Ep. 6.7

TALLINNA POLUTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А

№ 218

СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ И СТРОИТЕЛЬНАЯ ФИЗИКА

Π

ТАЛЛИН 1965

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А

No 218

1965

0. (

УДК 624.624.01:539.376

СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ И СТРОИТЕЛЬНАЯ ФИЗИКА

II

(Длительные воздействия в железобетонных трехшарнирных арочных мостах)

ТАЛЛИН 1965

KESKELANATUKBOU Taduata Ahadaana

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А

№ 218

1965

УДК 624.624.01:539.376

Х. А. Мяги

РАСЧЕТ СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ТРЕХШАР-НИРНЫХ МОСТОВЫХ АРОК ПО ДЕФОРМИРОВАННОЙ СХЕМЕ С УЧЕТОМ ДЛИТЕЛЬНЫХ ВОЗДЕЙСТВИЙ*

Сборный железобетон открывает перспективы к дальнейшему увеличению пролетов железобетонных арочных мостов. Имеющийся опыт возведения сборных железобетонных мостовых конструкций показывает, что достижение пролета величиной в 500 *м* и более не является для железобетонных арочных мостов делом далекого будущего.

Сборные железобетонные арочные мосты на автомобильных дорогах довольно часто устраивают трехшарнирной системы. Увеличение пролета арок связано с необходимостью уточнения имеющихся расчетных методов путем введения учета деформированной схемы и влияния длительных воздействий.

Наиболее полная современная теория расчета железобетонных статически определимых арок по деформированной схеме с учетом ползучести и усадки бетона разработана проф. Дишингером еще в довоенные годы [5]. Наряду с простотой расчетных формул, эта теория все же имеет ряд недостатков, а именно: 1) приближенность учета деформаций оси арки, связанных с поворотом полуарок; 2) неточность интегрирования по времени; 3) использование при переменных изгибающих моментах характеристик ползучести, которые соответствуют постоянным усилиям; 4) отсутствие полной схемы расчета арок с указанием этапов учета деформированной оси. Современная математика, а также более полное представление о работе арок и влиянии ползучести бетона позволяют в большей или меньшей степени устранить отмеченные недостатки.

* Работа выполнена под руководством профессора, доктора т. н. Е. Г. Гибшмана.

1. Виды деформаций оси арки

Величина прогиба, измеряемая от оси ненагруженной арки до оси деформированной арки (фиг. 1), имеет в теории второстепенное значение. Величиной более существенной является разница ординат оси и соответствующей кривой давления арки (на фиг. 1 обозначена через *u*t), которая пропорциональна изгибающим моментам. Условимся называть разницу искривлением, имея в виду, что *u*t связана с изменением кривизны оси арки относительно кривой давления.

Фиг. 1. Прогиб и искривление:

у₀- ось арки до нагружения; у₁- деформированная ось арки; у_{s1}- соответствующая кривая давления

В общем случае даже ненагруженная арка может иметь искривление. Зная ординаты оси ненагруженной арки (фиг. $2a-y_0$) и кривой давления от рассматриваемой нагрузки — y_{s0} , можем представить начальное искривление u_0 . Существование последнего вызывает в нагруженной арке изгибающие моменты, а они в свою очередь обуславливают дополнительное искривление арки и т. д.

Нарастание упругих искривлений можно подразделить на две части.

1) Если при деформировании арки замок остается на первоначальной кривой давления (фиг. 26), то имеем дело с собственным нарастанием начального искривления — u_0+u_a . Эта часть искривлений имеет ана-

Фиг. 2. Начальное и сопровождающее искривление: $u_t = u_0 + u_g + u_c - суммарное искривление$

логию с прогибами в прямом сжатом стержне и является самостоятельной частью нарастания начального искривления.

2) Горизонтальное перемещение замка \overline{CC}_{A} при симметричных арках с симметричной нагрузкой должно равняться нулю. Следовательно, нарастание начального искривления сопровождается просадкой замка $\overline{CC}_{1} = \Delta f_{1}$ (фиг. 2в). Новому положению замка соответствует новая кривая давления — y_{s1} . Разницу ординат смещенной (поворотом вокруг точки А) первоначальной кривой давления y_{s0} и новой кривой давления y_{s1} назовем с опровождающие искривления зависят, кроме величины начального искривления, еще от генеральных размеров сооружения и т. д., и тем самым имеют зависимый характер.

Искривления от обжатия арки, усадки бетона, горизонтального смещения опор и изменения температуры обуславливаются поворотом полуарки вокруг пятового шарнира, следовательно они полностью являются сопровождающими искривлениями.

2. Уравнение длительных искривлений

При составлении уравнения длительных искривлений исходим из уравнения изогнутой оси арки:

$$V_t'' \cos \alpha = \frac{1}{x} \varepsilon_t$$
 (1)

Здесь vt — прогиб оси арки в момент времени t; а — угол наклона касательной оси арки относительно горизонтали (фиг. 1); єт — относительная деформация фибры сечения арки в момент времени t; x — расстояние рассматриваемой фибры от центра тяжести сечения.

При определении величины прогибов и искривлений при-нимаем координатные оси как указано на фиг. 1, и в даль-нейшем рассматриваем только искривления в левой полуарке. Длительный прогиб оси арки выражается через искривле-

ния формулой:

$$V_{t} = u_{o} - u_{t} + y_{so} \frac{\Delta l_{t}}{l}$$
(2)

Длительная относительная деформация фибры сечения за-висит от ползучести железобетона; закономерность характе-ристики ползучести бетона принимаем согласно [1, стр. 142]. Принимая деформации ползучести на основе теории старения, фибровые деформации принимают вид:

$$\varepsilon_{t} = \frac{H_{m}u_{m}x}{E_{o}J(z)}(1+\overline{\varphi}_{tu}) + \frac{x}{E_{o}J(z)} \int_{0}^{t} \frac{\partial(H_{e}u_{e})}{\partial\tau} (1+\overline{\varphi}_{tu}-\overline{\varphi}_{eu}) d\tau \quad (3)$$

Здесь H_m $u_m = M_m$ — изгибающий момент в сечении арки от мгновенных воздействий; H_t $u_t = M_t$ — изгибающий момент по истечении времени t; $\overline{\phi}_{tu}$ — характеристика ползучести железобетона при изгибе; $E_0 = \text{const.}$ — модуль упругости бетона, не учитывая его переменность со временем. Уравнение (1) может быть интегрировано в элементар-

ных функциях только при условиях, что распор арки остается практически постоянным

$$H_{\star} = H_{m} = \text{const}.$$
 (4)

и что моменты инерций изменяются по закону

 $I(z) = I_c / \cos^2 \alpha$.

Здесь I_с — момент инерции в замке арки.

Первое допущение (4) обосновывается тем, что изменение распора арки пропорционально изменению стрелы подъема арки, но просадка замка не превышает 2% от стрелы. Столь незначительная переменность (до 2%) распора H не оказывает существенного влияния на вид решения уравнения (1).

Второе условие (5) является часто встречающимся частным случаем распределения моментов инерции вдоль арки.

Вводим еще обозначение

$$\frac{H}{H_{c}} = \kappa^{2}$$

и подставляем (2) и (3) в уравнение (1). Получаем

$$\frac{\Delta I_{t}}{I} \frac{d^{2} y_{so}}{d z^{2}} - \frac{\partial^{2} u_{t}}{\partial z^{2}} = \kappa^{2} u_{m} (1 + \bar{\varphi}_{tu}) + \kappa^{2} \int_{0}^{0} \frac{\partial u_{c}}{\partial \tau} (1 + \bar{\varphi}_{tu} - \bar{\varphi}_{cu}) d\tau, \quad (7)$$

которое оказывается интегральным уравнением длительного искривления. В целях освобождения от интеграла дифференцируем формулу (7) по времени t. Полученный результат

$$\frac{\partial^{3} u_{t}}{\partial t \partial z^{2}} + \kappa^{2} \frac{\partial u_{t}}{\partial t} + \kappa^{2} \frac{d\overline{\varphi}_{tu}}{dt} u_{t} - \frac{1}{\ell} \frac{d\Delta l_{t}}{dt} \frac{d^{2} y_{so}}{dz} = 0$$
(8)

является дифференциальным уравнением третьего порядка в частных производных. К обычным трудностям решения подобного уравнения прибавляется еще существование второй неизвестной Δft. Эту трудность преодолеваем, считая пока просадку замка Δft условно известной функцией.

Решения уравнения (8) для частных случаев общей мгновенной задачи и длительной задачи прямого стержня можно получить в рядах Фурье обычными методами. На основании этих решений можно составить решение длительной задачи для арки в виде (9) на стр. 8.

Здесь B(z,t) — неизвестный остаточный член; $v_n = \frac{n^2 \pi^2}{k^2 l^2}$ — фактор гибкости; n — порядковый номер члена ряда Фурье.

(5)

(6)

$$u_{t} = \sum_{n=1}^{\infty} \frac{\gamma_{n}}{\gamma_{n}-4} e^{\frac{\overline{\gamma}_{tu}}{\gamma_{n}-4}} u_{on} \sin \frac{n \pi 2}{l} +$$

$$+\Delta f_{t} \left[\frac{4}{f} \sum_{n=1}^{\infty} \frac{\frac{4}{4} v_{n}}{\frac{4}{4} v_{n} - 4} y_{son} \sin \frac{n\pi z}{2t} + \frac{\sin \kappa z}{\sin \kappa t} \frac{4}{f} \sum_{n=1}^{\infty} \frac{\frac{4}{4} v_{2n-1}}{\frac{4}{4} v_{2n-1}} (-1)^{n} y_{so(2n-1)} \right] +$$

+B(z,t)

Для составления формулы (9) произведены разложения в ряды Фурье:

начального искривления для первой полуарки

$$\mathcal{L}_{o} = \sum_{n=1}^{\infty} \mathcal{L}_{on} \sin \frac{n \pi 2}{l} \tag{10}$$

(9)

и исходной кривой давления

$$y_{s0} = \sum_{n=1}^{\infty} y_{son} \sin \frac{n \pi z}{2 t}$$
(11)

Следовательно, первое слагаемое формулы (9) представляет собственное нарастание начального искривления, а второе слагаемое — сопровождающее искривление. Для дальнейших выкладок необходимо представить и сопровождающее искривление одним рядом Фурье, в целях чего производим переразложение:

$$\sum_{n=1}^{\infty} \frac{\frac{1}{4} v_n}{\frac{1}{4} v_{n-1}} y_{son} \sin \frac{n \pi z}{2!} + \frac{\sin \kappa z}{\sin \kappa !} \sum_{n=1}^{\infty} \frac{\frac{1}{4} v_{2n-1}}{\frac{1}{4} v_{2n-1}} (-1)^n y_{so(2n-1)}^n = \frac{1}{4} \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} u_{cn} \sin \frac{n \pi z}{i}$$
(12)

Подстановка искомого вида решения (9) в уравнение (8) с учетом переразложения (12) дает уравнение для остаточного члена

$$\frac{\partial^3 B}{\partial t \partial z^2} + \kappa^2 \frac{\partial B}{\partial l} - \kappa^2 \frac{d \overline{\varphi}_{tu}}{dt} B + \kappa^2 \frac{d \overline{\varphi}_{tu}}{dt} \frac{\Delta f_t}{f} \sum_{n=1}^{\infty} u_{cn} \sin \frac{n n z}{l} = 0$$
(13)

Отсюда непосредственно вытекает искомый вид решения остаточного уравнения:

$$B'(z,t) = \sum_{n=1}^{\infty} \psi_n(t) u_{cn} \sin \frac{n \pi z}{l}$$
(14)

Здесь ψ_n(t) — искомый вид коэффициента времени для n-ой «гармоники».

