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Abstract  

Mobile devices are dominant evidence sources in digital forensic cases due to their 

portability and personal sensitivity. Google Maps is a location-based application pre-

loaded on most Android devices and widely used by iOS device owners. After enabling 

location history, this application stores location data and presents a logical timeline of 

visits and routes. How can we assure that the presented timeline is actually true? With 

this preliminary study, we analyzed the accuracy of the data collected and presented in 

the application. We conducted controlled physical experiments with several devices, 

adjusted navigation sensors, and walked the same route to determine the accuracy of 

collected raw location data. We also visited 20 different locations to observe the precision 

of identifying visited places in the timeline. The research aims to support the forensic 

investigators with the best practice timeline acquisition protocol. The proposed data 

acquisition protocol captures and considers the accuracy and limitations of each 

acquisition layer as observed in the experiments.  

Keywords: location-based applications, Google Maps timeline, mobile device forensics, 

digital evidence, location, admissibility. 

The thesis is in English language and contains 98 pages of text, 6 chapters, 38 figures, 

and 28 tables.  
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Annotatsioon 

Mobiilseadmed on digitaalsetes kohtuekspertiisi juhtumites tänu kaasaskantavusele ja 

tundlikele isikuandmetele olulised tõendite allikad. Google Maps on asukohapõhine 

rakendus, mis on eellaaditud enamikesse Androidi operatsioonisüsteemiga seadmetesse 

ja mida kasutavad paljud iOS-operatsioonisüsteemiga seadmete omanikud. Pärast 

asukoha kronoloogilise loendi lubamist salvestab rakendus asukohaandmed ja esitab 

külastuste ja marsruutide loogilise ajatelje. Kuidas saame tagada, et esitatud ajatelg on 

tegelikult tõene? Käesolevas eeluuringus analüüsisime rakenduses kogutud ja esitatud 

andmete täpsust. Viisime ellu mitme seadmega kontrollitud füüsilised katsed, 

reguleerisime navigatsiooniandureid ja läbisime sama marsruudi, et määrata asukoha 

kohta kogutud algandmete õigsust. Samuti külastasime 20 erinevat kohta, et jälgida 

ajateljel külastatud paikade tuvastamise täpsust. Uuringu eesmärk on toetada 

kohtuekspertiisi uurijaid parimate tavade kohase ajatelje omandamise protokolliga. 

Väljapakutud andmete omandamise protokoll hõlmab ja arvestab iga omandatud 

andmekihi täpsust ja piiranguid, nagu katsetes on täheldatud.  

Märksõnad: asukohapõhised rakendused, Google Mapsi ajatelg, mobiilseadmete 

kohtuekspertiis, digitaalsed tõendid, asukoht, vastuvõetavus. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 98 leheküljel, 6 peatükki, 38 

joonist, 28 tabelit. 

 

 



6 

Acknowledgments 

I want to thank Professor Dr. Matthew James Sorell for supporting me throughout the 

writing process. Thank you for giving me the idea about the topic. From just an idea, we 

managed to conduct structured experiments and gather insight about an application that 

follows every step of our lives. I hope that our paths will cross in the future, and we may 

research something even more enjoyable. I wish you all the best!  

Thank you, Aigars, for being with me from the very beginning. We grow together.  

I want to dedicate this research to the women of my family. To my mother Erika, and 

grandmother Zenta. I am part of you. I would have never done this without cherishing 

where I come from. 

 



7 

List of abbreviations and terms 

iOS iPhone Operating System 

LBS Location Based Systems 

RSS Received Signal Strength 

RTOF Received Time of Flight 

RSSI Received Signal Strength Indicator 

TDOA Time Difference of Arrival 

TOA Time of Arrival 

AOA Angle of Arrival 

KML Keyhole Markup Language 

JSON JavaScript Object Notation 

GPS Global Positioning System 

GIS Geographic Information System 

GSM Global System of Mobile Communication 

GNSS Global Navigation Satellite System 

PPS Precise Positioning System 

SPS Standard Positioning System 

WLAN Wireless Local Area Network 

 

 



8 

Table of contents 

Acknowledgments ............................................................................................................ 6 

List of abbreviations and terms ........................................................................................ 7 

Table of contents .............................................................................................................. 8 

List of figures ................................................................................................................. 10 

List of tables ................................................................................................................... 12 

1 Introduction ................................................................................................................. 13 

2 Literature review.......................................................................................................... 19 

2.1 Google Maps and reverse geocoding.................................................................... 19 

2.1.1 Semantically meaningful location mining ..................................................... 21 

2.2 Mobile cloud application forensics....................................................................... 23 

2.3 Mobile location data forensics .............................................................................. 26 

2.4 Forensically sound digital evidence ..................................................................... 27 

3 Research background ................................................................................................... 30 

3.1 Toolkit .................................................................................................................. 30 

3.2 Analysis of location data from Google Takeout ................................................... 33 

3.2.1 Raw data records ........................................................................................... 34 

3.2.2 Semantic location history .............................................................................. 35 

3.3 Navigation sensor accuracy experiment ............................................................... 40 

3.3.1 Experiment organization ............................................................................... 42 

3.4 Visit detection accuracy experiment ..................................................................... 45 

3.4.1 Experiment organization ............................................................................... 45 

3.5 Mobile device navigation techniques ................................................................... 47 

3.5.1 Global Navigation Satellite System ............................................................... 47 

3.5.2 WLAN based localization ............................................................................. 48 

3.5.3 Mobile cellular network localization ............................................................. 48 

3.6 Geographic Information Systems ......................................................................... 49 

3.6.1 Location-based services ................................................................................. 50 

3.6.2 Google Maps ................................................................................................. 51 

4 Results ......................................................................................................................... 53 



9 

 

4.1 Navigation sensor impact on data ......................................................................... 53 

4.1.1 Experiment results ......................................................................................... 53 

4.1.2 Summary ........................................................................................................ 64 

4.2 Place visit identification accuracy ........................................................................ 67 

5 Discussion .................................................................................................................... 75 

5.1 Manual data acquisition ........................................................................................ 76 

5.2 Logical data acquisition ........................................................................................ 82 

6 Conclusions and future research .................................................................................. 89 

References ...................................................................................................................... 91 

Appendix 1 Visited location detailed data matrix .......................................................... 96 

Appendix 2 Google Maps permissions on a mobile device ........................................... 97 

Appendix 3 iPhone Backup extractor and ADB process ................................................ 98 

 

  

 



10 

List of figures 

Figure 1. Location data types and examples................................................................... 19 

Figure 2. Improved location accuracy service. ............................................................... 31 

Figure 3. Precise location on iPhone device. .................................................................. 32 

Figure 4. Wi-Fi and Bluetooth scanning on Android device. ......................................... 32 

Figure 5. Google account settings. ................................................................................. 33 

Figure 6. Number of records by source. ......................................................................... 34 

Figure 7. Number of records by the accuracy. ............................................................... 35 

Figure 8. A visit with respective raw data points. .......................................................... 36 

Figure 9. Haversine distance between the current and previous raw data point. ........... 37 

Figure 10. Average visit and location confidence by the place confidence interval. ..... 37 

Figure 11. Visit duration (min) by place confidence. ..................................................... 38 

Figure 12. Visit and raw data points. .............................................................................. 39 

Figure 13. Accuracy and haversine distance of visits. ................................................... 40 

Figure 14. Route of navigation sensor impact experiment in Riga, Latvia. ................... 42 

Figure 15. GPS Logger Lite. .......................................................................................... 44 

Figure 16. Architecture of Google Maps [32]. ............................................................... 52 

Figure 17. Experiment 1: Raw data point analysis. ........................................................ 53 

Figure 18. Experiment 1: Validation and test location data on a map............................ 54 

Figure 19. Experiment 2: Raw data point analysis. ........................................................ 55 

Figure 20. Experiment 2.2: Raw data point analysis. ..................................................... 57 

Figure 21. Experiment 2.2: Validation and test location data on a map......................... 58 

Figure 22. Experiment 3: Raw data point analysis. ........................................................ 59 

Figure 23. Experiment 3: Validation and test location data on a map............................ 60 

Figure 24. Experiment 4: Raw data point analysis. ........................................................ 61 

Figure 25. Experiment 4.2: Raw data point analysis. ..................................................... 63 

Figure 26. Sample interval summary. ............................................................................. 64 

Figure 27. Raw location data point overview. ................................................................ 65 

Figure 28. Experiment result overview on the device configuration level. .................... 67 



11 

 

Figure 29. Visited places on a map, Balvi. ..................................................................... 68 

Figure 30. Visit success rate (%) by type, Balvi. ........................................................... 68 

Figure 31. Identified visits by devices, Balvi. ................................................................ 70 

Figure 32. Visited places on a map, Riga. ...................................................................... 71 

Figure 33. Visit success rate (%) by type, Riga. ............................................................ 71 

Figure 34. Identified visits by devices, Riga. ................................................................. 72 

Figure 35. Visit success rate by the type of location and device. ................................... 74 

Figure 36. Data acquisition methods and respective data types. .................................... 75 

Figure 37. Logical data acquisition process flow. .......................................................... 83 

 



12 

List of tables 

Table 1. Logical and semantic location in Google Maps timeline. ................................ 20 

Table 2. Technical documentation of mobile devices. ................................................... 30 

Table 3. Ground truth raw coordinate data extraction device. ....................................... 30 

Table 4. Allowed permissions on the tested devices. ..................................................... 31 

Table 5. Location accuracy by the source. ..................................................................... 35 

Table 6. Minimum duration visit examples. ................................................................... 38 

Table 7. Tested device navigation configuration............................................................ 43 

Table 8. Coordinate drift experiment setup matrix......................................................... 44 

Table 9. Visited locations in Balvi, Latvia. .................................................................... 45 

Table 10. Visited locations in Riga, Latvia. ................................................................... 46 

Table 11. Google Maps available map types and map details........................................ 50 

Table 12. Experiment 1 device configuration. ............................................................... 53 

Table 13. Experiment 1: Google Maps timeline............................................................. 54 

Table 14. Experiment 2 device configuration. ............................................................... 55 

Table 15. Experiment 2: Google Maps timeline............................................................. 56 

Table 16. Experiment 2.2: Google Maps timeline.......................................................... 57 

Table 17. Experiment 3 device configuration. ............................................................... 59 

Table 18. Experiment 3: Google Maps timeline............................................................. 60 

Table 19. Experiment 4 device configuration. ............................................................... 61 

Table 20. Experiment 4: Google Maps timeline............................................................. 62 

Table 21. Experiment 4.2: Google Maps timeline.......................................................... 63 

Table 22. Experiment result overview on the location source level. .............................. 66 

Table 23. Raw data points in visits 2;7, Balvi. ............................................................... 69 

Table 24. Raw data points in visits 4;8;9, Riga. ............................................................. 73 

Table 25. Proposed data interrogation process for exploration of a screen capture. ...... 77 

Table 26. Proposed data interrogation process for direct interaction with the timeline. 79 

Table 27. Acquiring geographic annotation data from the timeline. .............................. 83 

Table 28. Exporting raw location history from the Google Maps application. .............. 86 

 



13 

1 Introduction 

Motivation 

Mobile devices are dominant evidence sources in digital forensics due to their portability 

and personal sensitivity. Google Maps is a location-based application pre-loaded on most 

Android devices and widely used by iOS device owners. Google Maps application is the 

leading mapping application [1]. After enabling location history, this application stores 

location data and presents a logical timeline of visits and routes. Since individuals tend to 

carry their mobile devices with them most of the time, the location data collected and 

stored by the Google Maps application is valuable for forensics investigators. However, 

for data to be valid in court as digital evidence, it must hold a particular criterion of 

forensic soundness. How can we assure that the presented timeline in the Google Maps is 

actually true? A 2017 article in the “Times Union” newspaper states that google location 

evidence in a criminal trial retrieved from the defendant's mobile phone was not suitable 

for prosecution, with the following statement: “failed to meet their burden of 

demonstrating that the science underlying Google location services has gained general 

acceptance in the relevant scientific community” [2]. We can see the importance of the 

data collected and stored in these location-based applications, however, without scientific 

and peer-reviewed research, this data can be of no value in the court. The primary 

motivation of the research is to present an insight into the data accuracy collected by the 

Google Maps application to the forensic community.  

We were inspired by the research done at the Netherlands Forensic Institute [3], which 

evaluated the accuracy of the Google Maps timeline data. Our objective is to reproduce 

similar experiments of manipulating navigations sensors on the mobile device and extend 

the scope by including additional research questions.  

Novelty 

Several methods have been used to test the Google Maps timeline and navigation 

accuracy [4], [5]. Explicit research has been done by A. Macarulla Rodriguez, C. Tiberius, 
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R. van Bree, and Z. Geradts [3] at the Netherlands Forensic Institute on the timeline 

accuracy assessment in terms of navigation settings on the phone. Similarly, we will also 

analyze Google Maps timeline accuracy based on mobile device navigation sensors. We 

will extend this research by analyzing visit detection accuracy from the raw data.  

The research gap addressed is limited academic literature about the forensically verified 

data extraction processes from location-based mapping applications. Majority of 

published mobile device forensics studies focus on location data stored locally on the 

device [6, pp. 77–78], [7], [8], [9] and less on the location data stored in the cloud 

accounts. Our study focuses on the data acquisition that is stored in the cloud Google 

account. We further extend academic research on mobile device cloud application 

acquisition by explicitly proposing a data acquisition process from the Google Maps 

timeline. 

Research Questions 

We aim to answer two research questions to support our proposed the data acquisition 

process:  

I. How often and accurately are raw data points collected by the Google Maps 

application with different mobile device navigation sensors enabled? 

II. What location types are more likely to be detected and presented as visits in the 

Google Maps timeline? 

Research goal 

We conduct controlled physical experiments to understand the navigation sensor impact 

on the Google Maps timeline accuracy as well analyze what locations are more likely to 

be detected by the mobile application. Based on this insight, we will also recommend a 

data acquisition process from the Google Maps timeline application on a mobile device. 

Each acquisition layer will capture and consider data interrogation, use cases, accuracy, 

and limitations. The proposed process will support academia and digital forensics 

investigators to quantify and qualify the Google Maps timeline data when presented as 

evidence in court. Secondly, we will present the best practice timeline acquisition 

protocol under manual and logical acquisition techniques. The acquisition protocol will 

benefit forensic investigators in conducting digital investigations.  This research can be 
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used as the first step to conduct more detailed analysis of other widespread location-based 

applications.  

Research Methods 

We will use empirical research methodology and observe the data and performance of the 

Google Maps application from different points of view. Based on the observed 

phenomena, we will develop a protocol for the best practice data acquisition. We will 

conduct Google Maps timeline data analysis and ad-hoc experimentation to refine the 

controlled physical experiments. Quantitative and qualitative timeline data analysis from 

two user accounts is necessary to understand the points of interest. Ad-hoc 

experimentation is required to understand the application performance and our ability to 

influence the outcome. The final set of controlled experiments will be conducted based 

on the observations from previous experiments and collected data. We will perform two 

different controlled physical experiments to test the accuracy of the Google Maps timeline 

in different settings. The empirical research methodology was selected because we will 

directly observe the performance of the Google Maps timeline that will shape our 

proposed final data acquisition protocol.  

