The detail of the measurements setup is provided in [35]. Eleven different EVs
including both battery-powered electric vehicle (BEV) and plug-in hybrid electric vehicle
(PHEV) are measured on the voltage waveforms defined in Table 1. The characteristics of
these vehicles are summarised in Table 2.

ts = (6)

Table 2. Summary of the measured EVs.

Number Type Battery Capacity (kWh)  Driving Range (km) THDi %
EV1 BEV 22 170 4.80
EV2 BEV 16.8 100 7.18
EV3 BEV 31 160 2.87
EV 4 BEV 40 220 11.66
EV5 BEV 14.5 171 8.39
EV6 PHEV 11.2 50 3.10
EV7 BEV 18.7 165 243
EV 8 PHEV 9.4 36 2.47
EV9 BEV 17.6 145 4.33

EV 10 BEV 58 335 7.07
EV11 PHEV 8.8 26 2.35

The impact of voltage waveform distortions on the individual harmonics is presented
in Figure 6. The vectors of the 3rd harmonic current show that the spread will change
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slightly for the flat top voltage waveform while the harmonic spread is nearly identical for
sinusoidal and pointy top voltage waveforms. The harmonic spread for the 5th harmonic
on pointy top voltage waveform is almost shifted 180 degrees in contrast to sinusoidal or
flat top voltage waveform for the majority of the EVs. On the flat top voltage waveform,
the 5th harmonic current is slightly increased in magnitude; however, the phase angles are
almost the same as on the sinusoidal voltage waveform. The 7th harmonic current spread
on the pointy top voltage waveform shows a significant change in terms of magnitude in
comparison to sinusoidal or flat top voltage profiles. On the other hand, the 9th harmonic
shows a wider spread for different EVs, but the change in magnitude or phase is not very
high for different voltage waveforms.
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90 90
2 0.8
135 e 45 135 o 45
1 ' 0.4

0.5 \
180 % 3"%@ o 1805 K @2@4 & < ;o
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Figure 6. Current harmonic emission of individual EVs.
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To observe the impact of the large scale EV integration on the current harmonic
emission in the low voltage distribution network, EV load model is used to simulate
50 EVs for 100 days. The EVs are assigned randomly from the list provided in Table 2.
The EV load model is used to simulate the travel activities to generate charging profiles
based on the distance travelled during each trip. For each EV, the outgoing and incoming
times of each trip during a day is estimated. The final destination is assumed to be the
home. Based on the distance travelled during each trip, the state of charge of the battery
is estimated. The decision of charging depends upon the state of SOC. While the EV is
at home and does not have sufficient SOC to make a new trip, the EV charging will take
place. The simulation is performed for weekdays only, therefore, the EV charging takes
place mostly during the evening time. Figure 7 shows the mean and 90th percentile values
of total RMS current for different voltage distortions. The bold lines indicate the mean
values while the dotted line shows the 90th percentile value of the RMS current. The RMS
values does not show a significant variation for different voltage waveforms and only
slight variation can be observed.
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Figure 7. RMS current of 50 electric vehicles at different voltage distortions (a) Full day (b) Evening peak.

The mean and 90th percentile values of 3rd harmonic current drawn over 100 days
for 50 EVs is shown in Figure 8a. No significant variation in the 3rd harmonic current can
be observed between sinusoidal and pointed top voltage waveforms, however, the values
on flat top voltage waveforms are significantly less for both mean and 90th percentile
values. The mean value increases to its maximum value of 6.9 A around 21:30. The mean
values on flat top voltage waveform at the same time is only 4.60 A which is 33.3% less.
The 5th harmonic values are more for flat top voltage waveform as shown in Figure 8b.
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On sinusoidal voltage waveform, the 5th harmonic current has lowest values during the
24 h. The values slightly increase on pointed top voltage waveform shown by black bold
line in Figure 8b. The mean and 90th percentile values of the 5th harmonics crosses 4.4 and

5.6 A, respectively, during the evening peak. On the sinusoidal and pointed top voltage
waveforms, the mean value increases to a maximum value of 1.9 and 2.8 A only.
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Figure 8. Estimated harmonic emission of 50 EVs over 100 days (a) 3rd harmonic (b) 5th harmonic (c) 7th harmonic (d)

9th harmonic.

