
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Andrey Ermakov 184626IASM

AUTOMATION OF

VEHICLES PLACEMENT

IN RO-PAX SHIP LOADING

Master’s thesis

Supervisor: Uljana Reinsalu

 Researcher, PhD

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Andrey Ermakov 184626IASM

SÕIDUKITE PAIGUTUSE

AUTOMATISEERIMINE RO-PAX LAEVA

LAADIMISEL

Magistritöö

Juhendaja: Uljana Reinsalu

 Teadur, PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis and this thesis has not been

presented for examination or submitted for defence anywhere else. All used materials,

references to the literature and the work of others have been cited.

Author: Andrey Ermakov

04.05.2020

4

Abstract

The aim of this thesis is to develop a software application which can produce vehicle

placement plan for Tallink Grupp AS RO-PAX (Roll-On-Roll-Off-Passenger-

ship/ferry) ferry, which is typically used on the routes between Tallinn and Helsinki.

This is an effort to help Tallink Grupp AS automate the process of loading vehicles as

currently used solution does not provide required automation for personnel involved.

The presented solution provides acceptable placement plan based on the booking list of

vehicles, i.e. quantity of different types of vehicles. Such a list is received from the

ticket office for each departure. The automated placement plan can still be changed

manually by the load masters, if required, in the Tallink Grupp AS internal software,

thus allowing them following currently standing orders.

The automated placement in this work is implemented using three different algorithms;

results are tested on real operational data and analysed; recommendation for usage is

given.

This thesis is written in English and is 59 pages long, including 5 chapters, 40 figures

and 16 tables.

5

List of abbreviations and terms

RO-RO Roll-on/ Roll-off ship

RO-PAX Roll-On-Roll-Off-Passenger-ship/ferry

MS Motor Ship

IMO International Maritime Organization

LD Load

LCI Loading Condition Information

ROROLOAD RO-RO Loading

MASSLOAD Mass Loading

RRBOOKLIST RO-RO Booking List

GUI Graphical User Interface

FF First Fit

BF Best Fit

FFD First Fit Decreasing

BFD Best Fit Decreasing

GRASP Greedy Randomized Adaptive Search Procedure

STL Standard Template Library

6

Table of contents

1 Introduction ... 11

1.1 Overview... 11

1.2 Motivation ... 13

1.3 Problem formulation.. 13

1.3.1 Ship stability... 16

1.3.2 The relevance of the problem .. 17

1.4 Initial condition for the task. .. 17

1.5 Expected outcome of the solution. ... 19

2 Background .. 20

2.1 Related works .. 20

2.2 Data analysis ... 21

2.2.1 LD file data structure .. 21

2.2.2 Essential data research .. 22

2.2.3 Analysis of the essential data .. 23

2.3 Tool selection .. 23

2.4 Selection of the evaluation criteria ... 24

2.5 Algorithm selection ... 25

2.6 Testing methods .. 26

3 Application development ... 27

3.1 Initial user requirements for the application ... 27

3.2 Programming language selection ... 27

3.3 Process flow comparison ... 29

3.4 Organization of the data structures... 31

3.4.1 Data classes .. 31

3.4.2 Interfaces .. 35

3.4.3 Organization of data structures summary .. 36

3.5 Algorithm implementation... 36

3.5.1 Background for algorithm implementation .. 36

3.5.2 Input from the user ... 37

7

3.5.3 Creating of vehicles queue .. 38

3.5.4 General loading algorithm. ... 40

3.5.5 Lane priority calculation algorithms background .. 42

3.5.6 Lane priority calculation “outer lanes first” logic .. 44

3.5.7 Lane priority calculation “central lane first” logic 45

3.5.8 Vehicle alignment mechanism background ... 47

3.5.9 Vehicle centred lane alignment mechanism... 47

3.5.10 Vehicle full shift alignment mechanism .. 49

3.6 Graphical user interface ... 50

3.7 Future development ... 52

4 Results analysis .. 53

4.1 Testing background ... 53

4.2 Analysis of the data ... 53

4.2.1 Analysis using evaluation criterion and selective tests................................. 53

4.2.2 Analysis of truck cargo ... 64

4.2.3 Critical cases study ... 66

4.2.4 Graphical representation in Tallink software ... 67

5 Summary ... 69

References .. 70

Appendix 1 – Code location .. 73

Appendix 2 – Lanes data ... 74

8

List of figures

Figure 1. MS Megastar deck plan[6] ... 12

Figure 2. Manual process flow .. 15

Figure 3. Automated process flow ... 15

Figure 4. Real life process flow of loading vehicles ... 29

Figure 5. Proposed high-level algorithm for the solution ... 30

Figure 6. Class relationship ... 35

Figure 7. Input process diagram .. 37

Figure 8. Queue creation algorithm ... 39

Figure 9. General loading algorithm .. 41

Figure 10. Deck 3 lane layout .. 43

Figure 11. Deck 5 lane layout .. 43

Figure 12. Deck 6 lane layout .. 43

Figure 13. Deck 7 lane layout .. 44

Figure 14. Lane symmetry example for deck 5 .. 45

Figure 15. Vehicle centred lane alignment mechanism .. 48

Figure 16. Cargo placement without the centred lane mechanism applied 49

Figure 17. Cargo placement with the centred lane mechanism applied......................... 49

Figure 18. Vehicle full shift alignment mechanism .. 50

Figure 19. Start of the program screenshot .. 51

Figure 20. User input screenshot ... 51

Figure 21. Output of the program screenshot ... 52

Figure 22. Algorithm comparison with loads up to 500 tons .. 54

Figure 23. Heel comparison for loads up to 500 tons ... 54

Figure 24. Trim comparison for loads up to 500 tons ... 55

Figure 25. Algorithm comparison with loads between 500 and 1000 tons 56

Figure 26. Heel comparison for loads from 500 to 1000 tons 57

Figure 27. Trim comparison for loads from 500 to 1000 tons 57

Figure 28. Algorithm comparison with loads between 1000 and 2000 tons 58

Figure 29. Heel comparison for loads between 1000 and 2000 tons 59

9

Figure 30. Trim comparison for loads between 1000 and 2000 tons 59

Figure 31. Algorithm comparison with loads between 2000 and 3000 tons 60

Figure 32. Heel comparison for loads between 2000 and 3000 tons 61

Figure 33. Trim comparison for loads between 2000 and 3000 tons 61

Figure 34. Algorithm comparison with loads between 3000 and 4000 tons 62

Figure 35. Heel comparison for loads between 3000 and 4000 tons 63

Figure 36. Trim comparison for loads between 3000 and 4000 tons 63

Figure 37. Heel comparison to truck percentage .. 65

Figure 38. Trim comparison for truck percentage .. 65

Figure 39. Visual representation of 3 and 5 deck vehicles placement 67

Figure 40. Visual representation of 6 and 7 deck vehicles placement and ship stability

information ... 68

10

List of tables

Table 1. Technical data of MS Megastar[5] ... 12

Table 2. Vehicle types technical data... 18

Table 3. Language comparison table ... 28

Table 4. Class VehicleType ... 31

Table 5. Class StandardVehicle ... 31

Table 6. Class LoadedVehicle ... 32

Table 7. StandardLane class .. 32

Table 8. Class Ferry .. 34

Table 9. Example of lane coefficient for deck 3 ... 44

Table 10. Lane coefficients for deck 3 in second algorithm ... 46

Table 11. Lane coefficients for deck 5 in second algorithm ... 46

Table 12. Minimal X coordinates for algorithm 1 .. 66

Table 13. Maximal X coordinates for algorithm 1 ... 66

Table 14. Minimal X coordinates for algorithms 2 and 3 ... 66

Table 15. Maximal X coordinates for algorithms 2 and 3 .. 67

Table 16. Lanes data ... 74

11

1 Introduction

1.1 Overview

It is only 82 kilometres between two capitals, Tallinn in Estonia, and Helsinki in

Finland, but they are separated by the Gulf of Finland. “Goods have been traded

between Virumaa and Southern Finland already for over 700 years (so-called

seprakauppa). The increasing cross-border cooperation between Helsinki and Tallinn

today is supported by the leading role both capital cities have in the economic and social

development of its (Estonia) country”[1]. Number of passenger travels has increased in

2019, reaching 9 million passengers[2]. So did the cargo volumes, overall transfer was

nearly 2.1 million vehicles, out of which „71% were passenger cars and 26% were

trucks and trailers“[2]. Handling such high volumes of transferred vehicles require

automated solutions. This thesis covers the development process of an automated

solution for creating a vehicle placement plan on Tallink Grupp AS ferry.

Nowadays main option to swiftly transfer passengers, goods and vehicles by sea

between countries are ferries. Tallink Grupp AS is the biggest ferry operator in

Baltics[3]. The main type of ferries used by Tallink Grupp AS are RO-PAX (Roll-On-

Roll-Off-Passenger-ship/ferry) type, which is able to take onboard several hundred

vehicles in one trip plus passengers and other cargo. Usually, Tallinn-Helsinki and

Helsinki-Tallinn trips are made three times in a day. Each trip lasts about two hours one

after another with a turnaround of one hour. This tight schedule creates a pressure on the

ferry crew, especially if there is additional cargo to be loaded or vehicles taken aboard

with so-called “last-minute“ tickets.

If anyone has been travelling on the ferry on his or her own, carrying only personal

luggage, this is easy. When you travel with your car or van, or even truck or trailer, this

is a bit more complicated. Standing orders aboard ferries require check-in prior to

boarding, vehicle height measurement is usually done in a harbour[3].

12

By construction, RO-PAX ferries usually have multiple decks to carry the cargo,

vehicles and passengers. RO-PAX ships are a subclass of RO-RO (Roll-on/ Roll-off)

ships. Usually classic RO-RO ships are vehicle carriers used on longer routes for

transporting vehicles between countries. RO-PAX ships are usually used for moving

cargo trucks along with usual passengers with cars on shorter distances. RO-PAX upper

decks are for the passenger cabins. Lower decks usually carry heavy vehicles, such as

trailers, lorries and buses. Middle decks usually carry passenger cars, vans, campers,

shopping cars and other vehicles. Usual number of decks on such ferries is about five to

six, so theoretically average ship can take up to 500 vehicles or even more, depending

on its size and weight.

Our ship model is Tallink Grupp AS one of the newest vessels – MS (Motor Ship)

„Megastar“. She went into service and had transferred largest passenger numbers in

2017[4]. This ship has 12 deck ship, with four cargo decks (3, 5, 6, 7) hosting the lanes

where vehicles are put.

Technical data is presented in Table 1. Deck plan can be seen on Figure 1 below.

