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1 INTRODUCTION
1.1 Background and Motivation
Microfluidics represents an advanced scientific discipline, focusing on manipulatingminute fluid volumes within microfluidic chips. These chips, capable of handling volumesranging from nanoliters to femtoliters, hold potential across various scientific disciplines[1]. Unique fluid characteristics, such as a high surface-to-volume ratio and the prevalenceof viscous forces over inertial forces, are inherent in this scale. These, in turn, enable pre-cise fluid manipulation, fast mass and heat transfer processes, integration of multiplefunctions within a single chip, and advances towards portable lab-on-chip platforms [2].Droplet microfluidics, a specialized subset of microfluidics, focuses on the generationand manipulation of sub-micrometer-sized droplets using immiscible fluids. The two im-miscible fluids, namely the dispersed phase and the continuous phase, are introducedinto the chip via passive hydrodynamic pressure or active external actuation. These flu-ids flow through microchannels within the chip and converge at junctions where dropletformation occurs, driven by the interplay of surface tension and viscous drag forces.Microdroplets are produced for diverse applications in biotechnology and pharma-ceuticals [3]. In biological applications, a common configuration involves using oil as thecontinuous-phase fluid and water as the dispersed phase, resulting in the formation ofsingle emulsion droplets. These droplets, along with more intricate structures like dou-ble emulsions, serve various purposes, including single-cell analysis and controlled drugdelivery [4].The use of droplets as self-contained micro-reactors allows for control over reactionconditions and reduces problems, such as biofilm formation. Additionally, their volumeranges enable the isolation of single cells within droplets, providing a unique capabilityfor studying population heterogeneity and observing cellular responses with exceptionalprecision. Moreover, their high surface area-to-volume ratios ensure fast and even heattransfer, which is advantageous for processes such as polymerase chain reaction (PCR)[5, 6].Despite alternative approaches like digital microfluidics for control over individualdroplets on a two-dimensional surface [7, 8], traditional droplet microfluidics remain atthe forefront. Its emphasis on high throughput, uniformity, and reliability, and dropletmanipulations underscores its potential, especially in high-throughput screening (HTS)applications.
1.2 Challenges in Droplet Microfluidics
Advancing droplet microfluidics requires overcoming challenges in controlling dropletcharacteristics, as highlighted in reference [8]. The size of droplets, whether in volume ordiameter, is crucial for various processes. Deviations in droplet size can lead to increasederror rates during manipulation, potentially compromising overall performance.In food production, maintaining uniform droplet size is preferred to reduce emulsi-fier usage and lipid oxidation, impacting food texture and shelf-life [9]. Similarly, in drugdevelopment, droplet size influences medication effectiveness, as demonstrated in stud-ies involving encapsulated cancer medication [10]. Furthermore, the uniformity in mi-crospheres produced through droplet microfluidics affects drug release kinetics [11]. Inenzymatic reactions, droplet size influences enzymatic activity, with smaller droplets ex-hibiting decreased activity due to higher adsorption and enzyme inactivation [12]. Addi-tionally, droplet size impacts various fluid dynamics phenomena such as mixing dynamics,flow resistance, breakup, coalescence, and collective behavior [13].
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In summary, droplet size plays a critical role in determining the concentration, vol-ume, and composition of substances encapsulated within microscale entities, therebyimpacting various applications. Therefore, generating uniform droplets with user-definedor application-specified sizes is imperative. Droplet uniformity is typically assessed us-ing the coefficient of variation (CV), where a CV exceeding 5% indicates polydispersity[14, 15, 16, 17]. Ideally, maintaining a low CV, approaching a theoretical 0%, is desired.
However,consistently generating droplets of the required size remains challenging dueto complex dynamics and a lack of predictive understanding [18]. Fabrication defects, dis-turbances, and pressure oscillations further complicate the process [19, 20], especiallywhen these systems operate at high throughput or for extended periods. Though variousparameters, such as channel dimensions, fluid properties, and flow rates or pressures,influence droplet size [13, 21, 22, 23, 24], the exact mechanism governing droplet size re-mains incompletely understood.
To tackle this challenge, researchers investigate mathematical-empirical models to es-tablish relationships between flow properties and droplet sizes. Studies on T-junction ge-ometries, for instance, reveal linear relationships at low capillary numbers (Ca ≤ 0.1) butnonlinear variations at higher capillary numbers (0.1 ≤ Ca ≤ 1) [25]. Similarly, in flow-focusing microchannels, nonlinear relationships across low and high capillary numbershave been demonstrated [26]. Despite progress, empirical models have limitations, in-cluding challenges in generalizing across different conditions and fluid properties [27].Recent advancements in machine learning offer promise in addressing these limitations[28, 29, 30, 31, 32, 33].
Additionally, research focuses on developing tunable droplet sizes to expand theachievable range within a single platform. Studies explore various techniques, includingco-flow microfluidic devices [34], single-layer valve designs [35], piezoelectric actuators[36], and multi-device microfluidic chips [37]. However, reliance on specialized chips in-troduces challenges such as complexity and scalability limitations [38]. To address this,efforts are underway to standardize chip designs and utilize basic laboratory tools tomake scientific exploration more accessible. This has led to research integrating controlmethods with microfluidics and for droplet control, as depicted in Figure 1.

Figure 1: Trend of studies on microfluidics integration of control methods
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Closed-loop feedback systems emerge as superior solutions for achieving and main-taining the desired droplet size and uniformity. The prevalent closed-loop method typi-cally integrates a Proportional-Integral-Derivative (PID) controller [39, 40]. While closed-loop systems offer promising solutions, challenges remain, including limited evaluationof droplet size ranges, controller-tuning inefficiencies, and complexity of classical closed-loop control methods. Therefore, this thesis aims to address these challenges by propos-ing innovative solutions to enhance the adaptability, efficiency, and reliability of closed-loop feedback systems in microfluidic applications.
1.3 Problem Statement and Research Questions
Despite significant progress, there are still research gaps in droplet size control. One suchgap is the limited evaluation of droplet size ranges in closed-loop feedback systems, whichlimits their flexibility. This raises questions about how to effectively assess and optimizethe range of droplet sizes that can beproduced and controlled. Another gap lies in the inef-ficiencies of traditional tuning methods for closed-loop controllers, like PID controllers, inmicrofluidics. This prompts questions about improving tuning methods to enhance per-formance and robustness. Moreover, the modeling complexity of classical closed-loopcontrol in microfluidics poses a significant challenge. This underscores the need to reducereliance on explicit complex models via alternatives.Hypotheses include exploring advanced computational techniques to predict the ef-fects of different control parameters on droplet size distribution and investigating strate-gies to achieve broader tunability. Alternative tuning algorithms, like genetic algorithms,may optimize controller parameters more effectively, improving system dynamics andperformance metrics. Additionally, leveraging advanced control techniques like deep re-inforcement learning could autonomously regulate droplet size without explicit models.Insights from system identification approaches could develop more accurate and robustcontrol algorithms, addressing these research gaps.To tackle these challenges, this research integrates flow modeling with controller de-sign simulations. It also explores experimental implementations of proposed solutions.As such, the following research questions were developed:

• RQ1: How can a simulated system effectively evaluate the complete parameterspace and improve precision in droplet generation within microfluidic systems?
• RQ2: Can an optimal control solution developed for a simulated environment ofa flow-focusing junction be successfully implemented in an experimental dropletgeneration setup?
• RQ3: Ismodel-free control of droplet generation achievable throughmachine learn-ing techniques?
• RQ4: Which set of machine learning tools can facilitate robust, adaptable, and sta-ble control of droplet generation in microfluidic systems?

Addressing these research questions aims to improve droplet size control.
1.4 Contribution of the Thesis
This thesis contributes to the field in relation to the RQs in the following ways:
Contribution 1 (addressing RQ1): A simulation for controlling microdroplet generation inmicrofluidic devices is presented. The simulation methodology utilizing
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Computational Fluid Dynamics (CFD), and its integration with controllerdesign for closed-loop control is implemented. The controller’s effective-ness in regulating droplet size is demonstrated, along with an evaluationof the parameter space for droplet control.
Contribution 2 (as a support to address RQ1): Additionally, the thesis proposes the useof genetic algorithm optimization for controller tuning in the simulatedmicrofluidic environment. This approach showcases significant improve-ments in process response metrics compared to traditional tuning meth-ods.
Contribution 3 (addressing RQ2): A dynamic dual feedback control microfluidic systemfor droplet generation is implemented in an experimental setting. It lever-aged on insights from RQ1. Controller parameters are primarily informedby the simulation’s insights transferred to physical system control. Thisdemonstrates successful transferability from the simulation to the exper-imental setup, albeit with the need for minor adjustments. The outcomeis a prototype capable of rapid pressure stabilization and uniform dropletgeneration.
Contribution 4 (as a support to address RQ2): Building upon the RQ1 simulation, an em-pirical model for droplet generation is developed. Through simulations,an effective adjustment from 2D to 3D structure is proposed to enhanceagreement with experimental outcomes.
Contribution 5 (address RQ3 and RQ4): Deep Reinforcement Learning (DRL) with a com-putational fluid dynamics (CFD) droplet generator model integration isproposed and implemented. This approach achieves precise droplet sizecontrol with minimal variability through model-free (RQ3) and adaptivecontrol (RQ4). Verification of the numerical model against published ex-perimental data demonstrates a good agreement. Additionally, the sys-tem’s robustness to external disturbances, such asmechanical vibrations,is evaluated, demonstrating its adaptiveness in effectively handling suchchallenges within defined limits.

Table 1 provides a summary of the state-of-the-art, incorporating publications thatform the basis of this thesis. Table 2 offers a concise overview, mapping the contributionsand research questions to associated research papers listed in Appendices A-C***.
Table 1: State-of-the-art for closed-loop microfluidic droplet size control.

Paper Con-
troller

Con-
troller
tuning
method

Open
loop CV%
or R2 or
RMSE

Closed-
loop CV%
or R2 or
errror

Response
time (s)

Droplet
size
range

SIM. or
Exp.

Year

Classical Control methods
[41] PID trial anderrormethod

10 - 20.1 <7.6 ∼0.3 0.25 -1.4nL Exp. 2023
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[42] PI - 5 2 <0.2 100-700
µm (6points)

Exp. Feb,2022
[43] PID Ziegler-Nichol’smethod

- <5% 7-10 150, 200,250 µm Exp. 2013

[44] PI Ziegler-Nichol’smethod
- R2=0.98 <10 14-24 µm Exp. 2020

[45] PID - (RSME=3.4 ErrorRSME=0.48
- 100, 140,160 µm Exp. 2021

[39] PID trial anderrormethod
3.78 0.32 0.05 550 pL Exp. 2017

Publication I PI trial anderrormethod
<15% <2%(R2=0.993)

- 30-60
µm (6pointstested)

SIM.(COMSOLandMATLAB)

Apr,2022

Publication
II

PID Geneticalgorithm - Error ITAE=0.2367 0.088 50 to 350
µm SIM(SimulinkandMATLAB

Oct,2022

Publication
III

DualPIDs Geneticalgorithm+ adjust-ment

- 5-10%, 10 50-200
µm Exp. Sept,2023

Machine Learning methods
Papers Con-

troller
Agent
action
space

Perfor-
mance
evalua-
tion

CV % Time to
reach
peak per-
formance

Droplet
size
range

SIM. or
Exp.

year

[46] DQN,MFEC Discreteaction Time toreachpeakperfor-mance,algorithmvs humanperfor-mance

sur-passedhuman-levelperfor-manceDQN =
∼27 hrsMFEC =withinminutes

54 µm Exp. 2018

Publication
V

PPO Continu-ousaction
Dropletsizevariationin open-loop vsclosed-loopcontrol

openloop =6-8% Vsclosed-loop PPO= 2-5%

50-80
µm SIM.(Open-FOAM_Py-Torch)

2023

Exp.SIM Experiment Simulation 
Environment

16
RMSEITAE Root Mean Squared Error 

Integral Time Average Error



Table 2: Summary of Contributions in Relation to Research Papers

RQ Contributions Publication 1 Publication 2 Publication 3 Publication 4 Publication 5RQ1 1,2 ✓ ✓RQ2 3,4 ✓ ✓RQ3 5 ✓RQ4 5 ✓

The above-mentioned contributions are related to research papers (listed previouslyand available in full in appendices A-E.
1.5 Organization of the Thesis
This PhD thesis is structured into five chapters;

1. Introduction: The introductory chapter provides an overview of the background,motivation, and current research trends in droplet size control within microfluidicdevices.
2. Chapter 2: delves into closed-loop simulations to enhance droplet generationprecision, addressing challenges in control system parameter evaluation and PIDcontroller optimization. It follows a chronological discussion of literature review,methodologies, results, and conclusions.
3. Chapter 3: Bridging simulations with practical applications, this chapter exploresdual-PID control strategies and genetic algorithm-tuned controllers in experimentalsetups. Furthermore, it explores how simulations contribute to the formation ofempirical models.
4. Chapter 4: Introducing the Proximal Policy Optimization (PPO) algorithm, this chap-ter evaluates its effectiveness for precise droplet size control, including its resilienceto external disturbances and numerical model validation against experimental data.It discusses the state-of-art, methodology, results, and conclusions.
5. The final chapter serves as the conclusion, summarizing the findings presented inthe thesis and future research direction.
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2 SIMULATION OF CLOSED LOOP DROPLET SIZE CONTROL
This study proposes using a simulated closed-loop feedback control in microfluidics. Thesimulation create virtual replicas of real systems. They provide a risk-free environment forexperimenting with new control functionalities and parameter optimization, saving bothtime and cost. This approach is especially useful when iterative experiments in real-lifesettings are expensive and time-consuming.The study introduces simulated environment integrating microfluidic devices withPID and PI controllers to tackle specific challenges. Publication I focuses on evaluatingthe complete parameter space of controllers, while Publication II focuses on optimizingcontroller performance through an alternative tuning method.

Publications I: (Section 2.1)
Gyimah, N., Scheler, O., Rang, T., & Pardy, T. (2022). Digital twin for controlled generationofwater-in-oilmicrodropletswith required size. 1-7. 10.1109/EuroSimE54907.2022.9758876.
Publication II: (Secton 2.2)
N. Gyimah, R. Jõemaa, K. Pärnamets, O. Scheler, T. Rang, and T. Pardy, "PID ControllerTuning Optimization Using Genetic Algorithm for Droplet Size Control in Microfluidics,"2022.

2.1 Closed-loop simulation for parameter space evaluation
2.1.1 State-of-the-Art
Recent studies have shown progress in closed-loop microfluidic control, especially withclassical methods like PID and PI controllers. Miller et al. [35] introduced automateddroplet generation in 2010, which included syringe pumps, a droplet sensor, and a controlalgorithm. However, challenges arose due to unclear image processing, leading to limiteddroplet uniformity of ±5%.attributed to an unclear and slow image processing method.Subsequent advancements have showcased diverse approaches. Fu et al.’s [47] electrical-detection system in 2016 employed a PI controller for precision, albeit focusing on a singledroplet size (200 µm).Wang et al. [48] demonstrated robust performance and high uniformity (±3%) inautomated droplet characterization in 2016 but were confined to a singular droplet size(100 µm). Cantwell et al. [49] improved capabilities by integrating image-based closed-loop feedback to control droplet size and composition, resulting in significant enhance-ments. However, their evaluations were restricted to two droplet size setpoints of 300 pLand 200 pL volumes. Zeng et al.’s [50] study established a closed-loop control system formonodisperse droplet size control, revealing a linear relation between droplet length andflow rate ratio. However, the focus remained on a single droplet length step response ina T-junction microdroplet generator.Notably, recent years have seen a paradigm shift toward exploring controller evalua-tions across a broader spectrum of droplet sizes. For instance, Duan et al.[41] achievedprecise control over droplet sizes ranging from0.25 to 1.4 nL using a PID controller. In theirstudy, Zeng et al. [42] achieved a closed-loop CV% of less than 2% using a PI controller.The experiment focused on droplet sizes between 100 µm and 700 µm and tested sixdifferent setpoints. The results showcased enhanced versatility. Xie et al. [44] achieveddroplet size target R2 value of 0.98 for a PI controller regulating droplet sizes ranging from
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14 to 24 µm. Mottaghi et al. [45] demonstrated advanced closed-loop control precisionby utilizing a PID controller with a low error RSME of 0.48% for droplet sizes of 100, 140,and 160µm.
Challenges remain in fully exploring parameter spaces due to resource-intensive ex-perimental evaluations. To address this, integrating simulations is proposed, providing avirtual platform for systematic assessment of controller parameters. This approach ex-pedites research and streamlines the development of more robust closed-loop controlstrategies for a diverse range of droplet sizes.

2.1.2 Methodology

2.1.2.1 Simulation Framework and Numerical model

The study employs a simulation based on 2D computational fluid dynamics simulation, in-tegrating an external control algorithm to establish a closed-loop system for droplet sizecontrol. It ensures an accurate representation of real-world droplet microfluidic systems,encompassing microfluidic devices, immiscible fluids, pumps, and essential componentsfor droplet imaging and measurements. To that effect, the simulated environment emu-lates a syringe-pump-driven microfluidics device, delivering fluids into the chip at definedflow rates. Within the setup, themicrofluidic system incorporates a chip where adjustableflow rates are applied at channel inlets, alongside a selection of fluids of interest and adroplet measurement scheme, creating a controlled model.
Choosing 2D modeling over 3D is driven by tailored assumptions for microfluidics, likehigh aspect ratios andminimal vertical effects [51]. This maintains accuracy while enablingefficient computations, validated by prior studies [52, 53].
The microfluidic chip is modeled on the Flow-Focusing Device (FFD) geometry. Thechoice tomodel themicrofluidic chip on the Flow-FocusingDevice (FFD) geometry is basedon its similarity to prior experimental setups in our research group and its relevance. Thisgeometry presents challenges in predicting droplet size due to nonlinear relationshipswith flow-rate parameters observed in past research, underscoring the need for thoroughinvestigation and tailored control strategies [54, 26, 55].
In replicating real-world droplet detection, droplets are identified at a specific sectionof the Flow-Focusing Device (FFD) outlet channel referred to as the sensor (of the dropletsize). At this location, the droplet interface is captured to estimate the droplet size ordiameter. Droplet size is equated to the droplet diameter, consistent with many previousnumerical modeling works[56, 57, 58, 59]. Post-processing of sensed droplet interfacedata conducted in near real-time as the droplets are produced at the outlet.
Recognizing the influence of factors such as flow rate, viscosity, surface tension, andgeometry on droplet size, our study emphasizes flow rate as a critical and versatile param-eter that can be automatically adjusted via the controller. The control strategy focuses ona singular fluid phase flow rate as the control variable, maintaining fixed values for otherparameters, aligning with established practices[45, 43].
Finally, the integrated Proportional-Integral (PI) controller for closed-loop control op-erates independently. Functioning in a distinct programming environment, it seamlesslyinterfaces with the computational fluid dynamics simulation, ensuring effective coordina-tion between the control system and the simulation.
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Figure 2: Simulation Framework for Droplet Size Control (a) Flow-focusing device as the plant model
with user-defined droplet size (dset) and control flow rate (Qw(t)). COMSOL LiveLink interface en-
ablesMATLAB’s PI controller to adjust (Qw(t)) based on feedback (d(t)). (b) Illustration of simulation
settings: t0 as initialization time, t f as current simulation time, ts for feedback loop sampling time,
tend as simulation end time. (u,v) denote variable velocities and pressure relative to φ .

The cloop-loop control environment is constructed using COMSOL Multiphysics soft-ware (version 5.4) for Computational Fluid Dynamics (CFD) simulation and MATLAB soft-ware for the PI controller implementation. The integration of these two software plat-forms is facilitated through COMSOL LiveLink for MATLAB, ensuring a seamless combina-tion of their capabilities. Additionally, Autodesk Inventor software is employed for the 2Dmicrofluidic chip model design, which is then imported into COMSOL as the system/plantmodel. Figure 2 illustrates the framework.Within this framework, the flow-focusing device serves as the plant model, with theuser-defined droplet size represented by the dset signal. The control flow rate signal, de-noted as Qw(t), is applied to an inlet channel of the microfluidic chip, while the measureddroplet diameter (d(t)) is obtained in the sensor region. The measured droplet data d(t)is actively exchanged via the LiveLink interface, and the PI controller inMATLAB interpretsthis feedback data. It computes a control signal, adjusting the phase flow rate Qw(t),which is then transmitted back to COMSOL for automated application as the modifiedcontrol signal after each simulation iteration. This continuous exchange via LiveLink con-tinues until the user-defined droplet size (dset signal) is reached and maintained with thefinal control signal output. The model response to change in controlled signal is visual-ized within the COMSOL interface. This efficient bidirectional communication establishesclosed-loop droplet size control with the PI controller.In exploring numerical method, the focus is on the continuummethod within Compu-tational Fluid Dynamics (CFD), addressing challenges related to multiphase fluid flow andcontinuously deforming interfaces [60]. The use of an interface-capturing method, em-
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ploying a continuous "indicator function" to distinguish phases, is highlighted for its abilityto manage topological changes smoothly without intricate grid realignment, offering ad-vantages over interface-tracking methods [61, 62]. Among interface-capturing methods,the Level Set Method (LSM) stands out for its accurate interface representation and con-tinuous level set function, addressing discontinuity issues observed in other methods likeVolume-of-Fluid (VOF) [63]. LSM’s successful extension to droplet generation scenariosunderscores its instrumental role in investigating the impact of geometric and fluidic pa-rameters on droplet characteristics [63, 64, 65, 66].COMSOL Multiphysics, although not employing VOF, offers LSM and phase-field mod-els (PFM), with LSM preferred for its smoother interface representation and support fromother researchers in droplet microfluidics studies using COMSOL software [67, 68, 69].These considerations collectively emphasize the robustness and suitability of LSM as thechosen numerical method [60, 63].The CFD model utilizes a two phase level-set numerical method (LSM) to simulatewater-in-oil droplet dynamicswithin an FFDmicrofluidic chip. The governing equations forthe two-phase fluids, representing the dispersed phase (water) and the continuous phase(oil), comprise the incompressible Navier-Stokes equation (1), the continuity equation (2),and the level-set equation (3). The delineation of the interface between the dispersed andcontinuous phases is precisely captured by the 0.5 level-set of the function φ , followingthe modified conservative LSM proposed by Olsson and Kreiss[63]. This function seam-lessly transitions over a constant thickness layer from zero (indicating the continuous oilphase) to one (representing the dispersed water phase).
Navier-Stokes equation

ρ

(
∂u
∂ t

)
+ρ(u ·∇)u = ∇ ·

(
−pI +µ (∇u+(∇u))T

)
+Fst (1)

Continuity equation
∇ ·u = 0 (2)

Level set equation

ρ

(
∂u
∂ t

)
+u ·∇φ = γ∇.(−φ(I −φ)(∇φ/∇φ |)+ ε∇φ) (3)

Key variables in these equations include velocity (u, m/s), density (ρ, kg/m3), pres-sure (ρ, N/m2), dynamic viscosity (µ, Ns/m2), surface tension force (Fst , N/m3), and are-initialization parameter γ (m/s). The construction of the level-set function (φ) in equa-tion 3 is intricately linked to the velocity values obtained by solving equations 1 and 2. Theparameter ε (m) controls the interface thickness over which φ transitions from 0 to 1,with its value carefully chosen to align with the computational mesh size[70]. Specifically,
γ and ε are set at 0.2 m/s and 5e-6 m, respectively.The density (ρ) and dynamic viscosity (µ) in equation 1 are calculated using equa-tions 4 and 5, incorporating ρ0 and ρw, µ0 and µw as the densities and viscosities of thecontinuous and dispersed phases, respectively.

ρ = ρ0 +(ρw −ρ0)φ (4)
µ = µ0 +(µw −µ0)φ (5)

Additionally, the critical parameter of effective droplet diameter (d) is computed inCOMSOL using Equation (6). This calculation determines the maximum area in the sensor
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region corresponding to the dispersed phase where φ > 0.5.
d = 2

√
(1/π

∫
(−φ ≥ 0.5)dΩ) (6)

Leveraging the inherent horizontal axis of symmetry of the microfluidic device, thesimulation refines the original model illustrated in Figure 3a. Specifically concentratingon the upper half of the 2D model, as depicted in Figure 3b, and generating only half-droplets, foresees a substantial computational time reduction by a factor of 2. In thepost-processing phase, the simulated upper half is mirrored to replicate the lower half,facilitating the visualization of complete droplets. Further simplification involves exclud-ing the air inlet near the chip’s outlet channel, initially designed as a pressure gauge out-let, due to its negligible impact on droplet formation. Notably, the model incorporatesrhomboid filters along the oil liquid path, effectively eliminating contaminants, includingdust particles, in experimental setups. The streamlined model specifies key dimensions,including a water inlet width (W1) of 600 µm, an outlet width (W5) of 90 µm, oil inletwidth (W6), and junction width (W4) of 120 µm each, along with a sensor region length(L5) of 100 µm. For comprehensive details, including these dimensions, see Table I in theAppendix 1.

Figure 3: Flow-Focusing Device Geometry. Left: Full geometry. Right: Simplified version. Domains
labeled: Oil, Water, Junction, Sensor, Outlet. Rhomboid filters on oil path. Horizontal symmetry, only
upper half simulated.

For droplet generation, the continuous phase consists of HFE 7500 (oil)[71] with prop-erties: density (ρo) of 1614 kg/m3 and viscosity (µo) of 0.00077 Pa.s. This is blended witha 2% w/w PFPE-PEG-PFPE surfactant solution. The dispersed phase, water, exhibits prop-erties: density (ρw) of 1000 kg/m3 and viscosity (µw) of 0.001 Pa.s. The surface tension(FST) between fluid interfaces is precisely set at 1.9e-3 N/m2 [72, 73].In terms of boundary conditions, both inlet and outlet channels are subjected to lam-inar inflow conditions. Fully developed volumetric flow rates (Qw for dispersed phase,
Qo for continuous phase) are precisely specified at their respective channel inlets, withthe outlet channel pressure set at 0 Pa (gauge). The channel walls are characterized by aslip length of 5e-6 m, and a no-slip boundary condition is applied to the solid wall, main-taining a fixed fluid-wall contact angle of 135 degrees. In 2D microfluidics simulations,the assumption of complete wall wetting with the continuous phase fluid is consideredvalid. This is supported by the fact that the length of the microchannel is typically much
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greater than its width, resulting in negligible flow in the corners. The application of thisassumption can be found literature[74, 75].
Within the fluidic domains, laminar flow and level-set physics interfaces seamlesslyoperate, under the two-phase level-set method. Extending beyond the Laminar flow andLevel set domains, the incorporation of Domain Ordinary Differential Equations (ODEs)and Differential-Algebraic Equations (DAEs) , along with the Global equations domain, fa-cilitates the tracking of state variables such as velocities and pressures, and the level-setfunction in the sensor region to establish conditions for estimating droplet size at eachsimulation timestep. For Droplet tracking and defining of conditions for applying controlsignal, the expressions below are used;
Tracking Droplet Area: nojac (if (d diameter,t)> 0 d(diameter, t)<1e-5, aveop1(u2) [m],diameter)
Condition to apply control signal : u4 (u4- nojac (if (d(aveop1(u3),t)= =0,Qw,u4))
where Velocity (u), dependent variables u2, u3, state variable u4, and pressure (p),computations are carried out by solver.
For the study’s time-dependence, a time range spanning from 0 to 0.1 seconds witha step of 0.0005 seconds is employed to ensure simulation convergence. All boundaryconditions are consolidated in Table 2 (Appendix 1). Finally, for mesh generation, pre-dominantly,quadrilateral elements are employed, with node sizes customized for eachdomain as illustrated in Figure 4. Following this, a mesh independence study is conductedto ensure accuracy. The primary goal of this study is to achieve minimal variation, ideallywithin 2%, in droplet area measurements by optimizing the mesh design. Simulation areexecuted on a computing setup comprising a Core i5-10210U CPU, 32 GB RAM, and a 1 TBNVMe SSD. Each simulation required approx. 10 to 20 hours to complete.

Figure 4: Tailored quadrilateral mesh with region-specific density. Avg. mesh quality: 97%. Total
elements: 270,908. Mesh independence study confirms <1% droplet area variation with≥ 225,000
elements (Appendix section of Appendix 1)

2.1.2.2 Control theory and Design

The study adopts a classical control approach, employing well-established principles andmathematical models to design controllers, with a focus on closed-loop systems utiliz-ing feedback for sustained target performance. A Proportional-Integral (PI) controller ischosen for regulating droplet size in Computational Fluid Dynamics (CFD) models. The PIcontroller is defined by two components, as depicted in equation 7: the proportional (Kp)term and the integral (Ki) term.The proportional term delivers an immediate responseto the present error (e(t)), representing the disparity between the desired setpoint andthe actual system output. On the other hand, the integral term takes into account thehistorical accumulation of past errors over time [76].
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u(t) = Kpė(t)+Ki

∫̇ t

0
e(τ)dτ (7)

Where:
• u(t) is the control output.
• Kp is the proportional gain.
• Ki is the integral gain.
• e(t) is the error at time t.
• ∫ t

0 e(τ)dτ represents the integral of the error over time.
Unlike PID controllers, PI controllers exclude the derivative term to sidestep sensitivityissues, ensuring effective control loop performance. The controller design involved tuningthe PI controller through adjustments of the parameters Kp and Ki to achieve the desiredsystem response. This process requires striking a balance between system stability, re-sponse time, and minimizing overshoot.The controller design involves tuning the PI con-troller parameters (Kp and Ki) to balance system stability, response time, and overshoot.MATLAB’s Control System Designer Toolbox [76] facilitates controller design through in-teractive tuning, aligning with specified design criteria.Initial conditions of experimentalsetting are considered in the modeling process explained in section C of Appendix 1.The design criteria included:
• Zero steady-state error
• Rise time≤ 0.5 s
• Settling time≤ 4 s
• Maximum overshoot≤ 10% .
Tomeet specific design criteria, the PI controller’s gain parameters were adjusted, bal-ancing between achieving a fast response and minimizing overshoot, depending on theapplication’s unique requirements. The implementation involved automatic adjustmentof the PI controller using the PID tuner in the Control System Designer Toolbox. Transferfunctionmodels of the closed loopwere imported into the toolbox, and the PID Tuner Appwas utilized to configure PID block settings for controller type, form, time domain, andsample time, in accordance with the design criteria. Detailed tuning processes, includ-ing parameters and settings, can be referenced in [15]. The result is a PID compensatortransfer function with corresponding step resonse, as illustrated in Figure 5.Finally, while continuous-time signals (analog signals) have been used in this simula-tion, digital control with discrete-time signals is widely adopted in practice. Analog con-trollers use continuous-time signals, while digital controllers work with discrete-time sig-nals. An analog controller can be built using operational amplifiers, capacitors, and resis-tors [77], but it cannot be directly used with computers or microprocessors. To make itcompatible, it needs to be converted into a discrete-time controller [78], requiring addi-tional components like A/D (Analog to Digital) and D/A (Digital to Analog) converters toconvert between continuous and discrete signals. This conversion from continuous-timeto discrete-time results in an approximation of the original controller. The key processesinvolved in this conversion are sampling and quantization. Sampling involves taking mea-surements of the continuous-time signal at specific intervals, while quantization involves
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mapping the amplitude of these samples to discrete levels. By using a high sampling rateand high-resolution quantization, aliasing and quantization noise can be minimized. Thisensures the Signal-to-Noise Ratio (SNR) remains high. If themaximumdifference betweenthe digitized quantity and its analog value is below the noise level, the effects of digitiza-tion become negligible.Alternatively, a controller can be designed directly in the discrete-time domain.Continuous-time controllers are typically designed in the frequency domain (s-domain),while discrete-time controllers are designed in the difference domain (z-domain). Todesign a controller in the discrete-time domain, the plant’s transfer function must beconverted from the s-domain to the z-domain [79]. This can be done using a zero-orderhold (ZOH) approximation [80]. Overall, both converting a continuous-time PID controllerand designing a discrete-time PID controller directly are viable methods for use.To demonstrate the shift from analog to digital control practically, the follow-up study(Appendix 3, Section II-B-5) implemented a controller on a Raspberry Pi. This setup mini-mized signal digitization effects through a three-stage process. The first stage involved us-ing a 2nd order Sallen-Key low pass filter to capture the droplet feedback signal. This filter,with a cutoff frequency of approximately 7.26 kHz, could process up to 5000 droplets persecond with minimal distortion. Its primary function was to reduce noise, especially fromswitch-mode power supplies. Next, an adjustable inverting amplifier stage was employedto scale the filtered signal to match the input limits of the 16-bit ADC (ADS8681 from TexasInstruments). This adjustment optimized the amount of information captured per bit dur-ing the analog-to-digital conversion process. Finally, the 16-bit ADC converted the scaledanalog signal into digital format, preparing it for further processing. To detect dropletsfrom the feedback signal as they moved over an optical sensor, the average loop durationon the Raspberry Pi, handling ADC polling and its evaluation, was about 6.5 µs, translatingto a maximum ADC sampling rate of approximately 153 kHz. This setup ensured efficientsignal handling within the Raspberry Pi’s digital environment, demonstrating successfulanalog-to-digital conversion with minimal impact from digitization.

Figure 5: Controller Design Interface in MATLAB Control Systems Designer Toolbox (left) and Step
Response Based on Design Criteria (right)
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2.1.3 Results and Discussion

2.1.3.1 Droplet Formation & Effect of Fluid Flow Rates

In the study, droplets were observed in the dripping flow regime, where the dispersedphase exerts an inward force, causing droplets to break near the channel junction. Thisoccurs when the Capillary number (Ca) exceeds 10−2, and the dispersed phase flow rateis lower than the continuous phase flow rate. The four stages of droplet formation thisregime were identified and presented in Figure 6: Filling (Figure 6a), Necking (Figure 6b),Growing (Figure 6c), and Detachment (Figure 6d).

Figure 6: Dripping Regime observed for droplet formation, in stages (a) Filling stage, (b) Necking
stage, (c) Growing stage, and (d) Detachment stage.

During the Filling stage (0.020 s – 0.040 s), continuous and dispersed phase fluids con-verge at the microchannel junction. In the subsequent Necking stage (0.040s – 0.050s),the dispersed phase undergoes constriction in the junction by the continuous phase, in-fluenced by fluid flow rates, surface tension, and viscous forces, resulting in a capillaryinstability. This instability leads to the oil phase inducing a flow-focusing effect on the wa-ter phase in the third stage (0.050s–0.060s), forming a growing water bulb immediatelyafter the junction. The stages culminate in the Detachment stage (> 0.080s), where thegrowing water bulb breaks into a droplets close to the junction, defining the characteristicdripping regime [81].
In addition, the research explored how fluid flow rates affected droplet size by keepingone rate constant while varying the other. Initially, the impact of continuous phase flowrate was studied with a constant dispersed phase flow rate of 30 µL/min. The continuousphase flow rate ranged from 100 µL/min to 400 µL/min. In Figure 7a, it was observed thatas the continuous phase flow rate increased, the average droplet diameter decreased.Specifically, when the oil flow rate increased from 100 µL/min to 400 µL/min (a 300%increase), the droplet diameter reduced by 70%, from 110 µm to 33 µm, indicating a non-linear relation.
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(a) (b)

(c) (d) (e)

Figure 7: Influence of Flow Rate on Droplet Size(a) Varied oil flow rates (100 µ l/min to 400 µ l/min)
with constant water flow rate (30 µ l/min) (b) Varied water flow rates (5 µ l/min to 50 µ l/min) with
constant oil flow rate (200 µ l/min). Further illustration of droplets for Qw/Qoil at (c)30/210 (d)
30/120 (e) 50/200. Sensitivity of droplet size to changes higher for water flow rate than oil flow
rate.

Subsequently, the influence of the dispersed phase flow rate on droplet size was ex-amined with a constant continuous phase flow rate of 400 µL/min and adjusting the dis-persed phase flow rate from 5 to 50 µL/min. Figure 7b showed a contrasting trend—asthe dispersed phase flow rate increased, the average droplet diameter significantly grew.With the water flow rate increasing from 5 µL/min to 50 µL/min (a 900% increase), thedroplet diameter increased by 223.529%, from 34 µL/min to 110 µmin.Thus, the droplet size exhibited non-linear sensitivity to the flow rates of both fluidsand could be manipulated by adjusting either the continuous phase fluid flow rate or thedispersed phase fluid flow rate. The study highlighted a more pronounced influence ondroplet size with variations in the dispersed phase flow rate. Consequently, the dispersedphase flow rate was identified as the key control variable.
2.1.3.2 Controller performance evaluation

The implemented controller, with gains Kp = 2 and Ki = 70 regulates droplet size usingthe dispersed phase flow rate (Qd(t)) with the control lawQd(t) = Kp ∗e(t)+Ki ∗
∫

e(t)dtbased These gains provide a moderate proportional response (Kp = 2), striking a balancebetween response speed and stability.To effectively showcase the controller’s performance, a comparison between open-loop and closed-loop scenarios was conducted and showcased in (Figure 8a) In the open-loop scenario, where the system lacked automatic adjustments, a setpoint droplet sizeof 40 µm was targeted with a continuous phase flow rate of 400 µ l/min and an initialdispersed phase flow rate of 50 µ l/min. In the open-loop control, the system exhibited a
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noticeable deviation (CV ∼15%) from the setpoint, reaching around 34 µm by the simu-lation end. Conversely, the closed-loop feedback scenario, equipped with a PI controllerfor autonomous adjustments, achieved ameasured droplet size of 39 µmwithin 1 second.The CV% reduced from 15% to 2%, closely matching the setpoint. Continuous adjustmentsmaintained the desired droplet size, and the dispersed phase flow rate stabilized at 63.9
µ l/min (Figure 8b). Although an initial disparity existed between measured and desireddroplet sizes in the closed-loop feedback scenario, this difference diminished over time,approaching zero. The closed-loop system demonstrated superior accuracy and consis-tency in droplet size control compared to open-loop.

Moreover, in the assessment of the complete parameter space of the PI-controlledsystem, the generation of droplets across various setpoints ranging from 30 µm to 60
µm was analysed. This evaluation covered six specific setpoints, as depicted in Figure 9,showcasing the PI controller’s efficacy. The results illustrated in Figure 9(a-c) for setpointsof 30 µm, 35 µm, and 45 µm, showed the controllermaintained a diameter offset/error ofless than 3% within a simulation time of 1s. The agreement between the target and mea-sured droplet diameters, with a coefficient of determination (R2) value of 0.9937, servesas a demonstration of the controller’s efficiency across the 30-60 µm range, as depictedin Figure 9d. This analysis established the complete parameter space of the controller.

