
Tallinn 2025 

TALLINN UNIVERSITY OF TECHNOLOGY 

School of Information Technologies 

 

 

Aleksandr Bosler 232075IACM 

Adaptive Energy-Efficient CNN for Onboard 

Wildfire Detection on CubeSats 

Master's thesis 

Supervisor: Aleksei Tepljakov 

 PhD 

Co-Supervisor: Uljana Reinsalu 

 PhD 

  

  

  

  

  

  

  



Tallinn 2025 

TALLINNA TEHNIKAÜLIKOOL 

Infotehnoloogia teaduskond 

 

 

Aleksandr Bosler 232075IACM 

Adaptiivne ja energiatõhus konvolutsiooniline 

närvivõrk metsapõlengute tuvastamiseks 

CubeSatidel 

Magistritöö 

Juhendaja: Aleksei Tepljakov 

 PhD 

Kaasjuhendaja: Uljana Reinsalu 

 PhD 

  

  

  

  

  

  

  



3 

Author’s declaration of originality 

I hereby certify that I am the sole author of this thesis. All the used materials, references 

to the literature and the work of others have been referred to. This thesis has not been 

presented for examination anywhere else. 

Author: Aleksandr Bosler 

12.05.2025 

 



4 

Abstract 

This thesis presents an adaptive, energy‑aware convolutional neural network (CNN) for 

on‑board wildfire detection in 6U CubeSats. The model augments a lightweight 

MobileNetV2 backbone with two confidence‑driven early‑exit classifiers that terminate 

inference once prediction certainty passes configurable thresholds. Trained on 6000 

multispectral Sentinel‑2 patches (3000 fire / 3000 non‑fire) gathered over California, 

Australia and the Amazon, the network attains 97.0% overall accuracy and 96.9% recall 

on a held‑out test set. 

When deployed on a 5 W NVIDIA Jetson Nano, the adaptive configuration lowers mean 

per‑image latency from 70.4 ms to 46.1 ms and cuts energy from 124 mJ to 70 mJ, 

delivering 34% faster and 44% more efficient inference while preserving baseline 

performance. Early exits resolve 80% of non‑event images in shallow layers, reducing 

average compute by 30%. Scene‑level analysis confirms that a full 109 × 109 km 

Sentinel‑2 swath can be processed in 111 s at an average 1.5 W, permitting up to seven 

scenes per orbit within typical CubeSat power budgets. 

These results demonstrate that conditional inference enables timely, high‑fidelity wildfire 

alerting from orbit without violating strict power and thermal constraints, and they offer 

a transferable template for other low‑incidence Earth‑observation tasks requiring 

autonomous, energy‑efficient edge AI. 

This thesis is written in English and is 78 pages long, including 7 chapters, 11 figures and 

11 tables. 
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Annotatsioon 

Adaptiivne ja energiatõhus konvolutsiooniline närvivõrk 

metsapõlengute tuvastamiseks CubeSatidel 

Käesolev magistritöö esitleb adaptiivset, energiateadlikku konvolutsioonilist närvivõrku 

(CNN) pardal toimuva metsapõlengute avastamise jaoks 6U CubeSat‑idel. Mudel 

täiendab kerget MobileNetV2 selgroogu kahe kindlustundel põhineva varajase väljumise 

klassifitseerijaga, mis lõpetavad järeldusprotsessi niipea, kui ennustuse usaldusväärsus 

ületab määratavad läved. California, Austraalia ja Amazoni kohal kogutud 6000 

mitmespektrilise Sentinel‑2 lõigu (3000 põlengu ja 3000 mittepõlengu) põhjal treenitud 

võrk saavutas hoidunud testkogumil 97,0% üldise täpsuse ja 96,9% tagasikutsutavuse. 

Platvormil 5 W NVIDIA Jetson Nano vähendas adaptiivne konfiguratsioon keskmist 

pildipõhist latentsust 70,4 ms‑lt 46,1 ms‑ni ja energiakulu 124 mJ‑lt 70 mJ‑ni, pakkudes 

34% kiiremat ja 44% energiatõhusamat järeldust, säilitades samas lähtetaseme täpsuse. 

Varajased väljumised lahendavad 80% mittesündmuse piltidest madalates kihtides, 

vähendades keskmist arvutusmahtu 30%. Stseeni taseme analüüs kinnitab, et tervet 109 

× 109 km Sentinel‑2 ribalaiust saab töödelda 111 sekundiga keskmisel 1,5 W võimsusel, 

mis võimaldab tüüpilise CubeSat‑i energiaeelarve piires kuni seitset stseeni ühe orbiidi 

kohta. 

Tulemused näitavad, et tingimuslik järeldus võimaldab õigeaegset ja kõrgekvaliteedilist 

metsapõlengute teavitamist orbiidilt, rikkumata rangeid energia‑ ja termopiiranguid, ning 

pakuvad ülekantavat raamistikku teisteks madala esinemissagedusega Maa‑vaatluse 

ülesanneteks, mis vajavad autonoomset ning energiasäästlikku edge‑tehisintellekti. 

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 78 leheküljel, 7 peatükki, 11 

joonist, 11 tabelit. 
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1 Introduction 

Over the past few decades, space technology has transformed from a niche scientific 

endeavor into a critical infrastructure underpinning modern society. The orbital satellite 

network–comprising government, commercial, and scientific satellites–now plays an 

essential role in global communications, navigation, weather forecasting, and Earth 

observation. The evolution of this network is striking: while early satellite launches 

numbered only in the hundreds per year–for example, in 2014 there were only 241 objects 

launched into space–recent figures reveal an exponential increase in space activity. In 

2024 alone, more than 2,800 objects were launched into orbit [1], as shown in Figure 1, 

and current estimates suggest that there are over 11,000 active satellites worldwide [2]. 

This dramatic growth is largely driven by the advent of small satellites and mega-

constellations–like SpaceX’s Starlink–which have redefined what is possible in terms of 

global broadband connectivity and remote sensing. Moreover, it is forecasted that if 

current trends continue, the number of active satellites could reach around 27,000 by the 

end of 2030, underscoring the rapid expansion of our orbital infrastructure [3]. 

 

Figure 1. Annual Number of Objects Launched into Space Worldwide [1] 
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Such a rapid expansion of the orbital network not only demonstrates the increasing 

demand for space-based services but also underscores the technical challenges that 

accompany these advances. As satellite numbers surge, the need for innovations in 

onboard processing and energy management becomes paramount, especially for resource-

constrained platforms such as CubeSats. Optimizing energy efficiency in these satellites 

is crucial to prolonging their operational life and ensuring the reliability of the services 

they provide. In this context, improving the energy efficiency of onboard systems–

particularly those handling data-intensive tasks like image processing–emerges as a key 

enabler for sustaining and further expanding our space capabilities. 

Small satellites are increasingly being equipped with onboard image processing 

capabilities to perform autonomous tasks in space, but they operate under severe energy 

constraints. CubeSats in the 3U–12U class (1–15 kg mass) can typically harvest only a 

few watts of power (on the order of 1–7 W) from their limited solar panel area [4]. Energy 

is stored in small batteries (often only tens of Wh), which must power all subsystems 

during eclipse periods. As a result, the power supply is a limiting factor for the satellite’s 

lifecycle [5]. It is extremely difficult to carry enough stored energy for long-duration 

operations, so efficient power usage is critical. Every onboard operation–communication, 

attitude control, and especially computation–draws from a very limited energy budget. 

Introducing energy-intensive computing payloads can deepen battery discharge cycles 

and shorten the satellite’s operational life. In other words, increasing onboard processing 

without proper optimization risks faster battery depletion and a reduced mission lifespan. 

Therefore, optimizing computational processes for energy efficiency is crucial to 

extending satellite mission duration. 

One prominent example of managing this balance is the recent demonstration of artificial 

intelligence on a CubeSat. In 2020, the Φ-Sat-1 mission (a 6U CubeSat) carried an Intel 

Movidius Myriad 2 vision processing unit to perform onboard image analysis for cloud 

detection [6]. This was the first use of a deep neural network in orbit and it was motivated 

by a practical power and bandwidth problem: about two-thirds of Earth imagery is 

obscured by clouds, and transmitting those images wastes valuable downlink bandwidth 

and energy. By using an efficient onboard CNN (Convolutional Neural Network) to 

automatically discard cloudy images, the satellite saved roughly 30% of downlink 

bandwidth (and the associated transmission energy). The key to this success was the use 

of specialized low-power hardware–the Myriad 2 VPU (Vision Processing Unit)–which 
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delivers high compute performance in a few watts. This hardware was specifically 

designed for “impressive compute capability but in a very low power envelope”, making 

it well-suited for space applications. Φ-Sat-1 proved that with the right optimizations, 

onboard image processing can drastically reduce data handling costs without exhausting 

the power budget. 

These trends underscore the need for energy-saving methods in onboard image analysis 

for CubeSats. Reducing the computational load of onboard tasks directly decreases power 

consumption and thermal stress on the satellite. This not only prevents brown-outs and 

data bottlenecks, but can also extend the effective lifespan of the platform by avoiding 

deep battery discharge cycles. Recent studies on satellite edge computing confirm that 

smart energy management (scheduling and optimizing onboard computations) can 

significantly prolong battery life–one optimization framework showed a more than 30% 

extension in battery longevity through careful task scheduling [4]. In summary, the 

relevance of this research lies in addressing the power limitations of small satellites: 

optimizing an onboard CNN for energy efficiency is pursued to enable advanced missions 

(such as real-time wildfire monitoring) within the tight power budgets of a 6U CubeSat. 

Wildfires have become a global crisis in recent years, growing in frequency and intensity 

across many regions. Climate change and land use patterns have lengthened fire seasons 

and increased the risk of large, uncontrollable fires. For example, in the United States, an 

average of 70,000 wildfires occur annually, burning millions of acres of land and 

destroying homes, infrastructure, and lives [7]. The first half of 2022 alone saw over 50 

major wildfire events in the U.S., exceeding the 10-year average, with over 190,000 acres 

burned by mid-year. The impacts are not only local–the ESA (European Space Agency) 

estimates around four million square kilometers of land are affected by wildfires each 

year [5]. These fires release vast amounts of carbon emissions and pollutants, harming air 

quality and contributing to climate change. The economic and ecological costs of such 

wildfires can be catastrophic, making improved wildfire management an urgent priority. 

Early detection of wildfires is widely recognized as one of the most crucial factors in 

mitigating their damage. If a fire can be detected in its nascent phase–when it is still small 

and localized–there is a far greater chance that firefighters or automated suppression 

systems can contain it before it spreads. Studies have shown that the potential devastation 

of a wildfire can be minimized if it is detected and precisely located at an early stage [8]. 
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In practical terms, early ignition detection greatly increases the likelihood of timely 

containment, which in turn saves lives and reduces property losses. According to the U.S. 

Department of Homeland Security, catching a wildfire shortly after ignition can mean the 

difference between a minor incident and a disaster, as it enables first responders to 

mobilize before the fire grows large [7]. Every minute counts: a delay in detection allows 

a fire to expand exponentially, complicating firefighting efforts. 

Satellites and aerial sensors play a pivotal role in rapid wildfire detection. Geostationary 

satellites like Himawari-8 and GOES (Geostationary Operational Environmental 

Satellite) now monitor Earth with updates every 5–10 minutes, providing near-real-time 

observation that is conducive to catching fires shortly after they ignite [9]. However, 

traditional satellite fire detection approaches typically involve downloading large 

volumes of imagery to ground stations for processing, which introduces latency [10]. A 

CubeSat constellation with onboard fire detection capabilities could significantly speed 

up this pipeline–detecting fires on-board and sending immediate alerts down to 

authorities, rather than waiting for ground processing. By minimizing the delay between 

image capture and fire identification, such systems help ensure that fires are attacked in 

their infancy, when they are most manageable. Early wildfire detection is not just about 

technology but about buying precious time in emergency response. This research focuses 

on that critical early window, aiming to leverage advanced CNN techniques onboard a 

satellite to automatically detect wildfires in images within seconds of capture. In doing 

so, it addresses a key societal need: mitigating the impact of wildfires through faster 

technological intervention. 

The main objective of this research is the development of an adaptive, energy-efficient 

CNN for onboard wildfire detection. In particular, a multi-output CNN architecture is 

targeted, capable of adapting its computation based on the input image content to provide 

rapid wildfire identification while minimizing energy consumption on the satellite. 

Based on this rationale, the central hypothesis of the research is formulated as follow: 

Most images that do not contain a wildfire can be identified with high confidence after 

only a few early layers of the CNN, allowing the system to exit early and skip the 

remaining processing. By filtering out clear non-fire cases in this manner, the network 

can reserve full computational effort for the smaller subset of ambiguous or fire-

containing images. This selective allocation of resources is expected to significantly 
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reduce average processing time and energy consumption per image, without substantially 

compromising detection accuracy.  

Prior work on early-exit neural networks supports this idea, showing that a large 

proportion of inputs can be confidently classified at intermediate layers, while only the 

more challenging cases require full network depth [11]. This research aims to exploit this 

behavior in the context of wildfire imagery to achieve high detection accuracy (targeting 

at least 90% correct fire identification) while substantially reducing unnecessary 

computations for the majority of non-fire images. 

To achieve this objective, the following specific research tasks are defined: 

1. Identify and customize a lightweight CNN architecture that serves as the backbone 

for wildfire image analysis. By comparing candidates in terms of accuracy, model 

size, and computational cost, an optimal baseline network is selected that offers a 

strong accuracy-efficiency trade-off for onboard inference. 

2. Integrate early-exit capability into the CNN by adding intermediate classifiers at 

selected depths, along with a confidence evaluation module. During inference, if an 

intermediate classifier is sufficiently confident, the model outputs a result 

immediately–skipping deeper layers. The key challenge is to determine confidence 

thresholds that balance energy savings with reliable wildfire detection. 

3. Integrate and deploy the adaptive CNN on a hardware, which will serve as the onboard 

inference accelerator. Integration testing will ensure that the adaptive behavior (early 

exits) functions correctly on hardware and that the system meets timing constraints. 