Table 1. Technical data of MS Megastar[5]

Built year 2017

Built by Meyer Turku Oy, Finland

Passengers 2800

Decks 12

Length 212,2 meters

Breadth 30,6 meters

Speed 27 knots

Lane meters 3653 lane meters

Main engine output 40 600 kilo watts

Figure 1. MS Megastar deck plan[6]

13

The process of boarding for ferry service consumer is relatively easy. Buy tickets,

specifying to an operator the dimensions of your vehicle; arrive to a port, join the

specified lane in a port for boarding, wait for the green light and follow the load master

orders. The loading process for the crew is completely different.

At first, the crew, consisting of the bosun and number of deckhand seamen, receive a

booking list of vehicles to be boarded. This list contains the numbers of vehicles of each

type to be boarded. Bosun works with an application called NAPA. If there are 10-15

vehicles in total, he can enter vehicle types and numbers manually and put them on the

placement plan, which in turn is used during the boarding. Second option is to list

manually through the previously used cargo plans, find one previously used cargo plan

with similar numbers of cars loaded, make manual changes to fit the current load, then

place manually cars so the ship will be stable. Cargo plans are represented with LD

(Load) files.

When author was checking the real LD files provided by the supervisor, the medium

load was nearly 200 cars, 20-50 trucks, 40 vans and some buses or trailers. The first

option is nearly impossible to accomplish, given usual loads. And second option will

require time, which is always valuable for the crew.

1.2 Motivation

This thesis was inspired with my love for sea and targets helping Tallink Grupp AS

bosuns or other personnel, who is involved into the vehicle loading process on a ferry.

Given just booking list, i.e. simple numbers and types of cars to be boarded, author will

develop an application which automates the process of preparing the vehicle placement

plan, saves time for the sailors for other tasks and can be implemented for use in real

life.

1.3 Problem formulation

Cargo and vehicle placement problem itself is not only time-consuming task for

deckhand crew. Because of the design of RO-RO ships, as they do not have usual ship

compartments on lower decks, it may lead to a safety problem.

14

According to IMO (International Maritime Organization), „The problem areas of RORO

ships are: the lack of internal bulkheads, cargo access doors, stability, low freeboards,

cargo stowage and securing, life-saving appliances, the crew“[7]. As RO-PAX ships are

a subclass of RO-RO ships, it is even more important as RO-PAX ship carry a lot of

passengers. MS „Megastar“ is able to carry up to 2800 passengers in addition to cargo

loads. In case of vehicle placement, Tallink bosuns and deckhand crew should not only

consider the placement of vehicles themselves, but a lot of other cargo ship carries, such

as liquid cargo in tanks, goods for local stores, etc. All of cargo which ship carries in a

trip goes into a cargo plan. This is an important document, which is used to calculate the

ship stability and exactly the same document is produced with the NAPA software,

currently used by the crew. LD file is a cargo plan written in a special text format.

NAPA application works as „what you see is what you get“ manner, when user just

places a vehicle onto the visual deck plan, the software immediately recalculates cargo

weight, ship trim and ship heel. Seaman just checks if they meet criteria for stability and

can see on the screen where cars are placed on the decks.

This is a task of the bosun to place the vehicles on a plan in such a way that ship is

stable. That is why currently all the responsibility lies on his shoulders. Using his

knowledge and long-time experience the bosun searches for best in his mind previously

used LD file and makes manual changes according to new load. Software can make

final calculation, but vehicle placement itself is still a bosun’s manual task.

The manual process is pictured below on Figure 2 and planned automated process is

pictured on Figure 3.

15

Figure 2. Manual process flow

Figure 3. Automated process flow

As it can be seen on the process flow diagrams, current workflow (Figure 2) includes a

lot of manual work, usually in the head of the bosun, to place the vehicles to keep ship

stable. The whole operation is estimated to take not less than 15 minutes.

16

Current NAPA software can only ease the calculations, showing if ship is stable or not

stable after new load has been placed onto the plan. Also, even 15 minutes is a time-

consuming operation. Another problem which we need to address is ship stability.

1.3.1 Ship stability

As it was mentioned above, one of the problem areas of the RORO ships and thus RO-

PAX ships as well is its stability. For reader, who is not familiar with ship hydrostatics,

please turn to Adrian Biran[8] or Barras and Derrett[9].

In simple terms, it is required that the ship will not capsize or sink in case of unevenly

distributed loads. Using Archimedes’s principle, any ship even with no cargo has a

geometrical centre and because its hull has a weight, thus the gravity force is applied.

The vector of this force points downwards. According to same Archimedes’ principle,

there is also the buoyancy force, which is pointing upwards through the vertical centre

of gravity. Both forces are equal by module.

Ship coordinate system will be taken as follows per Biran „X-axis runs along the ship

and positive forward, Y-axis is transversal and positive to port, Z-axis is vertical and

positive upwards“[8].

In the best conditions, when ship is afloat its waterline is horizontal at zero degrees, so

ship bow and stern are at the very same horizontal level. If they are not at the same

level, this is called a trim. Positive trim is when bow is positioned lower than the stern,

and negative trim is when stern level is positioned lower than bow level. If you put

some load on the ship’s starboard or port side, vertical centre of gravity will also shift in

the direction of added weight. According to the Archimedes’s principle the vertical

centre of buoyancy will also shift in the same direction and both forces will still be

pointed in the opposite directions, but because new point is not located in the middle of

the ship and one side has more load than other, thus ship now has a heel. The heel can

be on the port side or the starboard and usually is measured in degrees.

This is a must for a captain to maintain minimum heel and trim of the ship within

allowed limit for ship safety. Special attention should be given to the heel degree as ship

at big angles can easily capsize.

17

In everyday work all calculations for ship heel and trim are calculated using the NAPA

software. This task itself is hard to accomplish without special software, as parameters

heavily rely on the particular ship construction and its current load.

Once all cargo is present in the cargo plan and vehicles placement has been completed,

and ship heel and trim meet allowed levels, then vehicle planning task for bosun is

considered completed.

1.3.2 The relevance of the problem

Considering the numbers of the ferries employed by Tallink Grupp the automation of

the manual tasks might reduce costs of the ship maintenance.

Also, in addition to the high-speed RO-PAX ferries MS “Megastar”, MS “Star” and

cruise ferry MS “Silja Europa”, company owns two RO-RO ships “Sea Wind” and

“Regal Star”, so the automation solutions can be later extended to other types of ships.

Also, Tallink ordered a new high-speed RO-PAX ferry MS “MyStar” expected to enter

into service in 2022.

1.4 Initial condition for the task.

Because crew uses NAPA software for the very particular ship, all required ship

technical data has already been predefined in the NAPA application. Because this

program operates with cargo items, all possible vehicles types already have been

predefined as well, given length, width, height and weight for each vehicle type.

Information about additional cargo, for example fuel, may have been entered by other

personnel, but this information was not provided to the author and it not considered in

this thesis.

In addition to the types mentioned below there are priority cars, that are the same as

usual cars, but they must have such places so they can exit the ferry before other cars.

As current software makes no distinction between them, neither it does not know their

registration number, author presumes that places that will be closer to the ramps are

taken by the priority cars and the distinction is made on the spot as it is done now.

Information about possible vehicle types and their technical data is presented in Table 2.

18

Table 2. Vehicle types technical data

Vehicle type Length,

meters

Width,

meters

Height,

meters

Mass,

tons

Full vehicle type name

MC 2 1 1 0.2 MOTORCYCLE

CAR 4.8 2.1 1.9 1.8 CAR

SHP_CAR 4.8 2.1 1.9 1.8 SHOPPING CAR

VAN 7 2.1 2.25 2.5 VAN

VAN_H 7 2.1 2.4 2.5 VAN HIGH

L_L 4.8 2.1 1.9 1.8 LONG & LOW

L_MH 10 2.7 4.4 5 LONG & MEDIUM/HIGH

BUS 14 2.7 4.4 12 BUS

LOR 11 2.7 4.1 12 LORRY

TT_25 17 2.7 4.1 25
TRUCK/TRAILER,

25 TONNES

TT_39 17 2.7 4.1 39
TRUCK/TRAILER,

39 TONNES

MCH 10 2.7 4.1 15 MACHINE

TRL 4.1 2.7 14 15 TRAILER

TLNK 4.1 2.7 17 25 TALLINK TRAILER

Ship decks, where vehicles are placed are divided into lanes. Each lane has a width

enough to fit all types of vehicles, but there are restrictions as some types of vehicles

cannot be placed to particular lanes. Different decks have different heights. Additional

restrictions may include inappropriate vehicle height, desired proximity to staircases or

exits, other restrictions may also apply. Also additional restrictions may be learned in

the research process as author does not have opportunity to speak directly to deck

personnel. Each lane also has a technical information as its absolute minimum

coordinate as Xmin, absolute maximum coordinate as Xmax, its shift across the ship width

from the ship gravity point as Y, and the vertical level of the lane on a particular deck as

Z.

Also, an empty ship has its own mass known as lightship and the gravity point for a

empty ship is also given with coordinates in all three dimensions, as its position in

length, width, and vertical coordinate.

19

Database of LD files with real loading data was provided, so author is able to check the

future solution on real operational data during analysis phase.

1.5 Expected outcome of the solution.

Current process is supported with only NAPA software application which require

manual input. The general idea is to create a GUI (Graphical User Interface)

application, which can provide required data for NAPA.

There is a previously written command line converter to create LD files. Given the type

of vehicle, its assigned lane and its minimum vehicle X coordinate on lane, the

converter can generate entries for LD file. Author proposes to produce an application,

which generates a file with a special booking list. Each entry will consist of vehicle type

code, lane name and minimal coordinate of the vehicle on the lane to pass this data to

the converter.

Given a resulting file with such entries, author’s application will invoke command line

converter to generate a complete LD file. Opening completed LD file with NAPA

application, operator can check the positioning of the vehicles on all decks, also check if

heel and trim meet requirements. In case the operator is not happy with results, he can

make minor movements of vehicles manually in NAPA application, without additional

data input and having all vehicle locations already visualized.

20

2 Background

2.1 Related works

The ferry loading process according to Kirillova and Meleshko looks a bit old-fashioned

as „at present, the analysis of the possible placement of cargo from each subsequent

application and thus the formation of an operational plan for the vessel loading are

carried out by the line agents using the standard features of the program Microsoft Excel

spreadsheet with the entry of a large number of exogenous parameters[10]“. Øvstebø et

al. in [11] defines “RO-RO stowage problem is to decide upon a deck configuration

with respect to height, to decide which optional cargoes to carry, and to decide how to

stow all cargoes on board the ship“.

