
TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Informatics
Chair of Software Engineering

MOBILE APP DEVELOPMENT USING
AGILE AGENT-ORIENTED MODELLING

Master Thesis

Author: Irina Vorontsova

Student code: 040685 IAPM

Supervisor: Alexander Horst Norta,

Tanel Tenso

Tallinn

2015

Author declaration

I hereby declare that this thesis is based on my own work. All ideas, major views and data

from different sources by other authors were only used as reference and/or for research

purposes. The thesis has not been submitted for any degree or examination in any other

university.

Irina Vorontsova

Date Signature

1

Abstract

This work is devoted to the problem of evaluating a novel Agile Agent-Oriented Mod-

elling(AAOM) method for engineering requirements in an agile software development

process.

Currently, the use of agile methods during software development is a standard practice,

and user stories is one of the most popular practices of breaking complex system require-

ments into smaller pieces.

However, user stories alone are not helping to understand a bigger picture of the sys-

tem goals. There are some methods that try to solve this problem, but according to

our experience most of them lack visual component and are often too heavy for smaller

projects.

The AAOM method was developed to address this gap by adding a visual approach to ag-

ile requirements engineering that links goal-model creation techniques taken from agent-

oriented modelling and connects them intuitively to user stories.

The case study based evaluation of this master thesis proves the applicability of AAOM

for requirements engineering in an agile software development process. The case of study

is development of mobile application to connect lost and found items with their own-

ers.

The thesis is in English and contains 46 pages of text, 6 chapters, 6 figures, 16 ta-

bles.

2

Annotatsion

Käesolev lõputöö tegeleb Agiilse Agent-Orienteeritud Modelleerimise(AAOM) metood-

ika kasutamise evalueerimisega nõuete kogumiseks. AAOM uudne metoodika on mõeldud

kiireks nõute selgitamiseks agiilse lähenemisega tarkvara arendusprotsessides.

Agiilsete metoodikate kasutus tarkvara arenduses on tänapäeval kujunenud standardiks.

Kasutuslood (User Stories) on sagiilsetes praktikates üks kõige populaarsemaid vahen-

deid, et tükeldada suuri ja keerulisi süsteeme väiksemateks tükkideks.

Samas kasutuslugudest üksinda ei piisa suurema pildi saamiseks süsteemi eesmärkidest.

Selle puuduse kompenseerimiseks on välja töödatud mõningaid meetodeid. Meie koge-

musel enamustel neil puudub aga visuaalne esitlus ja tihti on nad liiga rasked väiksemate

projektide jaoks.

AAOM meetod on välja töödatud selleks, et lahendada täpselt neid kahte probleemi

lisades lihtsa ja visuaalse lähenemise agiilsele nõudmiste kogunemisele. Meetod proovib

intuitiivselt ühendada eesmärgipuude modeleerimise agent-orienteeritud modelleerimise

raamistikust ja kasutuslood agiilsest tarkvara arendusest.

AAOM meetodi rakendatavus tõestatakse käesolevas magistritöös juhtumiuuringu mee-

todi abil. Uuritavaks juhtumiks on agiilse lähenemisega loodud mobiilirakendus mille

abil saab kaotatud ja leitud esemeid kokku viia nende omanikega.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 46 leheküljel, 6 peatükki, 6 joon-

ist, 16 tabelit.

3

Glossary

RE − RequirementsEngineering

XP − ExtremeProgramming

SAFe − ScaledAgileFramework

AOM − Agent−OrientedModeling

AAOM − AgileAgent−OrientedModeling

LOC − LinesOfCode

4

Contents

1 Introduction 10
1.1 Requirements Engineering . 10

1.2 Cornerstones . 10

1.2.1 Agile . 10

1.2.2 Requirements engineering in agile 11

1.3 Gap detection . 12

1.4 Agile Agent-Oriented Modelling . 13

1.5 Research questions . 14

1.6 Research framework . 15

1.7 Thesis structure . 15

2 Research Background 16
2.1 Introduction . 16

2.2 AAOM method explanation . 16

2.2.1 Description . 16

2.2.2 Notations . 16

2.2.3 Approach for creating goal models 17

2.3 Case: Lost&Found mobile app project 18

2.3.1 Idea and goals . 18

2.3.2 Lost&Found app concept . 19

2.3.3 Project setup . 19

2.3.4 App implementation details . 22

2.3.5 Results . 24

3 Case study research method adaptation 25
3.1 Introduction . 25

3.2 Case study design . 25

3.3 Data sources . 26

3.4 Analysis procedure . 27

4 Data collection: interviews 28
4.1 Introduction . 28

4.2 Planning the interviews . 28

4.2.1 Interview questions . 29

4.3 Interviews conduction . 29

4.4 Preparing the interviews for analysis . 29

4.5 Coding the interviews . 30

5

4.5.1 What is the coding . 30

4.5.2 Codes . 30

5 Interviews analysis 32
5.1 Introduction . 32

5.2 Interviews’ codes analysis . 32

5.2.1 Codes attributes . 32

5.2.2 Formula - finding a value of the code 33

5.3 Analysis of interviews codes by theme 34

5.3.1 Benefits . 34

5.3.2 Collaborative Modelling . 34

5.3.3 Drawbacks . 35

5.3.4 Elaboration Sessions . 35

5.3.5 Expectations . 36

5.3.6 Method Clarification . 36

5.3.7 Method Comparison . 37

5.3.8 Modelling Suitability . 38

5.3.9 New Ideas . 38

5.3.10 Participation . 39

5.3.11 Time Taken for Modelling Activities 39

5.3.12 Tools Usage . 40

5.3.13 Visual Representation . 40

5.4 Analysis summary . 41

5.4.1 Gathered data limitations . 41

5.4.2 Results . 41

5.4.3 Method improvements . 43

6 Conclusion 44
6.1 Summary . 44

6.2 Answers to research questions . 44

6.3 Limitations, open issues, future work . 45

A Appendix - Interview Questions 48
A.1 Client questions . 48

A.2 Analyst questions . 49

A.3 Developer questions . 50

B Appendix - Codes and Formula 51

6

C Appendix - Design concept for Lost&Found mobile app 54

D Appendix - Goal models for Lost&Found mobile app 55
D.1 Main goal model . 55

D.2 Goal model for lost items . 56

D.3 Goal model for lost animals . 57

D.4 Goal model for lost people . 57

D.5 Goal model for giveaways . 58

D.6 Goal model for pre-registered items . 58

D.7 Goal model for venue management . 59

D.8 Goal model for revenue collection . 59

D.9 Goal model for user handling . 60

7

List of Figures

1 Example of goal model . 13

2 Example of goal model with user stories attached 14

3 The notation for goal model . 17

4 Trello scrum board . 21

5 Draw.io diagram for goal models . 21

6 Bitbucket wiki for the Lost&Found project 22

8

List of Tables

1 Mobile permissions required by the Lost&Found app 22

2 Predefined coding themes . 31

3 Grounded coding themes . 31

4 Codes for theme ”Benefits” . 34

5 Codes for theme ”Collaborative Modelling” 34

6 Codes for theme ”Drawbacks” . 35

7 Codes for theme ”Elaboration Sessions” 36

8 Codes for theme ”Expectations” . 36

9 Codes for theme ”Method Clarification” 37

10 Codes for theme ”Method Comparison” 37

11 Codes for theme ”Modelling Suitability” 38

12 Codes for theme ”New Ideas” . 38

13 Codes for theme ”Participation” . 39

14 Codes for theme ”Time Taken for Modelling Activities” 39

15 Codes for theme ”Tools Usage” . 40

16 Codes for theme ”Visual Representation” 40

9

1 Introduction

1.1 Requirements Engineering

Requirements engineering (RE) is an important software development activity and usu-

ally one of the first phases. It is a process of formulating, documenting and managing

the requirements for software [31, 15]. It consist of [31]: requirements identification,

analysis, documentation and validation.

Often, clients are not sure about what they want or need, and the RE process helps to

translate the client’s unclear abstract ideas into precise and complete specifications under-

standable and implementable by developers. Too late detected errors in the RE-phase can

be very costly [6], or might culminate in incorrectly running software when undetected at

all.

Requirements engineering in agile software development methods will be discussed in

this chapter, as agile is the most standard way of developing software today [1].

