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ABSTRACT 
 

The subject of the thesis is data flow in data warehouses. Data warehousing is 

a complex process of collecting data, cleansing and transforming it into 

information and knowledge to support strategic and tactical business decisions in 

organizations Our goal is to develop a new way to automatically solve a 

significant class of existing management and analysis problems in a corporate 

data warehouse environment. 

We will present and validate a method and an underlying set of languages, 

data structures and algorithms to calculate, categorize and visualize component 

dependencies, data lineage and business semantics from the database structure 

and a large set of associated procedures and queries, independently of actual data 

in the data warehouse.  

Our approach taken is based on scanning, mapping, modelling and analysing 

metadata of existing systems without accessing the contents of the database or 

impacting the behaviour of the data processing system. This requires collecting 

metadata from structures, queries, programs and reports from the existing 

environments.  

We have designed a domain-specific language XDTL for specifying data 

transformations between different data formats, locations and storage 

mechanisms. XDTL scripts guide the work of database schema and query 

scanners.  

We will present a flexible and dynamic database structure to store various 

metadata sources and implement a web-based analytical application stack for the 

delivery and visualization of analysis tools for various user groups with different 

needs.  

The core of the designed method relies on semantic techniques, probabilistic 

weight calculation and estimation of the impact of data in queries. We develop a 

method to estimate the impact factor of input variables in SQL statements. We 

will present a rule system supporting the efficient calculation of the query 

dependencies using these estimates.  

We will show how to use the results of the conducted analysis to categorize, 

aggregate and visualize the dependencies to address various planning and 

decision support problems. 

The methods and algorithms presented in the thesis have been implemented 

and tested in different data warehouse analysis and visualization tasks for tens of 

large international organizations. Some of these systems contain over a hundred 

thousand database objects and over a million ETL objects, producing data lineage 

graphs with more than a hundred thousand nodes. The analysis of the system 

performance over real-life datasets of various sizes and structures presented in 

the last chapter demonstrates linear performance scaling and the practical 

capacity to handle very large datasets.  
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Terms1 
 

Data Warehouse 

A data warehouse (DW) is a collection of corporate information and data derived 

from operational systems and external data sources. DW is designed to support 

business decisions by allowing data consolidation, analysis and reporting at 

different aggregate levels. Data is populated into the DW through the processes 

of data integration or extraction, transformation and loading. 

 

Data Lineage 

Data lineage is generally defined as a kind of data life cycle that includes the 

data's origins and where it moves over time. This term can also describe what 

happens to data as it goes through diverse processes. Data lineage can help with 

efforts to analyze how information is used and to track key bits of information 

that serve a particular purpose (see also: Data Provenance). 

 

Data Integration 

Data integration (DI) is a process in which heterogeneous data is retrieved and 

combined as an incorporated form and structure. Data integration allows different 

data types (such as data sets, documents and tables) to be merged by users, 

organizations and applications, for use as personal or business processes and/or 

functions (see also: Extract-Transform-Load). 

 

Data Provenance2 

Data Provenance provides a historical record of the data and its origins. The 

provenance of data which is generated by complex transformations such as 

workflows is of considerable value to scientists. Provenance is also essential to 

the business domain where it can be used to drill down to the source of data in a 

data warehouse, track the creation of intellectual property, and provide an audit 

trail for regulatory purposes (see also: Data Lineage). 

 

Enterprise Data Warehouse 

An enterprise data warehouse (EDW) is a unified database that holds all the 

business information an organization and makes it accessible all across the 

company. 

 

Extract-Transform-Load 

Extract transform load (ETL) is the process of extraction, transformation and 

loading during database use, but particularly during data storage use. 

 

Impact Analysis3 

                                                      
1
 https://www.techopedia.com/ 

2
 https://en.wikipedia.org/wiki/Data_lineage 

3
 https://en.wikipedia.org/wiki/Change_impact_analysis 
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Change impact analysis (IA) is defined as "identifying the potential consequences 

of a change, or estimating what needs to be modified to accomplish a change", 

and they focus on IA in terms of scoping changes within the details of a design. 

 

Dependency Graph4 

Dependency graph is a directed graph representing dependencies of several 

objects towards each other. It is possible to derive an evaluation order or the 

absence of an evaluation order that respects the given dependencies from the 

dependency graph. 

 

  

                                                      
4
 https://en.wikipedia.org/wiki/Dependency_graph 
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INTRODUCTION 
 

The amount of available data is growing rapidly in many domains and areas 

of human activity. Traditional and Internet businesses, social media, healthcare 

and science are a few examples of the fields where accumulated data and 

processed information can change the scale and the state of those businesses. The 

development of the internet, connected information systems, social media, new 

scientific equipment and the rising Internet of Things (IoT) has brought us to the 

big data era and scale where traditional data processing technologies and methods 

do not function, do not perform or simply stop working [1].  

There are many reasons why we may want to understand the internal structure 

and functions of a complex data processing systems like data warehouses. Some 

of the reasons are related to the need to improve system functions, performance 

or quality and the ability to evaluate them. Others are related to controlling and 

managing the system effectively and avoiding unwanted or unpredictable 

behavior of the system. Data warehouse systems collect data from various 

distributed and heterogeneous data sources, integrating details or summarized 

information in local database for further processing and analysis for various 

applications and purposes. Data warehouses are living, continuously developed, 

enriched and updated systems with variable load, performance and growing data 

volumes. Data transformation chains can be very long and the complexity of 

structural changes can be high. Tracing long and complex data flows or 

dependencies of data transformation components are serious research tasks 

without special supporting metadata and tools. Tracing data items back from the 

final reports or applications to the source items and structures is a data lineage 

problem. Traceability of internal components dependencies is critical when 

developing and changing system software or configuration and can be defined as 

problem of impact analysis. Data lineage allows for tracing internal functional 

relations of data processing systems and gives insight of data flows for better 

understanding of what the system does. Impact analysis allows for tracing internal 

component structures and formal relations of the system and gives an 

understanding of how a system is built from interconnected components. 
In this thesis, we address the data lineage and the impact analysis problems in 

a generalized and multidisciplinary way to use the same methods and approaches 
in data warehouse or other decision support, data processing, enterprise 
integration or service-oriented systems. Our goal is to implement methodology, 
algorithms, representations, architecture and applications that have a relatively 
small set of functions for specialized tasks, designed to perform and automate 
complex analytical tasks. The final system design has to be modular, flexible and 
robust, but also scalable and efficient to easily adapt heterogeneous environments 
of real life data processing systems.  

The chosen approach combines techniques from multiple fields of information 
technology and computer science, like metadata capture and loading, unified and 
open-schema data storing, grammar-based program parsing and resolving, 
probabilistic semantic interpretation of data transformations and rule-based 
reasoning, graph-based dependency calculations, data and component flow graph 
visualization, etc. 
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Motivation and the Problem Statement 

Data warehousing (DW) is a complex process of collecting data, cleansing 

and transforming it into information and knowledge to support strategic and 

tactical business decisions in organizations. DW is designed as a rapidly growing, 

subject-oriented, integrated, time-variant and non-volatile collection of data from 

heterogeneous data sources, with various connected applications, query engines, 

fixed or open reporting and analytical tools (see Figure 0.1). Data sources can be 

volatile and data can be structured (e.g., databases, xml files), semi structured 

(e.g., log files, emails) or non-structured (e.g., text documents). Data consumers 

from different domains with various interests (e.g., management information, 

accounting, customer relationship, sales and marketing, resource planning, 

forecasting, regulatory reporting, etc.) may have a broad spectrum of 

requirements and service level quality. The process of source data integration is 

called Extract, Transform, Load (ETL), and has a specific set of specialized tools 

for data capturing and processing tasks. The processed and stored data consuming 

process is called Business Intelligence (BI) and has its own set of tools for 

reporting, ad-hoc querying, data mining, dashboards and other types of analytics. 

ETL and BI are not independent components: ETL and data requirements are 

driven by business needs and BI capabilities are limited by the collected and 

integrated data.  

 

 
Figure 0.1 A general scheme of a Data Warehouse process and data flows. 

To make reasonable and informed business decisions, we need appropriate 

data and metadata about context, structure, requirements, processing and timing. 

Answering questions about used data sources, formulas, structures and freshness 

of data in analytical systems or reports is challenging and not trivial. Components 

of data warehouses are distributed over multiple physical locations and a diverse 

set of software tools, and therefore tracing complex data processing metadata is 

more complicated compared to using processed data. When the produced data 

and information is the desired and emergent result of a DW system, then the 

processing metadata is often hidden and captured into internal structures, 

relations and programming code of separate components of the data processing 

system. Emerging results, behavior and functions of such a complex system 

depend on the subsystems and interconnections (formal and functional) of the 

system’s components. To control, manage or predict the behavior of the system, 

we must review the elements and the relationships between the components on a 

detailed level. Large data warehouse systems can have hundreds of thousands of 

tables/views and millions of columns with tens of millions of estimated 

dependencies between those components.  
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We call networks of all dependencies over data warehouse system components 

Enterprise Dependency Graphs (EDG) and we handle functional and structural 

dependencies as directed graph edges between component nodes. The problem of 

data lineage (DL) is seen as a data flow sub-graph construction, calculation and 

navigation between static data structure components (e.g., tables, views, columns, 

files, reports, fields, etc.). The problem of component impact analysis (IA) is seen 

as a sub-graph calculation and navigation between active data transformation 

components (e.g., ETL tasks and mappings, SQL scripts and queries, DB 

procedures, reporting queries and components, etc.) and passive data structures. 

Data warehouse owners and users are facing various data lineage and impact 

analysis problems because the chains of data transformations are often very long 

with complex changes of data structures. More than a dozens of staging steps in 

a sequence is not a rare case when the transformation steps are generated by the 

supporting ETL tools. The data models that are designed for OLTP systems are 

not usually suitable for OLAP systems. Denormalization, aggregation, and new 

fact inference are some of the practical techniques that require new or changed 

data structures and new processes to perform the tasks. The management of such 

a complex integration process is unpredictable, and the cost is uncontrollable due 

to the lack of information about data flows and internal relations of system 

components. The consequences can include unmanageable complexity, 

fragmental knowledge, a large amount of technical work, unpredictable results, 

wrong estimations, rigid administrative and development processes, high cost, 

lack of flexibility, quality and trust. These risks are related to the ability to answer 

the following questions about data lineage and impact analysis problems: 

 How can the origins of a data elements, structures and transformation 

formulas be traced? 

 How are the data elements of a specific column, table, view or report used? 

 When was the data loaded, updated or calculated in a specific column, table, 

view or report? 

 Which loadings, structures, components and reports are impacted when other 

components are changed? 

 Which data, structure or report is used by whom and when? 

 What is the time and cost of making changes in programs or data structures? 

 What will break when we change a program or data structure? 

 Who is responsible for a data structure, program or formula? 
The ability to support and automate answering such day-to-day questions 

determines the benefits, cost, flexibility and manageability of the system. The 

dynamics in business, the environment and the requirements ensure that regular 

changes in data management are required for every living organization. Due to 

its reflective nature, business intelligence is often the most fluid and unsteady 

part of enterprise information systems. The most promising way to tackle the 

challenges in such a rapidly growing, changing and complex field is automation. 

Efficient automation in this particular field requires techniques from multiple 

areas of computer science: computer language and semantic technologies, a 

combination of rule systems and reasoning. Our goal is to aid users with 
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intelligent tools that can reduce the time required for several difficult tasks from 

weeks to minutes, with higher quality results and smaller costs.  