(a)

(b)

Figure 8: Open-loop vs. Closed-loop Droplet Control: (a) Open-loop aimed for a 40 µm droplet
with 400 µ l/min continuous phase and 50 µ l/min initial dispersed phase flow rates, resulting in CV
=∼15% deviation to around 34 µm. Closed-loop with a PI controller rapidly achieved 39 µmwithin 1
s, reducing CV to 2% (b) Controller maintained desired droplet size with stable dispersed phase flow
rate at 63.9 µ l/min.
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(a) (b)

(c) (d)

Figure 9: Closed-loop Droplet Size Control at setpoints (a) 30 µm, (b) 35 µm, and (c) 45 µm (d)
Comparison of setpoint diameters to observed diameters (30 µm-60 µm range). The PI controller
maintains a diameter error under 3%, with a coefficient of determination (R2) value of 0.9937

2.2 Genetic Algorithm (GA) for controller tuning
2.2.1 State-of-the-Art
The study investigates extended settling times in feedback systems. Miller et al. employeda closed-loop PI control system for microfluidic droplet production, but with a relativelyhigh settling time of around 100 seconds [35]. Xie et al. implemented a closed-loop systemfor adjustingmicrobubble diameters, but despite a high agreement between setpoint andmeasured sizes, settling times remained relatively high, under 10 seconds [44]. Kebriaeiet al. showcased settling times ranging from 7 to 10 seconds in their closed-loop systemutilizing a pressure-driven flow-focusing junction and a PID controller [43]. Duan et al.presented a closed-loop feedback control model for droplet generation with a relativelylow settling time of around 0.3 seconds [41]. Crawford et al. demonstrated closed-loopfeedback with significantly lower settling times of 0.05 seconds [39]. Zeng et al. designeda closed-loop control microfluidic system with a response time of less than 0.2 seconds[42].The study recognizes the importance of minimizing settling times, particularly for highthroughputs exceeding 500 Hz in flow-focusing microfluidic devices [44]. Reduced set-tling times are vital for effective real-time regulation of droplet size, aligning with goalsof enhancing microfluidic system efficiency. To address the challenge of extended settlingtimes, the study focuses on tuning methodology, acknowledging the impact of the pump-ing system on control system response. Anticipating quicker responses in pressure-drivensystems compared to syringe pumps [39], the study aims to optimize tuning processesin controller design. Thus, it explored advanced soft computing optimization technique,
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specifically the genetic algorithm (GA), in deriving optimal PID controller parameters [82].The Genetic Algorithm (GA) is an optimization technique inspired by natural selection andgenetics. The genetic algorithm offers robust searching capabilities and simplicity, mak-ing it suitable for addressing nonlinear systems and optimizing complex problems. Thegenetic algorithm offers robust searching capabilities and simplicity, making it suitable foraddressing nonlinear systems and optimizing complex problems.

Figure 10: Genetic Algorithm Workflow

Genetic algorithms (GAs) are searchmethods inspired by biological evolution and Dar-win’s concept of survival of the fittest. They excel in handling complex problems and avoid-ing misleading solutions encountered in gradient descent methods [83].The GA process begins with generating a random population, where each chromo-some represents a potential solution. An objective function evaluates individual perfor-mance based on goals like minimizing overshoot and achieving rapid settling time. Chro-mosomes with higher fitness values are selected for the next generation, akin to a "sur-vival of the fittest" strategy. Crossover and mutation operations create offspring with fa-vorable attributes from their parent chromosomes, refining the population iteratively. Thealgorithm continues until a satisfactory solution is found [84].Convergence towards optimal solutions requires parameter tuning like populationsize, crossover and mutation rates, and termination criteria. The choice of chromosomerepresentation and the design of the objective function also influence the GA’s effective-ness [82].A PID controller (Equation 8) is utilized, incorporating proportional (Kp), integral (Ki),and derivative gains (Kd). Unlike in PI controllers, the derivative component, which re-acts to changes in the error rate, is included. In designing a GA-tuned PID controller, theobjective is to minimize the error e(t) in the controlled system, considering factors likeovershoot, rise time, and settling time, represented by the variable f in the optimizationproblem (Equation 9) [85]. This variable captures the transient step response of the sys-tem and serves as the objective function.
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u(t) = Kpe(t)+Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

(8)
min f (kp,ki,kd) (9)

Figure 11: Schematic representation of PID parameters (Kp, Ki, Kd ) tuning using Genetic algorithm
tominimize error between desired andmeasured droplet size, considering performance criteria (IAE,
ISE, ITAE). Setup conducted using MATLAB and Simulink.

2.2.2 Methodology of GA-tuned-PID controllersThe framework of the Genetic Algorithm (GA)-tuned PID controlled system is depicted inFigure 11. Chromosomes in the population represent PID controller parameters, Kp, Ki,and Kd , selected based on fitness values, particularly the error index [86]. After selec-tion, high-fitness chromosomes undergo arithmetic crossover and mutation operations.A mutation probability of 0.1 is employed, randomly modifying a gene within an individ-ual’s chromosome [87]. The population size is 20, with a maximum of 30 generations,and the bounds for controller gain parameters Kp, Ki, Kd are set as [0 1;1 70;0 1e− 4],respectively. In the optimization process (Figure 11), the objective function Jn(α) refinesPID controller gains α , evaluated against performance criteria n [88, 89]. Six performanceindices gauge the GA optimization: Integral Absolute Error (IAE) covers both positive andnegative errors, Integral Square Error (ISE) penalizes errors in both polarities, and IntegralTime Absolute Error (ITAE) prioritizes reducing prolonged transients. Additional metricslike Integral of Timemultiplied by the Squared Error (ITSE) andMean Squared Error (MSE)offer further insights[88, 89].MATLAB and Simulink are utilized for system modeling and genetic algorithm setup.MATLAB’s optimization toolbox facilitates GA setup, while Simulink dynamically updatesPID parameters during each iteration [86, 87]. Simulations continue until termination cri-teria (i.e. fitness value and maximum iteration number) are met [88, 89].
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To model the dynamic characteristics of system components in the Simulink environ-ment for the pressure-driven microfluidics setup, a combination of system identificationtechniques and analytic modeling was employed. The System Identification Toolbox inMATLAB (R2021b) facilitated this process [90, 91]. Figure 12 illustrates the system identifi-cation process used for modeling the pump and the microfluidic chip. Analytic modelingwas utilized to create mathematical representations of the droplet measurement circuit(Section B of Appendix 2).

Figure 12: Steps in System Identification Technique

The experimental setup, depicted in Figure 13, included the following components:
• Flow-focusing PDMS microfluidic chip
• Fluidic add-ons: a. fluid connectors b. Teflon (0.8mm) tubing c. chip handling frame
• Reagents: a. mineral oil + 2% w/w Span 80 surfactant (continuous phase) b. deion-ized water (dispersed phase)
• Pumping system [92]
• ADC (ADS8681)
• MPRLS0015PG0000SA Pressure Sensors
• Droplet size measurement circuitry (Section B of Appendix 2)
• Raspberry Pi 4B
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Figure 13: Experimental Setup for Microfluidic System Characterization. Featuring PDMS chip, fluid
connectors, pumping system, ADC, pressure sensors, droplet size circuitry, and Raspberry Pi 4B

The input-output response data were collected under experimental conditions, wherethe dispersed phase piezoelectric driving pump maintained a constant frequency of 200Hz, while the continuous phase driving pump operated at a constant frequency of 50 Hz.These pumps were connected to the inlets of the Flow Focusing Device (FFD) chip. Theadjustment of the continuous phase pressure regulated the droplet size on the FFD chip.Droplet measurements were obtained from high-frame-rate videos captured with a cam-era positioned below the FFD chip’s outlet microchannel. Droplet images from multiplevideo frameswere analyzed using ImageJ software to determine droplet sizes. The dropletmeasurement circuit was not utilized in these experiments; however, it was analyticallymodeled, as described in Section B of Appendix 2.Data collection for pump system modeling involved recording pressure readings fromthe pressure sensor while varying input voltage settings from 50 V to 250 V for oil pumps.These experiments were conducted at fixedwater pressure values of 5 kPa, 10 kPa, and 16kPa. For modeling the dynamics of the FFD chip droplet generation process, pump pres-sure for the oil phase ranged from 5 to 34 kPa. The corresponding measurements wereplotted and discussed in Section 1.3 (Results and Discussion). A crucial step is the selectionof an appropriatemodel structure; in this case, a transfer functionmodel (Equation 11) hasbeen chosen. Determining the order of the model comes next, involving the incrementaladjustment of poles and zeros based on observed system responses to strike a balancebetween accuracy and simplicity.
H(s) =

∑M
m=0 bmsm

sN +∑N−1
n=0 ansn

=
b0 +b1s+b2s2 + · · ·bMsM

a0+a1s+a2s2 · · ·a(N −1)sN−1 + sN (10)
Equation 18 represents a continuous linear time-invariant system transfer function,where M and N denote the order of the numerator and denominator polynomials, and bnand an represent the coefficients. The order determination process initiates with a singlepole and zero, gradually increasing up to the 1st to 3rd order, following this systematicmethodology employed in a previous study [93]. The subsequent parameter estimationstep yields values a1,a2...a(N−1),b1,b2...bM in (18) for both the pump and the FFD chip.Advancing to the next stage, the focus is on parameter estimation explained and de-picted in Figure 5 in Section D of Appendix 2. Known vectors r and y represent experi-
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mental inputs and observed outputs, respectively. The vector θ comprises unidentifiedparameters (a2,b1,b2, etc.) critical for constructing an accurate transfer function model(Equation 10). The MATLAB System Identification Toolbox is then employed to automat-ically select an estimation method based on the dataset’s characteristics. The NonlinearLeast Squares (NLS) technique is chosen for datasets exhibiting nonlinear features, mini-mizing differences between observed and predicted outputs. Additionally, the Instrumen-tal Variable Estimator contributes by generating an initial set of parameters, acting as afavorable starting point for subsequent parameter estimation.Once parameters are estimated, the identified model undergoes thorough validationby comparing predicted and observed outputs. In the validation phase of the model de-rived from the system identification procedure, MATLAB utilized various quantifiablemet-rics, serving as benchmarks to evaluate the model’s performance [93].Fit to Estimation Data Percentage: This metric assesses the proximity of the model tothe actual system, providing a quantitative measure of how well the model aligns withthe estimation data. Mean-Square Error (MSE): calculated by averaging the squared dif-ferences between predicted and actual values. A lower MSE signifies better predictiveperformance, highlighting less variability between predicted and actual outcomes.Akaike’s Final Prediction Error (FPE): This measure evaluates the quality of the modelby simulating its performance on a dataset generated by the toolbox. It evaluates themodel’s error in relation to the original dataset’s response. Cross-Validation: Employedto estimate the expected level of fit of a model to two datasets independent of the dataused for model estimation. This offers an important understanding of the model’s gener-alizability and reliability.
2.2.3 Results and DiscussionThe experimental data presented in Figure 14(a) exhibits a consistent and proportionalcorrelation between applied voltage and oil pressure across various water pressure levels(5 kPa, 10 kPa, and 16 kPa). At each water pressure setting, there is a uniform rise in oilpressure ranging from 4 to 11 kPa. However, when examining the relationship betweenpump pressure for the oil phase and measured droplet sizes on the FFD chip under differ-ent water pressures in Figure 14(b), a more complex pattern emerges. Although there isa general trend of decreasing droplet size with increasing oil pressure, no clear linearityis observed within the specified pressure ranges. These results present the microfluidicsystem dynamics.
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(a) (b)

Figure 14: Experimental Results on Pump Parameters and Droplet Generation. (a) Voltage (V) vs
Pressure (kPa) for the oil driving pump. (b) Droplet diameter (µm) vs Pressure (kPa) for the oil driving
pump.

For the evaluation of system component models at varying model order, detailed re-sults for the FFD chip are provided in TABLE 3, while outcomes for pump modeling areoutlined in TABLE 4. From the Tables, the 1st order models for both the FFD chip andpump (M2 in Table 3 and Table 4) emerge as the optimal choice. These models exhibitexceptional fit percentages of 94.54% for the pump and 91.5% for the FFD chip, surpass-ing higher-order models. The selected model, M2 for both components, demonstratesremarkably low FPE andMSE values, indicating successful model validation through rigor-ous residual analysis. Additionally, the cross-validation fit percentages are notably high,reaching 78.66% for the pump and, 66.63% for the FFD chip. In contrast to the marginal4% increase in the fit percentage observed with the higher-orderM3model for the pump,M2 is deemedmore suitable. This choice prioritizes a reduction in system complexity overa relatively minor improvement in data fit. The section concludes by visually illustratingthe closed-loop system through selected transfer functions, as presented in Figure 15.

Table 3: Microfluidic Chip (Input Water Pressure-Output Droplet Size Relation) model

Model No. Transfer Function Poles,
Zeros

FPE MSE Max.
validation
Fit %

Est. data
Fit %

M1 −0.007136
s+0.27085 1,0 3374 2024 58.8 -36.7

M2 19.04s−0.3391
s+0.2745 1,1 15.59 7.79 66.6 91.5

M3 .1597
s2+0.00017s+0.03 2,0 210.4 86.6 53.5 71.7

M4 −53.34s+8.045
s2+242.5s+37.8 2,1 1022 340 89.7 43.9

M5 10.7s2+12.1s−0.14
s2+1.64s+0.251 2,2 22.26 5.85 64.9 92.6

M6 −0.01801
s30.31s2+0.34s+0.1 3,0 9549 2513 58.1 -52.3

M7 102.9s−1.34
s3+1.1s2+10.6s+2 3,1 34.7 6.94 65.7 92

M8 −266.5s2−38.95s−0.7091
s3+1.67s2+13.15s+2.114 3,2 37.16 5.30 65.0 93

M9 8.75s3+4.8s2−14.7s+0.27
s3+2.80s2+1.96s+0.261 3,3 5918 538 82.7 29.5
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Table 4: Pump (Input Voltage-Output Pump Pressure Relation) System Model.

Model No. Transfer Function Poles,
Zeros

FPE MSE Max.
validation
Fit %

Est. data
Fit %

M1 0.04412
s+0.2862 1,0 0.20 0.122 76.5 92.1

M2 0.02948s+0.01886
s+0.1057 1,1 0.11 0.058 78.6 94.5

M3 0.009749
s2+0.1281s+0.0671 2,0 0.01 0.005 86.7 98.4

M4 −15.05s−1.942
s2+136.7s+17.17 2,1 1668 556.0 -260 -434

M5 −0.053s2−0.05s+0.0265
s2+0.63s+0.1103 2,2 0.09 0.025 61.2 96.4

M6 0.05401
s3+1.25s2+2.38s+0.2 3,0 0.04 0.012 74.1 97.5

M7 (1.949s+0.7371
s3+21.5s2+9.06s+5.1 3,1 0.39 0.078 79.9 93.7

M8 2.187s2−0.02s+0.3311
s3+17.1s2+0.14s+2.4 3,2 0.13 0.018 66.9 96.9

M9 0.09s3−0.04s2−0.1s+0.17
s3+0.57s2+1.0s+1e−9 3,3 92.7 8.430 73.3 34.2

Figure 15: Closed-Loop System Transfer Functions. First-ordermodels derived from system identifica-
tion for the pump and chip, and from the analytical model (Section B of Appendix 2) for the droplet
sensor.

To assess their effectiveness, a comparison was conducted between classical tuningand the genetic algorithm (GA) tuning approaches. The evaluation considered standardcontroller performance measures, including settling time (5% criterion), percent over-shoot, and rise time (0–95% criterion). Classical tuning, achieved through a trial-and-errorprocess, resulted in PID parameters (Kp = 0.1, Ki = 15, Kd = 1e-4) successfully attaining thetarget droplet size of 100µm. The corresponding closed-loop response exhibited a risetime of 1.57s, overshoot percentage of 1.5%, and settling time of 0.338s, as illustrated inAppendix 2,Section B-1 (Figure 8).In contrast, the GA-tuned PID controller results (Appendix 2,Section B-2 (Figure 9)),showcased significant improvements in process response for the same 100µmdroplet sizesetpoint. The closed-loop response displayed a reduction in overshoot percentage from1.5% to 0.5% and settling time from 0.34s to approximately 0.088s, as shown in Table 6.The evaluation extended to analyzing the six performance indicesmeasures in the genetic
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algorithm approach. Although these indices showed very close or similar dynamics, theIntegral of Time Absolute Error (ITAE) emerged as the optimal criterion. It produced thesystem response with the lowest fitness value (error) of 0.2367, as outlined in TABLE 6.This comparative analysis underscores the efficacy of the GA tuning method in achievingenhanced controller performance. The results provide insights for optimizing closed-loopsystems in this setting.
Table 5: System performance - classical tuning of PID controller

Kp Ki Kd Rise Time Settling Time Overshoot0.1 15 1e-4 0.271s 0.338s 1.5%

Table 6: System performance – genetic algorithm tuning of PID controller

Objective
function
criteria

Kp Ki Kd Fitness
Value

Rise
Time
(ms)

Settling
Time
(ms)

Over-
shoot
(%)MSE 0. 975 69. 68 3. 12 e-5 84. 46 54.7 96.4 0.5ITSE 0. 060 46. 09 8. 62 e-5 1.606 86.8 110.1 0.5ITAE 0. 234 69. 40 2. 84 e-5 0. 2367 56.4 72.4 0.5ISE 0. 937 69. 12 2. 00 e-5 82. 552 71.2 96.8 0.5IE 0. 035 67. 83 7. 46 e-5 2.1411 60.0 78.0 0.5IAE 0. 173 69. 93 4. 9 e-5 2. 1282 58.4 75.2 0.5

2.3 Summary
In summary, the simulation of a closed-loop droplet microfluidic system, featuring a PIcontroller, effectively regulated droplet size in a flow-focusing setup. The PI controllerdynamically adjusted the dispersed phase flow rate based on the measured droplet di-ameter, minimizing deviations and achieving near-zero steady-state error across differentsetpoints. The integration of CFD tool COMSOL and programming tool MATLAB facilitatedthe development of control environment, proving to be a cost-effective platform for eval-uating the parameter space and optimizing design in microfluidics control, promising en-hanced precision in future applications. The agreement between the target andmeasureddroplet diameters, with an error deviation of less than 3% and a coefficient of determi-nation (R2)value of 0.9937, serves as a demonstration of the controller’s efficiency acrossthe 30 µm -60 µm range.Additionally, a PID controller tuned with a genetic algorithm was implemented forclosed-loop droplet size control in a microfluidics system. The primary aim was to iden-tify optimal PID controller parameters to minimize settling time and ensure a stable re-sponse. Using MATLAB and Simulink, physical models were represented, seamlessly inte-grating the PID controller tuned with a genetic algorithm. Comparative analysis betweenclassical tuning and the genetic algorithm approach revealed superior results in terms ofsettling time and overshoot. The adaptive nature of the genetic algorithm enabled flexi-ble droplet size setpoints, ranging from 50 µm to 350 µm, depending on the variable oilpressure value. While classical tuning remains a starting point, this study highlights theefficiency of intelligent optimization methods in achieving optimal tuning for droplet mi-crofluidic systems. Overall, the study showcased advances by integrating simulated flowenvironments and control algorithms for closed-loop droplet microfluidic control studies.
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3 BRIDGING CLOSED-LOOP CONTROL SIMULATIONS WITH EX-
PERIMENT

This chapter shift the research from simulations to real-world experimental setups fordroplet generation in microfluidic systems. It aims to assess the feasibility of applyingcontrol solutions developed in simulations in real applications and evaluate their perfor-mance in experiments. It builds on Publication III, which expands on findings from Pub-lication I. Additionally, it uses insights from Publication IV, where simulations introducedin Publication I aided in the understanding of the flow dynamics to develop an empiricalmodel for droplet generation.
Publication III: (Sections 3.1-3.3)Jõemaa, Rauno & Gyimah, Nafisat & Ashraf, Kanwal & Pärnamets, Kaiser & Zaft, Alexan-der & Scheler, Ott & Rang, Toomas & Pardy, Tamas. (2023). CogniFlow-Drop: IntegratedModular System for Automated Generation of Droplets in Microfluidic Applications. IEEEAccess. PP. 1-1. 10.1109/ACCESS.2023.3316726.
Publication IV: (Section 3.4)Parnamets, Kaiser & Udal, A. & Koel, Ants & Pardy, Tamas & Gyimah, Nafisat & Rang,Toomas. (2022). Compact Empirical Model for Droplet Generation in a Lab-on-Chip Cy-tometry System. IEEE Access. PP. 1-1. 10.1109/ACCESS.2022.3226623.

3.1 State-of-the-art and Proposed Framework
Previously, the focus has been on individual strategies for either pressure regulation [109,33, 110] droplet size control [55, 92]. However, these approaches tend to overlook theinterconnected nature of pressure and droplet size dynamics. To fill this gap, this studyintroduces the Dual-PID Control Strategy, which integrates both pressure and droplet sizecontrol into a unified approach.The Dual-PID Control Strategy (Figure 16) consists of two main components: an innerloop and an outer loop. The inner loop aims to regulate pressure within the microflu-idic chip to minimize fluctuations and ensure stability, utilizing PID controllers for eachmicropump. Conversely, the outer loop of the Dual-PID Control Strategy focuses on main-taining user-defined droplet sizes. This is done by adjusting micropump pressure basedon feedback from pressure sensors and error signals derived from desired droplet size setpoints.Initially, controllers are designed in a simulated microfluidics environment using MAT-LAB and Simulink, following the procedure outlined in Chapter 2, Section 2.2. Once fine-tuned in the simulated environment, these controllers are implemented in the actual ex-perimental setup. This involves transferring optimized controller parameters into Pythoncode embedded on a Raspberry Pi and integrating them with the physical microfluidicsystem. This streamlined process reduces the resources needed for controller tuning, re-sulting in optimal controller performance. Detailed description of the framework can befound in Appendix 3, Section II-B-2.

38



Figure 16: Dual-PID Control Strategy for Microfluidic Droplet Generation. Inner feedback loops (gray
background) and an outer feedback loop for regulating pressure and droplet size, respectively.

3.2 Methodology: Experimental setup and Data collection

The experimental setup, known as the CogniFlow-Drop system and shown in Figure 17a, isan automated prototype for generating droplets. It includes several integrated modulesand components such as Bartels Mikrotechnik micropumps, a PDMS microfluidic chip,optical imaging with pressure sensors, the main controller (Raspberry Pi), and the fluidsinvolved.
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Figure 17: (Top) Prototype assembly: (1) Electronics module with power supply (a) pump driver and 
pressure sensor (b) RPi4B with ADC and optical sensor circuit (c) copper plates. (2) Sensorics mod-
ule featuring photodiode and lens (a), microfluidic chip mount (b), and light source mount (c). (3) 
Fluidics module with pump mounts (a) foam-padded enclosure (b) containers for sample, reagent, 
and product (c). (4) Enclosure with 3D printed walls and wooden base plate for stability (Bottom)
(A) Automated generation of user-defined droplets, collected for downstream manipulation. (B) In-
terconnect blocks and communication flow within the CogniFlow-Drop System [94].
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   Communication between the main controller (Raspberry Pi) and the pump controller 
(ESP32 DevKitC) is facilitated via a USB cable, enabling both data exchange and power 
transfer. Feedback from pressure sensors is crucial for both PID controllers on the ESP32 
DevKitC and the Raspberry Pi to ensure synchronized control and accurate regulation of 
pressure and droplet size during experiments.The inner feedback loop PID controllers calculate pressure targets for the outer PID controller, enabling coordinated control of the system. Additionally, optical feedback sig-nals undergo signal processing stages before being used for droplet control, including fil-tering, amplification, and digitization for droplet size measurement. For clarity on the in-terconnect blocks for the functionalities and communication flow, Figure 17b illustrates the setup. With the CogniFlow-Drop system, the study introduces the dual-feedback control strategy to enhance the reliability and reproducibility of droplet generation. For detailed information about the experimental setup, please refer to Appendix 3.In this iteration, the focus shifts to controlling pressure within the system, rather than fine-tuning droplet sizes as previously done in Chapter 2, Section 1.2. However, both strategies ultimately aim for practical implementation, albeit in different setups: here, within a physical experimental environment rather than a simulated one. This version of the experimental setup, labeled as V2, boasts enhanced features in pump control, offer-ing more customization compared to its predecessor. Detailed differences between the setups are explained in Appendix 3, Section II-B-2.For data collection, slight adjustments have been made to the experimental condi-tions. Key to this iteration are three pressure sensors strategically placed at inlet and outlet points on the chip. These sensors, models MPRLS0015PG0000SA for inlets and MPRLF0250MG0000SA for the outlet, provide real-time feedback on pump output and chip pressure, respectively, at a sampling rate of approximately 166 Hz. The micropumps utilized are Bartels Mikrotechnik’s mp6 model. Experiments involved driving voltage tests across three chip variants with different junction widths of 90 µm, 125 µm, and 240 µm. The voltage settings range from 25 V to 250 V, increasing by increments of 25 V. Pressure data is collected over one minute at each voltage step and averaged to establish steady-state values for both water and oil phases. Any unwanted transients or spikes in the experimental data were eliminated using median filtering in MATLAB. Subsequently, the experimental data were used to model the system dynamics for the chip variants.
3.3 Results and Discussions
3.3.1 System modeling and GA tuningThe droplet generation experiments conducted with three chip variants, each featuring unique junction widths, provided insights into their impact on pressure dynamics. De-spite variations in chip geometry, a consistent relationship between applied voltage and resulting input pressure across all variants was observed (Figure 16). However, nuances in the correlation between pressure differentials across the chip and pumping voltages were encountered and quantified through the voltage-to-pressure coefficient (Cvp). To address these nuances, coefficients (Cvp) derived were integrated into the controller design, tailoring the control strategy to account for chip differences.
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(a) (b)

(c)

Figure 18: Pressure drops vs. peak-to-peak voltages for chip variants with different cross-junction
widths: 90 µmwithwith water pump (a)125 µmwith oil pump (b), and 240 µmwithwater pump(c).
Nuances across the chip variants quantified through the voltage-to-pressure coefficient (Cvp)

MATLAB were utilized to transform these relations from experiments into Transferfunctions. These models, namely t.f.pwat for the water pump, t.f.poil for the oil pump,and t.f.chip90 for chip variant A (90 µm junction width), are transfer functions describingsystem dynamics.
t.f.pwat =

−17.42s+83.92
s+0.69

(11)

t.f.poil =
−8.40s+30.6123

s+0.216
(12)

t.f.chip90 =
19.40s−0.339

s+0.275
(13)

where t.f.pwat is the transfer fuction of the water pump, t.f.poil is the transfer func-tion of the oil pump, and t.f.chip90 is the transfer function of the chip variant with 90 µmjunction width.These models were then integrated into Simulink and coupled with the controller toestablish a closed-loop feedback system, facilitating controller design and tuning perfor-mance in a simulated environment.
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(a) (b)

(c) (d)

Figure 19: Genetic Algorithm (GA) TuningOutcome for Pressure Control: (a) IAE, (b) IE, (c) AllMetrics,
(d) result from controller gains adjustment based on IE and IAE outcomes tominimize overshoot and
oscillations

For pressure stabilization or control, two sets of PID parameters for the water pumpwere derived to achieve optimal performance. The first set (Kp = 1.89, Ki = 4.63, Kd =
6.09e− 5), derived from the Integral of the Absolute Error (IAE) performance index (Fig-ure 17), offered good long-term stability but exhibited approximately 10% overshoot. Con-versely, the second set of controller gains (Kp = 5.35, Ki = 6.42, Kd = 5.38e−5), derivedfrom the Integral of the Error (IE) performance index, resulted in minimal overshoot butslight oscillations around the target value. Hence, manual adjustment of controller gainsclose to those generated by the GA was made to address these. Similarly, appropriatecontroller gain values were determined for the oil pump using the same procedure. Fur-thermore, PID controller parameters achieved for droplet size control in chapter 2, section2.2 further analyzed.

Importing these parameters into the system necessitated minor refinements of thecontrol parameters, as while target pressure values were achieved, they were accompa-nied by oscillations by the mean values. This difference between simulated and exper-imental outcome could be due to variations in real-time environmental conditions andcomponent tolerances that could not be easily accounted for in simulations. Thus, adjust-ing the control parameters in real-setup was necessary. However, the adjustments werestill close to the GA-generated parameters. Table 7 presents a comparison of controllergains between the simulations and the final experimental setup implemented.
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Table 7: PID Controller Gain Comparison: Simulation vs. Modified for Experimental Setup

Controller Parameter Simulation Value Experimental
Setup Value

Pressure control water pumpdriver PID kvals Kp: 1.05; Ki: 6.07;
Kd : 1.64e-05

Kp: 2; Ki: 6.0; Kd :0.001oil pump driverPID kvals (Kp: 5.35; Ki:6.42; Kd :5.8e-5)
(Kp: 4.0; Ki: 6.0;
Kd : 0.01)

Droplet size
Control

water pumpdriver PID kvals Kp: 0.069; Ki:0.075; Kd : 0.0001
Kp: 0.05; Ki:0.05; Kd : 0.0005oil pump driverPID kvals Kp: 0.074; Ki:0.065; Kd :0.00043
Kp: 0.05; Ki:0.05; Kd : 0.0005

3.3.2 Results of PID Implementation for Pressure Control
The performance of the dual PID control strategy was compared to a traditional exper-imental setup using syringe pumps. Notable differences in response time and stabilitywere observed. Specifically, the dual control strategy demonstrated a faster pressure sta-bilization time (10 s) compared to the syringe pump-based setup (120 s). These resultsare illustrated in Figure 20(a-b). This represented a 12-fold reduction in pressure stabiliza-tion times compared to syringe pumps. Importantly, the stability time closely resembledresults from the simulation setup, as depicted in Figure 19 above. Additionally, it success-fully generated monodisperse droplets with coefficients of variation (Cvs) between 5% -10% in the ∼50 µm - 200 µm droplet diameter range, maintaining comparable dropletgeneration to state-of-the-art.

(a) (b)

Figure 20: Pressure Stabilization Time Comparison (a) Dual PID control: 10s stabilization time vs. (b)
Syringe pumps: 120s.

3.4 Simulations aiding development of an empirical model
Flow simulation has been instrumental in understanding the dynamics of droplet genera-tion. A key challenge was accurately representing the complex three-dimensional experi-mental setup in simplified two-dimensional simulations.To address this challenge, discussions in the study’s simulations centered on a droplet-volume-based equivalence condition. An auxiliary parameter, termed "effective depth"
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(Heff), was introduced to approximate the third dimension in 2D simulations. This aimedto ensure that simulated droplet volumes closely matched experimental observations.Furthermore, an empirical model for predicting droplet generation rate was devel-oped. It utilized a simple three-parameter set for predicting droplet generation in a spe-cific application case, where droplet sizes ranged from 50 to 70 micrometers and dropletgeneration rates ranged from 500 to 1500 per second. Formore details on this implemen-tation, refer to Appendix 4.
3.5 Conclusion
By transitioning from simulations to real-world experimental setups, this study hasdemonstrated the feasibility and effectiveness of utilizing simulation-based control strate-gies. In Publication III, the implementation of a Dual-PID Control Strategy showcases anovel approach to microfluidic control, integrating pressure and droplet size regulationinto a unified framework. Through systematic controller design and tuning, informedby simulations, precise control over pressure and droplet size was achieved in experi-mental setups. The Dual-PID Control Strategy exhibited superior performance comparedto traditional syringe pump-based setups, with significantly faster pressure stabilizationtimes and enhanced droplet generation stability. Publication IV delves into the detailedphysics-based simulations that underpin the development of an empirical model fordroplet generation. By addressing the challenge of accurately representing the complex3D experimental setup in simplified 2D simulations, the study introduced the conceptof effective depth (Heff) to approximate the third dimension. In summary, the synergybetween simulation-based and experimental explorations offers a comprehensive under-standing of droplet generation dynamics, bridging the gap between theoretical insightsand practical applications for droplet control.
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4 DEEP REINFORCEMENT LEARNING PROXIMAL POLICY OPTI-
MIZATION ALGORITHM FOR DROPLET SIZE CONTROL

This chapter shifts from traditional closed-loop systems to machine learning, specificallydeep reinforcement learning (DRL). This shift is prompted by the limitations of conven-tional control methods, which rely heavily on precise, explicit modeling and often strugglewith the complex dynamics systems. Introducing DRL serves two main purposes: (a) ex-ploring model-free control and (b) leveraging machine-learning tools for enhanced adapt-ability and intelligence. Thus, based on Publication V, the study proposes integrating theProximal Policy Optimization (PPO) algorithm, a type of DRL, with a two-dimensional mi-crofluidic droplet generator fluid model.
Publication V:
Gyimah, Nafisat & Scheler, Ott & Rang, Toomas & Pardy, Tamas. (2023). Deep reinforce-ment learning-based digital twin for droplet microfluidics control. Physics of Fluids. 35.10.1063/5.0159981.
This proposed approach offers several novelties:
Integration of DRL and CFD in microfluidics: This integration enables the understand-ing and evaluation of ML building blocks and the sensitivity of ML training models to themicrofluidic setting efficiently. The goal is to facilitate practical implementation withoutextensive hyperparameter tuning or establishing training modalities from scratch.
Introduction of PPOAlgorithm: This study pioneers the investigation of the PPOalgorithmin microfluidics.
Robustness to External Disturbances Evaluation: The study examines the adaptability ofthe PPO agent to disturbances to assess its suitability for real-world scenarios.
Numerical model Verification against Experimental Data : The study verifies its dropletgenerator numerical model by replicating a previously published experimental model andcomparing the outcomes.Overall, the integration of DRL with CFD, combined with the utilization of the PPO algo-rithm, presents a novel approach to microfluidic control studies.

4.1 State-of-the-Art: Machine Learning for Microfluidics Control
Research on ML control in microfluidics is still in its early stages, with only a few studiesconducted so far.For example, Dressler et al. [46] compared RL algorithms Deep Q Networks (DQN)and model-free episodic controller (MFEC) to human performance. The goal was to con-trol the fluid interface and achieve a target droplet size. They found that both algorithmssurpassed human operators, with DQN excelling in long-term and complex experiments,while MFEC was better suited for short and simple tasks. Similarly, Abe et al. [95] utilizedan RL algorithm to control micro-valves in peristaltic pumps, enabling various flow condi-tions such as flow switching and micro-mixing. Furthermore, Lee et al. [96] addressed aflow sculpting problem using an RL algorithm, where their agent learned different solu-tions for manipulating fluid flow shapes.However, prevailing research [46, 96, 97] in this domain has mainly relied on discretecontrol actions, which may not fully exploit the continuous nature of flow dynamics inconventional microfluidics [98, 99]. Discrete control actions involve predefined, distinctactions that the system can take, typically resulting in stepwise changes in control inputs
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[100].While effective for some applications, discrete control actions may pose limitationsin scenarios where precise adjustments are required. Furthermore, discretization of theaction space can introduce quantization errors and lead to challenges in effectively rep-resenting the continuous nature of the underlying physical processes. For microfluidicsystems where droplet size regulation demands fine-tuned adjustments, discrete controlactions may lead to suboptimal performance. Therefore, the study proposes the use ofequally advanced control techniques that can operate in continuous action spaces.In continuous space control [101], the controller operates directly in a continuous ac-tion space, allowing for smooth and precise adjustments of control inputs. Unlike discretecontrol, continuous control actions enable the system to make infinitesimal adjustments(often within bounds), providing greater flexibility in regulating complex processes suchas droplet formation in microfluidic devices. Additionally, continuous control actions canensure a faithful reproduction of flow dynamics.While implementing such continuous control algorithms in physical experiments mayinitially pose challenges, technological advancements can mitigate these issues, makingthem feasible even in resource-limited setups. Additionally, control strategies and sensorfusion techniques can help mitigate the sensitivity of continuous control actions to noiseand disturbances [102].Among the advanced continuous space techniques, PPO [103] stands out as a state-of-the-art algorithm for continuous control. PPO optimizes policies by interacting withenvironments to maximize rewards over time. It works by iteratively updating policy pa-rameters to improve performance while ensuring stability through a constraint mecha-nism. Also, its effectiveness in balancing exploration and exploitation, making it suitablefor various applications. Though originally designed for continuous control, PPO can alsoadapt to discrete action spaces [103]. Despite being unexplored in microfluidics, PPO hasdemonstrated remarkable success in related fields, such as active flow control in turbu-lence [104, 105, 106], suggesting its potential effectiveness in microfluidics. As a result,the PPO algorithm is proposed.
4.2 Methodology
4.2.1 Implementation Framework & Flow ModelingThe implementation framework, as shown in Figure 21b, involves the interaction betweena PPO agent and the fluidic environment, with the objective of controlling droplet size.The environment comprises an FFD microfluidic model used in previous chapters, witha junction width of 0.09 mm. Flow characterization is achieved using point probes po-sitioned at various locations within the channel (Figure 21a). In practical setups, theseprobes can be replaced with pressure sensors connected tomicrochannels via connectingtubes.
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(a)

(b)

Figure 21: (a) Droplet Control Framework. (a) Critical flow area of FFD with pressure-sensing probes
indicated by red dots. Droplet interface defined by volume fraction function at 0.5. (b) Implemen-
tation framework: PPO agent interacts with the fluidic environment. The agent monitors pressure
data and outlet droplet size, adjusts oil inlet pressure, and earns rewards based on proximity to the
target droplet size and size variability.
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Both microchannel pressure and droplet diameter serve as environment observations forthe PPO agent. By incorporating droplet diameter alongside pressure measurements, themodel indirectly accounts for the effects of other parameters, such as interfacial tensionand viscosities. The agent utilizes these sensed parameters, adjusts the oil inlet pressureas actions, and receives rewards based on the proximity of droplet size to a target value.The PPO algorithm operates on an episode level within the flow environment, witheach episode comprising multiple time steps. At each time step, the agent observes thecurrent state, selects an action, and receiving a reward [107]. The reward mechanism isused to incentivize the agent to reach the target droplet size with minimal variation. Ad-ditionally, penalties are enforced when the standard deviation of droplet sizes strays farfrom a predefined limit. To ensure exploration and effective learning, the agent incor-porates randomization by sampling actions from a Beta distribution during episode initi-ation, promoting exploration of the entire state-action space. Two neural networks areemployed by the algorithm: an actor-network responsible for selecting actions based onthe current state, and a critic network that evaluates the value of different actions takenby the agent [108]. The flow environment is established using OpenFOAM software, withParaView utilized for numerical result visualization [109]. The implementation of the PPOalgorithm is carried out in the PyTorch platform [110]. CFD (OpenFOAM) +DRL(PyTorch) in-tegrations is established through a Singularity image incorporating PyTorch’s precompiledC++ library [107].The fluid dynamics were simulated using the VOF method, tracking volume fractionsof different fluids in discrete cells while solving conservation equations for mass and mo-mentum for each phase [111, 112, 113]. Surface tension effects were considered crucialfor precise droplet formation control in microfluidics [114]. The VOF method accuratelydepicts droplet dynamics with precise fluid boundaries by employing high-resolution in-terface tracking [113, 115]. The VOFmethod solves governing equations on the assumptionof incompressible two-phase fluids. These equations encompass continuity, momentumbalance, and volume fraction equations;
∂α

∂ t
+∇ · (αu) = 0 (14)

and a denotes the volume fraction function.To improve the accuracy of phase boundaries and reduce numerical diffusion, an arti-ficial interface compression velocity, ur is introduced.
∂α

∂ t
+∇ · (αu)+∇ · (ur(α(1−α))) = 0 (15)

ur influences the interface only where 0 < a < 1, defined as:
ur = min(Ca|u|, max(|u|−Ca|r ·∇α|,0)) (16)

Here, the compression coefficientCa regulates the extent of compression at the interfaceand typically spans from 0 to 4, with Ca = 1 commonly utilized in microfluidics studies.Elevated values of can lead to increased nonphysical spurious currents, potentially intro-ducing numerical modeling inaccuracies.[116, 117, 118, 119].As previously, the continuous phase fluid is composed of HFE 7500 (oil) with a 2%w/w PFPE-PEG-PFPE surfactant, while the dispersed phase is deionized water. Both thecontinuous and dispersed phases demonstrate Newtonian fluid characteristics, with theircorresponding material attributes detailed in Table II of Appendix 5.
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In OpenFOAM, themulti-dimensional limiter (MULES) technique was employed to en-sure that the volume fraction field remains within the range of 0 to 1 throughout the sim-ulation, as described by reference [120, 121]. The momentum and continuity equationswere solved using the PIMPLE algorithm, which is discussed in detail in reference [122].Temporal terms were discretized using a first-order Euler approach, and divergence termswere managed utilizing the Gauss linear method. Additionally, gradient and Laplacian ex-pressionswere discretized by employing the leastSquares andGauss linear techniques, re-spectively. To maintain numerical stability, automatic adjustments to the time step wereimplemented based on the maximum Courant number (MaxCo), restricted to 0.5, andthe permissible maximum Courant number for the phase-fraction transport equation (Al-phaMaxCo), limited to 0.25, as referenced in [119].
Boundary conditions were applied, including a constant total pressure of 0 at the out-let, a steady pressure of 6000 Pa at the inlet of the dispersed phase, and a customizedpressure boundary condition at the continuous phase inlets based on the current net-work parameters of the DRL algorithm. Additionally, a no-slip constraint was applied atthe solid wall, maintaining a constant fluid-wall contact angle of 135°. Mesh generationutilized blockMesh and snappyHexMesh tools in OpenFOAM, and was primarily made ofhexahedral cells. A refined region was defined at the fluid intersection to capture flowphysics accurately. Its dimensions were determined based on the width of the oil inletchannel, set to 15D5.5D3.4D, centered 5D2.3D1.7D from the microchannel junction. Later,mesh studies in the results section were conducted to identify the optimal mesh proper-ties.

