
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Karl Markus Jõgila 179916IVSB

AUTOMATED INFRASTRUCTURE
DEPLOYMENT WITH ANSIBLE FOR

SMALL SCALE WEB APP DEVELOPMENT
COMPANY

Bachelor’s thesis

Supervisor: Siim Vene

 MSc

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Karl Markus Jõgila 179916IVSB

ANSIBLE-PÕHINE AUTOMAATNE
TARISTUJUURUTS VÄIKESELE
VEEBIARENDUSETTEVÕTTELE

Bakalaureusetöö

Juhendaja: Siim Vene

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Karl Markus Jõgila

18.05.2020

4

Abstract

The aim of the current thesis is to develop a solution, that can be used to automate the

deployment of infrastructure in a cloud-based environment for a small-scale web app

development company using Ansible. Using configuration management (CM) and the

principle of infrastructure as code (IaC) will ensure a quick, secure and consistent

infrastructure deployment. The thesis provides insight into mistakes made during

infrastructure deployment, lifecycle management and analysis of available infrastructure

solutions.

Theoretical analysis will examine the common mistakes made during the infrastructure

deployment process and comparison of infrastructure services. During the practical part,

an Ansible playbook will be developed, which will be used to deploy the infrastructure.

This thesis is written in English and is 93 pages long, including 5 chapters, 4 figures.

5

Annotatsioon

Ansible-põhine automaatne taristujuurutus väikesele

veebiarendusettevõttele

Käesoleva diplomitöö eesmärk on arendada lahendus, mida saab kasutada automaatseks

taristujuurutuseks pilvepõhises keskkonnas väiksele veebiarendusettevõttele kasutades

Ansiblet. Kasutades konfiguratsiooni haldust ja infrastruktuur koodina printsiibi

põhimõtteid, aitab tagada kiire, turvalise ja konsistense taristujuurutuse. Diplomitöö

annab analüüsi infrastruktuuri juurutamisel levinud vigadest ning analüüsi saadaval

olevatest infrastruktuuri teenustest.

Teoreetilise analüüsi käigus uuritakse enimlevinuid vigu infrastruktuuri juurutamisel ning

analüüsi infrastruktuuri teenustest. Töö praktilises osas arendatakse välja Ansible skript,

mida kasutatakse infrastruktuuri juurutamiseks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 93 leheküljel, 5 peatükki, 4

joonist.

6

List of abbreviations and terms

AWS Amazon Web Services

Azure
API
HA
REST
VPC
Network ACL
SQL

Microsoft Cloud service offering
Application programming interface
High availability
Representational state transfer
Virtual Private Cloud
Network Access Control List
Structured Query Language

7

Table of contents

1 Introduction ... 10

2 Description of the problem .. 12

2.1 Overview of the situation and goals ... 12

2.2 Problems in small-scale IT companies ... 13

2.3 Data breaches caused by improperly configured IT infrastructure services 15

2.4 Configuration consistency .. 15

2.5 Time consumption of deployments .. 16

3 Analysis of common mistakes made in infrastructure deployments and lifecycle

management .. 17

3.1 Backup and restore procedures ... 17

3.2 Committing credentials to version control systems .. 19

3.3 Improper access management ... 19

3.4 Patch management .. 20

3.5 Instance deployment ... 21

3.6 Web server deployment .. 21

3.7 Database deployment .. 22

3.8 Monitoring deployment .. 23

3.9 Backup and restore ... 24

3.10 Cloud infrastructure service providers ... 25

4 Implementation of the solutions .. 28

4.1 AWS infrastructure diagrams ... 28

4.2 Overview of the automated deployment process in AWS 29

4.3 Setting up Ansible Control node .. 30

4.4 Development of the web server deployment .. 32

4.5 Development of the database deployment .. 33

4.6 Development of the monitoring deployment .. 34

4.7 Development of the database backup deployment ... 34

5 Summary .. 35

References .. 36

8

Appendix 1 – Ansible VPC Deployment and Management Role 39

Appendix 2 – Zabbix Deployment and Management Role .. 51

Appendix 3 –User Creation and Management Role ... 60

Appendix 4 –SSH Configuration and Management Role .. 62

Appendix 5 – Instance Provisioning Role .. 63

Appendix 6 – System Patching Role .. 64

Appendix 7 – Nginx Configuration and Management Role ... 65

Appendix 8 – MySQL Configuration and Management Role .. 75

Appendix 9 – Automated Let’s Encrypt Certificate Deployment Role 83

Appendix 10 – Duplicity Database Backup Deployment ... 87

Appendix 11 – Common Package Installation Role ... 90

Appendix 12 – Bastion Host Deployment and Configuration .. 91

9

List of figures

Figure 1 Worldwide cloud infrastructure spending and annual growth (Source: Canalys

Cloud Channels Analysis) .. 25

Figure 2 AWS Infrastructure Schema with a load balancer (Source: Author created) .. 28

Figure 3 AWS Infrastructure Schema without a load balancer (Source: Author created)

 .. 29

Figure 4 AWS IAM (Source: Author created) ... 32

10

1 Introduction

The work deals with the analysis of automating the process of configuring and deploying

the infrastructure needed for a small-scale web application development company. The

environment will be deployed in a cloud-based solution. Automating the entire process

with a configuration management tool will make the deployment consistent, secure,

portable and easy to manage. The work will give an analysis of most common mistakes

made during the infrastructure deployment process in small businesses and start-ups and

analysis of infrastructure services, that will be implemented in the practical part of the

thesis.

The infrastructure in question will contain the following services:

• Web servers

• Databases

• Monitoring

• Backup and recovery

The topicality of the work and the need for such a solution are related to the authors work

experience during which the author has experienced consequences of improperly or

manually configured infrastructure services in start-ups or already established small

businesses.

The result of this work should apply to a starting or already existing web application

development company, who would like to increase the security and ease the management

of their infrastructure.

The solution will be developed using the best security, coding and infrastructure practices

so that it could be implemented for already existing companies working in the web

application development field. In addition to that, since the solution will be open-sourced,

11

the author will provide documentation and examples to make the deployment as easy as

possible.

The research questions that the author will want to answer during the work will be:

1. What are the most common mistakes made during infrastructure deployments?

2. What are cyber security related mistakes done in infrastructure lifecycle

management?

3. What are the optimal software solutions for the infrastructure services (web

server, database, monitoring, backup)?

After the questions get answered, the author will develop the solution using the services

which proved to be optimal.

12

2 Description of the problem

2.1 Overview of the situation and goals

Manual infrastructure deployment is a very time-consuming process, during which

misconfigurations can happen. These mistakes can lead to security holes or systems not

working as they should be. This means more time will be spent in the future debugging

or redesigning the entire infrastructure, which could mean possible downtime for

prolonged periods.

This thesis will be focusing mainly on start-ups and small businesses because as of 2018,

47% of small businesses in the United States suffered at least one cyber-attack per year.

Of those, 44% experienced two, three or four attacks in the same period, and 8% had five

or more attacks. The top cyber-related insurance claims were ransomware, hackers and

loss or misuse of data. In addition to that, 7 out of 10 businesses are unprepared to deal

with a cyber-attack. [9]

The most common mistakes start-ups and small businesses make with cloud infrastructure

deployments and lifecycle management are:

• Committing credentials to version control systems like Git. [6]

• Improper access management. [6]

• Backup and restore procedures not correctly configured.

• Patch and vulnerability systems/procedures are not in place.

Automating the deployment will ensure consistency of the environment, reduce time-

consumption, eliminate the possibility of misconfigurations and ensure a more secure and

sustainable infrastructure. Configuration changes will also be faster and consistent, since

the entire environment is described in code and managed by a configuration management

tool. [2]

13

The principles what automating infrastructure deployments will help to achieve:

1. Ability to make improvements continuously, rather than doing everything at once

at a specific time.

2. System Administrator(s) spending less time on routine and repetitive tasks.

3. Users can manage and define resources what they need without the help of a

system administrator.

4. Systems and services can be recovered quickly and easily.

5. Configuration management tools will ensure consistency of different

environments.

The outcome of the practical part of this thesis will help start-ups and small businesses to

deploy their infrastructure to the cloud as soon as possible while maintaining the best

security and infrastructure practices. Configuring the services in question securely with

having no previous experience, would be a challenging task.

2.2 Problems in small-scale IT companies

Globally more than 95% of businesses are considered small (<100 employees). The most

challenging tasks for creating IT infrastructure in small-scale IT companies are

requirement analysis, financial and budget calculations and dealing with implementation

and operational issues. Following that, the company has to understand the product that

they are building, and the technology needed for it. [23]

In addition to that, starting a company can be a very stressful process, during which some

parts of the process are inevitably rushed and then forgotten about. These parts can

become huge problems if they are tied to the IT infrastructure. When the business owner

is not an expert in the IT field and does not consider proper IT strategy planning a priority,

scaling in the future can become a considerable challenge for the company.

The main security mistakes made in the cloud according to a research conducted by

Netskope are:

• Granting public access to storage buckets.

14

• Using the root account for everyday activities.

• Failing to implement monitoring.

• Integration issues. [10]

When the company does not take these problems seriously, one day, they might be out of

business because of a data breach, which could lead to huge fines. In 2017, there were

approximately 1579 reported data breaches in the United States. [24]

Data breaches can be the result of a user error. Most typical case scenario is when an

operator has misconfigured a platform or a server which has resulted in the ability of an

external entity to gain unauthorised access to the data. Data breaches can affect millions

of people’s personal details, which in Europe, due to GDPR, can lead to massive fines.

[24]

As cloud computing often simplifies the process of deploying IT infrastructure, many

companies are moving their services to the cloud. However, users must understand the

security concepts of their chosen cloud provider. [24]

Since starting companies tend to have limited resources, they leave the deployment and

management of new applications in cloud infrastructure to developers. They see it as a

less expensive solution compared to hiring an employee, who would be responsible for

cloud infrastructure. [15]

When the application starts to gain popularity and becomes one of the primary income

sources of the company, the underlying infrastructure becomes neglected as developers

are focusing more on the application. Routine processes are left undone, proper

monitoring is not implemented, and documentation is written. [15]

In addition to that, should there be problems with interconnectivity between instances or

external services, improper network configuration could be done by developers, which

could leave the entire infrastructure in a vulnerable state. As mentioned before, one of the

worst-case scenarios would be to leave databases or AWS S3 buckets open to the public,

which could lead to data breaches.

15

2.3 Data breaches caused by improperly configured IT infrastructure

services

In October 2017, API data, authentication credentials, which included 40,000 plaintext

passwords, certificates, decryption keys, configurations, customer information of

Accenture customers were left open to public access due to a misconfigured AWS S3

storage buckets. Their customer list included 94 companies on the Fortune Global 100

list. [21][24]

BJC Healthcare reported that an unsecured server was left open to internet access between

May 2017 to January 2018. It is reported that the breach affected information about

33,000 patients. Information such as patients driving licenses, insurance details, treatment

documents were stored on the server. Personal data such as names, addresses, date of

birth, telephone numbers and social security numbers were also vulnerable. [20][24]

2.4 Configuration consistency

As mentioned before, manual deployment of infrastructure services can be a long and

complicated task. When deploying multiple environments at once, depending on the size

and competence of the team working on it, the possibility of inconsistencies and

misconfigurations is present. Undiscovered configuration mistakes, which are not

detected on time, can lead to security breaches, systems not working or malfunctioning.

In case of disaster, the recovery of virtual machines or services will be a challenging task

if proper backup and disaster recovery procedures are not in place. If the redeployment

procedure is done with no automation, the process can take hours or days depending on

the size of the infrastructure. In larger redeployments, misconfigurations and

inconsistencies are highly likely due to the pressure of getting everything working again.

Discovery of the mistakes made during that period can be extremely difficult to find and

fix, which can increase the total downtime of the infrastructure.

If a company is using multiple cloud service providers, the importance of consistent

infrastructure is critical. It reduces the risk of operational inefficiencies and enables

seamless transitions between cloud service providers should there ever be a need to do

that.

16

2.5 Time consumption of deployments

As stated before manual infrastructure deployment can be a very time-consuming process.