The problem of loading cargo is mostly studied in question of loading of container ships

and much less for RO-RO and RO-PAX ships. Øvstebø et al. in [11] considers stowage

problem as reduction from the knapsack problem [12]. Also in [11] he concludes that it

is possible to solve the problem with MIP (Multi-Integer Programming), but results may

be not practical for use. Therefore, a heuristic solution can be used, which tries to load

all cargo, then tries to improve cargo placement with local search[11].

Hansen et al. in [13] also uses MIP programming for stowage planning, but uses initial

stowage model and shifting model as his two dimensional algorithm means also shifting

cargo after partial unload. RO-RO ships usually carry a lot of vehicles during voyage

and they visit several ports. In each port there might be unload and load operations as

well. Also Hansen suggests using the grid system and represent each cargo as several

squares in two dimensions. Obstacles, like pillars and ramps, are part of the grid also.

Puisa in [14] suggests to create an individual grids for each cargo type for each deck

where it can be placed and again relies on the assumption that some cargo will be

loaded and unloaded several times, before arriving to destination point. Puisa also uses

MIP programming to solve it with branch and bound algorithm.

21

Wathe also describes that commercial software already exist, but this is mostly only a

visual aid for manual placement of goods[15].

Almeida and Steiner in [16] suggest solving 1D bin packing using heuristic minimum

bin slack to pack the bins efficiently.

More complicated algorithm is a novel GRASP (Greedy Randomized Adaptive Search

Procedure) algorithm, where „each GRASP iteration consists of two phases:

construction and local search. Construction procedure is greedy procedure to build a

feasible solution and local search is to enhance the solution“[17].

All reviewed works mostly focus on the task of creating stowage plan from the

mathematical point of view and it is good for stowing items in a given area. Our RO-

PAX ferry is used to carry vehicles and passengers, so this is where a lot of constrains

come into play. So mathematically optimal solution might not serve everyone.

Therefore, author decided to review other options for the task implementation.

2.2 Data analysis

Starting the research, it is very important to perform an excellent data analysis to

produce the best suitable result for the company, also making it easier to use and

possibly estimate future use of the product.

Main source of the analysis were the LD files, provided by the supervisor. The

following goals have been set:

▪ Studying data structure of the file itself

▪ Splitting data to essential and non-essential

▪ Analysis of the essential data

These steps are explained in the following chapters.

2.2.1 LD file data structure

LD file is split to the following sections:

TANKLOAD – information about liquid cargo currently present on the ship

MASSLOAD1...3 – information about passengers, crew, provision, shops, storage

22

MASSLOAD – summary for MASSLOAD1 … MASSLOAD3 sections

TAB_ROROLOAD – section describing each vehicle positioning on the ship

RRBOOKLIST – section containing number and types of the vehicles to be loaded

IMOLOAD – technical data of loading of lanes per IMO convention

MASS_ROROLOAD – summary for lanes loading

LCI (Loading Condition Information) – summary of the cargo list

As passengers, liquid cargo and other non-vehicle related information is a variable data

and available to the crew use only, so this data is not taken into account in this thesis.

Table ROROLOAD (RO-RO Loading) and sections RRBOOKLIST (RO-RO Booking

List) contains essential information about the vehicles and its location on the lanes,

section MASS_ROROLOAD (can be used as reference and LCI section can be used to

compare results).

2.2.2 Essential data research

Table ROROLOAD has the following column, which can be useful for the task

implementation:

▪ Car type

▪ Lane assigned

▪ Deck

▪ Minimum and maximum coordinates of the vehicle

▪ Mass of the vehicle

▪ Centred coordinates of the vehicle

▪ Colour of the vehicle for representation

Section RRBOOKLIST describes the following information:

▪ Type of the vehicle

▪ Pre-defined dimensions of the vehicle

▪ Maximum possible numbers of vehicles

▪ Actual number of vehicles

23

Section MASS_ROROLOAD contains information about each lane load, such as

▪ Total mass load

▪ Coordinates of centre of gravity of the lane with vehicles loaded.

▪ Length of the load lane

2.2.3 Analysis of the essential data

Once the source of the essential data has been defined it is very important to make

decision based on the data itself. As author have researched over 500 LD files manually

the following patterns have been obtained:

1. Average load not depending on the season is nearly 200 cars, 20-40 vans, 20 or

more 25-ton trucks.

2. All evening cruises are usually do not exceed 150 vehicles altogether.

3. During the winter season there are motorbikes on the ferry and not more than 1 or 2

buses. A lot of long+low vehicles and long+medium/high vehicles.

4. During the summer season, number of motorbikes and buses significantly increases,

the number of long+low vehicles and long+medium/high significantly decreases.

5. Heavy 39 tons trucks are present only in 22% of all cases studied.

6. Machines are transferred quite rarely, just 2 cases out of 570 studied cases, so 0.35%

of all cases.

2.3 Tool selection

When author discussed the proposed topic for the thesis with the supervisor, original

idea was to use the neural networks in the automation of the vehicle placement task.

Given the relatively large amount of LD files, each of them containing the placement

plan for each loading, neural network theoretically can be built and trained on the

existing data so it can analyse requirements for new loadings and offer the placement

plan. For efficient training of a neural network it is necessary to have a reliable set of

data which can be recognized into the pattern. Given the LD files for three months,

January (winter season), April (spring season) and June (summer season), it turned out

that it is hard to predict people’s behaviour as vehicles’ numbers differ significantly

even within one week of data. In addition, because existing software works as “what

you see is that you get” program, when its operator can point to any coordinate he wants

24

and the vehicle can be placed at any available location on lane. Of course NAPA

software will not allow vehicles overlap each other, but it does not check how much free

space left on lanes. Usage of neural networks will require an additional check to avoid

vehicle overlapping.

More promising option is to implement a usual desktop application, thus creating

placement algorithm from the scratch. This solution allows full flexibility in

implementing possible algorithms, designing graphical user interface for ease of use,

and full customization of output format of data.

2.4 Selection of the evaluation criteria

The NAPA software was customized by third party developer specially for Tallink

Grupp AS MS “Megastar” and generally is not available for use outside of the

company. Supervisor was given an access to the computer with software installed under

strict rules and conditions of usage. Thus it was agreed to perform selective tests for

output data of author’s future application with existing NAPA software to make sure

that heel and trim of the ship stay within limits, as they are calculated automatically in

NAPA software upon file load.

As it was mentioned previously, one of the available parameters is the gravity point of

the empty ship. Having known coordinates of the gravity centre of empty ship and

centre of loaded cargo it is possible to calculate the relative value V as follows:

𝑉 = √𝑥2 + 𝑦2,

where x and y are the length and width coordinates of these points.

The vertical coordinate Z only partially affects the stability. Shortly, we need to keep

cargo vertical coordinate as low as possible comparing to vertical coordinate of ship

gravity centre.

Naming as Vl the relative value of the empty ship and Vc as relative value of the loaded

vehicle cargo we can calculate how close both points are located to each other. The less

the difference, the closer the points, thus better stability.

25

2.5 Algorithm selection

Usual cargo deck on the RO-PAX ship can be represented as set of the lanes. Each lane

has definitive and known length. All lanes has the equal width, but still vehicle

placement restrictions apply. Last important parameter of the lane is its deck level or Z

coordinate.

Decks themselves have different height, so on lower decks it is possible to place all

types of the vehicles, and middle decks usually have a ceiling at height of 2.5 metres,

thus restrictions apply and only particular vehicles can be parked there. Also, for

example, shopping cars should be placed near shops for passenger comfort.

Looking at lanes, we can imagine virtual walls between them. Process of parking

vehicles to the lane reminds stuffing the truck with the goods task. The problem of

stuffing goods into the truck reminds in turn the bin packaging problem.

As defined by Garey et al., „The 1D bin packing problem: Given N items of various

„sizes” and an infinite number of “bins” (each with a fixed finite capacity C), group the

items into a minimal number of bins so that no bin is over-filled“[12][18]. Classical 1D

bin packing problem can be solved by multiple algorithms.

In this particular case, FF (First Fit) algorithm selects first item from the desired list, in

this case, a vehicle from vehicle queue, and puts it into first lane this vehicle can fit. BF

(Best Fit) algorithm selects non-empty lane such vehicle can fit, so lane will be most

occupied after adding the vehicle. FFD (First Fit decreasing) algorithm arranges initial

vehicles in non-increasing order, sorting them by vehicle mass, and applies FF

algorithm. BFD (Best Fit Decreasing) arrange initial list of vehicles in non-increasing

order by vehicle mass and applies BF algorithm to the list[19].

Looking at the possible algorithm usage author have decided to use the mixed algorithm

based on bin packing problem, with assumptions to select best lane for loading of next

vehicle, and taking into account all placement restriction along with maintaining ship

stability. This decision is based as there are too many restrictions in place and process

should be controlled with each loaded vehicle.

26

2.6 Testing methods

As it was mentioned before, initial data for the task is original LD files from the Tallink

Grupp AS. Each file contains information about the number of vehicles for each

departure. After the LD file parsing, it is possible to generate input data for the new

application.

Each set of test data will be loaded into the application and output X and Y coordinates

of gravity point of the loaded cargo will be calculated and relative value Vc is also

calculated and used as an evaluation criterion against the relative value of the empty

ship.

Five hundred tests will be performed, output data obtained and analysed. Selective tests

will be performed in NAPA software due its limited availability for the author to make

sure heel and trim criteria are met and possible comparison with the evaluation criterion

will be made. All critical cases will be reviewed as well.

27

3 Application development

The main goal of the application is to help the bosun to create an acceptable vehicle

placement plan with resulting output as a text file, which in turn can be parsed with the

converter, into a format suitable for current Tallink NAPA application.

3.1 Initial user requirements for the application

The main initial requirement for the application is simplicity of usage. NAPA software

works on the usual personal computer and the target operating system is Windows. The

command line LD file converter works also in Windows.

Bosun receives information provided by the ticket office before the loading. Ticket

office can only provide information about vehicle types to be boarded and number of

vehicles for each type. This information is used as initial data for application

development and such information can be stored in text format on the computer as a

template for application input.

3.2 Programming language selection

Most popular programming languages in the world are Java, C, Python and C++ [20]. It

is important to select the language which suits best.

 Java is an object-oriented language, developed by the Sun Microsystems. This language

comes with a lot of classes, including the GUI libraries and is cross-platform.

C language is a general-purpose language, mainly intended for structured programming.

C++ is an object-oriented language, developed by Bjarne Stroustrup, includes a STL

(Standard Template Library) and compilers available for multiple platforms.

 Python is an interpreted programming language. It does not require a compiler and a lot

of packages are available for scientific programming. GUI frameworks are available.

