
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Adeolu Samuel Osidibo 172624IASM

TEST DATA GENERATION FOR

SOFTWARE-BASED SELF TEST OF

MICROPROCESSORS

Master’s thesis

Supervisor: Raimund-Johannes Ubar

 Professor

Co. Supervisor: Adeboye Stephen Oyeniran

 Early Stage Researcher

2

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been cited. This thesis has not been presented

for examination anywhere else.

Author: Adeolu Samuel Osidibo

07.01.20

3

Abstract

Test program generation has been a dominant challenge of software based self-test in a

microprocessor. It was previously generated manually, and this process inflates the cost

on test and reduces the fault coverage efficiency. However, a novel approach to automate

some of the test processes was proposed in order to expedite a faster delivery of well

tested devices to the market, minimize the cost for testing and obtaining the topmost fault

coverage. The approach was to generate and organize a test program for a Microprocessor

using HLDD [9].

Generating a test program for a microprocessor (MP) requires a test data and selecting a

test data is as important as the test program itself [9]. In [1], it was stated that the test data

plays a very important role in determining the quality of a test. From previous works, it

has been proven that in using HLDD concept, control faults can be detected using

conformity test and the data path fault can be detected using a scanning test [1][2]. The

HLDD consists of the terminal and non-terminal nodes. The terminal nodes serves as the

operations for processing data while the non-terminal nodes represent the control

variables given in the MP. Basically, it has been previously proven that control test can

be used to detect control faults and pseudo-exhaustive test can be used to exhaustively

test the data processing operations for faults.

We propose a new approach for testing for fault coverage in a MP using random patterns,

and a combination of random and control test, and random and pseudo-exhaustive test to

detect faults in specific modules of a given microprocessor (miniMIPS). In the thesis, a

lot of different scenarios of combining different test data for exercising control and data

parts of microprocessor modules with the goal of trading off different quality measures

like test length (memory space needed for storing test information), test quality (high-

and low-level fault coverage), and testing time (by running test programs in a simulation

environment).

We demonstrated with experiments which of the methods or combination of methods is

more efficient in offering a high fault coverage that will eventually assure the

performance and safety of MPs post manufacturing. A low-level fault simulator was used

to calculate the fault coverage obtained from our experiments.

4

Annotatsioon

Testandmete genereerimine mikroprotsessorite isetestimiseks

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 90 leheküljel, 6 peatükki, 30

joonist, 17 tabelit.

Testprogrammide genereerimine mikroprotsessorite enesetestimiseks on tõsineväljakutse

protsessorite usaldusväärse töö tagamiseks. Mikroprotsessorite testprogramme

koostatakse käsitsi, mis aga muudab selle töö kalliks, ega suuda garanteerida ka piisavat

kvaliteeti. Üheks perspektiivseks lähenemissuunaks testprogrammide sünteesi

automatiseerimisel on kõrgtaseme otsustusdiagrammide (HLDD) kasutamine [9].

Testprogrammide genereerimine põhineb testandmete kasutamisel, kusjuures andmete

valikust oleneb oluliselt testimise kvaliteet. HLDD formalismi abil saab eristada kahte

kontseptsiooni: mikroprotsessori juhtosa jaoks kasutada nn. konformseid (conformity)

teste ning andmeosa jaoks nn. skaneerimisteste (scanning tests) [1-2]. HLDD graafid

koosnevad terminaal- ja mitteterminaaltippudest. Terminaaltippude abil modelleeritakse

andmetöötlusoperatsioone ja mitteterminaaltippude abil juhtsignaale. Vastavalt võib

jaotada ka rikkeid mikroprotsessorites – juhtseadmete ja andmetöötlusseadmete riketeks.

Töös esitatakse uudne lähenemisviis automatiseeritud mikroprotsessorite

testprogrammide sünteesiks, mis põhineb kolme tüüpi testandmete kasutamisel:

testandmed juhtosa testiks ja andmeosa testiks, ning stohhastilised andmed. Töös on välja

pakutud ning analüüsitud terve rida erinevaid stsenaariumeid testandmete

kombineerimisel, mille eesmärgiks oli leida kompromisse kogutesti pikkuse (testide

salvestamiseks vajaliku mälumahu), testimise kvaliteedi ja testimise aja vahel.

Töös on läbi viidud põhjalikud eksperimendid erinevate testprogrammide struktuuridega,

mis võimaldas analüüsida ja kindlaks teha parimad lahendused, tagamaks

mikroprotsessorite testimisel kõrget rikete katet ja suuremat usaldusväärsust

mikroprotsessorite töös. Testprogrammide kvaliteedi määramiseks sai kasutatud Euroopa

mikroelektroonika tipptööstusest pärit professionaalset rikete simulaatorit.

5

Acknowledgments

Firstly, I give glory to God, my loving father in heaven. His love, empowerment and

guidance encouraged me to complete this thesis.

Secondly, I will like to thank my supervisor, Prof. Raimund-Johannes Ubar, for his

supervision, advice and support throughout the course of this research. It was a pleasure

working with you. I appreciate my co-supervisor Adeboye Oyeniran Stephen, for his

technical explanations, motivation and the personal sacrifices he made to make sure I am

on track with this Thesis. I am very grateful, and your efforts remains in my heart always.

 To my lovely girlfriend, Oluwabunmi Temitayo Awe, I am blessed to have you. Your

support, motivation, sacrifice and help have a permanent stamp in me. Thank you for the

long nights of studying together for moral support, your patience, and contribution to this

thesis. We did it baby!

My deep and sincere appreciation goes to friends, who have become family – Gbenga

Niyi-Leigh, Adeniyi Adekoya, and Oluwajoba Adekoya. Your calls, your support, your

sacrifice and counsel, and your immense contributions to the completion of this project

is immensely recognized. You guys are the best!

Oluwatoorera Kayode-Isola, my amazing friend who is far but near. I recognize your love,

prayers and encouragement, thank you so much. It is a wrap now.

I must say a very big thank you to my friends and family who prayed for me, checked on

me and continually encouraged me. George Ayankojo, Bolaji and Ebunmide Ladokun,

and Oluwaseyi Dada, I appreciate you guys a lot.

God bless you all

6

List of abbreviations and terms

ATG

ATPG

ALU

CPU

Automated Test Generation

Automated Test Pattern Generation

Arithmetic Logic Unit

Central Processing Unit

CUT Circuit Under Test

DUT Design Under Test

FC Fault Coverage

HLDD High Level Decision Diagram

ILA Iterative Logic Arrays

ISA Instruction Set Architecture

MP Microprocessor

MSF Multiple Stuck-At Fault

NOC Network-On-Chip

RAM Random Access Memory

RISC Reduced Instruction Set Computer

ROBDD Reduced Ordered Binary Decision Diagram

ROM Read-Only Memory

7

RTL Register Transfer Level

S-A-0 Stuck-At-0

S-A-1

SBST

SOC

VHDL

Stuck-At-1

Software Based Self-Test

System-on-Chip

VHSIC Hardware Description Language

8

Table of contents

Abstract ... 3

Acknowledgments .. 5

1 Introduction .. 11

1.1 Background and problem.. 12

1.2 Objectives ... 13

1.3 Organization of thesis ... 14

2 Digital systems ... 15

2.1 Development life cycle of digital systems .. 15

2.2 Testing in digital systems ... 16

2.2.1 Defects, Faults, Error and Failure ... 17

2.2.2 Levels of Abstraction in Digital System Testing .. 17

2.3 Fault modelling ... 18

2.3.1 Stuck-At-faults Model ... 19

2.3.2 Conditional fault model .. 20

2.3.3 Open and Short Faults ... 20

2.3.4 Transistor Faults.. 21

2.4 HLDD based fault models .. 21

2.4.1 Decision diagrams ... 21

2.4.2 Structural Synthesized Binary Decision diagram (SSBDD) 21

2.4.3 High level Decision Diagram (HLLD) ... 22

2.4.4 HLDD Based Fault Models .. 23

2.5 Low level and high-level fault models ... 24

2.5.1 Behavioural Bit Stuck-At Fault Models .. 24

2.5.2 Branch and Condition Stuck-At Faults ... 24

3 Software-based self-test ... 25

3.1 Development of SBST .. 25

3.1.1 MiniMIPS ISA .. 26

3.1.2 HLDD Synthesis ... 28

3.1.3 Test Synthesis from HLDD ... 31

3.2 Test program generation with HLDD ... 32

3.2.1 High Level Test Data Generation ... 33

9

3.3 Test program generation ... 46

3.4 Fault simulation .. 47

3.5 Conclusions .. 47

4 Development and investigations of the methods ... 47

4.1 Test templates ... 48

4.2 Set-up of the Experiments .. 52

4.3 Combination of different methods .. 53

5 Implementation and investigations .. 56

5.1 Goals of the experiments .. 57

5.2 Investigations #1 ... 58

5.3 Investigations #2 ... 60

5.4 Investigations #3 ... 61

5.5 Investigations #4 ... 62

5.6 Investigations #5 ... 62

5.7 Investigations #6 ... 63

5.8 Investigations #7 ... 64

6 Conclusion ... 67

References .. 68

Appendix 1 – Program Description and Manual .. 71

Appendix 2 – Structure of the miniMIPS processor... 75

Appendix 3 – CPU specification for the experiments .. 76

Appendix 4 – Source Code ... 77

A Pseudo_template.py ... 77

B Random_Template.py .. 81

C Random_data_generator.py .. 85

D Parameter.txt ... 86

E TestProgramGenerator.py ... 89

10

List of figures

Figure 1: Testing Process of a digital circuit under test ... 16

Figure 2: Levels of abstraction of digital systems [11] .. 18

Figure 3 AND gate with two inputs ... 19

Figure 4: SA1 in an AND gate ... 19

Figure 5: Representing an RTL data path with HLDD [4] ... 22

Figure 6: SBST generation framework ... 26

Figure 7: Structural representation of miniMIPS registers [36] 27

Figure 8: Types of instruction formats ... 28

Figure 9: AND instruction architecture .. 28

Figure 10: MiniMIPS HLDD model using 4 instruction sets ... 30

Figure 11: Synthesis of HLDD for miniMIPS [9] .. 31

Figure 12: Example of test generation .. 32

Figure 13: High-Level test data and test program generation .. 33

Figure 14: Mapping of miniMIPS instruction formats and the HLDD functional variable

 .. 38

Figure 15: Algorithm for conformity test ... 38

Figure 16: Structure of Conformity test ... 39

Figure 17: Structure of Scanning Test .. 43

Figure 18: Algorithm for scanning test... 44

Figure 19: PET combination to All PET Test Patterns .. 45

Figure 20: Test Program Generation process with four templates 46

Figure 21: HLDD Structure for method 2, 3, and 4 ... 49

Figure 22: ADD structure in miniMIPS ISA .. 49

Figure 23: Set-up of the experiments ... 53

Figure 24: Experiment structure for experiments 1 - 7 .. 54

Figure 25: Experiment structure for experiments 8 – 11 .. 54

Figure 26: Structure of miniMIPS execute module .. 55

Figure 27: Combination of different methods .. 56

Figure 28: Test program generator response from Linux terminal 72

Figure 29: Generating dump file for fault coverage calculation 73

Figure 30: Structure of the miniMIPS processor .. 75

file:///C:/Users/user/Desktop/New_Thesis/Writing/Main_Draft_Final.odt%23_Toc30407729
file:///C:/Users/user/Desktop/New_Thesis/Writing/Main_Draft_Final.odt%23_Toc30407737
file:///C:/Users/user/Desktop/New_Thesis/Writing/Main_Draft_Final.odt%23_Toc30407743

11

List of tables

Table 1: Truth table for an AND gate (no faults) ... 19

Table 2: Expansion of the miniMIPS ISA [9] .. 29

Table 3: Generation of PET data for adder [25] ... 41

Table 4: Generation of PET data for Subtractor [25] ... 41

Table 5: List of instructions under template 1 .. 50

Table 6: List of instructions under template 2 .. 51

Table 7: List of instructions under template 3 .. 51

Table 8: List of instructions under template 4 .. 52

Table 9: Results of Experiment 1 - 4 .. 58

Table 10: Number of faults in MUTs of miniMIPS processor 59

Table 11: Test length and simulation time for experiments 1 - 4 59

Table 12: Comparison of method 2 and 3 .. 60

Table 13: Comparison of experiments 1, 6 and 9 ... 61

Table 14: Comparison of experiment 2, 5 and 8 .. 62

Table 15: Comparison of experiment 4 and 7 .. 62

Table 16: Comparison of experiments 8, 9, 10 and 11 ... 63

Table 17: Observation of experiment 3, 8 and 9 .. 64

Table 18: Observation of experiments 6 and 7 ... 65

Table 19: Comparison for the significance of Random data .. 65

12

1 Introduction

This thesis focuses on a new approach of testing microprocessors with software based

self-test by combining different test data generation methods to detect faults in

microprocessor modules. A novel concept of HLDD synthesis was used to generate the

test program while implementing the combination of test data.

This chapter discusses the background and problem, subsequently, the goal of the thesis,

and lastly, the overall structure of this work.

1.1 Background and problem

The increase in technological advances has enabled much more complex digital systems

(DS) to be built. Massive parallel computing and new design paradigms like System-on-

Chip (SoC) and Network-on-Chip (NoC) now exists and needed in-depth research to

develop new algorithms and design and test methods, based on microprocessors. As more

complex digital systems are being developed, it becomes more evident that Moore’s law

is continually being proven. Moore’s law emphasize that the number of transistors on

integrated circuits doubles every 18 months [5] [6]. Fragility of transistors becomes more

rampant as the microprocessors undergo rigorous manufacturing processes. Defects

becomes inevitable in the transistors of MPs, which could lead to faults in the MPs and

could bear severe consequences, especially when the complex system is a critical system.

The failure of such system could cause loss of sensitive data, lives and properties. The

severity of a fault in the transistors on a MP helps to emphasize the importance of testing

to guarantee and improve the reliability of any MP during the operational stage.

In the recent decade, the semiconductor industry was challenged to develop novel testing

methods that can be integrated in MP test flow. Without a humongous budget, the testing

methods to be developed are targeted at high quality product development. A test method

that suits the description was first proposed in 1980 [3], and it is called Software-Based

Self-Test (SBST).