As an example, showcasing the complexity, a real-life data flow graph (Figure 

0.2) is captured and visualized with the methods and tools we introduce in this 

thesis. The underlying graph structure, rules and algorithms form the basis for 

understanding and automation of complex analysis tasks.   

 

 
Figure 0.2 Real life Data Warehouse data flows from tables and views (left and middle 

with blue) to reports (right side with red). 

Contribution of the Thesis 

The thesis presents a full stack of methods, technologies and algorithms which 

give analysts a novel way to efficiently solve several existing management and 

analysis problems in a corporate data warehouse environment. 

The work presented lies in the domain of software and knowledge engineering 

and is based on experimentation with different real-life datasets. The feasibility 

and usefulness of the results to analysts are validated by practical application on 

data warehouses of actual large international companies in the financial, utilities, 

governance, telecom and healthcare sectors. In particular, table 4.1 presents the 

performance analysis on six large datasets. 

 

The main components of the contribution are: 
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 A new formalized mapping representation for specifying data transformations 

between different data formats, locations and storage mechanisms. 

 An EAV-style open data model for storing meta-information, ontologies and 

dependencies of the investigated information system, along with a 

corresponding graph-based internal representation. 

 Algorithms estimating the impact factor of input variables in SQL statements. 

 A method for computing the transitive closure of probabilistic dependency 

chains. 

 Data lineage and component dependence visualization methodology. 

 Experiments demonstrating the feasibility of the method on large information 

systems of real companies. 

 Analysis and proposals for new ways to apply the lineage analysis to practical 

problems of finding critical software components, estimating development 

time, generating documentation and compliance reports. 

 

We describe the underlying technology and abstract mapping concept in our 

paper A, which forms the foundation for dependency graph representation of data 

flows and structures (sections 3.2 to 3.4). We draw the methodology framework, 

system architecture (section 3.1) and define the formal rule system for weighted 

graph calculation in paper B (sections 3.6 and 3.7). We then extend our rule 

system with in-memory data structures, illustrate the algorithms with examples 

and present real-life applications in paper C (section 3.8 and chapter 4). Finally, 

we present formal definitions and algorithms for graph models and calculations 

to support semantic data lineage and impact analysis applications (section 3.8), 

and we present the performance analysis over different real-life datasets in paper 

D (section 4.3).  

 

The core technologies that are named and used in this thesis and the 

underlying papers are referenced to their origins in the footnotes. Some of them 

are closely related to the contribution of the thesis and therefore require additional 

explanation. The XDTL5 language and runtime engine are technologies of 

Mindworks Industries OÜ6, designed and built by several people inside and 

outside of the company (including the author of this thesis). The dLineage7 

technology is initially built by the author of the thesis together with my colleague 

Margus Kliimask, and the XDLT is used as one of the core components of the 

toolkit. The latter development of modern UI and new features are built with my 

colleagues form Mindworks Industries. 

 

Organization of the Thesis 

The thesis starts with the general introduction and the summary of the 

contribution.  

                                                      
5
 http://www.xdtl.org/ 

6
 http://www.mindworks.ee/ 

7
 http://www.dlineage.com/ 
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The first chapter of the thesis presents an overview of the data lineage and 

impact analysis fields in data warehousing systems. We will give a simplified 

example of the problems to be solved. The methodology chapter illustrates our 

approach to the problems. The first chapter gives a background to the problems 

that are common for all published papers A to D. 

The second chapter gives an overview of the related work in the fields of data 

lineage, provenance and impact analysis. A focus of the related work chapter is 

in field of data lineage and data provenance, also other applications in these fields, 

and the chapter draws wider context to papers B, C and D. 

The third chapter of the thesis focuses on the algorithms developed along with 

the design and the details of our system architecture. We will give detailed 

presentations and will describe the considerations, options and reasons behind 

our choices. We will draw a picture of the data model and the basic building 

blocks with key figures and components that are introduced and used in published 

papers A to D.  

The fourth chapter of the thesis focuses on the details and requirements of our 

system implementation and the practical case studies in different industries. We 

will also present new potential application areas. The chapter extends the case 

studies and the visualizations topics that were introduced in the paper D. 

The conclusions chapter summarizes the advantages of our data lineage 

architecture and system, our contributions and gives suggestions for future work 

on the topic. 

The rest of thesis consists of the four selected publications from the full list of 

eighth. 
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1. DATA LINEAGE 

This chapter presents a detailed introduction to data lineage and provenance 

problems, starting with an overview in section 1.1. We continue with an example 

in section 1.2, with a query example and mapping representation that forms the 

interconnected data flow graph. We use the same examples in subsequent 

chapters to illustrate different data linage or impact problems, keeping a 

connection with different parts in the current thesis. 

 

1.1. Overview of Data Lineage and Provenance 

The data lineage, data provenance or pedigree are the overlapping terms used 

to describe tracing origin sources and derivation of data. The provenance term, in 

the scientific community, is used synonymously with the lineage term in the 

database community. Sometimes provenance is also referred to as source 

attribution or source tagging. Data lineage is a common key component for many 

different application domains and is also the subject of studies in the field of 

Computer Science or Data Science. Many business and scientific domains, like 

scientific data management, big data, machine learning, data warehousing or 

business intelligence, need provenance or lineage metadata on the origin, rules, 

transformation, derivation, history, timing, context and background of the used 

and processed data. Authenticity, integrity, correctness and trustworthiness of 

information are common requirements for different domains that can be 

established with effective tracing of data lineage. From scientific and business 

perspectives, data sets are not very useful without knowing the exact sources, 

processing methods and rules of derived data sets [2]. 

Data warehouses [3] and curated databases [4] are typical examples where 

lineage information is essential. In both databases, comprehensive and often 

manual effort is usually expended in the construction of the resulting database — 

in the former, in specifying the ETL process, and in the latter, in incrementally 

adding and updating the database. Data lineage adds value to the data by 

explaining how it was obtained. It is important to understand the lineage of data 

in the resulting database to check the correctness of an ETL specification or assess 

the quality and trustworthiness of the collected data [5]. 

There are two levels of granularity in lineage described in previous works: 

workflow or coarse-grained provenance and data or fine-grained provenance [6]. 

The coarse-grained workflow lineage describes the data processing components, 

tasks and programs as a sequence of steps to capture and present general 

transformations between data sources and targets without specific details. The 

number of steps and the level of detail can vary between hardware and software 

platforms and components to transformation programs and sub-components. 

Fine-grained data lineage describes detailed information and derivation of data 

items, like data structures, columns, tuples or rows, and represents it as a sequence 

of transformation steps to trace from sources to targets or vice versa. 

Both detail and granularity levels can be seen in combination with up to three 

types of lineages to answer different questions [7]:  
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 Why lineage refers to context of data transformations and provides 

justification for input data elements appearing in the output. Why lineage 

answers questions like how some parts of input data influenced the output 

data. 

 How lineage refers to the transformations of the source data elements and 

answers questions like how inputs were manipulated to produce given output. 

 Where lineage refers to the locations of the data sources and structures from 

which the data was extracted and answers questions like where the data 

comes from or which inputs were used for a given output. 

These three notions of why, how and where provenance are used as 

independent or combined approaches to the data lineage solutions in databases. 

The previous works that follow and cover these categories are analyzed by 

Cheney et al. [5] and Tan [6], but there are also works that do not fit neatly into 

the why, where and how provenance framework. Such works include Wang et 

al.’s Polygen model [8], Cui et al.’s lineage tracing [9], Widom’s Trio system 

[10] or Woodruff and Stonebraker’s work on lineage [11] [5]. 

To illustrate different lineage types, consider the following simple data 

loading SQL query from the source table Account (Nbr, Type, State) to the target 

table Agreement (Agreement_Nbr, Agreement_Type, Agreement_State): 

INSERT INTO AGREEMENT (Agreement_Nbr, Agreement_Type, Agreement_State) 

SELECT Nbr, Type, Coalesce(State,0) 

FROM ACCOUNT 

WHERE Type = ’A’ 

AND End_Date is not null 

 

The Where lineage for every target table column (Agreement_Nbr, 

Agreement_Type, Agreement_State) describes where data comes from and 

corresponds to select list columns (Account.Nbr, Account.Type, Account.State) 

in the SQL query. The How lineage for each target column column 

(Agreement_Nbr, Agreement_Type, Agreement_State) describes the column 

data transformation logic and expressions of each source column (copyOf(Nbr), 

copyOf(Type), Coalesce(State,0)) in the SQL query. The Why lineage for each 

target column comes from the conditions part that is present in the where (or join) 

of the SQL query and describes the context of data transformations like the two 

predicates here: Account.Type = ’A’ and Account.End_Date is not null. 

Generic data transformation can be defined as a set of functions Tr(tr1..trn) 

over source datasets S1(s1.1..s1.m) to Sn(sn.1..sn.m) that produce target or output 

dataset T(t1..tn) in context of C(S1..Sn): T = Tr(S1..Sn, C(S1..Sn)). General data 

lineage of target dataset T is defined as a lineage function L: L(T) = (S1..Sn) and 

specific where, how and why properties by functions: Lwhere(T) = (S1..Sn), Lhow(T) 

= Tr(S1..Sn) and Lwhy(T) = C(S1..Sn). The previous example SQL query column 

Agreement_State lineage properties can be described as follows:  

 Lwhere(Agreement.Agreement_State) = Account.State 

 Lhow(Agreement.Agreement_State) = Coalesce(Account.State,0)) 
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 Lwhy(Agreement.Agreement_State) = Account.Type=’A’ and Account 

.End_Date is not null 

 

The previous research on data lineage and provenance has been based on one 

of two computational approaches in general: 

 The non-annotation approach, which assumes the execution of a set of 

transformation functions against the source or input dataset to generate the 

output dataset in order to compute the data or row level lineage of 

transformation and target dataset; and 

 The annotation approach, which carries additional information in 

transformation to target dataset; this requires modifications of the initial 

transformation functions and requires extra space for maintaining additional 

data. The analysis of additional data allows for computation of the data or 

row level lineage without access to the input dataset. 

  

In this thesis, we focus mainly on the data lineage problem and practical 

solutions in database environments and use the data lineage term instead of 

provenance. We have chosen the non-annotation approach to the data lineage 

problem to support fast start and no impact on the working systems. We also take 

advantage of data structures and transformations metadata, capture query 

semantics and make probabilistic score calculation and logic-based inferences 

about the input or output data, without a need for and access to the real data (i.e. 

only metadata is used). 

 

1.2. A Motivating Example 

As an example of a financial industry data warehouse data lineage and data 

impact problems, we have constructed our data loading and transformation 

scenario with four SQL queries and four source tables. The data form the 

ACCOUNT and LOAN tables are consolidated to one unified AGREEMENT 

table, then we join the BALANCE table and two new tables, 

DEPOSIT_SUMMARY and LOAN_SUMMARY, populated with denormalized 

data for further querying and reporting. The next table (Table 1.1) below presents 

four SQL DML queries from two different but dependent data loading jobs. The 

Job1 is responsible for data loading to the DW and the Job2 is responsible for 

loaded data manipulations and denormalization. 
 

Table 1.1 Data transformation SQL query examples used in DW loading jobs. 