Подстановка (14) в уравнение (13) дает уравнение коэффициента времени для *n*-ой «гармоники»

$$\frac{d\psi_n(t)}{dt} + \frac{1}{1-\nu_n} \frac{d\bar{\psi}_{iu}}{dt} \psi_n(t) + \frac{1}{1-\nu_n} \frac{d\bar{\psi}_{iu}}{dt} \frac{\Delta P_i}{P} = 0 , \quad (15)$$

которое при начальном условии

$$\Psi_{n}(t \cdot 0) = 0 \tag{16}$$

(следует из $u(t=0) = u_m$) дает частное решение:

$$\Psi_{n}(t) = \frac{1}{(\vartheta_{n}-1)l} e^{\frac{\tilde{\Psi}_{tu}}{\vartheta_{n}-1}} \int_{0}^{t} \Delta l_{\varepsilon} \frac{d\tilde{\Psi}_{\varepsilon u}}{d\varepsilon} e^{-\frac{\tilde{\Psi}_{\varepsilon u}}{\vartheta_{n}-1}} d\varepsilon$$
(17)

Учитывая, что искомый вид (9) решения уравнения длительных искривлений удовлетворяет граничным условиям

$$u_{1}(Z=0) = u_{1}(Z=1) = 0$$
(18)

можем непосредственно написать решение уравнения длительного искривления оси арки в виде (19) на стр. 10.

Полученная зависимость (19) связывает между собой две переменные u_{t} и Δf_{t} , из чего вытекает необходимость получить для их определения еще одно уравнение.

 $U_{t} = \sum_{n=1}^{\infty} \frac{v_{n}}{v_{n-1}} e^{\frac{1}{v_{n-1}}} U_{0n} \sin \frac{n \pi z}{l} + \frac{\Delta l}{l} \sum_{n=1}^{\infty} U_{cn} \sin \frac{n \pi z}{l} + \sum_{n=1}^{\infty} \frac{v_{n-1}}{l} e^{\frac{1}{v_{n-1}}} e^{\frac$ $+\frac{1}{l}\sum_{n=1}^{\infty}\frac{1}{\sqrt{n-1}}e^{\frac{\overline{\varphi}_{lu}}{\sqrt{n-1}}}u_{cn}\int_{0}^{l}\Delta t_{c}\frac{d\overline{\varphi}_{cu}}{d\tau}e^{-\frac{\overline{\varphi}_{cu}}{\sqrt{n-1}}}d\tau\sin\frac{n\pi z}{l}$ (19)

3. Уравнение длительной просадки замка

Условием, позволяющим вывести второе необходимое уравнение, служит зависимость просадки замка от изгибающих моментов в арке, от продольного удлинения — укорочения оси арки и от горизонтального смещения опор. Такой зависимостью является формула перемещений Максвелла-Мора, из которой исключаем все члены, содержащие поперечные силы, кривизну стержня, фибровое изменение температуры, вертикальное и угловое перемещение опор. Тем самым мы принимаем, что: 1) поперечные силы дают только незначительные перемещения; 2) арка является пологой; 3) изменение температуры происходит в сечениях арки только равномерно и 4) перемещение опор влияет на просадку замка только в виде изменения величины пролета. При этих условиях формула перемещений имеет вид:

$$\Delta f_{t} = \sum \int \bar{N}_{t} \frac{N_{t}}{E_{o}F(z)} ds + \sum \int \bar{M}_{i} \frac{M_{i}}{E_{o}J(z)} ds + \sum \int \bar{N}_{i} \Delta ds_{rm} + \sum \bar{R}_{i} \Delta_{m}$$

$$(20)$$

Здесь \overline{N}_i и \overline{M}_i — усилия в арке от единичной сосредоточенной вертикальной силы, приложенной в замке; \overline{R}_i — горизонтальное смещение опор от единичной вертикальной силы, приложенной в замке; F(z) — закономерность изменения приведенных площадей сечений железобетонной арки; ds — дифференциал оси арки; $\Delta ds_{\rm Tm}$ — прирост в величине дифференциала арки от изменения температуры; Δ_m — изменение величины пролета арки.

Учитывая, что вторая неизвестная *u*^t входит только во второе слагаемое формулы (20), имеем право считать остальные слагаемые определенными. В общем эти слагаемые представляются в виде произведения упругого опускания замка и коэффициента, характеризующего прирост его со временем. Второе необходимое уравнение принимает вид:

$$\Delta f_{t} = \Delta f_{e} (1 + \overline{\varphi}_{tc}) + \Delta f_{y\kappa} (1 - e^{-pt}) + \kappa^{2} \sum \int \widetilde{M}_{t} u_{t} dz + \Delta f_{w\kappa} (1 + \partial e e^{-\vartheta t} - e^{-\vartheta t}) + \Delta f_{\tau} \omega(t)$$
(21)

Здесь Δf_e — мгновенная просадка замка от обжатия арки; Δf_{yk} и Δf_{wk} — конечные просадки замка соответственно от усадки бетона и горизонатального смещения опор; Δf_{τ} — просадка замка от изменения температуры оси арки на один градус; φ_{te} — характеристика ползучести железобетона при сжатии; p — коэффициент, характеризующий скорость нарастания деформации усадки; $\varkappa = \frac{\Delta l_m}{\Delta l_k}$ — отношение мгновенного и конечного перемещения опор; ϑ — коэффициент, характеризующий скорость нарастания смещения опор; $\omega(t)$ закон изменения во времени температуры оси арки.

4. Нарастание начального искривления в случае исходной кривой давления по катеноиду Легея

Свойство катеноида Легея — представлять функциональные закономерности рациональных осей мостовых арок [3], делает целесообразным изучение искривлений в его случае. При принятой нами координатной системе (фиг. 1) закон исходной кривой давления имеет вид:

$$Y_{so} = \frac{1}{m-1} \left[m - ch \left[\alpha z - \alpha l \right] \right]$$
(22)

Решение уравнения (19) в случае мгновенной задачи дает мгновенное нарастание начального искривления

$$U_{mo} = \sum_{n=1}^{\infty} \frac{\gamma_n}{\gamma_n - 1} U_{on} \sin \frac{n \pi 2}{l} + \Delta I_{mo} \sum_{n=1}^{\infty} \frac{\gamma_n}{\gamma_n - 1} \frac{2(m - \cos n\pi)}{n\pi(m - 1) \left(\frac{n^2 \pi^2}{Q^2 \frac{1}{2} + 1}\right)} \sin \frac{n\pi 2}{l}$$
(23)

Мгновенная просадка замка согласно уравнению (21) выражается зависимостью

$$\Delta I_{mo} = 2 \kappa^{2} \int_{0}^{1} \left(\frac{1}{2 f} \, y_{so} - \frac{1}{2} \, z \right) u_{mo} \, dz = \frac{1}{4 - B_{s}} \sum_{n=1}^{\infty} \frac{u_{on}}{v_{n} - 1} B_{on} , \quad (24)$$

где коэффициенты Bon и B1 определяются формулами:

$$B_{on} = \frac{n \Pi (m - \cos n \Pi)}{(m - 1) \left(\frac{N^2 \Pi^2}{\alpha^2 t^2} + 1 \right)}$$
(25)

$$B_{1} = \frac{2}{(m-1)^{2}} \sum_{n=1}^{\infty} \frac{(m-\cos n\pi)^{2}}{(\vartheta_{n}-1)(\frac{n^{2}\pi^{2}}{\alpha^{2}!^{2}}+1)^{2}} = \sum_{n=1}^{\infty} \frac{2B_{on}^{2}}{n^{2}\pi^{2}(\vartheta_{n}-1)}, \quad (26)^{n}$$

Выражение длительного искривления принимает тогда вид:

$$U_{to} = \sum_{n=1}^{\infty} \frac{v_n}{v_n - 1} U_{on} e^{\frac{\overline{\psi}_{tu}}{v_n - 1}} \sin \frac{n \pi z}{l} +$$

+
$$\Delta I_{to} \sum_{n=1}^{\infty} \frac{\gamma_n}{\gamma_{n-1}} \frac{2B_{on}}{n^2 \pi^2} \sin \frac{n\pi z}{l} +$$

$$+\sum_{n=4}^{\infty} \frac{\overline{\psi_n}}{(\overline{v_n}-1)^2} \frac{2\underline{B}_{0n}^2}{N^2 \Pi^2} e^{\frac{\overline{\psi}_{tu}}{\overline{v_n}-1}} \int_{0}^{t} \Delta f_{to} \frac{d\overline{\psi}_{tu}}{d\tau} e^{-\frac{\overline{\psi}_{tu}}{\overline{v_n}-1}} d\tau \sin \frac{n\Pi z}{l}$$
(27)

Уравнение длительной просадки (21) значительно упрощается, если в нем ввести обозначение

$$\frac{2(m-\cos n\pi)^2}{(m-1)^2(\sqrt[n^2]{n^2}+1)^2(1-B_1)} = \frac{2B_{on}^2}{n^2\pi^2(v_n-1)^2(1-B_1)} = B_{3n}$$
(28)