1.2 Cornerstones

1.2.1 Agile

Nowadays, software release life cycles are shortened because of a quickly changing re-

quirements [8], and waterfall-like development methods are not suitable any more for

such a changing environment. An iterative approach for building and delivering small

parts of software incrementally comes in as a solution for rapidly-changing requirements:

Agile [11, 4].

Agile software development is a group of software development methods, which are char-

acterized by [26]:

1. Time-boxed iterative and incremental development

2. Frequent delivery of usable software

3. Collaboration with customer

4. Teamwork, self-organizing and cross-functional teams

5. Ability to quickly respond to changes

10

With an ability to ease adaptation to changing requirements, agile is widely used in soft-

ware development projects by 88% [1] of developers.

1.2.2 Requirements engineering in agile

The RE-process in agile can vary a bit based on the chosen framework (Scrum, XP,

Lean, Kanban), but there is a common list of practices used for managing RE [4, 26,

17, 3]:

1. Face-to-face communication over written specifications

2. Iterative RE

3. Requirement prioritization goes extreme(continual re-prioritization and business

value driven prioritization)

4. Managing requirements change through constant planning

5. Prototyping

6. Use review meetings and acceptance tests

Writing user stories is one of the most popular and simplest techniques used in agile

software development for requirements engineering [9, 25].

A user story is a written sentence or two that describes a desired functionality from the

system’s user point of view.

There are several formats and concepts for agile user stories, while for this research a

format proposed by [9] is used:

As a <role/type of user>, I want <goal/desire>so that <benefit/reason>.

The last part ”so that <benefit>” can be omitted if the goal describes the benefit/reason

well enough.

Examples:

As a user, I want to reserve a hotel room.

As a frequent flyer, I want to rebook a past trip, so that I save time booking

trips I take often.

A user story must be small enough to be implemented within one iteration. Larger user

stories should be separated into smaller user stories [9].

11

1.3 Gap detection

There are some common problems within RE in agile development [26]:

1. Problems with accurate cost- and schedule estimation

2. Inadequate or inappropriate architecture

3. Neglect of non-functional requirements

4. Customer access and participation

5. Prioritization on a single dimension (business value only)

6. Inadequate or a lack of requirements verification (agile RE focuses more on require-

ments validation)

7. Minimal documentation

While using user stories has mitigated some of the problems listed above, there are further

shortcomings [9]. For example, breaking up user stories into smaller pieces helps to

organize tasks, while one of the limitations is that it is hard to get a bigger picture.

There are methods to mitigate these problems, namely Scaled Agile Framework(SAFe)

[20] and a lean approach to agile requirements [19, 21], but these approaches are not

really visual and, according to our experience, not graspable from the start by client. Fur-

thermore, these methods are meant for large enterprises and too heavyweight for smaller

projects where it is important to establish a conversation with clients and align everybody

to the same set of goals.

On the other hand, goal modelling techniques exist that are developed exactly for depict-

ing system goals in a visual way. Goal based requirements engineering has been known

for a while [15, 10, 34, 35] and are concentrating on eliciting requirements based on the

use of goals that need to be achieved by the target system. One of the examples of goal

modelling techniques is described in agent-oriented modelling(AOM) [32]. In addition

to functional goals, AOM-goal models also include roles and quality goals (explained in

Chapter 2.2.2).

Similar to SAFe and approach by Leffingwell [21] an idea of goal models is to provide

hierarchical view of tasks for solving complex problems. But the benefit of goal models

in front of preceding methods is simpler layout and visual composition [32, 10]. Knowing

this advantage we came to an idea of combining agile development requirements artifacts

via AOM goal models. We call this method Agile Agent-Oriented Modelling (AAOM)

[33] and intend to find out whether this method is as sufficient as established methods

12

while being more lightweight.

1.4 Agile Agent-Oriented Modelling

The AAOM method is based on the Agent-oriented modelling(AOM) technique. The

AOM is a holistic method for analyzing and designing socio-technical systems consisting

of humans and technical components, as offered by [32].

We choose AOM because the models used in AOM are intuitively understandable for any

stakeholder, even nontechnical people [32]. Goal models were chosen from among of all

other AOM models to be used in the AAOM’s RE approach because goals and quality

goals on those models are representing functional and non-functional requirements of the

system. Goal models also define roles and relationships between roles and goals/quality

goals.

Goal model’s example is presented in Figure 1.

Figure 1: Example of goal model

In the AAOM method user stories are attached to lowest level sub-goals (Figure 2) in that

way so that it allows to trace how every user story is connected to system’s top goal.

13

Figure 2: Example of goal model with user stories attached

All concepts of the AAOM and approach of goal model’s creation are described in details

in Chapter 2.2.

1.5 Research questions

The main research question of the current master thesis is: how suitable is AAOM for

RE in agile software development? The main question is divided into next set of sub-

questions:

1. How to evaluate AAOM with a suitable research method?

2. How to collect data for an AAOM-evaluation?

3. How to analyze the collected data?

14

1.6 Research framework

In order to answer research questions, a research methodology should be chosen. For

evaluating of the AAOM method two options were available: an experiment or a case

study.

An experiment requires to have a controlled environment where to perform checks and

compare the results of manipulating one or more variables [27]. In case of evaluating the

AAOM method for RE we need to find an agile software development project that agrees

to interferences from researchers in project’s RE phases, or to create an artificial project,

maybe even isolate only RE process for studying. While it is already quite hard to find this

kind of project, and creation of one would require too much effort, we are more interested

in how the method would be used in a more realistic environment. That is where the case

study research method suits the most.

Case study in software development implies that the method or technology will be ob-

served and investigated in a real-life settings on a specific demonstration case [29, 28]. A

case might be a specific project, or a company, or a concrete team, where the method or

technology will be applied.

The case study approach and design used for this master thesis is described in Chapter

3.

1.7 Thesis structure

In Chapter 2, the Agile agent-oriented modelling method is introduced in details and the

case, project for mobile app development Lost&Found, is presented.

In Chapter 3, case study research method is introduced together with design, data sources

and analysis description.

Chapter 4 contains a description of the data collection stage of a case study, we are con-

centrating on the interviews as a main source of data.

In Chapter 5, interviews analysis is performed and results of the analysis are presented.

Finally, Chapter 6 concludes the master thesis results and gives open issues for future

work.

15

2 Research Background

2.1 Introduction

In order to proceed with the given case study, the objective of the research and a running

case are introduced and explained in this chapter.

The AAOM method is the object of current research and is aimed at mitigating the prob-

lem of getting overview of the project’s main goals for all stakeholders in the RE phase in

an agile development environment. It is based on goal models taken from agent-oriented

modelling and connects them to user stories, artifact from agile RE.

The Lost&Found mobile app development project is a running case where the AAOM

method is applied during the iterative RE phases. Project aim is to create a mobile app to

help people to find lost items and provide an easy way to report findings.

2.2 AAOM method explanation

2.2.1 Description

The AAOM method is a technique for collecting and documenting requirements and at

the same time resolving the problem of comprehending primary system goals in an agile

software development environment [33]. The approach is based on using a goal modelling

technique from AOM for requirements representation in an easy and visual way so that

every stakeholder could understand it. The contribution of the approach lies in connecting

goal models to user stories(Chapter 1.2.2).

2.2.2 Notations

Notations from Figure 3 are used in goal models of the agent-oriented modelling approach

and are reused for AAOM goal models.

16

Figure 3: The notation for goal model

2.2.3 Approach for creating goal models

The creation of goal models in AAOM was described in [33] but enhanced by omitting

behavioral scenarios. The modified guidelines are as follows:

1. Create the top-level hierarchy for the goal model:

1.1. Define the main purpose of the system being developed. Introduce the purpose

as the root goal.

1.2. Expand the main goal into sub-goals. Each sub-goal represents one aspect of

reaching the main goal.

1.3. Where applicable, supplement the main goal and its sub-goals with quality

goals. Quality goals represent quality aspects of the functional goal.

2. Expand the top-level goal model into lower level goals:

2.1. Handle each sub-goal of the top-level goal model as the main goal.

2.2. Apply Step 1 to each sub-goal.

3. Repeat expanding the goal model until reaching the lowest level of achievable and

justifiable goals:

3.1. The lowest level goal model is a goal that can either can be implemented by a

single role, or if implementation of the goal can be easily described.