For the main purpose of testing the processor, the operational approach of SBST is to

execute the test program on processor itself and its surrounding resources [4]. As

mentioned earlier, this method eradicates the need for external hardware, which may be

expensive, and the time of the test is limited with the performance of the processor. The

13

main subject in the SBST methodology is the test program generation, which must

comply with the high-quality fault coverage standards imposed by the industry [4].

Self-test programs for microprocessors have emerged from been written manually, as a

novel formal approach for modelling the high-level functionality and possible faulty

behaviours was developed; High-Level Decision Diagram (HLDD). HLDDs can be

considered as a generalization of logic level Binary Decision Diagrams (BDD) [4].

From previous works, it has been proven that in using HLDD concept, control faults can

be detected using conformity test and the data path fault can be detected using a scanning

test [1]-[2]. The HLDD consists of the terminal and non-terminal nodes. The terminal

nodes serve as the data path while the non-terminal nodes represent the control variables

given in the MP. Using HLDD, control test can be used to detect control faults and

pseudo-exhaustive test can be used to exhaustively test the data processing operations for

faults. However, as varieties of approaches of MP tests spikes up the interest in this topic

of academia and industry as well, a combination of approaches may contribute immensely

to the effectiveness of MP testing and improve testability.

1.2 Objectives

The goal of the thesis is to develop different methods for the combinations of test data for

microprocessor software based self-testing. The Execute module of the MIPS micropro-

cessor was partitioned into three sub- modules: ALU (arithmetic and logic operations),

MULT1 and MULT2 (multiplication operations).

The section above identified that previous works have been done to improve SBST, de-

velop test program for SBST, and develop different approaches in testing the control part

and the data path of a microprocessor. The approaches applied in testing the control part

and data path of a MP fulfils the constraints for test data generation. To further deduce

the possibilities of these approaches, this thesis presents the following goals:

• Develop different combinations of test data for microprocessor software base self-

testing.

• Develop test templates that enables the test program generator to handle various

combination of test data.

14

• Carrying out simulation experiments through the developed methods to evaluate

the quality (SAF coverage) of four basic test algorithms separately and evaluate

the possible contribution of each test approach.

1.3 Organization of thesis

The thesis is organized as follows:

In chapter 2, an overview of the digital system is surveyed. The area to testing digital

systems and various fault models were discussed, alongside the concept of high-level

decision diagram (HLDD).

Chapter 3 covers the overview of software based self-test and its development. An in-

depth view of HLDD was covered, including how it is used to generate test programs for

the miniMIPS processor. The chapter also contains the test data generation stage,

preceding the test program generation. Chapter 4 entails the development of our proposed

methods in stages and the approach we applied in order to combine the 4 methods. We

implemented the proposed methods by performing various experiments and analysed the

results.

Lastly, the summary and conclusion of the thesis is presented in chapter 6.

15

2 Digital systems

In today’s world the word digital is more common than sliced bread, so are its techniques

are widely known and utilized in all sectors of life. According to [27] which described

digital systems as a combination of devices designed and manipulate logical information

or physical quantities that are represented in digital form that is the quantities can take on

only discrete values. Arguably digital systems applications in the world of electronics, as

well as other major technologies, have performed better than any other systems in any

other era.

2.1 Development life cycle of digital systems

Every complex system goes through a development life cycle, i.e. the detailed plan for

how to develop, alter, maintain, and replace a system to produce a system with the highest

quality and lowest cost in the shortest time.

Digital system undergoes 3 stages which includes

• Design

• Production

• Operation

These stages are set up to mitigate the possible misconceptions that may or may not occur,

every digital systems development is prone to human and system error at every stage,

Each stage has sublevels with the Design stage consisting of specification,

implementation, realization for Production possesses pilot and full while the Operation

has the Installation and Maintenance sub levels [28]. With a wide ranch of possible errors

manifesting any possibly every stage of development it is mandatory to undergo reviews

and checks with every component and stages associated with the development life cycle

of digital systems. Each stage undergoes reviews, as for the Operation stage requires

possible repairs for faults, dividing the systems into level, with the considerations of

various factors responsible for the faults encountered. System Designs need Verifications

in a bid to check the correctness for each step employed, production stage also undergoes

16

testing which is where our focus will be centred upon in the next couple of headings in

this chapter.

2.2 Testing in digital systems

Testing is a concept widely practiced in all sectors of life. Although the approaches may

differ slightly, the fundamental achievement remains absolute and is made manifest in

the process which is an endeavour in determining the overall correctness of a system with

little to no doubt by exposing it to the hardest levels of scrutiny it can possibly handle.

This philosophy also rings through in the aspects of digital systems, which is often

referred to as a black block experiment at every level of development to determine correct

functionality with the application of stimuli at the input and observing the response on

the output [28].

The investigation of the output includes the comparison of its expected reaction with the

yield presented amid the introduction of stimuli, this process is known as circuit under

test (CUT) as we will see in the figure below elaborating the testing process of a digital

circuit under test.

Figure 1: Testing Process of a digital circuit under test

Digital systems become more complex over the years as a result of technological ad-

vancements, components become less testable which makes development complex, with

this growing complexity and technological advancement in digital systems, problems

tend to arise during testing phases since testing is required to encompass multiple activi-

ties in the life of a system. These possible occurrences will be discussed extensively in

the next topic.

17

2.2.1 Defects, Faults, Error and Failure

Common terms that are familiar with researchers who undergo testing with digital

systems include errors, faults defects and flat out failures. These amongst other phrases

are the possible red flags expressing incorrectness of a system.

A defect in an electronic system is the unintended difference between the implemented

hardware and its intended design [33].

An error is the manifestation of a fault or multiple faults expressing the deviation from

the appropriate behaviour in a system.

 Failure indicates a fatal issue in a system or in its module which is making the system

inoperative or unresponsive.

A fault depicts the presence of defects which could either reflect a temporary or

irreversible change in hardware [15]. It could either be structural or physical forms.

There is a bit of a comparison and contrast when we discuss errors and faults in a system,

the appearance of an error automatically implies the presence of fault or some faults,

however, faults do not necessarily cause error history has proven systems to work well

for year even with the possibility of faults proven from stress test which have a slim

chance of occurring in real life. It is important to detect faults that can lead to errors in

systems so that they can be mitigated, guaranteeing systems functionality at optimum

capacity for a long period of time.

2.2.2 Levels of Abstraction in Digital System Testing

This expresses the physical borders of digital systems, also known as series of abstraction,

is the levels from the topmost to the bottom with which the digital system is designed.

This principle is adopted to manage complexity and promote order when developing a

system from the conceptual state even to the highest level.

18

Figure 2: Levels of abstraction of digital systems [11]

The series are grouped together into two levels as we can see in the above figure, there is

a low level of abstraction and the high level. The logic and the physical level accounts for

the low level, the high level of abstraction is accounted for in the RTL and behavioural

levels [29].

2.3 Fault modelling

In the area of test generation and fault simulation, integrals part of digital design, the

diversities facing both centralize focus is enormous in respect to fault detection despite

the similarities. Fault models are essential to the test generation and evaluation so much

so that a wide range of fault models exist in determining the nature and behavioural

defects in digital circuits.

 The outcomes of test generation and fault simulations is highly predicated on the

fault models, which usually faces a back and forth between cost and quality of test, sadly

this is not enough to guarantee an accuracy in detecting faults in accordingly, a blend of

various deficiency models at numerous cases are utilized in the age and assessment of test

vectors.

A few faults have illustrated that numerous recognize test designs with high coverage

give a high demonstrative resolution as well as can help boost the inclusion between

nodes. This methodology makes the ATPG procedure increasingly troublesome and

CPU-concentrated, yet it is quite simple to apply and doesn't require any adjustment in

the test-pattern-generation flow.

19

2.3.1 Stuck-At-faults Model

Originally stuck-at fault is the widely proposed test for the logic circuit without the

application of inputs because the fault suggests that faults will inevitably present itself

when logic variables are stuck at 1s or 0s, relying on a percentile outcome in every

sequence.

Consider an AND gate consisting of two inputs (A and B) and an output C

Table 1: Truth table for an AND gate (no faults)

A B C

0 0 0

0 1 0

1 0 0

1 1 1

Let us assume that there is an SA1 at input A, if the logic value at A is 0 or 1, the logic

value will remain as 1. Normally, if A=0 and B=1 then the output C=0 but due to the SA1

at input A then output C will be always be 1.

Figure 4: SA1 in an AND gate

 C

A

B

Figure 3 AND gate with two inputs

20

Stuck-at fault has proved to be effective and efficient with a technique modelled with

electromagnetic relays coils that become automatically stuck at the appearance of a fault

[8]. However, its complexity becomes detrimental when handling test generation espe-

cially for a large number of faults present in a system, exposing its inaccuracy (over reli-

ance on the percentage of sequence) in modern-day nanoelectronics technology.

2.3.2 Conditional fault model

This is a functional fault model that includes functional verification for every circuit ei-

ther with partial or complete design level. This is also represented as an input pattern fault

model possesses similar attributes to Stuck-at fault (SAF) model nevertheless, its level of

accuracy proves valuable in applications to diminish complexity in test generation in

modern-day nanotechnology and microprocessor [4].

Definition 1: A fault (li /α, lj =β), where li and lj are two lines in a circuit and α, β ∈ {0,1}

is a conditional stuck-at (CSA) fault if li /α refers to the fault li stuck-at α and lj = β refers

to the requirement that some test vector for the stuck fault li /α produces the value β on

line lj. This test vector is then said to detect the CSA fault (li /α lj = β).

The definition according to [10] includes the null condition possibility corresponding to

a normal stuck fault, where (li /α lj = β) is simply (li /α) and no lj or β is specified. This

type of CSA faults is going to be called null condition CSA faults. The expression "com-

pletely specified CSA fault" will be used whenever it is necessary to emphasize the fact

that both the condition line and the condition value have to be specified, as opposed to

the null condition CSA faults.

In a bid to improve test generation and fault coverage numerous fault models have been

created by researchers over the years, with unique components used for uncovering in

respect to faults.

2.3.3 Open and Short Faults

Short faults can also be called bridging faults. This type of fault exists in the wire that

interconnects the transistors that forms the circuit [11]. Also known as interconnects

faults, it occurs due to the broken connections between different points that are expected

to be connected in the circuit. Correspondingly, short faults exist whenever an accidental

connection occurs between nodes that are not asserted to be connected.

21

2.3.4 Transistor Faults

The stuck-at fault cannot precisely emulate the behaviour of fault at the transistor level

because of the multiple transistors that are used to construct CMOS logic gates [11]. Due

to the occurrence of switching at the transistor level, there is a probability that a transistor

would be stuck open or stuck short. Both possessing the idea that a single fault can affect

different combinations of fan-out branches.

2.4 HLDD based fault models

2.4.1 Decision diagrams

Decision diagrams are methods of modelling digital systems at various level of

abstraction. This can be modelled at both low and high levels of abstractions. The low

level which is the logic level possesses binary features which are popularly referred to as

BDDs and the other which deals with the behavioural and the RTL level is known as the

HLDDs.

Binary decision diagram (BDD), a system for modelling digitally has been the standard

in a data structure in computer-aided design (CAD) for manipulating Boolean functions

at various levels of abstraction [9]. Over a jubilee ago when it was introduced, researchers

have proposed other new data structures like the Reduced ordered BDD, Ternary decision

diagram (ROBDD), Edge-Valued decision diagram (EVBDD), zero suppressed (ZBDD

hybrid BDDs (HBDD) and a host of others, with each possessing a level of simplicity

while retaining unique qualities which made BDDs one of the most popular

representations of Boolean functions.

2.4.2 Structural Synthesized Binary Decision diagram (SSBDD)

SSBDDs are unique to other binary decision diagrams because they possess the ability to

map logic circuits directly from the gate level structure. This functionality allows the

modelling various objectives in testing like delays on paths, fault-masking, signal paths

etc. a feature all other BDD do not possess.

22

2.4.3 High level Decision Diagram (HLLD)

High-Level Decision Diagram (HLDD), another alternative of Decision diagram that

represents digital systems from the RTL to the behavioural levels of abstraction. The data

processing operation of HLDD occurs using nodes, a technique which exhibits an

extension of SSBDDs methods for test generation and fault simulation [21]. It comprises

of terminal and non-terminal nodes representing boolean variables from structurally

synthesized BDDs as boolean vectors or high level algebraic operations possessing not

only the ability to describe the structure of a system usually synonymous to logic level

circuits but also the working behaviour of the system thereby extending to the high level

functions of the digital system.

Figure 5 expresses the functionality as well as the structural components of a circuit

represented by an RTL data path using an HLDD. As you can see the data path circuit

enumerates R1 and R2 registers with non-terminal nodes, internal nodes y1-y4 with

intermediaries between the control unit and data with data buses.

Figure 5: Representing an RTL data path with HLDD [4]

Seeing from the diagrams above the procedure for calculating the register variable R2

assumed IN R1, R2 from left to right. Using HLDD, R2 next state (direction) is calculated

in each non-terminal node yk of GR2, predicated on the value of the R2 using the expression

shown by each terminal node, For instance, if y4 = 4, y3 = 5 and y2 = 3, R2 = R1 * R2 is

activated, then the update is stated in R2.

The HLDD nodes account for the structural components of the circuits as does the

topology covers the behavioural aspect.

23

2.4.4 HLDD Based Fault Models [2]

In the definition of HLDD according to [2], it is a graphical representation of a given

discrete function F(Z) and it is a directed acyclic graph that can be defined as a quadruple

Gz = (M, Γ, Z, F) with a set of nodes M, a mapping Γ from m to M. In this equation,

- M is a finite set of nodes

- Γ is a finite set of edges

- Z is a function which defines the variables labelling the node

- F is a function on Γ.

M is divided into two subsets of node: non-terminal MN and terminal MT nodes. Γ(m) ⊂

𝑀 represents the set of all successors of the node 𝑚∈ 𝑀 and Γ-1 (m) ⊂ 𝑀 denotes the set

of all predecessors of m. The graph has a root node m0 with Γ-1 (m) = ∅. The nonterminal

nodes m ∈ MN are labelled by variables z(m) ∈ Z. The terminal nodes mk ∈ MT are labelled

by sub-functions z(mk) = fk (Zk), fk(Zk) ∈ F, which may be as well variables zk ∈ Z or

constants.