The structure of this thesis is organized as follows. The first chapter provides an overview 

of existing wildfire detection methods and onboard hardware platforms for satellite data 

processing. The second chapter describes the data preparation pipeline, including spectral 

band selection and augmentation techniques. The third chapter focuses on the architecture 

of the adaptive convolutional neural network and the training strategy. The fourth chapter 

presents experimental results, including an analysis of detection accuracy and energy 

consumption. The fifth chapter summarizes the key findings and discusses directions for 

future research. 
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2 Literature Review 

Wildfire detection from satellite data is a rapidly evolving field, featuring methods that 

range from classical threshold-based techniques to advanced AI (artificial intelligence) 

algorithms. This chapter reviews the main approaches, highlighting both established 

practices and the latest innovations. Section 2.1 covers modern fire detection techniques, 

including threshold-based methods and the use of small satellite constellations for rapid 

response. Section 2.2 focuses on neural network applications for onboard processing, 

while Section 2.3 delves into deep learning strategies for event detection. Subsequently, 

Section 2.4 explore power and resource constraints on CubeSats, which directly impact 

the feasibility of AI-based wildfire monitoring. Finally, Section 2.5 presents hardware 

accelerators that enable real-time processing on resource-limited satellite platforms. 

2.1 Modern Methods for Fire Detection 

Wildfire detection from satellite imagery has evolved considerably over the past decades. 

While classical threshold-based methods remain widely used, more advanced techniques 

involving constellations of small satellites and onboard artificial intelligence (AI) are 

gaining traction. This section reviews both the traditional approaches and the emerging 

trends in fire detection from space. 

2.1.1 Classical Threshold-Based Approaches 

Satellite-based wildfire detection has traditionally relied on classical remote sensing 

techniques rather than deep learning. The most widely used algorithms for active wildfire 

detection from space are based on detecting thermal anomalies in IR (Infrared) imagery 

[12]. Wildfires, even relatively small ones, exhibit very high temperatures (often above 

600 K) at the fire front, especially in the mid-wave infrared (~3.5–4.65 µm) band [13]. 

Satellite sensors such as MODIS (Moderate Resolution Imaging Spectroradiometer), 

VIIRS (Visible Infrared Imaging Radiometer Suite), GOES, and Himawari have IR 

channels that can capture this signal. The classical approach (pioneered with MODIS’s 

MOD14 algorithm) works roughly as follows: For each pixel, the brightness temperature 
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at 4 µm (T4) is compared to a fixed threshold (e.g., ~310 K for MODIS daytime) and also 

to the background temperature of neighboring pixels [14]. A pixel is flagged as “fire” if 

it is significantly hotter than its surroundings and exceeds certain absolute temperature 

thresholds [13]. Multiple contextual tests are applied to avoid false alarms–for instance, 

checking that the 4 µm signal is high relative to the long-wave IR (11 µm) signal (since 

fires have a stronger contrast at 4 µm [15]). Additional criteria may include: the pixel’s 

11 µm temperature being above ambient, the difference T4–T11 exceeding a threshold, 

and consistency checks across successive observations [14].  

Various combustion indices or decision rules have been formulated. One example is the 

FRP (Fire Radiative Power) which quantifies the fire intensity from the mid-IR signal. 

Simpler indices use band ratios or differences (like the difference between 4 µm and 11 

µm brightness temperatures) to distinguish fire pixels [12]. These classical algorithms are 

essentially a set of threshold conditions derived empirically for each sensor. For instance, 

Himawari-8’s wildfire detection method uses the normalized deviation of the 3.9 µm 

brightness from the background to identify potential fire pixels [16]. The advantage of 

threshold-based methods is that they are computationally light (simple arithmetic 

comparisons) and have been honed over decades to be reasonably reliable. They are 

currently operational: NASA’s MODIS Active Fire product and NOAA’s GOES wildfire 

alerts are built on such rules.  

However, there are significant limitations to these classical approaches. First, the fixed 

thresholds struggle with varying conditions–e.g., different surface temperatures, solar 

reflection at 4 µm in daytime, or sensor noise. To maintain high confidence, the thresholds 

are usually set conservatively, which leads to missed detections (omissions) of cooler or 

smaller fires. In the early stages of a wildfire (or for fires under clouds), the thermal 

signature might be subtle and thus go undetected by a rigid threshold test. Second, false 

positives can occur due to other hot surfaces (sun-heated rocks, industrial heat sources) 

or reflection of sunlight in the IR bands (particularly at dawn/dusk for geostationary 

sensors) [14]. The contextual tests mitigate this, but some false alarms still slip through, 

requiring human analyst confirmation. Another issue is the coarse spatial resolution of 

many operational sensors–for example, GOES-16’s ABI (Advanced Baseline Imager) has 

~2 km resolution at sub-satellite point for the 3.9 µm band. A fire must be fairly large (or 

very intense) to noticeably raise the temperature of a 2 km pixel [17]. This means small 

or early fires often are undetectable until they grow. As a result, threshold methods on 
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current satellites typically detect only moderate-to-large wildfire events, and there can be 

a delay until the fire grows enough to be picked up [18]. 

Comparative studies have further demonstrated the limitations of these threshold-based 

methods when applied to orbital wildfire detection. For instance, FireCNN, a deep 

learning model trained on imagery from the Himawari-8 geostationary satellite, achieved 

a 35.2% improvement in detection accuracy compared to conventional threshold 

algorithms. In addition to enhanced accuracy, FireCNN was capable of producing 

predictions across large regional satellite scenes in under 4 seconds, enabling near-real-

time fire alerting [19]. These results highlight the growing performance gap between 

traditional rule-based methods and CNN-driven approaches in the context of satellite-

based fire monitoring, especially for detecting early-stage or small-scale ignition events. 

2.1.2 Satellite Systems in GEO, Polar Orbits and CubeSat Constellations 

Geostationary satellites like NOAA’s GOES-16/17 and JMA’s Himawari-8 have become 

important for wildfire monitoring due to their high temporal frequency (updates every 5–

10 minutes). GOES-16’s ABI, for instance, continually scans the Americas and can spot 

fires much faster than polar-orbiting satellites (which might only pass twice a day). GOES 

uses a FTA (Fire Thermal Anomaly) algorithm (an evolution of the Wildfire Automated 

Biomass Burning Algorithm, WFABBA). This algorithm applies dynamic thresholds 

taking into account satellite viewing angle and uses multiple IR bands. A recent 

improvement in the GOES-16 FTA algorithm increased active fire pixel detection by ~6% 

compared to the previous GOES generation. By tailoring the thresholds to the new 

sensor’s radiometric performance and incorporating refined contextual tests, GOES-16 

was able to detect more fires–especially smaller or cooler ones–that had been missed by 

GOES-13 [20]. Nevertheless, even with these improvements, GOES fire detection still 

faces the fundamental challenge of resolution. Himawari-8, covering the Asia-Pacific 

region, similarly employs threshold and contextual methods. Studies have shown 

Himawari’s algorithm can detect large fire events but might omit fires below a certain 

size or in heterogeneous terrain due to the strict thresholds. Low spatial resolution makes 

identification by conventional threshold processing difficult, particularly in the case of 

early-stage fires or small forest fires [21]. In essence, the temporal advantage of GEO 

(Geostationary Earth Orbit) satellites is partially offset by spatial limitations – they can 

tell when a big fire starts within minutes, but they might not see a small fire at all.  
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Polar-orbiting satellites carrying instruments like NASA’s VIIRS (375 m resolution IR) 

[18] and MODIS (1 km IR) have finer spatial detail and can detect smaller fires, but they 

only overpass a given location a few times per day. This can introduce delays of several 

hours in detection (fires can ignite and spread in between passes). In practice, a 

combination is used: polar satellites for detailed mapping and small fire detection, and 

GEO satellites for continuous monitoring of large fire growth [22]. Even so, current 

systems often miss the earliest ignition phase. For example, analysis of Australian 

bushfires showed that some fires were already a few hundred hectares in size by the time 

satellites flagged them. Additionally, heavy smoke or clouds can obscure the thermal 

signature, leading to missed detections [23]. 

Recognizing the gaps in current systems, there is growing interest in deploying dedicated 

small satellite constellations for wildfire detection. These promise higher spatial 

resolution and more frequent revisits by using many satellites in LEO (Low Earth Orbit). 

One prominent initiative is by the company OroraTech. OroraTech has been launching a 

series of CubeSats equipped with thermal infrared cameras specifically tuned for fire 

detection. In 2022, OroraTech launched its first demo CubeSat [24], and by March 2025 

they had launched 8 wildfire detection satellites on a Rocket Lab Electron rocket [25]. 

This is Phase 1 of a planned constellation of up to 100 satellites by 2028, aiming to 

provide 24/7 global coverage with a target revisit of ~30 minutes [26]. Each OroraTech 

satellite carries an uncooled microbolometer thermal imager and on-board processing to 

detect fire hotspots in real time. The data from these satellites feed into OroraTech’s 

wildfire monitoring platform which fuses them with existing satellite data. Early reports 

indicate the OroraTech system can detect fires as small as a few tens of meters across 

under ideal conditions, and provide alerts to users with low latency [25]. The on-board 

software likely uses a mix of thresholding and machine learning to distinguish real fires 

from false signals. OroraTech’s approach exemplifies the new wave of private-sector 

missions tackling wildfires with constellations of CubeSats.  

Another notable project is FireSat, backed by the Earth Fire Alliance (a non-profit) and 

partners like Muon Space and Google. FireSat is envisioned as a constellation of about 

50 fire-focused satellites in LEO, each with high-resolution thermal sensors, to achieve 

“neighborhood-scale” fire monitoring globally. The goal is to detect fires on the order of 

5×5 meters in size and deliver alerts within minutes of observation [27]. The system has 

entered its initial deployment phase, with the first satellite launched in March 2025 [28] 
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and several more planned as part of the first operational cluster in 2026. FireSat plans to 

leverage modern onboard processing and high-resolution thermal imaging to deliver near 

real-time fire perimeter and radiative power maps, providing actionable information to 

first responders and incident managers–a strong use-case for edge AI in orbital fire 

monitoring [27]. 

2.2 Neural Network Implementations for Onboard Processing 

In recent years, there have been pioneering demonstrations of running neural networks 

directly onboard satellites, marking a shift from the traditional paradigm of sending raw 

data to the ground for processing. These early missions illustrate the feasibility and 

benefits of AI at the edge in space. This section reviews several notable examples–

including the European Space Agency’s Φ-Sat missions and other smallsat projects–

focusing on their onboard hardware, use cases, and outcomes. 

2.2.1 ESA’s Φ-Sat Missions 

Φ-Sat-1 (2020). As previously noted in the Introduction, ESA’s Φ-Sat-1 was a 6U 

CubeSat developed under the FSSCat program, carrying an onboard AI system for cloud 

detection. It featured an Intel Movidius Myriad 2 VPU–integrated by Ubotica 

Technologies–to classify and discard cloud-contaminated images before downlink, 

conserving bandwidth. The onboard CNN (“CloudScout”) ran successfully in-flight, 

filtering hyperspectral image tiles and transmitting only useful data. Results confirmed 

both the reliability of inference and the Myriad 2’s radiation resilience, with no significant 

upsets reported. The mission demonstrated that onboard decision-making can improve 

bandwidth use and data latency, paving the way for more advanced AI payloads in space 

[6]. 

Φ-Sat-2 (2024)–Building on the success of Φ-Sat-1, the Φ-Sat-2 mission was initiated to 

further explore on-board AI for Earth observation. Φ-Sat-2 is a 6U CubeSat developed 

by a consortium led by Open Cosmos, with a goal of running a variety of AI applications 

on orbit. The satellite carries a powerful onboard computer with an AI accelerator–

specifically, the Intel Movidius Myriad 2–and a multispectral camera with a resolution of 

4.75 m [29]. Uniquely, Φ-Sat-2 was designed as a software-defined platform capable of 

hosting multiple AI apps that can be uploaded and updated during flight. The satellite 

currently runs several AI applications, namely SAT2MAP (which extracts street map data 
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for emergency scenarios), Autonomous Vessel Awareness (AVA) (which autonomously 

detects and classifies vessels in optical imagery), Cloud Detection (an expanded system 

from Φ-Sat-1), and Deep Compression (which compresses images onboard using a 

convolutional autoencoder). Additionally, two further applications were uploaded post-

launch from the OrbitalAI challenge (an international competition promoting innovative 

onboard AI solutions): one detects anomalies in marine ecosystems, and PhiFire AI is 

designed for wildfire detection [30]. Essentially, Φ-Sat-2 serves as an in-orbit testbed for 

edge computing, where algorithms can be deployed and evaluated in space. It stands as 

one of the most advanced demonstrations of reconfigurable AI in space–showing how a 

single CubeSat can flexibly run different neural networks for different missions. While 

results from Φ-Sat-2 are still forthcoming, the mission underlines a trend: public-private 

partnerships (ESA with startups like Ubotica, Open Cosmos) are pushing the state-of-the-

art in onboard AI, moving beyond fixed-function inference to a more dynamic “app store” 

model for satellites. 

2.2.2 Other Onboard AI Demonstrations 

KITSUNE 6U Wildfire CubeSat (2022)–A domain-specific example of onboard AI for 

wildfire detection is provided by the KITSUNE mission. Developed by the Kyushu 

Institute of Technology in collaboration with partners, this 6U CubeSat was deployed 

from the ISS in 2022 with a 5-meter resolution imager. Its mission includes demonstrating 

a deep learning approach for classifying images containing wildfires directly onboard the 

satellite. KITSUNE is the first CubeSat to employ a CNN to classify wildfire images in 

LEO, with the aim of reducing downlink data by performing image processing in orbit. 

The team developed a lightweight CNN (Mini-VGGNet-based) and pre-trained it on a 

dataset of wildfire and non-wildfire images. This model was designed to run on 

KITSUNE’s onboard computer as a secondary mission, analyzing captured images for 

wildfire smoke or burn signatures. If a wildland fire is detected with high confidence, the 

satellite can prioritize downloading those images (or even just alerts) to the ground, rather 

than streaming all raw imagery. This design addresses the bandwidth bottleneck by 

transmitting only meaningful data (similar in spirit to Φ-Sat’s cloud filtering). While 

KITSUNE’s primary imaging is in visible bands (RGB) and thus limited to daytime fire 

or smoke detection, its CNN approach has shown high accuracy in laboratory testing. The 

Mini-VGGNet-based CNN has demonstrated 98% accuracy with 0% false positives while 

consuming only 0.10 Wh of energy under power-cycled conditions without hardware 
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acceleration [31]. Although the mission ended in March 2023 when the satellite re-entered 

Earth’s atmosphere [32], it provided a valuable demonstration of onboard wildfire 

classification. This project underscores how even university-built CubeSats are now 

leveraging CNNs in orbit, validating their applicability for environmental monitoring. 