17

3.2. Improve goal models whenever more information becomes available.

4. Create user stories for the lowest level of goal models:

4.1. A user story includes one aspect of the goal.

4.2. The process of mapping goal to user stories goes as following:

4.2.1. A user story is written from the perspective of a particular role.

4.2.2. The goal aspect is an activity that represents how the corresponding goal

is implemented. Multiple user stories can be used to describe how to

complete a goal aspect.

4.3. While creating the goal models, remember the following notes:

4.3.1. All goal models are not required to be completed at once. Branches of

goal model can be elaborated one by one in different iterations of an agile

development.

4.3.2. Goal models can be modified based on the data received during the im-

plementation of user stories.

4.3.3. Goal models demonstrate an overall view of the system and explain what

needs to be accomplished. User stories demonstrate design details of a

system and link goals to implementable features of the system.

4.3.4. There is no limit for the number of user stories to be created for the lowest

goal.

2.3 Case: Lost&Found mobile app project

2.3.1 Idea and goals

People tend to lose their belongings all the time due to forgetfulness or distraction. It

is not so easy to find lost item, unless you know where to search for. Airports, taxies,

cinemas might have their own lost items section, where you can turn to in order to find

lost umbrella or gloves, or maybe even phone or wallet. But where do you go if you are

not sure where exactly you lost your belongings?

Some sites exist, that might help you: in Estonia there are police site with listing of items

brought to police by anyone, and lostnf.com which also lists items lost in trains and some

taxi companies. Furthermore, there are some forums and facebook groups for reporting

18

lost and found items, but at the moment there are no mobile solutions for finding lost

things.

The Lost&Found mobile app project idea is to unite people who lost something with items

finders. The mobile app would be a simple and quick mobile solution to report findings

by using smartphone capabilities: a phone camera allows to instantly make a picture of

found item and location of an item can be read from smartphone GPS.

The app is also beneficial for the people who lost something: app allows to announce the

loss and get notifications when item with similar description and attributes is found and

entered into the database.

2.3.2 Lost&Found app concept

The mobile app has multiple goals. The main purpose is of course reuniting people who

lost things with item finders.

However the app is not only for lost items, it is also for lost pets, maybe even cars and

lost people, of course there are differences in the process of getting lost things back to the

owner.

The app’s additional functionality is a possibility to pre-register items before those are

lost by using stickers with unique L&F code connected to the owner. Stickers would help

a finder to identify an item’s legitimate owner and contact him for a return.

Another possibility of an app is a giveaway section, which is meant for found items that

no-one came back for. This section would allow to give up those owner-less findings for

free to those in need of this item.

The Lost&Found app design concept can be viewed in Appendix C.

Goal models created for the Lost&Found app goals can be found in Appendix D.

2.3.3 Project setup

Members
Four people participated in this project, three of them were clients and one person played

the role of analyst and a developer. We are paying attention to participant’s experience in

later analysis section. Person is considered experienced if he or she has at least one year

of experience in his/her role. One of the clients is considered as an experienced client

19

and two of them not so experienced. The developer is experienced and the analyst not so

experienced.

Process management
An agile software development was used for creating the app prototype. As there was

just one developer implementing mobile app prototype, no complicated processes were

needed. More specifically, some scrum techniques were used: planning with user stories,

backlog created, short iterations: we had three iterations overall, work visualizations with

scrum board, meetings with clients after each iteration end. The AAOM method was used

for planning sessions.

Tools
Following free online tools were used to support the Lost&Found project software devel-

opment:

Trello1 - a collaboration tool to organize project tasks into board. Helps to visualize the

tasks and progress of software development.

The Lost&Found Trello board (Figure 4) was organized into next categories:

• Backlog - whole backlog of tasks for implementation of all app

• TODO - tasks to be done next

• Doing - tasks in progress

• Done - already implemented and finished tasks during a current iteration

• DoneDone - tasks finished during previous iterations

1https://trello.com

20

Figure 4: Trello scrum board

Draw.io2 - online diagramming tool for creating charts and diagrams. It was used for

drawing goal models(Figure 5) for Lost&Found project.

Figure 5: Draw.io diagram for goal models

BitBucket3 - free source code hosting for Git and at the same time simple wiki(Figure 6)

and issue manager for the project.

2https://www.draw.io
3https://bitbucket.org

21

Figure 6: Bitbucket wiki for the Lost&Found project

2.3.4 App implementation details

The Lost&Found project ultimate aim would be to have mobile apps for all major mobile

platforms i.e. iPhone, Android, Windows Phone.

Device permissions, required by the Lost&Found app, are listed in Table 1.

Table 1: Mobile permissions required by the Lost&Found app
Permission Purpose
Network communication To connect to external databases of lost and found items
Location To determine found item locations
Camera To take a photo of found items
Phone storage To save photos of found items on the phone

To achieve the best quality and user friendliness in terms of UX(User Experience), it was

decided to go for native mobile development and to implement first mobile prototype for

Android platform.

These technical choices were made for the Lost&Found mobile app development:

– Android versions 3.0 - 4.4.2 (Android API 11-19) are supported by the app, so that

81%4 of all existing Android devices can be covered.

4http://developer.android.com/about/dashboards/index.html#Platform,
data for year 2013

22

– MongoDB5 NoSQL document database is used as a back-end database and Mon-

goLab6 hosting platform is used as a database external provider that allowed us to

use free 0.5 GB storage, just enough for prototyping database.

– Maven7 project management tool is used for project’s build.

– Git8 is used as a free and open source version control system - because we decided

to use BitBucket as a source code hosting.

5http://www.mongodb.org
6https://mongolab.com/
7http://maven.apache.org/
8http://git-scm.com/

23

2.3.5 Results

The team had three iterations that followed the planning sessions. After three iterations

the Lost&Found app prototype with minimal required functions was ready. The prototype

implementation followed ”Lost items” goal model from Appendix D.2.

The app prototype is connected to external database that holds the list of lost and found

items entered by users and displays that list of items to the user if it has access to network.

It is possible to add found or lost items by entering item details: description, category, the

date of finding/losing, location, picture.

One may add an item picture by using phone camera. Item location is determined by

phone location.

Following user stories were fully implemented for the Lost&Found app prototype:

1. As an app user, I want to be able to add a simple found item info to the app

2. As an app user, I want to be able to add a found/lost item category and time when

item was found-lost

3. As an app user, I want to add an item’s picture by using a phone’s camera

4. As an app user, I want to be able to add a simple lost item info to the app

5. As an app user, I want to be able to add found/lost item locations by using phone

location

6. As an app user, I want to be able to see the list of all lost items from a database

7. As an app user, I want to be able to see the list of all lost items from a database

8. As an app user, when clicking on an item in a list of found/lost items I want to see

all available item information on a screen (picture + all the info)

Now, when the demonstration case and the AAOM method as an object of the case study

are explained, we can continue with designing the case study.

24

3 Case study research method adaptation

3.1 Introduction

As already mentioned in the introduction, a case study research method was chosen to

conduct the evaluation of the AAOM method. A case study in software development is a

research to investigate and observe a new method or technology in a real-life settings in

a specific demonstration precedent (case) [29, 28]. It is also specified that object is better

studied by looking at it from multiple perspectives [27].

A case study consists of next stages: case study design, preparation for data collection,

collecting evidence, analysis of collected data and reporting [29]. All of those stages were

conducted in current research to a greater or lesser extent.

Case study design helps to understand how to assess the AAOM, and evaluation points

are described in Chapter 3.2. Sources of evidence for this study are discussed in Chapter

3.3 and analysis procedure in Chapter 3.4.

3.2 Case study design

The object of a study is a new method to gather requirements: AAOM, which is applied

to an agile development environment.

A detailed investigation in a context of one project, or a single-case design, is used. The

case under observation is required to be a software development project and to be based

on iterative requirements gathering. It was desirable that the project would have several

different goals and complex requirements. The Lost&Found mobile app development

project, described in details in Chapter 2.3, is the demonstration case.

The case study investigation questions together with achieving techniques were defined

as follows:

1. Investigate if the visual approach is understandable via interviews.

2. Measure time and use interviews to detect time used for modelling activities.

3. Use interviews to find the participating level/willingness to participate in require-

ments elicitation.

4. Use interviews to find out whether quality goals and roles improved understand-

ability.

25

5. Use interviews and coding of user stories to find out how hard or easy it was to

transform higher level goals to implementable user stories.

