TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS
15/2018

Semantic Data Lineage and Impact
Analysis of Data Warehouse Workflows

KALLE TOMINGAS

ETU

PRESS

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Software Science

This dissertation was accepted for the defence of the degree of Philosophy in
Computer Science on April 20, 2018

Supervisor:

Opponents:

Professor Tanel Tammet
Department of Software Science
Tallinn University of Technology
Tallinn, Estonia

Professor Alexandra Poulovassilis

Department of Computer Science and Information Systems
Birkbeck University of London

U.K.

Ph.D Peeter Laud
Research Director
Cybernetica AS
Estonia

Defence of the thesis: May 21, 2018, Tallinn

Declaration:

Hereby | declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted for any academic degree.

* X %
* *
* *

* *
* 5k

European Union
European Social Fund

»

Investing in your future

Copyright: Kalle Tomingas, 2018
ISSN 2585-6898 (publication)

ISBN 978-9949-83-238-5 (publication)
ISSN 2585-6901 (PDF)

ISBN 978-9949-83-239-2 (PDF)

TALLINNA TEHNIKAULIKOOL
DOKTORITOO
15/2018

Semantiline andmevoogude- ja mojuanaliiiis
andmelao keskkonnas

KALLE TOMINGAS

Table of Contents

ABSTRACT bbb 7
ACKNOWLEDGEMENTS ..ottt 8
LIST OF PUBLICATIONSooiiiiiiiieiieere e 9
OTHER RELATED PUBLICATIONSocotiiiiiiieicese e 9
AUTHOR’S CONTRIBUTION TO THE PUBLICATIONScccccceviiinennn 10
ADDIEVIALIONS ...t 11
TRIMNS .t 12
LISt OF FIQUIES ...t 14
INTRODUCTION ...ttt 15
Motivation and the Problem Statement...........ccccooeieiiiiininiecece 16
Contribution of the THESIS ..o 18
Organization Of the TNESIS.........cceiiieiiire s 19
1. DATALINEAGE ..ottt 21
1.1. Overview of Data Lineage and Provenancec.ccoceeeveieiinnnnnns 21
1.2. A Motivating EXample ..o 23
1.3. SUMMEIY .ttt e e s e st e e s e te e e sseeeateeennne s 26
2. RELATED WORKoii ittt et 27
2.1 SUMMEIY .ttt e e e s et e e st e e teeesneeeateeennnees 30
3. ALGORITHMS AND METHODSccooiiieiieiieiie e 31
3.1. Overall Architecture and Methodology..........cccocevvveviiiiiicvciieee, 31
3.2 Metadata DAtabaseccccoveiriririie e 32
3.3. Design of Metadata Models and Mappings.........ccccoocevvvveereneneene. 34
3.4. Data Capture, Store and Processing with Scanners.............ccccccveee. 34
3.5. Query Parsing and Metadata EXtraction.............ccoceecevevveenvicenene. 35
3.6. Data Transformation Weight Calculationcc.ccccevvneieinnnnnn 38
3.7. Rule System and Dependency Calculation...............cccocevevevvinnnne. 40
3.8. Semantic Layer CalCulationccocoeviviiiiniiniseneeseeeeeie 42
3.9. SUMMAIY ittt sbe e 44
4. IMPLEMENTATION AND APPLICATIONS......cccceiiiiiiinenireseienas 45
4.1. ALINEAGE.COM ...ttt 45
4.2. Performance Evaluation ..o 49

43. VISUBTIZATIONeeeeiiveeee ettt eet e e sttt e s st e s seb e e e s serreeessaraeeessns 52

44. Proposed Novel AppliCations...........ccovieieieieiisse e 55

4.5, SUMIMAIY .ttt sre e s e s e sb et e e be e teenreesreas 58
CONCLUSIONS ...ttt sttt naaneas 59
REFERENCES ..ottt 61
KOKKUVOTE ..ottt sttt st st esssns 67
PUBLICEEION A ..ot 69
L]0 1o 11T] N = ST 83
PUBHCAEION € ..ot nne s 95
L] o] [To%: 14T] N I PSSP 113
CURRICULUM VITAE ...ttt 125
ELULOOKIRIELDUS ..ottt 126

ABSTRACT

The subject of the thesis is data flow in data warehouses. Data warehousing is
a complex process of collecting data, cleansing and transforming it into
information and knowledge to support strategic and tactical business decisions in
organizations Our goal is to develop a new way to automatically solve a
significant class of existing management and analysis problems in a corporate
data warehouse environment.

We will present and validate a method and an underlying set of languages,
data structures and algorithms to calculate, categorize and visualize component
dependencies, data lineage and business semantics from the database structure
and a large set of associated procedures and queries, independently of actual data
in the data warehouse.

Our approach taken is based on scanning, mapping, modelling and analysing
metadata of existing systems without accessing the contents of the database or
impacting the behaviour of the data processing system. This requires collecting
metadata from structures, queries, programs and reports from the existing
environments.

We have designed a domain-specific language XDTL for specifying data
transformations between different data formats, locations and storage
mechanisms. XDTL scripts guide the work of database schema and query
scanners.

We will present a flexible and dynamic database structure to store various
metadata sources and implement a web-based analytical application stack for the
delivery and visualization of analysis tools for various user groups with different
needs.

The core of the designed method relies on semantic techniques, probabilistic
weight calculation and estimation of the impact of data in queries. We develop a
method to estimate the impact factor of input variables in SQL statements. We
will present a rule system supporting the efficient calculation of the query
dependencies using these estimates.

We will show how to use the results of the conducted analysis to categorize,
aggregate and visualize the dependencies to address various planning and
decision support problems.

The methods and algorithms presented in the thesis have been implemented
and tested in different data warehouse analysis and visualization tasks for tens of
large international organizations. Some of these systems contain over a hundred
thousand database objects and over a million ETL objects, producing data lineage
graphs with more than a hundred thousand nodes. The analysis of the system
performance over real-life datasets of various sizes and structures presented in
the last chapter demonstrates linear performance scaling and the practical
capacity to handle very large datasets.

ACKNOWLEDGEMENTS

First, | would like to warmly thank my supervisor, Prof. Tanel Tammet, for
the motivation, encouragement and guidance through all these years, as well as
the patience and support during all stages of the scientific process and practical
works.

| would like to thank all those people who have contributed to the process
leading to the completion of the given work. | thank Margus Kliimask and other
colleagues from Mindworks Industries for a creative and productive environment,
for wonderful ideas and hard work. | would like to thank my colleagues from the
Eliko Competence Centre and my fellow doctoral students from Tallinn
University of Technology and Graz University of Technology.

Finally, I thank my family members and my friends who have been supportive
and have been with me during the long journey of my doctoral studies.

LIST OF PUBLICATIONS

The work of this thesis is based on the following publications:

A

Tomingas, K.; Kliimask, M.; Tammet, T. Data Integration Patterns for
Data Warehouse Automation. In: New Trends in Database and
Information Systems I1: 18th East European Conference on Advances in
Databases and Information Systems (ADBIS 2014). Springer, 2014.
Tomingas, K.; Tammet, T.; Kliimask, M. Rule-Based Impact Analysis
for Enterprise Business Intelligence. In: Aurtificial Intelligence
Applications and Innovations (AIAl 2014), IFIP Advances in
Information and Communication Technology. Springer, 2014.
Tomingas, K.; Tammet, T.; Kliimask, M.; Jarv, P. Automating
Component Dependency Analysis for Enterprise Business Intelligence.
In: 2014 International Conference on Information Systems (ICIS 2014).
Tomingas, K.; Jarv, P; Tammet, T. Discovering Data Lineage from Data
Warehouse Procedures. In: 8th International Joint Conference on
Knowledge Discovery and Information Retrieval (KDIR 2016).

OTHER RELATED PUBLICATIONS

Tomingas, Kalle; Jdrv, Priit; Tammet, Tanel (2017). Computing Data
Lineage and Business Semantics for Data Warehouse. Accepted for
publication in: Lecture Notes in Communications in Computer and
Information Science" (CCIS), Springer.

Tomingas, Kalle; Kliimask, Margus; Tammet, Tanel (2014). Mappings,
Rules and Patterns in Template Based ETL Construction. In: TUT
Research Report Series: The 11th International Baltic Conference on DB
and IS, DB&IS2014, Tallinn, Estonia. Tallinn, Estonia.

Tammet, T.; Tomingas, K.; Luts, M. (2010). Semantic Interoperability
Framework for Estonian Public Sector's eServices Integration. In:
Proceedings of the 11th European Conference on Knowledge
Management: Universidade Lusiada de Vila Nova de Famalicdo
Portugal: 2-3 September 2010, 2: 11th European Conference on
Knowledge Management - ECKM 2010, Portugal, 2-3 September 2010.
Ed. Eduardo Tomé. Academic Publishing Limited, 988—995.