For each value e from a set V(z(m)), there is an existence of a corresponding output edge

(m, me) from the node m into the successor node m ∈ Γ(m), e ∈ V(z(m)).

Zt a vector of values assigned to Z at a time t. The edge (m, me), where e ∈ V(z(m)), is

activated by Zt if z(m) = e. A given path l(Zt) = (m, n) in the HLDD is called the activated

if all edges on the path are activated. The activated by Zt edges form a full activated path

l(Zt)= l (m0, mk) which determines the value of the graph variable fk(Zk) from the root

node m0 to one of the terminal node mk.

The HLDD uses the cycle-based modelling theory for evaluating the behaviour of a digital

system. The usage of this theory insinuates that the actuation of a circuit or system state

at a particular cycle is possible, based on the exactness of the system behaviour modelling

required.

24

2.5 Low level and high-level fault models

Growing complexities in digital systems have directly reduced the observability of

internal components thereby narrowing down effective manipulation during testing, with

this looming setback, adequate fault coverage may not be evaluated using certain models.

Speed testing has become a commonly used approach to attain quality tests.

Test pattern generation in digital circuits has two critical approaches from its levels of

abstraction [32]. First is identifying the appropriate model relatable to the physical fault

and the other is inducing the respective models in generating patterns in identifying them.

In most cases, researchers have often defined physical induced faults, which are also

referred to as low-level faults which become evident on higher levels as convenient

reasons why fault models from logic level such as stuck-at faults can be adaptable for

fault modelling during test generation on a higher level.

In this section, we will discuss a few fault models at logic level testing which bear

similarities to fault models at behavioural and R-T level giving rise to mapping low-level

faults to High-level fault models.

2.5.1 Behavioural Bit Stuck-At Fault Models

It is common knowledge that Stuck -at fault models at logic level works when signals and

variables is encoded in either stuck at 1 or 0 however when this low-level fault model is

clearly mapped at behavioural and R-T level it becomes quite useful as well. Stuck- at

fault models components at R-T level are synthesized to specific logic component thereby

implementing input and outputs with that connection [32]. Although this approach can

only model a subgroup of physical fault, it proves the potential physically induced fault

possess even at higher levels in test generation.

2.5.2 Branch and Condition Stuck-At Faults

Branch stuck-at fault reflects a given section which behaviour is stuck at. These could be

a chosen statement or a condition (if, else) statement whereby the condition is either suck

at true or stuck at false.

A choice in a branch articulation might be founded on various conditions associated

through consistent administrators. A condition may likewise be utilized in contingent

assignments and watched practices

25

Generally, low-level abstraction is regarded in the physical subset of a circuit, but it really

isn’t the case all the time because the logic level and R-T level can be categorised as that

level up abstraction as well [31] that is why this section discusses certain ways in which

low-level faults can be mapped up to behavioural level after undergoing sensitization.

These type of fault models are quite advantageous in delivering test vectors even to levels

beyond the behavioural level of a circuit.

3 Software-based self-test

This chapter discusses the proposed formalised method used for SBST program synthesis

for MPs. Using the HLDD model, the test program generation for microprocessor is in

two levels: The system level and the module level of the microprocessor. Each HLDD

presents the behaviour of a module, and the network of HLDDs presents the behaviour of

the system as a whole. At the module level of the microprocessor, the nodes of the HLDDs

are the target of test generation, while the HLDDs themselves are the targets at the system

level. The HLDDs (module) tests T(m)that were generated locally are embedded into the

system level test program template. This entails that the test stimuli for the modules will

be made controllable and the results of the tests will be made observable at the system

level [4].

3.1 Development of SBST

This section introduces the SBST generation framework. Figure 6 shows a generic

overview of the framework. It consists of three main modules: HLDD synthesizer, test

vector generator, and an SBST-generator synthesizer which converts test vectors into test

programs using prepared test code templates [4]. The translation from a set of instructions

into a test program is demonstrated on a 32-bit RISC MiniMIPS microprocessor [30]

according to instruction set in MIPS architecture [30].

26

Figure 6: SBST generation framework

3.1.1 MiniMIPS ISA

An instruction set architecture, ISA is an abstract representation of a processor and its

functionality provided in the architecture documentation. These includes the description

of the general-purpose registers, flags, list of instructions, assembly language syntax and

their binary representation [4]. These descriptions are presented in a specific format that

can be transformed in High-level decision diagrams. Given this information, test

programs can be created. In this section, the open-source microprocessor miniMIPS is

considered. The miniMIPS has 32 registers that are 32 bits long. A structural

representation is depicted in Figure 7.

27

Figure 7: Structural representation of miniMIPS registers [36]

The instruction encoding contains different fields with specific encoding instructions that

describe the function of the module. The rs, rt, rd fields hold the address of the registers

where the operands and results of the functions are stored. OP1 encodes the type of

instruction and OP2 encodes a type of registers for the instruction. Immediate defines the

immediate value as an operand and the field address contains the address where to jump

to [9]. The miniMIPS instruction format used can be categorized into three distinct types

as shown in Figure 8.

28

Figure 8: Types of instruction formats

Figure 9 shows an AND instruction description of the miniMIPS processor manual [30]

Figure 9: AND instruction architecture

3.1.2 HLDD Synthesis

High-level decision diagrams can be constructed from ISA. The HLDD can be

constructed by representing the instructions given in the ISA in a structural format as

shown in Table 2.

29

Table 2: Expansion of the miniMIPS ISA [9]

Using Table 2, an HLDD representing the behaviour of the system or the unit of the sys-

tem under test can be created. From the table, it can be noted that OP1 and OP2 are control

variables (which determines the path to be taken in the graph) and hence are non-terminal

nodes in the HLDD. The combined states of OP1 and OP2 are however unique and will

result in a terminal node defined by the instruction shown as ISA level operation.

S/N Instruction OP1 OP2 Mnemonics ISA Level Operation

1 ADD 000000 (0) 100000 (32) ADD rd rs rt rd= rs + rt

2 ADDI 001000 (8) - ADDI rt rs I rt= rs + I

3 ADDIU 001001 (9) - ADDIU rt rs I rt= rs + I

4 ADDU 000000 (0) 100001 (33) ADDU rd rs rt rd= rs + rt

5 AND 000000 (0) 100100 (36) AND rd rs rt rd= rs AND rt

6 ANDI 001100 (12) - ADDI rt rs I rt= rs AND I

7 BEQ 000100 (4) - BEQ rs rt offset If rs= rt then branch

8 BGEZ 000001 (1) 00001 (1) BGEZ rs offset If rs >=0 then branch

9 BGEZAL 000001 (1) 10001 (17) BGEZAL rs offset If rs >=0 then procedure

10 BGTZ 000111 (7) - BGTZ rs offset If rs > 0 then branch

11 BLEZ 000110 (6) - BLEZ rs offset If rs <=0 then branch

12 BLTZ 000001 (1) 00000 (0) BLTZ rs offset If rs < 0 then branch

13 BLTZAL 000001 (1) 10000 (16) BLTZAL rs offset If rs < 0 then procedure

14 BNE 000101 (5) - BNE rs offset If rs != rt then branch

15 J 000010 (2) - J Target rd= return_address

JALR rs

JALR rd rs

17 JR 000000 (0) 001000 (8) JR rs PC = rs

18 LUI 001111 (15) - LUI rt I rt = I

19 LW 100011 (35) - LW rt offset (base) rt = memory [base + offset]

20 MFHI 000000 (0) 010000 (16) MFHI rd rd= HI

21 MFLO 000000 (0) 010010 (18) MFLO rd rd= LO

22 MTHI 000000 (0) 010001 (17) MTHI rs HI = rs

23 MTLO 000000 (0) 010011 (19) MTLO rs LO = rs

24 MULT 000000 (0) 011000 (24) MULT rs rt [LO, HI] = rs X rt

25 MULTU 000000 (0) 011001 (25) MULTU rs rt [LO, HI] = rs X rt

26 NOR 000000 (0) 100111 (39) NOR rd rs rt rd= rs NOR rt

27 OR 000000 (0) 100101 (37) OR rd rs rt rd= rs OR rt

28 ORI 001101 (13) - ORI rt rs I rt = rs OR I

29 SLL 000000 (0) 000000 (0) SLL rd rt sa rd = rt << sa

30 SLLV 000000 (0) 000100 (4) SLLV rd rt rs rd = rt << rs

31 SLT 000000 (0) 101010, (42) SLT rd rs rt rd = rs < rt

32 SLTI 001010 (10) - SLTI rt rs I rt = rs < I

33 SLTIU 001011 (11) - SLTIU rt rs I rt = rs < I

34 SLTU 000000 (0) 101011 (43) SLTU rd rs rt rd = rs < rt

35 SRA 000000 (0) 000011 (3) SRA rd rt sa rd = rt >> sa

36 SRAV 000000 (0) 000111 (7) SRAV rd rt rs rd = rt >> rs

37 SRL 000000 (0) 000010 (2) SRL rd rt sa rd = rt >> sa

38 SRLV 000000 (0) 000110 (6) SRLV rd rt rs rd = rt >>rs

39 SUB 000000 (0) 100010 (34) SUB rd rs rt rd= rs – rt

40 SUBU 000000 (0) 100011 (35) SUBU rd rs rt rd= rs – rt

41 SW 101011 (43) - SW rt offset(base) Memory[base + offset]=rt

42 SYSCALL 000000 (0) 001100 (12) SYSCALL System call

43 XOR 000000 (0) 100110 (38) XOR rd rs rt rd= rs XOR rt

44 XORI 001110 (14) XORI rt rs I rt = rs XOR I

45 JAL 000011(3) - JAL target rd=return_address

46 LWCO 110000 - LWCO cs, offset(base) cs=memory[base + offset]

47 MFCO 10000 0 MFCO rt, cs rt = cs

48 MTCO 10000 100 MTC0 rt, cs cs = rt

16 JALR 000000 (0) 001001 (9) rd =return_address

30

Figure 10 shows an HLDD of 4 instructions, ADD, ADDU, ANDI, and J. The values of

OP1 and OP2 have been converted to their decimal values for simplification.

Figure 10: MiniMIPS HLDD model using 4 instruction sets

For the ADD instruction set, OP1 is 000000 and is shown in the diagram as the decimal

value 0, likewise the OP2 is 100000 which is shown in the diagram as the decimal value

32. For the ADDU instruction, OP1 is 000000 and is shown in the diagram as the decimal

value 0, likewise the OP2 is 100001 which is the decimal value 33. For the ANDI instruc-

tion, OP1 is 001100 shown as the decimal value 12 and for the J instruction, 000010

shown as the decimal value 2.

The system traverses to the ADD instruction when OP1 is 0 and OP2 is 32. Likewise,

when OP1 is 0 and OP2 is 33 the system traverses to the ADDU terminal instruction.

However, if OP1 is 12, then the system traverses to the AND instruction terminal and if

OP1 is 2 then the system traverses to the J instruction terminal.

Figure 11 shows the complete HLDD representation of the miniMIPS instruction sets

using the same concept.

31

3.1.3 Test Synthesis from HLDD

Using the HLDD graph model or the given processor, test generation can be performed.

Test generation will result in a set of test patterns which can be used to test the structural

entities of the processor [4]. The process of test generation involves traversing the graph

by activating the nodes and consequently deriving a set of patterns. There are two types

of nodes in the HLDD namely; control nodes and terminal nodes. The control nodes

activate the path of the graph to a desired working mode or terminal node of the system.

The terminal node contains nodes that activate the data path which can be used to test the

different working modes of the processor.

During test generation, three sets of patterns are generated, the pathlist, the datalist and

the testlist. The pathlist holds the patterns (control nodes variables values) that lead to the

Figure 11: Synthesis of HLDD for miniMIPS [9]

32

terminal nodes. The datalist holds the patterns which will be loaded in the register during

the execution of the test program. These patterns activate the datapath within the terminal

nodes. The testlist contains the list of test patterns generated by walking through all the

nodes. These contains the pathlist and the datalist.

Figure 12 as seen in [4] shows an example of test generation from HLDD model for a

miniMIPS ADD instruction.

Figure 12: Example of test generation

The testlist has the following syntax P#:test:D# where # is the placeholder for enumera-

tion, P represents the pathlist, D represents the datalist, and test is the binary representa-

tion of the node values.

The pathlist has the following syntax P#name1’width1,...,namen’widthn, # is the place-

holder for the index, name is the name of the node, and width is the size of the node.

The datalist has the following syntax D#: binary list, where # is the placeholder for the

index and binary list is a list of numeric values. This is generated using the methods in

[4].

3.2 Test program generation with HLDD

The test program is an important part of SBST. It is divided into three stages. The first is

the high-level test data generation, followed by the high-level test program generation

and lastly, the fault coverage calculation. The visualization can be seen in Figure 13. High

level test data generation was used to generate the control test data, and the pseudo-

exhaustive data that were used in our experiments. High level test program generation

was used with the test templates generated through HLDD synthesis in section 3.1.2.

33

Figure 13: High-Level test data and test program generation

3.2.1 High Level Test Data Generation

Test generation is continually being improved every day in digital systems, as we are

aware of technological advancements breeding new challenges in testing modern devices,

we will like to discuss the complexities faced in test generation for microprocessors.

An essential quality in generating test in micro technologies is speed while focusing on

faults two important data assignments is required giving rise to activation of the faults

and the other for fault propagation [11], using some definitions relating to faults in

microprocessors.

Test vectors are generated to imitate defects that may occur during the manufacturing

process of chips, which may lead to the malfunctioning of the chips. Imitating physical

defects means that the test vectors should be able to induce the faulty behaviour that

matches the physical faults that may occur during the manufacturing process. The

complexity of the system, the size of the tests to be taken and the factor of test quality are

reasons why automatic test methods are used for generating test patterns for digital

systems. In [1], the quality of a test is dependent on the test data, also the aim of any

automatic test pattern generation (ATPG) is to produce efficient test patterns.