While KITSUNE targeted wildfire detection specifically, other CubeSat and small-

satellite initiatives have turned to AI to address a wide range of Earth observation 

challenges. For example, D-Orbit’s ION satellite platform recently hosted an experiment 

called WorldFloods (2022) where a deep neural network segmented flood maps from 

imagery entirely onboard, using an Intel Myriad X accelerator. The WorldFloods payload 

produced 10 m resolution flood masks in near real-time and downlinked vector map 

outputs instead of raw images, drastically cutting response time for flood events [33]. 

Another example is Lockheed Martin’s 2020 announcement of a 3U CubeSat carrying an 

NVIDIA Jetson GPU (Project La Jument) to test AI processing in orbit. The GPU-enabled 

satellite was intended to run applications like image super-resolution and object detection 

on-board [34]. Although challenges like radiation hardening of COTS (Commercial 

Off‑The‑Shelf) GPUs remain, these initiatives show that even more computationally 

intensive AI (beyond CNN classification) is being trialed in space. 

2.3 Deep Learning Methods for Event Detection 

Convolutional Neural Networks (CNNs) have become the cornerstone of image-based 

event detection, including wildfires. Unlike earlier algorithms relying on manually crafted 

features, CNNs automatically learn feature hierarchies from data–from low-level edges 

to high-level shapes–making them highly effective for complex pattern recognition. In 

the domain of wildfire detection, numerous studies have successfully leveraged CNNs to 

identify fire or smoke in images and videos. Approaches include multi-stage strategies 

where candidate moving regions are first isolated using traditional image-processing 

techniques such as background subtraction and dark-channel priors, followed by CNN-

based classification. Other techniques fuse deep learning with traditional methods by 

combining CNN-extracted static image features with dynamic features from optical-flow 

algorithms. Additionally, common practices involve transfer learning, where pretrained 

CNN models, such as VGG16 and ResNet50, are fine-tuned specifically for wildfire 

detection tasks, often emphasizing datasets rich in non-fire examples to minimize false 
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positives. Smaller, lightweight CNN architectures inspired by widely recognized 

networks like GoogleNet have also been effectively applied to flame detection in 

surveillance videos. Collectively, these CNN-based methods consistently outperform 

earlier smoke sensors and threshold-based algorithms, demonstrating superior 

performance in early fire detection across diverse conditions [34]. 

Despite their high accuracy, standard deep CNN models such as VGG or ResNet come 

with substantial computational and energy demands. This limitation is especially critical 

for resource-constrained environments like CubeSats, which have limited onboard 

processing power and strict energy budgets. To address this, researchers have developed 

lightweight and energy-efficient CNN architectures optimized for low-power devices. 

Notable examples include MobileNet, EfficientNet, and various TinyML approaches for 

microcontrollers. These models drastically reduce the number of parameters and 

operations, enabling inference on embedded hardware with minimal accuracy loss.  

MobileNet was one of the first CNN architectures designed explicitly for mobile and 

embedded vision applications. It introduces depthwise separable convolutions, 

factorizing a standard convolution into a depthwise spatial convolution followed by a 

pointwise convolution. This reduces computation and model size by nearly an order of 

magnitude compared to conventional CNNs, with MobileNet-V1 (4.2 million parameters) 

achieving ~70% ImageNet top-1 accuracy–only modestly lower than much larger models 

[35]. Successive versions like MobileNet-V2 improved upon this by using inverted 

residual blocks and linear bottlenecks, further boosting efficiency. Such architectures 

demonstrate that with carefully designed layers, it is possible to run CNN inference within 

the tight resource constraints of small satellites [36]. Indeed, prior work has shown 

MobileNet models can run in real-time on low-power processors typical of CubeSats [37]. 

EfficientNet represents another class of optimized CNNs that leverage neural architecture 

search and compound scaling. Tan and Le (2019) proposed scaling network depth, width, 

and input resolution in a balanced way to maximize accuracy for a given compute budget. 

The EfficientNet family (B0 through B7) achieves superior accuracy–efficiency trade-

offs; for example, EfficientNet-B7 reaches 84.3% ImageNet top-1 accuracy while being 

8.4× smaller and 6.1× faster than previous CNNs of comparable accuracy. Even the 

smaller EfficientNet-B0 (approximately 5 million parameters) outperforms much larger 

models in accuracy per FLOP [38]. This level of efficiency is highly attractive for 
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CubeSat platforms, which cannot afford the memory and FLOPs of large CNNs. 

EfficientNet’s compound scaling strategy ensures that a suitably scaled-down model can 

fit within on-board computing limits without sacrificing too much performance. 

Comparative studies confirm that EfficientNet and MobileNet variants are among the top 

choices for deploying CNNs on small-satellite hardware [37]. 

Beyond specific architectures, the field of TinyML focuses on implementing machine 

learning on ultra-low-power microcontroller units (MCUs). TinyML techniques include 

model compression, quantization to lower bit-width (e.g. 8-bit integers), and distillation 

to smaller networks. These methods can shrink CNN memory footprint and inference 

energy drastically, albeit often with some loss in accuracy. For instance, 8-bit quantization 

typically results in a reduction of model size and computational load by a factor of four 

or more, with minimal impact on accuracy for many vision models. Frameworks like 

TensorFlow Lite and tools like ARM CMSIS-NN enable deploying compact CNNs on 

MCU-class processors [39]. In the context of CubeSats, which often rely on low-power 

system-on-chips, TinyML approaches are highly relevant. Although onboard computers 

on CubeSats are typically more capable than bare-metal MCUs, applying TinyML 

strategies–such as model pruning and efficient layers–remains essential to ensure that 

CNNs can operate within the satellite’s strict power and processing constraints. 

2.3.1 Multi-Exit Neural Networks for Energy-Constrained Inference 

While efficient architectures reduce the overall compute load of CNNs, another 

orthogonal strategy to save energy is making the inference process adaptive. A prominent 

approach is the use of multi-exit neural networks, also known as early-exit or anytime 

prediction networks. In a multi-exit CNN, several classifier “exit” points are inserted at 

intermediate layers of the network. Instead of always running the full deep network, the 

model can exit early at one of these intermediate points if it is confident in the prediction. 

For example, BranchyNet first introduced this concept, demonstrating that a CNN with 

multiple exits can significantly speed up inference by handling easy inputs in shallow 

exits and only processing hard inputs to the deeper layers. The key idea is a trade-off: 

shallower exits are faster (less computation) but usually less accurate; deeper exits are 

more accurate but consume more time/energy. During inference, the network evaluates 

the confidence (often using entropy or a threshold on the softmax output) at an exit. If the 

confidence is high, the result is output at that stage. Otherwise, the input continues to 
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propagate through deeper layers. This adaptive approach means computation is adjusted 

per input–simple cases don’t waste energy on full network evaluation, while complex 

cases still get the benefit of the full model [11]. 

The benefits of multi-exit CNNs for energy efficiency are well documented. One 

approach involved implementing a multi-exit CNN on a small ESP32-CAM embedded 

device, and the results showed that it can filter out images with no objects of interest, 

skipping the rest of the network processing. In this system, the multi-exit design saved 

about 42.7% of energy compared to always running the full network (single-exit). This 

came at the cost of only a minor accuracy drop (~2.7% lower accuracy than the full 

model), a trade-off very favorable for energy-constrained scenarios [40]. Similarly, others 

have applied multi-exit networks in IoT settings to meet real-time requirements. In one 

industrial IoT application, an early-exit CNN was used to ensure that deadlines were met 

for time-sensitive tasks [41]. These studies confirm that adaptive computing can maintain 

high accuracy and dramatically cut down inference time and power consumption. 

Compared to static models (which have a fixed depth and computational cost for every 

input), adaptive models are much more flexible and efficient. A static CNN, no matter 

how simple or complex, cannot change its behavior on the fly–it treats an easy clear-sky 

image the same as a challenging smoky image, expending equal computation on both. In 

contrast, a multi-exit CNN might recognize very quickly that a clear image has “no fire” 

with high confidence after just a few layers and exit early, saving the effort of running 

the remaining layers. Over many images, especially in scenarios like continuous Earth 

observation where many frames have no event, the energy savings accumulate 

significantly.  

Beyond multi-exit architectures, adaptive computations include techniques like dynamic 

model selection and layer skipping. Some recent research explores neural networks that 

can skip certain layers or blocks for particular inputs, using gating mechanisms to activate 

only the necessary computations. For instance, an approach may train a gating network 

to decide if an image needs a high-capacity path or a low-capacity path through the model, 

effectively adjusting the network’s depth or width per input [42]. This is related to the 

concept of conditional computation. ATM-Net (Adaptive Termination and Multi-

Precision Network) is one such strategy that not only allows early termination like multi-

exit but also adjusts the precision of computations based on energy availability. In 

extreme energy-harvesting situations, systems have even tried dynamically lowering the 
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precision (e.g., using integer arithmetic when power is low) or alternating between high-

accuracy and low-cost model versions [43]. Another avenue of efficiency is model 

compression techniques (pruning unimportant weights, quantizing weights to lower bit-

depths)–while these are largely static optimizations done offline, they complement 

adaptive inference by making the overall network smaller and faster from the start. For 

example, a pruned or quantized model uses fewer operations, and if combined with early 

exits, the gains multiply. Indeed, one study proposed a “nonuniformly compressed” multi-

exit network tailored for energy-harvesting devices, recognizing that both the network 

architecture and weight compression need to be co-designed to enable ultra-low-power 

operation [44]. 

2.4 Power Generation and Storage Limitations on CubeSats 

CubeSats are standardized small satellites composed of 10×10×10 cm units (1U) stacked 

to form larger sizes. Figure 2 illustrates typical CubeSat form factors, including 1U, 2U, 

3U, 6U, and beyond (e.g., 12U), corresponding to roughly 1-2 kg per 1U [45]. Smaller 

CubeSats have very limited surface area for solar cells and thus severely constrained 

power budgets. Typical available power scales with size: A 1U CubeSat may only 

generate on the order of 1–2.5 W of power, a 2U about 2–5 W [46], and a 3U roughly 7–

22 W. These ranges assume body-mounted solar panels in low Earth orbit and can vary 

with sun exposure and panel technology. For example, the Delfi-C3 (3U CubeSat) had a 

guaranteed input power of only ~2.4 W for operations [47]. In some cases deployable 

solar panels or solar sails are used to boost input power, but even then the power is 

typically at most tens of watts [48]. 
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Beyond 3U, larger CubeSats like 6U and 12U can accommodate more solar cells (often 

with deployable arrays) and larger batteries, increasing the energy budget. A 6U CubeSat 

(approximately 10×20×30 cm, up to ~12 kg) can generate on the order of tens of watts 

under peak sunlight. Commercial 6U solar panels can produce around 17–20 W in low 

Earth orbit [49], and advanced deployable arrays can reach 50+ W [50]. However, 

practical usable power is lower once you account for orbital day/night cycles and 

subsystem overhead. The energy storage is also limited–CubeSat batteries (typically 

lithium-ion) vary in capacity from around 10 to 150 Wh, while the largest batteries, used 

in extended or larger CubeSat configurations, can store up to approximately 350 Wh [51]. 

This means available power must be budgeted carefully across all subsystems (attitude 

control, communications, payload, etc.) over an orbit. Thermal constraints also limit 

continuous high-power draw. 

2.4.1 Energy Use for AI Workloads on 6U CubeSats 

Building on the general power constraints, onboard data processing capabilities in 6U 

platforms are especially affected by limited energy availability and hardware throughput. 

Platforms such as those offered by Open Cosmos, used in missions like Φ-Sat-2, can 

support peak payload power levels of approximately 25 W [52]. However, it is important 

to note that this peak power value only represents short-term consumption spikes under 

favorable conditions, such as direct sunlight on solar panels and fully charged batteries. 

 

Figure 2. Common CubeSat Standard Sizes (1U to 12U) [45] 
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The average available power on a CubeSat is limited by orbital lighting conditions, 

alternating between sunlight and eclipse. For example, the 6GStarLab mission (based on 

an Open Cosmos platform) specifies an average payload power between 7–20 W, with a 

15% duty cycle–allowing full-power operation for about 13.5 minutes per 90-minute orbit 

[53]. This budget can be distributed flexibly: either in short bursts at high power (e.g., 20 

W for rapid image processing) or as continuous low-power operation (e.g., 3 W 

sustained). For wildfire detection, CNN inference is an intermittent task that can be 

selectively activated during target overpasses. A common strategy is to duty-cycle the 

processor–briefly spiking power during active processing, then returning to idle–keeping 

average consumption low over the orbit. 

For example, the KITSUNE satellite used a Raspberry Pi Compute Module with pre-

trained CNNs that were activated only on ground command, reducing energy usage to 

just a few watt-hours per orbit [31]. Its imaging system consumes approximately 2.9 Wh 

per session, with ~0.8 Wh used during the 3-minute image acquisition phase alone [54]. 

This highlights the importance of activating high-power components only when necessary 

and managing energy carefully throughout the orbit. 

2.5 Hardware Accelerators for AI Processing on CubeSats 

To meet the stringent energy constraints while still providing adequate processing 

throughput, specialized hardware accelerators are used for running CNNs on small 

satellites. In recent years, several types of low-power AI accelerators have emerged that 

are suitable for CubeSat deployment: Vision Processing Units (VPUs), Tensor Processing 

Units (TPUs), low-power Graphics Processing Units (GPUs), and even field-

programmable gate arrays (FPGAs) with custom CNN logic. Below is a review of the 

capabilities and limitations of prominent options. 