6. Use interviews to find out if creating goal models created overhead

7. Use literature review, interviews and models history from repository to verify if the

modelling approach suits an iterative development.

8. Use the models history comparison to verify how much the requirements changed

over time.

9. Use interviews to find out the effort taken to reflect changes back.

10. Use lines of code(LOC) from repositories and interviews to determine how fast will

it go from idea to code.

11. Use interviews to get insight into the tooling part in the overall modelling activity.

Interviews require the most effort, but also give the most data to analyze.

3.3 Data sources

There are a several possible sources of data for a case study: interviews, surveys, focus

groups, observations, metrics, archival data [28, 29].

Next data was collected during current case study project:

Interviews results
Interviews were held to answer research questions defined above in Chapter 3.2. As the

project with an iterative requirements gathering is in progress, it is be best for the research

if interviews would happen few times: after elaborating first branch of requirements, after

every iteration or at the end of the project.

For this project only one set of interviews was conducted, interviews took place when

planning session and three iterations already ended.

Goal models
Goal models were created during project’s RE planning sessions. The models were saved

with history and changes recordings times.

26

Source code
Source code created for a project under investigation is kept in version control system,

which allows to observe lines of code (LOC), changes in LOC and time between LOC

changes in case of need.

Meeting notes and recordings
Project meetings are video recorded and meeting notes are kept during the meetings and

saved for future references.

According to the design of this case study, interviews are playing the biggest part in the

research and give the most outcome. Other data sources are used mostly to confirm or

deny statements received from the interviews.

3.4 Analysis procedure

Analysis procedures are applied to reduce and organize the data to provide a chain of

evidence towards a conclusion. Different types of data are collected during this case

study, but in the scope of this master thesis we are concentrating on interviews analysis,

as it holds the answers to the most of the questions that interest us.

The second most important source of information are goal models, but goal models anal-

ysis [13] is a large topic and is out of scope for this thesis.

Analysis of interviews
The analysis of interviews is based on coding (Chapter 4.5) results. To code the inter-

views, a set of labels or codes is formulated based on research interests and assigned to

phrases or sentences from the interviews. Results of the coding are analyzed per theme

and presented. Each theme corresponds to a correct research design question from Chap-

ter 3.2 or is introduced during interviews coding.

Codes are combined in tables, compared to each other and analyzed to evaluate aspects

of the AAOM method from Chapter 3.2.

Analysis of interviews is explained in details in Chapter 5.

27

4 Data collection: interviews

4.1 Introduction

In this chapter, data collection topic is discussed as it is one of the main activities of a

case study research. This activity is required to select data sources and organize the raw

data received in a structured way to be able to analyze it afterwords.

It was already mentioned in Chapter 3.2 that properly conducted and analyzed interviews

are providing most of the data to answer research design questions. That is the reason why

this chapter is concentrating on the preparations of the interviews, interviews’ conduction

and preparation for analysis of the interview results.

Other data that needs to be collected (goal models, source code, meeting notes, meeting

recordings) does not require any additional actions to be kept and thus is omitted.

4.2 Planning the interviews

According to [29], interviews are a first degree data collection technique that involves col-

lecting data in real time involving direct contact with interviewees. To properly conduct

the interviews, following items need to be defined: interview questions, interview session

structure, interviewees roles and number.

People of different roles were chosen to be interviewed: three customers, one analyst

and one developer. The analyst and developer was the same person, for whom one in-

terview was conducted but different questions were asked considering either analyst or

developer’s point of view.

It was planned to have at least two interview sets: one in the middle of the project and one

at the end. However, due to circumstances only one set(mid project) was conducted to

collect the Lost&Found project’s participants opinions about the AAOM method.

Interviews were semistructured: questions were planned, but order of the questions was

not so important and could have been changed during the interview depending on a dis-

cussion flow and interviewee answers to preceding questions.

The interview timeglass model is used so that interview begins with more broad ques-

tions and is followed by more specific questions, at the end of the interview again broad

questions are presented.

28

4.2.1 Interview questions

Sets of questions for interviews were prepared to answer the research design questions

stated in Chapter 3.2. Different set of questions were defined for each role (client, analyst,

developer) in a project. All prepared questions had no predefined answers. Questions

were composed in such way that interviewees could not answer ”yes” or ”no”, but had to

express their own opinions.

The complete list of interview questions for client, analyst and developer is provided in

Appendix A.

4.3 Interviews conduction

A pilot set of interviews was conducted at the moment when first plannings were done

and then three sprints were finished. Four interviews were conducted overall: three for

the clients and one combined interview for developer/analyst. Interviews were conducted

by a researcher.

Each interview session was planned to take around one and a half hours and started with

an introduction and then continued to the questions to evaluate different aspects of the

AAOM method following the timeglass interview type mentioned earlier.

Interviews were audio recorded in MP4 files that were later used for post-interview activ-

ities and analysis.

4.4 Preparing the interviews for analysis

Before the interview analysis can be started, recorded interviews need to be transcribed

to text files, which was done manually by a researcher. The transcripts received were

reviewed by the interviewees as a final possibility for corrections and clarifications, but

no changes to existing transcriptions were made. As a next step, a coding technique

(described in Chapter 4.5) was used next to prepare transcripts of the interviews for the

analysis.

29

4.5 Coding the interviews

4.5.1 What is the coding

In [12], coding is defined as

”the process of combing the data for themes, ideas and categories and then

marking similar passages of text with a code label so that they can easily be

retrieved at a later stage for further comparison and analysis. ... Coding the

data makes it easier to search the data, to make comparisons and to identify

any patterns that require further investigation.”

Shortly, codes are meaningful keywords or labels, that could be organized by themes or

categories. Each code represents a phrase, or few phrases from interviews.

Coding was made by using NVivo9 qualitative data analysis software trial version.

There are two types of codes possible:

A priori codes - predefined codes to check pre-existing theories, usually derived from

questions.

Grounded codes - codes coming from the data, from the interviews in this case. Unex-

pected new findings might appear.

4.5.2 Codes

Since the objectives of the research are captured in the research design questions(Chapter

3.2), codes were formulated based on those questions.

Following themes were predefined before the coding(a priori themes):

9http://www.qsrinternational.com/

30

Table 2: Predefined coding themes
Theme name Theme description
Benefits To see what are the benefits of using the method from

user perspective
Collaborative Modelling Improving communication between the client and the

development team. Having everyone on the same page
Elaboration Sessions Sessions content, duration, suitability
Expectations Check if users expectations were met
Method Clarification Participants’ understanding of the method and its details
Method Comparison Comparing to other methods
Participation Getting objective opinion about how the method includes

everyone into the project
Time Taken for Modelling How fast can we move on with this method
Tools Usage Covers tooling importance for the method, how much

difference the tool makes(clearness, confusion)
Visual Representation Understanding if visual approach is suitable for RE

New grounded themes were introduced during interviews coding. Next topics or themes

united those codes:

Table 3: Grounded coding themes
Theme name Theme description
Drawbacks Negative moments about the methods mentioned in interviews
Modelling Suitability Finding out if modelling is suitable for different kinds of projects
New Ideas Proposals for method improvements or project setup improvement

The complete list of the codes inside those themes are presented in the following Chapter

5 and are also enumerated in Appendix B.

Interviews’ data analysis is done now by using the list of codes from interviews’ cod-

ings.

31

5 Interviews analysis

5.1 Introduction

Once the interviews are done and coded, the analysis commences. The main goal of the

analysis is understanding whether theories about the AAOM method are valid: collected

data is used to find answers to questions specified in Chapter 3.2. Any non-expected

data found during the interviews is also taken into consideration. In this chapter, codes

of interviews are prepared for analysis, every theme of codes is analyzed separately, and

some conclusions are made based on the analysis results.

5.2 Interviews’ codes analysis

The analysis of interviews’ codes is performed and some adjustments are applied to facil-

itate the analysis of interviews’ codings: attributes are added to every code, and a formula

is introduced to understand code’s relative values.

5.2.1 Codes attributes

Two additional attributes are introduced to ease codes analysis: Polarity and Type. The

Polarity is used to determine an emotionality of a code, and the Type is used to find if it

is a recommendation from the user or a remark about something.

Polarity
Possible values: Negative, Positive, Neutral.

Code polarity shows how code was presented by the interviewees - whether negatively,

positively or neutrally.

Positive polarity is for positive opinion.