The comparison between these four languages are listed in Table 3 below.

28

Table 3. Language comparison table

Language name Pros Cons

Java Has native GUI support

Lot of embedded classes

Easy IO functions

Cross-platform

Requires Java Virtual

Machine

C Low level programming Does not support object-

oriented programming

Platform-dependent

No native GUI

Python Easy to use

Hard to maintain code

C++ STL library available

Supports object-oriented

programming

Less user friendly than Java

GUI support with external

frameworks

The best choice for implementation for end-users and author skills is Java language, as

Java Virtual Machine is usually installed on most workstations, or easy to obtain if

absent. The other con that in this case the application can be used on a different

platform if that applies in future.

29

3.3 Process flow comparison

Before creating new application it is important to study the process in detail to create

proper data structures and design effective algorithms.

A diagram showing the real process is pictured on Figure 4.

Figure 4. Real life process flow of loading vehicles

After receiving a booking list and once bosun has finished creating the cargo plan,

deckhand team is ready to board vehicles. The registered vehicles are assembled in the

harbour on the loading lanes. These lanes organize queues of different types of vehicles,

and the crucial part that they are organized as such that it allows parallel loading and

unloading of trucks and cars, minimizing boarding time. Deckhand crew splits across

the ship to manage the loading process. Staying in different parts of the ship and using

hand signals and other technical means crew give directions to the drivers where they

should park their vehicles. Given explanation can help create an efficient algorithm,

because it is essential to understand how work is organized on the spot.

The automated process, based on the explanation above, is pictured on Figure 5 below.

30

Figure 5. Proposed high-level algorithm for the solution

It is important to notice that the cargo plan already exist before the loading starts, and

vehicles are loaded according to a rule that furthest places from the boarding ramp are

occupied first. Key factor during boarding process is a manageable queue, that is why

vehicles are organized into different lanes and usually one type of the vehicles is loaded

after another.

Combining all information above, the overall task of future application development can

be split to the following subtasks:

▪ Categorize and organize the predefined data into data structures for usage with

newly created application

▪ Define data structures and objects

▪ Define interfaces so objects can exchange data

▪ Define input and output

▪ Implement an algorithm for placement calculation

▪ Create UI (User Interface)

▪ Test

▪ Perform analysis of the tests

31

3.4 Organization of the data structures

3.4.1 Data classes

Organization of data greatly affects the development of the application. If data is

properly organized, the programming is simplified and there are a lot of possibilities for

future modernization or adding additional features if initial conditions change. During

the construction of classes the pattern of composition is used, when one class can be

composed of entities of other classes[21]. Diagram of class relationship can be found on

page 35. Description of essential classes is provided below.

 Public enum class VehicleType is responsible for classification of vehicles. Its

variables with descriptions are listed in Table 4.

Table 4. Class VehicleType

Type Class member Description

float vehicleWidth vehicle width in meters

float vehicleHeight vehicle height in meters

float vehicleLength vehicle length in meters

float vehicleMass mass of the vehicle in tons

String vehicleDescription full name of the vehicle

float vehicleTotalType number of vehicles to be

placed

String vehicleColour colour of the vehicle in

software

Public class StandardVehicle will encapsulate entity of VehicleType and any vehicle

will be identified by the String registrationNumber. Registration numbers were not

listed as an initial requirement, but such an option can be useful in the future. Class

variables with descriptions are represented in Table 5.

Table 5. Class StandardVehicle

Type Class member Description

VehicleType itsType vehicle type

String registrationNumber vehicle registration number

32

In StandardVehicle class author uses the composition of two classes as this will allow

storing fewer overhead data and it is easier to maintain the code.

Class LoadedVehicle is used for storing information of the vehicles, which have been

placed on the lane. This class also uses the principle of class composition. Its variables

with descriptions are listed in Table 6.

Table 6. Class LoadedVehicle

Type Class member Description

StandardVehicle loadedVehicle vehicle, which has been placed

on the lane

String laneNum lane number, compatibility

value

String laneDeck deck number, compatibility

value

float xMin minimum X coordinate of

vehicle on lane

float xMax maximum X coordinate of

vehicle on lane

Class VehicleQueue contains information about vehicles to be boarded so there are

objects of StandardVehicle class.

The lanes configuration is listed in StandardLane class. Class variables with

descriptions are listed in Table 7.

Table 7. StandardLane class

Type Class member Description

ArrayList <Vehicle> laneList list of vehicles loaded onto

this lane

String laneName name of deck

String laneDeck name of deck where lane is

located

int deckNum integer deck number for

compatibility

double lanePriority priority of lane

int defaultLanePriority default priority of lane

33

double laneCoefficient lane coefficient, depends upon

lane location for forward

loading algorithm

double laneCoefficientReversed lane coefficient, depends upon

lane location for reverse

loading algorithm

float laneMass total lane load

float centerX X coordinate of lane, located

in the middle of its length

float centerY Y coordinate of lane, indicates

lane centre across the ship

float centerZ Z coordinate of lane, indicates

deck level

float minX minimal X coordinate of lane

float maxX maximum X coordinate of

lane

float setPoint point for next vehicle

placement

float availableLength available space on the lane

List<LaneLocation> laneLocation lane location on the ship,

reserved

List<VehicleType> allowedVehicleList list of allowed vehicles on

lane

List<VehicleType> notAllowedVehicleList list of not allowed vehicles on

lane

Class StandardLane comprises much more information about lane itself than originally

was learnt from LD files. This will allow effective usage of lane information with all

algorithms explained later. Also, previously defined class VehicleType is used as a

classifier.

Class LaneCoefficient represents lane coefficient. This is an enumeration class, used in

the calculation of the lane priority during the selection of best suitable lane for a vehicle.

Lane coefficient is a lane value, which allows to define a sequence in which order lanes

are considered for vehicle placement. Lane coefficient is assigned on the lane

initialization and depends on its location and lane own metrics. Same value of lane

coefficient can be applied to a single lane or to a group of lanes. If same value is applied

to a group of lanes, it means that each lane in the group has equal chance to accept a

34

vehicle. To resolve a problem which lane in this case will take vehicle first, the lane

priority will be used in the selection of the best suitable lane and priority calculation

logic is introduced. This is explained in sections 3.5.5, 3.5.6 and 3.5.7.

Example of the class definitions as follows:

public enum LaneCoefficient {
 P71 (1), P72 (Math.pow(10,2)),
 P73 (Math.pow(10,4)), P74 (Math.pow(10,6)),
 P61 (Math.pow(10,8)), P62 (Math.pow(10,10)),
 P63 (Math.pow(10,12)), P64 (Math.pow(10,14)),
 P51 (Math.pow(10,16)), P52 (Math.pow(10,18)),
 P53 (Math.pow(10,20)), P54 (Math.pow(10,22)),
 P55 (Math.pow(10,24)), P31 (Math.pow(10,26)),
 P32 (Math.pow(10,28)), P33 (Math.pow(10,30)),
 P34 (Math.pow(10,32)), P35 (Math.pow(10,34));

private double laneCoefficient;

LaneCoefficient(double laneCoefficient) {
 this.laneCoefficient=laneCoefficient;}

double getLaneCoefficient () {
 return laneCoefficient; }
}

Class Ferry represents a ship. Class variables and its descriptions are listed in Table 7.

Table 8. Class Ferry

Type Class member Description

List<Lane> lanes list of lanes, present on the

ship

List<Record> outputTable List of values for cargo plan

based on loaded vehicles on

lanes

List<LoadRecord> outputLoadTable List of values for cargo plan

compatibility in book list.

String exportTableHeader header for cargo plan

ROROLOAD section. Not

used

String exportLoadTableHeader header for cargo plan

RRBOOKLOAD section. Not

used.

As in life lanes are located on the decks on the ship, so they belong to this class. Other

variables were created to represent the sections in the real cargo plan in NAPA format.

35

Class InputData is responsible for reading input data from the text file.

Class LaneLocation indicates positioning of the lane on the deck (is it bow lane, stern

lane, etc.) is listed for compatibility and extended functionality, but is not currently

used.

Class MainFrame contains GUI and is implemented with Java Swing library.

The class structure is pictured on Figure 6 below.

Figure 6. Class relationship

Such organization of data structures allows to solve the task using minimum of different

classes and make it easier to maintain the code.

3.4.2 Interfaces

The good style of programming in Java is to implement interfaces to ease the

communication between the classes. Logically these are sets of abstract methods, but

the great advantage of interface is that any class which supports an interface will be

implementing its own version of the method.

Interface Vehicle is used to handle vehicle data, such as return its vehicle length, width,

height, registration number, mass, or the whole vehicle type.

Interface Lane offers all required methods to work with lane, including adding vehicles

to lane, calculation available space, new set point calculation, lane priority calculation,

getting and calculating all coordinates.

36

Interface Ship works not with particular lane, but with collection of lanes, as lanes are

organized in the list. This interface allows to get the full list of lanes, invoke priority

calculations for the list, exporting the output tables, selecting best lane etc.

Interface Table works with output tables only and receives a list of records.

3.4.3 Organization of data structures summary

Data organization is crucial before the algorithm implementation. Using the

composition of classes which communicate via interfaces makes vehicle placement task

easier to accomplish and maintain the code during the application development.

3.5 Algorithm implementation

3.5.1 Background for algorithm implementation

The task of creating effective cargo plan includes the proper vehicle location selection,

including proper calculation of its coordinates, and in the meantime maintaining ship

stability. As it was stated above, the one-dimensional bin packing algorithm is used as a

base algorithm. It targets to fill highly prioritized lanes first in order to maintain ship

stability. It should be noted that in order to maintain ship stability, it is crucial to keep

the Y coordinate of centre of gravity of cargo as close as possible to the Y coordinate of

centre of the empty ship to avoid the ship heel. Also, to avoid ship trim, either positive

or negative, is also crucial to maintain X coordinate of centre of gravity of vehicle cargo

as close as possible to X coordinate of centre of gravity of the empty ship.

Given the formulae below for calculating the cargo gravity point, where vehicles as

cargo items C1, C2 … CN have X coordinates as of CX1, CX2 … CXN , Y coordinates as

CY1, CY2 … CYN with masses CM1, CM2,…CMN, we can calculate the coordinates of

the centre of the mass of all cargo items as follows:

𝑋𝑐𝑎𝑟𝑔𝑜 =
∑ (𝐶𝑋𝑖 ∗ 𝐶𝑀𝑖)
𝑁
𝑖=1

∑ 𝐶𝑀𝑖
𝑁
𝑖=1

𝑌𝑐𝑎𝑟𝑔𝑜 =
∑ (𝐶𝑌𝑖 ∗ 𝐶𝑀𝑖)
𝑁
𝑖=1

∑ 𝐶𝑀𝑖
𝑁
𝑖=1

37

Given such an equation, and taking into account the stability rules, the vehicle

placement task can be formulated as follows: to avoid heel and trim, this is required to

keep the centre of the cargo mass for all vehicles closer to the ship gravity point in X

and Y dimension. This can be accomplished if heaviest vehicles will be put closer to the

centre of gravity or, alternatively, they can be put to the ship sides in equal distances

from centre of gravity of the empty ship, thus making sure the load is evenly balanced

to both ports to avoid ship heel.

