TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Ilja Boitsuk 1940411AIB
David Avedis Injarabian 1940441A1B
Janar Keit Jaakson 1937031AIB

Plagiarism System Integration With Moodle’s
Plugin Charon

Bachelor's thesis

Supervisor: Ago Luberg
PhD

Tallinn 2022

TALLINNA TEHNIKAULIKOOL
Infotehnoloogia teaduskond

Ilja Boitsuk 19404011IAIB
David Avedis Injarabian 1940441A1B
Janar Keit Jaakson 1937031AIB

Plagiaadististeemi liidestamine Moodle’i
pistikprogrammi Charoniga

Bakalaureusetdo

Juhendaja: Ago Luberg
PhD

Tallinn 2022

Author’s declaration of originality

We hereby certify that we are the sole authors of this thesis. All the used materials,
references to the literature and the work of others have been referred to. This thesis has

not been presented for examination anywhere else.
Author: David Avedis Injarabian, Janar Keit Jaakson, Ilja BoitSuk

30.05.2022

Abstract

The purpose of this thesis is to integrate the existing plagiarism detection application
(hereinafter PLAP) with a Moodle plugin called Charon. This will help teachers engage
with the detection software directly from Moodle without having to specifically access

any other external application.

Charon is mainly used to view and manage student’s programming code solutions, while
PLAP is to check the solutions for plagiarism. An integration between the two
applications allows for better user experience, custom solutions for teachers, visual data

representations and scalability across multiple different Moodle instances.

Technologies used for PLAP are mainly Django and React, while Charon development
uses Laravel and Vue.js. Both applications run inside docker containers and are managed

by their respective GitLab repositories.

Key functionalities that this thesis aims to implement are to run plagiarism checks from
Charon, comparing different solutions, viewing a student’s plagiarism history and

automatically creating courses and assignments in PLAP from Moodle.

This thesis is written in English and is 40 pages long, including 9 chapters, 7 figures and
0 tables.

Annotatsioon
Plagiaadisiisteemi liidestamine Moodle’i pistikprogrammi

Charoniga

Antud 16putdd eesméark on integreerida tudengite ldhtekoodide plagiaadikontrolli
rakendust (edaspidi PLAP) Moodle’i pistikprogrammi Charoniga. Integratsioon tagab
mugavama plagiaadikontrolli késitlemise otse Moodle’st ilma, et oleks tarvis kasutada

uhtegi valisrakendust.

Charon on peamiselt kasutatud TalTech’i professorite ja dppejoudude poolt tudengite
lahtekoodide lahenduste vaatluseks ja manageerimiseks. Selle eesmérk on tagada keskne
rakendus, kust ~on v@imalik autoriseeritud isikutel ligi paaseda
programmeerimisulesannetele ja tédde esitlustele. PLAP’iga integreerimine ei edenda
ainult Charonis kasutajakogemust, vaid vGimaldab ka vaadelda visuaalseid tulemusi,
arvestada 0ppejoudude personaalsete ettepanekutega ning tagab laiapdhise kasutatavuse

iile tilikooli erinevate Moodle’i instantside.

Antud rakenduste integratsioon toetub PLAP’i ja Charoni tehnoloogiatele. Kasutatud
tehnoloogiad koosnevad peamiselt PLAP’is Djangost ja React.js’st ning Charonis
Laravelist ja Vue.js’st. Mdlemad rakendused to6tavad Dockeri konteinerites ning on

hallatud vastavatest GitLab’i repositooriumitest.

Primaarse tahtsusega funktsionaalsused mida antud I8put66 Gritab saavutada on
plagiaadikontrolli jooksutamine Charonist, tulemustest l&htekoodide visuaalne
vordlemine, sarnasuste plagiarismiks voi aktsepteeritavaks margistamine, tudengi
plagiaadiajaloost (levaate kuvamine ning automatiseeritud kursuste ja ulesannete
loomine PLAP’is labi Moodle’i.

LOputdo on kirjutatud keeles ning sisaldab teksti 40 lehekdljel, 9 peatiikki, 7 joonist, O
tabelit.

API
Charon

Charon Popup

Discord
DevOps
DOM
Git
HTML
HTTP
Modal
Moodle
ORM
PLAP
REST
Ul/UX
Uni-id

List of abbreviations and terms

Application programming interface
Custom Moodle plugin for programming exercises

An environment in Charon that is meant for teachers to get a

better overview and manipulate students Charon submissions

Communication application

Software development (Dev) and IT operations (Ops)
Document Object Model

Version control system

Hypertext Markup Language

Hypertext Transfer Protocol

Popup dialog inside a page, usually triggered by a button
Free and open-source learning management system
Object-relation mapping

Plagiarism detection application created by Ragnar Rebase
Representational State Transfer

User interface/User experience

Digital identity for a person in TalTech

Table of contents

I 10T L1 T [o OSSO UTURRORRN 11
2 TaSK PIOPOSAL. ...ttt 14
N O T o | RSO PRUUTP PPN 14
O o] 1< o1 11V ST SSRS 15

3 ProJECt AESCIIPLION ...ttt bbbt 16
S L WOTKFIOW ...ttt nte et eneenns 16
L1 SCIUM ..ttt e e ne e e neennn e 16
3.1.2 WOrK diStriDULION.ceviiiiiecie e e 16
3.1.3C00E QUANTLY ..ottt 17

3.2 POtential SOIULIONS.cueiieiiieie et ns 18
3.2.1 Moodle’s plagiarism plUgINScccoiveirieeiiiiiiieiie e 18
S22 PLAP et a e e 18
KB o 10T o T [o o OSSR 19

3.3 WOrking With tWO PrOJECLSceeiueriiriiiiiriisiceiieie et 19
3.3.1 Multiple MoOdIE INSLANCEScceeiieeiicieceecie e 19
(o [=Tot f o [=E] o USSP 21
o I PRSI 21
Z.L T IMIOSS et nnne e 22

4.2 CREION ..ottt ettt e bbbt b e b e st e ne e s et et e neeebenbesreereaneas 22
4.3 Implemented teChNOIOGIEScoveiieeiecie e 23
4.4 EXTEINAL SEIVICESvveieeeie ettt sttt et e reenae e e nneeseanee e 24
4.5 DevelopmeNnt ULHHTIES.cooiiiiiiiiciseeee e 24

5 Plagiarism system integration With Charon...........ccceviiiniinnicieee e 26
5.1 Integration arChitECUI..........covveiie et ae e 26
5.2 Data MOUEIS ...ttt 27
IR AN 11 0T a1 o 11 o] o SRS 30
5.4 Automated course and assignMmEeNt CreatioNcccceverereriereeieiese e 30
5.5 RUNNING CRECKS......viiiiieie it 31
5.5.1 File ManagemMeNtcccoiiiiiiiiie et 32

5.5.2 Parsing reSults from IMOSScoiiiriiiiieieese e 33

5.6 DiSPlaying FESUILScoviiiiieieiee s 34
5.6.1 Main matChes table.........coooiiiiiiiiiie e 34
5.6.2 Student overview matChes table ..o 35
5.6.3 Student assignment statistics tableccoooveii i 36
5.6.4 COUE COMPATTSONuvivieieiiete sttt ettt sresb e eneas 37
5.6.5 MatCh COMIMENTSc.oiviiiiieiie e e 38
5.6.6 Graph COMPONENTS.......ccuiiiiiieie et e e e 39
5.6.7 ChECKS STALUSc.eeiiieiiee et 42

ST A O =] g 1 (0 SRS 42
5.7.1 Charon PlagiariSIm PAgE........c.couveieieerieiie e eee e este e st sre e 42
5.7.2 Charon student plagiarism SECLION..........ccccveviiiiieiiere e 43
5.7.3 Marking rESUIESccuviiieiiieie e 44

TR O 1O I TSR OROUR SRS 44
5.8.1 DePIOY ANd TESESveiveeiiiiie ettt 44

B ValIALION ..o 45
6.1 Validation frOm SUPEIVISONcciriiiiiiiisiieieieee ettt 45
6.2 Validation from tEACKEISccuv i s 46

T RESUILS ..ttt ettt bbb ens 48
7.1 Comparing results to Task Proposalccccceeeeiveiiiiieieee e 48
7.2 Teamwork and what We 1€arned............ccevveeiieiiiee e 49

8 Conclusions and next steps on developmeNtcccooeiiiiiiiinince e 50

8.1 CONCIUSIONSveiee ettt sttt b et sresbesnenreas 50

8.2 Next steps 0N deVEIOPMENL..........c.coieiiiiece e 51
8.2.1 Deployment and more validationccceeoviieieeie i 51
8.2.2 MOSS AILEINALIVEScveeeie ettt sttt e e 51
8.2.3 Testing plagiarism with previous Years COUISES..........cvvrvverrereerieeseeseeseenens 51
8.2.4 Plagiarism VisUAlIZatioN...........cccooveiie i 52

10 0 1] T Y2 PP 53

RETEIENCES ...ttt et e e st e te e teeseesseesteeneenreenreeneens 54

Appendix 1 — Non-exclusive licence for reproduction and publication of a graduation

LTI R T SSPRR 55
AppendixX 2 — AL PLAP MOUEIS.......ccoviiiiiiie et 56
Appendix 3 — Main MatChes tabIecocciiiiiieie e 57

Appendix 4 — Student matches table ... 58

Appendix 5 — Student assignment SEAtISTICSccovveieieiirere e 59
Appendix 6 - Student plagiarism progress for each Charon.............ccccoovevviveiveieenenn, 60
Appendix 7 — Match comparison SECHIONcccvevveiiiiieieee e 61
Appendix 8 — Graphs COMPONENT SECLION..........cceiiiiiieieieieesie e 62
Appendix 9 — Latest CheCk SECHION ..o 63
Appendix 10 — History of checks SECtiON..........ccccvceiieiicie e 64

List of figures

Figure 1. SyStem arChiteCtUIEcveiiiieiiiiere s 26
Figure 2. Main flow of uploading fileS t0 MOSScccoviiiririieiiereee e 32
Figure 3. Adding a comment for a match status changeccccccoevveveiie s, 38
Figure 4. Match status change comment SECLION...........ccccvevveieiieie e 39
Figure 5. Distribution Dar CRAt ..ot s 40
Figure 6. Distribution dONUL CRAItccoiiiiiiiiiiee s 40
Figure 7. Matches Network graphccoiveiiicie e 41

10

1 Introduction

During the course of human history, people have always copied or taken inspiration from
other people, in all fields of life. In most cases, this is a natural occurrence that has enabled
civilizations and cultures to prosper, technologies to advance and human knowledge to
grow. However, along with benefits also come downsides. The act of plagiarism allows
for the theft of another person’s original work to occur. It discredits and robs the author,
who put in all the effort, of recognition and rewards of contribution. Plagiarisms can also
allow unqualified people to bypass the qualifications process of their field of expertise.
Such an event could cause major damage to society, especially if the person in question
is a politician or minister, who would in such case not possess the necessary knowledge

to make adequate decisions.