SQL Query 1 from Job 1 
    INSERT INTO AGREEMENT (Agreement_Nbr, Agreement_Type, Agreement_State) 

SELECT T1.Account_Nbr, T1.Type, T1.State_Code 

FROM ACCOUNT T1 

JOIN ACCOUNT_STATE T2 ON T2.Code = T1.State_Code 

WHERE T2.State = ‘Active’ 

AND T1.Type = ’A’ 

SQL Query 2 from Job 2 
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INSERT INTO DEPOSIT_SUMMARY (Period_Date, Agreement_Nbr, Agreement_State, 

Balance_Amt) 

SELECT T3.Balance_Date, T4.Agreement_Nbr, T4.Agreement_State, T3.Balance_Amt  

FROM AGREEMENT T4 

JOIN BALANCE T3 ON T4.Agreement_Nbr = T3.Agreement_Nbr 

WHERE T4.Agreement_Type = ‘A’ 

AND T4.Agreement_State = 2 

AND T3.Balance_Date = DATE-1 

SQL Query 3 from Job 1 
INSERT INTO AGREEMENT (Agreement_Nbr, Agreement_Type, Agreement_State) 

SELECT T6.Loan_Id, ‘L’, case when T6.State = ‘New’ then 1 when T6.State = ‘Active’ 

then 2 else 0 end 

FROM LOAN T6 

JOIN LOAN_TYPE T7 ON T6.Loan_Type = T7.Code 

WHERE T7.Type in (‘Private’, ‘Business’)  

AND T6.State in (‘New’, ‘Active’) 

 

SQL Query 4 from Job 2 
INSERT INTO LOAN_SUMMARY (Period_Date, Agreement_Nbr, Agreement_State, 

Principal_Amt) 

SELECT T3.Balance_Date, T4.Agreement_Nbr, T4.Agreement_State, T3.Balance_Amt 

FROM AGREEMENT T4 

JOIN BALANCE T3 ON T4.Agreement_Nbr = T3.Agreement_Nbr 

WHERE T4.Agreement_Type = ‘L’ 

AND T4.Agreement_State = 2 

AND T3.Balance_Date = DATE-1 

 

The dependencies between the source and target tables, jobs and the queries 

can be extracted from the queries and presented as a directed graph. The 

structures and components are nodes of the graph and dependencies between 

source and target tables are the directed edges of the graph. The direction of the 

edge points the data flows from the source to the target structures. The Figure 1.1 

has two coarse-grain data flow graphs with the detail level of tables and jobs or 

tables and queries. We can use those graphs as illustrations for data lineage and 

impact analysis problems, where data lineage questions can be answered as 

querying sub-graphs in the target-to-source direction and data or component 

impact questions can be answered by sub-graph queries in the source-to-target 

direction. We can also notice that it is not possible to see which table data is 

moving to the target tables and which is used only for filtering or lookups without 

going to the fine-grain, column and query components level. For example, we 

can see that ACCOUNT_STATE and LOAN_TYPE tables are used as sources 

for the job and query levels, but we do not recognize that the data is not loaded 

to the AGREEMENT table and is used only for filtering rows with certain types 

or statuses.   
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Figure 1.1 DW data transformation flows in table, job and query levels. 

 

The next Figure 1.2 illustrates the fine-grain level of detail, where the query 

components allow us to construct more complex and detailed dependency graphs 

to answer data lineage and impact questions at the column level. The 

transformation queries (Q1…Q4) are parsed to abstract mappings (M1…M4) 

with all the available source and target tables. Each mapping has data 

transformation elements (t1.1…t4.3), joins (j1.1…j4.1) and filter conditions 

(f1.1…f4.1) according to the query structure and expressions. All source and 

target tables have connected columns according the usage in the query 

expressions. Additional transformation expressions, key-value constraints and 

conditions are extracted from the query text and are connected to mappings for 

further semantic calculations and instance-level data lineage tracing. 

 

 
 

Figure 1.2 DW data transformation flows in table, column and query component levels. 

 

The result of the parse and query processing is a detail-level dependency graph 

that allows for more precise data lineage and impact analysis in the table and 

column levels. The graph is a representation of the discrete source and target 

dependencies between the input and output components without additional 

knowledge to describe how the data is transformed or filtered in the 

transformation query. Analysis of the queries Q1…Q4 and predicates from the 

where clauses shows that different and independent sets of rows produced by 
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queries Q1 and Q3 from the ACCOUNT and LOAN tables are loaded to the same 

AGREEMENT table. We also notice that queries Q2 and Q4 are using the same 

independent sub-sets of rows from the same AGREEMENT table using filtering 

predicates Agreement_Type = ‘A’ and Agreement_Type = ‘L’.   

We can conclude the example by saying that, based on the data structures 

information and understanding the query semantics in terms of transformation 

functions and filter predicates, we can make logical inferences about data rows 

or tuples that are involved or excluded in data lineage workflows. 

 

1.3. Summary 

This chapter presented an introduction to data lineage, provenance and impact 

analysis problems, starting with the overview in section 1.1, followed by the 

example section 1.2, with queries and mapping representation forms for the 

interconnected data flow graph that will be used in subsequent chapters to 

illustrate different data linage or impact problems. These connect with different 

parts of the current thesis.  
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2. RELATED WORK  

Impact analysis, traceability and data lineage issues are not new. An overview 

of the data lineage and data provenance tracing studies were collected by Cheney 

et al. [5], historical and future perspectives were discussed by Tan [6] and the last 

decade of research activities were presented by Pribe et al. [12]. Lineage and 

provenance has been studied in scientific data processing areas [7], [8], [9] and 

in the context of database management systems [2], [6], [16]. Multiple notions of 

lineage and provenance in database systems have been used to describe 

relationships between data in the source and in the target: where output records 

came from [7], why an output records were produced by inputs [7], [17] and a 

how output record was produced [18]. The query behavior lineage tracking has 

been used in classical database problems like view update [19] or the 

expressiveness of update languages [20], and the study of annotation propagation 

[20], [21] or updates across peer-to-peer systems [22]. The data-driven and data 

dependent processes and provenance theoretical and practical models described 

by Deutch et al. [23]. 

The distinction is made between coarse-grained, or schema-level, provenance 

tracking [24] and fine-grained-, or data instance-, level tracking [25]. The 

methods of extracting the lineage are divided into physical (annotation of data by 

Missier et al.) and logical, where the lineage is derived from the graph of data 

transformations [26]. 

We can also find various research approaches and published papers from the 

early 1990’s and later with methodologies for software traceability [27]. The 

problem of data lineage tracing in data warehousing environments has been 

formally founded by Cui and Widom [9], [17]. Data lineage or provenance details 

levels (e.g., coarse-grained vs fine-grained), question types (e.g., why-

provenance, how-provenance and where-provenance) and two different 

calculation approaches (e.g., eager approach vs. lazy approach) have been 

discussed in multiple papers [6], [28], and formal definitions of the why-

provenance have been given by Buneman et al. [7]. Other theoretical works for 

data lineage tracing can be found in [29] and [30]. Fan and Poulovassilis 

developed algorithms for deriving affected data items along the transformation 

pathway [31]. These approaches formalized a way to trace tuples (resp. attribute 

values) through rather complex transformations, given that the transformations 

are known on a schema level. This assumption does not often hold in practice. 

Transformations may be documented in source-to-target matrices (specification 

lineage) and implemented in ETL tools (implementation lineage). Woodruff and 

Stonebraker created a solid base for the data-level and operator processing based 

the fine-grained lineage, in contrast to the metadata-based lineage calculation in 

their research paper [11]. 

Priebe et al. concentrated on proper handling of specification lineage, a 

significant problem in large-scale DW projects, especially when different sources 

have to be consistently mapped to the same target [12]. They proposed a business 

information model (or conceptual business model) as the solution and a central 

mapping point to overcome those issues. The requirement and design level 
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lineage and traceability solutions for next generation DW and BI architecture 

described by Dayal et al. [32]. 

Other ETL-related practical works that are based on conceptual models can 

be found in [33] and [34]. Ontologies and graphs-based practical works related to 

data quality and data lineage tracking can be found in [35], [36] and [10]. De 

Santana proposed the integrated metadata and the CWM metamodel-based data 

lineage documentation approach [37]. The conceptual modeling approach of ETL 

workflows described by Bala et al. [38] in the Big Data landscape and Basal [39] 

presented a semantic approach to combine the traditional ETL approach with the 

Big Data challenges. Another related work from the field of data lineage and 

scientific data provenance by Wang et al. [40] brings together challenges and 

opportunities of Big Data, including volume, variety, velocity and veracity, with 

the problems of scientific workflow tracking and reproducibility. The cloud-

based or distributed systems have their own limitations for data lineage tracing 

and the data-centric event logging introduced and discussed by Suen et al. [41]. 
 

In addition to data lineage and provenance in databases, closely related 

workflow provenance tracking is an active research topic in the scientific 

community. The overview of scientific workflow provenance was captured in 

surveys by Bose and Frew [15] and Glavic and Dittrich [42], and tutorials with 

research issues, challenges and opportunities were described by Davidson and 

Freire in [43]. General design and principles of scientific workflow lineage and 

provenance systems were introduced and discussed by Bose [44], Simmhan et al. 

[45], Altintas et al.[46], Chervenak et al. [47] and Wu et al. [48], and there are 

many different flavors and accents, like the collaborative approach from Missier 

et al. [49] and Altintas [50]; the cloud-based or distributed systems by Cruz et al. 

[51], Marinho et al. [52] and Wang et al. [53]; the Big Data-oriented approach by 

Wang et al. [40]; the graph-oriented approach by Anand et al. [54], [55], Acar et 

al. [56] and Biton et al. [57]; the ontology-driven approach by Bowers et al. [58]; 

the semantic web and semantic technologies based approaches by Kim et al. [59], 

Ding et al. [60] and Sahoo et al. [61]; the user- or scientist-oriented systems from 

Bowers et al. [62]; and the user- or subjective scientist eliminative-based 

approach by Finlay [63]. The scientific workflow lineage and provenance 

research does not end here, but continues in different scientific domains, like 

bioinformatics by de Paula et al. [64] and Buneman et al. [65] or genomics by de 

Paula et al. [66]. 

The lineage and provenance problems are not limited with databases, -flows 

and scientific workflows, but having common challenges in field of curated 

databases, semantic web, open linked data, e-Sciences and the growing social 

networking landscape. Some interesting works can be found on the borders of the 

different domains and disciplines by Chirigati and Freire [67], Hartig and Zhao 

[68], Moreau [69], [70] and Moreau et al. [71]. 

In the context of our work, efficiently querying the lineage information after 

the provenance graph has been captured is of specific interest. Heinis and Alonso 

presented an encoding method that allows space-efficient storage of transitive 

closure graphs and enables fast lineage queries over that data [24]. Anand et al. 

proposed a high-level language QLP, together with the evaluation techniques that 
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allow storing provenance graphs in a relational database [72]. These techniques 

are supported by a pointer-based encoding of the dependency closure that 

supports reducing storage requirements by eliminating redundancy. 

Several commercial ETL products are addressing the impact analysis and data 

lineage problems to some extent (e.g., Oracle Data Integrator, Informatica 

PowerCenter, IBM DataStage, Teradata Metadata Services or Microsoft SQL 

Server Integration Services), but those tools and the dependency analysis 

performed is often limited to the basic functions of a particular system. Another 

group of commercial tools is formed by the specialized metadata integration 

products not related to a particular ETL tool, offering a more sophisticated suite 

of dependency analysis functionality. The examples are ASG Rochade8, 

InfoSphere Information Governance Catalog from IBM9, Data Governance and 

Catalog from Collibra10, Informatica Metadata Manager11, SAP Information 

Steward12, Metacenter from Data Advantege Group13, Adaptive Metadata 

Manager14, Troux Enterprise Architecture Solution15, Metadata Management 

from Cambridge Semantics16, Metdata System from AB Initio17 or 

MetaIntegration Metadata Management18, most of which have their own 

limitations in terms of available functionality and adapters to other products [12].  