3.5.2 Input from the user

Input is made with simple algorithm to collect initial input data. Process diagram is

listed on Figure 7.

Figure 7. Input process diagram

38

Format of the file: TYPE_OF_VEHICLE AMOUNT_OF_VEHICLES

Example of the input file:

CAR 200

VAN 15

TT_25 20

3.5.3 Creating of vehicles queue

Based on the data gathered from the user, class VehicleQueue creates the list of

vehicles. Each vehicle is automatically assigned a generated registration number.

Registration numbers are presented in a format which have all vehicles registered in

Estonia. In future development, it can be used for real registration numbers of any

country, given the number contains Latin letters and Arabic numerals.

To keep the balance of the ship and avoid heel the heaviest vehicles come first into

boarding queue, except for buses, which always will be first in the list. The idea is to put

heaviest vehicles to lanes with the highest priority, because such lanes have minimum

influence on ship heel. Lane priority is explained in detail in section 3.5.5. Buses should

be positioned in the middle of the ship, as ship staircases are located closer to middle

lanes. The algorithm, except registration number assignment part, is pictured on Figure

8 below.

The vehicles are put into the list of the StandardVehicle objects. Once all types of

vehicles have been put into the queue, the registration numbers are assigned. Generator

iterates through the list by randomizing 3 numbers and 3 Latin letters to create standard

Estonian registration number.

39

Figure 8. Queue creation algorithm

40

3.5.4 General loading algorithm.

Loading algorithm by design loads vehicles onto lanes. It picks next vehicle from the

queue, finds best suitable lane and tries to add this vehicle to this lane. If this operation

successes, it picks up the next vehicle from the queue. If there’s not enough place on the

ferry, it reports the loading operation was not successful. All loading operations are

executed until queue is empty.

As ferry have two departure ports as Tallinn and Helsinki, vehicles embark it from stern

ramp in Helsinki and from bow ramp in Tallinn. So, two loading directions exist:

forward and reverse. Vehicles normally disembark from the opposite side they entered,

thus entering the ferry in Helsinki from stern they can be placed closer to bow and ones

entering ferry in Tallinn are placed closer to stern. Forward loading is set to trips from

Helsinki to Tallinn, and reverse loading is set to trips from Tallinn to Helsinki.

Trip direction will also affect the calculation of the set point. Set point for the forward

algorithm uses maximum X lane coordinate as initial set point for next vehicle. Set

point for reverse algorithm uses minimal X lane coordinate as initial set point for next

vehicle. After each placement operation set point will be recalculated in all

implementations.

All algorithm implementations take into account free space available on the lane, thus

the goal is to use all possible lane length until no more vehicles can be placed.

General loading algorithm is applied to all possible implementations of the application.

The difference lies in two things: how the lane priority is calculated and how the vehicle

coordinates are calculated depending on the loading direction.

Each lane has a list of allowed types of vehicles and a list of not allowed type of

vehicles. In case vehicle is allowed, it can be placed on lane if free space is available. In

case vehicle type is not allowed to be placed on the lane, this lane priority is calculated

with negative value and until next vehicle load such lane is not considered suitable for

current vehicle.

The logic of the general loading algorithm is pictured on Figure 9.

41

Figure 9. General loading algorithm

Author of this thesis develops and evaluates three algorithms. Algorithm 1 uses lane

priority calculation “outer lanes first” and centred lane alignment mechanism.

Algorithms 2 and 3 use lane priority calculation “central lane first” logic with vehicle

centred lane alignment and “central lane first” with full shift alignment mechanism

respectively. Lane priority calculation algorithms are explained in sections 3.5.6 and

3.5.7, vehicle alignment mechanisms are explained in sections 3.5.9 and 3.5.10.

42

3.5.5 Lane priority calculation algorithms background

Lane priority calculating algorithm basically is the crucial algorithm in vehicle

placement task. As vehicles are pushed onto the best suitable lane one after another,

there is only one factor that can stop putting vehicles to the currently selected lane and

start putting them on another one. This is a lane priority.

All implemented algorithms use the following logic: lane priority is calculated as

multiplication of the lane available length (free space) and lane coefficient. Lane

coefficient was introduced previously in section 3.4.1. Because author uses forward and

reverse loading of the ferry, lane coefficient may also vary for each lane, depending

where the ferry is loaded.

Lane coefficient assigns a value to each lane to create order of lanes in which they

should be filled. But what happens when top priority lane has been almost full and next

vehicle cannot be put, but lane itself theoretically can still accept smaller vehicles in the

queue? That is where lane free or available length should be taken into account. If it is

physically possible to fit a vehicle into the lane with highest lane coefficient, such lane

must always have higher priority over any other lane which has less value of lane

coefficient. If vehicle does not fit into lane free space, lane automatically is not

considered suitable for the vehicle and its lane priority is not taken into account.

Calculation of the lane available space is just calculation of available space from the set

point of next vehicle placement point till end of the lane. Initial set point location has

been introduced in the previous section.

In selection of criterion how the lane priority will be calculated following key factors

are considered:

▪ Proximity of the lane to the Y coordinate of empty ship

▪ Lane location on deck, for example stern, bow, full hull-length lane

▪ Available space on the lane

▪ Deck where lane is located

For better understanding of lane positioning, please refer to Table 16 in Appendix 2.

This table shows for each lane centre X coordinate (or XCG), lane Y coordinate (or

YCG). Lane middle point XCG calculated as equidistant point between XMIN and

43

XMAX, being minimal and maximal X lane coordinates respectively. Lane length has

been calculated using these coordinates and is listed below in the length column.

Columns X_DIFF and Y_DIFF show the difference between lane XCG and X

coordinate of the centre of the gravity of the empty ship, and lane YCG and Y

coordinate of the centre of the gravity of the empty ship. All distances are given in

meters.

Given the following data, it is possible to establish, where each lane is located on the

ship and understand which lanes lie in symmetry to ship X axis.

The sketch of lanes locations (based on lanes data, presented in Appendix 2) on decks

are listed below. Figure 10 pictures lane locations on deck 3. Deck 5 lane layout is

pictured on Figure 11. Lanes of deck 6 and deck 7 are pictured on Figures 12 and 13

respectively.

Figure 10. Deck 3 lane layout

Figure 11. Deck 5 lane layout

Figure 12. Deck 6 lane layout

44

Figure 13. Deck 7 lane layout

3.5.6 Lane priority calculation “outer lanes first” logic

The logic of lane priority calculation “outer lanes first” was explained in previous

section. Lane coefficient in this case is deck independent.

According to ship stability principles, this is crucial to load both ports equally. Bosuns

tend to load outer lanes first. Thus, the following logic is selected: lane coefficient has

highest values closer to the port side or starboard and lowest coefficients are for lanes in

the centre of the ship. Once loading of vehicles is finished the vehicle centred alignment

mechanism is applied. This mechanism is explained in section 3.5.9.

Each deck is using the same criterion of assigning lane coefficients, so the decks are

populated purely depending the lane coefficient and lane available length irrelevant to

the deck number.

Example of the lane coefficients is presented for deck 3 in Table 9. Outer lanes have

highest values.

Table 9. Example of lane coefficient for deck 3

Lane(s) Forward loading coefficient Reverse loading priority

coefficient

L11, L19 100 000 100 000

L12, L18 10 00 10 00

L13, L17 10 10

L14A 1 0.1

L14F 0.1 1

L15 0.1 0.1

L16 1 1

45

The selection of the coefficient presented in Table 9 is explained here. The difference

between neighbour coefficients in 100 times dictates that even smallest vehicle should

be placed to a lane with higher lane coefficient value. Given that the maximum length of

any lane is no more than 188 meters and smallest vehicle length is just 2 metres, a lane

with 2 spare metres with coefficient value of 1000 should get higher priority than

completely free lane with spare 188 metres and with lane coefficient of 10. Small lanes

L14A and L14F have also non-standard coefficient of 1, because they are small, and

they are close to central lane and its load does not significantly affect the heel.

3.5.7 Lane priority calculation “central lane first” logic

Second algorithm of calculating lane priority will be using same idea that lane

coefficients will be using the criterion of each next lane coefficient is 100 times greater

than the previous one, but in this case the coefficients will be increased or decreased

depending on the position of lane on the deck plus depending on which deck lane itself

is located. In this scenario, the lane coefficient is deck dependent: the higher the deck,

the lower the coefficient.

Figure 14 shows virtual X-axis of the ship and lane symmetry is seen alongside it for

deck 5.

Figure 14. Lane symmetry example for deck 5

 The X-axis of the ship almost overlaps the lane L15 on deck 3. According to the ship

stability rules, it is important to place vehicles evenly on each side of that line, so

vehicles’ weight is distributed evenly on both ports. It is even better to place vehicles to

the lower deck for the crew. In this algorithm decks are filled starting from lower decks

and going to upper decks, only after lower decks have been fully loaded, except cases,

where vehicles should be placed on higher decks because of standing restrictions.

46

In vehicle placement algorithms 2 and 3, which use this priority calculation algorithm,

the heaviest vehicles will be placed closer to the centre of the ship, so central lanes will

have the highest priority and lower priority will be gradually assigned to the outer lanes.

Lanes with lowest priority are located directly on the port side and starboard. But,

according to the logic of filling lower decks first, the rule that even 2 meters on lane

with lowest priority on lower deck will outweigh by priority fully free central lane on

the next deck up.

The example coefficients are represented in Tables 10 and 11. Lane locations are taken

into account as seen from Table 16 located in Appendix 2.

Looking at coefficients in Tables 10 and 11 it is easy to see that under normal

circumstances, the lanes on deck 3 will be loaded prior to loading of deck 5.

