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Abstract

We obtain Rayleigh-Bénard convective scaling laws for the dimensionless Nusselt and
Reynolds numbers as functions of Prandtl, Ekman and Rayleigh numbers, for large Prandtl
numbers in rotating and non rotating systems. We have used numerical simulations based
on the Navier-Stokes equations.
We have obtained the results by mean of a Spectral Method program, NEK5000, over a
set of 63 simulations, each for a combination of Prandtl, Ekman and Rayleigh numbers
(3Pr × 3Ek × 7Ra ).
Dimensionless numbers are important identifiers of the characteristics of the flow; indeed
flows can be classified in groups which have some dimensionless numbers in common.
We have found that there is a treshold Prandtl number value over which the Nusselt and
Reynolds numbers do not depend on the Prandtl number. In particular, the differences be-
tween the cases with Pr = 100 , Pr = 300 and Pr = ∞ have been proved to be negligible.
This is an important finding because the case Pr = ∞ corresponds to Steady Stokes flow
by which viscosity dominates over inertial terms in the Navier-Stokes equation owing to
which the computations are simplified and accelerated significantly.
Additionally, we have investigated the effect of rotation on convective motion onset. It
has been established that there are two transitions for the scaling behaviour of the Nus-
selt number as a function of the Rayleigh number. We found that the rotation cause the
first transition to happen at a higher Rayleigh number, as compared with the non-rotating
case. Within statistical uncertainties, the obtained results are in agreement with the ones
obtained by Grossman and Lohse, and by Ashkenazi and Steinberg.
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1. Introduction

Rayleigh-Bènard convective problems have been analysed for decades to explicit their dy-
namic behaviors, their morphological and topological patterns. RB convection shows be-
haviors which explanations require the use of mathematical and geometrical tools which
one would not expect.
For example, with the right combination of parameters as aspect ratio, viscosity and tem-
perature difference, it has been found that, at the stable equilibrium of the convective cells,
their shapes form an exagonal pattern [Varé et al., 2020] (see Figure 1 for an example).
The theoretical explanation of this pattern was found to be coming from a minimization
problem: indeed exagons are the geometrical figure that minimize the perimeter of the
tessellation of a plane.
The aim of this thesis is to validate the behavior of RB convection with high Prandtl num-
ber, varying Ekman and Rayleigh numbers. Prandtl number is the ratio of momentum
diffusivity to thermal diffusivity. High Prandtl number fluids are typically analysed in
geophysics, due magma and earth mantle high viscosity, but also in some industrial ap-
plications of silicone oils. It has been confirmed that for large Prandtl number, Nusselt
number and kinetic energy are independent of Prandtl number. Moreover, increasing Ek-
man number leads to a reduction of the first transition Rayleigh number, indicating that
rotation is performing as inhibitor of convection onset.
Scaling laws for Nusselt, Reynolds and Peclet numbers are found. The Nusselt num-
ber scaling laws are in line with previous literature, in particular from Ashkenazi and
Steinberg[Ashkenazi and Steinberg, 1999]. Related works have been conducted regard-
ing heat transport in RB convection in rotating systems [Schmitz and Tilgner, 2009], analysing
transitions from laminar to turbulent flows varying the given parameters (Pr,Ek,Ra) and
the heat transport by monitoring the Nusselt number (Nu) [Schmitz and Tilgner, 2010].
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Figure 1. RB exagonal cells. Picture from NOAA Lab.
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2. Theoretical background

In order to have a better understanding of the phenomena involved in this study, we will go
through the theory on which the numerical simulations are based. This summary will start
with some general definition of convective motions and their instabilities, going through
an overview of Navier-Stokes equations’ terms and their numerical implementation, fin-
ishing with the meaning of dimensionless numbers and the features of Spectral Methods.

2.1 Convection

In fluid mechanics, convection is defined as the motion of a fluid driven by density differ-
ence. Convective phenomena are a pattern of fluid flows that occur due to the combined
effects of material property heterogeneity and body forces on a fluid, most commonly
density and gravity [Munson et al., 2009]. Another cause of convective phenomena is
difference in other properties, surface tension in the Marangoni effect [Tritton, 2012].

Free convection happens because ”hot fluid tends to rise” [Tritton, 2012]. Indeed the
density variation, that is causing the buoyancy force gradient in the fluid domain, arise
due to temperature variation. The model that we are using assumes incompressible flow,
where the density is not function of the pressure. In particular, density is function only of
temperature. This is known as Bousinnesq approximation (see Section 2.2.1)

Despite the complexity of the hydrodynamics equations, some simple flow patterns are
allowed as stationary solutions. Such stationary flows can happen only inside certain
ranges of characterizing parameters [Chandrasekhar, 2013]

2.1.1 Rayleigh-Bènard

A layer of fluid is bounded by two horizontal rigid planes at distance d apart and at
different constant and uniform temperatures T1 (up) and T2 (down), with T2 > T1. This
is called the Rayleigh-Bènard configuration.
There are variations on the theme, e.g. with different boundary conditions, or by replacing
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the boundary heat source with an internal one. The system evolution does not necessarily
undergo a convective motion, since viscosity and thermal diffusivity of the fluid tend to
prevent the appearance of convection. Only when the temperature gradients are large
enough, then the layer becomes unstable [Tritton, 2012].

Rayleigh-Taylor thermal instability have been analysed by Rayleigh in 1916, who de-
rived a theoretical requirement for convective motion. He showed that thermal instability
appears when the ratio of the buoyancy force to the viscous one is exceeding a certain
critical value. This ratio is called Rayleigh number:

Ra =
gαL3∆

κν
(2.1)

where ∆ = T − Twall here denotes the temperature difference between the imposed
boundary conditions temperatures, which will be set unitary. The instabilisation of the
fluid at rest can be seen in the following pictures, obtained from some preliminary 2D
simulation with Pr = 7 in non-rotating domain with higher aspect ratio. Figure 4 shows
how the instability leads to formation of those waves which transforms in plumes dividing
each Rayleigh-Bènard convective cells. The video from which those snaps are captured
shows how the lateral plumes in Figure 5 are in a velocity limit cycle. It can also be
seen how the mode in which the initial stratification instabilise is associated to a very
short wavelength, and while the instabilisation evolves, the modes compact themselves in
lesser and lesser plumes until the final cells configuration.
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Figure 2. Rayleigh-Taylor instabilisation, t = 0

Figure 3. Rayleigh-Taylor instabilisation, t1

Figure 4. Rayleigh-Taylor instabilisation, t2

Figure 5. Rayleigh-Taylor instabilisation, t3

2.1.2 Grossman-Lohse unifying theory

Many studies have been conducted in this field during the 20th century. Davis have studied
RB convection for air cells with Pr ≈ 1. He found a scaling law for this particular value
of Prandtl number: Nu ≈ Ra

1
4 [Davis, 1922] . However, in these early experiments only

relatively small Rayleigh numbers Ra < 108 were achieved. A detailed description of the
history of progresses that have been done during the 20th century in this field can be found
in the first of the two papers by Grossman and Lohse [Grossmann and Lohse, 2000].
In the series of those two articles the authors present a consistent unifying theory for RB
convection [Grossmann and Lohse, 2000] [Grossmann and Lohse, 2001].

The first article The authors proposed a scaling theory of the Nusselt and Reynolds
numbers in strong Rayleigh–Benard convection [Grossmann and Lohse, 2000]. Here the
control parameters are the Rayleigh number and the Prandtl number; the system responds
with the Nusselt number (the dimensionless heat flux) and the Reynolds number (the di-
mensionless large scale velocity U ). The authors studied the dependence of the scaling
laws on the convective regime. The regime’s dependence is modelled as function of range
of the Prandtl number. For example in the case of the ”Kraichnan regime”, which corre-
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sponds to medium Pr , the parameters follow the scaling laws:

Nu ≈ Ra
1
2 Pr

1
2 ; Re ≈ Ra

1
2 Pr − 1

2

The comparison with our results will be done with the regime corresponding to the highest
considered Prandtl number range. This result will be found to be still under the treshold
over which the Nusselt number becomes independent of Prandtl number. This scenario
will be tackled in the second paper (see Paragraph 2.1.2) The results presented by Gross-
man and Lohse are the following:

Nu ≈ Ra
3
7 Pr − 1

7 ; Re ≈ Ra
4
7 Pr − 6

7 (2.2)

The second article ’s aim is to review scaling laws including larger Prandtl number
convection. The key question is to understand how the dependences Nu (Ra ,Pr ) and
Re (Ra ,Pr ) are varying at high Prandtl number [Grossmann and Lohse, 2001]. One im-
portant result of the mentioned paper is that over a certain treshold, the Nusselt number
is found to be independent of Prandtl number. However, for fixed Rayleigh numbers Ra,
a maximum in the Nu (Pr ) dependence has been predicted. This allowed a more detailed
description of the transitions between the various scaling regimes. Another achievement
of this paper has been to decompose energy and thermal dissipation rates into their bound-
ary layer and bulk contributions. This topic will not be discussed here as it falls out of the
scope of this thesis.