Tomingas, Kalle; Luts, Martin (2010). Semantic Interoperability
Framework for Estonian Public Sector’s E-Services Integration. In:
Ontology Repositories and Editors for the Semantic Web: Proceedings
of the 1st Workshop on Ontology Repositories and Editors for the
Semantic Web, Hersonissos, Crete, Greece, May 31st, 2010. (CEUR
Workshop Proceedings; 596).

AUTHOR’S CONTRIBUTION TO THE
PUBLICATIONS

Author contribution to the paper A started with a research problem and
methodology setup. It covers model and software development, testing
and experimenting, conducting analysis and writing most of the text.
The author was one of the main contributors and writers of the paper B.
The most important part of the work was the development of the
methodology to solve data lineage and impact problems based on
technologies described in the previous paper A. Additional technical
work, like building models, development of software, testing, and
analysing the results, were part of feasibility studies and adjustment of
the methodology.

The author was one of the main writers, continuing the development of
the methodology and the rule system started in the paper B. The main
content of paper B is re-published in the paper C with more additional
details, examples and visualizations. The new details, practical data
processing and visualizations were the main tasks and the focus of the
paper C that was published in the field of information systems rather than
computer science.

The author was one of the main contributors of the paper D. The main
tasks and the results of the work were: new formalizations for the data
processing rule system, development of the new prototype, performance
measurements and new visualization techniques.

The author was one of the main contributors of the paper E. Again, the
main tasks and the results of the work were new formalizations for the
data processing rule system, development of the new prototype,
performance measurements and new visualization techniques, plus a new
business semantics model development.

The paper F was written as a short and initial version of the paper B that
was published at the DB&I1S2014 conference in Tallinn and presented in
the poster session by the author.

The author was a member of the semantic assets management
development project of the Estonian Information Systems Authority. The
paper G concludes the project and presents the ideas of the
interoperability framework development. The author was one of the main
writers of the paper.

The paper H is a short initial version of the paper G that was presented at
the Workshop on Ontology Repositories in the Extended Semantic Web
Conference by the author.

10

Abbreviations

API Application Programming Interface
BI Business Intelligence

DBMS Database Management System
DDL Data Definition Language

DI Data Integration

DL Data Lineage

DML Data Manipulation Language
DSS Decision Support Systems

DW Data Warehouse

EBNF Extended Backus-Naur Form
EDW Enterprise Data Warehouse

EAV Entity Attribute Value

ETL Extract, Transform, Load

ELT Extract, Load, Transform

ER Entity—Relationship

1A Impact Analysis

IT Information Technology

oDS Operational Data Store

OLTP On-Line Transaction Processing
OLAP On-Line Analytical Processing
RDF Resource Description Framework
SQL Structured Query Language
XDTL eXtensible Data Transformation Language
XML eXtensible Markup Language

11

Termst

Data Warehouse

A data warehouse (DW) is a collection of corporate information and data derived
from operational systems and external data sources. DW is designed to support
business decisions by allowing data consolidation, analysis and reporting at
different aggregate levels. Data is populated into the DW through the processes
of data integration or extraction, transformation and loading.

Data Lineage
Data lineage is generally defined as a kind of data life cycle that includes the

data's origins and where it moves over time. This term can also describe what
happens to data as it goes through diverse processes. Data lineage can help with
efforts to analyze how information is used and to track key bits of information
that serve a particular purpose (see also: Data Provenance).

Data Integration
Data integration (DI) is a process in which heterogeneous data is retrieved and

combined as an incorporated form and structure. Data integration allows different
data types (such as data sets, documents and tables) to be merged by users,
organizations and applications, for use as personal or business processes and/or
functions (see also: Extract-Transform-Load).

Data Provenance?

Data Provenance provides a historical record of the data and its origins. The
provenance of data which is generated by complex transformations such as
workflows is of considerable value to scientists. Provenance is also essential to
the business domain where it can be used to drill down to the source of data in a
data warehouse, track the creation of intellectual property, and provide an audit
trail for regulatory purposes (see also: Data Lineage).

Enterprise Data Warehouse

An enterprise data warehouse (EDW) is a unified database that holds all the
business information an organization and makes it accessible all across the
company.

Extract-Transform-Load
Extract transform load (ETL) is the process of extraction, transformation and
loading during database use, but particularly during data storage use.

Impact Analysis®

! https://www.techopedia.com/
2 https://en.wikipedia.org/wiki/Data_lineage
8 https://en.wikipedia.org/wiki/Change_impact_analysis

12

Change impact analysis (1A) is defined as "identifying the potential consequences
of a change, or estimating what needs to be modified to accomplish a change",
and they focus on IA in terms of scoping changes within the details of a design.

Dependency Graph?

Dependency graph is a directed graph representing dependencies of several
objects towards each other. It is possible to derive an evaluation order or the
absence of an evaluation order that respects the given dependencies from the
dependency graph.

4 https://en.wikipedia.org/wiki/Dependency_graph
13

List of Figures

Figure 0.1 A general scheme of a Data Warehouse process and data flows...... 16
Figure 0.2 Real life Data Warehouse data flows from tables and views (left and

middle with blue) to reports (right side with red).cccccevviiiieiiiienns 18
Figure 1.1 DW data transformation flows in table, job and query levels. 25
Figure 1.2 DW data transformation flows in table, column and query component

TEVEIS. <o e 25
Figure 3.1 Methodology and system architecture components...............c......... 32
Figure 3.2 Metadata database physical schema tables............c.ccocooeiiiiiinnnne 33
Figure 3.3 Visual representation of data lineage graph inference rule R; 40
Figure 3.4 Visual representation of data impact graph inference rule Rz 41
Figure 3.5 Visual representation of data lineage and impact graph inference rule

TSSO 41
Figure 3.6 Semantic layer illustration for two independent data flows based on

overlapping query Conditions.cccccevvieiiiiiiie i 43
Figure 4.1 Data lineage visualization example in DW environment using Sankey

[0 T2 To T U USRS 46
Figure 4.2 dLineage sub-graph table view, source and target objects with

CAICUIALE MELTICS. .ovveieiereeecie et neas 47
Figure 4.3 dLineage sub-graph graphical view, selected object with all connected

L2201 USSP 48
Figure 4.4 dLineage sub-graph graphical view, selected object with all connected

SOUNCES. .ttt ettt e st e et e ekt e e ste e e s st e e et et e sabe e e ke e e ebae e s abe e e sabeeenbeeenbbeennbeeennbeena 48
Figure 45 dLineage dashboard has aggregated overview about collected

metadata and calculated results and Metrics.c.ocoovivnereneieieiieiannns 49

Figure 4.6 Datasets size and structure compared to overall processing time....50
Figure 4.7 Calculated graph size and structure compared to graph data processing

LTI, s 51
Figure 4.8 Dataset processing time with two main subcomponents........ 51
Figure 4.9 Dataset size and processing time correlation with linear regression

(SEMI-10Q SCAIR). ...e.vviiecece e 52
Figure 4.10 Data flows (blue,red) and control flows (green,yellow) between

DW tables, views and reports.c.ccoeorrrinenirneninsee e 53

Figure 4.11 Data flows between DW tables, views (blue) and reports (red). ... 53
Figure 4.12 Control flows in scripts, queries (green) and reporting queries
(yellow) are connecting DW tables, views and reports...........ccccccveveeennene 54
Figure 4.13 Data Warehouse loading packages plot with number of data sources
and targets (axis), loading complexity (size) and relative cost (color).55
Figure 4.14 Data Warehouse tables plot with number of data sources and targets
(axis), loading complexity (size) and relative cost (color)..........cccceeeenen. 55

14

INTRODUCTION

The amount of available data is growing rapidly in many domains and areas
of human activity. Traditional and Internet businesses, social media, healthcare
and science are a few examples of the fields where accumulated data and
processed information can change the scale and the state of those businesses. The
development of the internet, connected information systems, social media, new
scientific equipment and the rising Internet of Things (1oT) has brought us to the
big data era and scale where traditional data processing technologies and methods
do not function, do not perform or simply stop working [1].

There are many reasons why we may want to understand the internal structure
and functions of a complex data processing systems like data warehouses. Some
of the reasons are related to the need to improve system functions, performance
or quality and the ability to evaluate them. Others are related to controlling and
managing the system effectively and avoiding unwanted or unpredictable
behavior of the system. Data warehouse systems collect data from various
distributed and heterogeneous data sources, integrating details or summarized
information in local database for further processing and analysis for various
applications and purposes. Data warehouses are living, continuously developed,
enriched and updated systems with variable load, performance and growing data
volumes. Data transformation chains can be very long and the complexity of
structural changes can be high. Tracing long and complex data flows or
dependencies of data transformation components are serious research tasks
without special supporting metadata and tools. Tracing data items back from the
final reports or applications to the source items and structures is a data lineage
problem. Traceability of internal components dependencies is critical when
developing and changing system software or configuration and can be defined as
problem of impact analysis. Data lineage allows for tracing internal functional
relations of data processing systems and gives insight of data flows for better
understanding of what the system does. Impact analysis allows for tracing internal
component structures and formal relations of the system and gives an
understanding of how a system is built from interconnected components.