The 7th harmonic emission on pointed top voltage waveform is very high in compari-
son to sinusoidal and flat top voltage waveforms as shown in Figure 8c. The mean value
exceeds 4 A for pointed top voltage waveform during the evening peak while the mean
values at sinusoidal and flat top voltage waveforms are around 1 A. The values for the 9th
harmonic current are more on the flat top voltage waveform with the mean value crossing
1 A during the evening time. For sinusoidal and pointed top voltage waveform, the mean
values of the 9th harmonic are quite close during the whole day with the maximum value
of 0.83 A. Figure 8d shows the mean and 90 percentile values of the 9th harmonic current
on different voltage distortions.

6. EV Charging Impact of Distribution Transformer

The impact of EV charging on the distribution network includes the increase in load
and voltage distortions. To assess this impact, the relation between the charging start time
and the evening peak should be taken into account. Evening peak load depends on the
consumer behaviour of using electricity mainly influenced by regional electricity pricing
mechanisms. The primary impact of additional EV load is the heating and overloading
of existing distribution transformers. The additional losses may occur because of the skin
and proximity effects in the windings and stray losses due to leakage flux. Consequently,
the hot spot temperature rise will reduce the operating life span of the transformer and
increase the probability of insulation failure. Additionally, the cable efficiency will also be
reduced because of the high losses resulting from skin and proximity effects [36].

To evaluate the impact of EV integration in the existing distribution network, a test case
has been presented in this section based on the real-time measurement of the distribution
grid and EV usage model. A distribution grid in Finland is measured for several days
in winter to record current harmonics at the 620 kVA distribution transformer connected
in Delta-Wye (Dy) with LV side grounded. In Figure 9, the black line shows the mean
value of the existing load at the transformer for approximately 80 houses without any EV
usage. The heating load is already shifted to 20:00 to reduce peak loads and take advantage
of cheaper electricity tariffs. The heating load scheduling is performed on the user end
through time-based switching.

Two different scenarios are simulated using the EV load model to estimate the addi-
tional load on the transformer. In the first case, 80% of uncontrolled EV charging load is
simulated for 100 days using Monte Carlo simulations. The current harmonics estimated
from the simulated EV load are aggregated with the measured current harmonic data
at the distribution transformer. The mean value of transformer load is calculated and is
shown by the red line in Figure 9. The uncontrolled charging has significantly increased
the transformer load by approximately 18% and 25% at 16:00 and 18:00, respectively.
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The transformer load significantly increased after 20:00 because of the shifted heating load
in winters. The EV charging has caused additionally 15% and 7% transformer loading at
approximately 20:00 and 23:30, respectively. The peak loading of the transformer is nearly
89% around 23:30.

600 |

= Without EV _
Uncontrolled Charging
Controlled Charging

500 |

300 |

200 |

16:00 20:00 24:00

4:00 8:00 12:00

Time
Figure 9. Mean value of distribution transformer load at different times of the day.

In the second case, controlled EV charging is implemented and simulated using the
EV load model. In the second case, controlled EV charging is implemented and simulated
using the EV load model. Several controlled charging methodologies are available in
the literature that provides smart charging algorithms to maximize utility or consumers
benefits [37,38]. However, these schemes require additional infrastructures such as data
connections and smart meters. These algorithms may also cause inconvenience to the
customers and limited practical implementations [21]. We have used controlled charging
based on Time-of-Use (TOU) pricing and simulated its impact on the distribution grid using
the EV load model. The TOU based controlled charging allow networks to reduce peak
load by selecting appropriate peak and off-peak energy prices and required no additional
infrastructure [39,40]. It may provide better grid utilization, especially during summertime
when the heating load is not present; however, the customers may also take advantage of
low price electricity during off-peak hours for their heating load during winter times.

The impact of controlled EV charging is estimated using the EV usage model. The yel-
low line in Figure 9 shows the transformer loading for controlled charging scenarios.
All the EVs are now forced to charge from 20:00 on wards, causing additional strain on
the transformer. The transformer load has increased almost 53% at 20:00 and pushing the
transformer load to nearly 95%. Furthermore, the peak load is increased to 96% because
of the additional 16% EV load at 23:30. The controlled charging for EVs during winters is
causing poor load management in contrast to uncontrolled charging because of the shifting
of heating load during off-peak hours. The EVs cannot be scheduled between 04:00-08:00
to avoid heating load as the time span is not enough to recharge the batteries fully.