и учитывать хорошую сходимость коэффициента B_{3n} :

$$\lim_{n \to \infty} B_{3n} = 0, \qquad (29)$$

причем во всех интересных для инженерной практики случаях

$$B_{32} \leq \frac{1}{300} B_{31}$$
 (30)

Допуская погрешность меньше половины процента, уравнение длительной просадки замка выражается в виде

$$\Delta \mathfrak{f}_{i0} = \sum_{n=1}^{\infty} \frac{u_{0n}}{v_{n-1}} \frac{B_{0n}}{4 - B_4} e^{\frac{\overline{\varphi}_{tu}}{v_{n-1}}} + B_{34} e^{\frac{\overline{\varphi}_{tu}}{v_{n-1}}} \int_{0}^{t} \Delta \mathfrak{f}_{\tau_0} \frac{d\overline{\varphi}_{\tau_0}}{d\tau} e^{-\frac{\overline{\varphi}_{\tau_0}}{v_{n-1}}} d\tau \qquad (31)$$

являясь интегральным уравнением Вольтерра второго рода. Благодаря хорошей сходимости резольвенты

$$\mathsf{B}_{31}\mathsf{R}(\mathsf{t},\mathsf{T};\mathsf{B}_{31}) = \sum_{r=0}^{\infty} \bar{\varphi}_{\mathsf{tu}}^{r-1} \frac{\mathrm{d}\bar{\varphi}_{\mathsf{tu}}}{\mathrm{d}\tau} e^{\frac{\bar{\varphi}_{\mathsf{tu}}-\bar{\varphi}_{\mathsf{tu}}}{\mathcal{N}_{r-1}}} \mathsf{B}_{31}^{r+1}, \qquad (32)$$

и учитывая практические значения коэффициента $0,0003 \le B_{31} \le 0,03$ и сходимость его степени (r+1)

$$\lim_{r \to \infty} B_{31}^{r+1} = 0$$
 (33)

можем просадку замка представить в виде

$$\Delta \hat{F}_{to} = \sum_{n=1}^{\infty} \frac{U_{on}}{\hat{\nu}_{n-1}} \frac{B_{on}}{1-B_{1}} e^{\frac{\bar{\varphi}_{tu}}{\hat{\nu}_{n-1}}} + \frac{U_{o1}}{\hat{\nu}_{1-1}} \frac{B_{o1}}{1-B_{4}} B_{31} e^{\frac{\bar{\varphi}_{tu}}{\hat{\nu}_{1-1}}} + \sum_{n=2}^{\infty} \frac{\hat{\nu}_{n-1}}{\hat{\nu}_{n-1}} \frac{B_{on}}{1-B_{4}} B_{31} e^{\frac{\bar{\varphi}_{tu}}{\hat{\nu}_{n-1}}} - e^{\frac{(1+\hat{\nu}_{n}-\hat{\nu}_{4})}{(\hat{\nu}_{n-1})(\hat{\nu}_{1-1})}} \hat{\Psi}_{tu} \right).$$
(34)

Но второе и третье слагаемое формулы (34) пропорциональны коэффициенту B₃₁, ввиду малости которого в большинстве случаев можно пренебречь вторым и третьим слагаемыми. В таких случаях формула длительной просадки замка принимает вид:

$$\Delta f_{to} = \sum_{n=1}^{\infty} \frac{u_{on}}{v_n - 1} \frac{B_{on}}{1 - B_4} e^{\frac{\varphi_{tu}}{v_n - 4}}$$
(35)

Подстановка (35) в (27) дает формулу для длительного нарастания начального искривления оси арки:

$$\begin{aligned} U_{to} &= \sum_{n=1}^{\infty} \frac{\vartheta_n}{\vartheta_n - 1} U_{on} e^{\frac{\overline{\psi}_{tu}}{\vartheta_n - 1}} \sin \frac{n \pi z}{l} + \\ &+ \sum_{n=1}^{\infty} \sum_{r=1}^{\infty} \frac{\vartheta_r}{(\vartheta_n - 1)(\vartheta_r - 1)} \frac{2B_{on}B_{or}}{r^2 \Pi^2 (1 - B_l)} U_{on} e^{\frac{\overline{\psi}_{tu}}{\vartheta_n - 1}} \sin \frac{r \pi z}{l} + \\ &+ \sum_{n=r=1}^{\infty} \frac{\vartheta_n}{(\vartheta_n - 1)^2} \frac{2B_{on}}{n^2 \Pi^2 (1 - B_l)} U_{on} \overline{\psi}_{tu} \sin \frac{n \pi z}{l} + \\ &+ \sum_{n=r=1}^{\infty} \frac{\vartheta_n}{(\vartheta_n - 1)^2} \frac{2B_{on}B_{or}}{n^2 \Pi^2 (1 - B_l)} U_{on} \left[\frac{\overline{\psi}_{tu}}{\vartheta_n - 1} - e^{\frac{\overline{\psi}_{tu}}{\vartheta_r - 1}} \right] \right] \end{aligned}$$

Здесь третье слагаемое выражает сумму при n = r, а четвертое слагаемое все остальные кратные суммы кроме n = r.

5. Обжатие арки, усадка бетона, горизонтальное смещение опор и изменение температуры

Случай очертания кривой давления по катеноиду Легея дает для всех четырех длительных воздействий уравнения просадки замка в виде интегральных уравнений, имеющих сходство с уравнением (31). При этом резольвенты полностью совпадают. После некоторых упрощений, не обуславливающих погрещностей больше 1%, получаем суммарное

$$U_{t} - U_{to} = \left[\Delta f_{e} (1 + \overline{\varphi}_{tc}) + \Delta f_{y\kappa} (1 - e^{-pt}) + \Delta f_{w\kappa} (1 + 2e^{-pt} - e^{-pt} - e^{-pt}) + \Delta f_{w\kappa} (1 + 2e^{-pt} - e^{-pt} - e^{-pt}) + \Delta f_{w\kappa} (1 + 2e^{-pt} - e^{-pt} - e^{-pt}) + \Delta f_{w\kappa} (1 + 2e^{-pt} - e^{-pt} - e^{-pt}) + \Delta f_{w\kappa} (1 + 2e^{-pt} -$$

$$+\Delta f_{\tau} \omega(t) \Big] \sum_{n=1}^{\infty} \frac{\gamma_n}{\gamma_n - 1} \frac{2B_{on}}{n^2 \Pi^2 (1 - B_j)} \sin \frac{n \Pi Z}{l} +$$

+
$$\Delta I_e B_{4t} + \Delta I_{y\kappa} B_{5t} + \Delta I_{w\kappa} B_{6t} +$$

$$+\Delta \beta_{T} B_{x} \left[\frac{\vartheta_{1}}{\vartheta_{1}-1} \frac{2B_{01}}{\pi^{2}(1-B_{1})} \left(\frac{B_{31}}{\varphi_{111}} + \frac{1}{\vartheta_{1}-1} \right) e^{\frac{\Psi_{11}}{\vartheta_{1}-1}} \sin \frac{\eta_{2}}{l} \right]$$
(37)

длительное искривление от обжатия арки, усадки бетона, горизонтального смешения опор и изменения температуры (37) на стр. 14.

Здесь коэффициенты, зависящие от времени t (подлежат определению методами численного интегрирования), выражаются формулами:

$$B_{4t} = \int_{0}^{t} (1 + \bar{\varphi}_{cc}) \frac{d\bar{\varphi}_{cu}}{d\tau} e^{\frac{\bar{\varphi}_{cu}}{\nu_{a}}} d\tau , \qquad (38)$$

$$B_{\underline{r},\underline{t}} = \int_{0}^{t} (1 - e^{-p\tau}) \frac{d \,\overline{\varphi}_{\tau u}}{d\tau} e^{-\frac{\varphi_{\underline{r},u}}{\varphi_{\underline{r}-1}}} d\tau , \qquad (39)$$

$$B_{6t} = \int_{0}^{t} (1 + \partial e e^{-\partial \tau} - e^{-\partial \tau}) \frac{d\bar{\varphi}_{cu}}{d\tau} e^{-\frac{\varphi_{cu}}{\gamma_{t} + 1}} d\tau, \quad (40)$$

$$\mathsf{B}_{7t} = \int_{-\infty}^{t} \omega(\tau) \frac{\mathrm{d}\bar{\varphi}_{\tau u}}{\mathrm{d}\tau} e^{-\frac{\bar{\varphi}_{\tau u}}{v_{t}}} \mathrm{d}\tau \tag{41}$$

6. Точность решения и пределы его применения

Требуемая точность вычисления изгибающих моментов по деформированной схеме арки зависит от доли напряжений этих моментов в суммарных нормальных напряжениях. При доле их меньше 20% допустимая ошибка в величине изгибающих моментов и искривлений достигает до 10%.

Основным источником погрешностей вышеизложенной теории является упрощенный вид исходного уравнения (1). Ввиду того, что более точный вид уравнения изогнутой оси арки не позволяет найти длительного решения, необходимо определить предельные ошибки по более простой задаче. Такой задачей может служить определение мгновенной критической нагрузки. В таблице 1 сопоставлены коэффициенты устойчивости параболической арки равного сопротивления (5) по принятому нами методу с коэффициентами устойчивости по Диннику [2].

f/L == f/2l	0,1	0,2	0,3	0,4	0,6
По принятому методу	23,8	47,6	71,4	95,2	132,8
По Диннику	23,2	43,6	59,0	68,0	70,0
Разница в %-тах	2,6	9,2	21,0	40,2	90,0

Коэффициенты устойчивости арки

Следовательно, арки пологостью до 0,2 имеют достаточно точное решение, но в некоторых случаях предлагаемые формулы можно применять и для арок с пологостью от 0,2 до 0,3. Упрощения, введенные при выводах формулы, всегда в несколько раз меньше неточностей основ теории по таблице 1.

Упрощения, введенные при выводах формулы, всегда в несколько раз меньше неточностей основ теории по таблице 1. Необходимо отметить, что все погрешности приводят к уменьшению изгибающего момента по деформированной оси арки, вследствие чего изгибающие моменты получаются заниженными.