If talking about the infrastructure that this thesis is focusing on, then the process of

deploying that infrastructure manually can take multiple days in multiple environments.

It is crucial to document the infrastructure setup as well for future sustainability which

will also increase the time consumption of the entire deployment.

This work will focus on deploying the infrastructure in a cloud-based environment. The

outcome of the practical part can be modified in the future to deploy the infrastructure in

other environments.

17

3 Analysis of common mistakes made in infrastructure

deployments and lifecycle management

The analysis part of this thesis will give an overview of the most commonly made

mistakes during infrastructure deployment and lifecycle management. The following

problems were chosen due to the cyber security impact they can have on businesses. In

addition to that, the author has experienced the consequences of the problems personally

during his work experience.

The chapter focuses on the following issues: backup and restore procedures, committing

credentials to version control systems, improper access management and patch

management.

3.1 Backup and restore procedures

Data is one of the most critical assets regardless of the size of the business, and there is

always the risk of losing your data. Whether the data loss occurs because of a hardware

failure, cyber-attack or improper access management, it will cause many problems to the

company or in the worst-case scenario, shut down the company. Having a good backup

strategy in place is essential for data security since there is no guaranteed method of

preventing a data breach. [25]

Data loss can occur from:

• Accidental data deletion or modification.

• Hardware failure.

• Improper governance of access rights.

• Lost or stolen devices.

18

As companies are dependent on their data being present and secured, proper backup and

recovery procedures must be implemented and tested regularly. Planning starts with

identifying what data needs to be backed up and how regularly backups should happen.

Data such as database backups should be backed up at least once a day.

The most common mistakes start-ups and small businesses make with backups are:

• Relying on people making manual backups. [19]

• No recovery procedures present.

• No policies set for cloud storage. [22]

• Encrypting backups.

Relying on people making regular backups is not a sustainable backup strategy. Start-ups

and small businesses tend to have one key person who would be responsible for this

procedure. Should there be a need to restore data and if the key person happens to be on

holiday without having written any documentation on the recovery procedure, the

company could be in huge trouble.

As more companies are storing their data in the cloud, proper governance and access

management must be implemented. Failing to do that can result in unauthorised access,

data breach and data loss. In addition to that, critical storage that is stored in cloud storage

should be encrypted by default.

Since the entire infrastructure will be deployed and managed by Ansible, there is no need

to make backups of the configuration files. Source code of the applications that are present

on the systems should be stored in version control systems, which means there is no need

to make backups of those. However, automated database backups have to be configured.

Ideally, the automated backup should backup all of the databases that are present on the

system and keep them for 30 days. If needed, backups older than 30 days could be stored

in long-term storage.

The most efficient way of making a backup of the databases is to use a built-in database

export feature. For example, in MySQL databases, the feature is called mysqldump, and

in PostgreSQL, the feature is called pg_dump.

19

3.2 Committing credentials to version control systems

One of the most common ways of storing source code of applications is using public

version control systems like GitHub and GitLab. If developers are not paying attention to

what they are uploading to these public environments, they can upload secrets by mistake.

Secrets such as API keys, encryption keys, OAuth tokens, certificates, PEM files,

passwords and passphrases can be used to access other resources which are managed by

the company. [18]

Should the repository include secrets or credentials for resources such as AWS S3

buckets, databases, customer relationship management systems or something similar,

then it would leave the company in a vulnerable state for a data breach. The only way of

removing secrets is to replace the current repository with a new one.

Creating a new repository is essential since there are tools that available such as Gitrob,

that are used to find potentially sensitive files pushed to the public repositories on GitHub.

It can clone repositories belonging to an organisation down to a configurable depth and

iterate through the commit history and in the process, mark potential sensitive files. [16]

As infrastructure as code principle follows practices from software development, the

source code of the solution should be stored in a version control system such as Github.

During the initial setup of the solution, the user is prompted to enter their cloud service

provider authentication credentials, which will be stored in an encrypted form using

ansible-vault. The file will not be pushed to the remote repository since the credential file

will be ignored by default with. gitignore.

3.3 Improper access management

Proper access control is one of the most critical components of cloud security. There

should be minimal access to the cloud platform itself, and those who have access to it

should have the minimum access rights to carry out their assignments. To maintain proper

security, privileged access protocol must be implemented. [7]

When start-ups or small companies start using AWS S3 storage without prior knowledge,

they can configure the storage bucket with too public access rights. One of the biggest

mistakes a cloud user can make is configuring their storage bucket with “authenticated

20

users” access, thinking that these are users that belong to the organisation or to the

relevant application. That is incorrect, as “authenticated users” refer to anyone with AWS

authentication, which is any AWS customer. This misunderstanding can leave storage

objects to fully exposed public access. [6]

As developers should have the minimum amount of access to the cloud console, the author

will develop a playbook for the creation of developers’ accounts. The playbook will create

user accounts on the EC2 instances and add their SSH public keys to their account, so

users can access the system without using passwords.

3.4 Patch management

The primary purpose of patching is to ensure a stable and secure environment. The

objective of a patching strategy is to maximise performance, mitigate security issues and

improve system availability. As some systems might be exposed to newly discovered

security vulnerabilities, it is critical to address those issues as soon as possible. Otherwise,

systems that are dependent on it might perform sub-optimally or deteriorate in terms of

performance.

Patching should be done regularly, for example, every 30 days and executed

automatically. During the process security and bug-fixes are installed on the system.

Patches should be applied first in development or test environments to make sure that

systems are not affected by the changes made during the process. Should any issues arise

after the process is complete, they could be dealt with, and fixes could be applied before

patching happens in the production environment.

One of the main benefits that proper patch management offers is network security.

Unfortunately, patch management is usually implemented after a company has

experienced a data breach and wants to ensure that other businesses data remains

untouched. By securing the network beforehand will help to prevent data theft, legal

issues and reputational damage. [1]

Another benefit of patch management is compliance. As the number of security breaches

is increasing, the number of regulations that companies must follow is also increasing.

That forces companies to implement best security practices. Failure to comply with the

regulations can potentially lead to legal penalties. [1]

21

One of the main mistakes’ companies make is not keeping their software up to date.

Hackers are always looking for vulnerabilities that can be exploited and used to access

the company’s internal data and resources. Implementation of patch management on both

servers and workstations is an essential part of data security.

The solution will include a playbook, which will patch the instances every 30 days. There

will be two separate patching jobs for web servers and database instances. These jobs will

be configured to be run every 30 days using Cron on the Ansible control node.

3.5 Instance deployment

The underlying operating system that will be running on the instances is Ubuntu. It is the

most popular OS for running websites. It is based on Debian and can be downloaded from

Ubuntu’s official website. The version that will be used is 20.04 LTS (code name Focal

Fossa), which will be receiving updates until 2030. [12] [13]

Automating the deployment of instances helps to ensure the consistency of the

environment, eliminates the need of deploying from the AWS Console, reduces the time

required to apply the initial configuration on the instance.

In companies where EC2 deployment is an everyday occurrence, it will help to save a

considerable amount of time spent on that task. Developers can quickly provision new

instances without the need for a system administrator.

3.6 Web server deployment

The main principles that automating the web server deployment will help to achieve:

• Consistency of the configuration files.

• Faster deployment of new web applications.

• Developers being able to deploy new virtual hosts without the need of a system

administrator.

While the pros of automating web server related tasks overweigh the cons of configuring

everything manually, there still are some tasks that might require manual interference.

22

For example, adding new configuration file templates, changes to existing configuration

files, creation and modifications to the custom configuration files, that are not created

using standard deployment templates.

The main requirements for the web server are:

• Lightweight.

• High performance.

• Available from the default repositories.

In this thesis, Nginx will be used as the web server software because of the lightweight

structure and ability to handle high traffic websites when compared to Apache. When

comparing the complexity of configuring Apache and Nginx, Apache is a clear winner.

That makes the automation of Nginx deployments even more critical because

configuration mistakes are likely to happen.

3.7 Database deployment

The main principles automating the database deployment will help to achieve:

• New databases are created without using the command line.

• Database replication is set up in a consistent matter.

• During the installation process, unused users and databases are removed by

default, during the manual installation process that has to be done manually.

• Database backups are configured by default.

When a new database has to be created, a user has to login into the management database

and execute a command to create the database. When replication is also needed, that will

require extra steps on two or more database instances. Automating that process will help

to save the time spent on the database creation and the replication setup process. In

addition to that, the configuration of both the database and the replication will be done

consistently.

23

When there is a need to restore from the backup, that process can also be automated to

ensure a consistent database recovery. If there are additional steps that need to be

performed before the recovery, the other option is to run the restore command manually,

which will be provided by the author.

The main requirements for the database are:

• Relational database structure to prevent data duplication.

• User management is available.

• Easy to configure.

• Data replication must be available.

• Available from default repositories.

The author considered using the following databases: PostgreSQL, MySQL and

MariaDB. Out of the three MySQL was chosen. As of March 2020, it is the second most

popular database software behind Oracle, while PostgreSQL is 4th MariaDB is 13th. When

compared to PostgreSQL, the performance and more straightforward configuration

outweigh the advanced features that PostgreSQL offers. In addition to that, Ansible has a

module available for setting up MySQL replication. [8] [14]

3.8 Monitoring deployment

The main benefits of automating the monitoring solution deployment and configuration

will help to achieve the following principles:

• Quick and consistent deployment.

• Configuration of the server/agents can be managed centrally.

• Adding new hosts will require no manual input.

The main requirements for the monitoring solution are:

• Highly customisable.

24

• Integration with visualisation tools must be available.

The author considered using the following monitoring solutions: Zabbix, Prometheus and

Nagios. Out of the three solutions, Zabbix will be used. The powerful and modern web

GUI is outweighing the features of Nagios. Easy and fast configuration process is more

important than the performance gains which Prometheus is offering.

3.9 Backup and restore

The main benefits of automating the monitoring solution deployment and configuration

will help to achieve the following principles:

• Restore process requires no manual intervention.

• Backups are configured consistently on instances.

• In complex setups, less time spent on backup master/agent configuration

debugging.

• Does not rely on people doing backups manually.

While manual backups of databases can be done, it is not a sustainable strategy. People

make mistakes and might sometimes forget about making a backup of the database or

some other system. Automating that process will ensure that backups will be made

regularly and consistently. The solution will automatically configure backups for the

database servers. Backups of the configuration files will not be needed, as mentioned

before, Ansible will configure the services, and the source code of the playbook is kept

on a separate machine and ideally in VCS as well.

In complex backup systems such as Bacula or Bareos, managing configuration files

manually can take a lot of time due to the complexity of the system. If there is an issue

with the configuration which will cause the backups to fail, debugging that issue can be

a very long and stressful task.

The main requirement for the backup solution is:

• Cloud storage must be supported.

25

Borg, Bareos and Duplicity fit the criteria. Duplicity will be used in this thesis because

the only purpose of the solution is to store database backups, and the advanced features

of Bareos are not needed.

3.10 Cloud infrastructure service providers

Over the past few years usage of cloud computing has grown massively. In 2019, public

cloud adoption grew while private cloud use declined. Companies are increasing their

investments in the public cloud. With a higher number of enterprises using Azure as their

cloud service provider, they are closing the gap between the leader AWS. For the past

three years, managing cloud costs has been one of the top priorities for companies using

cloud service providers. [3]

As of Q4 2019, the worldwide cloud infrastructure services market reached a record high

as spending grew by 37% to over US$30 billion. AWS remained the dominant cloud

service provider, accounting for 32% of total spend. Azure increased their share from

15% to 18%. Google cloud was the third-largest service provider with a 6% share. [4]

The main advantages of using cloud infrastructure services are:

• Flexible up-front investment costs.

• Frequent and easier product upgrades.

Figure 1 Worldwide cloud infrastructure spending and annual growth (Source: Canalys Cloud
Channels Analysis)

26

• Reduced IT support performed by internal resources.

• Community of users for the latest versions and features.

• Efficient for multi-tenant usage (scalability, recoverability, patching, security).