2.5.1 Intel Movidius Myriad X VPU 

The Intel Movidius Myriad X is a vision processing unit designed for energy-efficient 

deep learning inference. It builds on the earlier Myriad 2 (which was used in the first in-

space AI experiments). The Myriad X features 16 SHAVE vector cores and a dedicated 

Neural Compute Engine for CNN acceleration. In theory, it offers computational 

performance exceeding 4 trillion operations per second (TOPS) for deep neural networks, 

while in practice it can sustain over 1 TOPS of inference throughput under typical 
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conditions [55]. Impressively, this performance is delivered within a tiny power envelope 

on the order of 1–2 W. Intel noted that Myriad X achieves ~10× the neural performance 

of Myriad 2 within the same sub-2W power budget [56]. 

For CNNs relevant to wildfire, a Myriad X can provide real-time inference capabilities 

while drawing only a couple watts. This VPU has been demonstrated in space: the 

European Φ-Sat-1 (PhiSat-1) mission, a 6U CubeSat launched in 2020, used the 

predecessor Myriad 2 VPU to run an onboard cloud detection AI experiment. PhiSat-1 

showed that COTS VPUs can survive in LEO and perform useful filtering of images. The 

Myriad X, being more powerful, has since been considered for similar use. Researchers 

have reported that Myriad VPUs offer high performance per watt and even showed 

acceptable radiation tolerance for short LEO missions, though they are not radiation-

hardened devices [6]. In particular, the Myriad X was tested aboard the International 

Space Station (ISS), where it demonstrated stable operation in a radiation-prone 

environment — no radiation-induced faults were observed during extended runtime [57]. 

The limitation of Myriad X is that it requires a host processor to feed it data and handle 

communications (typically it’s used as a co-processor via USB or PCIe). Still, for an 

adaptive CNN on a CubeSat, the Myriad X provides an excellent balance of ~1 TOPS/W 

energy efficiency and compact size, making it a strong candidate where power is at a 

premium. 

2.5.2 Google Edge TPU 

The Edge TPU (Tensor Processing Unit) by Google is a small ASIC 

(Application‑Specific Integrated Circuit) specialized for TensorFlow Lite CNN 

inference, well-known for its use in the Coral Dev Board and USB accelerators. It is 

capable of 4 TOPS peak performance (INT8) and achieves about 2 TOPS per Watt of 

power efficiency. In absolute terms, an Edge TPU typically operates at ~2 W for full 

throughput (4 TOPS) and can perform inferences with very low latency. 

For example, an Edge TPU can execute mobile vision models (MobileNet, Inception, 

etc.) in a few milliseconds each, enabling high frame-rate analysis on just a few watts 

[58]. For a 6U CubeSat doing wildfire detection, the Edge TPU’s appeal is its minimal 

power draw and simplicity of integration. It interfaces via USB or PCIe to a modest 

single-board computer (like a Raspberry Pi or i.MX-based OBC) and offloads the math 

of the neural network. Its 0.5 W per TOPS efficiency is among the best in class– meaning 
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it can run continuous inference with almost negligible impact on a ~10 W power budget. 

The Edge TPU excels at classification and object detection tasks on relatively small 

models. As long as the CNN is quantized and fits the Edge TPU’s memory, one can expect 

hundreds of inferences per second for small images, or several inferences per second for 

megapixel images, all within a couple watts.  

One consideration is that the Edge TPU (as a COTS chip) has not yet flown in space, so 

its behavior under radiation is based on ground testing [59]. It likely would require similar 

risk mitigation as other COTS parts (error-correcting memory, watchdog resets on latch-

up, etc.). Overall, the Google Edge TPU offers high CNN performance for minimal 

energy–ideal for an energy-efficient CubeSat that needs to process images onboard in real 

time. It represents a commercially accessible way to achieve AI on-board, given its wide 

adoption in edge AI projects. 

2.5.3 NVIDIA Jetson Series (Nano, Xavier NX, Orin Nano) 

NVIDIA’s Jetson line includes several low-power GPU-based modules that can run 

neural networks with high performance, albeit at higher power consumption than 

dedicated ASICs. These Jetson modules combine a GPU, CPU, and often AI accelerator 

cores, making them stand-alone computing solutions. Key members of the family relevant 

to CubeSats are discussed below. 

Jetson Nano is a small module with a 128-core Maxwell GPU and quad-core ARM CPU. 

It delivers about 472 GFLOPS (0.472 TFLOPS) of FP16 neural compute, equivalent to 

roughly ~0.5 INT8 TOPS, and has a configurable TDP of 5 W or 10 W [60]. In practice, 

the Nano can run simpler CNN models (e.g. smaller CNNs like Mobilenet or 

segmentation networks) at a few frames per second. It is very low-cost and has been used 

in some experimental payloads [61]. However, the Nano’s performance per watt (~0.05–

0.1 TOPS/W) is much lower than ASIC accelerators. It can fit within a CubeSat power 

budget (as low as 5 W in reduced mode), but it yields limited throughput and generates 

significant heat for the small volume. 

Jetson Xavier NX is a far more powerful module (based on NVIDIA’s Volta architecture 

with 384 CUDA cores and 48 Tensor cores) that provides up to 21 TOPS (INT8) of AI 

performance at full throttle. The Xavier NX features a 6-core CPU and is available in 

configurations with either 8 GB or 16 GB of RAM, and can be set to 10 W or 20 W power 
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modes. At 20 W it can achieve its peak 21 TOPS, which is enough to run very deep CNNs 

(ResNet-50, YOLO detectors, etc.) in real time [62]. This level of performance on a 

CubeSat is cutting-edge – for example, the German OroraTech wildfire monitoring 

CubeSats are deploying Xavier NX onboard to analyze thermal imagery for fire detection 

in orbit [63]. The obvious trade-off is power and thermal load: a continuous 20 W draw 

is a big chunk of a 6U’s budget and requires excellent thermal management (radiator 

surfaces or heat pipes to shed ~20 W of heat). Nonetheless, for missions where advanced 

onboard processing is paramount and power is available (perhaps via deployable solar 

panels and large batteries), the Xavier NX offers a self-contained solution to run modern 

CNNs at the edge. 

Jetson Orin Nano, NVIDIA’s latest entry (2023), pushes the performance further in a 

small form factor. The Orin Nano can deliver up to 67 INT8 TOPS depending on the 

model, with power configurable between ~7 W up to 25 W for the highest performance. 

It uses the Ampere GPU architecture with built-in Tensor Cores, giving it an efficiency 

boost over older Jetsons. In effect, an Orin Nano at 10 W may achieve tens of TOPS – an 

order of magnitude more than Jetson Nano for the same power. This sets a new baseline 

for “edge AI” capability: NVIDIA advertises up to 140× the performance of Jetson Nano 

when running at higher power settings [64]. For CubeSat use, the Orin Nano could be run 

in a throttled mode (e.g., 10 W limit) to still provide perhaps ~20+ TOPS, which might 

enable running multiple CNN models (e.g., object detection plus image segmentation) 

concurrently on-board. Again, the challenge will be power provisioning and thermal 

dissipation in a small satellite. But if the mission can accommodate it, Orin-based systems 

could perform much more complex analysis (potentially even edge training or large-scale 

data fusion) on the satellite. 

Jetson modules provide the flexibility of a full Linux computer with integrated GPU 

acceleration, which is excellent for development and for the integration of complex 

algorithms. They also support a wide range of neural network models through NVIDIA’s 

TensorRT and CUDA libraries, enabling the use of state-of-the-art CNN architectures. 

However, their energy efficiency lags behind that of dedicated VPUs/TPUs. As 

summarized in Table 1, for instance, while the Google Edge TPU delivers approximately 

2 TOPS/W and the Intel Movidius Myriad X achieves around 0.5–2 TOPS/W, the 

NVIDIA Jetson Nano only offers about 0.05–0.1 TOPS/W, and even the high-

performance Jetson Xavier NX reaches roughly 1 TOPS/W at a 20 W power draw. The 
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newer NVIDIA Jetson Orin Nano can achieve around 2 TOPS/W in energy-efficient 

configurations (e.g., around 10–15 W), but it also requires careful power and thermal 

management. Additionally, Jetson modules typically have large memory footprints and 

necessitate meticulous power sequencing, complicating the design of the EPS (electrical 

power system). In summary, while NVIDIA Jetson platforms are well-suited for high-

performance onboard AI–provided that the CubeSat can continuously supply roughly 10–

15 W and effectively manage heat—they might be overkill if the mission only demands 

a lightweight wildfire classifier. 

Accelerator Performance (INT8 

TOPS) 

Power 

Consumption (W) 

Energy Efficiency 

(TOPS/W 

Intel Movidius 

Myriad X 

1-4 1-2 0.5-2 

Google Edge TPU 4 ~2 ~2 

NVIDIA Jetson 

Nano 

~0.5 5-10 ~0.05–0.1 

NVIDIA Jetson 

Xavier NX 

Up to 21 10-20 ~1 

NVIDIA Jetson Orin 

Nano 

Up to 67 7-25 ~2 (Under typical 

settings) 

 

2.5.4 Other Accelerators and FPGA-Based Solutions 

Beyond the mainstream options above, there are other specialized hardware solutions that 

can be considered. Field-programmable gate arrays (FPGAs) can be programmed to 

implement CNN inference logic with parallelism and low power, and some space-grade 

FPGAs are radiation-tolerant. Modern low-power FPGAs (like Xilinx Zynq or Microchip 

PolarFire SoC) can achieve respectable performance. In fact, researchers have 

demonstrated CNN acceleration on a Xilinx Zynq-7020 (Artix-7 class) FPGA 

(Field‑Programmable Gate Array) in a 1U CubeSat context: using model quantization (to 

4-bit weights) and parallelism, they achieved about 15 frames per second throughput at 

only ~2.5 W power consumption on a cloud detection CNN [65]. This is an excellent 0.2 

W per inference efficiency, showing that FPGAs can be competitive in energy efficiency. 

The advantage of an FPGA design is that it can be tailored exactly to the needed CNN 

Table 1. Comparison of Edge AI Accelerators in Terms of Performance, Power Consumption, and Energy 

Efficiency. 
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(saving power by not having unused circuitry) and, if using a space-grade FPGA, can 

offer high immunity to radiation upsets. For example, Xilinx’s XQRKU060 (Kintex 

UltraScale) or Microchip’s RTG4 are radiation-hardened FPGAs that have enough logic 

to implement small-to-medium CNNs [66]. The downside is development effort: one 

must design and verify the CNN accelerator in HDL or use high-level synthesis, which is 

more complex than deploying on a GPU/VPU. Also, FPGAs generally have lower 

absolute performance; a single small FPGA might not reach more than a few TOPS unless 

it’s a high-end device. Nonetheless, for ultra-energy-efficient or radiation-critical 

missions, FPGA accelerators are very attractive. They can also be reconfigured in-flight 

if needed (to update the CNN architecture, for instance) [67]. 

At the lower end, there are high-performance microcontrollers/DSPs (e.g., the ARM 

Cortex-M55 with Ethos-U NPU, or Texas Instruments C7x DSP) that can perform 

simpler CNN inference at milliwatt power levels [68]. These might handle tinyML 

models for fire detection (for instance, a very lightweight CNN to detect hotspots in low-

resolution thermal data). They are highly power-efficient for small models, but likely 

insufficient for more robust image classification tasks without significant compromises 

in accuracy or speed. 
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3 Data and Preprocessing 

The effectiveness of a convolutional neural network for onboard wildfire detection largely 

depends on the quality of the input data and the proper preparation of the dataset. This 

chapter describes the sources of satellite imagery, the process of transforming the data 

into a format suitable for training, and the preprocessing techniques applied. Particular 

attention is given to patch extraction, handling of multispectral channels, data calibration, 

and augmentation methods that enhance the model’s generalization capabilities. 

3.1 Data Sources 

This study relies on a combination of satellite-based fire detection records and high-

resolution multispectral imagery to construct a dataset suitable for training and evaluating 

an onboard wildfire detection model. The foundation of the labeling process is the FIRMS 

(Fire Information for Resource Management System), a service operated by NASA that 

provides global, near-real-time data on active fire events . Fire labels were obtained from 

the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors onboard the Suomi NPP 

satellite, covering the years 2021 to 2024 [69]. VIIRS detects thermal anomalies on 

Earth's surface by monitoring mid- and thermal-infrared bands, making it a reliable source 

for identifying wildfire hotspots. It offers a spatial resolution of approximately 375 meters 

and provides multiple daily observations per region, enabling timely and geographically 

precise fire event identification. VIIRS data were used specifically to determine fire 

occurrence locations and timestamps, serving as reference points for identifying 

associated satellite images. 

To obtain corresponding satellite imagery, Sentinel-2 data were used. This constellation, 

operated by the ESA, captures multispectral images across 13 spectral bands at spatial 

resolutions ranging from 10 to 60 meters. Multispectral imagery refers to data captured 

across several wavelength ranges, including visible light and infrared, which is 

particularly effective for detecting vegetation stress, heat signatures, and smoke—all of 

which are relevant to wildfire monitoring. Sentinel-2 imagery is well suited for this 

purpose due to its high spatial detail, relatively frequent revisit rate, and access to spectral 

bands useful for fire analysis. 
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Fires were studied in three diverse geographic regions known for frequent and intense 

wildfire activity: California, southeastern Australia, and the Amazon rainforest. Each 

region presents distinct environmental characteristics that contribute to the robustness and 

generalizability of the training dataset. California offers a temperate Mediterranean 

climate with dry summers, mountainous terrain, and frequent wildland-urban interfaces—

conditions that make it highly susceptible to rapidly spreading fires near human 

settlements. Australia, particularly the southeastern states like New South Wales and 

Victoria, experiences hot, dry summers and is covered by vast eucalyptus forests that are 

highly flammable and prone to extreme bushfires, including crown fires and 

pyroconvective events. The Amazon presents a tropical rainforest ecosystem with high 

humidity, dense vegetation, and seasonal dry periods. In this region, many fires are 

anthropogenic, often resulting from deforestation activities. By including these three 

regions, the dataset incorporates a wide range of fire behaviors, land cover types, 

atmospheric conditions, and fire causes, which helps improve the model’s ability to 

generalize across different wildfire scenarios worldwide. 

To retrieve Sentinel-2 imagery corresponding to the fire events, the GEE (Google Earth 

Engine) platform was used. GEE is a cloud-based geospatial analysis environment that 

provides access to a vast archive of satellite imagery and allows efficient querying based 

on spatial and temporal filters [70]. In this study, GEE was employed specifically to locate 

and download Sentinel-2 scenes that overlapped with the VIIRS fire detections. It was 

also used to filter out images with excessive cloud cover, ensuring that only visually 

usable scenes were selected. While the VIIRS fire data and subsequent image processing 

steps were handled locally, GEE significantly streamlined the process of identifying 

relevant Sentinel-2 imagery and exporting it for further analysis. 