Plagiarism has possibly existed for as long as mankind, but only with the arrival of
computers have people started receiving more justice. This is due to applications and
mainly algorithms that are capable of processing documents and checking for keyword
similarities in their database. Such applications are mostly used by academics in
universities, where research papers are checked for plagiarism. The issue of plagiarism is
perhaps most relevant today, due to the internet and all of the information it brings along
with it. Students are finding more and more answers to their questions via online articles,
videos, forum posts and possibly even research papers, which creates a strong compulsive

reaction that drives them to use the same solution as the person who they learned it from.

Programmers are no different from this, in fact they are perhaps one of the biggest copy-
pasters of all time. Almost all of them look on the internet for answers and once a solution
is found, the initial reaction is to take it for themselves without referencing the author.
Such acts are arguably fine and cause no harm in a personal or hobby project, but in an
academic context they are frowned upon. However, in programming there are certain
solutions that are very similar to one another, which leads to people using the same
approach to certain problems. For this reason, the plagiarism algorithms for programming
code solutions must be able to take into account, that not all similar solutions are

plagiarisms.

11

As programming has started growing ever more popular, more and more students enrol
into programming courses in universities. Such courses contain a lot of different kinds of
exercises. The students, naturally, form certain groups among themselves, in order to
receive help in case of need. Divide and conquer is a much safer strategy of approach in
the pursuit of excellent academic grades. For that reason, schools need to be extra wary
and adopt a way of comparing the students’ results between themselves, in the hopes of

catching someone who is using the work of another.

TalTech is one of the most popular universities in Estonia. It concentrates on
technological subjects and therefore attracts many programmers. The school takes a more
practical style of teaching, meaning there are a lot of exercises, where students can play
around with the subject instead of theorizing everything. This applies heavily to
programming, as the first courses always contain tons of problems for newcomers to
solve. However, due to the high number of participants each year, everybody gets more
or less the same exercise and it becomes very difficult for teachers to manually check
everyone’s work for plagiarism. The solution is simple: the school needs a way to
algorithmically check for programming code plagiarisms, by only pressing a couple of

buttons on the screen.

The aim of this thesis is to provide that solution. While the school was already in
possession of an application that could check student’s codes for plagiarism, it was very
difficult to get teachers to use it regularly. Some were not even aware of its existence.
Those that were, did not feel too comfortable switching between two applications all the
time. It became clear, that the plagiarism application had to be integrated with the school’s
programming exercises management Moodle plugin called Charon. When it comes to
programming exercises, this plugin is what teachers are usually most familiar with. If
there was a way to check student solutions for plagiarism from Charon, then the likelihood

that teachers start using it will definitely go up.

In addition to the most important functionalities, we also wanted to provide teachers with
more visual information about the data they are looking at. This meant new tables, fields,
graphs and sections. Some completely new features were added as well, for example one
being the ability to view the plagiarism history of a student. While integrating the
applications, we were aware of the importance of data synchronicity. We decided to

12

enable teachers to create identical courses and assignments in PLAP, so that they can
always be easily set up and reconfigured if needed.

13

2 Task proposal

The task of this thesis is to provide the ability for teachers to check student’s programming
code solutions for plagiarism directly from Charon (Custom Moodle plugin for
programming exercises). TalTech already has PLAP (Plagiarism detection application
created by Ragnar Rebase), which is an application made for checking code submissions
for plagiarism. Therefore, this thesis aims to provide Charon with the necessary controls
to engage with PLAP remotely. In addition to remote controls, one of the key features to
add are also visual data representations. Teachers need to be able to see more data in order

to grasp a better understanding of the situation.

2.1 Client

The task of integration was commissioned by our supervisor Ago Luberg, who would
also act as our client. The client explained the need for the ability to check students’ code

submissions for plagiarism directly from Charon, without having to visit PLAP.

The main reason for this was to encourage teachers to engage with plagiarism checks
more frequently, as many professors and teachers are only accustomed to using Charon
for their work. This was supported by the fact that some of them had no idea what PLAP
is and how it works. Being able to do everything from a single place will definitely

improve the user experience for teachers.

Another reason for the proposal of integrating PLAP was that it would allow us to display
new sorts of information as well as create custom solutions and improve compatibility
with Charon. An example of a compatibility issue was the addition of code submissions
to Charon which were not stored in GitLab and were therefore inaccessible to PLAP. Our
client wanted the ability to test the previously mentioned submissions as well as the ones

that have an association with GitLab for plagiarism.

14

2.2 Objective

Our objectives were mainly divided into two parts: enable the execution of PLAP
functionalities through Charon and adding new features in order for teachers to obtain a
better overview and understanding of student’s plagiarism results. We were also aware
that we would need to establish a CI/CD pipeline in GitLab for running tests regularly

and also to provide a way for remote deployments.

Enabling the execution of PLAP functionalities through Charon consisted of running
plagiarism checks, fetching the found matches and viewing the results via diagrams and
code comparison modals (Popup dialog inside a page, usually triggered by a button).
Since we had access to a REST (Representational State Transfer) APl (Application
programming interface), we were able to easily run checks and retrieve matches. As for
visual data representations, we were able to use the pre-existing retrieval functions to set

up similar graphs and code comparison sections.

Before we started to work on additional functionalities, we consulted primarily with our
supervisor as to what features he would like to have us implement. We learned that in
addition to new tables and ways to portray summarized plagiarism information to
teachers, there was also a need for the automation of course and assignment creation in
PLAP from Charon. This was mostly a synchronicity issue, as courses and assignments
had to be synchronized between PLAP and Moodle (Free and open-source learning

management system) in order for plagiarism runs to be activated.

15

3 Project description

3.1 Workflow

While most of the communication between team members happened in Discord
(Communication application), we still relied on our coding practices that we learned in
school. An example of this would be working as a team and utilizing the Scrum
framework by setting up a roadmap, milestones, distributing work and having regular

meetings.

3.1.1 Scrum

In order to coordinate work between ourselves and ensure the best possible outcome, we
used Scrum to better understand and manage the project. We created a timeline of
different major steps and broke them into smaller pieces called sprints. Each sprint would
last for two weeks and contained different issues with deadlines set at the end of the sprint.
If a deadline was not met, then the issue would be moved onto the next sprint with a
technical debt. At the beginning of each new sprint, we would review the work

accomplished in the previous sprint and add new issues to the backlog.

The team held meetings at least three times a week, to ensure that all members were up
to date with each other’s work. During the meetings we would discuss the current
situation of our issues and address certain problems that we were facing or could foresee
happening in the future. At the end of the meetings, we would plan out our next actions
and write up a memo, which contained the details of the meeting for future reference.
Once a week we would also discuss with our supervisor how the project had been moving
forward and ask questions regarding certain solutions, as our supervisor was also our

client.

3.1.2 Work distribution

At the start of the project, we were confronted by many new technologies of which we
knew little of, mainly because our project was the integration of PLAP, which was the

work of another student. For that reason, we decided at the beginning not to distribute

16

work by certain groups or categories and rather to start learning and understanding the
previous application that we were going to be working on.

While PLAP was foreign to us, Charon was not. All of us had been working on Charon
for the past year as software developers. This made the integration a lot easier than it
would’ve been, as we had a good base of understanding in regards to how it operates.
With Charon out of the way, we were able to concentrate our attention mainly on PLAP,

as it had the biggest learning curve.

Once we had acquired the necessary knowledge to understand the architecture and flow
that we were going to be working with, we started adding issues to the backlog. Since
each member was advancing through the technologies at a different pace, we would all
take different tickets that we felt comfortable working with. During meetings we would
make sure that the issues we had taken would not end up in conflict with each other’s
work. Therefore, our work was always distributed dynamically, at times one of us would
work on visual components, at other times they would set up backend communication
routes between PLAP and Charon. Everyone was flexible and decided to try and be of

use all around.

3.1.3 Code quality

When adding new code to either application, we wanted to make sure that we were not
affecting the performance of something that was already implemented and correctly set
up. Our main goal was to integrate the two applications in their current states, while

adding new functionalities on top of the previous ones.

When creating new data models or endpoints for either application, we took inspiration
from the layouts and structures that had already been used to create previous forms of
functionalities. For future developers, we added comments to our functions and to the
code that already existed before the integration, which would help them in understanding
what had been done and why. In order to ensure the durability of our solutions, we wrote
tests to find out whether they would keep functioning under different kinds of

circumstances.

17

3.2 Potential solutions

During the initial phases of the project, we wanted to explore our options as to finding
the right solution to our problem. We were aware that an application for plagiarism
detection already existed, but we needed a broader view of options in order to be

convinced whether it was our best choice.