2.2 Model and equations

The problem have been settled up with some hypotheses: first of all it has been assumed
that the fluid is incompressible. Hence the density of the fluid was independent of pres-
sure. Though, the density is dependent of the temperature instead, where the function
describing this dependency is assumed to be linear:

ρ(T ) = ρ0 + (T − T0) · α (2.3)

where α is the thermal expansion coefficient of the considered fluid. With this hypotheses
we can describe temperature as an active scalar, which is a quantity that while being
transported is also affecting the flow field; whereas a passive scalar is not leading to any
change in the flow.
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2.2.1 Boussinesq approximation

Fluids properties are normally functions of temperature. Even when temperature varia-
tions are small, those can cause the motion of the fluid, as it happens in free convection
(see Section 2.1)
If the density variation is not large, we can introduce the following approximation: den-
sity is considered constant in the unsteady and convection term, while it is treated as a
variable only in the gravitational term. Also, variation of all fluid properties other than
temperature, and consequent density variation, are ignored completely. Density variation
is considered when it gives rise to a gravitational buoyancy.
In general, ρ = f(T ) hence ∇ · u = f(dT

dt
) (see Section 2.2.2).

The continuity equation (see Equation 2.4) is then used in its constant density form for
incompressible flows: ∇ · u = 0

Apart of the interpretation by analysing the effect on the terms of NS equations, it is
possible to see also a physical interpretation. It assumes that variations in density have
no effect on the flow field, except that they give rise to buoyancy forces. For example,
an increment of temperature does not imply a local expansion of the fluid which cause a
divergent velocity field.

We can express the linearization of the density in function of the temperature as in Equa-
tion 2.3 to obtain buoyancy force:

(ρ− ρ0)g = −ρ0gα(T − T0)

where α is the coefficient of volumetric expansion. This approximation leads to errors of
the order of 1% if temperature difference is below a certain treshold. The latter is 2° for
water ad 15° for air.

2.2.2 Continuity

The continuity equation in its integral form impose the balance between the temporal
variation of the considered quantity (in this case mass), the flux q through the domain
boundary and the sources of the quantity inside the domain. In 3D case, referring to a
fluid with mass, it takes the following form:

d

dt

∫
Ω

ρ dV =

∫
Ω

q dV −
∫
∂Ω

u · n̂ dS

7



We can shrink the domain by limit to a point and obtain the differential form of the
continuity equation:

∂ρ

∂t
= q −∇ · u (2.4)

where ∇· is the divergence operator. It expresses the net flux of quantity through the
boundary of an infinitesimally small domain. Thanks to incompressibility assumption we
can state that the divergence of the velocity field will be equal to the mass source function,
assumed to be zero, since mass is not self-generating or vanishing in our domain. More-
over, the system has been imposed to be closed in this problem, hence all the lagrangian
particles are remaining the same during the time evolution.

2.2.3 Heat transport

Heat diffusion equation relies on the Laplace operator. The heat flux between two par-
ticles is modelled as proportional to the temperature difference. The physical meaning of
the Laplace operator in a discrete stencil is that the temporal variation of the temperature
is proportional to the average of temperature differences between a fluid particle and its
infinitesimally close particles (see Equation 2.2.3).
In the context of continuums, the temperature difference between particles is replaced by
the spatial derivative, and the time interval by the time derivative. For sake of simplicity
we consider the 2D case in Cartesian coordinates, with T = T (x, y).

∂T

∂t
= λ

(∂2T
∂x2

+
∂2T

∂y2

)
= λ∇2T (2.5)

Or, in short notation
Ṫ = λ ∆T

As we mentioned before, the laplace operator cause the averaging the directional deriva-
tives to appear. This attribute is particularly intuitive when discretizing the problem: the
heat equation in a 2D Cartesian discretized domain have the following form.

∇2T =
T (i+ 1, j) + T (i− 1, j) + T (i, j + 1) + T (i, j − 1) − 4T (i, j)

h2

where (i, j) are the spatial discretization indexes for the domain in (x,y) and h is the
spatial discretization step.
For simplicity here we have considered the isotropic case, where hx = hy

Heat advection equation relates the spatial gradient of temperature, the fluid velocity
field and the temperature temporal derivative. Its general form, for compressible flow can

8



be written as:
∂T

∂t
= −u · ∇T +

Q

ρcp
(2.6)

where Q is a heat source function and cp is the specific heat.
If we assume the hypotheses of incompressible flow and no heat soure function, the Equa-
tion 2.6 becomes:

∂T

∂t
= −u · ∇T (2.7)

Heat advection-diffusion Thanks to the linearity of the model that relates heat flux
and temperature derivative, we can combine the Equations 2.5 and 2.7 to get the heat
advection-diffusion equation for incompressible flows :

∂T

∂t
= λ∇2T − u · ∇T (2.8)

Or, in expanded form, in 3D:

∂T

∂t
= α

(∂2T
∂x2

+
∂2T

∂y2
+
∂2T

∂z2

)
−
(
u, v, w

)
·
(∂T
∂x

,
∂T

∂y
,
∂T

∂z

)

Euler and Navier-Stokes equations

Pressure force is generated by difference between the normal stress acting on two sides
of the infinitesimal cube. In one dimension it is the pressure spatial derivative, in more
than one dimension it is generalized with the gradient of the pressure. Again we can see
its meaning by discretizing in a 5 points symmetric stencil in the 2D case:

Fp(i, j) = ∇ · σ(i, j) = ∇p⊗ (hy, hx) = (
∂p

∂x
· hy,

∂p

∂y
· hy) =

=
p(i+ 1, j)− p(i− 1, j)

2hx
hy +

p(i, j + 1)− p(i, j − 1)

2hy
hx

where hx is the discretization step along x axis , and similarly for y axis.

Viscous force can be seen as the diffusion of linear momentum. Recalling the consider-
ation done in the case of heat diffusion in Equation 2.5, we introduce the Laplace operator

9



to express the viscous force:

Fv(i, j) = ∇ · τ(i, j) = µ∇2u

where its numerical 5 points stencil scheme is analogue to the heat diffusion case, hence
it is not reported individually. The viscous force can be formalized also by mean of the
divergence of the deviatoric stress ∇ · τ , where

τ = µ(∇u+∇uT )

Buoyancy force arises as difference between the body force and the parallel component
of the net pressure force. In the simplest case the body force is gravitational (no rotations
involved), hence the buoyancy is resulting of ρ g and the vertical derivative of pressure
∂p
∂z

.

Rotating frame associated forces We can relate the acceleration of a particle with re-
spect to an inertial reference frame to the acceleration of the same particle with respect to
a rotating reference frame. [Tritton, 2012](Du

Dt

)
I
=

(Du

Dt

)
R
+Ω× (Ω× x) + 2Ω× uR (2.9)

Coriolis force arises when we are using a reference frame that is in rotation with respect
to an inertial reference frame. Its expression is

−2ρ(Ω× u)

where Ω is the angular velocity of the non-inertial reference frame with respect to the
inertial one; u is the velocity of the object with respect to the non-inertial reference frame.

Incompressible Euler equation is obtained by substituting the expression of the diver-
gence of the stress tensor in the Cauchy momentum balance equation by its expression:

∇ · σ =


∂σxx

∂x
∂σyy

∂y
∂σzz

∂z

 ;
du

dt
=

1

ρ
∇ · σ + g

10



Here we see only the contribute of the diagonal terms, which represent the axial stresss
(gradient of pressure). The non-diagonal terms represent the tangential stresses (viscous)
that here are neglected since Euler’s equation is referred to inviscid flow. Physically it
considers the acceleration of a fluid particle due to pressure and volume forces only.

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ g (2.10)

Incompressible Navier-Stokes equation is the generalization of the Euler equation in
the case of viscid flow: indeed we can see that we have added the non-diagonal terms
in the stress tensor, which represent the viscosity term in the Euler Equation 2.10. Here
the divergence of the stress tensor is equal to the sum of the pressure gradient and the
laplacian of the velocity field which express the tangential viscous term.

∇ · σ = −∇p
ρ

+ µ∇2u

∇ · σ =


∂σxx

∂x
+ ∂σyx

∂y
+ ∂σzx

∂z
∂σxy

∂x
+ ∂σyy

∂y
+ ∂σzy

∂z
∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z



Then we get the NS equation in vector form, that must be expanded along the three di-
mensions to be implemented numerically.

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ ν∇2u+ g (2.11)

If we introduce the rotation of the reference frame, we can see the terms associated to
Coriolis and centrifugal forces appearing into NS equation: the added terms were seen in
Equation 2.9. This leads to:

∂u

∂t
+ u · ∇u = −1

ρ
∇p−Ω× (Ω× r)− 2Ω× u+ ν∇2u (2.12)

On the RHS of the Equation 2.12 the second term represent the centrifugal force, while
the third term is the Coriolis force.