3.2 Patch Extraction 

The construction of a high-quality dataset for wildfire detection began with parsing VIIRS 

fire records and identifying satellite imagery that spatially and temporally matched these 

events. Each VIIRS detection includes an estimate of confidence, which reflects the 

sensor's internal assessment of how likely the detected thermal anomaly corresponds to 

an actual fire. Only records with high confidence (i.e., labeled as "h") were retained to 

reduce noise and ensure the reliability of ground-truth labels. Additionally, a threshold of 
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FRP ≥ 50 MW was applied. FRP, or Fire Radiative Power, measures the radiative energy 

output of a fire in megawatts and serves as a proxy for fire intensity. Filtering based on 

FRP helps exclude weak or ambiguous thermal signals that may not result in visually 

detectable fire activity in the corresponding imagery. 

Once relevant fire points were selected, the Sentinel-2 Surface Reflectance product (S2 

SR HARMONIZED) was queried using GEE [71]. For each fire event, the system 

searched for available Sentinel-2 images within a ±24-hour time window and filtered out 

scenes with more than 70% cloud cover. This temporal window was necessary because 

Sentinel-2 does not provide continuous coverage–each satellite in the constellation 

revisits the same location approximately once every 5 days, though the effective revisit 

frequency can be improved to 2–3 days in mid-latitudes thanks to the dual-satellite 

configuration (Sentinel-2A and 2B). As a result, even if VIIRS detected a fire on a given 

day, a corresponding Sentinel-2 overpass may not have occurred at the same moment. 

Expanding the temporal range to ±24 hours increased the likelihood of capturing a usable 

image while maintaining a reasonable temporal correlation with the fire event. 

If a suitable image was found, a 224×224 pixel patch (approximately 4480×4480 m at 20-

meter resolution) centered on the fire coordinates was extracted. To avoid data leakage 

between training, validation, and test sets, only one patch per Sentinel-2 scene was 

retained. Although Sentinel-2 images cover large areas, extracting multiple nearby 

patches from the same scene could result in nearly identical samples appearing in different 

dataset splits, thereby artificially inflating performance metrics. Scene identifiers were 

tracked throughout the pipeline to prevent reusing the same image in different parts of the 

dataset. 

The extracted patches, originally in GeoTIFF format, were downloaded from GEE and 

converted to .npz files–NumPy’s compressed binary format for storing arrays. Each .npz 

file contains the image data and an associated binary label (fire or no fire). This format 

was chosen for its efficiency and compatibility with machine learning workflows in 

Python, particularly when handling large volumes of image data. During conversion, only 

three spectral bands were retained: Red (B4), Near-Infrared (B8), and Short-Wave 

Infrared 2 (B12). Details regarding the choice of spectral bands and normalization 

procedures are discussed in Section 3.3. 
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After preprocessing, a manual quality assurance (QA) step was performed on all fire-

labeled patches. Patches were visually reviewed, and any samples with excessive cloud 

cover, sensor artifacts, ambiguous visual evidence, or no visible signs of fire were 

excluded. This step was crucial for ensuring that the model learned from clear, 

unambiguous examples of fire-related imagery and reduced the number of false labels 

caused by automated misalignment or misclassification. 

To construct a balanced dataset, an equivalent number of non-fire patches was collected. 

These samples were drawn from the same geographic regions and seasonal periods, but 

were restricted to locations and times where no active VIIRS fire detections were present. 

This ensured that the model would learn to distinguish fire imagery not only from random 

backgrounds, but from visually similar, fire-prone areas during fire season. Importantly, 

non-fire patches were also subjected to manual review, with cloudy or corrupted images 

excluded to maintain dataset quality. The same preprocessing pipeline–band selection, 

normalization, resizing, and conversion to NumPy archive format (.npz) –was applied 

uniformly to both fire and non-fire samples. 

In total, the dataset includes 6000 labeled patches: 3000 fire and 3000 non‑fire. Table 2 

summarizes the class balance together with the median FRP and residual cloud fraction 

of the accepted Sentinel‑2 scenes.  

Table 2. Regional composition of the dataset, typical FRP and residual cloudiness after filtering. 

Region Fire Non-fire Median FRP (MW) 

[min–max] 

Median Cloud % 

[min–max] 

Amazon 726 726 83.5 [50.0 - 522.7] 1.15 [0 – 66.68] 

Australia 1799 1799 76.2 [50.0 - 362.4] 0.35 [0 – 69.00] 

California 475 475 90.1 [50.6 - 343.2] 1.85 [0.03 – 47.2] 

Total 3000 3000 83.9 [50.0 – 522.7] 1.12 [0 – 69.00] 

The complete patch extraction and filtering process is summarized in Figure 3, which 

outlines the logic flow from initial fire detection through to final dataset generation. The 

resulting dataset, combining automated filtering, precise spatiotemporal alignment, and 

human validation, provides a solid foundation for training adaptive neural networks under 

realistic satellite imaging conditions. 
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3.3 Channels and normalization 

To balance energy efficiency and detection performance in an onboard setting, only a 

subset of three spectral bands from the Sentinel-2 imagery was used as input for model 

training. The selection focused on bands that provide complementary and informative 

signals for wildfire detection: 

▪ B04 (Red, 665 nm) captures surface reflectance in the visible red spectrum and is 

effective for identifying burned areas and vegetation loss. 

▪ B08 (NIR–Near Infrared, 865 nm) highlights vegetation health and contrast 

differences in smoke plumes and fire scars. 

 

Figure 3. Patch extraction and preprocessing pipeline. Each VIIRS detection is matched to a single Sentinel-

2 scene, clipped, normalized, converted, and manually verified before inclusion. 
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▪ B12 (SWIR2–Short-Wave Infrared, 2190 nm) responds strongly to active fire 

fronts and high-temperature surfaces, making it critical for identifying thermal 

anomalies [72]. 

This combination of Red, NIR, and SWIR2 bands was selected to balance discriminative 

power and computational efficiency. Including just these three channels allows the model 

to capture critical features of fire scenes–such as thermal activity, vegetation state, and 

smoke presence–while keeping the input dimensionality low. This design choice helps 

minimize memory usage and computation time, which is especially important for onboard 

inference on low-power CubeSat platforms. 

All imagery was sourced from the Sentinel-2 Surface Reflectance (SR) product, which 

contains reflectance values corrected for atmospheric effects. As this product is already 

preprocessed and standardized, no additional radiometric correction was necessary. Prior 

to model training, each patch underwent per-band z-score normalization, a widely used 

method that improves training stability by standardizing input distributions [73]. For each 

of the selected bands, pixel values x were transformed as follows: 

𝑥′ =
𝑥 −  𝜇

𝜎
 

where 𝜇 and 𝜎 are the global mean and standard deviation for that band, computed from 

the full set of downloaded image patches. These statistical parameters were precomputed 

and embedded into the preprocessing script to ensure consistent normalization across the 

entire dataset. 

An illustration of the input format is shown in Figure 4, which displays a wildfire example 

across three spectral combinations: standard RGB, the isolated SWIR2 band, and the 

Red+NIR+SWIR2 composite used as model input. As seen in the image, the RGB 

visualization obscures fire activity under smoke, whereas the SWIR2 band clearly reveals 

burning regions, especially when visualized using a thermal color map. The composite 

image (R+NIR+SWIR2) enhances both flames and burned vegetation, demonstrating the 

effectiveness of this configuration for wildfire detection. 
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These preprocessing steps–band selection and normalization–were consistently applied 

to both fire and non-fire patches to ensure uniform input conditions during training. By 

limiting the input to three carefully chosen bands and applying statistically grounded 

normalization, the dataset achieves both computational efficiency and spectral relevance. 

This setup is particularly well-suited for training compact convolutional models intended 

for deployment on energy-constrained platforms such as CubeSats, where every byte of 

input data and every floating-point operation must be justified. 

3.4 Augmentation 

To improve the robustness and generalization of the wildfire detection model, data 

augmentation techniques were applied during training. Augmentation artificially 

increases dataset diversity by introducing controlled variations into the input images, 

allowing the model to better handle real-world variability such as orientation changes, 

lighting conditions, and minor noise. This is particularly valuable in satellite imagery 

tasks, where capturing a wide range of natural conditions (e.g., viewing angles, 

atmospheric effects) directly in the dataset can be challenging. 

However, in the context of wildfire detection, augmentation must be applied with caution. 

Wildfires are typically small and sparse relative to the full image patch, and their spectral 

signature–particularly in the SWIR2 band–is subtle but critical. Overly aggressive 

transformations (e.g., large rotations, elastic warping, or synthetic noise) risk distorting 

or even removing the visual cues that signify a fire, which can degrade model 

performance or lead to inconsistent labeling. Therefore, the augmentation strategy in this 

study was deliberately kept moderate and spatially consistent. 

 

Figure 4. Example wildfire patch shown as RGB, SWIR2 (thermal), and the composite input used by the 

model (Red, NIR, SWIR2). 
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During training, the following augmentations were applied using the Albumentations 

library [74]: 

▪ Horizontal and vertical flipping (p=0.5 each) helps the model become invariant to 

fire orientation and landscape symmetry, especially useful since satellite images 

can come from varying orbital directions. 

▪ Random 90-degree rotation (p=0.5) preserves image geometry while introducing 

orientation variability. Unlike arbitrary-angle rotations, 90° steps avoid 

interpolation artifacts and keep the sharpness of fire edges. 

▪ Random brightness and contrast adjustment (±15%, p=0.5) simulates variability 

in illumination and atmospheric haze, making the model more tolerant to minor 

reflectance deviations without overwhelming the original fire signal. 

No spatial cropping, noise injection, affine transforms, or color jittering were used, as 

such operations could compromise the visual integrity of the small-scale fire patterns. For 

validation and testing, no augmentations were applied beyond normalization. This 

ensures that evaluation reflects the model's performance on true, unaltered data and aligns 

with the conditions it would face during real-world deployment. 

The applied augmentation strategy was carefully designed to enhance generalization 

without compromising detection sensitivity. By simulating realistic variations while 

preserving the fine-grained structure of fire regions, the model is better equipped to 

operate reliably across diverse geographic areas and environmental conditions. 

In summary, this chapter presented a complete pipeline for constructing a wildfire 

detection dataset, covering data sourcing, spatial-temporal filtering, patch extraction, 

normalization, and carefully constrained augmentation. The resulting dataset is balanced 

across classes and regions, and optimized for use in onboard deep learning systems [75]. 

With the data foundation established, the next chapter introduces the neural network 

architectures and inference strategies designed to meet the energy and latency constraints 

of CubeSat platforms. 
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4 Adaptive CNN Architecture and Training Strategy 

Designing an onboard wildfire detection model for CubeSats requires balancing high 

accuracy with strict energy and latency limits. This chapter introduces a neural network 

architecture that supports adaptive inference through early-exit branches. It first reviews 

the design requirements for deploying neural networks in low-power orbital platforms. It 

then describes the baseline architectures considered for the task, including compact and 

efficient CNN backbones suitable for onboard inference. A core innovation of the 

proposed system–the early-exit mechanism–is presented in detail, followed by the 

training procedure that ensures both high performance and efficient exit decision-making. 

The chapter concludes with deployment considerations for embedded GPU execution. 

4.1 Design requirements 

The goal of this work was to develop a convolutional neural network architecture capable 

of detecting wildfires from multispectral satellite imagery in real time on a resource-

constrained CubeSat platform. To ensure practical deployability, the design process was 

guided by strict hardware and operational constraints, with a focus on computational 

efficiency, energy usage, and latency. All architectural and training decisions were shaped 

by the requirements of edge computing in low-power orbital environments. 

As a reference deployment target, the NVIDIA Jetson Nano was selected, operating in its 

5 W power mode. The Jetson Nano served as a realistic and accessible proxy for CubeSat-

grade embedded hardware, offering a quad-core ARM Cortex-A57 CPU, a 128-core 

Maxwell GPU, and approximately 472 GFLOPs of theoretical compute throughput. The 

model runs directly in PyTorch and executes on the embedded GPU, making the platform 

naturally compatible with dynamic early-exit logic.  

Other edge accelerators, such as the Intel Myriad X and Google Coral Edge TPU, were 

also considered. However, both platforms rely on static computation graphs (via 

OpenVINO 2022.3 and EdgeTPU Compiler v2), which complicates support for runtime 

branching. In the case of Myriad X, early-exit evaluation was still performed by manually 

partitioning the network into separate static sub-models and managing control flow 

externally from the host system. While technically feasible, this approach introduced 

additional complexity and coordination overhead, and was therefore not adopted as the 
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main deployment strategy. A detailed description of the Myriad X implementation and its 

limitations is provided in Section 5.5. 

Real-time constraints were defined using a practical example scenario based on Sentinel-

2 imagery. A full scene at 20 m resolution is approximately 5490 × 5490 pixels (≈109 × 

109 km) in size. To enable fine-grained detection and minimize the risk of missing small 

or spatially localized fire signals between patch boundaries, a sliding-window approach 

was applied with a stride of 112 pixels. This resulted in 2401 overlapping patches of size 

224 × 224 pixels, each to be processed individually by the CNN. 

Assuming the satellite maintains ground contact with a receiving station for roughly 5 

minutes (≈300 s), and allocating 180 seconds exclusively to onboard inference (with the 

remaining time reserved for data handling and transmission), the average processing time 

per patch must not exceed:  

𝑡𝑝𝑒𝑟 𝑝𝑎𝑡𝑐ℎ =
180 𝑠

2401
≈ 75 𝑚𝑠 

Given the Jetson Nano’s theoretical throughput of 472 GFLOPs/s, this implied a 

maximum per-patch budget of: 

𝐹𝐿𝑂𝑃𝑆𝑤𝑜𝑟𝑠𝑡 = 75 𝑚𝑠 ∗ 472 𝐺𝐹𝐿𝑂𝑃𝑆𝑠/𝑠 ≈ 35 𝐺𝐹𝐿𝑂𝑃𝑠 

To account for potential runtime variability, system interrupts, and memory contention, a 

safety margin of 2× was applied to the deepest (last) exit. Consequently, the maximum 

allowable compute footprint was constrained to <70 GFLOPs, while the average compute 

per patch was required to stay below 35 GFLOPs. 