Test data: raw and semantic location history exports from Google accounts on three 

mobile test devices. 

Validation data: First, validation data for navigation sensor impact experiments will be 

collected from the “GPS Logger Lite” application. The application will be run on 

Samsung Galaxy S21 mobile device, and it will be used as the ground truth data. The 

application collects the device's physical location for every second of the experiment. 

Second, validation data for visit detection accuracy experiments will be manually 

specified by recording the visited location during the experiment. Physical, address, and 

semantic location data will be collected. 

Raw data exports will be compared with “GPS Logger Lite” detected locations. We will 

calculate data capture interval, Google proposed accuracy and haversine distance from 

test to validation data. Semantic location history data will be compared with manually 

specified visited locations. The data analysis will be performed manually based on the 

following logic: if the most exact location is presented in the timeline, we apply 1; if a 

location is near the actual visited location, we apply 0.5; if the visit is not present, we 
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apply 0. The semantic location detection accuracy result is presented as a success rate in 

percentage.  

To validate the research outcome, three test devices are used in all experiments to 

compare and contrast the behaviors. Two devices have an Android operating system, and 

one device has iOS operating system. Average measures from all devices are calculated 

to present summarized results. All experiment organization steps will be outlined in 

Chapter 2 to maintain reproducibility.  

Scope 

Our research will analyze the validity of only one location-based application – Google 

Maps.  This application was chosen because it is the leading mapping application in the 

United States [1] and it is also extensively used in Europe. Because of the high 

penetration, our research will benefit most cases where smartphone location data needs 

to be retrieved from a mobile device. We will only focus on location data extracted from 

the application and not stored locally on a mobile device. To conduct the research, we 

will use iOS and Android mobile phones: Samsung Galaxy S21, Samsung Galaxy A7, 

Huawei P20 Light, and iPhone 7Plus. Both: manual and logical acquisition techniques 

are used in the proposed data acquisition protocol because solely logical acquisition 

techniques may be inadmissible in some cases.  

The controlled physical experiments will be performed in Latvia, Europe.   

Limitations 

There are several limitations that we outline for the research: 

I. We only use Google Maps timeline. Other mapping applications may provide 

different results.  

II. The research is conducted in specific regions and may not apply globally. 

III. Location accuracy depends on a device type. We use a small sample size of 3 test 

devices. Higher device variation with older and newer models may be needed to 

extend the research. 
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IV. Research [3] indicates that location accuracy is influenced by the means of 

transport, weather, and traffic. These variables are out of the scope of the current 

research. 

V. Google services updates are uncontrolled variables that may affect the research 

outcome.  

VI. We consider the Google Maps timeline in a passive mode and have not analyzed 

the timeline performance during a journey with enabled active navigation.  

Key assumptions 

Location spoofing: we assume that there is no deliberate location spoofing, such as GNSS 

signal hijacking or software intervention.  

Mobile phone device condition: we assume that all devices are fully operational and there 

are no defects which may affect the performance of the Google Maps application. 

GNSS and cellular network: we assume that there are no significant outages or other 

global events that affect the functionality of GNSS or cellular network signals. 

Location of the experiments: the location is selected randomly to reflect valid results. 

Google account integrity: accounts are assumed to be created only for experiment 

purposes, and their settings are the same.  

Time of the day: we assume that the time of the day does not affect the experiment results 

because the experiments are conducted at different time intervals.  

Ethical considerations 

Our research analyzes the personal location data of the author (Murniece) and supervisor 

(Sorell). The data is transformed and analyzed only in an aggregated form without any 

personal information disclosure and was used during the initial development phase of the 

research. Full informed consent of the respective data owners was received. We want to 

highlight that the Google Maps application is collecting sensitive data, and this data 

acquisition is limited to everyone except the owner of the Google account.  
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All concerns and faults in the Google Maps application that we may uncover during the 

experiments will be communicated with the application owner Google Inc.  

Thesis outline 

Chapter 1 introduces the research, including motivation, research questions, novelty, and 

research methods. This chapter presents the importance and the final goal of the research 

and informs about the key assumptions, limitations, and ethical considerations.  

Chapter 2 includes a literature review about Google maps, mobile cloud and location data 

forensics, and defining forensically sound evidence.  

Chapter 3 gives an insight into the research background. We explain the methodology of 

two controlled experiments, give insight into mobile device navigation techniques tested 

in the experiments, and explain geographic information systems. We also present a brief 

analysis and structure of the raw and semantic location history data retrieved from the 

Google Maps application.  

Chapter 4 presents the results of the performed experiments.  

Chapter 5 explains our proposed data acquisition protocol.  

Chapter 6 includes the final conclusions and suggested future research.  
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2 Literature review 

2.1 Google Maps and reverse geocoding 

Netherlands Forensic Institute [3] has reported extensive research on the Google Maps 

timeline accuracy assessment and error prediction. The research analyses how different 

external variables and mobile device configuration affect the Google Maps timeline data 

accuracy compared to a superior location retrieving device. The results show that GPS 

configuration holds the highest accuracy, following 3G, 2G, and the least accurate is when 

only Wi-Fi is enabled. Additionally, the research reports a linear regression model that 

predicts the accuracy level based on the actual location and environmental variables.  

A comparison of accuracy between Google Maps and OpenStreetMaps was presented by 

Cipeluch et al. [4]. The technique used was to compare points of interest in Ireland and 

overlay KML files from Google Maps and Bing Maps on OpenStreetMap. The accuracy 

of each application was evaluated based on completeness, the correctness of the map 

compared to superior knowledge, and spatial information value.  

Google Maps platform defines reverse geocoding as "the process of converting 

geographic coordinates into a human-readable address" [10]. Mapbox geocoding API 

states that forward geocoding converts location text to a geographic coordinate system, 

and reverse geocoding performs the opposite [11]. Figure 1 presents three location data 

types: physical location, logical location, and semantic location.   

Figure 1. Location data types and examples. 
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Physical location is the most precise location type, and it depicts location as latitude and 

longitude values. Increasing the decimal degrees of the values increases the precision. 

Logical and semantic locations are associated with addresses, buildings, and physical 

landmarks. Several physical data points can be linked with one logical or semantic 

location. As mentioned by F. Gülgen and B. Kiliç (2020) [5], geocoding services' 

significant problem is linking unique physical location points to addresses on the 

geospatial database. Not all logical locations have an associated semantic location. The 

Google Maps timeline primarily presents a visit as a semantic location; however, if it is 

unavailable, then the logical location of the visit is presented.  

Hightower and Borriello (2001) [12] splits the position of the device into two subgroups: 

physical position and symbolic location. The symbolic location is an abstract idea of the 

location, such as the mall, and the physical location is the object's actual position, such as 

latitude and longitude. The symbolic location information can be derived from the 

physical location data, thereby creating a high dependency on the resolution of the 

physical positioning system. They mention that the system that can provide physical 

location can also be augmented to provide symbolic location information and 

infrastructure. Two location types in Google Maps timeline are presented in Table 1.  

Table 1. Logical and semantic location in Google Maps timeline. 

Semantic location 

"National Library of Latvia" 

Logical location 

"Baznicas street 35, Riga, Latvia." 

  

  

Reverse geocoding is an integral part of location-based services. The Google Maps 

timeline accuracy relies on the accuracy of the used forward and reverse geocoding 

methods. There are various online geocoding service application programming interfaces 
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(API) available, for example, Google Maps, Nominatim, ArcGIS, Yahoo! Maps, Bing 

Maps, Geonames, and Area Mean [13]. [14] in 2011 presents the evaluation of the 

accuracy of Google Maps geocoding services in a large city of Belo Horizonte, Brazil, 

and it shows that Google Geocoding API found 99.9% of input addresses. Additionally, 

74.6% of all addresses were geocoded on an address level, and 73% of all returned 

locations were within 150 meters from the input position. Gülgen and Kiliç [5] in 2020 

compared the accuracy of Google Maps and Bing Maps geocoding services in Miami 

Beach and Fatih regions. The positional accuracy was measured as a straight line distance 

in the Euclidean space between the reference point and the point obtained through online 

geocoding in mapping applications. The results present that the mean of positional 

accuracy for Google Maps is 12.2 meters in Miami Beach and 8.3 meters in Fatih, for 

Bing Maps 12.9 and 13.9 respectively [5]. Eight different free online geocoding services 

were compared by O. Kounadi, T. J. Lampoltshammer, M. Leitner, and T. Heistracher in 

Vienna, Austria in 2013 [13]. The precision measurement was based on the percentage of 

the input and output locations that were the same or almost identical.  

Current consumer technology utilizing geocoding is rapidly changing, hence some 

academic research performed more than five years ago may not reflect the current state. 

Due to these technological advancements the accuracy of the geocoding capabilities may 

be improving.  

2.1.1 Semantically meaningful location mining 

Standard mobile devices are integrated with GNSS receivers and generate substantial raw 

geographic coordinate data streams. The raw data received by the device and applications 

do not hold any meaning for an average user. Relevant algorithms and interpretations 

must be applied to extract visited or essential locations from the raw data streams and 

present them to the used in the Google Maps application. Tobler's first law of geography, 

"everything is related to everything else, but near things are more related than distant 

things" [15], can be used as an assumption that individuals with similar location history 

patterns may hold other related behavioral patterns. [16] presents a hierarchical-graph-

based approach to calculate the similarity of the individual users based on their past 

location data. The research also implies that similarity can also present the correlation 

between geographical locations.  
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Various techniques for mining semantically meaningful locations to the user from raw 

data streams have been generally researched in [17]–[21]. The main goal of these papers 

is to find the most applicable techniques to retrieve the most precise semantic locations. 

A predictive model based on users' past movements in raw location data format was 

developed to present semantically meaningful locations to the user. The model learns 

from the past data and predicts the users' possible movements with a 48.4-meter distance 

to the center accuracy. The research was performed in 2003, and it states that "such 

predictive models might become an integral part of intelligent wearable agents" [18].  

X. Cao, G. Cong, and C. S. Jensen in [19] present methods on extracting significant 

semantically meaningful locations from vast amounts of raw location data. The indicators 

of significance used in the research are the number and the duration of the visits and the 

distance traveled. An essential aspect of extracting semantically meaningful data is the 

level of significance of each data point to the selected context, for example, a particular 

user group or period. The research presents these semantic locations as "Top-k hot 

semantic locations". Other factors proposed in the framework are different relationships 

and distances between the semantic locations. 

The research [21] presents three techniques of place discovery from raw location data: 

time-based clustering technique (a place is significant when the distance from the new 

location is above threshold and time spent in the new location is above the threshold), 

partition clustering (K-means clustering based on a prior selected number of clusters) and 

density-based clustering. The location importance in the research is based on four 

features: readings (time spent in a location), reading days (unique days when reading is 

present), visits (number of continuous sequences of visits), visit days (unique days when 

a visit is present). 

Research in the travel domain was done on mining locations based on GPS trajectories 

for travel recommendations. The proposed locations are based on the number of total 

visitors, each user's previous travel experiences, and the correlation between locations. 

The locations retrieved from the GPS data can help users understand their surroundings 

and plan their travel routes [17]. 

A concept of a "personal" map was introduced that depicts a personalized and customized 

individual map [20]. A personal map can include but is not limited to individually 



23 

significant places and routes, shopping centers, workplaces, and paths. The research 

analyses GPS data and answer three questions; discriminating user's activities, predicting 

future movements and places, and inferring when users have broken their regular route. 

An approach for significant place extraction from raw GPS data used in the research is 

solely based on the individual's time spent at a particular location. Based on a set 

threshold, the significant places are filtered however, if the threshold of time spent is too 

high, then some significant places may be filtered out because they are visited often, but 

for short periods [20]. 

2.2 Mobile cloud application forensics  

Mobile cloud computing utilizes the benefits of cloud computing, such as unlimited data 

storage and processing power, on mobile device applications. Google Maps application 

stores the majority of the data sources on cloud servers, with some data points stored on 

the device locally, including caches, application data, cookie preferences, and offline 

downloaded maps. All other data is stored in on-demand servers accessible to users 

through a Google account. This section reviews previous research done on mobile cloud 

application forensics practices and challenges. 

The book “Digital Forensics: Threatscape and Best Practices” [6, Ch. 5]  explicitly 

presents mobile device application forensic challenges and threats. Mobile phone 

applications are mainly installed by the user based on a specific need to utilize the app, 

excluding cases when the apps are included in the original installations, such as Google 

Maps for Android devices. It is of the highest importance for the mobile phone forensic 

investigator to gain knowledge of how and what data to extract from these different 

applications. All evidence discovered in the digital forensic process possesses unique 

characteristics and must be observed individually. 

B. Martini, Q. Do and K.-K. Raymond Choo in [22] have analyzed seven Android cloud-

based applications. The methodology used in the research was creating a copy of a 

physical image of the device and manually reviewing the files in the private app directory 

and on the mobile device's internal storage. The files that the authors believe hold a 

forensic interest linked with each application were outlined in the research.  
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N. Al-Mutawa, I. Baggili, and A. Marrington in [23] have presented a mobile forensic 

analysis of three social networking applications – Facebook, Twitter, and MySpace. The 

methodology used in the research consists of installing and executing various tasks on the 

smartphone applications and then acquiring a logical image of the device and performing 

manual forensic analysis. The outcome presents if the mobile device's internal memory 

stores certain activities from the applications. Depending on the device and operating 

system, data retrieved varies in provided value.  

P. Sharma, D. Arora, and T. Sakthivel in [24] have developed and tested a forensic 

examination scenario of a cloud-based social networking application WeChat. Through 

five steps WeChat application was examined on both: the Android device and by tracing 

cloud artifacts. The forensic investigator extracted relevant log files from the traced cloud 

data and linked them with the data collected locally from the Android device. Both 

combined data sources improve the investigation accuracy. The overall suggestion is to 

include mobile cloud traceability in the mobile cloud forensic framework.  

Similarly, H. Zhang, L. Chen, and Q. Liu in [25] have performed a complete mobile 

forensics analysis on four instant messaging applications on android devices. The devices 

are rooted, and the data stored locally on the device associated with the applications are 

manually analyzed and presented in the report.  

Third-party application forensics on an iOS device was performed by A. Levinson, B. 

Stackpole, and D. Johnson in [26]. A forensic image of the mobile device was acquired, 

and data from third-party applications was manually analyzed to solve the designed 

situation.  Various data points were discovered locally on the mobile device user data 

partition, including credentials, time-stamps, and geolocation data. 

We observe that most research done in the mobile device cloud application forensics 

domain extracts the traces of data from the cloud-based applications stored on the mobile 

device's local memory. However, a vital aspect is recognizing that only a small part of 

the data is stored locally on the device, and the other parts are stored on the remote cloud 

storage accounts.  