3.2.1 Moodle’s plagiarism plugins

Moodle has a collection of different plagiarism plugins, which have been developed by
different companies and institutions in order to provide other parties the ability to check
for plagiarisms. This approach would have been the most convenient out of all others, as

the integration was straightforward, but unfortunately it came with many drawbacks.

The main problem with Moodle’s plagiarism plugins is that they are all developed
specifically to be compatible with another Moodle’s built-in plugin. This would normally
have been fine for most popular plugins accessible in Moodle, but Charon is not a built-
in plugin. Charon is designed specifically for programming exercises and solutions by
TalTech programmers, making it a custom plugin which is not part of Moodle’s standard
set of plugins. For this reason, none of the plagiarism plugins made for Moodle would be
suitable for integrating with Charon.

3.2.2 PLAP

While searching for external services that would suit our needs, we were unable to find
any. This was mainly due to our lack of knowledge of plagiarism detection services, as
well as Moodle being a rather unique platform with not sufficient adoption in order to

find compatible solutions.

Fortunately, there was a plagiarism application which was the bachelor’s thesis of Ragnar
Rebase. His application was developed specifically for students whose code submissions
were stored in GitLab. It also had already implemented a plagiarism detection service
developed by Stanford University called MOSS. The application used a REST API and
modern technologies, which would have allowed us to expand our own implementations

and establish communications with Charon.

18

3.2.3 Final decision

When searching potential solutions, we quickly realized that we needed some form of
external service where we could send the code submissions and receive plagiarism results.
Moodle plagiarism plugins were in that case not an option since they provided plagiarism

checks for built-in plugins only.

Plagiarism detection services made for programming code submissions were difficult to
come by. We realized, that even if we did find a suitable service, we would have needed
to set up an external application of our own, with a backend configured to communicate
with the plagiarism detection service. We did not want to integrate the external service
with Charon directly, as that would have added more complexity to Charon as well as

limited the usage of plagiarism checks to only Charon users.

Upon analyzing the PLAP created by Ragnar Rebase, we were quickly convinced that it
made the most sense to use it for our integration. It was already a working application,
which was configured and connected to both GitLab and an external plagiarism detection
service. It also enabled the usage of different kinds of authentication and a REST API,

which meant custom endpoints accessible by different Moodle instances.

3.3 Working with two projects

Both applications play a critical role in the integration process. PLAP is mainly used to
fetch information and send it to Charon, while Charon is used to display that information
in different types of ways. From that perspective, our work in PLAP was mainly backend

oriented, while in Charon we concentrated mostly on the user experience.

3.3.1 Multiple Moodle instances

Soon after the initial development of the integration, we were faced with a concern
regarding multiple instances of Moodle. TalTech wishes to utilize the integration of PLAP
and Charon with all of its Moodle instances. This posed a problem regarding courses with
the same name. PLAP was initially developed for a single instance, meaning course

names were meant to be unique.

Our integration had to address this problem by altering the previous logic of PLAP. Our

solution was to remove the unique constraint set on the Course model in PLAP and add

19

an extra field for the user who created the course. We decided that this would be the most
optimal solution, as we also needed an authenticated user through which both applications
would be able to communicate with each other. Courses would therefore always contain
a reference to the authenticated user who created them, making it possible to identify

courses of a certain Moodle instance.

20

4 Project design

PLAP and Charon are both comprised of various technologies used in the development
of their frontend and backend counterparts. This chapter displays the portion of these
technologies that were used in the integration specifically. In order to read about all of
the technologies used in the development and usage of PLAP and Charon, it is

recommended to read their respective documentations.

4.1 PLAP

PLAP is an application built upon the Django framework, which is based on Python. It
follows the Model-View-Template pattern, encourages faster and more effective
development with good security and an out-of-the-box administration interface. It is
mainly created to work as a Single-page application, meaning that most information

arrives to the user via the API [1].

PLAP also uses WebSockets in parallel with the Django REST framework, to display
real-time changes without having to make HTTP (Hypertext Transfer Protocol) requests.
WebSockets are mainly being used to display real-time logs and when updating match
statuses. They are also used for interacting with Moss, as the files are sent via streams
instead of HTTP requests [1].

Since PLAP can sometimes contain some time-consuming tasks, Celery and Redis are
used to create background tasks in Django. Celery is a task queue implementation in
Python and Redis is an in-memory database. Because of this, the user can keep

performing new tasks even when there are very slow tasks running in the background [1].

PostgreSQL is used to host the main database. This works really well with Django,
because its tables are described as Django models and the data is being processed using
the Django ORM (Object-relation mapping), which all in all gives the programmer a lot
of flexibility and reduces the complexity of certain procedures automatically [1].

The application’s front end is built using React, which is known for its development ease
and speed. Babel is used to compile the JavaScript code; this allows to make new

generation JavaScript compatible with older browsers. Webpack is being used to pack

21

modules together so that they would free up space, which is mostly used in non-
development environments as to allow clearer debugging [1].

4.1.1 Moss

Moss is a system that can detect similarities between different kinds of programming
codes. Since the system has no way of knowing why codes are similar, it cannot detect if
the code contains plagiarism. Deciding which code is plagiarism or not is up to the person
who reviews the results. Moss only highlights similar parts and makes it easier for

reviewers to analyze the code [2].

Moss may seem unsafe at first, because when files are sent to Moss, it doesn’t respond
with new files per say. Instead, it responds with an URL, that contains the results. The
problem is that the URL can be accessed by anyone during the time that it’s active.

Regardless, some precautions are being taken:

= Only the initiator of the request receives the URL and it contains a random integer,
SO it’s not easy to guess specific results;

= The directory with the results cannot be browsed or indexed by robots;

= Submissions are not retained indefinitely on the server; they are typically deleted
after 14 days [2].

4.2 Charon

Charon is a plugin application created to act as a programming assignment in the learning
platform Moodle. It is built using the Laravel framework, which is used to develop model-
view-controller based applications. Using Laravel, the developer only needs to develop
the application and not have to worry about redirecting requests, forwarding HTML
(Hypertext Markup Language) files and dependency injections. Laravel also has many
comfortable services that help the developer, e.g., Blade template engine, Eloquent ORM,
automatic dependency injection etc [3].

Vue.js is being used for front-end development, primarily to assemble user interfaces and
single page applications. Vue is similar to React, using a virtual DOM (Document Object
Model), development based on components, compact and minimal code core with many

different libraries that contain extra functionalities, e.g., forwarding requests and global

22

variable management. Vue’s advantage over React is that Vue is more beginner-friendly,
faster and can contain only html in many components [3].

Using Vue and its component system, the front-end is divided into multiple parts. In
general, every component mainly does one thing and one thing only. Due to this, a lot of
files are usually created. This however makes it easier to develop, since implementing a
small change will likely only affect a single component, while the rest remain unaffected.
This type of pattern means that every component should be created as loosely-coupled as
possible, meaning that it should depend on other components as less as possible. This way
components can be reused in different situations, as they are not heavily dependent on a
certain other component [3].

4.3 Implemented technologies

Both projects had a lot of technologies already in place that we simply had to work with,
for example Django and React or Laravel and VVue. However, there were a few libraries

that we used specifically when setting up new visual components.

ApexCharts.js is a JavaScript library that developers can use to create interactive
visualizations for web pages. It supports different JavaScript frameworks and provides
multiple types of highly customizable and responsive charts [4]. ApexCharts has proven
very reliable for us whenever there has been a need to set up data quickly with good
looking reactive graphs. Since its so rich in features, meaning that it has a lot of different
graphs to offer, then it really does come in handy in almost all cases when a graph is
needed.

The Ace editor is an embeddable code editor that can be embedded in any web page and
JavaScript application. It offers a variety of features, including syntax highlighting for
over 110 languages, over 20 themes of text and automatic indent and outdent [5]. One of
Ace’s features is the ability to highlight certain lines of text with color, which helps us to

highlight the similar parts inside students’ codes.

Network is a visualization to display networks and networks consisting of nodes and
edges. The visualization is easy to use and supports custom shapes, styles, colors, sizes,
images, and more [6]. Vis-network is used as it gives us similar functionality to visualize

students and relationships between them in Charon as it is in PLAP itself. Thanks to its

23

wide range of functionalities, vis-network allowed us to expand colour representation of

plagiarism and open code comparison in a separate window.

4.4 External services

GitLab acted as our DevOps (Software development (Dev) and IT operations (Ops))
platform. It enabled us to create issues and milestones, review commits and merge
requests, leave feedback on solutions and most importantly, it provided us with file
management and source control capabilities. By using a GitLab environment, we made
sure that future programmers, who will work on this integration, will have notes and

comments for issues that they can always look up when needed.

GitLab isn’t just simply our DevOps platform. It plays a crucial role in our integration.
TalTech’s programming teachers enjoy storing student submissions in GitLab. Thanks to
this, PLAP is able to clone the corresponding repositories, as long as it has the right Git
(Version control system) Access Token. While GitLab is mainly a DevOps environment
for developers, its scope seems to be much larger. By providing different applications
various materials through its inner API, it proves itself as a very important part in out

integration.

4.5 Development utilities

GitLab CI/CD is the part of GitLab that you use for all of the continuous methods
(Continuous Integration, Delivery, and Deployment). With GitLab CI/CD, you can test,

build, and publish your software with no third-party application or integration needed [7].

Continuous Integration ensures us that each change submitted to an application, even to
development branches, is built and tested automatically and continuously. These tests
ensure the changes pass all tests, guidelines, and code compliance standards you
established for your application [7].

Continuous Delivery checks the code automatically, but it requires human intervention to
manually and strategically trigger the deployment of the changes. The deployments

triggering should be made manually [7].

24

Continuous Deployment means that instead of Continuous Delivery, where you need to
deploy your application manually, you instead set it to be deployed automatically. Human

intervention is not required [7].