In addition to compute constraints, onboard memory is a critical limiting factor. While 

the Jetson Nano includes 4 GB of LPDDR4 RAM, much of this is consumed by the 

operating system, preprocessing pipelines, and especially the intermediate activation 

maps during inference. To avoid memory contention and ensure real-time operation, the 

total model parameter size must be tightly limited. Specifically, no more than 5% of 

available RAM–approximately 200 MB–was reserved for model weights, and an 

additional 2× safety margin was applied. This yielded a target upper bound of <100 MB 

for the model parameters. All architecture variants and branches must fit within this 

budget, including those with early-exit heads. 
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Finally, to ensure that architectural optimizations did not overly degrade detection 

performance, a minimum performance threshold was enforced: the final adaptive model 

was required to achieve at least 90% of the classification accuracy of a standard full-depth 

baseline CNN on the same dataset. This constraint ensured that efficiency gains were not 

achieved at the expense of real-world utility. 

Together, these constraints defined the optimization space for designing and training the 

proposed adaptive CNN: maximize efficiency and reduce average inference time, without 

exceeding 70 GFLOPs per patch, without exceeding 100 MB of memory, and without 

sacrificing more than 10% of baseline accuracy (see Table 3 for a summary of system 

constraints). It is important to note that the design limits represent worst-case upper 

bounds derived from the communication window and onboard memory allocation. 

Satisfying these limits with a safety margin is desirable to accommodate unforeseen loads 

and to allow for the deployment of more complex models in the future. 

Table 3. Summary of system-level constraints for adaptive CNN design on Jetson Nano 

Constraint Type Target Limit Justification 

Max latency per patch 75 ms 5 min downlink window ÷ 2401 patches 

Max per-patch FLOPs 70 GFLOPs Worst-case budget with 2× safety 

margin 

Avg per-patch FLOPs 35 GFLOPs Needed to process entire scene in 180 s 

Max model size 100 MB Fits within 5% RAM with 2× safety 

margin 

Accuracy retention 90% of full baseline Ensures practical detection performance 

Power draw 5 W Jetson Nano 5 W mode 

4.2 Baseline backbones 

Selecting an appropriate convolutional backbone is a critical step in developing an 

efficient onboard wildfire detection model. The chosen architecture must balance 

classification performance with strict constraints on compute, memory, and power–while 

also offering structural flexibility to support adaptive inference with early exits. 

To this end, four candidate architectures were evaluated as baselines: 

▪ MobileNetV2 
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▪ MobileNetV3‑Small 

▪ MobileNetV3‑Large 

▪ ResNet‑18 

The MobileNet architectures are specifically designed for efficient inference on edge 

devices. They use depthwise separable convolutions (DW-Convs), inverted residual 

blocks, and lightweight activation functions (such as h-swish in V3), all of which 

significantly reduce the number of parameters and floating-point operations compared to 

conventional CNNs. These models are also fully open-source, well-supported by modern 

deep learning frameworks, and modular by design–making it straightforward to insert 

early-exit branches between convolutional stages. This modularity was a key criterion, as 

the early-exit mechanism requires internal classifiers to be placed at intermediate depths 

of the network without disrupting its structure or flow of information. 

ResNet‑18, while more computationally demanding, was included as a widely used 

standard CNN with strong representational power and well-established optimization 

behavior. Its inclusion served to benchmark MobileNet’s efficiency-accuracy tradeoff 

against a classic baseline. 

To objectively compare these models, all four architectures were pretrained on ImageNet 

and then fine-tuned on the wildfire dataset using an identical training pipeline (without 

early exits). The results are summarized in Table 4. 

Table 4. Baseline model comparison on ImageNet and wildfire dataset [76], [77]. 

Model Parameters FLOPs 

(forward) 

Top-1 Accuracy 

(ImageNet) 

F1‑Score 

(Wildfire) 

Size 

(MB) 

MobileNetV3-

Small 

~2.9 M ~60 MFLOPs 68.1% 0.9571 5.9 

MobileNetV2 ~3.4 M ~300 MFLOPs 71.8% 0.9699 8.7 

MobileNetV3-

Large 

~5.4 M ~220 MFLOPs 75.6% 0.9640 16.2 

ResNet‑18 ~11.7 M ~1.8 GFLOPs 69.8% 0.9588 42.7 

Despite being relatively lightweight, MobileNetV2 consistently achieved the highest F1-

score on the wildfire dataset. Its performance surpassed both more compact architectures 

(like V3‑Small) and larger ones (like ResNet‑18), while remaining well below the 

compute and memory constraints defined in Section 4.1. In addition, its architecture is 



46 

composed of 17 inverted residual blocks grouped into 7 stages, making it highly modular 

and well-suited for early-exit integration. 

ResNet‑18, despite having more than 5× the parameter size of MobileNetV2 and nearly 

6× the model footprint, achieved a lower F1‑score compared to MobileNetV2. This 

suggests that larger models do not necessarily translate into better performance on limited 

datasets–ResNet‑18 may require more training data to fully leverage its capacity. 

However, even if more data were available, the accuracy gains would likely be marginal 

compared to the already strong performance of MobileNetV2, while incurring a 

significant penalty in weight size and memory consumption. 

Given its strong empirical accuracy, compact size, and clean stage-wise modularity, 

MobileNetV2 was selected as the reference backbone for all subsequent analysis, early-

exit placement, and architectural optimization. 

4.2.1 Architecture overview 

In a typical MobileNetV2 block, the input tensor is first expanded into a higher-

dimensional space using a 1×1 convolution, followed by a 3×3 depthwise convolution for 

spatial filtering. The result is then projected back into a lower-dimensional embedding 

via another 1×1 convolution, this time without a non-linearity (i.e., using a linear 

activation). This pattern, where expansion precedes compression, is known as an inverted 

residual structure, in contrast to traditional residual blocks that compress first and expand 

later. When the input and output dimensions match and the stride is 1, a skip connection 

is added, enabling efficient gradient flow and improved feature reuse. 

The linear bottleneck at the end of each block omits activation functions in the output 

projection, preserving feature expressiveness in low-dimensional spaces. This design 

reduces information loss caused by non-linearities in narrow channels–an important 

consideration in efficient networks. 

Figure 5 illustrates the structure of MobileNetV2 blocks for both stride-1 and stride-2 

variants. The left-hand diagram shows the residual connection in the stride-1 case, while 

the right-hand diagram depicts the downsampling variant without residual connection. 
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In the MobileNetV2-1.0 configuration, the full network consists of 17 inverted residual 

blocks, grouped into 7 stages based on spatial resolution. The network begins with a 

standard 3×3 convolution and ends with a final 1×1 convolution before global average 

pooling and classification. The input resolution of 224 × 224 pixels is progressively 

reduced to 7 × 7 in the final stage. The total parameter count is approximately 3.4 million, 

and a full forward pass requires about 300 million FLOPs [36]. 

Thanks to its clean modular layout and the separation between stages, early-exit 

classifiers were later inserted after selected downsampling stages, enabling conditional 

inference with minimal architectural modification. 

4.3 Early-Exit Mechanism 

A total of three exit heads were introduced, each positioned after a specific stage of the 

network that applies spatial downsampling. These stages divide the network into 

progressively deeper semantic levels, and their reduced activation resolutions make them 

efficient branching points for classification. In MobileNetV2, spatial downsampling 

 

Figure 5. MobileNetV2 block structure. Left: stride-1 block with residual connection. Right: stride-2 block 

without skip connection. Each block expands, filters, and compresses the input using depthwise separable 

convolutions [36]. 
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happens at the initial 3×3 conv layer and in the first block of Stages 2, 3, 4, and 6. 

However, the earliest two downsampling points (the initial conv layer and Stage 2), which 

together account for only ≈5% and ≈15% of total FLOPs and extract very low-level 

features, were excluded from early-exit placement. As a result, the early exits were placed 

after more semantically meaningful points: 

▪ Exit 1–after Stage 3, following the 6th inverted residual block; resolution 28×28, 

32 channels; ≈39% cumulative FLOPs. 

▪ Exit 2–after Stage 5, following the 13th inverted residual block; resolution 14×14, 

96 channels; ≈75% FLOPs. 

▪ Exit 3–after Stage 7, following the final (17th) inverted residual block; resolution 

7×7, 320 channels; full model depth. This third exit is the standard final output of 

MobileNetV2. 

Figure 6 illustrates the modified architecture and highlights the positions of the early-exit 

heads. 

Each exit head applies a simple classification structure: 

▪ Exit 1: AdaptiveAvgPool2d(1) → Flatten→ Dropout(0.1) → Linear(C → 2) 

▪ Exit 2: AdaptiveAvgPool2d(1) → Flatten→ Dropout(0.2) → Linear(C → 2) 

▪ Exit 3: AdaptiveAvgPool2d(1) → Flatten → Dropout(0.5) → Linear(C → 2) 

Where C is the number of input channels at each stage. At inference time, confidence is 

computed from softmax scores as: 

𝑝𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(�̂�𝑘)) 

Exits are checked sequentially. If 𝑝max ≥ 𝜏𝑘 at exit 𝑘, the model halts and returns the 

prediction. Otherwise, it proceeds to the next exit. 

 

Figure 6. Structural overview of MobileNetV2-1.0 with integrated early-exit heads. Each head applies 

global average pooling followed by a fully connected layer for binary classification. IR = Inverted Residual 

block. GAP = Global Average Pooling. 
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The confidence thresholds 𝜏1 and 𝜏2 are not hard-coded into the model; instead, they are 

stored as run-time attributes. This allows them to be adjusted dynamically during 

operation, without requiring the model to be recompiled or re-exported. As a result, the 

exit behavior can be tuned in real time–such as lowering thresholds under severe energy 

constraints or raising them in high-alert conditions. 

The final exit always produces a prediction, ensuring completeness. To train all exits 

simultaneously, a joint loss function is used, aggregating cross-entropy losses from each 

exit head with weighted contributions [78]: 

ℒ =  ∑ 𝛼𝑘𝐶𝐸(𝑦, �̂�𝑘), 𝛼 = (0.3, 0,3 ,04)

3

𝑘=1

 

Here, 𝐶𝐸(𝑦, �̂�𝑘) is the cross-entropy between the ground truth label 𝑦 and the prediction 

�̂�𝑘 from exit k, and 𝛼 determines the relative weighting. Slight emphasis is given to the 

final classifier to encourage high-capacity learning while still supervising the early 

classifiers. The weights were chosen heuristically to ensure that early exits receive 

sufficient gradient signal for meaningful learning, while prioritizing accuracy at the final 

output. The values sum to 1, ensuring a balanced contribution to the overall loss. 

Table 5 summarizes the structural placement and resource footprint of each early-exit 

head. The Depth column indicates the relative position of the exit within the 17-block 

MobileNetV2 backbone. Cumulative FLOPs reflect the total compute required to reach 

each exit during inference. The Total Params column shows the number of model 

parameters if inference were to terminate at that point, while Δ Params represents the 

additional parameter cost introduced by the exit head itself. These metrics provide insight 

into how computational and memory demands grow with each successive exit stage. 

Table 5. Exit head locations and associated resource cost 

Exit k Depth Cum. FLOPs (GF) Total Params (kB) Δ Params (kB) 

Exit 1 6/17 (≈35%) 0.11 208.1 0.3 

Exit 2 13/17 (≈76%) 0.21 2106.4 0.8 

Exit 3 17/17 (100%) 0.30 7123.2 2.6 
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This lightweight early-exit design allows the network to adaptively allocate computation 

based on input difficulty, improving average efficiency without compromising overall 

accuracy. 

4.4 Training Procedure 

The adaptive wildfire detection model was trained using supervised learning on the 

multispectral patch dataset described in Chapter 3. The goal was to optimize all classifier 

heads jointly while maintaining computational and accuracy constraints defined in earlier 

sections. 

The dataset was split into training, validation, and test subsets in a 70/15/15 ratio with 

stratified sampling to preserve class balance. Each sample consisted of a 224×224 image 

patch with three input channels–Red, Near-Infrared (NIR), and Short-Wave Infrared 

(SWIR2)–preprocessed and normalized as described in Section 3.3. Augmentations were 

applied only during training (see Section 3.4) and excluded from validation and test sets. 

The model architecture was based on MobileNetV2-1.0 with weights pretrained on 

ImageNet. This initialization accelerated convergence and improved performance, 

particularly for the deeper layers. The three early-exit classifier heads were appended to 

intermediate feature maps and were initialized with random weights. 

Training was conducted on a single NVIDIA RTX A4000 GPU using PyTorch. The code 

used for preprocessing, training, and evaluation of the model is publicly available in a 

dedicated GitHub repository [79]. The optimizer used was AdamW with a learning rate 

of 1.5×10⁻⁴, a batch size of 16, and weight decay of 1e–4. A cross-entropy loss with label 

smoothing (0.1) was minimized across all classifier heads. The weighted joint loss 

function was applied, using weights α = (0.3,0.3,0.4) to balance learning across the three 

exits. A maximum of 100 epochs was allowed, but early stopping with a patience of 10 

epochs was used to avoid overfitting, based on validation F1-score from the deepest 

(final) classifier. In practice, training typically converged between epochs 30 and 40, 

depending on the initialization and random split. 
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Table 6. Core hyperparameters used during model training 

Parameter Value 

Optimizer AdamW 

Learning rate 1.5e-4 

Batch size 16 

Epochs (max) 100 

Early stopping patience 12 

Weight decay 1e-4 

Loss function CrossEntropy + smoothing (0.1) 

Joint loss weights 𝛼 (0.3, 0.3, 0.4) 

Backbone initialization ImageNet pretrained 

Exit heads initialization Random 

Train/Val/Test split 70% / 15% / 15% 

Input size 224×224 px 

Input channels R + NIR + SWIR2 

Compute device NVIDIA RTX A4000 

After training, the final model is executed directly using the PyTorch runtime, without 

exporting to external inference frameworks. This choice preserves support for dynamic 

control flow, which is essential for implementing confidence-based early exits. Other 

formats such as TorchScript or TensorRT require static computation graphs and therefore 

do not support runtime branching. For example, deploying the model in TensorRT would 

require exporting each exit head as a separate engine and manually coordinating 

execution–an approach that adds significant complexity and does not align with the 

design goals of flexible inference. 