[26]

The main disadvantages of using cloud infrastructure services are:

• Costs can get out of control when proper governance is not implemented.

• A 3rd party could access data.

• Long-term projects costs must be in place.

• During hardware failure, you have no control over the recovery process.

• Significant learning curve, adequately trained personnel is expensive.

As mentioned before, cloud cost management and cloud governance are the top

challenges for companies regardless of cloud maturity. Another challenge is managing

software licenses that are used in public cloud environments. Specifically, understanding

the cost implications of licensed software running in the cloud, ensuring that they are

following the rules and the complexity of license rules in the public cloud. [3]

In this thesis, AWS will be used because of the popularity and great integration with

Ansible. Configuring the services in question properly while having no previous

experience would be a challenging task. There is also an option to use Amazon Lightsail

for a deploying a LAMP stack. While being very easy to set up, it does not offer any

monitoring or backup services by default. [5]

EC2 compute instances will be used in this thesis to deploy services. Reason being more

cost-effective, having control over server-side configuration, possibility to launch

playgrounds, where developers can test new solutions, without having to interfere with

test and production environments. Should the company reach a point where there is a need

to migrate to an on-premise setup or a hybrid-cloud solution, they could use the same

solution to configure infrastructure services.

27

In the AWS marketplace, there are already similar CloudFormation templates available.

However, the majority of them are doing the same deployment as Amazon Lightsail, and

the same problem persists, backups and monitoring are not implemented by default. In

addition to that, CloudFormation templates can only be used in AWS, while the Ansible

playbook could be used elsewhere as well.

28

4 Implementation of the solutions

4.1 AWS infrastructure diagrams

The solution will be able to deploy the infrastructure, which is drawn in the figure above.

It consists of 2 web servers located in the private subnet, which are load-balanced by the

Elastic Load Balancer. 2 database servers with a master-slave configuration, one

monitoring server and 1 Bastion host.

Figure 2 AWS Infrastructure Schema with a load balancer (Source: Author created)

29

The solution will also be able to deploy the infrastructure, which is drawn in the figure

above. This particular set up does not deploy a load balancer for the webservers. Instead,

they can be used as two different web servers. Both are placed in the public subnet and

have static IP addresses.

4.2 Overview of the automated deployment process in AWS

The automated deployment workflow will be:

1. Virtual Private Cloud is created, during which the default route table, network access

control list, and security group are added.

Figure 3 AWS Infrastructure Schema without a load balancer (Source: Author created)

30

2. Private subnet is created.

3. Public subnet is created and configured. Servers that are connected to that subnet will

automatically receive a public IP.

4. Internet Gateway is created and attached to the VPC.

5. Public route table is created, and routes are configured.

6. Public subnet is associated with the public route table.

7. Security group for web servers is created and configured.

8. Security group for database servers is created and configured.

9. Security group for monitoring server(s) is created and configured.

10. NAT Gateway is created and configured for the private subnet.

11. Route to the internet is added to the default route table via NAT Gateway.

12. Bastion instance is deployed and configured with a static IP.

13. Monitoring instance is deployed and configured with a static IP.

14. Database instances are deployed and configured.

15. Web server instances are deployed and configured.

16. S3 bucket for backups is configured.

17. If specified, the load balancer will be configured for the web servers.

4.3 Setting up Ansible Control node

All Ansible playbooks and commands are run from the control node. The node in question

must have connectivity to all servers in the infrastructure. The control node can be a

laptop, a shared desktop or a virtual machine. However, there is no possibility to use a

Windows machine as a control node. The solution, in that case, would be to install a

virtualisation software on the machine and launch a virtual machine.

31

The author in this thesis, is using a virtual machine and the operating system that is used

is Ubuntu 18.04. The virtual machine in question has 1 vCPU and 1GB of RAM. To

install Ansible and the dependencies on the system using the same operating system, the

following commands have to be executed.

$ sudo apt update && sudo apt install software-properties-common -y &&

sudo apt-add-repository --yes --update ppa:ansible/ansible && sudo apt

install ansible python-pip python3-pip -y

$ pip install botocore boto boto3 zabbix-api

$ pip3 install botocore boto boto3 zabbix-api

Once the required packages are installed, the playbook has to be downloaded from

github.com. The easiest way to do it is to use git clone command.

$ git clone https://github.com/karlmjogila/thesis-aws.git

$ cd thesis-aws/

After cloning the repository and changing the directory, the user must create an account

in the AWS Console. The user must have full access to resources which are used during

the deployment. To create the users, log in to AWS console and navigate to IAM -> Users

-> Add User.

User creation process:

1. Create a username and make sure access type is “Programmatic access”

32

2. Select the “Attach existing policies directly” tab and choose the following

policies: AmazonEC2FullAccess, AmazonVPCFullAccess,

AmazonS3FullAccess, AmazonRoute53FullAccess,

AWSCertificateManagerFullAccess.

3. Click Next -> Next -> Make sure the correct policies are applied -> Create user.

4. Make sure to download the .csv file containing both access keys and store the

credentials in a password manager. They will be needed later.

Back on the control node, execute the following command:

$ ansible-vault create keys

The user will have to create a password, which will be used to encrypt the credential file.

Once the password is created, an editor is opened, and the user has to the store the access

keys created in the previous step. The Github repository contains an example credentials

file, where the user has to fill in the values. The credentials are stored in a key-value

format.

AWS_SECRET_ACCESS_KEY: <Secret access key>

AWS_ACCESS_KEY_ID: <Access key id>

Once the file is populated with values, exit the editor and execute the following command:

$ ansible-playbook site.yml –-ask-vault-pass

The user will be asked for the password, which was used to encrypt the credential file.

After that, the deployment process will start and once finished; the infrastructure is

deployed in AWS.

4.4 Development of the web server deployment

During the development, the author wanted to make sure that new virtual hosts can be

added in group variables, after which the configuration and deployment of the virtual host

is automatically completed.

Figure 4 AWS IAM (Source: Author created)

33

The deployment workflow is as follows:

1. Package list is updated on the server.

2. Nginx package is installed.

3. Nginx is configured to start on bootup.

When a new virtual host is added to the list, the webroot directory is created, the

configuration file is created, configuration check will be run, and if the check passes,

Nginx is reloaded, and the virtual host is active (see Appendix 7 for Nginx deployment).

If the load balancer is deployment is not specified, Let’s Encrypt certificate will be

configured as well (see Appendix 9 for Let’s Encrypt deployment).

4.5 Development of the database deployment

During the database deployment, MySQL replication is configured (see Appendix 8 for

Ansible database deployment). The deployment workflow is as follows:

1. Package list is updated on the servers.

2. MySQL package is installed on the servers.

3. Service is started and configured to start on boot.

4. MySQL root password is updated.

5. Unused users and databases are removed.

6. Databases and database users are created.

7. Replication users are created.

8. Slave is configured for replication.

9. Replication is started.

34

4.6 Development of the monitoring deployment

The primary purpose of the monitoring solution is to alert the responsible personnel about

unavailable services or high consumption of instance resources. During the deployment,

the following tasks are executed:

1. Zabbix repository is added to the server.

2. Package list is updated.

3. Zabbix and MySQL database packages are installed.

4. Zabbix and MySQL services are configured and started automatically on boot.

5. Services are started on the server. (see Appendix 2 for Ansible Zabbix

deployment)

Instances will be added to Zabbix using the zabbix_host module in Ansible. [11]

4.7 Development of the database backup deployment

Since the infrastructure is described in code, the backups of the configuration files are not

required since, in theory, everything should be managed by Ansible. The only thing that

needs to be backed up frequently is the databases. This thesis will be using mysqldump

script and duplicity to store the backup in S3 bucket (see Appendix 10 for Ansible backup

deployment).

The deployment workflow is as follows:

1. Duplicity with required python modules are installed on database servers.

2. Backup script will be created from a template file and uploaded to the database

servers.

3. Cron job is configured to back up the databases once a day.

35

5 Summary

The goal of the work was to analyse infrastructure services and common mistakes made

in infrastructure deployment and lifecycle management to develop a solution, which

could be used to automate infrastructure deployments for a small-scale web app

development company in a cloud-based environment.

In the analysis section author compared different cloud service providers, analysed

common mistakes made in infrastructure deployment and lifecycle management in start-

ups and small businesses and analysed infrastructure services to find the optimal ones to

be used in the solution.

In the practical section, an Ansible playbook was developed for infrastructure deployment

automation, which helps to keep future deployments consistent. Infrastructure services

that proved to be the optimal ones in the analysis section were implemented in the

solution. Common lifecycle management and deployment mistakes were also handled.

The solution deploys the following services:

• 2 Web servers – Nginx is used as the web server software.

• 2 Database servers – MySQL is used as database software.

• 1 Monitoring server – Zabbix is used as a monitoring solution.

• 1 AWS S3 bucket for database backups – Duplicity is used to sync the data.

• 1 Bastion host for accessing servers in the VPC.

The solution was developed using the best security, infrastructure and coding practices.

Documentation with examples is also included for easier customisation. In addition to

that, an additional playbook is included to deploy the environment locally on the

developer’s workstation. The solution is available at

https://github.com/karlmjogila/thesis-aws.

36

References

[1] What Is Patch Management? [Online]. Available:

https://consoltech.com/blog/patch-management/

[2] Evaluation of Infrastructure as a Code for Enterprise Automation. 2018 [Online].

Available: https://is.muni.cz/th/liwzz/IaC-Final-el.pdf [Accessed 10 April 2020]

[3] Cloud Computing Trends: 2019 State of the Cloud Survey. 2019 [Online].

Available: https://www.flexera.com/blog/cloud/2019/02/cloud-computing-trends-2019-

state-of-the-cloud-survey/ [Accessed 10 April 2020].

[4] Cloud market share Q4 2019 and full-year 2019. 2020 [Online]. Available:

https://www.canalys.com/static/press_release/2020/Canalys---Cloud-market-share-Q4-

2019-and-full-year-2019.pdf [Accessed 10 April 2020].

[5] Amazon Lightsail. [Online]. Available: https://aws.amazon.com/lightsail/

[Accessed 27 April 2020].

[6] 5 Common Cloud Configuration Mistakes. [Online]. Available:

https://www.darkreading.com/cloud/five-common-cloud-configuration-mistakes/a/d-

id/1335768 [Accessed 29 April 2020].

[7] 7 Security Mistakes Organisations Make When Adopting Cloud. [Online].

Available: https://www.cloudreach.com/en/resources/blog/7-security-mistakes-

organizations-make-when-adopting-cloud/ [Accessed 29 April 2020].

[8] mysql_replication – Manage MySQL replication. [Online]. Available:

https://docs.ansible.com/ansible/latest/modules/mysql_replication_module.html

[Accessed 6 May 2020].

[9] 2018 HISCOX Small Business Cyber Risk Report [Online]. Available:

https://www.hiscox.com/documents/2018-Hiscox-Small-Business-Cyber-Risk-

Report.pdf [Accessed 27 April 2020].

37

[10] Top 10 AWS Security Mistakes and Solutions. [Online]. Available:

https://resources.netskope.com/cloud-security-solution-white-papers/top-10-aws-

security-mistakes-and-solutions [Accessed 5 May 2020].

[11] zabbix_host – Create/update/delete Zabbix hosts. [Online]. Available:

https://docs.ansible.com/ansible/latest/modules/zabbix_host_module.html [Accessed 5

May 2020].

[12] Usage statistics of Linux for websites. [Online]. Available:

https://w3techs.com/technologies/details/os-linux [Accessed 25 April 2020].

[13] The Ubuntu lifecycle and release cadence. [Online]. Available:

https://ubuntu.com/about/release-cycle [Accessed 25 April 2020].

[14] DB-Engines Ranking. [Online]. Available: https://db-engines.com/en/ranking

[Accessed 25 April 2020].

[15] Are Developers Running Your Infrastructure? [Online]. Available:

https://www.rhythmictech.com/white-papers/are-developers-running-your-

infrastructure/ [Accessed 21 April 2020].

[16] Gitrob: Putting the Open Source in OSINT. [Online]. Available:

https://github.com/michenriksen/gitrob [Accessed 29 April 2020].