N. Samet, A. Ben Letaïfa, M. Hamdi, and S. Tabbane in [27] mention that mobile cloud 

computing solutions complicate the mobile forensic process because two different 

environments need to be considered separately: mobile device and cloud server. As 
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mentioned in their report, cloud environment forensics faces challenges connected with 

cloud virtualized architecture, lack of cloud-based forensics tools, and chain of custody 

preservation. They outline a significant issue of maintaining a chain of custody because 

data from the cloud can be accessed through any workstation irrespective of the device, 

and there are laws connected with accessing proprietary technology in a cloud 

environment.   

S. Zargari and D. Benford have compared computer forensics and cloud forensics in [28]. 

In a cloud environment, it is impossible to secure, evaluate and document the crime scene. 

Data storage is on the cloud service provider's data center rather than in the evidence 

room, as in the computer forensic process. In cloud forensics, data is transported only 

electronically, compared to the physical transportation of a hard disk. Additionally, they 

state that recovering the deleted data in a cloud environment is more complicated. It is 

also more difficult to keep consistency in the data acquisition process. Acquisition time 

in cloud forensics is fast, however, computer forensics is generally a slower process. The 

same platforms are shared between different consumers as a result complicating the 

digital objects' ownership and the attribution of the data.  

Almulla, Iraqi, and Jones [29] outlines the state of the art cloud forensics and arranges 

issues connected with cloud forensics in three categories: data and architecture-related 

technical issues and legal challenges. As mentioned, data preservation may become 

particularly difficult with current digital forensics practices and the dynamic environment 

of the cloud. The research also outlines that the focus of the reviewed solutions is on 

utilizing traditional digital forensic methods to analyze data stored in the cloud. However, 

there is a minimal focus on actually using cloud solutions to conduct digital forensics.  

 

Several pieces of research were published to evaluate the challenges of mobile cloud 

forensics. We summarize the main challenges linked with cloud data as data attribution, 

data deletion, data validation, accuracy, and legal access to the cloud account. A critical 

observation [27] is presented that mobile cloud computing solutions must be considered 

as two separate instances of mobile device and a cloud server. To a great degree, mobile 

cloud application forensics research focuses on gathering the data linked with the 

applications stored locally on the mobile device. We observed a lack of publications on 

actually utilizing the cloud environment to retrieve the data rather than analyzing 

application data stored locally on the mobile device.  
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2.3 Mobile location data forensics 

Location data and applications are discussed in [6, pp. 77–78]. Google Maps and Apple 

Maps can provide location-based information on traveled places and saved directions. It 

is mentioned that the data from these location-based applications can be retrieved from 

the app itself on a mobile device. Apart from location-based applications, other 

applications that utilize location data, such as Facebook and Twitter, can be used to 

approximate locations where posts or other activities are made.  

M. Chernyshev, S. Zeadally, Z. Baig, and A. Woodward in  [7] have performed a digital 

forensics examination of the suspect's location history from a mobile device. The 

evidence extraction scenario presents a case of performing level-3 imaging of the device 

following a standard procedure, including device rooting, image acquisition, and hash 

validation. Afterward, with the Autopsy tool, data is examined. The final location data 

was retrieved from camera photos in the image embedded geolocation metadata. 

Moore, Baggili, and Breitinger [8] inform practitioners, researchers, and the forensic 

community on data extraction methods from mobile phone location-based applications: 

Google Maps, Apple Maps, Waze, MapQuest, Bing Maps, and ScoutGPS. After using 

.XRY software for data acquisition from the Google Maps application, the following files 

were discovered locally: destination history with start and end locations, search history, 

users preferences, account data, and other cloud data based on the user account. On the 

iOS device, only the user's last known location file was discovered. Comparing all 

analyzed applications Google Maps for Android was ranked as the third application based 

on the forensic value of the extracted data, proceeding with Waze and Scout. Google 

Maps for iOS was ranked 9th because it only stored the last location before the application 

was closed. Alternative research [26] on iOS device third party applications mentions that 

the Google Maps application stores bookmarks, driving directions, contact addresses, 

recent map searches, and information about the last located coordinate locally on the 

device. A.Edens in the Cell Phone Investigation series (2014) [30], states that digital 

forensic information retrieved from a Google account can exceed the amount of data 

retrieved from a mobile phone using forensic hardware or software programs.  

Forensic analysis of smartphones reveals that geolocation data from a mobile device can 

be retrieved from Wi-Fi connections, location databases, and IP connections history.  The 
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hotspot connection history collects and presents SSID (service set identified) and RSSI 

(received signal strength indicator) information, revealing where the mobile device last 

connected to the Wi-Fi. Additionally, IP connection history presents the mobile device's 

location through the collected data points such as MAC and VPN addresses, router IP 

addresses, and DNS names [31]. 

Forensic analysis of the Android TomTom navigation application was done by Le-Khac 

et al. in [9]. The methodology used was to physically extract, identify, decode, and 

analyze related files locally stored on the mobile device. Relevant files discovered after 

the extraction are application settings, destination history, saved favorite locations, and 

search history. The only method to see if a location was visited is if it is stored in the 

current GPS location file and if GPS coverage is available. It is also mentioned that the 

major challenge with location data extraction from mobile applications is the great 

diversity of the applications and the exclusive data storage formats from each source. 

2.4 Forensically sound digital evidence 

This chapter defines forensically sound evidence and the significance of using proper 

methodologies for the digital forensic process. Additionally, it justifies the importance of 

throughout Google Maps timeline examination and testing before it can be used as a data 

source for an expert report in court.  

On October 27, 2017, a published article in “Times Union” newspaper states that Google 

location evidence in a criminal trial retrieved from the defendant's mobile phone was 

unsuitable for prosecution. The following statement was published to the prosecutors: 

“failed to meet their burden of demonstrating that the science underlying Google location 

services has gained general acceptance in the relevant scientific community” [2]. In a 

publicly known “Arizona case,” an innocent individual was arrested and retained in jail 

for one week in 2018, based solely on location history data provided by Google after a 

search warrant request. After receiving additional information, the suspect was released 

one week later, and no charges were pursued. However, the one-week arrest profoundly 

affected the arrested person's life and livelihood [32]. Case files in [33, p. 28] reference a 

murder trial where cell phone location was retrieved from the mobile device and cell 

tower data helping to reject a supposed alibi. The three publicly available case 

backgrounds present an issue and an opportunity that location data in mobile devices is 
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very valuable, however, if it is not tested in the scientific community, it can not be used 

on its own.   

E. Casey and C. W. Rose in [33] discuss that forensic examiners should not rely on a 

single tool as it may significantly impede the digital evidence review and subsequent 

investigation. Gary Ernsdorff, a Washington State prosecutor, who has worked on several 

Google location data cases mentioned for the New York Times states: “We are not going 

to charge anybody just because Google said they were there” [32]. 

McKemmish in [34] has directly examined the definition and overall meaning of 

"forensically sound" evidence mentioning that the forensically sound process involves 

data preservation in its initial state and analysis without reducing the evidence value. He 

informs that there is an increasing trend to specify in the expert reports that the method 

and technology used are "forensically sound", indicating that the final result has not lost 

its evidentiary weight. Subsequently, evidence preservation in a forensically sound 

manner leads to admissibility in court. Eoghan Casey in [35] explains that admissibility 

is required by the court to identify if the presented evidence is accurate enough and will 

assist as a solid foundation for decision-making in the case. One of the primary issues that 

may prevent evidence from being admitted in court is improper handling. 

S. Vömel and F. C. Freiling in [36] identify three criteria for evidence to be forensically 

sound: correctness, atomicity, and integrity. This definition was developed as a 

foundation for defining a forensically sound copy of physical memory. They also argue 

that forensically sound evidence may be altered to the degree that does not affect the 

reliability and authenticity of the data. The investigator can evaluate the soundness of the 

evidence and the acceptance criteria for each case separately.  

Important factors supporting evidence authenticity are a chain of custody and integrity 

documentation. Chain of custody shows how the evidence was acquired, and integrity 

documentation supports the belief that the evidence has not been altered after acquiring 

[35]. Authentication of manual evidence is crucial to ensure that the data presents what 

the proponents claim to be. Chain of custody entails that the evidence is processed in its 

original form. 

S. Goodison [37] presents a case where improper digital evidence handling has served as 

a factor to weaken a case of a murder trial. They also mention authentication and chain 
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of custody importance in the documentation of the digital evidence. Authentication 

establishes proof of who the digital evidence's factual owner is, and chain of custody is 

assurance that the preservation of the digital evidence is in its original form. [38] points 

toward the importance of reliability. For forensics findings to be admissible in court, 

forensic examiners must follow a well-defined process of data collection, analysis, and 

reporting.  

R.B.Adams in his Doctoral Thesis work [39] presents a list of standards and guidelines 

required for forensic data acquisition. These are ISO standards, British Standards Institute 

(10008 standards), Association of Chief Police Officers Guide, International 

Organization on Computer Evidence, McKemmish rules, Gosh guidelines, and Brezinski 

and Killalea’s guidelines. It is not easy to apply generally accepted standards to acquire 

evidence from rapidly changing and evolving applications.  

S. Goodison in [37] display an issue related to the extremely high amount of data and 

skills required for digital evidence extraction. The backlog of data evidence for the 

examiners can be up to one year. Additional challenges mentioned in the workshop report 

are fast-changing technology and constraints in the budget for new equipment. The 

increasing complexity of acquiring data from Android mobile devices has also been 

mentioned in [40, p. 38] by A. Hoog. He states that even minor differences in Android 

versions must be extensively tested and validated prior they are perceived as forensically 

sound in the court.  

To support the evidence, forensic examiners must hold a throughout understanding of the 

technology used. Presented evidence is often assessed to understand the real strength of 

the proposed hypothesis. In the “Handbook of Digital Forensics and Investigation” [33] 

it is mentioned that forensic examiners frequently use a scientific approach and conduct 

controlled experiments to gain insight into the program or the system. This approach is 

essential to minimize the tendency of leaning toward favoring a particular hypothesis. 

DeMatteo, Fishel, and Tansey in [41] outline a rising concern that the court admits expert 

reports based on invalidated methodologies with a particular regularity. They explain that 

the evidence derived from invalid procedures has far-reaching consequences in court and 

that this type of expert evidence that does not have a solid scientific background can be 

called "junk science". 
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3 Research background 

3.1 Toolkit 

Four devices were used in the experiments (Table 2). Three were test devices, and one 

was used as a ground truth device to log the actual location.  

Table 2. Technical documentation of mobile devices. 

Model name Model number Software Type 

Galaxy S21 5G SM-G991B/DS Android 12.0 Validation 

Huawei P20 Lite ANE-LX2 Android 9.1.0 Test 

iPhone 7 Plus MNQM2ET/A iOS 15.0.2 Test 

Galaxy A3 2016 SM-A2310F Android 7.0 Test 

    

Ground truth data was captured using the application “GPS Logger Lite”. It is a free 

application that logs the device's location only based on GNSS signals. This application 

was selected because it is available to the author, and its accuracy is sufficient in the 

context of these experiments. The application, while running, detects the physical location 

of a device every second. The application is run on device Galaxy S21 5G (Table 3).  

Table 3. Ground truth raw coordinate data extraction device. 

Device name Software name Location capture interval 

Galaxy S21 5G GPS Logger Lite App (4.3.80) 1 sec 

   

Based on a publication by Google, there are 13 different permissions types on an Android 

mobile device that can be adjusted based on the users' preferences. Google Maps 

application can use 8 of these permissions to provide the service. A complete list of 

available permissions with their practical usage is listed in Appendix 2. We allowed only 

location permissions for Google Maps (Table 4) on all test devices for this research. All 

other permissions were disabled and were not tested during the experimentation because 

we could not evaluate their impact on the outcome.   
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Table 4. Allowed permissions on the tested devices. 

Name Google Maps version Allowed permission name  

Huawei P20 Lite 11.15.3 Location 

iPhone 7 Plus 6.3  Location (Always) 

Galaxy A3 2016 6.1 Location (Always) 

   

Improved location accuracy service (Figure 2) uses Wi-Fi, cellular networks, and other 

sensors concurrently to improve the final location. If Google's improved location 

accuracy service is turned off, it only uses the GNSS, which is proclaimed to be less 

accurate. Improve location accuracy service is enabled in all experiments.  

Figure 2. Improved location accuracy service. 

Precise location service (Figure 3) within location app permissions allows the application 

to use the device's precise location. It is mentioned that if this setting is disabled, the 

application will only determine the device's approximate location. During the 

experiments, the precise location is turned on at all times.  
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Figure 3. Precise location on iPhone device. 

Advanced settings on mobile devices as presents in Figure 4 are Wi-Fi scanning and 

Bluetooth scanning. Wi-Fi scanning permission states that it improves the positioning 

accuracy for apps and services by scanning Wi-Fi networks, even if Wi-Fi is turned off 

on the device. Bluetooth scanning improves the positioning by scanning Bluetooth 

devices, even if Bluetooth is turned off.  

Figure 4. Wi-Fi and Bluetooth scanning on Android device. 

Google account history settings personalization directly affects the performance and data 

extraction possibilities of Google maps. There are three history settings: Web & App 

activity, location history, and YouTube history. Web & App activity and location history 
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preferences must be turned on for the Google Maps timeline to generate any data. Each 

account used in the experiments has enabled Web & App Activity and location history 

data collection. An example of Google account history settings is exhibited in Figure 5. 

Figure 5. Google account settings. 

Microsoft Power BI program is used as a data transformation and analysis tool. This 

program was selected due to its availability and ease of use. All transformations could be 

done in the transform data section, and tables could be joined clearly and understandably. 

Validation and test data tables are joined using one to many relationships (From test to 

validation) with a timestamp (DD/MM/YYYY HH:MM:SS) UTC+0 and device name 

index. The validation data table contains a physical location of every second of the 

experiment duration. If there are missing data, the previous location is repeated until a 

new physical location data point is received.  

3.2 Analysis of location data from Google Takeout 

Google Maps data was collected from 2 individual Google accounts with permanent 

residences in different countries. The data is summarized and presented in an aggregated 

form; therefore, no personal information is displayed. This section presents the general 

data structure and insight gathered from Google Takeout location data. From the analysis, 

we discover the main criteria tested in the experiments. In total, 557 000 raw location data 

points and 18 000 visited locations were analyzed.  
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3.2.1 Raw data records  

Raw location data points are exported from Google Takeout as records.json files. All raw 

location history is exported in one file. Raw location data consists of seven values: 

latitude, longitude, accuracy, activity, source, device tag, and timestamp.  