4.2.2 Near real-time Droplet Size Estimation
Real-time or regular interval droplet size estimation is crucial for providing timely andprecise feedback to the DRL algorithm, which relies on this data to learn and adapt itscontrol policy based on observed droplet dynamics.

Droplet size estimation utilizes volume fraction function data stored in the fluid envi-ronment solver during simulation runs. Post-processing of this data occurs at each timestep or regular intervals using OpenFOAM’s Python/C API and NumPy. It focuses on ana-lyzing the volume fraction function derived results during simulation runtime at specifiedtime intervals.
Sampling criteria and output file formatting are established using the Sets function ob-ject within OpenFOAM [108]. 1000 data points along a sampling line at the outlet channelsymmetry line is collected. These data points are then stored in raw ASCII format at 0.5msintervals for further analysis.
During post-processing, an external Python script executed through the Function Ob-ject systemCall creates data arrays representing the water droplet interface, defined asa volume fraction exceeding 0.5. Droplet size estimation is performed by computing thedistance between continuous water interface locations, excluding the final droplet’s sizefrom calculations based on both experimental observations and simulations, which revealinconsistent, full formation.

4.2.3 PPO Algorithm Theory and Implementation
DRL combines deep learning with RL, where deep learning processes sensory input vianeural networks, enabling RL algorithms to approximate optimal policies or value func-tions in high-dimensional state spaces.

Meanwhile, model-free DRL approaches like PPO involve direct interaction betweenthe agent and the environment, bypassing explicit environmental modeling. Agents aim
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tomaximize cumulative rewards by observing partial environmental states. In PPO’s actor-critic architecture, the algorithm simultaneously approximates both the state-value andaction-advantage functions. The actor(policy) network estimates the action-advantagefunction, which evaluates the advantage of taking a specific action in a given state com-pared to other available actions.This function assists the agent in selecting actions thatlead to the highest potential rewards in a given state. Meanwhile, the critic(value) networkestimates the state-value function, which estimates the expected return that an agent canachieve from a given state. This combined approach allows the agent to effectively learnpolicies(i.e. the control strategy). Figure 22 provides a visual illustration of the opera-tion of the PPO. Representing the value function with a nonlinear function approximatortypically involves addressing a nonlinear regression challenge [107].

Figure 22: PPO algorithm flow.Visual representation of the PPO (Proximal Policy Optimization) al-
gorithm with policy-value (actor-critic) architecture. The Value Network evaluates action values,
guiding policy updates by estimating advantages through the Generalized Advantage Estimation
(GAE). The Plicy Network determines policy, updated via Actor Loss to maximize expected rewards.
The Critic Loss updates the Critic Network based on observed rewards. Rewards, states, and actions
are pivotal in driving learning, while trajectories stored in the Replay Buffer facilitate efficient expe-
rience replay

minimize
φ

N

∑
n=1

∥∥Vφ (sn)− R̂t
∥∥2 (17)

Vφ (sn) represents the state value derived from the value network with parameters φ . Theindices n pertain to all time steps in a batch of trajectories. R̂t denotes the sum of rewardsfrom time step t = l to the conclusion at t = T .
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R̂t =
T

∑
l=0

γ
lrt+l (18)

The value network is adjusted through back-propagation of value loss to estimate thestate-value function. This process involves updating the value network’s parameters φfrom φk to φk+1, aiming to reduce the disparity between collected trajectory data andthe network’s predictions. Subsequently, the mean-squared error is computed, averagingacross all trajectories.
value loss= 1

|Dk|T ∑
τ∈Dk

T

∑
t=0

(
Vφ (st)− R̂t

)2 (19)

Parameter updating step : φk+1 = argmin
φ

1
|Dk|T ∑

τ∈Dk

T

∑
t=0

(
Vφ (st)− R̂t

)2 (20)
where Dk is the number of trajectories taken from the memory to facilitate updates.By the actor network, the action-advantage function assesses whether the action issuperior or inferior to the policy’s default behavior. In this research, Generalized Advan-tage Estimation (GAE) is applied using the temporal difference method (T D− λ ). Theestimation of the action-advantage function is expounded as:

δ
V
t = Rt + γV (st +1)−V (st) (21)

δV
t signifies the evaluation of the action-advantage function for a given action whereasthe advantage function is tailored for k-stepBy the actor network, the action-advantage function assesses whether the action issuperior or inferior to the policy’s default behavior. In this research, GAE is applied us-ing the temporal difference method (T D− λ ). The estimation of the action-advantagefunction is expounded as:

Â(k)
t :=

k−1

∑
l=0

γ
l
δ

V
t+1 =−V (st)+ rt + γrt+1 + · · ·+ γ

k−1rt+k−1 + γ
kV (st+k) (22)

Â(k)
t estimates discounted advantages across k-steps. GAE, with parameters γ and λ ,is the exponentially weighted average of these k-step estimates.

ÂGAE (γ,λ )
t : = (1−λ )

(
Â(1)

t +λ Â(2)
t +λ

2Â(3)
t + . . .

)
=

∞

∑
t=0

(γλ )l
δ

V
+1

(23)

ÂGAE (γ,λ )
t represents GAE for action at . Parameters λ and γ balance bias and variance.

Policy loss= 1
T

T

∑
t=0

πθ (at |st)

πθk(at |st)
Ât (24)

Policy optimization utilizes the policy gradient computed via GAE to adjust the parametersof the policy network through minimizing the policy loss via back-propagation.
πθ (at |st) signifies the log probability of action at for state st under policy π parameter-ized by θ . πθk denotes the previous policy. To ensure that the new policy does not deviatesignificantly from the previous one, the policy loss is clipped.
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L(s,a,θk,θ) = min
(

πθ (a|s)
πθk(a|s)

Aπθk (s,a),g(ε,Aπθk (s,a))
)

(25)

The clipped policy loss, referred to as L(s,a,θk,θ), is regulated by the epsilon param-eter ε .
Where,

g(ε,A) =

{
(1+ ε)A A ≥ 0
(1− ε)A A < 0

PPO ensures policy stability by employing a clipped surrogate objective, penalizingpolicy updates deviating too much from the old policy. The clipped surrogate objective isdefined as:

LCLIP(θ) = Et [min(rt(θ) ·Aadv
t (st ,at),clip(rt ,1− ε,1+ ε) ·Aadv

t (st ,at))] (26)
where

• rt(θ) =
πθ (at |st )

πold
θ

(at |st )
is the ratio of the probability of taking action at under the new

policy to that under the old policy.
• ε is a hyperparameter that controls the extent of policy clipping
The pseudo-code of the implementation can be found in Algorithm 1. The networksparameters in Table 8 and hyparameters for training PPO can be found in Table 9

Algorithm 1 PPO-Clip
1: Input: initialize policy parameter θ0, initialize value function parameters φ02: for k = 0,1,2, . . . do
3: Get trajectories Dk = {τi} by simulating policy πk = π (θk) in the flow model.
4: Calculate rewards R̂t .5: Calculate estimated advantage , Ât based on the current value functionVφk .6: Policy adjusted to maximize PPO-Clip :

θk+1 = argmax
θ

1
|Dk|T ∑

τ∈Dk

T

∑
t=0

min
(

πθ (at | st)

πθk (at | st)
Aπθk (st ,at) ,g

(
ε,Aπθk (st ,at)

))
,

done via Adam optimizer.
7: Fix the value function using mean-squared error regression:

φk+1 = argmin
φ

1
|Dk|T ∑

τ∈Dk

T

∑
t=0

(
Vφ (st)− R̂t

)2
,

8: end for
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Table 8: Neural Network(NN) Architechture

Parameter Actor (policy network) Critic (value network)Activation function ReLU (Rectified Linear Unit) ReLUNeuron number in input layer 81 (pressure points + droplet size) 81 (pressure points + droplet size)Neuron number in hidden layer 128 128Number of hidden layer(s) 1 1Neuron number output layer 2 (α and β for a Beta distribution) 1 (Vφ (sn))Learning rate 0.001 0.00075

Table 9: Parameter Values/Details for DRL Training

Parameter Value/DetailsGamma (Discount Factor) 0.99Lambda (Coefficient for TD-Lambda Method) 0.97Number of Sensors (Pressure Probes + Avg. Drop Size) n_sensor: 2Target Sizes (r1) Target sizesMeasured Droplet Size (r2) Mean measured droplet sizeDroplet Standard Deviation Limit (diastd) Standard deviation limitNumber of Workers (Parallelization) n_worker: 81Policy Optimization Epochs 80Policy Sample Ratio 1Policy Clip Range 0.1Policy Model Maximum Gradient Norm 1Policy Stopping KL 0.2Entropy Loss Weight 0.01Value Optimization Epochs 80Value Sample Ratio 1Value Clip Range InfiniteValue Model Maximum Gradient Norm 1Value Stopping MSE 25Main PPO Iteration Range 100-140Gradient-Based Optimization Method Adam OptimizerTraining Episodes 140CPU Processors 4 (Contemporary PC) / 32 (HPC)Simulation Time Step (tsim) 0.5 msControl Time Step Factor (k) 20Tolerance for Standard Deviation 1e-6Penalty Applied at Diastd YesAction Bounds (Pressure) (4500, 7000)
PPO implementation involved running two simulations concurrentlywith twoworkers,storing results in a replay buffer for each, totaling 140 episodes per worker. Simulationcommenced by running fluid flow simulations without active control until a fully devel-oped flow, marked by at least one droplet formation at the outlet, was achieved. Thisinitial setup was saved and reused to commence training. a time delay was introducedbetween droplet size measurements and control actions to enhance stability. The controltime step for the agent set as a multiple (k = 20) of the simulation time step (∆tsim).The reward function Rt assigns a value of -1 if the absolute difference between thetarget droplet size and the current mean droplet size exceeds a threshold value of 20×
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10−6. If not, it offers a positive reward proportional to the proximity to the target size.Furthermore, deviations in droplet size standard deviation from a predefined diastd of 30mincrometers are penalized. Ultimately, the reward perceived by the agent is boundedbetween -1 and 1.
Rt =

{
−1 if val > 20×10−6

r1 − val /r1 −0.002×Penalty otherwise (27)
Here, val represents the absolute difference between the target droplet size r1 andthe mean current droplet size r2. More details on the implementation can be found inAppendix 5, Section II.

4.3 Results and Discussion
4.3.1 Mesh Independence Studies and Model Verification
The model mesh, depicted in Figure 23(a), was used for the mesh study. It involved cre-ating eight grids with different settings in snappyHexMesh. By adjusting snappyHexMeshparameters like feature edge and volume region refinement levels, the mesh resolutionwas controlled at sharp edges and inside the domain. The refinement region, describedin Subsection II A, was also present in all eight grids. Mesh assessment focused on dropletinterface sharpness, average droplet size, and detachment time (as displayed in Figure23(b)). Coarser grids (M1-M3) showed a diffuse droplet interface, compromising accuracyin droplet size estimation. Finer grids (M4 –M8) demonstrated improved droplet interfacesharpness. Notably, meshes with over 15,000 elements yielded nearly identical dropletdiameters and detachment times.

(a) (b)

Figure 23: ComputationalMeshOptimization.(a)Mesh refinement in gradient-rich areas.(b) (Top) Vi-
sualise droplet interface sharpness per mesh (Bottom) Evaluation across meshesM1 toM8 considers
interface sharpness, droplet length, and detachment time. Optimal mesh, M6, balances sharpness
and grid independence.

Further refinement beyond M6, achieved through a finer background mesh, providedmarginal improvements at a notable increase in computational costs, as indicated by the
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computational times in Table III of Appendix 5. Thus, MeshM6, with a feature edge refine-ment level of 2 and volumetric refinement level of 5, is identified as the optimal optionfor further simulations.
Further, the study verifies the numerical model’s accuracy by comparing it with ex-perimental data from Wu et al. [103] concerning water droplet formation in Freol ALPHA10G oil. The verification replicates Wu et al.’s droplet generation setup and assesses themodel’s performance across the same velocities: dispersed phase velocities ranging from0.00042 m/s to 0.00252 m/s and a fixed continuous phase velocity of 0.00252 m/s. Thegeometry employed was a flow-focusing device, referenced in their work.
Comparing simulation outcomes with experimental data, as shown in Figure 24, re-veals favorable agreements. The numerical model generally exhibits errors of less than7%, except at 0.00126 m/s, where the error increases to 11%. Previous studies using theVOF method have reported acceptable errors ranging from 10% to 18% [123, 124]. Differ-ences in droplet sizes observed between this study and Wu et al.’s could be attributed tothe distinction between 2D simulations and the 3D FFD device. Nonetheless, the modelshowcases errors of under 11% across all velocity ratios. These verification results affirmthe reliability of the numerical model, supporting its suitability for exploration of dropletcontrol.

Figure 24: Comparison of Simulation and Experimental Model. (Top) Replicated experimental model
with numerical model (colored) vs. Wu et al.’s experimental model (gray). (Bottom) Plot of droplet
length vs. dispersed phase velocity at constant oil velocity of 0.00252m/s. Strong agreement, errors
< 7%, except at 0.00126 m/s (11%).
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4.3.2 Environment Characterization and Probe ConfigurationTo define upper and lower bounds for the agent action space, the study characterized theenvironment without control. By keeping the water pressure constant at 6000 Pa, theimpact of pressure ratios (Pw/Poil) ranging from 0.33 to 1.67 on droplet size was evaluated.Figure 25a illustrates the mean droplet size, and the coefficient of variation (CV%).In Figure 25b, it’s observed that the droplet size initially increases with rising pressureratios until the water pressure matches the oil pressure (Pw = Poil). After this point, theCV% consistently decreases. However, droplets with an average size ranging from 55 µmto 88 µm exhibited CV% values exceeding the desired threshold of 5%. This range ofsizes with CV above 5% highlights the necessity for control to maintain consistent dropletsizes. Additionally, the study found that droplets were not produced beyond a pressureratio of 1.13 or below 0.75. Based on these observations, the lower and upper boundariesof the action space were set at continuous phase fluid pressures 4500 Pa and 7000 Pa,respectively.

(a)

(b)

Figure 25: Variations in Droplet Size (a) and Relationship between Pressure Ratio (Pw/Poil ) and
Droplet Size Variation (CV%). Droplet sizes ranging from 55 µm to 88 µm exceed the 5% CV thresh-
old, with action space boundaries at 4500–7000 Pa.

Moreover, the study investigates various configurations of sensor probes aimed at re-fining the precision of flow data collection. These probes capture pressure readings atdiscrete time intervals, providing feedback to the PPO algorithm. Five unique sensor se-tups, denoted as Probe Sets 1 through 5 (P1–P5), were subjected to evaluation, as depictedin Figure 26(a). P1 comprised 10 probes evenly distributed within the microchannel junc-
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tion, while P2 featured 20 probes distributed across both the junction and outlet. P3 andP4 consisted of 40 and 60 probes, respectively, positioned among the oil inlets, junction,and outlet. P5 incorporated 80 probes spanning all phase inlets, the junction, and outlet.These configurations were employed to train the agent to achieve a droplet size target of60 µm. The result portrays the assessment of pressure probe layouts (P1–P5) in PPO algo-rithm performance. Evaluation centered on the cumulative mean rewards (Figure 26(b)),achieved droplet size, and droplet size coefficient of variation (CV%) (Table IV Appendix5). Results revealed that P5 achieved the highest mean rewards, reaching 0.91 in the final10 episodes. It maintained an average droplet size of 60.05 µmwith a CV of 2% (Table IVAppendix 5), showcasing precise control over droplet size. Conversely, P1 and P2 exhib-ited the lowest negative mean rewards and significant deviations from the target dropletsize, indicating inferior control performance. While P3 and P4 garnered positive cumula-tive mean rewards, they did not attain the same level of performance as P5. As a result,the study emphasized that inadequate or imprecise input conditions could hinder systemperformance in closed-loop control scenarios. While increasing the number of probesenhances control effectiveness by providing sufficient flow field data for optimal learn-ing, expanding the probe count beyond the critical flow region, effectively covered by 80probes, is unlikely to significantly impact control performance based on flow dynamics.

(a) (b)

Figure 26: Pressure Probe Layouts (P1–P5) (a). Probe configurations assessed in training for target
droplet size of 60 µm. Mean rewards serve as performance indicator. P5, with 80 probes, achieved
the maximum mean reward of 0.91 upon convergence

4.3.3 PPO Performance in the Presence and Absence of Disturbances
As the primary focus of this study, the evaluation assesses the capability of the PPO algo-rithm to achieve specific droplet sizes withminimal variation in environments, particularlywithout external disturbances. Performance is gauged by analyzing the mean rewards ac-cumulated by the DRL agent across different mean droplet size targets (50 µm, 60 µm, 70
µm, and 80 µm), as illustrated in Figure 27. Evaluationmetrics includemean total rewardsacross all episodes and the rewards in the last 15 episodes, providing insights into learningeffectiveness and convergence. Results depicted in Figure 28 showcase the effectivenessof the PPO algorithm in achieving a range of droplet sizes, with rewards at convergenceranging from 0.63 to 0.92. convergence is observed after 80 episodes or simulation it-erations. For the target droplet size of 50 µm, the agent receives negative rewards only
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due to variance exceeding 20 µm. Effecting learning and convergence is seen after 80episodes or simulation iterations. The algorithm performs well across all tested dropletsizes but with different precision. Exceptional performance is observed for the 60 µmdroplet size, with the DRL agent achieving high rewards from the start of the episode toconvergence. The unsmoothness in rewards can be attributed to stochastic explorationduring episodes in the bid to cover the action space to learn the optimal policy. On theother hand, higher rewards throughout episodes of the testing phase are a result of theabsence of exploration. The optimal policy is applied for testing purposes, thus consis-tently yielding rewards exceeding 0.95.

(a) (b)

(c) (d)

Figure 27: PPO Algorithm Performance for Setpoints (a) 50 µm, (b) 60 µm, (c) 70 µm, and (d) 80 µm
based on Mean Rewards. Good control achieved with rewards from 0.63 to 0.92 at convergence.
Higher rewards during testing due to optimal policy utilization without exploration. Plot smoothing
enhances clarity.

The actions taken by the agent, specifically the manipulation of oil pressure, in pursuitof achieving the various droplet targets are presented. Figure 28 illustrates the achieveddroplet size characteristics alongside the actions taken to reach them. Analysis of Figure28(a-d) reveals that the agent successfully achieves the mean droplet size targets, with aCV of less than 5% in each case. Further, a comparison with the scenario without control(open-loop) indicates that the actions taken by the PPO agent resulted in a reduction inCV by 2.6%, 4.72%, 3.6%, and 0.8% for target sizes of 50 µm, 60 µm, 70 µm, and 80 µm,respectively.
59



(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 28: PPO Agent Droplet Size Control Outcomes. Mean droplet size and CV% achieved for
droplet sizes (a) 50 µm, (b) 60 µm, (c) 70 µm, and (d) 80 µm through manipulation of oil pres-
sure by the DRL agent, corresponding to ((d)-(f))
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The control actions in Figure 28 (e-h), stabilizing around corresponding pressure val-ues, i.e., 6546.98 Pa, 6465.00 Pa, 6251.56 Pa, and 5966.45 Pa for 50 µm, 60 µm, 70 µm,and 80 µm, respectively. Additionally, it is observed that better pressure stability, as seenin (e), results in smoother convergence in (a). In conclusion, the assessment of the PPOalgorithm’s performance underscores its effectiveness in achieving precise droplet sizeswith minimal variation in environments devoid of external disturbances, demonstratingits capability to successfully achieve andmaintain varying droplet size targetswith remark-able precision.Finally, the study assesses the adaptability of the agent to external disturbances. Theproperties of these disturbances are guided by references [125, 126, 127, 128]. Distur-bances in the formof periodicmechanical vibrations are simulated as fluctuations inwaterpressure via sine wave functions. Three sine wave functions were simulated, varying infrequency (10 Hz, 100 Hz, 10000 Hz) and amplitude (50 Pa, 100 Pa, 500 Pa) around theaverage water pressure value of 6000 Pa. To evaluate the trained DRL agent’s adaptabil-ity, the final policies derived from training the agent in an undisturbed environment weretested in the disturbed environment. Figures 27 and 28 illustrate the applied disturbances,the resulting droplet sizes, CV%, and rewards for a droplet size target of 50 µm, aligningwith the evaluation criteria utilized in undisturbed conditions.In comparison to the disturbance-free condition, the CV% rose marginally from 2.28%to 3.75% in Disturbance A and from 2.28% to 2.61% in Disturbance B. Nonetheless, thedroplet size stayed near the target (CV < 4%), which is lower than the situation withoutcontrol (CV 6%).The delay before controller adaptation is approximately 10 episodes. Theagent adeptly managed disturbances up to an 8% rise in the mean amplitude pressurevalue it underwent training on, underscoring its adaptability. Disturbance C (10 Pa 50 Hz),featuring lower amplitude and frequency than other disruptions, notably influenced theenvironment, causing the droplet size distribution to mimic a sine wave pattern with ahigher CV of 5.5%. The agent could not effectively recover from this disturbance, high-lighting the need for retraining to effectively handle such scenarios. For larger amplitudesor disturbances with low frequencies, retraining was recommended. Figure 31 illustratesthe agent’s distinct control actions for each disturbance. In summary, the agent exhibitsadaptability and responsiveness within known disturbance limits.
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(a) (b)

(c) (d)

(e) (f)

Figure 29: Agents’ Adaptability to Disturbances A (500 Pa, 10 kHz) and B (100 Pa, 10 kHz). Despite
slight CV% increases (A: 2.28% to 3.75%, B: 2.28% to 2.61%), droplet size remains near target (CV<
4%), unlike uncontrolled scenarios (CV∼ 6%). The controller adapts after 10 training episodes/iter-
ations, handling up to 8% disturbance amplitude rise (CV< 5%), highlighting adaptability
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(a) (b)

(c)

Figure 30: Agent’s response to Disturbance C (10 Pa, 50 Hz), revealing (CV< 5%), inability to recover
from induced disturbance. Retraining recommended

Figure 31: Distinct control actions of the DRL agent in response to disturbances A, B, C.
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4.4 Summary
This study utilized Deep Reinforcement Learning (DRL) with the Proximal Policy Optimiza-tion (PPO) algorithm alongside a two-dimensional computational fluid dynamics (CFD)model to achieve closed-loop control in microfluidics. The primary objective was to attainthe desired droplet size with minimal variability in a microfluidic capillary flow-focusingdevice. An artificial neural network was employed to map sensing signals, such as flowpressure and droplet size, to control actions, specifically adjusting the continuous phaseinlet pressure.To validate the numerical model’s accuracy and reliability, the study conducted veri-fication against experimental data, which yielded favorable agreement, with errors gen-erally remaining below 11%. This affirmed the model’s reliability for droplet control ex-ploration. Moreover, mesh independence studies resulted with Mesh M6 as the opti-mal choice for balancing sharpness and grid independence. In the subsequent phase, theevaluation focused on understanding the impact of pressure ratios on droplet size andoptimizing sensor probe configuration.Furthermore, the study comprehensively assessed the performance of the PPO algo-rithm in both stable and disturbed environments. The algorithm effectively achieved spe-cific droplet sizes across various targets, demonstrating rewards at convergence rangingfrom 0.63 to 0.92. Notably, the PPO algorithm showcased improved control across differ-ent target sizes (ranging from 50 to 80 µm), maintaining a coefficient of variation (CV%)below 5% for all targets and outperforming scenarios without control. In the presenceof disturbances, the PPO algorithm exhibited adaptability within defined limits, allowingfor fluctuations of up to 8% in amplitude around the mean input, with minor impacts ondroplet size and control effectiveness. However, significant disturbances underscored theneed for retraining to ensure optimal performance.In summary, the integrated DRL-CFD approach demonstrated effectiveness in achiev-ing precise droplet control and adapting to changing environmental conditions, therebyadvancing microfluidic technology.
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5 CONCLUSION AND FUTURE WORK
5.1 Future research direction
A future study aims to build on previous research using the PPO algorithm. Its goal is tointegrate additional DRL algorithms to establish a benchmark for microfluidic-controllerdesign. The primary objective remains achieving precise control over droplet size. This isdone by utilizing the established CFD + DRL framework, which combines OPENFOAMwithPyTorch.Here, the focus lies in proposing the framework and providing a brief overview.Figure 32 offers a conceptual view of the framework. The newly introduced algorithmsinclude Deep Deterministic Policy Gradient (DDPG), Trust Region Policy Optimization(TRPO), and Double Deep Q-Network (DDQN). DDPG and TRPO excel in continuous ac-tion spaces, whereas DDQN operates with discrete action selection. Despite DDQN’sdiscrete nature, assessing its performance against other approaches will provide a clearevaluation. DDPG and PPO both utilize an actor-critic architecture to optimize policies formaximizing cumulative rewards, sharing fundamental similarities. However, their trainingprocedures and optimization objectives exhibit slight differences. PPO places emphasison policy enhancement through constraint-based optimization, while DDPG prioritizesvalue function approximation and policy gradient ascent. Additionally, TRPO adopts atrust region approach, constraining policy updates to keep the new policy close to the oldone within a defined region.

Figure 32: Conceptual view of the integrated DRL framework with PPO, DDPG, TRPO, and DDQN al-
gorithms for microfluidic-controller design benchmarking. Utilizes CFD + DRL framework combining
OPENFOAM with PyTorch. Each algorithm’s implementation involves customizing neural network
architectures. Training conducted on a duplication flow environment interface.

Although TRPO shares similarities with PPO, it directly enforces a constraint on the sizeof policy updates, aiming for more stable training by limiting policy changes. In contrast,PPO uses a clipped surrogate objective function to restrict the extent of policy updates byclipping the ratio between new and old policy probabilities. However, unlike the PPO algo-rithm, DDQN operates within discrete action spaces. DDQN is a variant of the Q-learning
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algorithm, made to tackle the overestimation bias experienced in traditional Q-learningmethods. DDQN enhances the original Deep Q-Network (DQN) by incorporating a sepa-rate target network for action selection during training. This addition aids in stabilizinglearning processes and mitigating overestimation errors.The implementation of each DRL algorithm entails customizing neural network archi-tectures to suit their specific requirements. The training process for each DRL model willbe conducted on a duplication flow environment interface. Overall, the research will offervaluable insights into achieving precise droplet size control with machine learning, con-tributing significantly to the advancement of microfluidic technology.
5.2 Conclusion
The primary challenge in dropletmicrofluidics is achieving andmaintaining precise controlover droplet size and uniformity. Traditionalmethods for controlling droplet size often relyonmathematical-empirical models andmanual tuning. Thesemethods face issues like ex-tended settling times, overshoots, and limitations in evaluating the full range of dropletsizes feasible for specific applications. Additionally, the reliance on accurate mathemati-cal models for classical closed-loop control introduces complexities that hinder adaptabil-ity. To address these challenges, this research proposes innovative strategies that inte-grate fluid dynamics modeling with real-time feedback control algorithms. By simulatingand optimizing controller designs in a simulation environment before experimental imple-mentation, the goal is to develop robust and adaptive control strategies. Therefore, thisresearch addresses the following questions(RQ):

• RQ1: How can a simulated system effectively evaluate the complete parameterspace and improve precision in droplet generation within microfluidic systems?
• RQ2: Can an optimal control solution developed for a simulated environment ofa flow-focusing junction be successfully implemented in an experimental dropletgeneration setup?
• RQ3: Ismodel-free control of droplet generation achievable throughmachine learn-ing techniques?
• RQ4: Which set of machine learning tools can facilitate robust, adaptable, and sta-ble control of droplet generation in microfluidic systems?

To address these questions, the following studies were conducted:
Closed-Loop Simulation of Microfluidic System Integrated with Proportional-Integral
(PI) Control (Publication I, addressing RQ1) : This study leverages COMSOL Multiphysicsand MATLAB via LiveLink to develop an automated feedback system for a microfluidicmodel. The PI controller adjusts the dispersed phase flow rate based on real-time mea-surements of droplet diameter. In open-loop scenarios, the system exhibits a coefficientof variation (CV) of approximately 15%, indicating significant deviations from setpoints of40 µm. However, in closed-loop feedback mode, the PI controller consistently maintainsa measured droplet size of 39 µm, reducing the CV to approx. 2%. Further evaluationsdemonstrated a diameter offset/error of less than 3% within the simulation time, achiev-ing a coefficient of determination (R2) value of 0.9937. This approach effectively addressesthe challenge of evaluating the complete parameter space of the controlled parametersacross a range of droplet sizes.
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Genetic Algorithm (GA) for PID Controller Tuning Optimization (Publication II, address-
ing RQ1 as support): This study explores the use of a Genetic Algorithm (GA) for tuningPID controllers inmicrofluidic systems to address the challenge of extended settling times,which is critical for applications requiring high throughput and precise control of dropletsizes. Existing literature on PID controller tuning methods, such as trial-and-error ad-justment and Ziegler-Nichols methods, highlights the issue of prolonged settling times inclosed-loop systems. These extended settling times can range frommilliseconds to severalseconds, underscoring the need formore efficient controlmethodologies. To optimize PIDcontroller parameters, GA is employed due to its robust search capabilities and suitabilityfor nonlinear systems. PID parameters are encoded as chromosomes within a populationand evaluated based on fitness criteria. MATLAB and Simulink facilitate dynamic model-ing of system components, integrating advanced system identification techniques crucialfor accurately representing pressure-drivenmicrofluidic setups. Results demonstrate thatGA-tuned PID controllers significantly reduce settling times and overshoot compared toconventional tuning methods. The GA approach achieves an overshoot of 0.5% and a set-tling time of approximately 0.088 seconds. In contrast, classical tuning methods typicallyyield longer settling times around 0.338 seconds with a higher overshoot of 1.5%. The op-timization process signifies superior performance in controller tuning by minimizing thetime required for the system to stabilize.
Dual-PID Control Strategy Implementation in Experimental Setup (Publication III, Ad-
dressing RQ2): In implementing the Dual-PID Control Strategy, a significant advancementinmicrofluidic controlmethodologieswas achieved by integrating pressure regulation anddroplet size control within a unified framework. Unlike conventional methods that treatthese variables separately, this strategy recognizes their interdependence, ensuring pre-cise control to enhance system performance and reliability. Initially developed and op-timized through MATLAB and Simulink simulations, the strategy enabled precise tuningof controller parameters before practical deployment using Python on a Raspberry Pi,effectively bridging the simulation-to-real-world gap. During practical implementation,minor adjustments were necessary to address oscillations around target pressure values.The implementation outcome included a remarkable reduction in pressure stabilizationtimes in the CogniFlow-Drop system from 120 seconds (typical with traditional syringepump setups) to just 10 seconds—a twelve-fold improvement. Moreover, the strategyfacilitated the production of monodisperse droplets with coefficients of variation (CVs)between 5% and 10% across a range of droplet diameters from approximately 50 µm to200 µm. Comparing simulations with real-world results, pressure stabilization times wereapproximately 20 seconds in simulations and 10 seconds in practical setups, underscoringthe strategy’s reliability and effectiveness in practical microfluidic applications.
Simulations aid the development of an empirical model (Publication IV, Addressing
RQ2 as support): The study highlights the challenge of accurately representing complexthree-dimensional experimental setups in simplified two-dimensional simulations. Toovercome this limitation, the introduction of the "effective depth" parameter (Heff) in2D simulations approximates the third dimension, ensuring simulated droplet volumescan closely align with real-world observations. Additionally, the study develops an em-pirical model for predicting droplet generation rates. This model incorporates a simplethree-parameter set tailored to forecast droplet generation under specific conditions,predicting droplet sizes from 50 to 70 micrometers and generation rates from 500 to1500 per second.
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Reinforcement Learning (DRL) Integration with CFD Models for microfluidic control
(Publication V, Addressing RQ3 and RQ4): Integrating Deep Reinforcement Learning(DRL) with Computational Fluid Dynamics (CFD) models marks a significant advancementin microfluidic control systems. Unlike traditional closed-loop systems that rely on ex-plicit mathematical models, this study adopts a model-free approach using the ProximalPolicy Optimization (PPO) algorithm within a two-dimensional CFD framework. PPO’scapability to handle continuous action spaces allows for seamless adjustments of controlinputs. Implemented with OpenFOAM and PyTorch integration, the PPO agent utilizesan actor-critic network to observe pressure and droplet size, adjusting inlet pressure andreceiving rewards based on objectives achieved. The numerical model validation againstexperimental data showed strong agreement between simulated and actual results, witherrors consistently below 11%. A notable achievement was achieving precise droplet sizecontrol, reducing the Coefficient of Variation (CV) from 4.72% to 0.8% across a range ofdroplet sizes (50 µm to 80 µm). The study also emphasized the PPO algorithm’s resilienceto external disturbances, maintaining mean droplet sizes close to targets even with pres-sure variations up to 8% amplitude, keeping the CV below 5%. However, it noted thatlarger disturbances or low-frequency fluctuations might necessitate model retraining forimproved performance. In conclusion, this study supports Research Questions 3 and 4by demonstrating the feasibility of model-free droplet generation control using machinelearning techniques, showcasing adaptability to disturbances.Overall, this research underscores the advancement towards more efficient and reli-able droplet microfluidics through innovative control strategies and computational tech-niques. Future directions may include further refinement of machine learning algorithms,integration of multi-scale modeling, and validation across broader ranges of operationalconditions to enhance robustness and applicability in diverse microfluidic environments.
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Abstract
Closed-Loop Droplet Size Control in Microfluidics
Droplet microfluidics is known for efficiently producing microdroplets in large quantities.However, maintaining consistent droplet size and uniformity is technically challenging.These difficulties arise from the complex nature of multiphase flow dynamics and the in-tricate relationships with input parameters. Long-term experiments are particularly sen-sitive to disturbances and pressure fluctuations, which can disrupt droplet uniformity andhave profound implications for scientific research, industrial processes, and biomedicalapplications. Inconsistent droplet sizes not only affect result reliability but also pose risksto critical tasks like single-cell analysis, polymerase chain reaction (PCR), and drug dis-covery screenings. Additionally, pressure fluctuations can cause damage to delicate cellstructures in cellular studies.To tackle the challenge of tuning droplet size, traditional methods like mathematical-empirical models and manual tuning have been proposed. More recently these arereplaced by automated closed-loop feedback systems, notably Proportional-Integral-Derivative (PID) controllers, which offer automation and precision. However, optimizingthese systems for microfluidic applications remains a challenge. This research presents anew approach to address these challenges by simulating and optimizing controller designsintegrated into microfluidic flow models before experimental implementation.Firstly, it deals with the limited evaluation of droplet size range for tunability by usinga simulation of a closed-loop feedback control of a microfluidic setup with a Proportional-Integral (PI controller). This system achieves better accuracy and consistency compared tothe open-loop scenario, reducing the variation in droplet size from 15% to 2% and closelymatching the desired size. Additionally, an evaluation of the complete parameter spaceof the PI-controlled system shows effective regulation of droplet size across various set-points.Secondly, the research confronts extended settling times and overshoot in traditionalcontroller tuning by proposing a PID controller tuned with a genetic algorithm (GA). GAtuning achieves enhanced performance in droplet size control, significantly reducing over-shoot and settling time compared to classical tuningmethods. Specifically, with GA tuningPI controller achieves a 100µm target droplet size with reduced overshoot (0.5%) and set-tling time (approx. 0.088s) compared to classical tuning (1.5% overshoot, 0.338s settlingtime).Thirdly, the challenge of transferring a control solution from a simulation environ-ment to an experimental setup is addressed through the CogniFlow-Drop system. Thisintegrated, modular, and automated droplet generation solution utilizes dynamic dual-feedback control strategy in experimental setting. This thesis contributes to the devel-opment of efficient controllers by initially designing them in a simulated microfluidicsenvironment and then transferring the optimized controller parameters to experimen-tal software implementation. This streamlines controller tuning which can be resource-intensive. The results show that the GA-generated controller parameters required minoradjustments for optimal performance in the real system, closely resembling simulated val-ues and minimizing tuning iterations. The proposed control framework was essential forachieving the desired outcome of a rapid pressure stabilization time of 10 seconds. This isin contrast to the 120 seconds needed with the syringe pump-based approach.Lastly, the study addresses the complexity and reliance on accurate mathematicalmodels in classical closed-loop control for microfluidics by proposing the integration ofthe Deep reinforcement learning (DRL) Proximal Policy Optimization (PPO) algorithmwitha two-dimensional Computational Fluid Dynamics (CFD) numerical model. Validation of
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the numerical model against experimental data demonstrated strong agreement, witherrors below 11%, verifying the model’s reliability in simulating droplet formation. TheDRL-CFD framework effectively regulated droplet size through manipulation of input inletpressure, supported by precise observation measurements. Additionally, optimizing theprobe layout for field pressure measurement enhanced control performance. The resultof the PPO algorithm is the CV% (Coefficient of Variation) reduction ranged from 0.8% to4.72% across droplet sizes of 50 µm to 80 µm, respectively. Further, the study evaluatedthe performance of the PPO algorithm in the presence of external disturbances, particu-larly periodic mechanical vibrations affecting droplet microfluidics systems. Disturbances,varying in frequency (10 Hz and 10 kHz) and amplitude (50 Pa, 100 Pa, and 500 Pa), influ-enced the behaviour of the agent. The agent effectively handled disturbances up to an 8%increase in the mean amplitude pressure value it was trained on. It maintained the meandroplet size close to the target with a CV below 5%, showcasing its adaptability. Retrainingis recommended for larger amplitudes or low frequency disturbances.Overall, the agent demonstrated effectiveness within specific disturbance limits, sug-gesting potential for robust control under varying conditions. Overall, the findings of thisresearch highlight the importance of innovative control strategies and simulation-basedoptimization techniques in advancing droplet microfluidics technology.
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Kokkuvõte
Suletud ahelaga tilkade suuruse juhtimine mikrofluidikas
Tilga mikrofluidikat kasutatatakse suurtes kogustes vesi-õlis mikrotilkade tegemiseks. Til-kade ühtlase suuruse säilitamine protsessi käigus võib olla aga tehniliselt keeruline. Needraskused tulenevad mitmefaasilise voolu dünaamika keerulisest olemusest ja keerulistestseostest sisendparameetritega. Pikaajalised katsed on eriti tundlikud häirete ja rõhukõi-kumiste suhtes, mis võivad häirida tilkade ühtlust ja avaldada sügavat mõju teadusuu-ringutele, tööstusprotsessidele ja biomeditsiinilistele rakendustele. Ebaühtlased tilkadesuurused võivad mõjutada tulemuste usaldusväärsust erinevates biotehnoloogilistes ra-kendustes, nagu näiteks üheraku analüüs, polümeraasi ahelreaktsioon (PCR) ja ravimiteavastamise sõeluuringud. Lisaks võivad rõhu kõikumised rakuuuringutes kahjustada õrnurakustruktuure.Tilkade suuruse paremaks kontrollimiseks on pakutud traditsioonilisi meetodeid, nagumatemaatilis-empiirilisedmudelid ja käsitsi häälestamine. Hiljuti on need asendatud auto-matiseeritud suletud ahelaga tagasisidesüsteemidega, eriti proportsionaalsete integraal-diferentsiaalsete (PID) kontrolleritega, mis pakuvad automatiseerimist ja täpsust. Nendesüsteemide optimeerimine mikrofluidiliste rakenduste jaoks on aga endiselt väljakutse.Antud teadustöö pakub uut lähenemisviisi nende väljakutsete lahendamiseks, simuleeri-des ja optimeeridesmikrofluidset vool kontrollereid enne eksperimentaalset rakendamist.Esiteks käsitleb see tilkade suuruse vahemiku piiratud hindamist häälestatavuse jaoks,kasutades digitaalset kaksikut koos proportsionaalse integraalse (PI) kontrolleriga. Seesüsteem saavutab parema täpsuse ja järjepidevuse võrreldes avatud ahelaga stsenaariu-miga, saavutades ligilähedaselt soovitud suuruse ning vähendades tilkade suuruse variee-rumist 15% pealt 2% peale. Lisaks võimaldab PI-ga juhitava süsteemi täieliku parameetri-ruumi hindamine tilkade suuruse tõhusat reguleerimist erinevate seadeväärtuste vahel.Teiseks käsitleb teadustöö PID kontrollerile omase pikendatud reageerimisaja ning üle-häälestamis probleemiga, pakkudes välja geneetilise algoritmiga (GA) häälestatud PID-kontrolleri. GA-ga häälestamine tagab parema tilkade suuruse reguleerimise parema, vä-hendades märkimisväärselt reageerimisaega ning ülereguleerimist võrreldes klassikalistehäälestusmeetoditega. Täpsemalt, GA häälestusega saavutab PI-kontroller 100 µmtilkadesihtsuuruse vähendatud ülereguleerimise (0,5%) ja reageerimisaja (umbes 0,088 s) võr-reldes klassikalise häälestamisega (1,5% ülereguleerimine, 0,338 s reageerimisaeg).Kolmandaks lahendatakse CogniFlow-Drop süsteemi kaudu kontroll-lahenduse üle-kandmine digitaalsest kaksikust eksperimentaalsesse seadistusse. See integreeritud, mo-dulaarne ja automatiseeritud tilkade genereerimise lahendus kasutab eksperimentaalsesseadistuses dünaamilist topelt-tagasiside juhtimisstrateegiat. Antud lõputöö aitab kaasatõhusate kontrollerite väljatöötamisele, projekteerides need algselt simuleeritud mikrof-luidika keskkonnas ja seejärel kandes optimeeritud kontrolleri parameetrid üle eksperi-mentaalsesse tarkvararakendusse. See muudab ressursimahuka kontrolleri häälestamisesujuvamaks. Tulemused näitavad, et GA-ga genereeritud kontrolleri parameetrid nõud-sid reaalses süsteemis optimaalse jõudluse saavutamiseks väiksemaid kohandusi, missarnanevad üsnagi simuleeritud väärtustega ja minimeerivad häälestamise iteratsioone.Kavandatav juhtimisraamistik oli hädavajalik, et saavutada kiire 10-sekundilise rõhu stabi-liseerimine. Kasutades süstalpumpa, on rõhu stabiliseerimiseks vajalik aeg 120 sekundit.Viimaseks käsitleb teadustöö klassikalise suletud ahela juhtimise keerukust mikrof-luidikas ja selle sõltuvust täpsetest matemaatilistest mudelitest. Töö pakub välja kahe-mõõtmelise arvutusvedeliku dünaamikaga (CFD) numbrilise mudeli integratsiooni sügavatugevdamise õppimise (DRL) proksimaalse poliitika optimeerimise (PPO) algoritmiga.Numbrilise mudeli valideerimine eksperimentaalsete andmetega näitas tugevat kok-
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kulangevust, mille vead olid alla 11%, kinnitades mudeli usaldusväärsust tilkade moodus-tumise simuleerimisel. DRL-CFD raamistik reguleeris tõhusalt tilkade suurust, manipulee-rides sisendrõhku, mida toetasid täpsed vaatlusmõõtmised. Lisaks parandas sondi paigu-tuse optimeerimine juhtimisjõudlust välirõhu mõõtmiseks. PPO-algoritmi tulemuseks ondispersioonikoefitsendi protsendi (CV) vähenemine vahemikus 0,8% kuni 4,72% tilkadepuhul, mille läbimõõt on 50 µm kuni 80 µm. Lisaks hinnati uurimistöös PPO algoritmitoimimist väliste häirete, eriti perioodiliste mehaaniliste vibratsioonide korral, mis mõju-tavad tilkademikrofluidika süsteeme. Häired,mis olid erineva sagedusega (10 Hz ja 10 kHz)ja amplituudiga (50 Pa, 100 Pa ja 500 Pa) mõjutasid algoritmi toimimist. Algoritm käsitlestreeningul tõhusalt häireid kuni 8% keskmise amplituudi rõhu väärtuse suurenemiseni.See hoidis tilkade keskmise suuruse sihtmärgi lähedal, CV alla 5%, mis näitab selle koha-nemisvõimet. Suuremate amplituudide või madala sagedusega häirete korral on soovita-tav ümberõpe. Üldiselt näitas algoritm tõhusust konkreetsete häirete piirides, mis viitabtugeva kontrollipotentsiaalile erinevates tingimustes. Üldiselt näitavad selle uuringu tule-mused uuenduslike juhtimisstrateegiate ja simulatsioonipõhiste optimeerimismeetoditetähtsust tilkade mikrofluidika tehnoloogia edendamisel.
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Abstract 