34

ATPG is the application of algorithmic based software for generating test vectors [12]

and its need at the structural level is undisputed, because most, if not all the faults in a

digital system has to be covered. In addition to the goal of producing efficient test

patterns, ATPG aims to cover a high level of fault coverage during testing.

Test pattern generation algorithms can be accessed by the following indicators [13]

• Test effectiveness

• Fault coverage

• Length of the generated test

• Test generation time

In this thesis, the test data were generated using four basic methods (algorithms).

3.2.1.1 Method 1 – Conformity Test

Control Test Patterns– These are the test data patterns, generated to cover high-level

functional fault model, and to be used by all instruction in the give processor (miniMIPS),

so that the results of all instructions were distinguished pairwise in each bit of the data

word. It is also known as Conformity test.

Test vectors are gotten from analysing the Circuit Under Test (CUT) and a specific type

of fault is being targeted, followed by fault simulation. The targeted faults could be the

defects that are in the structural part of a given CUT. After the test for the defects in the

targeted area, and a fault is detected, fault simulation is carried out to find other faults that

this generated test vector can detect [14]. The process of generating deterministic test

patterns can be very extensive, and before fault simulation is carried out to detect other

faults, the initial detected faults are noted.

Ideally, detecting all possible faults in a CUT is the aim of testing and we can conclude

that detecting all possible faults in the CUT means 100% Fault Coverage (FC). Fault

coverage is the percentage of fault that can be detected by the applied test vectors [15].

FC at 100% is desirable but is it not always reached in most tests due to some undetected

faults. Undetected faults can also occur even when deterministic test patterns are being

used.

35

Generating Operands for Testing Control path

As part of the HLDD fault model, two constraints were introduced for testing the control

part of the MP in [23]. They are as follows:

∀mT ∈ MT (m): [f (mT) ≠ Ω)] (1)

∀mi, mj ∈MT (m), i ≠ j: ∀k [fk(mi) < (fk(mi) * fk(mj))] (2)

Where Ω = ZERO or ONE and * = logic OR or logic AND, both depending on the

technology implemented in the MP [22] [23].

 The label ZERO means the binary vector (000...0) while ONE means the binary vector

(111...1). Representing the bit number of the data word is the index k.

The test operands used in the later for testing the control part has to satisfy constraints 1

and 2 (equation 1 and equation 2) stated above. In order to conform to these constraints,

Algorithm 1 was developed. The algorithm generates the bits of the operands (data words)

which are represented by D1 and D2, starting from the LSB, bit by bit, unto the MSB. The

essence for this is so that constraints 1 and 2 will be solved for all pairs of the functions

fk(mi) and fk(mj) [24].

Input: Instruction set of the processor

Output: Sets of test operands OPi for each instruction, including a fault table D

Notations: n – represents the number of functions Fj,

op – test operand,

OP – current set of selected random test operands,

 fi(op) – result of the instructions Ij for the operand(s) op,

D – Fault table,

Dij – w-bit entry in D,

w – Length of the data word)

Algorithm 1: Test data generation for control part - RANDOM [25]

36

1. Initialize OP = ∅

2. Generate a set of random operands (R)

3. for i = 1,, n

4. Initialize OPi = ∅,

5. for j = 1,,n (j ≠ i)

***operands for solving constraints fi,k < fj,k

6. Initialize Dij = 0

7. for all op ∈ R while Dij ≠ 0

 ***adding new operands for covering Dij

8. Dij(op) = fj(op) ∧ (fi(op) ⊕ fj(op))

 *** calculating fault coverage for op

9. if (Dij (op) ∨ Dij) ⊕ Dij ≠ 0 then

 *** check for the coverage increment

10. begin

11. Dij = Dij ∨ Dij(op)

 *** update of the coverage vector

12. include op into OPi

 *** new operand is selected

13. end

14. endfor op

15. endfor j

16. endfor i

This Algorithm 1 will produce a set of operands for every instruction in the MP and a

fault table that satisfies the constraint fi,k < fj,k. D
k

ij = 1 if the constraint is satisfied, and is

covered by a minimum of one operand, otherwise Dk
ij = 0. Finally, the percentage of 1s

in D is the high-level functional fault coverage for the test for control path [25].

Algorithm 1 is called RANDOM. This is because for each step of line 7, the random

operand that came first (op ∈ R) will be selected with a goal of increasing the fault

coverage. Another algorithm called GREEDY was established in order to reduce the test

length.

The difference between the GREEDY algorithm and RANDOM is that at line 7, where

the best operand is being searched for maximum fault coverage, the subsequent operand

is selected and the algorithm proceeds with the search until target Dk
ij = 1 is reached or

no further operands can satisfy the constraint fi,k < fj,k.

It is notable that the constraint fi,k < fj,k may not be solved if the related functional fault is

redundant, or the search spare R is not large enough [25].

37

According to [2], Conformity test is a test for a non-terminal node of the HLDD, and its

goal is to test the control part of the microprocessor. The conformity test is generally

generated according to constraints 1 and 2 that were set up for testing non-terminal nodes.

• Generating Conformity Test Program for Control part of Microprocessor

The generation of conformity test for the control part of the microprocessor was

developed in [4] and [6]. According to [4] and [6], conformity test was explained as such:

Consider an HLDD GY = (M, Γ, X) with Y = F(X) as a functional model of the instruction

set of a given MP.

X = C ∪ 𝐷 (which represents the instruction format of the MP)

Y = destination data

C = opcode of the instruction format, and is divided into sub-fields Ck ∈ C

D = source data of the instruction format and is divided into 𝐷𝑘 ∈ 𝐷.

It is notable that the source and destination data variables may refer directly to the

registers of may refer to the addressable memory locations. Examples of mapping

between instruction formats and the HLDD functional variables are illustrated for three

instruction formats below:

I. Instruction format with 1 opcode subfield (C), 1 source subfield (D) and one

destination subfield (Y).

II. Instruction format with 1 opcode subfields, 2 source subfields (D1 and D2) and

one destination subfield (Y).

III. Instruction format with 2 opcode subfields (C1 and C2), 2 source subfields (D1

and D2) and one destination subfield (Y).

38

Figure 14: Mapping of miniMIPS instruction formats and the HLDD functional variable

The main targets of the conformity tests are not the instructions as a whole, as per the

instruction format, and it involves both the control and data functions. This depicts that if

the opcode C is divided into subfields Ck ∈ C, then the control tests will target all the

subfield one after the other. To test if all the sub-functions that relates to Ck were rightly

selected, the node m in the HLDD module test T(m) for all the values of x(m) ∈ V(x(m))

has to be tested.

In [4], generating a test instruction for testing a fault r ∈ R (m, v), it is essential to find a

test pattern Xt which activates a path l(m0, m
T,v) from the root node m0 ∈ MN to a terminal

node mT,v ∈ MT, so that x(m) = v, and m ∈ l(m0, m
T,v); the pattern Xt corresponds to a full

opcode C of instruction, which includes the needed value of Ck. It is also essential to

complete the pattern Xt by generating the test data D, so that the constraints 1 was

satisfied. The result for generating a test instruction for testing the fault model R(m,v) ⊂

R(m) includes a control pattern (instruction) C(m,v), and a set of data pattern D(m,v).

The algorithm for conformity test program according to [4] is:

Figure 15: Algorithm for conformity test

39

• Explanation of the algorithm for conformity test

In line 1, m ∈ MN represents the nonterminal nodes, and line 1 is testing T(MN) for the

fault model R. Lines 2 – 5, firstly initializes all registers involved in operations f(mTv) at

every terminal nodes mTv ∈ MT (m) ⊆ MT with values satisfying constraints 2. Secondly,

it executes the instruction that assigns the value or v to x(m), activates a path that leads to

node m in GY, and the paths that transits from m to mT, v ∈ MT (m); Thirdly, the algorithm

observes the value of Y.

Line 6 ends the testing for nonterminal node m ∈ MN and line 7 ends the conformity test

of the HLDD GY.

The conformity test is used to generate a template that will be used with the control test

patterns. The functional variables in this test loops through all the instructions, while the

other variables remain constants [9]. A test template was created for the conformity test

as seen in Figure 16.

Figure 16: Structure of Conformity test

40

In Figure 16, OP1, OP2, A1, A2 and R serves as the control nodes (non-terminal nodes).

Each of them has a test template that consists of instructions that leads to the path of a

particular node. The test program that will be generated also consists of these instructions,

which will be used test the control nodes. However, the control test data generated in with

Algorithm 1 that satisfy the constraint 1 and 2 will be passed into the test program as

described in Figure 13.

3.2.1.2 Method 2 – Short Scanning Test

Dedicated PET – this is the pseudo-exhaustive test data for testing each instruction with

so called dedicated data, generated separately for each instruction based on its

functionality, and to guarantee exhaustive test of each bit of the data word. It is also

known as the Short scanning test.

For understanding the concept of pseudo-exhaustive test pattern, the concept of

exhaustive test pattern should be understood.

Exhaustive Test Pattern

Exhaustive test patterns detect all the possible faults, either gate-level SAF faults, wired

AND/OR faults, and bridging faults in a combinational circuit. A combinational CUT

with N-input, exhaustive testing will require applying 2N exhaustive patterns [16]. This

approach will not detect all possible transistor-level faults or delay faults because these

kinds of faults needs a specific order at which the vectors needs to be arranged, if possible,

the potential to repeat certain test vectors within the vector set [12]. If a combinational

circuit has few primary inputs, exhaustive testing may be a viable option, where every

possible input vector is considered [17]. However, in circuits with large amount of

primary inputs, exhaustive testing might not be the viable approach. Due to this drawback,

pseudo-exhaustive test makes it possible to partition the circuit and only exhaust the input

vectors within each cone for each primary output [17].

Pseudo-Exhaustive Patterns alternatively, have lesser number of test patterns [18]. As

stated above, the circuit is partitioned and is exhaustively tested. This means that a better

FC is achieved. In [17], a circuit with three primary inputs n1, n2, and n3, with a

41

corresponding primary output cone each will have a total number of 2n1 + 2n2 + 2n3

pseudo-exhaustive vectors at most.

Generating Operands for Testing the Data Path

A significance of pseudo-exhaustive data is that remaining test generation procedure will

not depend on the implementation details of the processor cores under test [25]. Ideally,

logic operations are independent in all bits, hereby enabling the operations in all bits to

be tested independently. In cases of unary operations, two exhaustive patterns will be

enough, while for logic operations, we need to use four exhaustive patterns {(0,0), (0,1),

(1,0), (1,1)} per bit [24].

Table 3: Generation of PET data for adder [25]

No 4-bit 3-bit 2-bit 1-bit 0-bit

a4 b4 c4 a3 b3 c3 a2 b2 c2 a1 b1 c1 a0 b0 c0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1

3 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0

4 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1

5 0 0 1 1 1 0 0 0 1 1 1 0 1 0 0

6 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1

7 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4: Generation of PET data for Subtractor [25]

No 4-bit 3-bit 2-bit 1-bit 0-bit

a4 b4 c4 a3 b3 c3 a2 b2 c2 a1 b1 c1 a0 b0 c0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 1 1 1 1 0 0 1 1 0 0 1

3 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0

4 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1

5 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0

6 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

7 0 1 0 0 1 0 0 1 0 0 1 0 1 1 0

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

In Table 3 and Table 4 above, ripple-carry is used for generating the PET data for addition

and ripple-carry is implemented for generating the PET data for subtraction. ADD and

SUB stands as operators in the miniMIPS ISA and the data generated are dedicated for

these operators. The same applies to other operators used in our experiment – AND, XOR,

42

SLL, SRL, etc. To cover every combinations of the input operands a0, b0 and c0 of each

bit of the adder, 8 pairs of data were needed, as seen in Table 3 and Table 4. C0 may be

the carry bit in the case of addition, or the borrow bit in the case of subtraction. PET

patterns are generated from the LSB, after calculating the carry for the cn for the next bit,

and the right values which will fit into the operands an and bn. Through this previous step,

all pseudo-exhaustive combinations for the bit section would be achieved [25]. Addition-

ally, the columns titled “2-bit” and “1-bit” can be copy pasted for the next two-bit-pairs

to the right [24].

Scanning Test Definition: According to [4], Scanning test is a test for a terminal node

of the HLDD, and its goal is to test the data path of the microprocessor. It focuses on

testing the correctness of the terminal nodes in the HLDD by making use of the same

instruction with different test data.

Generating Scanning Test for the Data Path of MP

The generation of scanning test for the data path of the microprocessor was developed in

[4] and [6]. According to [4] and [6], scanning test was explained as such:

Consider an HLDD GY = (M, Γ, X) with Y = F(X) as a functional model of the instruction

set of a given MP.

X = C ∪ 𝐷 (which represents the instruction format of the MP)

Y = destination data

C = opcode of the instruction format, and is divided into sub-fields Ck ∈ C

D = source data of the instruction format and is divided into 𝐷𝑘 ∈ 𝐷.

D and Y could be the address of a register or the address of a memory location. The source

D could also be an immediate data which could be part of the miniMIPS instruction

format.

The source and destination data variables may be the address of the registers, or to the

addressable memory locations. The immediate data which will be part of the instruction

format, may be represented by the source variable.

43

A test will be generated for every terminal nodes mT ∈ MT ⊂ M in each HLDD GY = {G},

Y ∈ U (|U| = number of HLDDs), for the purpose of testing the complete data path of the

provided microprocessor which consists of various HLDDs.

In [4], the term of data functional fault model (DFFM) of the HLDD GY was introduced.

It is denoted as R(mT) and a union of all functional fault models in the terminal nodes mT

∈ MT ⊂ M, and it represents the working nodes of the microprocessor Y = f(mT). Each

functional fault r ∈ R(mT) is similar to the conditional SAF model developed for gate-

level testing [7].

In order to test the faults r ∈ R(mT), we need to execute a test using the set of instruction

of the microprocessor.

T(mT) i= {C(mT). D (mT, r)}

In the test above, C(mT) = Instruction code and it remains constant

 D (mT, r) = Data. It is dynamic with the values from the set of constraints

R(mT).

The general point of the scanning test is to reiterate the same instruction with data fetched

by scanning a given data array.

In the figure above, all the registers are loaded with the data fetched from the array, the

instructions that activates in the HLDD are activated and in a loop, lastly, the result of

each operation is written into memory.

