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1 Introduction
Computing technology has developed at an incredible pace over the past decades. The
main contributor to this process is the ongoing reduction of transistor’s feature size.
As smaller transistors are introduced, an ever-larger number of components can be
integrated on a single chip without increasing the physical area of that chip.

Modern distributed embedded systems, such as the ones used in automotive applica-
tions and satellites, are complex systems. No matter whether they are implemented in
the form of multi-processor systems-on-chips (MPSoCs) or built from separate intercon-
nected processor boards, distributed embedded systems consist of multiple processing
elements, which are connected using some form of interconnection infrastructure. The
entire system is then precisely orchestrated by software to achieve a functionality
that supersedes the sum of its parts. The components are often designed and built
independently and then integrated by a third party.

However, systems built using smaller technology nodes are also more susceptive
to faults [7, 8]. The faults can be caused by many factors, such as aging [9–12],
radiation [13–15], or manufacturing defects. Radiation has the biggest influence on
satellites [16–19], since they spend the entire mission duration without any maintenance
or repairs in the high radiation environment of space [20,21]. However, faults caused by
cosmic radiation are not only a problem in space. Even though most cosmic radiation
particles are deflected by Earth’s magnetic field, errors attributed to cosmic radiation
are still a serious problem for airplane electronics [22] and even for some terrestrial
devices, such as servers [23,24] in data centers. In order to guarantee the proper and
safe functioning of these critical systems, the presence of fault tolerance is not only
necessary, but it is essential.

Faults can occur in many parts of the system. The approaches presented in this
thesis provide fault detection and correction capabilities for different fault types, and for
both, the processing elements and for the interconnects, which connect the processing
systems together. The first two content chapters (Chapter 3 and Chapter 4) of the
thesis concentrate on protecting the interconnects in MPSoCs. On the other hand, the
software-based method for protecting the software that is running on the processing
elements, explained in Chapter 5, is applicable for a wider variety of distributed embedded
systems. While the approaches presented in this thesis can be used separately, they will
complement each other when used together.
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Figure 1: Changes of CPU parameters over 48 years [25,26]

1.1 Motivation
1.1.1 Trends and Barriers in Scalable CMOS System Design
Moore’s law predicts that the number of transistors in a chip doubles every two years,
while the chip area remains constant. This observation has held true for many decades
and it is still adequate today. Historically, as shown in Figure 1 [25,26], as the number of
transistors grew, it resulted in an increase of the single core performance of the Central
Processing Unit (CPU). However, since around the year 2005, it has been progressively
more difficult to continue that trend as rising the core frequency has become increasingly
impractical. These days, the main source of additional CPU performance is the increase
in core count. As seen in Figure 1 [25, 26], starting from the year 2008, the single-
thread performance, frequency, and power consumption have remained almost constant.
Simultaneously, the number of CPU cores is following the slope of the graph that shows
the transistor count.

Currently, the core count in processors is still increasing. While it may be not
practical to continue this trend beyond certain point due to Amdahl’s law [27], the
additional chip space made available by the Moore’s law also allows the chip designers
to integrate specialized accelerators or components that have previously been located
off-chip into the same system-on-chip (SoC) as the generic processor cores. Examples
of such cores are graphics processors and memory controllers. The accelerators will
increase the overall computation speed by decreasing the latency in the communication
between the components. Additionally, higher levels of integration also help to reduce
the physical size and power usage of devices.

Large-scale integration is pushed to extremes by mobile and embedded SoC manu-
facturers, who build entire computer systems on a single chip by integrating together
components that they buy from third parties in the form of intellectual properties
(IPs). Those systems include, in addition to CPU cores and graphics processors, also
display controllers, wireless networking adapters, etc. However, SoCs with high core
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count require a well-scalable, high-throughput interconnect that allows the cores to
communicate to each other with minimal latency.

The common shared bus architecture that has been traditionally used for such
purposes, does not scale very well and becomes a bottleneck for systems with high
core counts. This scalability bottleneck, predicted by Figure 1 [25, 26], has been
overcome by introduction of Networks-on-Chips (NoCs) [28]. Currently, NoCs are
used in numerous commercial and academic many-core devices [29–34]. In contrast
to bus-based interconnects, a NoC can provide simultaneous network access to all
connected nodes. In addition, depending on the routing algorithm that is used within
the NoC, it also enables multiple communication paths between each node pair. This
helps to distribute traffic and to increase the reliably of the system.

1.1.2 Vulnerabilities of Nano-Scale CMOS Systems
Modern technologies provide vast performance at a relatively low power. This is a
result of a decades-long trend in miniaturization of transistor’s feature size. However,
reducing size of the technology node beyond the sub-micron domain has also made
the devices much more susceptive to faults [7, 8]. This translates into a considerable
decrease in system’s reliability [35–37].

Faults in computer systems can be caused by increased wear on the transistors
due to a number or degenerative physical phenomena, such as hot carrier injection
(HCI), negative-bias temperature instability (NBTI) [9–12], etc. These effects are more
pronounced in sub-micron technologies and over time often result in the development
of permanent faults as the transistors that are affected by these phenomena become
incapable of performing their function within the required parameters.

However, faults can be also caused by environmental factors, most notably cosmic
radiation [13,14]. Consequently, faults caused by radiation are a large problem in devices
located in high radiation environments, such as satellites [17–19,38–42] whose orbits
are located outside of the protection of Earth’s magnetic field. In fact, the orbits of
many satellites pass through the radiation belts surrounding the Earth [20,21].

The amount of cosmic radiation that reaches Earth and ground-based technology
is much lower than in space and reduces with altitude [13, 14]. However, random
bit flips that are caused by cosmic radiation have been detected in not only airplane
electronics [22], but also in terrestrial devices, such as in CCD camera sensors [43] and
DRAM memories [44]. Radiation-induced faults in computer memories are especially
large problem for servers, such as the ones used in data centers [24] and supercomputer
clusters [23].

A radiation particle can flip bits in the memory or temporarily change signal values
in combinational logic. However, faults in the combinational logic become dangerous
only if the faulty value gets read into a memory element. Most radiation-induced faults
are transient and mostly disappear either by themselves, or after overwriting the faulty
value in the memory. Radiation-induced faults do not usually cause any lasting physical
damage to the system [13,14].

However, any fault, whether it is permanent, or transient, can lead to failures.
Therefore, for many critical applications, fault tolerance mechanisms have become a
hard requirement to guarantee that the systems work reliably, even under faults.
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1.1.3 Reliability Challenges in Distributed Embedded Systems
A fault can occur at different parts of the system. In case of MPSoCs, one of the most
critical areas is the interconnection network, which connects the processing elements.
For example, a broken link between the routers in a NoC can render a part of the
network inaccessible. The link failure, in this context, does not mean only that the
physical wire between the routers itself is broken. Any fault in NoC router that renders
at least one of the ports inoperable would manifest itself on a link, as a link fault.
Additionally, even a transient link fault could cause misrouting and lead to a deadlock
in the NoC, which renders the entire interconnection network unusable until a full reset
of the system is performed. However, if a fault occurs in the processing element, it
can overwrite variables in memory or cause a calculation error. These errors can easily
propagate to the software level.

Most of the faults caused by radiation are transient and their effects disappear after
a reset or memory scrubbing. For this reason, satellites and many other systems have
watchdog timers that will monitor system for crashes and automatically reboot it if a
crash is detected. However, a watchdog timer will not protect against faults that keep
the application responsive but causes it to perform a calculation error. A calculation
error, however, can lead to as bad as, or even worse side effects than a full system
crash. In satellites, the number of radiation-triggered faults is usually minimized by
utilizing special, radiation-hardened, components. However, the radiation-hardened
components are much more expensive and are usually based on older technologies,
when compared to commercial off-the-shelf (COTS) alternatives. As such, the COTS
components provide a higher performance. For this reason, COTS components without
built-in fault tolerance are preferred for low-cost satellites, or when high performance is
required [45]. In this case, the fault tolerance needs to be implemented on top of the
COTS components, for example in software.

All faults, except software bugs (which are out the scope of this thesis), occur in
hardware. However, they often manifest at higher layers (e.g., in software). This means
that fault tolerance for distributed embedded systems must be handled at different
parts of the system. For example, data correction for communication links needs to be
fast and thus should be implemented in hardware. On the other hand, overcoming the
problems with permanently broken links requires a specialized system health monitoring
unit (SHMU), such as the one proposed in Publication IV, which can reconfigure the
network and would be located somewhere in between of the hardware and the application
layers. Reconfiguration needs to be performed transparently to the application that
running on the processing elements. At the same time, the SHMU should have a
more abstract view of the network when compared to the routers. Finally, if COTS
processing units, without built-in fault tolerance, are used, the faults in processing
elements’ hardware often manifest themselves in the software that is being run on the
processing elements. This marks the need for a software-based method for detecting
and mitigating the effect of faults in the processing elements.

1.2 Problem Formulation
On an abstract level, a distributed embedded system consists of processing elements,
interconnects, and software running on these processing elements. Hardware faults,
caused by either aging or defects (usually permanent faults) or by environmental effects,
such as radiation (usually transient and correctable) can occur either in the processing
elements or in the interconnects.
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Faults in the interconnects usually manifest themselves as communication errors on
the interconnection links. For example, some faults can render an output port of a
NoC router non-functional. This will cause the link connected to this port to appear
broken, which can cause some network nodes, or even entire sections of the network to
be isolated from the rest of the NoC. Other types of faults in interconnect routers will
cause wrong data to appear at an otherwise functional link.

In case of a processing element that consists of a general-purpose processor and a
memory, faults often manifest themselves at the software layer. Any software application
can be viewed as a finite state machine (FSM). Its state is a set of variables in the
application, which hold certain values. Actions performed on these variables change the
state. Faults can occur either in the memory, directly corrupting the state, or in the
combinational logic of the processor, causing the new state to be wrongly calculated
and a wrong value to be written into one or more variables. In processing elements,
many hardware faults that do not get masked, will eventually manifest themselves at
the software level.
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Figure 2: Fault tolerance approaches presented in this thesis

This dissertation presents three fault tolerance approaches for use in different parts
of distributed embedded systems. While they are designed to work independently, the
three fault tolerance approaches can be also used together for increased fault tolerance.
As shown in Figure 2, the presented fault tolerance approaches are the following:

1. First, a relaxed transmission approach is presented to handle soft bit errors at
NoC links that could otherwise lead to interconnect congestions or cause a packet
re-transmission and thus additional latency. These errors are caused by transient
faults in the combinational parts of the NoC routers. The proposed relaxed
transmission mechanism is lightweight, very fast and can isolate and correct bit
errors on NoC links.
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2. When a permanent error occurs on the NoC link, changing a routing algorithm
can often fix the problem by bypassing the broken link. To this end, an in-depth
analysis of all two-dimensional (2D) turn model-based routing algorithms in a
NoC is done and formal robustness and adaptivity metrics are provided. These
metrics, together with the results of the in-depth analysis, allow the global fault
manager in the NoC to reconfigure the routing algorithm to bypass NoC links
which are broken due to permanent faults.

3. Finally, a distributed software-based fault tolerance algorithm, called STROBES,
is proposed. STROBES can guarantee a fault free execution of mission critical
software in the processing elements, which do not possess any hardware-based
fault tolerance mechanisms. Furthermore, the proposed algorithm can correct
non-permanent errors upon their detection. The approach presents formally
provable constraints and due to its deterministic latencies, it is real-time capable.

1.3 Contributions
To address the problems described in the previous section, this thesis proposes three
novel fault mitigation approaches at different layers of the system stack. The thesis goes
beyond the existing state of the art by addressing the following aspects of dependability:

• Relaxed Transmission Architecture – A design of a relaxed transmission-based
mechanism is provided for correcting soft errors on NoC links. Compared to similar
approaches, the proposed mechanism does not require additional re-transmission
registers and provides very fast error recovery time. Fault-free operation can be
resumed at the next raising clock edge after the transient fault that caused the
soft error on the link, has disappeared.

• Comprehensive Performance and Robustness Analysis of 2D Turn Models
for Network-on-Chips – For a first time, an exhaustive analysis of all uniform
2D turn model-based routing algorithms for networks-on-chip is performed. While
previous works only describe a small number of popular routing algorithms,
the analysis performed in this thesis resulted in discovery of many new turn
model-based routing algorithms that were not described before in the literature.
Additionally, new metrics for qualitative comparison of turn model-based routing
algorithms are proposed, which enable to utilize a novel approach to determine
an optimal routing algorithm reconfiguration for achieving a maximized use of
healthy NoC routing resources based on any specific permanent fault pattern.

• Software TMR with Distributed Voting – A novel high-level fault tolerance
algorithm for protecting mission critical software is proposed. The proposed
approach relies on a high-level fault model that allows to implement fault tolerance
completely in software in a way that the performance of the fault tolerance
algorithm does not depend on the behavior of the software it protects. Therefore,
the proposed algorithm can be used to protect a wide range of applications against
faults by connecting the application with the fault tolerance library through a
simple interface. In comparison, most similar approaches are limited to only a very
small range of applications with similar behavior or rely on modified or inherently
fault tolerant hardware to achieve fault tolerance.
The high-level fault model allows to fine-tune the algorithm’s parameters to
further optimize its fault tolerance and performance using a high-level, application
independent simulation.
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Additionally, the fault correction capabilities of the proposed algorithm are for-
mally proven by Markov analysis and fault injection experiments using the afore-
mentioned application independent high-level simulation tool.

The advantage of these approaches is that they go along with modern IP-based
design techniques for scalable distributed embedded systems and MPSoCs. This thesis
is based on the following specific contributions and publications.

The contributions on relaxed transmission are based on Publications I, II and IV:

• A novel low latency and low area fault tolerant transmission method for NoC links,
called relaxed transmission, is presented for mitigating errors that are caused by
transient faults at NoC links. These errors can be caused by, for example, single
event transients (SETs) in the combinational part of the sending router’s output
port. In simplified terms, the relaxed retransmission approach pauses sending and
receiving routers and repeats reading the same data until the transient fault has
disappeared and error-free data is read from the link. The routers are un-paused
and fault-free operation can be resumed at the next raising clock edge after the
fault has disappeared.

• An optimized version of the proposed relaxed transmission mechanism is proposed,
which takes advantage of the inherent redundancy found in the input buffers of
NoC routers to avoid using of additional re-transmission buffers. Experimental
results show the effectiveness of the proposed mechanism in very high fault rate
environments.

However, a permanent fault in a NoC router can make some of the router’s links
unusable by breaking (a part of) a channel in a router. For this reason, the routing
algorithm used in the NoC needs to be robust so that the system could continue working
with broken NoC links. Additionally, a formal way of comparing the different routing
algorithms in terms of their connectivity and adaptivity is needed. This leads to the
contributions on connectivity and adaptivity in NoCs based on Publications III and IV:

• A connectivity metric for NoCs is proposed. The connectivity metric tells if a NoC
under certain turn model (routing algorithm) can provide full connectivity between
all node pairs in the network. This allows to filter out useless turn models, which
cannot provide full connectivity. However, the connectivity metric can also be
used by the system’s fault manager for restoring connectivity by changing the
turn model in a NoC after a link has suffered a permanent failure. The fault
manager can simulate the effect of any turn model on a faulty NoC by applying it
to the routing graph of the NoC with the broken link. It is formally proven that if
a turn model achieves full connectivity on the graph representation of the broken
NoC, it also guarantees full connectivity in the real NoC.

• An Extended Degree of Adaptivity (DoAex) metric for turn model evaluation
is introduced. The proposed metric improves on the existing adaptivity (DoA)
metric by considering non-minimal path routing. The existing DoA metric can
only be used for calculating adaptivity for minimal path routing. The metric
describes the number of alternative paths a packet can take under a turn model
for non-minimal path routing. A turn model with higher Degree of Adaptivity is
more fault tolerant.
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• An algorithm for calculating average connectivity is provided. The average
connectivity value calculated for k broken links is equal to connectivity values
averaged over all fault configurations with k broken links. Average connectivity
helps to compare turn models in terms of fault tolerance.

• An analysis of all uniform 2D turn model based routing algorithms for NoCs is
performed and all deadlock free turn models that provide full connectivity (usable
turn models), are extracted. Additionally, an in-depth comparison of all usable
2D uniform turn models in terms of connectivity, Degree of Adaptivity, Extended
Degree of Adaptivity, average connectivity and latency, is performed. To the best
of the author’s knowledge, a full comparison of all uniform 2D turn model based
routing algorithms has not been done before.

• Many new turn models that have not been described in the literature, but provide
good fault tolerance with low latency, are discovered.

• A strong correlation between turn model’s average connectivity, latency and its
(extended) Degree of Adaptivity is shown.

• Finally, an algorithm is provided that can be used by the system’s fault manager
to choose the best turn model for any fault scenario.

On the other hand, transient faults can also occur in the processing elements
themselves. However, in case this happens, it is essential that critical software continues
to run reliably. This leads to the final contribution of the thesis, a software-based TMR
approach for distributed embedded systems, called STROBES. This contribution is
based on Publication V:

• In this thesis, a software-based fault tolerance algorithm, called STROBES, is
proposed. The proposed algorithm is directly derived from a high-level fault
model, which provides good coverage of faults that can occur in software, which
is run on a multiprocessor system, while still being agnostic to the behavior of
that software. STROBES’ performance does not depend on the behavior of the
protected application, but only on the constraints of the system it is run on and
the size of the application’s memory that is protected by the algorithm.

• Since the STROBES algorithm is application agnostic, the application can be
updated without any changes to STROBES. Furthermore, existing applications
can be easily adapted to work with STROBES. In order to make the protected
application compatible with STROBES, it needs to be linked with the STROBES
library, which can be accessed using a simple interface. This is in contrast with
most other similar approaches, where the fault tolerance algorithm is tightly
coupled to the protected application and cannot be separated.

• STROBES enables to run mission critical tasks on unmodified COTS processing
elements, which do not have built-in fault tolerance. This is possible because
STROBES is a fully software-based solution that does not require modification of
the hardware it is running on.
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• STROBES’ performance can be fine-tuned using a set of internal parameters.
These parameters can be estimated formally and then fine-tuned in a high-level
simulation. Since STROBES is application agnostic, this simulation can be
performed independently of the protected application. Only information about
the basic properties of the application, such as the size of its state, are needed.
Additionally, in this thesis, the design of a custom simulation tool is provided for
this purpose.

• The STROBES algorithm runs the protected application in parallel on three
processing elements. Errors in the application’s state are detected using distributed
majority voting. Non-permanent faults in the application’s state can be corrected.
The STROBES algorithm can additionally also handle network and timing errors
in the distributed system.

• Reliability improvements of STROBES over a non-protected system are proven for-
mally using Markov chains and experimentally through fault injection experiments
by using a custom high-level application-independent simulation environment that
is also presented in this thesis.

1.4 Thesis Organization
The rest of the thesis is organized as follows. First, Chapter 2 will give an introduction
into the topic of dependability and familiarize the reader with the basics of Networks-
on-Chips. The background chapter is followed by Chapter 3 which introduces the
concept of relaxed transmission and its application on protecting combinational logic
in NoC routers against transient faults. Next, in Chapter 4 an in-depth analysis of all
uniform 2D turn model-based routing algorithms is performed. The analysis results in
the discovery of many new turn models with good performance that have not been
described previously in the literature. Chapter 5 introduces a novel application agnostic
fault tolerance algorithm for handling faults in critical software that is running on
processing elements without built-in hardware-based fault tolerance. The proposed
solution does not require any modifications to the hardware it is running on. Finally,
the thesis is concluded by Chapter 6.
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2 Background
2.1 Dependability
Dependability is defined as the ability of a system to deliver its intended level of service
to its users [46]. The term “dependability” is often mistakenly used interchangeably
with “reliability”. However, dependability is a much wider term, with reliability being one
of its components. In addition to being reliable (behaving according to its specification),
a dependable system must also be available and safe. Additionally, a dependable system
not any malicious entities tamper with, in other words, it needs to be secure. However,
in this thesis, only fault tolerance against naturally occurring faults is investigated.
Errors and failures introduced deliberately by a malicious entity are out of the scope of
thesis.

To this end, the three parameters of dependability mentioned above that are investi-
gated in this thesis – reliability, availability and safety – are defined in the literature as
follows [46]:

Reliability R(t) is the probability that the system will work during the interval [0, t]
without any failures. In other words, system’s reliability is a probabilistic measure of its
continuous fault-free functioning. The more reliable a system is, the less likely it is for
it to fail at any given time. A faulty system can still be reliable, if the faults do not
manifest themselves as failures, e.g., the faults are masked or otherwise mitigated by
some form of fault tolerance mechanism (see Section 2.1.3) and the system continues
to function withing normal parameters.

Availability A(t) of a system is the probability that the system is functioning
properly at time t. Unlike reliability, the availability parameter also considers any
possible downtime of the system due to repairs. A higher the reliability of the system,
and faster repair times, also result in higher availability. Availability of a system, which
cannot be repaired after a failure has occurred, is equal to its the system’s reliability.

Safety S(t) is defined as a probability that the system is in a safe state at time t.
A safe state is defined as a state in which the system does not pose any danger to
people or the environment surrounding it. It can be that a system is not reliable, or
even available, but still safe, if it fails in a way where it does not pose danger to its
surroundings.

2.1.1 Dependability Impairments
Faults, Errors, and Failures
Based on their severity, problems in the systems can be divided into faults, errors or
failures. A fault is a defect in a system. A fault can be either the result of manufacturing
problems (a manufacturing defect), or it could appear during the device’s lifetime. Faults
which occur during the lifetime of a device can be the result of normal wear on the
system (aging) or a direct influence from the environment (vibration, radiation, etc.).

A fault becomes an error when it causes a difference in the system’s behavior.
However, not all faults result in errors. For example, a fault might get either neutralized
using by a fault tolerance mechanism or just masked by digital logic. For example, a
faulty value at an input of an AND gate gets masked by the gate and will not be visible
at its output if at the non-faulty input of the AND gate is the value ’0’.

A failure is an error that causes the device to behave in a way that contradicts
the specification. If an error produces an output, which is different, compared to a
non-faulty system, but still valid according to the specification, it is not considered a
failure. An example if this is an error in the routing logic of a NoC router that causes a
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packet to be routed into a wrong output. If the wrong output is still valid according to
the routing algorithm, it is not a failure.

A failure can result in an expensive repair, or even complete loss of system if the
system it cannot be repaired or if the repair is too expensive (e.g., in case of satellites).
Additionally, a failure in a poorly designed system can also cause a serious safety hazard
and become dangerous to people or its environment. For these reasons, it is necessary
to minimize the probability of faults leading to failures in devices.

Types of Faults
Based on their behavior and the underlying cause, faults can be roughly categorized
into three group – permanent, intermittent and transient faults [46].

A permanent fault is a defect in a device that cannot be corrected without replacing
the broken component. The cause of permanent faults can be either a manufacturing
defect, or it can develop over time during the system’s lifetime, for example, due to
aging of the transistors.

An intermittent fault is a temporary (non-permanent) fault that occurs randomly
at the same position. The cause of an intermittent fault is always a defect in the device
itself. An example of an intermittent fault can be a cold solder joint in an electronic
device, which connects and disconnects randomly due to vibration. In time, intermittent
faults often turn into permanent faults.

A transient fault is a randomly occurring temporary fault. Unlike intermittent
faults, transient faults are usually caused by environmental phenomena. For example, a
radiation particle can trigger a transient fault in the system by hitting a transistor. This
can cause a short voltage spike at the transistor’s output, which could be interpreted as a
change in the logic value by the rest of the circuit. This type of transient fault is called a
single event effect (SEE). Transient faults can be differentiated from intermittent faults
by the fact that intermittent faults occur repeatedly at the same physical location, while
transient faults are random in their nature. Transient faults do not cause permanent
damage to the system and their effects will dissipate over a short time. In case the
faulty value is latched into a memory element, overwriting the value with a known good
value will correct the fault. However, if the faulty value is not detected in time and
corrective actions are not taken, the transient fault can still result in a failure.

2.1.2 Mechanisms Behind Radiation-Induced Transient Faults
The radiation particles that are responsible for causing SEEs in modern electronics come
from different sources. In the literature, there are reports of cases where materials used
in the manufacturing of integrated circuits (ICs) were contaminated with radioactive
elements [47,48]. This resulted in the IC packaging or solder material itself radiating
alpha particles and causing SEE-induced faults in the system.

However, most particles that are responsible for SEEs in electronics can be traced
back to cosmic radiation. Cosmic radiation is, obviously, a big problem for satellites
and other computer systems that are positioned in space [16–19]. These systems
receive a large amount of radiation from the sun, but also in form of cosmic rays which
originate outside the solar system. Additionally, the Earth is surrounded by the Van
Allen radiation belts. The radiation belts consist of a lot of charged particles that have
been caught and trapped by the Earth’s magnetic field. Satellites whose orbits pass
through the Van Allen belts also receive a large amount of radiation [20,21] from the
particles in the belts.
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However, radiation-induced errors are not limited to devices in located space. They
are also a notable problem for terrestrial applications. Soft errors – non-permanent
errors that are largely attributed to cosmic radiation, have been detected not only in
supercomputers [23] and servers [24] in data centers, but also in camera sensors [43]
and even in pacemakers [47]. At ground level, the main source of high energy particles
is still the cosmic radiation [13,14]. However, unlike in satellites, the most damage to
terrestrial systems comes from cosmic neutrons, not charged particles, such as ions or
electrons. This is the case because most of the charged particles will be deflected by
Earth’s magnetic field and usually do not make it to the ground level. Neutrons lack
charge and are not influenced by the magnetic field [14]. However, neutrons cannot
cause SEEs on their own since they lack an electric charge. For this reason, the SEEs
caused on ground level are mostly due to highly energetic secondary ions [14]. These
ions are produced as the result of a collision between cosmic neutrons and other atoms
in the atmosphere or with the silicon atoms in ICs [49]. Additionally, studies have
suggested that even low energy cosmic neutrons can indirectly cause SEEs by inducing
a fission process in boron-10 atoms. As a side effect of such event, an alpha particle
is generated, which can cause SEEs. Unfortunately, boron-10 is often used in the
insulation materials in integrated circuits (ICs) [50].

A radiation-induced fault (an SEE) occurs when a high-energy, charged, particle
hits a transistor. This starts a chain of events that can lead to an SEE-induced voltage
pulse to be generated at the output of the transistor. The most sensitive parts of the
transistor regarding to charged particles are its reverse-biased junctions. The closer to
the junction the particle hits, the stronger will be the effect [13].
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Figure 3: Effects of a particle strike on a transistor

The sequence of events that lead to an SEE upon a charged particle hitting a
transistor have been described in detail in [13]. The process explained in [13] is
illustrated by Figure 3 and it can be summarized as follows: When a charged particle
hits the transistor, it causes the formation of a track of electron-hole pairs with very
high carrier concentration along the trajectory of the energetic particle. Once this
track reaches the depletion region, the generated electric field starts to collect charge
carriers from the region. If the track extends further and reaches the substrate, a funnel-
shaped electric field forms that extends the depletion region deep into the substrate and
further increases its ability to collect charge carriers. This phase usually lasts tens of
picoseconds [14], after which, the funnel collapses. The next stage is the diffusion phase,
when electrons are diffused back into the depletion region, and the situation normalizes.
During the diffusion stage, charge is collected. When the amount of collected charge is
exceeds a critical level (Qcoll >Qcrit), a current pulse is generated. If this occurs, a
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voltage spike, is created at the affected junction. The length of the current pulse is
typically around 200 picoseconds, but the actual length depends on many parameters,
such as the energy and trajectory of the particle, but also on parameters of the transistor
itself [14].

If the voltage spice occurs in combinatorial circuit, it results in a transient fault,
called a single event transient (SET) [46]. An SET by itself is not dangerous since
it does not permanently damage the system and its effects disappear by themselves.
However, a sufficiently strong SET can propagate through the circuit. If the SET is not
masked by the logic gates that it passes through, the faulty signal may be latched into
a memory element, causing a single even upset (SEU) [51, 52]. The same can occur
when the particle directly hits a memory element, causing a bit flip. An SEU can be
easily corrected by overwriting the faulty bit in the memory with a correct value [46].
However, if the SEU is not detected and corrected early enough, it can lead to serious
errors or even to a failure.

The critical charge (Qcrit) depends on many parameters of the involved node. Most
notably, the operation voltage of the device [14]. Since newer devices run at lower
voltage, it means that newer technologies are more susceptive to SEEs. Additionally, in
older technologies, the problem of an SET being latched into a memory element was
not a large problem because of the relatively large sized of the gates and slow clock
speeds. However, due to lower propagation delays in modern systems, SETs can traverse
through many gates before dissipating. At the same time, fast clock rates increase the
probability of an SET becoming getting read into a memory element, and thus causing
an error, considerably [13].

2.1.3 Fault Tolerance
To guarantee fault-free functioning of critical systems, such as satellites [16–19],
servers [23, 24] and even pace makers [47], it is necessary to implement fault tol-
erance mechanisms. The goal of fault tolerance is to guarantee that any faults that
occur in the system will be corrected before they have a chance to cause an error or
failure. All fault tolerance approaches implement some form of redundancy. On an
abstract level, fault tolerance mechanisms can be divided mechanisms based on fault
masking and mechanisms, which implement some form of fault detector, coupled with
mechanisms for localizing, containing and recovering from the fault.

Fault Masking
The simplest probably most widespread form of fault-masking is TMR [53]. Essentially,
in a system that utilizes TMR, the critical components of that system are triplicated.
The outputs of the three components are then compared by using a majority voter. When
a fault occurs in one of the triplicated modules, the output of the faulty component will
differ from the correct components. However, since the other two functional components
still produce identical results, the faulty value is masked. This results in majority voting
still producing a correct result. The main benefit of TMR is its simplicity. For this
reason, TMR can be implemented for almost any system. This can be done both in
hardware and in software.

However, TMR has also disadvantages. Mainly, the cost of triplication of components
is high. Not only financially, but also in terms of power usage, physical size, and, in case
of software-based solutions, performance. Additionally, the majority voter is essentially a
single point of failure in the system. While this issue can be corrected by also triplicating
the checking mechanism [54], it will increase the cost even further.
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Fault Detection, Localization, Containment and Recovery
The limitations of TMR motivate the development of alternative fault tolerance solutions.
Usually those approaches work by replacing some of the redundancy introduced by TMR
with time or data redundancy. However, it is important to realize that such solutions
can only be developed for specific use cases and are not generic, like TMR. In general,
those approaches work in four steps – fault detection, localization, containment and
recovery from the fault.

The easiest way of detecting faults is by duplicating of the critical component
and majority voting on the outputs of these components (DMR – Double-Modular
Redundancy). Unlike TMR, duplication cannot mask the faults, but it can still detect
them. Duplication, compared to TMR, reduces the cost, but can still be expensive,
especially since it provides no fault correction. However, in many cases, DMR can
be further optimized by implementing a system which compares the work of the
critical component to a golden model on a more abstract level. Examples for this are
functional online checkers [55], which are, essentially, hardware assertions that verify
the components’ work against the specification in real time.

Another way for detecting faults is to use information or time redundancy. Information
redundancy is normally used in data transfer and storage, where a parity bit, checksum
or error correction code is added to the data. Time redundancy usually involves
re-execution of code or re-transmitting the to resolve transmission errors.

2.2 Networks-on-Chip
The ongoing down-scaling of transistor’s feature size has made possible the emergence
of multi and many-core SoCs with ever-higher numbers of cores. As the number of Pro-
cessing Elements (PEs) in the SoC has increased, traditional bus-based communication
approaches became a bottleneck for system’s speed and reliability. Networks-on-Chip
(NoCs) [28] have emerged as an alternative communication paradigm to overcome these
limitations.

Presently, NoCs have become the primary inter-core communication mechanism for
used for many-core chips with high core count. NoCs are not only used in academic
research [29, 30], but also found their way into commercially produced devices. For
example, NoC are used in Intel’s Skylake-based Xeon server processors [31] and their
Stratix 10 FPGAs [56]. Additionally, AMD’s new chips [32] use their proprietary NoC-
based Infinity Fabric interconnect [57], which utilizes an improved version of NoC-based
interconnect from older Opteron [33] server processors. Additionally, Infinity Fabric
supports 3D NoCs by vertically integrating multiple chiplets [57] on an interposer that
joins the NoCs on the chiplets into a single network [34].

In a NoC-based system, the traditional bus-based interconnect is replaced with
inter-connected routers and data between the PEs is transmitted in form of packets
over an interconnection network, the NoC. While NoCs can be built using different
network topologies, this dissertation considers only the full mesh topology because it
offers many alterative paths between all nodes in the network. The existence of multiple
alternative paths is necessary for fault tolerance. Figure 4 depicts an abstract, high-level
structure of a NoC-based SoC utilizing 3×3 full mesh topology. Each network node
in such a NoC consists of a NoC router (colored blue in the figure) and a processing
element (green). In a full mesh topology, each router is connected using bi-directional
links to a local PE and to all of its neighboring routers.
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Figure 4: High-level structure diagram of a 3 × 3 NoC-based SoC utilizing the full mesh
topology

The rest of this section of the thesis explains main technologies and mechanisms
utilized in NoCs, using the open source Bonfire NoC router, proposed in Publication IV
and [58] as an example. The Bonfire router is used through this dissertation as the
main research and experimentation platform.

2.2.1 Turn Model-Based Routing
The full mesh topology has a very regular structure, which does not change during the
system’s lifetime. Even when a network node or a link between the nodes fails, the rest
of the structure and connections will remain the same. By knowing this, it is possible
to implement simple, yet scalable, routing algorithms that are based on the concept of
turns. These routing algorithms are called turn models [28, 59,60].

In order to better understand the concept of turn models, some background informa-
tion is needed on the coordinate systems used in NoCs. Every router in a two-dimensional
(2D) full mesh NoC has four possible directions to route packets to, in addition to the
local connection with its PE. The four directions are named after the cardinal directions
as North (N), East (E), South (S) and West (W) (see Figure 4). Additionally, two axes
can be defined in the network based on the cartesian coordinate system. The horizontal
West ↔ East axis is called the X-axis and the vertical North ↔ South axis is called
the Y-axis.

The main concept of a turn model-based routing algorithm is that in every router in
the NoC certain turns are prohibited. A turn, in this context, is defined as a situation
where a packet changes the axis it is travelling on while passing through the router. An
example of a turn is a packet that enters the router from the South input and is routed
to the East output. In this case, the packet switches from the Y-axis to the X-axis.
Straight paths through the router, where the packet does not change its axis, are not
considered turns and are always allowed in all turn models. In addition, turn models
also do not regulate connections to and from the local port. The local connections are
always allowed. If all routers in the NoC are using the same set of disabled and enabled
turns, it is said that the turn model is uniform.
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One of the main advantages is that the routing logic can be implemented in a
distributed fashion across all routers, using Logic Based Distributed Routing (LBDR) [61].
In a NoC that is utilizing LBDR, the routing decision is made locally in each router,
based on certain criteria. LBDR has a very small overhead compared to other methods,
since the packets do not have to contain the entire routing path. Additionally, LBDR
can be implemented using only combinational logic, with only a couple of logic gates.
It takes much less area when compared to routing tables [61].

In 2D full mesh NoCs, there are 8 possible turns in each router, E2S (East-to-South),
E2N, N2E, N2W, W2N, W2S, S2E, S2E. Under this notation, for example, E2S means
that a packet enters the East input port of the router and it is forwarded to the South
output port. Under a turn model, each one of the turns can be either allowed or
disallowed, which leaves 256 possible uniform turn models, combinations of enabled
and disabled turns. However, not all turn models are usable. If a turn model is not
constrained enough, deadlocks can occur. A deadlock in a NoC is a situation, where
packets are waiting for resources in a cyclic manner. As such, a deadlock can clog the
network and often results in a system failure. On the other hand, if the turn model is
too constrained, it might be impossible to form connections between all the node pairs
in the network. A usable turn model must satisfy both conditions – it should not allow
deadlocks to occur but still provide connectivity between all node pairs. This problem
is investigated in more detail in Chapter 4.