In this paper, we report a digital twin of a droplet 
microfluidic system with closed-loop droplet size control. 
Compared to the state-of-the-art, this digital twin allows 
evaluating the system for a wider range of droplet sizes. 
We constructed a digital twin of a microfluidic Flow-
Focusing Device (FFD) that used a Proportional Integral 
(PI) controller to automatically adjust the flow rate of the 
dispersed phase, to obtain the required droplet size. The 
efficacy of the digital twin was evaluated using six droplet 
diameters ranging from 30-60 m. The simulation results 
show good agreement between the tested and measured 
droplet sizes (R2= 0.993). 

1. Introduction 

The ability to generate uniform droplets with user-
defined or application-specified characteristics has aided 
the widespread adoption of droplet microfluidics for a 
variety of applications. Accordingly, precise control of 
droplet characteristics such as the droplet size is critical.  

Our work builds on recently reported results in 
closed-loop control of droplet sizes in microfluidic chips 
using PI/PID (Proportional Integral/Proportional Integral 
Derivative) controllers [1 3]. Closed-loop automated 
control eliminates the difficulty in achieving the required 
droplet size by adjusting the fluid flow rate, which was 
characteristic of manual tuning of flow parameters 
previously common in research [4,5]. In contrast to 
previously reported droplet generators using PI/PID 
control, we implement our system in a simulated digital 
twin. Moreover, rather than demonstrating only one or 
two droplet size setpoints, we explore the evaluation of a 
droplet microfluidic system over a wider set of input 
parameters.  

A digital twin is a simulated replica of the real system, 
whose advantages are more pronounced when real-life 
experiments are expensive and time-consuming.  In this 
work, our digital twin integrates finite element modelling 
with control systems simulation, a combination that 
harnesses the predictive and engineering capabilities of 
each realm. In particular, the digital twin designed is a 
simulation of a flow-focusing microfluidic 2D model 
integrated with a PI controller for droplet size control. The 
digital twin will serve as a proof-of-concept for the 
implementation of an automated closed-loop PI control 
system to produce droplets of various user-defined sizes. 

 

2. Construction of the digital twin  

A. Framework of the digital twin 

A digital twin of a microfluidic Flow-Focusing Device 
(FFD) with Proportional Integral (PI) control of droplet 
size was implemented. The implementation relied on 
COMSOL Multiphysics for the Computational Fluid 
Dynamics (CFD) simulation (Section 2.B.), MATLAB for 
the controller (Section 2.C.) and COMSOL LiveLink for 
MATLAB to connect the controller and the simulated 
model, as illustrated in Fig. 1. Using the dispersed phase 
flow rate as the control variable, the controller regulated 
the measured droplet size to obtain the desired droplet size.  

  

B. COMSOL FFD simulation model 

i. Model parameters 
The digital twin was built assuming the same actuation 

method, and a nearly identical microchannel layout to that 
previously used in our experiments [6,7]. To reduce 
computational time, a two-dimensional (2D) model was 
used. Furthermore, because the model was symmetrical 
along the vertical y-z axis, the simulation was limited to 
only half of the model by cutting along the line of 
symmetry and mirroring the solution. To further simplify 
the model, we excluded the air inlet close to the chip's 
outlet channel, as this section has negligible impact on 
droplet formation. The model (Fig. 2.) was designed in 
Autodesk Inventor. Model dimensions are summarized in 
Table I. In experiments, the rhomboid filters on the oil 
liquid path in our channel design were for filtering out 
contaminants, such as dust particles. For the formation of 
water-in-oil droplets, HFE 7500 (oil) + 2% w/w PFPE-
PEG-PFPE (Perfluoropolyether-polyethylene glycol-

Fig. 1. Framework of the digital twin for closed-loop 
droplet size control. COMSOL Multiphysics was used for 
simulating the flow-focusing device and sensor, and 
MATLAB was used to implement the PI controller. The 
interface between the simulated model and the controller 
was established using COMSOL Livelink with MATLAB 
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perfluoropolyether) surfactant was used as the continuous 
phase fluid and Deionized (DI) water was used as the 
dispersed phase fluid. Materials used in the model are 
summarized in Table II. 

TABLE I.  DIMENSIONS USED IN SIMULATION MODEL 

Chip feature Dimension on 
Fig. 2. 

Value [mm] 

Water inlet W1 0.6 

W2 0.29 

W3 0.29 

L1 2.0 

L2 1.0 

L3 0.89 

Oil inlet W6 0.12 

L6 2.18 

Outlet W5 0.09 

L4 3.5 

Junction W5 0.09 

Sensor L5 0.1 

Filter W7 3.9 

W8 0.3 

W9 0.12 

TABLE II. MATERIAL PROPERTIES USED IN SIMULATION 

MODEL 

Model 
domain 

Material Dynamic 
viscosity [Pa 

s] 

Density 
[kg/m3] 

Water De-ionized 
water 

1e-3 1000 

Oil HFE 7500 + 2% 
w/w PFPE-

PEG-PFPE [10] 

7.7e-4 1614 

ii. CFD simulation methodology
The key governing equations in microfluidics are the

incompressible Navier Stokes equation (1), the continuity 
equation (2), and the level set equation (3) [11]. The 
numerical method used is the two-phase level set method 
(LSM). This method is recommended for simulating two-
phase flow because it can easily deal with fast-moving 
topological changes in time varying curved objects like 
water droplets in oil [12]. 

Navier Stokes equation 
( u t) + u. ) u= . [ pI + u + ( u) T)] +Fst  (1) 

Continuity equation 
. u = 0 (2) 

Level set equation 
t) + u. . ( |) + (3) 

Equations (1-3) were solved by COMSOL (version 5.6). u 
denotes velocity (m/s). The value of u is obtained from 
solving (1) and (2), which is then used in (3) to construct 
the  (kg/m3), t is 

 p is pressure (Pa), 
and Fst is surface tension force (N/m3). 

is the re-initialization parameter, and 
highest magnitude of the 

velocity. The thickness of the interface is denoted by 
this simulation, a level set function value of 0 is assigned 
to the continuous phase fluid interface and a value of 1 to 

5e-6 m, respectively, and Fst is 1.9e-3N/m2 [13]. 

Effective droplet diameter 
d - d (4) 

The effective droplet diameter d, which is a key parameter 
in this work, was calculated as Equation (4) in COMSOL 
by using the integrator operator to find the maximum area 
corresponding to the dispersed phase, . 

iii. Domains, boundary conditions, mesh
Domains, physics interfaces used, corresponding

boundaries, and boundary conditions are summarized in 
Table III. For microchannel walls, the wetted wall 

contact angle and 
a 5e-6 m slip length. The contact angle is formed when the 
fluid interface comes into contact with the microchannel 
wall, and the slip length is a distance between the boundary 

Fig. 2. The geometry and dimensions of the simulated 
microfluidic flow-focusing device (FFD). For fluid 
flow directions, blue arrows represent the inlet and 
flow direction of water, red arrows represent the inlet 
and flow direction of oil, and black arrows represent 
the outlet. Oil, Water, Junction, Sensor, and Outlet 
domains are the primary domains (in brown text). The 
sensor domain is where droplet size is measured. 
Rhomboid filters on the oil path used to filter out 
contaminants in experiment. Only half of the system 
was simulated due to device symmetry along its y-z axis 
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and the virtual point outside the flow domain with zero 
fluid velocity. All fluidic domains used laminar flow and 
level set physics interfaces, coupled together in a two-
phase flow Multiphysics interface using the level set 
method.  

For mesh creation, a combination of quadrilateral and 
triangular mesh elements was used. The size nodes were 
used to customize the density of the logical meshes such 
that sections of the geometry close to and including the 
junction region, which were critical to droplet formation, 
were denser than the other sections. The average mesh 
quality achieved was 97%, and the total number of 
elements was 270908. Furthermore, a mesh independence 
study was used to assess the numerical scheme's accuracy 
(see Appendix). The generated grid, when meshed with 
225000 or more elements, resulted in less than 1% 
numerical error (result variation) in droplet area 
measurements. 

TABLE III.  DOMAINS,  PHYSICS INTERFACES, 
CORRESPONDING BOUNDARIES AND BOUNDARY 

CONDITIONS USED IN SIMULATION MODEL 

Model 
domain 

Physics 
interface 

Correspon
-ding

boundary 

Boundary 
condition 

Water 
Level set 
method 

Inlet 

Laminar inflow 
(constant, fully 
developed flow) 

Qw 

Outlet Laminar outflow 

Oil 
Level set 
method 

Inlet 

Laminar inflow 
(linked to 

MATLAB control 
function) Qoil 

Outlet Pressure (0 Pa) 

All 
Laminar 

flow 
Channel 

wall 
Wetted wall 
( ) 

All 
Laminar 

flow 
Channel 

wall 
No-slip 

Sensor 

Domain 
ODEs 
and 

DAEs 

sensor 
domain 

Track droplet area 
(aveop1(u2) [m]-

nojac (if (d 
diameter,t)>0* d 
(diameter, t)<1e-

5, aveop1(u2) 
[m], diameter)) 

Sensor 

Global 
ODEs 
and 

DAEs 

sensor 
domain 

Define equation 
for state variable, 
u4 (u4- nojac (if 
(d(aveop1(u3),t)=
=0,Qw,u4)) 

iv. Solution configuration and runtime
The domain elements were solved for velocity u,

dependent variables u2, u3, state variable u4, pressure p, 
and advection at the interface. Due to the time-dependency 
of the study, we used a time range of 0 to 0.1 seconds with 
a step of 0.0005 seconds to ensure the simulation 
converged. The simulation was run on a Core i5-10210U 

CPU, 32 GB RAM, and a 1 TB NVMe SSD. Each 
simulation took approximately 10 to 20 hours to run. 

C. MATLAB controller design

The PI controller was built with MATLAB to tune the
droplet size. The first step in designing the PI controller 
was to obtain the transfer function that characterized the 
model. The next step was to add the controller and find the 
optimal values of gain coefficients to achieve a fast rise 
time, minimal overshoot, and zero steady-state error by 
using the Control System Toolbox in MATLAB. The 
closed-loop control of droplet generation in the 
microfluidic setup can be represented by Fig. 3. the closed 
loop model was represented by the transfer functions of the 
microfluidic FFD platform ( ), the droplet sensor ( ), 
and the controller ( ).   

The microfluidic FFD, ( ) was represented by a first 
order model as expressed by (5)[1] 

G(s)=Ko s) (5) 

Where, 0 is a gain coefficient and  is the system time 
constant. The gain coefficient can be assumed to be unity 
for the open-loop control of the pressure-driven device, 
while the time constant can be calculated using the 
following formula: 

 =V0/(K1P0) (6) 

Where, V0 is the fluid container initial volume, P0 is the 
fluid container initial pressure, and K1 is a gain coefficient. 
Since the flow through the micro-channels is affected by 
the driven flow rate of the water and oil, proportional gain, 
by using an approximatio  [10], 
the gain coefficient can be expressed as 
K1=Pw/Poil  w Qw

2)/ (  oil Qoil
2)   (7) 

Where, Pw and Poil are the pressures of the dispersed phase 
and continuous phase respectively.  

Fig. 3.  Closed-loop control of droplet size. Each system 
component is described as a transfer function in Laplace 
form in order to generate the mathematical model of the 
system. C(s), G(s), and H(s) describe the PI control, flow-
focusing device, and droplet sensor, respectively. Droplet 
size setpoint and measured droplet size are the input and 
output, respectively, of the closed loop system. 
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Qw and Qoil are the flow rates of dispersed phase and 
continuous phase w oil are the dispersed phase 
and continuous phase densities respectively.  
Here, with reference to experiments, the initial fluid 
volume was set as 
continuous phase and dispersed phase 

 

The droplet image sensor H(s), was also modelled using 
the following first order transfer function  

H(s s)     (8) 
 

Where,  is the time constant of the model, which in the 
case of the droplet image sensor can be represented as a 
function of the frame rate in absolute value: 

 
fps/1000     (9) 

 
The transfer function of a PI controller can be described by 
 
F(s)=Kp+(Ki/s)     (10) 
 
where Kp and Ki are the proportional coefficients and the 
integral coefficients of the PI controller, respectively. A 
MATLAB program code was written to take as inputs the 
initial flow conditions required in (5)-(10) to determine the 
transfer functions of the system. After computing the 
transfer functions, the Control System Designer Toolbox 
in MATLAB is used to design a PI controller based on the 
following design criteria [14] 
 
Rise Time (Tr     (11) 

 
Settling Time (Ts 4 (s)    (12) 

 
% Overshoot (Os    (13) 
 
After several iterative tuning steps, Kp and Ki values 
obtained, as shown in Fig. 4, were 2 and 70, respectively. 
Having obtained the controller coefficients, a MATLAB 
script was written for the implementation of the PI 
controller based on the equation 
 
Qd(t) = Kpe(t) + Ki e(t)dt    (14) 
 
Where Qd(t) is the adjusted value for the dispersed phase 
flow rate, Kp and Ki are the proportional and integral gains 
respectively, and e(t) is the difference between the setpoint 
diameter and the measured diameter. Subsequently, the 
MATLAB script was added as a MATLAB Function to the 
COMSOL desktop to achieve closed-loop droplet size 
control. 

 
 
 
 
 

3. Evaluation of the digital twin 

A. Droplet formation in COMSOL simulation 

In our COMSOL FFD simulation, droplet formation 
was observed to occur in the dripping regime (Fig. 5) The 
process of droplet formation in the dripping regime can be 
divided into four stages: Filling stage (Fig. 5/a), necking 
stage (Fig. 5/b), growing stage (Fig. 5/c), and detachment 
stage (Fig. 5/d). 

B. Effect of fluid flow rate on droplet size 

The effect of the continuous phase flow rate was first 
investigated by keeping the flow rate of the dispersed phase 
constant at 30 l/min and varying the flow rate of the 
continuous phase from 100  to 400 l/min. As 
depicted in Fig. 6/a, the average diameter of the droplets 
decreases as the flow rate of the continuous phase 
increases. When the continuous phase flow rate is 

 
 

Fig. 4. Design and tuning of the PI controller in 
MATLAB. The step function response is obtained using 
the Control Systems Designer toolbox in MATLAB. A PI 
controller is added to control and tune the input step 
size, with response time and robustness defined as 
design criteria. The tuner computes PI parameters that 
stabilize the system. The values of Kp and Ki are 
obtained. 

 

Fig. 5.  Dripping regime of droplet formation in the 
microfluidic device (a) Filling stage (b)Necking stage (c) 
Growing stage (d)Detachment stage 
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increased from 100 to 400 (300%), the 
effective diameter of the droplets decreases by 70% from 
110    

The influence of the dispersed phase flow rate on 
droplet size was also examined, by maintaining the 
continuous phase flow rate constant at 200 l/min and 
altering the dispersed phase flow rate from 5  to 50 

l/min. As shown in Fig 6/b, the average droplet diameter 
increased significantly when the dispersed phase flow rate 
was high. Specifically, when the flow rate of the dispersed 

effective diameter of the droplets increases by 223.529%, 
 

Taken together, there are two ways to change the 
diameter of droplets: either increase the flow rate of the 
continuous phase or decrease the flow rate of the dispersed 
phase. However, our simulated microfluidic system 
showed higher sensitivity to the dispersed phase. Hence, 
we opted to use the dispersed phase flow rate to regulate 
the droplet size.  

C. Closed-loop PI controller results 

To show the controller's performance, a target droplet 

previously mentioned, the flow rate of the continuous phase 

dispersed phase was init
feedback controller automatically adjusted the dispersed 

flow rate for droplet size control. The results shown in 
Fig.7/a, present the case for both open loop (no feedback) 
and closed loop feedback. As can be seen, there is an 
obvious deviation of the open-loop measured droplet 
diameter from the setpoint, as the measured average droplet 

simulation.  
In the case of closed-loop feedback, the measured 

droplet diameter and the target droplet size are eventually 
consistent. Within 1 second, the measured droplet size was 

corresponding dispersed phase flow rate, as illustrated in 

significant difference between the measured and desired 
droplet sizes at the start of the closed-loop feedback. 
However, as the simulation time is increased, the deviation 
shrinks and weakens, eventually approaching zero. 

 

 
Additionally, to assess the PI controller for the 

generation of droplets at varying setpoints, 6 different 

Fig. 8. As shown in Fig 8(a-c), the PI controller accurately 
controlled the droplet diamete

simulation time of 1s. The linear relationship observed in 
Fig. 8/d between the setpoint droplet diameter, and the 
measured droplet diameter (R2 = 0.9937) demonstrated the 
controller's efficiency for generating droplets at varying 
setpoints. 

Fig. 7. Droplet size control (a) Average measured 
droplet diameter in open-loop (red) and closed-loop 

(blue). The measured droplet diameter in the open loop 
deviates significantly from the setpoint. In the closed 
loop, this deviation decreases and approaches zero. (b) 
To achieve the setpoint size, the PI controller adjusts 
the dispersed phase flow rate until minimum steady 

Fig. 6.  The effect of flow rate on droplet size for (a) 
oil

water flow rate 30 ul/min (b) varied water flow rate 
w

o 
changes in water flow rate than to changes in oil flow 
rate. 
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4. Conclusions

A digital twin of a droplet microfluidic system with 
closed loop droplet size control was presented. To control 
the size of droplets generated in the flow-focusing 
microfluidic device, the digital twin, a numerical simulation 
of a flow-focusing microfluidic 2D model and a PI 
controller using COMSOL Multiphysics  MATLAB 
integration, was built. Water droplets-in-oil formation 
occurred in the dripping regime. The influence of fluid flow 
rates on droplet size was investigated. Fluid flow rates 
ranging from 30 to 400 ul/min were considered. While both 
phase flow rates had a significant effect on droplet size, the 
dispersed phase flow rate had a greater impact, according to 
the findings. As a result, the dispersed phase flow rate was 
chosen as the control variable for tuning droplet size.  

The use of a PI controller to control droplet size is 
critical in this work. The PI controller was implemented in 
MATLAB. The PI controller receives the measured droplet 
diameter and adjusts the dispersed phase flow rate to 
achieve the required droplet size. In the absence of a PI 
controller, the measured droplet size did not match the 
setpoint droplet size. However, by incorporating a PI 
controller, the deviation between the setpoint droplet size 
and the measured droplet size was significantly reduced, 
with steady state error eventually approaching zero. 
Furthermore, the PI controller was evaluated for the 
formation of droplets at 

. At the completion of the 1 second run time 
simulation, the measured sizes for setpoints 30 , 35 m, 
40 , 45 , 50 , 60  ,34.9 ,39 , 
44 , 48.1 , 61.5 . The controller's efficacy for 
creating droplets at varied setpoints was proved by the 
linear relationship observed between the setpoint droplet 
diameter and the measured droplet diameter (R2 = 0.9937). 

If the complexity of the control algorithm is increased 
(i.e. by adjusting both fluid flow rates), we expect to be 
able to generate droplets at more setpoints, but the 
computational cost will inevitably be high. The findings in 
this paper, we hope, will aid in the design of closed-loop 
microfluidic droplet control experiments. Researchers can 
use digital twins like ours to test their designs (geometry, 
parameters etc.) before building the first physical 
prototype, saving money and time. Future work will focus 
on the evaluation of the PI controller in experimental work 
and how this correlates with the digital twin results. Taking 
it a step further, advanced controllers for improved 
precision in microfluidic droplet size control may be 
incorporated. 
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Fig. 8.  Droplet size closed-loop control for setpoint 

a comparison of setpoint diameters to Observed 
diameters in the 30-60 m range. The setpoint and 
measured diameters agree well. 
 

2022 23rd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on April 28,2022 at 05:54:06 UTC from IEEE Xplore.  Restrictions apply. 



References 

[1] H. Fu, W. Zeng, S. Li, and S. Yuan,  
-detection droplet microfluidic closed-

loop control system for precise droplet 
Sensors Actuators, A Phys., vol. 267, 

pp. 142 149, 2017, doi: 
10.1016/j.sna.2017.09.043. 

[2] W. Zeng, S. Li, and Z. Wang,  
-loop feedback control of droplet 

formation in a T-  
Sensors Actuators, A Phys., vol. 233, pp. 542 547, 
2015, doi: 10.1016/j.sna.2015.08.002. 

[3] R. Kebriaei and A. S. Basu,  
-loop drop generator using 

 
17th Int. Conf. Miniaturized Syst. Chem. Life Sci. 
MicroTAS 2013, vol. 3, no. October, pp. 1944
1946, 2013. 

[4] R. Samanipour, Z. Wang, A. Ahmadi, and K. Kim, 

microfluidic flow-focusing generation of gelatin 
 

J. Appl. Polym. Sci., vol. 133, no. 29, pp. 24 26, 
2016, doi: 10.1002/app.43701. 

[5] X. Wang, G. Camci-unal, K. Wan, R. Liao, and A. 
Khademhosseini,  

-Assisted Fabrication of Gelatin-

Constructs - 2013 -  
[6] W. Postek, P. Gargulinski, O. Scheler, T. S. 

Kaminski, and P. Garstecki,  

at a single-cell level shows the inoculum effect of 
 

Lab Chip, vol. 18, no. 23, pp. 3668 3677, 2018, 
doi: 10.1039/C8LC00916C. 

[7] S. Bartkova, M. Vendelin, I. Sanka, P. Pata, and O. 
Scheler,  

-friendly 
 

Anal. Methods, vol. 12, no. 17, pp. 2287 2294, 

2020, doi: 10.1039/D0AY00031K.
[8] A. Y. Tenorio-Barajas, M. De La Luz Olvera-

Amador, V. Altuzar, R. Ruiz-Ramos, M. A. 
Palomino-Ovando, and C. Mendoza-Barrera, 

n in microfluidic channels 
 

2019 16th Int. Conf. Electr. Eng. Comput. Sci. 
Autom. Control. CCE 2019, no. September, 2019, 
doi: 10.1109/ICEEE.2019.8884520. 

[9] I. L. Chaves, L. C. Duarte, W. K. T. Coltro, and D. 
A. Santos,  
Droplet length and generation rate investigation 

inside microfluidic devices by means of CFD 
 

Chem. Eng. Res. Des., vol. 161, pp. 260 270, 
2020, doi: 10.1016/j.cherd.2020.07.015. 

[10] R. Qin and C. Duan, 
 plications of Bernoulli 

 
J. Phys. Conf. Ser., vol. 916, no. 1, 2017, doi: 
10.1088/1742-6596/916/1/012038. 

[11] W. Han, X. Chen, Z. Wu, and Y. Zheng,  
-dimensional numerical simulation of 

droplet formation in a microfluidic flow-focusing 
de J. Brazilian Soc. Mech. Sci. Eng., vol. 41, 
no. 6, pp. 1 10, 2019, doi: 10.1007/s40430-019-
1767-y. 

[12] A. Sharma,  
-fluid 

dynamics: A review on developments, applications 
 

Sadhana - Acad. Proc. Eng. Sci., vol. 40, no. 3, pp. 
627 652, 2015, doi: 10.1007/s12046-014-0329-3. 

[13]  
no. 12, 2014. 

[14] Y. Xie, A. J. Dixon, J. M. R. Rickel, A. L. 
Klibanov, and J. A. Hossack,  

-loop feedback control of microbubble 
diameter from a flow-focusing microfluidic 

Biomicrofluidics, vol. 14, no. 3, 2020, doi: 
10.1063/5.0005205. 

 
 
Appendix 

TABLE IV.  MESH INDEPENDENCE STUDY  

Grid No Number 
of Mesh 
Elements 

Degree 
of 

Freedom 

Droplet 
Diameter 

(mm) 

Relative 
Error 
(%) 

1 90775 199705 0.76891 31.703 

2 108872 228632 0.58382 11.845 

3 130440 280446 0.52199 9.447 

4 154871 321474 0.47693 5.975 

5 188131 432702 0.45004 1.823 

6 225750 516967 0.44198 0.242 

7 270908 596878 0.44091   
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Abstract—In this paper, we demonstrate droplet size control 

in a microfluidics system using a PID controller tuned with a 

genetic algorithm (GA). In comparison to the state-of-the-art, 

this controller tuning method provides a robust means of 

obtaining controller gains that yield good steady-state responses 

with minimal settling time and transient overshoot. As a result, 

we developed a simulation of droplet microfluidics systems that 

is integrated with a genetic algorithm tuned-PID controller to 

automatically adjust the pressure of the continuous phase fluid 

to achieve the desired droplet sizes. When compared to the 

traditional tuning method, the results of the genetic algorithm 

demonstrated a significant improvement in process response, 

particularly in overshoot percentage, which decreased from 1.5 

percent to 0.5 percent, and settling time, which decreased from 

0.34 seconds to approximately 0.088 seconds. Using the 

controller gains derived from the genetic algorithm tuning, we 

achieved a droplet size (diameter) setpoint range of 50 to 350 

micrometers. Furthermore, among the objective function 

criteria used in the genetic algorithm, the Integral of Time 

Absolute Error (ITAE) produced the best system response while 

having the lowest fitness value. 
 

Keywords—genetic algorithm, PID controller, droplet size, 

microfluidic chip, settling time 
 

I. INTRODUCTION 

Previous studies [1–4] have demonstrated that proportional– 
integral–derivative (PID) controllers can be used to control 
droplet size in microfluidic systems. Traditional tuning 
methods such as the Trial and Error Method [1,3] and the 
Ziegler–Nichols Method [4,5] were used in these works to 
obtain controller parameters. While these methods 

processing as a stochastic global search method. As a result, 
we extend our previous work on a digital twin for the 
controlled generation of microdroplets of the required size [8] 
by incorporating a Genetic Algorithm (GA) tuning method for 
obtaining the PID controller parameters. The goal is to find 
the PID controller parameters; proportional gain (Kp), integral 
gain (Ki), and derivative gain (Kd), that provide the fastest 
settling time and most stable controller response for tuning 
droplet size in a flow-focusing microfluidic device. To the 
best of our knowledge, this is the first instance of a genetic 
algorithm being used in a droplet microfluidic system. 

 
II. CONTROL MODEL-BUILDING 

A. Structure of the proposed GA-tuned PID controller 

A PID controller tuned with a genetic algorithm was 
developed for closed-loop droplet size control in a 
microfluidics system. The closed-loop control system 
simulation replicated our actual experimental setup (Section 
II/B). The control variable was defined as the pressure of the 
pump driving the continuous phase, while the dispersed phase 
pressure remained constant (and its driving pump was not 
included in the simulation). The implementation relied on 
Simulink and MATLAB to model the system dynamics and 
to incorporate the genetic algorithm tuned-PID controller. 
Fig. 1 shows a simplified block diagram of the structure of 
the control method used in the work. 
The PID controller's operation is governed by the formula (1) 
and the optimization problem under consideration (2) [9]. 

significantly improved controller performance, they were not 
optimal due to the close-loop feedback system's relatively 

�(�) = 
 �(�) + 
 ∫
� 

�(�)�� + 
 
��(�) 

�    �� 
(1) 

long settling times [2,4] and high transient overshoot [6]. 
However, because most flow-focusing (FFD) microfluidic 
devices produce droplets at high throughputs (typically > 
500 Hz) [5], [7], the system response settling time must be 
reduced. Advanced soft computing optimization methods, 
such as the genetic algorithm (GA), on the other hand, have 
recently been used to obtain the PID controller parameters. 
This is due to GA's strong searching capabilities, heuristic 
properties, simplicity, global perspective, and inherent parallel 

Min f (
�, 
�, 
�) (2) 
 

where f denotes the settling time as well as the overshoot of 
the controlled system's step response, and Kp, Ki, and Kd are 
the proportional gain, integral gain, and derivative gain of the 
controller, respectively. In Fig. 1, the GA method is used to 
tune the PID controller to obtain PID gains that result in a 
minimum error e between the setpoint droplet size value dset 

and the measured droplet size value d in order to solve the 
optimization problem (2). 
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Fig. 1 Structure of PID controller tuning using genetic algorithm for 
droplet size control 

A chromosome is a solution generated by a genetic algorithm, 
and a population is a group of chromosomes. These 
chromosomes go through a process known as the objective 
function to assess the fitness of the GA-generated solution to 
the problem. Referring to Fig. 1, the objective function is 
defined as Jn(α), where α represents the PID controller's gains 
and n is the performance criteria. The following six objective 
function criteria are discussed in this case; the Integral 
Squared Error (ISE) criterion, the Integral Time Squared 
Error (ITSE) criterion, the Integral of Time Absolute Error 
(ITAE) criteria, the Integral of Absolute Error (IAE) 
criterion, the Mean Squared Error (MSE) criterion, and the 
Integral Error (IE) criterion. These objective function criteria 
(3–8) [10] results were compared in order to determine the 
optimal GA-generated solution. 

The following components were used in the experimental 
setup depicted in Fig. 2: 
• Flow-focusing PDMS microfluidic chip
• Fluidic add-ons such as a. fluid connectors b. Teflon (0.8

mm) tubing c. chip handling frame
• Reagents: a. mineral oil + 2% w/w Span 80 surfactant

(continuous phase) b. deionized water (dispersed phase)
• Pumping system [10]
• ADC (ADS8681)
• MPRLS0015PG0000SA Pressure Sensors
• Droplet size measurement circuitry (detailed in Fig. 3)
• Raspberry Pi 4B
The drive frequency of the dispersed phase piezoelectric
driving pump was kept constant at 200 Hz in all experiments,
and that of the continuous phase driving pump was kept

Fig. 2. A snapshot of the droplet microfluidic experimental setup 

constant at 50 Hz. These pumps were connected to the Flow 
Focusing Device (FFD) chip's respective inlets. The size of 
the droplets on the FFD chip was altered by varying the 
continuous phase pressure. Droplet measurements were 
obtained from high-frame-rate videos captured with a camera 

��� = ∫
� 

�(�)2��

��� = ∫
τ
(|�(�)|)��

���� = ∫
τ 

�(|�(�)|)��

��� = 
1     τ

((�(�))2)�� 
�  0 

���� = ∫ ��(�)2�� 

�� = ∫
τ
(�(�))��

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

placed below the FFD chip's outlet microchannel. Video 
capturing was done with a separate alignment fixture as the 
camera was not part of the experimental setup in Fig. 2. 
Droplet images were captured from multiple frames of video 
and analyzed using ImageJ software to determine droplet 
sizes. The droplet measurement circuit was not included in 
these experiments. 
The droplet size measurement circuit depicted in Fig. 3 can 
be mathematically represented by equations (9,10); 

B. Experimental setup & collection of time-domain signals

To represent the dynamic behavior of the system components 
in Simulink, system identification techniques as well as 
analytic modeling were used to derive the transfer functions 
of the pump, microfluidic chip, and droplet size measurement 
circuit. The technique of system identification involves 
developing mathematical models without incorporating the 
physical laws that govern the system by using input-measured 
response information from real experiments. This was 
especially important given the complexity of modeling the 
droplet microfluidic system using physical laws due to the 
considerable number of physical parameters and components 
involved. The system identification procedure was 
undertaken using the System Identification Toolbox in 
MATLAB (R2021b). 

Fig. 3. Droplet size measurement circuit 
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Where M and bm   denote the order and mth coefficient, 
To collect data for the pump's system modeling, input voltage 
settings ranging from 50 V to 250 V operating voltages for 
oil pumps, as well as their corresponding pressure readings 
from the pressure sensor, for fixed water pressure values of 5 
kPa, 10 kPa, and 16 kPa, were collected and shown in Fig. 
4/a. For modeling the dynamics of the FFD chip droplet 
generation process, the pump pressure applied ranged from 5 
kPa to 34 kPa for the oil phase, and the corresponding 
measured droplet sizes were plotted and shown in Fig. 4/b. 

Fig. 4. (a) Voltage (V) vs Pressure (kPa) for oil driving pump (b) 
Droplet diameter (µm) vs Pressure (kPa) for oil driving pump 

C. Selection of Model structure

As previously stated, the transfer function was the model 
structure chosen. The transfer function model excludes 
stochastic system behavior and only describes the 
deterministic component required to derive its mathematical 
model. It is also necessary to identify the order of the model 
as part of the model structure. In general, a continuous linear 
time-invariant system transfer function is represented as (11); 

respectively, of the numerator polynomial, and N and a 
denote the order and nth coefficient, respectively, of the 
denominator polynomial. The zeros and poles of the system 
are the roots of the numerator polynomial and the 
denominator polynomial, respectively. The method used to 
determine the model order was to start with one pole and one 
zero (based on observed system response resemblance to a 
first order system) and gradually increase the number of poles 
and zeros for all possible forms in 1st to 3rd order. At the end 
of the system identification process, we sort to keep the 
model's accuracy and simplicity in balance. 
The parameter estimation step yields the values a1, a2... a(N-1), 
b1, b2... bM in (11) for both the pump and the FFD chip. 