Docker is a software to create and manage environments inside another environment. It
uses virtualization technology to create containers, which can host another operating
system. This kind of cycle of environments can keep on going further and further. We use
docker mainly to isolate certain applications, so that they’re dependencies do not end up
in conflict with each other. Containers are a great way to isolate new applications on
servers where multiple applications could be running at the same time. Containers are
also really handy since they provide everyone the same conditions when setting up a

dockerized application.

25

5 Plagiarism system integration with Charon

5.1 Integration architecture

Charon is an application that is connected to multiple different applications. While
planning the best course of action towards integrating PLAP with Charon, we decided not
to build PLAP inside Charon, but to rather keep both applications separated. Since this
project consists of both PLAP and Charon, it can be divided into the following

components:

= Charon front-end
= Charon back-end
= PLAP front-end
= PLAP back-end

While the integration architecture can be mostly described through the communications
between the aforementioned four components, the complete architectural overview

contains some additional external services (Figure 1).

As can be observed from the figure, different connections are differentiated by different
colors. Yellow lines represent a HTTP connection, while blue ones denote a socket
connection. The gray arrow depicts a GitLab hook, which is called when a student submits
a submission to a repository, which is then saved to a database through Charon’s backend.

Taltech GitLab Charon back-end Middleware Charon front-end

Authentication token
Access foken

Moss FLAP back-end |#—BasicUserfuth—» PLAP front-end

Figure 1. System architecture

Charon and PLAP both use an authentication layer for security measures. For this, Charon

mainly uses different kinds of middleware, provided by Laravel, to authenticate Moodle

26

users. Only teachers and other authorized users should have access to sensitive
information about students. PLAP on the other hand uses Django’s built-in authentication

system in order to handle permissions and access to resources.

Charon and PLAP communicate via an authentication token. The token must be generated
from a user in PLAP. Every Moodle instance should have at least one user set up in PLAP,
from which a token can be generated. The user acts as a sort of representative figure for
its Moodle instance. Using another instance’s token can lead to accidental changes to

another Moodle instance’s courses or exercises.

While PLAP uses Django’s built-in authentication system, it relies mainly on WebSocket
for communications between React and Django. WebSocket is also used for
communicating with Moss. In order to send submissions to Moss, the submissions must
first be pulled from GitLab. This requires a PLAP user to have added its GitLab Access
token to the system. The token is used to clone the projects and send the submissions to
Moss through WebSocket. Upon a successful plagiarism check, Moss responds with an
URL, which contains the results of the check. In order to save the results in PLAP, the

data is fetched via a HTTP request from the URL and parsed in Django afterwards.

5.2 Data models

Since Charon is a Moodle plugin, it uses data models that are defined in Moodle’s
database. PLAP is specifically designed to support the Charon workflow, which means
its data models are designed to accommodate the data in Moodle’s models. While both
applications contain a large variety of models, this chapter aims to describe the ones that
were most important for the integration. The entire PLAP models visualisation can be

seen in appendix 2.

The Course model in PLAP represents a course in Moodle, with additional information
needed for plagiarism operations. Alongside the name and language, it contains
references to the GitLab project that it’s associated with as well as certain Moss
parameters that can be used when running plagiarism checks. It is also associated with
different assignments. An additional field that was added for the integration is the
created_by field, which points to the user who created the course. This enables PLAP to

identify the Moodle instance to which the course belongs to. Moodle’s course contains

27

various types of information regarding procedures that are not associated with PLAP. The
name of the course is the only field that both models need to match.

A Project model in PLAP used to be called GitLabProject. Due to new changes regarding
the integration, we decided to divide it into two tables: Project and GitLabProject, since
it no longer always represented a GitLab project specifically, as submissions without
GitLab relation have no GitLab data. A GitLabProject is still a model, but it only contains
GitLab related information. A Project model can hold a reference to a GitLab project, but
it’s not mandatory. Projects are associated with students. When sending files and
receiving results from Moss, the project id is used in the file paths. That way, the project
Is associated with the file path, and later the student can be associated with the file through
the project. The column group_id was removed from the Project table, due to it being

unnecessary.

In PLAP, the assignment is meant to represent a Charon assignment, which in layman’s
terms is the programming exercise for which submissions are submitted. The name of the
assignment must be identical to the Charon assignment. It contains a reference to the
course it belongs to and additional information for Moss configurations. It is also
referenced by submissions that belong to it. A Moodle assignment is incidentally called
Charon. It represents a programming exercise and therefore contains information related
to the internal operations of the plugin. Additionally, it contains a field called
plagiarism_assignment_id, which points to an assignment in PLAP. The field is mainly

used in Charon to find assignments for which a counterpart exists in PLAP.

Submissions in both applications are similar to one another. They both have a reference
to the assignment that they belong to as well as the content of the submission itself. In
addition to that, a Moodle submission has information related to its performance, while
PLAP’s submission can contain the commit hash as well as a reference to the Project,

where is stored GitLab links to submission, if those exists.

The Match model is used in PLAP to describe the results received from Moss. It contains
details about two students and their code similarities. The model’s fields have references
to both student’s submissions, the similarity percentages, the number of lines matched as

well as an overall status rating of the match.

28

In some cases, when changing match status, you need to add an accompanying comment
that will contain information about the change. For this, model
MatchStatusUpdateComment was created, which has reference to match and contains
fields like author, previous status (old_status), current status (new_status), comment and

creation time.

We created a MatchSimilarity object to describe the structure of similar parts of the code
found in a Match. The model references both students’ submissions found in a Match it
contains the lines of both students’ code, where the similarity was found and their size in
lines counts. It is used to display the similarities in students’ submissions code inside

Match comparison window.

The PlagiarismRun model stores information about each plagiarism check. It contains the
assignment, start time and references to all matches created by the run. Creating this
model allows us to track the plagiarism history for assignments, providing us with unique
matches that were found only during the run.

Running plagiarism checks can take up a lot of time. The PlagiarismRunStatus model
comes very handy in these situations. It’s connected with a specific PlagiarismRun object
and it contains the status and other information about the run. This enables Moodle to
keep logs on who triggered the check and how long it took. The object also contains a

message, which can convey if anything went wrong when running the check.

No changes were made in Student and StudentDefenseCommit models. They are
connected with submissions through the Project model to represent student information.
Student models store the name and uniid of students, which are later used to connect
submissions with students in Moodle. StudentDefenseCommit has all the necessary data

to clone changes by a user commit.

Due to no need, rest_framework_api_key along with the APIKey model were removed
from the installed applications. They were initially added by Ragnar Rebase to later
connect PLAP to Charon. Instead, Token models from rest_framework.authtoken were

now added and are used in token-based communication between PLAP and Charon.

29

5.3 Authentication

In order to provide a secure connection between Charon and PLAP, we decided to use a
user-based authentication solution. Every Charon instance should have a single
representative user in PLAP, that has the sufficient permissions to perform all required
plagiarism operations. This user is then used to generate an authorization token, which
can be used to resolve the user in different requests. Once the authorization token is

generated, it needs to be saved in the Moodle instance.

The token will be sent as part of the header of every plagiarism-related request from
Charon to PLAP. This enables PLAP to recognize the user, which in turn determines the
Moodle instance that initiated the request. This authentication layer is important, because
course names in PLAP are not unique and must always belong to the user that created
them. This way PLAP can always provide the right resources to the correct user, without
having to know anything about Moodle instances.

Following with the single representative user from the previous paragraph, in order to
acquire correct information about student repositories and GitLab groups, a user is created
in GitLab. A GitLab Access token will be generated for this user and the token will be
associated with the user account in PLAP. If the GitLab user has access to certain groups

and projects, then the access token can be used in PLAP to clone repositories.

5.4 Automated course and assignment creation

One of the main reasons for the integration was so that there would be no need for an
external application to check for plagiarism. Even if all the existing functionalities are
integrated, there would still remain the issue of creating the correct courses and
assignments. Courses and assignments need to match in Charon and PLAP. For this
reason, it makes sense to be able to create a course and assignment in both applications

directly from Moodle.

In order to create a course in PLAP, the course must already exist in Moodle. Every course
in Moodle, that has been configured with our Charon plugin, has an extra settings page
called “Charon settings”. That page contains a section specifically made for creating a
course in PLAP. The section consists of multiple fields with descriptions. If the plagiarism

system is not responding, the fields are disabled. If a course with the same name already

30

exists, the fields will be filled automatically beforehand and they can only be updated. To
create or update a course, all fields must be filled.

Assignment creation does not require the Charon instance to exist beforehand.
Assignments can be created at the same time as creating a new Charon in Moodle. The
assignment settings have a section specifically for setting PLAP settings. The section
contains a portion of the same fields as the course creation. It also has a checkbox, which
can be ticked to indicate a creation or update is to take place upon saving the settings. The
process is exactly the same as with the course creation. If the plagiarism service is not
responding, the fields will be disabled. If the assignment already exists, the fields will be
filled with its values. Whenever creating or updating an assignment all fields must be
filled.

Fields for the course creation and fields for the assignment creation are more or less the
same. The assignment creation contains the same fields as course creation. The extra
fields for the course creation are GitLab specifics, which indicate which groups to use to

clone projects for the course. In both cases, the following fields are used:

* Programming language type
= GitLab group

= GitLab project location

= File extensions

= Number of Moss passes

= Number of Moss matches shown

5.5 Running checks

Running checks is the most important aspect of this project, since it is what finds the
similarities between the files. This has many complicated steps to make it work correctly
(Figure 2).

The following figure gives an overview of the steps that are being taken before sending
submission files to Moss for plagiarism testing. The dotted line indicates that the next

step is a background operation.

31

Charon

assignment have
submissions without
association to git?

Plagiarism check is

triggered Mo

4 Charon
Does this Charon

assignment have
templates?