[17] Redis vs MySQL - A quick database comparison. [Online]. Available:

https://tableplus.com/blog/2018/10/redis-vs-mysql-database-comparison.html [Accessed

10 April 2020].

[18] Why (and how) you should manage secrets outside version control. [Online].

Available: https://www.datree.io/resources/secrets-management-aws [Accessed 29 April

2020].

[19] Five common backup mistakes start-ups make. [Online]. Available:

https://www.startupdonut.co.uk/blog/18/06/five-common-backup-mistakes-start-ups-

make [Accessed 29 April 2020].

38

[20] BJC Healthcare data breach, 33,000 affected. [Online]. Available:

https://www.scmagazine.com/home/security-news/data-breach/bjc-healthcare-data-

breach-33000-affected/ [Accessed 20 April 2020].

[21] Accentuate the negative: Accenture exposes data related to its enterprise cloud

platform. [Online]. Available: https://www.scmagazine.com/home/security-news/data-

breach/accentuate-the-negative-accenture-exposes-data-related-to-its-enterprise-cloud-

platform/ [Accessed 20 April 2020].

[22] 10 Data Security Mistakes Startups Can't Afford to Make. [Online]. Available:

https://www.stamfordadvocate.com/news/article/10-Data-Security-Mistakes-Startups-

Can-t-Afford-8318455.php [Accessed 29 April 2020].

[23] Information Technology Services Issues and Challenges with A Case Study in

Small Medium Enterprises. [Online]. Available:

https://www.researchgate.net/publication/308009820_Information_Technology_Service

s_Issues_and_Challenges_with_A_Case_Study_in_Small_Medium_Enterprises

[Accessed 20 April 2020].

[24] Data Breaches Caused by Misconfigured Servers. [Online]. Available:

https://www.scmagazine.com/home/opinions/data-breaches-caused-by-misconfigured-

servers/ [Accessed 20 April 2020].

[25] The Importance of Backup and Recovery. [Online]. Available:

https://www.grayanalytics.com/blog/the-importance-of-backup-and-recovery [Accessed

29 April 2020].

[26] Cloud versus On-Premise Computing. [Online]. Available:

https://www.scirp.org/html/7-2121263_87661.htm

39

Appendix 1 – Ansible VPC Deployment and Management

Role

vpc.yml:

- hosts: localhost
 connection: local
 gather_facts: no
 environment:
 AWS_ACCESS_KEY_ID: "{{ aws_access_key_id }}"
 AWS_SECRET_ACCESS_KEY: "{{ aws_secret_access_key }}"
 AWS_REGION: "{{ AWS_REGION }}"
 vars_files:
 - keys
 tasks:
 - name: Include VPC role
 include_role:
 name: "{{ role_name }}"
 vars:
 create_initial_vpc: True
 loop:
 - vpc
 - bastion
 - le
 - zabbix
 - nginx
 - mysql
 loop_control:
 loop_var: role_name
 - name: Set create_initial_vpc to fact
 set_fact:
 create_initial_vpc: True

main.yml:

- name: Deploy initial VPC
 include_tasks: deploy_vpc.yml
 when: create_initial_vpc is defined and create_initial_vpc ==
True

40

- name: Gather VPC information
 include_tasks: get_vpc_information.yml
 when: fetch_vpc_info is defined and fetch_vpc_info == True

deploy_vpc.yml:

Create VPC
- include: create_vpc.yml
Create private subnet
- include: create_private_subnet.yml
Create public subnet
- include: create_public_subnet.yml
Create internet gateway
- include: create_igw.yml
Create public route table
- include: create_public_rt.yml
Create security group for bastion
- include: create_bastion_sg.yml
Create security group for monitoring
- include: create_monitoring_sg.yml
Create security group for webservers
- include: create_webserver_sg.yml
Create security group for database servers
- include: create_db_sg.yml
Update monitoring security group
- include: update_monitoring_sg.yml
Update database security group
- include: update_db_sg.yml
Create NAT gateway for private subnet
- include: create_nat_gw.yml
Create route table for private subnet
- include: create_private_rt.yml

create_vpc.yml:

- name: Create VPC
 ec2_vpc_net:
 name: "{{ vpc_name }}"
 cidr_block: "{{ vpc_cidr_block }}"
 region: "{{ AWS_REGION }}"

41

 state: present
 tags:
 Name: "{{ vpc_name }}"
 Environment: "{{ project_env }}"
 register: deployed_vpc

- name: Assign VPC ID to a variable
 set_fact:
 vpc_id: "{{ deployed_vpc.vpc.id }}"

create_private_subnet.yml

- name: Create private subnet for database servers
 ec2_vpc_subnet:
 state: present
 vpc_id: "{{ vpc_id }}"
 cidr: "{{ private_subnet_cidr_block }}"
 tags:
 Name: "{{ vpc_name }}_private_sn"
 register: private_subnet

- name: Assign private subnet ID to variable
 set_fact:
 private_subnet_id: "{{ private_subnet.subnet.id }}"

create_public_subnet.yml

- name: Create public subnet for webservers servers
 ec2_vpc_subnet:
 state: present
 vpc_id: "{{ vpc_id }}"
 cidr: "{{ public_subnet_cidr_block }}"
 map_public: yes
 tags:
 Name: "{{ vpc_name }}_public_sn"
 register: public_subnet

- name: Assign public subnet ID to variable
 set_fact:
 public_subnet_id: "{{ public_subnet.subnet.id }}"

42

create_igw.yml

- name: Create internet gateway
 ec2_vpc_igw:
 vpc_id: "{{ vpc_id }}"
 state: present
 tags:
 VPC: "{{ vpc_name }}"
 register: igw

- name: Set internet gateway ID to a variable
 set_fact:
 igw_id: "{{ igw.gateway_id }}"

create_public_rt.yml

- name: Create route table for public subnet
 ec2_vpc_route_table:
 vpc_id: "{{ vpc_id }}"
 subnets: "{{ public_subnet_id }}"
 routes:
 - dest: "0.0.0.0/0"
 gateway_id: "{{ igw_id }}"
 tags:
 Name: "{{ vpc_id }}_public_rt"

create_bastion_sg.yml

- name: Create security group for bastion hosts
 ec2_group:
 name: "{{ vpc_name }}_bastion_sg"
 description: "SG for bastion hosts"
 vpc_id: "{{ vpc_id }}"
 rules:
 - proto: tcp
 from_port: 22
 to_port: 22
 cidr_ip: 0.0.0.0/0
 tags:
 Name: "{{ vpc_name }}_bastion_sg"
 Environment: "{{ project_env }}"

43

 register: bastion_sg

- name: Assign bastion security group properties to facts
 set_fact:
 bastion_sg_id: "{{ bastion_sg.group_id }}"
 bastion_sg_owner: "{{ bastion_sg.owner_id }}"
 bastion_sg_name: "{{ bastion_sg.group_name }}"

create_monitoring_sg.yml

- name: Create security group for monitoring servers
 ec2_group:
 name: "{{ vpc_name }}_monitoring_sg"
 description: "SG for monitoring"
 vpc_id: "{{ vpc_id }}"
 tags:
 Name: "{{ vpc_name }}_monitoring_sg"
 Environment: "{{ project_env }}"
 register: monitoring_sg

- name: Assign monitoring security group properties to facts
 set_fact:
 monitoring_sg_id: "{{ monitoring_sg.group_id }}"
 monitoring_sg_owner: "{{ monitoring_sg.owner_id }}"
 monitoring_sg_name: "{{ monitoring_sg.group_name }}"

create_webserver_sg.yml

- name: Create security group for webservers
 ec2_group:
 name: "{{ vpc_name }}_webserver_sg"
 description: "SG for webservers"
 vpc_id: "{{ vpc_id }}"
 rules:
 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0
 - proto: tcp

44

 from_port: 443
 to_port: 443
 cidr_ip: 0.0.0.0/0
 - proto: tcp
 from_port: 10050
 to_port: 10050
 group_id: "{{ monitoring_sg_owner }}/{{ monitoring_sg_id
}}/{{ monitoring_sg_name }}"
 - proto: tcp
 from_port: 22
 to_port: 22
 group_id: "{{ bastion_sg_owner }}/{{ bastion_sg_id }}/{{
bastion_sg_name }}"
 tags:
 Name: "{{ vpc_name }}_webserver_sg"
 Environment: "{{ project_env }}"
 register: webserver_sg

- name: Assign webserver security group properties to facts
 set_fact:
 webserver_sg_id: "{{ webserver_sg.group_id }}"
 webserver_sg_owner: "{{ webserver_sg.owner_id }}"
 webserver_sg_name: "{{ webserver_sg.group_name }}"

create_db_sg.yml

- name: Create security group for db servers
 ec2_group:
 name: "{{ vpc_name }}_database_sg"
 description: "SG for db servers"
 vpc_id: "{{ vpc_id }}"
 tags:
 Name: "{{ vpc_name }}_database_sg"
 Environment: "{{ project_env }}"
 register: database_sg

- name: Assign db servers security group ID to a variable
 set_fact:
 database_sg_id: "{{ database_sg.group_id }}"
 database_sg_owner: "{{ database_sg.owner_id }}"
 database_sg_name: "{{ database_sg.group_name }}"

update_monitoring_sg.yml

45

- name: Update monitoring security group
 ec2_group:
 name: "{{ vpc_name }}_monitoring_sg"
 description: "SG for monitoring"
 group_id: "{{ monitoring_sg_id }}"
 vpc_id: "{{ vpc_id }}"
 state: present
 rules:
 - proto: tcp
 from_port: 10051
 to_port: 10051
 group_id: "{{ webserver_sg_owner }}/{{ webserver_sg_id
}}/{{ webserver_sg_name }}"
 - proto: tcp
 from_port: 10051
 to_port: 10051
 group_id: "{{ bastion_sg_owner }}/{{ bastion_sg_id }}/{{
bastion_sg_name }}"
 - proto: tcp
 from_port: 10051
 to_port: 10051
 group_id: "{{ database_sg_owner }}/{{ database_sg_id }}/{{
database_sg_name }}"
 - proto: tcp
 from_port: 22
 to_port: 22
 group_id: "{{ bastion_sg_owner }}/{{ bastion_sg_id }}/{{
bastion_sg_name }}"
 - proto: tcp
 from_port: 80
 to_port: 80
 cidr_ip: 0.0.0.0/0
 - proto: tcp
 from_port: 443
 to_port: 443
 cidr_ip: 0.0.0.0/0

update_dg_sg.yml

- name: Create security group for db servers
 ec2_group:
 name: "{{ vpc_name }}_database_sg"

46

 description: "SG for db servers"
 vpc_id: "{{ vpc_id }}"
 rules:
 - proto: tcp
 from_port: 3306
 to_port: 3306
 group_id: "{{ webserver_sg_owner }}/{{ webserver_sg_id
}}/{{ webserver_sg_name }}"
 - proto: tcp
 from_port: 10050
 to_port: 10050
 group_id: "{{ monitoring_sg_owner }}/{{ monitoring_sg_id
}}/{{ monitoring_sg_name }}"
 - proto: tcp
 from_port: 22
 to_port: 22
 group_id: "{{ bastion_sg_owner }}/{{ bastion_sg_id }}/{{
bastion_sg_name }}"
 - proto: tcp
 from_port: 3306
 to_port: 3306
 group_id: "{{ database_sg_owner }}/{{ database_sg_id }}/{{
database_sg_name }}"

create_nat_gw.yml

- name: Create NAT gateway for servers in private subnet
 ec2_vpc_nat_gateway:
 state: present
 subnet_id: "{{ private_subnet_id }}"
 wait: true
 if_exist_do_not_create: true
 register: nat_gw

- name: Assign NAT GW id to a variable
 set_fact:
 nat_gateway_id: "{{ nat_gw.nat_gateway_id }}"

create_private_rt.yml

47

- name: Create private subnet for database servers
 ec2_vpc_subnet:
 state: present
 vpc_id: "{{ vpc_id }}"
 cidr: "{{ private_subnet_cidr_block }}"
 tags:
 Name: "{{ vpc_name }}_private_sn"
 register: private_subnet