D. Parameter/variable estimation

Fig. 5, adopted from [11], depicts parameter estimation, 
where r and y are known vectors that represent the 
experiment's inputs and observed outputs, respectively, and θ 
is an unknown vector that must be identified in order to 
construct the transfer function. θ is a matrix of the values a1, 

a2, b1, b2, and so on that comprise the transfer function in 
equation 11 (12). 

*1 

*2 

θ = [%1 
] (12) 

%2 

Based on the features of the input-output data, the MATLAB 
System Identification Toolbox automatically selected the 
Nonlinear Least Squares (NLS) technique for parameter 
estimation (if the dataset has nonlinear features). In addition, 
the Instrumental Variable Estimator was used to generate a 
favorable set of initial parameters as a start parameter 
estimation. 

III. GENETIC ALGORITHM IMPLEMENTATION

The basic genetic algorithm process used in controller tuning 
can be broken down into five steps, which are as follows [12]: 
Step 1: [Begin] Create a random population of chromosomes 
that represents the number of viable solutions to the problem. 
Step 2: [Fitness] Assess each chromosome's fitness in the 
population. Six objective function criteria are considered 
here. The population is represented by a px4 matrix, where p 

is the population size, with each row representing one 

Fig. 5. Parameter Estimation 

∑
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chromosome and containing Kp, Ki, and Kd values, and the 
last column accommodating fitness values of corresponding 
chromosomes. 
Step 3: [New population] Make a new population by 
repeating the steps below until the new population is 
complete: 

a) [Selection] Choose two parent chromosomes from a 
population based on their fitness. Tournament 
Selection, Roulette Wheel Selection, and Normalized 
Geometric Selection are the three selection techniques. 
Tournament Selection requires more execution time, 
whereas Roulette Wheel Selection allows the weaker 
chromosomes to be selected many times, so we choose 
Normalized Geometric Selection to choose the parent 
because it is more computationally efficient. 
b) [Crossover] Cross the parents to produce new 
offspring with a crossover probability of 0.65. If no 
crossover was performed, the offspring is a replica of 
the parents. 
c) [Mutation] Produce new offspring at each locus. 
d) [Reproduction] Insert new offspring into the new 
population. 

Step 4: [Replace] Use the newly generated population to run 
the algorithm again. 
Step 5: Proceed to step 2. The generation process is repeated 
20 times. 
Fig. 6 summarizes the steps in the genetic algorithm, whereas 

 
TABLE 1 summarizes the GA property with relative values 
and methods. 

 

 
 
 

TABLE 1. PARAMETERS OF THE GENETIC ALGORITHM 
IMPLEMENTED 

IV. EVALUATION METHODOLOGY 

A. Model estimation and evaluation 

The following MATLAB quantifiable metrics were used to 
validate the model resulting from the system identification 
procedure: 
• Fit to estimation data percent: measure of the model's 

closeness to the actual system. 
• Mean-Square Error (MSE): average squared difference 

between the estimated and actual output values. 
• Akaike's Final Prediction Error (FPE): A measure of 

model quality obtained by software simulating the 
situation in which the model is tested on a toolbox 
generated dataset to see how much error it produces in 
comparison to the response generated by the original 
dataset. 

• Cross-validation is used to estimate the expected level of 
fit of a model to two datasets that were independent of 
the data used to estimate the model. 

Based on these metrics, the model accuracy will be discussed 
in section V (Results and discussion). 

B. Tuning performance evaluation 

For the controller, we first compared the performance of the 
classical tuning method and the genetic algorithm tuning 
method. In general, unit step input is used to test the system 
by standard performance measures: settling time (5% 
criterion), percent overshoot, and rise time (0–95% criterion). 
In addition, for the genetic algorithm, we compare the 
performance of the five objective function criteria using these 
same metrics in addition to the fitness value (section V). 

 

V. RESULTS & DISCUSSION 

A. Model estimation and evaluation results 

The model estimation and validation results show Akaike's 
Final Prediction Error (FPE), Fit to Estimation Data 
Percentage, Mean Squared Error (MSE), and Maximum Fit 
to Cross-Validation Data Percentage. Using these 
performance metrics, we compare the performance of transfer 
function models of various orders for the pump and the FFD 
chip. The lower the FPE and MSE, and the higher the Fit to 
Estimation Data percentage and Maximum Fit to Cross- 
Validation Data percentage, the better the model quality. 
Thus, the results for the FFD chip are shown in TABLE 2, 
and those of the pump modeling are shown in 
TABLE 3. Among the various model structures, we selected 
M2 (1st order model) as a final choice because it provided the 
best fit percentages of 94.54% for the pump and 91.5% for 
the FFD chip, respectively, when compared to the high order 
models. These model structures were also found to have very 
low FPE and MSE, passing the model validation test under 
residual analysis. The cross-validation fit percentages also 
showed high values of 78.66% for the pump and 66.63% for 
the FFD chip. In comparison to the M2 model, the M3 model 
for the pump, which is of higher order, provides a 4% 
increase in fit percentage. As a result, M2 was chosen as the 
pump model in favor of reducing system complexity over the 
low impact gain of 4% increase in data fit. Consequently, the 
closed loop system is represented by the appropriate transfer 
functions, as shown in Fig. 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Genetic Algorithm procedure 

GA property Value/Method 

Population size 20 

Max No. of Generations 30 

Variable bounds [Kp, Ki Kd] [0 1; 1 70: 0 1e-4] 

Objective function ITAE, IAE, MSE, IE, ITSE, ISE 

Selection method Normalized Geometric Selection 

Crossover method Arithmetic crossover 

Mutation method Uniform mutation 
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TABLE 2. FFD CHIP (PRESSURE TO DROPLET SIZE) MODEL 

Model 

No. 

Transfer Function Poles, 

Zeros 
FPE MSE 

Max. 

valida 

tion 

Fit % 

Est. 

data 

Fit % 

M1 −0.007136

s + 0.27085 

1,0 3374 2024 58.8 -36.7 

M2 19.04s − 0.3391 

s + 0.2745 

1,1 15.59 7.79 66.6 91.5 

M3 0.1597 
�2 + 0.00017� + 0.03 

2,0 210.4 86.6 53.5 71.7 

M4 −53.34s + 8.045 
�2 + 242.5s + 37.8 

2,1 1022 340 89.7 43.9 

10.7�2 + 12.1s − 0.14 22. 5.8 64.9 92.6 
M5 �2 + 1.64� + 0.251 2,2 26 5 

−0.01801 954 251 58.1 -52.3 
M6 �30.31�2 + 0.34s + 0.1 3,0 9 3 

M7 102.9s − 1.34 
�3 + 1.1�2 + 10.6s + 2 

3,1 
34.7 

6.94 65.7 92 

M8 −266.5�2 − 38.95s − 0.70 3,2 37.16 5.30 65.0 93 

�3 + 1.67�2 + 13.15s + 2.1

M9 
8.75�3 + 4.8�2 − 14.7s + 03,3 5918 538 82.7 29.5 

�3 + 2.80�2 + 1.96s + 0.2 

TABLE 3. PUMP SYSTEM MODEL 

Model 

No. 

Transfer Function Poles, 

Zeros 

FPE MSE 
Max. 

valida 

tion 

data 

Fit % 

Est. 

data 

Fit % 

M1 
0.04412 

s + 0.2862 1,0 0.20 0.122 76.5 92.1 

M2 
0.02948s + 0.01886 

s + 0.1057 1,1 0.11 0.058 78.6 94.5 

M3 

0.009749 
�2 + 0.1281� + 0.0671 2,0 0.01 0.005 86.7 98.4 

M4 
−15.05s − 1.942 

�2 + 136.7s + 17.17 2,1 1668 556.0 -260 -434 

M5 
−0.053�2 − 0.05s + 0.026 

2,2 0.09 0.025 61.2 96.4 �2 + 0.63s + 0.1103 

M6 
0.05401 

3,0 0.04 0.012 74.1 97.5 �3 + 1.25�2 + 2.38s + 0.2 

M7 
1.949s + 0.7371 

3,1 0.39 0.078 79.9 93.7 �3 + 21.5�2 + 9.06s + 5.1 

M8 
2.187�2 − 0.02s + 0.3311 

3,2 0.13 0.018 66.9 96.9 �3 + 17.1�2 + 0.14s + 2.4 

M9 
0.09�3 − 0.04�2 − 0.1s + 0.1 

3,3 92.7 8.430 73.3 34.2 �3 + 0.57�2 + 1.0s + 1�−9 

B. Tuning performance evaluation results

1) Classical tuning

To begin, the PID parameters were calculated using the 
classical tuning (Trial and error) method, which involved first 
setting all gains to zero, then increasing Kp until the response 
overshoots the reference value, then increasing Ki to remove 
the steady state error, and finally increasing Kd to improve the 
transient response. We spent some time fine-tuning all three 
with various variations until we achieved an acceptable 
response with gain values Kp = 0.1, Ki = 15, and Kd = 1e-4. 
Fig. 8 depicts the system's closed loop response for unit step 
input. The performance parameters derived from the response 
for a droplet size setpoint of 100µm are rise time = 1.57s, 
overshoot percentage = 1.5%, and settling time = 0.338s. This 
result is summarized in TABLE 4. The system response can 
be improved further to have a relatively fast settling time. 
Using a genetic algorithm, the PID controller was re-tuned 
for lower overshoot, settling time, and good steady state 
response. 

Fig. 8. Closed loop response with classical PID controller tuning 

TABLE 4. SYSTEM PERFORMANCE WITH CLASSICAL TUNING 
FOR PID CONTROLLER 

Kp Ki Kd Rise Time Settling Time Overshoot 

0.1 15 1e-4 0.271s 0.338s 1.5% 

2) GA tuning

Fig. 9 depicts the unit step response of the closed loop system 
with a PID controller tuned using a genetic algorithm for a 
droplet size setpoint of 100µm. When the results of GA 
tuning were compared to the results of the classical tuning 
method, the results showed a significant improvement in 
process response, especially on overshoot percentage, from 
1.5% to 0.5% and settling time from 0.34s to approximately 
0.088s. Furthermore, when the performance of the six 
objective function criteria was compared, the Integral of 
Time Absolute Error (ITAE) criteria produced the optimal 
system response with the lowest fitness value (error) of 
0.2367. TABLE 5 summarizes the findings. 

Fig. 7. Closed loop system components represented with transfer 
functions 
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Fig. 9. Closed loop response with genetic algorithm PID controller 
tuning 

TABLE 5. SYSTEM PERFORMANCE WITH GENETIC ALGORITHM 
TUNING FOR PID CONTROLLER 

Objective

function 

criteria 

Kp Ki Kd Fitness 

Value 

Rise 

Time 

(ms) 

Settling 

Time 

(ms) 

Over- 

shoot (%) 

MSE 0. 975 69. 68 3. 12 e-5 84. 46 54.7 96.4 0.5 

ITSE 0. 060 46. 09 8. 62 e-5 1.606 86.8 110.1 0.5 

ITAE 0. 234 69. 40 2. 84 e-5 0. 2367 56.4 72.4 0.5 

ISE 0. 937 69. 12 2. 00 e-5 82. 552 71.2 96.8 0.5 

IE 0. 035 67. 83 7. 46 e-5 2.1411 60.0 78.0 0.5 

IAE 0. 173 69. 93 4. 9 e-5 2. 1282 58.4 75.2 0.5 

VI. CONCLUSION

For the first time, a PID controller tuned with a genetic 
algorithm is implemented in a microfluidics system for 
closed-loop droplet size control. The goal was to identify the 
optimal PID controller parameters for providing the shortest 
settling time and the most stable controller response. Thus, 
the work was completed in MATLAB and Simulink by 
representing the physical models in our experimental setup 
with transfer function models and integrating this with a PID 
controller tuned with a genetic algorithm. For comparison, 
the controller gains and step responses were derived using 
both the classical tuning and the genetic algorithm methods. 
It was demonstrated that the genetic algorithm tuning method 
produced superior results with less settling time and 
overshoot than the classical tuning method. The optimal 
controller gains values from the genetic algorithm tuning 
method were obtained in 20 generations with a population 
size of 20, corresponding to approximately 400 experiments 
in real life. Using these, we were able to achieve a droplet 
size setpoint range of 50µm to 350µm depending on the fixed 
water pressure value. Thus, while a classical tuning method 
can serve as a starting point for calculating controller gains, 
it can be time consuming. The use of intelligent optimization 
tuning methods, which result in optimal tuning of droplet 
microfluidic systems, is a more efficient approach. 
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ABSTRACT Droplet microfluidics enables studying large cell populations in chemical isolation, at a single-

cell resolution. Applications include studying cellular response to drugs, cell-to-cell interaction studies. Such 

applications need a reliable and repeatable droplet generation with high monodispersity. Most systems used in 

research rely on manual tuning of flow parameters on off-the-shelf instruments. Setups are highly customized, 

limiting reproduction of experimental results. We propose an integrated, modular system for automated 

aqueous droplet generation with high monodispersity. The system provides dynamic feedback control of 

droplet size and input pressure. Input pressure is generated by two piezoelectric micropumps. Droplet sizes are 

determined via light intensity measurement in an LED-photodiode setup. The system is capable of wireless 

communication and has a low enough power consumption for battery-powered operation. We report on the 

assembly and the underlying working principle, as well as an in-depth experimental evaluation of the 

performance of the proof-of-concept prototype in aqueous droplet generation. Evaluation was performed on a 

modular as well as on a system level. During module-level evaluations, aqueous droplets were generated in a 

light mineral oil + Span 80 surfactant carrier medium, using 3 different flow-focusing junction geometries. 

The presented prototype had a significantly faster pressure stabilization time (10 s) compared to a syringe 

pump-based reference setup (120 s). During system-level evaluation, deionized water droplets were generated 

in a carrier medium of HFE7500 + PEG-PFPE triblock surfactant. Resultant droplet sizes were benchmarked 

with microscopy. The system was able to repeatedly generate mono- and polydisperse droplets on demand, 

with CVs between 5-10% in the ~50-200 m droplet diameter range.  

INDEX TERMS Lab-on-a-Chip, microfluidic, automation, pulsatile flow, droplet size control, droplet 

generation rate control, optical feedback, pressure feedback, closed-loop control, wireless communication. 

I. INTRODUCTION 
Droplet microfluidics enables studying the response of cell 

populations to specific chemicals, in isolation, at a very high 

throughput [1]. Chemical isolation is given by encapsulating 

cells into aqueous droplets in an immiscible carrier medium, 

together with the chemicals for their treatment. For example, 

antibiotics and resistant bacteria, to screen for antimicrobial 

susceptibility, or circulating multi-drug resistant tumor cells 

and chemotherapy drugs to screen for drug response among 

other analysis targets [2], [3]. Working in droplets enables 1) 

higher throughput than conventional batch processing in 2) a 

compact, highly integrated, automatic system as well as 3) 

continued work with individual droplets downstream [4]. 

Furthermore, it enables analysis of single-cells, or cell-to-cell 

interactions [5]. Droplet microfluidics has additional 

applications in chemical analysis and synthesis, as well as 

bioanalyses other than cytometry (e.g., nucleic acids) [6].  

However, imaging droplet flow cytometry necessitates 

reliable and repeatable droplet generation with high droplet 

monodispersity (1-5% [7], [8]) at moderate droplet 
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generation rates (~1-3 kHz [9]). To date, open-loop control 

and/or manual tuning of flow parameters to achieve desired 

droplet sizes and stable droplet generation are most common 

[10], [11]. However, the target parameters are difficult to 

achieve and maintain with manual tuning. Thus, automated 

droplet generation with closed-loop control (or in other 

words, an inline quality control system of droplet generation) 

is necessary. Fu et al [12] demonstrated a reduction of 

steady-state error to <2% coefficient of variation (CV) across 

various flow conditions in droplet digital PCR applications 

[13]. Similarly, Duan et al [14] achieved high monodispersity 

(<7.6 CV%) by implementing a closed-loop control strategy, 

which was at least 90% lower than with open-loop control. 

Additionally, Zen et al [15] addressed the challenge of 

predicting droplet size by using closed-loop control to 

account for the nonlinearity of flow-focusing. Moreover, a 

novel microfluidic system was developed to optimize cell 

processing conditions using deep learning algorithms for 

analyzing sensor data and closed-loop control to update a 

pressure pump and maintain optimal cell flow speed [16]. 

Several other works have demonstrated closed-loop control 

of droplet sizes by tuning flow parameters based on an 

image/video stream of the flowing droplets [17]–[19]. Most 

demonstrated systems (TABLE  I) used droplet imaging for 

control. However, overall throughput in camera-based 

tracking is limited by the imaging throughput of the camera 

(increasing throughput increases cost and heat dissipation). 

The price/performance ratio of imaging droplets for flow 

control (in contrast with cell imaging, which is a different 

application) is also not optimal.  

A compact system with a laser-photodiode setup for 

bubble tracking was demonstrated in [20]. Such an 

integrated, compact benchtop setup enables portability 

between labs, which in turn enables transferring experimental 

workflows with excellent repeatability. It also allows 

replication of results, thus enabling virtual parallel labs and 

digital, rather than physical exchange of results and 

knowledge. However, at present, widely used setups are an 

ensemble of off-the-shelf instruments, assembled specifically 

for the experiment on hand, with little to no integration 

(TABLE  I). The lack of integration means the setup (and 

results created with it) cannot be easily transferred between 

labs. It is also notable that while in microfluidics in general, 

syringe pumps are the most popular choice due to their flow 

stability, affordability, and ease of use, in droplet 

microfluidics, pressure pumps are also very common, as they 

do not need refilling. The need to refill the syringe causes 

interruptions in experimental workflows, and possibly also 

the need to recalibrate flow parameters. Finally, in our 

previous reviews, we found a pronounced interest towards 

low-cost instrumentation and the democratization of 

instruments for droplet microfluidics [4], [21].  

As of today, compact, integrated droplet microfluidics 

instruments, particularly with wireless communication and 

low-cost hardware, are uncommon. Setups exist that meet 

some but not all criteria (TABLE  I) for a compact, modular, 

automated, wirelessly communicating droplet generator.  

In this work, we describe a proof-of-concept experimental 

setup meeting the aforementioned criteria, its underlying 

methodology, and the evaluation of its performance in 

droplet generation experiments. The CogniFlow-Drop system 

concept (Fig. 1) offers the following advantages over the 

state of the art (TABLE  I):  

1. It is integrated and modular (some modules can be

swapped out for easy upgrades), improving 

reliability, and enabling portability. These features

ensure that results and workflows are transferable

between labs (enabling creation of virtual parallel 

labs).

2. It is low-cost (~650€) compared to commonly used 

experimental setups built from off-the-shelf 

components. With future development, modularity

will enable customization, affordability will open

wider collaboration using the platform.

3. Can offer comparable performance to commonly 

used droplet generation setups through its dual-PID

control of droplet size and generation frequency.

With future optimizations, can significantly reduce

carrier/sample/reagent waste. Furthermore, through 

automation, can ensure better repeatability without 

manual recalibration or in-depth knowledge of the

technology.

4. Measures droplet generation in real-time via

intensity change in a simple LED-photodiode setup

(water droplets, passing between, causing a change

compared to the carrier medium).

5. Uses tilting mounts to reliably set up chip, light 

source, and detector alignment, to optimize

channel/droplet visibility in a given microfluidic

chip. This also increases reproducibility of results.

6. Uses wireless communication, which enables

remote control and monitoring of the system.

7. Has a sufficiently low power consumption (~8.0 W)

that it can be powered from batteries for portable 

operation (based on the estimated consumption,

>4.5h battery life on a 10000 mAh Li-ion power 

bank).

II. COGNIFLOW-DROP SYSTEM PROTOTYPE
In this section, we present a structural overview of the

complete prototype assembly (Section II-A), then in 

following sections (Section II-B to II-D) overview each 

system module in detail, including both hardware and 

software, from a structural as well as functional perspective 

(working principles). 
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A. Overview 

The system prototype (Fig. 2/4) was constructed as a 

compact, modular assembly with an emphasis on ease of use 

and low hardware cost. In this section, we overview the 

assembly and subassemblies, and link to sections with further 

details on each. The system consisted of three main modules 

(see also block diagram in Fig. 3) and the enclosure: 

 

1) Electronics module (Section II-B and Fig. 2/1): 

functionally responsible for communication, instrument 

control and signal processing. Physically was 

constructed as a stack of stages onto which electronic 

parts were mounted: 

a) Power supply unit (PSU) stage (Fig. 2/1/a): 

mounted the RJ45 adapter, the power switch, 

the mains connector, and the PSUs 

(ECS45US05, XP Power). 

b) Pump controller and pressure sensor stage 

(Fig. 2/1/b): mounted the pump controller 

interface (with the low-level pump controller 

running on an ESP32 DevKitC board) and 

pressure regulation board. The stage was 

shielded from noise from above and below by 

copper plates attached to and grounded through 

structural conductive threaded rods. 

c) Communication, control, and signal processing 

stage (Fig. 2/1/c): mounted the Raspberry Pi 

4B (RPI), responsible for system control and 

communication, and the filter-amplifier, 

analog-to-digital conversion (ADC) board for 

the optical sensor. 

2) Sensorics module (Section II-C and Fig. 2/2): 

functionally responsible for optical flow rate 

measurement. Physically also holds the microfluidic 

droplet generator chip and consists of the following 

stack of stages: 

a) Photodetector stage (Fig. 2/2/a): the 

photodetector PCB and the connecting 

microscope lens were mounted to the bottom 

plate. 

b) Chip mount stage (Fig. 2/2/b): included the 

chip mount with 3 degrees of freedom (DoF; 

height, roll, pitch) and a removable 

microfluidic chip holder. 

c) Light source mount stage (Fig. 2/2/c): 

positioned at the top of the sensorics module 

was an analogous 3 DoF mount stage for the 

light source as was for the chip mount stage. 

The light source was an LED, soldered to a 25 

mm x 75 mm sized PCB. A diffuser/lens was 

attached over the LED. Aluminum or large 

copper area on the PCB was used for heat 

dissipation from the LED. 

3) Fluidics module (Section II-D and Fig. 2/3, Fig. 2/1/b, 

Fig. 2/2/b): functionally responsible for generating 

droplets from the carrier medium, reagents, and 

sample(s). Additionally responsible for dampening 

secondary vibration and sound produced by piezoelectric 

micropumps. 

a) Pump mount (Fig. 2/3/a): both pumps were 

mounted on an L-shaped mount. The pumps 

were fastened to the mount with shock 

dampening rubber in between. 

b) Shock- and audibility-dampening piezopump 

enclosure (Fig. 2/3/b): 2-part enclosure with 

rubber padding fitted around the micropumps 

for additional sound absorption. The top of the 

enclosure was designed with slots for three 100 

ml lab bottles. 

c) Liquid containers (Fig. 2/3/c): included the 

reagent and sample containers, as well as the 

product collector. 

d) Pressure sensors (mounted to electronics 

module Fig. 2/1/b) 

e) Fluidic chip (mounted to sensorics module Fig. 

2/2/b) 

4) Enclosure (Fig. 2/4): held the components together, 

including the interior walls between compartments, as 

well as the external enclosure. The base plate was a 

wooden board of 22 cm x 33 cm x 1.8 cm, selected to 

provide mechanical support to the assembly. Internal 

walls were used to route cables and tubing, as well as 

providing slots for T-junctions that bridged connections 

between the microfluidic chip, the pumps, and the 

pressure sensors. All plastic components were 3D 

printed. Load-bearing components were 3D printed with 

a Prusa i3 mk3S, the T-junctions [22] with an Anycubic 

Photon Mono. Electronics and sensorics modules were 

fastened to the base plate with structural ISO M6 size 

threaded rods, whose internal components were fastened 

to load-bearing components with ISO M3 size bolts 

(metal fasteners are hidden on the explosion views for 

better clarity). The pump enclosure was fastened to the 

base plate with ISO M3 size bolts. The chip mount stage 

was set between spring-loaded knurled nuts (DIN 466 

M6) to reduce vibrational sensitivity. 

B. Electronics module  

 

1) Flow control strategy  

For the pressure-driven droplet generator, a dual-PID 

controller strategy with two feedback loops (inner and outer 

feedback loops, Fig. 4/a) was designed and implemented: 

  The inner feedback loop was used to rapidly reach 

target pressure levels in the microfluidic chip and to 

reduce pressure fluctuations, inherently induced by 

the droplet pinch-off process, the pulsatile nature of 

the micropumps and the rapid target pressure level 

approach. The inner loop consisted of PID controllers 

for each micropump separately. 
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 The outer feedback loop was used to reach and 

maintain user defined droplet size and generation rates 

through discretized light sensor data. 

The proposed design of the dual-PID control strategy 

(depicted on Fig. 4/a) for the CogniFlow-Drop system can be 

described as follows: 

1) The inner PID closed feedback loop used 

pressure readings from sensors 1 (S1) and 2 (S2) 

of pumps 1 and 2, respectively, as well as 

pressure readings from sensor 3 (S3) at the 

microfluidic chip’s output.  

2) The PID controller associated with each pump 

regulated the pressure drop across the chip using 

the differential pressures (i.e., S1-S2, S1-S3) as 

feedback. The accurate and rapid control of 

pressures produced by the inner feedback loop 

action improved the stability and precision of the 

outer feedback loop.  

3) The outer PID controller achieved user-defined 

droplet size and droplet generation frequency set 

points (dset and fset) by adjusting the pressure of 

pump 1 and 2 respectively (i.e., disperse and 

continuous phase flows). The size related 

pressure target was derived from using the error 

(ed) between the set point (dset) and the average 

measured droplet size (dm). The generation 

frequency related pressure target was derived 

from using the error (ef) between the set point 

(fset) and the average measured droplet generation 

frequency (fm). By fixing the disperse phase 

pressure, the control variable relationships 

between “droplet size” to “disperse phase 

pressure” could be made as “droplet size” to 

“continuous phase pressure”, depending on the 

sensitivity of the target parameter to the fluid 

phase type [23]. 

In reference to our previous work, the PID controller 

parameters (i.e., proportional gain, integral gain, and 

derivative gain) were derived using a Genetic Algorithm 

(GA). The dual-PID control strategy, adapting the framework 

implemented with MATLAB, Simulink in [24], was 

modified to include droplet generation frequency control for 

the presented version of the droplet microfluidics system, 

using Python.  

 

2) Pump controller and pressure sensor stage 

The pumping system embedded into CogniFlow-Drop was 

an updated version of the non-automated dual-channel 

piezoelectric pumping device demonstrated in our previous 

work [25], [26]. Relevant notable modifications to our 

standalone pump PCBs ([26]) are mentioned in the electronic 

supporting information (ESI) S1. 

While the base design with all its features was carried 

over, standalone operation (wireless communication and 

battery power) was not. Wireless communication was not 

necessary as the pump controller exchanged commands and 

sensor data, as well as received power, over a USB cable 

connecting the pump controller (ESP32) to the main 

controller (RPI). Additional updates were required to be 

made to the pump controller firmware from the previous 

work ([26]) with relevant notable ones mentioned in ESI S1. 

 

3) Communication, control, and signal processing stage 

RPI was selected as the main controller for the system due 

to its quad-core processor and extensive interfacing options. 

It ran Ubuntu desktop (ver. 21.10) with its tasks written in 

Python 3.9 and C++. With four cores, the RPI was able to 

dedicate one for each independent task:  

1) Communication with the user, over local network, 

using the methodology described in Section II-B-4. 

2) Communication with the pump hardware described 

in Section II-B-2. 

3) Interpretation of data obtained from the optical 

sensor, expanded upon in Section II-C. 

4) Calculation of pumping pressure targets based on 

both the measured pressure data (obtained from task 

2) and the resolved optical data (obtained from task 

3), detailed in Section II-B-1.  

The interpretation of links between tasks and their 

interactions with parts of the system, external from the 

Raspberry Pi, are shown in Fig.  5, and an explanation with 

more details about the internal mechanism of each task is 

described in ESI S2. 

 

4) User interface 

Data and information flow are critical aspects when 

considering the design of any bioanalytical device. In our 

previous work we presented a framework for integrating 

event-triggered wireless data distribution and information 

flow into a bioanalytical device [26]. In this work, we focus 

on structured data serialization (along with metadata) using 

Google’s Protobuf serialization protocol [27]. With this 

method, the number (and type) of devices in the network 

could be extended with minor edits to the data structures. 

Inter-host communication was performed using an 

enhanced Communication Abstraction Layer (eCAL, v5.9.5) 

middleware [29]. The data rate through eCAL was payload 

dependent, and the employed data-centric communication 

architecture offered low latency communication with fair 

reliability.  

Data was sent between devices along with a unique device 

ID and name, chip name, flow rate, transmission/reception 

status, flag for different process activation, and droplet size 

(see example in Fig. 6/a) and message ID. On the 

publisher/sender side, a Protobuf message object (see 

example in Fig. 6/b), was created based on the data structure 

defined and serialized using the Protobuf protocol, followed 

by being broadcast to any listening device. For any device to 

catch the broadcast data, an eCAL subscriber/receiver 

function was cyclically polled. Concurrently, the method was 
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used in reverse to transfer data from the controlled device to 

the controller. Devices could communicate with each other in 

an event-triggered wireless or wired manner. The overall data 

transfer mechanism is shown in Fig. 7.  

The CogniFlow-Drop prototype could be controlled via 

the graphical user interface (GUI, Fig. 8) by defining 

parameters for droplet generation rate and size and passing 

them on using the available task specific buttons. If the 

chosen parameters were not within acceptable limits or of the 

wrong type, an error was presented, asking for appropriate 

corrections. The entered parameters were serialized by 

protocol and sent to the other device in the form of messages. 

Unless manually halted from the GUI, tasks were halted 

automatically on the controlled device after completion. 

 

5) Optical feedback signal acquisition 

The digitization PCB before signal processing on RPI, was 

made with three stages. 

The first stage, receiving the feedback signal directly from 

the sensorics module described in Section II-C, was a 2nd 

order Sallen-Key low pass filter. The filter was designed for 

detection of up to 5000 droplets per second without 

distortions, with a cutoff frequency at ~7.26 kHz and a 

quality factor of ~0.64. Filtering was necessary to reduce 

noise acquired from the system (in most part from the used 

switch-mode PSUs). 

Before discretization with an ADC, to maximize the 

information gained from the incoming, filtered optical signal, 

per bit, an adjustable inverting amplifier stage was used. This 

enabled scaling of captured waveform to the ADC’s analog 

input limits. Additionally, this filter-amplifier circuit was 

designed to discard any inherent DC component from the 

optical signal and bias it instead with 2.5 V, to position it in 

the middle of the 0 to 5 V ADC measurement window. 

The converter used was a 16-bit ADC (ADS8681, Texas 

Instruments). In the presented version of the system, the PCB 

on which it was installed was a perforated protoboard, which 

introduced additional noise to the measured signal due to a 

non-ideal splitting of digital and analog signals. 

C. Sensorics module 

 

1) Droplet measurement hardware 

In our previous works, we demonstrated cost-effective 

imaging [30] and non-imaging [31] droplet flow sensor 

prototypes with up to 750 frames per second throughput. 

With cost-effectiveness in mind, a more compact setup with a 

higher throughput for capturing droplets during generation 

was constructed as follows (Fig. 9): 

 A light source constructed of a cold white 1 W wide-

beam LED (Fig. 9/a). Soldered to a PCB with large 

copper areas for heat dissipation. Current-limited to 

~150 mA using an LED driver. 

 The light source was covered with a diffusing lens 

(Fig. 9/a) to reduce its beam angle and reduce beam 

intensity variations from smaller misalignments with 

the sensor axis.  

 A PDMS-glass microfluidic chip, further detailed in 

Section II-D (Fig. 9/b). 

 A thin metal plate, with a noise-reducing micro-

drilled pinhole (sized proportionally with the chip’s 

junction width), positioned beneath the microfluidic 

chip to increase the relative dimming impact of a 

passing droplet (Fig. 9/b). 

 Based on Texas instruments application [32], using a 

1 MΩ as feedback resistor instead, to obtain a gain of 

1 MV/A and a 1.3 pF capacitor for stability at higher 

frequencies, a photodiode (PD) sensor (Osram SFH 

2240, Fig. 9/c) was connected to a transimpedance 

amplifier (TIA). A 20x microscope lens was mounted 

to the PCB, over the sensor, for improved focus of the 

droplets flowing in the microchannel. 

Using the droplet flow sensor setup described above, a 

theoretical detection throughput was raised above 10000 

droplets per second. 

 

2) Detection of droplet shadows 

The chip mount (Section II-A-2-b and Fig. 2/2/b) was 

positioned between the light sensing PD and the light source, 

all of which were vertically aligned to the pinhole under the 

outlet junction of the microfluidic chip (Fig. 9). As generated 

droplets were moving over the pinhole, a shadow was cast 

through it, onto the PD. The changing current through the PD 

was converted to voltage using a high-gain TIA, passed on to 

a connected filter-amplifier circuit in the electronics module 

(Section II-B-5 and Fig. 2/1). The filtered signal moved 

through a DC decoupler into an inverting and level-shifting 

amplifier circuit. The extra amplification also provided 

compensation when the height of the light source was 

adjusted. The inversion of the photodiode voltage meant that 

any increase in the shadow corresponded to an increase in 

measured voltage. The filtered and amplified photodiode 

output was discretized with the ADC and sent over to the 

main control board using SPI. The RPI dedicated 1 of its 4 

cores to communicating with the ADC, enabling photodiode 

voltage sampling rates of up to ~440 kHz (without an 

interpretation algorithm). 

D. Fluidics module 

 

1) Droplet generation chips 

The microfluidic chip designs used in this work were 

adapted from the group’s previous works, notably the 

“Droplet counting chip” in the ESI of [33]. The principle 

design (Fig. 10/a) was a flow-focusing device (FFD) laid out 

on an SU8 mask in multiple copies with different junction 

widths and geometries. In TABLE  II the chip designs used in 

experiments in this work are shown. The mask design is 

openly available on our GitHub [34]. Silanized silicon-SU8 

masks were purchased from the BioMEMS group of the 
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Hungarian Academy of Sciences [35]. PDMS-glass chips 

were fabricated as follows: 1) PDMS was molded off the 

mask (PDMS was allowed 3 days at room temperature to 

cure and degas), 2) the PDMS was punched to create ports 

using a tissue biopsy tool, 3) PDMS and glass surfaces were 

cleaned from dust, 4) surfaces were activated with oxygen 

plasma generated by a handheld corona discharge surface 

treater, 5) surfaces were bonded, 6) chip walls were coated 

with Novec™ 1720 Electronic Grade Coating. 

2) Mounting of the droplet generation chip

The removable chip holder (Section II-A-2-b) in the

sensorics module (Fig. 2/2/b) had a 2 by 2 mm square hole at 

the center, over which the metal plate (Fig. 9/b) with a 

pinhole was placed. The pinhole was manually centrally 

aligned with the square hole in the chip holder. Lastly, a 

droplet generation chip was positioned on the pinhole plate 

and fastened to the holder. The chip was aligned to have the 

pinhole beneath the chip’s outlet channel, ~300 µm after the 

cross-junction. For the used chips, this distance mitigated 

capturing forming droplets and deforming droplets flowing 

into the wider section of the outlet where capturing distinct 

droplets could be jeopardized by the loss of gaps between 

droplets. The assembly was attached to the top of the 3 DoF 

chip mount (Section II-A-2-b and Fig. 2/2/b). 

III. EVALUATION METHODOLOGY
In this section, we present the prototype system evaluation

methodology used for characterization and benchmarking on 

a system as well as on a submodule level.  

The first test series (Section III-A) focused on evaluation 

of system submodules or groups of submodules. Fine-tuning 

steps were also taken to prepare for the system integration. 

The second test series (Section III-B) focused on 

characterizing and benchmarking the integrated system 

prototype in droplet generation. 

In all test setups, droplets were generated using fluids as 

described in TABLE  III.  

In all test setups including a camera, a high-speed camera 

module (acA640-750uc, Basler) was used. The camera 

frames were captured in real time on the computer using 

Basler’s pylon Viewer software. 

A. Submodule evaluation 

The test setup used (Fig. 11/a) in this section was an early

proof-of-concept implementation of the full experimental 

setup presented in Section II-A. The setup was derived from 

components demonstrated in our previous works ([25], [26]). 

In the setup, DIW was used as the disperse phase, oil A or B 

as the continuous phase. Both phases were pumped into the 

droplet generation chip using our custom pumping system 

based on Bartels Mikrotechnik micropumps (mp6-liq). 

Results are presented in Section IV-A. 

1) Pressure-based system feedback modelling

Tests done with the following methodology gave results

for: characterization of pressure control, definition of voltage 

to pressure transfer functions and tuned pressure feedback 

PID gains using the transfer functions.  

The pressures at the inlets and outlets of the microchannel 

were measured using Honeywell pressure sensors 

MPRLS0015PG0000SA and MPRLF0250MG0000SA, 

respectively, with a sampling rate of ~166 Hz. To obtain 

pressure to pump driving voltage relationships, driving 

voltage tests were conducted. For three chip variants 

(relevant chip dimensions in TABLE  II), the driving voltage 

of the piezo pumps ranged from 25 V to 250 V, with a step 

size of 25 V. Corresponding pressures were recorded for a 

duration of one minute at each step with the steady state 

averaged as the resulting pressure value. Measurements were 

done separately for DIW and oil A. Unwanted transients or 

spikes in the experimental data were removed using median 

filtering (performed in MATLAB). 

To tune the PID gains, experimental data (from our 

previous works [23], [24]) demonstrating the effect of inlet 

pressure on droplet size were used in MATLAB to derive 

pumping system component transfer functions. The transfer 

functions were implemented in Simulink in a setup-derived 

closed loop feedback model. PID K-values were found 

among six objective function criteria obtained from using 

genetic algorithm method: the Integral Squared Error (ISE) 

criterion; the Integral Time Squared Error (ITSE) criterion; 

the Integral of Time Absolute Error (ITAE) criteria; the 

Integral of Absolute Error (IAE) criterion; the Mean Squared 

Error (MSE) criterion; the Integral Error (IE) criterion).  

2) Syringe pump vs. pressure-driven pump

As laboratories often use syringe pumps for droplet

microfluidics, the performance of our pressure-based 

micropump system against syringe pumps was compared 

here.  