No—» Make a requestto <
PLAP with the data

fes

* gathered

- T

';.ssemble submission files|
for each user, who has

su_bmllted submissions for Vo Request received

this Charon. Add them to and check started
\ the request data. | i
. oy I R

Assemble templates

for this Charon
assignment. Add
them to the request
data.

PLAP

Retrieve the
request made

..............................

Clone repositories
from this course

B

¥ to be tested for e
GitLab group =
J plagiarism? =~
Save sent submission files as
) h 4 Projects onto drive and prepare
Pull files from them to be sent to Moss
repositories A Vi

Start uploading all prepared
files to Moss and wait for a
response

o0es this reques
contain data about

templates?
Prepare sent |
e templates files to be
sent to Moss |

ey

N
M

hJ

A

Figure 2. Main flow of uploading files to moss

Running a check fetches submissions from GitLab and sends them to Moss. After some
time, Moss returns results to the application, which then are parsed and saved as matches.
This entire process requires a course and assignment that have been correctly configured.
The user, when running the check, needs to have a valid GitLab access token set. The
token allows the user to give the course the correct GitLab group from which student
repositories are cloned. Charon requests must contain data regarding the course and
assignment which need to be identified in PLAP. In case of submissions that are not

associated with git, the code files should also be included into requests.

5.5.1 File management

Files that are sent to Moss need to be stored somewhere, since moss results response is a
HTML file and filtering submitted code is time consuming. Instead, files get cloned from
students' repositories or passed along with the request that started the plagiarism check.

The files are saved on the disk and their paths get saved in a table Project before

32

forwarding them to moss. Later, when retrieving the results, the file contents are being
read from their respective folders on disk.

Cloning repositories’ latest commits is not the correct approach, because the student can
create new empty commits after getting a grade for an assignment and bypass plagiarism
checks this way. To fix this problem, whenever a teacher assigns a certain submission as
confirmed in Moodle’s Charon popup (an environment in Charon that is meant for
teachers to get a better overview and manipulate students Charon submissions), the
submissions git commit hash gets sent to PLAP and saved as a StudentDefenseCommit.
Now whenever a check is being run, instead of cloning latest commit from students’

repositories, the commit that had been saved for this student will be cloned instead.

Charon allows to submit submissions that are not related with git, therefore when we want
to test these submissions and their files for plagiarism, it is not possible to clone them
from Gitlab. Whenever a Charon has this feature turned on, when plagiarism check is
being run from Charon, for each user in that course and only for users who have a
submission made in that Charon, their latest or defended submissions files are being put
together and then sent to PLAP. PLAP creates new instances of projects and saves these
files to the drive and continues its usual steps except the step where files are being cloned,
because everything necessary has already been saved.

5.5.2 Parsing results from Moss

Matches returned by Moss show exactly what parts of the code between two submissions
were found similar. There is made a control to not to save duplicated matches for same
students, as Moss sends 2 matches for each pair of students, but we need only one of

them.

From the previous version of the PLAP project there was a function that could filter out
similar parts of the match, but they were never saved or shown to the end-user. This
solution took the code from similar parts and just added them to a list. The problem with
this solution was that end-users would be able to only see the parts of the code where it
was found similar to another code, but for better user experience this needed to be
changed. User should be able to scroll through the entire code and navigate with more
ease between these similar parts. Further analysis of the Moss HTML response revealed

a better solution, where there was no need to filter out the similar parts.

33

Moss includes a table of the gap of lines for each file, where there is a similarity found.
Filtering out the exact lines where the similar block was found would be a much better
approach. This would mean that less data would be needed to save to the database and
with this solution the similar blocks could be differentiated from the whole code with
various colours for easier recognition. For a match’s similar parts, a new database table
was implemented — MatchSimilarity, which saved both of the files similar parts lines and

their section sizes.

Initially PLAP did not support saving nor displaying the history of its matches. In order
to implement this functionality, we created a new table called PlagiarismRun, which
would store each run’s start time and the matches that were connected to it. Previously,
PLAP would reuse older matches or even rewrite them in case of new submissions. The
newer solution does not rewrite older matches. If the same match is found, nothing will

happen, however if a new match appears, it gets saved.

5.6 Displaying results

5.6.1 Main matches table

When a plagiarism check is finished, the matches found during the process are saved into
the database. Matches are submission comparisons performed by the external application
Moss. They show us similarities found between two submissions, which helps determine
whether someone has committed plagiarism. Fetching the matches of an assignment is
necessary to find plagiarism between students’ submissions. To show all matches for a
run, Charon first fetches all runs for it and then fetches the latest runs matches and shows

them inside the main matches’ table (Appendix 3).
The table consists of following columns:

= Lines matched — the number of similar lines found in the match.

= Uni-ID (Digital identity for a person in TalTech) — the uni-id of the student in
question.

= Percentage — the percentage of similarities for the student in question.

= Other Uni-ID — the uni-id of the other student in the match.

= Other percentage — the percentage of similarities for the other student.

= Status — the general status of the match.

34

= Actions —a group of actions that can be performed on the match.
This table also has a few possibilities to filter between the data and they are:

= Search —makes it possible to search in the first five columns (Uni-1D, Percentage,
Other Uni-ID, Other percentage).

= Status — makes it possible to filter between the three statuses (New, Plagiarism,
Acceptable).

» Runs — makes it possible to fetch matches for a certain run by its time.

= Percentage — using slider, there is ability to set the interval by which the filtering
will be performed. Using toggle on left, user can choose to filter by both
Percentage and Other percentage fields or one of them.

A match’s general status describes the state of the match in a plagiarism context. There
are three possible states in which a match can be: New, Acceptable and Plagiarism.

Teachers can change the status of a match via one of the actions presented.

Actions are activities that can be performed on the match. They are used to show
additional information or to change the status of a match. Currently there are three actions
that can be performed: viewing the comments, viewing the code comparison and marking

results.

There is a possibility that during the check something goes wrong and PlagiarismRun has
no matches connected to it. These runs would not be displayed in the run selection box in
order to not confuse teachers, as the runs would have no matches to show. Although these
runs do not have any matches to show, they are still shown in the history of all runs

section.

5.6.2 Student overview matches table

For every student in Charon there exists an overview page in the Popup. It gives an
outlook on the performance of the student for the given course. Among grades,
submissions and other metrics, it also displays information about the student’s plagiarism
progress. When opening up the plagiarism progress section, a table of matches is shown
(Appendix 4).

35

The plagiarism history table is an extension of the main matches table, with the main
difference being that it contains three additional columns and the matches displayed in
the table are only for the specific student in question. It also doesn’t have a scroll bar for

filtering the matches by percentages. The three new columns are as follows:

= Created at — the date and time when the match was created.
= Activity status — a status indicating if the match is new or not.

= Charon — the name of the Charon for which the match was found.

The activity status is a special kind of status, it is meant to indicate whether the match is
new or old. By default, we want to display only new matches, since fetching older
matches takes longer than newer ones and teachers are generally more interested in the
latest results. However, in order to fetch all older matches as well, a toggle can be

switched and the results are automatically fetched.

5.6.3 Student assignment statistics table

The student’s overview page’s plagiarism section contains an additional table (Appendix
5), which provides a summarized overview of the student’s progress for each assignment.
It is meant to give teachers the ability to quickly check whether a student has a plagiarism
for a certain assignment, as well as other metrics regarding the assignment. The data for
the table is calculated based on all of the student’s matches that have been currently
fetched.

The table contains the following columns:

= Charon - the name of the assignment.

= Assignment status — the plagiarism status of the assignment.

= Max lines matched — the highest number of matched lines for the assignment.
= Max percentage - the highest similarity percentage for the student.

= Max other percentage — the highest similarity percentage for the other student.
= New amount — the number of new matches.

= Acceptable amount — the number of acceptable matches.

= Plagiarism amount — the number of plagiarism matches.

36

The assignment status shows whether a match with the status plagiarism exists for the
assignment. If a single match like that is found, a red chip with text “Plagiarism” is shown,

otherwise the chip is green with text “Acceptable”.

Based on the amount of different statuses each assignment possesses, a third table was
added as well (Appendix 6). It aims to give an easy oversight of every assignment and
the ratio between different statuses it contains. This way teachers have multiple options,
whether to examine the table with different metrics or to view the second table, which

shows only the ratios of the statuses.

5.6.4 Code comparison

Comparing different solutions is a task teachers need to perform manually most of the
time. Algorithms can be mistaken if given the opportunity to determine the outcome of a
found match. There needs to be a comparison window, where both codes can be
examined, and the outcome determined by a teacher. For this reason, every row in the
found matches table contains a modal view button. Opening this modal will allow

teachers to view the two submissions side-by-side.

This modal is divided into 5 sections (Appendix 7). For each of the students there is a

section that describes the student and their overall match information:

= Username, which is in most cases the student's uni-id.

= Percentage of matches lines inside the file.

= Commit hash, if it exists.

= Button “Student overview” that directs to student overview page, where teacher
can search for matches by this student.

= Button “Submission” that directs to the view of that submission, where teacher
can assign grades and add comments to that submission.

= And a button “GitLab” if a commit hash exists to this student’s commit in GitLab.
All the previous buttons open a new page in a new tab.

Also, for both of the students there are their corresponding code sections for viewing the
submitted files, which have their similar blocks differentiated and 1 section for navigating

between these similar blocks. Both of the code sections have their similar parts shown

37

with a background color on those lines that they matched at. Both students’ similarities

have the same color if they are interconnected.
The navigation section is a table that consists of 3 columns:

= The first and third column show which lines are similar in each of the students’
code and when clicked they open the section in their corresponding code section.
= The second column shows the overall size of that section lines and if it is clicked

will open both of the code sections at their corresponding lines.

This table’s rows have the same color as the similar parts in the code sections in order for

it to be easier to notice them.