Each location data point is subject to an error rate presented as an accuracy feature in the 

dataset. The capture interval and accuracy of the received raw locations depend on the 

device's enabled navigation sensors and other external conditions. The primary location 

data sources in Google Maps are Wi-Fi, Cell, and GPS. A blank value indicates an iPhone 

device, as it does not save the source information. The Wi-Fi source is the primary 

navigation sensor providing the location data to the application. Two proceeding sources 

are cell towers and GPS. We assume that by disabling the Wi-Fi sensor on the device, the 

device's navigation accuracy will deteriorate. Number of collected raw location data 

points by location source are presented in Figure 6.  

 

Figure 6. Number of records by source. 

GPS, Wi-Fi, or CELL navigation sensors each hold a different error rate. We have 

aggregated all raw location point accuracies on the source level in Table 5. The table 

shows that the lowest median accuracy of 12 meters is for GPS source. 50% of all location 

accuracy values for GPS source are from 6 to 24 meters. For Wi-Fi source, 50% of values 

lay within the 20 to 27-meter range. Cell tower source holds the highest median accuracy 

of 800 meters, and 50% of values are within the 699 to 1899-meter range.  
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Table 5. Location accuracy by the source. 

Source of location Median of 

accuracy (m) 

1st quartile of 

accuracy (m) 

3rd quartile of 

accuracy (m) 

IQR (m) 

Cell 800 699 1 899 1 200 

Visit_Departure 54 25 82 57 

Visit_Arrival 48 35 66 31 

Wi-Fi 23 20 27 7 

Unknown 16 12 23 11 

GPS 12 6 24 18 

     

External circumstances also affect the location estimation techniques — for example, 

building structures, physical landmarks, and area density. Due to different navigation 

sensors and external factors, the accuracy varies from 3 to more than 1000 meters. As 

exhibited in Figure 7, the majority of raw location data points are focused around 3–100-

meter accuracy values. 

Figure 7. Number of records by the accuracy. 

3.2.2 Semantic location history 

Semantic location history consists of two separate groups of events: activity segments 

and place visits. Activity segments present the modes of travel and their relevant 

probabilities. Place visits present the possible visited locations and probabilities of these 

locations and places. A visit is an event that is displayed in the Google Maps timeline. If 
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the visit confidence is below a certain threshold, the visit will not be presented in the 

timeline. Each visit consists of relevant raw data points. Figure 8 presents a visit to 

"Pasadena Green Shopping Centre". The visit duration is 28.82 minutes, and within this 

timeframe, five raw data points were captured.   

Figure 8. A visit with respective raw data points. 

Place visit data consist of location, address, name, duration, Google placeId, latitude, 

longitude, other candidate locations, and edit confirmation status. The name presents the 

semantic name of the location. If the location's name is not available, then the address is 

presented as name.  

Each visit contains a start time and end time. Start time is equal to the first raw data point 

timestamp within the visit, and end time is equal to the last data point timestamp for a 

visit. Visit duration is based on the timestamps of the raw data locations. The visit starts 

when the device has been present in one place for a specific period. The visit ends when 

the distance between the visit and the current raw data location exceeds a certain 

threshold, indicating that the device has moved away from the location.  

Figure 9 depicts the haversine distance between the current raw data point and the 

previous raw data point. Number 1 indicates the first raw data point of the visit. If the 

visit has four raw data points, the average distance within the visit is calculated between 

numbers 1;2;3;4. Consequently, the first raw data point depicted as 1 is compared to the 

previous raw data point collected by the device. The second raw data point, depicted as 

2, is compared to point 1. As projected, we observe that the average distances within the 

visit are significantly lower than the distance between the first data point of the visit and 

the previous raw data collected by the device. 
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Figure 9. Haversine distance between the current and previous raw data point. 

Each visit holds location confidence and visit confidence that varies depending on several 

factors, including the confidence of the raw location readings of the device. There are 

three place confidence intervals- high, medium and low confidence. These intervals 

inform the user about the certainty of the visited place. The visit confidence value 

indicates if the visit will appear in the Google Maps timeline. For a visit shown in the 

Google Maps timeline, the confidence is never below 60 points. The visit confidence is 

generally unchanged for each high, medium, and low interval. Figure 10 displays that the 

highest location confidence is for high confidence visits, following medium and low. For 

high confidence visits 50% of the location confidence values ranges between 80 to 83.  

Figure 10. Average visit and location confidence by the place confidence interval. 

There is a minimum time duration for a visit to be presented in the Google Maps timeline. 

For the reviewed dataset, the minimum duration of a visit is 2 minutes. The measure 
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indicates the minimum duration a device must be in a single place for a visit presented in 

the Google Maps timeline. The minimum visit duration for high confidence visits is 5 

minutes that is above the minimum durations for medium and low confidence visits. 

Minimum duration of the visit by place confidence is presented in Figure 11.    

Figure 11. Visit duration (min) by place confidence. 

Table 6 presents three examples where a visit is detected with only two raw data points 

and a duration of 1.93, 1.95, and 2.25 minutes. 

Table 6. Minimum duration visit examples. 

Visit of building Centrepoint with the duration 

of 1.93 minutes and a confidence of 75. The 

haversine distance between raw data point and 

place visit location is 162m. Records accuracy 

proposed by Google is 14m.  

 

Visit of Estonian Cultural center with the 

duration of 1.95 minutes and a confidence of 

65. The haversine distance between raw data 

point and place visit location is 48m. Records 

accuracy reported by Google is 24m.  
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Visit of Adelaide central market with the 

duration of 2.25 minutes and a confidence of 

71. The haversine distance between raw data 

points and place visit location is 155m. 

Records accuracy reported by Google is 4m. 

 

  

Two variables were used to characterize outlier visits: Google reported accuracy of the 

raw data point and the haversine distance between the raw data point and the visit 

location, as presented in Figure 12.  

Figure 12. Visit and raw data points. 

High confidence visits have the mean of google recorded accuracy of 34 meters and mean 

of haversine distance of 46 meters. Medium confidence visits have the mean of google 

accuracy of 51 meters and haversine distance of 142 meters, low confidence of 88 meters 

and 142 meters, respectively. The analysis suggests that the visit confidence is 

significantly dependent on Google’s accuracy estimate and the distance between the visit 

location and respective raw location data points. Figure 13 displays the haversine distance 

and Google’s accuracy by place confidence.  
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Figure 13. Accuracy and haversine distance of visits. 

There are four summarized findings learned from the raw data analysis. First, the accuracy 

of raw data points captured by Google maps is essential to identify place visits correctly. 

If the accuracy of raw data points is unreliable, the timeline and visited places will also 

be unreliable. Second, the duration of the visit must exceed a threshold for the visit to be 

presented in the timeline. Depending on the place type, the threshold may vary. Third, the 

distance between the place-centered location and raw data points is lowest for high 

confidence places and increases for low confidence places. Fourth, the average distance 

within the visit is significantly lower than the distance between the first raw data point of 

the visit and the previous raw data point captured by the device.  

3.3 Navigation sensor accuracy experiment 

The Google Maps timeline for each account is based on several variables, and an 

important variable is the raw location data point accuracy received and stored by the 

mobile device and Google account. Before analyzing Google Maps timeline visit 

identification accuracy, we will look at the accuracy of the raw location data points 

received by the devices and accounts. There are three questions we will answer through 

the coordinate drift experiments.  

1. How often is data captured in the test dataset under different variables? 
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We assume that the raw location data capture interval is dependent on the device 

navigation sensors. With this value, we present with what navigation sensors the location 

is captured most frequently. With an increased number of raw data points, there is a higher 

probability that the semantic location will be presented correctly in the Google Maps 

timeline. A lower interval of raw data points allows the Google Maps timeline to adjust 

more precise route mapping and visit duration calculation. 

Equation 1 Raw data capture interval 

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 (𝑚𝑖𝑛)

𝑛𝑟. 𝑜𝑓 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
=  𝑐𝑎𝑝𝑡𝑢𝑟𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

2. What is the average accuracy proposed by Google for the raw data points?  

Google services present the accuracy of each raw data point captured. Average accuracy 

presents the assumption made by the Google algorithm on the level of accuracy captured 

by the device and the service. With a different variation of device settings, we will 

validate the dependencies between the settings and accuracy presented by Google.  

Equation 2 Google Maps average accuracy 

𝐺𝑜𝑜𝑔𝑙𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
=  𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

3. What is the haversine distance between the raw data points and validation 

dataset?  

The approximate shape of the Earth is an oblate spheroid. The haversine formula 

calculates the distance between latitude and longitude points on a spheroid shape. We will 

present the shortest path between the two raw data points by applying the haversine 

formula to the test and validation datasets' latitude and longitude points. The shortest path 

represents the shortest distance between the test and validation data points. We assume 

that increased accuracy of the raw location data points increases the accuracy of semantic 

locations presented in the Google Maps timeline.  
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Equation 3 Haversine distance between test and validation data 

ℎ𝑎𝑣(𝜃)  =  ℎ𝑎𝑣(𝜑2 −  𝜑1) + cos(𝜑1) ∙ cos(𝜑2) ∙ ℎ𝑎𝑣(𝜆2 −  𝜆1)  

hav(θ)  = 𝑠𝑖𝑛2 (θ/2) 

D = 2r ∙ sin−1 (√sin(
𝜑2 −  𝜑1

2
)2 + sin(

𝜆2 −  𝜆1

2
)2 ∙  cos(𝜆1)  ∙  cos(𝜆2) )  

𝜑1 – latitude of validation 

𝜑2 – latitude of test 

𝜆1 – longitude of validation 

𝜆2 – longitude of test 

r – radius of a sphere 

D – distance between two locations 

We present haversine distance in meters between test and validation data sets. The radius 

of the Earth is 6 371 * 1 000 meters, used as the radius of a sphere for haversine distance.  

3.3.1 Experiment organization 

The experiments are conducted on three devices and solely on foot. We select a specific 

route in the high-density city of Riga, Latvia. The following route has been developed in 

the Google Maps application, and it will be followed during the experimentation. The 

Google Maps application states that the entire route is 4.5 kilometers and will take 

approximately 56 minutes of walking time. The route is exhibited in Figure 14.  

Figure 14. Route of navigation sensor impact experiment in Riga, Latvia. 

 



43 

The research [3] performed by the Netherlands forensic institute tested Google Maps 

timeline accuracy based on the phone configurations: GPS, Wi-Fi, 2G, and 3G networks. 

We approach the research question similarly; however, the tested navigation sensors on 

the devices are Wi-Fi + Bluetooth, location services and mobile networks (Table 7), 

because mobile device users primarily enable or disable these navigation sensors.  

Table 7. Tested device navigation configuration. 

Phone configuration type State 

Wi-Fi and Wi-Fi scanning (let apps use Wi-Fi for more accurate location 

detection, even when Wi-Fi is off) 

ON/OFF 

Location services (GNSS) ON 

Mobile networks (cellular) ON/OFF 

Bluetooth and Bluetooth scanning (let apps use Bluetooth for more accurate 

detection, even when Bluetooth is off) 

ON/OFF 

  

Each experiment iteration follows a specific procedure. Firstly, all devices are loaded to 

100% battery level. This detail is important because a low battery level and a power saver 

mode can affect the performance of satellite or network-based navigation, and we want 

to exclude battery level effects on the outcome. Afterward, we turn all test devices on and 

sign-in to all sock puppet Google accounts. Depending on the experiment, relevant 

settings are turned on or off.  

Google Maps application on a mobile device requests and collects location information 

only when location services are turned on. Therefore, location services are turned on in 

all experiments. Location services allow using any satellite constellation within GNSS to 

position the device. We execute six experiments with various device configurations to 

assess the timeline performance in different conditions. We start the experiments by 

analyzing the performance when all device configurations are enabled. Afterward, we 

disabled Wi-Fi, mobile network, and Bluetooth, with the last configuration only enabling 

location services. The experiment device configuration matrix in Table 8 presents the 

device conditions that are tested.  
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Table 8. Coordinate drift experiment setup matrix. 

Experiment 

Nr.  

Location 

services 

(GNSS) 

Wi-Fi Wi-Fi 

Scanning 

Mobile 

network 

Bluetooth Bluetooth 

Scanning 

1.  ON ON ON ON ON ON 

2.  ON ON ON  ON ON 

3.  ON   ON   

4.  ON      

       

After phone settings are configured, we go to the start position of the route and turn on 

the GPS Logger Lite Application. It is critical to verify that the application that collects 

ground truth data works and collects physical location every second. An example of a 

functioning GPS Logger lite application is presented in Figure 15. 

Figure 15. GPS Logger Lite. 

After the technical setup is established and validation data is being collected, we follow 

the specified route with all the devices. After reaching the end destination, we turn off the 

“GPS Logger Lite” application and collect the data. Data collection is performed after 

each iteration from Google Takeout and stored on a Microsoft Surface Pro 6 computer. 

Validation data is downloaded from GPS Logger Lite application on the Samsung S21 

device and uploaded to the computer.  
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3.4 Visit detection accuracy experiment 

Based on the analysis of Google takeout data, we formed experiments to test the 

probability for different types of visits to be presented in the Google Maps timeline. The 

experiments will present if certain place types hold a higher probability to be presented 

in the Google Maps timeline as visits.  

Similarly, as in the research “Accuracy and privacy aspects in free online reverse 

geocoding services” [13], we will apply weights for each visited location to calculate the 

average likelihood that the location will be presented in the Google Maps timeline. If the 

most exact location is presented in the timeline, we apply 1; if a location is near the actual 

visited location, we apply 0.5; if the location is not present, we apply 0. The final result 

is presented as a success rate in percentage for a location, device, and type of the visit.  

3.4.1 Experiment organization 

Experiments are conducted in two iterations. Dwell time for each visit is 10 minutes. Ten 

different locations are selected in a small town - Balvi, Latvia, and the other ten locations 

are in Riga, Latvia. Two different size cities were selected to include also rural locations. 

There are three location data types: semantic, logical, and physical locations. All three 

location data types are presented in this example: a physical location latitude longitude 

points 56.960434, 24.124547 after reverse geocoding is Bruņinieku Street 5, Riga, LV-

1001 that holds a semantic meaning of Riga 1st hospital. All location types are reviewed 

in the experiments. Visited locations in Balvi, Latvia are presented in Table 9. 

Table 9. Visited locations in Balvi, Latvia. 

Nr.  Type Physical location 

(Lat/Long) 

Full address Semantic 

meaning 

1 Rural 57.125228 27.212260 - - 

2 Rural 57.125161 27.224335 - - 

3 Rural 57.124963 27.230343 Tala street 2, Balvi parish LV-4501 - 

4 Town 57.132366 27.269472 Brivibas street 65, Balvi LV-4501 Labais shop 

5 Town 57.133360 27.267442 Brivibas street 61, Balvi LV-4501 Balvi bus stop 

6 Town 57.132474 27.263319 Partizanu street 8, Balvi LV-4501 Zebra pizza 

restaurant 

7 Town 57.138996 27.257718 Krasta street 3, Balvi, LV-4501 Virsi gas station 
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Nr.  Type Physical location 

(Lat/Long) 

Full address Semantic 

meaning 

8 Rural 57.143838 27.232001 Stacijas street 25, Kubulu parish LV-

4501 

- 

9 Rural 57.144711 27.249415 - - 

10 Rural 57.129364 27.243814 7 Ezermalas line 79, Balvi LV-4501 - 

     

Three visits (1;2;9) do not have an address connected with the physical location, three 

visits (3;8;10) have only an address without semantic meaning, and four visits (4;5;6;7) 

have an address and a semantic meaning linked to it. All locations visited in Riga, Latvia 

are presented in Table 10 and they have a full address or a full address with a semantic 

meaning.   