Two syringe pumps (NetPump, SpinSplit LLC, Budapest, 

Hungary) with plastic syringes were used to pump oil A and 

DIW into chip variant A. Pressure sensors were set in the 

established configuration (Fig. 11/a). The syringe pumps 

were connected to local network via Ethernet and interfaced 

with SpinStudio (SpinSplit LLC, Budapest, Hungary) on a 

desktop computer. Droplet formation was observed using a 

camera, placed beneath the FFD’s cross-junction. Syringe 

pumps were set to run for about four minutes, with fixed 

flow rates (Fig. 14/a), producing uniform droplets. One 

minute from the end of the steady state period of the 

measured oil and water pressure drops over the chip were 

averaged and used as targets for the pressure pump PIDs 

corresponding to the matching fluid phase. Followingly, the 

inlet tubes were disconnected from the syringe pumps and 

connected to the pressure pumps. For two minutes, pressure 

pumps were pumping oil and water with closed loop control, 

with comparable pressure (Fig. 14/b). 
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3) Sensorics, photodiode voltage interpretation  

Before droplet observations with a PD, a camera was used 

to analyze possible scenarios. Droplets were generated with 

DIW in separate combinations with oil A and B (TABLE  

III). Droplets were recorded as image series to a computer 

and afterwards analyzed visually. Additionally, images of 

droplets were scanned through a custom pixel color 

summation program, used to estimate possible collectable 

waveforms from the PD. The custom program had an 

additional feature to roughly mimic a variable pinhole 

(determinable by the angle of the droplet generation chip in 

the chip mount). 

 

4) System controller benchmarking 

The selected controller (RPI) had a quad core processor 

limiting concurrent tasks to four. Additionally, with RPI 

running a desktop OS, loop stability of each task, split using 

multiprocessing Python library, was measured in a one-time 

operation – finishing with complete termination processes. 

As this required all connected submodules, the test took place 

at the final stages of integration. All tasks running in parallel 

on RPI were timed over a 90 second droplet generation 

operation using chip variant C with oil B.  

Furthermore, three additional 90 second tests were run (2 

with chip variant C and 1 with chip variant B). After 45 

seconds into the tests, ~3 seconds of ADC data (from 

task/core 3) was logged in more detail to analyze controller 

related latency and performance with a custom droplet 

interpretation algorithm. In the same period, a sample image 

was taken from the waveform entering the ADC, visualized 

on a connected oscilloscope (DSO5014A, Keysight). 

B. System Evaluation 

In system evaluation methodology, unless specified 

otherwise, oil B (TABLE  III) was used as the continuous 

phase. 

 

1) Droplet size and frequency control 

For this evaluation process, two sets of target series tests 

(size and generation rate) were conducted for each of the two 

chip variants (B and C) – shown on TABLE  IV–VII. All 

samples in series were given 15 seconds for stabilization 

which was discarded from further calculations. The 

remaining 21 seconds for each sample was used for CV% 

and error calculations. Due to geometric differences between 

chip variants, target ranges of named series were limited to 

combinations more likely to produce droplets. 

 

2) Measurement of coefficient of variability of generated 

droplets 

To measure the stability of droplet generation with the 

proposed system, coefficients of variability (CV%) were 

calculated from “digitized” droplet data (relative droplet size 

over the photodiode as voltage and droplet generation rate as 

frequency from droplet-to-droplet period) obtained with 

specified droplet feedback PID targets after the setup was ran 

through the calibration algorithm described in ESI S3. CVs 

were calculated from voltage and frequency series obtained 

from dual-PID tests, allowing 15 seconds for stabilization at 

the start of each stage. This left 21 seconds of stabilized data 

on each target for CV calculation. CVs were also calculated 

from additional datasets made with longer stabilization (30 s) 

and stable periods (45 s). As generation frequency did not 

strictly apply to droplet length, CV of generation frequency 

was not combined with relative size CVs. However, droplet 

generation frequency target series were further quantitatively 

analyzed via standard deviations and CVs (further detailed in 

ESI S4). Multiple CV sets were required for observing the 

impact from droplet generation frequency, pumping 

frequency (as piezo pump driving frequency) and average 

pressure in the chip to droplet size CV. 

In addition, to attest to the meaning and comparability of 

voltages obtained from the photodiode, claimed as 

corresponding to droplet size, visual data of droplets was 

needed. For visual data, droplets, generated with fixed 

pressure targets, were collected into an Eppendorf Tube® to 

be measured afterwards. Imaging for measurements was 

done with a trinocular microscope (BX61, Olympus) using a 

camera (DP70, Olympus) and a 4x/0.16 lens (UPLSAPO, 

Olympus). CVs and averaged cross-sectional areas and 

diameters were calculated using ImageJ software (further 

described in ESI S5). For better viewing, droplets were 

pushed into Countess™ Cell Counting Chamber Slides 

(ThermoFisher) with a channel height of 100 µm. 

 

IV. EVALUATION RESULTS AND DISCUSSION 
In all tests, droplets were generated with liquids following 

the naming scheme given in Section III. 

A. Submodule evaluation 

 

1) Pressure-based system feedback modelling  

With the ramping pump driving voltage (25 V to 250 V) 

tests, linear correlation between voltage and pressure 

generated in tests with all chip variants were observed (Fig. 

12). The relationship of pressure drops across the chip to 

pumping voltages varied for the different chip variants. This 

was quantified with the voltage-to-pressure coefficient (Cvp). 

Furthermore, while the rising trend of the Cvp of water tests 

was rising along with the cross-junction width, the ratio of 

water and oil Cvp was different between chips with different 

oil entry angles (Fig. 12/a-b vs. Fig. 12/d-e). The coefficients 

obtained with chip A were used in the controller design to 

account for differences in junction widths. 

Based on our previous works [23], [24], the system 

components were mathematically represented as transfer 

functions in eqns. 1-3, using the collected data in MATLAB 

software. 
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Where t.f.pwat is the transfer function of the water pump, 

t.f.poil the transfer function of the oil pump, and t.f.chip90 the 

transfer function of the chip variant A. From Simulink results 

the controller parameters with the lowest fitness values 

(error) were chosen for real-world experiments. PID’s Kp, Ki, 

Kd values for water pump (10.5, 60.77, 1.64e5), obtained 

from the IE objective function, resulted in good long-term 

stability, albeit with an overshoot, whereas Kp, Ki, Kd values 

(6.69, 46.10, 5.81e-5), obtained from the IAE objective 

function, resulted in a response with negligible overshoot, but 

instead with oscillations around the target value. Based on the 

comparison of GA tuning results (Fig. 13), manual 

adjustments to Ki were made to prevent overshoot and 

maintain good stability, with new Kp, Ki, Kd values (10.5, 

17.5, 5.81e-5) for water. Following the same process, Kp, Ki, 

Kd values were found for oil (40.0, 18, 4.78e-4).  

 

2) Syringe pump vs. pressure-driven pump 

The pressure stabilization and steady states of the two test 

scenarios described in Section III-A-2 are shown in Fig. 14. 

Syringe pumps took approximately 120 seconds to reach a 

reasonable steady state for new pressure targets, with minor 

oscillations persisting. Slower response time for syringe 

pumps was attributed to linear operation of the motors’ 

speeds, however, the likely cause for persistent oscillations 

was attributed to inconsistent friction of the syringe’s rubber 

gasket. In comparison, pressure-driven micropumps showed 

better responsiveness and stability between changing input 

pressure targets, taking about 10 seconds to reach the defined 

inlet and outlet pressure values.  

The faster response rate helped significantly reduce 

experiment runtimes and reagent waste during the system 

evaluation tests (Section IV-B, e.g., exploring ranges of 

producible droplet sizes and generation rates). 

 

3) Sensorics, photodiode voltage interpretation 

While generating droplets using oil A, the formed droplets 

(Fig. 15) indicated that once the droplet’s diameter exceeded 

the larger dimension of the channel (Fig. 15/c), the shadow 

caused by refractions in the phase transition region would 

intensify. Furthermore, a central low refraction region would 

emerge.  

The possible impact of the low refraction region on the 

captured photodiode light intensity waveform was estimated 

from the custom pixel color summation program (Fig. 16). 

Given the fixed size moving window on Fig. 16/a-c, it was 

noted, that even with a longer than “window size” droplet, 

whose diameter was less than the larger dimension of the 

channel (Fig. 16/b), the estimated waveform gained little to 

no distortions. Mild distortion could be attributed to the 

bullet-like shape of the droplet. However, a much more 

noticeable distortion was noted once the low refraction 

region became significant relative to the window size. The 

non-phase transition region had the potential to invert the tip 

of the waveform. The impact of this effect was amplified 

with a less viscous continuous phase, as that reduced the 

surface tension of the droplet and the intensity of the 

droplet’s shadow along with it. 

Using oil B for the continuous phase, generated droplets 

showed inherently thinner phase transition regions and gave 

way for larger low refraction regions (Fig. 17). The images 

show a case where not only was the phase transition region 

very thin, but the aligned droplet acted like a lens (Fig. 17/c). 

To further inspect the impact of such cases, consecutive 

frames were viewed in the custom pixel color summation 

program (Fig. 18). Due to the usage of a pinhole, the extra 

shadows at the edges (background noise) were subtracted 

from further intensity calculations using the 6th additional 

frame (Fig. 18/f). Seen from Fig. 18 with a droplet, sized 

large enough to be squished in the microfluidic channel, 

flowing in low viscosity oil B, the possible recorded 

waveform for a single droplet could resemble a much more 

severe case of Fig. 16/c – instead of a slightly dipping peak, a 

waveform section representing a single droplet with a 

possible dip as low as to split into two discernible droplets. 

 

4) System controller benchmarking 

Individual task duration details can be seen on TABLE  

VIII. Maximum loop durations of the waveform 

interpretation and pumping pressure target calculation tasks 

(marked with * in TABLE  VIII) were caused by spikes in 

OS latency. Noticeably longer than average maximum loop 

durations for the remaining tasks were caused by delays from 

communication termination procedures included in the 

timing of the last loop. Total durations of tasks other than the 

pumping pressure target calculation task, where the main 

operation timer was running, were longer due to beginning 

their termination process after the defined 90 s time limit. 

Their difference was caused by sequential termination 

process (some extending for multiple seconds due to large 

log file generation). For droplet waveform interpretation task, 

the average loop duration extended to ~6.5 µs, resulting in a 

mean sampling rate of ~153 kHz. The discrepancy between 

minimum loop duration of pump communication task (~15 

ms) and pump sensor update rate of ~166 Hz (6 ms) was 

attributed to having used asynchronous communication 

method. 

In the OS latency and droplet interpretation algorithm 

impact analysis, droplet waveform from the first additional 

test with chip variant C (Fig. 19) indicated that the pinhole-

aligned droplets were seen as an increase in light intensity. 

Meaning that the droplets acted as lenses instead of obstacles. 
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In this scenario, the “peak” of the alignment was measured at 

the “trough”. Each “trough” could be imagined as a more 

severe form of the dip shown in Fig. 16/c. Each “trough” was 

accompanied by its darker incoming and outgoing edges 

(Fig. 18/a, 18/e). From the logged ADC data, a sample 

section (Fig. 20) showed the limits of RPI running code 

written in Python on a non-real-time OS and specific 

functions circumstantially interacting poorly with the OS. As 

the average ADC task loop duration was measured around 

~6.5 µs (TABLE  VIII), Python’s multiprocessing Queue 

functions empty() and get_nowait(), called after 100 mV 

above the average line for every other droplet, delayed the 

loop duration minimally another ~100 µs producing 

erroneous droplet size measurements. In comparison, the 

second test with chip variant C (Fig. 21) showed a waveform 

with similar sharp peaks, but each with longer duration. Long 

enough to preserve the peaks captured by the ADC (Fig. 22). 

In the third additional test, with chip variant B, OS latency 

was spotted causing the loss of 2-3 consecutive droplets (Fig. 

23) with an unexpected delay between two ADC sampling

cycles. Albeit being relatively rare, the measurement error of 

such events was mitigated to prevent destabilizing the flow

rates. When time delay between two ADC samples exceeded

30% of the average droplet generation period, the following 

erroneous droplets were excluded from the logs and use in

the droplet feedback PIDs. It improved fluidic stability, but 

in the case of random OS delays, at the cost of up to 10% of

generated droplets not getting logged (losses were lower with

lower generation rates). Likewise, in the case of get_nowait()

delay, if it exceeded 30% of the average droplet generation

period, the irregular droplet measurement would be excluded

from the log and PID feedback.

B. System evaluation 

After assembly, programming, and fine-tuning through 

preliminary testing, connection between a laptop and the 

CogniFlow-Drop device was established through a Wi-Fi 

hotspot to validate the communication interface. After a 

successful connection, the interface effectively transmitted 

and received message packets every ~100 ms, artificially 

delayed with eCAL message polling delay on the RPI. Other 

functional tests with the remote control included: 

 initiating setup calibration (tied to variables: chip

position/angle, chip variant, liquids used),

 initiating droplet generation with desired size and

generation rate,

 initiating droplet size (V) target series test,

 initiating droplet generation rate (F) target series test.

Each feature of the GUI (Fig. 8) was proceeded to be used

as remote initiator for the following system evaluation steps. 

1) Results of droplet size and frequency control test series

During experimentation some target droplet size and

generation frequency combinations did not yield droplets 

regardless of having used selective ranging – highlighted on 

TABLE  VI-VII. Overall, chip C showed lower ranges for 

both sizes and generation rates. Additionally, chip C behaved 

uniquely between voltage and frequency series, as the 

combination of (400 Hz; 3.4 V) in voltage series did not yield 

droplets, but in contrast, was unexpectedly stable in 

frequency series. This hinted to higher sensitivity to size 

target alterations during droplet production combined with 

how current droplet feedback PID handles high instability. 

Target series over all four sets, named in Section III-B-1, 

resulted in averaged droplet size errors, seen on Fig. 24, 

which indicated higher accuracy for droplet size control with 

chip B, more specifically with droplet size (V) series when 

the marked outlier of ChipB-Fseries was taken into account. 

With an average error of -0.06%, ChipB-Vseries obtained 

averaged sizing errors between +2.86 to -1.79%. Contrast of 

accuracy of reaching average target size, can be seen on 

droplet capture graphs between ChipB-Vseries (row 4 from 

TABLE  IV) and ChipC-Vseries (row 2 from TABLE  VI) 

on Fig. 24/b and Fig 24/c respectively, with target sizes per 

sample, segmentally overlayed as orange horizontal lines. 

Target size errors on Fig. 24/b were [+0.35; -1.79; -1.56] % 

respectively. Together with the fixed frequency (200 Hz) 

accompanied with varying droplet size targets, frequency 

errors of [+0.88; -2.00; -5.63] %, respectively, showed a 

decreasing total output volume with the combined error 

staying further and further below the targets. Target errors on 

Fig 24/c were [+5.62; +2.88; -2.03; -7.24] % respectively. 

For the comparably reduced functional size range that 

channel geometry of chip C offered, target size control did 

not yield droplets in all requested sizes. This could largely be 

contributed to inclinations caused by the channel geometry. 

This was made clear from its accompanied averaged 

frequency target errors of [-1.99; +2.65; -0.73; -0.30] % 

respectively, which did not follow the pattern of size errors. 

The secondary contributor was attributed to the erroneous 

droplet size averaging caused by what was shown on Fig. 20. 

Due to alterations in perception of captured droplet sizes, 

calibration for chip C test series had been segmentally 

impacted where droplet waveforms exhibited shapes more 

predisposed to peak losses. 

Additionally, averaged droplet generation rate errors, seen 

on Fig. 25/a, again indicated higher accuracy for droplet rate 

control with chip B, more specifically with generation rate 

(F) series when marked outliers of ChipC-Fseries were taken

into account. With an average error of +0.94%, ChipB-

Fseries obtained averaged generation rate errors between

+3.62 to -1.65%. Contrast of accuracy between the best and

the worst captured series of reaching average target

generation rate, can be seen on droplet capture graphs 

between ChipB-Fseries (row 2 from TABLE  V) and ChipC-

Fseries (row 1 from TABLE  VII) on Fig. 25/b and Fig. 25/c

respectively, with target sizes per sample, segmentally

overlayed as orange horizontal lines. Target averaged

frequency errors, with chip B, on Fig. 25/b were [-1.43;

+0.86; +1.83; +1.67] % respectively. Together with the fixed
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size target (2.8 V) accompanied with the example varying 

frequency targets, averaged size errors of [+0.50; -0.61; 

+0.61; +0.14] % respectively, showed no explicit relationship 

between size and frequency errors. This alluded to lesser 

impact from frequency alterations during droplet generation, 

in other words, lesser impact from changes in oil pressure 

rather than water pressure. Target averaged frequency errors, 

with chip C, on Fig. 25/c were [+1.93; +4.11; +6.78; -5.11; -

20.61] % with accompanying size target (3.2 V) errors of 

[+5.91; -0.06; -1.56; -1.09; -1.13] %, respectively, showing 

little correlation in comparison. This example showed large 

fluctuations in periodicity, but small droplet size variation 

(similar to Fig. 24/c from ChipC-Vseries). 

 

2) Measurement results for coefficient of variability of 

generated droplets 

a) Droplet size data (PD voltage discretized with the 

ADC) from consecutive droplet size and frequency 

target series 

V and F series performed in Section IV-B-1 resulted 

in averaged droplet size CVs represented on Fig. 26/a 

and averaged droplet generation rate CVs represented 

on Fig. 26/b. Medians of averaged CVs from Fig. 26/a, 

[6.83; 6.33; 5.78; 6.84] %, respectively, showed that 

while the measured droplet sizes in tests with chip C 

were off noticeably more than with chip B, the size 

stability can be better. However, minimum CVs [3.10; 

3.30; 4.40; 3.60] % showed favorability towards chip 

B. While some maximum CVs reached over 10%, more 

significant reasons for the larger instabilities stemmed 

from the chosen pressure combinations working less 

favorably with chosen chip geometries. From the 

averaged droplet generation rate results on Fig. 26/b, 

the difference between chip B and C was hard to 

mistake. As the CVs between size and rate for chip C, 

have a noticeable difference in scale, it was evident that 

the generation frequency of droplets does not inherently 

link to droplet size in a pulsatile pressure-based 

pumping system.  

Further analysis of target F series provided 

relationships between the generation rate to generation 

rate CVs at each obtained average frequency level with 

standard deviation (SD) bars and between the target 

generation rate to column averaged SDs (SD averaging 

for chip C was done conditionally, further explained in 

ESI S4), for chips B and C respectively on Fig. 27/a 

and Fig. 27/b (numeric details in ESI S4, TABLE I-IV). 

Generation rate CVs for chip C revealed behavioral 

outliers with target size and rate combinations in row 1 

of TABLE VII (while producing droplets in a stable 

manner with size CVs < 10%, the frequency CVs were 

well above 25%). By omitting the TABLE VII row 1 

CVs and SDs from comparison between chip variants, 

the general rule of increasing SD with increasing 

generation rate becomes noticeable. By having 

excluded row 1 SDs also from averaging of SDs, chip B 

and C generation rate averaged SDs (SD����) showed 

analogous trends. Both show the highest correlation to 

exponential relationships. Additionally, for both chip 

types, cropped SD����s revealed high linear correlation 

regions up to the second highest tested respective 

generation rate targets (Fig. 27) which in terms of 

generation rates would narrow down on the stable 

frequency region of use for that specific chip geometry 

and fluidic phase combination. Between the observed 

initial and cropped data, beyond a certain generation 

rate, the behavior of frequency stability deteriorates 

from linear into exponential regime. The possible 

causes of which could be 1) stability limits, inherited 

from FFD channel design in combination with pulsatile 

flow and fluid phase properties, 2) hardware and/or 

software limits, RPI’s droplet interpretation loop delays 

introducing increasing number of erroneous readings. 

b) Droplet size data (PD voltage discretized with the 

ADC) from single shot droplet size and frequency 

targets 

Using chip B with different calibration (chip position 

slightly tilted in the light tower), one of the better 

examples with lowest target error in combination with 

the lowest droplet size CV (400 Hz, 4.4 V) achieved, 

can be seen on Fig. 28 with graphed droplet sizes and 

generation rates respectively. From the size dataset on 

Fig. 28/a, the CV% was calculated to be 1.77% with a 

percentage error from target droplet size of +0.27%. 

From frequency dataset on Fig. 28/b, the CV% was 

calculated to be 6.67% with a percentage error from 

target droplet generation rate of +0.22%. 

c) Droplet size data (microscope camera  ImageJ) 

from single shot pressure targets 

Droplets were collected from tests with droplet 

feedback PIDs disabled to obtain a baseline. Tests were 

done with fixed water pressure at 9 kPa and several oil 

pressure targets in the range of 9 kPa – 12 kPa, ran over 

90 seconds, where oil pressure at 12 kPa yielded the best 

results with 7.7% CV, with a spread of cross-sectional 

areas shown on Fig. 29. Average cross-sectional surface 

area of recorded droplets was measured 13 558.9 µm2, 

translating into an average planar diameter of 131.4 µm 

when droplets were flattened in the imaging slide. A 

sample from a series of images taken of droplets in the 

droplet imaging slide can be seen on Fig. 30. 

 
V. FUTURE PERSPECTIVE 

One of the core principles of the CogniFlow-Drop system 

is modularity. This modularity opens the way to various 

future upgrades: use-cases enabled by additional modules 
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(Section V-A), as well as possible upgrades to the core 

modules (Section V-B). 

A. Application use cases 

 Inline imaging cytometry: The addition of a high-

speed camera/detection module (and ideally a cell 

incubation module) could enable inline imaging

cytometry.

 Cell sorting: The addition of a droplet sorting

module, together with the aforementioned imaging

cytometry modules, could enable droplet-based cell

sorting for further downstream processing of select

cells or cell lines. The single-cell resolution and

chemical isolation provided by droplets could

greatly increase the throughput, while reducing

reagent and sample waste compared to current state-

of-the-art flow cytometry setups.

B. Possible upgrades to the prototype system

 To improve the droplet capture rate and reliability,

an additional ESP32, or a similar low-cost device

with an SPI bus and two cores, could be placed

between the RPI and ADC to take over task 3 from 

the RPI. Additionally, the added computational 

power could enable more complex waveform

analysis (e.g., waveform slope measurement and

droplet lensing effect detection).

 To improve the droplet size and generation

frequency control accuracy and fault tolerance,

machine learning models could be implemented on

the RPI.

 To improve automation, the following features

could contribute: self-priming, self-cleaning, auto-

chip-positioner, auto-pinhole-positioner, self-

analyzing (e.g., detection of blockages or leaks in

the fluidics module), auto-focusing, and auto-

calibration-ranging.

 To improve the user interface, the GUI, after

calibration, could offer feasible droplet size and

generation frequency ranges, with highlighted

combinations yielding the best CV% for that 

specific chip and position. Furthermore, by user

request, the GUI could poll captured waveform

samples during operation.

 To correlate relatively inexpensively and rapidly

measured droplet sizes from their shadows to real 

droplet volume, a secondary in-line camera setup

could be joined in the communication line over

eCAL. To image droplets, as proposed in Section 

V-A, during cytometry.

VI. CONCLUSIONS
A proof-of-concept prototype of an integrated, modular

system for automated aqueous droplet generation with high 

monodispersity was presented. The system measured droplet 

sizes and generation rates using a visible spectrum LED-

photodiode setup aligned with the cross-junction of the FFD, 

converting the droplet’s shadow to voltage. Resulting peak-

to-peak voltages were correlated with relative size of the 

droplet whereas the time between the beginnings of droplets 

were used to obtain the generation rate.  We reported on the 

assembly and the underlying working principle, as well as 

the experimental evaluation of the performance of the 

prototype, both on a module level and system level. Module-

level evaluation and comparison to reference syringe pumps 

indicated a 12 times reduction in pressure stabilization times. 

The system-level evaluation proved that the system was 

capable of repeatedly generating droplets with stability 

comparable to other state-of-the-art droplet generation 

systems. Droplet generation stability was proven over 2 

different carrier media and 3 different junction geometries in 

total. The lowest relative droplet size CV% recorded was 

1.77% (~0.00031 PDI) using Chip B with fluid phase 

combination B. With droplets controllably generated in 

tested relative size targets between 2.0 to 4.4 V,  polydisperse 

(PDI > 0.1) droplets with a stable size distribution can also be 

generated. Unique characteristics from relationships between 

droplet size/generation rate and chip geometry were made 

observable through automated calibration and parameter 

target test series with different chips. Conditional droplet 

generation rate analysis also revealed high linear correlation 

regions for the “SD of the generation rate” with the “target 

rate” for chips B and C, from 200 Hz up to 600 Hz and 500 

Hz respectively. In conclusion, the presented prototype 

system has comparable droplet generation performance 

metrics to other state-of-the-art droplet generation setups, but 

offers several advantages: 1) modularity, integration, wireless 

communication and the option to run from battery power, 

enabling portability; 2) affordability; 3) automation and ease 

of use, increasing repeatability of results and allowing 

transfer of protocols between labs, as well as reducing 

manual workloads; 4) user-friendly (re-)calibration of chip 

alignment.  
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TABLE  I OVERVIEW OF THE STATE-OF-THE-ART FEEDBACK-CONTROLLED DROPLET GENERATORS COMPARED TO OUR NOVELTY 

    

  

TABLE  II MASTER MOULD DESIGN PARAMETERS FOR MICROFLUIDIC DROPLET GENERATOR CHIPS 

 

 

 

 

 

 

 

 

 

 

  

Reference Flow actuation 
Flow control 

algorithm 

Continuous phase 

fluid 

Discrete phase 

fluid 

Monodispersity 

(CV%) 
Flow sensor 

Integrated & 

standalone? 
Communication

[14] 
Programmable 

pressure pump 
PID controller Silicone oil 

Calcium 

chloride 

solution 

<7.6% N/A 

No 

USB 

[13] Pressure pump PI controller Silicone oil Water 2% 
Pressure 

sensor 

[18] Pressure pump PID controller Fluorinated oil Water 0.32% N/A 

[15] Pressure pump PID controller Silicone oil Water N/A N/A 

[36] Microvalves PI controller Silicone oil Water 
No steady state 

errors 
N/A 

[37] 
Syringe pump, and 

gas regulator 
PI controller BSA in NaCl Nitrogen N/A N/A 

[38] Syringe pump PID controller 
Paraffin + 10% 

Span80, 
Water 

RMSE reduces from 

3.4 to 0.48 
N/A 

[39] Pressure pump Pi controller Silicone oil Water N/A 
Pressure 

sensor 

[20] Gas-driven 
Dual-PID (pressure, 

bubble size) control 
Water + Tween80 C4F10/CO2 gas N/A 

Laser-

photodiode 
Yes 

Our 

work 
Dual piezo pumps 

Dual -PID (pressure, 

droplet size/gen. 

rate) control 

HFE7500/ mineral 

oil + tri-block 

surfactant 

Water 5-10% 
LED-

photodiode 
Yes WLAN 

Chip variant A B C 

Junction width [mm] 90 125 280 

Junction angle of entry [◦] 90 38.33 

Oil inlet width [mm] 360 

Water inlet width [mm] 6 

Outlet width [mm] 0.6 

Number of filters 2 
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FIGURE 3. CogniFlow-Drop device: in the device, oil-water droplets of a user-

defined size are generated, encapsulating cells and reagents of given kinds. The

regulation of droplet sizes takes place by means of simultaneous pressure and

flow rate control, resulting in a high control precision (in terms of CV%

[coefficient of variation] of droplet diameter). The system implements distributed

wireless control in an event-triggered manner [27]. 

FIGURE 1. CogniFlow-Drop concept: droplets with user-defined process and 

dimensional parameters are generated automatically from reagents and 

samples needed by the user, with minimal user interaction, in a compact, 

standalone device. These can then be collected for further downstream 

processing, e.g., incubation and detection. 

FIGURE 2. Prototype assembly, consisting of modules: (1) electronics 

module consisting of the power supply stage (a), the pump driver and 

pressure sensor stage (b) and the stage that contained the RPi4B as well as 

the ADC and filtering circuit for the optical sensor (c), plus the corresponding 

copper shielding plates. (2) The sensorics module, consisting of the base 

stage with the photodiode and lens (a), the microfluidic chip mount stage (b) 

and the light source mount stage (c). (3) fluidics module, which included L-

mounts for the pumps (a) and a foam-padded enclosure (b), as well as (c) 

sample, reagent, and product collection containers. (4) The enclosure with 3D 

printed internal and external walls, as well as a wooden base plate to which all 

modules were mounted for stability. The M5 bolts mounting the stages of the 

modules are hidden in the close-up explosion views (1-3).  

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3316726

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 Author Name: Preparation of Papers for IEEE Access (February 2017) 

 

VOLUME XX, 2017 9 

 

  
(a) (b) 

FIGURE 4. a) Structure of dual-loop PID control strategy. The inner feedback loop reduced pressure fluctuations, improved accuracy, and speed of 

reaching target pressure level. Outer feedback loop adjusted droplet sizes and generation rates based on optical flow rate measurement from module 2 in 

Fig. 2; b) Structure of PID tuning method with six objective function criteria obtained from using genetic algorithm. 

 

 
FIGURE 5. Four main tasks (in green) of the system controller were made to run concurrently on separate cores. Core 1 handled user commands 

received over local network using eCAL API with Protobuf format. Core 2 communicated with the pumping system’s control board ESP32-DecKitC via 

serial protocol. Core 3 received discretized photodiode signal from an ADC in SPI protocol format through Raspberry Pi’s BCM 2711 GPIOs and using it to 

measure running droplet generation parameters. Core 4 managed commands and information from the other three cores to start, stabilize and end droplet 

generation. 

 

  
(a) (b) 

FIGURE 6. Communication interface implementation. (a) Data Structure for CogniFlow-Drop: droplet size (dsize), message id, droplet generation rate 

(drate), sender status/role, operational command, sender device name, and saved calibration parameters named with corresponding microfluidic chip. (b) 

instances of eCAL-based message transmissions. 
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FIGURE 7. Implementation of the communication interface, data 

transmission, reception, verification, and a Graphical User Interface for 

accessibility. 

FIGURE 8. ECAL based Graphical User Interface (CogniFlow-Drop 

v1.0). 

FIGURE 9. Cross-section of the microfluidic droplet measurement 

system with parts aligned to the axis marked with a dashed yellow line. (a) 

An LED with an LED driver is soldered to a printed circuit board (PCB) that 

is used to illuminate the microfluidic chip. In addition, a matted lens is 

used to diffuse and focus the light. (b) A PDMS-glass microfluidic chip is 

mounted to the chip holder with a metal plate with a micro-drilled pinhole

positioned underneath. (c) A non-imaging photodiode collects light, while 

a high gain transimpedance amplifier is added nearby. On a custom PCB, 

components are mounted along with a lens holder and microscope lens. 
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FIGURE 10. Parameterized flow-focusing device for controlled droplet generation. Oil inlet is split equally and filtered through micropillar

arrays to prevent impurities on the oil line from clogging the junction. The outlet has a 1 ml gas spring attached to smoothen out flow rate

fluctuations coming from the pump. Chip variant A/B (a) had a 90-degree entry in the flow-focusing junction, whereas variant C (b) had a 38.33-

degree entry angle and a shorter outlet length. There was no other difference between the 3 chip variants apart from the junction width. Water

inlet, outlet and oil line widths were the same.  
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FIGURE 12. Pressure drops vs. peak-to-peak voltages of the 

piezoelectric micropump for the chip variants with cross-junction widths: 

90 µm with DIW (a) and with oil A (b); 125 µm with DIW (c); and 280 µm 

with DIW (d) and with oil A (e). Driving frequency for water pump was 200 

Hz sinewave. The driving voltage waveform was 200 Hz sinewave for the 

water pump and 50 Hz sinewave for the oil pump. 

 

 

 

 
 

(a) 

 

(b) 

 

FIGURE 14. Pressure stabilization experiments performed on the setup 

shown in Fig. 11/a. Syringe pumps were set to pump with 12 µl/min for 

DIW and 24 µl/min for oil A. One minute period from the end of stable state 

pressures on (a) were averaged and used as pressure targets for the 

piezoelectric micropump PIDs. a) Responsiveness of flow-rate driven 

system (with third-party syringe pumps); b) Responsiveness of our 

pressure-driven system. 

 

 

 

 

 

  

FIGURE 11. Schematic diagram for the experimental setup of droplet 

microfluidics system: (a) block diagram of the control system, (b) camera

image of the droplet generator junction. 

FIGURE 13. Simulation results for pressure feedback PID controller 

tuning with a genetic algorithm for oil pressure control. 
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(a)

(b)

(c)

FIGURE 15. Recorded camera images of droplets generated with DIW 

and oil A in a 125 µm wide microfluidic channel taken at 555 frames per 

second under brightfield LED. a) ~58.4 µm length droplet, generated with 

5.2 kPa and 11.0 kPa for water and oil pressures respectively; b) ~112.7 

µm length droplet, generated with 5.2 kPa and 9.5 kPa for DI water and oil 

A pressures respectively; c) ~182.0 µm length droplet, generated with 5.2 

kPa and 7.5 kPa for water and oil pressures respectively. 

(a)

(b)

(c)

FIGURE 16. Rotated and cropped camera images shown in Fig. 15, 

respectively, were scanned with a fixed size moving window, indicated by 

green vertical lines to obtain corresponding intensity graphs (blue 

waveform above droplet image). a) low-distortion triangular waveform 

produced by the ~58.4 µm length droplet with a relative intensity multiplier 

of 20.0; b) low-distortion triangular waveform produced by the ~112.7 µm 

length droplet with a relative intensity multiplier of 10.0; c) high-distortion 

trapezoidal (double-peak) waveform produced by the ~182.0 µm length 

droplet with a relative intensity multiplier of 5.0. 

(a)

(b)

(c)

(d)

(e)

FIGURE 17. Cropped recorded frames of a passing droplet during 

generation with oil B. Droplet was generated at 5.0 kPa and 5.5 kPa water 

and oil pressures respectively. Displayed droplet measures ~171.9 µm in 

length and was recorded at 1810 frames per second. A circular ~190 µm 

diameter pinhole was used under the microfluidic chip below the recorded 
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region to improve the visibility of the droplet. a) reference frame 1 in 

series, droplet entering the pinhole aperture; b) reference frame 2 in 

series, droplet approaching the center of the pinhole aperture; c) 

reference frame 3 in series, droplet in the middle of the pinhole aperture; 

d) reference frame 4 in series, droplet leaving from the center of the 

pinhole aperture; e) reference frame 5 in series, droplet exiting the pinhole 

aperture. 

 

 

 

 

 
 

(a) 

  

(d) 

(b) 

  

(e) 

(c) 

  

(f) 

FIGURE 18. Camera images shown in Fig. 17, respectively, and an extra 6th frame were scanned with a fixed size moving window, indicated by green 

vertical lines to obtain corresponding intensity graphs (blue waveform above droplet image). All intensity graph scaling multipliers were kept at 245.0 for 

better visualization and comparability. The intensity of the 6th frame, representing the background noise, was recorded first, and locked into memory. 

Background intensity was subtracted from the following calculations. a) Indicating a rising shadow intensity as the darkest region of the droplet entered 

the pinhole aperture and the moving window; b) indicating a past-peak shadow intensity as the droplet moved closer to the center of the pinhole aperture 

and the moving window; c) indicating the lowest shadow intensity while the droplet was positioned at the center of the pinhole aperture; d) indicating an 

approaching-peak shadow intensity as the droplet was leaving the central region of the pinhole aperture and the moving window; e) indicating a falling 

shadow intensity as the darkest region of the droplet was exiting the pinhole aperture and the moving window; f) indicating the intensities of the shadows 

at the edges of the frame, caused by the pinhole. 
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FIGURE 19. Oscilloscope screen capture of recorded amplified, inverted photodiode voltage during droplet generation with chip variant C, at a rate of 

~500 Hz. Droplet alignment with the pinhole noted with blue arrows (at the “troughs”). Instability in the droplet production rate is recognizable by the 

varying time gaps between the „troughs“. 

FIGURE 20. Sample frame from ADC measurement log on RPI showing ADC readings and the average line over which droplet detection was handled. 

Shown graph links with Fig. 19, however, with every other peak cut off due to specific cross-core communication function delays. 

FIGURE 21. Oscilloscope screen capture of recorded amplified, inverted photodiode voltage during droplet generation at a rate of ~200 Hz. Droplet 

alignment with the pinhole noted with blue arrows (at the “troughs”). 
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FIGURE 22. Sample frame from ADC measurement log on RPI showing ADC readings and the average line over which droplet detection was handled. 

Shown graph links with Fig. 21, however, in contrast to Fig. 20, cross-core function delays caused after every other detected droplet, were not long enough 

to cut off the relevant peaks of the droplet waveform. 

 

 

 

 
FIGURE 23. Sample frame from ADC measurement log on RPI showing ADC readings and the average line over which droplet detection is handled. In 

shown example, spontaneous latency delays caused by the operating system running on RPI prevented three consecutive droplets being captured and 

measured. 

  

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3316726

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2017 9 

TABLE  III FLUID PHASES USED IN DROPLET GENERATION EXPERIMENTS 

A B 

Disperse phase deionized water (DIW) deionized water (DIW) 

Continuous 

phase 

Sigma-Aldrich 33079 mineral oil + 2% w/w 

surfactant (Span® 80, Sigma-Aldrich) 

HFE 7500 fluorocarbon oil + 2% w/w surfactant 

(perfluoropolyether (PFPE)-poly(ethylene glycol) 

(PEG)-PFPE triblock) 

TABLE  IV Chip B – Voltage target series over fixed generation frequency targets. 

Fixed 

Generation Rate 

Target 

Voltage / Size 

Target 1 

Voltage / Size 

Target 2 

Voltage / Size 

Target 3 

1 200 Hz 2.0 V 2.8 V 3.6 V 

2 400 Hz 2.0 V 2.8 V 3.6 V 

3 600 Hz 2.0 V 2.8 V 3.6 V 

4 800 Hz 2.0 V 2.8 V 3.6 V 

TABLE  V Chip B – Frequency target series over fixed voltage (size) targets. 

Fixed Voltage / 

Size Target 

Generation Rate 

Target 1 

Generation Rate 

Target 2 

Generation Rate 

Target 3 

Generation Rate 

Target 4 

1 2.0 V 200 Hz 400 Hz 600 Hz 800 Hz 

2 2.8 V 200 Hz 400 Hz 600 Hz 800 Hz 

3 3.6 V 200 Hz 400 Hz 600 Hz 800 Hz 

TABLE  VI Chip C – Voltage target series over fixed generation frequency targets. 

Fixed 

Generation Rate 

Target 

Voltage / Size 

Target 1 

Voltage / Size 

Target 2 

Voltage / Size 

Target 3 

Voltage / Size 

Target 4 

1 200 Hz 3.2 V 3.4 V 3.6 V 3.8 V 

2 300 Hz 3.2 V 3.4 V 3.6 V 3.8 V 

3 400 Hz 3.2 V 3.4 V 3.6 V 3.8 V 

4 500 Hz 3.2 V 3.4 V 3.6 V 3.8 V 

TABLE  VII Chip C – Frequency target series over fixed voltage (size) targets. 

Fixed 

Voltage / Size 

Target 

Generation 

Rate Target 1 

Generation 

Rate Target 2 

Generation 

Rate Target 3 

Generation 

Rate Target 4 

Generation 

Rate Target 5 

1 3.2 V 200 Hz 300 Hz 400 Hz 500 Hz 600 Hz 

2 3.4 V 200 Hz 300 Hz 400 Hz 500 Hz 600 Hz 

3 3.6 V 200 Hz 300 Hz 400 Hz 500 Hz 600 Hz 

4 3.8 V 200 Hz 300 Hz 400 Hz 500 Hz 600 Hz 

TABLE  VIII CONTROLLER SOFTWARE’s TASK LOOP DURATION. 