The uncontrolled charging provides better transformer utilisation for the distribution
grid under consideration. It means that the time-based tariffs may cause overloading of
the transformer as both EV and heating load will take advantage. However, when the
heating load is minimal in the summertime, the time-based tariff and controlled charging
will improve the transformer utilisation.

The hot-spot temperature of the distribution transformer is estimated using the proce-
dure described in IEEE standard C57.110 [41]. The values of current harmonics estimated
using the EV load model for 80% EV penetration along with the measured values of current
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harmonics at the distribution transformer are used to calculate the hot spot conductor
temperature of the 620 kVA oil-immersed transformer using the Equation (7).

@)

0.8
0. — 0 % Igu X (1 + Ly % Pe(mted)
R = YR(rated
(rated) 1+ Pe(mted)

Here 6 and 0,44, are the hottest spot conductor temperature rise under operating
and rated conditions in degree Celsius (°C). Py(;4¢q) is the per unit eddy current loss in the
transformer under rated conditions. Ly, is the loss factor due to harmonic currents in the
transformer winding and calculated by using Equation (8).

L T [?{]21 tho.s ©
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Here £ is the harmonic number and /1,4y is the highest harmonic order under consider-
ation. I and Ij, are the RMS load current and RMS harmonic current, respectively. Figure 10
shows the temperature rise of the hottest spot conductor over ambient temperature for
three scenarios. In the first case, the calculation is made only for the mean values of the
current harmonic measurement data at the distribution transformer. The black line shows
the temperature in the range of 26-52 °C between 00:00 to 20:00 without any EV load.
The temperature rises to the maximum value of 77 °C during the time period of 22:00 and
24:00 because of the shifted heating load.

without EV
= Uncontrolled EV Charging
Controlled EV Charging

4:00 8:00 12:00 16:00 20:00 24:00
Time
Figure 10. Transformer hottest spot conductor temperature rise above ambient conditions.

In the second scenario, the temperature rise for the hottest spot conductor is calculated
when an additional uncontrolled EV charging load is applied. It has increased the tempera-
ture range to almost 60 °C between 00:00 to 20:00, while the maximum temperature is now
almost 93 °C at 22:30. It means that uncontrolled charging has increased the maximum
temperature rise of the transformer by nearly 16 °C. In the controlled EV charging scenario,
the maximum temperature of the transformer has increased to more than 100 °C, which
is 8 °C more when uncontrolled EV charging is employed. The consistent high hot spot
conductor temperature for more than 4 h a day will significantly reduce the transformer
life or cause insulation failure.

The results show that EV controlled charging based on TOU electricity tariff to shift
the EV load during off-peak hours will not improve the transformer utilisation for high EV
penetration in the distribution grids during winter times. A more complex load shifting
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procedure is required where heating load and EV charging could be adjusted to improve
the transformer utilisation and decrease the hot spot conductor temperature. However,
it will require additional infrastructure to support the implementation smart controlled
charging schemes. Furthermore, the impact of smart controlled charging algorithms on
the EV customers is also unknown at this point. The results also show the validation and
capability of our EV load model.

7. Conclusions

A method is proposed in this paper to estimate the current harmonic emission of
electric vehicles. The model is based on the EV usage model developed to generate the SOC
profiles of individual vehicles. Furthermore, probability distributions functions of various
parameters such as outgoing time, distance travelled, and incoming time for different types
of trips are calculated based on the data from a travel survey. Various electric vehicles are
measured over different voltage waveform to record their current harmonic magnitude
and phase angles. Moreover, a Monte Carlo simulation is used to estimate the harmonic
emission of fifty EV over one hundred days to estimate their aggregated harmonic emission.
The results show that EV harmonic emission also depends on the supply voltage harmonics,
which may be affected by various nonlinear loads present in the distribution grid.

The impact of EV integration on the distribution transformer is also evaluated. The cur-
rent harmonic emission at a distribution transformer, supplying power to approximately
80 households, is measured during winters. Monte-Carlo simulation is used to aggregate
the estimated 80% EV charging load to the existing load at the distribution transformer for
hundred days. The heating load in the measured distribution grid is shifted because of the
time-based electricity tariffs. The EV charging has increased the late-night peak load more
in contrast to the uncontrolled EV charging in winters because of the shifted heating load.
The hottest spot conductor temperature of the transformer has risen significantly during
EV charging. It indicates that TOU controlled charging may not provide the solution to
improve transformer utilisation in winters, and smart controlled charging algorithms may
be the only solution for the network providers to accommodate additional EV load.
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