Table 10. Lane coefficients for deck 3 in second algorithm

Lane(s) Forward loading coefficient Reverse loading priority

coefficient

L11, L19 1026 1026

L12, L18 1028 1028

L13, L17 1030 1030

L14A 1032 1032

L14F 1032 1032

L15 1034 1034

L16 1032 1032

Table 11. Lane coefficients for deck 5 in second algorithm

Lane(s) Forward loading coefficient Reverse loading priority

coefficient

L21, L29 1016 1016

L22, L28 1018 1018

L23A 1022 1016

L23M, L26M 1022 1022

L23F 1022 1024

L24A 1022 1024

47

L24F 1022 1016

L24MP, L24MS 1024 1024

L25M. L25F 1024 1024

L25A 1024 1016

L26A 1016 1016

L26F 1018 1024

L27M 1020 1020

L27A 1016 1016

L27F 1016 1024

3.5.8 Vehicle alignment mechanism background

In order to keep the ship stable within the limits for heel and trim, author introduces the

mechanism of vehicle alignment. This mechanism allows adjusting of the cargo

placement within one particular lane.

The alignment of cargo takes place after all vehicles have been loaded onto all lanes and

is performed in all implementations of vehicle placement algorithms.

3.5.9 Vehicle centred lane alignment mechanism

This mechanism places vehicles in such a way that the centre of the mass of the lane

cargo is always placed to the centre coordinate of the lane. The algorithm is pictured on

Figure 15.

48

Figure 15. Vehicle centred lane alignment mechanism

The example of mechanism is pictured below on Figures 16 and 17 on next page.

Length L defines the length on X axis from the ship gravity centre to cargo centre of

mass. Length L is decreased with such mechanism applied.

Figure 16 shows vehicle placement location before the alignment and Figure 17 shows

the cargo position after alignment. The shift is calculated using lane minimum and

49

maximum X coordinates and cargo minimum and maximum coordinates, as such that

free space after alignment on both sides of the lane are equal and cargo is centred on

lane.

Figure 16. Cargo placement without the centred lane mechanism applied

Figure 17. Cargo placement with the centred lane mechanism applied

Once vehicles are aligned, it allows to keep cargo closer to the empty ship gravity point

and improves the ship trim.

3.5.10 Vehicle full shift alignment mechanism

This mechanism is almost the same as mechanism explained in previous section, but

with the additional shift for all cargo on particular lanes to minimal or maximum

coordinate, which lies closer to the lightship gravity point. This additional shift applies

only to the bow or stern lanes, which maximal or minimal coordinates do not cross the

midships. For bow lanes this is will be shift to minimal coordinate, for stern lanes to the

maximum coordinate. For all other lanes centred lane alignment mechanism is apllied.

50

For example, the bow lane cargo is shifted on Figure 18.

Figure 18. Vehicle full shift alignment mechanism

Such shift can decrease the ship trim even more than the previous algorithm.

3.6 Graphical user interface

Graphical interface is made especially for simple use. Start of the program is pictured

on Figure 19 below. After program starts, user is required to load a filled text template,

based on the data from the ticket office. This is pictured on Figure 20 below.

51

Figure 19. Start of the program screenshot

Figure 20. User input screenshot

52

Once initial data has been read from file, user is required to select trip direction and

click Start button to get resulting file in text format and technical information is printed

in an application text field. The output of the program is pictured on the Figure 21.

Figure 21. Output of the program screenshot

User is provided with the information of the vehicles loaded and centre of gravity

coordinates. In case some vehicles have not been loaded, the information is printed in

text area. Resulting text file is pipelined to the command line converter and resulting

LD file is generated automatically.

3.7 Future development

The program can be improved in the future. The vehicles were supplied with the

registration numbers, so it can be used with real registration numbers if needed.

The structure of the program allows adding more lanes and changing lane restrictions.

53

4 Results analysis

4.1 Testing background

For analysis of the results, 500 loading conditions have been selected. Each of three

algorithms was tested with same 500 loading conditions of real operational data. The

empty ship centre of gravity coordinate is X=88.13, Y=0.07 and Z=14.06. All

coordinates are given in metres. In addition for analysis a selective testing on the real

Tallink software is made to confirm the proposal suggested by the evaluation criterion.

4.2 Analysis of the data

Output data (cargo gravity point X, Y and Z coordinates) produced after 1500 runs of

the application (3 algorithms were tested each with 500 loading conditions) was

organized into groups to estimate how algorithms work with different cargo load. The

loads are split into groups: from 0 to 500 tons, 500 tons to 1000 tonnes. 1000 to 2000

tons, 2000 to 3000 tons, 3000 to 4000 tons and above 4000 tons.

Evaluation criterion explained in section 2.4 will be used during the testing without the

NAPA software. During the selective testing with the NAPA software heel and ship

information will be used for algorithm perfomance evaluation.

4.2.1 Analysis using evaluation criterion and selective tests

In this section, the author considers vehicle placement plan results evaluated by the

coordinates of cargo centre of gravity point and then analyses data with NAPA software

from the selective tests for each cargo group.

54

Figure 22. Algorithm comparison with loads up to 500 tons

Figure 22 shows the evaluation criterion values for loads up to 500 tons. Total number

of all cases reviewed is 80 or 16% of all cases. As can be seen from the figure,

algorithms 2 and 3 overlap each other and lie closer to the empty ship (lightship mass)

value. The chart shows that algorithms 2 and 3 should give better results than algorithm

1.

Figure 23. Heel comparison for loads up to 500 tons

0

20

40

60

80

100

120

10
1.

1

13
6.

9

16
5.

2

2
0

8

23
2.

6

25
0.

1

29
0.

7

31
6.

4

33
2.

1

35
2.

4

37
1.

5

38
2.

2

40
0.

8

40
9.

3

4
2

8

43
7.

5

44
7.

9

45
9.

8

47
8.

7

48
9.

2

Ev
al

u
at

io
n

 c
ri

te
ri

o
n

 v
al

u
e

Tons

Algorithm 1

Algorithm 2

Algorithm 3

Lightship

0

0.05

0.1

0.15

0.2

0.25

0.3

D
eg

re
e

s

Tons

Heel angle

Algorithm 1

Algorithm 2

Algorithm 3

55

Figure 24. Trim comparison for loads up to 500 tons

Figures 23 and 24 show results of selective tests in this cargo group in NAPA software.

Chart indicate that algorithms 2 and 3 are more effective in minimizing heeling, because

vehicles are placed closer to the empty ship gravity point and cargo mass is not too

heavy to cause ship heeling.

Algorithms 1 is less stable with increased heel angles as vehicles are placed further

away from ship gravity point and even a single heavy vehicle put on the port side or

starboard can break the ship balance.

Trim for all three algorithms is usually less than 0.12 metre and this can be considered

as excellent result.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
M

et
re

s

Tons

Trim

Algorithm 1

Algorithm 2

Algorithm 3

56

Figure 25. Algorithm comparison with loads between 500 and 1000 tons

Figure 25 represents loads from 500 to 1000 tons and comprises 94 cases out of 500 and

this is 18.8% of all cases.

Chart shows that evaluation criterion value of algorithm 1 is located above empty ship

criterion value and it indicates that X coordinate is shifted to bow. Algorithm 2 and 3 in

turn put the cargo closer to aft and overlap each other on the chart.

The average X coordinate for algorithm 1 is 87.45 and average Y coordinate is -0.53,

and for algorithms 2 and 3 X coordinates are 82.73 and 82.08 respectively and average

Y coordinate value is -1,01.

Heel and trim for loads from 500 to 1000 tons are pictured on Figures 26 and 27

respectively.

0

20

40

60

80

100

120

5
0

1
53

0.
7

54
3.

3
56

6.
9

5
7

0
59

2.
2

60
9.

1
61

6.
2

64
1.

2
66

3.
5

67
9.

6
68

2.
9

71
0.

9
71

8.
6

72
5.

6
74

7.
2

76
3.

2
77

6.
8

78
2.

5
79

1.
1

80
3.

8
82

4.
4

84
0.

3
85

8.
1

8
8

0
90

3.
8

92
3.

3
93

3.
2

94
0.

1
96

7.
3

9
7

8
9

9
3

Ev
al

u
at

io
n

 c
ri

te
ri

o
n

 v
al

u
e

Tons

Algorithm 1

Algorithm 2

Algorithm 3

Lightship

57

Figure 26. Heel comparison for loads from 500 to 1000 tons

Figure 27. Trim comparison for loads from 500 to 1000 tons

Figures 26 and 27 confirm, that on loads up to 1000 tons algorithm 1 has a better heel,

than algorithms 2 and 3 have. They overlap each other on chart. The load is heavier than

in previous group and now a single truck does not affect the ship balance evidently.

Trim is also good with average value about 0.1 metre for all algorithms.

Overall, this two groups of cargo loads represents 34,8% of all cases reviewed.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
D

eg
re

es

Tons

Heel angle

Algorithm 1

Algorithm 2

Algorithm 3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
e

tr
es

Tons

Trim

Algorithm 1

Algorithm 2

Algorithm 3

58

Figure 28. Algorithm comparison with loads between 1000 and 2000 tons

The loads between 1000 and 2000 tons represent 136 cases or 27,2 % of all cases. The

relative values for corresponding loads are pictured on Figure 28.

There is a strong indication that algorithm 1 places cargo closer to the empty ship

gravity point than algorithms 2 and 3, which almost overlap each other on chart. This is

can indicate that either heel, or trim, or even both values after processing data with

algorithm 1 should be better, than heel and trim produced with algorithms 2 and 3.

Average X coordinate value for algorithm 1 is 84.62 versus algorithm 2 and 3,

coordinate X is 80.96 and 80.76 respectively. Average Y coordinate is still better at

value -0.63 for algorithm 1 and average Y coordinates for algorithms 2 and 3

respectively -0.75 and -0.748.

With the increase of tonnage vehicle alignment mechanism can slightly decrease the

heel.

Heel and trim comparison for loads between 1000 and 2000 tons are pictured on Figures

29 and 30 respectively.

0

10

20

30

40

50

60

70

80

90

100

10
07

.2

10
37

.5

10
80

.3

11
31

.5

11
73

.7

12
26

.2

1
3

1
2

13
49

.7

13
92

.8

14
46

.2

14
99

.5

15
30

.4

15
66

.9

16
25

.8

16
63

17
11

.1

17
46

.6

17
86

.5

18
26

.6

1
8

5
2

19
06

.7

19
50

.6

19
89

.1

Ev
al

u
at

io
n

 c
ri

te
ri

o
n

 v
al

u
e

Tons

Algorithm 1

Algorithm 2

Algorithm 3

Lightship

59

Figure 29. Heel comparison for loads between 1000 and 2000 tons

Figure 30. Trim comparison for loads between 1000 and 2000 tons

Figures 29 and 30 confirm the suggestion, that for loads between 1000 and 2000 tons

algorithm 1 is preferred over algorithms 2 and 3, which overlap on chart.