(a) XY turn model (b) West-First turn model

Figure 5: Example turn models. Red arrows denote a disabled turn, black arrows represent an
enabled turn

Figure 5 depicts two well-known turn models. In the figure, a red arrow denotes a
turn which is disallowed under the turn model and a black arrow denotes an allowed
turn. Subfigure 5a shows the XY turn model [62]. Under the XY turn model, a packet
that is already travelling on the Y axis is not allowed to make a turn that would take it
to the X axis. This means that packets must first travel to their destination column
on the X axis and only then change to the Y axis to reach their destination. The XY
routing model is one of two deterministic [62] turn models, the other being YX. A
deterministic turn model means that there is always exactly one path between each two
nodes. While this approach provides predictable data arrival times, deterministic turn
models are not very robust, since under deterministic turn models, it is not possible to
bypass broken communication links.

Subfigure 5b shows the West-First [63] turn model. The West-Fist turn model does
not allow turning to West once a packet is moving on the Y axis. This means that if
the destination is to the West of the current router, the packet needs to be routed to
the West direction, because a turn to the West cannot be taken once the packet is
moving in any other direction. This needs to happen even if the destination is not on
the same row, as the router which is making the routing decision. As this turn model is
not as constrained as the XY model and provides multiple paths between each node
pair, it called an adaptive [62] turn model. The conditions that are used for choosing
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the paths the packet takes, depend on the implementation of the routing logic. For
example, the packet can take the path with the least traffic. Additionally, a high Degree
of Adaptivity makes the turn model more robust. More robust turn models have higher
probability of finding an alternative path between two nodes in case of link failures (see
Chapter 4).

The concept of turn models, including conditions for finding usable turn models
and a detailed analysis of all the usable turn models in terms of average connectivity,
adaptivity and latency is discussed in more detail in Chapter 4.

2.2.2 Switching Strategies
In essence, switching strategies in NoC are different techniques that are used by the
NoC routers for forwarding data from the router’s input port the correct output port.
There are many different switching strategies, which are described in detail in the
literature [62]. Therefore, in this section, an overview of only two well-known strategies,
Store-and-Forward (SaF) and Wormhole switching, are explained, since they are needed
for understanding the approaches presented in this thesis.

SaF, also called packet switching, is the simplest and the most straightforward
switching strategy. In case of SaF, the entire packet is received and stored in the
router’s input buffer or internal memory before forwarding it to the output port. While
the SaF strategy is very simple and, arguably, the easiest to implement, it also comes
with many drawbacks. Mainly SaF requires very large input buffers or additional memory
for storing the entire packets. Large buffers, however, mean high chip area usage and
consume a lot of power. Additionally, the process of waiting for an entire packet to be
received before forwarding it to the next router results in substantial latency overhead.

The shortcomings of the SaF switching strategy have been solved by Wormhole
switching. In Wormhole switching, packets are divided into smaller transfer units, called
flits. Every packet includes three types of flits: header flits, body flits and tail flits. The
header flits contain the information that is required for routing the incoming packet,
such as the address of the packet’s destination node. When a header flit is received,
the following sequence of events occurs:

1. The router reads the information required for routing the packet from the header
flit and uses that information to make a routing decision.

2. Resources that are required for forwarding the packet are allocated. This will
form a channel or a “wormhole” through the router, from the input port to an
output port.

3. Afterwards, all arriving flits are immediately forwarded through the “wormhole”
to the correct output, without buffering the entire packet.

4. When the tail flit is received, the resources used for the “wormhole” are freed up.

In contrast to SaF switching, the Wormhole switching strategy does not require
input buffers or additional memory for storing the packet, since all flits are immediately
forwarded to the output, provided that the required resources are available. However,
usually small input buffers are used for load balancing purposes. For example, the
Bonfire NoC router, which uses Wormhole switching, also has input buffers that can
store up to three flits at any time.
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Source Address Destination Address ParityFlit Type
001 Header Flit

31 29 28 15 14 1 0

3 bits 14 bits 14 bits 1 bit

Packet Length Packet ID ParityFlit Type
010 1st Body Flit

31 29 28 15 14 1 0

3 bits 14 bits 14 bits 1 bit

Payload ParityFlit Type
010

Normal Body 
Flits

31 29 28 1 0

3 bits 28 bits 1 bit

Payload ParityFlit Type
100 Tail Flit

31 29 28 1 0

3 bits 28 bits 1 bit

Figure 6: The packet format used by the Bonfire NoC

2.2.3 Example Packet Structure
Most of the work presented in this dissertation utilizes the open-source Bonfire Network-
on-Chip router (see Publication IV) as the platform of choice for obtaining the experi-
mental results. Every router in Bonfire NoC has a bi-directional (full duplex) connection
with up to four other routers and a local connection to the locally connected PE. In
each direction, 32 bits of data can be transferred at once over a parallel interface. As
such, all packets are divided into 32-bit wide flits. Each flit can carry up to 28 bits of
data. The rest of the space in the flits is taken up by a 3 bits long flit type indicator
and a parity bit. The packet format that is used in Bonfire NoC is shown in Figure 6.
In general, there are four types of flits:

• Header flit. A newly received header flit marks the arrival of a new packet. It
causes the router to allocate resources in preparation for routing an incoming
packet. Additionally, the header flit contains the source and destination addresses,
which are needed for routing the packet towards the correct destination.

• First body flit. The header flit is followed by body flits. Usually, the first body
flit is used to store additional information packet information, such as the packet’s
length and identification code. The information stored in the first body flit is not
needed for routing decisions, but it can be useful for the application layer.

• Normal body flits. The rest of the body flits are used for actual data transfer.
The number of body flits can differ from packet to packet, depending on the
amount of data that needs to be transferred. The number of body flits can range
from zero to (214)−3.
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• Tail flit. Every packet ends with a tail flit. The tail flit is very similar to body
flits, except it carries a different flit identification code than body flits. When a
tail flit is received, it indicates to the router that it has received the last flit of
the packet. When the body flit is forwarded, all resources that were allocated for
the packet are released. Additionally, the body flits in Bonfire NoC can carry 28
bits of data.

2.2.4 Flow Control Mechanism

Data 
Path Input

FIFO

DATA

Receiving
Router

Sending
Router

Control
Path

Credit 
Counter

Data Valid

Credit

Figure 7: Credit-based flow control mechanism

The flow control mechanism is needed in NoC to provide communication between
the sender and receiver nodes [62]. The receiver uses flow control mechanism for
communicating to the sender when it is ready to receive new data. The sender uses the
flow control mechanism to inform the receiver of its intent to send data. Different flow
control protocols exist for providing such communication in NoCs [62]. This chapter
provides an overview of the credit-based flow control mechanism that is used in the
Bonfire NoC.

Figure 7 shows a single direction of the full duplex inter-router link. The opposite
direction of the link is identical to the one depicted in the figure. In Figure 7 for
simplicity only the data and control signals and components, which are required for
explaining the credit-based flow control mechanism, are shown.

Using credit-based flow control, it is possible to send data at maximum rate of one
flit per clock cycle. To achieve data transmission, the Sending Router puts that data
on the DATA line and generates a pulse with length of one clock cycle on the valid line.
This pulse informs the Receiving Router of incoming data. Upon detecting the pulse on
the Valid line, the Receiving Router reads the data into its input buffer (Input FIFO).

However, data transmission can only work if there is enough free space in the input
buffer of the Receiving Router. This problem is solved in credit-based flow control by
the addition of a credit counter into the Sending Router. At reset, the Credit Counter
is set to the maximum number of flits that can be stored in the Receiving Router’s
Input FIFO.
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Every time a flit is transmitted, the value inside the Credit Counter is decreased by
one, since the available storage in the Receiving Router’s Input FIFO has decreased.
This way, while the value in the Credit Counter remains larger than zero, the Sending
Router can transmit data with the maximum speed of one flit per clock cycle. When
the value in Credit Counter reaches zero, it means that the input buffer of the Receiving
Router is full and no more data can be sent.

When space in the Receiving Router’s input buffer frees up, a one clock cycle long
pulse is generated at the Credit line. This pulse causes the value in the Credit Counter
to be increased by one. As such, the value in the Credit Counter represents the amount
of free space in the Input FIFO of the Receiving Router.

2.2.5 Bonfire Router Architecture
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Figure 8: Block schematic of the open-source Bonfire router [58]

This section gives an overview of the NoC router’s architecture, using the Bonfire
router as an example. The architecture of the Bonfire router can be seen in Figure 8. The
router has five identical full duplex communication ports: four inter-router connections
and one local connection for communicating to the local PE. The router can be divided
into four stages (from left to right in Figure 8):

1. Links. The physical connections between two routers or the router and the PE
that is connected to the router.

2. Input Buffers. The input FIFO buffers are used to store the incoming flits.
The depth of the buffers depends on the switching scheme that is used, average
predicted network load and other design constraints. In case of Wormhole
switching, the router does not need very deep input buffers because it is not
necessary to store an entire packet. For routers with Wormhole switching, the
buffer depth is a trade-off between the ability to cope with high network loads
and chip area and power usage.
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Figure 9: Description of the logic-based distributed routing (LBDR) method [61]

3. Routing logic – The Bonfire router uses LBDR [61] for making routing decisions.
The LBDR method is shown in Figure 9. LBDR works in a distributed manner.
Each router makes the routing decision by themselves, based on its own address
in the network and the address of the destination node that is stored in the
packet header. LBDR relies on the fact that the direction towards every node in
a NoC, relative to the current router, can always be easily calculated. This allows
implementing the routing mechanism as combinational logic, using only a few
gates.
In LBDR-based NoCs, each router has two control registers, which are used to
configure the routing logic. The Rxy register contains eight bits that represent the
turn model; each bit corresponds to a specific turn, ’1’ means the turn is enabled
and ’0’ means that the turn is disabled. The connectivity register Ci contains
four bits of data, out of which each corresponds to a cardinal direction. ’1’ in
the Ci register means that there is a connection in that direction and ’0’ means
there is no connection. This can be used to disable routing “over the edge” of
the network for routers on the network border. Alternatively, the connectivity bits
can be used by the fault management system to disable routing over faulty links.
LBDR makes the routing decisions in three stages:
Stage 1. First, the direction of the destination, in relation to the current router,
is determined. This is achieved by using two comparators that compare the X and
the Y component of the destination address to the respective values in the current
router’s address, as seen in Figure 9. If the X component of the destination
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address Xdst is larger than the X component of the current router’s address Xcurr,
the destination must be East from the current router. As such, the E’ output is
activated. In case Xdst is smaller than Xcurr, the destination must be West from
the current router, causing the W’ output to be activated. When Xdst ==Xcurr,
the destination is in the same row as the current router and both comparator
outputs are kept at ’0’. The direction on the Y axis is calculated in a similar
manner. When both the X and Y components of the destination are equal to
current router’s address, the destination is the current router and the incoming
packet forwarded to the local port.
Stage 2. Next, the requests for the arbitration unit are calculated. Request
calculations for all routing bits are shown in Figure 9. More information on this
can be found in [61]. To explain the logic behind the equations, let’s consider
the calculation of the North request. The markings N’, E’, W’, S’ represent the
respective outputs of the comparator stage:

N ′′ =N ′ ·E′ ·W ′+N ′ ·E′ ·Rne+N ′ ·W ′ ·Rnw

The North request is activated when one or more of the following conditions is
satisfied:

• N ′ ·E′ ·W ′ – The destination is exactly North from the current router (both
the East and West outputs of the X comparator are ’0’)

• N ′ ·E′ ·Rne – The destination is located North-East from the current router
and the routing bit for North to East is “1”. The routing bit represents the
North to East turn in the turn model. If the routing bit is “1”, the turn is
allowed. Therefore, if the packet is routed to North in the current router, it
will be sent to East in the next router.

• N ′ ·W ′ ·Rnw – The destination is located North-West from the current
router and the routing bit for the turn from North to West is enabled.

As seen in Figure 9, the rest of the requests are constructed similarly. Additionally,
the routing logic can output more than one request. For example, under adaptive
turn models, it might be possible to reach a destination that is located North-East
from the current router, via both the North and the East output. In this case,
the final decision on which output to use depends on the implementation of
the arbitration logic. This behavior allows to use routing algorithms, which can
produce multiple paths between the nodes.
Stage 3. Finally, before the requests are sent to the arbiter, they are further
filtered to only allow requests for valid directions:

N =N ′′ ·Cn

For example, routers that are in the first row of the network do not have any other
routers located in North of them, therefore the North connectivity bit (Cn) will
always be ’0’. As such, in these routers, the North request would never propagate
to the arbiter. Additionally, the connectivity bit might be set to ’0’ on purpose by
the global fault manager to disable routing over a broken link.
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4. Arbitration Logic – The arbiter (also called allocator) is responsible for resource
allocation in the router. In the Bonfire NoC router, each output port can be used
by only a single packet at a time (there is no interleaving of flits). Whenever a
request for an output is generated by the LBDR, the allocator will allocate the
output resource for the incoming packet.
Resource allocation is done separately for each output and in the Bonfire router,
the allocator uses the round-robin algorithm for processing the requests. Thus,
creating a fair and equal chance for all inputs to access the output port. As
mentioned before, under an adaptive turn model, LBDR can generate multiple
requests to different outputs. In this case, it is also the allocator’s task to make the
final routing decision, based on resource availability. The allocator in the Bonfire
router will just choose the first requested output that is available. However, the
decision process could be performed in a more complex manner by considering
the network load, fault information, etc.
Once the final routing decision is made, a grant signal is generated to for the
crossbar to commit the data transaction.
Additionally, in the Bonfire routers, the arbitration logic contains the credit counter
and is therefore responsible for handling flow control.

5. Crossbar – The crossbar (also known as Xbar) is responsible for creating a
physical connection between the input and the output ports to commit the actual
data transfer. The crossbar is essentially just a 32-bit wide multiplexer that can
connect all input buffers directly to the output port. There is one crossbar for
each output port. The crossbar’s input selection is made based on the grant
signal from the allocator.
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3 Relaxed Transmission Architecture
3.1 Introduction
This chapter proposes a novel Relaxed Transmission (RT)-based fault tolerant data
transmission method, which can mitigate soft errors in data that is transferred over NoC
links. Unlike other approaches, the proposed mechanism has very low fault correction
latency and does not require additional retransmission buffers because it takes advantage
of the already existing redundancy found in the input buffers of NoC routers.

The soft errors in NoC links are caused by transient faults, like SETs, which occur in
the combinational logic at the output port of the router that is transmitting the data.
In the proposed approach, transmission errors are detected at the receiver’s side using a
parity checker. Fault detection causes system to pause its operation and re-transmit the
same data until the transient fault has disappeared. Fault-free operation can resume at
the next raising clock edge after the fault has disappeared.

The rest of this chapter is organized as follows. Section 3.2 will provide an overview
of related works. Next, Section 3.3 investigates the effect of soft errors in the data
path of NoC routers. The proposed Relaxed Transmission mechanism’s architecture is
presented in Section 3.4. Next, an optimized version of the proposed RT mechanism
with smaller area and power overhead, is introduced in Section 3.5. This is followed by
experimental results in Section 3.6. Finally, the chapter is concluded in Section 3.7.

This chapter is based on the following publications:
• I

K. Janson, R. Pihlak, S. P. Azad, B. Niazmand, G. Jervan, and J. Raik, “AWAIT:
An ultra-lightweight soft-error mitigation mechanism for Network-on-Chip links,”
in 2018 13th International Symposium on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), pp. 1–6, July 2018

• II
K. Janson, R. Pihlak, S. P. Azad, B. Niazmand, G. Jervan, and J. Raik, “Handling
of SETs on NoC links by exploitation of inherent redundancy in circular input
buffers,” in 2018 16th Biennial Baltic Electronics Conference (BEC), pp. 1–4, Oct
2018

• IV
S. P. Azad, B. Niazmand, K. Janson, N. George, A. S. Oyeniran, T. Putkaradze,
A. Kaur, J. Raik, G. Jervan, R. Ubar, and T. Hollstein, “From online fault detection
to fault management in Network-on-Chips: A ground-up approach,” in 2017 IEEE
20th International Symposium on Design and Diagnostics of Electronic Circuits
Systems (DDECS), pp. 48–53, April 2017

3.2 Literature Review
Many works have investigated the problem of SET mitigation in NoC links (see Table 1).
However, most of the mechanisms proposed in the literature are very costly in terms of
latency or area or have a large data overhead. In general, all fault tolerance mechanisms
used for guaranteeing data integrity at NoC links can be categorized, based on the
fault detection and mitigation granularity of the approach, as End-to-End (E2E) or
Hop-by-Hop (HBH) mechanisms.

33



Table 1: Comparison of approaches for protecting NoC links against the effects of soft errors
Approach Used Method HBH/E2E No Extra Buffers Targeted Fault Model Correction Latency

[4] P-RET E2E 3 SETs + 50% of METs � 1 clk
[64] P-RET E2E 3 SETs � 1 clk
[65] P-RET E2E 3 SETs + METs � 1 clk
[66] P-RET E2E 7 SETs + METs � 1 clk
[67] P-RET E2E 7 SETs � 1 clk
[68] ECC E2E 3 SETs N.A.
[69] ECC HBH 7 SETs N.A.
[70] ECC HBH 7 SETs N.A.
[71] F-RET HBH 3 SETs N.A.
[72] F-RET HBH 7 SETs + METs 3 clks
[73] RT + ECC + EDC HBH 7 SETs + METs (Prediction) 2 clks
[74] P-RET HBH 7 SETs + Some DET N.A.
[75] ECC HBH 7 SETs + METs N.A.
[76] ECC HBH 7 SETs � 1 clk

Proposed RT HBH 3 SETs + 50% of METs 0-1 clk

In HBH mechanisms, the packet or flit is checked for errors every time data is
transferred from one router to another (during every hop). In E2E mechanisms, on
the other hand, errors in data can only be detected at the destination node. This is a
serious shortcoming, since in case of errors in the data fields, which are used for routing
(such as the flit type, destination address, packet length, etc.) E2E error checking can
result in routing errors or even deadlocks. Therefore, even though, compared to HBH
methods, E2E methods have less area and power overhead, they are only useful as a
second layer of fault tolerance on a NoC-based system, which already includes a HBH
fault tolerance mechanism.

An additional benefit of HBH mechanisms is that they have lower error repairing
latency than E2E mechanisms, in which the entire packet needs to be retransmitted
from the source to destination. In HBH mechanisms data needs to be retransmitted
only from the previous router.

Four main types of approaches exist in the literature for handling soft errors in data
on NoC links – data retransmission, error correction codes and relaxed transmission.

• Data Retransmission: Data retransmission approaches can be further divided
into packet retransmission and flit retransmission.

– Packet Retransmission (P-RET): Works such as [64–67] and Publica-
tion IV have proposed methods based on E2E packet retransmission. The
main drawback of this approach is the high latency caused by retransmission.
Additionally, as explained before, using E2E fault tolerance approaches, the
correctness of the packet can only be evaluated at the destination node. This
means that once a faulty packet is detected at the destination, often by using
an Error Detecting Code (EDC), a negative acknowledgment (NACK) packet
needs to be transmitted back to the sender, requesting a retransmission.
During this process, the receiving node might also need to discard the
non-faulty packets in order to preserve the packet order. Additionally, it
is important to note that the E2E packet retransmission mechanisms take
a long time to correct the errors and require distributed packet dropping
mechanisms to be implemented in the NoC in order to prevent a network-wide
failure caused by partially missing packets or corrupt routing information in
the header flits. A distributed packet dropping approach, however, requires
a fault detection unit implemented inside each router, which negates the
advantages (lower area and power usage) of the E2E approaches.
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On the other hand, [74] has proposed a HBH packet retransmission method
which uses store-and-forward switching to overcome the problem with packet
retransmission. However, the store-and-forward switching is a very inefficient
since every packet needs to be stored in its entirety in every router before
forwarding it. As a result, this approach requires very large input buffers in
routers and limits the maximum packet size while also considerably reducing
the throughput and increasing power usage.

– Flit retransmission (F-RET): In contrast to packet retransmission, works
such as [72] and [71] have proposed HBH flit retransmission. In these
works, faults are detected every during every hop at a flit level. Therefore,
when a faulty flit is received, only a single flit needs to be retransmitted.
additional, the approaches introduced in these works provide much lower
latency compared to E2E approaches but still need additional retransmission
buffers in the router.

• Error Correction Code (ECC): Another class of fault tolerance mechanisms for
NoC links are ECCs. Works such as [69, 70] and [76] have provided solutions for
correcting single transient upsets, while [75] has used more sophisticated error
correction techniques to cover multiple event transients. Like retransmission
mechanisms, ECCs are also implemented either as HBH [69, 70, 75, 76] or as
E2E [68]. However, the main problem with using error correction codes in NoCs
is the large area and data overhead of such mechanisms.

• Relaxed Transmission (RT): In contrast to above-mentioned approaches, Re-
laxed Transmission uses the transient nature of the SETs for fault mitigation.
The main concept of the RT approach is to pause the transmission until the fault
disappears. The basic concept of such an approach has been proposed in [73].
However, they do not provide a design for the RT-based mechanism. Moreover,
in the article, RT is proposed to be used in combination with ECC-based solutions
to mitigate timing error and soft errors based on error prediction using machine
learning and decision trees. Because SETs are random by nature, they cannot
be predicted. However, if used in combination with a checker for detecting SET
faults, the RT mechanism is good for correcting soft errors that are caused by
SETs in the combinational part of the sending router with relatively low overhead
and latency.

This chapter goes beyond the state of the art by presenting a design of an RT-based
mechanism. The proposed mechanism allows to correct transmission errors that are
caused by transient faults, such as SETs, in the output ports of NoC routers. The
proposed mechanism has a very low error correction latency, the fault-free operation
can be resumed at the next raising clock cycle after the transient fault has disappeared.
Furthermore, the proposed mechanism can use the inherent redundancy in the input
FIFOs of the NoC routers, hence removing the need for additional retransmission buffers
that are needed by HBH retransmission mechanisms. This helps to reduce the usage of
chip area and power.
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3.3 The Effects of Soft Errors in Network-on-Chip Packets
On-chip networks are very sensitive to soft errors in the data that is transmitted over
the inter-router links. A single erroneous value may lead to a network-wide failure. In
this context, a network-wide failure is defined as the situation where the network is
either completely or partially congested and the system cannot recover from it due to
inability to route packets.

Errors can obviously occur in many parts of the packet. Different errors have different
effect on the NoC:

• An error in the flit type field. A faulty flit type can lead to a network-wide
congestion. An example of this case is when packet without a valid header flit
that contains routing information is received.

• An error in the destination address. A wrong or even a non-valid destination
address might lead to a network-wide congestion, since data cannot be successfully
transmitted to the destination.

• An error in other header information. In case of the Bonfire network, errors
in source address, packet length, etc. may cause problem at the application layer
but have no impact on the network’s behavior. Therefore, the effects of these
faults can be ignored for the network layer. However, for other NoCs, which work
differently (e.g., use routing tables instead of LBDR), an error in this information
may also result in a failure.

• An error in the payload data. Faulty payload data does not impact routing.
However, it might still cause a problem at the application layer. The effect of
these faults can usually be ignored in the network layer.

In order to avoid network congestion and problems in application layer, a method for
mitigating the faults is needed. Granted, most of the errors can be corrected using an
error detection mechanism, such as the parity checker and a packet dropping mechanism.
However, dropping and resending packets is expensive and should be avoided, if possible.
Therefore, the RT mechanism was designed.

3.4 Architecture of the Relaxed Transmission Mechanism
The inner workings of the proposed RT mechanism can be investigated by analyzing a
simplified concept of that mechanism, which can be seen in Figure 10. In the figure,
only one of the output ports of the router that is transmitting data (Sending Router)
and one of the input ports of the router that receives the data (Receiving Router)
are shown. The modifications made to the NoC router, colored blue in Figure 10, are
implemented in all the ports. In addition, for increased clarity, router components that
are not necessary for explaining the concept, such as the flow control mechanism, are
not included in the figure.

The RT mechanism is designed to detect errors that are caused by transient faults,
such as SETs, in the combinational logic at the output of the Sending Router. The
proposed mechanism can correct these faults with minimal time overhead. The SET
detection is performed at the input of the Receiving Router using a parity checker.

While a parity checker requires adding only a single bit to every transferred flit, it does
not offer any error correction, only detection. Therefore, the proposed RT mechanism
includes additional techniques for correcting the parity errors. The simplified version
of the proposed RT mechanism, seen in Figure 10, utilizes two additional registers. In
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Figure 10: Simplified version of the proposed RT mechanism. The yellow lightning symbols
represent the faults that can be corrected using the proposed mechanism.

the figure, data is transmitted from the Sending Router to the Receiving Router at
maximum speed of one flit per clock cycle. The mechanisms behind flow control are
explained in more detail in Section 2.2.3.

Every clock cycle, a flit is read from the Sending Router’s input FIFO, then passed
through the combinational logic that is responsible for routing the flit to the correct
output port, before arriving at the Receiving Router’s input FIFO. The main goal of
the RT mechanism is to protect the combinational logic at the output of the Sending
Router against SETs. As mentioned before, the SETs in the combinational logic are
detected by the Receiving Router after the value is read into its input FIFO. However,
since the Receiving Router detects the error during the next clock cycle, the data is
not available anymore to the Sending Router. Therefore “re-sending” it after the fault
caused by the SET has disappeared is not possible.

For this reason, as shown in Figure 10, in the Sending Router, every flit is transmitted
to the MUX’s first input over line (A) and simultaneously stored into register REG A.
This results in the output of REG A (and, consequently, at the second input of the
MUX) always having the value that was read from the FIFO at the previous rising
clock edge. During normal operation, the data at MUX’s input (A) is transferred the
Receiving Router. However, when a parity error is detected, the MUX is switched to
the (B) input, which is connected to REG A). Combined with pausing the routers, this
results in the previously read value being kept at the input of the combinational logic.

In the Receiving Router, as seen in Figure 10, every time a flit is received over the
DATA link, it is stored into a register REG B. The value in the register is checked using
a parity checker. If a parity error is detected, it will cause the transfer to be paused by
triggering the Hold signal. The Hold signal going high will result in the following:

• The read and write pointers of the input FIFOs of both the Sending Router and
the Receiving Router are frozen, effectively disabling the FIFOs

• Credit counter in the Sending Router is frozen.

• Allocator will stop giving grants.

• Last, but not least, MUX will be switched to input (B). This results in holding
the current flit on the DATA line.
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When the system is paused, the DATA line is sampled to REG B every clock cycle
and the data on that line is re-checked by the parity checker. Once the effects of the
SET have disappeared and the parity checker does not detect a parity error anymore,
normal operation will be resumed by releasing the Hold signal. This will cause the
routers to un-pause and to switch the MUX back to input (A). Because the data in
register REG B is updated and checked each clock cycle, the mechanism is guaranteed
to return to normal operation on the next rising edge of the clock signal after the fault
has disappeared.

As visualized in Figure 10, the proposed mechanism is designed to handle SET faults
in the combinational logic at the output of the Sending Router. However, it is also
capable of detecting and handling SETs in the MUX and SEUs occurring in REG B,
which are added by the RT mechanism.

3.5 Optimized Relaxed Transmission Mechanism

Rd_pointer

Wr_pointer

Rd_pointer

Wr_pointer

Pointer	moving	direction

(a)	FIFO	empty (b)	FIFO	full

Figure 11: Circular buffer implementation of a FIFO

Since the register REG B in Figure 10 can be thought of as an extension to the
Receiving Router’s FIFO, the design can be optimized by using data written to the
FIFO one clock cycle earlier as input to the parity checker, thus removing the need
for REG B as a separate register. This can be easily implemented, assuming a circular
buffer implementation of the FIFO, as shown in Figure 11.

In a circular buffer implementation of a FIFO, the buffer is accessed by using
two pointers: one for reading (Rd_pointer) the FIFO and the other one for writing
(Wr_pointer) into the buffer. If the buffer is empty, the read and write pointers both
point at the same memory slot, as seen in Figure 11 (a). After each writing operation,
the write pointer is shifted by one slot to the left. It can be seen that REG B can be
implemented in such a way that parity checker is connected to the FIFO slot referred
to by Wr_pointer−1.

The data is read from the memory slot referred by the read pointer. However, as it
can be seen in Figure 11 (b), the condition for the FIFO being full is when the read
buffer is ahead of the write buffer by one memory slot (Wr_pointer=Rd_pointer−1).
Writing would cause the write pointer to move to the same memory slot where the
read pointer is, creating the “empty” state. Therefore, in such an implementation, the
memory slot Rd_pointer−1 can be never overwritten. This definition helps to further
optimize the RT mechanism, since REG A, as mentioned before, stores the flit that was
previously read from the Sending Router’s input FIFO during the previous rising clock
edge. Therefore, the flit in REG A is the same as the one stored in FIFO’s memory slot
Rd_pointer−1.
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The proposed RT mechanism takes advantage of the optimizations in order to
provide SET fault tolerance for NoC links by protecting the combinational logic at the
Sending Router’s output. The implementation of the RT-protected FIFO in can be
seen in Figure 12, where the components added by the proposed mechanism are shown
in blue. In the figure, data is normally read from the FIFO’s memory slot referred
by Rd_pointer and written into the slot referred by Wr_pointer. However, REG B
has been implemented by connecting the parity checker to an additional multiplexer,
which uses the previous write pointer as its select line. If an error is detected by the
parity checker, the error output is activated. As discussed earlier, this will cause the
sending router’s operation to be paused until the fault has disappeared. The register
designated as REG A in Figure 10 is implemented as reading of the memory slot referred
by Rd_pointer−1, thus also removing the need for REG A. The selection between
reading at position pointed to by Rd_pointer and Rd_pointer−1 is performed using
a multiplexer with the parity checker’s output used as the select line.

3.6 Experimental Results
The experiments presented in this section demonstrate SET mitigation capabilities of
the proposed RT mechanism and provide information regarding the overheads of the
proposed mechanism in terms chip area, power and critical path delay. All results,
except for latency, were acquired by synthesizing the design using TSMC 40 nm CMOS
technology standard cell library in Synopsys Design Compiler. The experiments were
performed at 400 MHz clock frequency. The latency results were obtained using
simulation.

The RT mechanism was implemented for the Bonfire (see Section 2.2.5) NoC
routers in a 4×4 2D-mesh NoC. All experimental results are compared to a baseline
Bonfire router in the same configuration. The baseline router does not include any fault
tolerance mechanisms.

The feasibility of the RT mechanism was tested by measuring its capability correcting
the errors caused by the SETs in the Sending Router’s combinational part. The results
were acquired by running a set of random uniform SET fault injection experiments by
forcing the signals in Modelsim simulation at register transfer level (RTL) to random
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Figure 13: Average packet latency of a 4×4 2D-mesh network under different packet (PIR) and
fault injection rates (FIR) on the links with fault duration of 10% of the clock cycle. Orange
line represents fault-free behavior of the RT mechanism

values. The experiment was set up in the way that all injected faults resulted in a parity
error in the Receiving Router. This approach to fault injection is sufficient because the
goal of the experiment is to verify that the proposed mechanism can correct all injected
faults and to measure the latency overhead, which is introduced to the system by fault
correction. The probability of individual SETs propagating to the output is out of the
scope of this work.

The proposed mechanism was, compared to fault-free experiments, able to correct
100% of the injected faults with almost no additional latency. The length of each SETs
was set to 250 ps (10% of the clock period). The experiments were run with different
network loads (PIR) and for fault rates (FIR).

As it can be seen in Figure 13, all injected faults were corrected successfully with
almost no increase in latency, even at unrealistically high fault rates of up to 80 million
faults per second. A slight increase in the latency is only visible in case of a very high
PIR when the traffic in the NoC is already saturated.

Table 2: Area overhead of the proposed mechanism

Area (µm2) Area Overhead
Baseline router 8276.45 –
Baseline with RT 9777.26 18%

Table 3: Critical path delay overhead of the proposed mechanism

Critical Path Delay (ns) Overhead
Baseline router 2.28 –
Baseline with RT 2.46 7.8%

Table 2 shows that the proposed RT mechanism imposes 18% area overhead to
the Baseline router. As seen in Table 3, the critical path delay is increased by 7.8%.
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The results were acquired on TSMC 40 nm complementary metal–oxide–semiconductor
(CMOS) technology standard cell library in Synopsys Design Compiler. The synthesized
RT router had the proposed mechanism implemented for all five input and output ports.
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Figure 14: Comparison of dynamic and static power consumption (in mW) of the proposed
and baseline 4×4 network under different packet injection rates

Finally, Figure 14 illustrates dynamic and static power consumption of the proposed
mechanism. Results are compared to the baseline router under different packet injection
rates. As it can be seen in the figure, the increase in power usage implied by the RT
mechanism is minimal.

3.7 Chapter Conclusions
In this chapter, a novel RT-based mechanism was proposed for mitigating soft errors at
NoC links. These errors are caused by transient faults, such as SETs, in the combinational
circuits at the output ports of the NoC routers. The proposed mechanism uses parity
checker for error detection. When a parity error is detected, the routers involved in the
data transfer are paused and the same data will be re-transmitted until the transient
fault disappears. Unlike re-transmission-based approaches, which usually have higher
time overhead that is caused by the re-transmission protocol, the proposed mechanism
can continue fault free operation at the next rising clock edge after the fault disappears.

Additionally, an optimized version of the proposed algorithm was presented that uses
the inherent redundancy that is found in the input buffers of NoC routers. Therefore,
the proposed mechanism does not need additional re-transmission registers that are
usually needed by HBH re-transmission approaches.

The optimized mechanism has 18% area and 7.8% critical path delay overhead
when compared to baseline router that does not include fault tolerance mechanisms.
Experimental results show the effectiveness of the mechanism even in unrealistically
extreme fault rates of up to 80 million faults per second with minimal additional latency
compared to fault-free runs under the same traffic scenarios.
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4 Comprehensive Performance and Robustness Analysis
of 2D Turn Models for Network-on-Chips

In this chapter, for the first time, all 256 uniform TMs for 2D full-mesh NoCs have been
enumerated and thoroughly analyzed. As the result of the analysis, 50 deadlock free
TMs that provide a full connectivity (usable TMs) were found. In contrast, as explained
in Section 4.2, only a limited number of usable TMs have been described previously in
the literature. The usable TMs were evaluated even further to extract their figures of
merit for adaptivity, extended adaptivity, average connectivity and latency. The analysis
resulted in identification of many previously unknown TMs with good figures of merit.

This chapter is based on the following publications:
• III

S. P. Azad, B. Niazmand, K. Janson, T. Kogge, J. Raik, G. Jervan, and T. Holl-
stein, “Comprehensive performance and robustness analysis of 2D turn models
for Network-on-Chips,” in 2017 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1–4, May 2017

• IV
S. P. Azad, B. Niazmand, K. Janson, N. George, A. S. Oyeniran, T. Putkaradze,
A. Kaur, J. Raik, G. Jervan, R. Ubar, and T. Hollstein, “From online fault detection
to fault management in Network-on-Chips: A ground-up approach,” in 2017 IEEE
20th International Symposium on Design and Diagnostics of Electronic Circuits
Systems (DDECS), pp. 48–53, April 2017

4.1 Introduction
In the previous chapter, a solution for mitigating transient faults on NoC links was
provided. However, transient faults are not the only problem that NoCs routers face.
Permanent faults can occur due to manufacturing defects or during the device’s lifetime
as a result of physical damage or aging. Permanent faults cannot be repaired without
either physically replacing the failed components or without using redundant spare
components.

Fortunately, in NoCs that utilize the full mesh network topology, there exists built-in
redundancy that can be taken advantage of for handling permanent faults. Specifically,
in a full mesh network, there are multiple paths between all nodes. As such, it is often
possible to change the routing algorithm to bypass a broken link in the network and,
therefore, to restore connectivity between the nodes. In this context, a faulty link refers
to any fault in the router, which renders an output port inoperable or corrupts the data
passing through that port. Since the precise location of the fault in the router is not
important in the context of this chapter, link faults are a good abstraction for different
communication-related problems in that can occur in NoC routers.

In case of full-mesh topology, routing in NoCs is often implemented using turn
model-based routing. The concepts of TM-based routing were explained in more detail
in Section 2.2.1. However, not all TMs are equally good for reliable communication.
The goal of this chapter is to identify the TMs that can improve system’s reliability
while having minimal overhead.
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In this chapter, all 256 uniform 2D TMs are thoroughly analyzed and all usable TMs
that provide full connectivity and are deadlock free, are extracted. The results of this
analysis help to make an informed decision while choosing the best TM for a certain
fault scenario. For this reason, this chapter introduces two new reliability metrics for
the assessment of TMs.