In this thesis, we address the data lineage and the impact analysis problems in
a generalized and multidisciplinary way to use the same methods and approaches
in data warehouse or other decision support, data processing, enterprise
integration or service-oriented systems. Our goal is to implement methodology,
algorithms, representations, architecture and applications that have a relatively
small set of functions for specialized tasks, designed to perform and automate
complex analytical tasks. The final system design has to be modular, flexible and
robust, but also scalable and efficient to easily adapt heterogeneous environments
of real life data processing systems.

The chosen approach combines techniques from multiple fields of information
technology and computer science, like metadata capture and loading, unified and
open-schema data storing, grammar-based program parsing and resolving,
probabilistic semantic interpretation of data transformations and rule-based
reasoning, graph-based dependency calculations, data and component flow graph
visualization, etc.

15

Motivation and the Problem Statement

Data warehousing (DW) is a complex process of collecting data, cleansing
and transforming it into information and knowledge to support strategic and
tactical business decisions in organizations. DW is designed as a rapidly growing,
subject-oriented, integrated, time-variant and non-volatile collection of data from
heterogeneous data sources, with various connected applications, query engines,
fixed or open reporting and analytical tools (see Figure 0.1). Data sources can be
volatile and data can be structured (e.g., databases, xml files), semi structured
(e.g., log files, emails) or non-structured (e.g., text documents). Data consumers
from different domains with various interests (e.g., management information,
accounting, customer relationship, sales and marketing, resource planning,
forecasting, regulatory reporting, etc.) may have a broad spectrum of
requirements and service level quality. The process of source data integration is
called Extract, Transform, Load (ETL), and has a specific set of specialized tools
for data capturing and processing tasks. The processed and stored data consuming
process is called Business Intelligence (BI) and has its own set of tools for
reporting, ad-hoc querying, data mining, dashboards and other types of analytics.
ETL and BI are not independent components: ETL and data requirements are
driven by business needs and BI capabilities are limited by the collected and
integrated data.

DI/ETL Queries

L 4

Source Databases DW Storage Reporting

Data Loading Metadata Reporting Metadata
(SQL Queries, Loading (Reperting Mcdels, Calzulation,
Scripts & Frograms) Reports)

Figure 0.1 A general scheme of a Data Warehouse process and data flows.

To make reasonable and informed business decisions, we need appropriate
data and metadata about context, structure, requirements, processing and timing.
Answering questions about used data sources, formulas, structures and freshness
of data in analytical systems or reports is challenging and not trivial. Components
of data warehouses are distributed over multiple physical locations and a diverse
set of software tools, and therefore tracing complex data processing metadata is
more complicated compared to using processed data. When the produced data
and information is the desired and emergent result of a DW system, then the
processing metadata is often hidden and captured into internal structures,
relations and programming code of separate components of the data processing
system. Emerging results, behavior and functions of such a complex system
depend on the subsystems and interconnections (formal and functional) of the
system’s components. To control, manage or predict the behavior of the system,
we must review the elements and the relationships between the components on a
detailed level. Large data warehouse systems can have hundreds of thousands of
tables/views and millions of columns with tens of millions of estimated
dependencies between those components.

16

We call networks of all dependencies over data warehouse system components
Enterprise Dependency Graphs (EDG) and we handle functional and structural
dependencies as directed graph edges between component nodes. The problem of
data lineage (DL) is seen as a data flow sub-graph construction, calculation and
navigation between static data structure components (e.g., tables, views, columns,
files, reports, fields, etc.). The problem of component impact analysis (I1A) is seen
as a sub-graph calculation and navigation between active data transformation
components (e.g., ETL tasks and mappings, SQL scripts and queries, DB
procedures, reporting queries and components, etc.) and passive data structures.

Data warehouse owners and users are facing various data lineage and impact
analysis problems because the chains of data transformations are often very long
with complex changes of data structures. More than a dozens of staging steps in
a sequence is not a rare case when the transformation steps are generated by the
supporting ETL tools. The data models that are designed for OLTP systems are
not usually suitable for OLAP systems. Denormalization, aggregation, and new
fact inference are some of the practical techniques that require new or changed
data structures and new processes to perform the tasks. The management of such
a complex integration process is unpredictable, and the cost is uncontrollable due
to the lack of information about data flows and internal relations of system
components. The consequences can include unmanageable complexity,
fragmental knowledge, a large amount of technical work, unpredictable results,
wrong estimations, rigid administrative and development processes, high cost,
lack of flexibility, quality and trust. These risks are related to the ability to answer
the following questions about data lineage and impact analysis problems:

e How can the origins of a data elements, structures and transformation
formulas be traced?
e How are the data elements of a specific column, table, view or report used?
e When was the data loaded, updated or calculated in a specific column, table,
view or report?
¢ Which loadings, structures, components and reports are impacted when other
components are changed?
Which data, structure or report is used by whom and when?
What is the time and cost of making changes in programs or data structures?
What will break when we change a program or data structure?
Who is responsible for a data structure, program or formula?
The ability to support and automate answering such day-to-day questions
determines the benefits, cost, flexibility and manageability of the system. The
dynamics in business, the environment and the requirements ensure that regular
changes in data management are required for every living organization. Due to
its reflective nature, business intelligence is often the most fluid and unsteady
part of enterprise information systems. The most promising way to tackle the
challenges in such a rapidly growing, changing and complex field is automation.
Efficient automation in this particular field requires techniques from multiple
areas of computer science: computer language and semantic technologies, a
combination of rule systems and reasoning. Our goal is to aid users with

17

intelligent tools that can reduce the time required for several difficult tasks from
weeks to minutes, with higher quality results and smaller costs.

As an example, showcasing the complexity, a real-life data flow graph (Figure
0.2) is captured and visualized with the methods and tools we introduce in this
thesis. The underlying graph structure, rules and algorithms form the basis for
understanding and automation of complex analysis tasks.

Figure 0.2 Real life Data Warehouse data flows from tables and views (left and middle
with blue) to reports (right side with red).

Contribution of the Thesis

The thesis presents a full stack of methods, technologies and algorithms which
give analysts a novel way to efficiently solve several existing management and
analysis problems in a corporate data warehouse environment.

The work presented lies in the domain of software and knowledge engineering
and is based on experimentation with different real-life datasets. The feasibility
and usefulness of the results to analysts are validated by practical application on
data warehouses of actual large international companies in the financial, utilities,
governance, telecom and healthcare sectors. In particular, table 4.1 presents the
performance analysis on six large datasets.

The main components of the contribution are:

18

e Anew formalized mapping representation for specifying data transformations
between different data formats, locations and storage mechanisms.

e An EAV-style open data model for storing meta-information, ontologies and
dependencies of the investigated information system, along with a
corresponding graph-based internal representation.

e Algorithms estimating the impact factor of input variables in SQL statements.

¢ A method for computing the transitive closure of probabilistic dependency
chains.

¢ Data lineage and component dependence visualization methodology.

o Experiments demonstrating the feasibility of the method on large information
systems of real companies.

¢ Analysis and proposals for new ways to apply the lineage analysis to practical
problems of finding critical software components, estimating development
time, generating documentation and compliance reports.

We describe the underlying technology and abstract mapping concept in our
paper A, which forms the foundation for dependency graph representation of data
flows and structures (sections 3.2 to 3.4). We draw the methodology framework,
system architecture (section 3.1) and define the formal rule system for weighted
graph calculation in paper B (sections 3.6 and 3.7). We then extend our rule
system with in-memory data structures, illustrate the algorithms with examples
and present real-life applications in paper C (section 3.8 and chapter 4). Finally,
we present formal definitions and algorithms for graph models and calculations
to support semantic data lineage and impact analysis applications (section 3.8),
and we present the performance analysis over different real-life datasets in paper
D (section 4.3).

The core technologies that are named and used in this thesis and the
underlying papers are referenced to their origins in the footnotes. Some of them
are closely related to the contribution of the thesis and therefore require additional
explanation. The XDTL® language and runtime engine are technologies of
Mindworks Industries OUS, designed and built by several people inside and
outside of the company (including the author of this thesis). The dLineage’
technology is initially built by the author of the thesis together with my colleague
Margus Kliimask, and the XDLT is used as one of the core components of the
toolkit. The latter development of modern Ul and new features are built with my
colleagues form Mindworks Industries.