Table 10. Visited locations in Riga, Latvia. 

Nr.  Type 

of visit 

Physical location 

(Lat/Long) 

Full address Name 

1 Outside 56.960292 24.130988 Brivibas street 90, Riga LV-1001 Narvesen shop 

2 Outside  56.959685 24.126893 Brivibas street 75, Riga LV-1001 Dailes theatre 

3 Outside  56.958246 24.125402 Brivibas street 76, Riga LV-1010 Caffeine cafe 

4 Inside 56.956432 24.122067 Brivibas street 58, Riga LV-1011 Drogas shop 

5 Inside 56.951966 24.114872 Brivibas street 30, Riga LV-1050 Street Food 

Point cafe 

6 Inside 56.950500 24.111628 Z. A. Meierovica Boulevard 18, 

Riga LV-1050 

McDonald's 

7 Outside 56.954109 24.111510 Kalpaka Boulevard 6, Riga LV-

1050 

- 

8 Outside 56.957499 24.117591 Skolas street 11, Riga LV-1010 - 

9 Outside 56.960434 24.124547 Bruninieku street 5, Riga LV-1001 Riga 1st 

hospital 

10 Inside 56.958548 24.125503 Brīvības street 78, Riga LV-1001 Maxima X 

grocery store 

     

All experiment iterations are performed on three test and one validation device. All 

navigation sensors are enabled on the test devices. Validation data is collected throughout 

the experiment, including the time between changing the locations. The experiment starts 

in the first location. GPS Logger application is turned on. After visiting all locations, the 
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GPS Logger application is turned off. Afterward, data is extracted, transformed, and 

loaded on Microsoft Surface Pro 6 computer. Microsoft Power BI software is used for 

data analysis and presentation.  

3.5 Mobile device navigation techniques 

User location timeline accuracy depends on the specific device's navigation techniques. 

Google Maps timeline output is primarily based on the physical location points and 

secondly on the algorithms applied to these points. As our research is focused on outdoor 

localization, we review three main outdoor localization techniques used on mobile 

devices: GNSS (Global Navigation Satellite System), WLAN, and Cellular network. 

Apple mobile devices can use only one of three technologies to access geographic 

locations: GNSS, cellular network, and Skyhook Wireless Technologies based on 

wireless access point locations [26]. These techniques are used in the research as 

modifiable variables; therefore, understanding each technique is crucial. Indoor 

localization techniques are extensively reviewed in [42], [43], and [44]. A. Alarifi et al. 

in [42] outline indoor location estimation techniques that do not require specific hardware 

and utilize buildings infrastructures such as WLAN, Mobile cellular network, and 

Bluetooth. 

3.5.1 Global Navigation Satellite System 

A global navigation satellite system (GNSS) is satellite constellation that provides three 

services: positioning, timing, and navigation [45]. The satellite navigation system 

provides unlimited number of users with the receiving equipment three-dimensional 

position, velocity and time disseminated within the Universal Coordinated Time (UTC) 

[46]. The system consists of satellites that are orbiting the Earth and using trilateration 

method calculating the location of an object [47]. GNSS utilizes Time of Arrival (ToA) 

measurement on several satellites simultaneously to determine the three-dimensional 

position of an object. The distance from the emitter to the receiver is calculated by 

multiplying the speed of signal versus the propagation time [46]. Flaws of any navigation 

positioning system arises in indoor settings and highly dense areas when the signal is 

blocked [48]. 

There are various GNSS services designed by different regions and countries. The major 

navigation systems are Global Positioning System (GPS) – North America, BeiDou 
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Navigation Satellite System (BDS) – Peoples Republic of China, Galileo – European 

Union, GLONASS – Russian Federation, Quasi-Zenith Satellite System (QZSS) - Japan 

and Indian Regional Navigation Satellite System (IRNSS) – India [45]. A global 

positioning system (GPS) is one of the most widespread systems. It is defined as "a system 

by which signals are sent from satellites to a special device, used to show the position of 

a person or thing on the surface of the earth very accurately" [49]. The widespread usage 

of GPS outdoor localization techniques is due to practical accuracy, availability, and 

reliability. U.S Government states that SPS sent signal accuracy 95% of the time is below 

2m with actual performance below 0.643m on 20th April 2021 [50].  

3.5.2 WLAN based localization 

IEEE 802.11 standard is more generally denoted as WLAN or Wi-Fi, and it is the most 

widely used standard for wireless communication between devices [43]. A normal 

WLAN coverage range is 50m – 100m [44]. The location of a device connected to a 

private or public wireless access point can be estimated. Several techniques to estimate 

the device location using its connection to WLAN are RSSI (Received Signal Strength 

Indicator), TDOA (Time Difference of Arrival), TOA (Time of Arrival), (AOA) Angle 

of Arrival, RTOF (Received Time of Flight) [44]. Received Signal Strength is the most 

common WLAN positioning technique because it can be integrated without any 

additional hardware modification on any device integrated with Wi-Fi [51]. RSS also 

does not hold the complexity of angular measurements and time delay issues opposite to 

the other techniques [43]. If the received signal strength becomes weak, the device can 

gather location information from other navigation sensors. 

3.5.3 Mobile cellular network localization 

The mobile cellular network is also denoted as GSM (Global System of Mobile 

Communication), consisting of many base stations and respective signal areas [52]. Base 

stations cover an area by their radio signal, creating a cellular network coverage. The 

mobile signal strength is affected by distance from the base tower, physical obstructions, 

building structures, physical landmarks, network congestion, and interference [52]. In 

rural areas, the radio transmitters are configured to cover large areas, whereas in urban, 

smaller radio transmitters are used to cover limited areas but provide high capacity. Based 

on the selected geographical location, the typical coverage radius varies from 200m for 

Picocell base stations for high rise buildings, 1-2km for Microcell base stations in urban 
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locations, 5-32km for Macrocell in suburban areas, and 50-150km for Macrocell 

Extended Reach in rural areas [52]. Depending on the cell size, the accuracy of the 

location varies between 50-200m [44]. Paper "Mobile Location Estimation in 

GSM/UMTS" [53] in detail explains all location estimation techniques within the GSM 

network, such as RSSI (Received Signal Strength Indicator), AOA, TOA. Paper "Outdoor 

Location of Mobile Devices Using Trilateration Algorithms for Emergency Services" 

[54] explains Cell of Origin, AoA, and Trilateration location estimation techniques. GSM 

location estimation of a mobile device is mainly used for outdoor environments. Indoor 

location can be estimated if the building has strong RSSI [44].  

3.6 Geographic Information Systems 

A Geographic Information System (GIS) presents geographic data on the Earth’s surface. 

These systems allow us to understand and use geographic data in various applications. 

With the fast-paced development of mobile devices, an active research field has appeared 

called Mobile GIS. It unites geographic data transformation, management, and 

visualization to the end user. Mobile GIS based on location-based services is a system 

combining GIS, GNSS, internet, and mobile communication technologies [55]. In this 

research context, the GIS system refers to the Google Maps application.  

In 2005 a design idea was presented in the IEEE International Geoscience and Remote 

Sensing Symposium to combine Mobile GIS and location-based services. The proposed 

system architecture comprises the client and the server connected wirelessly through a 

network [55]. The design idea is similar to today's Mobile GIS applications, including 

Google Maps. Different geographic representations of locations on a surface of the Earth 

are denoted as thematic layers. D. Arctur and M. Zeiler mention that thematic layers are 

assembled of geographic elements in order for the location points to hold a logical 

representation and insight of the raw data [56, p. 4]. Various thematic layers are overlayed 

to present one integrated map with information necessary to the user. For example, a road 

transportation network is represented by several layers, such as streets, intersections, 

urban areas, and bridges [56, p. 4]. Google Maps allows users to select from three map 

types: default, satellite, and terrain (Table 11). Google Maps timeline can also be 

presented in these three map types. Additional details can be selected to overlay the map, 

such as public transport, traffic, or bicycling.  
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Table 11. Google Maps available map types and map details. 

Google Maps type selection Google Maps timeline  

Map type: satellite 

Google Maps timeline  

Map type: terrain 

   

   

The development of geographic information system integration in mobile technologies 

was foundation for further advancements in location-based services [57].  

3.6.1 Location-based services  

The beginning of location-based services dates back to 1996, when the United States 

government passed a mandate for mobile-network operators to locate emergency callers 

with a certain accuracy level [58]. Since then, the emergence of low-power positioning 

techniques (satellite navigation and network-based) have endorsed a rapid change in 

location-based services' nature and widespread usage. The ability to wirelessly transmit 

spatial data from a mobile device is the foundational requirement for location-based 

services to work [55]. 

Location-based services are constructed from four key components: mobile device, 

positioning, communication network, and service and content provider [59]. Positioning 

is the selected localization technique for the device to determine the physical location. A 

communication network transfers the information between the mobile device and the 

service provider, and the content provider models the received information based on 

specified algorithms. The three principal components combined are responsible for the 

main tasks of location-based services: positioning, data modeling, and information 

communication [59]. Data modeling is the component where the context factors are taken 

into consideration. Referring to research on Mobile GIS based on LBS [55], the technical 
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design of LBS comprises a mobile device that sends its precise location to a service 

center, queries a database, and retrieves information based on the initial location. 

Research done by H. Huang, G. Gartner, J. M. Krisp, M. Raubal, and N. Van de Weghe 

have combined location-based services' main trends and research agenda in [60]. They 

mention that location-based services should not solely rely on the location because each 

user's output is specific. The context factors affect the output that is provided. Depending 

on the specific service, different context factors may be relevant. Several factors that may 

be considered are physical surroundings, system properties, time, mobile map user, 

location, navigation history, and orientation.  

P. Bellavista, A. Küpper, and S. Helal in [58] state that LBS have switched from reactive 

to proactive by automatically adjusting the output based on predefined changes in the 

user's movement. Additionally, LBS are application-oriented rather than only providing 

the location information after a request and are part of dynamic content presented to the 

user through user interface based on the current user's location and the execution context.  

Explicit definitions and differences of location-aware systems and location-based 

services are outlined by H. R. Schmidtke in [61]. A location-aware system is defined as 

one that provides services based on the user's current location. However, location-based 

services deliver output that contains information about the user's location history. 

Contrary to location-based services, the main difference between the two notions is that 

location-aware systems do not require users to share and collect their location 

information.  

3.6.2 Google Maps 

Google Maps is an application and web platform owned by Google Inc. The application 

is pre-installed on most Android devices and widely used in other operating systems. The 

service is free of charge and can be used with and without an active Google user account. 

It provides navigation, traffic, street view, location search, and satellite imagery. The 

architecture of Google Maps is outlined by P. Gilski and J. Stefański in the “Survey of 

Radio Navigation Systems” [62]. The architecture is presented in Figure 16.  
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Figure 16. Architecture of Google Maps [62].  

The user equipment (for example, a mobile device) is linked with a base transceiver 

station or another access point connecting it to a network. Through the network, the 

location platform (Google Maps) sends the location data to the database, where it is stored 

and processed. When requested, the location platform retrieves the transformed 

information and presents it to the user.  

Google Maps timeline is a service within the Google Maps application. The application's 

principal purpose is to present the places and routes the user may have taken based on 

collected and processed raw data points. The timeline can be edited and deleted by the 

user. The service is only available for users who have signed in to their Google accounts 

and have enabled location services. The ability to collect and store history data is integral 

for the application to perform; therefore, users must also enable web & app activity data 

collection.  

Google Maps timeline provides its interpretation of the place symbolic names that the 

user visits. Based on the user's profile and physical location data history, a place name is 

selected from a list of possible locations in the dictionary. The recommended place can 

be approved or declined and changed by the user. Google states that any searches initiated 

by the user can affect the visit recommendations in the timeline [63]. Although there is 

no readily available data to estimate how frequently this occurs in practice. The Google 

Maps timeline provides additional variables to the location history. As mentioned by 

Google policies, the location is not only based on the device's geographical information. 

To improve the contextualization of the data, Google also uses past activity and labeled 

place analysis concurrently with the device location data [64]. 
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4 Results 

4.1 Navigation sensor impact on data 

4.1.1 Experiment results 

Experiment 1. presents the performance of the Google Maps timeline when all device 

settings that directly impact location data are enabled. Device configuration in experiment 

1 is presented in Table 12. 

Table 12. Experiment 1 device configuration. 

Experiment 

Nr.  

Location 

services 

Wi-Fi Wi-Fi 

Scanning 

Mobile 

network 

Bluetooth Bluetooth 

Scanning 

1.  ON ON ON ON ON ON 

       

The experiment duration was 64 minutes. The performance of Android devices is better 

than iOS, with an average data capture interval of 2.21 for Huawei P20 Lite and 1.94 for 

Samsung A3. iPhone 7 collected 11 data points leading to the capture interval of 5.82. 

The average Google provided accuracy for raw data points is 29.40 meters. For the same 

raw data points, average Haversine distance to the ground truth location is 22.09 meters. 

Figure 17 exhibits experiment 1 results. The two measurements indicate that Google is 

less optimistic when calculating the accuracy and the actual accuracy is more precise.  

Figure 17. Experiment 1: Raw data point analysis. 

 



54 

The number of collected data points, capture interval and accuracy directly affect the 

timeline presented in the mobile application. The timelines in Table 13 are created based 

on the red data points. A decreasing number of red data points lead to a less precise 

timeline. We observe that the visual presentation of the route is worse for iPhone 7 Plus, 

because of significantly higher sample interval. Both timelines presented on the android 

devices depict all streets, crossings, and major turns.  

Table 13. Experiment 1: Google Maps timeline. 

Huawei P20 Lite iPhone 7 Samsung A3 

   

   

The collected validation and test data points are presented in Figure 18. We observe a 

pattern of raw data point collection – the raw data points are collected at the same places 

and with a certain consistency.  

Figure 18. Experiment 1: Validation and test location data on a map. 

Experiment 2 presents the results of the Google Maps timeline when the mobile 

network is disabled. Table 14 presents device configuration in experiment 2. 
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Table 14. Experiment 2 device configuration. 

Experiment 

Nr.  