First, an equation for calculating the connectivity that is provided by the TM is
proposed. Connectivity is defined as the TM’s capability to ensure that each node can
communicate with every other node in the NoC. If this is true, it is said that the TM
can provide full connectivity in the NoC. This is important for identifying usable turn
models (TMs that provide full connectivity while avoiding deadlock). Additionally, the
connectivity metric can be used for checking if a TM can bypass link errors. If a TM
still provides full connectivity in a NoC with a failed link, it means that switching to
this TM would restore full functionality of the NoC.

Secondly, the Extended Degree of Adaptivity (DoAex) metric is introduced. The
DoAex metric is an extension to the Degree of Adaptivity metric (DoA) that has been
previously described in the literature [63]. The new DoAex metric describes the number
of alternative paths a packet can take under TM in case of non-minimal path routing.
In contrast, the previously published DoA metric only considered minimal path routing.
Under both metrics, a TM that can provide a higher Degree of Adaptivity, usually also
results in better fault tolerance.

In addition, the latency and average connectivity of TMs is investigated. Average
connectivity is a metric that measures the connectivity for certain number of faults
in the NoC, averaging the connectivity values over different fault configurations with
the same number of link failures. Average connectivity is a metric, which is directly
connected to the reliability of the TM. The data shows that there is a strong correlation
between TMs average connectivity, the latency caused by the TM, and its adaptivity.

Finally, insights into the process of the TM reconfiguration, including a simple
algorithm for identifying the most suitable TM for any fault configuration.

The rest of this chapter is structured as follows. In Section 4.2, related works are
introduced. This is followed by Section 4.3, where an overview of the method used for
guaranteeing deadlock-freeness of TMs is provided. Then, usable TMs are extracted
in Section 4.4. Further analysis of the usable TMs in terms of adaptivity is performed
in Section 4.5. Next, in Section 4.6, the algorithm for calculation of TMs’ average
connectivity is provided. Subsequently, in Section 19, the latency of all TMs is evaluated.
This is followed by Section 4.8, where an algorithm for finding a best TM for any fault
scenario is proposed. Finally, Section 4.9 concludes this chapter.
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4.2 Literature Review
Many approaches exist for handling permanent faults on NoC links. Some works, such
as [77–81], implement fault tolerant routing by adding (multiple) virtual channels.
However, the experiments on our in-house Bonfire NoC router (described in Section 2.2)
show that the input buffers account to ≈ 72% of the chip area used by the router. Such
approaches are very costly, since implementation of virtual channels causes the size of
the input buffers to be doubled for each added virtual channel.

Other works present routing algorithms, which are designed to handle broken links.
For example, [82] uses non-adaptive XY routing algorithm [62]. However, for bypassing
faulty links, it utilizes a custom algorithm and routing matrix that is stored inside the
routers. On the other hand, works like [83] and [84] combine XY and YX [85] using
custom algorithms. Additionally, works such as [86] and [87] rely on reconfiguration of
NoC routers to guarantee fault-free functioning.

The main problem with the approaches listed above is their overhead. In practice,
the NoC should be as small as possible and use minimal amount of power. For this
reason, the TM-based routing algorithms [62] (see Section 2.2) are an elegant solution
and are often used in NoCs. This approach allows to leave more available chip area for
useful functionality that is implemented by the processing elements and also reduce the
idle power consumption of the system.

TM-based routing algorithms in NoCs can be classified as either deterministic or
adaptive [88]. Deterministic routing algorithms use a single path for each source-
destination pair, whereas adaptive routing provides more path diversity. In case of
adaptive routing, alternative paths in the NoC could be chosen based on a criteria such
as traffic on the links, systems’ fault status, etc. Therefore, deterministic algorithms
provide guaranteed arrival times for data and may be preferred for real time applications,
while adaptive algorithms can be more reliable, if implemented correctly.

In literature, in addition to the two deterministic TMs (XY [62] and YX [85]),
seven adaptive turn models are introduced. More specifically, three deadlock free TMs
are introduced in [63] – West-First, North-Last and Negative-First. Additionally, [89]
introduces the North-First, South-First and Restricted North First TMs. Finally, the
East-First TM is addressed in [90].

However, to the best of the author’s knowledge, prior to this work, a formal method
for evaluation of all uniform TMs in terms of reliability has been missing in the literature.
Moreover, while there exists a finite number of 2D uniform TMs, previous works, such
as [91], have only covered performance comparison of a few well-known TMs.

4.3 Evaluation of Turn Models for Deadlock Freeness
A very important factor to be considered when choosing a routing algorithm is its
deadlock freeness. Deadlock occurs when a cyclic dependency is created between the
packets in a NoC. In this case, packets might end up waiting for available resources
held by other packets in cyclic manner [88].

Two main approaches exist for addressing deadlocks: deadlock avoidance and
deadlock recovery. In approaches utilizing deadlock recovery, deadlock is allowed to
occur, but it is handled using a deadlock recovery mechanism. However, the focus of
this chapter is on deadlock avoidance since it usually guarantees better performance.
This is because in deadlock avoidance approaches deadlocks cannot occur at all due to
inherent properties of the system. Therefore, deadlock avoidance mechanisms do not
need additional time for recovering from deadlocks.
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A similar phenomenon to deadlocks in NoCs is the livelock. In case of livelock, the
packets are, unlike in deadlock, moving. However, they are constantly routed in a cyclic
manner. The approach used in this chapter concentrates on deadlock avoidance by
making cyclic routing in the system impossible. However, by making cycling routing
of packets completely impossible, the approach guarantees the avoidance of both the
deadlock and livelock.

In this chapter, TM-based routing is used for deadlock avoidance in 2D NoCs with
full-mesh topology. It was first introduced in [63]. A TM is made of eight turns, that
can be either enabled or disabled. A turn in a TM is defined as a change of direction in
a packet’s path. Directions are named based on cardinal directions: North (N), East
(E), West (W) and South (S). In a 2D Mesh network, maximum of eight turn exist:
N2E (North-to-East), N2W, E2N, E2S, W2N, W2S, S2E and S2W. For instance, S2E
(�) indicates a turn that, if it is allowed, enables a packet coming from the South input
port of the router be forwarded to the East output port. Under a TM, each of the
eight turn can be either allowed or disallowed. A total number of 28 = 256 uniform
2D TMs can be derived from eight possible turns. In a uniform TM, that this chapter
concentrates on, all routers in the NoC have the same turns disallowed, and the same
turns allowed. A TM does not concern the connections going straight to the router,
where the transmission axis is not changed (such as N2S or E2W) or connections from
and to the local PE connected to the local port of the router. Those connection are
always enabled under every TM. The concept of TMs is explained in more detail in
Section 2.2

As mentioned above, guaranteeing deadlock freeness in NoCs means guaranteeing
that cyclic routing is impossible in the NoC. This problem can be solved using graph
theory. In [92], the concept of Cyclic Dependency Graph (CDG) is used for deadlock
detection. In a CDG, the nodes represent the network channels and edges denote
the channels’ dependencies. It is proven that the CDG must be acyclic to guarantee
deadlock-freeness. In this work a similar approach, the Routing Graph (RG), is used
instead of the CDG. The concept of routing graphs was introduced in [93]. The rest of
this section gives an overview on the construction of routing graphs and describes the
process of evaluating deadlock freeness of TMs using the routing graphs.

4.3.1 Routing Graph
A Routing Graph, RG(V, E), is a directed graph, in which the set of vertices (V) denotes
the set of all input and output ports in the network (two nodes per port) and the set
of edges (E) represents the set of (vi,vj), where vi is a vertex (input or output port)
that depends on the vj port. For the sake of simplicity, a vertex v in RG is denoted
as nodei,p,dir, which describes direction dir ∈ {in,out} of port p ∈ {N,E,W,S,L} of
node i in the network.

There exist two types of links, represented using edges in the routing graph:

• Inter-router edges, representing connections (links) between routers, connecting
an output port of a router to an input port of an adjacent router.

• Intra-router edges, representing allowed connections inside the router, connect-
ing an input port of a router to an output port in the same router. An intra-router
link can be:

– A connection from or to local port. These connections represent dependencies
between the router’s North, East, West and South ports and the local port
connected to the PE.
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– A straight connection. The straight connections describe dependencies
between ports involved in maintaining straight connections inside the router
(e.g., from West input to East output port of a router).

– A turn. A turn is a dependency of the ports in perpendicular direction, where
the packets move from the X axis of the mesh to the Y axis, or vice-versa
(e.g., from East input to South output port). See Section 2.2.1 for more
info on turns.

Figure 15 shows an example of an RG for XY routing in a 3×3 2D full-mesh
network, corresponding to Figure 16. For a routing algorithm to be deadlock free, its
corresponding RG must be acyclic.

Figure 15: Routing graph for the XY routing
algorithm

0 1 2

3 4 5

6 7 8

Figure 16: 3 × 3 full-mesh NoC

4.3.2 Proof of Deadlock Freeness
Theorem 1. A deadlock in a turn model results in a cycle in the RG derived from the
turn model.

Proof. Let us assume that a deadlock in the turn model results in an RG without any
cycles. An RG represents the sequence of all dependencies between the inputs and
outputs of the routers, under the applied turn model. If there are no cycles in the RG,
there also cannot be cyclic dependencies between the inputs and outputs of routers
in the network. Hence, no deadlock can be formed. This is in contradiction with our
initial assumption of having a deadlock for the turn model. It proves that a deadlock in
a turn model results in a cycle in the RG derived from the turn model.

Using this method, it is possible to discard 35 turn models with deadlocks out of
the total 256 TMs, which leaves 221 deadlock-free turn models.
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4.4 Identification of Usable Turn Models
A usable TM needs to not only to be deadlock-free, but also provide connectivity
between all node pairs in the network. However, out of 221 deadlock-free TMs, some
provide only partial connectivity. The obvious examples of this case are the one TM
with zero enabled turns and 8 TMs that only have one enabled turn. To evaluate the
connectivity of TMs, the following equation can be used:

ConnectivityRG =
N−1∑
i=0

N−1∑
j=0

Ci,j,RG (1)

In Equation 1, N is the total number of nodes in the network. RG represents the
routing graph of a full-mesh network using a TM-based routing algorithm. Ci,j,RG
indicates if there is a connection between nodes i and j under the RG:

Ci,j,RG =


1 if a path exists from nodei,L,out to nodej,L,in

in RG where i 6= j

0 otherwise

A routing algorithm can use either minimal path routing (only shortest path in
the RG), or non-minimal path routing (all simple paths in the routing graph). The
maximum value for the ConnectivityRG for a certain size of network can be found by
counting all network pairs (setting Ci,j,RG to constant one in Equation 1). Afterwards,
the connectivity of TMs can be assessed by using the unmodified Equation 1, and
replacing RG with the RG representing the TM that is being tested. For example, for
a 3×3 mesh, the maximum ConnectivityRG is 72. Any TM that results in a lower
ConnectivityRG does not provide full connectivity, and as such, is not usable.

Figure 17: Visualization of all 50 usable uniform 2D TMs, deadlock free TMs that provide full
connectivity. The forbidden turns are drawn in red.

Out of the 221 deadlock-free TMs, only 50 TMs are usable, they are deadlock-free
and provide full connectivity. These TMs are visualized in Figure 17. There are 14
four-turn usable TMs, 24 five-turn and 12 six-turn usable TMs. For comparison, Table 4
lists all the TMs which are, to the author’s best knowledge, previously named and
addressed in the literature.
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Table 4: List of TMs that have previously been described in the literature

# Allowed turns Conventional Name
0 E2N, E2S, W2N, W2S XY [62]
13 S2W, S2E, N2W, N2E YX [85]
33 E2S, S2W, S2E, N2W, N2E Restricted North First [89]
39 E2N, E2S, W2N, W2S, S2W, N2W East-First [90]
40 E2N, E2S, W2N, W2S, S2E, N2E West-First [63]
41 E2N, E2S, W2N, W2S, N2W, N2E North-Last [63]
42 E2N, E2S, W2N, S2E, N2W, N2E Negative-First [63]
46 E2N, W2N, S2W, S2E, N2W, N2E South-First [89]
48 E2S, W2S, S2W, S2E, N2W, N2E North-First [89]

4.5 Metrics for Adaptivity
In order to classify usable TMs, the Degree of Adaptivity (DoA) metric introduced
in [63], can be used. The DoA metric, which considers the shortest paths from the
source node to the destination node in the RG. A general form of DoA metric can be
formulated as shown in Equation 2:

DoA=
∑N−1
i=0

∑N−1
j=0 NoSPi,j,rg

number of node pairs in NoC (2)

Where N is the number of nodes in the network. NoSPi,j is equal the number of
shortest paths in the RG from node i to node j if i 6= j and equal to 0 when i= j:

NoSPi,j,RG =
{

num. of shortest paths in RG from nodei,L,out to nodej,L,in i 6= j

0 otherwise

Table 5: DoA and DoAEx for all usable 2D routing algorithms. Previously known TMs are
underlined

4 turns 5 turns 6 turns
TM
Num

0, 13 3, 5, 8,
10

1, 2, 4,
6, 7, 9,
11, 12

14, 15,
16, 17,
28, 33,
36, 37

18-27,
29-32,
34, 35

42, 43,
45, 47

38, 39,
40, 41,
44, 46,
48, 49

DoA 1 1.23 1.43
DoAEx 1 1.41 1.63 2.11 2.41 3.83 4.33

However, the DoA metric only considers the shortest paths in the network. As
a result, it does not allow the full adaptivity potential of non-minimal path routing.
Non-minimal path routing provides more paths than minimal path routing, by allowing
all simple paths (paths that do not have repeating nodes in them, and thus, no cycles)
to be taken in the routing graph. For this reason, in this work, an extension to the
DoA metric is proposed that includes all the simple paths in the network. The new
DoAEx metric is described in Equation 3.
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DoAEx =
∑N−1
i=0

∑N−1
j=0 NoSP ′i,j,RG

number of node pairs in NoC (3)

Where N is the number of nodes in the network. NoSP ′i,j is equal the number of
simple paths (paths without cycles) in the RG from node i to node j if i 6= j and equal
to 0 when i= j:

NoSP ′i,j,RG =
{

num. of simple paths in RG from nodei,L,out to nodej,L,in i 6= j

0 otherwise

The resulting DoA and DoAEx values for all usable TMs are presented in Table 5.
In the table, the previously known TMs are underlined. It is no surprise that TMs with
higher number of turns also result in higher adaptivity, since they provide more freedom
of routing. The data in Table 5 shows that in each class of TMs (TMs with four, five,
and six enabled turns), there are sub-classes that have different characteristics. For
example, TM no. 3 shares two turns with XY and two turns with YX routing, which
allows it to have non-minimal de-routes. Similarly, under non-minimal path routing,
TM no. 1 and no. 2 have even further advantage in providing path diversity.

Additionally, many new TMs with very high adaptivity were found. For example,
TMs no. 38, no. 44 and no. 49 belong all into the group with the highest adaptivity.
Yet, to the best knowledge of the author, they have not been described in the literature
prior to this work.

4.6 Average Connectivity Evaluation

Algorithm 1 Algorithm for calculating the average connectivity of a TM
1: avgConnectivity = list()
2:
3: for LnksBrokenCnt in range(0, LnksTotalCnt) do
4: brokenConfs = [list of all 3×3 2D meshes with LnksBrokenCnt broken links]
5: sumConns = 0
6:
7: // Calculate average connectivity over all configurations
8: // with len(brokenConfs) broken links
9: for all brokenConf in brokenConfs do

10: RG = generateRG (turnModel, brokenConf)
11: sumConns += connectivity (RG)
12:
13: avgConnectivity[LinksBrokenCnt] = sumConns / len(brokenConfs)

return avgConnectivity

In this section, the concept of TM’s average connectivity is explained. Average
connectivity of a TM for k faulty links is defined as the average of the connectivity
values, calculated using Equation 1, taken over all possible fault configurations with k
failed links. Average connectivity is the direct representation of the TM’s resilience to
link faults.
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As such, experiments were conducted to evaluate the average connectivity of each
TM. By using the connectivity metric introduced in Section 4.4, average connectivity of
the network with LnksBrokenCnt permanently broken links (out of total number of
LnksTotalCnt inter-router links), can be calculated using Algorithm 1. It is important
to note that this algorithm is only used for offline TM evaluation and it is not used for
runtime fault correction.

In Algorithm 1 avgConnectivity is a list consisting of average connectivities. Each
element avgConnectivity[k] of this list is average connectivities for a 3×3 network
with k broken links. Each element avgConnectivity[k], is calculated by averaging
over the connectivity values for each fault configuration with a set number of faults.

(a) Minimal path routing (b) Non-minimal path routing

Figure 18: Comparison of average connectivity metric of TMs by number of available links,
using minimal and non-minimal path routing

By calculating the average connectivity for all TMs, for all fault calculations, the
resultant data can be plotted into a graph. This results in Figure 18, which illustrates
the difference between average average connectivities for all usable TMs that are listed
in Table 5.

Figure 18a shows the average connectivity metric of the TMs under minimal path
routing for different number of working links. Figure 18b depicts the same data under
non-minimal path routing. Under minimal path routing, the three lines in the figure
correspond directly to the three classes of DoA in Table 5, where TMs with higher
DoA provide better connectivity. However, the gap between the worst-performing and
the best-performing groups of TMs is not substantial. In case of non-minimal path
routing, the curves diverge more. The lines correspond to the seven classes of TMs,
grouped by DoAEx in Table 5. The gap between the TMs with the highest DoAEx
and the ones with the lowest DoAEx is close to twice as large as it was for DoA and
minimal path routing. Additionally, comparing of the two figures shows, as expected,
that under non-minimal path routing, the average connectivity is generally higher than
in case of minimal path routing.

It can be seen from Figure 18 that there is a high correlation between the average
connectivity and the DoA / DoAex of the TMs. This makes sense, since the more
adaptive the TM is, the more alternative paths exist under that TM. Using a TM with
larger number of alternative paths also increases the probability of the TM being able to
bypass the broken link. Additionally, TMs, which have the same number of alternative
paths (share the same adaptivity rating), have also the same average connectivity, since
on average they can bypass the same number of broken links.
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Unfortunately, Algorithm 4.6 does not scale very well in terms of performance, since
the number of combinations of possible broken links increases exponentially with the
total number of nodes in the NoC. This makes assessing the reliability of the TMs
using Algorithm 4.6 very time consuming for large NoCs. However, the high correlation
between adaptiveness and average connectivity of TMs means that because a TM with
higher adaptivity value results in higher average connectivity, running this algorithm is
not necessary during reconfiguration. The choice can be made by just calculating the
connectivity under the current fault scenario for the TMs with the highest adaptivity.

4.7 Latency Evaluation
In this section, all the 50 usable TMs shown in Figure 17 are evaluated under synthetic
traffic patterns using the Noxim [94] NoC simulator. The experimentation setup
parameters are set as follows: A 4×4 2D full mesh NoC utilizing the Bonfire NoC
routers introduced in Section 2.2 of this thesis. The system clock frequency is set to 1
GHz for all routers. During the experiments, synthetic random uniform traffic pattern
is used. Packets are generated using Poisson distribution. The length of the packets
is fixed to 8 flits, and the FIFO input buffers in the routers are configured as is 4 flits
deep. Additionally, before the start of the experiments, a warm-up time of length 1000
cycles was used to allow the traffic patterns of the NoC to stabilize. The simulation
was run for up to 20000 cycles.
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Figure 19: Latency results under random uniform traffic for (a) four, (b) five, (c) six-turn TMs

The average latency results are grouped based on the number of allowed turns to
the groups of 4-turn, 5-turn and 6-turn TMs. Figure 19a-c show the average latency
results for these TMs under random uniform traffic pattern (with packet injection rate
ranging from 0.001 to 0.025). The curves are color coded in each figure to distinguish
different classes of DoAEx (see Table 5).

The dotted lines in Figure 19a-c indicate the corresponding highest value of the
Figure 19c and lowest value of Figure 19a, since the range of axes is different between
Figure 19a-c.

It can be observed in Figure 19a that two of the TMs (0 and 13, highlighted with
thick cyan colored line) that correspond to XY and YX routing, outperform the other
TMs in terms of average latency. This conforms to the observations made in [95]. After
those two TMs, both classes of 6-turn TMs and 5-turn TMs with lower DoAEx perform
better than others.
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4.8 Implications on Permanent Fault Tolerance in NoCs

4.8.1 Overview of the Routing Algorithm Reconfiguration Process
When a link in the NoC breaks due to a permanent fault, it can render a node, or
even an entire region of the NoC isolated from rest of the network. This can have
serious consequences, possibly leading to even the failure of the entire system. However,
fortunately, in full-mesh NoCs, there exists built-in redundancy. Each node in the NoC
is connected to at least two neighbors. Most nodes have three or even four connections.
However, to take advantage of this redundancy, it is needed to have a suitable routing
algorithm, which can route packages past the broken link.

Figure 20: General structure of the fault detection, grouping and classification mechanisms for
fault in control circuits

The broken links can be detected using checkers built into the router. Faults in the
control part can be detected, for example, by using concurrent online checkers [55,96]
(Figure 20). This is described in more detail in [96]. Faults in the data-path can
be detected using a parity checker, such as the one used in Chapter 3. Permanent
faults can be distinguished from transient faults, like those caused by SETs, using fault
classifier FSMs. [97,98]. This topic is discussed in more detail in Publication IV.

Moreover, fault outputs from different checkers can be combined and abstracted
into a turn fault, a fault occurring in one of the components on the path from an input
port to an output port of the router (e.g., a West to North turn fault or even a straight
path). This process is also illustrated in Figure 20. Additionally, it is important to
understand that a single fault can also result in multiple turn faults. For instance, if a
permanent fault occurs in the xbar, an entire output port will become non-functional.
In this case, all turns that lead to that port will be affected. For example, if a West
output port fails, both turns the S2W and N2W and the straight connection from East
to West and the connection from the local port to West will fail. This information can
information can be passed to the System Health Monitoring unit (SHMU), which can
initiate reconfiguration of the routing algorithm based on the fault information received
from checkers.

When the SHMU finds a TM that can restore communication to all nodes in the
NoC by bypassing the broken link(s), it will perform the reconfiguration of the routing
algorithm. To avoid deadlocks, the network needs to be either first cleared of all traffic,
or a special algorithm for updating the routing algorithm at runtime, such as OSR
Lite [99], needs to be used.
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4.8.2 Choosing the Best Turn Model for a Fault Situation

Algorithm 2 Algorithm for choosing the best TM for the current fault situation
1: // Data structure for storing the TM with best connectivity
2: bestConnectivity = struct{connectivity=0,TM=None}
3:
4: // Read the fault information from checkers
5: currentFaultConfig = checkers.getFaultInfo()
6:
7: // The TMs with the highest DoAex should be checked first
8: sortedTMs = sort(usableSixTurnTMs, basedOn=DoA_ex)
9:

10: for TM in sortedTMs do
11: RG = generateRG (TM, currentFaultConfig)
12:
13: // Check if the TM has full connectivity under
14: // current fault situation using Equation 1
15: connectivity = RG.getConnectivity()
16:
17: if (connectivity == FULL_CONNECTIVITY ) then
18: return TM
19:
20: else if (connectivity > bestConnectivity.connectivity) then
21: // If the TM does not provide full connectivity, save its connectivity value
22: bestConnectivity.connectivity = connectivity
23: bestConnectivity.TM = TM
24:
25: // No TM provides full connectivity. Select the TM with best connectivity
26: return bestConnectivity.TM

The information provided in this chapter is crucial for the SHMU to select the most
suitable TM for the current fault situation. The most suitable TM can be chosen using
the algorithm that is detailed in Algorithm 2. The algorithm is run whenever a new
fault is detected by the checkers.

First, the fault information is be read from the checkers (Line 5). This way the
SHMU has exact information regarding the broken link(s) in the network. Next, at
Line 8 the SHMU loads all usable TMs with 6 turns and sorts them in descending order,
based on DoEex (or DoE, in case minimal path routing is used. Only the 6-turn TMs
are used, since they provide the best adaptivity, and thus the highest probability of
being able to bypass the broken links. Other usable TMs with less turns are just more
constrained subsets of the 6-turn TMs and provide lower adaptivity. The sorted list of
the usable 6-turn TMs is stored in sortedTMs variable.

All TMs stored in sortedTMs are checked for connectivity, one-by-one. For each
TM, starting with the ones with the highest adaptivity, a routing graph is generated
(Line 11 in Algorithm 2). The generated routing graph is built for a specific TM,
under the current fault configuration. Essentially, the edge on the RG, which represents
the broken link, is removed. Finally, connectivity check is performed on the RG using
Equation 1 (Line 15). If the RG with the fault information provides full connectivity
under the TM (there is a connectivity between all node pairs in the network), that TM
will be chosen by the SHMU. Otherwise, provided that the connectivity value is higher
than the connectivity of any previously checked TM, it is saved. Then, the next TM in
the sortedTMs list is checked for full connectivity.

If none of the checked TMs provide full connectivity, the TM with the highest
connectivity value is chosen. Therefore, the system can continue working with lower
performance, even if restoration of full connectivity is not possible.
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4.9 Chapter Conclusions
In this chapter, new metrics for profiling and analyzing uniform NoC turn models have
been proposed. The newly proposed connectivity metric enables to assess the TM’s
ability to provide full connectivity between all nodes in the NoC using routing graphs.
Additionally, the previously known Degree of Adaptivity (DoA) metric was extended,
resulting in the new metric called Extended Degree of Adaptivity (DoAex). The newly
proposed metric enables to assess the adaptivity of TMs (the TM’s ability to find
alternative paths between node pairs in the NoC) for non-minimal path routing. The
old metric could assess the ability for only minimal path routing.

Additionally, metrics for calculating average connectivity and latency of TMs were
introduced. The average connectivity for k broken links is a metric, which represents
the connectivity values of a TM, averaged over all fault configurations with k broken
links. The average connectivity metric of a TM is a direct representation of that TM’s
reliability.

The new metrics were used to perform a full enumeration, evaluation and analysis of
all 256 uniform TMs for 2D full-mesh NoCs. As a result, all 50 usable turn models that
are deadlock-free and provide full connectivity, were identified. All usable TMs were
then further classified and analyzed in terms of DoA, DoAex, average connectivity and
latency. As a result, many new turn models with good performance where identified.
Additionally, a discovery was made that there is a high correlation between the turn
model’s average connectivity, latency its (extended) Degree of Adaptivity. Finally, an
algorithm for choosing the best TM for a fault configuration was proposed.

In contrast, prior to this work, only a small number of the TMs were described and
analyzed in the literature. To the best of the author’s knowledge, such an in-depth
analysis of all TMs as performed in this work has not been done before.
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5 Software TMR with Distributed Voting
This chapter introduces STROBES, a software-based fault tolerance algorithm.
STROBES relies on a high-level fault model, which enables to implement fault
tolerance fully in software, in a way, that the performance of the fault tolerance
algorithm does not depend on the behavior of the protected application. As such, the
proposed algorithm can be used to protect a wide range of applications by interfacing
them with the STROBES library through a simple interface. In contrast, most similar
approaches are limited to a very small range of applications with similar behavior or
rely on modified or inherently fault tolerant hardware to protect the application.

Furthermore, the usage of the high-level, application agnostic fault model enables
to simulate the STROBES algorithm independently of the application. This allows
to fine-tune the algorithm’s parameters to further optimize its performance and fault
tolerance.

Finally, the fault correction capabilities of STROBES are formally proven using
Markov analysis and fault injection experiments using a custom application independent
high-level simulation tool.

This chapter is based on the following publication:
• V

K. Janson, C. J. Treudler, T. Hollstein, J. Raik, M. Jenihhin, and G. Fey, “Software-
level TMR approach for on-board data processing in space applications,” in 2018
IEEE 21st International Symposium on Design and Diagnostics of Electronic
Circuits Systems (DDECS), pp. 147–152, April 2018

5.1 Introduction
Satellites and other space-based systems must operate reliably, without maintenance,
under extreme conditions [20,21] of outer space for years at a time. One of the worst
problems for space-based systems is radiation. A radiation particle can randomly flip a
bit in memory or cause a fault during computation [13–15]. This can lead to serious
errors or even a complete failure [17–19, 38, 39] of the system. For example, tests
performed on unprotected SRAM memories on satellites in space have shown as much
as 15 random bit flips per day [18]. Admittedly, the tests reported in [18] were carried
out on a system specifically designed for detecting such faults. Due to inherent fault
masking that is present in every device, the fault rate in actual systems will be much
lower. However, it is easy to imagine that over the normal mission length of a couple
of years to a couple of decades the probability of a mission-critical error is very likely.

For this reason, space-based computer systems need to be protected against SEEs,
particularly SEUs. The increased fault tolerance in space systems is normally achieved
by using specially built hardware, which incorporates some form of redundancy. An
example of such hardware would be commercial, specialized, highly reliable (hi-rel)
components. Redundancy in hi-rel components is usually implemented at lower levels
(e.g., flip-flops are triplicated) [15]).

However, while the hi-rel components provide better reliability when compared
to COTS components, they also have many drawbacks. First, the usage of hi-rel
components results in an increase in cost because the hi-rel components are considerably
more expensive. Secondly, hi-rel components are usually built using older technologies.
As such, they have a severely limited performance, compared to COTS components [100].
This motivates the use of COTS components in space applications. However, unlike the
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hi-rel components, COTS components do not include built-in fault tolerance. Therefore,
systems built from COTS components require additional mechanisms for protection
against radiation-induced errors [19,40–42].

The software-level TMR approach for Error handling in on-board data processing
in space applications (STROBES) algorithm, proposed in this chapter, was designed
in cooperation with German Aerospace Center (DLR) for use with their ScOSA plat-
form [45].

The aim of DLR’s ScOSA platform is to provide a scalable and modular computing
platform for satellite-based systems. A secondary goal of the ScOSA platforms is to
improve the performance by using networked COTS processing elements (PEs).

Therefore, a fully software-based fault tolerance algorithm was needed. An additional
requirement was that the fault tolerance algorithm should be application agnostic,
applicable to many applications with different behaviors with minimum amount of
change to the code of the algorithm and the application.Finally, it should be possible to
formally assess the fault tolerance of the proposed approach.

Therefore, the proposed fault tolerance algorithm is a fully software-based approach.
Unlike many similar methods, presented in Section 5.2 it requires no changes to the
hardware. This is especially important for systems that utilize COTS PEs.

The STROBES algorithm relies on a high-level fault model, described in Section 5.3.
The fault model enables to detect faults that occur software running on a multiprocessor
system. The fault detection is performed on a very high abstraction level, while staying
agnostic regarding the implementation details and behavior of the software application
that is used to protect against errors. As the STROBES fault tolerance algorithm is
directly derived from the fault model, it also inherits the fault model’s high-level fault
detection capability.

As mentioned, the high-level fault model makes STROBES algorithm application
agnostic. This means that its performance is not influenced by the behavior of the
protected application. The performance of the algorithm depends on the worst-case
parameters of the system that it is run on, the size of the application’s state, and
internal timeouts.

The values of these internal timeouts can be found through formal techniques and
fine-tuned by analysis in high-level application independent high-level simulation of
the STROBES algorithm. This approach is used in Section 5.8 to provide application-
independent experimental data using a custom simulation environment, described in
Section 5.7.

Since it is application agnostic, STROBES can be used to protect almost any
application, regardless its functionality. It can be added to the application using a
wrapper library. To add STROBES support, the application is to provide a mechanism
for the STROBES library to monitor the application’s state and to load the checkpoint
data in order to perform a roll-back to a previous checkpoint, if needed. The simplest
way to achieve this is in a single-threaded application is to make the variables that make
up the application’s state available to the library and insert a call to the STROBES
library’s synchronization function to the main loop of the application.

Therefore, it is easy to add support for STROBES to existing applications. The
only requirement from the application’s side is that it can handle the additional time
overhead introduced by addition of STROBES. Additionally, there is no need to change
the algorithm when the application is updated. All that is needed in this case is to re-
compile and re-link the application with the STROBES library. As shown in Section 5.2,
being application agnostic distinguishes STROBES from most other fully software-based
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fault tolerance approaches. In most other approaches, the fault tolerance system is
tightly coupled to a specific application or a small group of applications in a way that it
cannot be easily separated.

Moreover, the reliability of the STROBES algorithm is formally proven using Markov
chains (Section 5.6). The Markov analysis can also be used to assess the reliability of
the system under different application parameters.

STROBES works by running the same application simultaneously on multiple inter-
connected PEs. Error detection and correction is performed using distributed majority
voting on the application’s state. Distributed voting helps to eliminate the voter as a
single point of failure, while still providing consensus regarding the system’s fault status.
STROBES can correct errors in the application’s state that were caused by transient
faults, such as SEUs. Additionally, STROBES can also correct timing errors. Small
timing errors, such as the ones caused by different network communication delays of
different PEs, are corrected transparently, while a special mode is used for handling
longer timing errors. The STROBES algorithm can also tolerate network errors, if there
are still enough available and communicating PEs for the majority voting to succeed.

Last, but not least, STROBES’ use is not limited to ScOSA-based satellite on-board
computers. The STROBES algorithm can be also used to provide increased fault
tolerance in terrestrial systems or even as an additional fault tolerance layer for systems
that utilize hi-rel components.

This chapter is organized as follows: First, Section 5.2 gives an overview of related
works. Then, in Section 5.3, the basic system structure for running the STROBES
algorithm and the fault model used in this work are explained. This is followed by
Section 5.4, which explains the detailed working of the STROBES algorithm. Next,
Section 5.5 gives an overview on how fault handling and the synchronization of the
PEs is done. Then, in Section 5.6, a reliability analysis of the STROBES algorithm
is performed using the Markov model. Next, Section 5.7 gives an overview of the
simulator used for obtaining the experimental fault handling performance results for the
STROBES algorithm. The experimental results are presented in Section 5.8. Finally,
the chapter is concluded in Section 6.

5.2 Literature Review
Many fault tolerance solutions for embedded systems require hardware modification.
This is often done by implementing variations of hardware-based TMR solutions, such
as [101–103], or by utilizing using soft-core PEs on field-programmable gate arrays
(FPGAs) [104,105]. Additionally, some approaches like [106–108] duplicate or triplicate
parts of the processor’s pipeline to achieve instruction level redundancy.

However, such solutions are not usable in a system such as ScOSA, whose main
goals include developing a modular and easily extensible system. Additionally, the usage
of high-performance COTS PEs rules out any changes to the PEs themselves. For this
reason, in contrast to the approaches mentioned above, STROBES is designed to be a
completely software-based solution. It requires no modification to the hardware it runs
on.

Fully software-based fault tolerance algorithms, or so-called consensus algorithms,
are not new. They have been around for decades and are widely used in data centers.
Examples of such algorithms are Paxos [109] and Raft [110] and their derivatives [111].
However, these algorithms are usually specifically tailored for data center usage or
not directly applicable to embedded systems. Most notably, such algorithms are not
real-time-safe, which is requirement for many embedded systems.
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The STROBES algorithm satisfies the real-time requirements by relying on de-
terministic timeouts for synchronization between PEs that run copies of the same
application. Furthermore, the timeouts used in STROBES can be formally calculated
and the algorithm can be simulated during the development phase using only basic
data information about the system and no application details. The simulation can be
used for design-space exploration in order to find the best results parameters for the
algorithm for the specific system.

There exist other software-based fault tolerance algorithms that are designed for
embedded systems. However, many approaches are only applicable for very specific
parts of the software. For example, SHiFA [112] proposes dynamic process mapping
to healthy processing elements in multi-core systems. However, this is done for only
small computational kernels only which are dispatched and terminated. This approach
is similar to the one in [113] which also takes anti-aging into account an additional
parameter during task distribution.

Other solutions require modification to the underlying operating system (OS) to
function. For example, [114] proposes a software-based TMR approach for critical tasks.
However, fault-isolation and recovery are expected from the system it is run on. On the
other hand, the authors of [115] present a real-time capable synchronization mechanism
to be integrated into a real-time Operating System (RTOS) while protecting the entire
application and being hardware agnostic. However, this approach requires customized
OS and the application to be specifically written with this modified OS in mind.