Neutral - fact or statement without a positive or negative emotion.

Negative - pessimistic opinion.

Type
Possible values: Statement, Suggestion.

Type attribute is added to indicate if code is a Statement or a Suggestion.

32

Statement describes the current situation.

Suggestion is a proposed change.

Polarity + Type
A combination of Polarity and Type is used to describe whether code proves, contradicts

or has no relation to research.

Negative suggestion - indicates a need to change existing part of the process.

Positive suggestion - is an additional feature proposed by the customer.

Neutral suggestion - came out to be a suggestion not related to the AAOM method it-

self.

Negative statement - something is not working in the method, but there is nothing to do

about it.

Positive statement - something is considered to be working or suitable.

Neutral statement - opinion or a statement of affairs not related to the research ques-

tion.

5.2.2 Formula - finding a value of the code

We developed a simple formula to get an idea about what codes have more value in terms

of mentions. Following parameters have an influence on code value and are included in

the formula:

References - how many times the code was mentioned in interviews. More references

increase the value.

Sources - how many different people mentioned one code. More sources increase the

value.

Role experience - what was the interviewee’s experience in his role. Every reference from

experienced role adds more value to the code.

All these metrics define the value of the code. The formula below was created to sort

codes based on mentioned metrics:

(references ∗ sources) + experience

The results of the formula applied to the list of codes can be found in appendix B.

33

5.3 Analysis of interviews codes by theme

Codes for every theme are analyzed below. Codes in each theme are ordered by its value

obtained by using the formula - most valuable codes upfront.

The table of codes for each theme is provided with codes names, polarity, type and for-

mula value. Codes are sorted by the formula value descendingly so that the most impor-

tant codes are brought out topmost.

5.3.1 Benefits

Codes for this predefined theme are listed in Table 4.

Table 4: Codes for theme ”Benefits”
Code Polarity Type Value
Secure feeling for project direction Positive Statement 10
Mutual communication Positive Statement 7
Discover new angles Positive Statement 4
Intuitively understandable Positive Statement 2
Easily modifiable Positive Statement 2
Constructive modelling Positive Statement 1
Estimate work ahead Positive Statement 1

All the codes in this theme are positive statements and support the theory that the AAOM

method helps to understand requirements for the project, keeps everyone on the same

page and most of all - clients feel secure about the project direction.

5.3.2 Collaborative Modelling

This theme is derived from the method itself, improving communication between client

and the development team. Table 5 lists the codes for ”Collaboration Modelling” theme.

Table 5: Codes for theme ”Collaborative Modelling”
Code Polarity Type Value
Having everyone on the same page Positive Statement 18
Improved understandability Positive Statement 14
Pinpointing problems Positive Statement 13
Involving participants Positive Statement 5
Composing goal models should be more structured Neutral Suggestion 2
Few feelings about collaboration Neutral Statement 1
Sharing tasks well Positive Statement 1

34

Given codes mostly support theory that the AAOM method is good for collaboration and

it helps to involve everyone in the same room to work together.

Though one suggestion made by analyst was that composing of goal models could be

more structured.

5.3.3 Drawbacks

It is a grounded theme, came from interviews, sometimes is related to surrounding envi-

ronment, not the method itself. Table 6 lists the codes for theme ”Drawbacks”.

Table 6: Codes for theme ”Drawbacks”
Code Polarity Type Value
Experienced participants required for full potential Negative Statement 22
Better guide for analyst needed Negative Suggestion 14
Analyst has the most responsibility Neutral Statement 5
Method might be overhead for smaller projects Neutral Statement 5
Hard to move from goals to user stories Negative Statement 3
Goal models too general, need more technical details Negative Statement 2
Initial user stories take time Neutral Statement 2
Initial models need refinement Neutral Suggestion 1
Starting from scratch should be more structured Negative Suggestion 1

As the underlining theme name suggests, most of the codes here have a negative mean-

ing.

The most mentioned code states that experienced participants are needed to get the most

of the AAOM method, many other codes suggest that better guidance and trainings on

how to use the method are needed: maybe examples, templates on how to go from an idea

to user stories in one project, better guide for analyst.

The code ”Goal models too general, need more technical details” is arguable: it might

depend on a team and participants, but by general rule, user stories should be technical,

not goal models.

5.3.4 Elaboration Sessions

Predefined theme. Sessions content, duration and suitability is considered. Table 7 lists

the codes for theme ”Elaboration Sessions”.

35

Table 7: Codes for theme ”Elaboration Sessions”
Code Polarity Type Value
Session length suitable Positive Statement 5
Sessions could be earlier, less tired Positive Statement 2
Shorter sessions for inexperienced in analysis Negative Suggestion 2
New ideas since previous meeting offloading Positive Statement 1
One topic per meeting Positive Statement 1
Only new info on sessions Positive Statement 1

Most of the codes here are positive statements confirming that session length and content

were suitable. Meetings length and time of a day is important and should be carefully

selected, too long meetings should not be forced.

It is also mentioned that people have different attention spans, and for not experienced in

analysis 1,5 hour long sessions(used in this concrete project) might be too long.

5.3.5 Expectations

Predefined theme for checking if user expectations were met. Table 8 lists the codes for

theme ”Expectations”.

Table 8: Codes for theme ”Expectations”
Code Polarity Type Value
Updates to models and user stories Neutral Statement 8
Working results Neutral Statement 5
Extendable implementation Positive Statement 4
Need more resources to accomplish goals Neutral Suggestion 1

Considering emotionality of the given codes it might be said that expectations are met, but

not exceeded: work is in progress, some work is already done, goal models are expected

to be updated and grow.

Client wants more people to work on the product, but this code is related to the project,

not the method itself.

5.3.6 Method Clarification

Predefined theme. Participants understanding of the method and its details. Table 9 lists

the codes for theme ”Method Clarification”.

36

Table 9: Codes for theme ”Method Clarification”
Code Polarity Type Value
Sequence of activities clear Positive Statement 30
Goal model understandable Positive Statement 26
Usage of quality goals understandable Positive Statement 21
User story concept understandable Positive Statement 20
From goals to user stories unclear Negative Statement 16
From goals to user stories logical Positive Statement 10
Usage of roles clear Positive Statement 10
Quality goals link to user stories unclear Negative Statement 9
User story concept unclear Negative Statement 7
Development process unclear Negative Statement 2
User stories created by analyst unclear Negative Statement 2
Goal model lowest level finding unclear Negative Statement 1
Quality goals should have more details Neutral Suggestion 1
Roles useful for user story creation Positive Statement 1
Usage of quality goals unclear Negative Statement 1

Negative statements from this theme are of interest to us. It turns out that not all actions

of the process are completely clear to all the participants. First of all, the way of finding

the lowest level of goal models and getting to user stories from there is not explicit to half

of the participants. Secondly, another ambiguous concept is a quality goal and a method

of its transformation to user stories. It seems that these concepts need to be clarified better

in the description of the AAOM method.

5.3.7 Method Comparison

Predefined theme, derived from research question. Table 10 lists the codes for theme

”Method Comparison”.

Table 10: Codes for theme ”Method Comparison”
Code Polarity Type Value
Making notes Positive Statement 1
Modeling in Scrum Positive Statement 1

Initial idea was to compare the AAOM method to other methods, but there was not much

to compare as participants were not very experienced.

As the result, comparison with other methods is not sufficient and did not provide enough

37

results. Though in addition with other test cases data those results might still be use-

ful.

In one code interviewee compares the AAOM method to making notes, though usage

depends on the result one wants to achieve. Another code mentions that extra work is

done compared to Scrum but the method also gives useful information in a visual view,

which is a bonus.

5.3.8 Modelling Suitability

Grounded theme, was introduced during coding of the interview and is used for finding

out if modeling is suitable for this specific project. Table 11 lists the codes for theme

”Modelling Suitability”.

Table 11: Codes for theme ”Modelling Suitability”
Code Polarity Type Value
Clarifies what needs to be done Positive Statement 10
Organizing thoughts Positive Statement 6
Modelling suits into various project setups Positive Statement 5
Quality goals more for analyst and developer not client Neutral Statement 1

Again given codes support the theory about the method helping to focus on figuring out

objectives and organizing thoughts to express client’s feelings.

Method might be combined with other systems and tools, might suit to various projects

setups with some limitations. There is also an opposite code ”method might not suit small

projects”.