Location 

services 

Wi-Fi Wi-Fi 

Scanning 

Mobile 

network 

Bluetooth Bluetooth 

Scanning 

2.  ON ON ON  ON ON 

       

An important observation was found that it may take up to 30-60 minutes for the phone 

location data to be loaded on the Google Maps application after being connected to a 

network. Galaxy A3 performance is similar to the experiment 1 outcome with 28 collected 

points. iPhone 7 Plus collected 12 data points, compared to 11 data points in experiment 

1, and Huawei P20 Lite 1 data point. From the perspective of accuracy, raw data point 

locations are less precise. The average accuracy of raw data points is 43 meters, and the 

haversine distance is 44 meters. Compared to experiment 1, accuracy is almost 50% lower 

when the mobile network is disabled. The single location collected by Huawei P20 Lite 

has average Google accuracy of 600 meters, indicating that the device gathered the one 

location data point from a cell tower. Figure 19 exhibits the results of experiment 2.  

Figure 19. Experiment 2: Raw data point analysis. 

The timelines (Table 15) present two paths that are generally precise and a case where 

the device has not collected a sufficient amount of data to generate a timeline. The 

timeline on iPhone 7 shows an approximation of the actual route. The timeline on 

Samsung A3 is more detailed than the iPhone 7 timeline; however, it contains one 

significant error due to one very inaccurate raw data point. The timeline on Huawei P20 

is not presented.  

 



56 

Table 15. Experiment 2: Google Maps timeline. 

Huawei P20 Lite iPhone 7 Samsung A3 

   

   

During the 53 minutes, only one location data point was collected on Huawei P20 Lite. 

We believe that this may be a one-time error. Therefore experiment 2 iteration two is 

performed to test this device configuration again. Device Huawei P20 Lite location 

accuracy was calibrated before the experiment.  

In the iteration two thirty-five raw location data points were collected, with a capture 

interval of 4.71 points per minute. Galaxy A3 collected twenty data points slightly less 

than in iteration 1. iPhone 7 collected precisely the same number of points - twelve. 

Huawei P20 Lite collected three raw data points, indicating that this device performs 

significantly worse than other devices. Similarly to iteration one, Google accuracy and 

haversine distance are significantly higher than when mobile data is enabled. The average 

Google accuracy is 172 meters, and the haversine distance is 45 meters. When comparing 

iteration 1 and iteration 2, the iOS device presents a consistent performance. iPhone 7 

average Google accuracy is 27.75 meters, and the average haversine distance is 41.28 

meters, compared to 21 and 41.74 meters in the previous iteration. However, android 

device locations are less accurate. Samsung Galaxy A3 presents average Google accuracy 

of 244 meters and a haversine distance of 83 meters. Huawei P20 Lite presents Google 

accuracy of 272 meters and haversine distance of 113 meters. Figure 20 presents the 

results of the second iteration of the experiment 2.  
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Figure 20. Experiment 2.2: Raw data point analysis. 

Manually observing the Google Maps timelines in Table 16 we see three very different 

paths. Huawei P20 Lite with collected three raw data points presents a very inaccurate 

route. We could only propose that the device was moving in a specific direction from this 

screen capture. The iPhone 7 timeline image does not present the major turns in the route. 

The Samsung A3 timeline route is exact at some parts of the route; however, part of the 

route is not presented due to missing raw data locations for a specific period.  

Table 16. Experiment 2.2: Google Maps timeline. 

Huawei P20 Lite iPhone 7 Samsung A3 

   

   

The test data points are more randomly collected when compared to experiment 1. There 

is no pattern, and more points are located outside the real route as exhibited in the right 

side map of Figure 21.  
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Figure 21. Experiment 2.2: Validation and test location data on a map. 

The overall performance of the Google Maps timeline when a device is not connected to 

the mobile network is sufficient to say that the device was moving in a particular 

direction; however, the precise route cannot be confirmed. Android and iOS devices 

perform differently. For an iOS device, there are no significant differences between the 

experiments with and without enabled mobile data settings. Also, the average Google 

accuracy and distance from validation locations are similar. These measurements indicate 

that iOS devices do not use mobile data for location approximating. Android devices 

perform less consistently, significantly deteriorating the location accuracy when the 

mobile network is disabled. The average accuracy and distance are 50% worse in both 

experiment iterations when compared to experiment 1. The applications performance on 

Android devices is highly affected by mobile network availability.  

Experiment 3 is conducted when location services and mobile networks are enabled, 

disabling Wi-Fi and Bluetooth networks on all devices. We also disabled location 

enhancing configurations on Android devices during this experiment – Wi-Fi Scanning 

and Bluetooth Scanning. Wi-Fi and Bluetooth scanning improve the positional accuracy 

by scanning for Wi-Fi or Bluetooth networks, even if Wi-Fi or Bluetooth are turned off. 

Table 17 presents the device configuration in experiment 3.  
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Table 17. Experiment 3 device configuration. 

Experiment 

Nr.  

Location 

services 

Wi-Fi Wi-Fi 

Scanning 

Mobile 

network 

Bluetooth Bluetooth 

Scanning 

3.  ON   2G/3G/4G   

       

iPhone collected only 4 location points, compared to 11 or 12 in the previous experiments. 

Android devices collected more data points than in the previous experiments, with 

significantly worse accuracy. The average Google accuracy is 493 meters, and the 

average haversine distance is 96 meters. The result is 94% and 77% worse than in 

experiment 1. And 78% and 43% worse than in experiment 2. A significant difference is 

between iOS and android device performance. The average Google accuracy for iPhone 

is 9.5 and for android is 523 meters. The collected data expose that iOS devices try to 

collect less but exact data; however, android devices collect many data points with worse 

precision. Figure 22 presents the results of experiment 3.  

Figure 22. Experiment 3: Raw data point analysis. 

We detect a substantial deterioration of the Google Maps timeline performance in 

experiment 3 as presented in Table 18. Google Maps could present an estimated timeline 

only for Huawei and iPhone devices. For Huawei P20 Lite, only 6 points from total 

collected 28 are presented on the actual timeline. For the iPhone device the collected 4 

data points make up the timeline and there are no random location points collected during 

the experiment. Samsung A3 raw location points are with very low accuracy hence 

Google Maps could not present a route at all.  
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Table 18. Experiment 3: Google Maps timeline. 

Huawei P20 Lite iPhone 7 Samsung A3 

   

   

Test location data map presents a significant number of raw data points that are not on 

the route as presented in the left side map of Figure 23. These random data points decrease 

the timeline’s ability to present a route because it increases the complexity of connecting 

the raw data points logically. The Google Maps timeline cannot distinguish between data 

points on the route and those that are void. 

Figure 23. Experiment 3: Validation and test location data on a map. 

The Google Maps timeline is performing significantly worse with only location services 

and mobile network navigation sensors enabled. Many random raw data points are 

collected that are misleading for Google Maps algorithm to present a precise timeline. 

There is a significant difference between android and iOS device performance. iOS 

collects less but highly precise locations. Android collects many data points, with very 
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low accuracy. The presented timelines are wildly inaccurate and insufficient to say that 

the device was at a particular location.  

In experiment 4, we tested how well the Google Maps timeline can perform when all 

mobile networks, Wi-Fi, and Bluetooth (including scanning) are disabled and only 

available enabled setting is the location services. Tested device configuration is presented 

in Table 19. 

Table 19. Experiment 4 device configuration. 

Experiment 

Nr.  

Location 

services 

Wi-Fi Wi-Fi 

Scanning 

Mobile 

network 

Bluetooth Bluetooth 

Scanning 

4.  ON      

       

Each device behaved very differently. Samsung A3 tries to locate the device as much as 

possible with very low accuracy. Huawei located the device two times with a haversine 

distance from the validation data point – 137 meters. iPhone 7 locates the device four 

times with very high accuracy. Average Google accuracy is similar to the average 

haversine distance between test and validation data points. Average sample capture 

interval is 5.06. It ranges from 2 minutes for Samsung to 29.5 minutes for Huawei. iPhone 

device collects raw location data on average every 14.75 minutes. Experiment 4 results 

are exhibited in Figure 24. 

Figure 24. Experiment 4: Raw data point analysis. 
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With only location services enabled android devices could not present the actual route. 

Huawei located two raw data points within the experiment time frame, drawing a straight 

line in the timeline. Samsung A3 located 29 data points, where most of the points are 

located around the place where the device was disabled from the network. Additionally, 

for Samsung A3 all data points sources are CELL towers; therefore, average accuracy 

and distance from validation data points exceed 1000 meters. iPhone collected four data 

points with very high accuracy. However, it is crucial to outline that a timeline of a path 

cannot be precisely drawn from 4 raw data points. When only location services are 

enabled on the device, Google Maps timeline cannot present an accurate timeline as 

exhibited in Table 20. 

Table 20. Experiment 4: Google Maps timeline. 

Huawei P20 Lite iPhone 7 Samsung A3 

   

   

Each device behaves differently. The most accurate timeline is presented on an iPhone 

device. Android devices do not present a logical timeline with sufficient and accurate 

enough data.   

Location services were tested in the second experiment iteration to understand the 

consistency of the results. Huawei and iPhone 7 collected four data points each. iPhone 

accuracy is as good as in the previous iteration. Huawei collected four points where three 

of them are located in the same place with accuracy of 35 meters, and haversine distance 

between test and validation location of 27 meters. The second iteration of experiment 4 

results are presented in Figure 25.  
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Figure 25. Experiment 4.2: Raw data point analysis. 

Exactly the same as in the previous iteration, timeline on Huawei P20 device draw one 

straight line through two raw location data points, indicating that the device was moving 

in this direction. The timeline also indicates one visit of “Grand Poet by Samarah Hotels”. 

This hotel is in the path of our route, however it was never visited. In this iteration iPhone 

7 timeline very vaguely indicates the actual path. Also, the timeline presents a visit of 

“Riga 1st Hospital”, however it was also never actually visited, only passed by. For 

Samsung device similarly as in the previous iteration and experiment 3 (Location services 

+Mobile network) no timeline could be constructed. Even if the raw data points are on 

the experiment path, the accuracy radius around each raw data point is too big to draw a 

logical timeline. Generated timelines by the Google Maps application are presented in 

Table 21.  

Table 21. Experiment 4.2: Google Maps timeline. 

Huawei P20 Lite iPhone 7 Samsung A3 
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4.1.2 Summary 

Four different device configurations were tested with their effect on Google Maps 

timeline performance. In total, 6 experiment iterations were performed.  

Raw data capture interval is as crucial as location accuracy because the timeline can only 

be presented on a map if enough points are collected. When all applicable device settings 

are enabled, the capture interval is 2.63—indicating that a device will capture a new 

location point every 2.63 minutes. By disabling the settings one by one, the capture 

interval increases as displayed in Figure 26.  

Figure 26. Sample interval summary. 

Figure 27 presents the Google accuracy against the haversine distance. There is a direct 

correlation between these variables. When Google accuracy is large, the haversine 

distance also increases.  
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Figure 27. Raw location data point overview. 

The source of location “CELL” holds the worst performance. The two clusters of cell 

tower raw locations are two different device configurations. The highest cluster presents 

data points when only location services are enabled with a haversine distance and Google 

accuracy of around 1 000 meters. However, the dark blue cluster below the trendline 

presents data when location services and mobile networks are enabled. The majority of 

these raw data points hold an accuracy of 600 meters. The actual distance to the ground 

truth location for these points is around 100 meters indicating that Google Maps is very 

pessimistic when retrieving data from cell towers, even if a mobile network is enabled. 

Wi-Fi source raw location points hold accuracy between 10 to 104 meters and haversine 

distance between 3 to 220 meters. There are very few GPS source data points with varying 

accuracy and distance. The most accurate retrieved point is with an accuracy of 7 meters 

and a distance to validation location of 1 meter.  

N/A data points are from the iOS device, and they hold the highest median accuracy of 

16 meters and the same median haversine distance of 16 meters. 50% of all accuracy 

values lay within the 12-to-32-meter range, and haversine distance values are within the 

10-to-23-meter range. iOS device presents an excellent approximation of location 

detection with a stable certainty. There is significantly less noise in the data with only 

exact locations. There are three location sources in Android devices: CELL, Wi-Fi, and 
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GPS. Considering the average accuracy and the haversine distance, the worst performance 

is for the cell tower source. The median Google accuracy for cell towers is 699 meters, 

and the median haversine distance to the validation location is 136 meters. 50% of all 

CELL source accuracy values are between 699 to 727 meters and haversine distance 

between 76 to 275 meters. GPS source performance for both median accuracy and 

haversine distance is 17 meters. GPS source holds the lowest inter quartile range of 12 

and 13 meters. Wi-Fi source holds the same haversine distance as GPS source, however 

median Google accuracy is 7 meter higher. Google accuracy and haversine distance by 

the source of the location are presented in Table 22. 

Table 22. Experiment result overview on the location source level. 

Source of location Median of 

accuracy (m) 

1st quartile of 

accuracy (m) 

3rd quartile of 

accuracy (m) 

IQR (m) 

N/A     

Google accuracy (m) 16 12 32 20 

Haversine distance (m) 16 10 23 13 

GPS     

Google accuracy (m) 17 7 20 12 

Haversine distance (m) 17 6 19 12 

Wi-Fi     

Google accuracy (m) 17 10 34 24 

Haversine distance (m) 24 17 37 20 

Cell     

Google accuracy (m) 136 76 275 198 

Haversine distance (m) 699 699 727 28 

     

The worst performing raw location data are collected when only location services are 

enabled. Google Maps suggests accuracy of 961 meters. The calculated haversine 

distance between these locations and the validation dataset is 956 meters. Similar results 

between Google accuracy and haversine distance demonstrate the correctness of the 

accuracy assumption. When a mobile network is enabled majority of the data points are 

gathered from cell towers with significantly higher accuracy. Google’s accuracy is more 

pessimistic than the actual precision of the raw locations. The average haversine distance 

is around 50% smaller than Google’s accuracy. Mobile network data significantly 
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improves the device’s ability to gather precise locations. A combination of location 

services, Wi-Fi, and Bluetooth collects raw data with a haversine distance of 55 meters 

from the validation dataset and Google accuracy of 109 meters. With these device 

configurations, most data points have a Wi-Fi source, with some points located from cell 

towers. The best performance is when all navigation sensors are enabled. Haversine 

distance of 22 meters and Google accuracy of 29 meters present a very close 

approximation of the actual location. The average Google accuracy and haversine 

distance are presented in Figure 28. 

Figure 28. Experiment result overview on the device configuration level. 

Several additional observations are made during the experiments. Firstly, if the device is 

not connected to a mobile network or Wi-Fi, it takes above 30 minutes for the device and 

Google Account to synchronize the location data. Secondly, iOS and Android devices 

behave substantially differently in various settings due to different device features.  

4.2 Place visit identification accuracy 

In the town of Balvi, ten different locations were visited. Appendix 1 presents detailed 

detected visited location summary. Figure 29 on the left side map presents the visited 

locations numbered respectively and on the right side are the raw data location points 
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collected by the mobile devices. The visited locations were positioned in the town 

(4;5;6;7) and in rural areas (1;2;3;8;9;10).  

Figure 29. Visited places on a map, Balvi. 