Another well-known approach for providing software-based fault tolerance is compile-
time instruction duplication, where redundant instructions are inserted into the protected
application during compilation. Examples of such approaches are [116–118] and [119].
However, this approach has many drawbacks. Mainly, it increases the application’s
binary size and execution time considerably, while still providing only error detection,
not correction. Many approaches attempt to address this issue by protecting only a
limited number of critical instructions [120], which reduces fault coverage. Moreover,
most software-based instruction duplication approaches can only detect single bit flips
in the computational logic. However, gate-level fault injection experiments show that
only 77% of errors in the processor’s computation logic manifest themselves as single
bit flips [120]. This means that 23% of all errors cannot be detected at all using such
methods. In addition, these methods cannot usually detect errors in the memory or
in the cache. Therefore, as concluded in [120], compile-time instruction duplication
approaches are not suitable for use in systems where high levels of reliability is required.

Like the theoretical framework of [121], the STROBES algorithm makes no assump-
tion of underlying synchronization mechanisms, but only relies on worst-case execution
and communication times. However, unlike STROBES, the approach presented in [121]
requires deterministic transmission times from the network.

Additionally, different from the asynchronous approaches for fault handling [122,123],
timing assumptions are made throughout the implementation.

The STROBES algorithm provides a software-based reliability layer for unreliable
PEs. It and does not require modifications to the operating system or the hardware
it is run on. Unlike most other fault tolerance mechanisms found in the literature,
it is application agnostic. Its performance does not depend on the behavior of the
application it is protecting, but only on constraints set by the system it is running on
and its own internal parameters. Hence, support for STROBES can be easily added
to most applications using a light-weight wrapper library. Also, the application can be
updated without changing the STROBES algorithm.
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Those properties allow STROBES to provide software-based fault tolerance for
critical applications running on unmodified COTS-based PEs. Alternatively, it can be
used as an additional fault tolerance layer for applications running on hi-rel hardware.
Unlike many more traditional consensus algorithms, STROBES is not limited to any
specific application domain and supports real-time applications.

5.3 System Requirements and Fault Model
Any software can be represented as a finite-state machine (FSM) – a set of variables
that make up the state of the application, and operations performed on that state.
SEEs can cause error at the software level by either directly modifying the state by
flipping bits in the memory or by causing a fault during computation, which leads to a
wrong value being written to the state. This enables software-based solutions like the
STROBES algorithm to manage the effects of transient hardware faults in the PEs at
software level, since most errors will eventually be visible in the application state.

Network
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Application 
(FSM)

STROBES
algorithm

PE 1

Application 
(FSM)

STROBES
algorithm

PE 2

Application 
(FSM)
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algorithm

Figure 21: Abstract diagram of a system protected by the STROBES algorithm

STROBES works by running multiple copies of the protected application in parallel
on n PEs in periodically occurring cycles (Figure 21). Each processing element PEi
(i ∈ {0 . . .n−1}) runs an instance of the STROBES algorithm. While in this chapter
we focus on the case study of TMR (i.e., n= 3), targeting a data-processing system
with three PEs, the algorithm is scalable, and a larger number of simultaneous faults
could be handled with more processing PEs (n > 3).

Essentially, the STROBES algorithm works by creating a checkpoint (CP) of the
application state at regular intervals and performing a distributed majority voting on
that CP. The specifics of the algorithm used for this are explained in Section 5.4. In
order to support the distributed voting approach of, the interconnection network needs
to support broadcasting. However, the network does not need to guarantee deterministic
arrival times for data.

Fault tolerance is achieved by using a high-level fault model. The fault model defines
three fault types:

1. SF = SF1, . . . ,SFi – Corruption of the application state. Fault SFi denotes
that the application state of PEi is corrupt at the time of creating the CP.
Type-SF fault can occur for different reasons (e.g., bit-flip in the application
memory due to radiation, fault in calculation, etc.). However, the source of the
fault is not important as the behavior for handling the faults is the same.
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2. TF = TF1, . . . ,TFi – Timing faults. Fault TFi in PEi means that at the point
of CP creation PEi was either ahead or behind of other PEs in terms of software
execution.
Typical timing faults (Type-TF ) include de-synchronized state of processing
elements upon system start-up, clock drift during operation, different application
run times on processing elements because of different loads and network delays.
Small timing faults are an inherent in any distributed system and, in case of
STROBES, are tolerated using timeouts. Large timing faults are more serious
and are treated similarly to Type-SF faults.

3. NF = NF1, . . . ,NFi – PE stops processing. A Type-NF i fault denotes that
PEi has fell silent. Type-NF faults model not only severe PE failures but also
network partitioning. This is because from a system’s perspective, a stopped PE
is indistinguishable from a PE which is unreachable due to network failures.

Additionally, the following conditions apply regarding faults which can be tolerated
together in a STROBES system with three nodes (n= 3):

• A STROBES system can tolerate, at maximum, a single Type-SF or Type-NF
fault at a time.

• There is no limit to the amount of Type-TF faults at a time it can handle.

• The two fault domains, SF ∪ NF and TF have, in practice, different root causes.
As a result, the STROBES system can handle any amount Type-TF faults at
the same time as a single Type-SF or Type-NF fault, as long as the timing
difference between the PEs stays within the limits of the system timeout defined
in Section 5.4.

The proposed fault model allows to abstract the faults in the multiprocessor system,
while not only covering errors in application state (and by extension, its behavior), but
also synchronization and network problems that can occur in distributed systems. The
fault model allows to make the proposed STROBES algorithm application agnostic.
Therefore, it can be used with any application that can handle the time delays, which
are introduced by the STROBES algorithm. In contrast to similar works, STROBES
can protect applications regardless of their behavior.

An application can be protected using the STROBES algorithm, by just adding a
wrapper library. The left subfigure of Figure 22 shows a simple abstract application
consisting of a set of variables and a main loop. The application performs some
calculations in the calculate() function, using the variables declared earlier. The
contents of calculate() are not relevant in this context.

The right subfigure of Figure 22 illustrates modifications that are needed to make
application on the left STROBES compatible. In short, the main change to the
application is to make the variables of the application’s state available to the STROBES
library. In the example presented in Figure 22, all variables are tied together into a
struct. This struct is then passed to the STROBES library’s synchronization function.
The synchronization function is run once per every main loop cycle, although, if needed,
it can also be run more often. However, this would introduce additional latency.
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// Main function
main() {

    // Declare variables
    var a = 1;
    var b = 2;
    var done = False;

    // Main loop
    while !done {
        calculate(&a, &b, &done);
    }
}

Example application without STROBES

#include “strobesLib”

// Main function
main() {

    // Declare variables
    struct appState {
        var a = 1;
        var b = 2;
        var done = False;
    }

    // Main loop
    while !appState.done {
        calculate(&appState.a, &appState.b,     
                       &appState.done);

         // Strobes sync and voting
        strobesLib.sync(&appState);
    }
}

Example application with STROBES

Figure 22: An example on adding the STROBES library to an application

5.4 STROBES Fault Handling Algorithm
5.4.1 Communication Between the Processing Elements
As a distributed algorithm, in order to achieve a consensus on system’s fault status
and synchronize the PEs, STROBES needs a to implement communication between
the PEs. This subsection will give a short overview of the messaging system used by
STROBES. Each message contains the following fields:

• Type. Message type identifies how should the receiver to react to the message.
In STROBES there are defined six types of messages (see Table 6).

• Cycle. The sender’s cycle counter value at the time of transmitting the message.
This serves as a timestamp used to identify old messages and PEs that are out
on sync with the rest of the system.

• Payload (optional). Data messages, like Checksum and Checkpoint, also carry
the data as payload. Control messages do not have this field. Additionally,
STROBES uses different message queues for data and control messages. This
is needed to guarantee timely arrival of the control messages without losing any
data. Both buffers are flushed in the beginning of every cycle.

In general, as explained in Table 6, the messages used in STROBES can be divided
into the following three groups.

• Checksums. As explained in Section 5.4, the checksums of the application
state are distributed once every cycle, following Algorithm 4. The checksum
communication is used for Type-SF fault detection and for synchronization.
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Table 6: Message types used for synchronization in the STROBES algorithm

Message Group Type Priority Transmission
Method Comment

Checksum Checksum Low Broadcast -
End of Cycle Sync. NextCycle Low Broadcast -

Checkpoint
Transfer

CPRequest High Unicast CP transfer request
CPAck Low Unicast CP transfer Acknowledge
Checkpoint Low Unicast CP transfer
CPTrFinish Low Broadcast CP transfer is finished

• End of cycle synchronization. At the end of each cycle, the PEs will synchronize
by broadcasting the NextCycle message (as explained in Table 6). When a
NextCycle message has been received from all available PEs, the receiver continues
with processing the next cycle. A PE will only wait for other PEs who did not
send their checksum for a short timeout. If at the end of the timeout the PE
has not received a NextCycle message from all other PEs, it will continue with
processing the next cycle to avoid the system waiting indefinitely for a PE that is
not available (has Type-NF ) fault.

• Checkpoint transmission. Checkpoint transmission includes multiple synchro-
nization using multiple messages to make sure that the faulty PE is ready to receive
the CP and guarantee re-synchronization of the system after the Checkpoint
transfer. The details of this can be seen in Section 5.4.

In addition, as shown in Table 6, the messages have been divided into high and low
priority messages. Low priority messages will be processed by receiving PE when the
algorithm execution arrives at the point where the message should be processed. On the
other hand, high priority messages interrupt the receiving PE, causes it to address the
high priority message. STROBES defines only the checkpoint transfer request message
(CPRequest) as a high priority. When a PE receives a CPRequest messages, it means
that the receiving PE has been identified as faulty and it should immediately continue
to receive the correct CP. Also, CP transfer uses unicast messaging, while messages
that are used for synchronization, such is sharing the checksums and the end of cycle
synchronization message, are transmitted using broadcast.

5.4.2 Algorithm Description
The STROBES algorithm is run in parallel on three PEs. Each PE runs an instance of
the algorithm, that is summarized in Figure 23. Each stage of the algorithm is explained
in more detail below.
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Figure 23: Diagram of the STROBES algorithm. Each PE runs an instance of this algorithm

Algorithm 3 Startup synchronization algorithm running in each PE
1: typedef PEChkSum = (cycle, checksum)
2: chkSumMap = map(PE_id, PEChkSum)
3:
4: // Save the data for current PE
5: // Since we are at startup, both cycle and checksum are 0
6: chkSumMap[myID] = (0, 0)
7:
8: // Loop until we have received checksums from all PEs
9: while True do

10: // Send an empty checksum
11: net.broadcast(msgType=checksum, data=chkSumMap[myID])
12:
13: // Repeatedly send checksum until all PEs in the system are synchronized
14: while !commTimeout do
15: if !net.buffer.isEmpty() then
16: (type,cycle,PE_id,data) = net.buffer.pop()
17: if type == checksum then
18: chkSumMap[PE_id] = (cycle, data)
19:
20: else if chkSumMap.size() == totalPECount then
21: // Send one more checksum
22: net.broadcast(msgType=checksum, data=0)
23: nextState = Run Application
24: return
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Startup Synchronization. When the STROBES-protected distributed embedded
system is first booted up, each PE will come online at a slightly different time. For
this reason, the system will boot into an the Startup Sync. stage, which is performed
using Algorithm 3. Loosely, each PE broadcasts a dummy checksum e.g., all zeros (line
11) and then waits for dummy checksums from 2 other PEs (while loop at line 14).
The content of these messages is ignored as they are used only for synchronization.
When all three checksums have been received (line 20), each PEs will transmit an
additional dummy checksum. This is needed for the PE that was initialized the latest,
since otherwise it does not receive any checksums from other PEs because they were
sent before the last PE was fully booted. Once all the PEs have received the second set
of dummy checksums, the system is synchronized and ready for running the protected
application. The algorithm uses dummy checksums instead of a generic initialization
sequence to tolerate reintegration of a previously silent PE (a PE with a Type-NF fault).
Because, in this case, the faulty PE will send out a checksum upon boot, it will be
synchronized during the Checksum Communication step of the algorithm. In this case,
the faulty PE will appear to the other PEs as as if it has both state (Type-NF ) and
timing (Type-TF ) faults, which will result in one of the correct PEs sending the faulty
PE the correct CP and thus the faulty PE being reintegrated into the system using
mechanisms that are explained below.

Run Application. The Run Application stage in Figure 23 indicates parallel in-
dependent data processing by all PEs. The duration of this step (tp) is application
specific. The application is executed until a breakpoint is reached. The positioning
of breakpoint is done during development time. While the details on where and how
to place the breakpoints into the application are out of the scope of this thesis, a
shorter execution time per each algorithm cycle will result in higher reliability. As shown
in Section 5.6. The areas of the application’s memory covered by the CP, and thus
protected by STROBES, are also application specific and not defined by the STROBES
algorithm.

Calculate Checksum. Once the breakpoint has been reached and the application
has been paused, the current state of the application’s memory is called the CP. Next,
each node will calculate a checksum over its CP (Calculate Checksum). Any corruption
in application’s state is assumed to result in an erroneous checksum. The types of
checkpoint corruption which can be detected depends on the type of checksum used.
In this thesis, a 16-bit Cyclic Redundancy Check (CRC) checksum has been used as a
proof of concept, however the checksum type is not specified by the algorithm.

Checksum Communication. The checksum communication stage is used for
exchanging data and for synchronization using through timeouts. After a PE has
finished calculating the checksum, it will broadcast it to all other PEs. (Checksum
Communication). As a result of the checksum communication stage, each PE will have
acquired the checksums from every other PE.

The Checksum Communication stage is detailed in Algorithm 4. After the checksum
has been broadcast, the algorithm reads the receiving buffer (line 11) and stores any
received checksum (line 13) until the receiving buffer is empty (line 10). This process
continues until checksums from all PEs have been received or the timeout is reached
(timeout occurs when some of the nodes do not send their checksum) (line 9). When
either of the condition is met, the system will proceed to the Vote stage. Because
the Checksum Communication stage implements predefined timeouts for waiting the
checksums from other nodes, it also functions as the main synchronization mechanism
for the STROBES algorithm and will be explained in more detail in Section 5.5.
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Algorithm 4 Checksum communication algorithm running in each PE
1: typedef PEChkSum = (cycle, checksum)
2: chkSumMap = map(PE_id, PEChkSum)
3:
4: // Save the data for current PE
5: chkSumMap[myID] = (currCycle, calcChkSum(CP))
6: net.broadcast(msgType=checksum, data=chkSumMap[myID])
7:
8: // Wait until we receive checksums from all PEs or reach the timeout
9: while (chkSumMap.size() < totalPECount and !commTimeout) do

10: while !net.buffer.isEmpty() do
11: (type, cycle, PE_id, data) = net.buffer.pop()
12: if type == checksum then
13: chkSumMap[PE_id] = (cycle, data)
14: nextState = Vote
15: return

If one PE stops processing, i.e., it suffers a Type-NF fault, the processing performance
of the overall system degrades. All PEs will always wait first for the timeout to receive
checksums. However, overall correct operation will continue until at least two PEs are
functional.

Vote. In the Vote stage, each PE independently performs majority voting of over
the checksums. The algorithm for performing the voting is shown in Algorithm 5. The
algorithm starts with majority voting on the current cycle number for the received
checksum messages to ensure that all PEs are synchronized with each other. Since it is
assumed that a PE with faulty cycle ID will have also a faulty checksum, a PE with
an erroneous cycle number will receive the correct CP (line 11). Next, majority voting
determines the correct checksum. If all checksums are different, then the algorithm
proceeds to the Checksum Communication step (line 16). If all checksums are the same
everything is correct and the current cycle will be finished, the PE will activate the End
of Cycle Synchronization stage (line 19). In case a fault is detected, a faulty PE will
receive the correct CP (line 22), Algorithm 8; one PE with correct checksum will send
the CP (line 26), Algorithm 8 and all other PEs with correct checksum will wait for this
update to finish (line 29).
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Algorithm 5 Distributed voting algorithm running in each PE
1: // chkSumMap is acquired by Algorithm 4
2: if chkSumMap.size() == 0 then
3: nextState = Checksum Communication; return
4:
5: // Majority vote over the cycle numbers
6: cycleMajority = voteCycleNumber(chkSumMap)
7: if all cycle numbers are equal then
8: nextState = Checksum Communication; return
9:

10: if currentPECycle != cycleMajority then
11: nextState= Recv. checkpoint; return
12:
13: // Majority vote over checksums
14: chkSumMajority = voteChkSum(chkSumMap)
15: if all checksums are different then
16: nextState = Checksum Communication; return
17:
18: if all checksums equal and chkSumMap.size() == totalPECount then
19: nextState = End of Cycle Sync; return
20:
21: if currentPEChkSum != chkSumMajority then
22: nextState = Recv. checkpoint; return
23:
24: minAddr = minimal address in correctPEs
25: if current PE’s address == minAddr then
26: nextState = Send checkpoint
27: else
28: // Block and wait until CPTrFinish message is received (CP transfer is finished)
29: net.blockingWaitForMsg(msgType=CPTrFinish)
30:
31: cycleCounter += 1
32: nextState = Run Application
33: return
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Algorithm 6 End of cycle synchronization algorithm running in each PE
1: // Including our own message
2: msgRecvdCounter = 1
3:
4: net.broadcast(msgType=NextCycle)
5: // Wait only for PEs which sent checksum during the current cycle
6: while msgRecvdCounter < chkSumMap.size() do
7: while !net.buffer.isEmpty() do
8: (type, cycle, PE_id, data) = buffer.pop()
9: if type == NextCycle then

10: msgRecvdCounter += 1
11: cycleCounter += 1
12: nextState = RunApp
13: return

PE0 (Faulty, Receiving CP)

PE1 (OK, Transmitting CP)

PE2 (OK, Waiting)

Voting Complete

CP
Re

qu
es

t CPAck

Checkpoint transfer
CPTrFinish
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Next Cycle

Time

Figure 24: Diagram showing the communication between the PEs during CP transfer

End of Cycle Synchronization If voting succeeded and no problems, which require
CP transmission were detected, each PE will enter the End Cycle Sync. stage (Al-
gorithm 6). During this stage, each PE will broadcast a NextCycle message. Upon
receiving the message from all other available PEs, the PE will continue to the next
cycle and continue with the Run Application stage.
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Algorithm 7 Correct checkpoint sending algorithm running in each PE
1: *CP = Pointer to application’s checkpoint memory
2: // Send CPRequest message to the faulty node
3: net.transmit(destination=faultyNode.addr, msgType=CPRequest)
4:
5: // Block and wait until CPAck message is received from the faulty node
6: net.blockingWaitForMsg(msgType=CPAck)
7:
8: // CPAck received, transmit the checkpoint
9: net.transmit(destination=faultyNode.addr, msgType=Checkpoint, data=*CP)

10:
11: // Block and wait until CPTrFinish message is received
12: net.blockingWaitForMsg(msgType=CPTrFinish)
13:
14: cycleCounter += 1
15: nextState = Run Application
16: return

Algorithm 8 Algorithm for receiving the correct checkpoint
1: *CP = Pointer to application’s checkpoint memory
2: global haveRecvdCPRequest
3:
4: // CPRequest is a high priority message and causes an interrupt which triggers
5: // this function. However, this function can also be run from the Vote function
6: // For this reason, we only wait for the CPRequest if we have not received it yet
7: if !haveRecvdCPRequest then
8: // Wait for CPRequest
9: net.blockingWaitForMsg(msgType=CPRequest)

10: // Respond with the CPAck message to the PE which sent the CPRequest
11: net.transmit(destination=msgGetSender(CPRequest), msgType=CPAck)
12:
13: // Block and wait until Checkpoint is received and saved
14: *CP = net.blockingWaitForMsg(msgType=Checkpoint)
15:
16: // Broadcast CPTrFinish to re-synchronize the system and continue with execution
17: net.broadcast(msgType=CPTrFinish)
18:
19: cycleCounter += 1
20: nextState = Run Application
21: return
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Send CP / Receive CP If a fault is detected during the Vote stage, the correct
PE with the lowest address will enter the Send CP stage (Algorithm 7) and send a copy
of its CP to the faulty PE (Receive CP), Algorithm 8. The other healthy nodes will
wait for the transmission to finish. The transfer process is depicted in Figure 24.

As shown in Figure 24, first, the correct PE with the lowest address (CP Sender), PE
1 in Figure 24, will send an CPRequest message to the faulty node (CP Receiver), PE
0 in Figure 24. This is shown in line 3 in Algorithm 8. The CPRequest is a high priority
message. This means that when a PE receives this message, it will stop whatever is
doing and imminently switch to the CP Receive stage. This is useful in case the faulty
PE is not properly synchronized, which might result it not understanding on its own
that it is faulty.

When the CP Receiver receives the CPRequest message, it will respond with CPAck
message (line 11 in Algorithm 8). When the CP Sender receives the CPAck message,
handshaking for CP transmission is complete. This is followed by the CP Sender
transmitting the actual Checkpoint (line 9 in Algorithm 7), after which it will switch to
waiting for the CPTrFinish message (line 12 in Algorithm 7).

Upon receiving the Checkpoint, the CP Receiver will overwrite its memory with the
contents of the received CP. The transaction is finished by the CP Receiver broadcasting
the CPTrFinish message (line 17 in Algorithm 8). This message will be received by all PEs
in the system and will cause every PE, including the CP Receiver, to continue execution
from the next cycle. Note that there is no additional end of cycle synchronization in
this case, since the CPTrFinish message will guarantee synchronization.

5.4.3 Discussion on Real-Time Implementation of STROBES
Real-time applications require predictable, deterministic timing. However, the baseline
STROBES has a variable cycle length. The time spent in Checksum Communication
stage greatly depends on the existence and the severity of Type-TF faults in the system
because a PE will continue execution whenever it receives the checksums from all other
PEs. Additionally, when there is a Type-SF fault in the system, the system will perform
a CP transfer. However, this does not happen otherwise. The time spent transferring
the CP depends on the network speed and checkpoint size, but realistically, it can take
hundreds of milliseconds. This results in quite large variability in cycle range and while
it has a positive impact on performance, it is not suitable for real-time applications.

Figure 25 visualizes the behavior of a single PE in the STROBES algorithm un-
der different conditions for both the standard, non-real time, version of STROBES
(Figure 25a) and its real-time adaptation (Figure 25b).

Both subfigures look at the same three cases. The “Fault free” case, represents the
fault free situation where checksums from all PEs are received without much delay and
majority voting does not result any errors, thus no CP transfer is needed. The “Timeout
reached” case visualizes a system with a Type-TF fault, a situation where some of the
PEs will not send their checksum before the timeout is reached. And finally, the “CP
Transfer” case, representing a system with Type-SF fault which requires CP transfer to
correct.

As seen in Figure 25a, the baseline version of STROBES has a high variability
in cycle length and when there are no faults in the system, it will be much faster,
compared to a faulty case. However, this is not suitable for real-time systems. For this
reason, in the real-time version of STROBES, determinism is introduced by making the
variable length components of the algorithm always equal to the maximum execution
time (Figure 25b). This guarantees a consistent cycle length. In the figure, the added
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padding is visualized using gray “Wait” blocks. As seen in Figure 25b, in the real-time
version of the algorithm, the Checksum Communication stage always runs until the
timeout is met, regardless if all checksums were received. The same is true for CP
transmission, each PE will wait for the time required to transmit the CP at the end of the
cycle no matter if the checkpoint transmission is performed or not. While this approach
complies with the predictability requirement of real-time applications, it considerably
slower than the baseline version. For this reason, the rest of the chapter concentrates
on the baseline, non-real time version.
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Figure 25: Differences between the real-time and non-real-time STROBES implementations.
Each subfigure visualizes the behavior of a single PE under three different fault scenarios.

5.5 Fault Handling and Synchronization in STROBES
The STROBES algorithm uses two mechanisms for fault handling – timeouts in the
Checksum Communication stage and transferring of the correct CP to the faulty PE.
The two mechanisms have different use cases and the proper method for fault correction
is chosen by the algorithm based on the type of the fault.

Checksum waiting timeouts (referred to just as “timeouts” from hereafter) are used
for handling Type-TF faults, while CP transfer is mostly utilized for repairing Type-SF
faults. However, sometimes both approaches are used together. This happens when the
system has simultaneously both a Type-TF fault and a Type-SF fault.

There are also other faults, which manifest themselves similarly to having both a
Type-TF fault and a Type-SF fault in the system, and can, thus, be also handled the
same way. An example of such fault is a longer Type-TF fault, a timing fault where a
PE is so much out of sync with the rest of the system that it is executing a completely
different algorithm cycle and thus has a different memory CP than the rest of the system.
The same situation happens when a PE with Type-NF fault is being re-integrated into
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the system. In this case the fault manifests similarly to a long Type-TF fault since the
PE will be desynchronized and will also have different memory contents. Therefore,
in these cases, the faults are handled the same way as if there would be simultaneous
Type-TF and Type-SF faults in the system.

This section further explains the fault handling approaches by using a simplified
counting application as an example. The application memory protected by STROBES
consists only of a single integer value. The application increases the value by one every
cycle. While this example application is not very realistic use case for the STROBES
algorithm, it is good for demonstrating the fault handling approaches used in the
algorithm. The STROBES algorithm itself is application agnostic and works the same
with more complex applications.
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Figure 26: Correcting a Type-SF fault

Figure 26 demonstrates how the STROBES algorithm corrects a Type-TF fault.
Figure 26 shows a case where there is a Type-SF fault in PE 0. During cycle n, the
application increases the counter from 0 to 1, but then a Type-SF fault occurs and
corrupts its memory. Corrupt memory is marked with red color and “xx” as the value
in memory. All PEs continue executing normally until the Vote stage. During voting,
the PEs will figure out through distributed majority voting that PE 0 has a faulty CP.
This will cause the correct PE with the lowest address, in this case PE 1, to transfer its
CP to PE 0. This results in PE 0 overwriting its memory with a correct CP and will,
therefore, have the same value as other PEs in its memory once again. Afterwards, all
PEs continue fully synchronized and with correct memory.

On the other hand, handling Type-TF faults depends on the length of the fault
(how much out of synch the execution of the faulty PE is compared to the rest of the
system). Certain amount of timing (Type-TF ) faults always exists in every distributed
system, including STROBES-based systems. This happens due different load on the PEs,
different network delays, etc. For this reason, the STROBES algorithm includes timeouts
for waiting for checksum messages sent during every cycle. As seen in Algorithm 4
in the previous section, all PEs will wait for the checksums from other PEs until they
either receive checksums from all of them or until the timeout is reached. The timeout
helps to guarantee that the PEs will wait for the messages for long enough every cycle
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to compensate for the inherent timing differences. However, at the same time it enables
the system to continue working with limited fault correction capabilities, instead of
the entire system crashing, when a PE becomes unresponsive and does not send its
checksum. An example of such unresponsive PE would be a PE which suffers from a
Type-NF fault.
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Figure 27: Correcting a Type-TF fault which is shorter than the communication timeout

Figure 27 illustrates correcting short Type-TF faults. In the figure, application
execution for PE 1 takes longer time than for other PEs. This can happen, for example,
when PEs run also other applications in addition to the STROBES-protected application
and therefore have different processor loads. However, short Type-TF faults caused
by other inherent delays, such as different network performance between the PEs, are
handled the same way. It can be seen in the figure, that PE 0 and PE 2 will wait for
longer for the checksums until they receive them from all PEs, including PE 1. After
the Checksum Communication stage, the system is re-synchronized. This means that
short Type-TF faults will be handled completely transparently to the application.

Longer Type-TF faults, as seen in Figure 28 cannot be handled transparently and
require a CP transfer to be corrected. In the figure, PE 2 has a Type-TF fault, which
is longer than the timeouts for waiting for the checksums. PE 0 and PE 1 wait for
the checksum of PE 2, but do not receive it before the timeout is reached and thus
continue executing the next cycle because they can still agree on the majority result
amongst each other. Meanwhile, PE 2, the faulty PE, will not receive any checksums
and will continue trying to re-synchronize, by repeatedly sending its checksum after
every timeout and waiting for the checksums of other PEs. Once PE 0 and PE 1 reach
the Checksum Communication stage of the next cycle, all PEs will synchronize, but
majority voting will result PE 2 being detected as faulty. This happens since it is still
executing Cycle n while the other PEs have moved on to Cycle n+ 1. PE 2 will be
corrected and resynchronized the same way as it had both a Type-TF and a Type-SF
fault. Correcting Type-NF faults works the same way because, like mentioned before, a
Type-NF fault manifests as a PE being both out of sync with the rest of the system
and having a different CP value.
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Figure 28: Correcting a Type-TF fault which is longer than the communication timeout

The example explained earlier in this section helps to specify the conditions for
choosing a proper value for the timeout. As explained earlier, the timeout is needed for
handling inherent Type-TF faults in the system, caused by different processor loads
in the PEs, different network delays, etc. The timeout needs to be large enough to
cover those delays. In other words, as illustrated by Equation 4, the minimum length
of the timeout (chksumtimeout) needs to be longer than the sum of the application
execution time per cycle under the worst-case processor load (MAX(tp)), the checksum
calculation time under the worst-case processor load (MAX(tc)) and the maximum
network delay (MAX(network_delay)).

chksum_timeout >MAX(tp)+MAX(tc)+MAX(network_delay) (4)

The maximum value for the timeout is not defined by STROBES. However, the
longer the timeout value is, the longer Type-TF faults the STROBES algorithm can
correct without a CP transfer (as shown in Figure 27). For this reason, the value to be
chosen for the timeout depends on the application. A real-time application will always
wait until the maximum timeout, so longer timeouts will considerably slow down the
system, while, in that case the CP transfer will be “free”, since the real-time version
of the algorithm always waits for the time required for CP transfer anyway before
continuing the execution, as explained in Section 5.4.3. A non-real-time system, on
the other hand, would likely benefit from a longer timeout values, since in this case CP
transfer costs a lot of time and longer timeouts reduce the need for CP transmission.

5.6 Reliability Assessment
In this section, Markov reliability analysis of the STROBES algorithm is performed.
The results of this analysis help to assess the feasibly of the STROBES algorithm for
improving reliability of software applications. Additionally, it allows to better specify
the constraints for the applications that can be protected using the proposed algorithm.
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5.6.1 Definition of Failure Condition
In order to perform the reliability assessment for a system, first it is necessary to define
a failure condition for the system under investigation. In a STROBES system, a failure
occurs when the majority voting either fails or results in a wrong result. In any case,
there must be at least two Type-SF faults in the system at the same time for this to
happen. This failure can occur for the following reasons:

• Majority voting fails, all checksums differ.

– Two faults occur in different PEs during the Run Application stage. The
time the system spends in this stage is be defined as tp.

– System fails to correct a fault and starts the next cycle with a fault already
present at the start of the Run Application stage. In this case, if another
fault would occur during the time tp, a majority decision would be impossible
to achieve.

• Majority voting leads to a wrong decision. This can happen when a second fault
occurs after Run Application stage in the PE that is used for repairing the initial
fault. This case is discussed in more detail below.

However, it is important to note that the STROBES algorithm can still recover
from two simultaneous Type-SF faults, but only if the second fault occurs after the
Run Application stage finishes. However, in this case, the system is not aware of the
second fault because majority voting is performed on the checksums generated over
the CP that is taken of the application’s state at the end of the Run Application stage.
Therefore, the second fault will be detected only during the next cycle, provided that
the initial fault is repaired during the active cycle. The success of the initial fault’s
repair under this condition depends on in which PE the second fault occurred.
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Figure 29: Effects of a second Type-SF fault occurring during repair time. In the example, the
initial fault was in PE 0

In order to better illustrate the system’s transitions based on the occurrence of the
second fault, a simplified set of three fault states are defined:

• S0 – System is fault free.

• S1 – There is a single fault in the system. This is a faulty, but repairable state.

• SF – System is in failed state.
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All subfigures in Figure 29 represent a situation where the STROBES algorithm
attempts to repair an already existing fault, while a second fault occurs during the
repair process. However, the behavior of the system is identical, if the fault occurs at
any time after the Run Application stage.

Therefore, in Figure 29, the system is already in state S1 at the start of each diagram.
In all subfigures, the initial fault has occurred in PE 0. Then PE 1 transfers its CP to
PE 0 in order to repair it. PE 2 waits idle until the CP transfer is finished. However, it
can be seen from the figure that if a second fault were to occur during the repair, the
final state of the system after the CP transfer is finished depends on in which PE the
additional fault occurred. As such, there are three possible outcomes, each represented
by different subfigure of Figure 29:

• Figure 29a explains the case where an additional additional bit flip occurs during
the CP transfer in the faulty PE, PE 0. In this case, as seen in Figure 29a, the
system will still be repaired because the CP transfer causes the memory contents
of the faulty PE to be overwritten and both faults to be corrected.

• Figure 29b represents the case where the additional Type-SF fault occurs in the
PE that is performing the CP transfer. In the figure, PE 1 transfers its CP to
PE 0 to correct the fault in PE 0. However, during the transfer, an additional
Type-SF fault occurs in PE 1. The additional fault in PE 1 will cause the transfer
to fail and to transfer a faulty CP to PE 0. By the end of the transfer, there will
be two faults in the system, thus the system will degrade into the failed state,
SF .

• Figure 29c illustrates the situation where an additional fault occurs in the idle PE,
which is waiting for the CP transfer to finish, but is not actively participating in
it. In this case, the system will stay in state S1 after repairing the first fault. The
additional fault will be detected and repaired during next cycle. In the figure, PE
1 transmits its CP to the faulty PE, PE 0, while a fault occurs in PE 2, which is
idle. After the transfer is finished, the fault in PE 0 is corrected, but the newly
appeared fault in PE 2 is still active.

Therefore, the failure condition can be summarized as that a STROBES system fails
if any of the two situations occur:

• Two Type-SF faults occur during the Run Application stage

• One Type-SF fault occurs during Run Application stage and another Type-SF
fault after the Run Application stage in the PE that is responsible for transmitting
its CP to the PE that suffered the initial fault.

5.6.2 Markov Model Definition
By knowing the failure conditions and behavior of the STROBES algorithm, it is possible
to define a Markov model, which represents STROBES’ fault states and the transitions
between the states. The Markov model can be then used to calculate the mean time to
failure (MTTF) of the STROBES system.

Additionally, to simplify the analysis, it is assumed that the system is properly
synchronized (no Type-TF or Type-NF faults). Also, the Markov model introduced
in this section does not consider the case where there are three simultaneously active
Type-SF faults in the system. While theoretically a plausible situation, the probability
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of three Type-SF faults occurring during the time of a single algorithm cycle is very
low and including this case in the model would not influence the results analysis much,
while still increasing the complexity of the model considerably.

Table 7: Definitions of the fault states for a STROBES system with three PEs

State Description Fault Situation
S0 No Type-SF faults Working
S1 One Type-SF fault Repairable
S1,1 One Type-SF fault Repairable
S1,2 Two Type-SF faults Repairable
SF Two or more Type-SF faults Failed

To better model the different behavior of the STROBES algorithm under faults, five
fault states have been defined in the Markov model. These fault states are shown in
Table 7 and also explained in more detail below:

• State S0 – Fault free state

• State S1 – One fault has occurred during the processing and communication
stages

• State S1,1 – After the Vote stage, there is only a single fault in the system. It is
important to note that this state represents the actual fault state of the system
after voting, not the state that the system “thinks” it is in as the result of the
majority voting.

• State S1,2 – One fault has occurred during the Run Application stage of the
algorithm (time tp). However another fault occurred during the Calculate Check-
sum, Checksum Communication or Vote stage in the PE that is not involved
in repairing the first fault. As such, there are two concurrent Type-SF faults in
the system. However, since the second fault is in the PE that is not involved
in repairing the initial fault, the system is still in a repairable state. Like state
S1,1, fault state S1,2 also does not represent the state the system “thinks” it is
in because of majority voting result. It represents the actual fault state of the
system after the Vote stage.