In addition to full scale metadata management or data governance products, 

there are several new generation technology companies, who fit into the picture 

one or another way: Automated SQL query parsing and lineage extraction from 

SqlDep19 and Manta20; Metadex data lineage solution from CompactBI21; 

Accurity business glossary and data governance solutions from Simplity22; 

Machine Learning based metadata and data lineage discovery solutions from 

RokittAstra23; Data lineage and governance solutions from Synergy24; SQL 

parsing, analyzing, documenting and data lineage discovery tools from General 

SQL Parser25; Data mapping and documenting oriented Mapping Manager 

                                                      
8
 https://www.asg.com/ 

9
 http://www-03.ibm.com/software/products/en/infosphere-information-governance-catalog 

10
 https://www.collibra.com/ 

11
 https://www.informatica.com/products/informatica-platform/metadata-management.html 

12
 http://www.sap.com/community/topic/information-steward.html 

13
 http://www.dag.com/ 

14
 http://www.adaptive.com/metadata-manager 

15
 http://www.troux.com/ 

16
 https://www.cambridgesemantics.com/solutions/metadata-management 

17
 https://www.abinitio.com/en/system/enterprise-meta-environment 

18
 http://www.metaintegration.com/Solutions/#MetadataManagement 

19
 https://www.sqldep.com/ 

20
 https://getmanta.com 

21
 http://www.compactbi.com/ 

22
 http://www.accurity.eu/ 

23
 https://www.rokittastra.com/ 

24
 http://www.meta-analysis.fr/en/la-solution/ 

25
 http://sqlparser.com/ 
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solution from AnalytixDS26; Automated metadata capture, analysis and 

collaboration tools by AlexSolutions27; Data lineage and graph data analysis and 

visualization tools from Linkurious28; Synapse data mapping, analysis, tagging 

and visualization tools from Sapient29; Axon governance, lineage and 

collaboration tool from Diaku30; and finally fully automated, semantic metadata 

capture, data lineage, impact analysis, business governance and visualization in 

toolset dLineage31, that is based on the methodology, algorithms and ideas, that 

are described in this thesis. 

 

2.1. Summary 

This chapter gave an overview of previous works and scientific studies in the 

field, along with the industry landscape. 

 

  

                                                      
26

 http://analytixds.com/products/mapping-manager/ 
27

 http://alexsolutions.com.au/ 
28

 https://linkurio.us 
29

 https://synapse.sapientconsulting.com/ 
30

 https://www.diaku.com 
31

 http://www.dlineage.com 
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3. ALGORITHMS AND METHODS 
 

This chapter presents the algorithms and methods we have designed and 

implemented. The overall architecture follows the methodological pathway 

presented on a conceptual level in section 3.1. We describe the metadata database 

design in section 3.2 and different metadata models (metamodels) for databases 

and data integration in section 3.3. More details about the underlying foundation 

and mapping design can be found in article A. The logical path with query parsing 

and resolving techniques continues in section 3.5, with data transformation 

evaluations and weight calculations. The rule system implemented for graph 

construction and calculations is discussed in section 3.7, the semantic layers on 

calculated graphs are discussed in section 3.8. The rule system and graph 

calculations are discussed at a detailed level in papers B, C and D. 

 

3.1. Overall Architecture and Methodology 

The overall architecture is based on an independent metadata collection and 

storage framework with dynamic schema and unified metamodels, grammar-

based query parsing and resolving, probabilistic data transformation weight 

calculation, rule-based graph calculation and web-based user interface 

components. The architecture follows the methodology steps (from 1 to 8) 

presented in Figure 3.1: 

1. Scanners collect metadata from different systems that are part of the DW’s 

data flow (DI/ETL processes, data structures, queries, reports, etc.) to the 

open-schema metadata database (PostgreSQL or Oracle). 

2. The SQL parser is based on a customized grammar, the GoldParser parsing 

engine and the Java-based XDTL engine. 

3. The rule-based parse tree mapper extracts and collects meaningful 

expressions from the parsed text, using declared combinations of grammar 

rules and parsed text tokens. 

4. The query resolver applies additional rules to expand and resolve all the 

variables, aliases, sub-query expressions and other SQL syntax structures that 

encode crucial information for data flow construction. 

5. The expression weight calculator applies rules to calculate the meaning of 

data transformation, join and filter expressions for impact analysis and data 

flow construction. 

6. The rule-based reasoning engine propagates and aggregates weighted 

dependencies. 

7. The dependency graph is stored along with the collected metadata in a 

relational database as binary and directed relations between node objects.  

8. The directed and weighted sub-graph calculations, visualization and web-

based UI is used for data lineage and impact analysis applications. 
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Figure 3.1  Methodology and system architecture components. 

The color codes differentiate the data capture components (blue), active data 

processing components (red) and passive supporting components (white). The 

double lines in the comb-cell figure express the data flow bonds between the 

active or passive components. 

The base components of the system architecture were introduced in paper A. 

Our general methodological and architecture scheme is presented in papers B and 

C and developed further in paper D.  

 

3.2. Metadata Database 

Our metadata database is built on a relational database technology for different 

knowledge management and rule-based analytical applications. The repository is 

designed according to the OMG Metadata Object Facility (MOF)32 
idea with 

separate abstraction and modeling layers (M0-M3). The physical data model 

(schema) is based on principles and guidelines of the EAV (Entity-Attribute-

Value)33 
modeling technique suitable for modeling highly heterogeneous data 

with a very dynamic nature. Metadata models and schema definitions in EAV are 

separated from physical storage, and therefore modifications to schema on the 

“data” level can easily be done without changing DB structures, just modifying 

corresponding metadata. The chosen approach is suitable for open-schema 

implementations (similar to key-value stores) where the model is dynamic and 

semantics are applied in query time, but also model-driven implementations with 

formal and well-defined schema, structure and semantics. The used URI 

reference mechanism and resource storage scheme makes our metadata 

repository a semantic data store that is comparable to the Resource Description 

Framework (RDF) and can be serialized in different semantic formats or 

notations (e.g., RDF/XML, N3, N-Triples, XMI, etc.) using XML or RDF APIs. 

                                                      
32

 https://en.wikipedia.org/wiki/Meta-Object_Facility 
33

 https://en.wikipedia.org/wiki/Entity-attribute-value_model 
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The physical schema (Figure 3.2) can be seen as a general-purpose storage 

mechanism for different metadata and knowledge models, and also as a 

communication medium or information integration and exchange platform for 

different software agents or applications (e.g., metadata scanners, metadata 

consumers, etc.). Built-in limited reasoning capability is based on the recursive 

SQL capability and is captured through data and metadata APIs to implement 

inheritance and model validation functions. Semantic representation of data 

allows for extended functionality with predicate calculus reasoners or applying 

other external rule-based reasoners (e.g., Jena) for more complicated reasoning 

tasks, like deduction of new knowledge. 

 

 
 

Figure 3.2  Metadata database physical schema tables. 

 

The repository contains integrated object-level security mechanisms and 

different data access APIs (e.g., data, metadata, XML/XMI, RDF API, etc.) that 

are implemented as relational database procedures or functions.  

An unlimited number of different data models can exist inside our metadata 

model simultaneously, with relationships between them. Each of these data 

models constitutes a hierarchy of classes where the hierarchy might denote an 

instance relationship, a whole-part relationship or some other form of generic 

relationship between hierarchy members. We designed several predefined 

metadata models for data lineage and impact analysis data:  
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 terminology and classification (business meaning and governance);  

 relational database (DB and SQL); 

 data integration model (ETL);    

 reporting model (OLAP, BI, Reporting); and   

 mappings model (formalized abstract mappings). 
 

3.3. Design of Metadata Models and Mappings 

The relational database metamodel is used to store detailed information about 

the sources and targets of data transformations. The RDB metamodel focuses on 

the main database objects, e.g. Schema, Table, View, Column, Datatype, 

Procedure, etc. The ETL metamodel is based on the OMG CWM34 reference 

architecture with base concepts like Folder, Package, Step and Task. The ETL 

model is focused on the organization and structure of data processing packages, 

sequences and dependencies of events, relations between elements controlling 

data processing workflow, etc. The reporting metamodel focuses on Report, 

Model, Dimension, Hierarchy and Measure elements, taking advantage of the 

mapping metamodel to store query mappings and related classes, and is used to 

store information describing the presentation layer. The mappings metamodel 

used to manage decomposed relationships and expressions in a unified manner. 

Various metadata and data integration and ETL models are discussed and used 

in previous works [73],[74]. We decided to implement our own “soft” models 

that do not require a database physical schema change when changing the 

metamodel. The details about the abstract mappings model design, storage and 

usage is presented in article A. 

 

3.4. Data Capture, Store and Processing with Scanners 

The Extensible Data Transformation Language (XDTL) is an XML-based 

descriptive language designed for specifying data transformations between 

different data formats, locations and storage mechanisms. XDTL was created by 

Mindworks Industries as a Domain Specific Language (DSL) for the ETL domain 

and was designed to keep in mind principles like modularity, extensibility, 

reusability, decoupled declarative (unique) and procedural (repeated) patterns. 

XDTL syntax is defined in an XML Schema document. Wildcard elements of 

XML Schema enables extending the syntax of the core language with new 

functionality implemented in other programming languages or in XDTL itself. 

XDTL scripts are built as reusable components that have clearly defined 

interfaces via parameter sets. Components can be serialized and de-serialized 

between XML and database representations, thus making XDTL scripts suitable 

for storing and managing in a data repository. XDTL provides functionality to 

use externally stored data mappings for the scripts and decoupled from the scripts. 

Therefore, mappings stored in a repository can exist as objects independent from 
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the transformation process and can be reused by several different processes. 

XDTL acts as a container for a process that often must use facilities not present 

in XDTL itself (e.g., SQL, SAS language, etc.).  

The purpose of a scanner is to extract and capture all relevant metadata about 

a certain class of data elements and store it in a predefined, structured manner. 

Scanners components (No1 in Figure 3.1) are collecting external systems 

metadata, like database data dictionary structures, ETL system scripts and queries 

or reporting system query models and reports, and all structural information is 

extracted and stored to the metadata database. The scanned objects and their 

properties are extracted and stored according to defined meta-models, like 

relational databases, data integration, reporting and business terminology models. 

Metamodels contain ontological knowledge about collected metadata and 

relations across different domains and models. The scanners technology and 

open-schema metadata database design are described in more detail in our article 

A. 

The database scanner is a program implemented as an XDTL package or script 

that transforms metadata from a database dictionary into an RDB metamodel. 

Database scanners are based on ANSI SQL Information Schema35 specification 

and are currently being implemented for MsSQL, PostgreSQL, Greenplum, 

Oracle, Teradata, IBM DB2, Netezza, Vertica and other database platforms. All 

database scanners are implemented as two-phase processes that materialize (scan) 

scanned data in a format conforming to Information Schema definition. A 

separate process (store) stores this temporary information in a permanent storage 

media (database). Decoupling those processes allows for reusing components 

created for different database products in multiple combinations.  

Application scanning is a procedure implemented as an XDTL package that 

transforms metadata from application repository or internal representation into an 

application metamodel. Several application scanners have been implemented for 

various ETL, OLAP and Reporting tools.  