5.6.5 Match comments

Every match can contain comments. Teachers are required to add comments when they

are marking results (Figure 3).

Update match status

Comment
Reason for the change

Figure 3. Adding a comment for a match status change

In both matches tables, one of the available actions is to open the comments section,
which is represented by a button with a comment box icon (Appendix 4). When the icon
is crossed out, then no comments have been added, and when it’s not crossed out, then
comments exist. The comments are displayed in a scrollable list (Figure 4) and every
comment has additional details, for example who wrote the comment, what kind of status

change was applied and when this occurred.

38

Match status changes

Changed by: dev

From plagiarism to acceptable at 4/25/2022, 10:49:57 AM

Ok

Changed by: dev

From acceptable to plagiarism at 4/24/2022, 1:56:33 PM

dislike

Figure 4. Match status change comment section

5.6.6 Graph components

When adding graphical components, we wanted to recreate the same graphs as PLAP had:
a bar chart, a donut chart and a network chart. All three graphs display different types of
information about the fetched matches. As these graphs are made from matches displayed
in main matches table, they display graphs based on currently showing matches in table.
Even if user is fetching matches for a certain run by its time, it is possible to see graphical

visualization of them.

Graph components have their own filtration by allowing or disallowing including matches
by status. For this is used toggle for each status, by default all statuses are on. So, there is
a possibility to disallow some statuses from graphical display, which may be useful to

teacher for analyzing results and makes matches status marking more meaningful.

39

The bar chart (Figure 5) is divided into multiple different columns. Each column
represents a percentage range of similarities found when comparing two different
submissions. All matches with a similarity percentage, that fall in between the given
range, are grouped under the column. The graph allows teachers to easily find the number

of matches with very high similarities.

Distribution

Bar chart shows percentage based distribution

12

w

0-19 20-39 40-59 60-79 80-100

Figure 5. Distribution bar chart

The donut chart (Figure 6) shows us the distribution of the matches statuses. There are
three statuses in total: new, acceptable and plagiarism. The text in the upper left corner
indicates match count.

Matches
Found 8 matches. @ Acceptable
® New
Piagiarism

Figure 6. Distribution donut chart

40

The network chart (Figure 7) is by far the most interesting graph. It displays all of the
students found in the matches as nodes and connects each one via edges to other students
that they share a match with. This approach can therefore give a unigue visual overview

of how one student is connected to others and which students make more allied groups.

jjaaks - 23% - ilboit v | @®

~34’vagorb
dainja

Figure 7. Matches network graph

Main part of this chart is node and edges stylization. Edges are colored in accordance
with match status between two students as nodes, where acceptable is green, plagiarism
is red and new is grey. Match average percentage is shown in center of the edge and edge
thickness corresponds this number, so the bigger percentage the thicker edge. This brings
to the fore matches with bigger percentage, while edge with lower number will be less
noticeable. Nodes are colored by number of connected to them edges from green, which
means just some connections, yellow, when there is couple connections, and red, when

there is 5 or more connections.

Edges are nodes are also clickable. When clicking one of them, in the upper left corner
there will appear select bow, where you can select match and eye button. Select box shows
all matches connected to node, but if to click only for edge, there would be the match,
which is behind particular edge. Then, by clicking on eye, code comparison popup will

be opened.

Full view of graphical components window can be seen in appendix 8.

41

5.6.7 Checks status

At the bottom of the plagiarism page in Charon there is a check running section with latest
check status (Appendix 9). By choosing Charon and then running check, there would be

shown a status of current latest check. Every 5 seconds the status would be updated.
The table consists of following columns:

= Charon — the name of the assignment.

= Author — teacher full name, who run check
= Created at — run check start time

= Updated at — time of the last status change
= Status — state of check’s latest status

There is toggle button in the right corner. By clicking it, history of all checks for the
whole course assignments would be shown. It is sorted by date with the same columns
as for the latest check but to the status column an added arrow button to open full status
change logs for the particular check. There would be shown each added status and its’

time when the status was added. History of all checks can be seen in appendix 10.

5.7 User flow

This project creates a new page and sections in Charon for teachers to use. Since the
integration of PLAP with Charon was meant to let teachers make plagiarism checks and
view results without having to open and log in to PLAP, all newly added pages and
sections are implemented in Charon.
5.7.1 Charon Plagiarism page
This page is part of the Charon Popup and it consists of:

= Plagiarism matches section

= Plagiarism overview section

= Latest check/history of checks section

For teachers this is the main page they will be using. On this page teachers can:

42

1. Run plagiarism checks for Charons, that have their counter parts created in PLAP.
See status of current/latest run check.

2. View history of checks and their information (Charon name, Author name, Created
at, Updated at, Status/Logs)

3. Fetch matches for Charons, that have their counterparts created in PLAP. If the
Charon does not have any runs/matches then no data is shown. Filter between fetched
matches, using Search box for all columns except Status and Actions and using Status
select box for the column Status. Fetch matches between different runs to see their
history. (Lines matched, Uni-id, Percentage, Other Uni-id, Other percentage, Status,
Actions)

4. Open up a page popup called MatchModal, to see more information on that specific
match.

5. Inside MatchModal open new tabs for pages Student overview, Submission and

GitLab associated with that matches student.

Inside MatchModal navigate through both student's code.

Assign a new Status for a match. (Plagiarism, Acceptable)

Load and view graphs for the fetched matches.

© © N o

Open up MatchModal inside Network Graph for a selected node or a selected edge.

5.7.2 Charon student plagiarism section

The student plagiarism section is part of the Charon Popup’s Student overview page. The
page contains multiple Charon-related sections, however there is only a single section for
displaying the student’s plagiarism results. The section is meant to give an overview of

the latest as well as historic matches for the student.
On this page, teachers can:

10. Fetch the latest matches of a student.
11. Fetch all historic matches of a student.
12. View the code comparisons of matches.
13. View the comments of matches.

14. Mark statuses.

15. View the statistics for all assignments.

16. View the student’s progress for each assignment in regards to match statuses.

43

5.7.3 Marking results

Marking results means to essentially change the status of a match. Teachers need the
ability to mark a match as Plagiarism or perhaps as Acceptable. For that they need to use
the appropriate action listed at the end of the match’s row in one of the matches tables.
The action is a button with a green thumbs-up or red thumbs-down icon (Appendix 3).
Whenever the status of a match changes, teachers are prompted with a comment box,
which they have to fill, in order for there to always be a reasoning for the change. The
only exception to this is when the status of a New match is being changed to Acceptable,

in which case the comment is not required.

5.8 CI/ICD

5.8.1 Deploy and Tests

Both applications are deployable onto a server. Since Charon has been continuously
developed and deployed quite often, it has working deployment. Ragnar’s project has
been deployed on to a working server and had a working script to deploy it to any server.
But since it uses dependencies and packages that are outdated, to deploy it we are looking
for another way to get it on to a working server using GitLab CI/CD. So far, the
deployment itself is working but we have not gotten the server setup just right.

For both applications unit tests are made to ensure that everything would still work if
some functions overlap with multiple functionalities and when changes are being
implemented. Charon already has a dedicated working pipeline job to run tests with every
commit, using GitLab CI/CD. For PLAP tests are created but again the pipeline job is
outdated and needs to be changed to work and test correctly. PLAP also has the ability to

test code quality.

44

6 Validation

Validating our work is an important part of analysis, because at the end of the day, the
teachers are the ones who are going to be using these features. Therefore, they need to
know how to properly use them and the front-end UI/UX (User interface/User experience)
needs to be understandable with the flow being simple yet effective. We have gotten
validation for the integration from demonstrating it to teachers who are using Charon, the

committee and from our supervisor, who also uses Charon.

The main validation aspects that we were looking for when demonstrating our project

were as follows:

» s it understandable how our projects/applications work?

= Are they satisfied with the front-end design?

= Does our solution suit their needs?

= Do they have any suggestions regarding the flow or design?

= What kind of additional features would they like to see/use?

6.1 Validation from supervisor

Our supervisor Ago Luberg is the one who requested the integration between Charon and
PLAP, therefore he was also our client. Thanks to him, we were able to obtain a better
understanding of PLAP, since it was a little outdated and we were initially having

difficulties setting it up locally as well as understanding how it worked under the hood.

Since our supervisor had previous experience working with PLAP, we turned to him once
we got PLAP set up locally and started understanding how it operated. We were mainly
concerned with what kinds of features he was interested in, as well as what different sorts

of requirements needed to be met when integrating the applications.

We had daily meetings with the team and weekly meetings with our supervisor, where
we discussed the work that had been done, problems that had occurred and which next
steps to take. During every meeting, we would explain and demonstrate our solutions, in
order for them to be validated and to keep our client in the loop of how things were
progressing. We put the most emphasis on our client’s feedback, as he was the one who

would likely be using the integration the most.

45

Thanks to his feedback we were able to implement a better flow for running plagiarism
checks. One of the more problematic parts of the integration was how we would send
submissions from Charon to PLAP. Initially, since we wanted to distinguish Git
submissions from non-git submissions and defended submissions from non-defended
submissions, we contemplated getting rid of Git altogether and sending all files straight
from Charon. However, git was a useful utility resource and keeping it was beneficial.
Thanks to our supervisor, we learned that it was possible to clone submissions from
commits specifically, and therefore we were able to keep the Git and regular submissions

separate while distinguishing defended and non-defended submissions.

Another thing that was unfriendly was our initial section, where we showed the
similarities between two students’ submissions. Our initial solution to this that we would
show only the similar parts, but this turned out to be more of a bad thing, because some
similar parts have no context and it would be hard for the teacher to understand what is
actually done there. So, a suggestion was to show the full code and differentiate the
similar parts with a color background on those lines, which makes comparing two files a

lot of easier.