• State SF – Failed state. At least two faulty PEs exist in a system in an
unrepairable configuration

This model can be visualized using a Markov chain, which can be seen in Figure 30.
Transition rates between the states are explained in Table 8.
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Figure 30: Diagram of a markov chain representing the STROBES algorithm’s fault states and
the transitions between them

Table 8: Markov model state transitions

Source
State

Dest.
State Transition Rate Comment

S0 S1 3λ One fault occurs in any of three PEs

S1

SF
Pp2λ A second fault occurs during process execution

1
2Pc2λ

A second fault occurs during checksum transfer or voting
in the PE that is needed for correcting the first fault

S1,2
1
2Pc2λ

A second fault occurs during checksum transfer or voting
in the PE that is not needed for correcting the first fault

S1,1 (1−Pp)(1−Pc)2λ
No additional fault occur during computation, checksum
transfer and voting

S1,1

S0 µ= 1
tr

All faults are repaired

S1 λ
A fault occurred during repair in the PE that is not involved
in correcting the initial fault. As such, the system will
continue executing the application with a single faulty PE

SF λ
A fault occurred during repair in the PE that is involved
in correction the initial fault

S1,2
S1 µ= 1

tr

No additional fault occurred during repair. This results
in one of the existing faults being repaired, while other
fault will be repaired during the next cycle

SF λ An additional fault occurred during repair

Initially, the system is assumed to start up in a healthy state (S0). However,
a transition to state S1 is made if a single Type-SF fault occurs during the Run
Application, Calculate Checksum, Checksum Communication and Vote stages. This
transition happens with fault rate of 3λ, where λ is the error rate that can be calculated
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using Equation 5. The error rate depends on two parameters, the bit error rate (BER,
in bit flips per second) and the size of the application memory that is protected by the
STROBES algorithm, sizestate. Since the fault can occur in any of the three PEs, the
total amount of vulnerable memory area is three times larger than the state size of a
single PE, hence the error rate for transitioning from state S0 to state S1 is 3λ.

λ=BER ·sizestate (5)
Once in state S1, there are three transitions can be taken. The transition that is

taken by the system depends on if a second fault occurs and if it does then where and
when this happens.

Therefore, the system can transition from the state S1 to either the failed state SF ,
the repair state S1,1, or to the repair state S1,2. The conditions for these transitions
are explained below.

• If a second fault occurs during the Run Application stage, it will always cause the
majority voting to fail and the system transitions to state SF .
The probability Pp of a Type-SF fault occurring turing tp, the time spent in
the Run Application stage in the two remaining healthy PEs, is calculated using
Equation 6. In the equation λ is the error rate, calculated using Equation 5.
Because the faults can occur in any of the two fault-free PEs, lambda is multiplied
by two. By using the probability Pp as a weight for the error rate, a transition
rate of Pp2λ is derived.

• However, the second fault could also occur during time the algorithm is in the
Calculate Checksum, Checksum Communication and Vote stages. The time spent
in these stages, tc, is calculated using Equation 7. The first component of the
equation is the time spent on generating checksum over the CP ( sizestate

ratechksum
),

where sizestate (in bits) is the CP size and rateckhsum (in b/s) is the rate at
which the checksum generation performed.
Checksum transmission time ( sizechecksum·Oc

BW ) consists of the size of transmitted
data, (the size of the checksum) in bits, multiplied by communication overhead
Oc. The result is then divided by the network bandwidth BW , measured in b/s.
The communication overhead Oc is a correction multiplier, which represents the
additional data added by the communication protocol.
The time spent in Vote state is not included in the equation since majority voting
over three 16 or 32-bit checksum values happens nearly instantaneously in all
modern systems.
The Pc of a fault occurring during time tc is calculated using Equation 8, where
2λ is the error rate over the states of the two working PEs.
However, in case a second fault occurs during time tc, the second fault is not
detected by majority voting. In this case, state into which the system transitions
to depends on in which PE the second fault occurs, as explained by the example
in Figure 29. In total, in this case, two transitions can be taken, depending in
which PE the second fault occurred in.

– If the additional fault occurs in the PE that is responsible for repairing the
initial fault (the case shown in Figure 29b), the system will move to the
failed state SF , since repair is not possible.
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– However, if the second fault occurs in the PE that is not involved in the
process of correcting the initial fault (Figure 29c), it is still possible to repair
the fault. As such, the system will transition to the state S1,2.

The two cases have an identical occurrence probability. For each transition, the
probability is 1

2Pc. Therefore, if a second fault occurred during time tc, the
transition rate for both transitions from S1 to SF and from S1 to S1,2 is 1

2Pc2λ.

• Finally, if there are no additional faults during the Run Application, Calculate
Checksum, Checksum Communication and Vote stages, the system will move to
state S1,1. The probability of this is the probability that a second fault does not
occur during the time tp and that the second fault does not also occur during
the time tc, in any of the two PE that have remained fault-free. Therefore, the
resulting error rate is (1−Pp)(1−Pc)2λ.

Pp = 1−e−2λ·tp (6)

tc = sizestate
ratechksum

+ sizechecksum ·Oc
BW

(7)

Pc = 1−e−2λ·tc (8)
In both states, S1,1 and S1,2, a repair is attempted. If only a single fault occurred

during the Run Application, Calculate Checksum, Checksum Communication and Vote
stages and the system is in state S1,1, there are ia total of three possible transitions
that can be taken. Each of them is explained in more detail below.

• Repairing of the fault and returning to the fault free state S0. Clearly, the
system will be repaired and return to state S0 when no additional Type-SF faults
occur during the CP transmission time tr. This can happen with repair rate
µ= 1

tr
.

• Moving back to state S1. When a single Type-SF fault occurs during the time
tr in the idle PE, which is not involved in the CP transfer, the initial fault will
be corrected, but the newly-occurred fault will stay in the system. As such, the
system will continue operating with one faulty PE until the fault is detected
during the Vote stage during the next cycle. It can then be corrected afterwards.
Therefore, in this case, the system will transition to state S1. This case is
illustrated in Figure 29c. It happens with error rate λ, as it is equal to a Type-SF
fault occurring in exactly one PE during time tr.

• Degradation into state SF . The system can further degrade into the failed
state SF when a single Type-SF fault occurs during recovery in the PE that is
transmitting its CP to the faulty PE (Figure 29b). This causes the transfer to fail
and a situation where there are two Type-SF faults in the system after the CP
transfer. This can also happen with fault rate λ, since the additional Type-SF
fault occurs in exactly one PE.

tr = sizestate ·Oc
BW

(9)
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If the system is in state S1,2, there are two outcomes. If one of the faults gets
repaired, then the system moves to state S1. However, should there be another fault
during the repair, the system will enter the failed state SF .

• Repairing the first fault and returning state S1. If the system is in state S1,2,
then there are already two faults in the system. However only a single fault can
be repaired at a time since if the system is in state S1,2, it knows only about
the existence of the first fault. However, in this state, repair is still possible
because the second fault occurred in the PE, which is not involved in the process
of repairing the first fault (the situation illustrated in Figure 29c). Therefore, a
successful repair in state S1,2 results in the system continuing the execution of
the application with one faulty PE. The remaining fault will be detected during
the Vote stage of the next cycle, after which, also the remaining fault can be
corrected.
Therefore, if the repair of the initial fault is successful, the system will move to
state S1. This transition is taken with repair rate µ= 1

tr
, where tr is the time to

repair. Time to repair is, in case of STROBES, equal to the time required for
transferring the correct CP to the faulty PE. tr can be calculated using Equation 9.

• Degradation into state SF . However, if another Type-SF fault occurs during
the repair, the repair will fail, and the system will transition to the failed state SF .
This transition happens with fault rate λ, since there is exactly one PE, where
the additional fault could occur.

5.6.3 Reliability Calculation
The reliability R(t) of the system is defined as the probability that the system is working
correctly at a time interval [0, t] [46]. In the context of a Markov process, reliability
can be redefined as the probability of a system being only in the non-failed states (S0,
S1, S1,1, or S1,2) during the time interval [0, t]. However, the probability of the system
being in only those states during time interval [0, t] is equal to the probability that
system does not enter the failed state (SF ) during that time interval, which is easier
calculate.

Generally, the probabilities of a system being in a fault state Sn at time t can be
calculated using Equation 10. In the equation, M is the fault state transition matrix
and P (t) is a vector of elements Pn(t) (n ∈ 1 . . .3). Pn represents the probability of
the system being in state Sn at time t. The transition matrix M can derived from
the Markov chain, shown in Figure 30. Knowing the transition matrix M , the matrix
multiplication can be expressed as in Equation 11. This representation is equivalent to
a system of ordinary differential equations presented in Equation 12.

∂

∂t
P (t) =M ·P (t) (10)


∂
∂tP0(t)
∂
∂tP1(t)
∂
∂tP1,1(t)
∂
∂tP1,2(t)
∂
∂tPF (t)

 =


−3λ 0 1

tr
0 0

3λ −Pp2λ−Pc2λ− (1−Pp)(1−Pc)2λ λ 1
tr

0
0 (1−Pp)(1−Pc)2λ −2λ− 1

tr
0 0

0 1
2Pc2λ 0 −λ− 1

tr
0

0 Pp2λ+ 1
2Pc2λ λ λ 0

 ·

P0(t)
P1(t)
P1,1(t)
P1,2(t)
PF (t)


(11)
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∂
∂tP0(t) =−3λP0(t)+ 1

tr
P1,1(t)

∂
∂tP1(t) = 3λP0(t)− (Pp2λ+Pc2λ+(1−Pp)(1−Pc)2λ)P1(t)+λP1,1(t)+ 1

tr
P1,2(t)

∂
∂tP1,1(t) = (1−Pp)(1−Pc)2λP1(t)− (2λ+ 1

tr
)P1,1(t)

∂
∂tP1,2(t) = 1

2Pc2λP1(t)− (λ+ 1
tr

)P1,2(t)
∂
∂tPF (t) = (Pp2λ+ 1

2Pc2λ)P1(t)+λP1,1(t)+λP1,2(t)
(12)

In order to find the probability of the system being in the failed state SF at time t,
or the probability PF (t) in Equation 12, the system of equations was solved symbolically
using MATLAB [124]. The initial conditions for solving the equation were set to
P0(0) = 1, P1(0) = 0, P1,1(0) = 0, P1,2(0) = 0, PF (0) = 0, representing that the
system was fully functional at time t= 0. Next, reliability R(t) can be calculated as the
probability of a system not being in a faulty state at time t, as shown in Equation 13.

R(t) = 1−PF (t) (13)
However, a more intuitive metric than reliability itself is the Mean Time To Failure

(MTTF). In case of a system that cannot be repaired, MTTF is defined as the mean
time from system’s startup until its failure [46]. In case a STROBES system, it can
be defined as the mean time from system’s startup until the time the system ends
up in the faulty state, SF . Mathematically, MTTF is the area under the reliability
curve [46], represented as an improper integral with limits from zero to infinity, as
shown in Equation 14. However, as proven in [125], for faster calculation, MTTF can
computed using the Laplace transform. The equations used for MTTF calculations can
be seen in Equation 14, where R∗(s) represents the Laplace transform of the reliability
R(t) function.

MTTF =
∫ ∞

0
R(t)dt= lim

s→0
R∗(s) (14)

However, in order to solve the equation numerically, values for λ, tr, and the
probabilities Pp and Pc need to be calculated, which depend on many constants. The
values that are used for the constants in this thesis are shown in Table 9. The constants
roughly estimate an onboard computer system based on 32-bit 40MHz PEs, connected
over the SpaceWire [126] network. The fault rate of 10−7 bitflips/s is an approximate
for a satellite located in low Earth orbit. The values for these constants were provided
by DLR. Finally, the results were acquired by numerically solving the MTTF equation
(Equation 14) in MATLAB.

Table 9: Constants used for reliability estimation

Constant Value Comment Description
BER 10−7 bitflips/s BER for low Earth orbit Bit error rate
ratechksum 8 ·107 b/s 40MHz 32-bit CPU Checksum generation rate
Oc 1.28 times Est. for SpaceWire Transmission overhead
BW 50 Mb/s Est. for SpaceWire Network bandwidth
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Figure 31: MTTF of STROBES algorithm for different state sizes and application running
times per cycle

For comparison, MTTF was also calculated for an unprotected application, running
on a single PE. Because the unprotected system cannot be corrected, it will fail whenever
a Type-SF fault occurs. Additionally, since there is only a single PE, it will fail with
failure rate λ.

The MTTF of the unprotected system can be calculated as the inverse of its failure
rate λ (Equation 15). This is a well-known simplification [46] of the reliability calculation
procedure described earlier for the STROBES system, which applies to simple systems
without any repair mechanisms or redundancies.

MTTFunprot = 1
λ

(15)

The MTTF for the STROBES algorithm for different combinations of state size and
application run time per cycle have been visualized Figure 31. Both axes of the figure
are logarithmic. The dashed red line represents the unprotected system with a single
PE.

As illustrated in Figure 31, the STROBES algorithm works the best for the shorter
application run times per cycle and for smaller state sizes. This is caused by the fact
that the larger state size not only translates into a longer CP transmission time tr, but
also more time is required to calculate a checksum over a larger state. This, however,
further increases the chance of a Type-SF fault occurring during a cycle.

Application run time per cycle influences MTTF the same way; the shorter it is, the
more often the voting happens, thus reducing the chance of two simultaneous Type-SF
faults in a system.

Additionally, state size influences the MTTF of the algorithm much more than the
application runtime. This observation is in accordance with the model, since increasing
the state size n times also increases the failure rate λ by n times. However, increasing
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the application running time per cycle n times, does not result in similar increase in the
failure rate.

To conclude, STROBES can be reliably used to protect applications with a relatively
small state size of under four MiB. However, this is enough for quarantining fault
tolerant operation of most control applications. To provide error correction on the data
produced by the applications, other methods, such as ECCs, can be used.

Additionally, it can be seen from Figure 31 that shorter application running times per
cycle (tp) provide better fault tolerance. This is because shorter tp values also result
in more frequent error checking. As such, there exists a tradeoff between applications
performance and fault tolerance and the value chosen for tp depends also on the timing
requirements of the protected application. However, it is advised to minimize tp for
improved reliability, especially for applications with larger states.

5.7 Simulator
The STROBES algorithm is application agnostic. Protecting an application can be
done by just installing a lightweight wrapper to be around the application. Moreover,
as explained in previous sections, the performance of the STROBES algorithm only
depends on three parameters:

• Application running time per algorithm cycle. The shorter the application
running time, the more often are synchronization and voting performed. This
results in higher MTTF, as explained in Section 5.6. On the other hand, shorter
application running time also results in poorer application performance, since the
system spends less time on running the application and more time on synchro-
nization, compared to a longer application run time.

• Size of the application’s memory state (CP size). Larger CP size results
in lower MTTF value, As explained in Section 5.6. This happens because the
fault sensitive memory area is larger. However, this is a parameter that depends
solely on the application. In order to optimize the fault handling capability of
STROBES, applications with larger CP size need to run the check more often.
This dependence between application run time and CP size is illustrated well by
Figure 31.

• Checksum waiting timeout. Longer timeout results in better of Type-TF fault
handling capability. However, a longer timeout value can also decrease the system’s
performance. While the minimum timeout value is specified by Equation 4, the
optimal value depends on different inherent delays in the system.

For this reason, the performance of a STROBES system can be analyzed in a simu-
lated environment. However, it can be also used to perform design space exploration for
finding parameters, which result in the best performance. The design space exploration
can be done in parallel with the application development and needs only be done once
– when changes are made to the application during development, the performance of
the STROBES algorithm will usually not change. An exception to this rule is when the
CP size or application’s running time per algorithm cycle are considerably changed. In
addition to the three application and STROBES-related parameters, specified above,
the simulation also needs to have information on the worst-case timing parameters of
the system the STROBES algorithm is run on:
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• Checksum calculation rate. The rate at which the checksum is calculated
(ratechecksum in Table 9).

• Data transmission overhead factor. The extra bits added to the sent data by
communication protocol, shown as Oc in Table 9

• Network bandwidth. The speed at which transfer data transfer is performed.
Shown as BW in Table 9
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Figure 32: Architecture of the STROBES simulator

Architecture of the simulation tool is shown in Figure 32. The simulator takes in
the simulation parameters that is explained above and fault injection information and
produces the simulation output. Simulation output data contains statistical information,
such different performance parameters of the algorithm, which can be used to generate
the results in Section 5.8. Additionally, the simulation output also contains logs and
other debugging information.

The simulation tool runs three simulated PEs, connected to simulated network with
broadcast support. Each PE runs independently the STROBES algorithm, where the
application is replaced by a time delay, combined with a fault information of its CP.
This approach is possible since the STROBES algorithm is application agnostic. Its
performance does not depend on the application’s functionality, but only the on the
time the application is run per one algorithm cycle.

Since the application is emulated by a delay, the application also does not have a
real state, any real memory allocated to it for protection. However, while calculating the
checksum or transmitting the CP to a faulty PE, the simulation tool also considers the
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state size, which is specified in simulation parameters. For example, it will take longer
to transmit a larger CP. This level of simulation of the application state is sufficient
since the exact fault location inside the application state is not important for STROBES.
The STROBES algorithm uses checksums over the entire CP for determining if the CP
(and, as extension, the application’s state) is faulty by comparing it to the checksums
received from other PEs. It is assumed that a checksum over a faulty CP will always
differ from a checksum taken over a correct CP.

For this reason, the fault information of the state is stored as a binary value in
the system health map, located in the hypervisor. The hypervisor monitors the fault
information of the states of each PE and, if needed, also performs fault injection.
However, hypervisor’s functions cover more than only fault handling. The hypervisor is
also responsible for setting up, starting and finally stopping the simulation. Because
the hypervisor can monitor all components involved in the simulation, it also logs the
simulation data and performs statistics for the simulation. The logging functionality is
implemented inside the hypervisor since it has a bird’s eye view of the entire simulation.
The hypervisor always knows the exact state of all the PEs. It knows if all the PEs are
synchronized or not and the fault status of all the PEs, at any given time during the
simulation.

The event-based simulation is run in discrete time, with the resolution of 1 ms.
This resolution is high enough for modelling possible delays while still guaranteeing
acceptable simulation performance. The time for checksum calculation and CP transfer
is calculated the similarly to Section 5.6. More specifically, the time spent on checksum
calculation (tchkCalc) is calculated using Equation 16. In the equation sizecp represents
the size of the CP over which the checksum is calculated, in bits and ratechksum is
the speed of checksum calculation, in b/s.

tchkCalc = sizecp
ratechksum

(16)

The time spent on transmitting a message, such as a checksum or a CP (tmsgTrans),
is calculated using Equation 17. In the nominator is the amount of data to be trans-
mitted, consisting of the message size (sizemsg) in bits, multiplied by communication
overhead factor Oc. The communication overhead factor is a parameter related to the
communication protocol and represents the additional bits introduced by the protocol.
For example, the overhead factor for the Spacewire protocol is 1.28. Spacewire is
a communication protocol that is often used in for communication between PEs in
satellites. The final data size in bits is then divided by network bandwidth BW , in b/s.

tmsgTrans = sizemsg ·Oc
BW

(17)
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5.8 Experimental Results
In order to evaluate its capabilities for fault correction, the STROBES algorithm was
simulated using the simulation tool introduced in Section 5.7. During the simulations,
the time that the STROBES algorithm spent on correcting the faults was recorded. It
is important to note that when timing-related faults (Type-TF and Type-NF ) where
injected the timer was started when the PE that had the timing fault injected was
ready to synchronize with the rest of the system. The timer was stopped once all PEs
were completely synchronized and their state contents were identical. As such, only the
additional time spent by the STROBES algorithm correcting the fault is considered,
not the delay caused by the fault. Additionally, since the simulation tool uses its own
internal simulation time, the results do not depend on load of the computer it is running
on.

Algorithm 9 An algorithm, which explaining the set of experiments that were run for
acquiring the experimental data
1: for faultType in list[typeSF, typeTF, typeNF ] do
2: for appRunTime in list[100, 250, 500 ] do
3: for stateSize in list[0.5, 1, 2, 4 ] do
4: for chksumTimeout in range(appRunTime + 1, appRunTime 3) do
5: if faultType == typeSF then
6: // In case of Type-SF fault, do not inject delay
7: listOfDelayFaults = [0]
8: else // Type-TF or Type-NF faults
9: listOfDelayFaults = range(0, appRunTime 3)

10: for delayFault in listOfDelayFaults do
11: sim.reset()
12: sim.run(appRunTime, stateSize, chksumTimeout,
13: injectFault=faultType, delayFaultTime=delayFault)
14: sim.saveResult()

In order to generate the experimental results provided in this section, hundreds of
thousands of experiments were run with different parameter sets for each of the three
fault types (Type-SF, Type-TF and Type-NF ). The application running time values
per cycle of 100 ms, 250 ms and 500 ms and state sizes of 0.5 MiB, 1 MiB, 2 MiB
and 4 MiB were used during the simulation. Those values are in the range of the most
realistic applications to be protected by STROBES, since according to Figure 31, they
result in high MTTF values.

Additionally, each combination of state size and application running time was
simulated with a range of checksum waiting timeout values, ranging from (tp+1) ms
to (3 · tp) ms, where tp is the application running time per cycle. Moreover, in case of
Type-TF and Type-NF faults, the amount of delay was ranged from 0 ms to (3 · tp) ms.
The set of experiments is visualized using Algorithm 9. Finally, the simulation results
were collected, and the worst case and average correction times were extracted from
the results for each fault type.
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5.8.1 Type-SF faults
To benchmark the Type-SF fault correction performance of the STROBES algorithm,
during each simulation a Type-SF fault was injected. The injection was performed by
force-writing a wrong value into the memory of one PE. The timer that was used for fault
correction time measurements was started then the faulty PE tried to re-synchronize
with the rest of the system. The timer is started and stopped by the simulator’s
hypervisor (see Section 5.7). The timer was stopped after the fault was corrected using
CP transfer and the system had been re-synchronized.

State Size
(MiB)

Application
Run Time (ms)

Fault Correction
Time (ms)

0.5 100 16
1 100 29
2 100 55
4 100 106

0.5 250 16
1 250 29
2 250 55
4 250 106

0.5 500 16
1 500 29
2 500 55
4 500 106

Table 10: Type-SF fault correction times for
different application running times and state
sizes
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Figure 33: Type-SF fault correction time

Results of the Type-SF fault injection experiment can be seen Table 10. The results
are further visualized in Figure 33. From the data it is visible that, as expected, the
correction time of for Type-SF faults depends only on the state size. This makes sense,
since the larger the state, the more time must be spent on transferring the correct CP
to the faulty PE.

5.8.2 Type-TF faults
Next, to profile the STROBES algorithm’s performance under Type-TF faults, injections
of the timing faults were done. For simulating a Type-TF fault, the application execution
time tp of the PE suffering from the fault was extended by the duration of the timing
fault during the simulation. The fault correction time was measured from the point
when all PEs detected that one PE is not synchronized to until the point where all PEs
were re-synchronized. The fault injection experiments were carried out exhaustively for
all Type-TF faults in the range of 0 ms to (3 · tp) ms.

The average and maximum correction times for Type-TF faults can be seen in
Table 11 and in Figure 34. It is important to note that the scale for the color axes for
Figure 34a and Figure 34b is different. It can be seen from the data that there is a
large difference in the average and Type-TF maximum fault correction times.

In Figure 34a, the fault correcting delay is the highest for the shortest application
running times. At a first glance, this somewhat counter-intuitive. However, it is
important to keep in mind that, as explained in Figure 27 and Figure 28 in Section 5.5
of this chapter, Type-TF faults can only be corrected without performing a CP transfer
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Table 11: Minimum, average and maximum Type-TF fault correction times for different
application running times and state sizes

State Size
(MiB)

Application
Run Time (ms) Average (ms) Max (ms)

0.5 100 32.13 124
1 100 42.49 137
2 100 64.46 165
4 100 107.57 220

0.5 250 46.47 273
1 250 52.90 286
2 250 67.00 314
4 250 94.71 370

0.5 500 44.72 521
1 500 46.33 534
2 500 50.67 562
4 500 59.21 617

100 200 500
Application Run Time (ms)

0.5

1

2

4

St
at

e 
Si

ze
 (M

iB
)

40

50

60

70

80

90

100

Av
g.

 T
yp

e-
TF

 C
or

re
ct

io
n 

Ti
m

e 
 (m

s)

(a) Average Type-TF fault correction time
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(b) Maximum Type-TF fault correction time

Figure 34: Dependance of Type-TF fault correction time on application running time per cycle
and state size. Please note the difference in scale for the color axis for the subfigures.

if the length of the fault is shorter than tp+ chksum_timeout. tp is the application
running time per cycle. In order to correct Type-TF faults, which last longer, a
CP transfer is necessary. As such, a shorter tp results in a higher probability that
the system cannot be synchronized without a CP transfer. When the CP transfer is
performed, obviously, as observed about correcting Type-SF faults, transferring a larger
CP constitutes to a longer correction time.

The maximum Type-TF fault correction times visualized in Figure 34b is quite
different from the average correction times. The maximum Type-TF fault correction
time depends heavily on the application running time. The maximum correction times
occur when the length of the fault is slightly longer than tp+ chksum_timeout. In
this case, the timeout passes, and the other two non-faulty PEs will continue execution
of the next cycle without the faulty PE. Even if the faulty PE tries to synchronize right
after the timeout ends, it cannot do so before the next synchronization phase of the
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STROBES algorithm. The synchronization phase occurs after the non-faulty PEs have
finished their Run Application stage. Therefore, the longer is tp, the longer the faulty
PE needs to wait to be synchronized.
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Figure 35: Dependance of the average Type-TF fault correction time on checksum waiting
timeout. Application running time per cycle is fixed to 100 ms

Figure 35 shows the dependance of the average Type-TF fault correction time on
checksum waiting timeouts. All experiments in the figure are shown for application
running time of 100 ms.

As seen in Figure 35, the average Type-TF fault correction time reduces with higher
checksum waiting timeout values. This can be explained by the fact that a longer
checksum waiting timeout increases the probability that the STROBES algorithm can
correct the fault without CP transfer. Additionally, it reduces the probability of the
worst-case scenarios that are visualized in Figure 34b.

5.8.3 Type-NF faults
Type-NF faults represent the situation when the faulty PE is completely out of the sync
with the rest of the STROBES system. This can happen either due to a communication
problem, reset of a PE, etc. Type-NF fault is essentially a situation where the faulty
PE has both a Type-TF fault and a Type-SF fault simultaneously. This results in
the system always performing a CP transfer, no matter how large the timing fault
component is. This is in contrast with Type-TF faults where CP transfer is not needed
if the fault is shorter than tp+ chksum_timeout.

The results of Type-NF fault correction experiments can be seen in Table 12 and are
visualized in Figure 36. Since Type-NF faults are basically a combination of Type-SF
and Type-TF faults, the fault correction time has a large correlation with correction
times for both fault types.

For example, as seen in Table 12, the minimum Type-NF fault correction times are
equal to the correction times of a Type-SF fault correction times, seen in Table 10.
This is because the minimal Type-NF fault correction time only occurs in exceptional
case, when the timing component of the Type-NF fault is zero. In such circumstances,
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Table 12: Minimum, average and maximum Type-NF fault correction times for different
application running times and state sizes

State Size
(MiB)

Application
Run Time (ms) Min (ms) Average (ms) Max (ms)

0.5 100 16 33.10 121
1 100 29 46.10 134
2 100 55 72.36 161
4 100 106 123.89 214

0.5 250 16 53.33 270
1 250 29 66.32 283
2 250 55 92.58 310
4 250 106 144.08 364

0.5 500 16 58.25 521
1 500 29 71.25 534
2 500 55 97.37 561
4 500 106 148.63 614
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(a) Average Type-NF fault correction time
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Figure 36: Dependance of Type-NF fault correction time on application running time per cycle
and state size. Please note the difference in scale for the color axis for the subfigures.

only a normal CP transfer is performed, as additional synchronization is not needed.
Additionally, the maximum correction time (Figure 36b) for Type-NF faults is similar

to the maximum correction time of Type-TF faults. This is again caused by the fact
that the reasons behind worst case synchronization time situations for both fault types
are the same – the faulty PE cannot be synchronized during the same cycle it becomes
available. Additionally, because the correction of extreme case of Type-TF faults which
produce the maximum fault correction times involves requires CP transfer, also the
fault correction methods are the same

However, the average fault correction times (Figure 36a) remain different for Type-
NF faults, compared to other fault types. The correction time mostly depends on the
state size. This is so because during the correction of Type-NF faults, a CP transfer is
performed always.
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The slight increase in Type-NF fault correction time as the application running time
increases comes from the simulations that do not manage to synchronize during the first
cycle (such as the maximum correction time experiments). This increases the average
correction time slightly for longer application running times. The same pattern can be
seen also in Type-TF fault correction data, but it is only visible for experiments run
with smaller state size. For larger state sizes, the anomaly caused by conditional CP
transfer in Type-TF correction data masks that pattern.
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Figure 37: Dependance of the average Type-NF fault correction time on checksum waiting
timeout. Application running time per cycle is fixed to 100 ms.

The dependence of the average Type-NF correction time on checksum waiting
timeout for application running time of 100 ms per each cycle, can be seen in Figure 37.
When compared to the same data for Type-TF correction times (Figure 35), it can
be seen that the patterns are very similar. However, for Type-NF faults, the average
correction times are slightly higher and are not influenced as much by the checksum
waiting timeout, as for Type-TF faults.

This difference can once again be explained by the conditional CP transfer during
the correction of Type-TF faults. For Type-TF faults, a longer checksum waiting
delay increases the chance of a de-synchronized PE to be re-synchronized without CP
transfer, thus lowering the average correction time. However, during the correction of
Type-NF faults, CP transfer is performed in any case and it does not depend on the
synchronization time of the PE. This makes the effects of a longer checksum waiting
timeout much less pronounced.

5.8.4 Additional Observations
Some additional observation about the optimal set of parameters for the STROBES
algorithm can be made based on the experiments conducted in this section. The
performance of the STROBES algorithm depends on five parameters: size of the
application’s state, application running time per cycle, checksum waiting timeouts and
faults in the system.
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Obviously, the faults are not under the control of the designer of such system.
The same could be said for the application’s state size, which largely depends on the
application’s functionality. However, the other parameters, application running time
per cycle and checksum waiting timeout, can be optimized to increase the STROBES
system’s fault correction performance.

Application running time: As discussed in Section 5.6, the application running
time per cycle should be kept short. This increases the frequency of majority voting,
which results in an increase in system’s reliability. However, the results provided in
Section 5.8.2 suggest that coupling very short application running intervals with a
larger state size can have negative effect on Type-TF fault correction performance. As
seen in Figure 34a, if the state smaller than 2 MiB, using application running time of
100 ms is probably the best option. However, if the state size is equal or exceeds 2 MiB,
increasing the application running time to 200 ms results in better average Type-TF
fault correction time.

Checksum waiting timeout: Equation 4 in Section 5.5 gives the minimal values
for the checksum waiting time. It should be longer than the application running time
and cover worst-case network delays. There is no upper limit to checksum waiting
timeout. It is seen in Figure 35 that a longer checksum waiting timeout results in faster
Type-NF correction. However, in case of a PE failure, a longer timeout has a negative
effect on the system’s performance because the non-faulty PEs will wait for the failed
PE to re-synchronize for the full length of the timeout every cycle. For this reason, a
very long checksum waiting time is also not reasonable.

5.9 Chapter Conclusions
In this chapter, a software-level fault tolerance approach, called STROBES, was proposed.
As a completely software-based approach, STROBES can be used to provide fault
tolerance for applications running on unmodified, non-fault tolerant, COTS hardware.
The benefit of COTS components is that they are cheaper and faster than specialized
fault tolerant components.

Additionally, since STROBES uses a high-level fault model, it is application agnostic.
Its performance does not depend on the functionality of the protected application, but
only on the worst-case timing constraints of the system it is run on. The parameters can
be found formally and fine-tuned through high-level application-independent simulation.
In this chapter, the architecture of the simulation tool was also provided.

In order to make an application work with STROBES, only a light-weight wrapper
needs to be added. Consequently, it is easy to add STROBES to existing applications
and the application can also be seamlessly updated after deployment without making
any changes to STROBES’ behavior or code. In contrast, most similar software-based
fault tolerance mechanisms are limited to a very specific class of applications or require
an extensive modification of the hardware or the operating system.

Fault tolerance is achieved in STROBES by running three versions of the same
application simultaneously on three PEs. Faults are detected using distributed majority
checking. STROBES can detect and correct errors in application state and handle
timing errors and network problems.

The reliability of the STROBES algorithm was formally proven using Markov analysis.
The analysis gave further insight into the capabilities and limitations of the algorithm.
STROBES works best with applications whose state size remains small, under four MiB.
Additionally, STROBES has a higher MTTF when shorter application running times are
used. This makes sense since a shorter application running time per cycle results in
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more frequent fault checking and repair, thus reducing probability of multiple Type-SF
faults occurring during a cycle.

The information gathered from the Markov analysis was further analyzed in simulated
fault injection experiments. In the experiments, the STROBES algorithm was run with
a range of parameters under different types of faults. The analysis of the simulation
results yielded the following conclusions about selecting the most optimal values for the
two tunable parameters of the STROBES algorithm:

• Application running time per cycle. Generally, shorter application running
times per cycle improve the fault tolerance, as it results in more frequent error
checking. However, the experiments show that very short application running
times per cycle can increase the time that is required for correcting timing errors.
This is especially visible in cases where the application’s state size is equal to or
exceeds 2 MiB. In this case, the application running time per cycle of 200 ms
results on average a faster timing error correction than application running time
of 100 ms. However, it is also important to note that increasing the application
running time will also decrease the MTTF of the system. Therefore, there is a
trade-off between timing fault correction speed and the reliability of the system.
The selection of the optimal value of application running time per cycle depends
largely on timing and reliability constraints and requirements imposed on the
system by the specification of the application.

• Checksum waiting timeout. The second parameter, the checksum waiting
time, influences not only the correction times of the Type-TF faults, but also
the re-integration times of the PEs, which have suffered from Type-NF faults.
The results of the fault simulation experiments suggest that longer values for
the checksum waiting timeout result in faster error correction times. However,
very long checksum waiting times have a negative effect on soft error handling
capabilities and the performance of the application, and should be thus avoided.
Therefore, the most optimal value for the checksum waiting timeout depends
greatly on the timing and reliability requirements implied by the application’s
specification. The values can be found and fine-tuned using high-level simulations.

The experiments proved STROBES’ ability to guarantee fault tolerance of the
protected application, and gave even further insight into how different parameters of
the algorithm influence its fault correction performance. As a result of the experiments,
additional information about the optimal parameters for the STROBES algorithm was
provided.
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6 Conclusions
The ever-growing complexity of electronic devices and the shrinking of transistor’s
feature size have made systems more susceptive to faults. These faults can be either
permanent or transient. Permanent faults can be the result of manufacturing defects,
but they can also occur during the product’s lifetime. For example, due to aging or
physical damage to the device. On the other hand, transient faults are almost always
caused by environmental problems, most notably cosmic radiation, which does not only
influence space-based technology. Soft errors, caused by radiation, have a noticeable
effect on the operation of critical terrestrial devices, such as servers in data centers.

Repairing of permanent faults is hard. The faulty component needs to be either
replaced or worked around to restore the lost functionality. The effects of transient
faults, on the other hand, can be repaired more easily. Often all that is required to
correct soft errors is to overwrite the faulty value in a register or memory with a known
good value. However, if the effects of transient faults are not mitigated in time, they
can still result in a system failure.

Modern day multiprocessor SoCs consist of many processing elements, which are
connected using some form of interconnect. Recently, NoCs have emerged as the new
connectivity paradigm for SoCs with high core counts, since they provide better scalability
that the traditional bus-based approaches. However, the data that is transmitted over
the NoC links is very sensitive to errors, since it contains information that is needed for
routing the packet. An error on the link can result, in worst case, in congestion of the
NoC. In this case, no further communication is possible between the nodes until the
situation is resolved.

These errors on NoC links can, for example, be the result of transient faults, such
as SETs, in combinational logic at the output port of the sending router. In order
to guarantee reliable functioning of NoC-based devices, it is necessary to detect and
recover from such errors before they can cause any harm. A mechanism for soft error
mitigation for NoC links was proposed in the first contribution of this thesis:

• The proposed mechanism provides very fast soft error correction times for NoC
links, normal operation can be resumed at the next raising clock edge after the
transient fault has disappeared. Therefore, the increase in latency is minimal.
Even in case of unrealistically high fault rates of 10 million to up to 80 million
faults per second, only very small increases in latency were seen, compared to the
fault free experiment.

• Additionally, the proposed mechanism uses existing redundancy in the input FIFOs
of the NoC router instead of additional re-transmission buffers that are used by
most similar approaches. As such, the increase in static power consumption,
compared to the unprotected baseline router, is only 0.03 mW. Dynamic power
consumption increased, on average, by 0.127 mW, or 1.85%.

• The proposed mechanism imposes 18% area overhead on the baseline router and
increases the critical path delay by 7.8%. The results were acquired using 40 nm
TSMC CMOS technology.