Oracle Data Integrator (ODI) is an ETL tool quite common in DW 

environments, especially in relation to Oracle databases. The ODI scanner 

extracts information relevant for impact analysis, i.e., all data sources and targets, 

column mappings, transformations, JOIN and WHERE conditions, variables, 

references to external processes, etc.  

Business Objects (BO) is a widely used reporting tool used in DW. The BO 

scanner extracts metadata from a BO application repository and File Store, 

transforming it into a reporting metamodel. The granularity of the extracted 

information is relevant to impact analysis requirements. 

 

3.5. Query Parsing and Metadata Extraction  

To construct data flows from the very beginning data sources (e.g., the 

accounting system) to the end points (e.g., reporting system) we should be able 

to connect the same and related objects in different systems. To connect objects, 
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we have to understand and extract relations from SQL queries (e.g., ETL tasks, 

DB views and procedures) and scripts (e.g., loader utility scripts) and expressions 

(e.g., report structure) that are collected and stored by scanners. To understand 

the data transformation semantics that are captured within the query language 

statements (e.g., insert, update, select and delete queries) and expressions, we 

have to involve external knowledge about query language syntax and 

grammatical structure. We used a general-purpose Java-based parser engine36 and 

developed a custom SQL grammar that was written in Extended Backus-Naur 

Form (EBNF)
8
. Our grammar is based on ANSI/SQL syntax, but it contains a 

large set of dialect specific notations, syntax elements and functions that were 

developed and trained using large real-life SQL query sets from the DW field. 

The current grammar edition is based on the Teradata, Oracle, Greenplum, 

Vertica, Postgres, IBM DB2, Netezza and MsSql dialects.  
 

Example 1. SQL select statement grammar sample in EBNF format:  
 

<Select Stm> ::= <Select> UNION <Select Stm>   

| <Select> UNION ALL <Select Stm>  

| <Select> 

<Select>::= SELECT <Columns><Into Clause><From><Where><Group Clause><Qualify Clause> 

 <Having Clause> <Order Clause>   

<SubqueryStm> ::='('<SelectStm>')‘  <Columns> ::=<Restriction>'*'  

| <Restriction> <Column List> <ColumnList> ::=<ColumnItem>','<ColumnList>  

| <Column Item>  

<Column Item> ::= <Column Source>  

| <Column Source> <Alias>  

| <Column Source> ' AS ' <Alias> <Column Source> ::= <Column Source Item>  

<Column Source Item> ::= '('<Column Source Item>')' | <Add Exp>  

<From> ::= FROM <Id List> <Join Chain> |  

<Join Chain> := <Join> <Join Chain> | 

 

Grammar-based parsing functionality is built into the scanners technology and 

a configurable “parse” command brings semi-structured text parsing and 

information extraction into the XDTL data integration environment. As the result 

of the SQL parsing step (No2 in Figure 3.1), we have a large parse tree where 

every SQL query token has a special disambiguated meaning based on the 

grammar syntax.  
 

Example 2. Parse tree fragment with grammar rules and parsed text tokens: 
 

| +<SelectStm>::=<Select>  

|  

+<Select>::=SELECT<Columns><IntoClause><From><Where><GroupClause><QualifyClause><Ha

ving Clause> <Order Clause>   

| | | +SELECT   

| | | +<Columns>::=<Restriction><ColumnList>  

| | | | +<Restriction>::=   

| | | | +<ColumnList>::=<ColumnItem>','<ColumnList> 

| | | | | +<ColumnItem>::=<ColumnSource><Alias> 

| | | | | | +<ColumnSource>::=<ColumnSourceItem>   
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| | | | | | | +<ColumnSourceItem>::=<AddExp>   

| | | | | | | | +<AddExp>::=<Exp><Operator><AddExp>   

| | | | | | | | | +<Exp>::=<Value>   

| | | | | | | | | | +<Value>::=Id   

| | | | | | | | | | | +MK.Kood   

| | | | | | | | | +<Operator>::='||'   

| | | | | | | | | | +||   

| | | | | | | | | +<AddExp>::=<Exp><Operator><AddExp>  

| | | | | | | | | | +<Exp> ::= <Value>   

| | | | | | | | | | | +<Value>::=StringLiteral   

| | | | | | | | | | | | +'/'   

| | | | | | | | | | +<Operator> ::= '||'   

| | | | | | | | | | | +||  

 

To parse different texts into the tree structure and to be able reduce tokens and 

parse the tree back to meaningful expressions (depending on search goals), we 

use a declarative rule set (in JSON format) based on token and grammar rule 

combinations. Configurable grammar and a synchronized reduction rule set 

makes the XDTL parse command more suitable for general-purpose information 

extraction and it captures the resource-hungry computation steps into one single 

parse-and-map step with a flat table outcome. Parse Tree Mapper (No3 in Figure 

3.1) uses 3 different rule sets with more than 100 rules to map the parse tree into 

data transformation expressions. The defined rules are declared in the following 

sets and are illustrated in Example 3:  

 Stopword list and grammar rules are used to indicate the mapper to flush the 

buffer and start token collection to construct a new expression;    

 Mapword list and grammar rules are used to map collected expressions to 

meaningful items (e.g., sources, targets, data transformations, joins and 

filters); and 

 Tagword list and grammar rules are used to tag special meaningful tokens in 

expressions to identify all db objects references (e.g., tables, views, and 

columns, functions, constants etc.). 
 

Example 3. Mapper rule set sample with sql query tokens and grammar rules:    

 
{"parsemap":  

 {"stopwords": [    

{"token":"SELECT", "rule": "<Select>"},  

{"token":"FROM", "rule": "<From>"},  

{"token":"WHERE", "rule": "<Where>"},  

{"token":"JOIN", "rule": "<Join>"}, 

  ...  ],  

 "mapwords":[    

{"map":"FilterCondition","token":"WHERE", "rule": "<Where>", "group": "0"}, 

{"map":"JoinCondition","token":"ON", "rule": "<Join>", "group": "0"}, 

{"map":"Source","token":"FROM", "rule": "<From>", "group": "0"}, 

{"map":"Target","token":"INTO", "rule": "<Ins Prefix>", "group": "0"}, 

{"map":"Transformation","token":",", "rule": "<Column List>", "group": "0"}, 
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...  ],  

 "tagwords":[  

{"token":"Id"}, 

{"token":"IntegerLiteral"}, 

{"token":"StringLiteral"}, 

{"token":"Alias"}, 

...  ] 

 }} 

 

After extraction and mapping of each SQL query statement into a series of 

expressions, we execute the SQL Query Resolver (No4 in Figure 3.1) that 

contains a series of functions to resolve SQL query structure-specific tasks: 

 Resolve source and target object aliases to full qualified (schema name + 

object name) object names;  

 Resolve sub-query aliases to context-specific source and target object names;  

 Resolve sub-query expressions and identify them to expand all query-level 

expressions and identifies to fully qualified and functional ones; 

 Resolve syntactic dissymmetry in different data transformation expressions 

(e.g., insert  statement column lists, select ‘*’ statements, select statement 

column lists, and update statement assign lists, etc.); and 

 Extract quantitative metrics from data transformation, filter and join 

expressions to calculate expression weights (e.g., number of columns in 

expression, functions, predicates, string constants, number constants etc.).   

 

3.6. Data Transformation Weight Calculation 

The problem of origin of data is often related with context, confidence and 

trustworthiness. We can find papers from literature that focused on mathematical 

models or algorithms to measure importance, certainty and trust in data 

processing systems  [75] or beliefs, opinions and trust transitivity, propagation 

and reasoning in agents communication [76]. We notice some similarities in data 

source confidence, trust calculation and propagation, but our data lineage and 

impact weight calculation have different purpose. Our data transformation weight 

calculation is based on probabilistic estimation of data sources usage in data 

transformations and filtering, and the purpose is to make metadata-based 

inferences about the data flows and the data usage.  

  

Data structure transformations are parsed and extracted from queries, and are 

stored as formalized, declarative mappings in the system (articles B and C). To 

add additional quantitative measures to each column transformation or column 

usage in join and filter conditions, we evaluate each expression and calculate 

transformation and filter weights for them.  

The Expression Weight Calculation (No5 in Figure 3.1) was based on the idea 

that we can evaluate column data “transformation rate” and column data “filtering 

rate” using data structure and structure transformation information captured from 

the SQL queries. Such a heuristic evaluation allows for distinguishing columns 

and structures used in transformation expressions or in filtering conditions or 
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both, and gives probabilistic weights to expressions without the need to 

understand the full semantics of each expression. We defined two measures that 

we further used in our rule system for new facts calculation:  

 The column transformation weight Sw is based on expression complexity 

estimation in column transformation and calculated weight expresses the 

source column transfer rate or strength. Weights are calculated in scale [0,1] 

where 0 means that data is not transformed from the source (e.g., constant 

assignment in query) and 1 means that the source is directly copied to the 

target (no additional column transformations). 

 The column filter weight Fp is based on expression complexity estimation for 

each filter column in the filter expression and the calculated weight expresses 

the column filtering rate or strength. Weight is calculated in scale [0,1], where 

0 means that the column is not used in the filter and 1 means that the column 

is directly used in the filter predicate (no additional expressions). 

 

The general column weight W algorithm in each expression for Sw and Fp 

components are calculated as the column count ratio over all expression 

components counts (e.g., column count, constant count, function count, predicate 

count): 
 

𝑊 =
𝐶𝑜𝑙𝑢𝑚𝑛𝐶𝑜𝑢𝑛𝑡 

𝐶𝑜𝑙𝑢𝑚𝑛𝐶𝑜𝑢𝑛𝑡 + 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡 + 𝑆𝑡𝑟𝑖𝑛𝑔𝐶𝑜𝑢𝑛𝑡 + 𝑁𝑢𝑚𝑏𝑒𝑟𝐶𝑜𝑢𝑛𝑡 + 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡
 

 

 

All counts are normalized using the expression function list evaluation over 

the positive function list (e.g., CAST, ROUND, COALESCE, TRIM etc.). If the 

function in the expression is in the positive function list, then the normalization 

function reduces according to the component count by 1 to “pay a smaller price” 

when the used function does not a have significant impact on the column data. 

When the column data is mapped from the source column to the target column 

in the SQL DML statement column expression, then the data transformation 

weight depends on the complexity of the expression and is between 0 and 1. The 

following expression samples and the calculated weights for each source-target 

column pair illustrate the variation of the data transformations: 

 
q1: CAST(T1.LogDate AS DATE) as Request_Date           => 0.91 

q2: T1.First_Name||' '||T1.Last_Name as Full_Name           => 0.67 

q3: MIN(T1.Balance_Amt) as Min_Balance_Amt          => 0.5 

q4: SUM(ZEROIFNULL(T1.Payment_Amt)) as Sales_Amt          => 0.33 

q5: SUM(CASE T1.Acc_Type IN (2,42) THEN T1.Acc_Amt ELSE 0 END) as Credit_Amt => 0.2 

q6: CASE WHEN T1.Feature_Id is not null THEN 'Y' ELSE 'N' END as Dynamic_Ind => 0.17 

The last expression q6 contains parts and measures like ColumnCount: 

1 (T1.Feature_Id), FunctionCount: 2 (Case,WhenThen) and StringCount: 

3 (null,Y,N). Using those values and the weight definition we calculate the 

column pair operation O(T1.Feature_Id,T2.Dynamic_Ind, q6, 0.17) 

weight in the expression q6 like this:  
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𝑊 =
1

1 +  2 +  3 + 0 + 0
 =

1

6
= 0.16667 ≅ 0.17 

 

3.7. Rule System and Dependency Calculation 

The defined figures, operations and weights are used with the combinations 

of declarative inference rules with formal reasoning to calculate possible relations 

and dependencies between data structures and software components. Applying 

the rule system to the extracted query graph, we calculate and produce the lineage 

and impact graphs that are used for the data lineage or impact analysis. 