Interesting feedback is given about clients not being interested in quality goals.

5.3.9 New Ideas

Grounded theme, was introduced during coding of the interview and consists of ideas that

interviewees mentioned. Table 12 lists the codes for theme ”New Ideas”.

Table 12: Codes for theme ”New Ideas”
Code Polarity Type Value
Link metrics to goals Neutral Suggestion 2
Models can be used for system documentation Positive Suggestion 2
Quality goals holding technical details Positive Suggestion 2

38

One of the client was interested in assigning financial values to the goal and comparing if

it is needed. This could be achieved.

Another idea was to use goal models as a system documentation. Also could be done: the

AAOM method is not preventing users from creating other models besides goal models

that would elaborate in more details of how the system works.

Third suggestion was that quality goals could hold also technical information and, again,

this could be done easily with the AAOM method.

5.3.10 Participation

Predefined theme that tries to get objective opinion about how the method includes every-

one into the project. The codes for this theme are listed in Table 13.

Table 13: Codes for theme ”Participation”
Code Polarity Type Value
Participation level is satisfactory Positive Statement 13
Specific stuff didn’t felt close to heart Negative Statement 4
Background with ICT helps to participate Neutral Statement 2

In this theme we tried to find out if participation level matches the expectation and it

seemed to be so.

It was one very interesting point that clients lost interest when getting deeper into de-

tails.

5.3.11 Time Taken for Modelling Activities

This theme is predefined to measure how fast is it possible to move on with this method.

The codes for this theme are listed in Table 14. Here, the unit of measurement happened

to be not the time, which might vary a lot depending on the project, but participant’s

subjective feelings about the time spent on method activities.

Table 14: Codes for theme ”Time Taken for Modelling Activities”
Code Polarity Type Value
Quickly to development Positive Statement 11
Refining goal models fast Positive Statement 5
Previous method used before AAOM took lot of time Positive Statement 5
Time used effectively Positive Statement 4
From idea to user story just enough time Neutral Statement 1

39

All the codes support the theory that the AAOM method accelerates refining the require-

ments. The goal models definition process itself went fast. Clients are also very happy

that development started quite fast and satisfied with time effectiveness.

5.3.12 Tools Usage

This a priori theme covers tooling importance for the method. The question to answer is

how much difference the tools make. The codes for this theme are listed in Table 15.

Table 15: Codes for theme ”Tools Usage”
Code Polarity Type Value
Manual integration worked but a lot of extra work Negative Statement 9
Good enough for starters Neutral Statement 6
Need more integration Negative Suggestion 5
Commercial better Negative Statement 4
Commercial expensive Negative Statement 4
Dedicated tool support Neutral Statement 2
Easy and flexible Positive Statement 2
Interesting to use new tools Positive Statement 1
New tools need training Negative Statement 1

All of the tools used for this project were free tools. As codes suggest, chosen set of

tools was good enough and it was possible to do the work by using them. Tools were not

connected together and manual integration was required.

It was mentioned by several codes that commercial tools could have been better, if there

would have been money for them in a project budget.

5.3.13 Visual Representation

Predefined theme to understand if visual approach is good for requirement engineering.

The codes for theme ”Visual Representation” are listed in Table 16.

Table 16: Codes for theme ”Visual Representation”
Code Polarity Type Value
Goal model representation - benefit Positive Statement 25

The codes of the interviews confirm that using visual approach for requirements engineer-

ing is natural, intuitive and easy to understand.

40

5.4 Analysis summary

A lot of information was gathered during interview sessions. A coding technique (Chap-

ter 4.5) was employed to organize and analyze the data. Different aspects of the AAOM

method were evaluated while taking into consideration limitations of a given case study.

5.4.1 Gathered data limitations

We admit and accept that results gathered during the case study from real-life project

have a number of limitations and depend on concrete project’s setup. In this project three

people out of four participants played a client role. Thus, collected information is mostly

based on the client-side opinion about the AAOM method.

Only two out of four people had experience participating in software development process

and thus, we get a lot of feedback from inexperienced participant’s point of view. Opinion

from inexperienced people is also important since this shows how easy it is to adopt

AAOM. In real life, it is often the case that a client is quite unfamiliar with the technical

state-of-the-art and the ideas explained to developers are often hard to grasp and error-

prone.

The limitations we have in this case study is a gap to be fulfilled in future work on the

evaluation of the AAOM method and is mentioned in Chapter 6.3.

5.4.2 Results

Different aspects of the AAOM method were evaluated and collected positive feedback is

organized into the following categories:

Visual approach

The visual approach of the AAOM method was found to be natural, intuitive

and easy to understand.

Collaboration and participation

The AAOM method stimulated everyone’s collaboration and commitment to

common work.

Extendability

Participants have different ideas about how to supplement method with addi-

tional features, and all of the ideas are implementable. Thus, we can claim

41

that the method is easily extendable.

Requirements elicitation

Helps to understand requirements for the project, keeps everyone on the same

page and most of all - clients feel secure about the project direction. Mod-

elling helps to guide thoughts of the client and transform them into imple-

mentable user stories.

Time and speed

The AAOM method accelerates the requirements specification and goal mod-

els definition process went fast even for a multi-goal project. The develop-

ment started quickly. Creation of goal models during requirements elicitation

during the planning session does create a bit of an overhead, though it was

still fast, but it resulted in a visual model that helped a lot to understand the

goals and directions of a system to be built.

Negative reaction appeared regarding following topics:

Quality goals

It turned out that even after the main planning phase was over, not all partic-

ipants do understand how to connect quality goals to user stories and how to

use quality goals at all.

Process of transforming goals to user stories

Some participants notice that it is not fully understandable how to move from

goal models to user stories and how to get to know if the lowest level of goal

models is reached.

The following categories depend on a particular team or project setup:

Tools

A tooling part came out to be important. Free tools used were good enough,

but commercial tools would have been better. The tool choice depends a lot

on a project and on the list of tools that are already in use in a development

team.

Clients lost interest when getting deeper into details

It is mentioned by several clients that getting into the technical details of

implementation of user stories is not interesting to them. This might depend

a lot on the customer’s background, but the method itself does not specify if

42

user stories implementation discussions should happen in front of clients, or

inside the development team. It is up to the project’s team to decide.

Elaboration sessions

Elaboration sessions length and time of a day are important. Shorter meetings

are recommended instead of longer ones, but the team decides what suits

them.

Overall, the modelling approach seems to suit iterative agile development.

5.4.3 Method improvements

Based on negative feedback, several method improvements could be carried out:

- Better practical guides and materials on how to conduct activities based on AAOM

method are required.

- Examples from real life projects could be included in training materials.

- Transforming goal models to user stories proves to be difficult and needs more

experimenting and guidance.

- The quality goals role in the method should be explained better.

43

6 Conclusion

6.1 Summary

In this thesis, we evaluate the AAOM method as a novel visual approach to an RE for

smaller projects in agile software development. A case study research approach was used

to conduct such an evaluation. The method was applied in a real-life settings for develop-

ing the Lost&Found mobile app from scratch.

Different sources of evidence were used to collect the data to answer defined research

questions. Interviews of project’s participants provided the most important input for

method’s assessment.

An analysis of interviews was performed to check different aspects of the method. In-

terviews were coded by looking for predefined concepts and categories in the data for

analysis units. Received codes were combined into tables and analyzed.

6.2 Answers to research questions

The research questions defined in introduction have been answered:

RQ1: How to evaluate AAOM with suitable research method?

The AAOM method is evaluated with the use of a case study research ap-

proach by analyzing the method from different angles: visual approach, time

used for modelling activities, participation level, understandability of result

models, suitability for iterative development and others. The Lost&Found

mobile app prototype has been developed as a demonstration case for a case-

study research. The AAOM method was used during planning phase for re-

quirements elicitation for this project.

RQ2: How to collect data for an AAOM-evaluation?

Most of the data for AAOM-evaluation is collected during interviews of par-

ticipants, and the thesis is concentrating mostly on interview preparation,

conduction and analysis. Proper questions should be asked to receive mean-

ingful answers. Meeting notes and recordings, goal models, and app source

code are also collected, but are out of scope of this master thesis.

44

RQ3: How to analyze the collected data?

In scope of this master thesis we are concentrating on interviews analysis, as

it gives the most information on evaluation of the AAOM method. Coding

of interviews is performed by themes to asses different aspects of the AAOM

method. Collected codes are organized into tables an then analyzed in Chap-

ter 5.