The algorithm for scanning test according to [4] is:

Figure 17: Structure of Scanning Test

44

Figure 18: Algorithm for scanning test

Explanation of the algorithm for Scanning Test

In line 1, mT ∈ MN represents the nonterminal nodes, and line 1 is testing T(MN) for the

fault model R. Lines 2 – 3, firstly initializes all registers involved in the function f(mTv) at

every terminal nodes mTv∈ MT with the test data d. Secondly, it implements the instruction

that activates in GY a path to the node m in MT. Thirdly, the algorithm observes the value

of Y.

Line 4 ends the testing for terminal node m ∈ MN and line 5 ends the scanning test of the

HLDD GY.

The scanning test described in this section is called short scanning test.

3.2.1.3 Method 3 – Long Scanning Test

All PET Test Patterns – These are the pseudorandom test data for testing each

instruction with a sum of all test patterns generated pseudo-exhaustively for the data part.

It uses the combination of all the dedicated PET data to test for each instruction based on

its functionality. It can be referred to as Long scanning test.

All PET represents combination of the all the PET data generated through scanning test

in section 3.2.1.2. For our experiment in chapter 5, 9 patterns were dedicated for the ADD

and SUB instructions, 4 patterns for the logic instructions AND, OR, XOR and NOR,

while 2 different sets of patterns were dedicated for the shift, load and branch instructions.

Lastly, a total of 310 patterns were dedicated for the MULT instruction.

45

In [26], a method to transform the “paper and pencil” 2-dimensional ILA of n-bit array

into a set of (n – 1) 1-dimensional ILAs of n cells, which can be tested pseudo-

exhaustively nearly as easily as ripple-carry adders. In order for such modification to

occur, the concept of data-controlled segmentation of the circuit was introduced.

Figure 19: PET combination to All PET Test Patterns

3.2.1.4 Method 4 – Random Test

Random Test Patterns: Random test patterns are very easy to generate via Random Test

Generation (RTG). Unlike deterministic and pseudo-exhaustive test patterns, no specific

faults are targeted for the random test generation. Additionally, exhaustive test may be

superior to RTG because RTG can produce duplicated vectors and may miss certain ones

[17]. RTG stands out because it is easy to generate the random vectors, it does not satisfy

any constraints and the complexity is low. However, the detrimental effect of random test

patterns is that it can detect a set of faults that is up to 10 times larger than a deterministic

test patterns for the same set of faults [12]. Due to this, determining the quality of a test

set becomes difficult, because conventional methods based on fault simulation becomes

costly [19]. In [20], some of the disadvantages of random test generation is that it can

have very long test application time, love coverage, area overhead and additional delay.

RTG makes it possible for the random vectors to be evenly distributed in the pattern set.

This means that the random patterns will eventually have equal numbers of logic 1s and

0s in the set as a whole. The method used to generate the random patterns for the

experiments carried out in this thesis is not totally random. A pseudo-random number was

used so that the random patterns can remain the same in cases where they need to be re-

generated. For RTG, we cannot totally be confident in the kind of result or FC, we can

46

only be certain that the random patterns used in a test will detect all possible Single Stuck

Fault (SSF) [12].

Similar to line 2 of Algorithm 1, a fewer set of random data is generated with a python

script and loaded directly as a high-level test data into the test program generator,

alongside the test templates, as illustrated in Figure 13. It is notable to mention that the

randomly generated patterns do not satisfy any constraints as compared to the control test

patterns.

3.3 Test program generation

As discussed in section 3.1.2, the test program is generated from the HLDD synthesis.

The synthesis is implemented through prepared test code templates, used in generating

the test program. As miniMIPS is a processor with 32-bits registers, the initial target of

the test template is to reset all the 31 registers in Figure 7, to make sure that the current

test program is not affected by the previously generated program with a different data in

the registers. After the registers are set to null, the test data is loaded into the memory.

The test data could be the control, PET, All PET or random test data. The final process is

the generation of the test program based on the conformity test template or scanning test

template or random data test program. Section 4.1 will provide a more elaborate

explanation on the test template creation.

Figure 20: Test Program Generation process with four templates

47

3.4 Fault simulation

The fault simulation is the final stage of the automated SBST. It comprises two fault

simulators:

1. “Home-made” high-level fault simulator for measuring the quality of conformity

test, whereas the PET-based scanning test by definition is considered a full (100%)

high-level test.

2. Professional low-level fault simulator called TetraMax for the final evaluation of

the test quality in terms of standard SAF coverage. From the simulation of the test

program in assembly language, with the test bench of the MP within ModelSim,

a vcd file is generated and used to calculate the fault coverage in the selected MUT

of the processor.

3.5 Conclusions

1. In this chapter, basic approaches of testing microprocessors were considered:

conformity test with control test patterns and scanning test with two versions of

using PET test data (short and long scanning test).

2. The test data used in these basic approaches are divided into 4 classes: Control

test data, PET, all-PET and random test data.

3. Based on these two types of tests (conformity and scanning), and 4 types of test

data, in the following chapters several combinations of test structures using

different test data are investigated and compared.

4 Development and investigations of the methods

The Execute module was partitioned also into two parts: control part and data part. The

test program was developed in two parts: for testing the control part (conformity test),

and for testing the data part (scanning test). This chapter covers the test program

generation with the data generated with the four methods or classes: Control test data,

48

PET, all-PET and random test data, and different combinations of the methods. We

created a new template for PET, all PET and Random data for maximum fault coverage.

The goal of the experimental research was to evaluate the quality (SAF coverage) of all

the four basic test methods separately, to compare the two PET approaches and to evaluate

the possible contribution of the random test approach by investigating the quality of

different combinations of the basic test methods.

4.1 Test templates

Prior to the test program generation is the manual creation of the test template according

to Figure 20. Contrary to the SBST program generation in [9], our experiment generates

test program based on scanning tests and random test data, including conformity test.

As discussed in 3.1.2, HLDD was used to generate templates and test data for the test

program. The work done in [9] was to generate the HLDD for the control part of

miniMIPS processor and test template for the control test program. For us to create a test

program for method 2, 3 and 4, the HLDD graph has to be synthesized to generate a test

template and test data for the tests. Four test templates were created for the generated PET

and random data.

For our experiments, method 2 and 3 uses the same test template, with 23 miniMIPS

instructions, from the ISA. The figure below illustrates the HLDD graph that was used

for the random, PET and all PET templates.

49

Figure 21: HLDD Structure for method 2, 3, and 4

Figure 21 describes how the instructions were sub-divided based on the number of

operands with data that needs to be loaded into the registers. An example is the ADD

instructions, which needs two registers to load operands. According to the miniMIPs ISA,

the ADD instruction has the structure below:

Figure 22: ADD structure in miniMIPS ISA

The ADD instruction is represented by the operation rs + rt. The address of the register

with the loaded value of operand 1 is rs, while rt holds the value of operand 2.

50

Test template 1

Instruction represents the instructions that are listed in Table 5. Method represents the

type of method being used for the experiment, which could be pseudo or random. Pseudo

was used to represent PET and all PET. The result register is represented by rd, O1, O2

are the operand registers, offset value is 4 and M represents the memory address where

the result is stored.

Table 5: List of instructions under template 1

S/N Instructions

1 ADD

2 ADDU

3 SUB

4 SUBU

5 OR

6 XOR

7 NOR

8 AND

9 SLT

10 SLTU

11 SRAV

Test template 2

Instruction represents the instructions that are listed in Table 6. Method represents the

type of method being used for the experiment, which could be pseudo or random. Pseudo

was used to represent PET and all PET. The result register is represented by rd, O1 is the

Operation_Instruction_method:

Load patterns

Instruction rd, O1, O2

Sw rd, offset(M)

Jal increment

Operation_Instruction_method:

Load patterns

Instruction rd, O1, I

Sw rd, offset(M)

Jal increment

51

operand register, I stand for the immediate value, offset value is 4 and M represents the

memory address where the result is stored.

Table 6: List of instructions under template 2

S/N Instructions

1 ADDI

2 ADDIU

3 ANDI

4 ORI

5 XORI

6 SLTI

7 SLTIU

Test template 3

Instruction represents the instructions that are listed in Table 7. SA represents the shift

amount, the result register is represented by rd, O1 is the operand register, offset value is

4 and M represents the memory address where the result is stored.

Table 7: List of instructions under template 3

S/N Instructions

1 SLL

2 SRA

3 SRL

4 LUI

Test template 4

Operation_Instruction_method:

Load patterns

Instruction rd, O1, SA

Sw rd, offset(M)

Jal increment

52

Instruction represents the instructions that are listed in Table 8. SA represents the shift

amount, the result register is represented by rd, O1 and O2 are the operand registers, offset

value is 4 and M represents the memory address where the result is stored.

Table 8: List of instructions under template 4

S/N Instructions

1 MULT

2 MULTU

4.2 Set-up of the Experiments

The set-up of the experiment can be visualized in Figure 23. The experiments were

performed on a Linux based computer and modelSim simulator was used to simulate the

environment of the experiment. In order to simulate the behaviour of the miniMIPS MP,

the HDL of miniMIPS was implored. The MP uses its RAM and ROM as memory. In

order to load the test program, the ROM is used, and the RAM is used for storing and

later accessing the test data and results. As discussed in 4.1, the test templates were

developed manually from the HLDD and going forward, the test program is automatically

generated with the help of a python script. As illustrated in Figure 23, after the test

program is generated, the assembler that comes with the miniMIPS MP converts the test

program written in assemble language, into an executable binary file (machine code). The

executable binary file is used by the ROM via the test bench. After the simulation of the

MP with ModelSim, it automatically executes the test program and provides a test

response, which is later loaded into the memory. The test responses are stored into dump

file, in .vcd format. The dump file is passed into the low-level fault simulator called

TetraMax and the result of the fault coverage calculation is provided.

53

Figure 23: Set-up of the experiments

4.3 Combination of different methods

The goal of the experimental research was to evaluate the quality (SAF coverage) of all

the four basic test methods separately, to compare the two PET approaches and to evaluate

the possible contribution of the random test approach by investigating the quality of

different combinations of the basic test methods. The experimental research consisted in

carrying out 11 experiments. They are illustrated in the figures below:

54

Figure 24: Experiment structure for experiments 1 - 7

Figure 25: Experiment structure for experiments 8 – 11

55

In Figure 24 and Figure 25, the instructions represent the ALU instructions, from I1 to In.

MULT 0 and MULT 1 are the multipliers in the ALU of the miniMIPS processor. The

ALU of the miniMIPS processor can consists of the executable module PPS_EX. The

PPS_EX module consists of the ALU, which has the ADD, MULT 0 and MULT 1

modules in it.

Figure 26: Structure of miniMIPS execute module

The test data D1, D2...Dn, DM0 and DM1 for dedicated PET represents the dedicated

data used for each instruction in the test template. D1, D2...Dn are the patterns as

illustrated in Figure 19. DM0 and DM1 represents the 310 data dedicated for the MULT

instruction.

The results of the experiments will be discussed and analysed in chapter 5. However,

experiments 1 – 4 explored the 4 basic methods of data for testing the MP. The

combination of the 4 methods commences from experiment 5 until 11. Let us represent

each method with M. M1, M2, M3 and M4 represents methods 1 – 4.

Where Method 1 (M1) – Control patterns for testing

Method 2 (M2) – Dedicated PET patterns for testing

Method 3 (M3) – All PET patterns for testing

Method 4 (M4) – Random patterns for testing

56

Figure 27: Combination of different methods

5 Implementation and investigations

The goal of generation of different test structures using different test data was to establish

the impacts of different test data to the quality of test programs in terms of low-level fault

coverage, test length and simulation time that is in correlation with testing time in real

world. Absolute testing times were not the goals, rather relations between different

modifications of test structures.

The results of the experiments are presented in the 5.2 – 5.8. We will discuss the fault

coverage, the test lengths and the simulation times. Ideally, the advantage of methods 1-

4 is in the fact, that they do not need information of the real gate-level structure of the

57

units under test, and hence are classified as implementation-independent test generation

approach.

The quality of the scanning and conformity tests can be characterized as follows:

1. The control test guarantees 100% of SAF coverage in the control part of the unit, and

as well the coverage of larger class of faults than SAF, including also the conditional

SAF, multiple SAF and bridging faults, due to the exhaustive functional testing

conception.

2. The scanning test, using either dedicated PET or all PET patterns, guarantees full fault

coverage of SAF faults only for logic instructions and for ripple carry adders, but not for

more complex adders like carry-look-ahead adders and carry save adders, also for

different types of multipliers. Hence, the PET approach can be considered as a heuristic

approach, which however is expected to give a high SAF coverage. An added value of

the PET approach is in the coverage of larger class of faults than SAF only, including the

conditional SAF, multiple SAF and bridging faults due to the exhaustive test conception.

3. The random test gives no any guarantee, and its fault coverage can be calculated only

afterwards by fault simulation. The advantages of the random test are in the ease of test

generation, but the disadvantage is in the longer test compared to the algorithmic tests

PET or control test.

Note, the PET and control tests have mutual effects, in the sense that PET, targeting the

faults in the data part, covers also the faults in the control part, and the control test, vice

versa, covers also the faults in both parts of the module. From that it follows, when

applying both, control and PET tests, then the possible deficiency of PET should be

removed or at least reduced. The same purpose of improving the PET quality is also in

applying random patterns.

5.1 Goals of the experiments

Referencing Figure 24, Figure 25 and Figure 27, the research targets was to illustrate the

following:

1) The first 4 experiments show the fault coverage of the basic algorithms.

58

2) The experiments 1 and 2 compare the both PET methods.

3) The experiments 1, 6 and 9 show the contributions of the Control and Random

tests to the Dedicated PET test.

4) The experiments 2, 5 and 8 show the contributions of the Control and Random

tests to the All PET test.

5) The experiments 4 and 7 show the contribution of the Random Test to the Control

test

6) The experiments 8, 9, 10 and 11 show the contribution of the Random Test to the

two versions of full deterministic tests consisting of the control test and either

Dedicated PET (experiments 9 and 10) or All PET (experiments 8 and 11) tests.

7) The experiments 3, 8 and 9 show the comparison of the deterministic high-level

implementation-independent approach vs. pure random approach (trade-off

problem).