We also received feedback about what should happen when a match’s status is changed.
If a match’s status changes, it’s something that could possibly end with a student getting
exmatriculated, so it needs to be taken seriously. For this reason, whenever a status was
to be changed, a comment needed to be left behind as a way of reasoning for the change.
Teachers needed the ability to look back and find some information as to who changed
the status and what did that person find that made him make such a decision.

6.2 Validation from teachers

During the development after we reached points where bigger functionalities got done,
we asked for feedback from some teachers who have had experience with Charon and
could better answer on how the flow of the entire application was. With this we got
feedback that the network graph that had been implemented could do more. For example,
there would be the possibility to select a node and the match comparison view would
popup or the same action would mark a match or multiple of them as Plagiarism. The

first suggestion we took heed of and implemented that if a node or an edge is selected the

46

comparison view will be able to be selected. Another idea was to show only nodes that
have statuses New, so the teacher would be encouraged to minimize the shown nodes.

47

{ Results

We started working on this project at the start of this semester, from February. Since
Charon is being kept up to date and we have been developing it for over half a year, we
had no big problems there. As for PLAP, this was a few years old project that had not
been updated and tested regularly. It took a few weeks to get PLAP fully working for our
development and a few weeks to fully understand how it worked, since we had not worked
on a Django project and the idea of how it check files for plagiarism was difficult to
understand at first. After a few weeks into the semester, we were finally able to start

developing and making changes to integrate both applications.

7.1 Comparing results to Task proposal

Comparing for what tasks we set for ourselves in Task proposal, we got more done than
we first anticipated. We got to integrate all that PLAP had to offer to Charon and even a
few additional changes in PLAP check flow and few more added functionalities for the

view components that were being done similar in PLAP.
The following will list functionalities and important tasks that got done:

= Automation of course and assignment creation from Charon

* Running checks from Charon

= Fetching matches from Charon

= Parse exact lines where similarities were found and display these lines with
different color as to notice them

= See overall tables and statistics from Charon

» Finish Ragnar’s initial integration functionality, on how the student files were
cloned from a given commit

= Implement history for runs and matches

= Updated graphs visualization

= Student view page to see overall information about student

= Current and previous checks status displaying

Because this was a new part for Charon there are still many possibilities and things to do

to make the flow and overall aesthetics better.

48

7.2 Teamwork and what we learned

We have known each other for years and worked on Charon together since the start of
2021 summer, we had a good sync and knew how working in a team should go. We had
meetings 3 times a week, where only a few were skipped, because of personal issues.
Because of these meetings we were always on the same line and knew the things we did.
Since we all wanted to know how some functionalities worked and what could be done

to better them, we also did pair programming a few times a week.

Things that we learned while working on this thesis and both of the projects were how
Django framework works, how it connects to Moss and how to implement security
measures to make everything safe. We also learned how to discuss and bring out ideas
while having meetings with the client for a project that we were fairly new to. We were
happy with it, because at every meeting with the client we had something to show and
important to discuss about.

49

8 Conclusions and next steps on development

Overall, the development went well, but there are some things that still need some
attention and time to get them to a finished state. Since we as a team had our tasks and
everything planned out for the entire semester, then these things were what we focused
on and some additional things we decided to not include everything in to the end product

as to make sure that what we planned out would get done and the correct way.

8.1 Conclusions

Most important part that did not get implemented fully was the deployment of PLAP on
to a server. This is because Ragnar used packages that currently are not supported and
outdated to deploy the project on a server. Hence, we could not deploy it the way Ragnar
initially did it, so we had to find other solutions, but this problem turned out a little bit
too late in the development. To consider that we ourselves do not have good experience
in building the project and deploying it, it took us quite a lot of time to even understand
how it should work. We are somewhat familiar with GitLab CI/CD and configuring jobs,
so we tried to get the deployment working this way. What we could’ve done better would
have been to try to deploy some of our earlier versions, but at that time we were still

getting familiar with PLAP and how it works.

Another thing we should have done was to plan out more time for validation, to
demonstrate the project, our solutions and get feedback. Analyse feedback and find a
consensus with the teachers and implement their wants and needs. Even though we had
some demonstration and got some validation we were not able to implement everything
what they wished for. An example would be that one teacher wanted to assign status
straight from the comparison window, but since we had to change how the status was
assigned to a match fairly late in the development, we simply did not have time to

implement it.

On a good note, we got more things done if we compare the result with the task proposal.
We were not quite optimistic about how much we could do as a team, because everything
associated with PLAP was new to us, including some technologies and the overall idea
behind PLAP. Everything needed to be discussed and that took time. But in the end, we

got everything we set out to do and even more done.

50

8.2 Next steps on development

This paragraph describes next possible steps on improvement and development of overall

thesis.

8.2.1 Deployment and more validation

Because we could not get the project deployed in time, the next step to improve both
applications would be to get it deployed correctly and get more validation from teachers.
Until now we have gotten validation from others by demonstrating our application by
sharing screen in a video call or by creating videos and sharing them. This way they might
not know at that moment what they would like to change or what they would want to get
implemented. And to add to that interacting with the applications itself would be a lot
more intuitive to get others using the application and getting better feedback. This way
they can try it from their own chosen time and helps us find some other workarounds and
new possible features.

Their feedback would also make the Ul more intuitive, as the teacher would get a clearer
overview of the changes that should be implemented. The most needed step is to deploy
changes continuously and let teachers try the changes themselves to guide further
development better.

8.2.2 Moss alternatives

Similar to what Ragnar said in his thesis, Moss is not a reliable service to send files for
testing. We found out that the system was quite often offline or reaching response timeout
in several hours. This truly might be an issue when teachers are actually going to use it,
as well as it makes development slower if we need to upgrade things dependent on Moss.
To fix this it might be possible to implement a few other services that could test files for
plagiarism or implement our own service for checking code for plagiarism, which can be

customized to the needs of Charon and Plagiarism.

8.2.3 Testing plagiarism with previous years courses

The current solution does not take into account data from other courses and the results of
previous years. In order for the plagiarism system to give better results, the use of already
existing submissions and matches from other courses will identify students who use

student reports from past years as a basis. Since course materials are repeated year after

51

year, it is more likely that some students will pass on their done work to future

generations.

8.2.4 Plagiarism visualization

Since the detection of plagiarism is a rather complicated process and not always found
similar matches is cheating. For better understanding of the existence of plagiarism,
graphs have been created, both under the results of the check and on the student's page.
Further improvement in data visualization could greatly help the teacher in identifying

plagiarism, so based on them the teacher determines the actual result.

The current solution is informative, but it does not include a visual representation of all
the Charons in the course and comparison of results between different groups of students.
Also, if the submission is a group submission, then all its authors have no connection with
it and the uselessness of comparing messages within the same group is not taken into

account.

52

9 Summary

Plagiarisms are highly frowned upon, especially in academic environments. It’s basically
the theft of another person’s intellectual property. TalTech is no different in that regard,
it values authenticity and tries to minimize plagiarisms as much as possible. A large
portion of its IT department students are programmers. These students face a lot of
programming exercises during their first bachelor’s year. Naturally, this is an area where
many plagiarisms could happen, as students tend to help each other by sharing their
solutions with others. Programming code plagiarisms are more difficult to detect as well,

as solutions can be similar yet authentic. This poses an adequate problem to solve.

Luckily, PLAP had been already developed for TalTech. Our solution to the problem was
to therefore integrate PLAP with our programming exercises management plugin Charon.
Teachers needed to be able to access all of PLAP’s functionalities from within Moodle.
The main idea was to improve the user experience in order to get more teachers to use the
plagiarism checking system. The integration presented the opportunity to add new
features as well, which we used to ask teachers about their opinion on our work and what

they would like to see.

All of the previous PLAP functionality were successfully implemented. Some of it had to
be changed, due to new conditions that the system had to meet. The new PLAP integration
functionality supports submissions without GitLab commits as well now. Teachers
received a brand-new dashboard, where they have a lot more control over plagiarism
checks than before. In addition to that, they have been granted a lot of data visualization.
For the most part, tables and graphs, which are used mainly for code comparison and
statistical metrics. Matches can receive ratings, rating them as acceptable or not. If a
single user is suspicious, then that student’s entire plagiarism history can be reviewed in
the Student Overview page. Teachers now finally have the ability to interact with their

plagiarism detection software in a comfortable way.

53

References

[1] R. Rebase, “Léhtekoodi sarnasust tuvastava siisteemi arendamine,” TalTech,
Tallinn, 2019.

[2] A. Aiken, “A System for Detecting Software Similarity,” Stanford University,

2022. [Online]. Available: http://theory.stanford.edu/~aiken/moss/. [Accessed 03
05 2022].

[3]J. F. M. Alviste, “Programmeerimisiilesannete automaattestimissiisteemi liidestus
moodle'i keskkonnaga ja mugav kasutajaliides tudengite haldamiseks,” TalTech,
Tallinn, 2017.

[4] “Apexcharts.js,” ApexCharts, 2022. [Online]. Available: https://apexcharts.com/.
[Accessed 2 5 2022].

[5] “Build for Code,” 2022. [Online]. Available: https://ace.c9.io/. [Accessed 2 5
2022].

[6] “Network,” [Online]. Available: https://visjs.github.io/vis-network/docs/network/.
[Accessed 09 05 2022].

[7] “CI/CD concepts,” GitLab, 2022. [Online]. Available:
https://docs.gitlab.com/ee/ci/introduction/index.html#continuous-integration.
[Accessed 02 05 2022].

54

Appendix 1 — Non-exclusive licence for reproduction and

publication of a graduation thesis’

We, David Avedis Injarabian, Janar Keit Jaakson and Ilja BoitSuk

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Plagiarism system integration with Moodle’s plugin Charon, supervised by

Ago Luberg

1.1. to be reproduced for the purposes of preservation and electronic publication of
the graduation thesis, incl. to be entered in the digital collection of the library of
Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be
entered in the digital collection of the library of Tallinn University of Technology
until expiry of the term of copyright.