First, we define the rule R1 to map the column level primitive data 

transformations to the data lineage graph edges with the aggregation of multiple 

paths over pairs of nodes. Let 𝐸𝑥,𝑦  =  {𝑒 ∈ 𝐸𝑂  | 𝑒. 𝑋 =  𝑥, 𝑒. 𝑌 =  𝑦} be the set 

of edges connecting nodes x, y in the graph GO. The data lineage graph GL edges 

are calculated by rule R1:  ∀𝑥, 𝑦 ∈ 𝑁 𝐸𝑥,𝑦  ≠ ∅ ⟹  ∃𝑒′ ∈ 𝐸𝐿 with a set of 

properties: 

 𝑒′. 𝑋 = 𝑥 ⋀ 𝑒′. 𝑌 = 𝑦 

 𝑒′. 𝑀 =∪𝑒∈𝐸𝑥,𝑦
𝑒. 𝑀 

 𝑒′. 𝑊 = 𝑚𝑎𝑥 {𝑒. 𝑊| 𝑒 ∈ 𝐸𝑥,𝑦}  

 

An inference of this rule should be understood as creating edges e’ into the set 

EL until R1 is satisfied. 

 
 

Figure 3.3  Visual representation of data lineage graph inference rule R1 . 

The filter conditions are mapped to edges in the impact graph GI. Let 𝐹𝑀,𝑝  =

 {𝑥 |𝑃𝑎𝑟𝑒𝑛𝑡(𝑥, 𝑝) ⋀ 𝑥 𝑖𝑠 𝑎 𝑓𝑖𝑙𝑡𝑒𝑟 𝑖𝑛 𝑀 } be the set of nodes that are the filter 

conditions for the mapping M with parent p in database schema. Let 𝑇𝑀,𝑝′ =

{𝑥|𝑃𝑎𝑟𝑒𝑛𝑡(𝑥, 𝑝′) ∧ 𝑥 𝑖𝑠 𝑡𝑎𝑟𝑔𝑒𝑡 𝑖𝑛 𝑀} be the set of nodes that represent the 

target columns of mapping M. To assign filter weights to columns, we use the 

function 𝑊𝑓: 𝑁 →  [0, 1]. The data impact graph GI edges are calculated by rule 

R2:  ∀𝑝, 𝑝′ ∈ 𝑁 𝐹𝑀,𝑝  ≠ ∅ ⋀ 𝑇𝑀,𝑝′ ≠ ∅ ⟹  ∃𝑒′ ∈ 𝐸𝐼 with a set of properties: 

 𝑒′. 𝑋 = 𝑝 ⋀ 𝑒′. 𝑌 = 𝑝′  
 𝑒′. 𝑀 = 𝑀  

 𝑒′. 𝑊 = 𝑎𝑣𝑔{𝑊𝑓(𝑥) | 𝑥 ∈ 𝐹𝑀,𝑝}  
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Figure 3.4  Visual representation of data impact graph inference rule R2 . 

 

To propagate information through the database structure upwards, to view the 

data flows on a more abstract level (such as table or schema level) or to calculate 

the dependency closure to answer lineage queries, we treat the graphs GL and GI 

similarly. Let 𝐸𝑝,𝑝′ =  {𝑒 ∈ 𝐸  |𝑃𝑎𝑟𝑒𝑛𝑡(𝑒. 𝑋, 𝑝) ⋀  𝑃𝑎𝑟𝑒𝑛𝑡(𝑒. 𝑌, 𝑝’)} be the set 

of edges where the source nodes share a common parent p and the target nodes 

share a common parent p’. The aggregation of the edges to the pair of common 

parents in the lineage GL or impact graph GI  are calculated by rule R3:  ∀𝑝, 𝑝′ ∈
𝑁 𝐸𝑝,𝑝′ ≠ ∅ ⟹  ∃𝑒′ ∈ 𝐸 with a set of properties: 

 𝑒′. 𝑋 = 𝑝 ⋀ 𝑒′. 𝑌 = 𝑝′  
 𝑒′. 𝑀 = ∪𝑒∈𝐸𝑝,𝑝′

 𝑒. 𝑀  

 𝑒′. 𝑊 =
∑   

𝑒∈𝐸𝑝,𝑝′
𝑒.𝑊

|𝐸𝑝,𝑝′|
   

 
 

Figure 3.5  Visual representation of data lineage and impact graph inference rule R3. 

Based on the derived dependency graph, we can solve different business tasks 

by calculating selected component(s) lineage or impact over available layers and 

chosen details. Business questions like: “What reports are using my data...?”, 

“Which components should be changed or tested...?” or “What is the time and 

cost of change...?” will be turned to the directed sub-graph navigation and 

calculation tasks. We calculate new quantitative measures to each component or 
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node by number of sources and targets in the graph and we use those results in 

the UI to sort and select the correct components for specific tasks: 

 Local lineage and impact dependency scores are calculated as ratio over sum 

of local source and target lineage or impact weights. Zero percent means that 

there are no data sources detected for the object and 100% means that there 

are no data consumers (targets) detected for the object. About 50% means 

that there are equal numbers of weighted sources and consumers (targets) 

detected for the object. 

 Global lineage and impact dependency scores are calculated as sums of local 

dependency scores over connected sources and target chains for each node. 

The local dependency calculation algorithm for each connected node is as 

follows: 

 𝐿𝐷 =
Σ(𝑠𝑜𝑢𝑟𝑐𝑒(𝑊))

Σ(𝑠𝑜𝑢𝑟𝑐𝑒(𝑊)) + Σ(𝑡𝑎𝑟𝑔𝑒𝑡(𝑊))
 

 

More details about data transformation weight, node score calculations and 

rule systems are presented in articles B and C. Rule system improvements and 

current formulations are presented in article D. 

 

3.8. Semantic Layer Calculation 

The semantic layer is an additional visualization and specific filter set used to 

localize connected sub-graphs of the expected data flows for the selected node. 

All connected nodes and edges in the semantic layer share the overlapping filter 

predicate conditions or data production conditions that are extracted during the 

edge construction to indicate not only possible data flows (based on connections 

in the initial query graph), but only expected and probabilistic data flows.  

The main idea of the semantic layer is to narrow down all possible and 

expected data flows over all connected graph nodes by cutting down unlikely or 

not-allowed connections in the graph, which is based on additional query filters 

and semantic interpretation of filters and calculated transformation expression 

weights. The semantic layer of the data lineage graph will hide irrelevant or 

highlight relevant graph nodes and edges (depending on user choice and 

interaction) that makes a distinction when underlying data structures are abstract 

enough and independent data flows store and use independent “horizontal” slices 

of data. The essence of semantic layers is to use available query and schema 

information to estimate the row-level data flows without additional row-level 

lineage information that is unavailable at the schema level, but is also expensive 

or impossible to collect at the row level. 

The visualization of the semantically connected subgraph corresponding to 

the selected node is created by fetching the path nodes and the edges along those 

paths from the appropriate dependency graph (impact or lineage). Any nodes not 

included in the semantic layer are removed or visually muted (by changing their 
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color or opacity) and semantically connected subgraphs are returned or visualized 

in the UI. 

The semantic layer calculation is based on the selected node filter set and 

calculated separately for back (predecessor) and forward (successors) direction 

using a similar recursive algorithm with a search of overlapping filter conditions. 

The illustration of different semantics of connected data flows (see Figure 3.6) 

is based on previously presented example queries and lineage graphs (see Section 

1.2). Tables ACCOUNT and LOAN data are integrated to one AGREEMENT 

table by queries 1 and 3 (see Table 1.1), which is feeding two separate tables, 

DEPOSIT_SUMMARY and LOAN_SUMMARY, with queries 2 and 4. This is 

a typical scenario in DW or OLAP environments and data models where 

dimension and fact tables are integrating data from different sources and various 

queries, reports, applications or data marts using that data for different purposes. 

Based only on database structures and query mappings, we can see how such hub 

tables are integrating all dimension or fact sources to the one’s targets. In other 

words, we can see and visualize all possible data flows based on query mappings. 

To distinguish all possible data flows from actual flows based on query conditions 

and restrictions, we have to go deeper into query conditions analysis to track 

semantics of data flows. 
 

 
 

Figure 3.6  Semantic layer illustration for two independent data flows based on 

overlapping query conditions. 

 

When comparing queries 1-4’s mapping and filter predicate conditions, we 

can see the two separate data flows going to the AGREEMENT table and two 

separate flows moving out to the DEPOSIT_SUMMARY and 

LOAN_SUMMARY tables. The data in the AGREEMENT table has the same 

structure, but different sources and possibly different semantics. The intersection 

or overlap in query conditions allows us to notice separate slices of filtered 
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subsets in integrated structures, and such semantic analysis and matching of 

normalized query conditions allows us to make rule-based inferences about actual 

data flows. Queries 1 and 2 are dealing with the same data slice and are 

transforming it from the ACCOUNT to the DEPOSIT_SUMMARY table, and 

queries 3 and 4 are dealing with the same data slice and are transforming it from 

the LOAN to the LOAN_SUMMARY table. Those two different data flows in 

Figure 2.3 are marked with different colors (blue and green). 

We can conclude the example by stating that to answer the data lineage 

questions more precisely we need to look into query semantics in addition to 

structural mappings. The semantic analysis of query conditions and recursive 

conditions overlapping search allows us to detect more likely data sources and 

flows than all possible sources and flows. We can make probabilistic decisions 

about row level (or set of rows) data flows using database and query metadata 

without interfering with the work of the actual system. 

The details and recursive graph traversal algorithm descriptions of the 

semantic layer are published in paper D. 
 

3.9. Summary 

This system design chapter draws the high level methodological and technical 

overview of designed and implemented system components, their functions and 

the form. The system architecture follows the methodological pathway that is 

defined on a conceptual level in section 3.1. The metadata database design 

described in section 3.2 and different semantic models (metamodels) for 

databases, data integration, business intelligence and generalized mappings 

metadata were described in section 3.3. The metadata capture and scanners were 

described in section 3.4. More details about the underlying foundation and 

mapping design can be found in article A. A discussion of logical paths with 

query parsing and resolving techniques continued in section 3.5, with data 

transformations evaluation and weight calculation in section 3.6. The 

implemented rule system for graph construction and calculations was discussed 

in section 3.7 and the semantic layer on top of calculated graphs was discussed 

in section 3.8. 
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4. IMPLEMENTATION AND APPLICATIONS 
 

This chapter presents an overview of the actual implementation along with 

real-life experiments and relevant statistics. The developed software components 

and applications are introduced in the section 4.1. A system performance 

evaluation based on six different real-life datasets and the performance overview 

details is presented in the section 4.2. Special attention has been given to the 

dataset visualization techniques presented in the section 4.3. Details of the 

visualization methods are published in papers C and D. Possible additional 

application areas are discussed in the section 4.4. 

 

4.1. dLineage.com 

The previously described architecture and algorithms have been used to 

implement the dLineage37 toolset for data lineage and impact analysis in real 

organizations. dLineage is packaged as web-based software as a service (SaaS) 

or a local appliance, prepackaged and configured as a virtual machine (VM) with 

all the vital components included, such as scanners, parsers and calculation 

engine, metadata database and web-based user interface with multiple 

applications. The web-based tools are divided into different applications for 

different user groups: 

 The technical application for metadata management, browsing and 

navigation to keep track of the source systems content and interconnection 

with all the available technical details. 