11



2.2.4 Vorticity and poloidality

Vorticity ω is defined as the curl of the velocity vector field. Hence it is a vector and it
is defined in dimension equal to 2 or 3

We can compute for 2d case:

ωz =
∂v

∂x
− ∂u

∂y

and for the 3D case:

ω = ∇× u = ı̂
(∂w
∂y

− ∂v

∂z

)
+ ȷ̂

(∂u
∂z

− ∂w

∂x

)
+ k̂

(∂v
∂x

− ∂u

∂y

)
(2.13)

Poloidality of the flow have been computed inside the simulations loops. Poloidal com-
ponents have been computed in the following way:

P =

Px

Py

Pz

 =



∫
V

ω2
x∫

V
ω2
y+

∫
V

ω2
z∫

V
ω2
y∫

V
ω2
x+

∫
V

ω2
z∫

V
ω2
z∫

V
ω2
x+

∫
V

ω2
y


(2.14)

The computation have been implemented in the .usr file by adding the following lines.
The syntax belongs to Fortran 77.

c Compute Poloidal and Toroidal (helmoltz decomposition)

if(mod(istep,100).eq.0)then

call gradm1(DvxDx,DvxDy,DvxDz,vx)

call gradm1(DvyDx,DvyDy,DvyDz,vy)

call gradm1(DvzDx,DvzDy,DvzDz,vz)

intomegaxsq= glsc3( DvzDy-DvyDz , DvzDy-DvyDz , bm1,nv)

intomegaysq= glsc3( DvxDz-DvzDx , DvxDz-DvzDx , bm1,nv)

intomegazsq= glsc3( DvyDx-DvxDy , DvyDx-DvxDy , bm1,nv)

pol_var_x=intomegaxsq/(intomegazsq+intomegaysq)

pol_var_y=intomegaysq/(intomegaxsq+intomegazsq)

12



pol_var_z=intomegazsq/(intomegaxsq+intomegaysq)

endif

The subroutine gradm1 computes the partial derivatives of the three velocity components,
then the volume integral of the vorticity is done in the glsc3 subroutine, giving as input
already the curl structure to express the vorticity from the partial derivatives of the velocity
field. Finally, the ratios are imposed in the last three lines beginning with pol_var.

2.3 Dimensionless equations

2.3.1 Dimensionless Navier-Stokes

We start from a generic dimensional incompressible NS equation:

ρ
( ∂
∂t

+ (u · ∇)
)
u = −∇p+ µ∇2u+ ρg

It is possible to make dimensionless the NS equations in different ways. For each problem
it will be convenient to proceed in different ways. A quite standard way is the following,
where Euler, Froude and Reynolds number are involved since those are associated respec-
tively to pressure, gravity waves and viscous forces. 1

∂u

∂t
+
(
u · ∇

)
u = −Eu∇p+ 1

Fr2
g +

1

Re
∇2u

For our problem the NS equation is involving also rotation related terms, hence the Equa-
tion 2.12 has been made dimensionless in the following way [Schmitz and Tilgner, 2010].

∂u

∂t
+ (u · ∇)u+ 2

Pr
Ek

ẑ× u = −∇p+ Pr∇2u+ Ra PrT ẑ (2.15)

In this equation the dimensionless numbers combinations are representing the following
phenomena:

■
Pr
Ek Coriolis force

■ −∇p Pressure gradient given from gravity and centrifugal force (see description of
Equation 3.3)

1See Appendix 4
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■ Pr Viscous behavior is proportional to Prantdl number
■ Ra Pr is the product involved to take account of buoyancy given from thermal ex-

pansion

which are exposed since not all their roles in every term are found to be intuitive.

2.3.2 Dimensionless numbers

Reynolds number is the ratio of inertia force to viscous force:

Re ≡ inertia
viscous

∝
ρu∂u

∂x

µ∂2u
∂x2

∝ ρU2l

µUl2
=
U l

ν
(2.16)

The equality of Re is a necessary for dynamic similarities in which viscous forces are
relevant.

Prandtl number is the ratio of momentum to heat diffusivity:

Pr ≡ momentum diffusivity
heat diffusivity

=
µρ

kρCp

=
ν

α
(2.17)

It is therefore a fluid property and not a flow variable.

High Prandtl number indicates a fluid with high viscosity and low thermal diffu-
sivity. This corresponds to a diverse set of applications, from silicone oil with Pr≈
450 for industrial purposes [Busse and Whitehead, 1971], to magma and earth mantle
[Kaminski and Jaupart, 2003] in geophysical sciences which are respectively 103 and 1023

. One of the aims of this study has been identifying the order of magnitude of the treshold
of Prandtl number for which the convective patterns stabilize to a flow that is approx-
imately close to Steady Stokes Flow, so that the other parameters of the flows can be
obtained with a smaller computational effort. As it will be presented, Pr = 100 and
Pr = 300 give results that satisfy the approximations requirements to allow considering
both of them as infinite in the studies of RB convection. Also, the flow will be found to be
laminar under a certain treshold of Rayleigh number, which is a function of both Ekman
and Prandtl, for low Prandtl number values. For large Pr , the parameters describing the
flow become independent from Pr. This result will be presented in the conclusions.
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Peclet number in the context of heat transport in fluids is defined as the ratio of the
advective transport rate to the diffusive transport rate. Mathematically it can be expressed
as the product of Reynolds and Prandtl numbers:

Pe ≡ heat advection
heat diffusion

= Re · Pr =
U L

ν

ν

α
=
U L

α
(2.18)

The direct proportionality of Peclet number to Reynolds number can be intuitively seen
using turbulence as the lecture key phenomena: as we know, Reynolds number is an indi-
cator of how the flow is laminar or turbulent. For large Re the velocity field is transport-
ing more heat compared to the same fluid at lower Re since velocity is higher in absolute
value and mixing phenomena are leading to a situation where diffusion make solutions
smoother in term of high temperature gradients.
Because of the multifractal structure of the mixed solution, which has a layered pattern,
the needed heat diffusivity to smooth those temperature gaps decrease since the involved
distances tend to zero due to fractality of turbulence. The direct proportionality of Peclet
to Prandtl number comes from the presence of the thermal diffusivity at the denominator
of both Pr and Pe .

2.3.3 Nusselt number and Boundary Layers

For this thesis has been choosen to use ”Wall” boundary conditions on all the lateral faces
of the domain, which in NEK 5000 is the nomenclature for an adiabatic and non-slip BC.
Hence in the .box file is imposed that the heat exchange at the boundaries is null and
the velocity vector of the fluid in the first discrete layer of elements at the boundary is
zero too. The velocity BL has been solved by imposing non-slip condition and increasing
the mesh density by a hyperbolic tangent function(see Equation 3.1) at the boundaries
to allow resolving the flow at the boundaries by mean of the regular NS equations. We
have performed an estimation of the value of the parameter which regulates how much
the hyperbolic tangent mapping is shrinking the mesh size at the BL. This estimation is
done by making an hypothesis on the Nusselt number at the boundary, and deducing the
estimated thickness from the estimated Nusselt number.
Nusselt number is estimated as:

Nu =
αL

λ

The Nusselt number is important in this evaluation because it express the ratio of con-
vected heat to conducted one. Note that when Rayleigh number is under a critical treshold,
the fluid is thermically stratified due to the stability (buoyancy is dominated by viscosity)
hence the heat is only conducted, which corresponds to a Nusselt number Nu = 1
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Since in this model has been assumed a non-slip BC , then in the velocity BL the heat is
only conducted. Anyway heat is only conducted until the Nusselt number start growing
from one, that happens a bit more far from the boundaries than the velocity BL’s end. This
BL in which heat is only conducted although the velocity is not zero is referred as thermal
BL. Note that this relationship between the two boundary layers is not always as here:
this is a particular situation because high Prantl number implies high viscosity, that at a
relatively low Rayleigh number, keep vorticity dependent only from the macroscopic ro-
tation. Some turbulent behaviour emerged at highest Rayleigh number, and we have seen
some eddies rotating along the boundaries. For those simulations at large enough Prandtl
number, the velocity BL of Blasius type λu ≈ Re −1/2 has been evaluated as thicker than
the thermal BL λθ ≈ 1

2
LNu −1 [Grossmann and Lohse, 2000] .

Hence the heat exchange with the top and bottom walls is a function of the thickness of
the boundary layer. For this reason the Nusselt number is used to identify an upper bound
to the size of the first mesh layers at the boundaries. This consideration is particularly
relevant for top and bottom walls: the lateral walls are adiabatic, hence the mesh size is
bounded only by kinematic reasons, but not thermal ones. The thickness of the BL σ is
given by the following formula [Grossmann and Lohse, 2000]:

Nu =
L

2σ

Determining the Nusselt number from experiments can be done in two ways: one is
relying on the wall heat exchange role of Nu, hence used on the boundaries ; the other is
based on the volumetric definition of Nu , hence used in the bulk part of the domain. The
first is:

⟨Nu ⟩W = ⟨∂T
∂z

⟩W (2.19)

where ⟨·⟩W denotes the mean value over the wall of the bottom plate. Over the surface
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of the top plate, that is cold, the Nusselt number value will be the same because of the
symmetry of the problem and the linear dependence of buoyancy from temperature.