The dwell time in each location was no less than 10 minutes. The results show that only 

locations positioned in the town and with a semantic meaning were presented in the 

timeline as visits. The devices detected none of the locations in the countryside with or 

without an address. The stops not presented in the timeline were only shown as if the 

device was moving through them without stopping. The Google Maps timeline detected 

50% of all visits in the town area (Figure 30).  

Figure 30. Visit success rate (%) by type, Balvi. 

Analyzing the rural area places not detected by the devices, we observe that an insufficient 

number of raw location data points does not seem to be the main reason these visits are 
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not detected. Table 23 presents two visits with respective collected raw data points. First 

visit was not detected and second visit was detected in the timeline.  

Table 23. Raw data points in visits 2;7, Balvi. 

Visit 2, 

rural 

area (not 

detected) 

 

Visit 7, 

town area 

(detected) 

 

  

Visit number two does not have an address or a semantic meaning, only physical location 

such as latitude and longitude. During the 10 minutes, 13 raw data points are collected. 

iPhone also presents visit arrival at 10:30:47 and departure at 10:40:18, indicating that 

there has been a 10-minute dwell time. Visit number seven is in the town center, 

containing 12 raw location data points. Visit two was not detected by any mobile device, 

on the contrary, visit seven was detected by two devices (iPhone and Samsung). The only 

difference between the two locations is that number two is in a rural area without semantic 

meaning, and number seven is in a town with a semantic meaning. Therefore, leading to 

a conclusion that the number of raw data points is not the main factor influencing the 

accuracy of place visit identification. We conclude that the Google Maps timeline does 

not semantically identify rural area visits. However, the Google Maps application collects 
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enough data to confirm a visit from the raw location data manually, even if it is not 

presented in the Google Maps timeline.  

For all identified visits, the average visit confidence is 82.6, and the average location 

confidence is 45. Balvi lake is an identified false positive visit by an iPhone device. This 

location may be identified because it is between several other visited places. All other 

identified visits are correct. These visits have varying semantic location confidence, 

within a minimum of 16 and a maximum of 82. All identified visits and respective 

location and visit confidence values are presented in Figure 31. 

Figure 31. Identified visits by devices, Balvi. 

In Riga, ten places were visited. Contrary to the previous iteration, we tested the visit 

type– inside or outside, not the type of the location. Visited places are presented in Figure 

32. 
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Figure 32. Visited places on a map, Riga. 

The success rate for the detected visits by the Google Maps timeline is significantly higher 

in Riga. 42% of all visits were presented in the timeline, compared to 20% in Balvi. Visits, 

where we went inside the building hold a considerably higher probability of being 

identified by the Google Maps timeline. The inside visit success rate is 75% compared to 

19% of outside visits. Visit success rate is displayed in Figure 33. 

Figure 33. Visit success rate (%) by type, Riga. 

Wi-fi access points are a significant source for a place to be identified as a visit, and the 

majority of Wi-fi access points are connected only when the device is within a specific 

range of the access point. The access point range is one of the reasons why we have 

observed that the visits inside the building hold a higher success rate. Android devices 

detected 100% of inside visits, supporting the idea that Google Maps timeline visited 

places are accurate and precise when a visit is inside a building, and the visited location 
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holds a semantic meaning. iOS device performance is not the same, and the Google Maps 

timeline application did not detect any visits precisely. 

Android devices equally identified visits 4;5;6;9;10. Additionally, the Samsung device 

identified Matisa street as a visit near the Narvesen shop that was the first visit. We 

observe that the average location confidence is significantly lower for visits that are false 

positive: “Lauvas nams restaurant”, “Pharmacy Saules” or “St. Alexander Nevsky 

Church”. iPhone identified locations that are near the actual visits. St. Alexander Nevsky 

Church is across the street from Drogas shop, Lauvas nams restaurant is also across the 

street from Daile theater. Bastejkalna park and „Ausmeņa“ kebab are false positives near 

the actual visit locations. All identified visits are displayed in Figure 34. 

 

Figure 34. Identified visits by devices, Riga. 

Table 24 presents three visits and collected raw data points during the visit time.  
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Table 24. Raw data points in visits 4;8;9, Riga. 

Visit 4 (semantic) Visit 8 (address) Visit 9 (semantic) 

   

   

Visit 4 is in the shop “Drogas”. There are 12 raw data points collected during the ten 

minutes. The Google Maps timeline detected this inside shop visit correctly from devices 

Samsung and Huawei. The iPhone device collected only two raw data points leading to a 

false-positive visit to a church near the shop. Visit 8 of a location with no semantic 

meaning was not detected even if 13 raw data points were collected during the 10 minutes. 

iPhone detected a false-positive visit to a nearby food shop, “Ausmena” kebab. Visit 9 to 

Riga's 1st hospital was detected by both Android devices. The raw data map clearly 

displays a cluster of points next to the hospital. The iPhone device collected four raw data 

points in the hospital region and did not identify a visit. All three visit raw data point 

clusters indicate a stop, however, only stops with a semantic meaning are detected by the 

Google Maps timeline.  

Locations with a semantic meaning hold the highest likelihood of being detected and 

presented in the Google Maps timeline. A location without a semantic meaning was 

detected only once. Furthermore, no physical-only locations were detected during the 

experiments. Android devices collect raw data points with lower capture intervals; hence 

Huawei has detected 50%, Samsung 70%, but iPhone device detected only 30% of the 

semantic locations. Visit success rate by mobile device and type of location is displayed 

in Figure 35. 
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Figure 35. Visit success rate by the type of location and device. 

Several factors must be highlighted when summarizing the Google Maps timeline 

performance regarding place visit identification. Location type is an essential factor for a 

visit to be identified in the application. Visits in rural areas will not be presented in the 

Google Maps timeline, even if the dwell time is above 10 minutes. Indoor visits have a 

significantly higher likelihood of being detected than locations in outdoor settings. Wi-Fi 

access point scanning is the primary method of identifying location visits. Raw location 

data points after extraction and transformation can indicate that a place has been visited, 

even if it is not presented in the Google Maps timeline. Android devices perform 

differently from iOS devices. iOS device performance is significantly worse and cannot 

present actually visited locations. When the algorithm is unsure about the visit, location 

confidence genuinely presents a low location confidence value. The value is low for the 

visits that are mainly identified wrongly. Location confidence and raw data points are 

useful indicators when recognizing if a visit has happened.
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5 Discussion 

The discussion chapter presents a forensically sound data acquisition protocol from the 

Google Maps timeline application using a mobile device. We capture and consider the 

accuracy of each extraction layer as discovered in the experiments and outline specific 

points of interest where inaccuracies may arise. Additionally, we comment on the use 

cases and limitations associated with the experiment results. 

NIST presents a mobile device tool acquisition pyramid with five layers: manual 

extraction, logical extraction, JTAG, Chip-Off, and Micro Read [65]. Each technique 

requires a different level of expertise and tools. An explicit comparison of logical 

acquisition techniques combined with vendors and physical acquisition techniques is 

presented by S. C. Sathe and N. M. Dongre in [66]. We propose a four-layered data 

acquisition approach (Figure 36) for each location data type available in the Google Maps 

timeline depending on the access level to the Google account, mobile device condition, 

and case unique characteristics.  

Figure 36. Data acquisition methods and respective data types. 

As mentioned by Casey and Rose, forensic examiners must hold a solid knowledge of the 

technology that edits, arranges, interprets, and displays the underlying forensic data [33]. 

Google Maps timeline arranges and interprets the raw location data to be understandable 
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for the end-user in the timeline. The vaguest and most unreliable data level is a visual 

inspection of the Google Maps timeline in the application or through screen captures of 

the timeline. Forensic examiners must understand the limitations and algorithms behind 

the displayed data while interacting directly with the app or visually examining a photo 

of the Google Maps timeline. KML raw data exported from the application is a geographic 

interpretation of the timeline as seen in the application. Most detailed and unprocessed 

location data is retrieved as JSON files from the Google Takeout service.  

The manual data acquisition layer is linked with a direct inspection of the timeline in the 

app and a visual inspection of the timeline images. Logical acquisition layer is linked with 

KML and raw JSON file acquisition and analysis.  

5.1 Manual data acquisition 

NIST defines manual data acquisition as employing the user interface to retrieve the 

information directly on the mobile device screen [65]. Google Maps timeline can be 

viewed on the phone using the screen captures of the map or directly by interacting with 

the app that is running on the device.  

Visual exploration of a screen capture of the timeline 

1. Data interrogation 

The Google Maps timeline screen capture can be manually observed on the individual's 

mobile device or after acquiring an image of the device’s memory. Additional software 

or hardware is not needed to analyze the presented data. Before looking into the timeline, 

observe the mobile device's status bar if it is available on the screen capture. Digital 

investigators must understand what navigation sensors were enabled when the screen 

capture was made.  First, observe how precise are the lines snapped on the roads. The 

more precise the lines, the more frequently the raw data points have been captured. 

Second, observe if there are any location visits presented in the timeline by looking at the 

different icons on the route. Each visit address can be separately viewed in other mapping 

application and the nearby locations can be detected and analyzed. Third, analyze the 

overall surroundings, whether the timeline is in a rural area or a city. Depending on the 

environment, the accuracy of the raw data points and visits will vary. Table 25 exhibits 

the proposed data interrogation process for visual exploration of a capture of the timeline.  
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Table 25. Proposed data interrogation process for exploration of a screen capture. 

1. Acquire the screen capture 2. Create a backup for the screen 

capture 

3. Note enabled navigation sensors (Wi-

Fi, Mobile network, Location 

services) and date of the timeline 

 

 

 

4. Note the environment of the timeline 

– this affects the accuracy of the 

route and visit detection   

 

5. Observe the lines snapped on the 

roads and intersection points between 

the lines – these are the locations of 

the raw data points 

 

6. Observe the icons on the route – 

they indicate a visit or type of 

movement and using a different map 

view these locations 

 

  

2. Accuracy 

If all navigation sensors are enabled (location services, mobile network, and Wi-fi), then 

the probability that the device was moving in the given direction is very high. The direct 

lines between the raw data points present the possible route; however, they should not be 

used in the analysis. Observe the data points in intersections between the lines because 
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these points present where the raw data points are actually placed. The visit accuracy 

depends on the type of the location and the environmental surroundings. There is a high 

likelihood that most of the visited locations will not be presented in the rural areas. It will 

be shown that the device moved through the visited location without stopping. In the city 

environment, locations where the mobile device was inside and that hold a semantic 

meaning hold a 75% probability of being detected if the visit time is above 10 minutes. 

Visits of addresses or physical locations are more ambiguous and may not be presented 

correctly.  

3. Use cases  

This acquisition level is practical only when screen captures of the timeline are available. 

These can be received or created screen captures discovered on the mobile device or any 

other storage account. No access to the Google user account is needed, hence we are not 

required to acquire legal access to the cloud account. The data examination is quick and 

data manipulation or improper handling issues are more unlikely then for other extraction 

layers. The locations are only approximate without any accuracy indications. We propose 

that the data from this layer can only be used to support other evidence rather than being 

as a distinct finding used as primary evidence. 

4. Limitations 

Google Maps timeline provides the end-user with a summarized data review of the visits 

and modes of travel. Any data modification or deletion in the Google Maps timeline 

cannot be distinguished from an actual event on the screen capture. The data attribution 

is impossible because we cannot confirm who was logged in to the Google account or 

used the device from a screen capture. Data validation is complicated and close to 

impossible.  

Direct interaction with the Google Maps timeline 

1. Data interrogation 

The data interrogation must be documented in a video to present a valid chain of custody 

process. The video presents the data as it was at the moment of analysis. Google Maps is 

an application where data is stored in the cloud, hence data modification can be done 

remotely. The mobile device with a logged-in Google account should not be moved not 



79 

to alter the existing timeline. Before interrogating the timeline, it is crucial to document 

what navigation sensors are turned on the mobile device because it affects the accuracy 

of the timeline. After opening the Google Maps application, observe what account has 

been logged in. Afterward, select the day of interest. Observe each event in the timeline 

separately – a visit or a travel route. First, review where the possible raw location data 

points are collected. These are points in between the line intersections of the route. 

Discard the line of the route as it is not valid and accurate. Second, detect the time of each 

travel or route. Combining raw data with timestamps may determine the device's 

approximate time at a particular raw data point. Third, observe the environment (rural or 

city) and visited location types (semantic, address, or physical). These variables directly 

affect the accuracy of the timeline. Direct interaction with the timeline data interrogation 

process is exhibited in Table 26. 

Table 26. Proposed data interrogation process for direct interaction with the timeline. 

1. If possible, do not move the mobile 

device 

2. Turn on the video recorder, record 

time, name of the investigator and 

start recording the timeline 

interrogation 

3. Note enabled navigation sensors 

 

 

4. Open Google Maps application  

 

5. Record the account that is logged in 

to the Google Maps application 

 

6. Open Google Maps timeline 

 

7. Detect location history settings 
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8. Select the day of the interest 

9. Zoom-in the timeline and record the 

timeline throughout the route 

 

10. Note the environment of the timeline 

– this affects the accuracy of the 

route and visit detection   

 

11. Observe the lines snapped on the 

roads – how often the raw data has 

been captured 

 

12. Observe and expand the intersection 

between lines that have different 

angles – these are the locations of the 

raw data points 

 

13. Observe visited locations – duration, 

type (rural/city or inside/outs), 

nearby locations 

14. Observe the locations that are nearby 

the route – some visits may not be 

detected in the timeline 
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15. Save the recording and turn off the 

video recorder 

 

  

2. Accuracy 

Similar to the previous extraction layer, the accuracy depends on the enabled navigation 

sensors and external environment. If Wi-Fi, location services and mobile network are 

enabled then the raw location data points are collected every 2.63 minutes. This capture 

interval is sufficient to describe an approximate route. We propose that there is a very 

high to 100% probability that the device was within 30 meters from the route presented 

in the Google Maps timeline. We cannot observe if a visit may be missing in this 

extraction layer because we still cannot see the raw data points. As we observed in the 

experiments, even if a visit is not detected, there may be clusters of raw data points that 

should be manually observed indicating a visit, for example, in a rural area. Mainly 

semantic locations are detected as visits; therefore, for detailed analysis, the list of visits 

may be inaccurate, especially if visits are in only address or physical locations.  

3. Use cases  

A manual data acquisition technique can be used to retrieve the information instantly and 

in cases of non-cooperative circumstances. These include when the owner of the Google 

account is not providing their log-in credentials. At the same time, the account is logged 

in the application, and manual data viewing is feasible on the mobile device. Additionally, 
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this extraction technique can be used to retrieve the data as fast as possible and to support 

other evidence. The manual interrogation of the Google Maps timeline can be used as a 

first step to examine if any location data is collected and to support further examination 

of raw JSON data. The timeline can work as a motivating factor to demand legal access 

to the Google account and further raw data extraction.  