RQ: How suitable is AAOM for RE in agile software development?

The evaluation of a case study of the Lost&Found project proves the appli-

cability of AAOM for RE in an agile software development process. The

analysis of interviews shows that the AAOM method provides guidance to

requirements elicitation for the project. The visual approach presents an in-

tuitive way for both clients and the development team to perceive how user

stories are connected to system goals and vice versa. The method is extensi-

ble, encourages collaboration and participation, and does not take much time.

6.3 Limitations, open issues, future work

Further studies and investigation will continue going on with a purpose to investigate the

AAOM method’s utility for requirements engineering in an agile software development

projects. This master thesis is part of a multi-case study for evaluation of the AAOM’s

method. The AAOM method will be employed and analyzed in other projects, and overall

evaluation of all case studies will be performed.

During analysis of the AAOM method in current master thesis, the following directions

of future research were determined:

Improvements to the AAOM method

Several method improvements could be implemented based on a feedback

from project’s participants:

1. Role of quality goals should be explained better.

2. The transformation of goal models to user stories proves to be difficult

and needs more experimenting and guidance.

3. Better guides and materials could be added on how to conduct the method’s

activities.

45

More feedback from analysts

The analyst plays an important role when using this method, so more feed-

back from analysts could be gathered in the future.

Compare AAOM to other RE methods

Opinions of experienced with agile and other RE methods participants are

needed to be gathered to properly compare AAOM to other RE methods.

This comparison would also help to understand how well the AAOM method

could be combined with other agile methods.

46

Kokkuvõte

Antud magistritöös uuritakse ja hinnatakse Agiilse Agent-Orienteeritud Modelleerimise

(AAOM) meetodit. AAOM on meetod kiireks nõuete kogumiseks, mis kasutab kahte

põhikomponenti. Esimeseks on eesmärgimudelid agent-orienteeritud modelleerimise raamistikust

süsteemi eesmärkidest ülevaate andmiseks. Teiseks põhielemendiks on kasutuslood (user

stories), mis on pärit agiilsetest arendusmeetoditest. Kombineerides eesmärgipuud kasu-

tuslugudega saame meetodi, mille abil annab teostada nõudmiste kogumist.

Antud uurimistöö põhieesmärk on leida, kui kasutuskõlblik on AAOM agiilses tarkvara

arenduses. Et vastata sellele küsimusele, on vaja kõigepealt selgitada välja, mis meetodiga

hinnata meetodi kasutuskõlblikkust, sellest lähtuvalt panna paika kuidas ja mis andmed

korjata hindamiseks, ning lõpuks kuidas korjatud andmeid töödelda ja analüüsida.

Valitud hindamismeetodiks sai juhtumiuuringul põhinev meetod. Juhtumiuuringu käigus

jälgisime kui lihtne või raske on AAOM-i kasutada reaalses arendusprojektis. Vaadel-

davaks juhtumiks oli mobiilrakenduse Lost&Found arendamine, mille näol oli tegemist ka

agiilse arendusmeetodiga juhitava projektiga. Projektil olid keerukad nõudmised, mis va-

jasid põhjalikku viimistlust ning see sobiski hästi AAOM-i kasutuse hindamiseks.

Projekti käigus koguti erinevaid andmeid: koosolekute märkmed ja salvestused, eesmärgimudelid,

kasutuslood, muudatuste ajalugu ning rakenduse lähtekood. Kuid kõige rohkem väärtuslikku

informatsiooni antud magistritöö eesmärgi saavutamiseks pakkusid projektis osalejate in-

tervjuud. Seega, juhtumiuuringu andmehulgast analüüsitakse käesolevas magistritöös in-

tervjuusid. Intervjuude ülesehitus valiti vastavalt teaduslikele meetoditele ja küsimused

seadistati vastavalt uurimiseesmärkidele.

Intervjuude analüüs viidi läbi nende kodeerimise (coding) abil, mis toimus samuti vas-

tavalt teaduslikele meetoditele. Saadud koodide abil õnnestus hinnata AAOM meetodi

erinevaid aspekte: olemite visuaalne esitlus, modelleerimise peale kulunud aeg, osale-

jate kaasamine, kokkusobimine agiilse arendusega, saavutatud mudelitest arusaamine jne.

Kogutud koodid analüüsiti käesoleva magistritöö raames, et saada saada kinnitust uurim-

isküsimustele.

Juhtumiuuringu käigus analüüsitud Lost&Found juhtumi abil sai leitud, et AAOM mee-

tod on kasutuskõlblik nõudmiste selgitamiseks agiilsete meetoditega juhitavas arendus-

projektis. Analüüs näitas, et meetodi visuaalne esitlus aitab nii klientidel kui ka aren-

dusmeeskonnal mõista süsteemi suuremaid eesmärke, meetod on kergesti laiendatav, jul-

gustab kostööd ja osavõttu ning ei võta palju aega.

47

A Appendix - Interview Questions

A.1 Client questions

1. Are the main concepts of agile AAOM clear? Can you explain in a couple of sen-

tences how you understood them?

2. Is the visual representation of your intentions in the form of goal models under-

standable?

3. Did collaborative modelling involved you more into the process?

4. How do you evaluate your participation in goal models creation? Wanted to do

more or less? More high or low level?

5. How do you evaluate your participation in goal models creation? Wanted to do

more or less? More high or low level?

6. How did elaboration-session execution work for you? Time it took, pauses taken,

tooling setup, suitable time?

7. How clear was the process from your general idea to user stories (lowest leaf)?

8. Did you understood user stories presented to you?

9. Did quality goals and roles attached to functional goals appear reasonable and pro-

vide extra value?

10. Did the linking of roles and user stories to quality goals seem logical and simple?

11. How satisfied were you with how much time it took to get from the main idea to

user stories?

12. Did tools used for modelling help to understand or create confusion?

13. How did the modelling method fit into the remaining activities needed to run the

project?

14. What do you expect from future iterations?

15. Any additional remarks/questions?

48

A.2 Analyst questions

1. Are the main concepts of agile AAOM clear? Can you explain in a couple of sen-

tences how you understood them?

2. Did goal models help to extract information from a client in an easy, structured and

logical way?

3. Did collaborative modelling help to involve clients more into the requirements elic-

itation process?

4. Did quality goals give a valuable insight to an analyst?

5. Was the user story concept understandable as a piece of implementable value?

6. Was user story a sufficient and clear goal to achieve?

7. Did roles help to compose user stories?

8. How hard was it to move from general ideas to specific user stories?

9. How much time did it take to get goal models ready?

10. Did goal models help to ease introducing developers to the project?

11. How did tooling help/distract your effort to document models?

12. How did the requirements-elicitation sessions go? Did you feel a need for instruc-

tions about how to conduct an elicitation session?

13. How did the modelling method fit into the rest of activities needed to run the

project?

14. What do you expect from future iterations?

15. Any additional remarks/questions?

49

A.3 Developer questions

1. Are the main concepts of agile AAOM clear? Can you explain in a couple of sen-

tences how you understood them?

2. Did you get the idea why and what you are about to implement?

3. Did you see what value you are about to deliver?

4. Was the work presented to you small enough for implementation? By definition of

user story - small enough to be implemented in a day or two?

5. Did you notice how quality goals affect your tasks?

6. How much time did it take to implement the user stories?

7. How did the modelling method fit into the rest of activities needed to run the

project?