5.2 Investigations #1

In this section, experiment 1 represents the test with dedicated PET patterns, experiment

2 represents the test with all PET patterns, experiment 3 is for random patterns and

experiment 4 implies the test for the control patterns. For each experiment four sub-

experiments were performed for the four different MUTs – PPS_EX, ADD, MULT 1 and

MULT 0.

Table 9: Results of Experiment 1 - 4

Each MUTs are the modules in the ALU of the miniMIPs processor. Each of them has

different number of faults present in them, but the number of faults is the same for every

experiment.

59

Table 10: Number of faults in MUTs of miniMIPS processor

MUT Number of faults

PPS_EX 211832

ADD 2516

MULT 1 95188

MULT 0 91810

Additionally, the larger the MUT, the more time it takes for the low-level fault simulator

to measure the fault coverage. However, the test length for the experiments is a huge

contributing factor. The test length is the amount of test data used. This emphasizes that

the amount of test data used for the experiment influences the time it takes to measure the

fault coverage. The test length and simulation time used in experiments 1-4 are shown in

Table 11.

In experiment 1 the combination of all dedicated PET patterns is a total of 28, in addition

to the 310 patterns dedicated to the MULT function. A total of 338 patterns were used in

experiment 2. The length of the test program increases in proportion to the number of

patterns used in generating it. The miniMIPS processor has a limited memory, therefore,

if the test program is too long, the vcd file will not be generated when simulating the test

bench of the MP. Hence, a total of 150 random patterns were used in experiment 3. Lastly,

experiment 4 uses the 166 patterns that were generated via conformity test.

Table 11: Test length and simulation time for experiments 1 - 4

60

The fault simulation time is the time taken by the low-level fault simulator (TetraMAX)

to complete the FC calculation. Hence, in order to get the simulation time which correlates

with the testing time, the following formula was applied:

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒(𝑠) =
𝐹𝑎𝑢𝑙𝑡 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒(𝑠)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡𝑠 𝑖𝑛 𝑀𝑈𝑇
 (3)

It is notable that the time taken to perform each experiment is not always directly

proportional to the test length. This is evident as experiment 2 has a longer test length that

experiment 3 and 4, however, the time taken to measure the fault coverage in experiment

3 and 4 are more than double of the time in experiment 1 and 2. This observation also

proves that PET technique is more effective than random test [26].

Table 9 shows that experiment 4, which uses the control patterns has the best FC in each

MUT. However, experiment 3 produced a better FC than experiment 1 & 2 because

random patterns are purely random and the type of result it produces are unprecedented

and uncertain. The number of random patterns must be large in order to produce an

excellent FC.

5.3 Investigations #2

In this section, we will compare the results of both PET methods in experiment 1 and 2.

The execute module (PPS_EX) will be evaluated as it contains other modules and is

sufficient for comparison.

Table 12: Comparison of method 2 and 3

From the result above, it is evident that M3 – using all PET patterns produces a better FC

than using only the dedicated PET patterns. The stipulated reason is because M3 makes

61

sure that the combined dedicated PET patterns is used to test the instructions specified in

the template. Instead of 9 dedicated patterns for the ADD instruction, 28 combined

patterns + 310 patterns for the multiplier are used. It becomes more evident in this

comparison that the more the test data, the larger the test length and test program, the

more time spent by the low-level fault simulator to calculate the FC.

5.4 Investigations #3

Experiments 1, 6 and 9 are evaluated to investigate the contribution of the control (M1)

and random test (M4) to the dedicated PET test (M2).

Table 13: Comparison of experiments 1, 6 and 9

The contribution of the control test data is more prominent than the random test data. The

control test data and the dedicated PET data is the same as a full conformity test and

scanning test. Meaning that the test covers all the control parts and the data paths of the

MP. A total of 90 random patterns were used, in addition to the dedicated PET patterns.

We can conclude that the random patterns increased the test length of experiment 6, while

displacing efficiency and quality. Contrary to that, the control test data covered the non-

terminal nodes, while the PET data covered the data-path. Theoretically, both methods

M2 and M1 are meant to be the best data set for the data path and control part respectively.

However, the trade-off for a better FC % is the time taken to calculate the FC. Experiment

9 took more than 3 times more seconds than experiment 6 and more than 7 time more

seconds than experiment 1.

62

5.5 Investigations #4

In this section, experiments 2, 5 and 8 are evaluated to investigate the contribution of the

control (M1) and random test (M4) to all PET test (M3).

Table 14: Comparison of experiment 2, 5 and 8

A very similar result was obtained in section 5.3. The trade-off of time versus quality is

the same, however, we can observe that FC% of experiment 8 and 9 are the same –

98.66%. This means that the combination of the control pattern with either dedicated PET

or all PET provides the same result. The question about this observation is, could 98.66%

be the best FC in the PPS_EX module, since the control and PET patterns are both

covering the full non-terminal and terminal nodes?

5.6 Investigations #5

The control and random test data were combined in experiment 7. This will be compared

to the FC obtained from using only the control test data.

Table 15: Comparison of experiment 4 and 7

63

This comparison was evaluated to observe the impact of the 100 random data when

combine with the control test. The contribution of the random patterns is to the minimal,

with an increase of 0.22 % in the PPS_EX module. The test length in experiment 7 is

significantly higher than in experiment 4, hence, it is safe to conclude that the impact of

100 random patterns on the 166-control data used as conformity test, is inversely

proportional to the level of increase of FC in experiment 7.

5.7 Investigations #6

The experiments 8, 9, 10 and 11 show the contribution of the Random Test to the two

versions of full deterministic tests consisting of the control test and either Dedicated PET

(experiments 9 and 10) or All PET (experiments 8 and 11) tests.

Table 16: Comparison of experiments 8, 9, 10 and 11

In 3.2.1 the process of generating deterministic test patterns can be very extensive, and

before fault simulation is carried out to detect other faults, the initial detected faults are

noted. Experiment 8 and 9 are full deterministic tests with the control patterns and PET

patterns. The question posed in investigation 5 concerning 98.66% as the maximum FC

was posed, and the theory is negated in Table 16. Notably, random patterns added 0.04

% in experiment 10 and 0.03% in experiment 11. The contribution of random patterns in

64

experiments 10 and 11 is very minute and we can deduce that its efficiency is to be

questioned.

Experiment 10 had 166 control patterns, dedicated PET patterns and 45 random patterns,

however, experiment 11 had 166 control patterns, 28 + 310 all PET patterns and 27

random patterns. The effect of the larger random patterns in experiment 10 is visible with

an FC of 0.01% more than experiment 11. Random patterns increase the test length and

the FC calculation time but does not pose a strong contribution to the FC %.

5.8 Investigations #7

The experiments 3, 8 and 9 show the comparison of the deterministic high-level

implementation-independent approach vs. pure random approach (trade-off problem)

Table 17: Observation of experiment 3, 8 and 9

The trade-off between M4 and either M1 + M3, or M1 + M2 is the FC percentage if we

consider the execute module (PPS_EX) of the miniMIPS processor. The MUT in

consideration is the execute module (PPS_EX) of the miniMIPS processor. The time

taken to complete experiment 3 is more than 2 times lesser than experiment 8 and 9. This

is particularly due to the complete conformity and scanning test performed in experiment

8 and 9. The results in Table 17 supports the claim that random test is good enough, but

time is a trade-off for a better quality FC result in experiment 8 and 9. The combination

of the control test and the PET test provided the best FC result of 98.66%, however, the

dedicated PET test was more effective as a lesser time (8441.24s fault simulation time in

65

experiment 9 versus 8531.83s in experiment 8) was used to calculate the FC to get the

same result of 98.66%.

An observation to take note of is the effect of the random test on the dedicated PET and

control test. This can be evaluated in experiments 6 and 7.

Table 18: Observation of experiments 6 and 7

As compared to the results in investigation 1, for M2 and M1, the random data had a huge

impact on the dedicated PET data in experiment 6. The increase between experiment 1

(dedicated PET) and experiment 6 is 3.43% and there is a significant time difference due

to the additional 90 random patterns.

Table 19: Comparison for the significance of Random data

66

From Table 19, it becomes evident that in the PPS_EX module, the control test is

dominant, and the random data contributes a minute improvement to the FC in experiment

7. The time difference in experiment 7 makes the effect of the random patterns almost

negligible if compared to the proportion of FC increase. The FC in experiment 1 increased

by increased by 3.68% and fault simulation time increased by 108%. On the contrary, the

FC in experiment 4 increased by 0.22% and time by 16.9%.

It is worth noting that the maximum FC achieved for the selected MUTs during our

experiment, are 98.7% for PPS_EX, 99.96% for ADD, 99.46% for MULT 1 and 99.7%

for MULT 0 module. In the experiments where the FC % for the ADD module is 99.96%,

we observed that there is always 1 undetectable fault, hence, our inability to reach 100%

FC in the ADD module of the miniMIPS processor.

67

6 Conclusion

This thesis focused on developing different combinations of test structures and test data

for microprocessor software based self-testing. The test objective was Execute module of

the MIPS microprocessor partitioned into three sub-modules: ALU (arithmetic and logic

operations), MULT1 and MULT2 (multiplication operations). The Execute module was

partitioned also into two parts: control part and data part. The test program was developed

in two parts: for testing the control part (conformity test), and for testing the data part

(scanning test). We demonstrated how to generate the different test data – Dedicated PET,

all PET, control test and random test data. Test templates were used to organize the test

program from the HLDD synthesis.

The contribution of this thesis is to propose the best method or combination of methods

to be used in SBST, while ensuring high quality test at a minimal cost.

The goal of the research was actualized as we observed that the dedicated PET test in

combination with the control test is recommended for the best FC and time effectiveness.

However, when the dedicated PET and all PET test are performed individually, all PET

test provides a better FC but at a huge time cost. Additionally, the random patterns served

a purpose of improving the quality of the PET test by reducing the possible deficiency

during scanning test, while its contribution to the control test is minimal and can be

negligible. Our experimental research also revealed a new discovery that there is always

one undetectable fault in the ADD module of the miniMIPS processor, hence, 100% FC

is not achievable in this module.

68

References

[1] A. S. Oyeniran, U. E. Odozi and R. Ubar, “A New Measure for Calculating Multiple

Fault Coverage of Microprocessor Self-Test,” 15th Biennial Baltic Electronics

Conference, pp. 75-78, 2016.

[2] A. Jasnetski, R. Ubar, A. Tsertov and M. Brik, “Software-based Self-Test

Generation for Microprocessors with High-Level Decision Diagrams,” Proceedings

of the Estonian Academy of Sciences, vol. 63, no. 1, pp. 48-61, 2014.

[3] S. M. Thatte and J. A. Abraham, “Test Generation for Microprocessors,” IEEE

Transactions on Computers, no. 29, pp. 429 - 411, 1980.

[4] R. Ubar, A. Jasnetski, A. Tsertov and A. S. Oyeniran, Software-Based Self-Test with

Decision Diagrams for Microprocessors, Lambert Academic Publishing, 2018.

[5] G. E. Moore, “Cramming More Components Onto Integrated Circuits, Electronics,”

Electronics, vol. 38, no. 8, pp. 82-85, 1965.

[6] D. House, G. E. Moore and I. T. Roadmap, “Moore's law,” 2015.

[7] S. Holst and H. J. Wunderlich, “Adaptice debug and diagnosis without fault

dictionaries,” J. Electron Test, vol. 25, no. 4-5, pp. 259-268, 2009.

[8] N. Burgess, R. I. Damper, S. J. Shaw and D. R. J. Wikins, “Faults and fault effects

in NMOS circuits-impact on design for testability,” Electron. Circuit System. IEEE

Proc. G, vol. 132, no. 3, pp. 82-89, 1985.

[9] O. O. Medaiyese, A Method for Synthesis of Self-Test Software for

Microprocessors, Tallinn University of Technology, 2018.

[10] T. Bengtsson and S. Kumar, “A Survey of High-Level Test Generation

Methodologies and Fault Models,” School of Engineering Jönköping University.

[11] W. Laung-Terng, W. Cheng-Wen and X. Wen, “VLSI Test Principles and

Architectures,” in Design for Testability, San Francisco, 2006.

[12] U. E. Odozi, “High-Level Synthesis and Analysis of Test Data for Software Based

Self-Test in Microprocessors,” 2016.

[13] O. Novak, E. Gramatova and R. Ubar, “Handbook of Testing Electronic Systems,”

2005.

[14] Z. Navabi, “Digital System Test and Testable Design: Using HDL Models,” LLC

2011.

69

[15] V. S. Bagad, VLSI Design, Technical Publications Pune, 2008.

[16] L.-T. Wang, Y.-W. Chang and K.-T. Cheng, Electronic Design Automation, 2009.

[17] J. C.-M. Li and M. S. Hsiao, Electronic Design Automation, 2009.

[18] G. Sudhagar and S. S. Kumar, “VLSI Design of Efficient Architecture in Recursive

Pseudo-Exhaustive Two-Pattern Generation,” Journal of Theoretical and Applied

Information Technology, 2013.

[19] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems Testing and

Testable Design, IEEE Press, 1999.

[20] R. Ubar, “Lecture slide on Built-In-Self-Test”.

[21] A. Jassnetski, A. S. Oyeniran, A. Tsertov, M. Schölzel and R. Ubar, “High-Level

Modelling and Testing of Multiple Control Faults in Digital Systems,” in Proc. of

DDECS, April 20-22, 2016.

[22] S. M. Thatte and J. A. Abraham, “Test Generation for Microprocessors,” IEEE

Trans. On Computers, no. 6, pp. 429-441, June 1980.

[23] D. Brahme and J. A. Abraham, “Funtional Testing of Micro-Processors,” IEEE

Trans. on Comp, no. 6, pp. 4755-485, 1984.

[24] A. S. Oyeniran, A. Jasnetski, A. Tsertov and R. Ubar, “High-Level Dta Generation

for Software-Based Self-Test in Microprocessors,” in 2017 6th Mediterranean

Conference on Embedded Computing (MECO), Bar, Montenegro, 11-15 June 2017.

[25] A. S. Oyeniran, R. Ubar, S. P. Azad and J. Raik, “High-Level Test Generation for

Processing Elements in Many-Core Systems,” 2017.