- name: Assign private subnet ID to variable
 set_fact:
 private_subnet_id: "{{ private_subnet.subnet.id }}"

get_vpc_information.yml:

- name: Get VPC information for deployment
 ec2_vpc_net_info:
 filters:
 "tag:Name": "{{ vpc_name }}"
 register: vpc_info

- name: Set VPC id to a variable
 set_fact:
 vpc_id: "{{ vpc_info.vpcs | map(attribute='vpc_id') | join }}"

- name: Get public subnet information for deployment
 ec2_vpc_subnet_info:
 filters:
 vpc-id: "{{ vpc_id }}"
 "tag:Name": "{{ vpc_name }}_public_sn"
 register: public_subnet_info

- name: Set public subnet id to a variable
 set_fact:
 public_subnet_id: "{{ public_subnet_info.subnets |
map(attribute='subnet_id') | join }}"

- name: Get private subnet information for deployment
 ec2_vpc_subnet_info:
 filters:
 vpc-id: "{{ vpc_id }}"
 "tag:Name": "{{ vpc_name }}_private_sn"

48

 register: private_subnet_info

- name: Set private subnet id to a variable
 set_fact:
 private_subnet_id: "{{ private_subnet_info.subnets |
map(attribute='subnet_id') | join }}"

- name: Get monitoring security group info
 ec2_group_info:
 filters:
 "tag:Name": "{{ vpc_name }}_monitoring_sg"
 register: monitoring_sg_info

- name: Set monitoring security group info to variables
 set_fact:
 monitoring_sg_id: "{{ monitoring_sg_info.security_groups |
map(attribute='group_id') | join }}"
 monitoring_sg_owner: "{{ monitoring_sg_info.security_groups |
map(attribute='owner_id') | join }}"
 monitoring_sg_name: "{{ monitoring_sg_info.security_groups |
map(attribute='group_name') | join }}"

- name: Get webserver security group info
 ec2_group_info:
 filters:
 "tag:Name": "{{ vpc_name }}_webserver_sg"
 register: webserver_sg_info

- name: Set webserver security group info to variables
 set_fact:
 webserver_sg_id: "{{ webserver_sg_info.security_groups |
map(attribute='group_id') | join }}"
 webserver_sg_owner: "{{ webserver_sg_info.security_groups |
map(attribute='owner_id') | join }}"
 webserver_sg_name: "{{ webserver_sg_info.security_groups |
map(attribute='group_name') | join }}"

- name: Get database security group info
 ec2_group_info:
 filters:
 "tag:Name": "{{ vpc_name }}_database_sg"
 register: database_sg_info

- name: Set database security group info to variables

49

 set_fact:
 database_sg_id: "{{ database_sg_info.security_groups |
map(attribute='group_id') | join }}"

- name: Get bastion security group info
 ec2_group_info:
 filters:
 "tag:Name": "{{ vpc_name }}_bastion_sg"
 register: bastion_sg_info

- name: Set bastion security group info to variables
 set_fact:
 bastion_sg_id: "{{ bastion_sg_info.security_groups |
map(attribute='group_id') | join }}"
 bastion_sg_owner: "{{ bastion_sg_info.security_groups |
map(attribute='owner_id') | join }}"
 bastion_sg_name: "{{ bastion_sg_info.security_groups |
map(attribute='group_name') | join }}"

- name: Get bastion instance info
 ec2_instance_info:
 filters:
 "tag:Name": "{{ bastion_host_name }}"
 instance-state-name: running
 register: bastion_instance_info

- name: Set bastion host IP to a variable
 set_fact:
 bastion_ip: "{{
bastion_instance_info.instances[0].public_ip_address }}"

- name: Get monitoring instance info
 ec2_instance_info:
 filters:
 "tag:Name": "{{ monitoring_host_name }}"
 instance-state-name: running
 register: monitoring_instance_info

- name: Set monitoring host IP's to a variable
 set_fact:
 monitoring_public_ip: "{{
monitoring_instance_info.instances[0].public_ip_address }}"
 monitoring_private_ip: "{{
monitoring_instance_info.instances[0].private_ip_address }}"

50

- name: Get first web server instance info
 ec2_instance_info:
 filters:
 "tag:Name": "{{ webserver_host_name[0] }}"
 instance-state-name: running
 register: webserver1_instance_info

- name: Get second web server instance info
 ec2_instance_info:
 filters:
 "tag:Name": "{{ webserver_host_name[1] }}"
 instance-state-name: running
 register: webserver2_instance_info

- name: Set web server private ip's to fact
 set_fact:
 web1_private_ip: "{{
webserver1_instance_info.instances[0].private_ip_address }}"
 web2_private_ip: "{{
webserver2_instance_info.instances[0].private_ip_address }}"

51

Appendix 2 – Zabbix Deployment and Management Role

monitoring.yml:

- hosts: localhost
 connection: local
 gather_facts: no
 environment:
 AWS_ACCESS_KEY_ID: "{{ aws_access_key_id }}"
 AWS_SECRET_ACCESS_KEY: "{{ aws_secret_access_key }}"
 AWS_REGION: "{{ AWS_REGION }}"
 vars_files:
 - keys
 tasks:
 - name: Get VPC information
 include_role:
 name: vpc
 vars:
 fetch_vpc_info: True
 when: hostvars['localhost']['create_initial_vpc'] is not
defined

- hosts: monitoring
 become: true
 vars:
 ansible_ssh_common_args: "-o ProxyCommand='ssh -o
StrictHostKeyChecking=no -i {{ private_key_location }} -W %h:%p -q
ubuntu@{{ hostvars['localhost']['bastion_ip'] }}'"
 vars_files:
 - keys
 tasks:
 - name: Patch monitoring host
 include_role:
 name: patching
 when: hostvars['localhost']['create_initial_vpc'] is defined
 - name: Install common packages
 include_role:
 name: common
 when: hostvars['localhost']['create_initial_vpc'] is defined
 - name: Configure monitoring
 include_role:
 name: zabbix
 vars:

52

 configure_monitoring_host: True
 when: hostvars['localhost']['create_initial_vpc'] is defined

- hosts: monitoring
 become: true
 vars_files:
 - keys
 tasks:
 - name: Configure monitoring host
 include_role:
 name: zabbix
 vars:
 configure_monitoring_host: True
 when: hostvars['localhost']['create_initial_vpc'] is not
defined

tasks/main.yml:

- name: Deploy monitoring instance during VPC deploy
 include_tasks: create_instance.yml
 when: create_initial_vpc is defined and create_initial_vpc ==
True

- name: Configure monitoring host
 include_tasks: configure_monitoring.yml
 when: configure_monitoring_host is defined and
configure_monitoring_host == True

- name: Configure agent
 include_tasks: configure_agent.yml
 when: zabbix_agent is defined and zabbix_agent == True

tasks/create_instance.yml

- name: Create monitoring host
 include_role:
 name: provisioning
 vars:
 instance_name: "{{ item }}"
 instance_role: "monitoring"
 subnet_id: "{{ public_subnet_id }}"

53

 security_group: "{{ monitoring_sg_id }}"
 with_items:
 - "{{ monitoring_host_name }}"

- name: Set monitoring instance id to a fact
 vars:
 fact_string: "{{ item }}_instance_info"
 set_fact:
 "{{ item }}_host_id": "{{
hostvars['localhost'][fact_string].instance_ids | join }}"
 "{{ item }}_host_ip": "{{
hostvars['localhost'][fact_string].instances[0].private_ip_address
}}"
 with_items:
 - "{{ monitoring_host_name }}"

- name: Assign elastic IP to monitoring host
 vars:
 fact_string: "{{ item }}_host_id"
 ec2_eip:
 device_id: "{{ hostvars['localhost'][fact_string] }}"
 in_vpc: true
 state: present
 register: elastic_ip
 with_items:
 - "{{ monitoring_host_name }}"

- name: Set monitoring host IP to a variable
 vars:
 ip_string: "{{ item }}_host_ip"
 set_fact:
 monitoring_private_ip: "{{ hostvars['localhost'][ip_string] }}"
 "{{ item }}_ip": "{{ elastic_ip.results |
map(attribute='public_ip') | join }}"
 with_items:
 - "{{ monitoring_host_name }}"

- name: Add private ip to in-memory group
 add_host:
 hostname: "{{ item }}"
 ansible_host: "{{ monitoring_private_ip }}"
 groups:
 - monitoring
 with_items:

54

 - "{{ monitoring_host_name }}"

tasks/configure_zabbix.yml

- name: Add GPG key and repository
 include_tasks: configure_repo.yml

- name: Install Zabbix server packages
 apt:
 name: ['zabbix-server-mysql', 'zabbix-frontend-php', 'zabbix-
nginx-conf']
 state: present
 update_cache: yes
 install_recommends: yes

- name: Install Ansible module dependencies
 apt:
 name: ['python3-psycopg2', 'python3-mysqldb', 'mariadb-client']
 state: present
 update_cache: yes

- name: Remove anonymous users
 mysql_user:
 name: ''
 host: "{{ item }}"
 login_unix_socket: /var/run/mysqld/mysqld.sock
 state: absent
 with_items:
 - localhost
 - 127.0.0.1
 - ::1

- name: Remove test database if present
 mysql_db:
 name: test
 state: absent
 login_unix_socket: /var/run/mysqld/mysqld.sock

- name: Create MySQL database
 mysql_db:
 name: "{{ zabbix_database_name }}"
 encoding: utf8

55

 collation: utf8_bin
 state: present
 login_unix_socket: /var/run/mysqld/mysqld.sock
 register: zabbix_db_creation

- name: Create MySQL user
 mysql_user:
 name: "{{ zabbix_database_user }}"
 host: localhost
 password: "{{ zabbix_database_password }}"
 priv: "{{ zabbix_database_name }}.*:ALL,GRANT"
 state: present

- name: Import database
 mysql_db:
 name: "{{ zabbix_database_name }}"
 encoding: utf8
 collation: utf8_bin
 state: import
 target: '/usr/share/doc/zabbix-server-mysql/create.sql.gz'
 when: zabbix_db_creation.changed

- name: Update Admin user password
 vars:
 query: "UPDATE zabbix.users SET passwd=md5('{{
zabbix_admin_password }}') where alias='Admin'"
 command: mysql -u root zabbix --execute "{{ query }}";
 when: zabbix_db_creation.changed

- name: Configure zabbix-server
 template:
 src: zabbix_server.conf.j2
 dest: /etc/zabbix/zabbix_server.conf
 owner: zabbix
 group: zabbix
 mode: 0640

- name: Configure Zabbix PHP file
 template:
 src: zabbix.conf.php.j2
 dest: /usr/share/zabbix/conf/zabbix.conf.php
 owner: www-data
 group: www-data
 mode: 0640

56

 notify:
 - Restart server

- name: Upload certificates
 include_role:
 name: le
 vars:
 upload_certificate: True
 when: issue_le_certificate == True

- name: Configure nginx
 template:
 src: nginx.conf.j2
 dest: /etc/zabbix/nginx.conf
 owner: root
 group: root
 mode: 0640
 notify:
 - Restart nginx

- name: Remove default nginx file
 file:
 path: /etc/nginx/sites-enabled/default
 state: absent

- name: Configure PHP-FPM
 template:
 src: php-fpm.conf.j2
 dest: /etc/zabbix/php-fpm.conf
 owner: root
 group: root
 mode: 0640
 notify:
 - Restart php-fpm

- name: Enable services
 service:
 name: "{{ item }}"
 state: started
 enabled: yes
 with_items:
 - zabbix-server
 - nginx
 - php7.4-fpm

57

- name: Set fact
 set_fact:
 dns_ip_value: "{{ monitoring_host_name }}_ip"