Одним из существенных факторов при использовании формул (36) и (37) является закономерность характеристики ползучести железобетона. Исследование этого фактора проведено в работе [4], где доказана приемлемость приближения

$$\overline{\Psi}_{tu} = \overline{\varphi}_{t\underline{n}} = \frac{\gamma_{1} - 1}{1 + n_{0} \eta \gamma_{1}} \left[1 - e^{-\left(\frac{1}{\gamma_{1} - 1} + \xi_{p}\right) \varphi_{t}} \right]$$
(42)

при переменных изгибающих моментах. В целях иллюстрации примененной теории составлены таблицы 2 и 3. В первой из них даны коэффициенты нарастания начального искривления по формуле (36) для одинаковых характеристик ползучести бетона и железобетона при изгибе. Последняя характеристика, разумеется, не может принимать значения $\varphi_{tu} = 4$, такой случай возможен только при неармированном или очень слабо армированном бетоне. Таблица 2 составлена для катеноида Легея с al=0,2, ко-

Таблица 2 составлена для катеноида Легея с al = 0,2, который очень близок к квадратной параболе. В таблице 3 представлены коэффициенты нарастания начального искривления по Дишингеру.. Графы таблиц 2 и 3, имеющие одинаковые порядковые номера, представляют те же самые арки. Видно, что формула (36) при низких значениях v_1 дает до вдвое меньшие результаты, чем теория Дишингера, но при обычных значениях v_1 это снижение составляет лишь 10%.

Таблица 2

31 al

начение	ко	эффицие	нтов	начального	искривления	для	кате	ноида	Легея
l = 0,2	при	равных	xapa	актеристиках	ползучести	бетона	φt	и же	лезобе-
				тона	. @+				

ex a second of the second of the						14		
$v_1 = -\frac{k}{k}$	π ² 2/2	3,981	6,634	9,290	10,62	11,94	15,93	31,85
При равных ф _t $n_0\eta == 0,2$	$ \begin{array}{c} \varphi_t = 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	1,50 1,99 2,34 2,52 2,77	1,25 1,49 1,67 1,81 1,92	1,17 1,32 1,43 1,55 1,62	1,14 1,28 1,39 1,46 1,53	1,12 1,24 1,37 1,41 1,47	1,09 1,18 1,25 1,30 1,34	1,04 1,08 1,12 1,14 1,16
При равных фtu	$ \begin{array}{c} \overline{q_{tu}} = 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	1,50 2,31 3,35 4,74 6,58	1,25 1,58 1,97 2,4! 2,91	1,17 1,38 1,60 1,86 2,13	1,14 1,32 1,51 1,71 1,93	1,12 1,28 1,44 1,61 1,79	1,09 1,20 1,31 1,43 1,55	1,04 1,09 1,14 1,19 1,24
		1	2	3	4	5	7	6

Таблица З

Значения коэффициентов начального искривления по Дишингеру для параболы

$v_0 = \frac{7,437}{k^2 l^2}$	3	5	7	8	9	12	24
$\begin{array}{c c} \hline 4 \\ tu = 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$	1,50 2,47 4,08 6,72 11,08	1,25 1,60 2,06 2,65 3,40	1,17 1,38 1,63 1,92 2,27	1,14 1,32 1,52 1,75 2,02	1,12 1,27 1,44 1,64 1,85	1,09 1,19 1,31 1.43 1,57	1,04 1,09 1,14 1,19 1,24
№№ графы	1	2	3	4	5	6	7

Наряду с не вполне правильным представлением о работе более гибких арок, теория Дишингера не дает возможности учитывать любые закономерности процессов ползучести при сжатии, усадке бетона, смещении опор и изменении температуры оси арки, а дает результаты только для случаев «параллельности» этих процессов с ползучестью железобетона при изгибе. Предложенную нами теорию можно приспособить также для произвольного распределения моментов инерции по длине арки. В этом случае коэффициенты v_n , B_{on} и B_1 следует определить из мгновенной задачи при помощи численного интегрирования уравнения (8), тогда окончательные результаты (36) и (37) сохраняют свой прежний вид.

Прием интегрирования уравнения (8) численными методами может быть использован и в тех случаях, когда ось арки $y_{so}(z)$ и распределение моментов инерции I(z) не определены математическими закономерностями, а даны таблицей значений (расчет арок методом упругих нагрузок). Последнее обстоятельство расширяет область применения изложенной теории на все виды пологих арок независимо от закономерностей $y_{so}(z)$ и I(z), и применение рядов Фурье позволит учесть произвольные начальные искривления.

7. Порядок расчета арок по деформированной оси

В методах расчета железобетонных трехшарнирных мостовых арок, применяемых в настоящее время, деформированная схема в некоторой степени учитывается. В случаях пролета арки свыше 100 *м* деформация оси обычно учитывается при определении строительного подъема, предполагая, что в эксплуатационных условиях строительный подъем полностью исчезает и арка продолжает работать свободной от изгибающих моментов постоянной нагрузки. Ввиду неопределенности процессов длительных воздействий следовало бы ввести в расчеты их возможные минимальные и максимальные значения. Однако, в таком случае представление о безмоментной арке должно отпадать. Расчет по деформированной оси с варьированием предельных значений длительных воздействий приводит к изгибающим моментам, превышающим изгибающие моменты от временной нагрузки. Расчет арки по действительному деформированному состоянию дает право отказаться от учета продольного изгиба при проверке прочности, что в результате может дать даже более легкие сечения, чем общепринятые современные способы расчета.

В обычный расчет железобетонных трехшарнирных мостовых арок больших пролетов рекомендуем включить следующие дополнительные приемы:

щие дополнительные приемы: а) вычисление ординат строительного подъема соответственно возможным минимальным длительным воздействиям (например, мин. φ₁=1,5 и т. п.);

 б) определение разницы усилий по деформированной схеме из возможных максимальных и минимальных длительных воздействий;

в) проверка прочности арки с учетом перераспределения напряжений между бетоном и арматурой, исходя из суммы усилий по (б) и по недеформированной схеме.

Добиваясь при возведении сооружения минимальных характеристик ползучести бетона и используя вышеприведенные приемы представляется возможным создать арку с наименьшими изгибающими моментами.

8. Заключение

Предлагаемая теория позволяет рассчитать сборные железобетонные трехшарнирные мостовые арки более точно, чем по существующим теориям расчета арок по деформированной схеме с учетом длительных воздействий. Теория охватывает все возможные закономерности кривой давления постоянной нагрузки y so (z) и распределения моментов инерции I(z), вызывая при сложных закономерностях определенные усложнения в расчетах. В пределах малых пологостей арок возможно получить сколь-угодно точные результаты, однако ввиду неопределенности характеристик длительных воздействий нет смысла определять изгибающие моменты от постоянной нагрузки с точностью, превышающей 10%. Специальные таблицы могут существенным образом уменьшить трудоемкость вычислительной работы при предварительных расчетах. Окончательные расчеты при всех ответственных случаях необходимо производить по выведенным формулам (36) и (37).

ЛИТЕРАТУРА

- 1. Е. Е. Гибшман, М. Е. Гибшман. Теория и расчет предварительно напряженных железобетонных мостов. Автотрансиздат, 1963. 2. А. Н. Динник. Устойчивость арок. Гостехтеориздат, 1946. 3. В. А. Киселев. Рациональные формы арок и подвесных систем. Гос-
- стройиздат, 1953.
- 4. Х. А. Мяги. Перераспределение напряжений между бетоном и арматурой в сборных железобетонных трехшарнирных мостовых арках. См. наст. сборник стр. 21.
- Fr. Dischinger. Elastische und plastische Verformungen der Eisenbetontragwerke und insbesondere der Bogenbrücken. Der Bauingenieur, 1939, № 5/6, 21/22, 31/32, 47/48.

TALLINNA POLÜTEHNILISE INSTITUUDI TOIMETISED ТРУДЫ ТАЛЛИНСКОГО ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА

СЕРИЯ А

Nº 218

1965

УДК 624.624.001:539.376

Х. А. Мяги

ПЕРЕРАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ МЕЖДУ БЕТОНОМ И АРМАТУРОЙ В СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ МОСТОВЫХ АРКАХ*

Стремление к увеличению пролетов, перекрываемых арочными железобетонными мостами, вызывает необходимость в применении более точных методов расчета. Одной из допущенных неточностей в современных методах расчета арок является определение несущей способности сооружения и его эксплуатационных напряжений без учета длительных воздействий. Учет влияния ползучести и усадки бетона на перераспределение напряжений между бетоном и арматурой в сечениях арки дает совершенно иные величины напряжений по сравнению с обычным расчетом по упругим напряжениям [1, 5, 61. Численные примеры, приведенные Дишингером, служат доказательством возможности 3-4-кратного повышения напряжений в арматуре и до 2-кратного понижения их в бетоне. В предельных случаях арматура сжатого железобетонного бруса начинает работать за пределом текучести. Поэтому весьма важно выяснить условия совместной работы арматуры в состоянии текучести и бетона, сохранившего некоторый запас прочности.

С другой стороны, в формулы для определения изгибающих моментов, появляющихся в трехшарнирных арках при работе по деформированной схеме с учетом длительных воздействии, входят характеристики ползучести железобетона [3, 6]. Величины характеристик ползучести железобетона зависят, кроме насыщенности сечения арматурой и характеристики ползучести бетона, еще от закономерности изменения переменных усилий. Характеристики ползучести железобетона при постоянных усилиях изучены многими авторами [1, 5, 6

^{*} Работа выполнена под руководством профессора, доктора т. н. Е. Е. Гибшмана.

и др.], а при переменных усилиях Будановым [1]. В последней работе рассмотрены случаи, когда переменные усилия изменяются линейно относительно шкалы характеристики ползучести бетона, т. е.:

$$\frac{\partial N_t}{\partial \varphi_t} = \text{const.} \quad \frac{\partial M_t}{\partial \varphi_t} = \text{const.} \tag{1}$$

Такие закономерности далеко не совпадают с изменением усилий в трехшарнирных арках при работе по деформированной схеме.

При изучении обеих проблем принимаем в основу предпосылки, обоснованные в [2], а именно:

1) Изменение характеристик ползучести во времени как при сжатии, так и при растяжении бетона приближенно выражаем законом

$$\Psi_{t} = \Psi_{\kappa} \left(1 - e^{-\beta t} \right). \tag{2}$$

2) Как правило, пользуемся теорией старения.

3) При напряжениях, не выходящих из области линейной ползучести, считаем справедливым закон независимости действия сил и принцип наложения напряжений и деформаций.

4) Считаем прочность и модуль упругости бетона неизмененными во времени.