The mechanism provided in the first contribution can mitigate the effects of transient
faults on NoC links. However, a link between the NoC routers may also fail permanently.
For this reason, the routing algorithm that is used in the NoC needs to be robust so
that the system could continue working with broken NoC links by finding alternative
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path between the NoC nodes. Additionally, a formal way of comparing the different
routing algorithms in terms of adaptivity and its reliability is needed for choosing the
best turn model for a fault scenario. This leads to the second contribution:

• In the second contribution, comparison and analysis of all uniform 2D turn models
was performed. To the best of the author’s knowledge, an analysis of this extent
has not been done before. Prior to this work, only limited number of turn models
have been described in the literature. Additionally, many new metrics for turn
model comparison were introduced.

• It can be formally proven that there are in total of 256 uniform 2D turn models.
As the result of the analysis carried out in this work, all 50 usable turn models were
identified. All other turn models, except the usable ones have either a deadlock
in them or they do not provide full connectivity in the NoC and, therefore, are
not usable.

• All the 50 usable turn models were further analyzed for their degree of adaptivity,
the number of alternative paths they provide. The degree of adaptivity was
calculated for both minimal and for non-minimal path routing. It was discovered
that all 50 turn models can be grouped into three groups based on their adaptivity
in case minimal path routing is used and into seven groups for non-minimal path
routing. This can be done, since multiple turn models share the same adaptivity
value.

• Additionally, the analysis resulted in the discovery of many new turn models
that, to the author’s best knowledge, have not been described before in the
literature. This includes three new turn models, which have the highest adaptivity
for non-minimal path routing and six turn models that are in the group that
achieves the best adaptivity under minimal path routing.

• Next, average connectivity (turn model’s response to broken links) and latency
of all usable turn models was measured. A high correlation between average
connectivity, latency and adaptivity of the turn models was shown. In case of
average connectivity and latency, the exact same groups of turn models formed,
as for adaptivity. Additionally, more adaptive turn models have simultaneously
higher average connectivity and lower latency. Therefore, turn model’s degree of
adaptivity also acts as a good measure for its ability to handle link failures and
its latency.

• Changing a turn model can often restore connectivity between the nodes in the
network in case a link in the NoC has failed by finding alternative paths between
all node pairs. Hence, an algorithm that can be used by the fault manager to
identify the best turn model for a fault scenario, was presented.

However, faults can occur not only in the interconnection network, but also in
the processing elements themselves. In this case, it is important that mission critical
software continues to work reliably. This leads to the final contribution of the thesis on
a software-based, application agnostic fault tolerance algorithm.

• Because it uses a high-level fault model, the proposed fault tolerance algorithm
does not require modifications to the hardware and is application agnostic. Its
performance depends only on constraints set by the system that the algorithm is
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run on and its internal parameters, not on the behavior of the protected application.
This is in contrast with other similar approaches that require changes to the
hardware or can be used to protect only a single application or a small range of
applications with similar behavior. The proposed approach is more generic.

• The algorithm works by running the same application simultaneously on three
processing elements and performing distributed majority voting over the state
of the application. Fault detection and correction is performed in cycles. The
application is run for a certain time. Then fault detection and correction follow. In
addition to soft errors in the memory used by the protected application (its state),
the algorithm can also correct timing errors between the processing elements, and
it can survive a silent processing element, which can happen, for example, due to
a network failure.

• Soft error tolerance capabilities of the proposed algorithm were verified using
Markov analysis. The analysis proved the fault tolerance capabilities of the
proposed algorithm. Additionally, it can be seen from the results of the Markov
analysis that the proposed algorithm can provide good tolerance against soft errors
in applications with state sizes of up to 4 MiB, if the error checking frequency is
high. In general, the more often error checking is performed, the higher is the
MTTF. However, higher error checking frequency results in running the application
for less time per each cycle. This would have a negative effect on the application’s
performance. The optimal point between the application’s performance and fault
tolerance depends on the application and on the system the algorithm is run on.

• Therefore, a custom high-level, application independent simulation tool was
created. The simulation tool allows to simulate the algorithm in an application
independent setting for finding optimal parameters for the algorithm.

• In this thesis, the simulation tool was used to further analyze the fault correction
capabilities of the proposed algorithm, especially under delay faults that were
not considered during Markov analysis. The simulation results also give further
insight into selection of more optimal values for the two internal parameters of the
algorithm, the application running time per cycle and checksum waiting timeout:

– Application running time per cycle. As proven by Markov analysis, shorter
application running times per cycle (and thus, more frequent error check-
ing) generally improves the fault tolerance. However, the fault simulation
experiments show that if the application running time per cycle is too short,
it increases the average time that is required for correcting timing errors
in the system. For example, in cases where the application’s state size is
equal to or exceeds 2 MiB, the application running time of 200 ms results,
on average, faster correction of timing errors than application running time
of 100 ms. However, it is important to remember that increasing the ap-
plication running time also decreases MTTF of the system. Thus, there
exists a trade-off between timing fault correction speed and the system’s
reliability. The optimal value of application running time per cycle depends
largely on timing and reliability constraints and requirements imposed by
the application’s specification.

– Checksum waiting timeout. The checksum waiting timeout parameter effects
timing error correction times, but also the time it takes to re-integrate a
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silent note after it comes online (e.g., after the network failure was repaired).
Fault simulation results suggest that longer checksum waiting timeout values
result in faster error correction times. However, like with application running
times, very long checksum waiting timeouts are not recommended, since they
have negative effect on applications performance and soft error correction
capabilities. This is because when a processing element falls silent, the
proposed fault tolerance algorithm will always wait until the checksum
timeout is reached. As such, the most optimal value for the checksum
waiting timeout is, like for application running time, highly dependent on the
timing and reliability requirements imposed by the application’s specification
and it can be fine-tuned using high-level simulation.
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Abstract
Techniques for Robust Routing, Communication and
Computation in Multiprocessor Systems
Over the previous decades, computing technology has evolved at an incredible pace.
This is largely a result of the ongoing decrease in the size of the technology node. This
process has allowed to build increasingly more complex multiprocessor systems-on-chip,
while keeping the cost and power consumption constant. Unfortunately, devices that
are built using smaller technologies also become more susceptive to faults.

Faults in electronics can be roughly categorized into permanent and transient
(temporary) faults. Permanent faults include, for example, manufacturing defects and
faults that are caused by aging, the degradation of the transistors over lifetime due to
different physical phenomena. Permanent faults are difficult to correct, since in order
to restore the lost functionality, the faulty component needs to be either replaced or
worked around of. Transient faults, on the other hand, do not result in permanent
damage to the device. One of the largest causes of transient faults in electronics is
cosmic radiation. If an energetic, charged particle hits a memory element, it can cause a
soft error (a random bit flip). Alternatively, soft errors can also occur when a transient
fault in the combinational logic is read into a memory element. Soft errors can be easily
corrected by overwriting the erroneous value with a correct one. However, if the soft
error is not corrected in time, before the erroneous value is used, it can still lead to a
failure.

Faults that are caused by cosmic radiation are an especially large problem for
satellites, since they orbit outside of the protection of the Earth’s magnetic field.
However, radiation is not an issue for only satellites, as it also has a large impact on
the operation of airplanes and many terrestrial devices, such as servers in data centers.
Therefore, to guarantee dependable operation of mission critical computer systems even
under faults, fault tolerance has become an essential component of these systems.

On an abstract level, a multiprocessor system consists of processing elements, which
communicate to each other using the interconnect, and the software that runs on
the processing elements. Faults that occur in the interconnects usually manifest as
communication errors. In this case, the data either arrives corrupt or never arrives at
all at its destination. On the other hand, faults in the processing elements generally
manifest themselves at the software layer by either causing a direct change in the
application’s state or resulting in a computational error. Therefore, fault tolerance
should be implemented at multiple parts of the system. This dissertation presents three
fault tolerance approaches for handling different types of errors at different parts of the
system.

First, a design for a relaxed transmission mechanism is presented to handle soft
errors on the links of network-on-chip based interconnects. These errors could otherwise
lead to congestions in the interconnection network or cause a packet re-transmission,
which causes additional latency. Soft errors at the network-on-chip links are caused by
radiation-induced faults in the combinational part at the output of the sending router.
Compared to similar approaches, the proposed mechanism does not need additional
re-transmission buffers and provides a very fast error recovery time, since fault-free
operation can be resumed at the next raising clock edge after the transient fault, which
caused the soft error, has disappeared.

Next, for a first time, an exhaustive analysis of all uniform 2D turn model-based
network-on-chip routing algorithms is performed. Previously, only a limited number
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of popular routing algorithms have been analyzed. The analysis in this thesis resulted
in discovery of many new turn model-based routing algorithms, which have not been
described before in the literature. Moreover, in this thesis, additional metrics are
provided for qualitative comparison of turn model-based routing algorithms. These
metrics allow to use a novel an approach, proposed in this thesis, to find an optimal
routing algorithm reconfiguration to maximize the use of healthy NoC routing resources,
based on any specific pattern of permanent faults.

Finally, a new software-based fault tolerance algorithm has been proposed that
enables fault tolerant execution of code on non-fault tolerant processing elements.
The proposed approach is based on a high-level fault model that allows implementing
fault tolerance completely in software in a manner that the fault tolerance algorithm’s
performance does not depend on the behavior of the protected application. Therefore,
the proposed algorithm can be used for protecting a wide range of different applications
by interfacing the applications with a library that contains the fault tolerance algorithm
using a simple interface. In contrast, most similar fault tolerance approaches are limited
to a very small range of applications that have similar behavior or require either modified
or inherently fault tolerant hardware.

Additionally, the usage of the high-level and application agnostic fault model enables
simulating the proposed fault tolerance algorithm independently of the protected applica-
tion. This allows further fine-tuning the algorithm’s parameters in order to optimize its
performance and fault tolerance. The fault correction ability of the proposed approach
is proven by Markov analysis and through fault simulations.

While the proposed approaches work independently, they can be used together for
increased fault tolerance.
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Lühikokkuvõte
Robustse marsruutimise, side ja arvutuse tehnikad mit-
meprotsessorilistes süsteemides
Viimaste kümnenditega on arvutitehnika väga kiiresti arenenud. Selle üks peamisi
põhjuseid on võimekus toota üha väiksemate mõõtmetega transistore. Nii saab ehitada
üha integreeritumaid ja keerukamaid kiipsüsteeme samas, kui seadmete voolutarve ja
hind püsivad muutumatutena. Paraku aga muutuvad transistoride suuruse kahanedes
seadmed vastuvõtlikumaks ka riketele.

Üldjoontes saab rikked liigitada püsivateks ja ajutisteks. Püsivad rikked on näiteks
tootmisdefektid ja sellised kahjustused, mis on tingitud transistori vananemisest ehk selle
aeglasest lagunemisest mitme füüsikalise nähtuse tõttu. Püsivaid rikkeid on keeruline
parandada: rikkis komponendi peab kas asendama või süsteemi nii ümber seadistama, et
olemasolevaid ressursse kasutades saaks rikke tõttu kaotatud funktsionaalsuse vähemalt
osaliselt taastada.

Ajutised rikked seevastu ei põhjusta seadmeile püsivaid kahjustusi. Üks suurim
ajutiste rikete põhjus elektroonikas on kosmiline kiirgus. Kui energeetiline laetud osake
tabab mäluelementi, võib see põhjustada selles mäluelemendis pehme vea, muutes biti
väärtuse vastupidiseks. Teiseks võivad pehmed vead ilmneda siis, kui kiirguse poolt
tekitatud ajutine rike kombinatoorses loogikas loetakse mäluelementi sisse. Pehmeid
vigu saab hõlpsasti parandada, kirjutades mäluelemendis vale väärtuse õigega üle. Küll
aga võib ka pehme viga põhjustada ohtliku tõrke kui ajutisest rikkest tingitud pehmet
viga ei parandata enne vigases mälupesas oleva väärtuse kasutamist.

Kosmilisest kiirgusest põhjustatud rikked on eriti suur probleem satelliitide jaoks,
kuna nende orbiidid paiknevad väljaspool Maa magnetvälja kaitset. Samas ei ole kiirgus
ainult satelliitide probleem, sellel on suur mõju ka lennukite ja ka paljude maapealsete
seadmete toimimisele. Üks selliste süsteemide näiteks on serverid andmekeskustes. Seega,
et tagada missioonikriitiliste arvutisüsteemide usaldusväärne töö isegi rikete korral, on
rikketaluvus muutunud nende süsteemide oluliseks komponendiks.

Abstraktsemal tasandil saab hajusad sardsüsteemid jagada arvutuselementideks, neid
ühendavaks võrguks ja tarkvaraks, mis arvutuselementides töötab. Rikked ühendusvõrgus
avalduvad peamiselt ühendus- või suhtlusvigadena arvutuselementide vahel. Sel juhul
jõuavad andmed sihtkohta kas vigaselt või ei jõua üldse. Samas ilmnevad arvutusele-
mentide rikked sageli alles tarkvaratasandil, põhjustades tarkvara oleku otsese muutuse
või valearvutuse. Seetõttu tuleks rikketaluvusmehhanisme rakendada süsteemi mitmes
osas. Selles doktoritöös esitatakse kolme rikketaluvuse meetodit erinevat tüüpi rikete
käsitlemiseks süsteemi eri osades.

Esiteks tutvustatakse rahuliku edastamise (relaxed transmission) lahendust, mille
eesmärk on tulla toime pehmete vigadega kiipvõrgu marsruuterite vahelistes ühendus-
tes. Sellised vead võivad vastasel juhul põhjustada kiipvõrgus ummikuid või paketi
taasedastamist, mis suurendab latentsust. Suur osa pehmeid vigu kiipvõrgu ühendustel
on põhjustatud radiatsiooni tulemusel tekkinud riketest kobinatoorses loogikas, mis
asub saatva marsruuteri väljundis. Võrreldes sarnaste lähenemisviisidega ei vaja pakutav
mehhanism täiendavaid ülekandepuhvreid ja tagab riketest väga kiire taastumise, kuna
rikkevaba talitlust saab jätkata selle tõusva taktisignaali serva ajal, järgneb pehme vea
tekitanud ajutise rikke kadumisele.

Järgmisena esitatakse esimest korda süvaanalüüs kõigist kahemõõtmelisel pöördemu-
delil põhinevatest kiipsüsteemi marsruutimisalgoritmidest. Varem on analüüsitud vaid
piiratud arvu populaarseid marsruutimisalgoritme. Selles väitekirjas esitatud analüüsi
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tulemusel avastati palju uusi pöördemudelipõhiseid marsruutimisalgoritme, mida pole
kirjanduses varasemalt mainitud. Lisaks esitatakse väitekirjas lisamõõdikud, et pöör-
demudelil põhinevaid marsruutimisalgoritme kvalitatiivselt võrrelda. Need mõõdikud
võimaldavad kasutada väitekirjas pakutud uudset lähenemisviisi, mis aitab leida iga
püsivate rikete kombinatsiooni kohta optimaalseima marsruutimisalgoritmi, mis lubaks
kiipvõrkudes töökorras olevaid marsruutimisressursse maksimaalselt ära kasutada.

Lõpuks pakutakse välja uus, tarkvarapõhine veataluvusalgoritm, mis kindlustab ar-
vutiprogrammide veakindluse. See lahendus aitab tagada missioonikriitilise tarkvara
rikkevaba töö arvutuselementides, millele pole riistvaralisi rikketaluvusmehhanisme sisse-
ehitatud. Seetõttu saab pakutud algoritmi kasutada paljude eri rakenduste kaitsmiseks,
ühendades rakendused lihtsa liidese abil teegiga, mis sisaldab rikketaluvuse algoritmi.
Enamik teisi sarnaseid rikketaluvusalgoritme on kasutatavad üksnes väga väikese hulga
rakendustega, mis käituvad sarnaselt või vajavad kas muudetud või juba olemuslikult
rikkekindlat riistvara.

Lisaks võimaldab kõrgetasemelise ja kaitstavast tarkvararakendusest sõltumatu rikke-
mudeli kasutus simuleerida esitletavat rikketaluvusalgoritmi, sõltumatult sellega kaits-
tavast rakendusest. Nii on võimalik algoritmi parameetreid täpsemalt häälestada, et
optimeerida selle jõudlust ja rikketaluvust. Pakutud rikketaluvusalgoritmi võime rikkeid
tuvastada ja parandada on tõestatud Markovi analüüsi ja rikkesimulatsioonide abil.

Kuigi esitletud lahendused töötavad sõltumatult, on neid võimalik kasutada parema
rikketaluvuse saavutamiseks ka koos.
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Abstract—Networks-on-Chip have become a widely accepted
communication paradigm for many-core Systems-on-Chip. How-
ever, with the ever-shrinking transistor size, the network’s sensi-
tivity to transient faults on the physical links cannot be ignored
since even a single transient fault can lead to a network-wide
congestion and a system failure. This paper proposes the AWAIT
mechanism, an ultra-lightweight transient fault mitigation mech-
anism for Network-on-Chip links. The proposed mechanism
covers all single event transients. The experimental results show
that the AWAIT mechanism prevents network-wide failure even
in harsh environments (up to 80 million random faults on links
per second). The AWAIT mechanism is also scalable and imposes
only 5.1% area overhead with very negligible critical path delay
overhead.

Index Terms—Network-on-Chip, Fault tolerance, Transient
fault mitigation

I. INTRODUCTION

The ever-decreasing transistor feature size has enabled the
integration of large number of cores on a single die. However,
the traditional bus-based interconnection infrastructure is not
scalable enough and becomes the bottleneck in inter-core
communication. Network-on-Chip (NoC) has emerged as a
solution to this problem. However, the decreasing feature
size also makes the system much more susceptible to both
environmental faults (e.g., faults caused by radiation) and also
introduces new problems, such as Negative-Bias Temperature
Instability (NBTI) and Hot Carrier Injection (HCI) [1]. The
aforementioned problems add the need for integrated reliabil-
ity mechanisms. In this paper we concentrate on improving
the reliability of the inter-router links.

This paper proposes AWAIT, a scalable mechanism which
is able to handle an extensive amount of transient faults
(see Section VI) by relying on a single parity bit for fault
detection, together with only a few additional gates per link for
transient fault mitigation. This approach enables the detection
and correction of all single bit link faults while requiring eight
times less data overhead per flit and 10 times less area for 32-
bit links than Hamming code, which only provides single bit
correction [2].

The AWAIT mechanism pauses system operation in the
affected part of the system until the faults disappear and
does not require retransmission of data. Applying this method
would result in only a slight increase in latency in the presence
of faults and in case of transient faults will always guarantee
correct arrival of the data.

This paper focuses only on Single Event Transient (SET)
faults in NoC links (due to the use of a parity checker for
fault detection). Moreover, it is important to note that the
AWAIT mechanism is not limited to the usage of the parity
checker but can be also combined with other fault detection
(or correction) mechanisms, if needed. The behavior in the
presence of permanent faults is out of the scope of this paper.

The rest of this paper is organized as follows. Section II
provides a literature review. Sections III and IV provide details
of the baseline router and an analysis of the NoC’s behavior
in different operation environments. Section V will provide
details on the proposed AWAIT mechanism and Section VI
will provide experimental results which illustrate the efficiency
of the proposed mechanism. Finally, section VII will conclude
the paper.

II. LITERATURE REVIEW

Many works have investigated the problem of transient
fault mitigation for physical links in NoCs. However, most
of the mechanisms proposed in the literature are very costly
in terms of latency, area or data overhead. In general, all fault
tolerance mechanisms used for NoC links can be categorized
as End-to-End (E2E) or Hop-by-Hop (HBH) mechanisms,
based on the fault detection and mitigation granularity. In
HBH mechanisms, the packet/flit is examined every time the
data is transferred from one router to another. However, in
E2E mechanisms, a fault is detected only once the packet
is ejected from the network. HBH mechanisms have usually
lower latency than the E2E based mechanisms, since in E2E
mechanisms the entire packet needs to be retransmitted in case
a fault, which cannot be corrected in the endpoint, is detected.

In order to mitigate transient faults in physical links in a
NoC, three main approaches exist in the literature:

A. Data Retransmission

1) Packet Retransmission (P-RET): Works such as [2],
[6], [3], [4] and [5] have proposed methods based on End-
to-End (E2E) packet retransmission. This approach suffers
from high latency caused by the retransmission; once a faulty
packet is detected, often by an Error Detecting Code (EDC),
a NACK packet should be sent to the sender of the faulty
packet for requesting a retransmission. During this process,
the receiving node might need to also discard the non-faulty
packets in order to preserve the packet order. It is important to
note that such E2E packet retransmission mechanisms require978-1-5386-3344-1/17/$31.00 c©2018 IEEE



TABLE I: Comparison of related works

Approach Used Method HBH/E2E No Extra Buffers Targeted Fault Model Correction Latency
[2] P-RET E2E 3 SETs + 50% of METs � 1 clk
[3] P-RET E2E 3 SETs � 1 clk
[4] P-RET E2E 3 SETs + METs � 1 clk
[5] P-RET E2E 7 SETs + METs � 1 clk
[6] P-RET E2E 7 SETs � 1 clk
[7] ECC E2E 3 SETs N.A.
[8] ECC HBH 7 SETs N.A.
[9] ECC HBH 7 SETs N.A.

[10] F-RET HBH 3 SETs N.A.
[11] F-RET HBH 7 SETs + METs 3 clks
[12] RT + ECC + EDC HBH 7 SETs + METs (Prediction) 2 clks
[13] P-RET HBH 7 SETs + Some DET N.A.
[14] ECC HBH 7 SETs + METs N.A.
[15] ECC HBH 7 SETs � 1 clk

Proposed RT HBH 3 SETs + 50% of METs 0-1 clk

distributed packet dropping mechanisms in order to prevent a
network-wide failure.

On the other hand, [13] has proposed HBH packet retrans-
mission using store-and-forward switching. However, store-
and-forward requires large input buffers since each router has
to buffer the entire packet before forwarding it, which is very
inefficient use of network buffers and chip area.

2) Flit retransmission (F-RET): In contrast to packet re-
transmission, works such as [11] and [10] have proposed
HBH flit retransmission in case of receiving a faulty flit.
These works provide much lower latency compared to E2E
approaches but suffer from the need for additional retransmis-
sion buffers in the router.

B. Error Correction Code (ECC)

Another class of fault tolerance mechanisms for NoC links
is Error Correction Codes (ECCs). Works such as [8], [9] and
[15] have provided solutions for correcting single transient
upsets, while [14] has used more sophisticated error correc-
tion techniques to cover multiple event transients. Similar to
retransmission mechanisms, ECCs are also implemented either
as HBH [8], [9], [14] and [15] or as E2E [7]. However,
the main problem with those approaches is the large area
overhead of such mechanisms while providing only limited
fault coverage.

C. Relaxed Transmission (RT)

In contrast to above mentioned approaches which try to
correct the fault, Relaxed Transmission (RT) uses the transient
nature of the SETs and METs in order to mitigate them.
The main idea of this approach is to inform one party in
the transmission to wait until the faults disappear. A relaxed
transmission mechanism has been proposed in [12], where the
upstream router predicts the faults and informs the downstream
router to delay data sampling. Even though the RT method is
very efficient in mitigating faults, prediction of transient faults
which have a random nature, will not be effective. Hence, in
[12] also other methods have been used alongside RT.

This paper proposes an ultra-lightweight, HBH, relaxed
transmission based transient fault mitigation approach called
AWAIT which does not require any additional buffers. The

Fig. 1: Block diagram of the baseline Bonfire router

proposed mechanism can handle transient faults immediately
by pausing the operation of the faulty components without data
loss and guarantees returning to normal, fault free operation
in zero to one clock cycle after the fault disappears. This is
achieved by utilizing a parity checker as the fault detection
mechanism which allows to detect and mitigate all SETs.
However, the proposed AWAIT mechanism is not limited to
using parity checker but can be used together with any other
fault detection mechanism. Since packet retransmission is not
required, the AWAIT mechanism is also power efficient.

A side-by-side comparison of different fault tolerance mech-
anisms for physical links in NoCs proposed in the literature
can be seen in Table I.

III. BONFIRE ROUTER

In order to prove the applicability of the AWAIT mechanism
in a real design, it was implemented for inter-router links in
a 4×4 NoC utilizing the Bonfire router [2]. An overview of
the baseline Bonfire NoC router (without any fault tolerance
mechanisms) can be seen in Fig. 1. The Bonfire router utilizes
wormhole switching and 32-bit flit size.

The Bonfire router uses a credit-based flow control mecha-
nism, where the transmitter includes a credit counter to keep
track of the free slots in the receiver’s input buffer. When
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Fig. 2: Effect of faults on a 4×4 2D-mesh baseline network during 100,000 clock cycles

initialized, the credit counter is set to equal to the number
of slots in the receiver’s input buffers. The value in the
credit counter is decremented each time a flit is sent (and
an additional slot in the receiver’s input buffer gets occupied).
When a slot frees up in the receiver’s input buffer, the receiver
will issue a credit signal to the transmitter, which causes
the credit counter in the transmitter to increase. When credit
counter reaches zero, the receiver’s input buffer is full, and
the transmitter will stop transmitting. If the value in the credit
counter is larger than zero, data can be transmitted one flit per
clock cycle.

Each input port of the Bonfire router consists of an input
buffer, implemented as a First-In-First-Out (FIFO) and a
routing computation unit which is implemented as Logic-
Based Distributed Routing (LBDR) [16]. The main advantage
of using LBDR compared to routing tables is its scalability.
Additionally, since LBDR describes the network topology and
routing algorithm using a fixed number of connectivity and
routing bits, it is possible to easily mark the links as healthy
or faulty, by disabling routing to faulty links. It is also easy
to change the routing algorithm using the routing bits.

The output ports of the router are allocated by the allocator
unit based on the routing decisions from LBDR. The allocator
unit uses the Round-Robin policy for prioritizing multiple
requests to the same output port. Finally, data is transferred
from the input port to the output port using a crossbar switch.

IV. NETWORK FAILURE ANALYSIS

On-chip networks are very sensitive to faults on the net-
work’s physical links. A single faulty value stored in a register
may lead to a network wide failure. We define a network
failure as the situation were the entire network or part(s) of
the network is congested (and the system cannot recover from
it) due to inability to route a packet. Such a faulty value stored
in a register can be one of the following:

• Fault in the flit type: might lead to a network-wide
congestion

• Fault in the destination address: might lead to a
network-wide congestion

• Fault in other header information: a fault in source
address, packet length, etc. may cause problem at the
application layer but has no effect on the network behav-
ior, thus the effect of these faults can be ignored for the
network.

• Fault in the payload: has no-effect on the network
behavior. It might cause a problem at the application
layer. The effect of these faults can be ignored for the
network.

In this work, we have performed fault injection experiments
to evaluate the effects of these faults on the network’s behavior.
The faults were randomly injected into the network links by
temporarily forcing signals in the simulation to faulty values
at fault rates ranging from ten thousand to one million faults
per second. In order to see the effects of SETs with different
lengths in the network, three different fault length scenarios
were investigated where the fault length varied from 10% of
the clock period to 100% and 200% of clock period (the fault
effectively stayed on the link for two clock cycles). For this
investigation, in total 1500 experiments were performed using
random traffic pattern with different Packet Injection Rates
(PIR) and Fault Injection Rates (FIR).

Fig. 2 depicts behavior of a 4×4, 2D-mesh network with
wormhole switching using 4-flit FIFO buffers, without any
fault tolerance mechanisms under different packet and fault
injection rates (during a period of 100 thousand clock cycles).
The fault injection rate is between ten thousand to one million
faults per second. The red dots mark a network failure while
blue dots depict the cases where the network successfully
transmitted all of the injected packets. Each data point in
this plot is based on 5 experiments with the same fault rate
and packet injection rate but with different seeds for the
random traffic generators. A network failure is declared only
if at least 3 out of 5 experiments for that data point failed.
As expected, with increasing packet injection rate and fault
injection rate, the probability of a fault hitting a sensitive part
of the packet increases. The experiments also show that the
duration of fault’s presence in the network has a great effect
on the network behavior. This is due to the fact that faults
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Fig. 4: Schematic of the AWAIT mechanism

with longer presence have higher chance of being registered
in the FIFO buffers.

These experiments highlight the network’s sensitivity to
transient faults and the need for a scalable mitigation mecha-
nism.

V. AWAIT MECHANISM

In this paper AWAIT, a new light-weight fault mitigation
mechanism is proposed to address transient faults on net-
work links. The AWAIT mechanism operates on hop-by-hop
(HBH) basis which enables fault correction with considerably
lower latency when compared to end-to-end (E2E) packet re-
transmission. Also, unlike approaches like HBH flit/packet
re-transmission, the proposed mechanism does not require
additional buffers.

The AWAIT fault mitigation approach for network links
is based on the transient nature of the SETs. The upstream
router holds correct data when a transient fault occurs on the
router link. Once the transient fault disappears, the data on the
link comes back to its normal value and can be read by the
downstream router’s FIFO. In order to wait out the transient
fault, three steps are required:

1) The downstream router should detect the presence of
fault(s).

2) The downstream router should stop sampling data in
case of a fault.

3) The upstream router must keep the transmitted data on
the link until it is certain that the downstream router has
received the correct, fault-free data.

In order to provide step one, a simple fault detection system
– a parity checker – is used. Parity checker is especially useful
since it can detect all single faults.

In order to support step two, the process of storing the data
into downstream router’s FIFO is stopped if a fault is detected.
This is achieved by replacing the valid in signal of the FIFO
module with a new signal: valid = (valid in

∧
fault).

Finally, to support step three, a hold signal is propagated
from the downstream router to the upstream router, informing
it about the presence of a fault on the link. Upon receiving this
signal, the upstream router’s allocator unit halts transmission

and maintains the value on the link. The AWAIT mechanism
does not require any additional buffers in the system and is
entirely governed via controlling of the grant signals. The hold
signal can only be cleared once the fault has disappeared.
It will be done on the next falling clock edge after the
disappearance of the fault, enabling the system to register the
correct data on the next rising clock edge.

Fig. 3 depicts the behavior of the mechanism for a short
(10% of the clock period) and a long (200% of the clock
period) transient fault, respectively. Rx signal in the figure
represents the data receiving line of the router. The duration
while the Rx signal had a faulty value is colored red. The
valid in signal describes the valid signal received from the
upstream router (showing upstream router maintaining the
value on the link). It is important to note that if the fault
disappears before the falling edge of the system clock, the
effects of the fault will be mitigated in the same clock cycle.
However, if the fault disappears after the falling edge of the
clock, the correct data will be latched one clock cycle later
during the next falling clock edge.

Fig. 4 shows the block diagram of the output port of an
upstream router, the communication link, and the input port
of a downstream router along with the added circuitry. For
simplicity, Fig. 4 shows only the East output of the upstream
router, connected to the West input of the downstream router.
Packets are being transmitted from the upstream router to the
downstream router.

The parity checker in the downstream router’s input checks
the parity of the received data. The output of the parity checker
is used to trigger the hold signal in the downstream router.
When a fault is detected, the hold out signal is instantly set
to “1”. Using a flip-flop ensures that the hold out signal stays
at the “1” value, using asynchronous reset of the D flip-flop,
until the fault has disappeared. Once the fault has disappeared,
at the next falling edge of the system’s clock, the value of
hold out signal is set to “0”.

Additional components are added to the mechanism in order
to control the credit counters and the grant generation in
the allocator unit. Upon receiving the hold signal, allocator
unit suppresses the grants issued to the FIFO unit which is
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(c) Fault duration: 200% of clock cycle

Fig. 5: Average packet latency of 4×4 2D-mesh network under different PIR and FIR on the links

accessing the output channel. This means that FIFO will not
perform any read operations and the latest data will be kept on
its output. Allocator unit will also keep the select signal of the
Xbar intact, ensuring that the data is kept unchanged on the
link and it will not update the value of the credit counter as
long as the hold signal is present. The additional hardware for
supporting these mechanisms is minimal and does not exceed
a few gates. Next section will provide experimental results for
illustrating the AWAIT mechanism’s efficacy under different
fault injection campaigns.

VI. EXPERIMENTAL RESULTS

This section details the experiments for validating the ef-
fectiveness of the proposed AWAIT mechanism and providing
support for its efficacy in mitigating SETs. Later in this section
the overheads of the AWAIT mechanism are investigated in
terms of area, power and critical path delay.

The experiments were carried out on a 4×4, 2D-mesh NoC
with wormhole switching using 4 flit deep FIFO buffers. Each
router in the network is a Bonfire credit-based router equipped
with the AWAIT mechanism for handling transient faults.
For measuring the latency of the AWAIT mechanism, 1500
experiments were performed using random uniform traffic
pattern with different Packet Injection Rates (PIRs) and Fault
Injection Rates (FIRs) – up to 80 Million random faults per
second over the network’s physical links. The experiments
shows no failing scenario and validates the effectiveness of
the AWAIT approach. In other words, despite of the existence
of transient faults on the router’s link at run-time, the number
of received packets over the network match the number of
sent packets. Fig. 5 depicts the behavior of the fault-tolerant
NoC equipped with the AWAIT mechanism under different
fault campaigns on network links. Similar to experiment on
the baseline router (see Fig. 2), three different fault duration
scenarios were used. Each data point in this plot is the average
latency of 5 experiments, all of which use the same FIR
and PIR, but have different seeds for the random packet
generators. The experiments illustrate that the network is still
operational under extreme fault conditions (fault injection
rate from 5-Million to 80-Million faults per second) with
acceptable latency overhead. The experiments show that while

TABLE II: Area overhead of the AWAIT mechanism

Area (µm2) Area Overhead
Baseline router 8289.38 –
AWAIT router 8719.56 5.1 %

the network is not saturated, the length of the faults does not
have much effect on the additional network latency from fault
handling. However, once the network exceeds saturation point,
the additional latency becomes more visible. The orange line
in Fig. 5 marks the reference, fault-free experiment.

Table II shows the area overhead imposed to the baseline
router by the AWAIT mechanism. Both designs are imple-
mented in Register Transfer Level (RTL) in VHDL and are
synthesized using TSMC 40 nm CMOS technology standard
cell library in Synopsys Design Compiler. It is important to
note that the fault detection mechanism (parity checker) im-
poses the majority of the reported combinational area overhead
(3.82%) due to the additional XOR gates required to perform
the fault detection. It should be noted, however, that this area
overhead is still very small when compared to the overhead
implied by an error correction code such as Hamming [2]. The
rest of the mechanism, including the additional gates imposed
by the proposed mechanism, incurs only 1.3% overhead to the
router’s area, which makes the solution scalable.

Fig. 6 shows the comparison of the dynamic and static
power consumption of a 4 × 4 network augmented with the
AWAIT mechanism against the baseline router under different
PIRs. In order to obtain the power results for each PIR, the
design architecture was simulated in ModelSim. Then, the
simulation traces were collected and the switching activity
of the components and signals were stored. Further, the
annotated switching activities are fed into the synthesis tool to
calculate the power results. The AWAIT mechanism has only
a negligible total power consumption overhead (around 2.89%
on average), compared to the baseline router. This is mostly
caused by increase in the dynamic power consumption.

Table III shows the critical path delay overhead of the
AWAIT mechanism compared to the baseline router. The
proposed mechanism does not impose overhead to the router’s
critical path delay. Due to the critical path delay of the AWAIT
mechanism the faults that occur very close to the clock edge



TABLE III: Critical path delay overhead of the AWAIT
mechanism

Critical-Path Delay (ns) Overhead
Baseline router 1.96 –
AWAIT router 1.94 ≈ 0%

will be latched into the FIFO buffers. However, in systems
with frequency of 250 MHz and below these effects are
negligible. Additionally, it should be noted that since the area
and timing overhead of the AWAIT mechanism is very small, it
can be coupled with other fault mitigation mechanisms which
can handle faults already latched into the buffer (such as a
packet dropping mechanism [2]) to solve the issue. The source
code for both the baseline and the AWAIT router design along
with all the experimental result scripts are maintained as an
open-source project [17].