I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her
graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

55

Appendix 2 — All PLAP models

plagiarism courses
— (AR]
[o a Foronkes 4 At
other_ Fore P —{ id AutoField <
< project ForegnKey(id) el 4= course ForegnKey(id)
e sy () P commit_sha CharFleld < teachers ManyToManyField(id) name CharField
created_timestamp DateTimeField A e e e created_by ForegnKey(id) | slug AutoSlugField
lines_matched PosifivelntegerField g ——— name CharField stalus StatusField
moss_url URLfield slug AutoSlugField charon_identifier CharField
e e e language CharFieid directory_path CharField
percentage PositiveSmallintegerField — id AutoField charon_identifier CharField file_extensions ArrayFisld
status StatusField ST) group_id PositiveSmallintegerField max_passes PositiveSmallintegerField
owner ForegnKey(id) S
group_name GharField number_shown PositiveSmallintegerField
[gitiab_data ForegnKey(id)
project_name_regex CharField info JSONField
id AutoField path_with_namespace CharField - -
projects_location CharField order PositiveSmallintegerFisld
< match ForegnKey(id) -
GitlabProject file_extensions ArrayField created_timestamp DateTimeField
lines_start PositiveSmallintegerField
. id AutoField max_passes PositiveSmallintegerField
lines_end PositiveSmallintegerField — . Stugent
oher seaton size o commit_count PositivelntegerField number_shown PositiveSmalllntegerField -
- - . info JSONField [id HashidAutoField
section_size PositiveSmallintagarFiald AL [R :
order PositiveSmallintegerField name CharFieid
s_end PositiveSmallintegerField ssh_url_to_repo CharField e S—
5 created_timestamp DateTimeField Lt iRk
other_lines_start PositiveSmallintegerField web_url CharField
StudentDefenseGommit
id AutoField PlagiarismRunStatus id AutoField
student Foregnl
———< match ForegnKey(id) id AutoField PlagiarismAun ankey
N course_identifier CharField
author CharField run ForegnKey b id AutoField B
assignment_identifier CharField
old_status CharField status CharField assignment ForegnKey
commit_sha CharField
new_status CharField created_timestamp DateTimeField matches ManyToManyField
5 - repository_name CharField
comment TextField created_timestamp DateTimeField
5 - created_timestamp DateTimeField
created_timestamp DateTimeField author CharField
django.contrib.admin django.contrib.auth rest_framework.authtoken accounts
n
id Autofield id Autofield _ id AutoField e
key CharField
content_type ForeignKey B permissions ManyToManyField ——= groups ManyToManyField
5 user OneToOneField
user ForeignKey name CharField user_permissions ManyToManyField
created DateTimeField

action_flag PositiveSmallintegerField date_joined DateTimeField
- -
emall EmailField

action_time DataTimeField id Autofield

first_name CharField

change_message TextField _de g ForeignKey

object_id TextField gitiab_token_value CharField

codename CharField microsoft_auth
. is_active BooleanField
object_repr CharField name CharField XboxLiveAccount
is_manager BooleanField

id Autofield

is_staff BooleanField

user OneToOneField b

django.contrib.contenttypes

django.contrib.sessions is_superuser BooleanField
gamertag CharField

name CharField

L id Autofield last_name CharField

session_key CharField

app_label CharField) f password CharField
expire._date DateTimeField H MicrosoftAccount

session_data TextField model CharField id Autofield username Charfield
user OneToOneField abstract inheritance] 2
- - S
[abstract inheritance] . = mierosoft_id CharField v £
Jango.contrib.messages PermissionsMixin 2
=
expire_date DateTimeField id AutoField H

django.contrib.sites
session_data TextField message CharField

Si
tags CharField id AutoField last_login DateTimeField

extra._tags CharField L password CharField
name CharField

v
AbstractBaselUser

level_tag CharField

56

Appendix 3 — Main matches table

< > TZ 10 0T-T - o7 safied 1ad smoy

9
0]
%

000
© 0 o
% % % O

000
© ¢ o
C % %

65

& ®
0 0
o %

afeluasiad Jauio

opnie

elurep

quoben

quoben

auenp

quofen

qiobea

cuofbes

elurep

elurep

ar-un J2uo

ELTERTER]

alyealp

[nqu

eluiep

syeell

g

Liguu

oprije

ayealp

ayenp

oprufe

arun

12t

0ET

EET

vEQ

payanew sau

~ N - saupuny o
SnES

SIHOLYIN HOL34 yoebjoe|q

yoreag

sayorew wsueibe|d

57

Appendix 4 — Student matches table

910 9-T - 01

00000
© 6 6 6 6
CC %D D

o]
0]
o

suonay

:abed 1ad smoy

V14

12

oz

x4

8T

<9

(34) abejuasiad 1310

annles

syeell

quofien

Mg

ayenp

oprupe

ar-un 18uo

65

(34) abeyuaniag

elurep

elurep

elurep

elurep

elurep

elurep

ar-un

10T

STt

Tt

€8T

¥EQ

payajew saur

yoehjoe|q

yoehioe|q

yoehioe|g

sefe|q

yoehioe|g

Aebe)g

uoJseys

2A02Y

2ANOY

BAIOY

annoy

BAIOY

annay

NV 2E8T:8 '2202/9/v

WY ZE:8T:8 "2202/9/

NV Z2E:8T:8 "2202/9/7

WY TE8T:8 "Z202/9/F

NV TE:8T:8 "'2202/9/7

NV TEBT8 '220T/9/V

<) 1e pareasn

v o

snElS

yaleasg

sayorew wsuelbe|d uapms

Kiowsiy jre moys @l

58

Appendix 5 — Student assignment statistics

ZT 0 0T-T

unouwe wspe|beld

P :afied Jad smoy

wnowe ajgeidsasy

wnowe manN

£

SL

SL

i)

v

9

G9

(o6) abeuaaiad Jaylo xew

62

g

¥L

69

oge

£

LE

le

65

(90) abeuastad xep

[4

EFT

98

orT

€LT

9.T

0zt

€€

GE

rEQ

payolew saul| Xew

“ snrels Juawiubissy

216ew

24muanpe

S8L0[ED BAISINDal

said

1apio

Jadaamsaui

apoapl

Jaydio

Areuig

Foebioelq

uoreys

sonsnels Juswubissy

59

¥
e\wm@ & &

&
L4
<
i

O

%
£

N e P H oa%e o
K e av
% @ S & R

0
l .ﬂ

w z
t

L
v
1

z

uolsey)d palsa) Yyoea loj ssalbold wsuelbe|d s juspms

O
¥
JS

for each Charon

iarism progress

wsLeiberd [}
a|qeidanoe [

mau .

Appendix 6 - Student plag

60

i 1z
1101 <o (4135)3uN10AT1e10] 43P -9z
L SWELLNT:] 57

. £z L {3un10A718301 " 1135] [BWN10A Wa11 aU0" J135) [A313uenb J1as) {aweu®11as) (J3W03snD’ 43S},) uingal €2
13Ul <- (4185)3WN0AT 8303 J3p .22 fuo asodund BuirBBngap Joy,
K1J3doadp 1z 1(4185) I3

P

e

laviLio Zlnoissimans Z1m3iAy3ano INIanLs Flaviuoe lnoissiwans]l m3invano 1N3anLs

BZGETTA) 'ysey Hwwod (%€ ¥) 8L - 69 1 (%8°t) 88 - LL BO9SFZS) *YseY JWwod

%8 - ¢iu=pnis sj20|q 5,Zuspnis saurl 3209 5.TIUSpMIS %S /[- Tu=pnis

3s01D

Appendix 7 — Match comparison section

61

Appendix 8 — Graphs component section

Plagiarism overview l:l
Acceptable matches: D Plaglarism matches D HNew matches D

Desaribution Matches

Ear chart shaws pencemmiage based dsirtuion Found B mahes. @ Acoatabiz:
L Lo
r ® Plagtarizm
[iR1} 0.3 0.8 5078 0100

jaaks - 23% . bkt @

dainja

62

Appendix 9 — Latest check section

“sayjew anes of Buels - TSETFETYELSTH T/SHNSaYNpa pIojuelsssowi:dpy Jun ‘asuadsal ssop paniaoay Wd TSEE:T ‘TZ0E/8/5 Wd THEET ‘ZZ0E/8IS 135 unupy S3L0[EY BAISINIAN §OX3

snjEls e pagepdn e pajEas) Joyny uoseyD

S3L0|Ed 2AISINI2L GOX3 322y 3sa3e

63

Appendix 10 — History of checks section

History of checks ex09_recursive_calories | RUN PLAGIARISM CHECK ‘ ()
Charon Author Created at Updated at Status
ex09_recursive_calories Admin User 8.5.2022 8.5.2022 Check finished. -
12:06:34 12:08:18
ex09_recursive_calories Admin User 7.5.2022 7.5.2022 Waiting for Moss -
23:55:41 23:55:48 response.
ex09_recursive_calories Admin User 5.5.2022 5.5.2022 Check finished. -
21:02:13 21:03:34
ex09_recursive_calories 5.5.2022 5.5.2022 Check finished. ~
21:01:01 21:01:59
5.5.2022 Completed without
21:01:59 errors.
5.5.2022 Received Moss
21:01:20 response, url:
http://moss.stanford.edu
fresults
/4/4251645203653 -
Starting to save
matches.
5.5.2022 Waiting for Moss
21:01:02 response.
5.5.2022 Cloning 12 repos.
21:01:01
5.5.2022 Check started.
21:01:01
ex09_recursive_calories 4.5.2022 4.5.2022 Check finished. -
19:09:39 19:10:18
Rows per page: 5 1-50f 6 >

64