5) Закон изменения относительной деформации усадки принимаем в виде:

$$\mathcal{E}_{y} = \mathcal{E}_{\kappa} \left(1 - e^{-pt} \right) \tag{3}$$

Здесь φ_t — характеристика ползучести бетона в момент времени t; φ_k — конечная величина характеристики ползучести бетона при $t = \infty$; β — постоянный коэффициент, характеризующий скорость нарастания ползучести; ε_y — относительная деформация усадки бетона в момент времени t; ε_k — конечная величина относительной деформации усадки; p — постоянный коэффициент, характеризующий скорость нарастания усадки со временем.

Кроме того принимаем, что сечения арки симметричны, что хорошо согласуется с конструкцией существующих отечественных сборных арочных железобетонных мостов.

1. Перераспределение напряжений от нормальной силы и усадки бетона

В общем нормальные силы в трехшарнирных железобетонных арках переменны во времени. Их изменение зависит от изменения распора при деформировании арки. Распор арки от постоянных нагрузок в каждый момент времени обратнопропорционален стреле подъема. Ввиду того, что предельное опускание замка составляет менее 2% от стрелы подъема, изменение нормальных сил не превышает 2%. Следовательно, переменностью нормальной силы от постоянных нагрузок можно пренебречь. Так как нормальные силы от временной нагрузки не вызывают ползучести в бетоне (по общепринятым взглядам), то нормальные силы в трехшарнирных арках, связанные с перераспределением напряжений, являются в достаточной степени постоянными.

Перераспределенные напряжения от постоянной нормальной силы, согласно принятым нами допущениям, выражаются формулами, совпадающими у нескольких авторов [1, 5 и 6]:

$$\sigma_{\delta N} = \overline{\sigma_{\delta N}} \left(1 - n_o M \overline{\varphi}_{tc} \right) = \frac{N}{F_{\delta} \left(1 + n_o M \right)} \left(1 - n_o M \overline{\varphi}_{tc} \right)$$
(4)

$$\mathcal{O}_{\alpha N} = \mathcal{O}_{\alpha N} \left(1 + \bar{\varphi}_{tc} \right) = \frac{n_0 N}{F_{\delta} \left(1 + n_0 M \right)} \left(1 + \bar{\varphi}_{tc} \right) \tag{5}$$

Здесь σ_{6N} и σ_{aN} — переменные (перераспределенные) напряжения в бетоне и арматуре в момент времени t; $n_0 = \frac{E_a}{E_6}$ отношение начальных модулей упругости арматуры и бетона; $\mu = \frac{F_a}{F_6}$ — насыщенность сечения арматурой; $\overline{\phi}_{tc}$ — характеристика ползучести железобетона при сжатии в момент времени t; N — постоянная нормальная сила.

Закон характеристики ползучести железобетона при сжатии имеет вид:

$$\overline{\varphi}_{tc} = \frac{1}{n_o M} \left(1 - e^{-\xi_1 \varphi_t} \right)$$
(6)

Здесь

$$\xi_{A} = \frac{n_{o} \mu}{1 + n_{o} \mu} \tag{7}$$

23

Величины коэффициентов перераспределения напряжений между бетоном и арматурой представлены в таблице 1. Сдуя по этим коэффициентам, напряжения в арматуре вполне могут достигать предела текучести.

Напряжения от усадки бетона выражаются формулами [5, 6]:

$$\overline{O}_{\delta y} = \varepsilon_y \frac{\mathcal{M} E_{\alpha}}{\varphi_{\kappa}} \overline{\varphi}_{tc}$$
(8)

$$\widehat{O}_{\alpha y} = -\varepsilon_y \frac{\underline{F}_{\alpha}}{\varphi_{\kappa}} \overline{\varphi}_{tc} \qquad (9)$$

Представленные в таблице 2 данные служат доказательством о наличии значительных напряжений в арматуре от усадки бетона.

Таблица 1

A CONTRACTOR OF THE OWNER OWNER OF THE OWNER	the second state of the second state of the					
The Constant Specific	PRIME REMAIN	No.N	*Alen	φ _t	in Car	
Carmera at a	Menuide (menu	0	1	2	3	4
Множитель при _{Фбп}	$n_0\mu == 0,2$	1,000	0,846	0,717	0,607	0,513
	0,4	1,000	0,767	0,565	0,42-1	0,319
$1 - n_0 \mu \overline{\varphi}_{tc}$	0,6	1,000	0,687	0,472	0,325	0,223
Множитель при σ _{aN}	$n_0\mu == 0,2$	1,000	1,768	2,417	2,967	3,433
	0,4	1,000	1,583	2,083	2,439	2,703
$1 + \overline{\Phi}_{tc}$	0,6	1,000	1,521	1,879	2,126	2,295

Множители перераспределенных напряжений

Таблица 2

Напряжения от усадки бетона (в 105 Н/м2)

well to khone	MAGNAR 20	n municipation	D'B.CI	N KIT	фĸ		
	AB GTP .MO		0	1	2	3	4
SCHEROS CHICE	CONT ONLY ORD	$n_0\mu = 0,2$	0	16,4	15,2	14,0	13,0
An one faire	$\varepsilon_y = $	0,4	0	25,0	23,3	20,5	18,2
	0 10	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20,8				
	The Section for	$n_0\mu = 0.2$	0	32,8	30,3	28,1	16,0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	46,6	41,0	36,4				
бетоне	Callenge in an	0,6	0	66,9	56,4	48,2	41,6
$\epsilon_{\rm w} = \frac{\mu E_{\rm a}}{\varphi_{\rm tc}}$		$n_0\mu == 0,2$	0	65,7	60,7	56,1	52,1
φκ	20.10-5	0,4	0	99,9	93,1	82,1	72,9
	Mar a fer	0,6	0	133,8	112,9	96,4	83, i
		$n_0\mu = 0,2$	0	98,6	91,0	84,2	: 78,1
44P	$30 \cdot 10^{-5}$	0,4	0	149,8	139,7	123,2	109,3
	C LA TAX	0,6	0	200,8	169,4	144,5	124,7
Contraction of the	Section Section	$n_0\mu == 0,2$	0	82	76	70	64.
	$\epsilon_y = -5 \cdot 10^{-5}$	0,4	0	62	58	51	45
	0 10	0,6	0	56	47	40	34
	анэжкүнин .	$n_0\mu = 0,2$	0	164	152	140	128
Сжатие в ар-	$10 \cdot 10^{-5}$	0,4	0	125	116	102	90
матуре	a cost recent	0,6	0	112	94	80	68
$E_y \frac{E_a}{\omega}$ (ptc	area services and	$n_0\mu == 0,2$	0	328	303	279	256
Ψĸ	20.10-5	0,4	0	250	233	204	179
	an weather the	0,6	0	223	188	160	136
	ROTOR BURNELS	$n_0\mu = 0,2$	0	493	455	419	384
	30.10-5	0,4	0	374	349	306	269
	achielesignon	0,6	0	335	282	240	204

2. Перераспределение напряжений от переменного изгибающего момента

Принятие допущения об одинаковых закономерностях ползучести для сжатия и растяжения при напряжениях от изгибающего момента обосновывается тем, что арки в основном работают на нормальную силу, а растянутая зона сечения при изгибе представляет из себя лишь зону понижения сжатия. Только в редких случаях напряжения действительно бывают растягивающими.

Фиг. 1. *а* — симметричное сечение арки с сконцентрированной арматурой; *б* — продольный разрез арки; *в* — эпюра напряжений от изгибающего момента (напряжения в арматуре разделены на *n*₀):

 σ_{0M}^0 — начальные напряжения в бетоне (представляет также напряжения в арматуре), σ_{Mt} — переменные напряжения без учета перераспределения; σ_{aM} , $\sigma_{\delta M}$ — перераспределенные напряжения соответственно в арматуре и бетоне.

Обычно имеем дело с начальными напряжениями $\sigma_{\delta M}^{o}$ (фиг. 1в), которые (не учитывая перераспределение) с возрастанием изгибающего момента увеличиваются до величины σ_{mt} . Но параллельно с возрастанием изгибающего момента со временем напряжения перераспределяются и принимают значения в бетоне $\sigma_{\delta M}$ и в арматуре σ_{aM} . В целях общности результатов выражаем переменный изгибающий момент в виде:

$$M_{t} = M_{o} \Psi(t)$$
 (10)

При таком выборе переменного изгибающего момента соответствующие относительные деформации фибры составного сечения выражаются формулой:

$$\varepsilon_{t} = \varepsilon_{o} \Psi \left(t \right) \left(1 + \overline{\Psi}_{tu} \right) , \qquad (11)$$

где ε_0 — относительная начальная деформация фибры составного сечения; $\overline{\phi}_{tu}$ — неизвестная характеристика ползучести железобетона, соответствующая принятому закону изгибающего момента.

Указанная формула относительных деформаций согласуется с определением характеристики ползучести как доли неупругих деформаций в каждый момент времени.

Исходя из обстоятельства, что деформации арматуры будут только упругие, и

$$\varepsilon_{at} = \varepsilon_{i},$$
 (12)

можем напряжения в арматуре выразить формулой:

$$\mathcal{O}_{aM}(t) = \mathcal{O}_{aM} \overset{\circ}{\Psi}(t) (1 + \overline{\Psi}_{tu}). \tag{13}$$

Условие равенства изгибающего момента сумме изгибающих моментов, воспринятых бетоном и арматурой,

$$M_{t} x = J_{\delta} G_{\delta M} + J_{\alpha} G_{\alpha M}$$
(14)

позволяет нам вывести также формулу для напряжений в бетоне:

$$\sigma_{\delta M} = \sigma_{\delta M}^{\circ} \psi(t) (1 - n_{\circ} \eta \overline{\Psi}_{tu}), \qquad (15)$$

где $\eta = \frac{J_a}{J_c}$ — отношение моментов инерции арматуры и бетона.