VII. CONCLUSION

Network-on-Chip has become a widely accepted commu-
nication paradigm, replacing the bus-based communication
mediums in modern multi/many-core System-on-Chips. How-
ever, the shrinking transistor’s feature size and increase in the
number of components integrated on a single chip, makes the
systems growingly more susceptible to transient faults. On-
chip networks are particularly sensitive to transient faults on
the physical links between the nodes. This paper presented
the ultra-lightweight AWAIT mechanism which can tolerate all
single event transients on network links. The proposed AWAIT
mechanism adds only 5.1% overhead to the area and only a
negligible overhead to the critical path delay of the routers,
which makes it a scalable solution, as it adds transient fault
tolerating capability to the design by augmenting it with only
a few gates. Experimental results show the effectiveness of the
AWAIT mechanism even in extreme environments. As future
work, the authors plan to extend this work to cover permanent
faults on the router links as well. Moreover, the mechanism
would be extended to cover faults occurring in the control part
of the router.
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Abstract—The miniaturization of nanometer technologies be-
yond the sub-micron domain has jeopardized the reliability
of on-chip network links, making them more susceptible to
Single Event Transients (SETs) during system’s run-time. Using
retransmission approaches has been proposed in the literature
for handling SETs in Network-on-Chip (NoC) links. However,
those approaches either suffer from significant latency overhead
or impose additional retransmission buffers, which consume
more area. This paper proposes the ReUSE mechanism as a
transient fault mitigation mechanism for Network-on-Chip links.
The mechanism takes advantage of the inherent redundancy
in the input buffers of NoC routers and reuses these for SET
mitigation on the NoC links. By using a parity checker for fault
detection, the approach can cover all SETs during run-time and
return to normal operation in maximum one clock cycle after the
disappearance of the fault. The experimental results show that
the proposed mechanism prevents network-wide failure even in
harsh environments with up to 80 million random faults on links
per second. The ReUSE mechanism imposes 18% area overhead
and 7.8% critical path delay overhead to the baseline NoC router.

Index Terms—Network-on-Chip, Fault tolerance, Transient
fault mitigation

I. INTRODUCTION

The ongoing trend of miniaturization of the semiconductor
technology beyond the sub-micron domain has made digital
circuits more susceptible to faults, including Single Event
Transients (SETs) [1]. As SETs are also caused by eviro-
nental factors, such as radiation, systems operating in harsh
environments with high radiation levels, such as space appli-
cations, are especially at risk of SETs. Such faults occurring
during run-time can affect the performance of embedded
systems, including Network-on-Chip (NoC)-based System-on-
Chips (SoCs). A faulty link in a NoC can corrupt the data
transmitted between processing elements over the network.
Thus, it is important to handle such SETs in inter-router links
at run-time.

This paper focuses on management of SETs in NoC links.
This is done by implementing a very low latency hop-by-
hop (HBH) retransmission mechanism. The proposed ReUSE
mechanism does not use additional registers and can cover
100% of SETs inter-router links by using the inherent redun-
dancy provided by the unusable memory slot found in the
circular buffers [2] used in the NoC router input ports. The
detection of SETs at each router input is performed online
via a single bit parity checker. Experimental results show the
effectiveness of the proposed mechanism in terms of area
overhead, critical path delay overhead and power consumption.

The rest of this paper is organized as follows: Section II
provides information about related works, Section III provides
details on the proposed ReUSE mechanism and Section IV
will provide results of the experiments which help to illustrate
the proposed mechanism’s efficiency. Finally, section V will
conclude the paper.

II. RELATED WORK

The issue of Single Event Transients (SETs) on the NoC
links has been addressed in several papers. Depending where
and when SET detection and/or correction takes place, the
approaches can be divided into End-to-End (E2E) and Hop-
by-Hop (HBH) mechanisms.

In case of E2E approaches, such as [3], [4] and [5], fault
detection and/or correction takes place at the final destination,
while HBH approaches such as [6], [7] and [8] are designed to
avoid fault propagation by fault mitigation in each router. The
E2E approaches, however, are unable to handle errors in the
packet header before the packet has reached the destination,
meaning, they cannot guarantee the arrival of the packet to the
final destination where fault detection/correction takes place
and, moreover, can cause network congestions due to mis-
routing. Therefore, the proposed approach deploys a HBH
approach.

In addition to that, the SET fault tolerance mechanisms
can be further divided into three groups based on the type of
mechanism used: 1) Error correction codes (ECC); 2) Relaxed
transmission (RT); 3) Packet/flit retransmission (R/F-RET).

Error correction code based approaches such as [9], [6] and
[10] usually imply a large area and data overhead.

Relaxed transmission based approaches such as AWAIT
proposed in [11] detect a fault on the link by using a fault
detection mechanism, such as a parity checker. When a fault
is detected the system is paused until the SET disappears.
However this approach cannot handle faults which happen
near the raising clock edge, since fault detectors (such as
parity) will not provide the result instantaneously due to signal
propagation delays in the gates. If the time between the SET
and the next rising clock edge is shorter than the fault detection
latency, the faulty value will be latched into the router’s input
buffer. With the use of high clock rates in modern systems
the probability of a fault being latched into the buffer raises
noticeably, thus limiting the maximum safe speed of systems
using the RT approach.

Retransmission-based approaches use fault detection mech-
anisms and trigger retransmission of the data in case a fault
is detected.

978-1-5386-7312-6/18/$31.00 c©2018 IEEE
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Retransmission approaches can be categorized as packet
retransmission (P-RET) or flit retransmission (F-RET). HBH
P-RET approaches, such as [12] suffer from large area and
slow speed, since routers need large buffers to store the entire
packet. Additionally, in case of a fault, the entire packet needs
to be retransmitted. In case of F-RET approaches, like [13] and
[14], only one flit is retransmitted in case of the fault, thus
requiring much smaller buffer and completing retransmission
much faster. However, usually those approaches still have a
relatively large overhead, since they require additional registers
for retransmission.

In addition, the approach proposed in [15] has some similar-
ities with the proposed mechanism. It uses Razor flip-flops[16]
to both perform online error detection and to restore the correct
value of a signal after detection. The goal of the approach is to
tolerate SETs on NoC inter-router links. However, a delayed
clock is used in order to obtain the delayed sample of the
signal.

The ReUSE approach proposed in this paper is able to
detect 100% of SETs by utilizing a parity checker. However,
as it is based on HBH flit retransmission, it can, unlike
[11], handle all detected faults while guaranteeing returning
of normal, fault free, system operation in at most one clock
cycle after disappearance of the fault. Moreover, the ReUSE
mechanism does not use any additional registers, but relies on
inherent redundancy already found in FIFO input buffers of
NoC routers, thus not requiring increase in the area.

III. REUSE MECHANISM

A. General Concept

ReUSE is a HBH flit retransmission mechanism for han-
dling SETs on the NoC links. A simplified concept of the
ReUSE mechanism utilizing two additional registers can be
seen in Fig. 3. For simplification, signals used for flow control,
and also router components responsible for routing decisions
and arbitration are not shown in the figure. In the figure data
is transmitted from Router 1 to Router 2.

On the transmitter’s (Router 1) side, each clock cycle, a flit
is transferred to Router 2 (receiver) (A) and also stored into
register REG A. Thus, value on the DATA line depends on
the multiplexor’s (MUX) select line. If (A) input is selected,
DATA will have the current flit read from the FIFO on it,
however, if the (B) input is selected, DATA will be set equal
to the flit which was read from the FIFO during the previous
clock cycle and stored into REG A. By combining this with a
mechanism for pausing the operation of the transmitting router,
it is possible to keep the already sent flit on the DATA line
until a fault disappears. While the pausing mechanism is not
specified in this paper, an example of such a mechanism can
be seen in [11].

On the receiver side (Router 2) every time a flit is received
over link (C), it is stored into a register REG B. The value
in the register is checked by a parity checker. If the parity
checker detects a fault, it will cause the sending router to be
paused and the MUX to be switched to input (B) using the
“overwrite” line, thus holding the current flit on the DATA line.
The DATA line is sampled to REG B every clock cycle and re-
checked by the parity checker. Once the fault has disappeared,
the operation of Router 1 will be resumed and the MUX will
be switched back to input (A), and writing to receiving router’s
FIFO is enabled by a signal from the parity checker. Since
the data in register REG B is updated each clock cycle, the
mechanism is guaranteed to return to normal operation on the
next rising edge of the clock after the fault has disappeared.
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Fig. 4: Average packet latency of a 4×4 2D-mesh network under different PIR and FIR on the links

B. ReUSE Concept

Since REG B in Fig. 3 can be thought of as an extension
to Router 2’s FIFO, the design can be optimized by using
data written to the FIFO one clock cycle earlier as input to
the parity checker, thus removing the need for REG B as a
separate register. This can be easily implemented, assuming
a circular buffer implementation of the FIFO, as shown in
Fig. 1. The buffer is accessed in such a FIFO implementation
by using two pointers; one for reading (Rd pointer), other
for writing (Wr pointer). If the buffer is empty, the read and
write pointers will both point at the same memory slot, as seen
in Fig. 1 (a). After each writing operation, the write pointer is
shifted by one slot to the left. It can be seen that REG B can
be implemented in such a way that parity checker is connected
to the FIFO slot referred to by Wr pointer − 1.

The data is read from the memory slot referred by the
read pointer. However, as it can be seen in Fig. 1 (b),
the condition for the FIFO being full is when the read
buffer is ahead of the write buffer by one memory slot
(Wr pointer = Rd pointer−1). Since writing would cause
the write pointer to move to the same memory slot where
the read pointer is (creating the “empty” configuration), the
memory slot Rd pointer−1 can never be overwritten in such
an implementation. This definition helps to further optimize
the mechanism, since REG A, as mentioned in Subsection
III-A, stores the flit read from the FIFO during the previous
clock cycle. This means that the flit in REG A is the same as
the one stored in FIFO memory slot Rd pointer − 1.

The ReUSE mechanism takes advantage of the aforemen-
tioned optimizations in order to provide fault tolerance for
NoC links. The implementation of the ReUSE FIFO can be
seen in Fig. 2, data is normally read from the FIFO slot
referred by Rd pointer and written into the slot referred
by Wr pointer. However, REG B has been implemented by
connecting the parity checker to an additional MUX, which
uses the previous write pointer as select line. If a fault is
detected by the parity checker, the fault output is activated.
This will cause the sending router’s operation to be paused
until the fault has disappeared, as discussed earlier, and reading
of the memory slot referred by Rd pointer − 1, thus also
removing the need for REG A.

TABLE I: Area overhead of the ReUSE mechanism

Area (µm2) Overhead
Baseline router 8276.45 –
ReUSE router 9777.26 18%

TABLE II: Critical path delay overhead of the ReUSE mech-
anism

Critical path Delay (ns) Overhead
Baseline router 2.28 –
ReUSE router 2.46 7.8%

IV. EXPERIMENTAL RESULTS

This sections presents results of the experiments used to
validate the proposed ReUSE mechanism. The experimental
results will also demonstrate the SET mitigation efficiency
of the proposed mechanism. Additionally, in this section
the overhead of the proposed ReUSE mechanism will be
investigated in terms chip area, power and critical path delay.

For carrying out the experiments, the ReUSE mechanism
was implemented for the links of a 4×4, 2D-mesh NoC
utilizing the open source Bonfire NoC router [3]. The Bonfire
router uses wormhole switching with 32-bit flit width. In order
to reduce the area overhead, it uses Logic Based Distributed
Routing (LBDR) [17] and credit-based flow control, which has
the capability of transferring up to one flit per clock cycle,
assuming there are free slots in the receiver’s input buffer.
The version of the Bonfire router used in this work does
not use virtual channels. For calculating the overhead of the
proposed mechanism, all experimental results were compared
to a baseline Bonfire router which does not include any fault
tolerance mechanisms. The source code for both the baseline
router and for the proposed ReUSE router design along with
all the scripts used for calculating the experimental results are
maintained as an open-source project available at [18].

In order to measure the applicability of the ReUSE mech-
anism in harsh environments (like space), a set of random
uniform fault injection experiments were run for SETs lasting
10%, 100% and 200% of the clock period. The experiments
were run with different network loads and for fault rates up
to 80 million faults per second. The faults were injected by
forcing the signals in Modelsim simulation with faulty values.
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(in mW) of the proposed and baseline 4 × 4 network under
different packet injection rates

The results of the experiments in Fig. 4 show that when
compared to the fault-free run (shown with an orange line
in the figure), the latency did not change much when faults
were injected, even on under extreme fault injection rates.

The area overhead the ReUSE mechanism imposes on the
baseline Bonfire router can be seen in Table I. Table II shows
the critical path delay overhead. In order to obtain those
results, both designs were implemented in Register Transfer
Level (RTL) in VHDL and synthesized using TSMC 40 nm
CMOS technology standard cell library in Synopsys Design
Compiler, for 400 MHz clock frequency.

Finally, Fig. 5 shows the power usage of dynamic and
static power of the ReUSE mechanism, when compared to
the baseline. As it can be seen in the figure, the increase in
power usage implied by the ReUSE mechanism is minimal.

V. CONCLUSION

Due to the trend of shrinking transistors’ feature size,
Network-on-Chip links have become more susceptible to
run-time Single Event Transients (SETs), thus, affecting the
operation of the entire system. This paper presented the
ReUSE mechanism for handling SETs on inter-router links.
To this end, the inherent redundancy in the input buffers is
utilized, avoiding the usage of any additional re-transmission
buffers when mitigating SETs at run-time. The proposed
mechanism only adds 18% area overhead and 7.8% critical
path delay overhead to the baseline router (router without any
fault tolerance mechanisms). Experimental results show the
effectiveness of the ReUSE mechanism even in extreme fault
environments. As future work, the authors plan to extend this
work to cover permanent faults on the router links as well.
Moreover, the mechanism would be extended to cover faults
occurring in the control part of NoC routers.
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Abstract—Routing algorithms play an important role in
Network-on-Chip (NoC) based System-on-Chips. Turn model
based routing disallows some of the turns in order to avoid
deadlock, while providing partial adaptivity. In this paper, all
2D uniform turn models are examined for deadlock freeness and
connectivity; 50 deadlock free turn models are extracted that
provide full connectivity in the network. An extended adaptivity
metric is introduced to classify the turn models; all extracted
turn models are compared in terms of adaptivity, robustness
and latency. Experimental results identify the most robust turn
models and the most efficient ones in terms of latency.

Keywords—Turn Model, Routing Algorithm, Robustness, Min-
imal Path, Network-on-Chip.

I. INTRODUCTION

Network-on-Chip (NoC) has emerged as a paradigm to
overcome some of the limitations existing in the conventional
shared medium bus-based architectures [1], such as perfor-
mance and scalability issues. In a NoC, the communication
between cores is administered by on-chip routers based on
a routing algorithm. Routing algorithms can be either clas-
sified as deterministic or adaptive [2]. Deterministic routing
algorithms, use a single path for each source-destination pair,
whereas adaptive routing provides more path diversity, taking
into account criteria such as traffic load on links, etc. One
of the important factors when choosing a routing algorithm is
deadlock freeness. Deadlock occurs when a cyclic dependency
is created between the packets in a NoC, waiting for resources
held by other packets in the cycle [2].

Two main approaches exist for addressing deadlocks: dead-
lock avoidance where deadlocks are completely avoided and
deadlock recovery where deadlock can happen, but is handled
using a deadlock recovery mechanism. The focus of this
paper is on deadlock avoidance. Turn model approach was
first introduced in [3] for deadlock avoidance in 2D Mesh
Network-on-Chips. A turn is defined as a change of direction
in a packet’s path. Directions are named based on cardinal
directions: North (N), East (E), West (W) and South (S). In a
2D Mesh network, maximum of 8 turns exist: N2E, N2W,
E2N, E2S, W2N, W2S, S2E and S2W. For instance S2E
indicates a é turn that, if allowed, it enables a packet coming
from the South input port of the router be forwarded to the
East output port. A total number of 28 “ 256 uniform 2D turn
models can be derived from eight possible turns. In a uniform
turn model, all network nodes have the same disallowed turns.

In [3], three deadlock free turn models are introduced,
i.e. West-First, North-Last and Negative-First. Furthermore,

[4] introduces the North-South First (NSF) turn model, by
combining North-First and South-First. Moreover, the East-
First turn model is addressed in [5].

Even though, some of the previous works such as [6] have
covered performance comparison of some of the well-known
turn models, to the best of our knowledge, exploration of the
entire search space of all possible turn models for a 2D mesh
NoC have not been thoroughly performed. In this paper, all
256 uniform turn models for routing in 2D Mesh NoCs are
enumerated and the characteristics of the deadlock-free turn
models are evaluated. The proposed approach uses metrics for
connectivity and adaptivity, based on which turn models are
classified. In addition, latency and robustness of all turn model
groups are assessed.

The rest of this paper is organized as following: in section
II a methodology for evaluation of deadlock freeness of turn
models is discussed. In section III metrics for network connec-
tivity and routing adaptiveness are introduced. In section IV
robustness and latency of the chosen routing algorithms have
been evaluated in minimal and non-minimal routing. Finally,
section V concludes the paper.

II. EVALUATING DEADLOCK FREENESS

In [7], the concept of Cyclic Dependency Graph (CDG)
is used for deadlock detection, where nodes represent the
network channels and edges denote the channels dependency.
It is proven that for guaranteeing deadlock-freeness, CDG
must be acyclic. In this work similar approach has been used,
but instead of CDG, we use the concept of Routing Graphs
(RGs) which was introduced in [8]. The rest of this section
overviews the construction of routing graphs and describes the
process of evaluating deadlock freeness.

A. Routing Graph
A Routing Graph, RG(V, E), is a directed graph, in which

the set of vertices (V) denotes the set of all the input/output
ports in the network (two nodes per port) and the set of edges
(E) represent the set of (vi, vj) where vi is a vertex (input
or output port) that is depending on vj port. For the sake of
simplicity, a vertex v in RG is denoted as nodei,p,dir, which
describes direction dir P tin, outu of port p P tN,E,W, S, Lu
of node i in the network. There are two different types of links
represented as edges in the routing graph:
‚ Inter-router edges, representing connections between

routers (from an output port of a router to an input port
of an adjacent router).
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Fig. 1. a) Example of a 3 ˆ 3 mesh network and b) the resulting routing
graph for XY routing algorithm

‚ Intra-router links, representing allowed connections in-
side the router (from an input port of a router to an
output port in the same router). An intra-router link can
be: 1) From or to local port: representing dependency
between the router’s north, east, west and south ports and
the local port connected to the processing element (PE).
2) Straight connections: describing dependency between
ports involved in maintaining straight connections inside
the router (e.g from west input to east output port of a
router). 3) Turns: dependency of the ports in perpendic-
ular direction (e.g. from east input to south output port).

As an example, Fig. 1b shows the RG for XY routing for a
3x3 2D Mesh network, corresponding to Fig. 1a. In order for
a routing algorithm to be deadlock free, its corresponding RG
must also be acyclic.

B. Proof of Deadlock Freeness
Theorem 1. A deadlock in a turn model results in a cycle in
the RG derived from the turn model.

Proof. Let us assume that a deadlock in the turn model results
in a RG with no cycles. Since the RG represents a sequence of
all dependencies between the inputs and outputs of a routers
under the applied turn model and there are no cycles in RG,
there cannot be cyclic dependencies between the inputs and
outputs of routers in the network. Hence, no deadlock can be
formed. This is in contradiction with our initial assumption
of having a deadlock for the turn model. This means that a
deadlock in a turn model results in a cycle in the RG derived
from the turn model.

Using this method, it is possible to discard 35 turn models
that have deadlocks, which leaves 221 deadlock free turn
models.

III. METRICS FOR CONNECTIVITY AND ADAPTIVITY

Out of 221 deadlock free turn models, some provide partial
connectivity. Examples of this case are: one turn model with
zero turns and 8 turn models with one turn. To evaluate the
connectivity of turn models, a simple metric has been used:

ConnectivityRG “
N´1ÿ

i“0

N´1ÿ

j“0

Ci,j,RG (1)

where N is number of nodes in the network and:

Ci,j,RG “

$
’&
’%

1 if exists a path from nodei,L,out to nodej,L,in

in RG where i ‰ j

0 otherwise

TABLE I
LIST OF PREVIOUSLY NAMED TURN MODELS

# Allowed turns Conventional Name
0 E2N, E2S, W2N, W2S XY [9]
13 S2W, S2E, N2W, N2E YX [10]
33 E2S, S2W, S2E, N2W, N2E Restricted North First [4]
39 E2N, E2S, W2N, W2S, S2W, N2W East-First [5]
40 E2N, E2S, W2N, W2S, S2E, N2E West-First [3]
41 E2N, E2S, W2N, W2S, N2W, N2E North-Last [3]
42 E2N, E2S, W2N, S2E, N2W, N2E Negative-First [3]
46 E2N, W2N, S2W, S2E, N2W, N2E South-First [4]
48 E2S, W2S, S2W, S2E, N2W, N2E North-First [4]

TABLE II
DoA AND DoAEx FOR ALL 2D ROUTING ALGORITHMS OF FIG. 2

4 turns 5 turns 6 turns
Turn
Model
Num

0,
13

3, 5,
8, 10

1, 2, 4,
6, 7, 9,
11, 12

14, 15, 16,
17, 28, 33,
36, 37

18-27,
29-32,
34, 35

42, 43,
45, 47

38, 39, 40,
41, 44, 46,
48, 49

DoA 1 1.23 1.43
DoAEx 1 1.41 1.63 2.11 2.41 3.83 4.33

and RG is representing the routing graph. In this case,
the assumption is that RG represents a full mesh under a
turn model based routing algorithm. Path search in RG can
be either minimal or non-minimal. For a 3 ˆ 3 mesh, the
maximum connectivity is 72 which means that each node
can communicate with eight other nodes. Using this simple
metric, all the deadlock free turn models were evaluated and
turn models that do not provide full connectivity have been
excluded. There are only 50 uniform turn models that are
deadlock free and also provide full connectivity. These turn
models are visualized in Fig. 2. There are 14 four-turn turn
models, 24 five-turn turn models and 12 six-turn turn models.
Table I lists the turn models which are previously named and
addressed in the literature.

In order to classify turn models, we can use the Degree of
Adaptiveness (DoA) introduced in [3] which only considers
the shortest paths from a source node to destination node. A
general form of DoA metric can be formulated as:

DoA “
řN´1

i“0

řN´1
j“0 NoSPi,j,rg

number of pairs of nodes
(2)

Where N is the number of nodes in the network and
NoSPi,j is defined as:

NoSPi,j,RG “
$
&
%

number of shortest paths in RG from
nodei,L,out to nodej,L,in

i ‰ j

0 otherwise
The resulting DoA for the turn models are presented in

Table II. However, it is no surprise that turn models with
higher number of turns, also have higher DoA. Extending this
metric (DoAEx) to include all the simple paths in the network
(paths that do not have repeating nodes in them) provides
a slightly different picture than the original DoA. DoAEx

makes it possible to classify the turn models even further. The
DoAEx metric can be described as follows:

DoAEx “
řN´1

i“0

řN´1
j“0 NoSP 1i,j,RG

number of pairs of nodes
(3)

Where N is the number of nodes in the network and
NoSP 1i,j is defined as:

NoSP 1i,j,RG “
$
&
%

number of simple paths in RG from
nodei,L,out to nodej,L,in

i ‰ j

0 otherwise



Fig. 2. Visualization of all deadlock free 2D turn models with full connectivity. The forbidden turns are drawn in red.

Table II presents DoA and DoAEx metrics for the turn
models in Fig. 2. This table shows that inside each class of
turn models (four, five, and six-turn turn models), there are
sub-classes that have different characteristics. As an example,
turn model no. 3 shares two turns with XY and two turns with
YX which allows it to have non-minimal de-routes. Similarly,
under non-minimal routing, turn model no. 1 and 2 have even
further advantage in providing path diversity.

Similar investigation has been conducted for 3D routing
algorithms, where there are 24 turns available. Out of over 16
million possible 3D turn models, over 95 thousand deadlock
free turn models which provide full connectivity in the network
are extracted. The full list of these turn models and their
visualizations are accessible at [11].

IV. EXPERIMENTAL RESULTS

In this section, all the 50 turn models extracted in the
previous section, are compared in terms of robustness and
latency.

A. Robustness Evaluation

Robustness of a routing algorithm is defined here as the
average connectivity metric of routing algorithm running on
a 2D mesh NoC with specific number of faulty links. Ex-
periments were conducted to evaluate the robustness of each
routing algorithm. Using the connectivity metric introduced in
section III, average connectivity of the network with nbroken

permanently broken links (out of total number of ntotal inter-
router links), can be calculated using Algorithm 1. Where
avgcon is a list of average connectivities and avgconrks is
average connectivity for a 3ˆ 3 network with k broken links.

For each turn model and each possible amount of broken
links (nbroken) the connectivity metric is calculated and aver-
aged over all possible configurations with nbroken links.

Fig. 3 illustrates the difference between average connectivity
metrics for the turn models listed in Table II. Fig 3a shows
the average connectivity metric of the turn models under
minimal path routing for different number of working links.
The three lines in the figure correspond to three classes of
DoA in Table II, where turn models with higher DoA provide
better connectivity. However, the gap between the curves is not

Algorithm 1: average connectivity calculation algorithm
for nbroken P [0, ntotal] do

list of configurations = list of all 3ˆ 3 2D mesh NoCs with
nbroken broken links

sumcon = 0
forall confbroken P list of configurations do

Generate RG based on confbroken

sumcon += Connectivityrg

end
avgconrnbrokens “ sumcon{len(list of configurations)

end
return avgcon

(a) (b)
Fig. 3. Comparison of avg. connectivity metric of turn models under a)
minimal, b) non-minimal routing by number of available links.

substantial. Fig 3b depicts the average connectivity metric of
turn models under non-minimal routing for different numbers
of working links. In this case the curves diverge more, which
corresponds to the seven classes, when considering DoAEx,
and the gap between the curves is rather substantial where turn
models with higher DoAEx provide better connectivity (Red
and Blue marked regions in Fig 3).

B. Latency Evaluation

In this section, all the 50 deadlock free turn models shown
in Fig. 2 are evaluated under synthetic traffic patterns using
Noxim [12] NoC simulator. The experimentation setup pa-
rameters are as follows: A 4x4 2D mesh was considered. The
system clock frequency is set to 1 GHz for all routers. As a
synthetic traffic pattern, random uniform is considered in the
simulations. Packets are generated using Poisson distribution.
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Fig. 4. Latency results under random uniform traffic for a) four, b) five, c) six-turn turn models.

The length of the packets is fixed and set to 8 flits, and FIFO
depth of routers is 4 flits. For each simulation, the warm-up
time is considered 1000 cycles in order to allow the transient
effects to stabilize and subsequently, the simulation has been
run up to 20000 cycles.

The average latency results are grouped based on the
number of turns allowed, i.e. 4-turn, 5-turn and 6-turn turn
models. Fig. 4a-c shows the average latency results for these
turn models under random uniform traffic pattern (with packet
injection rate ranging from 0.001 to 0.025). The curves are
color coded in each figure to distinguish different classes of
DoAEx (see Table II). The dotted lines in Fig. 4a-c indicate
the corresponding highest value of the Fig. 4c and lowest value
of Fig. 4a, since the range of axes is different between Fig.
4a-c. As it can be observed in Fig. 4a, two of the turn models
(0 and 13 which are highlighted with thick cyan color), which
correspond to XY and YX routing, outperform the other turn
models in terms of average latency which conforms to the
observations made in [13]. After those two turn models, both
classes of 6-turn turn models and 5-turn turn models with
lower DoAEx perform better than others. The performance
(average latency and average throughput) and communication
energy of all the 50 deadlock free turn models under different
synthetic (Random uniform, Bit-reversal, Shuffle, Transpose
and Butterfly) traffic patterns are available at [11].

V. CONCLUSION

In this paper, an in depth comparison of all 2D uniform turn
models in terms of connectivity, adaptivity and robustness has
been made. All possible 50 deadlock-free turn models that
provide full connectivity have been extracted. An extended
adaptivity metric have been introduced to classify the turn
models even further. It became clear that one class of turn
models with highest degree of adaptivity is much more robust
under non-minimal path routing. The latency results shows that
aside from XY and YX routing algorithms which outperform
all other turn models under random uniform traffic pattern, 2
more classes fall very close to this class which are 5-turn turn
models with lower adaptivity metric and 6-turn turn models
with higher adaptivity metric.
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Abstract—Due to the ongoing miniaturization of silicon tech-
nology beyond the sub-micron domain and the trend of inte-
grating ever more components on a single chip, the Network-
on-Chip (NoC) paradigm has emerged to address the scalability
and performance shortcomings of bus-based interconnects. As
the feature size shrinks, the system gets much more susceptible
to faults caused by wear-out and environmental effects. Thus,
in order to increase the reliability, creates the need for having
mechanisms embedded into such a system that could detect and
manage the faults in run-time.

In this paper, a ground-up approach from fault detection
to fault management for such a NoC-based system on chip
is proposed that utilizes both local fault management for fast
reaction to faults and a global fault management mechanisms
for triggering a large-scale reconfiguration of the NoC. Also,
detailed description of strategies for fault detection, localization,
classification and propagation to a global fault management
unit are provided and methods for local fault management are
elaborated.

Keywords—Fault Detection, Checkers, Fault Classifica-
tion, Fault Localization, Fault management, Reconfiguration,
Network-on-Chip.

I. INTRODUCTION

Network-on-Chip (NoC) has emerged as a paradigm to
address the scalability and performance shortcomings of tradi-
tional bus-based architectures [1], [2]. The trend of nano-scale
electronics shrinking in size, makes them more susceptible
to wear-out and environmental effects. This necessitates the
detection and management of faults occurring at the run-time
of the system, in order to provide higher reliability.

This work addresses a reliable NoC framework, which is
maintained as an open-source project named Bonfire [3]. It
provides support for fault detection and localization, local fault
management, local fault classification, and fault information
propagation to a global system health monitoring unit. In
a NoC-based System-on-Chip, routers are responsible for
transmitting data between the Processing Elements (PEs).

In Network-on-Chip, a router is composed of a data-path
and a control part. The packets are transmitted via the data-
path, while the control part directs the flow of data and the path
the data should take when being transmitted between routers.
Thus, both for the data-path and the control part, fault toler-
ance is of utmost importance for a reliable communication.

For the data-path, error detection and/or error correction
techniques (such as single parity and Hamming encoding [4])
can be used. However, due to the area overhead of error
correction techniques such as Hamming, the focus of this work
is on single bit parity for the detection of faults in the data-path
(inter-router links and data-path components of the routers).

On the other hand, faults in the control part of NoC routers
should be handled. One way is to detect them via concurrent
online checkers (for instance via the approaches proposed in
[5], [6]) due to their low fault detection latency. There are also
other methods such as Built-In-Self-Test (BIST) [7]. However,
they interrupt the normal operation of the system for testing
upon a fault occurrence. Thus, in the scope of this work, we
focus on concurrent online detection of faults for the control
part of routers. It is important to note that the checker outputs
also facilitate fault localization [8], pinpointing the defective
part in the circuit. Additionally, higher abstract deductions can
be made based on them, such as existence of defect in turns
in a router (a path from an input port to an output port). Such
information can be used for reconfiguration of the routing
algorithm or re-mapping of the tasks by units in charge of
application mapping and scheduling. Works such as [9] have
addressed multi-layer fault diagnosis and combining checkers
at different levels of abstraction, however, they impose high
latency. Furthermore, they have not addressed any mechanism
for classification of faults and fault management, which are
considered in our work.

In this work a ground-up approach from fault detection
to management for NoC-based System-on-chips is proposed.
Strategies for fault detection, localization, classification and
propagation to a global fault management unit are described.
Furthermore, in order to improve the reaction time to faults,
methods for local fault management are elaborated.

The rest of this paper is organized as follows: in section II
the basics of the Bonfire framework, including the NoC and
router architecture are discussed. Section III describes the fault
model used in this work and the method of fault injection on
the links. In section IV different fault detection mechanisms
for control and data path of the routers are discussed. Section
V describes methods of fault localization. Sections VI describe
the the process of fault classification and Section VII provides
methods of handling faulty packets at the router level. Section
VIII details fault information propagation to system health
monitoring unit and finally, section X concludes the paper.

II. BONFIRE FRAMEWORK

A. Bonfire NoC Architecture

The aim of the Bonfire project is to create a fault-tolerant
framework for testing dependability mechanisms in a NoC-
based System-on-Chip(SoC). The targeted NoC is using a 2D
mesh topology where each tile of the network consists of
a wormhole switching router equipped with fault tolerance



Fig. 1. Overview of the architecture of baseline credit-based flow control
NoC router used in Bonfire network

mechanisms and a Processing Element (PE) connected to it via
a Network Interface (NI). Each PE comprises a Plasma core
[10], which is a 32-bit MIPS-I based open-source processor
with three pipeline stages, along with 8 KB of RAM (as local
memory). Details of the components of the framework are
described in the following subsections. Bonfire is maintained
as an open-source project, available at [3] .

B. Bonfire Router
The Bonfire network described in this paper utilizes 32

bit credit-based wormhole switching in the routers. Fig. 1
shows an overview of the baseline router used in the Bonfire
network, without any fault-tolerance mechanism. The router
comprises of an input buffer (implemented as First-In-First-
Out (FIFO)), routing computation unit (implemented using
Logic-Based Distributed Routing (LBDR) mechanism [11]),
switch allocator (prioritizing multiple requests to the same
output port based on Round-Robin policy) and crossbar switch.

We have opted for LBDR [11], since it is scalable compared
to table-based routing in NoCs. Furthermore, LBDR describes
the topology and the routing algorithm in a 2D NoC in terms
of a fixed number of configuration bits, i.e. connectivity and
routing bits. This makes it possible to use the connectivity bits
for the indication of links in the 4 main directions as healthy
or faulty, by setting the corresponding connectivity bit to zero
(faulty) or one (healthy). Routing algorithm re-configuration
(if necessary) can be done by changing the routing bits.

C. System Health Monitoring Unit (SHMU)
The Bonfire project targets a holistic system health monitor-

ing and management solution. To implement this, a dedicated
unit, called System Health Monitoring Unit (SHMU) [12],
[13], is proposed which handles fault information collection
and system-scale fault management and reconfiguration.

In Bonfire project SHMU runs as software on one of the
Processing Elements (PEs) in the network. And if the proces-
sor fails, the SHMU tasks can be mapped on another node.
Details about functionality and implementation of SHMU is
beyond the scope of this paper.

III. FAULT MODEL

In this work, we focus on single stuck-at fault model [14],
which means in each router module only one fault can occur at
a time. For data-path related modules, including the links, only
one bit can get faulty at a time on the specific link. The same
applies to the control part related modules. Thus, separate
control part modules and data links from different ports can

get faulty at the same time, but only one fault in each of them
at a time. Transient faults are modeled as single stuck-at faults
which last one clock cycle. Intermittent faults are modeled as
bursts of transient faults in short periods. Permanent faults are
modeled as a moving from transient fault to intermittent state
and then finally with a permanent stuck-at fault.

In this work, fault injection is done using force command of
ModelSim from Mentor Graphics [15]. The injection points are
links between routers and also internal signals of the individual
modules inside the router.

IV. FAULT DETECTION

The Bonfire framework uses different methods for detection
of faults in data-path and in the control part of the network.

A. Data-path Fault Detection
Since this work focuses on a single stuck-at-fault model,

a simple parity checker module is used to cover all single-
bit faults on the input ports of the router. Upon receiving a
faulty flit, the router starts a fault classification process and
also manages the fault locally in order to prevent network
congestion (for more information, please refer to section VII).

B. Control Part Fault Detection
Concurrent Online checkers are utilized to detect faults

in the control part of the NoC routers. A checker is a
concurrent online fault detection module [5], [6]. It detects
faults occurring at inputs and outputs of fan-out free regions
[16] of the circuit with low latency. Since checkers provide
fault information required for fault localization, this method
is preferable to Double or Triple Modular Redundancy (DMR
and TMR) schemes. The use of concurrent checkers for online
fault detection in control part of NoC routers are described in
more detail in [5], [6], [17], [18]. It is worth noting that the
complete set of checkers for the control part of Bonfire NoC
are available at [3], which covers the control part of FIFO,
routing logic (LBDR) and allocator unit (allocator) shown in
Fig. 1.

V. FAULT LOCALIZATION

As the number of checkers can grow very large (in the
order of hundreds per router), it is not feasible to send the
fault detection information from all these checkers to SHMU.
Also, in case of a NoC router, for example, flipping of a bit
in a register in one of the router’s internal modules will not
provide valuable information to the SHMU in the application
layer. However, if the outputs of the checkers connected to this
module are combined, it is possible to translate the output of
the checkers into more meaningful abstracted information.