Organization of the Thesis

The thesis starts with the general introduction and the summary of the
contribution.

5 http://www.xdtl.org/
6 http://www.mindworks.ee/
! http://www.dlineage.com/

19

The first chapter of the thesis presents an overview of the data lineage and
impact analysis fields in data warehousing systems. We will give a simplified
example of the problems to be solved. The methodology chapter illustrates our
approach to the problems. The first chapter gives a background to the problems
that are common for all published papers A to D.

The second chapter gives an overview of the related work in the fields of data
lineage, provenance and impact analysis. A focus of the related work chapter is
in field of data lineage and data provenance, also other applications in these fields,
and the chapter draws wider context to papers B, C and D.

The third chapter of the thesis focuses on the algorithms developed along with
the design and the details of our system architecture. We will give detailed
presentations and will describe the considerations, options and reasons behind
our choices. We will draw a picture of the data model and the basic building
blocks with key figures and components that are introduced and used in published
papers A to D.

The fourth chapter of the thesis focuses on the details and requirements of our
system implementation and the practical case studies in different industries. We
will also present new potential application areas. The chapter extends the case
studies and the visualizations topics that were introduced in the paper D.

The conclusions chapter summarizes the advantages of our data lineage
architecture and system, our contributions and gives suggestions for future work
on the topic.

The rest of thesis consists of the four selected publications from the full list of
eighth.

20

1. DATA LINEAGE

This chapter presents a detailed introduction to data lineage and provenance
problems, starting with an overview in section 1.1. We continue with an example
in section 1.2, with a query example and mapping representation that forms the
interconnected data flow graph. We use the same examples in subsequent
chapters to illustrate different data linage or impact problems, keeping a
connection with different parts in the current thesis.

1.1. Overview of Data Lineage and Provenance

The data lineage, data provenance or pedigree are the overlapping terms used
to describe tracing origin sources and derivation of data. The provenance term, in
the scientific community, is used synonymously with the lineage term in the
database community. Sometimes provenance is also referred to as source
attribution or source tagging. Data lineage is a common key component for many
different application domains and is also the subject of studies in the field of
Computer Science or Data Science. Many business and scientific domains, like
scientific data management, big data, machine learning, data warehousing or
business intelligence, need provenance or lineage metadata on the origin, rules,
transformation, derivation, history, timing, context and background of the used
and processed data. Authenticity, integrity, correctness and trustworthiness of
information are common requirements for different domains that can be
established with effective tracing of data lineage. From scientific and business
perspectives, data sets are not very useful without knowing the exact sources,
processing methods and rules of derived data sets [2].

Data warehouses [3] and curated databases [4] are typical examples where
lineage information is essential. In both databases, comprehensive and often
manual effort is usually expended in the construction of the resulting database —
in the former, in specifying the ETL process, and in the latter, in incrementally
adding and updating the database. Data lineage adds value to the data by
explaining how it was obtained. It is important to understand the lineage of data
in the resulting database to check the correctness of an ETL specification or assess
the quality and trustworthiness of the collected data [5].

There are two levels of granularity in lineage described in previous works:
workflow or coarse-grained provenance and data or fine-grained provenance [6].
The coarse-grained workflow lineage describes the data processing components,
tasks and programs as a sequence of steps to capture and present general
transformations between data sources and targets without specific details. The
number of steps and the level of detail can vary between hardware and software
platforms and components to transformation programs and sub-components.
Fine-grained data lineage describes detailed information and derivation of data
items, like data structures, columns, tuples or rows, and represents it as a sequence
of transformation steps to trace from sources to targets or vice versa.

Both detail and granularity levels can be seen in combination with up to three
types of lineages to answer different questions [7]:

21

e Why lineage refers to context of data transformations and provides
justification for input data elements appearing in the output. Why lineage
answers questions like how some parts of input data influenced the output
data.

e How lineage refers to the transformations of the source data elements and
answers questions like how inputs were manipulated to produce given output.

o Where lineage refers to the locations of the data sources and structures from
which the data was extracted and answers questions like where the data
comes from or which inputs were used for a given output.

These three notions of why, how and where provenance are used as
independent or combined approaches to the data lineage solutions in databases.
The previous works that follow and cover these categories are analyzed by
Cheney et al. [5] and Tan [6], but there are also works that do not fit neatly into
the why, where and how provenance framework. Such works include Wang et
al.”’s Polygen model [8], Cui et al.’s lineage tracing [9], Widom’s Trio system
[10] or Woodruff and Stonebraker’s work on lineage [11] [5].

To illustrate different lineage types, consider the following simple data
loading SQL query from the source table Account (Nbr, Type, State) to the target
table Agreement (Agreement_Nbr, Agreement_Type, Agreement_State):

INSERT INTO AGREEMENT (Agreement Nbr, Agreement Type, Agreement State)
SELECT Nbr, Type, Coalesce (State,0)

FROM ACCOUNT

WHERE Type = ’A’

AND End Date is not null

The Where lineage for every target table column (Agreement_Nbr,
Agreement_Type, Agreement_State) describes where data comes from and
corresponds to select list columns (Account.Nbr, Account.Type, Account.State)
in the SQL query. The How lineage for each target column column
(Agreement_Nbr, Agreement_Type, Agreement_State) describes the column
data transformation logic and expressions of each source column (copyOf(Nbr),
copyOf(Type), Coalesce(State,0)) in the SQL query. The Why lineage for each
target column comes from the conditions part that is present in the where (or join)
of the SQL query and describes the context of data transformations like the two
predicates here: Account.Type =’A’ and Account.End Date is not null.

Generic data transformation can be defined as a set of functions Tr(try..try)
over source datasets Si(Sii..S.m) t0 SnSni..Snm) that produce target or output
dataset T(t;..t,) in context of C(S1..Sn): T = Tr(S:1..Sn, C(S1..Sn)). General data
lineage of target dataset T is defined as a lineage function L: L(T) = (S:..Ss) and
specific where, how and why properties by functions: Lunere(T) = (S1..Sn), Lhow(T)
= Tr(S1..Sn) and Lwny(T) = C(S1..Sn). The previous example SQL query column
Agreement_State lineage properties can be described as follows:

o Lunere(Agreement.Agreement_State) = Account.State
e Lnw(Agreement.Agreement_State) = Coalesce(Account.State,0))

22

o Luwny(Agreement.Agreement_State) = Account.Type="A’ and Account
.End_Date is not null

The previous research on data lineage and provenance has been based on one

of two computational approaches in general:

¢ The non-annotation approach, which assumes the execution of a set of
transformation functions against the source or input dataset to generate the
output dataset in order to compute the data or row level lineage of
transformation and target dataset; and

e The annotation approach, which carries additional information in
transformation to target dataset; this requires modifications of the initial
transformation functions and requires extra space for maintaining additional
data. The analysis of additional data allows for computation of the data or
row level lineage without access to the input dataset.

In this thesis, we focus mainly on the data lineage problem and practical
solutions in database environments and use the data lineage term instead of
provenance. We have chosen the non-annotation approach to the data lineage
problem to support fast start and no impact on the working systems. We also take
advantage of data structures and transformations metadata, capture query
semantics and make probabilistic score calculation and logic-based inferences
about the input or output data, without a need for and access to the real data (i.e.
only metadata is used).

1.2. A Motivating Example

As an example of a financial industry data warehouse data lineage and data
impact problems, we have constructed our data loading and transformation
scenario with four SQL queries and four source tables. The data form the
ACCOUNT and LOAN tables are consolidated to one unified AGREEMENT
table, then we join the BALANCE table and two new tables,
DEPOSIT_SUMMARY and LOAN_SUMMARY, populated with denormalized
data for further querying and reporting. The next table (Table 1.1) below presents
four SQL DML queries from two different but dependent data loading jobs. The
Job1 is responsible for data loading to the DW and the Job2 is responsible for
loaded data manipulations and denormalization.

Table 1.1 Data transformation SQL query examples used in DW loading jobs.