При отыскании пока неизвестной функции $\overline{\phi}_{tu}$ пользуемся условием сцепления бетона с арматурой (равенства их деформаций):

$$\varepsilon_{ot} = \varepsilon_{\delta t}$$
 (16)

27

Относительные деформации арматуры являются упругими

$$\mathcal{E}_{at} X = \frac{1}{E_a} \, \mathcal{O}_{aM}(1) \,, \tag{17}$$

а деформации бетона зависят еще от ползучести и на основе теории старения выражаются зависимостью:

$$\varepsilon_{\delta t} x = \frac{1}{E_{\delta}} \overline{\mathcal{O}}_{\delta M}^{\circ} (1 + \varphi_{t}) + \frac{1}{E_{\delta}} \int_{0}^{t} \frac{\partial \overline{\mathcal{O}}_{\delta M}(\varepsilon)}{\partial \varepsilon} (1 + \varphi_{t} - \varphi_{\varepsilon}) d\varepsilon.$$
(18)

Подстановка ε_{at} и $\varepsilon_{\delta t}$ в (16), дифференцирование результата по времени и замена $\sigma_{\delta M}$ при помощи (14) дает дифференциальное уравнение напряжений в арматуре

$$\frac{\partial G_{\alpha M}}{\partial t} + \frac{n_0 \eta}{1 + n_0 \eta} \frac{d \varphi_t}{d t} G_{\alpha M} - \frac{n_0}{1 + n_0 \eta} \frac{x}{J_\delta} \left(\frac{\partial M_t}{\partial t} + M_t \frac{d \varphi_t}{d t} \right) = 0.$$
(19)

Частное решение уравнения (19) (линейного дифференциального уравнения первого порядка с переменными коэффициентами) при начальном условии

$$\mathcal{O}_{aM}(t=0) = \mathcal{O}_{aM}^{\circ} \tag{20}$$

будет:

$$5_{aM} = \frac{N_{o} \chi}{1 + N_{o} \eta} e^{-\xi_{2} \varphi_{t}} \int_{0}^{t} \left(\frac{\partial M_{\varepsilon}}{\partial \tau} + M_{\varepsilon} \frac{d \varphi_{\varepsilon}}{d \tau} \right) e^{\xi_{2} \varphi_{t}} d\tau + \delta_{aM}^{\circ} e^{-\xi_{2} \varphi_{t}}$$
(21)

Здесь
$$\xi_2 = \frac{n_0 \eta}{1 + n_0 \eta}$$

Произведя замену неизвестного при помощи (13), получим интегральное уравнение характеристики ползучести железобетона при изгибе:

$$\overline{\Psi}_{tu} = \frac{1}{\Psi(t)} e^{-\xi_{\varrho} \Psi_{t}} \int_{0}^{t} \left(\frac{d\Psi(\tau)}{d\tau} + \Psi(\tau) \frac{d\Psi_{\tau}}{d\tau} \right) e^{\xi_{\varrho} \Psi_{\tau}} d\tau + \frac{1}{\Psi(t)} e^{-\xi_{\varrho} \Psi_{t}} - 1$$
(22)

Из исследований деформированной схемы трехшарнирных железобетонных арок с учетом длительных воздействий [3, 6] самая простая закономерность возрастания изгибающих моментов со временем:

$$\psi_{I}(t) = e^{\frac{f_{t}\omega_{c}}{v_{t}-1}}, \qquad (23)$$

которая служит у нас частным случаем І. Этот случай выражается интегральным уравнением

$$\begin{split} \bar{\Psi}_{t\bar{\imath}} &= e^{-\xi_{\varrho}\Psi_{t}} e^{-\frac{\bar{\Psi}_{t\bar{\imath}}}{\nu_{\iota}-4}} \int_{0}^{t} \left(\frac{4}{\nu_{\iota}-4} \frac{d\bar{\Psi}_{\tau\bar{\imath}}}{d\tau} e^{\frac{\bar{\Psi}_{\tau\bar{\imath}}}{\nu_{\iota}-4}} + \frac{d\Psi_{\tau}}{d\tau} e^{\frac{\bar{\Psi}_{\tau\bar{\imath}}}{\nu_{\iota}-4}} \right) e^{\xi_{\varrho}\Psi_{t}} d\tau + \\ &+ e^{-\xi_{\varrho}\Psi_{t}} e^{-\frac{\bar{\Psi}_{t\bar{\imath}}}{\nu_{\iota}-4}} - 4 \end{split}$$
(24)

которое не решается в элементарных функциях и с большими трудностями поддается численному решению.

Ввиду необходимости получить хотя бы приближенное решение в частном случае I, создаем частный случай II

$$\Psi_{ii}(t) = e^{\frac{\Psi_{i}}{\nu_{a} - i}}$$
(25)

по которому изгибающие моменты возрастают несколько быстрее, ввиду $\varphi_t > \overline{\varphi}_{tu}$. В этом случае решение уравнения (22) выражается в элементарных функциях:

$$\widetilde{\varphi}_{t\,\underline{\tilde{\mu}}} = \frac{\vartheta_{4} - 1}{1 + \eta_{0} \vartheta_{1} \vartheta_{4}} \left(1 - e^{-\left(\frac{1}{\vartheta_{4} - 1} + \xi_{2}\right) \vartheta_{t}} \right)$$
(26)

Здесь

при потере устойчивости по синусоидальной волне; *H* — распор арки; *l* — полупролет арки.

Численные значения φ_{tII} приведены в таблице 3, в последней графе которой проставлены характеристики ползучести при постоянном изгибающем моменте φ_{tIII} (формулы даны в [1, 5 и 6]). При больших значениях фактора гибкости v_1 результаты имеют хорошую сходимость, что согласуется с понятием о влиянии гибкости арки на изгибающие моменты.

Таблица З

11 ₀ ŋ	G.K.	П	При $M_t = M_0 e^{\frac{\varphi_t}{\varphi_1 - 1}}$ соответственно v_1							
	1 and 3	3,981	6,634	9,290	10,62	11,94	15,93	31,85	-1 -1 -10	
0,1	$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	0 0,740 1,223 1,539 1,745	0 0,797 1,407 1,873 2,230	0 0,819 1,483 2,019 2,454	0 0,826 1,506 2,066 2,526	0 0,830 1,524 2,066 2,581	0 0,841 1,559 2,172 2,696	0 0,855 1,611 2,279 2,871	0 0,869 1,662 2,387 3,059	
0,2	0 1 2 3 4	0 0,655 1,051 1,292 1,437	0 0,705 1,205 1,559 1,810	0 0,724 1,268 1,676 1,981	0 0,730 1,287 1,712 2,038	0 0,734 1,302 1,740 2,079	0 0,743 1,331 1,797 2,165	0 0,756 1,375 1,882 2,298	0 0,768 1,417 1,967 2,433	
0,3	$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	0 0,587 0,921 1,110 1,217	0 0,631 1,052 1,331 1,516	0 0,648 1,105 1,426 1,652	0 0,654 1,122 1,456 1,696	0 0,657 1,134, 1,479 1,729	0 0,665 1,159 1,526 1,798	0 0,676 1,196 1,596 1,903	0 0,687 1,232 1,665 2,012	
0,5	$\begin{array}{c} 0\\1\\2\\3\\4\end{array}$	0 0,486 0,735 0,863 0,928	0 0,522 0,835 1,023 1,136	0 0,536 0,876 1,092 1,230	0 0,540 0,889 1,114 1,260	0 0,543 0,898 1,131 1,282	0 0,556 0,928 1,177 1,345	0 0,558 0,945 1,214 1,401	0 0,567 0,973 1,264 1,473	
0,7	$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	0 0,414 0,611 0,704 0,748	0 0,445 0,691 0,828 0,904	0 0,456 0,724 0,881 0,974	0 0,460 0,734 0,898 0,996	0 0,462 0,742 0,911 1,013	0 0,468 0,757 0,936 1,048	0 0,475 0,780 0,975 1,129	0 0,483 0,802 1,013 1,153	
1,0	0 1 2 3 4	0 0,339 0,486 0,550 0,577	0 0,363 0,548 0,641 0,689	0 0,372 0,573 0,680 0,738	0 0,375 0,580 0,693 0,754	0 0,377 0,586 0,702 0,766	0 0,382 0,598 0,721 0,791	0 0,388 0,615 0,749 0,828	0 0,394 0,632 0,777 0,865	

Характеристика ползучести при изгибе Фли

Таблица 4

Приближенные значения характеристики ползучести фи

11.00	(0	Верхни	Нижний			
	Ψĸ	3,981	10,62	15,93	31,85	предел
0,1	0 1 2 3 4	0 0,75 1,31 1,76 2,10	0 0,84 1,57 2,21 2,75	0 0,86 1,64 2,36 2,96	0 0,88 1,72 2,52 3,22	0 0,83 1,54 2,14 2,67
0,2	$\begin{array}{c}0\\1\\2\\3\\4\end{array}$	0 0,70 1,23 1,65 2,01	0 0,78 1,45 2,06 2,61	0 0,79 1,52 2,18 2,80	0 0,81 1,59 2,32 3,03	0 0,72 1,26 1,66 2,00
0,3	$\begin{array}{c} 0 & \cdot \\ 1 & 2 \\ 3 & 4 \end{array}$	0 0,66 1,15 1,56 1,91	0 0,72 1,36 1,92 2,44	0 0,74 1,41 2,03 2,63	0 0,75 1,47 2,16 2,82	0 0,62 1,04 1,36 1,60
0,5	$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4 \end{array}$	0 0,58 1,03 - 1,41 1,72	0 0,63 1,20 1,70 2,18	0 0,64 1,24 1,79 2,31	0 0,66 1,28 1,88 2,47	0 0,50 0,80 • 1,00 1,14
0,7	$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	0 0,52 0,93 . 1,28 1,58	$\begin{array}{c} 0\\ 0,56\\ 1,06\\ 1,53\\ 1,96 \end{array}$	0 0,57 1,10 1,60 2,07	0 0,58 1,14 1,68 2,20	0 0,41 0,65 0,79 0,89
1,0	$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4 \end{array}$	$0\\0,45\\0,82\\1,13\\1,40$	0 0.48 0,92 1,32 1,70	0 0,49 0,94 1,38 1,79	0 0,49 0,97 1,43 1,89	0 0,33 0,50 0,60 0,66

Однако оценка пригодности приближения ϕ_{tII} для замены $\phi_{t_I}^t$ только на основе сходства с решением для постоянных изгибающих моментов является недостаточной. Оценку при низких v_1 могут дать предельные значения ϕ_{tI} . С этой целью составляем уравнение ϕ_{tI} , исходя непосредственно из (16):

1

$$\left(1+\bar{\psi}_{t,\bar{1}}\right)e^{\frac{\bar{\psi}_{t,\bar{1}}}{\sqrt{t-1}}} = \left(1+\psi_{t}\right) + \int_{0}^{t} \left(\frac{1}{\sqrt{t-1}} - \frac{\eta_{t}\varphi}{\gamma_{t-1}}\bar{\psi}_{\tau,\bar{1}} - \eta_{\tau}\varphi\right)\left(1+\psi_{t}-\psi_{\tau}\right)\frac{d\bar{\psi}_{\tau,\bar{1}}}{d\tau}e^{\frac{\psi_{\tau,\bar{1}}}{\sqrt{t-1}}}d\tau$$
(27)