⟨Nu ⟩V ol = 1 + (Pr Ra )0.5⟨uzT ⟩V ol (2.20)

The mean over the volume of the cell is denoted by ⟨·⟩V ol , and the factor (Pr Ra )0.5

comes from the adimensionalisation of the velocity field through the free-fall speed. The
free-fall speed for this problem can be computed as follow [Verhoeven et al., 2015]:

Vff =
√

∆TLαT−1
r (2.21)

2.4 Spectral Element Method (SEM)

SEMs are based on the same idea of the FEM (Finite Elements Method): both methods are
using a linear combination of basis functions to approximate the solution. In the FEM the
basis functions are defined piece-wise, so each function is non-zero in only one element:
this is referred as compact support. Moreover, SEMs are usually easier to implement and
on regular geometries require less computational power to obtain higher accuracy than
FEM. However, because of their global nature, the matrices associated with step com-
putation are dense and computational efficiency will quickly suffer when there are many
degrees of freedom.
Instead, SEM use basis function which are defined non-zero over the whole domain. In-
deed, spectral methods connect variables globally while finite elements do so locally.
It relies on writing the trial solution of the differential equation as a sum of certain basis
functions and select the expansion coefficients for which the sum approximate the so-
lution well enough. The mentioned expansion is conceptually analogue to the Fourier
series, which is a sum of sinusoidal functions. In Spectral Methods, the basis functions
are Chebyshev polynomials.
By mean of Spectral Methods it is possible to solve numerically certain differential equa-
tions. It is particularly suitable for some particular kinds of differential equations and
perform very well in regular geometries. One feature of SEM is the exponential conver-
gence, given at the condition of smoothness of the solution. For this reason, it is not suited
to study solutions that have discontinuities (e.g. shock waves) or problems in which there
are very high gradients, as in the case of stratified solutions in turbulent patterns that are
showing topological properties as Poincaré mappings). Indeed for nonsmooth solutions
or larger problems, FEM will generally work better due to sparse matrices and better
modelling of discontinuities and sharp bends.
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3. Numerical simulations

3.1 The software NEK5000

All the simulations carried out as part of this thesis are performed with the open source
software Nek5000. A detailed description can be found in the developer’s article [Paul F. Fischer and Kerkemeier, 2008].
Here we go through a quick overview

Brief history

Nek5000 is a CFD solver based on Nekton 2.0 spectral element code written by Paul
Fischer et al. in 1986-1991. [Fischer et al., 2007]
The SEM was introduced in a 1984 article by Patera et al.[Patera, 1984], where it have
been used at first to simulate the laminar flow in a channel expansion.
Nekton 2.0 was the first three-dimensional spectral element code and one of the first
commercially available codes for distributed-memory parallel processors.

Nek5000 code features

The core of Nek5000 [Paul F. Fischer and Kerkemeier, 2008] is written in F77 and C.
It also uses also MPI [MPI, 1994] and some of the subroutines included in LAPACK
[Anderson et al., 1999] for eigenvalues computations.
Nek5000 can simulate unsteady incompressible fluid flow with thermal and passive scalar
transport. It can handle 2D and 3D domains decribed by isoparametric quad or hex el-
ements. Is also provided with the functionality to compute axial-symmetric flows. It
solves the transient incompressible Navier-Stokes equations. Nek5000 also solves the
compressible Navier-Stokes equations, but only in a low-Mach approximation, which
does not correspond to the anelastic approximation. These can be solved with forced
or natural convective heat transfer in both steady-state and time-dependent geometry. It
is a time-stepping based code and does not currently support steady-state solvers, other
than steady Stokes and steady heat conduction. In the context of this thesis, among the
steady-state solvers has been used only the steady Stokes one. Nek5000 is designed for
parallel computing using the Message Passing Interface Standard (MPI). In this regard,
everything is already built in. Nek5000 uses a semi-implicit Euler-Cromer method (see
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Appendix 4.3) for time integration. The semi-implicitness consist in computing the next
time step value of the velocity by mean of an explicit method, while the temperature is
computed implicitly. This method ensure stability concerning the temperature fluctua-
tions by its implicitness, while allowing a faster computation thanks to the explicitness of
the velocity field. This because the velocity field is computed by direct integration instead
of solving a linear system.

GLL points (Gauss-Legendre-Lobatto) , or Chebyshev roots, are the locations where
the polynomial interpolation based on Chebyshev polynomials is performed. The solution
depends sensitively on their number and relative distances. In NEK5000 it is not possible
to impose a mapping on their positions to modify the uniformity of their distributions, but
is possible to change their density by editing the .SIZE file. The number has been set to
5 or 9 as standard, depending on Rayleigh and Ekman number, where the evaluation has
been done based on the experience of my supervisor. 1

The effect of Runge phenomenon, which appeared for some values of polynomial order, is
a high amplitude oscillation of the approximating function close to the main nodes, which
leads to the crash of the solution process: indeed when the value of the approximating
Chebyshev polynomials oscillates over a certain treshold, the program automatically kills
the execution. Fortunately, this phenomenon involve the majority of cases where an ar-
bitrary approximated function is given, hence the crash of the simulation was happening
in the first few steps, allowing an immediate diagnosis. 2 The peculiarity of the Runge
phenomenon is that a coarse spectral mesh can generate less problems than finer ones,
counter-intuitively. Indeed the number of spectral nodes has been reduced to two where
the problem has sussisted. In the Figures 7 and 6 the spectral nodes have been plotted as
red dots along the main mesh. The oscillation can be minimized by using nodes that are
distributed more densely towards the edges of the interval, specifically, with asymptotic
density. [Berrut and Trefethen, 2004]

3.2 The problem setup

The setup of a simulation on NEK5000 relies on different case files, containing the pa-
rameters and execution choices of the simulation.

In NEK5000 is possible to use different sets of equations. For our purpose, we have

1The evaluation is conducted by heart and not analitically because of the complexity of the Runge
phenomenon in this context, since the spectral meshing algorithm is considered as a black-box.

2Other oscillatory phenomena did not allow this, and we had to restart some simulations after dozens of
computation hours
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executed the same simulations with steady Stokes flow hypothesis and with the set of
incompressible NS equations.
The aim is to find a treshold of Prandtl number over which incompressible NS and steady
Stokes equations give the same results. Prandtl number Pr = 100 already have shown a
behavior already very similar to the steady Stokes flow. The treshold have been identified
being between Pr = 100 and Pr = 300 , depending on the desired accuracy. Indeed at
Pr = 300 the temporal evolution and the asymptotic values of the parameters choosen to
express the flow characteristics discard from the steady Stokes value by less than 1%

Mesh and Boundary Conditions in the .box file

Mesh In the .box file we have specified some of the necessary data: the number of
dimensions of the problem have been set to 3 ; the number of the fields involved is 2
(are the velocity vector field and the temperature scalar field) ; the numbers of elements
per each of the three sides of the cubic mesh (= 30 × 30 × 30) and the parameters for
their spatial distribution or alternatively, all the nodes of the mesh. The mesh thinness has
been changed in base of a trade-off between accuracy and computation costs and stable
behavior on the boundaries. This can be done inside NEK5000 that is given with an
internal subroutine that can perform arbitrary mappings.
For this thesis have been implemented a Python script generating directly a mesh mapped
by a hyperbolic tangent (see Equation 3.1). Here it is presented the printed case file.
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-3 spatial dimension
2 number of fields
Box
30 30 30 nelx,nely,nelz for Box
0.00e-00 5.57e-03 1.27e-02 2.20e-02 3.38e-02 4.87e-02 6.76e-02
9.12e-02 1.20e-01 1.56e-01 1.98e-01 2.47e-01 3.03e-01 3.65e-01
4.31e-01 5.00e-01 5.69e-01 6.35e-01 6.97e-01 7.53e-01 8.02e-01
8.44e-01 8.80e-01 9.09e-01 9.32e-01 9.51e-01 9.66e-01 9.78e-01
9.87e-01 9.94e-01 1.00e-00 0.00e-00 5.57e-03 1.27e-02 2.20e-02
3.38e-02 4.87e-02 6.76e-02 9.12e-02 1.20e-01 1.56e-01 1.98e-01
2.47e-01 3.03e-01 3.65e-01 4.31e-01 5.00e-01 5.69e-01 6.35e-01
6.97e-01 7.53e-01 8.02e-01 8.44e-01 8.80e-01 9.09e-01 9.32e-01
9.51e-01 9.66e-01 9.78e-01 9.87e-01 9.94e-01 1.00e-00 0.00e-00
5.57e-03 1.27e-02 2.20e-02 3.38e-02 4.87e-02 6.76e-02 9.12e-02
1.20e-01 1.56e-01 1.98e-01 2.47e-01 3.03e-01 3.65e-01 4.31e-01
5.00e-01 5.69e-01 6.35e-01 6.97e-01 7.53e-01 8.02e-01 8.44e-01
8.80e-01 9.09e-01 9.32e-01 9.51e-01 9.66e-01 9.78e-01 9.87e-01
9.94e-01 1.00e-00
W ,W ,W ,W ,W ,W V bc’s
I ,I ,t ,t ,I ,I T bc’s

This solution allows to modify the density distribution of nodes from the bulk of the
domain to the boundaries. This is necessary because the boundary layer is where vorticity
is being formed. Note that others than the hyperbolic tangent mapping could be used to
obtain similar results. The parameter δ in the Equation 3.1 determines whether the mesh
is not deformed (δ = 1) or it is deformed such that the density of nodes approaches to
infinite at the boundaries and approaches zero in the bulk (δ → 0).