SQL Query 1 from Job 1

INSERT INTO AGREEMENT (Agreement Nor, Agreement Type, Agreement State)
SELECT T1.Account Nbr, T1.Type, Tl.State Code

FROM ACCOUNT T1

JOIN ACCOUNT STATE T2 ON T2.Code = T1.State Code

WHERE T2.State = ‘Active’

AND T1.Type = 'A’

SQL Query 2 from Job 2

23

INSERT INTO DEPOSIT SUMMARY (Period Date, Agreement Nor, Agreement State,
Balance Amt)

SELECT T3.Balance Date, T4.Agreement Nor, T4.Agreement State, T3.Balance Amt

FROM AGREEMENT T4

JOIN BAIANCE T3 ON T4.Agreement Nbr = T3.Agreement Nbr

WHERE T4.Agreement Type = ‘A’

AND T4.Agreement State = 2

AND T3.Balance Date = DATE-1

SQL Query 3 from Job 1

INSERT INTO AGREEMENT (Agreement Nbr, Agreement Type, Agreement State)

SELECT T6.Loan Id, ‘L’, case when T6.State = ‘New’ then 1 when T6.State = ‘Active’
then 2 else 0 end

FROM LOAN T6

JOIN LOAN TYPE T7 ON T6.Loar17Type = T7.Code

WHERE T7.Type in (‘Private’, ‘Business’)

AND T6.State in (‘New’, ‘Active’)

SQL Query 4 from Job 2

INSERT INTO LOAN SUMMARY (Period Date, Agreement Nor, Agreement State,
Principal Amt)

SELECT T3.Balance Date, T4.Agreement Nor, T4.Agreement State, T3.Balance Amt

FROM AGREEMENT T4

JOIN BAIANCE T3 ON T4.Agreement Nbr = T3.Agreement Nbr

WHERE T4.Agreement Type = ‘L’

AND T4.Agreement State = 2

AND T3.Balance Date = DATE-1

The dependencies between the source and target tables, jobs and the queries
can be extracted from the queries and presented as a directed graph. The
structures and components are nodes of the graph and dependencies between
source and target tables are the directed edges of the graph. The direction of the
edge points the data flows from the source to the target structures. The Figure 1.1
has two coarse-grain data flow graphs with the detail level of tables and jobs or
tables and queries. We can use those graphs as illustrations for data lineage and
impact analysis problems, where data lineage questions can be answered as
querying sub-graphs in the target-to-source direction and data or component
impact questions can be answered by sub-graph queries in the source-to-target
direction. We can also notice that it is not possible to see which table data is
moving to the target tables and which is used only for filtering or lookups without
going to the fine-grain, column and query components level. For example, we
can see that ACCOUNT_STATE and LOAN_TYPE tables are used as sources
for the job and query levels, but we do not recognize that the data is not loaded
to the AGREEMENT table and is used only for filtering rows with certain types
or statuses.

ACCOUNT
ACCOUNT_STATE —\ y DEPOSIT_SUMMARY

—\ JOB1 3 AGREEMENT 3 joB2

LOAN L J A OAN_SUMMARY
BALANCE

LOAN_TYPE

24

=3, DEPOSIT_SUMMARY

ACCOUNT -\
—

Q1 Q2
ACCOUNT_STATE —\

AGREEMENT

LOAN

—\ j BALANCE e

Q3
1T

Q4 =3 LOAN_SUMMARY

LOAN_TYPE

Figure 1.1 DW data transformation flows in table, job and query levels.

The next Figure 1.2 illustrates the fine-grain level of detail, where the query
components allow us to construct more complex and detailed dependency graphs
to answer data lineage and impact questions at the column level. The
transformation queries (Q1...Q4) are parsed to abstract mappings (M1...M4)
with all the available source and target tables. Each mapping has data
transformation elements (t1.1...t4.3), joins (j1.1...j4.1) and filter conditions
(f1.1...f4.1) according to the query structure and expressions. All source and
target tables have connected columns according the usage in the query
expressions. Additional transformation expressions, key-value constraints and
conditions are extracted from the query text and are connected to mappings for
further semantic calculations and instance-level data lineage tracing.

ACCOUNT
F-- . ’7DEPOSIT_SUMMARY

Account_Nbr M2 Period_Date

21 ﬁ/\gmememﬂhr

Agreement_State

Type

State_Code % :i
_/
71

AGREEMENT

Agreement_Nbr

_j Balance_Amt
2.4

ACCOUNT_STATE
Code Agreement_Type \

State Agreement_State

_ LOAN_SUMMARY
M4 -~

_/ Period_Date
t4.1 -_/

Agreement_Nbr

LOAN e BALANCE

Loan_Id Balance_Date

Loan_Type Agreement_Nbr

[
State Z b1
3.1

LOAN_TYPE
= 7
Code /
’
.

Type

Agreement_State

__annmpa_Amt
t4.4

Balance_Amt

Figure 1.2 DW data transformation flows in table, column and query component levels.

The result of the parse and query processing is a detail-level dependency graph
that allows for more precise data lineage and impact analysis in the table and
column levels. The graph is a representation of the discrete source and target
dependencies between the input and output components without additional
knowledge to describe how the data is transformed or filtered in the
transformation query. Analysis of the queries Q1...Q4 and predicates from the
where clauses shows that different and independent sets of rows produced by

25

queries Q1 and Q3 from the ACCOUNT and LOAN tables are loaded to the same
AGREEMENT table. We also notice that queries Q2 and Q4 are using the same
independent sub-sets of rows from the same AGREEMENT table using filtering
predicates Agreement_Type = ‘A’ and Agreement Type = ‘L’.

We can conclude the example by saying that, based on the data structures
information and understanding the query semantics in terms of transformation
functions and filter predicates, we can make logical inferences about data rows
or tuples that are involved or excluded in data lineage workflows.

1.3. Summary

This chapter presented an introduction to data lineage, provenance and impact
analysis problems, starting with the overview in section 1.1, followed by the
example section 1.2, with queries and mapping representation forms for the
interconnected data flow graph that will be used in subsequent chapters to
illustrate different data linage or impact problems. These connect with different
parts of the current thesis.

26

2. RELATED WORK

Impact analysis, traceability and data lineage issues are not new. An overview
of the data lineage and data provenance tracing studies were collected by Cheney
et al. [5], historical and future perspectives were discussed by Tan [6] and the last
decade of research activities were presented by Pribe et al. [12]. Lineage and
provenance has been studied in scientific data processing areas [7], [8], [9] and
in the context of database management systems [2], [6], [16]. Multiple notions of
lineage and provenance in database systems have been used to describe
relationships between data in the source and in the target: where output records
came from [7], why an output records were produced by inputs [7], [17] and a
how output record was produced [18]. The query behavior lineage tracking has
been used in classical database problems like view update [19] or the
expressiveness of update languages [20], and the study of annotation propagation
[20], [21] or updates across peer-to-peer systems [22]. The data-driven and data
dependent processes and provenance theoretical and practical models described
by Deutch et al. [23].

The distinction is made between coarse-grained, or schema-Ilevel, provenance
tracking [24] and fine-grained-, or data instance-, level tracking [25]. The
methods of extracting the lineage are divided into physical (annotation of data by
Missier et al.) and logical, where the lineage is derived from the graph of data
transformations [26].

We can also find various research approaches and published papers from the
early 1990’s and later with methodologies for software traceability [27]. The
problem of data lineage tracing in data warehousing environments has been
formally founded by Cui and Widom [9], [17]. Data lineage or provenance details
levels (e.g., coarse-grained vs fine-grained), question types (e.g., why-
provenance, how-provenance and where-provenance) and two different
calculation approaches (e.g., eager approach vs. lazy approach) have been
discussed in multiple papers [6], [28], and formal definitions of the why-
provenance have been given by Buneman et al. [7]. Other theoretical works for
data lineage tracing can be found in [29] and [30]. Fan and Poulovassilis
developed algorithms for deriving affected data items along the transformation
pathway [31]. These approaches formalized a way to trace tuples (resp. attribute
values) through rather complex transformations, given that the transformations
are known on a schema level. This assumption does not often hold in practice.
Transformations may be documented in source-to-target matrices (specification
lineage) and implemented in ETL tools (implementation lineage). Woodruff and
Stonebraker created a solid base for the data-level and operator processing based
the fine-grained lineage, in contrast to the metadata-based lineage calculation in
their research paper [11].

Priebe et al. concentrated on proper handling of specification lineage, a
significant problem in large-scale DW projects, especially when different sources
have to be consistently mapped to the same target [12]. They proposed a business
information model (or conceptual business model) as the solution and a central
mapping point to overcome those issues. The requirement and design level

27

lineage and traceability solutions for next generation DW and BI architecture
described by Dayal et al. [32].

Other ETL-related practical works that are based on conceptual models can
be found in [33] and [34]. Ontologies and graphs-based practical works related to
data quality and data lineage tracking can be found in [35], [36] and [10]. De
Santana proposed the integrated metadata and the CWM metamodel-based data
lineage documentation approach [37]. The conceptual modeling approach of ETL
workflows described by Bala et al. [38] in the Big Data landscape and Basal [39]
presented a semantic approach to combine the traditional ETL approach with the
Big Data challenges. Another related work from the field of data lineage and
scientific data provenance by Wang et al. [40] brings together challenges and
opportunities of Big Data, including volume, variety, velocity and veracity, with
the problems of scientific workflow tracking and reproducibility. The cloud-
based or distributed systems have their own limitations for data lineage tracing
and the data-centric event logging introduced and discussed by Suen et al. [41].