Algorithm 1 is heavily dependent on the types of vehicles and is most efficient when

number of trucks is near 30 in total. Algorithms 2 and 3 are less sensitive to the type of

vehicles in the load.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
07

.2

10
34

.5

1
0

7
1

11
05

.1

11
39

.1

1
1

8
7

12
26

.2

13
10

.5

1
3

5
5

13
93

.1

14
53

.2

15
05

.2

15
51

.8

1
6

0
1

16
51

.6

17
01

.3

17
47

.3

18
03

.8

18
47

.9

18
91

.8

19
50

.6

19
93

.4

D
eg

re
es

Tons

Heel angle

Algorithm 1

Algorithm 2

Algorithm 3

0

0.05

0.1

0.15

0.2

0.25

0.3

10
07

.2

10
34

.5

10
7

1

11
05

.1

11
39

.1

11
8

7

12
26

.2

13
10

.5

13
5

5

13
93

.1

14
53

.2

15
05

.2

15
51

.8

16
01

16
51

.6

17
01

.3

17
47

.3

18
03

.8

18
47

.9

18
91

.8

19
50

.6

19
93

.4

M
et

re
s

Tons

Trim

Algorithm 1

Algorithm 2

Algorithm 3

60

Figure 31. Algorithm comparison with loads between 2000 and 3000 tons

Figure 31 shows the evaluation criterion values for loads between 2000 and 3000 tons.

They represent 153 cases or 30.6 % of all cases.

The chart indicates that algorithm 1 should perform better that algorithms 2 and 3.

Average X coordinate value for algorithm 1 is 84.02 against is 81.67 and 81.60

respectively. Average Y coordinate is now worse for algorithm 1 with average value

-0.71 for algorithm 1 and average Y coordinates for algorithms 2 and 3 respectively

-0.69.

The numbers suggest, that difference between all algorithms is not very significant in

this cargo group.

0

10

20

30

40

50

60

70

80

90

100

2
0

0
8

.4
2

0
7

5
.2

2
1

4
7

.3
2

1
7

6
.4

2
2

3
0

2
2

7
2

.7
2

2
8

4
.6

2
3

0
7

.5
2

3
5

4
.3

2
3

8
7

.6
2

4
0

1
2

4
1

8
.5

2
4

3
6

.8
2

4
8

1
.5

2
5

2
4

.3
2

6
0

4
.9

2
6

2
9

.1
2

6
6

0
.5

2
6

7
1

.1
2

7
1

0
2

7
5

9
.8

2
8

2
0

.3
2

8
5

3
.6

2
9

1
3

.7
2

9
5

5
.1

2
9

8
2

Ev
al

u
at

io
n

 c
ri

te
ri

o
n

 v
al

u
e

Tons

Algorithm1

Algorithm2

Algorithm3

Lightship

61

Figure 32. Heel comparison for loads between 2000 and 3000 tons

Figure 33. Trim comparison for loads between 2000 and 3000 tons

Figures 32 and 33 contain the heel and trim comparison data for loads between 2000

and 3000 tons and confirm the proposal that the output results will not differ

significantly.

Average heel for algorithm 1 is 0.84 degree against average heel 0.77 degree for

algorithm 2 and 3.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

D
eg

re
e

s

Tons

Heel comparison

Algorithm 1

Algorithm 2

Algorithm 3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
e

tr
es

Tons

Trim

Algorithm 1

Algorithm 2

Algorithm 3

62

Generally, algorithm 1 produces better results for trim again, because of its strategy of

placing vehicles on all decks. Algorithms 2 and 3 use the schema of loading decks after

deck going up, that is why location of vehicles can differ, but as trim does not exceed

level of 0.35 meter this is a good result.

Figure 34. Algorithm comparison with loads between 3000 and 4000 tons

Figure 34 shows the comparison of evaluation criterion for loads between 3000 and

4000 tons. They represent 36 cases or 7,2 % of all cases.

 Chart suggests, that algorithm 1 is more stable at least with one of the parameters, and

algorithms 2 and 3 results indicate that most likely two parameters will vary.

Average X value coordinate for this tonnage for algorithm 1 is 83.69 versus algorithm 2

and 3, coordinate X is 84.38 and 84.34 respectively. Average Y coordinate is still better

at -0.73 for algorithm 1 and average Y coordinates for algorithms 2 and 3 respectively

-0.63 and -0.678.

Heel and trim comparison for loads between 3000 and 4000 tons are pictured on Figures

35 and 36 respectively.

70

72

74

76

78

80

82

84

86

88

90

Ev
al

u
at

io
n

 c
ri

te
ri

o
n

 v
al

u
e

Tons

Algorithm 1

Algorithm 2

Algorithm 3

Lightship

63

Figure 35. Heel comparison for loads between 3000 and 4000 tons

Figure 36. Trim comparison for loads between 3000 and 4000 tons

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00
D

eg
re

es

Tons

Heel angle

Algoritthm 1 Algorithm 2 Algorithm 3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
et

re
s

Tons

Trim

Algorithm 1 Algorithm2 Algorithm3

64

Figures 35 and 36 indicate that the proposal about algorithm 1 was correct. Trim is just

within limit of 0.22 metres, but heel is even higher than algorithm 2 and 3 shows. This

is because with such heavy loads all decks are loaded and the strategy to keep heavy

weight closer to the centre of the ship wins over strategy to balance weight on ship

sides. Also, algorithm 3 finally makes a small difference against algorithm 2.

Peak trim of 0.41 metre happened because some light Tallink trailers were put to the

bow, and their weight was too small to decrease the trim.

There’s only load for cargo over 4000 tons and it is exactly 4076 tons and algorithms 2

and 3 outperform algorithm 1 with X coordinate 85.78 and 85.72 versus 84.36 and Y

coordinates for algorithms 2 and 3 -0.59 comparing -0.81 with algorithm 1 used.

Algorithm 1 heel is 1.65 with trim 0.08, algorithm 2 with heel 1.13 and trim as 0.18 and

algorithm 3 with same heel as 1.13 and trim 0.17. Again algorithm 3 makes a small

difference against algorithm 2 with slightly better trim.

In overall it indicates that algorithms 2 and 3 are recommended for use starting from 0

to 500 tons and for loads of 3000 tons and more. For loads till from 500 to 3000 tons,

user can select between algorithms 1, 2 or 3 whichever suggest better results for a user.

All algorithms provide ship trim and heel algorithms within allowed limits.

4.2.2 Analysis of truck cargo

In this section author analyses the dependability of percentage of the heavy 25- and 39-

ton trucks in the loads on the heel and trim of the ferry. In case of loads over 3000 tons,

the biggest part of the load are heavy trucks. Figures 37 and 38 show how heavy cargo

influences the ship heel and trim.

65

Figure 37. Heel comparison to truck percentage

Figure 38. Trim comparison for truck percentage

Algorithms 2 and 3 suggest that the heavy load is relatively evenly distributed around

the value of 1 degree of the ship heel and this heel is usually less than ship have if

algorithm 1 is used. Again algorithms 2 and 3 almost overlap each other.

The low trim value, as it has been learnt previously, is great advantage of algorithm 1

and it confirms that it is still kept low even with higher loads thanks to proper placement

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

70
.3

6

72
.7

7

73
.9

3

74
.2

5

75
.6

8

76
.4

2

76
.8

2

77
.0

6

80
.1

5

80
.4

3

81
.1

8

81
.4

7

82
.8

4

84
.7

4

85
.5

7

87
.6

7

91
.1

5

92
.0

3

D
eg

re
e

s

Truck percentage of whole load

Heel

Algorithm 1

Algorithm 2

Algorithm 3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

70
.3

6

72
.7

7

73
.9

3

74
.2

5

75
.6

8

76
.4

2

76
.8

2

77
.0

6

80
.1

5

80
.4

3

81
.1

8

81
.4

7

82
.8

4

84
.7

4

85
.5

7

87
.6

7

91
.1

5

92
.0

3

M
et

re
s

Truck percentage from the whole load

Trim

Algorithm 1

Algorithm 2

Algorithm 3

66

of load along X axis. During the testing there was no indication that trim will

significantly increase with the load increase in algorithm 1 implementation.

4.2.3 Critical cases study

In this section author analyses the maximal difference of output coordinates of the cargo

gravity point and the coordinates of gravity point of the empty ship. This is done to

make sure that even big difference of coordinate X from the empty ship centre of

gravity point still give the result for trim and heel values to stay inside allowed

boundaries.

Tables 12 and 13 represent maximal and minimal X coordinates in relation to the ship

heel and trim for algorithm 1. Respectively tables 14 and 15 represent maximal and

minimal X coordinates in relation to ship heel and trim for algorithms 2 and 3.

Table 12. Minimal X coordinates for algorithm 1

Minimal X

coordinate value[m]

Weight [10
3
 kg] Heel [°] Trim [m]

67.57 514.7 0.00 0.19

73.32 479.2 0.05 0.12

73.75 473.9 0.00 0.12

Table 13. Maximal X coordinates for algorithm 1

Maximal X

coordinate value[m]

Weight [10
3
 kg] Heel [°] Trim [m]

109.87 377.4 0.09 0.19

105.39 289.3 0.1 0.12

104.62 671.9 0.05 0.27

Table 14. Minimal X coordinates for algorithms 2 and 3

Minimal X

coordinate value[m]

Weight [10
3
 kg] Heel [°] Trim [m]

71.70 339.9 0,04 0.10

71.74 252.1 0.02 0.08

72.1 473.9 0.18 0.13

67

Table 15. Maximal X coordinates for algorithms 2 and 3

Maximal X

coordinate value[m]

Weight [10
3
 kg] Heel[°] Trim [m]

100.82 161.9 0.05 0.05

100.49 136.9 0.06 0.04

99.67 169.9 0.00 0.04

All cases indicate that even X coordinate of the cargo does not lie close to the X

coordinate of the empty ship, so the ship is stable.

All output Y coordinates might not be taken in consideration as in all tests heel never

reached critical levels of 2 degrees.

4.2.4 Graphical representation in Tallink software

The results of the program are put into the LD file, which in turn should be loaded into

Tallink software. This is an example how end users see the vehicle placement plan.

Figure 39 represent the vehicle placement plan for decks 3 and 5.

Figure 39. Visual representation of 3 and 5 deck vehicles placement

68

Figure 40 represent a vehicle placement plan for decks 6 and 7 along with ship heel and

trim information.

Figure 40. Visual representation of 6 and 7 deck vehicles placement and ship stability information

69

5 Summary

The goal of the thesis was to create a tool for the Tallink bosuns of MS “Megastar” for

automation of vehicle placement onboard the ship on Tallinn - Helsinki line.