Принимая, что $\phi_t = \phi_\tau$, получим неравенство верхнего предела

$$\left(1+\overline{\varphi}_{t\bar{1}}\right)e^{\frac{\varphi_{t\bar{1}}}{\nu_{4}-4}} < \left(1+\varphi_{t}\right) + \iint_{0}^{t}\left(\frac{1}{\nu_{4}-4}-\frac{n_{o}\nu}{\nu_{4}-4}\overline{\varphi}_{t\bar{1}}-n_{b}\nu\right)\frac{d\overline{\varphi}_{t\bar{1}}}{d\tau}e^{\frac{\overline{\varphi}_{t\bar{1}}}{\nu_{4}-4}}d\tau, \quad (28)$$

которое после решения интеграла в элементарных функциях принимает вид:

$$\frac{\overline{\varphi}_{t\bar{\iota}}}{\nu_{t}-1} + \ln \overline{\varphi}_{t\bar{\iota}} < \ln \varphi_{t} - \ln (1 + \nu_{o} \gamma)$$
(29)

Нижний предел определяется с упрощением $\phi_{z} = 0$, тогда неравенство

$$\left(1+\bar{\psi}_{t}\right)e^{\frac{\bar{\psi}_{t}}{\nu_{t}-1}} > \left(1+\psi_{t}\right) + \int_{0}^{t} \left(\frac{1}{\nu_{t}-1} - \frac{n_{s}}{\nu_{t}-1}\bar{\psi}_{t} - n_{s}\right)\frac{d\bar{\psi}_{t}}{d\tau}e^{\frac{\bar{\psi}_{t}}{\nu_{t}-1}}\left(1+\psi_{t}\right)d\tau,$$

$$(30)$$

носле решения интеграла в элементарных функциях, выражается формулой

$$\frac{1+\bar{\varphi}_{t_{I}}}{1-\eta_{s}\eta_{s}\bar{\varphi}_{t_{1}}} > 1+\varphi_{t}$$
(31)

Величины нижнего и верхнего предела ϕ_{tf} представлены в таблице 4.

Из анализа таблиц 3 и 4 вытекает, что при низких значениях фактора армирования $n_0\eta$ и фактора гибкости v_1 кривые самих пределов пересекаются между собой, и в этих областях не могут служить исчерпывающей оценкой. Кривые характеристики ползучести φ_{tII} везде остаются ниже верхнего предела, зато при малых v_1 проходят ниже нижнего предела. Так как в последних случаях φ_{tII} близка к верхнему пределу, то ее значения можно считать достаточно точным приближением характеристики ползучести ϕ_{tr} .

При расчете трехшарнирной железобетонной арки по деформированной схеме функция $\psi_{\rm I}(t)$ представляет только собственное нарастание начального искривления. Однако теория приращения начального искривления предполагает, что имеется одинаковая закономерность характеристики ползучести для собственного и соответствующего сопровождающего искривления (терминологию см. в [3]). Учитывая, что последнее не превышает 25% от всего длительного нарастания начального искривления, можно считать приемлемым использование $\phi_{\rm tII}$ в качестве первого приближения для нарастания начального искривления в целом.

Вышеизложенное еще более подтверждается и тем фактом, что величина длительного искривления не зависит от вида функции ϕ_{tu} , а только от численного значения последней в момент определения искривления (или изгибающего момента).

В случаях изгибающих моментов от обжатия арки, усадки бетона, горизонтального смещения опор и изменения температуры функция $\psi(t)$ оказывается более сложной. Следовательно, решение интегрального уравнения типа (22) в этих случаях связано с еще большими трудностями. Ввиду отсутствия лучшей аппроксимации можно и здесь рекомендовать использование характеристики ползучести в виде $\overline{\phi}_{tII}$, как более точное приближение, чем $\overline{\phi}_{tu}$ при постоянных изгибающих моментах.

Характеристика ползучести $\varphi_{t\Pi}$, принятая в качестве универсальной, соответствует первой «гармонике» искривления, которая во всех случаях кроме начального искривления имеет подавляющее значение. Если при начальном искривлении на первом месте находится *n*-ая «гармоника», то характеристику ползучести железобетона следует принимать по формуле:

$$\overline{\Psi}_{t\underline{\pi}n} = \frac{\nu_n - 1}{1 + \nu_n \eta \nu_n} \left(1 - e^{-\left(\frac{1}{\nu_n - 1} + \xi_2\right) \varphi_t} \right)$$
(32)

В случае же двух или более равносильных «гармоник», можно для каждой из них ввести свою характеристику [см. 3]. Все вышесказанное может быть отнесено и к вычислению

значений перераспределенных напряжений.

3. Напряженное состояние при появлении предела текучести в арматуре

Значительное повышение напряжений в арматуре с одновременным понижением напряжений в бетоне из-за ползучести и усадки бетона, создает в железобетонных арках необычное напряженное состояние. В практике проектирования можно встретить случаи, когда арматура работает за пределом текучести, а бетон в том же сечении полностью сохраняет свою прочность. Возникает вопрос, не нарушается ли совместная работа арматуры и бетона вследствие разрушения защитного слоя из бетона?

Ответ на этот вопрос зависит от поперечной деформации отверстия в сжатой бетонной призме (в конструкции заполнено арматурным стержнем). Необходимо выяснить знак деформации и хотя бы приближенное значение коэффициента Пуассона. С этой целью были проведены два параллельных эксперимента с различными формами образцов (фиг. 2). Для обеих групп было изготовлено по 4 образца. Бетон высокопрочный, в возрасте 67 дней (при испытании) имел марку $601 \cdot 10^5 H/m^2$ (613 $\kappa zc/cm^2$).

Фиг. 2. Образцы эксперимента:

а — бетонная призма с металлическим сердечником; б — бетонная призма с отверстием; Т — тензодатчик; А-А — линия разделения призмы пополам. Размеры в миллиметрах

Образцы серии а имели по 4 электрических тензодатчика, из которых 2 были приклеены до бетонирования на металлический сердечник ($\sigma_{\rm T} = 1916 \cdot 10^5 H/m^2$) по периметру сечения. На боковых поверхностях установили один продольный и один поперечный тензодатчик. Из всех 8 внутренних датчиков серии при изготовлении образца испортились 4. Образцы испытывались под гидравлическим прессом при ступенчатом повышении давления. График показаний всех тензодатчиков приведен на фиг. З. Интересующие нас области (упругая стадия работы бетона) в пределах, свободных от ошибок электрического измерителя деформаций (ЭИД), помечены жирными линиями. Из эксперимента следует, что поперечные размеры сжатой призмы с металлическим сердечником увеличиваются. Коэффициент Пуассона на наружной поверхности был µ 31 = 0,13, а на металлическом сердечнике, µс = = 0,11. Факты, что деформации на металлическом сердечнике оказались меньшими, чем поперечные деформации на наружной поверхности, и что при силах выше 68 · 10⁴ Н сердечник стал быстро суживаться, могут представить интерес для даль-нейших более детальных исследований.

Образцы серии б имели аналогично установленные тензодатчики, только внутренние были приклеены на поверхность отверстия. С целью обеспечения их установки, призмы были разделены пополам по линии А-А, путем бетонирования половинок в разное время. Точность соприкосновения половинок предусматривалось обеспечить выступами А. Однако, соприкосновение половинок получилось неудовлетворительное, о чем свидетельствует разрушение отдельных половинок уже при низких напряжениях продольными трещинами. Коэффициенты Пуассона получились завышенные относительно литературных данных.

Несмотря на неполную удачу эксперимента можно утверждать, что отверстие в бетоне расширяется, и принимать за основу коэффициент Пуассона по литературным данным $\mu_{\lambda} = 0,16$. Для стали принимаем $\mu_{a} = 0,30$.

Напряжения в бетоне и $\frac{1}{n_0}$ -кратные напряжения в арматуре образуют в начальный момент прямую линию (фиг. 4 б). За счет перераспределения, напряжения в арматуре образуют выступ на эпюре (фиг. 4 в). Текучесть появляется одновременно, как правило, только в арматуре одного уровня. Эта арматура в дальнейшем дополнительных напряжений воспринимать почти не будет.

Напряженное состояние арматуры и окружающего ее бетона можно исследовать на упрощенной модели (фиг. 5а). Продольную силу N вычисляем по эпюре напряжений на фиг. 4 в.

а — симметричное сечение; б — начальные напряжения; є — появление текучести в арматуре одного уровня. σ_{0N}^{0} , σ_{0M}^{0} — начальные напряжения в бетоне соответственно от нормальной силы и изгибающего момента; σ_{T} — предел текучести арматуры; р — боковое давление на арматуру

При анализе напряженного состояния большое значение имеют поперечные деформации элементов модели: расширение арматуры от продольного сжатия δ_{aN} , расширение обоймы от продольного сжатия δ_{zN} и расширение обоймы от поперечного растяжения δ_{cp} . Эти величины связываются условием равных суммарных поперечных деформаций бетонной обоймы и арматуры:

$$\delta_{\delta N} + \delta_{\delta p} = \delta_{aN} \tag{33}$$

При начальных напряжениях поперечные деформации выражаются в виде:

$$\delta_{\xi N}^{\circ} - \frac{m_{\delta}}{E_{\delta}} \, \delta_{\delta N}^{\circ} = \frac{m_{\delta}}{E_{\delta}} \, \frac{N_{\circ}}{F_{\delta} (1 + n_{\circ} m)} \tag{34}$$

$$\delta_{\delta P}^{\circ} = \frac{P \circ D_{\alpha}}{2\alpha E_{\beta}}$$
(35)

37

$$\delta_{\alpha N}^{\circ} = \frac{M_{\alpha}}{E_{\alpha}} \, \overline{O}_{\alpha N}^{\circ} = \frac{M_{\alpha}}{E_{\delta}} \, \overline{O}_{\delta N}^{\circ}$$

(36)

Из них (35) выведено, исходя из работы обоймы на боковое давление аналогично тонкостенному сосуду (фиг. 5 б и в).