In addition to data lineage and provenance in databases, closely related
workflow provenance tracking is an active research topic in the scientific
community. The overview of scientific workflow provenance was captured in
surveys by Bose and Frew [15] and Glavic and Dittrich [42], and tutorials with
research issues, challenges and opportunities were described by Davidson and
Freire in [43]. General design and principles of scientific workflow lineage and
provenance systems were introduced and discussed by Bose [44], Simmhan et al.
[45], Altintas et al.[46], Chervenak et al. [47] and Wu et al. [48], and there are
many different flavors and accents, like the collaborative approach from Missier
et al. [49] and Altintas [50]; the cloud-based or distributed systems by Cruz et al.
[51], Marinho et al. [52] and Wang et al. [53]; the Big Data-oriented approach by
Wang et al. [40]; the graph-oriented approach by Anand et al. [54], [55], Acar et
al. [56] and Biton et al. [57]; the ontology-driven approach by Bowers et al. [58];
the semantic web and semantic technologies based approaches by Kim et al. [59],
Ding et al. [60] and Sahoo et al. [61]; the user- or scientist-oriented systems from
Bowers et al. [62]; and the user- or subjective scientist eliminative-based
approach by Finlay [63]. The scientific workflow lineage and provenance
research does not end here, but continues in different scientific domains, like
bioinformatics by de Paula et al. [64] and Buneman et al. [65] or genomics by de
Paula et al. [66].

The lineage and provenance problems are not limited with databases, -flows
and scientific workflows, but having common challenges in field of curated
databases, semantic web, open linked data, e-Sciences and the growing social
networking landscape. Some interesting works can be found on the borders of the
different domains and disciplines by Chirigati and Freire [67], Hartig and Zhao
[68], Moreau [69], [70] and Moreau et al. [71].

In the context of our work, efficiently querying the lineage information after
the provenance graph has been captured is of specific interest. Heinis and Alonso
presented an encoding method that allows space-efficient storage of transitive
closure graphs and enables fast lineage queries over that data [24]. Anand et al.
proposed a high-level language QLP, together with the evaluation techniques that

28

allow storing provenance graphs in a relational database [72]. These techniques
are supported by a pointer-based encoding of the dependency closure that
supports reducing storage requirements by eliminating redundancy.

Several commercial ETL products are addressing the impact analysis and data
lineage problems to some extent (e.g., Oracle Data Integrator, Informatica
PowerCenter, IBM DataStage, Teradata Metadata Services or Microsoft SQL
Server Integration Services), but those tools and the dependency analysis
performed is often limited to the basic functions of a particular system. Another
group of commercial tools is formed by the specialized metadata integration
products not related to a particular ETL tool, offering a more sophisticated suite
of dependency analysis functionality. The examples are ASG Rochade®,
InfoSphere Information Governance Catalog from IBM®, Data Governance and
Catalog from Collibral®, Informatica Metadata Manager!, SAP Information
Steward?, Metacenter from Data Advantege Group®, Adaptive Metadata
Manager'4, Troux Enterprise Architecture Solution®®, Metadata Management
from Cambridge Semantics®®, Metdata System from AB Initio* or
Metalntegration Metadata Management!®, most of which have their own
limitations in terms of available functionality and adapters to other products [12].

In addition to full scale metadata management or data governance products,
there are several new generation technology companies, who fit into the picture
one or another way: Automated SQL query parsing and lineage extraction from
SqlDep'® and Manta®; Metadex data lineage solution from CompactBI?;
Accurity business glossary and data governance solutions from Simplity?;
Machine Learning based metadata and data lineage discovery solutions from
RokittAstra®®; Data lineage and governance solutions from Synergy?; SQL
parsing, analyzing, documenting and data lineage discovery tools from General
SQL Parser®; Data mapping and documenting oriented Mapping Manager

8 https://www.asg.com/

9 http://www-03.ibm.com/software/products/en/infosphere-information-governance-catalog
10 https://www.collibra.com/

1 https://www.informatica.com/products/informatica-platform/metadata-management.html
12 http://www.sap.com/community/topic/information-steward.html

13 http://www.dag.com/

14 http://www.adaptive.com/metadata-manager

15 http://www.troux.com/

16 https://www.cambridgesemantics.com/solutions/metadata-management

17 https://www.abinitio.com/en/system/enterprise-meta-environment

18 http://www.metaintegration.com/Solutions/#MetadataManagement

19 https://www.sgldep.com/

20 https://getmanta.com

2 http://www.compactbi.com/

2 http://www.accurity.eu/

2 https://www.rokittastra.com/

24 http://www.meta-analysis.fr/en/la-solution/

% http://sqlparser.com/

29

solution from AnalytixDS?®; Automated metadata capture, analysis and
collaboration tools by AlexSolutions?’; Data lineage and graph data analysis and
visualization tools from Linkurious?®; Synapse data mapping, analysis, tagging
and visualization tools from Sapient?®; Axon governance, lineage and
collaboration tool from Diaku®’; and finally fully automated, semantic metadata
capture, data lineage, impact analysis, business governance and visualization in
toolset dLineage®, that is based on the methodology, algorithms and ideas, that
are described in this thesis.

2.1. Summary

This chapter gave an overview of previous works and scientific studies in the
field, along with the industry landscape.

% http://analytixds.com/products/mapping-manager/
2 http://alexsolutions.com.au/

28 https://linkurio.us

2 https://synapse.sapientconsulting.com/

30 https://www.diaku.com

31 http://www.dlineage.com

30

3. ALGORITHMS AND METHODS

This chapter presents the algorithms and methods we have designed and
implemented. The overall architecture follows the methodological pathway
presented on a conceptual level in section 3.1. We describe the metadata database
design in section 3.2 and different metadata models (metamodels) for databases
and data integration in section 3.3. More details about the underlying foundation
and mapping design can be found in article A. The logical path with query parsing
and resolving techniques continues in section 3.5, with data transformation
evaluations and weight calculations. The rule system implemented for graph
construction and calculations is discussed in section 3.7, the semantic layers on
calculated graphs are discussed in section 3.8. The rule system and graph
calculations are discussed at a detailed level in papers B, C and D.

3.1. Overall Architecture and Methodology

The overall architecture is based on an independent metadata collection and
storage framework with dynamic schema and unified metamodels, grammar-
based query parsing and resolving, probabilistic data transformation weight
calculation, rule-based graph calculation and web-based user interface
components. The architecture follows the methodology steps (from 1 to 8)
presented in Figure 3.1:

1. Scanners collect metadata from different systems that are part of the DW’s
data flow (DI/ETL processes, data structures, queries, reports, etc.) to the
open-schema metadata database (PostgreSQL or Oracle).

2. The SQL parser is based on a customized grammar, the GoldParser parsing
engine and the Java-based XDTL engine.

3. The rule-based parse tree mapper extracts and collects meaningful
expressions from the parsed text, using declared combinations of grammar
rules and parsed text tokens.

4. The query resolver applies additional rules to expand and resolve all the
variables, aliases, sub-query expressions and other SQL syntax structures that
encode crucial information for data flow construction.

5. The expression weight calculator applies rules to calculate the meaning of
data transformation, join and filter expressions for impact analysis and data
flow construction.

6. The rule-based reasoning engine propagates and aggregates weighted
dependencies.

7. The dependency graph is stored along with the collected metadata in a
relational database as binary and directed relations between node objects.

8. The directed and weighted sub-graph calculations, visualization and web-
based Ul is used for data lineage and impact analysis applications.

31

SaL
@ . Mapping
\, Rules g

DB Metadata L J
(Schemas, Tablag, «rreerresnensns
Wiews, Classifiers)

-

ETL Metadata
(S0L Queries, Loading
Scripts & Programs)

Reporting Metadata
(Models, Cueries,
Reports)

dLineage <> &
b Application

Ul & User
Interactions

J/DB,ETL BI'Y
" Metadata

Dependency ")
Graph

B

Figure 3.1 Methodology and system architecture components.

The color codes differentiate the data capture components (blue), active data
processing components (red) and passive supporting components (white). The
double lines in the comb-cell figure express the data flow bonds between the
active or passive components.

The base components of the system architecture were introduced in paper A.
Our general methodological and architecture scheme is presented in papers B and
C and developed further in paper D.