χ(x) =
tanh

(
x−0.5

δ

)
tanh

(
1
2δ

) + 1 (3.1)

Here will be used δ = 0.3 as standard value (see Figure 6) , although for high Ra number,
the successful run of the program requires to set a finer mesh at the boundary, hence in
such cases have been used a smaller value down to δ = 0.16 or in between.
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Figure 6. Mesh with δ = 0.30 rendered in 2D with PyPlot

Figure 7. Mesh with δ = 0.16 rendered in 2D with PyPlot
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The last two lines of the .box file specify the BCs of the velocity vector field and the
transported scalar field, that is temperature. The syntax is structured with six letters, one
for each face of the cube in the following order: x− , x+, y− , y+, z− , z+ . For the
velocity BCs have been set ”W” as Wall, as specified before, that stands for non-slip BC,
then imposing zero flux and zero tangential velocity. This condition impose also that
the system is closed to the mass, hence the Lagrangian particles remain the same during
the time evolution of the simulation. For the temperature BCs, the lateral walls (along x
and z) have been set to ”I” as Insulated, imposing a Neumann BC to zero. The vertical
direction has been imposed along y. 3

Hence the temperature Dirichlet BCs have been imposed on the faces which normal is
parallel to the gravity force vector. It simply consist in a unitary temperature difference
between the two faces, since the problem has been adimensionalized. In NEK5000 is also
possible to impose a Neumann thermal BC, consisting in a heat flux through the surface,
but for the scope of this thesis we followed the procedure executed in [Schmitz and Tilgner, 2010,
Schmitz and Tilgner, 2009] that was found to be optimal for stability reasons. Indeed the
equilibrium is reached faster when Dirichlet BCs are used, since the thermal gradient at
the boundary is reaching a steady state when the BL reaches the Dirichlet temperature,
which is not happening that rapidly when a thermal flux is imposed. Asymptotic stability
is reached anyway, but take around the double of the running time to be fulfilled. 4 This
can be interpreted by looking at the stabilization of the Nusselt number along time: after
the asympthote is reached, the Dirichlet BC behaves as Neumann BC because the spatial
average of the heat flux through the bottom and top faces of the cube remain constant
along time. The numerical values have been imposed in the subroutine userbc in the .usr
file.

c--------------------------------------------

subroutine userbc (ix,iy,iz,iside,ieg)

c Set boundary conditions

include ’SIZE’ ; include ’TOTAL’; include ’NEKUSE’

if(y==0) then

temp=1.0

end if

if(y==1) then

3This choice was made because the training have been done with a 2D case, hence the y was already
the vertical direction in all case files, hence to keep continuity between the simulations and formulae, we
introduced the z-axis as horizontal depth, keeping y-axis vertical

4This has been interpreted as a way to keep bounded the energy provided to the system. Indeed we
tried some simulations using the same case files but imposing a thermal flux, and we observed a less stable
behavior, in particular regarding the kinetic energy.
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temp=0.0

end if

return

end

.par file

The program allows to set the physical and computational parameters for the simulation
inside the .par file. For our purpose have been used a Python script that write out the .par
file with computed viscosity and conductivity parameters ν and α given dimensionless
Prandtl and Rayleigh numbers by the equations:

Pr =
ν

α
; Ra =

1

να
(3.2)

Among the other parameters we can find

■ density: here unitary after the problem has been made dimensionless
■ duration of the simulation in both seconds and number of steps
■ start time: feature that allows to continue simulations using an arbitrary condition

as initial condition
■ write interval, that indicates the ratio between the number of steps and the number

of data writing
■ time stepper: the algorithm that compute the parameter time step for the next data

writing interval
■ fixed time step, in case we set the time stepper as deactivated
■ which set of equation to be used ( compressible or incompressible NS , steady

Stokes ...)
■ CFL target (Courant Friedrichs Lewy): the value of Courant number that the time

stepper algorithm seek to fulfill

The Courant condition is particularly relevant for high speed flows with respect to the
mesh size. Indeed the flow is imposed to not run across more than one discrete space in-
terval, else the numerical result will consistently diverge from the real value. The Courant
number express the ratio between the distance traveled from the flow in a time step to the
mesh size, hence it is imposed to be smaller than a critical value which is imposed in the
.par file.
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.usr file

In the .usr file it is possible to specify the input values to pre-defined subroutines and to
write new ones. As reported for BCs (see Section 3.2 ) and for poloidal decomposition
(see Section 2.2.4 ), the same have been done for other computations, which are not
reported for compactness reason. Those can be found in the appendix (see Chapter 4.3
). The other subroutines compute the Peclet number ; the Nusselt number by its two
definitions, so the gradient at the boundaries in Equation 2.19 and the volume expression
2.20 ; the kinetic energy and the vorticity. In the same file, also the subroutine to export
bulk data of the simulations has been written.

3.3 Simulations

Navier Stokes and steady Stokes in NEK5000

In NEK 5000, NS equations are implemented as following:

■ momentum equation

ρ
(∂u
∂t

+ u · ∇u
)
= −∇p+∇ · τ + ρf (3.3)

where τ = µ[∇u+∇uT ] and f is a user defined acceleration. The latter will
be used for Coriolis force to implement rotation. Note that the centrifugal term
and the gravitational term can be merged into the pressure gradient term thanks to
Helmoltz-Hodge decomposition, since those terms are all meant to be expressed as
a gradient of a scalar field. This operation is possible thanks to the linearity of the
gradient operator, hence the gradient of the sum is equal to the sum of the gradients.

■ the continuity equation ∇·u = 0 can be used thanks to the Bousinnesq approxima-
tion (see Section 2.2.1 )

In the case of flows dominated by viscous effects, NEK5000 can solve the Stokes equa-
tions: the unsteady Stokes equation is

ρ
∂u

∂t
= −∇p+∇ · τ + ρf (3.4)

that without time-dependence can be further reduced to

−∇p+∇ · τ + ρf = 0 (3.5)
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In this case, the stationarity hypotheses of the problem simplify consistently the equation
by removing the time derivative. This leads to a very low computational cost for its
solution. The steady Stokes flow is a very good approximation in case of highly viscous
fluid: indeed for the latter is possible to neglect the inertia forces with respect to the
viscous forces.

Sets of parameters

The problem have been simulated for every parameters combination from a Cartesian
product of the following parameters: Ekman number: 2 · 10−4 , 1 · 10−3 , Infinity (ω = 0)
; Prandtl number: 1 · 102 ; 3 · 102 ; steady Stokes (ρI = 0) ; Rayleigh number: 103 to 109

by steps of one order of magnitude.

Prandtl Ekman Rayleigh

103

104

105

100 1 · 10−3 106

107

108

109

103

104

105

100 2 · 10−4 106

107

108

109

103

104

105

100 ∞ 106

107

108

109

Prandtl Ekman Rayleigh

103

104

105

300 1 · 10−3 106

107

108

109

103

104

105

300 2 · 10−4 106

107

108

109

103

104

105

300 ∞ 106

107

108

109

Prandtl Ekman Rayleigh

103

104

105

SS 1 · 10−3 106

107

108

109

103

104

105

SS 2 · 10−4 106

107

108

109

103

104

105

SS ∞ 106

107

108

109
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Influence and meaning of each parameter

Prandtl number have been settled up to different numerical values, both expected to
be high enough so that their behavior could be considered already as Prandtl number was
infinity.
An assumption is done in this direction: by imposing high Prandtl number we are im-
plicitly imposing high viscosity, but this is not automatically true, since a high Prandtl
number can derive also from a very low thermal conductivity.
The discriminant resides in imposing the Rayleigh number: if the latter is upper bounded
from a reasonable high value, then this approximation is fair, and the steady Stokes flow
will correspond to high Prandtl number simulated with inertial property. The maximum
Rayleigh number that has been simulated was Ra = 109 and it still didn’t present a signi-
ficative difference between the steady Stokes and high Prandtl number. To keep a margin,
we limited the considered results up to Ra = 108 thanks to the fact that the second loga-
rithmic transition happened before that treshold, allowing the interpretation of the results
without the need to increase Rayleigh number further.
The comparison have been done with the Steady Stokes simulations, where the inertial
term present in the NS equations is neglected, hence the simulation result to be less com-
putationally expensive of about one order of magnitude.
The results show that already Pr = 3 · 102 can be considered as infinite Pr, hence we
evaluated not necessary to run the simulations for Pr over that value, since the mesh re-
quirements from NEK5000 were difficult to satisfy. It have been conducted the problem
for Pr = 7 · 102 successfully, but only in 2 dimensions, hence the results are not reported
here.