Core 1 – User 

interface coms. 

(Section II-B-3-1) 

Core 2 – Pumping 

system coms. 

(Section II-B-3-2) 

Core 3 – Droplet 

interpretation 

(Section II-B-3-3) 

Core 4 – Droplet PID 

calculations 

(Section II-B-3-4) 

Maximum [ms] 203.4370 215.0430 20.25914* 21.05400* 

Average [ms] 102.0334 18.98948 0.006515 0.169749 

Minimum [ms] 100.6310 14.74400 0.002861 0.104000 

Loops counted 1005 4 758 14 640 000 530 200 

Total [s] 102.54 90.35 95.38 90.00 
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FIGURE 24. Results from Section IV-B-1. a) Averaged droplet size target errors for chips B and C, further split by size and frequency series test sets. 

Sample sizes for series respectively [12, 12, 9, 16]; b) Droplet size control dataset of row 1 from TABLE IV, from ChipB-Vseries test set. Graph indicating 

higher accuracy of stabilization around target voltage levels; c) Droplet size control dataset of row 2 from TABLE VI, from ChipC-Vseries test set. Graph 

indicating lower accuracy of stabilization around target voltage levels, preference to droplet size (influenced by chip geometry). 

 

 

  
FIGURE 25.  Results from Section IV-B-1. a) Averaged droplet rate target errors for chips B and C, further split by size and frequency series test sets. 

Sample sizes for series respectively [12, 12, 9, 16]; b) Droplet generation rate control dataset of row 2 from TABLE V, from ChipB-Fseries test set. Graph 

indicating higher accuracy of stabilization around target frequency levels; c) Droplet generation rate control dataset of row 1 from TABLE VII, from ChipC-

Fseries test set. Graph indicating lower accuracy of stabilization around target frequency levels and significant fluctuation in periodicity of droplet 

production. 
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FIGURE 26.  Results from Section IV-B-2. a) Averaged droplet size CVs for chips B and C, further split by size (V series) and frequency (F series) series 

test sets; b) Averaged droplet generation rate CVs for chips B and C, further split by size (V series) and frequency (F series) series test sets. Sample sizes 

for series respectively [12, 12, 9, 16]. 
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FIGURE 27.  Results from Section IV-B-2. Quantitative analysis of F series data. a) Droplet generation rate CV%, from droplet size and rate combinations 

in TABLE V, plotted against averaged generation rate, calculated over the stabilized generation period. TABLE V column (col.) averaged SDs (from target 

rate columns 1 to 4 and target size rows 1 to 3) plotted against column target generation rates together with a corresponding exponential regression line. 

Col. avg. SDs were cropped to columns 1 to 3 to highlight the highly linear correlation region; b) Droplet generation rate CV%, from droplet size and rate 

combinations in TABLE VII, plotted against averaged generation rate, calculated over the stabilized generation period. TABLE VII column conditionally 

(C/col.) averaged SDs (from target rate columns 1 to 5 and target size rows 2 to 4 – row 1 conditionally excluded due to indicating a different mode of 

operation, see ESI S4 for details) plotted against column target generation rates together with a corresponding exponential regression line. C/col. avg. SDs 

were cropped to columns 1 to 4 to highlight the highly linear correlation region. 
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FIGURE 29.  Droplet cross-sectional size spread from a droplet generation sample, generated with fixed water and oil pressure of 9 kPa

and 12 kPa respectively. 6429 droplets measured over 11 images with ImageJ software. 

FIGURE 28.  Results from Section IV-B-2. a) Droplet size target data set from a combination of [4.4 V; 400 Hz] with chip B. Stabilization period 45 

seconds which includes an initial 15 seconds of default initiation period. Stabilization and stable segments are separated by blue vertical line. Target size 

in voltage is shown with an overlayed horizontal line; b) Droplet generation rate target data set from a combination of [4.4 V; 400 Hz] with chip B. 

Stabilization period 45 seconds which includes an initial 15 seconds of default initiation period. Stabilization and stable segments are separated by blue 

vertical line. Target size in voltage is shown with an overlayed horizontal line. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3316726

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 Author Name: Preparation of Papers for IEEE Access (February 2017) 

 

VOLUME XX, 2017 9 

FIGURE 30.  Droplets generated with chip design B with fixed water and oil pressures of 9 kPa and 12 kPa respectively, pumped using 

pressure-based piezoelectric micropumps, viewed under microscope (4x/0.16 lens). 
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ABSTRACT This study describes the construction of a compact empirical mathematical model for a flow-

focusing microfluidic droplet generator. The application case is a portable, low-cost flow cytometry system 

for microbiological applications, with water droplet sizes of 50-70 micrometer range and droplet generation 

rates of 500-1500 per second. In this study, we demonstrate that for the design of reliable microfluidic 

systems, the availability of an empirical model of droplet generation is a mandatory precondition that cannot 

be achieved by time-consuming simulations based on detailed physical models. When introducing the concept 

of a compact empirical model, we refer to a mathematical model that considers general theoretical estimates 

and describes experimental behavioral trends with a minimal set of easily measurable parameters. By 

interpreting the experimental results for different water- and oil-phase flow rates, we constructed a minimal 

3-parameter droplet generation rate model for every fixed water flow rate by relying on submodels of the

water droplet diameter and effective ellipticity. As a result, we obtained a compact model with an estimated 

5-10% accuracy for the planned typical application modes. The main novelties of this study are the

demonstration of the applicability of the linear approximation model for droplet diameter suppression by the

oil flow rate, introduction of an effective ellipticity parameter to describe the droplet form transformation

from a bullet-like shape to a spherical shape, and introduction of a machine learning correction function that

could be used to fine-tune the model during the real-time operation of the system. 

INDEX TERMS Compact empirical model, droplet cytometry, droplet generation, flow-focusing junction, 

microfluidic chip 

I. INTRODUCTION 

Bacterial threats have been a noticeable challenge of this

century, and a delayed response due to the lack of field-testing 

options poses risks to human lives and can cause epidemics. 

Classical microbiological methods are relatively slow, while

cytometric methods allow measuring the number and 

morphology of cells easily, reliably, and quickly. Droplet 

microfluidics, a new technology developed over the last dozen 

years, offers breakthrough solutions for creating low-cost, 

fully portable cytometers for field analysis of bacteria based 

on very small sample volumes and the possibility of seeking 

single-cell resolutions. 

The present study discusses model-based design of portable 

cytometer devices based on the concepts of lab-on-a-chip [1]–

[3], microfluidics [4], [5], and droplet cytometry [6]–[10]. 

Specifically, we describe the construction of an empirical 

mathematical model for the calculation of droplet generation 

rates and dimensions in the water-in-oil flow-focusing-

type [11] droplet generation node of a lab-on-a-chip 

cytometer. This study was partly based on the digital twin 

model developed by our group [12]. 

Figure 1 illustrates the topicality trends of the considered 

research areas based on the publication statistics of the 

Clarivate Web of Science database [13]. As demonstrated in 

Figure 1, the concept of lab-on-a-chip has become popular 

since the beginning of the 21st century, and is presently 

showing a saturation trend. The overall area of droplet 

microfluidics became popular slightly later in years 2003-

2004 and has demonstrated linear growth until the present 

time. The most vital concept is droplet cytometry, for which 
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exponential growth with a doubling time of 4-5 years started 

approximately 12 years ago. An overall comparison of regions 

over the last decade demonstrated the approximate equality of 

Western Europe, North America, and the People’s Republic of 

China (PRC) [13].  

Model-based design has become a mandatory methodology 

for system design in various applications, including 

microfluidics [14]–[17]. In the present use case, a model of the 

droplet generation node is required for the prediction of 

droplet generation parameters, such as generation rates and 

diameters, both during the cytometer construction and 

exploitation phases, to improve the control quality via model 

predictive control. 

An important issue in the construction of a mathematical 

model for any object is the selection of a detailed physical or 

formal empirical approach [18]–[21]. The physical approach 

can be time consuming for both the computer and developer 

but can yield reliable results for a wide range of operation 

conditions, provided that the physical mechanisms and 

relevant key parameter values are known and modelled 

correctly. In the case of droplet microfluidics, physical models 

rely on well-known equations and methods of computational 

fluid mechanics (CFD), which must be supplemented with less 

reliable multicomponent fluid flow methods [22], [23]. Thus, 

in addition to the high computational workload, the major 

problem of the physical approach is often the presence of non-

measurable physical parameters and the hidden influence of 

numerical factors such as reduced spatial dimensionality and 

mesh step sizes. Although many authors have illustrated their 

studies with simulated droplet images, for example, [23]–[26], 

several respected research groups, for example, [24], [27]–

[29], emphasize the unreliability of numerical physical 

modelling, particularly if the droplet size, generation rate, and 

monodispersity characteristics must all be reliably calculated 

simultaneously. Moreover, considering the three main droplet 

generation geometry types – co-axial, T-junction and flow-

focused [27], [30], the third option, which is also analyzed in 

the present study, has been estimated most difficult for the 

point of view of accurate modelling [20], [30], [31]. Our 

simulation results with the COMSOL Multiphysics® 5.6 

Two-Phase Flow Level Set module [32], described below in 

the simulation section, confirm the unreliability claims 

regarding the detailed physical modelling approach. To 

illustrate the relevant difficulties, it is reasonable to point out 

that to overcome the aforementioned uncertainties and obtain 

a reliable practical tool for flow-focusing droplet generator 

design, a large-scale experimental study was recently 

conducted by the group of Boston University [24], [28]. In this 

study, a generalized flow-focusing structure with an orifice 

was described using six geometrical parameters: 25 

orthogonal structure variants were manufactured using the 

Taguchi formal scheme, over 30 operation modes for each 

structure were tested, and a statistical empirical model was 

obtained to cover a reasonably wide range of droplet diameters 

and generation rates. In comparison with [24], [28], the present 

study discusses only one flow-focusing structure without 

nozzle (orifice) section but, on the other hand, the droplet 

geometry description includes also the ellipticity factor, 

droplet generation rates are of 2-3 times higher range and the 

formula-based analytic formulation having a better 

transparency and real-time adjustability is used. 

In contrast to detailed physical models, the alternative 

empirical approach is characterized by a formal generalization 

of experimental data [20], [27], [30]. The empirical approach 

is usually less labor-intensive and often more accurate, but 

only for the parameter space covered by the experiments. In 

practice, the most useful real models are semi-empirical, 

which means that they combine theoretical principles with 

available experimental data. In droplet microfluidics, it is 

reasonable to build all droplet generation models based on the 

mass conservation principle for the dispersed phase (i.e., 

droplet fluid-like water), which allows a state connection 

between three main variables: droplet fluid flow rate, droplet 

diameter, and droplet generation rate [20], [21], [28], [31]. 

Some authors, who have investigated the formation of 

relatively large non-spherical droplets that fill all cross-

sections of the generation channel, have added a fourth 

parameter, the droplet length, for example, [20], [21], [30]. In 

this study, we introduce an original approach using an 

effective ellipticity parameter that maintains droplet volume 

conservation and accounts for experimentally observed 

droplet shape changes from bullet-like shapes at low 

continuous-phase flow rates to spherical shapes at high 

continuous-phase flow rates. 

When discussing the droplet diameter empirical models, 

many authors have used the ratio of dispersed and continuous 

phase flow rates 𝑄𝑑 𝑄𝑐⁄ , for example, [21], [25], [26]. Our 

droplet image recording results, presented below in the 

experimental section, do not support the use of this ratio 

parameter, and demonstrate that for higher water flow values, 

a proportional oil flow increase is required to achieve a 

comparable diameter suppression effect.   

An important characteristic for the practical applicability of 

mathematical models is their compactness. We recommend 

defining compactness based on the following features:1) the 

minimal number of adjustment parameters, 2) measurability 

of the adjustment parameters, 3) low computational workload, 

and 4) transparency of the set of equations [33]. The concept 

of a compact model is widely used in the field of electronic 

and semiconductor microchip design [34] for two main 

reasons: lowering the computational workload and operation 

with measurable parameters. In droplet microfluidics, the need 

for compact models has not yet been explicitly recognized and 

only a few studies have used this term [35]–[38]. At the same 

time, nearly 1000 publications (see Figure 1) contain some 

approximate formulas for the calculation of droplet sizes or 

generation rates that may be interpreted as compact models for 

solving some subproblems of droplet microfluidic system 

design tasks. 
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An important question in droplet generation model 

construction is the description of the droplet diameter 

suppression effect owing to continuous phase (oil) flow. The 

majority of published results and models, for example, [25], 

[26], [39], predict a less-than-proportional diameter 

suppressing effect owing to the increasing continuous phase 

flow rate 𝑄𝑐. Few studies support either a proportional 

decrease in diameter, for example, [31], or a stronger than 

proportional increase [26]. The present experimental study 

confirmed the applicability of the linear approximation of the 

dependence of the water droplet diameter on the oil flow rate. 

Thus, a linear droplet diameter model may be offered that uses 

only one proportionality factor for a fixed water flow rate and 

given droplet generation channel width. If completed with two 

parameters for the description of effective ellipticity changes, 

a compact 3-parameter model for the calculation of droplet 

diameters, ellipticities, and generation rate dependencies on 

the oil flow rate may be constructed.   

In recent years, there has been an urgent need to accelerate 

and simplify the development of microfluidic droplet 

generators with desired output parameters via automatization 

and the application of machine learning methods [24], [40], 

[41]. To realize these goals via empirical statistical modelling 

by applying artificial neural networks, large-scale 

experimental testing [24], [28] or sophisticated computer 

vision methods for additional droplet data collection [40] have 

been proposed. In this study, a much narrower task scope was 

considered and only the desired droplet parameters were 

obtained by adjusting the water and oil flow rates for a fixed 

microfluidic chip. However, formula-based transparent 

presentation of mathematical models offers much better 

possibilities for solving system optimization and real-time 

model adjustment (i.e., machine learning) tasks. Although the 

modification of neural-network-based statistical models [24], 

[40] requires significant effort and time for the collection of 

additional data and retraining (transfer learning), the empirical 

model considered here, in the form of mathematical formulas

with adjustable coefficients, offers possibilities for the

realization of real-time model adjustment and a cytometer 

system with an extremely simple feedback loop containing an 

elementary optical sensor.

The remainder of this paper is organized as follows. In 

Section 2, the microfluidic chip and the measurement setup are 

described. In Section 3, a short summary of the detailed 

numerical simulation results and a discussion of the problems 

that occurred are presented. Section 4 summarizes the  

experimental results for the different water and oil flow rates. 

In section 5, the construction principles, formulas, and fitting 

results of the compact mathematical model are presented. 

Section 6 discusses the scope of the application of the 

proposed model. Section 7 presents the main results of the 

study.  

II. DESCRIPTION OF DROPLET GENERATION CHIP AND
MEASUREMENT SETUP

Microfluidic droplets were generated inside a 

polydimethylsiloxane (PDMS) chip, as shown in Figure 2. 

The full thickness of the PDMS chip was 5 mm, and it had a 

microfluidic channel structure with a depth of 100 µm on one 

surface (Figure 2a), which was covered by a 1 mm thick glass 

plate (microscope slide plate). From the three main droplet 

generation geometries, the T-junction, co-flow, and flow-

focusing junction [11], the last geometry variant, where water 

flows with biological agents, is cut into droplets by a 

continuous oil flow entering the junction area from the two 

opposite sides (Figure 2a and 2c). Thus, water droplets were 

formed in the junction area and in the generation channel with 

cross-sectional dimensions of 84 µm width and 100 µm 

height. An overview of the droplet generation unit with the 

inlet and outlet tubes is shown in Figure 2b. Deionized water 

was used as the dispersed phase (droplets). For the continuous 

phase, Sigma-Aldrich 330779 mineral oil [42] with a 2% 

surfactant [43] was used. The water and oil flow rates were 

maintained using syringe pumps and  software manufactured 

by SpinSplit [44]. The lighting of the droplet generation 

junction area was realized from the PDMS side of the chip 

using a white LED group consisting of two LEDs with cold-

color temperatures and two LEDs with warm-color 

temperatures. Photorecording was accomplished using a 

Basler Ace acA640-750um camera in a reduced resolution 

mode that allowed a frame rate of up to 3300 per second at an 

exposure time of 100 µs. Thus, as the experiment shows, a 

droplet per second (dps) generation rate of up to 1600 s-1 can 

be directly determined from the sequence of the recorded 

images. Additionally, dps values up to 2300 s-1 can be 

extrapolated based on the droplet separation distances (see 

Figure 7). 

III. INTRODUCTORY SIMULATIONS OF UNDERLYING
PHYSICS

In general, the prerequisite for the construction of a compact 

model may be the availability of experimental data or, as an 

alternative, the availability of a sufficiently reliable detailed 

physical model with necessary input data. In the case of flow-

focused droplet generation junctions, the choice of the detailed 

physical approach can be complicated by the complex nature 

of the task, that is, the need for accurate modelling of the 

balance of competing processes of separation and 

encapsulation of droplets. Another serious problem is the high 

computational time required for realistic three-dimensional 

calculations. Therefore, all affordable two-dimensional 

calculations, even if the parameters of the physical processes 

are correctly estimated, can only serve as predictions that need 

to be confirmed by real experiments. Figure 3 shows the 

critical competing processes that must be accurately modelled 

in a flow-focused junction. Figure 3 emphasizes the 

importance of accurately modelling the surface tension forces, 

viscosities of both liquids, wall friction effects, channel 

dimensions, and other factors to obtain a realistic picture of 

both the liquid flow and droplet formation processes.  
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To test the possibility of using detailed physical modelling 

to formulate the basis of the droplet generation model, we 

performed several numerical simulation series using the 

COMSOL Multiphysics® 5.6 Two-Phase Flow Level Set 

module [32] in the traditional two-dimensional (2D) 

axisymmetric approximation of geometry [11]. It is important 

to emphasize that the crucial point for the accuracy of all 

modelling approaches is the correct handling of water volumes 

in the task specification. Oil can be considered an auxiliary 

substance that splits the incoming water stream and suppresses 

the diameters of the formed water droplets. Because in the 2D-

simulation the droplets are cylindrical rather than spherical, 

the first question in the specification of the 2D-simulation task 

is to correctly select the effective size of the simulated 

structure towards the third dimension. Considering the 

realistic situation of the 3D-experiment (at high oil flow rates), 

it can be assumed that the droplets are spheres with a volume 

𝑉𝑒𝑥𝑝 =
𝜋

6
𝐷𝑒𝑥𝑝

3           (1) 

where 𝐷𝑒𝑥𝑝 is the droplet diameter used in this experiment. In 

the 2D simulations, the volume of the droplet was defined 

using the cylinder formula 

𝑉𝑠𝑖𝑚 =  𝜋 ∙ (
𝐷𝑠𝑖𝑚

2
)

2
∙ 𝐻𝑒𝑓𝑓         (2) 

where 𝐻𝑒𝑓𝑓 is the introduced effective size of the structure 

towards the third dimension (see Figure 4). 

The diameter and volume of the droplets must be equal to 

match the water volume counts in the experiments and 

simulations. Figure 4 shows the methodology for achieving 

the aforementioned water volume balance conditions when the 

auxiliary parameter 𝐻𝑒𝑓𝑓 of the 2D-simulation is specified as 

follows: 

𝐻𝑒𝑓𝑓 =
2

3
𝐷𝑒𝑥𝑝 .          (3) 

Specifically, if the actual expected droplet diameter is 60 m 

(in the 84 m channel), then a reasonable measure for the 

structure depth in 2D-simulations should be 40 m. 

Figure 5 summarizes the main results of the COMSOL 2D-

simulations with the Two-Phase Flow Level Set module [32] 

for the droplet generation area described in Figure 2c. For the 

first adjustment parameter, the effective depth of the structure 

in the third dimension was specified as 40 m based on the 

considerations explained above. For the second essential 

adjustment parameter, the surface tension coefficient values of 

𝜎 = 40 ÷ 50 mN/m were used to avoid the jetting effect and 

ensure the acceptable stability of the formed droplets. High 

surface tension values in a similar range have been 

recommended for water-to-mineral oil interfaces, for example, 

in [45], [46]. Next, in presented simulations the “no-slip” sub 

model of high friction walls was used. Other models, such as 

the Navier slip model with several additional adjustment 

parameters, did not cause essential changes.  

For the main computational parameters, that is, the spatial 

mesh size, the two standard cases of “Fine” with 9536 finite 

elements and “Finer” with 36626 elements were compared. 

The computational times for the relatively short 20 ms process 

calculation ranged from 2 h to 14 h on a powerful desktop 16-

core Intel i9-computer. 

The main results of the COMSOL simulations are shown in 

Figure 5. The results demonstrate the difficulty of achieving 

stable droplet diameters and droplet generation rates. When 

the spatial mesh size was increased to a very high number of 

final elements, instead of the expected stabilization of the main 

output parameters, the chaotic behavior of the results 

demonstrated a remarkable increase, and the definition of 

certain values of droplet diameters and droplet generation rates 

became impossible. This emerging instability and uncertainty 

may be caused by the difficulty of the task, as shown in Figure 

3. In summary, detailed physics-based numerical simulations 

provide supporting explanations for the underlying physical 

processes. However, the expected results for building a 

compact model for droplet generation have not been obtained. 

IV. SUMMARY OF EXPERIMENTAL RESULTS 

For the actual microfluidic chip, the expected droplet 

generation rates were in the range of 500-1500 per second, 

with droplet diameters of 50-70 micrometer range. Based on 

these design goals, three test series with constant water flow 

rates 𝑄𝑤 = 4, 8, and 12 μL/min and varying oil flow rates 

from value 𝑄𝑜𝑖𝑙 = 2𝑄𝑤 to value 𝑄𝑜𝑖𝑙 = 60 ÷ 88 μL/min in 

steps of 4 µL/min were performed. The selection of droplet 

images recorded in the beginning section of the 84 m 

generation channel is presented in Figure 6. The results in 

Figure 6 show that at low oil flow rates, the droplets resemble 

bullets (modelled by the effective ellipsoids below in this 

study). With an increase in the oil flow rate, the droplets 

begin to resemble spheres. Simultaneously, the diameter can 

be suppressed by increasing the oil flow rate. The increasing 

blurring of droplet fronts and backs at higher droplet 

formation rates is due to camera exposure settings (100 µs). 

An overall summary of the experimental results, including 

the directly recorded and extrapolated dps values from the 

droplet separation distances, is shown in Figure 7. The 

experimental diameters of droplet D were obtained by 

carefully comparing the droplet lateral sizes with a channel 

width of 84 m and smoothing the dependencies with the 

neighboring points. Thus, the estimated accuracy of the 

diameters was of the order of ±2 µm. The effective ellipticity 

numbers, E (approximate ratio of the vertical and horizontal 

sizes of the droplets in the images), were estimated from the 

principle of equivalent volumes of the imaginary ellipsoidal 

and real bullet-like droplets. Additionally, minor smoothing of 

the experimental diameter and effective ellipticity values was 

performed to ensure correlation with the real water flow rates. 

Owing to the camera frame rate limit, the high droplet rate 

values over dps > 1600 s-1 were difficult to define from video 

recordings but were extrapolated on the basis of the observed 
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decrease in droplet distances (see inlet in the upper part of 

Figure 7). Regarding this extrapolation, it should be 

mentioned that because of the increasing influence of the 

friction of the channel walls at higher 𝑄𝑜𝑖𝑙  rates, the size of the 

effective high-flow-speed center area of the channel may be 

smaller at high 𝑄𝑜𝑖𝑙  values; thus, the extrapolated dps numbers 

may be underestimated. 

V. CONSTRUCTION OF THE COMPACT EMPIRICAL 
MODEL 

In the present microfluidic system design, the main purpose of 

developing a compact droplet generation model is to obtain a 

tool for estimating the droplet generation rate dps. The latter 

depends directly on the droplet volume estimation by the sub-

models for the droplet size parameters, such as the diameter 𝐷 

and effective ellipticity 𝐸, if the water flow rate 𝑄𝑤 is given. 

The oil flow rate 𝑄𝑜𝑖𝑙  can be interpreted as an auxiliary factor 

that suppresses 𝐷 compact model and can be constructed 

based on the following approximations: 

1) For droplet generation rate dps, recalculation from a 

single ellipsoidal droplet volume formula 𝑉 = 𝐸(𝜋/6)𝐷3 can 

be applied if the diameter and ellipticity are estimated with 

reasonable accuracy.  

2) Initially, it is reasonable to consider all three water 

flow rate values Qw,i separately. The final result for any 𝑄𝑤 

value can be interpolated based on three separate results for 

𝑑𝑝𝑠𝑖 , 𝐷𝑖, and 𝐸𝑖. 

3) Relying on Figure 7 and seeking the principle of 

minimal complexity, for diameter dependence on oil flow rate 

𝐷(𝑄𝑜𝑖𝑙) the simplest single-parameter linear dependences 

may be applied; for the zero-oil origin point, the actual channel 

width value of 84 µm can be used as a common constant. The 

changes in dps in the 10% range were acceptable for an 

approximate adjustable model. 

4) For 𝐸, the decreasing exponent law can be applied 

with a final level at high oil rate values close to one, which 

corresponds to the spherical limit form. 

5) For machine learning readiness one real-time 

adjustable correction function  𝐶𝑀𝐿(𝑄𝑤, 𝑄𝑜𝑖𝑙) may be added. 

Considering the principles described above, the following 

set of mathematical equations can be proposed for the compact 

model (for every water flow rate value 𝑄𝑤,𝑖  ,   𝑖 = 1, 2, 3): 

𝑑𝑝𝑠𝑖 = ( 557 𝑠−1) (
𝑄𝑤,𝑖

6 𝜇𝐿/𝑚𝑖𝑛
) (

1

𝐸𝑖
) (

70 𝜇𝑚

𝐷𝑖
)

3
  (4) 

𝐷𝑖 = (84 𝜇𝑚) (1 −
𝑄𝑜𝑖𝑙

𝑄𝐷,𝑖
)  (5) 

𝐸𝑖 = 1 + (𝐸8,𝑖 − 1)𝑒𝑥𝑝 (−
(𝑄𝑜𝑖𝑙−8 𝜇𝐿/𝑚𝑖𝑛 )

𝑄𝐸,𝑖
)  (6) 

where, following the goal of minimizing the number of 

adjustable parameters, only three fitting parameters, 

𝐸8,𝑖 ,  𝑄𝐸,𝑖 ,  𝑄𝐷,𝑖 were introduced for each of the tested water 

flow rate values: 𝑄𝑤,1 = 4 μL min⁄ , 𝑄𝑤,2 = 8 μL min⁄ , and 

𝑄𝑤,3 = 12 μL min⁄  (see Figure 6). 

In systems (4)–(6), equation (4) is constructed to transform 

the value of the water flow rate to the number of droplets per 

second, considering the lateral diameter of droplets 𝐷𝑖 and the 

effective ellipticity 𝐸𝑖 as key parameters for the calculation of 

a single droplet volume. Equation (5) postulates the simplest 

linear decrease law for droplet diameters by introducing only 

one adjustable parameter 𝑄𝐷,𝑖  for every water rate, and using 

an actual channel width of 84 µm as a fixed constant for the 

low oil flow limit. Equation (6) approximates the exponential 

decrease in effective ellipticity from the initial high value at 

𝑄𝑜𝑖𝑙 =  8 L/min to the final unit value using two adjustment 

parameters: 𝐸8,𝑖   and 𝑄𝐸,𝑖 . 

For the general case of any water flow rate between 4 and 

12 L/min, the simplest reliable piecewise linear 

approximation may be offered, considering that higher-order 

approximations such as parabolic approximations may distort 

the monotony of the dependences. In addition, an advanced 

feature of machine learning readiness may be included in the 

real-time empirical adjustment function 𝐶𝑀𝐿(𝑄𝑤 , 𝑄𝑜𝑖𝑙) for 

dps. In the minimal model formulation, the droplet size 

parameters may be excluded from the real-time adjustment 

because they droplet size parameters are difficult to measure 

during real-time operation. 

Thus, the piecewise linear interpolation-based 

generalization of the droplet generation rate calculation for 

any water rate value can be performed using equations (7) and 

(8) given below. 

The mathematical formulation of the linear approximation 

with machine learning adjustment for the first interval 𝑄𝑤,1  ≤
 𝑄𝑤 ≤ 𝑄𝑤,2  can be written as 

𝑑𝑝𝑠 = 𝐶𝑀𝐿(𝑄𝑤, 𝑄𝑜𝑖𝑙) (𝐴21𝑑𝑝𝑠(𝑄𝑤,1) + 𝐵21𝑑𝑝𝑠(𝑄𝑤,2)), 

𝐴21 =
𝑄𝑤,2−𝑄𝑤

𝑄𝑤,2−𝑄𝑤,1
 , 𝐵21 = 1 − 𝐴21   (7) 

and for the second interval 𝑄𝑤,2  ≤  𝑄𝑤 ≤ 𝑄𝑤,3  as 

𝑑𝑝𝑠 = 𝐶𝑀𝐿(𝑄𝑤, 𝑄𝑜𝑖𝑙) (𝐴32 𝑑𝑝𝑠(𝑄𝑤,2) + 𝐵32𝑑𝑝𝑠(𝑄𝑤,3)),  

𝐴32 =
𝑄𝑤,3−𝑄𝑤

𝑄𝑤,3−𝑄𝑤,2
 , 𝐵32 = 1 − 𝐴32  . (8) 

The fitting of the three parameters of models (4)–(6) to 

determine the best agreement between the model and 

experimental points in Figure 7 was performed by separately 

minimizing the root-mean-square (RMS) difference between 

the experiment and simulation for the three water rate values. 

The weight scalers for the three main output parameters, 

𝑑𝑝𝑠, 𝐷, 𝐸  were 20 s-1, 2 m, and 0.1, respectively. In addition, 

the weights of the low oil rate endpoints for the high water rate 

curves 𝑄𝑤,2, 𝑄𝑤,3 were increased to obtain a reasonable 

balance with the low water 𝑄𝑤,1 curve. The overall results of 

the fitting are shown in Figure 8. The values obtained for the 

model coefficients are listed in Table 1. 

VI. DISCUSSION AND APPLICATION AREA 

The definition of the application area is an important issue in 
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empirical models. The general principle is that the reliability 

of the results can only be assumed in the range of parameter 

values covered by the experimental results. The application 

area of the proposed compact empirical model is illustrated 

in Figure 9.  

As shown in Figure 8, the droplet rate calculation accuracy 

of the proposed compact model remained in the range of 20% 

when considering the all-parameter area. However, it is 

important to emphasize that the trends of changes due to water 

and oil flow rate changes were modelled correctly. 

Additionally, for the central region of the planned operation 

around dps = 500-1500 s-1 the accuracy is much better and is 

already in the 5-10% range. Moreover, this number can be 

improved by machine-learning adjustments during real 

operations if the droplet generation rates are measured using 

optical measurements. 

The reason for the moderate accuracy of the proposed 

simple 3-parameter model is the simplicity of modelling the 

droplet diameter using the simplest 1-parameter linear 

dependence. Since the droplet formation rate depends on the 

droplet diameter according to the cubic law, small differences 

in diameters of about 3% were increased to 10% when the 

formation rates were taken into account. It is possible to 

introduce a sub-model of a more precise diameter; however, 

the accompanying increase in the number of model parameters 

may require additional complex measurements. 

From a technical viewpoint, it seems more reasonable to use 

a simpler model with the possibility of real-time adjustment. 

VII. CONCLUSIONS

Compact models are a well-established approach in 

electronics and microelectronics but are not yet sufficiently 

appreciated in the relatively young field of droplet 

microfluidics. Although for design of any technical system, 

like droplet cytometry portable apparatus in the present use

case, the availability of compact models for all subsystems is

a highly desirable precondition for the successful design of the

system as well for later exploitation of the system. In addition, 

as demonstrated in the present study, the alternative approach 

of detailed physical modelling may not yield usable results in 

the case of the droplet generation task of microfluidics, where

the competing balances of different physical mechanisms

must be accurately modelled. 

The original new results presented in the present study may 

be summarized as follows: 

1) The applicability of the linear approximation of the

dependence of the droplet diameter on the oil flow

rate for the actual flow-focusing microfluidic water

droplet generator task (droplet sizes in the 50-70

micrometer range and generation rates in the 500-

1500 per second range) was demonstrated.

2) The concept of effective ellipticity was introduced to

describe a unified model for the change of droplet

geometry from a spherical to a spherical shape.

3) The methodology for the construction of a minimized

compact 3-parameter droplet generation rate model 

with 5-10% accuracy for the calculation of the oil 

flow rate dependence at fixed water flow rates for the 

desired operation region was described. 

4) A machine learning extension to the basic model for

further adjustment using real-time measurement

results was proposed.

5) The droplet-volume-based equivalence condition to

make 2D-simulations comparable to the real 3D 

experimental geometry is discussed.
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Images and figures: 

Figure 1. Research intensity trends on basis of Clarivate Web of Science 

publication statistics [13]. Dynamics of the most relevant subfields as Lab-

on-Chip, droplet microfluidics and droplet cytometry is compared. Inlet 
compares contributions from People’s Republic of China, North America 

and European region (incl. Turkey and Israel).  
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Figure 2. Description of the droplet generation PDMS chip: a) Water 

droplets generation scheme in the flow focusing cross-junction; b) Photo of 

the setup with inlet and outlet tubes and photorecording area; c) Exact 
dimensions of channels near the flow focusing junction. 

Figure 3. Illustration of competing processes of water droplets generation in 

a flow-focusing cross-junction. The incoming water stream tries to maintain 

the minimum surface area due to the surface tension forces but is divided 

into droplets by the “oil pliers” acting from both sides. After that the surface 

tension helps to maintain the size of droplets already formed, provided that 
the adjacent droplets are at a sufficient distance. At that all flow speeds are 

decelerated near the walls because of the wall friction effect. 

Figure 4. Graphical representation of droplet volumes in real life 3D-

experiment and in simplified 2D-simulation. 
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Figure 5. Illustration of appearance of droplet generation instabilities in detailed physical 2D-simulations with COMSOL 5.6 [32]. 
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Figure 6. Summary of droplet photos for different water and oil flow rate values in beginning section of 84 µm generation channel. Different coloring is 

caused by slightly changed LED lighting between experimental series. The transform from bullet-like shapes at low oil flow rates to spherical shapes at high 

oil flow rates may be observed. Increasing blur of photos at high oil flow rates is caused by camera shutter time 100 µs. 

Figure 7. Overall summary of experimental results for droplet generation rates (a) and droplet diameters and ellipticities (b).  

TABLE 1. THE BEST FIT COMPACT MODEL PARAMETER VALUES FOR CONSIDERED 3 WATER FLOW RATES. 

Water 

rate series 

index 

i 

Water flow 

rate 𝑄𝑤,𝑖 , L/min 

Ellipticity 𝐸8,𝑖   at 

low oil rate 𝑄𝑜𝑖𝑙 =
8 μL/min 

Exponential decay 

parameter of ellipticity 𝑄𝐸,𝑖 , 

L/min  

Linear decay parameter of 

droplet diameter 

QD,i , L/min 

1 4 2.6 9.9 157 

2 8 3.6 10.4 196 

3 12 4.15 12.4 248 
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Figure 8. The summary of fitting results of compact empirical model (4)-(6) against experimental points for 3 water flow rate values: droplet generation rates 

(a); droplet diameters and ellipticities (b). Model results are presented by solid lines, experimental points by dotted lines. 

Figure 9. The illustration of application area of compact empirical model on the plane of water and oil flow rates. 
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ABSTRACT

This study applied deep reinforcement learning (DRL) with the Proximal Policy Optimization (PPO) algorithm within a two-dimensional
computational fluid dynamics (CFD) model to achieve closed-loop control in microfluidics. The objective was to achieve the desired droplet
size with minimal variability in a microfluidic capillary flow-focusing device. An artificial neural network was utilized to map sensing signals
(flow pressure and droplet size) to control actions (continuous phase inlet pressure). To validate the numerical model, simulation results
were compared with experimental data, which demonstrated a good agreement with errors below 11%. The PPO algorithm effectively con-
trolled droplet size across various targets (50, 60, 70, and 80 lm) with different levels of precision. The optimized DRL þ CFD framework
successfully achieved droplet size control within a coefficient of variation (CV%) below 5% for all targets, outperforming the case without
control. Furthermore, the adaptability of the PPO agent to external disturbances was extensively evaluated. By subjecting the system to sinu-
soidal mechanical vibrations with frequencies ranging from 10Hz to 10 KHz and amplitudes between 50 and 500 Pa, the PPO algorithm
demonstrated efficacy in handling disturbances within limits, highlighting its robustness. Overall, this study showcased the implementation
of the DRLþCFD framework for designing and investigating novel control algorithms, advancing the field of droplet microfluidics control
research.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0159981

I. INTRODUCTION

Droplet microfluidics is increasingly used for biomedical and bio-
chemical applications due to its microengineering capabilities1 and
high-precision analysis.2 However, the performance of microfluidic
devices is inconsistent due to their sensitivity to various factors, includ-
ing fluid pressure fluctuations and fluid properties.3,4 As a result, it is
essential to monitor and regulate these factors to achieve and maintain
the desired performance. Flow control, which involves adjusting the
flow behavior using actuators or fluid pumping systems, is a com-
monly used approach to achieve a desired performance. Tuning drop-
let size,5 reducing size variations,6 and positioning flow interfaces7 are
common practices. Closed-loop flow control is considered superior to
open-loop techniques due to its ability to adapt to real-time changes in
flow conditions, leading to enhanced accuracy and precision.6

However, classical closed-loop control typically relies on explicit math-
ematical models, which can be challenging to derive for complex

systems8 like microfluidic systems that can exhibit nonlinear behavior.
Moreover, once the models are derived, tuning the control parameters
becomes another intricate task that necessitates expert knowledge and
experience.

Recent studies suggest that machine learning (ML) techniques,
particularly deep reinforcement learning (DRL), can overcome these
challenges by employing trial-and-error learning and neural networks
to represent complex and nonlinear functions without explicit mod-
els,9 making DRL a promising technique for efficient regulation of
microfluidics.

Microfluidics has successfully adopted reinforcement learning for
several control tasks, such as flow sculpting,10,11 laminar flow interface
positioning,12 and droplet sorting.13 However, the control of droplet
size has received limited attention, with only one study using deep
reinforcement learning. Dressler et al.12 utilized two reinforcement
learning algorithms, DQN (Deep Q-Network) and MFEC (model-free
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episodic controller), to control laminar flow and droplet size, with five
discrete actions to adjust fluid flow rates at a fixed step size of 0.5ll/
min. The DRL algorithms achieved the target droplet size of 54lm
while outperforming human operators.

The traditional method for regulating droplet size in microflui-
dics is through the use of a PID (Proportional-Integral-Derivative)
controller.5,14 While incorporating a PID controller in a droplet micro-
fluidic system for closed-loop droplet size control has shown improve-
ments in device performance in several studies, including our previous
works,15,16 it requires a precise mathematical model of the controlled
system, which can be challenging. Additionally, feedback control per-
formance may result in relatively long settling times,5,14 high coeffi-
cient of variation (CV%) in droplet size,17 or high transient
overshoot.18 A summary of the current state-of-the-art for closed-loop
droplet size control is shown in Table I.