[26] S. A. Oyeniran, P. S. Azad and R. Ubar, “Parallel Pseudo-Exhaustive Testing of

Array Multipliers with Data-Controlled Segmentation,” 2018.

[27] D. P. Siewiorek and L. K.-W. Lai, “Testing of Digital Systems,” Proceeding of the

IEEE, vol. 69, no. 10, pp. 1321-1333, October 1981.

[28] V. Agrwal and M. Bushnell, Essentials of Electronics Testing for Digital, Memory

and Mixed-Signal VLSI Circuits, Boston: Kluwer Academic Publishers, 2000.

[29] R. J. Tocci, N. S. Widmer and G. L. Moss, Digital Systems Principles and

Applications, 10 ed., Pearson Education International, 1977.

[30] OpenCores, “MiniMIPS ISA”.

70

[31] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The

Hardware/Software Interface, 3 ed., San Francisco, CA: Morgan Kaufmann

Publishers Inc., 2007.

[32] “Laboratory Exercise 1: Preliminary Fault Simulation Concepts,” October 2015.

[33] Reason tutorial, BEC. (2002, October 9). Defect Oriented Test. Tallinn, Estonia.

71

Appendix 1 – Program Description and Manual

This section describes how our experiments were performed. It contains a step-by-step

illustration of how the test program is generated and FC calculation for each experiment.

Each experiment has its folder and they have similar steps.

1. The folders and files for the experiments can be downloaded through this link:

https://github.com/Coded99/Test_Data_Generation_for_SBST_of_Microprocessors

2. Linux operating system is recommended to perform the experiment. There are 11

folders representing experiments 1 – 11. Each of the folder contains the Test program

generator, fault coverage calculation and other folders for compiling the miniMIPS

processor.

3. Open the Test Program Generator folder, located here are 6 folders and 10 files. For

our experiment, only the Test_Program and input folder, clean.sh, compile_minimips.sh,

logic_sim.sh, vsim_gui.tcl and tst.src are needed for navigation, other files and folders

are dependencies. The description of the needed folders and files are as follows:

I. Test program folder: This contains the python script for the test program

generation and the applicable template specific to the experiment.

• Test template: Depending on the experiment being performed, the applicable

template is in this folder. If control test, then the control template

(op1_template.py and op2_template.py), if random or PET test, then random

(random_template.py) or PET (pseudo_template.py) template are found here.

• Parameter.txt: The parameter.txt file dictates the instructions to be included in

the test program. These instructions are catalogued depending on the HLDD

synthesis specific to the experiment.

• load_memory.py: This file is used to load the control test data (data.txt located

in the input folder) into the processor’s memory.

• TestProgramGenerator.py: This is the master file in this folder. It uses all the

scripts in the folder to generate the test program.

72

• Outputme.py: This file stores the generated test program temporarily, so that it

can be copied to tst.src and used to generate the dumpports_ex.vcd file.

II. Input folder: This folder contains the test data to be used for the experiment. For

control test, data.txt and branch.txt files are used as inputs. This folder could also

contain pseudo_input or random_input folders.

• Pseudo_input: This folder could contain 1 or 5 .txt files. When running

an experiment that contains the dedicated PET data, 5 files will be located

– add.txt, sub.txt, logic.txt, shift.txt, and mult.txt. Otherwise, only 1 file

named all.txt will be located for an experiment with all PET data.

• Random_input: This folder contains the random data to be used for an

experiment that uses the random data.

For clarity, the purpose of the following files will be described as we proceed with

the manual - clean.sh, compile_minimips.sh , logic_sim.sh, vsim_gui.tcl and

tst.src

4. Navigate to the test program folder and open via linux terminal. In order to

generate the test program, type in the following command: python

TestProgramGenerator.py. The script will generate an output file as seen

in Figure 28. If the terminal does not report an error, it means the program was

executed successfully.

Figure 28: Test program generator response from Linux terminal

The test program is automatically stored in the outputme.txt file. Open this file and copy

the content into the tst.src file located in the Test_Program_Generator folder.

73

5. After the test program is pasted into tst.src, the command ./clean.sh is exe-

cuted in the Test_Program_Generator folder, in order to clean the miniMIPS

folder by removing any .bin, .lst, .vcd and .wlf files, which were created by the

assembler. These files could be present in the folder as a result of a previously

executed test program.

6. Go back to the terminal of the linux OS and enable the logic simulator environ-

ment – ModelSim. I used a computer in the TalTech University laboratory which

has the logic simulator installed. From the terminal, enter the CAD command twice

(once per instance). A list of the installed CAD software will be seen on the screen.

To enable the ModelSim environment, enter command “2”.

7. Next is to compile the miniMIPS HDL from the terminal. The complile_mini-

mips.sh file is to be used for this purpose. Once entered in the terminal with

./compile_minimips.sh, the miniMIPS HDL is compiled.

8. The test program in tst.src is in assembly code and needs to be converted into a

binary code for the miniMIPS processor. Enter the command

./logic_sim.sh for this purpose.

The ModelSim environment will be opened after a few seconds and a waveform

as in Figure 29 is displayed. Depending on the amount of test data or combination

of methods being used for the particular experiment, it might take up to 5 minutes

for ModelSim to finalize the execution of the test program.

Figure 29: Generating dump file for fault coverage calculation

74

After the execution of the test program is completed, ModelSim window is automatically

closed as specified in the ./logic_sim.sh file.

9. The previous step generated various .vcd files, rom.bin, rom.lst, out.txt, and

transcript. Since the focus of our experiments was on the execute module of the

miniMIPS processor, we will use only the dummports_ex.vcd file. This file

contains the primary input and output values of the executed instructions and is

used for the fault coverage calculation.

10. Copy the dummports_ex.vcd file and paste is in the Fault_coverage_calculator

folder. The folder should contain 3 files and 1 folder after the dummports_ex.vcd

file has been pasted. The folder is named gate_level and the files are

dummports_ex.vcd, run_tst_fsim.sh and tmax.tcl.

11. Tmax.tcl is TetraMAX script to be executed for the fault coverage calculation.

This file contains a command to induce the expected faults in the PPS_EX MUT

of the miniMIPS processor. This means that all possible faults in the module will

be created, including not detected faults [32]. Navigate to the

Fault_coverage_calculator folder via the terminal in order to configure the

environment for TetraMAX.

12. Once again, enter the command CAD. If the terminal was not closed from step 4

until now, the command “3” should be entered to configure the environment for

TetraMAX. However, if the terminal was previously closed, then CAD will be

entered twice before the command “3”.

13. Enter the command ./run_tst_fsim.sh to commence the FC calculation.

This process can take up to 4 hours, depending on the size of the MUT and the

test program.

14. The result of the FC calculation will be displayed on the terminal or found in a

file named report.txt, with the details of the time taken for FC calculation.

75

Appendix 2 – Structure of the miniMIPS processor

Figure 30: Structure of the miniMIPS processor

76

Appendix 3 – CPU specification for the experiments

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 4

On-line CPU(s) list: 0-3

Thread(s) per core: 1

Core(s) per socket: 4

Socket(s): 1

NUMA node(s): 1

Vendor ID: GenuineIntel

CPU family: 6

Model: 158

Model name: Intel(R) Core(TM) i5-7500 CPU @ 3.40GHz

Stepping: 9

CPU MHz: 3703.725

CPU max MHz: 3800.0000

CPU min MHz: 800.0000

BogoMIPS: 6815.85

Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 6144K

NUMA node0 CPU(s): 0-3

77

Appendix 4 – Source Codes

 A Pseudo_template.py

def pseudo_template(inputFile, out, instruct, result_register):

 f = open(inputFile, 'r') # input file

 instruction = instruct

 out.write("jal reset_offsets\n")

 if(instruction[0:2] == "mf" or instruction[0:2] == "mt"):

 out.write("jal reset_hi_lo\n")

 if(instruction[0:] == "add" or instruction[0:] == "sub"):

 out.write("jal init_cp\n")

 out.write("operation_"+instruction+"_psuedo:\n")

 offset = 0

 register = 2

 outline = []

 line = f.readlines()

 def load_data(i, register):

 # selection by 16 bits

 bit_set1 = i[:16]

 bit_set2 = i[16:32]

 bit_set3 = i[32:48]

 bit_set4 = i[48:68]

 for x in range(2):

 if (x == 0):

 most_sig_bit = int(bit_set1, 2)

 least_sig_bit = int(bit_set2, 2)

 else:

 most_sig_bit = int(bit_set3, 2)

 least_sig_bit = int(bit_set4, 2)

 out.write("\tlui $%d, %d\n" % (register, most_sig_bit))

 out.write("\tori $%d, $%d, %d\n" %

 (register, register, least_sig_bit))

 if (register >= 3):

 register = 2

 else:

 register += 1

 def load_data_immediate(i, register, opcode):

 bit_set1 = i[:16]

 bit_set2 = i[16:32]

 bit_set3 = i[32:48]

 bit_set4 = i[48:68]

 for x in range(2):

 if (x == 0):

 most_sig_bit = int(bit_set1, 2)

 least_sig_bit = int(bit_set2, 2)

 out.write("\tlui $%d, %d\n" % (register, most_sig_bit))

 out.write("\tori $%d, $%d, %d\n" %

 (register, register, least_sig_bit))

 else:

 most_sig_bit = int(bit_set3, 2)

 least_sig_bit = int(bit_set4, 2)

 out.write("\t%s $%d, $%d, %d\n" %

78

 (opcode, result_register, register+1,

least_sig_bit))

 if (register >= 2):

 register = 1

 else:

 register += 1

 def load_data_shift(i, register, opcode):

 bit_set1 = i[:16]

 bit_set2 = i[16:32]

 bit_set3 = i[32:48]

 bit_set4 = i[48:68]

 shift_amount = 5

 for x in range(2):

 if (x == 0):

 most_sig_bit = int(bit_set1, 2)

 least_sig_bit = int(bit_set2, 2)

 else:

 if(opcode == "lui"):

 out.write("\tlui $%d, %d\n" % (register+1, most_sig_bit))

 elif(str(opcode[0:2]) == "mf" or str(opcode[0:2]) == "mt"):

 out.write("\tlui $%d, %d\n" % (register, most_sig_bit))

 out.write("\tori $%d, $%d, %d\n" %

 (register, register, least_sig_bit))

 out.write("\t%s $%d\n" % (opcode, register))

 else:

 most_sig_bit = int(bit_set3, 2)

 least_sig_bit = int(bit_set4, 2)

 out.write("\tlui $%d, %d\n" % (register, most_sig_bit))

 out.write("\tori $%d, $%d, %d\n" %

 (register, register, least_sig_bit))

 out.write("\t%s $%s, $%d, %d\n" %

 (opcode, result_register, register,

shift_amount))

 if (register >= 2):

 register = 2

 else:

 register += 1

 def alu_shifts(file_name, offset, opcode):

 for i in (line):

 load_data_shift(i, register, opcode)

 out.write("\tsw $%s, %d($29)\n" % (result_register, offset))

 out.write("\tjal increment\n")

 # offset += 4

 def alu_immediate(file_name, offset, opcode):

 for i in (line):

 load_data_immediate(i, register, opcode)

 out.write("\tsw $%s, %d($29)\n" % (result_register, offset))

 out.write("\tjal increment\n")

 # offset += 4

 def alu_op(file_name, offset):

 for i in (line):

 load_data(i, register)

 out.write("\t%s $%s, $%d, $%d\n" %

 (instruction, result_register, register,

register+1))

 out.write("\tsw $%s, %d($29)\n" % (result_register, offset))

 out.write("\tjal increment\n")

79

 # offset += 4

 def mult_op(file_name, offset):

 for i in (line):

 load_data(i, register)

 out.write("\t%s $%d, $%d\n" % (instruction, register,

register+1))

 out.write("\tmflo $%s\n" % (result_register))

 out.write("\tsw $%s, %d($29)\n" % (result_register, offset))

 out.write("\tmfhi $%s\n" % (result_register))

 out.write("\tsw $%s, %d($29)\n" % (result_register, offset))

 out.write("\tjal increment\n")

 # offset += 4

 def hi_lo(file_name, offset, opcode):

 for i in (line):

 load_data_shift(i, register, opcode)

 if(opcode[2:4] == "hi"):

 out.write("\tmfhi $%d\n" % (register+2))

 else:

 out.write("\tmflo $%d\n" % (register+2))

 out.write("\tsw $%d, %d($29)\n" % (register+2, offset))

 out.write("\tjal increment\n")

 # offset += 4

 if ((instruction =="mult") or (instruction =="multu")):

 mult_op(f, offset)

 elif((instruction =="addiu") or (instruction =="addi") or (instruction

=="andi")or (instruction =="ori")or (instruction =="xori") or

(instruction =="sltiu")or (instruction =="slti")):

 alu_immediate(f, offset, instruction)

 elif((instruction =="sll") or (instruction =="sra")or (instruction

=="srl")or (instruction =="lui")):

 alu_shifts(f,offset,instruction)

 elif((instruction == "mtlo") or (instruction =="mthi")):

 hi_lo(f,offset,instruction)

 else:

 alu_op(f,offset)

 f.close()

def make_pseudo_template(para, outputFile, result_register):

 Ins = open(para,'r')

 data_lines = []

 firstPass = True

 for line in Ins:

 if "=" not in line:

 try:

 catergory = line[0:2]

 line = line.rstrip()

 instru = line[2:]

 instr = str.strip(instru)

 instruction = instr[0:]

 if (catergory == 'p_'):

 if (instruction == 'addu' or instruction == 'add' or

instruction == 'addi' or instruction == 'addiu'):

 inputFile = '../input/pseudo_input/add.txt'

 pseudo_template(inputFile, outputFile, instruction,

result_register)