Ekman number ’s influence on the problem is given from the effect of Coriolis force
on the fluid. The set of values of Ek number have been settled up to: Ek = 1 · 10−3

, Ek = 2 · 10−4, and infinite. The associated angular speeds can be obtained for each
simulation by using the following equations [Tritton, 2012] :Ek = ν

ω L2

ν =
√

Pr
Ra

⇒ Ek =

√
Pr√

RaωL2
(3.6)

The set up of very low Ek numbers, which corresponds to high angular velocities, have
been causing instabilities in the results, especially at low Rayleigh numbers. This because
the time-stepper adaptive algorithm consider the temperature gradients involved in the
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simulations but not the angular velocity of the reference frame. Hence the rotational
Mach number is imposing to the time step an upper bound which is not considered in the
adaptive time stepper. This condition is analogue to Courant-Friedrichs-Lewy but referred
to an angular velocity.
The solution would have been to set manually the time step to very low values until
instabilities with their oscillations disappeared. This operation would have required a
long time for settling up each simulation due to the long waiting time. For this reason we
imposed a lower bound of Ek = 2 · 10−4 .

One interesting spectrum of phenomena that can appear at higher angular velocities (which
we didn’t analyse for the given reasons) are the rotational instabilities, that lead to the
formation of centrifugal layers given from the break of convective columns which are
appearing at very high Rayleigh number, out of the boundaries of this thesis. This phe-
nomena are of particular interest in the field of convective motions in the cores of planets
and stars, which also involve Magneto-Hydro-Dynamics(MHD), that is out of our scope.

Rayleigh number The Rayleigh number express the dimensionless buoyancy force.
It is intuitive, and confirmed from theoretical background and simulations, that high ther-
mal gradients are causing larger Rayleigh number to appear, which make the convective
motions accelerate faster, then increasing the kinetic energy of the flow (see Plots 16, 17,
18). This velocity increase cause also a Reynolds number increase, which is leading to
turbulent patterns.

Tubulence analysis has not been performed since it requires finer meshes in function
of the Kolmogorov micro-scales magnitude: indeed to resolve turbulent patterns is nec-
essary to describe the velocity profiles with a very dense mesh grid in order to capture
all the smallest velocity gradients down to the viscosity micro-scale. Such an analysis
make DNS (Direct Numerical Simulations) to be computationally very expensive, since
the run time goes approximately with the cube of the number of discrete elements. More-
over, as suggested from Grossman and Lohse [Grossmann and Lohse, 2000], turbulence
is unlikely to appear at Pr ≫ 7.

Nusselt numbers As pointed out from Grossman and Lohse [Grossmann and Lohse, 2000],
at high enough Prandtl numbers, Nusselt number is independent of Prandtl number. This
has been one of the two criteria 5 to determine whether the two choosen values of Prandtl

5the other criterion is the comparison with steady Stokes model
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number were to be considered already infinite or not. Indeed, the pairs of simulations that
had same Ekman and Rayleigh numbers, differing just for Prandtl, gave the same results
in terms of the asymptotical function of Nusselt number logarithm ( see Figures from 10
to 15 ). The equations used to compute the Nusselt number in both its volumetrical and
surface definition are reported in Equations 2.20 and 2.19.

Time plots of representative parameters To check the time evolution of the simulation
we used some scripts in Python to read from the .logfile and plot the presented parameters.
When a simulation was proceeding well, it had this nice asympthotical behavior with a lit-
tle overshooting at the beginning. For example, comparing the Nusselt number in its two
ways of being computed, the ”Nu(Gradient)”, which has been indicated as Nu |w, does
not present the overshooting that appears for the ”Nu(Volume)” (Nu |v) because of the ve-
locity boundary layer effect on velocity: indeed it is the advective component which has a
peak for the maximal velocity, which happens after an amount of time from the beginning
of the simulation in the order of the scale divided by the free fall velocity. Intuitively can
be seen as the effect of the ”cumulated buoyancy” at rest which at the beginning has to
instabilize the thermal gradient and somehow ”break” the unitary Nusselt number: after
the onset of motion, there is a release of the mentioned buoyancy. Here appears the men-
tioned overshooting, which is then damped from viscous effects. A consistent part of the
work has been to set simulation parameters to obtain stable and realistic results. Reducing
mesh size and time step does not necessarily solve the problems related with numerical
instabilities.
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Figure 8. Time plot of: Kinetic energy ; Nusselt|wall ; Nusselt|vol ; Ekin_z
Ekin_xy ; Peclet

Figure 9. Time plot of: Kinetic energy; Nusselt|vol ; Poloidality along x̂,ŷ and ẑ

30



4. Results analysis and conclusions

4.1 The power laws

In thermal convection the Nusselt number and the kinetic energy are the system response
to the choosen input, which are Rayleigh and Prantdl number. Those dependencies
Nu (Ra ,Pr ) and Ekin(Ra ,Pr ) are found to be very well approximated from exponential
laws. The aim of this thesis was to find the scaling exponent and their domains in Rayleigh
and Prandtl axis. The results are presented here, and compared with representative values
from [Grossmann and Lohse, 2000].

Transitions’ Rayleigh number. Transitions between two flow regimes happens at crit-
ical values, which are related with the dimensionless numbers that describe the fluid and
the flow. In this case, Rayleigh number of transitions depends on Ekman number but not
on Prandtl number, as shown in Figures from 10 to 18. The first transition corresponds
to the convection onset. Rayleigh number, which represent the ratio of buoyancy force to
the viscous force, has to be great enough to cause the instabilisation of the steady state
with u = 0 over all the domain. Under this treshold, viscous effects keep the fluid at rest.
Two tables are presented: In the first table, the second column contains the value of the
first transition Rayleigh number in function of Ekman number. Similarly, the second table
present also the Nusselt number at which the second transition happens, which is strictly
bigger than one, whereas the first transition happens at Nu = 1 by definition.

First transition

Ekman Rayleigh

∞ 1.3 · 103

1 · 10−3 2.3 · 104

2 · 10−4 1.0 · 105

Second transition

Ekman Rayleigh Nusselt

∞ 3 · 105 6.5
1 · 10−3 1.6 · 106 10.2

2 · 10−4 3 · 106 10.3

The uncertainty on the precise value of some numbers has been indicated in blue. This is
because pinpointing the transition exactly would have required many more simulations,
which was not the main purpose of this thesis.
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In the pictures have been plotted the asympthotical behaviour of the scaling laws. In
correspondence of the regime’s transition it can be observed a sharp variation of slope.
Intuitively, the real scaling law do not present those corners, but have a smooth transition
between the two regimes. This have been manually plotted in Figure 17 to give an exam-
ple. All the other plots have to be interpreted consequently.It can be seen how the spread
along Rayleigh axis is higher in the case of infinite Ekman number (zero rotation, see
Figure 10 ).In this case it is vaguely identified the second transition, because the scaling
coefficient of the first and second regimes are quite similar. Instead, for higher angular
velocities, the two regimes are more sharpely identified.

Rotational effects: the first transition which corresponds to the onset of convective mo-
tion, for infinite Ek happens in the order of Ra = 1 ·103 . Instead, for the other two values
of Ek , it can be seen already from the plots ( see Figures 10, 11, 12 ) that the transition’s
Ra increases. Hence the values of Ek and Ra at the transition point are found to follow an
inverse non-linear proportionality. Their precise relation has not been examinated because
three cases, each for one Ek value, are not enough to get a relation from a regression. In
the same plots it can be seen that the slope of the first ramp is increasing too, whereas the
second ramp slope (after the second transition) seem to be less affected from Ek variations
than the first ramp slope. The increase of the first ramp imply also that the second transi-
tion’s Ra is less influenced from Ek variation, since its shift to the right is smoothed from
the first ramp slope increase.
The rotation is found to be a factor of inhibition of convection onset.

4.2 Plots

Ra-Nu|v

Ek Pr Regime Slope

Infinity 100 Ramp1 0.3409

Infinity 100 Ramp2 0.2673

Infinity 300 Ramp1 0.3399

Infinity 300 Ramp2 0.2723

Infinity SS Ramp1 0.3498

Infinity SS Ramp2 0.2735

1E-03 100 Ramp1 0.5721

1E-03 100 Ramp2 0.2527

1E-03 300 Ramp1 0.5753

1E-03 300 Ramp2 0.2679
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1E-03 SS Ramp1 0.5723

1E-03 SS Ramp2 0.2503

2E-04 100 Ramp1 0.6784

2E-04 100 Ramp2 0.2731

2E-04 300 Ramp1 0.6790

2E-04 300 Ramp2 0.2841

2E-04 SS Ramp1 0.6706

2E-04 SS Ramp2 0.2696

103 104 105 106 107 108 109

Ra

100

101

Nu
|v

Plot Nusselt|v-Rayleigh ; Ekman = 
Nu  Ra0.267

Nu  Ra0.341

Nu  Ra0.272

Nu  Ra0.340

Nu  Ra0.273

Nu  Ra0.350

Pr = 100
Pr = 300
Pr = SS

Figure 10. Plot of the relation between parameters Rayleigh-Nusselt|Vol; Ek = ∞
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Ra
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Plot Nusselt|v-Rayleigh ; Ekman = 1.0E-03
Nu  Ra0.253