Although PyTorch supports post-training INT8 quantization, this feature is primarily 

optimized for x86 CPUs via back-ends such as QNNPACK and FBGEMM. On Jetson 

Nano, INT8 operations are not natively accelerated and are often emulated, leading to 

negligible or even negative performance impact. As a result, inference is performed using 

FP16 precision on the GPU, which provides a practical balance between speed, accuracy, 

and power efficiency. For these reasons, the final model is retained in its original PyTorch 

format and executed in mixed precision (FP16) during deployment. 
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This chapter presented the complete design and training strategy of the proposed adaptive 

convolutional neural network for onboard wildfire detection. A lightweight MobileNetV2 

backbone was selected for its modularity and efficiency, with early-exit heads integrated 

at strategic points to enable dynamic inference based on input difficulty. Design choices 

were shaped by realistic hardware constraints, including strict compute and memory 

budgets modeled after CubeSat-grade devices. The network was trained jointly using a 

weighted multi-exit loss, with all classifiers optimized simultaneously under a unified 

supervision scheme. The final model was executed in FP16 precision directly within the 

PyTorch runtime, ensuring compatibility with the embedded GPU and preserving support 

for dynamic early-exit logic.  

The next chapter evaluates this architecture in practice, reporting accuracy, latency, and 

energy consumption under various configurations and thresholds. Special attention is 

given to the trade-offs between speed and performance, as well as to the behavior of early-

exit branches across diverse test scenarios.  
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5 Experimental Results 

This chapter presents a comprehensive evaluation of the proposed adaptive wildfire 

detection system. The analysis covers both classification performance and operational 

efficiency, focusing on how early-exit strategies affect accuracy, latency, and energy 

consumption. The results are organized into several categories, including baseline 

comparisons, threshold ablations, exit-wise behavior, and real-world performance on 

embedded hardware. 

The evaluation follows a structured protocol that considers both model-level and 

hardware-level metrics. Specifically, it assesses how the adaptive model performs relative 

to its full-depth baseline in terms of accuracy and computational cost, how different 

confidence thresholds influence exit distribution and detection outcomes, and how 

inference behaves across various deployment platforms such as the Jetson Nano and Intel 

Myriad X. 

5.1 Test set and metrics 

All experiments were conducted on a held-out test set comprising 15% of the full dataset, 

stratified by class and region. The resulting test set contains 900 image patches, with equal 

representation of fire and non-fire samples. 

To assess classification performance, the following standard metrics were computed: 

▪ Accuracy–the overall proportion of correctly classified patches. 

▪ Precision–the fraction of predicted fire patches that are actually fire. 

▪ Recall (True Positive Rate) –the fraction of actual fire patches that are correctly 

detected. 

▪ F1-score–the harmonic mean of precision and recall. 

Among these, recall is prioritized as the most critical metric for the intended application. 

In the context of wildfire detection, false negatives (i.e., undetected fires) are far more 

costly than false positives. A missed detection may result in delayed response or 

unmitigated fire spread, with severe environmental and economic consequences. 

Therefore, all models and configurations are evaluated with an emphasis on minimizing 

fire-related false negatives, even at the expense of a slight increase in false alarms. 
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5.2 Threshold sweep on Jetson Nano 

The adaptive inference mechanism relies on two confidence thresholds, 𝜏1 and 𝜏2, which 

control the decision to exit early at Exit 1 or Exit 2, respectively. These thresholds directly 

influence the trade-off between inference accuracy and computational efficiency. Lower 

values promote early exits, reducing latency and energy at the cost of possible 

misclassifications. Conversely, higher thresholds defer more predictions to deeper stages, 

increasing precision and recall but also computational cost. 

To explore this trade-off, a grid search was conducted across: 

𝜏1, 𝜏2 ∈ {0.50, 0.55, … , 0.95} 

for a total of 100 unique threshold pairs. For each configuration, the following metrics 

were recorded on the Jetson Nano (5 W mode): 

▪ Classification metrics: Accuracy, Precision, Recall, F1-score, ROC AUC 

▪ Latency metrics: Mean latency per patch, 95th percentile latency 

▪ Efficiency metrics: Average power (W), energy per patch (J) 

The overall behavior of the system under varying thresholds is illustrated in Figure 7, 

which highlights the trade-off between speed, F1-score, and energy consumption. Three 

top-performing configurations are annotated directly on the plot. 
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At extreme threshold values 𝜏1 = 𝜏2 = 1.0, early exits are never triggered, all inputs pass 

through the full network. In this setting, the average per-patch latency is 70.4 ms, and the 

average energy consumption is 124.3 mJ. 

At the opposite end of the spectrum, when 𝜏1 = 𝜏2 = 0.5, all predictions exit at the first 

classifier. This reduces the latency to 25.1 ms and the energy to 45.6 mJ, corresponding 

to a 64.3% latency reduction and a 63.3% energy reduction compared to the full-depth 

baseline. 

Between these endpoints, both latency and energy decrease smoothly with lower 

thresholds, with the steepest savings occurring when 𝜏1 ≤ 0.80. This indicates that many 

clearly negative (non-fire) samples can be confidently handled in the early layers, 

avoiding the need for deeper processing. 

While early exits improve speed and efficiency, they inevitably affect classification 

accuracy. With no early exits (𝜏 = 1.0), the model reaches 97.33% accuracy. At the most 

aggressive threshold (𝜏 = 0.5), accuracy drops sharply to 60.9%, as all decisions are 

made using shallow features. However, with moderate thresholds (𝜏 = 0.75), accuracy 

 

Figure 7. Speed–accuracy landscape across 𝜏1/𝜏2 on Jetson Nano. Each point represents a threshold 

configuration. X-axis: mean latency (ms). Y-axis: F1-score. Color encodes energy consumption. Top-3 

configurations are labeled. 
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remains high at ≈95.9%, suggesting that early exits can significantly reduce inference cost 

while preserving most of the model's classification ability. 

5.3 Selection of operating point 

To identify optimal threshold configurations, all threshold pairs were filtered to retain 

only those achieving at least 96.33% accuracy (i.e., within 1 percentage point of the full-

depth baseline). Among these, the top 10 combinations were selected and ranked by 

energy savings, with latency as a secondary criterion. Table 7 summarizes their 

classification metrics and resource reductions relative to the baseline. 

Table 7. Top 10 threshold configurations ranked by energy savings 

𝝉𝟏 𝝉𝟐 Accuracy Latency (s) Energy (J) Δ Latency Δ Energy Δ Acc. 

0.85 0.75 97.00% 0.0461 0.0701 –34.42% –43.62% –0.33 

0.85 0.70 96.89% 0.0472 0.0716 –33.01% –42.42% –0.44 

0.85 0.65 96.67% 0.0481 0.0721 –31.73% –41.98% –0.66 

0.90 0.70 97.11% 0.0479 0.0732 –31.94% –41.14% –0.22 

0.90 0.65 96.89% 0.0489 0.0739 –30.46% –40.50% –0.44 

0.90 0.75 97.22% 0.0488 0.0741 –30.70% –40.42% –0.11 

0.95 0.65 97.00% 0.0489 0.0750 –30.50% –39.67% –0.33 

0.85 0.80 97.00% 0.0496 0.0750 –29.47% –39.63% –0.33 

0.90 0.80 91.22% 0.0521 0.0792 –25.97% –36.24% –0.11 

0.85 0.85 97.00% 0.0528 0.0803 –24.94% –35.42% –0.33 

Among these candidates, the best overall balance between accuracy and efficiency was 

achieved with the threshold pair 𝜏1 = 0.85, 𝜏2 = 0.75. This configuration yielded an 

overall accuracy of 97.0%, only –0.33 percentage points below the full model. 

Importantly, recall remained exceptionally high at 96.8%, corresponding to 435 correctly 

identified fire patches out of 450 in the test set. This represents a drop of only 0.3 

percentage points compared to the full-depth recall of 97.1%. Precision was also strong 

at 97.1%, indicating very few false alarms. 

Further reduction of thresholds produced diminishing returns. For instance, the 

configuration 𝜏1 = 𝜏2 = 0.70 achieved 38.31% latency savings and 46.77% energy 

savings relative to the full model. However, this came at the cost of a –2.11 pp drop in 

accuracy, and a more concerning reduction in recall to 93.7%, which corresponds to 42 
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missed fires out of 450. For high-stakes applications like wildfire detection, such a decline 

in sensitivity may be unacceptable. 

Nevertheless, lower-threshold configurations like (0.70, 0.70) may still be considered in 

extreme power-constrained scenarios. One potential application is adaptive thresholding, 

where exit criteria are dynamically adjusted over time in response to onboard resource 

availability. For example, as battery capacity degrades or solar exposure diminishes, the 

system could gradually lower its thresholds to conserve energy–sacrificing some 

precision and recall in exchange for sustained operation. 

Notably, the best-performing configurations tend to favor higher values of 𝜏1 compared 

to 𝜏2. This design choice reflects the role of Exit 1 as an early checkpoint operating on 

relatively shallow features. At this stage, feature representations may still lack sufficient 

semantic context for confident decisions–particularly in challenging cases with smoke, 

haze, or visually subtle fires. By using a higher 𝜏1, the model avoids premature exits on 

uncertain inputs and instead defers such decisions to deeper layers, where features are 

more expressive. This asymmetric thresholding strategy allows the system to maintain 

high recall and precision, while still benefiting from early exits on clear-cut cases like 

clean non-fire scenes. 

5.4 Exit‑level analysis 

Exit-wise performance was evaluated on the 900-patch test set using the selected 

thresholds 𝜏1 = 0.85, 𝜏2 = 0.75. For each exit point, Table 8 reports the number of 

samples that exited, along with F1-score, precision, recall, and accuracy achieved by that 

classifier. This allows for a detailed view of how prediction quality and workload are 

distributed across the three exit heads. 

Table 8. Exit-wise distribution and performance 

Exit k Depth 

GFLOPs 

# Samples F1-score Recall Precision Accuracy 

1 0.11 181 87.80% 90.00% 85.71% 97.71% 

2 0.21 529 98.27% 99.05% 97.51% 97.99% 

3 0.30 190 95.02% 92.11% 98.13% 91.79% 

Total — 900 97.00% 96.89% 97.10% 97.00% 
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A majority of the samples (59%) exited at Exit 2, indicating that this mid-depth classifier 

is responsible for the bulk of predictions. Exit 1 accounted for 20% of decisions, showing 

that a substantial number of clear-cut cases–likely non-fire images–can be confidently 

handled with very shallow features. The remaining 21% required full-depth processing 

via Exit 3, which typically corresponds to visually ambiguous or difficult cases. This 

distribution is visualized in Figure 8, which shows the proportion of samples handled by 

each exit head. 

Exit 2 delivers the strongest recall at 99.05%, meaning it captures nearly all fire cases that 

reach it. Exit 1 performs slightly worse in terms of recall (90%), which is expected given 

its limited semantic depth. However, by deferring uncertain samples to deeper stages, the 

system compensates for these early errors. Overall recall across all exits remains high at 

96.89%, with only 15 fire patches missed out of 450. 

Interestingly, Exit 1 and Exit 2 both achieve very high accuracy–97.7% and 98.0%, 

respectively–despite being significantly shallower than the final classifier. In contrast, 

Exit 3, which receives the hardest samples, shows lower accuracy (91.8%), as expected. 

This suggests that the early-exit mechanism successfully filters easy samples forward 

while escalating only the challenging ones to deeper layers. 

The overall distribution results in a substantial computational saving. With only 21% of 

samples reaching the full network, the average inference workload is far below the worst-

 

Figure 8. Distribution of exit activations 
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case path, enabling more efficient real-time deployment. The mean per-patch compute is 

estimated as: 

𝐴𝑣𝑔𝐹𝐿𝑂𝑃𝑠 =
𝑁1 ∗ 𝐹1 + 𝑁2 ∗ 𝐹2 + 𝑁3 ∗ 𝐹3

𝑁𝑡𝑜𝑡𝑎𝑙
 

Substituting values: 

𝐴𝑣𝑔𝐹𝐿𝑂𝑃𝑠 =
181 ∗ 0.11 + 529 ∗ 0.21 + 190 ∗ 0.30

900
≈ 0.2089 𝐺𝐹𝐿𝑂𝑃𝑠 

Compared to the full-depth model’s 0.30 GFLOPs per patch, this represents a 30.4% 

reduction in average inference cost. 

5.4.1 Qualitative Examples 

To further illustrate the behavior of the early-exit mechanism, Figure 9 presents 

qualitative examples of input patches that exited at different stages of the network under 

the selected thresholds. 

The leftmost patch corresponds to a fire case that exited at the earliest classifier. A clear 

and intense fire front is visible, with strong activation in the SWIR2 band, allowing the 

model to confidently classify it as a fire using only shallow features. In contrast, the center 

image shows a patch that triggered the final (Exit 3) classifier. Here, the fire signal is faint 

and localized, with limited contrast against the background, which likely made earlier 

classifiers uncertain and required deeper semantic processing for a reliable decision. 

The rightmost patch illustrates a non-fire example that exited at the second classifier. 

Although no active flames are present, the image contains characteristics of burned 

vegetation–often associated with post-fire conditions. This visual ambiguity likely caused 

 

Figure 9. Representative patches routed to different exits 
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the model to defer the decision past Exit 1, but confidently resolve it as non-fire at Exit 2 

after incorporating broader context. Together, these examples demonstrate how the 

system adjusts its computational depth in response to input difficulty, routing 

unambiguous cases early while reserving deeper reasoning for ambiguous or low-signal 

inputs. 

5.5 Myriad X feasibility test 

Although Jetson Nano is the primary deployment platform in this work, an additional 

feasibility test was performed on the Intel Myriad X accelerator. While Myriad X does 

not support dynamic branching in OpenVINO, it remains attractive for space-based 

applications due to its low power profile and proven flight history. 