80

 outputFile.write("\n")

 elif(instruction == 'subu'or instruction == 'sub'):

 inputFile = '../input/pseudo_input/sub.txt'

 pseudo_template(inputFile, outputFile, instruction,

result_register)

 outputFile.write("\n")

 elif(instruction == 'or' or instruction == 'xor' or

instruction == 'nor' or instruction == 'and' or instruction == 'andi'

or instruction == 'ori' or instruction == 'xori'):

 inputFile = '../input/pseudo_input/logic.txt'

 pseudo_template(inputFile, outputFile, instruction,

result_register)

 outputFile.write("\n")

 elif(instruction == 'sll' or instruction == 'srl' or

instruction == 'sra' or instruction == 'srav' or instruction == 'slt'

or instruction == 'sltu' or instruction == 'slti' or instruction ==

'sltiu'):

 inputFile = '../input/pseudo_input/shift.txt'

 pseudo_template(inputFile, outputFile, instruction,

result_register)

 outputFile.write("\n")

 elif(instruction == 'mult' or instruction == 'multu'):

 inputFile = '../input/pseudo_input/mult.txt'

 pseudo_template(inputFile, outputFile, instruction,

result_register)

 outputFile.write("\n")

 except IndexError:

 firstPass = False

 else:

 do='nothing'

 Ins.close()

81

B Random_Template.py

def random_template(inputFile, out, instruct, result_register):

 f = open(inputFile,'r') #input file

 instruction = instruct

 out.write("jal reset_offsets\n")

 if(instruction[0:2] =="mf" or instruction[0:2] =="mt"):

 out.write("jal reset_hi_lo\n")

 if(instruction[0:] =="add" or instruction[0:] =="sub"):

 out.write("jal init_cp\n")

 #out.write("operation_"+instruction+":\n")

 out.write("operation_"+instruction+"_random:\n")

 offset = 0

 register = 2

 outline = []

 line=f.readlines()

 def load_data(i, register):

 #selection by 16 bits

 bit_set1 = i[:16]

 bit_set2 = i[16:32]

 bit_set3 = i[32:48]

 bit_set4 = i[48:68]

 for x in range(2):

 if (x == 0):

 most_sig_bit = int(bit_set1,2)

 least_sig_bit = int(bit_set2,2)

 else:

 most_sig_bit = int(bit_set3,2)

 least_sig_bit = int(bit_set4,2)

 out.write("\tlui $%d, %d\n" % (register, most_sig_bit))

 out.write("\tori $%d, $%d, %d\n" % (register, register,

least_sig_bit))

 if (register >= 3):

 register = 2

 else:

 register += 1

 def load_data_immediate(i, register, opcode):

 bit_set1 = i[:16]

 bit_set2 = i[16:32]

 bit_set3 = i[32:48]

 bit_set4 = i[48:68]

 for x in range(2):

 if (x == 0):

 most_sig_bit = int(bit_set1,2)

 least_sig_bit = int(bit_set2,2)

 out.write("\tlui $%d, %d\n" % (register, most_sig_bit))

 out.write("\tori $%d, $%d, %d\n" % (register, register,

least_sig_bit))

 else:

 most_sig_bit = int(bit_set3,2)

 least_sig_bit = int(bit_set4,2)

 out.write("\t%s $%s, $%d, %d\n" % (opcode, result_register,

register+1, least_sig_bit))

 if (register >= 2):

 register = 1

 else:

82

 register += 1

 def load_data_shift(i, register, opcode):

 bit_set1 = i[:16]

 bit_set2 = i[16:32]

 bit_set3 = i[32:48]

 bit_set4 = i[48:68]

 shift_amount = 5

 for x in range(2):

 if (x == 0):

 most_sig_bit = int(bit_set1,2)

 least_sig_bit = int(bit_set2,2)

 else:

 if(opcode =="lui"):

 out.write("\tlui $%d, %d\n" % (register+1, most_sig_bit))

 elif(str(opcode[0:2]) =="mf" or str(opcode[0:2]) =="mt"):

 out.write("\tlui $%d, %d\n" % (register, most_sig_bit))

 out.write("\tori $%d, $%d, %d\n" % (register, register,

least_sig_bit))

 out.write("\t%s $%d\n" % (opcode, register))

 else:

 most_sig_bit = int(bit_set3,2)

 least_sig_bit = int(bit_set4,2)

 out.write("\tlui $%d, %d\n" % (register, most_sig_bit))

 out.write("\tori $%d, $%d, %d\n" % (register, register,

least_sig_bit))

 out.write("\t%s $%s, $%d, %d\n" % (opcode,

result_register, register, shift_amount))

 if (register >= 2):

 register = 2

 else:

 register += 1

 def alu_shifts(file_name, offset, opcode):

 for i in (line):

 load_data_shift(i, register, opcode)

 out.write("\tsw $%s, %d($29)\n" % (result_register, offset))

 out.write("\tjal increment\n")

 #offset += 4

 def alu_immediate(file_name, offset, opcode):

 for i in (line):

 load_data_immediate(i, register, opcode)

 out.write("\tsw $%s, %d($29)\n" % (result_register, offset))

 out.write("\tjal increment\n")

 #offset += 4

 def alu_op(file_name, offset):

 for i in (line):

 load_data(i, register)

 out.write("\t%s $%s, $%d, $%d\n" % (instruction,

result_register, register, register+1))

 out.write("\tsw $%s, %d($29)\n" % (result_register, offset))

 out.write("\tjal increment\n")

 #offset += 4

 def mult_op(file_name, offset):

 for i in (line):

 load_data(i, register)

 out.write("\t%s $%d, $%d\n" % (instruction, register,

register+1))

83

 out.write("\tmflo $%s\n" % (result_register))

 out.write("\tsw $%s, %d($29)\n" % (result_register, offset))

 out.write("\tmfhi $%s\n" % (result_register))

 out.write("\tsw $%s, %d($29)\n" % (result_register, offset))

 out.write("\tjal increment\n")

 #offset += 4

 def hi_lo(file_name, offset,opcode):

 for i in (line):

 load_data_shift(i, register,opcode)

 if(opcode[2:4]=="hi"):

 out.write("\tmfhi $%d\n" % (register+2))

 else:

 out.write("\tmflo $%d\n" % (register+2))

 out.write("\tsw $%d, %d($29)\n" % (register+2, offset))

 out.write("\tjal increment\n")

 #offset += 4

 if ((instruction =="mult") or (instruction =="multu")):

 mult_op(f, offset)

 elif((instruction =="addiu") or (instruction =="addi") or (instruction

=="andi")or (instruction =="ori")or (instruction =="xori") or

(instruction =="sltiu")or (instruction =="slti")):

 alu_immediate(f, offset, instruction)

 elif((instruction =="sll") or (instruction =="sra")or (instruction

=="srl")or (instruction =="lui")):

 alu_shifts(f,offset,instruction)

 elif((instruction == "mtlo") or (instruction =="mthi")):

 hi_lo(f,offset,instruction)

 else:

 alu_op(f,offset)

 f.close()

def make_random_template(para, outputFile, result_register):

 Ins = open(para,'r')

 data_lines = []

 firstPass = True

 for line in Ins:

 if "=" not in line:

 try:

 catergory = line[0:2]

 line = line.rstrip()

 instru = line[2:]

 instr = str.strip(instru)

 instruction = instr[0:]

 if (catergory == 'r_'):

 if (instruction == 'addu' or instruction == 'add' or

instruction == 'addi' or instruction == 'addiu'):

 inputFile = '../input/random_input/random.txt'

 random_template(inputFile, outputFile, instruction,

result_register)

 outputFile.write("\n")

 elif(instruction == 'subu'or instruction == 'sub'):

 inputFile = '../input/random_input/random.txt'

 random_template(inputFile, outputFile, instruction,

result_register)

 outputFile.write("\n")

 elif(instruction == 'or' or instruction == 'xor' or

instruction == 'nor' or instruction == 'and' or instruction == 'andi'

or instruction == 'ori' or instruction == 'xori'):

84

 inputFile = '../input/random_input/random.txt'

 random_template(inputFile, outputFile, instruction,

result_register)

 outputFile.write("\n")

 elif(instruction == 'sll' or instruction == 'srl' or

instruction == 'sra' or instruction == 'srav' or instruction == 'slt'

or instruction == 'sltu' or instruction == 'slti' or instruction ==

'sltiu'):

 inputFile = '../input/random_input/random.txt'

 random_template(inputFile, outputFile, instruction,

result_register)

 outputFile.write("\n")

 elif(instruction == 'mult' or instruction == 'multu'):

 inputFile = '../input/random_input/random.txt'

 random_template(inputFile, outputFile, instruction,

result_register)

 outputFile.write("\n")

 except IndexError:

 firstPass = False

 else:

 do='nothing'

 Ins.close()

85

C Random_data_generator.py

import random

import os

random.seed(10110010011010101100101100101001)

function that generates random binary number

def randbin2(d):

 mx = (2 ** d) - 1

 # for counter in range(1,lenght+1):

 while True:

 b = bin(random.randint(0, mx))

 return b[2:].rjust(d, '0')

create/open text file and write data into it.

f = open("Data_75.txt", 'w+')

for i in range(0, 75):

 f.write(randbin2(64))

 f.write("\n")

f.close()

86

D Parameter.txt

;parameters: Define parameter for test program generation.

iterator=27

pattern_count=28

branch_count=26

result_address=29

pattern_address=30

result_register=18

source_register1=15

source_register2=16

jump_address=25

shift_amount=5

;for testing OP1

y a_add

n a_addu

n a_and

n a _nor

n a_or

n a_subu

y a_sub

n a_xor

n a_sllv

n a_slt

n a_sltu

n a_srav

n a_srlv

n a_sll

n a_srl

n a_sra

;n a_mult

;n a_multu

;n a_mfhi

;n a_mflo

;n a_mthi

;n a_mtlo

;for testing HILO

n b_mult

n b_multu

n c_mthi

n c_mtlo

; for immediate

y i_addi

n i_addiu

n i_andi

n i_ori

n i_slti

n i_sltiu

n i_xori

#for coprocssor writing

n 1_mtc0

n 1_mfc0

#for load and store

n 2_lw_sw

87

For co_processor load and store -- modify

n 3_lw0_sw0

#pseudo-exhaustive data

p_add

p_sub

p_addu

p_subu

p_and

p_or

p_xor

p_nor

p_sll

p_srl

p_srlv

p_sra

p_slt

p_sltu

p_mult

p_multu

p_addi

p_addiu

p_andi

p_ori

p_slti

p_sltiu

p_xori

p_srav

#Random data

r_add

r_sub

r_addu

r_subu

r_and

r_or

r_xor

r_nor

r_sll

r_srl

r_srlv

r_sra

r_slt

r_sltu

r_mult

r_multu

r_equ

r_nequ

r_beq

r_bne

r_bgez

r_bgezal

r_bgtz

r_blez

r_bltz

r_bltzal

r_addi

r_addiu

r_andi

r_ori

r_slti

88

r_sltiu

r_xori

r_srav

;Branches

n d_beq

n d_bne

n e_bgez

n e_bgezal

n e_bgtz

n e_blez

n e_bltz

n e_bltzal

89

E TestProgramGenerator.py

import reset

import load_memory

import op2_template

import op1_template

import pseudo_template

import random_template

import register_test

import pipeline

import op2_template_optimized

import op1_template_optimized

#test data file

parameter = "parameter.txt"

l = open(parameter,'r')

out = open('outputme.txt', 'w')

#interrupt

reset.interrupt_function(out)

#reset registers

reset.reset_function(out)

iterator = 0

pattern_count = 0

result_address = 0

pattern_address = 0

result_register = 0

shift_amount = 0

jump_address = 0

branch_count = 0

source_register1 = 0

source_register2 = 0

fixes the parameter used for the program

print "............parameters............."

firstPass = True

for line in l:

 if "=" in line:

 try:

 check = line.split("=")

 if (check[0] == 'iterator'):

 iterator = check[1].rstrip()

 elif (check[0] == 'pattern_count'):

 pattern_count = check[1].rstrip()

 elif (check[0] == 'result_address'):

 result_address = check[1].rstrip()

 elif (check[0] == 'pattern_address'):

 pattern_address = check[1].rstrip()

 elif (check[0] == 'result_register'):

 result_register = check[1].rstrip()

 elif (check[0] == 'shift_amount'):

 shift_amount = check[1].rstrip()

 elif (check[0] == 'jump_address'):

 jump_address = check[1].rstrip()

 elif (check[0] == 'branch_count'):

 branch_count = check[1].rstrip()

 elif (check[0] == 'source_register1'):

 source_register1 = check[1].rstrip()

90

 elif (check[0] == 'source_register2'):

 source_register2 = check[1].rstrip()

 except IndexError:

 firstPass = False

print 'iterator =', iterator

print 'pattern_count =', pattern_count

print 'store_result_address =', result_address

print 'test_pattern_address =', pattern_address

print 'result_register =', result_register

print 'jump_address =', jump_address

print 'branch_count =', branch_count

print 'source_register1 =', source_register1

print 'source_register2 =', source_register2

print "...................................."

out.write(" main:\n")

out.write(";........other test........;\n")

out.write(";........reset $26 back for branch loops........;\n")

out.write(";........reset $28 back for other test loops........;\n")

out.write(" lui $%s, %d\n" % (pattern_count, 0))

out.write(";........set memory location for signature........;\n")

out.write(" lui $%s, %d\n" % (result_address, 1))

out.write(" ori $%s, $%s, %d\n\n" % (result_address, result_address,

6000))

out.write(" jal reset_offsets\n")

#syscall

pipeline.syscall(out)

##template for psuedo-exhaustive data

out.write(";..........data-path test..........;\n")

out.write(" lui $%s, %d\n" % (result_address, 1))

out.write(" ori $%s, $%s, %d\n\n" % (result_address, result_address,

10000))

pseudo_template.make_pseudo_template(parameter,out, result_register)

##template for random data

out.write(";..........random-data-path test..........;\n")

out.write(" lui $%s, %d\n" % (result_address, 1))

out.write(" ori $%s, $%s, %d\n\n" % (result_address, result_address,

15000))

random_template.make_random_template(parameter,out, result_register)

#break

pipeline.breaks(out)

#pattern loading, reset offset module, increment offset

reset.end_program(out)

reset.load_pattern(out, pattern_address)

reset.reset_offsets(out, pattern_address,iterator,result_register)

reset.increment_offset(out, pattern_address,iterator, result_address)

reset.increment(out, pattern_address,iterator, result_address)

reset.store(out,result_register, result_address)

reset.init_cp(out)

out.write("end:\n")

out.write("\t j end\n")

91

out.close()

l.close()