 The analytical application for data lineage and impact analysis, data sources, 

targets and data flow visualizations. 

 The business applications for technical metadata management with the help 

of a connected classification system, business glossary or ontology, and data 

or business governance with the help of domains, role system and 

responsibilities. 

 

The scanners and web-based tools of dLineage have been extended and tested 

in real-life projects and environments to support several popular DW database 

platforms (e.g., Oracle, Greenplum, Teradata, Vertica, PostgreSQL, MsSQL, 

Sybase), ETL tools (e.g., Informatica, Pentaho, Oracle Data Integrator, SSIS, 

SQL scripts and different data loading utilities) and BI tools (e.g., SAP Business 

Objects, Microstrategy, Microsoft SSRS etc.). The dLineage database is built on 

PostgreSQL, using an open schema data modeling approach and predefined 

metamodels, described in sections 3.2 and 3.3. The rule system and dependency 

graph calculation is implemented in SQL queries and stored as a specialized 

relation between the scanned node objects. The current implementation uses 

recursive SQL for subgraph query tasks, which works reasonably well because 

of a local single object context and a sparse nature of the dependency graph. The 

number of objects in our test datasets (see section 4.2) were about 1.3 million and 
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 http://dlineage.com 
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we have tested the recursive SQL approach with three times bigger datasets 

without any remarkable drawbacks. We have also tested special storage and 

indexing methods and in-memory database approaches as alternatives for 

recursive SQL. The most promising approach would be the in-memory structures 

and algorithms for graph querying, which can be easily adapted and added as 

application components when needed. The algorithms for interactive transitive 

calculations and semantic layer calculation (see sections 3.7 and 3.8) are 

implemented in JavaScript and work in browsers for small and local subgraph 

optimization and visualization. Visualization of data lineage and impact flows is 

built using d3.js graphics libraries in combination with Sankey38 diagram 

techniques. Additional information can be found on our dLineage39 online demo 

site and more technical details are in article D. 

The general idea of capturing and visualizing data flows in an organization 

DW ecosystem are drawn in Figure 4.1. The idea of visualizations using a Sankey 

diagram is to align all the data sources (e.g., files, interfaces or tables in source 

database) on the left side, all the final data consumers (ending targets, like reports, 

export files, API interfaces, etc.) on the right side and all other structures and 

components between them (depending on sources and targets). Figure 4.1. 

illustrates a traditional DW environment with several data transformation layers 

(e.g., source, staging, storage, access, and applications) using a small subset of 

Human Resource Management System (HRMS) data structures. The data 

structures and data are copied one-to-one from the source to DW and data 

transformations are built on the access view layer in this simplified example. 

Real-life DW environments are usually much more complex with different 

modeling paradigms (e.g., ODS, dimensional, 3NF or hybrid), which means there 

will be data restructuring and transformations almost in any layer or stage of data 

flow. 

 

 
 

Figure 4.1  Data lineage visualization example in DW environment using Sankey 

diagram. 

                                                      
38

 https://en.wikipedia.org/wiki/Sankey_diagram 
39

 http://www.dlineage.com/ 
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The Analytics application in the dLineage toolset was designed for data 

lineage and impact graph navigation and visualizations. In the Analytics 

application, there are two built-in alternative data representation formats: table 

and graph view; and two complementary content representations: data lineage 

and impact view. The table view consists of two parts for each selected object: 

dependent sources and dependent targets, which represent the list of objects that 

are detected as a source or a target in-context of current focus. Figure 4.2 is an 

illustration of one report object in a financial reporting hierarchy with more than 

a hundred different sources (and no targets) that are connected to one report. The 

table view shows the data lineage or impact graph with calculated metrics (e.g., 

distance, number of queries, number of sources and targets) and is sorted by the 

most influential objects first.  

The graph view in Figure 4.4 represents the same information about connected 

sources and targets using a clickable and zoomable Sankey diagram, but in 

contrast to the flattened table view, the graph view is stretched out from sources 

to targets and rendered from left to right with all levels and distances clearly 

visible. 

  

 
 

Figure 4.2  dLineage sub-graph table view, source and target objects with calculated 

metrics. 

At the same time, the content filters for lineage and impact graphs based on graph 
calculation rules (see section 3.7) produces two different dependency relations: 
lineage (based on data transformation rules R1, R3 or R3) and impact (based on data 
impact rules R2 or R3). Based on the lineage or impact content filters, the user can see 
and switch between a direct data lineage graph or a dependent component graph. The 
latter contains also impact graph data that used for data filtering, joining or coding 
and that do not contribute directly to target structures. In Figure 4.3 and Figure 4.4, 
one can see the impact view with two or three colored dependency lines, where direct 
data transformations are in gray and indirect impact dependencies are in red. Both 
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representations and content filters have their own aspect to emphasize and help in 
combinations, and together they perform the lineage or impact analysis tasks. 

 

 

Figure 4.3  dLineage sub-graph graphical view, selected object with all connected 

targets. 

 

 
 

Figure 4.4  dLineage sub-graph graphical view, selected object with all connected 

sources. 

The other applications in the dLineage toolset are built to support related activities 
to manage metadata scanners, browse and search collected data, manage systems 
state and heath, analyze discovered dependencies, manage and govern corporate 
information assets or collect and build business glossaries and definitions to give a 
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meaning to IT assets. In addition to technical, analytical and business applications, 
we collect and calculate various measures to estimate system health, integrity, graph 
connectivity, parse rate and errors, business coverage, errors, etc. Figure 4.5 
illustrates the dashboard functionality of the dLineage toolset that visualizes 
collected measures and data. 
 

 
 

Figure 4.5  dLineage dashboard has aggregated overview about collected metadata and 

calculated results and metrics. 

 

4.2. Performance Evaluation 

We have tested our solution in several real-life case studies involving a 

thorough analysis of large international companies in the financial, utilities, 

governance, telecom and healthcare sectors. The case studies analyzed thousands 

of database tables and views, tens of thousands of data loading scripts and BI 

reports. Those figures are far over the capacity limits of human analysts not 

assisted by special tools and technologies. 

The following six different datasets with varying sizes have been used for our 

system performance evaluation. The datasets DS1 to DS6 represent data 

warehouse and business intelligence data from different industry sectors and is 

aligned according to dataset size (Table 4.1). The structure of the datasets are 

diverse and complex, hence we have analyzed the results at a more abstract level 

(e.g., the number of objects and processing time) to evaluate the system 

performance under different conditions. 
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Table 4.1 Evaluation of processed datasets with different size and structure. 

 
DS1 DS2 DS3 DS4 DS5 DS6 

Number of scanned objects 1 341 863 673 071 132 588 120 239 26 026 2 369 

DB objects 43 773 179 365 132 054 120 239 26 026 2 324 

ETL objects 1 298 090 361 438 534 0 0 45 

BI objects 0 132 268 0 0 0 0 

Scan time (min) 114 41 17 33 6 0 

Number of scripts to parse 6 541 8 439 7 996 8 977 1184 495 

Number of parsed query mappings 48 971 13 946 11 215 14 070 1544 635 

Query parse success rate (%) 96 98 96 92 88 100 

Query parse/resolve perf. (qry/sec) 3.6 2.5 26.0 12.1 4.1 6.3 

Query parse/resolve time (min) 30 57 5 12 5 1 

Number of graph nodes 73 350 192 404 24 878 17 930 360 1 930 

Number of graph links 95 418 357 798 24 823 15 933 330 2 629 

Graph processing time (min) 36 62 14 15 6 2 

Total processing time (min) 150 103 31 48 12 2 
 

The biggest dataset, DS1, contained a big set of Informatica ETL package 

files, a small set of connected DW database objects and no business intelligence 

data. The next dataset, DS2, contained a data warehouse, SQL scripts for ETL 

loadings and an SAP Business Object for reporting for business intelligence. The 

DS3 dataset contained a smaller subset of the DW database (MsSql), SSIS ETL 

loading packages and SSRS reporting for business intelligence. The DS4 dataset 

had a subset of the DW (Oracle) and data transformations in the stored procedures 

(Oracle). The DS5 dataset is similar but much smaller compared to DS4 and is 

based on the Oracle database and stored procedures. The DS6 dataset had a small 

subset of a data warehouse in Teradata and data loading scripts in the Teradata 

TPT format.  
 

 
 

Figure 4.6  Datasets size and structure compared to overall processing time. 
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Figure 4.7  Calculated graph size and structure compared to graph data processing 

time. 

The dataset sizes, internal structure and processing time are visible in Figure 

4.6, where a longer processing time of DS4 is related to very large Oracle stored 

procedure texts and loading of those to the database. The initial dataset and the 

processed data dependency graphs have different graph structures (see Figure 

4.7) that do not correspond necessarily to the initial dataset size. DS2 has a more 

integrated graph structure and a higher number of connected objects (Figure 4.7) 

than the DS1. At the same time, the DS1 initial row data size is about two times 

bigger than DS2. 

 

 
 

Figure 4.8  Dataset processing time with two main subcomponents. 
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Figure 4.9  Dataset size and processing time correlation with linear regression (semi-

log scale). 

We have analyzed the correlation of the processing time and the dataset size 

(see Figure 4.8 and Figure 4.9) showing that the growth of the execution time 

follows the same linear trend as the size and complexity growth. The data scan 

time is related mostly to the initial dataset size. The query parsing, resolving and 

graph processing time also depend mainly on the initial data size, and less so on 

the calculated graph size (Figure 4.8). The linear correlation between the overall 

system processing time (seconds) and the dataset size (object count) can be seen 

in Figure 4.9.  

 

4.3. Visualization 

The Enterprise Dependency Graph examples (Figure 4.10 - Figure 4.12)  

illustrate the complex structure of dependencies between the DW storage scheme, 

access views and user reports. The examples were generated using data 

warehouse and business intelligence lineage layers. The details are at the database 

and reporting object level, not at the column level. At the column and the report 

field levels, a full data lineage graph would be about ten times bigger and too 

complex to visualize in a single picture. The following graph from the data 

warehouse structures and user reports presents about 50,000 nodes (tables, views, 

scripts, queries, reports) and about 200,000 links (data transformations in views 

and queries) on a single image (Figure 4.10). 

The real-life dependency graph examples illustrate the automated data 

collection, parsing, resolving, graph calculation and visualization tasks 

implemented in our system. The system requires only the setup and configuration 

tasks to be performed manually. The rest will be done by the scanners, parsers 

and the calculation engine. 

The final result consists of data flows and system component dependencies 

visualized in the navigable and drillable graph or table form. The results can be 
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viewed as a local sub-graph with a fixed focus and a suitable filter set to visualize 

the data lineage path from any source to a single report with click and zoom 

navigation features. The big picture of the dependency network gives a full-scale 

overview of the organization’s data flows. It explicates potential architectural, 

performance and security problems. 
 

 
 

Figure 4.10  Data flows (blue,red) and control flows (green,yellow) between DW tables, 
views and reports. 

 
Figure 4.11  Data flows between DW tables, views (blue) and reports (red). 
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Figure 4.12  Control flows in scripts, queries (green) and reporting queries (yellow) are 

connecting DW tables, views and reports. 