By combining the checkers for the control part of the router,
it is possible to report faults at a more abstract level. For
instance, in [8], a fault localization method is introduced
which groups sets of checkers, making an assertion vector,
facilitating finding fault location at different granularity levels
in the control part of a NoC router. This can also be used
when signaling higher levels in the architecture, such as the
application level about the occurrence of faults.

Works such as [19], model faults in the control part as
a complete node failure. In [20], illegal turns in the routers
are detected, however, each router depends on the information



Fig. 2. General structure of the fault detection, grouping and classification
mechanisms

Fig. 3. Finite State Machine (FSM) for the fault classifier unit

from its neighbor routers for online fault detection. On the
other hand, in our work, we combine checker outputs (as
shown in Fig. 2) for the control part of a router. Further, this
can be translated into detection of a turn fault. Unlike [20],
we use the checker outputs in the current router to model turn
faults, and there is no need for collecting information from
neighbor routers. A turn fault is defined as a fault occurring
in one of the components on the path from an input port to
an output port of the router (e.g. a West to North turn fault or
a straight path). This information can be passed to SHMU to
the application layer. Later, if required, the SHMU can initiate
re-configuration of the routing algorithm or re-mapping of the
tasks on the nodes based on the fault information received
from the lower (hardware) level.

VI. FAULT CLASSIFICATION

With the growing number of transient faults, it would be
impractical to send a separate notification to SHMU for each
occurring fault. Not only would this impose additional latency
by sending a notification from hardware to application layer,
but it will also incur a significant power overhead.

To overcome this problem, faults are classified locally
in the routers as permanent, intermittent or transient. The
classified fault information is transmitted to SHMU if the fault
is classified as intermittent or permanent. In [21], [22], an
online fault classification mechanism is introduced as part of
a cross-layer fault management framework, however, no details
regarding the implementation of the fault classifier is provided.
Whereas, in our work, a fault classification method based on
[23], [24] is implemented; where a set of counters are used to
count the healthy and faulty packets going through a network
link. Each of the counters are compared with a threshold value.
When a counter reaches its threshold, a signal is issued which
is used by a control Finite State Machine (FSM) in charge of
health making decision. Fig. 3 illustrates the FSM Diagram
of the classifier unit. Every time the faulty packet counter

Fig. 4. Fault classifier block diagram

reaches its threshold, the FSM moves one step closer to the
Faulty state. Every time the a counter reaches its threshold,
both counters would be reset. It is noteworthy to mention that
there could be different variations of state diagram models
implemented for classification. The current state diagram as
described in the Fig. 3 implements a scheme where there is
no recycling of once faulty links. In contrast to [23], [24], since
no error correction method has been used in this method, only
two four-bit counters are utilized (see Fig. 4).

VII. LOCAL FAULT MANAGEMENT

Once a fault has been detected in the system, if it is
classified as intermittent or permanent, the SHMU is notified.
After obtaining the fault information, processing and making
a decision, the SHMU can issue a command regarding that
particular fault. But, during this time the effect of the fault
has already propagated to other parts of the system and
containment of the effects would be difficult if not impossible.
So even though SHMU is responsible for fault management in
the system, it can only manage the faults (in global scale) and
some more detailed, distributed, mechanisms are needed for
management of faults locally. This problem can be solved by
implementing local fault management at each router. In this
section two solutions for local management of the faults are
provided.

A. Packet Dropping Mechanism
One of the important cases to be addressed is appearance

of faulty flit at the input port of a router, where the following
situations might happen:
‚ Fault in the flit type: in this case, it is usually not possible

to identify the flit type and it (and also subsequent flits
belonging to the same packet) cannot be routed. If this is
not taken care of, eventually the input buffer (FIFO) of the
router will get full, which can, in turn, leads to network
congestion.

‚ Fault in the payload data: this type of fault does not have
any effect on the network performance. However, since the
packet data is corrupt, the fault will manifest itself in the
application layer.

‚ Fault in the destination address field: the routing module
might not be able to route the packet or the packet gets
forwarded to a wrong destination. This might also result in
network congestion if it is not properly taken care of.
One of the approaches to bypass the problem of having

faulty flits is to use error-correction techniques, such as
Hamming coding (single bit error correction, double bit error
detection) for all flits. By comparing the overhead of these



TABLE I
AREA AND FLIT SIZE OVERHEAD COMPARISON OF SINGLE BIT PARITY

AND HAMMING DECODER

Unit name Unit Overhead in
area (µm2) flit size (bits)

32-bit single bit parity checker 663 1
32-bit Hamming decoder 7050 8

Fig. 5. Finite State Machine (FSM) diagram for the packet dropping
mechanism

methods (shown in Table I) using AMS 0.18 µm CMOS
technology library [25], it becomes clear that those methods
impose additional area overhead to the correction circuit and
also increase the flit (due to the additional bits needed for
error correction). This, will affect the size of other network
parameters, such as the physical link width which, in turn,
also increases the size of the input buffer (FIFO) and crossbar
switch.

In order to handle the above-mentioned situations, a packet
dropping mechanism is incorporated in Bonfire framework.
However, while using wormhole switching, in some cases,
dropping the packet is not possible, for instance, when packet’s
header flit has already left the router. In such case, it is possible
to cut the packet from the current position and attach a fake
tail to it and forward it, while dropping the rest of the packet.
This will not affect the network’s operation. The results of
such measures would manifest themselves in the application
layer by comparing the packet length with the information in
the header flit or as corrupt data. In our router architecture,
the packet dropping mechanism is handled by a Finite State
Machine (FSM), as is shown in Fig. 5. Additionally, the
packet dropping mechanism has to generate fake credits for
the upstream router in order not to interrupt the flow of the
traffic.

In the Bonfire router, the packet dropping mechanism is
improved even further by adding the flit saving functionality
– a capability to detect position of the error in flits. In case the
error is in the payload part, the packet will still be transmitted
to its destination, thus making the application layer to handle
the data errors. This will avoid re-transmissions in non-critical
applications (for example many multimedia applications).

B. Routing Management

Once a link is classified as faulty, the router automatically
sends this information to upstream router to update its LBDR

connectivity bits (these bits can be over-written by SHMU
later). If the change in connectivity bits happens when a
packet is being processed, it might result in the packet being
divided or mis-routed. In order to avoid this problem, the new
connectivity bits should be stored in a register and routing
module should wait until a new header flit arrives. The same
approach is applied to routing bits of LBDR reconfiguration.
The reconfiguration command is issued by the processing
element at each node (once the reconfiguration message is
issued by SHMU).

Another important point is to take care of faults occurring in
the FIFOs which will be propagated to LBDR modules. In this
case, to prevent congestion and network failure, the routing
module (LBDR) should manipulate the FIFO modules in order
to drop the packet. This is performed with a secondary and
much simpler packet dropping mechanism, which generates
fake grant signal to the FIFO when a faulty header is detected
using a simple parity unit. Since LBDR is only sensitive to
the header flit when making routing decisions, there is no need
for support for cutting the packet and attaching fake tail. It is
assumed that the dropped packets would be handled at the
application layer.

VIII. FAULT INFORMATION PROPAGATION

The process of information transmission to the SHMU is
also crucial. This can be done either (1) via reusing the existing
network, or (2) by using an additional infrastructure working in
parallel with the main NoC. There have been many proposals
for fault information propagation to a global fault management
unit. Some of the proposals, such as iJTAG [21], [22], [26],
use scan chains. However, using an infrastructure like iJTAG
requires single (or very limited) number of access points which
limits the mapping possibilities for the SHMU on nodes since
SHMU must have direct access to iJTAG access point. In
addition, in approaches such as [21], [22], [26], the Instrument
Manager (IM), which works as the iJTAG network controller
and knows the structure of the instrumentation network, can
become a single point of failure.

Some of the previous works in the literature have taken
advantage of dual NoC architectures, such as [27]–[34]. In
[34], in addition to the main network, a checker network is
used (which is assumed to be 100% reliable) in order to deliver
data to its destination in case of a fault occurrence in the
main network. In [33], in parallel to the main NoC (which is
used for transmitting the data), an additional control network
is considered which is used for sending reconfiguration data
for updating the connectivity and routing bits of LBDR in
the network routers. The control network is used to inform
a global manager node regarding faults occurring in different
nodes. Despite the advantages these works might bring, they
all incur additional area and power overhead. Moreover, if
the area of the augmented circuitry for transmitting the fault
information is not negligible, it can increase the probability of
faults occurring in the additional network itself as well.

In this work, the classified fault information is propagated to
SHMU via the NoC itself. The information would be bypassed
to the Network Interface (NI). The NI will check the address
of the SHMU and will pass the info to the node if SHMU is
mapped on the same node (self diagnostic) or will generate
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Fig. 6. Overview of the architecture of baseline credit-based equipped with fault tolerance mechanisms

TABLE II
AREA AND AVERAGE PACKET AND FLIT DROP FOR DIFFERENT PACKET

DROPPING MECHANISMS.

Unit name Unit Area Average Average
area (µm2) overhead% packet drop flit drop

Original FIFO 14357 – – –
FIFO with packet dropping 16045 11.7% »1% 3.3%
FIFO with flit saving 16042 11.7% »1% 1.14%

and send packets through the network to SHMU as soon as it
finds idle time.

As mentioned in the previous section, after the local classi-
fication of the faults the information is sent to SHMU, which
updates the system health map and can also trigger global
re-configuration of the system in order to compensate for
the faults. The reconfiguration packets will be sent to each
node from SHMU and the node will send the reconfiguration
information through the NI to the router. However, if the main
NoC is used for transmission of the fault information and
reconfiguration packets, under the running routing algorithm,
the faults that should be reported, might also themselves
prevent the messages to be correctly transmitted to the SHMU.

IX. RESULTS

Table II shows the area overhead of solutions for FIFO
described in section VII (obtained using AMS 0.18 µm CMOS
technology library [25] and synthesized via Synopsys Design
Compiler [35]) along with the average flit and packet drop-
ping ratio with random single stuck-at-fault injection on the
network links with average rate of 5ˆ106 faults per second. As
it can be seen, when comparing the packet dropping approach
to flit saving, the average full packet drop rate is not changing.
This is due to the faults occurring in the header flit. However,
the amount of flit drops is reduced by half, since the flits with
the faulty payload will not be dropped in case of flit saving.

Table III shows the area overhead of the self updating LBDR
unit. Both the area overhead of the self updating LBDR over
the original LBDR (around 68%) and also its area overhead
with respect to the baseline router without any fault tolerant
mechanism (around 6%) are assessed.

TABLE III
AREA OVERHEAD RESULTS OF SELF-UPDATING LBDR OVER BASELINE

LBDR

Unit Unit Increase in Increase in
name area (µm2) LBDR size baseline router size

LBDR 1744 – –
Self updating LBDR 2940 68.5% 5.9%

By putting together all the mechanisms described in pre-
vious sections (fault detection, localization, classification and
local management as shown in Fig. 6), the router grows 60.7%
in area which is still lower than duplicate/triplicate-based
methods such as DMR and TMR, while it also provides fault
localization, management and system reconfiguration support
at the same time. Moreover, the instantaneous detection of
faults in the control part via the concurrent online checkers
and combining them facilitates inferring more abstract and
high level fault information (such as turn faults). Two main
reasons for using such abstraction of the information are:
(1) there is no advantage in transmitting very detailed fault
information to the SHMU, since in order to make high-level
decisions, SHMU has to abstract the information into turn
faults. (2) Additionally, it reduces the amount of information
to be transferred to SHMU through the NoC, thus, reducing
the network latency and power consumption.

X. CONCLUSION

In this paper, a ground-up approach from fault detection
to fault management for a Network-on-Chip based system is
proposed. Concurrent online checkers are utilized to detect
the faults in the control path and single parity check is
used for the data-path. Fault localization and abstraction (into
turn faults) are achieved by grouping information gathered
from the control part checkers. Moreover, methods of local
fault management at the hardware level using different packet
dropping mechanisms are introduced and compared. To reduce
the overhead of fault information propagation to application
layer and its additional processing load, local fault classifi-
cation mechanism is implemented which generates minimal,
classified fault information for propagation.



Additionally, the necessity of having a relocatable System
Health Monitoring Unit (SHMU) at the software layer is
elaborated. SHMU utilizes the NoC itself for transmitting
fault information after classification, thus avoiding a dual-
NoC architecture and results in lower area overhead. The
experimental results show the overall cost of applying such
mechanisms, having 60.7% area overhead, which still makes
it a better option than DMR/TMR-based approaches.
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Abstract—Handling faults in computing systems is often
expensive in terms of power, area and financial costs. In
domains requiring high reliability in harsh environments, like
the space domain, special highly reliable components are used,
which may adversely impact the processing performance.

In this paper, we propose the STROBES algorithm for
fault handling in a multi-node embedded system which can
be composed of standard commercial off-the-shelf components.
In particular, it does not require underlying synchronization,
but relies on embedded system’s properties to derive bounds
for communication and processing times. The algorithm can
handle asynchronous behavior between the nodes up to user-
defined bounds, in addition to a fault in the state or fail-stop
failure of a single node. Theoretical analysis shows that this
is sufficient for extended operating times. Experimental data
show the efficient behavior of the STROBES algorithm for
practical application with different state and time bounds.

Keywords-software level TMR; space applications; single
event upsets; fault handling

I. INTRODUCTION

Reliable computer systems in space need the ability
to handle Single Event Effects (SEEs), particularly Single
Event Upsets (SEUs) caused by radiation. The usual ap-
proach for testing such components includes up-screening
and subjecting them to a simulated radiation environment
while observing the effects [1]. For increased fault-tolerance,
redundancy can be applied on hardware, software, time,
and information[2]. Usually specially-built hardware, along
with highly reliable (hi-rel) components is used in space
applications to mitigate SEUs (e.g., by redundancy at lower
levels [3]), while standard commercial off-the-shelf (COTS)
components do not have such protections built in. However,
the hi-rel components result in an increase in cost and
they severely limit the speed and integration density of the
components when compared to terrestrial applications [4].
In order to reduce recurrent development costs, the design
could be made modular and scalable while being able to
adopt varying dependability requirements [5]. However this
does not solve all the problems hi-rel components introduce.
This drives the use of commercial off-the-shelf (COTS)
components in space applications.

In [6], a software-based Triple Modular Redundancy
(TMR) approach for critical tasks is proposed for targeting
multi-core Network-on-Chip (NoC) environments. However,
fault-isolation and recovery are expected from the system it
is run on. A repeated failure in a single core will result in
the core being removed from the system. Additionally, [7]
proposes a software redundancy based passive and active

task replication for NoC based multi-core platforms. In the
approach a duplicated version of critical tasks are either
executed along with the original tasks or will be invoked
in case of a failure in the processing element executing the
original task. A repairing algorithm by remapping of faulty
processing element’s task on spare processing elements in
a NoC-based System-on-Chip was proposed in [8] and [9].
However, those approaches assume running on a specific
hardware. Additionally, they do not do not provide a real-
time protection for application tasks. However, SHiFA [10]
proposes dynamic mapping of applications to healthy pro-
cessing elements in multi-core systems, but this is done only
for small computational kernels which are dispatched and
terminated. This approach is similar to the one in [11] which
also considers anti-aging as an additional parameter during
task distribution. All of the works listed above consider
multi-core chips where losing a single core causes a system-
wide failure.

The STROBES algorithm, proposed in this paper, is
intended for reducing cost of space applications by allowing
implementation of fault-tolerant systems using standard, un-
modified, COTS components. However, since the proposed
algorithm does not rely on special hardware, it is generic
enough to also be used in other domains as well. Similar to
the theoretical framework of [12], we make no assumption
of underlying synchronization mechanisms, but only rely on
worst-case execution and communication times, making our
implementation more efficient.

The main highlights of the STROBES algorithm intro-
duced in this paper are: 1) software-level mitigation of
hardware faults in a multi-node embedded system; 2) low-
cost fault detection using Cyclic Redundancy Checks (CRC)
(i.e. no need for forward error correction); 3) it relies
on un-modified COTS components; 4) detailed algorithmic
description of the approach for fault mitigation is presented.

The paper is structured as follows: Section II introduces
the system and fault model in more detail. Section III
provides details about the STROBES algorithm. Section IV
presents a theoretical analysis of STROBES’ SEU handling
capabilities. Section V provides empirical data on a simula-
tion model and finally, Section VI concludes the paper.

II. SYSTEM ASSUMPTIONS AND FAULT MODEL

A. Processing System
The main assumption for using the STROBES method is

that the application state (memory used by the application)
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on each node can be isolated. Applications which can be
protected by STROBES need to include synchronization bar-
riers for safe interruption for fault detection and correction,
during which a checkpoint (CP) of the application state is
taken and compared between the nodes (see Section III).

An additional assumption is that the processing elements
are identical and connected to each other using a fully
connected mesh network with broadcast support. However,
the network does not need to guarantee deterministic arrival
times for data.

B. Fault Model

In order to model various defects in the system, we have
defined three fault classes, which our method has been
designed to mitigate. The faults considered are the following:

1) S = S1, . . . , Sn – Corruption of the application state:
Fault Si denotes that the application state of node Pi

is corrupted. This can happen either due to radiation,
faults in memory modules.

2) J = J1, . . . , Jn – Execution delays: Fault Ji in node
Pi means that at a time T the execution status of node
Pi is different when compared to other nodes.

3) N = N1, . . . , Nn – Node stops processing: Fault Ni

denotes that node Pi is silent. This might be caused by
the node Pi stopping sending out data or by a network
problem. In a system with an active fault with type Ni

only n − 1 (where n is total number of nodes in the
system) nodes can communicate with each other.

We denote the universe of all possible faults in the
processing system as U = S ∪N ∪ J .

Corruption of the checkpoint manifests as a Type-S fault.
This fault can happen for different reasons (e.g. bit-flip in
the application memory due to radiation, the application
misbehaving and generating faults). However, the source
of the fault is not important for fault handling using the
STROBES algorithm.

Typical execution delays include shifting of start-up times
of nodes, clock drift during operation, different application
run times on nodes due to different loads, etc.

Since the STROBES algorithm has a special mode for
initial synchronization (as shown in Section III), during
initial startup of the system, there is no limit to the extent of
execution delays J it can tolerate. However it cannot handle
a stopped node Ni during this phase.

During runtime the STROBES algorithm can tolerate a
single state corruption Si or stopped node Ni at a time
combined with any amount of execution delays J as long as
the delay stays in the boundaries defined by timeouts in the
algorithm (Section III). The timeouts are used for tolerating
smaller variations in program execution and communication
time caused by runtime differences happening during normal
runtime, like the ones caused by network delays, different
cache behaviors of the processors etc.

The two fault domains S∪N and J typically, in practice,
have independent root causes. Type-J faults are present

in any distributed system as components are never totally
homogeneous. Type-S faults model SEUs and Type-N faults
model more severe failures.

III. STROBES ALGORITHM FOR FAULT HANDLING

The proposed software-level TMR approach for fault
handling in on-board data processing in space applications
(STROBES) can be summarized by the finite state machine
visualized in Figure 1. It is designed for simplicity and
makes use of a set of assumptions about the system and its
behavior discussed earlier. Notably, different from the asyn-
chronous approaches for fault handling [13], [14], timing-
assumptions are made throughout the implementation.

Figure 1. State diagram of the STROBES algorithm. Each node runs an
instance of this algorithm

Each processing node P1, . . . , Pn runs an instance of the
STROBES algorithm. The system can handle fault types as
described in the previous section. In this paper, we focus on
the case study of TMR (i.e. n = 3), targeting data-processing
system with three nodes. A larger number of simultaneous
faults could be handled with more processing nodes (n > 3).

The STROBES algorithm works in cycles. The main steps
of each cycle are as follows:

Algorithm 1 Initial synchronization
1: typedef nodecrc = (cycle, crc)
2: crcMap = map(node id, nodecrc)
3: while True do
4: broadcast CRC
5: while !CRC timeout do
6: if !buffer.empty() then
7: (type,cycle,node id,data)=buffer.pop()
8: if type == crc then
9: crcMap[node id]= (cycle, data)

10: else if crcMap.size() == n then
11: broadcast CRC
12: next state= Run Application
13: return

First, an initial synchronization (Startup Sync.) is per-
formed using Algorithm 1. This step is for mitigating
synchronization issues when nodes are being initialized at
slightly different times. Loosely, the broadcasts its dummy
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CRC e.g., all zeros (line 4) and then waits for dummy CRCs
from 2 other nodes (while loop at line 5). The content of
these is ignored as they are used only for synchronization.
If all three CRCs have been received (line 10), it will send
out an additional dummy CRC. This is needed for the node
which was initialized the latest, since otherwise it does not
receive any CRCs from other nodes. Afterwards, the system
is ready for actual data processing.

Run Application in Figure 1 indicates parallel independent
data processing by all nodes. The duration of this step is
task specific. The running application is paused when it
hits a breakpoint to calculate a checksum for the current
checkpoint (CP) of the application’s memory (Calculate
CRC). The areas of the application’s memory covered by the
CP are application specific and not defined by the STROBES
algorithm. The CP includes the application’s state, and
optionally executable code and other constant data. Any
checkpoint corruption is assumed to result in an erroneous
checksum. The types of checkpoint corruption which can
be detected depends on the type of checksum used, which
must be appropriate for the expected checkpoint corruption
suffered by the system. We use a CRC code.

The CRC code is sent to all other processing nodes and the
other node’s checksums are received (CRC Communication).
Once all checksums have been received or a timeout is met,
voting on the checksums is performed seperatly in every
node to identify failures (Vote). If no failure is detected,
the application resumes (Run application). Otherwise, the
faulty node receives the correct checkpoint (Receive CP).
One non-faulty node sends the checkpoint (Send CP) and the
other non-faulty node(s) wait for the checkpoint transfer to
finish by going into CRC Communication state and waiting
for CRCs from other nodes. Once the CP transmission is
completed, also the sender and the receiver will go into CRC
Communication state. This allows re-synchronization with
the waiting node(s).

Algorithm 2 CRC communication
1: broadcast CRC
2: while (crcMap.size() < n and !CRC timeout) do
3: while !buffer.empty() do
4: (type, cycle, node id, data) = buffer.pop()
5: if type == crc then
6: crcMap[node id]= (cycle, data)
7: next state= Vote
8: return

Algorithm 2 details CRC Communication state. After
broadcasting the CRC, the algorithm reads the receiving
buffer (line 4) and stores any received CRC (line 6) until the
receiving buffer is empty (line 3). This process continues
until CRCs from all n nodes have been received or the
timeout is reached (line 2). Afterwards, the STROBES
algorithm proceeds to Vote state.

The details for Vote state under a single fault assumption
are shown in Algorithm 3. Note, that under a single fault
assumption at most one node which has an erroneous cycle

Algorithm 3 Voting at the processing node
1: if crcMap.size() == 0 then
2: next state= CRC Communication; return
3: cycle maj = vote cycle number(crcMap)
4: if all cycle numbers are equal then
5: next state= CRC Communication; return
6: if current node cycle != cycle maj then
7: next state= Recv. checkpoint; return
8: crc maj = vote crc(crcMap)
9: if all CRCs are different then

10: next state= CRC Communication; return
11: if all CRCs equal and crcMap.size() == n then
12: next state= Run application; return
13: if current node crc != crc maj then
14: next state= Recv. checkpoint; return
15: min addr = minimal address in correct nodes
16: if current node’s address == min addr then
17: next state= Send checkpoint
18: else
19: next state= CRC Communication
20: return

number due to a synchronization failure or a faulty CRC
checksum may enter the voting state. Algorithm 3 starts
with voting on the current cycle number. A node with an
erroneous cycle number will receive the correct application
checkpoint (line 7). Next, checksums are considered. If all
checksums are different, then the algorithm proceeds to
the CRC Communication step (line 10). If all checksums
are the same, the application is resumed (line 12) – note,
that we assume that a node with faulty cycle ID will have
a faulty CRC, too. Next, majority voting determines the
correct checksum. A faulty node will wait for receiving
the correct application checkpoint (line 14); one node with
correct checksum will send the application checkpoint (line
17) and all other nodes with correct checksum will wait for
this update to finish (line 19).

Algorithm 4 Receiving the correct checkpoint
1: CP = Pointer to application’s checkpoint memory
2: while !buffer.empty() and !CP recv timeout do
3: (type, cycle, data) = buffer.pop()
4: if type == checkpoint then
5: if cycle >= cycle maj then � as determined in Algorithm 3
6: *CP = data
7: next state= CRC Communication
8: return
9: next state= CRC communication

10: return

Finally, Algorithm 4 shows how the erroneous checkpoint
is updated. The buffer for receiving data over the network is
read until the correct checkpoint has been received timeout
is met. Using a timeout is important if the time shift was
too large for the faulty node to still receive the checkpoint
from a correct node.

If one node permanently stops processing, i.e., it suffers a
fault of Type-N , the processing performance of the overall
system degrades. All nodes will always wait first for the
timeout to receive checksums and then wait for the timeout
for the checkpoint transfer. However, overall correct opera-
tion will continue until at least two nodes are functional.
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Figure 2. Fault handling of the STROBES algorithm

Figure 2 shows the behavior of the STROBES algorithm
in presence of faults. The figure shows fixing of two types of
faults: “Fault 1” in the figure represents an execution delay,
where the application on Node 1 runs slightly longer when
compared to other nodes (Type-J fault). This fault is handled
by other nodes by waiting until they receive the CRC from
Node 1. The green dashed line in the figure represents the
time when the system is re-synchronized. “Fault 2” in the
figure represents a faulty checkpoint for Node 2. During
the voting phase each node independently understands, by
the process of majority voting, that Node 2 is faulty. The
fault is fixed by Node 0 (since it has the lowest address)
sending its checkpoint to Node 2. Afterwards the system is
re-synchronized by the nodes waiting for each other’s CRCs.

The algorithm guarantees successful synchronization of
the system under the proposed fault model if the chosen
time-out value CRC timeout is at least twice less than
the time needed for the transmission of the checkpoint
ttransfCP , and the CRC timeout is larger than the maxi-
mum variation of Run App phases between different nodes
ΔtRunApp, taking also into account the worst case communi-
cation delays between the nodes MAX(tcomm), as illustrated
by Equation 1:
ttransfCP /2 > CRCtimeout > ΔtRunApp +MAX(tcomm) (1)

IV. SEU CORRECTION CAPABILITY

This section provides theoretical information on the
STROBES algorithm’s capability of handling bit flips in
the application state, caused by a transient fault (e.g. an
SEU). Since the STROBES algorithm is designed to protect
mostly against SEUs in the application memory storing the
checkpoint, the model introduced in this section does not
include faults in other parts of the system.

A. Detection and Recovery Performance Prediction
This subsection compares two simple systems: a single-

node system without any fault-tolerance measures, and the
STROBES algorithm described in Section III running on
three identical nodes. See Table I for the used symbols and
parameters.

1) Single Node: For the single-node system the expected
number of SEUs (λSEU ) during process execution time can
be calculated using Equation 2

λSEU = BER · ss · tp (2)

The bit error rate (BER) in Equation 2 is a value specific
to the sensitivity of the memory component and ion spectrum
of the environment the system operates in.

Table I: Symbol Definitions
Symbol Explanation Symbol Explanation
BER Bit error rate tp Process execution time, in seconds
BW Bandwidth between two nodes, in bit/s tpc Time for processing and checking
rc CRC calculation rate, in bit/s tt Duration of the checkpoint transfer
ss Checkpoint size in bits λSEU Average SEU count during tp
so Size of communication overhead, in bits λpc Average SEU count during tpc
c Reduction factor of the CRC λt Average SEU count during tt
o Overhead factor for transfer Pλ(k) Poisson distribution, λk

k! e
−λ

2) System Using STROBES: For a STROBES system,
additional steps are necessary in order to model the SEU
rate. Also, conditional execution of checkpoint transfer leads
to a more complex model, such as shown in Equation 3:

λpc = BER · ss ·
(
tp +

ss
rc

+
ss · c+ so

BW

)
(3)

The first terms (BER and ss) of Equations 2 and 3 are
identical. However, the time required to complete a cycle is
different. This is due to the fact that the STROBES approach
has some additional timing overhead due to the need for
calculation and transfer of the CRC (it is assumed that all
nodes exchange their CRCs in parallel).

The case in which a mismatch is detected while compar-
ing the CRCs, and the checkpoint needs to be transfered
from a correct node to the faulty node is modeled by
Equation 4.

λt = BER · ss ·
(
(1 + o)ss + so

BW

)
(4)

Duration of the CP transfer period (right term in Equation
4) is determined by the time it takes to transfer the data
from the correct node to the faulty node. Error rates for
both phases contain a term which is proportional to ss

2.
For parameters chosen similar to those in example shown in
Subsection IV-B, size of the checkpoint influences the error
rate the most, for any given BER.

px,ok = Po(λx) (5)
px,err = 1− Po(λx) (6)

psys,ok = ppc,ok
3 + 3 · (ppc,ok2 · ppc,err) · pt,ok3 (7)

The probability of the system completing one cycle of
the STROBES algorithm (Equation 7) is the cumulative
probability that all three nodes are error-free (ppc,ok3 )
and the three possible cases in which one error occurs
(3·(ppc,ok2 ·ppc,err) ) and is followed by an error-free transfer
phase (pt,ok3).

B. Example
The example below illustrates the STROBES’ SEU han-

dling capability in regard to CP size. It represents a small
embedded system consisting of processing nodes connected
together with in a full-mesh network with the following
performance parameters: tp = 200ms, ss = 0.5 − 256MiB,
BW = 39Mb/s, BER = 10−7, rc = 80Mb/s .

Figure 3a shows the expected Mean Time To Failure
(MTTF) dependence on the checkpoint size for a STROBES
system and a single, unprotected node with the same param-
eters. To illustrate the limits of the approach, only larger
checkpoint sizes are shown in the figure. For a system with
size of 0.5 MiB an increase in MTTF of over 118 · 103 can
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Figure 3. a) MTTF over CP size; b) MCTF over CP Size

be seen, where as for 128 MiB it is only about three times.
Additionally, as size of the CP grows, there is also a higher
chance of an SEU happening.

As the CP size increases, the system spends more time
calculating the CRCs, and additionally, it takes also more
time to transmit the checkpoint in case of a fault. With
an assumption of only single SEU during a cycle, MTTF
can be normalized to an average length of the cycle, which
introduces another metric that fits better for STROBES –
Mean Cycles To Failure (MCTF). The dependence of MCTF
on MTTF can be seen in Figure 3b.

V. EXPERIMENTAL RESULTS

A. Simulation Tool

For testing the feasibility of the STROBES algorithm, its
behavior was simulated using a custom high-level event-
based simulation tool. The simulator runs an implementation
of the proposed method concurrently on three simulated
nodes. In order to profile the algorithm in an application-
independent setting, the application is replaced by a time
delay, combined with a fault status information of its mem-
ory state. Due to the abstract nature, simulation measures
time in discrete Time Units (TU).

The tool simulates the nodes running the STROBES
algorithm in a fully connected mesh network with buffered
interfaces and broadcast support. The network is not simu-
lated down to protocol level, however a network delay and
maximum bandwidth is taken into account while transferring
data, calculation of which is based on Equation 8 using
values provided in Subsection IV-B.

Tt =
ss + so
BW

(8)

B. Results

To evaluate the fault handling efficiency of the STROBES
algorithm, it was simulated under different fault conditions
for different CRC timeout values and the worst case fault
recovery time was recorded.

In total, four types of experiments were performed: 1) one
or two nodes being late during initial synchronization; 2) one
or two nodes being late during normal runtime (differences
caused by network delays, different CPU load on nodes,
etc.); 3) one or two nodes being late during runtime, with an
additional faulty checkpoint in one of the nodes. Moreover,
separate experiments were run for the late nodes and for

the synchronized nodes having the faulty checkpoint; 4) re-
synchronization of a node previously silent node (Type-N
fault).

Below are the results of fault recovery experiments which
were run. Each set of the experiments (except the re-
integration of the previously silent node) were run for both
one and two late nodes:

a) Profiling of initial synchronization – The effects of
execution delays (Type-J fault) caused by different booting
times of nodes.

b) Run-time synchronization – Effects of execution delays
(Type-J fault) caused by the characteristics of the distributed
nature of the STROBES algorithm (network delays, uneven
processor load on nodes, etc.).

c) Run-time execution delays with a faulty checkpoint – In
addition to execution delays, the CP of one node is faulty
(Type-J AND Type-S). The experiment was repeated for
both the faults being in a late node or in a node which was
synchronized with another node at the point of the CP fault
happening.

d) Re-integration of a previously silent node – Initially
one of the nodes is silent (Type-N fault). After some
delay, the node comes back “alive” (e.g. node is rebooted
by a watchdog). However, there is still a Type-J fault,
together with Type-S fault since the node will be multiple
cycles late. Additionally, two of the nodes will be running
normally, while the formerly silent node will be in initial
synchronization mode. The experiment measures the time
required for the silent node to become synchronized into
the system from the point it resumed communication with
the rest of the nodes.

All experiments on runtime execution delays were run for
both cases where one node was late (e.g. J0 AND !J1 AND
!J2) and cases where two nodes were late (e.g. J0 AND J1
AND !J2). The second case covers also the situation where
all nodes are out of synchronization (most realistic case).

Each experiment consists of a range of sub-experiments
(in the order of thousands). During the experiments, a range
of CRC timeout values (according to Equation 1) were tested
with full range of possible execution delay values (that is,
only cases where the inaccuracies were smaller than the
CRC timeout). The worst case result of all sub-experiments
was recorded as the final result of the an experiment.

All experiments were repeated for different parameter
sets (representing different system configurations) as shown
in Table II. The parameter sets were chosen so that there
would be both, a smaller and a larger value, represented for
application runtime and for maximum CP size. Additionally,
it was intended that both cases, where CP transmission
time is longer than application runtime, and also, where
it is shorter, would be represented. Maximum value of CP
size was selected to be 10 MiB, since according to results
presented in Section IV, this value is near the upper end,
where the STROBES algorithm still behaves better in terms
of tolerance against SEUs, than the single-node algorithm.
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Figure 4. Fault handling of STROBES algorithm for different fault classes.

Figure 4 shows the worst case synchronization time for
different fault scenarios across multiple experiment sets.
Since initial synchronization does not depend on the pro-
tected application, it stays constant over all experiment
sets. Additionally, according to Figure 4, the differences in
worst case synchronization times in presence of a faulty CP
together with run-time execution delays do not depend on
the number of late nodes.

However, there seems to be a difference in worst case
synchronization in time based on the faulty node and the CP
size – in case of smaller (1 MiB) CP there is a noticeable
difference if the fault is in the late node or not (in case the
fault is in the late node, the system fixes the fault much
faster). However, there is not much difference in case of
larger, 10 MiB checkpoint size.

The worst case synchronization time for re-integration
of a silent node is generally faster for smaller application
runtimes and CP sizes. On average it is equal to, or even
smaller than the time required to fix execution delays in
presence of a faulty checkpoint. This is due to the fact that
such a node is, according to the simulation model, behind the
rest of the nodes by multiple application cycles and thus out
of synchronization with other nodes and has a checkpoint
which is different than the nodes.

The peak in the worst case time of re-integration of a silent
node in case of application runtime of 10 TU and CP size
of 10 MiB can be explained by the the fact that there exists
a set of parameters (value of CRC timeout), where it takes
for a silent node multiple synchronization tries to succeed.
Since the maximum CRC waiting delay is adjustable in a
relatively large range according to Equation 1, it is possible
to find a more optimal set of parameters by proper modeling
and simulation of the behavior of the STROBES algorithm
before deployment.

VI. CONCLUSION

We proposed a software-level approach for handling syn-
chronization problems together with a corrupted state or
even full failure of one processing node. The proposed
STROBES approach puts no further requirements on the
processing hardware besides being able to derive upper
bounds for communication times and processing times,
which is standard for such systems. A large application
state is efficiently handled by resorting to error detection
instead of forward error correction. Theoretical analysis and
empirical results show the capabilities of our algorithm for
fault handling.

Table II: Experiment Sets
Notation Application CP size (in MiB) CP transfer

runtime (in TU) time (in TU)
r100 s10m 100 10 65
r100 s1m 100 1 7
r10 s10m 10 10 65
r10 s1m 10 1 7

While most of our discussions referred to triplication, the
algorithm itself is not restricted. In future work we will study
how to extend the scope to more processing nodes to handle
more than a single state corruption or fail stop of a node.
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