3.2. Metadata Database

Our metadata database is built on a relational database technology for different
knowledge management and rule-based analytical applications. The repository is
designed according to the OMG Metadata Object Facility (MOF)* idea with
separate abstraction and modeling layers (M0-M3). The physical data model
(schema) is based on principles and guidelines of the EAV (Entity-Attribute-
Value)* modeling technique suitable for modeling highly heterogeneous data
with a very dynamic nature. Metadata models and schema definitions in EAV are
separated from physical storage, and therefore modifications to schema on the
“data” level can easily be done without changing DB structures, just modifying
corresponding metadata. The chosen approach is suitable for open-schema
implementations (similar to key-value stores) where the model is dynamic and
semantics are applied in query time, but also model-driven implementations with
formal and well-defined schema, structure and semantics. The used URI
reference mechanism and resource storage scheme makes our metadata
repository a semantic data store that is comparable to the Resource Description
Framework (RDF) and can be serialized in different semantic formats or
notations (e.g., RDF/XML, N3, N-Triples, XMI, etc.) using XML or RDF APIs.

32 https://en.wikipedia.org/wiki/Meta-Object_Facility
33 https://en.wikipedia.org/wiki/Entity-attribute-value_model

32

M2 —

M1

The physical schema (Figure 3.2) can be seen as a general-purpose storage
mechanism for different metadata and knowledge models, and also as a
communication medium or information integration and exchange platform for
different software agents or applications (e.g., metadata scanners, metadata
consumers, etc.). Built-in limited reasoning capability is based on the recursive
SQL capability and is captured through data and metadata APIs to implement
inheritance and model validation functions. Semantic representation of data
allows for extended functionality with predicate calculus reasoners or applying
other external rule-based reasoners (e.g., Jena) for more complicated reasoning
tasks, like deduction of new knowledge.

property_type

has proparty

object_type

-property_type_cd
+parent_property_type_cd
+property_type_nm
+property_type_ds
+object_type_cd
+datatype_cd
+enumeration_cd
+default_value_ds
+mandatory_ind
+multiplicity_ind

is datatype (value domail

-object_type_cd
+parent_object_type_cd

is enumeration

+object_type_nm
+object_type_ds

ha na\ent

+origin_ds
+reference_ds
+abstract_class_ind

has relation

relation_type

is related

| has pFrenl

-relation_type_cd
+parent_relation_type_cd
+relation_type_nm
+relation_type_ds
+object_type_cd
+related_object_type_cd
+association_type_cd
+semantic_type_cd
+mandatory_ind
+multiplicity_ind
+transitivity_ind
+symmetry_ind
+reflexivity_ind

is instance of +taxonomy_ind
is instance of
is instance of
property has property object has relation relation

-property_id . -object_id -object_id

+parent_property_id +parent_object_id -related_object_id

+property_type_cd s value +object_type_cd is realted -relation_type_cd
__— |*property_nm +object_nm +relation_ds

+property_ds +object_tag +state_ind

+object_id is unit +object_ds +published_dt

+unit_id +origin_ds +published_by

+language_id +reference_ds +edited_dt

+value_id is language +object_txt +edited_by

+value_ds +notes_txt -created_dt

+value_txt +version_num -created_by

+version_num +edited_by -changed_dt

+edited_dt -created_dt -changed_by

+edited_by -created_by

-created_dt -changed_dt

-created_by -changed_by

-changed_dt

-changed_by has parpnt

has Dalnl

Figure 3.2 Metadata database physical schema tables.

The repository contains integrated object-level security mechanisms

and

different data access APIs (e.g., data, metadata, XML/XMI, RDF API, etc.) that

are implemented as relational database procedures or functions.

An unlimited number of different data models can exist inside our metadata
model simultaneously, with relationships between them. Each of these data
models constitutes a hierarchy of classes where the hierarchy might denote an
instance relationship, a whole-part relationship or some other form of generic
relationship between hierarchy members. We designed several predefined
metadata models for data lineage and impact analysis data:

33

e terminology and classification (business meaning and governance);
o relational database (DB and SQL);

e data integration model (ETL);

o reporting model (OLAP, BI, Reporting); and
e mappings model (formalized abstract mappings).

3.3. Design of Metadata Models and Mappings

The relational database metamodel is used to store detailed information about
the sources and targets of data transformations. The RDB metamodel focuses on
the main database objects, e.g. Schema, Table, View, Column, Datatype,
Procedure, etc. The ETL metamodel is based on the OMG CWM?3 reference
architecture with base concepts like Folder, Package, Step and Task. The ETL
model is focused on the organization and structure of data processing packages,
sequences and dependencies of events, relations between elements controlling
data processing workflow, etc. The reporting metamodel focuses on Report,
Model, Dimension, Hierarchy and Measure elements, taking advantage of the
mapping metamodel to store query mappings and related classes, and is used to
store information describing the presentation layer. The mappings metamodel
used to manage decomposed relationships and expressions in a unified manner.

Various metadata and data integration and ETL models are discussed and used
in previous works [73],[74]. We decided to implement our own “soft” models
that do not require a database physical schema change when changing the
metamodel. The details about the abstract mappings model design, storage and
usage is presented in article A.

3.4. Data Capture, Store and Processing with Scanners

The Extensible Data Transformation Language (XDTL) is an XML-based
descriptive language designed for specifying data transformations between
different data formats, locations and storage mechanisms. XDTL was created by
Mindworks Industries as a Domain Specific Language (DSL) for the ETL domain
and was designed to keep in mind principles like modularity, extensibility,
reusability, decoupled declarative (unique) and procedural (repeated) patterns.
XDTL syntax is defined in an XML Schema document. Wildcard elements of
XML Schema enables extending the syntax of the core language with new
functionality implemented in other programming languages or in XDTL itself.
XDTL scripts are built as reusable components that have clearly defined
interfaces via parameter sets. Components can be serialized and de-serialized
between XML and database representations, thus making XDTL scripts suitable
for storing and managing in a data repository. XDTL provides functionality to
use externally stored data mappings for the scripts and decoupled from the scripts.
Therefore, mappings stored in a repository can exist as objects independent from

34 https://en.wikipedia.org/wiki/Common_Warehouse_Metamodel

34

the transformation process and can be reused by several different processes.
XDTL acts as a container for a process that often must use facilities not present
in XDTL itself (e.g., SQL, SAS language, etc.).

The purpose of a scanner is to extract and capture all relevant metadata about
a certain class of data elements and store it in a predefined, structured manner.
Scanners components (Nol in Figure 3.1) are collecting external systems
metadata, like database data dictionary structures, ETL system scripts and queries
or reporting system guery models and reports, and all structural information is
extracted and stored to the metadata database. The scanned objects and their
properties are extracted and stored according to defined meta-models, like
relational databases, data integration, reporting and business terminology models.
Metamodels contain ontological knowledge about collected metadata and
relations across different domains and models. The scanners technology and
open-schema metadata database design are described in more detail in our article
A.

The database scanner is a program implemented as an XDTL package or script
that transforms metadata from a database dictionary into an RDB metamodel.
Database scanners are based on ANSI SQL Information Schema® specification
and are currently being implemented for MsSQL, PostgreSQL, Greenplum,
Oracle, Teradata, IBM DB2, Netezza, Vertica and other database platforms. All
database scanners are implemented as two-phase processes that materialize (scan)
scanned data in a format conforming to Information Schema definition. A
separate process (store) stores this temporary information in a permanent storage
media (database). Decoupling those processes allows for reusing components
created for different database products in multiple combinations.

Application scanning is a procedure implemented as an XDTL package that
transforms metadata from application repository or internal representation into an
application metamodel. Several application scanners have been implemented for
various ETL, OLAP and Reporting tools.

Oracle Data Integrator (ODI) is an ETL tool quite common in DW
environments, especially in relation to Oracle databases. The ODI scanner
extracts information relevant for impact analysis, i.e., all data sources and targets,
column mappings, transformations, JOIN and WHERE conditions, variables,
references to external processes, etc.

Business Objects (BO) is a widely used reporting tool used in DW. The BO
scanner extracts metadata from a BO application repository and File Store,
transforming it into a reporting metamodel. The granularity of the extracted
information is relevant to impact analysis requirements.

3.5. Query Parsing and Metadata Extraction

To construct data flows from the very beginning data sources (e.g., the
accounting system) to the end points (e.g., reporting system) we should be able
to connect the same and related objects in different systems. To connect objects,

% https://en.wikipedia.org/wiki/Information_schema

35

we have to understand and extract relations from SQL queries (e.g., ETL tasks,
DB views and procedures) and scripts (e.g., loader utility scripts) and expressions
(e.g., report structure) that are collected and stored by scanners. To understand
the data transformation semantics that are captured within the query language
statements (e.g., insert, update, select and delete queries) and expressions, we
have to involve external knowledge about query language syntax and
grammatical structure. We used a general-purpose Java-based parser engine® and
developed a custom SQL grammar that was written in Extended Backus-Naur

Form (EBNF)S. Our grammar is based on ANSI/SQL syntax, but it contains a
large set of dialect specific notations, syntax elements and functions that were
developed and trained using large real-life SQL query sets from the DW field.
The current grammar edition is based on the Teradata, Oracle, Greenplum,
Vertica, Postgres, IBM DB2, Netezza and MsSq| dialects.