 

In addition to the visualization of data flows, we have developed the 

aggregated plot view of graph nodes that will help to analyze database tables, data 

loading programs or reports in terms of connectedness, complexity and cost. The 

main idea of the visualization is to draw a two-dimensional plot or bubble chart 

with a number of connected sources and targets on an X and Y axis that allow us 

to clearly distinguish more and less connected nodes and the balance between the 

number of sources and targets or data producers and consumers. The size of the 

bubble in the chart is a recursively calculated number of child objects that express 

the complexity of the object and its structure. The color of the bubble is calculated 

as a sum of all three components – the number of sources, targets and children –

expressing the cost of the object in terms of change, development or maintenance.  

The more costly objects are located in the upper right corner (see Figure 4.13 

and Figure 4.14), with a bigger diameter and colored in red. The less costly 

objects are located in the lower left corner and colored in blue. The color layer is 

the fourth dimension of the chart, giving a quick aggregated overview of the 

selected object set. The bigger and more red an object is, the costlier and more 

complex it is to change. The smaller and more blue an object is, the less costly 

and less complex it is to change. 

The data axis with its number of sources and targets and bubble size are 

calculated and drawn in a logarithmic scale. The number of sources, targets and 

child elements of each object in the same chart can vary with several orders of 

magnitude, and therefore the logarithmic scale is more suitable for visualization 

and reading of charts. 
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Figure 4.13  Data Warehouse loading packages plot with number of data sources and 

targets (axis), loading complexity (size) and relative cost (color). 

 

 
 

Figure 4.14  Data Warehouse tables plot with number of data sources and targets 

(axis), loading complexity (size) and relative cost (color). 

 

4.4. Proposed Novel Applications 

The previously described architecture and dLineage toolset allows us to 

address and solve different IT management tasks, based on evidence stored in the 

dependency graph. In the following section, we describe some practical use cases 

in addition to data lineage and impact analysis that can be seen as additional 

applications or plugins for the dLineage toolset. 
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Planning and Budgeting 
 

The ETL programming is often the most time-consuming, complex and hard-

to-predict task in enterprise DW projects, and depends on many variables: 

analysis and quality of source data, complexity of data mappings and 

transformations, design of target model, etc. Estimations and budgeting of such 

tasks are usually based on available input figures and expert opinions, and cannot 

be easily answered without previous analysis. Automation of these analysis tasks 

via replacement of expert opinions with traceable calculation and decision 

algorithms would save money and provide decision support for ETL planning and 

budgeting projects. We have successfully implemented and used the Excel-based 

calculation algorithm for ETL programming resources estimation (time and 

money) in several financial, retail and telecom sector DW projects that were 

based on available input figures (i.e., number of tables/columns to load, number 

of tables/columns to design/create/change/drop, number of views/column to 

design/create/change/drop, number of tasks and packages, etc.), customized 

weights and constants and calculation models that allowed us to validate and 

replace the human expert opinion and speed up planning tasks. Such a model, 

with a manually adjusted weight system for each individual organization, has the 

ability to imitate the average human expert decisions with accuracy over 90%. 

When implementing a similar model on a real DW dependency graph and 

bringing the existing components with their sources and target object counts, 

weights and complexity measures, we can build a new evidence-based estimation 

calculator. Such an approach allows us to automate and speed up the project 

estimations and make it available via a web-based UI or wizard to end users such 

as project managers or business experts. The planning and budgeting app allows 

faster decisions assisted by connected content and might even outperform the 

average expert estimation because of additional knowledge captured into the 

dependency graph. 

 

Automatic System Documentation 
 

Relevant systems documentation is an important topic in IT systems 

development and is especially important in the context of DW development. A 

crucial part of DW documentation describes actual data mappings, 

transformations and loads with all the sources and targets. DW development and 

management can quickly become expensive and error-prone when detailed 

mappings and dependencies are not available. Design time mapping documents 

are usually not detailed enough and are outdated by the end of ETL design and 

programming. The lack of time, project setup and used tools often do not support 

the online documentation availability all the way to the end of the development 

phase. Automated documentation generation from actual data transformation 

programming code or ETL metadata would be the solution. 

The toolset with DW systems and programs metadata scanning, parsing, 

resolving and storing in a unified metadata database is a good starting point for 

automated documentation. Unified data mappings and constructed dependency 

graphs consist of all the information required to generate detailed (column level) 
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ETL mapping documents. A web-based user interface allows for linked and living 

documentation that is accurate and more usable than traditional design time 

system documents. 

 

Enterprise Search and IT Asset Management 
 

The overview and management of corporate IT assets is a challenging topic 

for many organizations. IT systems are physically separated by design or security 

concerns. Integration of technical artefacts requires extra effort and tools. 

Different counterparties require the same data, but with different details and 

viewpoints highlighted, and there are not many tools to support them all from one 

source. IT architecture, maintenance, support, development and data delivery 

requirements are different and interested parties are rarely ready to find a 

common solution. Enterprise asset management with connected dependencies, 

business terminology, full text search, responsibilities and role systems would be 

the common solution for different needs. 

The core functionality described provides metadata for IT systems which is 

organized in a suitable format to provide full-scale IT asset management 

functions. Built in google-like full-text makes every scanned object fast and easy 

to find. Business applications have functions to build up a full-scale business 

glossary system in top-down or bottom-up manner and additional role, domain 

and responsibility systems allows one to implement IT asset governance 

applications suitable for different needs throughout an organization.  

 

Auditing and Compliance Reporting 
 

Compliance with different internal and external requirements can be critical 

for many organizations and alignment of the requirements is time-consuming and 

costly. Specific industry sectors have their own requirement standards or 

mandatory governance regulation, and compliance with regulations will reduce 

the risks and business costs or allow the company to operate in the market. 

Compliance with regulations requires auditing or certification processes, and 

automation of data capturing, consolidation, measurement and alignment tasks 

allows for cost savings and quality improvements. The examples of such global 

regulations would be the Sarbanes-Oxley Act40 for public and private companies 

in the US, which was designed to protect investors, competitors and companies 

themselves; Basel III41 and Solvency II42 in financial and insurance industries in 

the EU for capital requirements and risk regulations; the General Data Protection 

Regulation (GDPD)43 directive from EU/EC for personal data usage and 

protection in online and internet businesses worldwide. 

 In order to fulfill regulations, we need to catalog the requirements in the form 

of business ontology and connect IT assets manually or automatically with the 
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requirements. Depending on the specific regulations, we can build a logic-based 

rule system and connect it with an underlying dependency graph to derive data 

for requirements, to check internal logic and consistency of requirements and to 

provide solid, fact-based audit trail and proof of compliance. 

 

4.5. Summary 

This implementation chapter concludes the presentation of the designed and 

implemented software system, performance evaluation and datasets visualization. 

The developed software components and applications were introduced in section 

4.1. System performance evaluation based on real-life datasets and the 

performance overview details were introduced in section 4.2, and the dataset 

visualization was presented in section 4.3. Finally, novel further application areas 

were discussed in section 4.4. 
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CONCLUSIONS 
 

This thesis presents novel methods, algorithms and experimental results for 

practical data lineage and impact analysis. We are able to map, aid and automate 

the solution of management and analysis problems in a corporate data warehouse 

environment.  

Automation of human intensive analysis tasks reduces time and costs, 

improves quality and leads to better decisions with reduced risks. It may take a 

week or two for a human analyst to solve moderately complex impact analysis 

tasks. We show that this time can be reduced to hours or minutes, with the 

interpretation of the results being feasible for users without the help of domain 

experts.  

The traditional data lineage and impact analysis problems can be compared to 

the internet search problem before the invention of Google. The analyst of a new 

system component, functionality or business requirement had to find and read all 

the relevant documents and/or code bases to trace and model the data sources and 

dependencies. Our chosen approach to DW impact analysis and data lineage in a 

closed corporate environment can be compared to Google’s approach to web 

scanning and indexing to build a sophisticated search engine. We scan, collect 

and map an organization’s IT systems and data warehouse environment, data 

structures, queries, reports and programs, without using the DW data or affecting 

the normal work and behavior of those systems.  

Processing and mapping the collected data to an RDF-style database schema 

creates a unified physical base for data storage. The unified data representation 

allows us to define and implement a set formalized rules to build weighted and 

directed dependency graphs. Probabilistic weight calculation in query parsing and 

weight propagation by the rule system brings the data transformation semantics 

to the graph for further usage. The weights are used for node dependency and 

transitivity calculations, for layer visualization, filtering and object sorting. The 

weight system is also used in the semantic layer calculation to visualize only the 

applicable data flow subgraphs for each selected node.  

We have implemented all the algorithms described in the thesis and built a 

web-based dLineage software toolkit for browsing, analyzing and visualizing 

collected and calculated data. This toolset, algorithms and techniques have been 

successfully employed in tens of case studies and projects.  

The presented case studies and performance analysis with six different real-

life datasets demonstrates that our algorithms and implementations are linearly 

scalable. 

We will continue our research and system development in the field of business 

semantics and governance automation to employ the underlying dependency 

graph in combination with semantic techniques and ontology learning. 

Combining different techniques to automate business definitions management 

and IT asset governance will hopefully allow us to fill another gap in the 

corporate knowledge and asset management landscape. 
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KOKKUVÕTE 
 

Käesoleva doktoritöö teema on andmevoogude ja neid realiseerivate 

komponentide analüüs ning selle protsessi automatiseerimine ettevõtte andmelao 

keskkonnas. Töö eesmärgiks on luua universaalne metoodika, algoritmid ja 

tarkvaraline lahendus, mida saab vähese vaevaga rakendada juba olemasoleva 

keskkonna andmevoogude ja mõjuanalüüsi automatiseerimiseks. Metoodilise 

lähenemise aluspõhimõteteks on töötava andmelao keskkonna kaardistamine 

selle tööd mõjutamata ning andmelao süsteemides töödeldavaid andmeid 

kasutamata. Selline lähenemisviis eeldab andmelao struktuuride, programmide ja 

raportite metaandmete kogumist ja töötlust ning võimaldab lahendust rakendada 

võimalikult väikeste kulutustega juba töötavas keskkonnas, selle tööd 

mõjutamata ja tundlikke andmeid vajamata. 

Loodud süsteemi arhitektuur sisaldab dünaamilise ja paindliku struktuuriga 

andmebaasi kasutamist erinevate metaandmete salvestamiseks, modulaarsetel ja 

korduvakasutatavatel komponentidel baseeruvat metaandmete kogumis- ning 

töötlusprogrammide loomist ning veebipõhiseid rakendusi erinevatele 

kasutajagruppidele, analüüsi teostamiseks ja andmete visualiseerimiseks. 

Kirjeldatud semantilised meetodid ning reeglipõhine ja tõenäosuslik 

järeldussüsteem aitavad konstrueerida struktuuride ja programmide sisendite-

väljundite baasil suunatud graafi, mis võimaldab andmestruktuuride ja -voogude 

analüüsiülesanded teisendada alamgraafide läbimise- ja arvutusülesanneteks. 

Töös kirjeldatud tarkvara on testitud kümnete rahvusvaheliste ettevõttete 

andmeladude analüüsiks ja visualiseerimiseks. Ülevaade andmekogudest ning 

süsteemi jõudlusest on toodud töö viimases peatükis. Kokkuvõttes näitame, et 

valitud süsteemi arhitektuur, algoritmid ja meetodid on sobivad väga erinevate 

valdkondade, suuruse ja sisuga andmeladude analüüsiks metaandmete baasil ning 

kirjeldatud süsteemi komponentide jõudlus skaleerub lineaarselt lähteandmete 

mahuga. 
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