Nu  Ra0.572

Nu  Ra0.268

Nu  Ra0.575

Nu  Ra0.250

Nu  Ra0.572

Pr = 100
Pr = 300
Pr = SS

Figure 11. Plot of the relation between parameters Rayleigh-Nusselt|Vol ; Ek = 1 · 10−3
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Ra
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Nu
|v

Plot Nusselt|v-Rayleigh ; Ekman = 2.0E-04
Nu  Ra0.273

Nu  Ra0.678

Nu  Ra0.284

Nu  Ra0.679

Nu  Ra0.270

Nu  Ra0.671

Pr = 100
Pr = 300
Pr = SS

Figure 12. Plot of the relation between parameters Rayleigh-Nusselt|Vol ; Ek = 2 · 10−4
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Ra-Nu|w

Ek Pr Regime Slope

Infinity 100 Ramp1 0.3383

Infinity 100 Ramp2 0.2656

Infinity 300 Ramp1 0.3407

Infinity 300 Ramp2 0.2677

Infinity SS Ramp1 0.3484

Infinity SS Ramp2 0.2726

1E-03 100 Ramp1 0.5715

1E-03 100 Ramp2 0.2619

1E-03 300 Ramp1 0.5727

1E-03 300 Ramp2 0.2614

1E-03 SS Ramp1 0.5704

1E-03 SS Ramp2 0.2587

2E-04 100 Ramp1 0.6726

2E-04 100 Ramp2 0.2688

2E-04 300 Ramp1 0.6765

2E-04 300 Ramp2 0.2777

2E-04 SS Ramp1 0.6767

2E-04 SS Ramp2 0.2643
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Plot Nusselt|w-Rayleigh ; Ekman = 
Nu  Ra0.266

Nu  Ra0.338

Nu  Ra0.268

Nu  Ra0.341

Nu  Ra0.273

Nu  Ra0.348

Pr = 100
Pr = 300
Pr = SS

Figure 13. Plot of the relation between parameters Rayleigh-Nusselt|Wall ; Ek = ∞
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Plot Nusselt|w-Rayleigh ; Ekman = 1.0E-03
Nu  Ra0.262

Nu  Ra0.572

Nu  Ra0.261

Nu  Ra0.573

Nu  Ra0.259

Nu  Ra0.570

Pr = 100
Pr = 300
Pr = SS

Figure 14. Plot of the relation between parameters Rayleigh-Nusselt|Wall ; Ek = 1 ·10−3
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Plot Nusselt|w-Rayleigh ; Ekman = 2.0E-04
Nu  Ra0.269

Nu  Ra0.673

Nu  Ra0.278

Nu  Ra0.676

Nu  Ra0.264

Nu  Ra0.677

Pr = 100
Pr = 300
Pr = SS

Figure 15. Plot of the relation between parameters Rayleigh-Nusselt|Wall ; Ek = 2 ·10−4

Kinetic_energy

Ra-Ekin

Ek Pr Regime Slope

Infinity 100 Ramp1 1.4675

Infinity 100 Ramp2 0.7455

Infinity 300 Ramp1 1.4668

Infinity 300 Ramp2 0.7317

Infinity SS Ramp1 1.4632

Infinity SS Ramp2 0.7331

1E-03 100 Ramp1 1.9439

1E-03 100 Ramp2 0.7822

1E-03 300 Ramp1 1.9459

1E-03 300 Ramp2 0.7417

1E-03 SS Ramp1 1.9440

1E-03 SS Ramp2 0.7897

2E-04 100 Ramp1 2.0004

2E-04 100 Ramp2 0.7833

2E-04 300 Ramp1 1.9652
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2E-04 300 Ramp2 0.9341

2E-04 SS Ramp1 1.9998

2E-04 SS Ramp2 0.8471
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103
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in

Plot Ekin-Rayleigh ; Ekman = 

Nu  Ra0.745

Nu  Ra1.467

Nu  Ra0.732

Nu  Ra1.467

Nu  Ra0.733

Nu  Ra1.463

Pr = 100
Pr = 300
Pr = SS

Figure 16. Plot of the relation between parameters Rayleigh-kinetic energy; Ek = ∞
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Plot Ekin-Rayleigh ; Ekman = 1.0E-03

Nu Ra0.782

Nu Ra1.944

Nu Ra0.742

Nu Ra1.946

Nu Ra0.790

Nu Ra1.944

Pr = 100

Pr = 300

Pr = SS

Figure 17. Plot of the relation between parameters Rayleigh-kinetic energy ; Ek = 1·10−3
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Plot Ekin-Rayleigh ; Ekman = 2.0E-04

Nu  Ra0.783

Nu  Ra2.000

Nu  Ra0.934

Nu  Ra1.965

Nu  Ra0.847

Nu  Ra2.000

Pr = 100
Pr = 300
Pr = SS

Figure 18. Plot of the relation between parameters Rayleigh-kinetic energy ; Ek = 2·10−4
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4.3 Conclusions

It has been confirmed that at high Prandtl number, Nusselt and Reynolds numbers are
independent of Prandtl number. This can be seen graphically from the superposition of
the three curves in each plot. So we can write:

Pr → ∞ ⇒ Nu (Ra ,Pr ) = Nu (Ra ) (4.1)

This result is in line with the progressive reduction of the scaling exponent of Pr while
increasing Pr , as shown in [Grossmann and Lohse, 2001].

In order to keep Pr constant and increase progressively Ra , we had to compute for each
simulation the thermal and linear momentum diffusivities. From the Equations 3.2 is
possible to deduce that the two diffusivities were decreasing linearly by the same ratio, in
order to keep constant their ratio Pr and increase Ra by a quadratic function:

Ra =
1

Prα2

The scaling laws have been found for different rotative regimes, so we can start comparing
the zero rotation regime (Ek = ∞) with the value exposed from Grossman and Lohse
and then compare the non rotating case with Ek = 1 · 10−3 and Ek = 2 · 10−4 cases. In
[Grossmann and Lohse, 2000] is highlighted how a scaling law as a sum

Nu = α1Ra 1/4 + α2Ra 1/3

mimics the single scaling coefficient 2
7
= 0.289.

There are few data for large Prandtl number [Grossmann and Lohse, 2001], hence are re-
ported the results for Pr < 93 from Ashkenazi and Steinberg [Ashkenazi and Steinberg, 1999]
where the scaling coefficient is found to be Nu ≈ Ra 0.30±0.03.
In the same way, the found scaling law for Pr = 100 based on two coefficients

Nu = α1Ra 0.340 + α2Ra 0.267

can mimic the result from Ashkenazi and Steinberg. This would correspond in using a
single regression for the points in Figure 10.
Moreover, by comparing the Rayleigh values of the first transition in different Ekman
number cases, we can deduce that rotation is causing somehow an inhibition of convective
motion, thus keeping Nusselt number unitary for higher Rayleigh numbers.
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Appendices

Appendix 1 - Pictures and plot

Ra-Pe

Ek Pr Regime Slope

Infinity 100 Ramp1 0.7337

Infinity 100 Ramp2 0.3727

Infinity 300 Ramp1 0.7334

Infinity 300 Ramp2 0.3659

Infinity SS Ramp1 0.7316

Infinity SS Ramp2 0.3666

1E-03 100 Ramp1 0.9719

1E-03 100 Ramp2 0.3911

1E-03 300 Ramp1 0.9730

1E-03 300 Ramp2 0.3709

1E-03 SS Ramp1 0.9720

1E-03 SS Ramp2 0.3949

2E-04 100 Ramp1 1.0002

2E-04 100 Ramp2 0.3916

2E-04 300 Ramp1 0.9826

2E-04 300 Ramp2 0.4671

2E-04 SS Ramp1 0.9999

2E-04 SS Ramp2 0.4236
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Plot Peclet-Rayleigh ; Ekman = 

Nu  Ra0.373

Nu  Ra0.734

Nu  Ra0.366

Nu  Ra0.733

Nu  Ra0.367

Nu  Ra0.732

Pr = 100
Pr = 300
Pr = SS

Figure 19. Plot of the relation between parameters Rayleigh-Peclet ; Ek = ∞
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Plot Peclet-Rayleigh ; Ekman = 1.0E-03

Nu  Ra0.391

Nu  Ra0.972

Nu  Ra0.371

Nu  Ra0.973

Nu  Ra0.395

Nu  Ra0.972

Pr = 100
Pr = 300
Pr = SS

Figure 20. Plot of the relation between parameters Rayleigh-Peclet ; Ek = 1 · 10−3
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Plot Peclet-Rayleigh ; Ekman = 2.0E-04
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Nu  Ra1.000
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Nu  Ra0.424

Nu  Ra1.000

Pr = 100
Pr = 300
Pr = SS

Figure 21. Plot of the relation between parameters Rayleigh-Peclet ; Ek = 2 · 10−4