- name: Manage DNS entry
 include_tasks: manage_dns_entry.yml
 vars:
 dns_name: "{{ zabbix_webui_url }}"
 dns_ip: "{% if create_initial_vpc is defined and domain_name !=
'' %}{{hostvars['localhost'][dns_ip_value]}}{% else %}{{
hostvars['localhost']['monitoring_public_ip'] }}{% endif %}"
 when: load_balancer_setup is not defined or load_balancer_setup
!= True and manage_dns is defined and manage_dns == True

tasks/configure_repo.yml

- name: Set Zabbix repository URL to a fact
 set_fact:
 zabbix_repo: "http://repo.zabbix.com/zabbix/{{ zabbix_version
}}/{{ ansible_distribution.lower() }} {{
ansible_distribution_release }} main"

- name: Install Zabbix GPG key
 apt_key:
 id: "{{ zabbix_gpg_key_id }}"
 url: http://repo.zabbix.com/zabbix-official-repo.key

- name: Install Zabbix repository
 apt_repository:
 repo: "{{ item }} {{ zabbix_repo }}"
 state: present
 with_items:
 - deb-src
 - deb

tasks/configure_monitoring.yml

Configure SSH options
- name: Configure SSH
 include_role:
 name: ssh

58

Configure users
- name: Configure users
 include_role:
 name: users

- name: Install and configure Zabbix
 include_tasks: configure_zabbix.yml

tasks/configure_agent.yml

- name: Add GPG key and repository
 include_tasks: configure_repo.yml

- name: Install Zabbix agent
 apt:
 name: zabbix-agent
 update_cache: yes
 state: latest

- name: Install Zabbix API PIP module
 pip:
 name: zabbix-api

- name: Configure Zabbix agent
 template:
 src: zabbix_agentd.conf.j2
 dest: /etc/zabbix/zabbix_agentd.conf
 owner: root
 group: root
 mode: '0644'
 notify:
 - Restart agent

- name: Upload PSK file
 template:
 src: zabbix_agentd.psk.j2
 dest: /etc/zabbix/zabbix_agentd.psk
 owner: root
 group: zabbix
 mode: '0640'
 notify:
 - Restart agent

59

tasks/manage_dns_entry.yml

- name: Create DNS entry for "{{ dns_name }}"
 route53:
 zone: "{{ domain_name }}"
 record: "{{ dns_name }}"
 type: A
 value: "{{ dns_ip }}"
 ttl: 300
 state: "{{ dns_state | default(‘present’) }}"
 wait: yes
 overwrite: yes
 delegate_to: localhost
 become: no

handlers/main.yml

- name: Restart agent
 service: name=zabbix-agent state=restarted

- name: Restart server
 service: name=zabbix-server state=restarted

- name: Restart nginx
 service: name=nginx state=restarted

- name: Restart php-fpm
 service: name=php7.4-fpm state=restarted

60

Appendix 3 –User Creation and Management Role

tasks/main.yml

Create groups
- include: groups.yml
Create users on systems
- include: users.yml

tasks/groups.yml

- name: Create groups
 group:
 name: "{{ item.name }}"
 state: "{{ item.state | default('present') }}"
 with_items:
 - "{{ user_groups }}"

tasks/users.yml

https://docs.ansible.com/ansible/latest/modules/user_module.html
- name: Create user
 user:
 name: "{{ item.name }}"
 state: "{{ item.state | default('present') }}"
 group: "{% if item.admin_user is defined and item.admin_user ==
True %}sudo{% else %}developers{% endif %}"
 home: "{{ item.home | default('/home/'+item.name) }}"
 shell: "/bin/bash"
 password: "{{ item.password }}"
 comment: "{{ item.comment | default('') }}"
 append: yes
 with_items:
 - "{{ users }}"
 when: item.state != 'absent'

- name: Add SSH key to user
 authorized_key:
 user: "{{ item.name }}"
 key: "{{ item.ssh_key }}"
 state: "{{ item.state | default('present') }}"

61

 with_items:
 - "{{ users }}"
 when: item.state != 'absent'

- name: Delete user
 user:
 name: "{{ item.name }}"
 state: absent
 with_items:
 - "{{ users }}"
 when: item.state == 'absent'
 - "{{ users }}"
 when: item.state != 'absent'

- name: Delete user
 user:
 name: "{{ item.name }}"
 state: absent
 with_items:
 - "{{ users }}"
 when: item.state == 'absent'

62

Appendix 4 –SSH Configuration and Management Role

tasks/main.yml

- name: Replace default SSH config
 template:
 src: sshd_config.j2
 dest: "/etc/ssh/sshd_config"
 owner: "root"
 group: "root"
 mode: "0644"
 notify:
 - Test SSHD config
 - Restart SSHD

handlers/main.yml

- name: Test SSHD config
 command: sshd -t

- name: Restart SSHD
 service: name="ssh" state="restarted"

63

Appendix 5 – Instance Provisioning Role

tasks/main.yml

- name: Create {{ instance_name }} instance
 ec2_instance:
 name: "{{ instance_name }}"
 key_name: "{{ key_name }}"
 vpc_subnet_id: "{{ subnet_id }}"
 security_group: "{{ security_group }}"
 instance_type: "{{ instance_type }}"
 image_id: "{{ image_id }}"
 state: running
 wait: yes
 wait_timeout: 60
 tags:
 Role: "{{ instance_role }}"
 Environment: "{{ project_env }}"
 register: instance_info

- name: Set instance information to a fact
 set_fact:
 "{{ instance_name }}_instance_info": "{{ instance_info }}"

64

Appendix 6 – System Patching Role

tasks/main.yml

https://encoretechnologies.github.io/blog/2018/06/ansiblepatchingau
tomation/
- name: Wait for any possibly running unattended upgrade to finish
 raw: systemd-run --property="After=apt-daily.service apt-daily-
upgrade.service" --wait /bin/true

- name: Update packages...
 apt:
 upgrade: dist
 update_cache: yes

- name: Reboot if kernel was updated and reboot is requested by the
system
 shell: 'sleep 5 && /sbin/shutdown -r now'
 args:
 removes: /var/run/reboot-required
 async: 1
 poll: 0
 ignore_errors: true

- name: Waiting for system to come back from reboot...
 wait_for_connection:
 connect_timeout: 20
 sleep: 5
 delay: 5
 timeout: 180

65

Appendix 7 – Nginx Configuration and Management Role

webservers.yml

- hosts: localhost
 connection: local
 gather_facts: no
 environment:
 AWS_ACCESS_KEY_ID: "{{ aws_access_key_id }}"
 AWS_SECRET_ACCESS_KEY: "{{ aws_secret_access_key }}"
 AWS_REGION: "{{ AWS_REGION }}"
 vars_files:
 - keys
 tasks:
 - name: Get VPC information
 include_role:
 name: vpc
 vars:
 fetch_vpc_info: True
 when: hostvars['localhost']['create_initial_vpc'] is not
defined

- hosts: webserver
 become: true
 vars_files:
 - keys
 vars:
 ansible_ssh_common_args: "-o ProxyCommand='ssh -o
StrictHostKeyChecking=no -i {{ private_key_location }} -W %h:%p -q
ubuntu@{{ hostvars['localhost']['bastion_ip'] }}'"
 tasks:
 - name: Patch webserver hosts
 include_role:
 name: patching
 when: hostvars['localhost']['create_initial_vpc'] is defined
 - name: Install common packages
 include_role:
 name: common
 when: hostvars['localhost']['create_initial_vpc'] is defined
 - name: Configure webservers
 include_role:
 name: nginx
 vars:

66

 configure_nginx_host: True
 when: hostvars['localhost']['create_initial_vpc'] is defined

- hosts: webserver
 become: true
 environment:
 AWS_ACCESS_KEY_ID: "{{ aws_access_key_id }}"
 AWS_SECRET_ACCESS_KEY: "{{ aws_secret_access_key }}"
 AWS_REGION: "{{ AWS_REGION }}"
 vars_files:
 - keys
 tasks:
 - name: Configure webservers
 include_role:
 name: nginx
 vars:
 configure_nginx_host: True
 when: hostvars['localhost']['create_initial_vpc'] is not
defined

tasks/main.yml

- name: Deploy nginx instances during VPC deploy
 include_tasks: create_instance.yml
 when: create_initial_vpc is defined and create_initial_vpc ==
True

- name: Configure nginx host
 include_tasks: configure_nginx.yml
 when: configure_nginx_host is defined and configure_nginx_host ==
True

tasks/create_instance.yml

- name: Set subnet to a fact
 set_fact:
 subnet_group: "{% if load_balancer_setup is not defined or
load_balancer_setup != True %}public{% elif load_balancer_setup is

67

defined and load_balancer_setup == True %}private{% else %}public{%
endif %}"
- name: Create webserver hosts
 include_role:
 name: provisioning
 vars:
 instance_name: "{{ item }}"
 instance_role: "webserver"
 subnet_id: "{% if subnet_group == 'public' %}{{
public_subnet_id }}{% else %}{{ private_subnet_id }}{% endif %}"
 security_group: "{{ webserver_sg_id }}"
 with_items:
 - "{{ webserver_host_name }}"

- name: Set webserver instance ids to a fact
 vars:
 fact_string: "{{ item }}_instance_info"
 set_fact:
 "{{ item }}_host_id": "{{
hostvars['localhost'][fact_string].instance_ids | join }}"
 "{{ item }}_host_ip": "{{
hostvars['localhost'][fact_string].instances[0].private_ip_address
}}"
 with_items:
 - "{{ webserver_host_name }}"

- name: Assign elastic IP to webserver host
 vars:
 fact_string: "{{ item }}_host_id"
 ec2_eip:
 device_id: "{{ hostvars['localhost'][fact_string] }}"
 in_vpc: true
 state: present
 register: elastic_ip
 with_items:
 - "{{ webserver_host_name }}"
 when: subnet_group == 'public'

- name: Set webserver public ip into a fact when present
 vars:
 fact_string: "{{ item }}_instance_info"
 set_fact:

68

 "{{ item }}_public_ip": "{{
hostvars['localhost'][fact_string].instances[0].public_ip_address
}}"
 with_items:
 - "{{ webserver_host_name }}"
 when: subnet_group == 'public'

- name: Get first web server instance info
 ec2_instance_info:
 filters:
 "tag:Name": "{{ webserver_host_name[0] }}"
 instance-state-name: running
 register: webserver1_instance_info

- name: Get second web server instance info
 ec2_instance_info:
 filters:
 "tag:Name": "{{ webserver_host_name[1] }}"
 instance-state-name: running
 register: webserver2_instance_info

- name: Set web server private ip's to fact
 set_fact:
 web1_private_ip: "{{
webserver1_instance_info.instances[0].private_ip_address }}"
 web2_private_ip: "{{
webserver2_instance_info.instances[0].private_ip_address }}"

- name: Add private ip to in-memory group
 vars:
 ip_string: "{{ item }}_host_ip"
 add_host:
 hostname: "{{ item }}"
 ansible_host: "{{ hostvars['localhost'][ip_string] }}"
 groups:
 - webserver
 with_items:
 - "{{ webserver_host_name }}"

tasks/configure_nginx.yml

69

https://docs.ansible.com/ansible/latest/modules/zabbix_host_module.
html
Configure SSH
- name: Configure SSH
 include_role:
 name: ssh

Configure users
- name: Configure users
 include_role:
 name: users

Configure Zabbix agent
- name: Configure Zabbix agent
 include_role:
 name: zabbix
 vars:
 zabbix_agent: True

- name: Add host to Zabbix
 zabbix_host:
 server_url: "https://{{ zabbix_webui_url }}"
 login_user: Admin
 login_password: "{{ zabbix_admin_password }}"
 host_name: "{{ inventory_hostname }}"
 status: enabled
 state: present
 tls_psk_identity: "{{ zabbix_tls_identity_name }}"
 tls_connect: 2
 tls_psk: "{{ zabbix_tls_identity_password }}"
 tls_accept: 2
 host_groups:
 - Linux servers
 link_templates:
 - Template OS Linux by Zabbix agent
 - Template App Nginx by Zabbix agent
 interfaces:
 - type: 1
 main: 1
 useip: 1
 ip: "{{ ansible_default_ipv4.address }}"
 validate_certs: no

70

- name: Install nginx packages
- name: Install nginx package
 apt:
 name: nginx
 state: latest
 update_cache: yes

- name: Install PHP packages
 apt:
 name: ['php-fpm', 'php-mysql']
 state: latest
 update_cache: yes