To simulate early-exit behavior, the MobileNetV2 model was manually split into three 

sub-models at the same internal points used for early-exit placement. Each sub-model was 

exported to ONNX and then converted to OpenVINO IR format. At runtime, the host 

system orchestrated inference by sequentially running sub-models: the input patch was 

first processed by the initial segment, and if the confidence threshold was met, prediction 

terminated early. Otherwise, intermediate outputs were passed to the next sub-model, 

continuing until classification was complete. 

A full threshold sweep–identical to that on Jetson Nano–was conducted. The full-depth 

baseline (single graph) achieved 95.8% accuracy, 0.038 s latency, and 0.029 J energy. 

Table 9 lists the top early-exit configurations with ≤ 1 pp accuracy drop. However, unlike 

on Nano, latency and energy increased, due to USB overhead from repeated host–device 

transfers. 

Table 9. Top Myriad X configurations (compared to 95.8% full-model baseline) 

𝝉𝟏 𝝉𝟐 Accuracy Latency (s) Energy (J) Δ Latency Δ Energy Δ Acc. 

0.70 0.70 94.78% 0.0425 0.0339 +11.54% +15.86% –1.00 

0.75 0.55 96.22% 0.0426 0.0339 +11.92% +15.96% +0.44 

0.75 0.60 96.56% 0.0428 0.0341 +12.26% +16.51% +0.78 

Interestingly, several threshold combinations slightly outperformed the full model in 

terms of accuracy, despite their multi-stage execution. This is likely a side effect of the 

model partitioning process: exporting each segment individually to ONNX and 
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OpenVINO can affect the internal structure of the graph, memory layout, or numerical 

behavior. These differences may result in subtly altered inference paths or operator-level 

optimizations, which in turn could affect final prediction outcomes. 

These findings suggest that early-exit architectures are not well-suited for deployment on 

Myriad X in their current form. The need to partition the model and coordinate execution 

externally introduces significant overhead that negates the potential efficiency gains. As 

a result, deploying a full-depth, single-graph model remains the most practical and 

performant option on this platform. Early-exit mechanisms are only advantageous on 

hardware that supports conditional branching within a single computation graph and 

offers low-latency model execution without frequent host–device synchronization. 
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6 Discussion and Evaluation 

The experiments conducted on the Jetson Nano platform demonstrate that the proposed 

early-exit architecture achieves a strong balance between classification accuracy and 

computational efficiency. Using the selected confidence thresholds 𝜏1 = 0.85, 𝜏2 = 0.75, 

the adaptive model reached an F1-score of 97.0%, nearly matching the full-depth 

baseline, while reducing average inference latency by 34% and energy consumption by 

44% per patch. The detailed metric comparison is presented in Table 10. 

Importantly, the recall remained high at 96.9%, ensuring that the model successfully 

detects nearly all fire cases. This is particularly relevant for emergency response 

applications, where false negatives may result in serious consequences. The ability to 

maintain such a high recall, even under reduced compute budgets, confirms the suitability 

of the system for real-time, energy-constrained onboard environments such as CubeSats. 

Table 10. Performance comparison between full-depth and early-exit models on Jetson Nano 

Model Accuracy Recall F1-score Precision Mean 

latency (s) 

Energy per 

patch J 

Full 

model 

97.33% 97.11% 97.33% 97.10% 0.0704 0.1243 

Early exit 

model 

97.00% 96.90% 97.00% 97.54% 0.0461 0.0701 

Despite their reduced depth, early classifiers achieved strong predictive performance: 

Exit 2, which handled the majority of cases, reached an F1-score of 98.0% and recall of 

99.1%, outperforming even the final head in some metrics. This suggests that early exits 

effectively capture easy-to-classify samples while routing harder cases deeper into the 

network. 

The distribution of per-patch inference time is visualized in Figure 10, which shows a 

stacked histogram of latency across exit heads. The long tail in latency is formed 

exclusively by samples processed to Exit 3, while the majority of patches are resolved in 

significantly shorter time. This illustrates how conditional computation adapts to input 

difficulty and contributes to overall efficiency. 
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6.1 Compliance with Design Requirements 

The proposed system was designed to meet a set of strict deployment constraints defined 

in Section 4.1, including latency, compute, memory, power, and accuracy limits 

appropriate for onboard operation in CubeSat-class missions. Table 11 compares the 

actual performance of the selected early-exit configuration (𝜏1 = 0.85, 𝜏2 = 0.75) 

against these original requirements. 

All constraints were met with comfortable margins: 

▪ The mean inference latency was 46.1 ms, well below the 75 ms threshold (a 39% 

margin). 

▪ The average compute per patch was 0.2089 GFLOPs, significantly under the 35 

GFLOPs budget. This large margin is primarily due to the lightweight nature of 

the MobileNetV2 backbone itself. While the early-exit mechanism contributes 

additional savings by allowing some predictions to terminate early, the majority 

of the efficiency stems from the base architecture being far below the theoretical 

maximum compute budget of the Jetson Nano. 

 

Figure 10. Latency distribution per exit (τ₁ = 0.85, τ₂ = 0.75). Exit 1 and 2 handle 80% of patches within 30 

ms, longer latencies are due solely to Exit 3 processing. 
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▪ The measured power consumption of the full Jetson Nano module during 

inference was 3.2 W, remaining within the 5 W system-level power cap. 

▪ The total model size was 7.3 MB, far below the 100 MB maximum allocated for 

weights. 

▪ The overall accuracy of 97.0% comfortably exceeds the 90% target. 

These results confirm that the system satisfies all operational constraints for real-time, 

onboard inference, with ample headroom for further scaling, on-device postprocessing, 

or long-duration deployments. 

Table 11. Compliance with design constraints (Jetson Nano, 5 W mode) 

Metric Target Achieved Margin 

Accuracy ≥ 90% 97.0% +7.0 pp 

Latency (ms) ≤ 75 ms 46.1 ms –28.9 ms (–39%) 

Avg. FLOPs ≤ 35 GFLOPs 0.2089 GFLOPs –34.79 GFLOPs (–99.4%) 

Power ≤ 5 W 3.2 W –1.8 W (–36%) 

Model size ≤ 100 MB 7.3 MB –92.7 MB (–92.7%) 

6.2 Operational Implications for a 6U CubeSat 

To assess the feasibility of onboard deployment, the system’s resource usage must be 

evaluated in the context of a typical CubeSat mission profile. As established in Section 

4.1, a full Sentinel‑2 scene is divided into 2,401 overlapping patches. Using the per-patch 

performance measurements from Section 6.3, the total compute time and energy required 

to process a full scene amount to 110.7 seconds and 168.1 joules, respectively. The 

corresponding average power draw during inference is 1.52 W, referring specifically to 

the compute workload of the model. This fits comfortably within the operational budget 

of most CubeSat platforms. 

These values indicate that scene-level inference remains well within the constraints of a 

CubeSat-class system. As reviewed in the literature (Section 2.3), commercial 6U buses 

such as Open Cosmos typically budget 7–20 W for payload power and permit ~15% of 

each 90-minute orbit for full CPU or GPU usage–equivalent to ≈810 s of compute time 

per orbit. 

Given this allowance, the system can process: 
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𝑁𝑠𝑐𝑒𝑛𝑒𝑠 =
810 𝑠

110.7 𝑠
≈ 7.3 

Thus, the model is capable of analyzing up to seven full Sentinel‑2 scenes per orbit 

without violating power or duty-cycle constraints. These figures confirm that the system 

is not only computationally efficient but also operationally viable for deployment on 

modern CubeSat platforms. 

6.3 Error analysis and qualitative review 

While the overall classification performance of the model is high, a closer inspection of 

failure cases provides insight into its current limitations and potential directions for 

improvement. Figure 11 presents three representative misclassifications from the test set, 

highlighting different sources of error. 

The leftmost image shows a fire patch that was incorrectly classified as non-fire at Exit 

2. The fire signal is very faint, partially obscured by a thin cloud layer, and only weakly 

visible even in the SWIR2 band. This suggests that low-contrast conditions can still cause 

under-detection, especially in early layers. 

The center image is another false negative, but this one was passed through the full model 

and classified at Exit 3. The scene contains numerous scattered hot spots, likely 

representing low-temperature smoldering areas, but with little clear burned soil or thermal 

intensity. The model failed to aggregate these diffuse cues into a confident fire prediction. 

On the right, a false positive is shown: a non-fire patch misclassified as fire. This scene 

includes an urban area, and a bright object in the center–possibly a reflective roof or 

 

Figure 11. Examples of false negatives (FN) and a false positive (FP). Left: FN at early exit; Center: FN at 

final exit; Right: FP (non-fire patch misclassified as fire). 
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saturated pixel–appears to have triggered a spurious fire detection. While rare, such 

outliers highlight the importance of robustness to high-albedo surfaces and anthropogenic 

artifacts. 

Together, these cases point to two dominant error sources: weak or ambiguous fire 

signatures, and confusion with visually similar non-fire features. These insights set the 

stage for broader architectural and dataset-level improvements discussed next. 

6.4 Discussion 

The proposed adaptive CNN achieves a consistent and meaningful efficiency gain–

reducing average compute load by 30–40% while preserving a high recall rate of nearly 

97% on wildfire detection tasks. This indicates that the majority of non-event images can 

be confidently classified early in the network, validating the hypothesis that dynamic 

inference is particularly well suited for Earth observation scenarios with sparse target 

events. Importantly, this gain does not come at the expense of mission-critical sensitivity, 

as fire-related false negatives remain minimal across all tested configurations. 

Another strength of the approach lies in its flexibility through dynamic threshold control. 

Operators can adjust early-exit confidence levels in response to available power, 

operational mode, or mission priorities. For instance, during eclipse periods or battery 

degradation, thresholds can be lowered to favor energy savings, while in high-alert modes 

(e.g., during known fire season overpasses), thresholds can be raised to prioritize 

accuracy. This adaptability ensures that the system can gracefully balance performance 

and energy constraints over the satellite’s operational lifetime. 

However, the model's performance is bounded by several limitations. First, the training 

dataset–while geographically diverse–remains limited in size, potentially reducing 

generalizability to unseen regions or seasonal conditions. Second, the network was 

restricted to only three spectral channels (Red, NIR, SWIR2), chosen for efficiency, but 

this excludes other potentially useful bands (e.g., mid-wave infrared or thermal channels). 

Lastly, no quantization was applied during deployment due to hardware limitations on 

the Jetson Nano. As a result, inference was performed in FP16 rather than more energy-

efficient INT8 or 8-bit formats. 
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Future work could address these limitations by expanding the dataset (including temporal 

and cross-seasonal data), integrating additional spectral bands via attention-based input 

selection, and exploring model quantization and pruning for even greater energy 

efficiency. Moreover, deployment on newer hardware (e.g. radiation-hardened FPGAs 

with support for conditional execution) could unlock more aggressive optimizations for 

space-based AI inference. 
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7 Summary 

This research set out to show that a miniature satellite can do more than passively relay 

images–it can actively decide, in real time and onboard, whether a wildfire is present in 

the scene below. To enable this, a dataset of 6,000 Sentinel‑2 image patches was 

compiled–balanced evenly between confirmed fire and non-fire samples, and drawn from 

California, Australia, and the Amazon. All patches were filtered for cloud and sensor 

artifacts and reduced to just three spectral bands (Red, NIR, and SWIR‑2) to preserve 

thermal information while fitting within CubeSat memory limits. This dataset served as 

the basis for developing an adaptive convolutional model capable of making real-time 

decisions under resource constraints. 

At the core of the system is a MobileNetV2 backbone equipped with two early-exit heads. 

During inference, the network assesses its confidence after a shallow and an intermediate 

stage, and only proceeds to the final classifier when needed. Thresholds of 𝜏1 = 0.85 and 

𝜏2 = 0.75, selected from a 100-point grid search, provided the best balance between 

responsiveness and accuracy–allowing fast classification of clear-cut cases while 

escalating ambiguous ones. This strategy worked as intended: 20% of test patches exited 

at the first classifier, 59% at the second, and only 21% required full-depth inference. Such 

conditional processing is the foundation of the model’s efficiency. 

Quantitatively, the early-exit configuration matched the full-depth baseline in accuracy 

(97.0% vs. 97.3%), recall (96.9% vs. 97.1%), and F1-score (97.0% vs. 97.3%). At the 

same time, it reduced average latency from 70.4 ms to 46.1 ms, and nearly halved energy 

use per patch from 0.124 J to 0.070 J–enough to process a full Sentinel‑2 scene (2401 

patches) within a 5-minute downlink window. The model also remains highly compact, 

occupying just 7.3 MB–less than 8% of the 100 MB limit defined by the mission 

constraints. All key requirements–latency, compute, power, and memory–were met with 

comfortable margins, demonstrating that advanced visual inference can run directly 

aboard a small satellite. 
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Hardware experiments confirmed this potential, while also highlighting the importance 

of platform choice. On the Jetson Nano, dynamic branching allowed early exits to operate 

entirely on-device, producing the efficiency gains described above. But on the Intel 

Myriad X, which lacks graph-level control flow, the model had to be split into sub-

models, each triggered by host logic. The resulting host–device transfers introduced 

overhead that cancelled out much of the benefit–sometimes even increasing latency and 

energy despite comparable accuracy. This contrast reinforces a key insight: early-exit 

architectures are only effective when supported natively by the inference engine and 

hardware. 

Naturally, there are limitations. The use of only three spectral bands leaves some fire cues 

untapped–especially for smoldering or cloud-obscured fires. The dataset, while 

geographically diverse, spans only a limited time range, so seasonal variation may reduce 

accuracy over long missions. And the Jetson-class hardware assumes the satellite can 

dissipate ~3 W of thermal load–feasible, but nontrivial during eclipse. 

Looking forward, several improvements are possible. Incorporating additional bands 

(e.g., SWIR‑1) or derived indices (like NBR) could help detect low-temperature fires. 

Exit thresholds could be adjusted in real time using telemetry, trading certainty for power 

as needed. And porting the architecture to radiation-hardened FPGAs would enable 

conditional inference without relying on a general-purpose GPU. 

In conclusion, this thesis confirms the central hypothesis: many Earth observation images 

can be confidently classified at shallow depths, and by leveraging that asymmetry, a small 

satellite can detect wildfires within strict limits on power, mass, and bandwidth. The 

proposed approach demonstrates that onboard wildfire detection is technically feasible 

and ready for integration into future CubeSat missions. 
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