Previous studies11,12,21 on applying deep reinforcement learning
(DRL) algorithms in microfluidics have relied on algorithms that con-
trol the system using discrete or discretized actions. However, for
droplet size control in passive microfluidics, which inherently involves
continuous flow dynamics,22,23 a more intuitive approach is to imple-
ment a smooth and continuous adjustment of control inputs to
achieve the desired output. Discrete or discretized control machine
learning algorithms can only provide a limited number of predefined
control actions, which may not be sufficient to achieve accurate and
stable control of droplet size. Thus, equally advanced algorithms that
utilize continuous control actions algorithms, such as Trust Region
Policy Optimization (TRPO), Proximal Policy Optimization (PPO),
Deep Deterministic Policy Gradient (DDPG), and Soft Actor-Critic
(SAC), are more suitable. Among these algorithms, the Proximal
Policy Optimization (PPO) approach24 has emerged as the state-of-
the-art algorithm for continuous control. It has been effectively applied
in computational fluid dynamics (CFD) þ DRL research, addressing
flow control challenges in turbulent settings, such as lift augmentation,
drag reduction,25 and flow-induced vibration suppression.8 Despite
PPO’s demonstrated success in various applications, its potential for
microfluidic flow control has not yet been explored.

The Proximal Policy Optimization (PPO) algorithm is a deep
reinforcement learning technique that is model-free and well-suited
for controlling highly sensitive environments where small changes in
the actions taken can have a big impact on the outcomes. This study
focuses on utilizing Proximal Policy Optimization (PPO) as a control
method for precise droplet size regulation in microfluidics. Droplet

size control is critical across various applications, including drug deliv-
ery, biochemical assays, material synthesis, and cell analysis.26

Previous investigations have underscored the substantial effect of
droplet size on critical factors such as the division and viability of cells
from mammalian organisms during their cultivation within droplets.27

Section II describes the methodology and model setup for apply-
ing PPO in droplet size control. Section III presents the analysis and
discussion of the results. In Sec. IV, we provide a summary of findings
and insights, along with future research directions.

II. METHODOLOGY
A. Flow model and governing equations

In our study, we utilized a microfluidic device model that closely
resembled the one used in our prior work.15 The model consisted of a
two-dimensional capillary flow-focusing device (FFD) with two inlets
for continuous phase fluid: one inlet for the dispersed phase fluid and
an outlet. To introduce the immiscible fluids (dispersed phase and
continuous phase) into the microchannels, pressure was applied to
their respective inlets. The configuration shown in Fig. 1(a) involved
the dispersed phase entering through a 0.6mm wide central inlet
channel, while the continuous phase was fed through two side chan-
nels, each 0.12mmwide. The dispersed phase inlet and outlet channels
had diverging and converging bifurcations with widths of 0.6, 0.3, and
0.09mm at the inlet, and 0.09 and 0.6mm at the outlet. Droplets
formed when the two fluid phases interacted at a 0.09mm wide junc-
tion [Fig. 1(b)].

To obtain precise pressure profiles of the flow field in the micro-
channel, we utilized point probes as sensors at different locations
within the channel, which are denoted as red dots in Fig. 1(a). In prac-
tical physical models, these probes are substituted with pressure sen-
sors well positioned at the inlets, outlets, or both, connected to the
microchannel through connecting tubes.

To achieve accurate control over droplet size, we integrated pres-
sure and droplet diameter measurements as sensing parameters in our
Deep Reinforcement Learning (DRL) model. By incorporating the
droplet diameter, which serves as the controlled variable, as an addi-
tional sensing parameter alongside pressure measurements in our
artificial neural network (ANN) model, we can implicitly account for
the effects of various factors, such as flow rates, interfacial tension, and
viscosities. These factors can be characterized by non-dimensional
numbers, including the flow rate ratio, viscosity ratio, capillary
number (Ca), and Reynolds number.28 Through this integration, we

TABLE I. State-of-the-art approaches for closed-loop microfluidic droplet size control.

Work CV% or R2 Response time Controller Droplet size ðlmÞ Experiment or simulation

Present work <5% � � � PPO 50–80 Sim. (OpenFOAM þ PyTorch)
15 R2 ¼ 0:993 � � � PID 30–60 Sim. (COMSOL þMATLAB)
17 <7:6% � � � PID 0:2–2 nl Exp.
19 2% <0:2 s PI � � � Exp.
14 R2 ¼ 0:999 7–10 s PID 150, 200, 250 Exp.
20 10 s PI 14–24 Exp.
5 � � � >100 s PID 200–400 Exp.
12 � � � 27 h DQN 54 Exp.
12 � � � Few minutes MFEC 54 Exp.
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eliminate the need for extensive modifications or additional sensor
probes.

Furthermore, past research underscores a wide range of fluids
suitable for single and compound drop generation, encompassing
both Newtonian and non-Newtonian behaviors. Key dimensionless
groups, including Weber and Laplace numbers derived from Reynolds
and Capillary numbers, offer insights into the intricate fluid dynamics.
The significance of the Deborah number in viscoelastic fluid scenarios
is also highlighted.29 Investigations delve into the role of fluid elasticity
in droplet behavior,30 surfactant effects on droplet motion,31,32 and
pertinent electrophysical attributes within microfluidics.33

The impact of these factors on droplet size has been consistently
illustrated in preceding studies. Increasing the capillary number (Ca)
generally leads to smaller droplets, while higher viscosity ratios result
in larger droplets.34 The flow rate ratio typically influences droplet
size, except in the dripping regime at higher Ca values, where it
becomes independent of the flow rate ratio.2,35 Additionally, higher
interfacial tension is associated with larger droplets but reduced for-
mation frequency.2 Importantly, the relative influence of these factors
depends on the specific flow conditions, as demonstrated in the litera-
ture. By incorporating both pressure and measured droplet size as
sensing parameters, our deep learning-aided droplet generation con-
trol effectively regulates the input oil pressure (i.e., the manipulated
variable) and adapts to environmental changes, thereby optimizing
droplet size control under varying conditions.

To model and analyze the behavior of the two-phase flow in our
system, we employed the Volume of Fluid (VOF) method, which has
been used in previous works.2,36,37 This method uses the volume

fraction function a, ranging from 0 to 1, to represent fluid phases and
interfaces. In our simulation, we set a¼ 0 for the fluid 1-continuous
phase (oil) and a¼ 1 for the fluid 2-dispersed phase (water). The
droplet interface was defined as a � 0:5, as reported in the literature38

and shown in Fig. 1(b). The Volume of Fluid (VOF) method solves
the governing equations of the two-phase flow system, which include
continuity (1), momentum balance (2), and volume fraction Eq. (3).
These equations are based on the assumption that the two-phase fluids
are incompressible,37,39

r � u ¼ 0; (1)

q
@u
@t
þ u � ru

� �
¼ �rpþ qg þr � l ruþrTuð Þ þ Fr

� �
; (2)

@a
@t
þr � ðauÞ ¼ 0; (3)

where u represents the velocity vector, q is the density, t represents
time, p denotes pressure, g denotes gravitational force, l is the
dynamic viscosity, and Fr denotes the continuum surface tension.
The volumetric density q and viscosity l in Eq. (2) are computed as
weighted averages of the fluid densities and dynamic viscosities,
respectively, over the volume fraction function,

q ¼ q1aþ q2ð1� aÞ; (4)

l ¼ l1aþ l2ð1� aÞ: (5)

Here, subscripts 1 and 2 represent the continuous phase fluid and dis-
persed phase fluid, respectively. To improve the resolution of phase
interfaces and minimize numerical diffusion, an artificial interface

FIG. 1. The two-dimensional flow-focusing device used in this study. (a) The FFD dimensions, critical flow region, and the configuration of pressure-sensing probes (red dots).
(b) The interaction of fluid phases for droplet formation, with the droplet interface designated based on the volume fraction function a � 0:5.
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compression velocity, lr, was introduced in Eq. (6) to enhance the vol-
ume fraction Eq. (3),

@a
@t
þr � ðauÞ þ r � urðað1� aÞÞð Þ ¼ 0: (6)

However, lr only affects the interface region where 0 < a < 1 and is
defined as

ur ¼ ud � uc ¼ min Cajuj;maxjujð Þ r � ajr � aj : (7)

The compression factor Ca determines the degree of compression at
the interface and can range from 0 to 4, although Ca ¼ 1 is commonly
used in microfluidics research.40–42 Higher values of Ca tend to
increase nonphysical spurious currents, which can cause numerical
modeling errors.43

The last term in Eq. (2), Fr, is modeled using the continuum sur-
face force (CSF) approach developed by Brackbill et al.,44

Fr ¼ rkðraÞ; (8)

where k is the interfacial curvature. The governing equations, repre-
sented by Eqs. (1)–(3) and expanded into Eqs. (4)–(8), provide the
foundation for modeling and analyzing the behavior of the two-phase
flow systems.

The continuous phase fluid is composed of HFE 7500 (oil) with a
2% w/w PFPE-PEG-PFPE surfactant, while the dispersed phase is de-
ionized water, and the interfacial tension between the fluids is set at
0.005N/m.45 The microscale size of the microfluidic device and low
Reynolds number condition46 result in laminar flow for these highly
viscous fluids. Both the continuous and dispersed phases exhibit
Newtonian fluid behavior, with their respective material properties
listed in Table II.

B. Numerical setup

The VOF method was used to simulate two-phase flows using the
interFoam solver in the OpenFOAM software. To maintain numerical
stability and mass conservation, the MULES (Multidimensional
Universal Limiter Equation Solver) technique was employed to limit
the volume fraction field within the range of 0 and 1 during simula-
tion.48,49 The momentum and continuity equations were solved
using the pressure-velocity coupling algorithm, PIMPLE (Pressure
Implicit with Operator Splitting Multi-Phase Implicit), which com-
bines the PISO (Pressure Implicit with Splitting of Operator) and
SIMPLE (Semi Implicit Method for Pressure-Linked Equations) to
allow for explicit relaxation of variables and implicit equations.50

The temporary terms were discretized using first order Euler
scheme, and the divergence terms were discretized using the Gauss
linear scheme. The remaining terms, gradient terms and Laplacian
terms were discretized using leastSquares and Gauss linear,

respectively. Additional details on the discretization schemes can be
found in the OpenFOAM documentation.51

To maintain numerical stability, the time steps were adjusted
automatically according to the maximum Courant number, MaxCo,
which was set to 0.5, and the maximum Courant number allowed for
the phase-fraction transport equation, AlphaMaxCo, which was set to
0.25. Previous studies have shown that setting MaxCo to be less than
0.6 is effective in ensuring numerical stability in laminar flow micro-
fluidic simulations.43

The boundary conditions for the simulation were set up as fol-
lows: a constant total pressure of 0 was applied as the outlet boundary
condition, ensuring a zero-gradient velocity. At the inlet of the dis-
persed phase, a constant pressure of 6000Pa was imposed. A Custom
pressure boundary condition was applied to generate an action vector
for the continuous phase inlets based on the current network parame-
ters of the DRL algorithm. During the training phase, this action vec-
tor was considered the mean of a multivariate Beta distribution,
allowing for exploration and learning of the optimal control policy.
However, during the testing phase, the behavior of the action vector
became predictable, acting as the oil inlet boundary condition without
requiring any further policy updates.

The solid wall was set to a no-slip boundary condition with a
fixed fluid-wall contact angle of 135�. In 2D microfluidics simulations,
the assumption of complete wall wetting with continuous phase fluid
is valid since the length of the microchannel is usually much greater
than its width, resulting in negligible flow in the corners. The applica-
tion of this assumption can be seen in the literature40,52 and has been
validated.53,54

The mesh was generated using OpenFOAM’s blockMesh and
snappyHexMesh tools and consists of mainly hexahedral cells with a
relatively low number of prisms and polyhedral cells. The base mesh,
created by the blockMesh tool, has 2500 cells in the x-direction, 600
cells in the y-direction, and 300 cells in the z-direction per 1mm. A
refinement region was created at the intersection to capture accurate
physics of the flow where high gradients are expected. The dimensions
of the refinement region were set to be 15D� 5.5D� 3.4D, where D is
the width of the oil inlet channel in micrometers, and were centered
5D� 2.3D� 1.7D from the microchannel junction.

C. Droplet size estimation

To estimate droplet sizes in situ, we used OpenFOAM’s Python/
C API and NumPy for postprocessing purposes. The field data of
interest was the volume fraction function. To set the sampling criteria
and output file format, the Sets function object in OpenFOAM pack-
age51 was added to the ControlDict dictionary. The output data con-
sisted of 1000 data points along a sampling line at the channel outlet
depicted in Fig. 2. The data were saved in raw ASCII format at 0.5ms
intervals. To postprocess the results, during runtime, we used an exter-
nal Python script executed through the Function Object systemCall.

TABLE II. Material properties of fluids.

Material Dynamic viscosity ðPa sÞ Density ðkg=m3Þ Interfacial tension ðN=mÞ

De-ionized water 1e� 3 1000
HFE-7500þ 2% w/w PFPE-PEG-PFPE 7:7e� 4 (Ref. 47) 1614 0.005 (Ref. 45)
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During postprocessing, we created data arrays for a � 0:5 (assumed
as the water droplet interface). The length of a droplet was calculated
as the distance between two continuous water interface locations. We
excluded the last droplet from the size calculation due to indications
that it might not always have been fully formed.15,55

D. DRL algorithm implementation

To seamlessly integrate Deep Reinforcement Learning (DRL)
and Computational Fluid Dynamics (CFD), we developed a
Singularity image based on Ubuntu 22.04, OpenFOAM-v2112, and
PyTorch 1.10.2 (CPU only), following the approach described in the
reference.56 Our Singularity image includes PyTorch’s precompiled
Cþþ library, libtorch. Additionally, we installed the ParaView57 visu-
alization tool to aid in the analysis and interpretation of the results.

The DRLþCFD framework is comprised of two primary com-
ponents: the environment and the agent. The objective of the agent
is to attain a target mean droplet size with minimum droplet size
coefficient of variation (CV%) by interacting with the fluid envi-
ronment through three channels, as illustrated in Fig. 2. The first
channel involves observing an array of point probes/sensor pres-
sure measurements at selected locations [as shown in Fig. 1(a)]
and the average droplet size calculated using the procedure
described in Subsection II C. The second channel is the action
taken by the agent, which involves controlling the oil inlet pres-
sure, while we keep the water inlet pressure fixed at 6000 Pa. The
third channel is the reward, which is determined based on the

proximity of the droplet size to the target droplet size value. The
neural network is trained using the agent’s interaction data with
the environment to determine the optimal action plan that maxi-
mizes rewards at each time step.

We detail our implementation of the PPO algorithm, including
any modifications made to meet the specific requirements of our
application. Although the theoretical foundations of PPO have been
thoroughly discussed in existing literature,58 we provide a brief over-
view for context.

The Proximal Policy Optimization (PPO) algorithm is a policy-
based method used to find the optimal policy for a given task. One
advantage of PPO is its ability to sample data from multiple simula-
tions concurrently, which we utilized by employing M episodes and
storing them in a replay buffer. To efficiently fill the buffer, we imple-
mented K¼ 2 workers that simultaneously conducted K simulations
and saved the results in the buffer memory. We sampled a total of
M¼ 140 episodes using a batch size of 2. In addition, the PPO algo-
rithm operated on an episode level, with each episode comprising mul-
tiple time steps. At each time step, the agent observed the current state
ðs0Þ from the environment, selected an action ða0Þ based on its obser-
vation, and received a reward R0ðs0; a0Þ. Thus, PPO agent collected
state-action-reward combinations in each episode s, following a con-
trol policy,

s ¼ fs0; a0;R0; s1g; fs1; a1;R1; s2g;…ð Þ: (9)

We obtained the initial states for training episodes by simu-
lating the fluid flow without active control until a fully developed

FIG. 2. A representation of the agent-environment interaction for optimizing droplet size in a microfluidic system. The agent observes pressure sensor measurements and
mean droplet size, adjusts the oil inlet pressure, and receives rewards based on proximity to a target droplet size and droplet size variation. The neural network is trained using
the agent’s data to determine the optimal action plan.
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flow was observed. A fully developed flow was defined as the point
at which at least one droplet formation was observed at the outlet.
The corresponding solution was saved and used as a starting point
for subsequent learning episodes. The simulation without
control lasted for a duration of Dt0c 2 ½0; 0:12�, which implies
that the training started at 0.12 s and ended at the total control
time set to T¼ 0.2 s. The control time step for the DRL agent is
defined as

Dtc ¼ k� Dtsim: (10)

The variable tsim represents the simulation time step and k is an
integer factor that determines the frequency of control actions taken
by the agent during an episode. In this study, we set the parameter k to
20, which introduces a sufficient time delay between droplet size mea-
surements and the application of control actions. The reward function
(Rt) described in Eq. (13) motivates the agent to achieve the desired
droplet size while minimizing the standard deviation. The reward
function can be written as

val ¼ absðr1 � diaÞ; (11)

Penalty ¼ abs
r2 � diastd

r2

� �
; (12)

Rt ¼
�1 if val > 20e� 6

r1 � val
r1

� 0:002� Penalty Otherwise:

8><
>: (13)

Here, val represents the absolute difference between the target droplet
size (r1) and the mean current droplet size (dia). If the absolute differ-
ence (val) exceeds a threshold of 20lm, a reward of �1 is assigned.
However, if the droplet size is within the threshold, a positive reward
is given proportionally to the proximity of the current mean droplet
size to the target size. It is important to note that the reward is penal-
ized if the droplet size standard deviation (diastd) deviates significantly
from the constraint (r2) of 80lm. The resulting reward value is
bounded between�1 and 1.

The total rewards at the end of each episode are calculated as
the discounted sum of rewards ðR̂tÞ obtained from each control
time step. The discounted sum of rewards represents the total
rewards from the current time step t¼ l to the end of the t¼T,
where c is a discount factor and c 2 [0; 1]. The discount factor c is
specifically set to 0 in this case, indicating a focus solely on imme-
diate rewards,

R̂t ¼
XT
i¼0

clRtþ1: (14)

Exploration is crucial in the PPO algorithm to effectively explore
the state-action space. To achieve this, the agent incorporates random-
ization by sampling actions from a Beta distribution Betaða; bÞ, where
a and b are parameters predicted by the policy network. Sampling
from this distribution ensures continuous exploration during episode
initiation, promoting effective learning.

The PPO algorithm adopts the actor-critic framework and uses
two sets of artificial neural networks: an actor-network and a critic net-
work. Both networks have the same input, which is the system state,
and the same hidden layer architecture consists of two fully connected

layers with 128 neurons each. However, the networks have different
outputs, with the actor-network outputting an action and the critic
network generating a prediction of the discounted reward.
Appropriate loss functions are used to train both networks. During the
critic network’s training, a variable called “advantage” Ât is utilized to
estimate the difference between the predicted discounted rewards
[V/ðstÞ] and actual discounted rewards,59

Ât ¼ R̂t � V/ðstÞ: (15)

By measuring the discrepancy between the predicted and actual
discounted reward, the critic network aims to minimize a loss
function,

critic loss ¼ 1
jDkjT

X
s2Dk

XT
t¼0
�Ât

� �2
: (16)

The critic loss function is the mean-squared error averaged over
the number of episodes, where Dk is the number of episodes from the
replay buffer used to update the critic network.

Meanwhile, the actor-network generates actions so that the agent
can interact with the environment and learn from reward information
to increase its cumulative reward over time. The actor or policy loss is
formulated as

Actor loss ¼ 1
T

XT
t¼0

qtðHÞÂt; (17)

where

qtðHÞ ¼
phðat jstÞ
phkðat jstÞ

(18)

and phðat jstÞ is the log probability of taking action at in the state st
when following policy p with parameter h. In simple words, phk is the
old policy (the old set of network parameters).

Policy/actor loss is clipped to improve PPO performance and
speed convergence by ensuring that the new policy does not depart
too far from the old policy.8 The clipped policy loss can be expressed
as

clipped actor loss ¼ min qtðHÞÂt; clipðqtðHÞ; 1� e; 1þ eÞÂt

� �
:

(19)

This clipped term constraints qtðHÞ within the interval
ð1� e; 1þ eÞ, where e is a hyperparameter set at 0.2, as reported by
Schulman et al.58

To optimize the training process, the PPO algorithm employs
the Adam optimizer instead of traditional stochastic gradient
descent algorithms. The policy network was trained with a learning
rate of 0.0015, while the value network used a learning rate of
0.000 75. The source code for implementing this study can be
accessed through the provided GitHub link in the data availability
section.

The training process was completed in around 24 h, encom-
passing 140 episodes on a contemporary PC equipped with four
processors on a single CPU. However, by leveraging the univer-
sity’s HPC cluster and allocating 32 processors, the training time
was significantly reduced by a factor of 10 or more. Furthermore,
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parallelizing data sampling from the episodes significantly acceler-
ated the training process. The training process is summarized in
Algorithm 1.

ALGORITHM 1. Complete training and control process of PPO
algorithm.

Result: Optimal policy
Initialize s0;
while Episode 6¼ last episode do
PPO Algorithm;
for K ¼ 0; 1; 2;…;M do

Control policy: pk ¼ pðhkÞ;
Probability: pðat jstÞ;
for i ¼ 0; 1; 2; 3;…; n do

State-action pairs: ðDk ¼ fsjgÞ;
Rewards: R̂t ;
Estimate advantages: Ât ;
Sequences update using gradient ascent method: si, ai, ri;
if Episode ¼ last episode then
Stop

else
i ¼ iþ 1

end
end
K ¼ K þ 1;

end
end
Test optimal policy in the environment

III. RESULTS
A. Mesh independence

To ensure a grid independent solution, mesh independence
investigations were conducted. The objective was to develop an opti-
mal mesh that balances computational cost and accuracy in capturing
physical properties and fluid interfaces. The mesh generation process
was summarized in Subsection IIA and illustrated in Fig. 3(a). Eight
grids have been generated and simulated using various
snappyHexMesh parameters. A refinement region was created for all
of the grids at the center of the intersection. Table III presents the
properties of the designed meshes.

The resulting droplet interface sharpness, average droplet size,
and detachment time were evaluated, as shown in Fig. 3(b). Relatively
coarse grids, namely, M1, M2, and M3, resulted in a higher diffuse
droplet interface, which is unsuitable for accurate droplet size estima-
tions. However, finer grids from M4 to M8 led to improved droplet
interface sharpness, with a mesh element number above 15 000 result-
ing in nearly the same droplet diameter and detachment time. Further
refinement beyond M6, arising from a finer background mesh, led to
negligible improvements at increased computational costs, as evi-
denced by computational times presented in Table III. Therefore,
Mesh M6, with explicit feature edge refinement level 2 and volumetric
refinement level 5, was selected as the optimal mesh for subsequent
simulations.

B. Model verification

To validate the accuracy of our numerical model, we compared
our simulation results with the experimental data of Wu et al.60 on
water droplet formation in Freol ALPHA 10G oil. We recreated their
droplet generation geometry and evaluated our model by comparing
droplet sizes with their experimental results at velocity ratios of 1/6, 1/
3, 1/2, and 1/1. These velocity ratios corresponded to dispersed phase
velocities Ud of 0.000 42, 0.000 84, 0.001 26, and 0.002 52m/s, respec-
tively, while keeping the continuous phase velocity fixed at
Uc¼ 0.002 52m/s.

The results presented in Fig. 4 demonstrate that our numerical
model and the data from Wu et al.60 exhibit good agreement for both
low and high velocity ratios, with errors of less than 7% for dispersed
phase velocities, except for 0.001 26m/s, where the error was 11%.
This finding aligns with other research studies that used the Volume
of Fluid (VOF) method, which have also reported larger errors ranging
from 10% to 18% and overestimated droplet size, particularly at high
flow rates of the continuous phase.61,62 Although the difference in
droplet sizes between our study and the study of Wu et al. may be
attributed to the use of 2D simulations instead of their 3D FFD device,
our numerical model still produces acceptable errors of less than 11%
for all velocity ratios, which makes it suitable for further investigation.

C. Characterization of the environment without
control

To better understand the environment and identify the feasible
limits or bounds of the action space for the DRL, we conducted a study
aimed at characterizing the environment. Specifically, we focused on
identifying the upper and lower bounds of the oil inlet pressure (i.e.,
the manipulated variable) that induce droplet production. To achieve
this goal, we evaluated the impact of different pressure ratios, repre-
sented as Poil=Pw, on droplet size. Our investigation involved main-
taining a constant water pressure of 6000Pa and varying the oil
pressures (Poil) within the range of 2000 to 10 000Pa, resulting in pres-
sure ratios of 0:33 � Poil=Pw � 1:67. The results of this analysis are
presented in Fig. 5.

In Fig. 5(a), we depict the variation in droplet length generated.
Meanwhile, in Fig. 5(b), the results show that increasing the inlet oil
pressure leads to smaller droplet sizes. The droplet generation fre-
quency was 	120Hz, and a CV% based droplet count ranges from
100 to 150. Initially, the CV% increases with the pressure ratio until
Pw ¼ Poil , after which, it continuously decreases. For droplet genera-
tion where the average droplet size ranges from 88 and 55lm, the
CV% falls within 8%–6%. However, this exceeds the desired threshold
of 5% and necessitates control of the droplet generation process.
Droplets were not produced beyond a pressure ratio of 1.13 or below
0.75. Thus, we established the lower and upper bounds of the action
space at 4500 and 7000Pa, respectively. During training, the agent’s
action pressure values are normalized to a range of �1 to 1 before
being input to the neural network.

D. Probe configurations for efficient and accurate flow
observation

We optimized flow data collection accuracy by testing five probe
layouts, labeled P1–P5, as depicted in Fig. 6(a), which acted as pressure
sensors, providing real-time observations to the PPO algorithm.
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P1 had 10 equally spaced probes placed only in the microchannel
junction; P2 had 20 probes in the junction and outlet; P3 and P4 had
40 and 60 probes, respectively, in the oil inlets, junction, and outlet;
and P5 had 80 probes in all phase inlets, the junction, and outlet. We
used the probe configurations to train the agent to achieve a droplet
size setpoint of 60lm, as described in Subsection IID. The probe con-
figurations were evaluated based on mean rewards accumulated [Fig.
6(b)] and achieved droplet size by the end of the training and droplet
size CV% (Table IV).

The results demonstrate that P5 had the highest mean rewards of
0.91 for the last 10 episodes, achieved an average droplet size of

60.05lm, and had the lowest CV% of 	2%, indicating the most pre-
cise droplet size control. In contrast, P1 and P2 achieved the lowest
negative mean rewards and the largest deviation from the target drop-
let size, which highlights their least precise control performance.
Although both P3 and P4 had positive cumulative mean rewards, they
did not perform as well as P5. The results also indicate that closed-
loop control could deteriorate system performance when inadequate
or inaccurate input states are provided. Overall, the results indicate
that increasing the number of probes enhances control performance
by providing sufficient flow field information for effective learning.
However, since the arrangement of 80 probes effectively covered the

TABLE III. Properties of designed meshes and computational times for mesh independence study.

Base-Mesh (mm) Mesh
Feature edge

refinement level
Volume region
refinement level

Number of
mesh elements

 (cells)

Avg mesh cell
size (m)

Comp.
time (s)

250
60
30 M1 1 1 3538 7.97� 10�5 21.3
M2 2 1 9027 7.91� 10�5 50.4
M3 2 2 9039 7.91� 10�5 52.8
M4 2 3 10 348 7.87� 10�5 55.6
M5 2 4 15 103 7.87� 10�5 134.8
M6 2 5 33 530 7.27� 10�5 843.9

260
70
30 M7 2 5 40 071 7.46� 10�5 924.7
260
80
30 M8 2 5 44 462 7.12� 10�5 1251.2

FIG. 3. (a) Computational mesh mainly of hexahedral cells and a resolution of 2500 cells (x), 600 cells (y), and 300 cells (z) per 1 mm. A refinement region captures accurate
flow physics in gradient-rich areas. (b) Evaluation of meshes M1–M8 based on interface sharpness (top image), average droplet length, and detachment time (bottom image).
Mesh M6 was identified as optimal for subsequent simulations, striking a balance between interface sharpness and result independence. Further mesh refinement does not
yield significant improvements.
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FIG. 5. (a) Depiction of variations in generated droplet sizes (lengths). (b) Effect of
pressure ratio on droplet size variation (CV%). The CV% initially increases with the
pressure ratio until Pw ¼ Poil and then gradually decreases. Control is necessary
for droplet size generation where the CV% exceeds the 5% desired threshold.
Droplet production ceases beyond a pressure ratio of 1.13 and below 0.75, with
action space bounds set at 4500–7000 Pa for Pw¼ 6000 Pa.

FIG. 6. Evaluation of pressure probe layouts (P1–P5) in PPO algorithm perfor-
mance. (a) Different probe layouts assessed. (b) Mean rewards are used as the
performance metric. Among the layouts, P5 with 80 probes in all phase inlets and
junctions achieved the highest mean rewards of 0.91 at convergence, indicating the
optimal probe number and positioning for precise droplet size control.

TABLE IV. Control results for achieving the droplet setpoint target of 60 lm with dif-
ferent probe configurations.

Probe
configuration

Cumulative
mean-rewards

(last 10 episodes)

Average-
droplet-size ðlmÞ CV%

P1 �0.74 176 28.7
P2 �0.74 185 44.7
P3 0.29 65.5 15.9
P4 0.71 63.9 11.2
P5 0.91 60.05 2.13

FIG. 4. Validation of our droplet water formation model (colored image) against the
experimental data of Wu et al.60 (gray image). Results show good agreement with the
study of Wu et al. (errors< 7%), except at 0.001 26m/s (11% error), consistent with
other Volume-of-Fluid (VOF) studies,61,62 validating our droplet formation model.
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critical flow region, the influence of adding more probes within or out-
side this critical region, based on flow dynamics, is unlikely to have a
significant impact on control performance.

E. PPO algorithm performance in the absence of
external disturbance

In this section, we analyze the PPO algorithm’s performance in
achieving a specific droplet size with minimal CV% in the absence of
external disturbances.

To evaluate the agent’s performance, Fig. 7 displays the DRL
agent’s mean rewards accumulated for different mean droplet size set-
points (50, 60, 70, and 80lm). We use the mean cumulated reward
across all episodes and the last 15 episodes as specific performance
metrics. This approach provides a better understanding of the learning
effectiveness and agent’s performance as it approaches convergence.

The results presented in Fig. 7 indicate the effectiveness of the
PPO algorithm in achieving a range of droplet sizes, as evidenced by
rewards at convergence ranging from 0.63 to 0.92. While the algorithm
proved effective across all tested droplet sizes, its accuracy varied.

Notably, the DRL agent exhibited outstanding performance for the
60lm droplet size, achieving the highest reward at convergence and
consistently maintaining high rewards throughout the training pro-
cess. Moreover, the optimal policy was successfully tested for all target
droplet sizes, consistently yielding rewards above 0.95.

It is important to acknowledge that the variability and unsmooth-
ness observed in the rewards are attributed to the random exploration
employed during the episodes. During training, the agent explores var-
ious actions to learn and improve its control strategy. However, in the
testing phase, where the agent’s learned policy is evaluated, we observe
higher rewards due to the absence of exploration and the application
of the optimal policy. Overall, the study effectively demonstrates the
effectiveness of the PPO algorithm in successfully controlling droplet
size within the given environment.

Furthermore, we present the results of training the controller on
the controlled variable (i.e., droplet size) and manipulated variable (oil
pressure) as well as the performance of the final policy when tested on
the environment in Fig. 8. The controller successfully achieved the
mean size target-setpoint for all three experiments, with a CV% of less
than 5% in each case. Specifically, the CV% for setpoints 50–70lm

FIG. 7. Evaluation of PPO algorithm performance for different droplet size setpoints: (a) 50 lm, (b) 60 lm, (c) 70lm, and (d) 80 lm, based on average rewards. Effective
droplet size control was achieved with rewards at convergence ranging from 0.63 to 0.92. Excellent performance for 60 lm size, highest reward at convergence, and consis-
tently high rewards during training. In the testing phase, rewards were higher without exploration, as the optimal policy was applied. Smoothing window was used on data for
clarity.
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was less than 3%, while for the setpoint of 80lm, it was 	4.9%. The
implementation of the controller led to a reduction in CV% by 2.6%,
4.72%, 3.6%, and 0.8% for the target sizes of 80, 70, 60, and 50lm,
respectively, compared to the case without control or open-loop. The
corresponding control actions through the manipulated variable, i.e.,
oil inlet pressure, are shown for each setpoint, with pressure values

converging to 6546.98, 6422.85, 6268.45, and 5966.43Pa for setpoints
50, 60, 70, and 80lm, respectively. The corresponding control actions
through the manipulated variable, i.e., oil inlet pressure, show that the
pressure values converged to the desired setpoint for each droplet size
at low CV%, demonstrating the effectiveness of the controller in
achieving the desired setpoints.

FIG. 8. DRL agent control of droplet size
using oil pressure manipulation. The agent
achieved CV% values below 3% for droplet
size setpoints of 50lm (a), 60lm (b), and
70lm (c). For the 80lm setpoint (d), the
CV% was 	4.9%. The agent’s control
actions are represented by the converging
pressure values: 6546.98 Pa (e),
6422.85 Pa (f), 6268.45 Pa (g), and
5966.43 Pa (h) for the respective setpoints.
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F. PPO algorithm performance in the presence
of external disturbance

Disturbances in a droplet microfluidics system, such as mechani-
cal vibrations caused by pumps, can introduce fluctuations that impact
droplet formation and lead to changes in droplet size and size distribu-
tion. In this study, we simulated periodic mechanical vibrations using

a sine wave function to assess the performance of the control system
in the presence of these disturbances. Pressure fluctuations in micro-
fluidic systems are influenced by factors, such as the actuation method,
frequency, voltage, syringe diameter, and pump design. They occur
across a broad frequency range and exhibit varying amplitudes.63–66

The disturbances were introduced by fluctuating the inlet water
pressure, which otherwise remained at a constant value. Three forms of

FIG. 9. Environment behavior under Disturbance A (sinusoidal oscillation frequency 10 KHz, amplitude 500 Pa) (a) and Disturbance B (sinusoidal oscillation frequency 10
KHz, amplitude 100 Pa) (d) for a droplet size setpoint of 50 lm. In (b), Disturbance A resulted in a higher droplet CV% of 3.75% compared to Disturbance B in (e) with CV% of
2.61%. Despite the presence of disturbances, the agent adapts; mean rewards for Disturbance A are shown in (c), and those for Disturbance B are shown in (f), which are
comparable to the absence of disturbances. The droplet size remained close to the target (CV% below 5%).
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disturbances were considered: varying frequencies (10 and 10000Hz)
and amplitudes (50, 100, and 500) around the mean water pressure
value of 6000Pa. This resulted in water inlet pressure fluctuations within
a range of less than 10% from the expected constant pressure.

To assess the effectiveness of the trained DRL agent in the pres-
ence of disturbances (Disturbance A, Disturbance B, and Disturbance
C) and its ability to achieve the desired droplet size setpoint with mini-
mal coefficient of variation (CV%), the final policies obtained from
training agent in a disturbance-free environment were tested without
further training. Figures 9 and 10 illustrate the depiction of the distur-
bances, the achieved droplet size, CV%, and rewards for a droplet size
setpoint of 50lm. The evaluation metric used is consistent with the
assessment in the absence of disturbances.

In Figs. 9 and 10, we observed that the agent’s performance was
influenced by the frequency and amplitude of the introduced distur-
bance. Comparing Disturbance A and Disturbance B, both with a fre-
quency of 10,000Hz but different amplitudes (500Pa for Disturbance
A and 100Pa for Disturbance B), larger amplitudes caused more devi-
ation from the desired behavior. This led to a slightly higher droplet
coefficient of variation (CV%) for Disturbance A (3.75%) compared to
Disturbance B (2.61%). These findings indicated that agent was more
challenged in adapting and implementing corrective actions with
larger disturbance amplitudes. However, when compared to the case
without any disturbance, the CV% increased by 1.47% for Disturbance
A and 0.33% for Disturbance B. Nonetheless, the mean droplet size
remained close to the target, and the CV% in both cases remained
below 5%. This indicates an overall improvement achieved through
the implementation of closed-loop control. Based on these findings,
we conclude that the agent can effectively respond to disturbances
with amplitudes up to 0.8 times the mean pressure value it was trained
on in this environment. For larger consistent disturbance amplitudes,
retraining may be necessary to enhance the agent’s adaptability and
performance.

Disturbance C, characterized by a lower amplitude (10Pa) and a
significantly lower frequency of 50Hz compared to Disturbances A
and B, impacts the environment significantly. This could be attributed
to low-frequency disturbances potentially inducing system oscillations
or resonance, magnifying their effects and posing challenges for the
agent to compensate or handle sustained disturbances. Consequently,
under Disturbance C, the droplet size distribution exhibits a wave-like
pattern with a coefficient of variation (CV%) increase to 	5.5%.
Although slightly higher than the desired level, this is still an improve-
ment compared to the case without control, where the CV% was
	6%. Retraining the agent becomes crucial for handling such scenar-
ios. Furthermore, the agent’s action response to Disturbances A, B,
and C is depicted in Fig. 11. Notably, the agent exhibits the ability to
compensate for fluctuations in water inlet pressure by employing dis-
tinct control actions for each disturbance. In summary, the agent dem-
onstrates adaptability and responsiveness to disturbances within
certain limits of amplitude and frequency, but higher or different types
of disturbances may necessitate retraining the DRL algorithm.

IV. CONCLUSION

This study successfully employed Proximal Policy Optimization
(PPO) and the Volume of Fluid (VOF) method to regulate droplet size
in microfluidics. The DRLþCFD framework implementation effec-
tively controlled droplet size by manipulating the continuous phase

inlet pressure, supported by pressure and droplet diameter measure-
ments. Mesh independence investigations identified the optimal mesh
density, balancing computational efficiency and accuracy, with simula-
tion results showing good agreement with experimental data (errors

FIG. 10. Impact of Disturbance C (sinusoidal oscillation frequency 50 Hz, amplitude
10 Pa) on the environment. Disturbance C depicted in (a) leads to a wave-like drop-
let size distribution with an increase in CV% to 	5.5%. (b) Low-frequency distur-
bances (Disturbance C) challenged the agent, resulting in degraded mean rewards.
(c) Retraining is required for optimal performance.
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below 11%). The optimized probe layout for field pressure measure-
ment improved control performance, reducing droplet size variation.
The PPO algorithm achieved droplet sizes with a CV% below 5% for
all setpoints (50, 60, 70, and 80lm), surpassing the case without con-
trol. The PPO agent demonstrated adaptability to external disturban-
ces within certain amplitude and frequency ranges, demonstrating its
robustness.

This study demonstrates the potential of DRL algorithms in pre-
cise droplet size control for microfluidics, advancing the field. By using
continuous control DRL algorithms in simulations, we can optimize
the design and testing of control algorithms specific to microfluidic
devices. Our goal is to transfer these algorithms to experimental setups
with minimal modification, reducing resource costs.

Future research directions will involve comparing alternative con-
tinuous control ML strategies for evaluating algorithm performance in
real-time applications and managing different disturbance scenarios. By
addressing these aspects, further improvements and advancements can
be made in the study of DRL techniques for regulating droplet size in
microfluidics systems, ultimately pushing the field forward.
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