4. Limitations 

Manual data extraction in the application is impossible if the mobile device screen is 

damaged and the device is not interactive [65]. Google account can be active on several 

mobile devices or computers, and data modification can be done from another device 

while the forensic process occurs. Therefore, data must be captured as soon as the device 

is seized. The forensic investigator interacts with the application directly, and data 

modification errors can occur that should be documented during the interrogation. Actual 

raw data points cannot be seen, and only the approximate timing of location visits that 

Google believes reflects the truth are available. Data attribution is an issue because the 

Google account could have been used or the mobile device could have been carried by 

another person.   

5.2 Logical data acquisition 

Logical data acquisition is one level above manual acquisition. This method requires 

additional equipment and training. The connection between the mobile device and the 

forensic workstation is created using a cable or wireless connectivity, such as Wi-Fi or 

Bluetooth [65]. The forensic workstation contains specialized software that assists in the 

logical acquisition process. For this research, two fundamental techniques of logical data 

extraction from iOS and Android operating systems are used: Android Debug Bridge 

(ADB) and iPhone Backup Extractor. Appendix 3 presents the steps completed to perform 

ADB and iPhone Backup Extractor. A logical data extraction flow from the Google Maps 

timeline to the mobile device and a forensic workstation is presented in Figure 37. 
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Figure 37. Logical data acquisition process flow. 

The first part of the diagram depicts data downloaded locally on the device, and the 

second part depicts data extraction from the downloads folder to an external forensic 

workstation. The forensic investigator can select an appropriate logical acquisition 

method depending on technical availability and knowledge. The main requirement is that 

during the data extraction from the mobile device to a forensic workstation, the data is 

maintained in its original form, supporting throughout the chain of custody and integrity.  

KML geographic annotation data extraction 

1. Data acquisition 

The KML data can only be downloaded from the Google Maps timeline web page and 

not directly from the application. Forensic investigators must open timeline.google.com 

in the browser of the device of interest and export geographic annotation data from the 

timeline.  KML data extraction is presented in Table 27. 

Table 27. Acquiring geographic annotation data from the timeline. 

1. Open timeline.google.com in the 

browser of the device of interest and log 

in to the Google account if required 

 

 

2. Select day or period of interest 
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3. Select “Export this day to KML.” 

 

4. Download the files locally on the 

device downloads folder 

 

5. Perform data acquisition from the 

mobile device downloads folder to a 

forensic workstation 

  

2. Data interrogation 

Geographic annotation of location data from the Google Maps timeline can be exported 

using KML files. The forensic investigator must know how to transform and understand 

these KML files. Acronym KML stands for Keystone Markup Language. KML files can 

be displayed in various geographic data browsers, like Google Earth, Adobe Photoshop, 

and ESRI ArcGIS Explorer [67, pp. 53–55]. This file presents the same travels and visits 

data as the Google Maps timeline with additional raw data points. Furthermore, this data 

set presents the sequence number of the event and the travel type or visited location 

category. A logical timeline can be recreated from this data in any other system.  

3. Accuracy 

This acquisition level is the first step of data acquisition, where the data is extracted from 

the application to a forensic workstation. The forensic value of the extracted data is above 

manual acquisition because raw data points, even those not in-line with the route or visit, 

are presented in the KML file. The raw data point absence is the major flaw in the manual 

acquisition level. As observed in the experiments, the accuracy of the raw data points 

varies based on the enabled navigation sensors. With all navigation sensors enabled, the 

average Google accuracy for these raw data points is 29 meters, with the average 

haversine distance to the ground truth even more precise at 22 meters. Raw data points 

hold higher forensic value than the already generated timeline. Detected visited location 

accuracy depends on two factors: navigation sensors and the visit type. KML export only 
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shows visits that were detected by the application. However, there can be no assurance 

that a visit will be detected by the Google Maps timeline. Only visits with probabilities 

above a certain threshold are presented in the Google Maps timeline. Even if the location 

probability is low, the visit probability must be above 60 points to be presented to the user 

in the application. Visit detection is also based on the unique features of the Google 

account, therefore the outcome can be different for two different Google accounts. 

Accuracy depends on the environment and enabled navigation sensors. If a visit is 

detected in the timeline and is in this export, then there is a high likelihood that the visit 

occurred, or the user was somewhere near the visited location. 

4. Use cases 

The view of the timeline provided by Google Maps is a product of the applied algorithms 

to the raw data points. KML data can be used to gain an insight into the underlying data 

of the timeline. However, this export does not present all the collected data, only 

particular data points that Google algorithm has linked with the timeline. This extraction 

layer is beneficial when the forensic investigators want to recreate the timeline by 

themselves and want to see the raw location data points within the timeline. Additionally, 

the data can be analyzed and presented in another system that may suit better for specific 

cases.  

5. Limitations 

The major limitation of this acquisition layer is that it requires knowledge of how to work 

with KML files. Additional software is needed to analyze and present the KML files, that 

can create additional questions about the integrity of the data modification. Google 

algorithm may calculate and present a wrong route or a visit. With the KML export it is 

not possible to assure the correctness of the visits and routes. Log-in access to the Google 

account may be required to download the data from the web browser of the device of 

interest.  

JSON raw location and semantic location history data 

1. Data acquisition 

Location history and semantic location history data are exported separately from Google 

Maps using the Google Takeout service. This service supports exporting raw location 
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history and visited place history data as presented in Table 28. The raw data contains raw 

physical location data points in records JSON file and semantic location history in 

separate JSON files for each month. The data can be extracted directly from the Google 

Maps application.  

Table 28. Exporting raw location history from the Google Maps application. 

1. Open Google Maps application on 

the device of interest 

 

2. Select the logged in Google account 

 

3. Select “Your data in Maps” 

 

4. Scroll down and select “Download 

your maps data” 

 

5. Select all maps data and “Create 

export”. Step may require account 

password.  

 

 

6. Download the files directly on the 

device downloads folder from the 

received e-mail. 
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2. Data interrogation 

This data acquisition layer requires the highest level of data transformation and 

manipulation. All data is in raw format, and specific skills to read and transform JSON 

files are required. This dataset presents all physical location data points with respective 

accuracies and timestamps collected by the application. The source of the raw location 

data point can be retrieved from the raw data export. Review the source of each location 

point, it will suggest the accuracy level. Cell tower source holds the highest average 

accuracy of 600 meters, following Wi-Fi and GPS. A timeline can be recreated by placing 

the latitude and longitude points on a map and joining them based on timestamp. 

Distinctive clusters of raw data points may indicate a visit. Comparing these clusters with 

semantic location history can expose visits that are not detected by the Google Maps 

timeline.  

Semantic location history files present visited place name, address, physical location, and 

duration. In addition to the visited places, semantic location history files provide 

confidence values of each visit that must be considered when analyzing the data.  Observe 

all visits, with the respective raw data points. Note the visit and location confidence 

values. Higher confidence values indicate higher likelihood of the event. Compare the 

visit data with raw location data, to support the insight of both datasets. A combination 

of raw data and visited locations is forensically valuable evidence that can be used as a 

primary source of proof. A complete logical timeline of movements can be recreated with 

both datasets, and accuracy can be reviewed for each raw data point separately, making 

the evidence analysis trustworthy and complete. 

3. Accuracy 

This extraction layer is the most forensically valuable source of location data from the 

Google Maps timeline. The accuracy of raw data points is available, therefore providing 

insight into the extent to which the forensic investigator should rely on each data point. 

Even if the navigation sensors are enabled or disabled at different times, the source of the 

location data shows the specific point's respective accuracy. As observed in the 

experiments, Google Maps is more pessimistic about location accuracy, and the actual 

accuracy is even more precise than what is suggested. Forensic investigators can expect 

that the device was in the radius of the Google’s suggested data point’s accuracy.  
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Visited places can be observed in the semantic location history files or as clusters of raw 

data points. Various location types are less likely to be detected, such as rural areas and 

only address locations; hence, other not detected visits can be discovered by reviewing 

the raw data point locations. Additionally, the detected semantic location accuracy can be 

examined using a location confidence value. The location confidence for false-positive 

visits is significantly lower than for visits that were detected correctly. 

4. Use cases 

Logical data extraction from the Google Maps timeline is performed when the forensic 

investigator has access to the Google account. Additionally, this extraction layer requires 

time and knowledge, therefore is only valid in cases when time is not a substantial 

constraint. This level of data acquisition can be used to support previous level findings at 

a later stage of the investigation. For example, if a visit is detected in the Google Maps 

timeline in the manual acquisition process, the finding can be supported by raw data point 

and semantic location history analysis.  

5. Limitations 

Additional software is needed to securely transfer the downloaded information from the 

device to a forensic workstation. The forensic investigator must know how to transform 

and understand JSON location files and the meaning of the various fields in these files. 

This technique allows a detailed investigation of raw location data points retrieved by the 

device and reviews all data points associated with an activity or a visit. This level of 

location data investigation requires time and resources. All data needs to be validated 

because there is high risk of improper data manipulation and presentation that can 

disregard the data validity. Since data is stored in remote cloud servers, issues may arise 

in getting access to the cloud account in time. 
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6 Conclusions and future research 

This research has helped us to understand the forensic value of the Google Maps timeline 

data. We have first analyzed and understood the location data retrieved from the Google 

Takeout service. Additionally, we have performed ad-hoc experiments to gather a general 

understanding of the application's performance. Second, we have performed two types of 

controlled experiments to evaluate navigation sensor impact on data and place visit 

identification accuracy. Based on the observed phenomena we have developed a four-

step acquisition protocol for location history data collected and presented in the Google 

Maps timeline. The key findings of the research are summarized in four points:  

1. Based on the navigation sensor accuracy experiments we observed that the 

enabled navigation sensors directly impact the collected raw location data 

accuracy and the precision of the timeline. Overall, Google’s accuracy is more 

pessimistic than the actual precision of the raw locations. The experiment results 

support the research [3] where four device configurations are tested (2G, 3G, Wi-

Fi and GPS). In our research we have tested location services, mobile network, 

Wi-Fi/Wi-Fi scanning and Bluetooth/Bluetooth scanning navigation sensors.  

2. The outcome of visit detection accuracy experiments shows that visit types in the 

city and with a semantic meaning hold a significantly higher probability of being 

detected by the Google Maps timeline. Rural area visits and those with only 

physical or address locations are not presented in the timeline after 10 minutes of 

dwell time. As mentioned in [20], the personal map concept can include 

individually significant places and routes. Therefore, visit detection accuracy can 

only be generalized to a certain extent because each user account has individual 

characteristics that may assist the application in detecting a particular location.  

3. Location-based applications and Google Maps timeline are highly valuable 

sources of evidence from mobile devices. Majority of prior research [7], [8], [26], 

[31], [9] focus on location data stored locally on the mobile device and less in the 

cloud accounts. As mentioned in [27], there is additional complexity in analyzing 
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mobile cloud applications because the cloud and mobile device’s local 

environments are separated. Our proposed data acquisition protocol only interacts 

with the data stored in the Google account and the cloud environment. The 

acquisition process consists of manual and logical evidence acquisition, and each 

layer holds certain data interrogation steps, use cases, accuracy, and forensic 

value.  

4. Publicly known cases and remarks in [2], [32] as well as digital evidence 

admissibility standards mentioned in [34]–[39], justifies the importance of 

throughout Google Maps timeline examination before it can be used as a data 

source for an expert report in court. We have observed limited research to date 

about data acquisition from widely used mobile device applications and the 

respective cloud accounts. The research we have performed, and the proposed 

acquisition protocol informs the forensic community about the validity of the data, 

limitations that must be considered and appropriate handling procedures.  

Future research 

Primarily, this research should be extended with more devices as we have only analyzed 

three. Our validation data was collected on Samsung Galaxy S21, influenced by device-

specific navigation sensors.   

Secondly, each Google account holds individual features that influence the timeline. It 

would be necessary to further investigate the actions online or in the application, and the 

user attributes, such as gender or age, affect on the Google Maps timeline. Google Maps 

performance and collected data can be tested in an active condition, when navigation is 

working. Google states that the user search history can affect the visit recommendations 

in the Google Timeline [63]. There are no available research that confirms how often the 

data is modified based on the user search history. Future research could analyze how 

frequently this occurs in practice. 

Thirdly, we have observed that there is missing academic literature on the accuracy of 

different location-based applications in the context of digital evidence extraction. We 

believe that it is integral to test and review more applications in the future, such as Apple 

Maps. These types of research would benefit the forensic community, as the export 

reports would be less challenged in the court because of extensive academic research.  
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Appendix 1 Visited location detailed data matrix 

Visit detection success rate %, Balvi 

Nr.  Type 

iPhone7 

Plus 

Samsung 

Galaxy A3 

HuaweiP20 

Lite % 

1 Rural 0 0 0 0% 

2 Rural 0 0 0 0% 

3 Rural 0 0 0 0% 

4 Town 0 0 1 33% 

5 Town 1 1 0 67% 

6 Town 1 1 0 67% 

7 Town 0 1 0 33% 

8 Rural 0 0 0 0% 

9 Rural 0 0 0 0% 

10 Rural 0 0 0 0% 

  
20% 30% 10% 20% 

 

Visit detection success rate %, Riga 

Nr.  Type 

iPhone7 

Plus 

Samsung 

Galaxy A3 

HuaweiP10 

Lite % 

1 Outside 0 0.5 0 17% 

2 Outside 0.5 0 0 17% 

3 Outside 0 0 0 0% 

4 Inside 0.5 1 1 83% 

5 Inside 0 1 1 67% 

6 Inside 0.5 1 1 83% 

7 Outside 0 0 0 0% 

8 Outside 0.5 0 0 17% 

9 Outside 0 1 1 67% 

10 Inside 0 1 1 67% 

   20% 55% 50% 42% 
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Appendix 2 Google Maps permissions on a mobile device 

Permission name Collected data Available for 

Google Maps 

application 

Body sensors Sensor information about the user's body No 

Calendar Usage of the default calendar No 

Call logs Call history No 

Camera Use a camera to take pictures Yes 

Contacts See contact list Yes 

Location Request device's location Yes 

Microphone Record audio Yes 

Nearby Bluetooth devices Discover and connect to nearby devices Yes 

Phone Make and manage phone calls No 

Physical activity Request information and recognize physical 

activity types 

Yes 

SMS See and send text messages No 

Storage Request files from the phone in storage Yes 

Files and media Request files from the phone Yes 
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Appendix 3 iPhone Backup extractor and ADB process 

The iPhone Backup extractor required four steps to be performed:  

1. Install and run https://www.iphonebackupextractor.com/  

2. Using a cable to connect the device with the computer 

3. On the device, select: “Allow this device to access photos and videos.” 

4. Open the downloads folder and download the files locally on the computer 

Android Debug Bridge required five steps to be performed:  

1. Download and unzip Android SDK Platform files 

2. Run command prompt in the respective directory 

3. Allow developer tools on the mobile device and select USB debugging 

4. Connect the device with the computer with a USB cable and switch to the file 

transfer mode 

5. Save files from the downloads folder from the phone to the computer with the 

“./adb pull” command 

https://www.iphonebackupextractor.com/