Author reviewed multiple options for a vehicle placement plans and as result modified

1D bin packing algorithms has been implemented. Three algorithms were implemented,

tested and analysed with real operational data provided by the Tallink.

Solution was developed using the Java language and the outcome is a Java application

with simple user interface, which can run on multiple platforms. Application

automatically invokes a special converter, so application results are used for creation of

cargo plans compatible with Tallink existing software.

For all tested cases Tallink software confirmed that generated cargo plans meet ship

stability requirements, thus the objectives have been achieved and application can be

used for real ship loading.

70

References

[1] V. T. (City of H. Jaakola Ari, Oksanen-Sarela Katja, Berglund Petri and P. K.

(City of T. Kuulpak Peeter, Helsinki - Tallinn, Facts and figures 2014. 2014.

[2] “Passenger and goods transport through ports increased last year - Statistics

Estonia,” 2020. https://www.stat.ee/news-release-2020-036 (accessed Apr. 01,

2020).

[3] “Corporate factsheet 2017.”

https://www.tallink.com/documents/12397/79137327/Tallink-Grupp-Investors-

Company-Factsheet-2017-03.pdf (accessed Apr. 27, 2020).

[4] “Megastar generates largest passenger numbers on Baltic Sea in 6 months |

Economy | ERR.” https://news.err.ee/610186/megastar-generates-largest-

passenger-numbers-on-baltic-sea-in-6-months (accessed Apr. 27, 2020).

[5] “Tallink Shuttle Megastar - Tallink & Silja Line.”

https://www.tallinksilja.com/tallink-shuttle-megastar-helsinki-tallinn-

helsinki#tabs-content-9 (accessed Apr. 01, 2020).

[6] “MS Megastar deck plan,” Accessed: Apr. 01, 2020. [Online]. Available:

https://www.tallinksilja.com/documents/10192/122897942/Megastar+deck+plan.

pdf/e06bef49-552a-a5c5-738a-2ad7c3fb80bd.

[7] “Focus on IMO IMO and ro-ro safety,” 1997.

[8] A. Biran, Ship Hydrostatics and Stability, vol. 363, no. 9. 2003.

[9] B. Barrass and C. R. Derrett, Ship Stability for Masters and Mates. 2006.

[10] Y. Kirillova and Y. Meleshenko, “Development of an economic and

mathematical model of loading a freight and passenger ferry,” Eastern-European

J. Enterp. Technol., vol. 3, no. 4–81, pp. 28–37, 2016, doi: 10.15587/1729-

4061.2016.71215.

71

[11] B. O. Øvstebø, L. M. Hvattum, and K. Fagerholt, “Optimization of stowage plans

for RoRo ships,” Comput. Oper. Res., vol. 38, no. 10, pp. 1425–1434, 2011, doi:

10.1016/j.cor.2011.01.004.

[12] J. D. Garey MR, Computers and Intractability - A Guide to the Theory of NP-

Completeness. San Francisco: WH Freeman and Company, 1979.

[13] J. R. Hansen, I. Hukkelberg, K. Fagerholt, M. Stålhane, and J. G. Rakke, “2D-

packing with an application to stowage in Roll-on Roll-off liner shipping,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 9855 LNCS, pp. 35–49, 2016, doi: 10.1007/978-3-319-

44896-1_3.

[14] R. Puisa, “Optimal stowage on Ro-Ro decks for efficiency and safety,” J. Mar.

Eng. Technol., pp. 1–17, Sep. 2018, doi: 10.1080/20464177.2018.1516942.

[15] E. Wathne and J. Rakke, “Cargo Stowage Planning in RoRo Shipping

Optimisation Based Naval Architecture Marine Technology (2 year).”

[16] R. De Almeida and M. T. A. Steiner, “Resolution of 1-D Bin Packing Problem

using Augmented Neural Networks and Minimum Bin Slack,” 2015 Latin-

America Congr. Comput. Intell. LA-CCI 2015, pp. 1–6, 2016, doi: 10.1109/LA-

CCI.2015.7435943.

[17] A. Layeb and S. Chenche, “A Novel GRASP Algorithm for Solving the Bin

Packing Problem,” Int. J. Inf. Eng. Electron. Bus., vol. 4, no. 2, pp. 8–14, 2012,

doi: 10.5815/ijieeb.2012.02.02.

[18] Falkenauer E., Genetic Algorithms and grouping problems. New York: Wiley,

1998.

[19] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham,

“Worst-Case Performance Bounds for Simple One-Dimensional Packing

Algorithms,” SIAM J. Comput., vol. 3, no. 4, pp. 299–325, 1974, doi:

10.1137/0203025.

[20] “TIOBE - The Software Quality Company.” https://www.tiobe.com/tiobe-index/

72

(accessed Apr. 07, 2020).

[21] K. S. and E. R. E. Freeman, B. Bates, Head First Design Patterns. O’Reilly

Media, 2014.

73

Appendix 1 – Code location

The code of the project has been published at the following locations with public access:

Algorithm 1 - https://gitlab.com/anerma_ttu/roro.git

Algorithm 2 - https://gitlab.com/anerma_ttu/roro2.git

Algorithm 3 - https://gitlab.com/anerma_ttu/roro3.git

Binary - https://drive.google.com/open?id=11yq1FzJnB-JfHt1_wc15WySpuSAOKZx6

https://gitlab.com/anerma_ttu/roro2.git
https://gitlab.com/anerma_ttu/roro3.git

74

Appendix 2 – Lanes data

Table 16. Lanes data

DECK LANE XMIN XMAX XCG YCG Length X_DIFF Y_DIFF

3. DECK L11 15 125 70.00 12.95 110 18.13 -12.88

3. DECK L12 1.00 149.00 75.00 9.85 148 13.13 -9.78

3. DECK L13 -3.00 158.00 77.50 6.75 161 10.63 -6.68

3. DECK L14A -3.00 28.00 12.50 3.65 31 75.63 -3.58

3. DECK L14F 150 182 166.00 3.65 32 -77.87 -3.58

3. DECK L15 0.00 158.00 79.00 -0.55 158 9.13 0.62

3. DECK L16 -3.00 182.00 89.50 -3.65 185 -1.37 3.72

3. DECK L17 -3.00 158.00 77.50 -6.75 161 10.63 6.82

3. DECK L18 1 149 75.00 -9.85 148 13.13 9.92

3. DECK L19 15.00 125.00 70.00 -12.95 110 18.13 13.02

5. DECK L21 0.00 168.00 84.00 12.85 168 4.13 -12.78

5. DECK L22 13.00 157.00 85.00 9.75 144 3.13 -9.68

5. DECK L23A 20 36 28.00 6.20 16 60.13 -6.13

5. DECK L23M 62.60 105.60 84.10 6.20 43 4.03 -6.13

5. DECK L23F 146.00 152.00 149.00 6.20 6 -60.87 -6.13

5. DECK L24A 0.00 28.00 14.00 3.45 28 74.13 -3.38

5. DECK L24F 149 180 164.50 3.45 31 -76.37 -3.38

5. DECK L24MP 94.60 105.60 100.10 3.80 11 -11.97 -3.73

5. DECK L24MS 94.60 105.60 100.10 1.40 11 -11.97 -1.33

5. DECK L25A 0.00 32.50 16.25 -0.90 32.5 71.88 0.97

5. DECK L25F 129 162 145.50 -0.90 33 -57.37 0.97

5. DECK L25M 32.50 129.00 80.75 -0.90 96.5 7.38 0.97

5. DECK L26A 14.00 49.00 31.50 -3.30 35 56.63 3.37

5. DECK L26F 129.00 157.00 143.00 -3.30 28 -54.87 3.37

5. DECK L26M 49 129 89.00 -3.30 80 -0.87 3.37

5. DECK L27A 22.00 49.00 35.50 -5.70 27 52.63 5.77

5. DECK L27F 129.00 152.00 140.50 -5.70 23 -52.37 5.77

5. DECK L27M 49.00 129.00 89.00 -5.70 80 -0.87 5.77

75

5. DECK L28 0 184 92.00 -10.05 184 -3.87 10.12

5. DECK L29 0.00 184.00 92.00 -13.15 184 -3.87 13.22

6. DECK L31 94.80 124.80 109.80 3.25 30 -21.67 -3.18

6. DECK L32 94.8 124.8 109.80 0.95 30 -21.67 -0.88

6. DECK L33 47.40 147.40 97.40 -1.35 100 -9.27 1.42

6. DECK L34 28.70 147.40 88.05 -3.65 118.7 0.08 3.72

6. DECK L35 28.70 147.40 88.05 -5.95 118.7 0.08 6.02

7.DECK L41 105.30 167.30 136.30 13.20 62 -48.17 -13.13

7.DECK L42 82.80 169.30 126.05 9.15 86.5 -37.92 -9.08

7.DECK L42A 53.70 58.60 56.15 11.20 4.9 31.98 -11.13

7.DECK L43A 54.2 59 56.60 6.10 4.8 31.53 -6.03

7.DECK L43M 83.00 102.70 92.85 6.10 19.7 -4.72 -6.03

7.DECK L43F1 131.00 169.00 150.00 6.65 38 -61.87 -6.58

7.DECK L43F2 170.00 177.00 173.50 4.90 7 -85.37 -4.83

7.DECK L44A 47.2 52 49.60 4.70 4.8 38.53 -4.63

7.DECK L44M 99.00 119.20 109.10 2.50 20.2 -20.97 -2.43

7.DECK L44F1 150.70 155.70 153.20 1.80 5 -65.07 -1.73

7.DECK L44F2 160.00 165.00 162.50 1.80 5 -74.37 -1.73

7.DECK L45A 52 72 62.00 -1.55 20 26.13 1.62

7.DECK L45M 95.40 125.40 110.40 -1.45 30 -22.27 1.52

7.DECK L46A 47.00 79.50 63.25 -4.05 32.5 24.88 4.12

7.DECK L46M 95.40 125.40 110.40 -3.95 30 -22.27 4.02

7.DECK L46F1 150.7 155.7 153.20 -4.20 5 -65.07 4.27

7.DECK L46F2 160.00 165.00 162.50 -4.20 5 -74.37 4.27

7.DECK L46F3 170.00 177.00 173.50 -2.50 7 -85.37 2.57

7.DECK L47A 47.00 138.80 92.90 -6.55 91.8 -4.77 6.62

7.DECK L48A 53.7 58.6 56.15 -11.05 4.9 31.98 11.12

7.DECK L48 79.00 165.60 122.30 -10.75 86.6 -34.17 10.82

7.DECK L49 105.60 165.60 135.60 -13.25 60 -47.47 13.32