- name: Configure nginx
 template:
 src: nginx.conf.j2
 dest: /etc/nginx/nginx.conf
 owner: root
 group: root
 mode: '0644'
 notify:
 - Restart nginx

- name: Configure default site for zabbix checks
 template:
 src: default.conf.j2
 dest: /etc/nginx/sites-enabled/default
 owner: root
 group: root
 mode: '0644'
 notify:
 - Reload nginx

- name: Manage Elastic Load Balancer
 include_tasks: manage_elb.yml
 when: load_balancer_setup is defined and load_balancer_setup ==
True

- name: Manage vhosts
 include_tasks: manage_vhosts.yml
 when: vhosts is defined and vhosts != ''
tasks/manage_dns_entry.yml

- name: Create DNS entry for "{{ dns_name }}"

71

 route53:
 zone: "{{ domain_name }}"
 record: "{{ dns_name }}"
 type: A
 value: "{{ dns_ip }}"
 ttl: 300
 state: "{{ dns_state }}"
 wait: yes
 overwrite: yes
 delegate_to: localhost
 become: no

tasks/manage_elb.yml

Let's Encrypt certificates does not work with ELB
- name: Import certificate into aws ACM
vars:
full_cert_file: "{{ certificate_directory }}/{{ domain_name
}}-fullchain.crt"
cert_file: "{{ certificate_directory }}/{{ domain_name
}}.crt"
key_file: "{{ certificate_directory }}/{{ domain_name }}.key"
shell: >
aws acm import-certificate
--certificate "file://{{ cert_file }}"
--private-key "file://{{ key_file }}"
--certificate-chain "file://{{ full_cert_file }}"
--region "{{ AWS_REGION }}"
register: certificate_id
delegate_to: localhost
become: no

- name: Set webserver instance-id's to variables
 vars:
 app1_string: "{{ webserver_host_name[0] }}_host_id"
 app2_string: "{{ webserver_host_name[1] }}_host_id"
 set_fact:
 app1_id: "{{ app1_string }}"
 app2_id: "{{ app2_string }}"
 delegate_to: localhost
 become: no

72

- name: Create ELB
 ec2_elb_lb:
 name: 'ELB'
 state: present
 region: "{{ AWS_REGION }}"
 instance_ids: ['app1_id', 'app2_id']
 security_group_ids: "{{
hostvars['localhost']['webserver_sg_id'] }}"
 subnets: "{{ hostvars['localhost']['public_subnet_id'] }}"
 listeners:
 - protocol: http
 load_balancer_port: 80
 instance_port: 80
 proxy_protocol: True
 - protocol: https
 load_balancer_port: 443
 instance_protocol: http
 instance_port: 80
 ssl_certificate_id: "{{ ssl_certificate_location }}"
 delegate_to: localhost
 become: no

tasks/manage_vhosts.yml

- name: Create vhost directory
 file:
 path: "/srv/vhosts/{{ item.name }}"
 state: "{{ item.state | default('directory') }}"
 owner: root
 group: developers
 mode: '0775'
 with_items: "{{ vhosts }}"

- name: Create html directory
 file:
 path: "/srv/vhosts/{{ item.name }}/html"
 state: "{{ item.state | default('directory') }}"
 owner: root
 group: developers
 mode: '0775'
 with_items: "{{ vhosts }}"

73

- name: Create log directory
 file:
 path: "/srv/vhosts/{{ item.name }}/log"
 state: "{{ item.state | default('directory') }}"
 owner: root
 group: developers
 mode: '0640'
 with_items: "{{ vhosts }}"

- name: Create tmp directory
 file:
 path: "/srv/vhosts/{{ item.name }}/tmp"
 state: "{{ item.state | default('directory') }}"
 owner: root
 group: root
 mode: '0777'
 with_items: "{{ vhosts }}"

- name: Upload certificates
 include_role:
 name: le
 vars:
 upload_certificate: True
 when: issue_le_certificate == True

- name: Create nginx configuration
 template:
 src: vhost.conf.j2
 dest: "/etc/nginx/sites-available/{{ item.name }}.conf"
 owner: root
 group: root
 mode: '0644'
 with_items: "{{ vhosts }}"

- name: Enable nginx configuration
 file:
 src: "/etc/nginx/sites-available/{{ item.name }}.conf"
 dest: "/etc/nginx/sites-enabled/{{ item.name }}.conf"
 state: "{{ item.state | default('link') }}"
 with_items: "{{ vhosts }}"
 notify:
 - Test nginx config

- name: Set instance IP public ip to a variable

74

 vars:
 ip_string: "{{ item }}_public_ip"
 set_fact:
 dns_ip_value: "{{ hostvars['localhost'][ip_string] }}"
 when: load_balancer_setup is not defined or load_balancer_setup
!= True
 with_items:
 - "{{ webserver_host_name }}"

- name: Manage DNS entry
 include_tasks: manage_dns_entry.yml
 vars:
 dns_name: "{{ item.name }}"
 dns_ip: "{{ dns_ip_value }}"
 dns_state: "{{ item.state | default('present') }}"
 with_items: "{{ vhosts }}"
 when: load_balancer_setup is not defined or load_balancer_setup
!= True and manage_dns is defined and manage_dns == True

handlers/main.yml

- name: Test nginx config
 shell: nginx -t
 notify:
 - Reload nginx

- name: Reload nginx
 service: name=nginx state=reloaded

- name: Restart nginx
 service: name=nginx state=restarted

75

Appendix 8 – MySQL Configuration and Management Role

dbservers.yml

- hosts: localhost
 connection: local
 gather_facts: no
 environment:
 AWS_ACCESS_KEY_ID: "{{ aws_access_key_id }}"
 AWS_SECRET_ACCESS_KEY: "{{ aws_secret_access_key }}"
 AWS_REGION: "{{ AWS_REGION }}"
 vars_files:
 - keys
 tasks:
 - name: Get VPC information
 include_role:
 name: vpc
 vars:
 fetch_vpc_info: True
 when: hostvars['localhost']['create_initial_vpc'] is not
defined

- hosts: database
 become: true
 vars_files:
 - keys
 vars:
 ansible_ssh_common_args: "-o ProxyCommand='ssh -o
StrictHostKeyChecking=no -i {{ private_key_location }} -W %h:%p -q
ubuntu@{{ hostvars['localhost']['bastion_ip'] }}'"
 tasks:
 - name: Patch database hosts
 include_role:
 name: patching
 when: hostvars['localhost']['create_initial_vpc'] is defined
 - name: Install common packages
 include_role:
 name: common
 when: hostvars['localhost']['create_initial_vpc'] is defined
 - name: Configure database servers
 include_role:
 name: mysql
 vars:

76

 configure_database_host: True
 when: hostvars['localhost']['create_initial_vpc'] is defined

- hosts: database
 become: true
 environment:
 AWS_ACCESS_KEY_ID: "{{ aws_access_key_id }}"
 AWS_SECRET_ACCESS_KEY: "{{ aws_secret_access_key }}"
 AWS_REGION: "{{ AWS_REGION }}"
 vars_files:
 - keys
 tasks:
 - name: Make sure common packages are installed
 include_role:
 name: common
 - name: Configure database
 include_role:
 name: mysql
 vars:
 configure_database_host: True
 when: hostvars['localhost']['create_initial_vpc'] is not
defined

tasks/main.yml

- name: Deploy database instances during VPC deploy
 include_tasks: create_instance.yml
 when: create_initial_vpc is defined and create_initial_vpc ==
True

- name: Configure database host
 include_tasks: configure_database.yml
 when: configure_database_host is defined and
configure_database_host == True

tasks/create_instance.yml

- name: Create database hosts
 include_role:
 name: provisioning

77

 vars:
 instance_name: "{{ item }}"
 instance_role: "database"
 subnet_id: "{{ private_subnet_id }}"
 security_group: "{{ database_sg_id }}"
 with_items:
 - "{{ database_host_name }}"

- name: Set database instance ids to a fact
 vars:
 fact_string: "{{ item }}_instance_info"
 set_fact:
 "{{ item }}_host_id": "{{
hostvars['localhost'][fact_string].instance_ids | join }}"
 "{{ item }}_host_ip": "{{
hostvars['localhost'][fact_string].instances[0].private_ip_address
}}"
 with_items:
 - "{{ database_host_name }}"

- name: Add private ip to in-memory group
 vars:
 ip_string: "{{ item }}_host_ip"
 add_host:
 hostname: "{{ item }}"
 ansible_host: "{{ hostvars['localhost'][ip_string] }}"
 groups:
 - database
 with_items:
 - "{{ database_host_name }}"

tasks/configure_database.yml

https://docs.ansible.com/ansible/latest/modules/zabbix_host_module.
html
Configure SSH
- name: Configure SSH
 include_role:
 name: ssh

Configure users
- name: Configure users

78

 include_role:
 name: users

Configure Zabbix agent
- name: Configure Zabbix agent
 include_role:
 name: zabbix
 vars:
 zabbix_agent: True

- name: Add host to Zabbix
 zabbix_host:
 server_url: "https://{{ zabbix_webui_url }}"
 login_user: Admin
 login_password: "{{ zabbix_admin_password }}"
 host_name: "{{ inventory_hostname }}"
 status: enabled
 state: present
 tls_psk_identity: "{{ zabbix_tls_identity_name }}"
 tls_connect: 2
 tls_psk: "{{ zabbix_tls_identity_password }}"
 tls_accept: 2
 host_groups:
 - Linux servers
 link_templates:
 - Template OS Linux by Zabbix agent
 - Template DB MySQL by Zabbix agent
 interfaces:
 - type: 1
 main: 1
 useip: 1
 ip: "{{ ansible_default_ipv4.address }}"
 validate_certs: no

- name: Install MySQL package
 apt:
 name: mysql-server
 state: latest
 update_cache: yes

- name: Install pymysql
 pip:
 name: pymysql
 state: present

79

- name: Configure MySQL server
 template:
 src: my.cnf.j2
 dest: /etc/mysql/mysql.conf.d/mysqld.cnf
 owner: root
 group: root
 mode: '0644'
 notify:
 - Restart mysql

- name: Start and enable MySQL database service
 service:
 name: mysql
 state: started
 enabled: yes

- name: Remove anonymous users
 mysql_user:
 name: ''
 host: "{{ item }}"
 login_unix_socket: /var/run/mysqld/mysqld.sock
 state: absent
 with_items:
 - localhost
 - 127.0.0.1
 - ::1

- name: Remove test database if present
 mysql_db:
 name: test
 state: absent
 login_unix_socket: /var/run/mysqld/mysqld.sock

- name: Manage databases
 include_tasks: manage_databases.yml
 when: databases is defined and databases != ''

tasks/manage_database.yml

https://topic.alibabacloud.com/a/managing-mysql-replication-with-
ansible_1_41_30026734.html
- name: Create database

80

 mysql_db:
 name: "{{ item.name }}"
 state: "{{ item.state | default('present') }}"
 login_unix_socket: /var/run/mysqld/mysqld.sock
 with_items:
 - "{{ databases }}"

- name: Create database user from first web server
 mysql_user:
 name: "{{ item.user | default(item.name) }}"
 password: "{{ item.password }}"
 host: "{{ hostvars['localhost']['web1_private_ip'] }}"
 priv: "{{ item.name }}.*:ALL,GRANT"
 state: "{{ item.state | default('present') }}"
 login_unix_socket: /var/run/mysqld/mysqld.sock
 with_items:
 - "{{ databases }}"

- name: Create database user from second web server
 mysql_user:
 name: "{{ item.user | default(item.name) }}"
 password: "{{ item.password }}"
 host: "{{ hostvars['localhost']['web2_private_ip'] }}"
 priv: "{{ item.name }}.*:ALL,GRANT"
 state: "{{ item.state | default('present') }}"
 login_unix_socket: /var/run/mysqld/mysqld.sock
 with_items:
 - "{{ databases }}"