8. What do you expect from future iterations?

9. Any additional remarks/questions?

50

B Appendix - Codes and Formula

51

Name References Sources Experienced Formula

Method clarification 48 5 15 255

Sequence of activities clear 7 4 2 30

User Story concept understandable 6 3 2 20

Goal Model understandable 6 4 2 26

Usage of Quality Goals understandable 5 4 1 21

From Goals to User Stories unclear 5 3 1 16

From Goals to User Stories logical 3 3 1 10

Usage of roles clear 3 3 1 10

User Story concept unclear 3 2 1 7

Quality Goals link to User stories unclear 3 2 3 9

Development process unclear 2 1 0 2

Goal model lowest level finding unclear 1 1 0 1

Roles useful for User Story creation 1 1 0 1

User Stories created by analyst unclear 1 1 1 2

Quality goals should have more details 1 1 0 1

Usage of Quality Goals unclear 1 1 0 1

Drawbacks 21 4 10 94

Experienced participants required for full potential 6 3 4 22

Better guide for analyst needed 4 3 2 14

Hard to move from goals to User Stories 3 1 0 3

Analyst has the most responsibility 2 2 1 5

Method might be overhead for smaller and really concrete projects 2 2 1 5

Initial models need refinement 1 1 0 1

Starting from scratch should be more structured 1 1 0 1

Goal models too general, more technical details needed 1 1 1 2

Initial User Stories take time 1 1 1 2

Collaborative Modelling 19 5 7 102

Having everyone on the same page 5 3 3 18

Improving understandability 4 3 2 14

Pinpointing problems 4 3 1 13

Involving participants 2 2 1 5

Composing goal models should be more structured 2 1 0 2

Few feelings about collaboration 1 1 0 1

Sharing tasks well 1 1 0 1

Tools Usage 17 4 2 70

Manual Integration worked but lot of extra work 3 3 0 9

Good enough for starters 3 2 0 6

Easy and flexible 2 1 0 2

Commercial expensive 2 2 0 4

Need more integration 2 2 1 5

Commercial better 2 2 0 4

Interesting to use new tools 1 1 0 1

Dedicated Tool support 1 1 1 2

New tools need training 1 1 0 1

Benefits 12 3 6 42

Mutual Communication 3 2 1 7

Secure feeling for project direction 3 3 1 10

Discover new angles 2 1 2 4

Intuitively understandable 1 1 1 2

Easily modifiable 1 1 1 2

Estimate work ahead 1 1 0 1

Constructive modelling 1 1 0 1

Time taken for modelling activities 11 4 5 49

Quickly to development 4 2 3 11

Before using method (agile AOM) took lot of time 2 2 1 5

Refining goal models fast 2 2 1 5

Time used effectively 2 2 0 4

From idea to User Story just enough time 1 1 0 1

Modelling suitability 9 4 2 38

Organizing thoughts 3 2 0 6

Clarifies what needs to be done 3 3 1 10

Modelling suits into various project setups 2 2 1 5

Quality goals more for analyst and developer not client 1 1 0 1

Expectations 8 3 5 29

Update to models and User Stories 3 2 2 8

Extendible implementation 2 1 2 4

Working results 2 2 1 5

Need more resources to accomplish goals 1 1 0 1

Participation 7 3 2 23

Participation level satisfactory 4 3 1 13

Specific stuff didn't felt close to heart 2 2 0 4

Background with ICT helps to participate 1 1 1 2

Elaboration sessions 7 3 3 24

Session length suitable 2 2 1 5

One topic per meeting 1 1 0 1

Sessions could be earlier, less tired 1 1 1 2

Only new info on sessions 1 1 0 1

Shorter sessions for inexperienced in analysis 1 1 1 2

New ideas since previous meeting offloading 1 1 0 1

Visual representation 6 4 1 25

Goal model representation - benefit 6 4 1 25

New Ideas 3 2 3 9

Quality Goals could hold technical details 1 1 1 2

Models can be used for system documentation 1 1 1 2

Link metrics to goals 1 1 1 2

Method Comparison 2 2 0 4

Modeling in Scrum 1 1 0 1

Making Notes 1 1 0 1

C Appendix - Design concept for Lost&Found mobile app

54

D Appendix - Goal models for Lost&Found mobile app

D.1 Main goal model

55

D.2 Goal model for lost items

56

D.3 Goal model for lost animals

D.4 Goal model for lost people

57

D.5 Goal model for giveaways

D.6 Goal model for pre-registered items

58

D.7 Goal model for venue management

D.8 Goal model for revenue collection

59

D.9 Goal model for user handling

60

References

[1] 8th annual state of agile survey. http://www.versionone.com/pdf/
2013-state-of-agile-survey.pdf, 2014.

[2] Scott Ambler. Agile modeling: effective practices for extreme programming and the
unified process. John Wiley & Sons, 2002.

[3] Kent Beck. Extreme programming explained: embrace change. Addison-Wesley
Professional, 2000.

[4] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
et al. The agile manifesto, 2001.

[5] Lan Cao and Balasubramaniam Ramesh. Agile requirements engineering practices:
An empirical study. Software, IEEE, 2008.

[6] Dick Carlson and Philip Matuzic. Practical Agile Requirements Engineering. Tech-
nical report, 2010.

[7] Alistair Cockburn. Agile software development: the cooperative game. Pearson
Education, 2006.

[8] Alistair Cockburn and Jim Highsmith. Agile software development: The people
factor. Computer, 34(11):131–133, 2001.

[9] M. Cohn. User Stories Applied: For Agile Software Development. The Addison-
Wesley Signature Series. Addison-Wesley, 2004.

[10] Anne Dardenne, Axel Van Lamsweerde, and Stephen Fickas. Goal-directed require-
ments acquisition. Science of computer programming, 20(1):3–50, 1993.

[11] Martin Fowler. The new methodology. Wuhan University Journal of Natural Sci-
ences, 6(1-2):12–24, 2001.

[12] Graham R Gibbs and Celia Taylor. How and what to code. Online QDA, 2005.

[13] Jennifer Horkoff and Eric Yu. Analyzing goal models: different approaches and how
to choose among them. In Proceedings of the 2011 ACM Symposium on Applied
Computing, pages 675–682. ACM, 2011.

[14] E. Hull, K. Jackson, and J. Dick. Requirements Engineering. Springer, 2011.

[15] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements engineering, vol-
ume 3. Springer, 2005.

[16] Suzette S. Johnson. Requirements Engineering in an Agile Environment. (October),
2009.

[17] Henrik Kniberg. Scrum and xp from the trenches. Lulu. com, 2007.

[18] Gerald Kotonya and Ian Sommerville. Requirements Engineering : Processes and
Techniques. Star, page 294, 1998.

[19] Dean Leffingwell. Agile software requirements: lean requirements practices for
teams, programs, and the enterprise. Addison-Wesley Professional, 2010.

61

[20] Dean Leffingwell. Scaled agile framework. Siehe: http://scaledagileframework.
com, 2013.

[21] Dean Leffingwell and J Aalto. A lean and scalable requirements information model
for the agile enterprise. Leffingwell LLC, 2009.

[22] Tim Miller, Sonja Pedell, Leon Sterling, and Bin Lu. Engaging stakeholders with
agent-oriented requirements modelling. In Agent-Oriented Software Engineering
XI, pages 62–78. Springer, 2011.

[23] Sridhar Nerur, RadhaKanta Mahapatra, and George Mangalaraj. Challenges of mi-
grating to agile methodologies. Communications of the ACM, 48(5):72–78, 2005.

[24] Alex Norta, Msury Mahunnah, Tanel Tenso, Kuldar Taveter, and Nanjangud C
Narendra. An agent-oriented method for designing large socio-technical service-
ecosystems. In Services (SERVICES), 2014 IEEE World Congress on, pages 242–
249. IEEE, 2014.

[25] Frauke Paetsch, Armin Eberlein, and Frank Maurer. Requirements engineering and
agile software development. In 2012 IEEE 21st International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pages 308–308. IEEE
Computer Society, 2003.

[26] Balasubramaniam Ramesh, Lan Cao, and Richard Baskerville. Agile requirements
engineering practices and challenges: an empirical study. Information Systems Jour-
nal, 20(5):449–480, November 2007.

[27] Colin Robson. Real word research. Oxford: Blackwell, 2002.

[28] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical software engineering, 14(2):131–164,
2009.

[29] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell. Case study research
in software engineering: Guidelines and examples. John Wiley & Sons, 2012.

[30] Alberto Sillitti and Giancarlo Succi. 14 Requirements Engineering for Agile Meth-
ods. bilder.buecher.de.

[31] Ian Sommerville and Pete Sawyer. Requirements engineering: a good practice
guide. John Wiley & Sons, Inc., 1997.

[32] Leon Sterling and Kuldar Taveter. The art of agent-oriented modeling. MIT Press,
2009.

[33] Tanel Tenso and Kuldar Taveter. Requirements engineering with agent-oriented
models. 2013.

[34] Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In
Requirements Engineering, 2001. Proceedings. Fifth IEEE International Symposium
on, pages 249–262. IEEE, 2001.

[35] Axel Van Lamsweerde et al. Requirements engineering: from system goals to uml
models to software specifications. 2009.

62