Appendix 2 - Subroutines

c-----------------------------------------------------------------------

subroutine userchk

include ’SIZE’

include ’TOTAL’

real var1(nx1*ny1*nz1*nelv)

real DTDX(lx1,ly1,lz1,lelt,ldimt)

real DTDY(lx1,ly1,lz1,lelt,ldimt)

real DTDZ(lx1,ly1,lz1,lelt,ldimt)

real DvxDx(lx1,ly1,lz1,lelt,ldimt)

real DvxDy(lx1,ly1,lz1,lelt,ldimt)

real DvxDz(lx1,ly1,lz1,lelt,ldimt)
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real DvyDx(lx1,ly1,lz1,lelt,ldimt)

real DvyDy(lx1,ly1,lz1,lelt,ldimt)

real DvyDz(lx1,ly1,lz1,lelt,ldimt)

real DvzDx(lx1,ly1,lz1,lelt,ldimt)

real DvzDy(lx1,ly1,lz1,lelt,ldimt)

real DvzDz(lx1,ly1,lz1,lelt,ldimt)

real intomegaxsq

real intomegaysq

real intomegazsq

real pol_var_x

real pol_var_y

real pol_var_z

integer i

integer e,f

real s_bar

!output for Step 0 to 100 and then every 100 Steps:

nio = -1

if (istep.le.100.or.mod(istep,100).eq.99) nio=nid

nv = nx1*ny1*nz1*nelv

nt = nx1*ny1*nz1*nelt

nxyz=lx1*ly1*lz1

if (mod(istep,100).eq.0) then

tmax = glmax(t ,nt)

umax = glmax(vx,nt)

if (nid.eq.0) write(6,1) istep,time,umax,tmax
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1 format(i10,1p3e12.5,’ time,umax,tmax’)

endif

c global scalar

c real function glsc3(a,b,mult,n) source

c Input: integer n, real array a of size n, real array b of size n, real array mult of size n

c Returns the sum of a(i)*b(i)*mult(i), i=1..n among all processes

c /mass/ real array bm1 of size (lx1,ly1,lz1,lelt)

c Value of the mass of the cell (rho=1)

var_mass = 1

c cubic cell = 1

c Compute total kinetic energy

if(mod(istep,100).eq.0)then

xke = glsc3(vx, vx, bm1, nv)

yke = glsc3(vy, vy, bm1, nv)

zke = glsc3(vz, vz, bm1, nv)

total_ke = 0.5*(xke + yke + zke)/(param(8)**2*var_mass)

if(istep.ge.1000000.and.nid.eq.0) write(6,11) "Step ", istep

if(nid.eq.0) write(6,2) istep, time, total_ke

2 format(i10,1p2e14.6,’ Ekin’)

11 format(a10,i10)

endif

c Compute Poloidal and Toroidal (helmoltz decomposition)

if(mod(istep,100).eq.0)then

call gradm1(DvxDx,DvxDy,DvxDz,vx)

call gradm1(DvyDx,DvyDy,DvyDz,vy)

call gradm1(DvzDx,DvzDy,DvzDz,vz)

intomegaxsq= glsc3( DvzDy-DvyDz , DvzDy-DvyDz , bm1,nv)

intomegaysq= glsc3( DvxDz-DvzDx , DvxDz-DvzDx , bm1,nv)

intomegazsq= glsc3( DvyDx-DvxDy , DvyDx-DvxDy , bm1,nv)

pol_var_x=intomegaxsq/(intomegazsq+intomegaysq)

pol_var_y=intomegaysq/(intomegaxsq+intomegazsq)
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pol_var_z=intomegazsq/(intomegaxsq+intomegaysq)

endif

c Compute Nusselt number Volume averaged with different cellsizes

c param(8) is conductivity

if(mod(istep,100).eq.0)then

vol_nu1 = glsc3(vy,t,bm1,nv)

vol_nu = 1.0+1.0/param(8)*vol_nu1/var_mass

if(nid.eq.0) write(6,33) istep, time, vol_nu

33 format(i10,1p2e14.6,’ Nusselt’)

endif

c Nusselt number gradient at bottom wall:

if(mod(istep,100).eq.0)then

call gradm1(DTDX,DTDY,DTDZ,T)

call surf_avg(s_bar,a_surf, DTDY,2,’t ’)

!Nus_wall is negative > abs

if(nid.eq.0) write(6,36) istep, time, abs(s_bar)

36 format(i10,1p2e14.6,’ Nuswall’)

endif

c Compute Peclet Number

if(mod(istep,100).eq.0)then

v1 = glsc3(vx,vx, bm1, nv)

v2 = glsc3(vy,vy, bm1, nv)

v3 = glsc3(vz,vz, bm1, nv)

v4 = (v1+v2+v3)/var_mass

!v4 = fmdian(v3, nv, .TRUE.)

peclet = (v4)**0.5/param(8)

if(nid.eq.0) write(6,5) istep, time, peclet

5 format(i10,1p2e14.6,’ Peclet’)
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subroutine useric (ix,iy,iz,ieg)

C Set initial conditions

include ’SIZE’

include ’TOTAL’

include ’NEKUSE’

ux = RAND(I)*1e-5

uy = RAND(I)*1e-5

uz = RAND(I)*1e-5

temp = 1.0 - y

if(y==0) temp=1.0

if(y==1) temp=0.0

return

end

Appendix 3 - Miscellaneous

The semi-implicit Euler method produces an approximate discrete solution by
iterating the following by-step algorithm:{

vn+1 = vn + g(tn, xn)∆t

xn+1 = xn + f(tn, vn+1)∆t
(2)

Where ∆t is the time step. The difference with the standard Euler method is that the
semi-implicit use the value vn+1 to compute xn+1, while the standard Euler method uses
vn to compute xn+1. Those are both first-order integrators, meaning that the global error

is of the order of ∆t.
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MPI [MPI, 1994] is a communication protocol that addresses primarily the
message-passing parallel programming model, in which data is moved from the address
space of one process to that of another process through cooperative operations on each
process. Extensions to the “classical” message-passing model are provided in collective
operations, remote-memory access operations, dynamic process creation, and parallel
I/O. The MPI standard include the syntax and semantics of libraries that are useful for

message-passing in programs as C and Fortran. This made the open- source MPI
implementations very popular in software industry.

Curl

Definition of curl (rotor): [Tritton, 2012]

n̂ · ∇× u = lim
S→0

1

S

∮
u · dl

For a 3D vector field F =
(
Fx, Fy, Fz

)
we get:

∇× F =

∣∣∣∣∣∣∣
ı̂ ȷ̂ k̂
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣∣ = ı̂
(∂Fz

∂y
− ∂Fy

∂z

)
+ ȷ̂

(∂Fx

∂z
− ∂Fz

∂x

)
+ k̂

(∂Fy

∂x
− ∂Fx

∂y

)
(3)

Adimensionalisation

of the equation begins by defining the dimensionless counterparts of all the variables
involved. We express the adimensionalisation for a generic variable φ, with subscripts

r-reference and s-scale.

φ̃ =
φ− φr

φs

For example: x̃ =
x− xr
xs

The variables to be made dimensionless will be then the components of the vectors
position (u, v, w) and velocity (x, y, z), the time t and the pressure p . We can now apply

some hypotheses:

■ The reference value φr of each variable at zero
■ The scaling factor is common among variables with the same dimension: the three

components of the position vector (x, y, z) are scaled by the same coefficient Ls .
In the same fashion, also the velocity vector components (u, v, w) share the scaling
factor us .
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This leads to the following identities:

(x, y, z) = Ls(x̃, ỹ, z̃)

(u, v, w) = us(ũ, ṽ, w̃)

p = ps p̃

t = ts t̃

Also, we use the property that allow to adimensionalise also derivatives by the ratio of
the involved scales, with denominator at the power of the derivation order:

dnφ

dψn
=
φs

ψn
s

dnφ̃

dψ̃n

for example, for a velocity component we have:

dnx

dtn
=
Ls

tns

dnx̃

dt̃n

The same property holds for partial derivatives. Hence we can apply it in the NS
equation:

ρ
(us
ts

∂ũ

∂t̃
+ (usũ · 1

Ls

∇̃)usũ
)
= − ps

Ls

∇̃p̃+ µ
us
L2
s

∇̃2ũ+ ρg

We can divide by the factor µus

L2
s

to get:

ρL2
s

µts

∂ũ

∂t̃
+
ρusLs

µ︸ ︷︷ ︸
=Re

(
ũ · ∇̃

)
ũ = −ρsLs

µus
∇̃p̃+ ρgL2

s

µus
+ ∇̃2ũ (4)

We can see how dimensionless numbers as Reynolds comes from making the NS
equation dimensionless. Additionaly, we can set the time scale ts to be the ratio of the

length scale to the velocity scale

ts =
Ls

us

and divide both sides of Equation 4 by Re number. This leads to:
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∂ũ

∂t̃
+
(
ũ · ∇̃

)
ũ = − ps

ρu2s︸︷︷︸
=Eu

∇̃p̃+ Ls

u2s︸︷︷︸
= 1

Fr2

g +
µ

ρusLs

∇̃2ũ

So we can write:

∂ũ

∂t̃
+
(
ũ · ∇̃

)
ũ = −Eu ∇̃p̃+ 1

Fr2
g̃ +

1

Re
∇̃2ũ

where g̃ is the volume forces versor.
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