- name: Create replication user
 mysql_user:
 name: "{{ item.user_name }}"
 host: "%"
 password: "{{ item.password }}"
 priv: "*.*:REPLICATION SLAVE"
 state: "{{ item.state | default('present') }}"
 login_unix_socket: /var/run/mysqld/mysqld.sock
 with_items:
 - "{{ replication_setup }}"
 when: mysql_replication_role == 'master'
 register: create_replication_user

- name: Update authentication type for replication user
 vars:

81

 query: "ALTER USER {{ item.user_name }} IDENTIFIED WITH
mysql_native_password BY '{{ item.password }}'"
 command: mysql -u root --execute "{{ query }}";
 when: create_replication_user.changed
 with_items:
 - "{{ replication_setup }}"

- name: Configure slave node
 mysql_replication:
 mode: getslave
 login_unix_socket: /var/run/mysqld/mysqld.sock
 ignore_errors: true
 register: slave
 when: mysql_replication_role == 'slave'

- name: Set master's IP and hostname to a variable
 vars:
 master_hostname: "{{ database_host_name[0] }}"
 set_fact:
 master_ip: "{{
hostvars[master_hostname]['ansible_default_ipv4']['address'] }}"
 master_hostname: "{{ master_hostname }}"

- name: Make sure hosts entries are in place
 vars:
 mysql_replication_master_ip:
 lineinfile:
 dest: /etc/hosts
 line: "{{ master_ip }} {{ master_hostname }}"
 when: mysql_replication_role == 'slave'

- name: Get masters replication status
 mysql_replication:
 mode: getmaster
 login_unix_socket: /var/run/mysqld/mysqld.sock
 delegate_to: "{{ master_hostname }}"
 when: mysql_replication_role == 'slave'
 register: replication_status

- name: Change the master in slave
 mysql_replication:
 mode: changemaster
 master_host: "{{ master_ip }}"
 master_user: "{{ replication_setup[0].user_name }}"

82

 master_password: "{{ replication_setup[0].password }}"
 master_log_file: "{{ replication_status.File }}"
 master_log_pos: "{{ replication_status.Position }}"
 login_unix_socket: /var/run/mysqld/mysqld.sock
 when: mysql_replication_role == 'slave'

- name: Start slave in slave and start replication
 mysql_replication:
 mode: startslave
 login_unix_socket: /var/run/mysqld/mysqld.sock
 when: mysql_replication_role == 'slave'

handlers/main.yml

- name: Restart mysql
 service: name=mysql state=restarted

83

Appendix 9 – Automated Let’s Encrypt Certificate

Deployment Role

tasks/main.yml

- name: Issue wildcard during VPC deploy
 include_tasks: issue_certificate.yml
 when: create_initial_vpc is defined and create_initial_vpc ==
True and issue_le_certificate == True and manage_dns is defined and
manage_dns == True

- name: Upload certificate to other instances
 include_tasks: upload_certificate.yml
 when: issue_le_certificate is defined and issue_le_certificate ==
True and upload_certificate is defined and upload_certificate ==
True and manage_dns is defined and manage_dns == True

tasks/issue_certificate.yml

https://docs.ansible.com/ansible/latest/modules/acme_account_module
.html

https://docs.ansible.com/ansible/latest/modules/acme_certificate_mo
dule.html#acme-certificate-module

https://docs.ansible.com/ansible/latest/modules/route53_module.html

- name: Set domain name to a fact
 set_fact:
 le_cert_domain: "{{ domain_name }}"
 wildcard: "*.{{ domain_name }}"

- name: Create private key directory
 file:
 path: '{{ certificate_directory }}'
 state: directory
 owner: ansible
 group: ansible

84

- name: Create private key for ACME account
 openssl_privatekey:
 path: "{{ certificate_directory }}/account.key"
 size: 4096

- name: Create private key for certificate account
 openssl_privatekey:
 path: "{{ certificate_directory }}/{{ le_cert_domain }}.key"
 size: 4096

- name: Generate CSR for {{ le_cert_domain }}
 openssl_csr:
 path: "{{ certificate_directory }}/{{ le_cert_domain }}.csr"
 privatekey_path: "{{ certificate_directory }}/{{ le_cert_domain
}}.key"
 common_name: "{{ wildcard }}"

- name: Make sure ACME account exists
 acme_account:
 account_key_src: "{{ certificate_directory }}//account.key"
 acme_version: 2
 acme_directory: 'https://acme-
v02.api.letsencrypt.org/directory'
 state: present
 terms_agreed: yes
 contact:
 - "mailto:{{ acme_account_email }}"

- name: Create challenge for {{ le_cert_domain }}
 acme_certificate:
 modify_account: no
 acme_directory: 'https://acme-
v02.api.letsencrypt.org/directory'
 acme_version: 2
 account_key_src: "{{ certificate_directory }}/account.key"
 src: "{{ certificate_directory }}/{{ le_cert_domain }}.csr"
 cert: "{{ certificate_directory }}/{{ le_cert_domain }}.crt"
 challenge: dns-01
 remaining_days: 60
 register: dns_challenge

- name: Create Route53 DNS entry
 route53:
 zone: "{{ le_cert_domain }}"

85

 record: '{{ dns_challenge.challenge_data[wildcard]["dns-
01"]["record"] }}'
 type: TXT
 ttl: 60
 state: present
 wait: yes
 value: '"{{ dns_challenge.challenge_data[wildcard]["dns-
01"]["resource_value"] }}"'
 overwrite: yes
 when: dns_challenge.changed

- name: Wait for DNS record to expire
 pause:
 seconds: 120
 when: dns_challenge.changed

- name: Let the challenge be validated and retrieve the cert and
intermediate certificate
 acme_certificate:
 modify_account: no
 account_key_src: "{{ certificate_directory }}/account.key"
 src: "{{ certificate_directory }}/{{ le_cert_domain }}.csr"
 cert: "{{ certificate_directory }}/{{ le_cert_domain }}.crt"
 fullchain: "{{ certificate_directory }}/{{ le_cert_domain }}-
fullchain.crt"
 chain: "{{ certificate_directory }}/{{ le_cert_domain }}-
intermediate.crt"
 challenge: dns-01
 acme_version: 2
 acme_directory: 'https://acme-
v02.api.letsencrypt.org/directory'
 remaining_days: 60
 data: "{{ dns_challenge }}"
 when: dns_challenge is changed

tasks/upload_certificate.yml

- name: Create directory
 file:
 path: "/etc/ssl/{{ domain_name }}"
 state: directory
 owner: root
 group: root

86

- name: Upload {{ domain_name }} certificate
 copy:
 src: "{{ certificate_directory }}/{{ domain_name }}.crt"
 dest: "/etc/ssl/{{ domain_name }}/{{ domain_name }}.crt"
 owner: root
 group: root

- name: Upload {{ domain_name }} private key
 copy:
 src: "{{ certificate_directory }}/{{ domain_name }}.key"
 dest: "/etc/ssl/{{ domain_name }}/{{ domain_name }}.key"
 owner: root
 group: root
 mode: '0600'

87

Appendix 10 – Duplicity Database Backup Deployment

backups.yml

- hosts: database
 become: true
 environment:
 AWS_ACCESS_KEY_ID: "{{ aws_access_key_id }}"
 AWS_SECRET_ACCESS_KEY: "{{ aws_secret_access_key }}"
 AWS_REGION: "{{ AWS_REGION }}"
 vars_files:
 - keys
 tasks:
 - name: Configure backups
 include_role:
 name: duplicity
 vars:
 configure_duplicity_backups: True

tasks/main.yml

- name: Configure duplicity backup on database nodes
 include_tasks: configure_duplicity.yml
 when: configure_duplicity_backups is defined and
configure_duplicity_backups == True

tasks/configure_duplicity.yml

- name: Install Duplicity
 apt:
 name: duplicity
 state: latest
 update_cache: yes

- name: Install boto module
 pip:
 name: boto

- name: Upload gpg key generation script

88

 template:
 src: gen_gpg.j2
 dest: /root/duplicity_gpg
 owner: root
 group: root
 mode: '0700'

- name: Generate gpg key
 command: 'gpg --batch --generate-key /root/duplicity_gpg'
 args:
 chdir: /root
 become: yes
 become_user: root

- name: Create duplicity credentials file
 template:
 src: duplicity_credentials.j2
 dest: /root/.duplicity
 owner: root
 group: root
 mode: '0600'
 become: yes
 become_user: root

- name: Create backup directory
 file:
 path: /srv/backup/mysql
 state: directory
 owner: root
 group: root
 mode: '0700'

- name: Upload backup script
 template:
 src: backup_script.sh.j2
 dest: /srv/backup/backup_script.sh
 owner: root
 group: root
 mode: '0700'

- name: Configure backups
 cron:
 name: Duplicity backups
 weekday: "*"

89

 hour: "23"
 minute: "0"
 user: root
 job: "/srv/backup/backup_script.sh {{ s3_bucket_name }}"
 cron_file: ansible_auto_backups

90

Appendix 11 – Common Package Installation Role

tasks/main.yml

- name: Install packages
 apt:
 name: ['python-apt', 'python3-apt', 'python3-pip', 'vim-nox',
'net-tools', 'mc']
 state: latest
 update_cache: yes

91

Appendix 12 – Bastion Host Deployment and Configuration

bastion.yml

- hosts: localhost
 connection: local
 gather_facts: no
 environment:
 AWS_ACCESS_KEY_ID: "{{ aws_access_key_id }}"
 AWS_SECRET_ACCESS_KEY: "{{ aws_secret_access_key }}"
 AWS_REGION: "{{ AWS_REGION }}"
 vars_files:
 - keys
 tasks:
 - name: Get VPC information
 include_role:
 name: vpc
 vars:
 fetch_vpc_info: True
 when: hostvars['localhost']['create_initial_vpc'] is not
defined

- hosts: bastion
 gather_facts: no
 become: true
 tasks:
 - name: Patch bastion host
 include_role:
 name: patching
 when: hostvars['localhost']['create_initial_vpc'] is defined
 - name: Install common packages
 include_role:
 name: common
 when: hostvars['localhost']['create_initial_vpc'] is defined
 - name: Configure bastion host
 include_role:
 name: bastion
 vars:
 configure_bastion_host: True
 when: hostvars['localhost']['create_initial_vpc'] is defined

92

tasks/main.yml

- name: Create bastion instance during VPC deployment
 include_tasks: create_instance.yml
 when: create_initial_vpc is defined and create_initial_vpc ==
True

- name: Configure bastion host
 include_tasks: configure_bastion.yml
 when: configure_bastion_host is defined and
configure_bastion_host == True

tasks/create_instance.yml

- name: Create bastion host
 include_role:
 name: provisioning
 vars:
 instance_name: "{{ item }}"
 instance_role: "bastion"
 subnet_id: "{{ public_subnet_id }}"
 security_group: "{{ bastion_sg_id }}"
 with_items:
 - "{{ bastion_host_name }}"

- name: Set bastion instance id to a fact
 vars:
 fact_string: "{{ item }}_instance_info"
 set_fact:
 "{{ item }}_host_id": "{{
hostvars['localhost'][fact_string].instance_ids | join }}"
 with_items:
 - "{{ bastion_host_name }}"

- name: Assign elastic IP to bastion host
 ec2_eip:
 device_id: "{{ item }}"
 in_vpc: true
 state: present
 register: elastic_ip
 with_items:
 - "{{ bastion_host_id }}"

93

- name: Set bastion host IP to a variable
 set_fact:
 "{{ item }}_ip": "{{ elastic_ip.results |
map(attribute='public_ip') | join }}"
 with_items:
 - "{{ bastion_host_name }}"

- name: Add public_ip to in-memory group
 vars:
 ip_string: "{{ item }}_ip"
 add_host:
 hostname: "{{ item }}"
 ansible_host: "{{ hostvars['localhost'][ip_string] }}"
 groups:
 - bastion
 with_items:
 - "{{ bastion_host_name }}"

- name: Create dynamic inventory file
 template:
 src: aws_ec2.j2
 dest: ./aws_ec2.yml

tasks/configure_bastion.yml

Configure SSH
- name: Configure SSH
 include_role:
 name: ssh

Configure users and groups
- name: Configure users
 include_role:
 name: users