Фиг. 5. Упрощенная модель сжатой арматуры в бетонной обойме: а — общая схема; б — давление на бетонную обойму; в — напряжения в бетонной обойме. D_a — диаметр арматуры; ^чр — растяжение в бетонной обойме

Боковое давление на бетон получим в виде:

$$P_{\circ} = \frac{2\alpha}{D_{\alpha}} \left(\mu_{\alpha} - \mu_{\delta} \right) \mathcal{O}_{\delta N}^{\circ}$$
(37)

На основе пятой теории прочности (теория энергии формоизменения) при гидростатическом боковом давлении, получим формулу для начального напряжения в арматуре:

$$\vec{b}_{\alpha}^{\circ} = \vec{b}_{\alpha N}^{\circ} + p_{\circ} \tag{38}$$

и тогда напряжения в бетоне

$$\mathbf{G}_{\delta}^{\circ} = \mathbf{G}_{\delta N}^{\circ} - \mathbf{M} \mathbf{P}_{\delta}$$
(39)

Поперечные деформации с учетом ползучести бетона определяются формулами:

$$\delta_{\delta N} = \frac{M_{\delta}}{E_{\delta}} \, \mathcal{O}_{\delta N}^{\circ} \left(1 - N_{\circ} M \, \overline{\varphi}_{tc} \right) \tag{40}$$

$$\delta_{\delta P} = \frac{D_{\alpha}}{2\alpha E_{\delta}} \left(1 + \varphi_{t} \right) + \frac{D_{\alpha}}{2\alpha E_{\delta}} \int_{0}^{t} \frac{dp_{\tau}}{d\tau} \left(1 + \varphi_{t} - \varphi_{\tau} \right) d\tau$$
(41)

$$\delta_{\alpha N} = \frac{M\alpha}{E_{\delta}} \, \overline{\mathcal{O}}_{\delta N}^{\circ} \left(4 + \overline{\Psi}_{tc} \right) \tag{42}$$

После подстановки деформаций в уравнение (33) и дифференцирования по времени *t*, получаем дифференциальное уравнение бокового давления:

$$\frac{dp_t}{dt} + \frac{d\varphi_t}{dt} p_t - \frac{2\alpha}{D_\alpha} \left[n_o M M_\delta + M_\alpha \right] \tilde{G}^{\circ}_{\delta N} \frac{d\bar{\varphi}_{tc}}{dt} = 0 \quad , \quad (43)$$

которое имеет, при начальном условии p_t (t=0) = p_0 , частное решение:

$$p_{t} = \frac{2\alpha}{D_{\alpha}} \left(N_{o} M M_{\delta} + M_{\alpha} \right) \mathcal{O}_{\delta N}^{\circ} e^{-\xi_{1} \varphi_{t}} - \frac{2\alpha}{D_{\alpha}} \left(1 + N_{o} M \right) M_{\delta} \mathcal{O}_{\delta N}^{\circ} e^{-\varphi_{t}}$$
(44)

Используя формулы (44) и (37) составлена таблица 5 коэффициентов нарастания бокового давления за счет ползучести бетона. Коэффициенты $\frac{p_t}{p_0}$ свидетельствуют о том, что ползучесть не вызывает повышения бокового давления более 2,2 раза, а в случае обычных конструкций ($n_0\mu = 0,2-0,3$) — не более 1,6 раза. При высоких значениях $n_0\mu$ и φ_t боковое давление даже уменьшается. При достаточном запасе прочности бетонной обоймы она не разрушается до достижения арматурой предела текучести. Работа обоймы на растяжение облегчается еще ввиду того, что при напряжениях, близких к пределу прочности на растяжение, появляется нелинейная ползучесть.

Коэффициенты нарастания бокового давления за счет

Таблица 5

ползучести бетона $\frac{p_t}{p_0}$ (при $\mu_a = 0,30$ и $\mu_\delta = 0,16$)											
2	2912 . I	Que a life	φ _t	1-34							
	0	1	2	3	4						
$ \begin{array}{c} n_{0}\mu \to 0 \\ n_{0}\mu = 0,1 \\ 0,2 \\ 0,3 \\ 0,5 \\ 0,7 \\ 1,0 \end{array} $	1,00 1,00 1,00 1,00 1,00 1,00 1,00	$1,72 \\ 1,60 \\ 1,50 \\ 1,43 \\ 1,31 \\ 1,24 \\ 1,15$	$1,99 \\ 1,71 \\ 1,51 \\ 1,30 \\ 1,16 \\ 1,03 \\ 0,90$	$2,09 \\ 1,63 \\ 1,37 \\ 1,17 \\ 0,91 \\ 0,76 \\ 0,62$	$2,12 \\ 1,54 \\ 1,19 \\ 0,96 \\ 0,69 \\ 0,53 \\ 0,40$						

Принимая момент времени начала течения в арматуре за исходный, обозначаем дальнейшее нарастание поперечных деформаций следующим образом:

$$\Delta \delta_{\delta N} = M_{\delta} \frac{\Delta N}{E_{\delta} F_{\delta}}$$
(45)

$$\Delta \delta_{\delta P} = \frac{\Delta p D_a}{2 \alpha E_{\delta}}$$
(46)

Здесь ΔN и Δp — соответственно прирост нормальной силы и бокового давления после достижения арматурой предела текучести.

Поперечные деформации арматуры выражаем при помощи гипотезы постоянности объема при пластических деформациях

$$\Delta \delta_{\alpha N} = -\frac{4}{2} \Delta \varepsilon_{\alpha N} = \frac{\Delta N}{2E_{\delta}F_{\delta}}$$
(47)

где Δε_{аN} — прирост продольной деформации арматуры.

40

Решение уравнения (33) дает прирост бокового давления в случае текучей арматуры

$$\Delta p = (0.50 - M_{\delta}) \frac{2\alpha}{D_{\alpha}} \frac{\Delta N}{F_{\delta}}$$
(48)

Проверку прочности бетонной обоймы производим условием

$$\mathcal{G}_{p} = \left(p_{t} + \Delta p \right) \frac{D_{\alpha}}{2\alpha} \leq \frac{1}{n_{s}} R_{po}$$

$$\tag{49}$$

и, пренебрегая нелинейностью задачи, получим предельный прирост продольной силы после начала течения арматуры

$$\Delta N = \frac{R_{po} - \frac{D_{\alpha}}{2\alpha} p_{t}}{0.50 f_{t_{\delta}}} F_{\delta} \qquad (50)$$

Следовательно, при $p_t \ll R_{po}$ сечение с арматурой, работающей за пределом текучести имеет еще большой запас прочности и нет необходимости считать появление в арматуре текучести разрушающим состоянием.

4. Заключение

Проверку прочности сечений железобетонных трехшарнирных мостовых арок следует производить с учетом перераспределения напряжений от постоянной нагрузки между бетоном и арматурой. Напряжения от нормальной силы и усадки бетона перераспределяются с учетом характеристики ползучести железобетона φ_{tc} аналогично постоянным усилиям по формуле (6).

Напряжения от изгибающего момента с учетом деформированной оси арки перераспределяются на основе характеристики ползучести ф_tп по формуле (26). Формулы перераспределенных напряжений следует принимать в виде:

$$G_{\delta M} = \frac{M_{t} x}{J_{\delta}(1 + n_{o} \gamma)} (1 - n_{o} \gamma \overline{\varphi}_{t \overline{u}})$$
(51)

$$\vec{O}_{\alpha M} = \frac{n_o M_t x}{J_{\delta} (1 + n_o p)} \left[1 + \bar{\Psi}_{t \hat{u}} \right] .$$
(52)

Погрешность ϕ_{tII} имеет второстепенное значение, так как напряжения от изгибающего момента всегда остаются намного меньшими, чем напряжения нормальной силы.

Напряжения от временной нагрузки перераспределению не подлежат.

Проверку прочности сечения следует производить по суммарным напряжениям в бетоне

$$n_{1} \mathcal{G}_{\delta t} + n_{2} \mathcal{G}_{\delta b p} \leq R_{n p} \tag{53}$$

и по прочности на растяжение защитного слоя из бетона

$$\mathcal{O}_{p} \approx \left(\mathcal{P}_{t} + \Delta p \right) \frac{D_{\alpha}}{2\alpha} \leq \frac{1}{n_{t}} \mathcal{R}_{p^{\alpha}}$$
(54)

Здесь *n*₁ и *n*₂ коэффициенты перегрузки соответственно для постоянных и временных нагрузок.

Применение $\varphi_{tu} = \varphi_{tH}$ в формулах изгибающих моментов от деформированной оси арки [3] дает для инженерной практики достаточно точные результаты.

ЛИТЕРАТУРА

- 1. Н. А. Буданов. Расчет железобетонных конструкций с учетом ползучести бетона. Госстройиздат, 1949.
- 2. Е. Е. Гибшман и М. Е. Гибшман. Теория и расчет предварительно напряженных железобетонных мостов. Автотрансиздат. 1963.
- Х. А. Мяги. Расчет сборных трехшарнирных железобетонных мостовых арок по деформированной схеме с учетом длительных вездействий. См. наст. сборник, стр. 3.

- 4. И. Е. Прокопович. Влияние длительных процессов на напряженное и деформированное состояние сооружений. Госстройиздат, 1963.
- 5. И. И. Улицкий. Расчет бетонных и железобетонных арочных и комбинированных конструкций с учетом длительных процессов. Гостехиздат УССР, 1950.
- Fr. Dischinger. Elastische und plastische Verformungen der Eisenbetontragwerke und insbesondere der Bogenbrücken. «Der Bauingenieur» 1939, Nr. 5/6, 21/22, 31/32, 47/48.

СОДЕРЖАНИЕ

- 1. Х. А. Мяги. Расчет сборных железобетонных трехшарнирных мостовых арок по деформированной схеме с учетом длительных воздействий
- Х. А. Мяги. Перераспределение напряжений между бетоном и арматурой в сборних железобетонных трехшарнирных мостовых арках 21

3

СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ И СТРОИТЕЛЬНАЯ ФИЗИКА II

Таллинский политехнический институт

Редактор Р. Амброс Технический редактор Я. Мыттус

Сдано в набор 17 XII 1964. Подписано к печати 31 III 1965. Бумага 60×90 1/16. Печатных листов 2,75. Учетно-издательских листов 2,0. Тираж 500 экз. МВ-00782. Заказ № 1872.

Типография «Коммунист», Таллин, ул. Пикк 2.

Цена 14 коп.

Цена 14 коп.