Example 1. SQL select statement grammar sample in EBNF format:

<Select Stm> ::= <Select> UNION <Select Stm>
| <Select> UNION ALL <Select Stm>
| <Select>

<Select>::= SELECT <Columns><Into Clause><From><Where><Group Clause><Qualify Clause>
<Having Clause> <Order Clause>

<SubqueryStm> ::='('<SelectStm>') ' <Columns> ::=<Restriction>'*"'

| <Restriction> <Column List> <ColumnList> ::=<ColumnItem>', '<ColumnList>
| <Column Item>

<Column Item> ::= <Column Source>

| <Column Source> <Alias>

| <Column Source> ' AS ' <Alias> <Column Source> ::= <Column Source Item>
<Column Source Item> ::= '('<Column Source Item>')' | <Add Exp>

<From> ::= FROM <Id List> <Join Chain> |

<Join Chain> := <Join> <Join Chain> |

Grammar-based parsing functionality is built into the scanners technology and
a configurable “parse” command brings semi-structured text parsing and
information extraction into the XDTL data integration environment. As the result
of the SQL parsing step (No2 in Figure 3.1), we have a large parse tree where
every SQL query token has a special disambiguated meaning based on the
grammar syntax.

Example 2. Parse tree fragment with grammar rules and parsed text tokens:

| +——<SelectStm>: :=<Select>
\
+--<Select>: :=SELECT<Columns><IntoClause><From><Where><GroupClause><QualifyClause><Ha

ving Clause> <Order Clause>

| +--SELECT

| +-—<Columns>: :=<Restriction><ColumnList>

| | +——<Restriction>::=

| | +=—<ColumnList>::=<ColumnItem>', '<ColumnList>
| | | +——<ColumnItem>::=<ColumnSource><Alias>

|

I
I
I
I
I
| | | | +=—<ColumnSource>: :=<ColumnSourceltem>

36 http://www.goldparser.org/

36

| +--<ColumnSourceItem>: :=<AddExp>

| | +=—<AddExp>: : =<Exp><Operator><AddExp>
| | | +——<Exp>::=<Value>

| || | +——<Value>::=Id

| | | | | +-MK.Kood

| | | +——<Operator>::="||"

| | +=—<AddExp>: :=<Exp><Operator><AddExp>
| | +——<Exp> ::= <Value>
| | +=—<Value>::=StringlLiteral
[+

\
|
| | +——<Operator> ::= "[|"'
\

I
|
I
I
|
I
[B B sl B
|
I
I
I
|
| [T

To parse different texts into the tree structure and to be able reduce tokens and
parse the tree back to meaningful expressions (depending on search goals), we
use a declarative rule set (in JSON format) based on token and grammar rule
combinations. Configurable grammar and a synchronized reduction rule set
makes the XDTL parse command more suitable for general-purpose information
extraction and it captures the resource-hungry computation steps into one single
parse-and-map step with a flat table outcome. Parse Tree Mapper (No3 in Figure
3.1) uses 3 different rule sets with more than 100 rules to map the parse tree into
data transformation expressions. The defined rules are declared in the following
sets and are illustrated in Example 3:

e Stopword list and grammar rules are used to indicate the mapper to flush the

buffer and start token collection to construct a new expression;

o Mapword list and grammar rules are used to map collected expressions to
meaningful items (e.g., sources, targets, data transformations, joins and
filters); and

e Tagword list and grammar rules are used to tag special meaningful tokens in
expressions to identify all db objects references (e.g., tables, views, and
columns, functions, constants etc.).

Example 3. Mapper rule set sample with sql query tokens and grammar rules:

{"parse-map":
{"stopwords": [
{"token":"SELECT", "rule": "<Select>"},
{"token":"FROM", "rule": "<From>"},
{"token":"WHERE", "rule": "<Where>"},
{"token":"JOIN", "rule": "<Join>"},

] ’
"mapwords": [
{"map":"FilterCondition", "token":"WHERE", "rule": "<Where>", "group": "0"},
{"map":"JoinCondition", "token":"ON", "rule": "<Join>", "group": "0"},
{llmapﬂ : llSOurceH’ lltokenll : HFR@/P!, llrulell : ll<From>ll’ llgroup" : "0" } ,

{"map":"Target", "token" :"INTO", "rule": "<Ins Prefix>", "group": "0"},
{"map": "Transformation", "token":",", "rule": "<Column List>", "group": "0"},

37

e 1,
"tagwords": [
{"token":"1d"},
{"token":"IntegerLiteral"},
{"token":"StringLiteral"},
{"token":"Alias"},

-]
1}

After extraction and mapping of each SQL query statement into a series of
expressions, we execute the SQL Query Resolver (No4 in Figure 3.1) that
contains a series of functions to resolve SQL query structure-specific tasks:
¢ Resolve source and target object aliases to full qualified (schema name +

object name) object names;
¢ Resolve sub-query aliases to context-specific source and target object names;
e Resolve sub-query expressions and identify them to expand all query-level
expressions and identifies to fully qualified and functional ones;
e Resolve syntactic dissymmetry in different data transformation expressions

(e.g., insert statement column lists, select “*’ statements, select statement

column lists, and update statement assign lists, etc.); and
e Extract quantitative metrics from data transformation, filter and join
expressions to calculate expression weights (e.g., number of columns in

expression, functions, predicates, string constants, number constants etc.).

3.6. Data Transformation Weight Calculation

The problem of origin of data is often related with context, confidence and
trustworthiness. We can find papers from literature that focused on mathematical
models or algorithms to measure importance, certainty and trust in data
processing systems [75] or beliefs, opinions and trust transitivity, propagation
and reasoning in agents communication [76]. We notice some similarities in data
source confidence, trust calculation and propagation, but our data lineage and
impact weight calculation have different purpose. Our data transformation weight
calculation is based on probabilistic estimation of data sources usage in data
transformations and filtering, and the purpose is to make metadata-based
inferences about the data flows and the data usage.

Data structure transformations are parsed and extracted from queries, and are
stored as formalized, declarative mappings in the system (articles B and C). To
add additional quantitative measures to each column transformation or column
usage in join and filter conditions, we evaluate each expression and calculate
transformation and filter weights for them.

The Expression Weight Calculation (No5 in Figure 3.1) was based on the idea
that we can evaluate column data “transformation rate” and column data “filtering
rate” using data structure and structure transformation information captured from
the SQL queries. Such a heuristic evaluation allows for distinguishing columns
and structures used in transformation expressions or in filtering conditions or

38

both, and gives probabilistic weights to expressions without the need to

understand the full semantics of each expression. We defined two measures that

we further used in our rule system for new facts calculation:

e The column transformation weight Sw is based on expression complexity
estimation in column transformation and calculated weight expresses the
source column transfer rate or strength. Weights are calculated in scale [0,1]
where 0 means that data is not transformed from the source (e.g., constant
assignment in query) and 1 means that the source is directly copied to the
target (no additional column transformations).

o The column filter weight Fp is based on expression complexity estimation for
each filter column in the filter expression and the calculated weight expresses
the column filtering rate or strength. Weight is calculated in scale [0,1], where
0 means that the column is not used in the filter and 1 means that the column
is directly used in the filter predicate (no additional expressions).

The general column weight W algorithm in each expression for Sw and Fp
components are calculated as the column count ratio over all expression
components counts (e.g., column count, constant count, function count, predicate
count):

ColumnCount

~ ColumnCount + FunctionCount + StringCount + NumberCount + PredicateCount

All counts are normalized using the expression function list evaluation over
the positive function list (e.g., CAST, ROUND, COALESCE, TRIM etc.). If the
function in the expression is in the positive function list, then the normalization
function reduces according to the component count by 1 to “pay a smaller price”
when the used function does not a have significant impact on the column data.

When the column data is mapped from the source column to the target column
in the SQL DML statement column expression, then the data transformation
weight depends on the complexity of the expression and is between 0 and 1. The
following expression samples and the calculated weights for each source-target
column pair illustrate the variation of the data transformations:

gl: CAST(T1.LogDate AS DATE) as Request Date => 0.91
g2: T1.First Namel||' '||Tl.Last Name as Full Name = 0.67
g3: MIN(T1.Balance Amt) as Min Balance Amt = 0.5
g4: SUM(ZEROIFNULL (T1.Payment Amt)) as Sales Amt = 0.33

g5: SUM(CASE T1.Acc Type IN (2,42) THEN Tl.Acc Amt ELSE 0 END) as Credit Amt => 0.2

g6: CASE WHEN T1.Feature Id is not null THEN 'Y' ELSE 'N' END as Dynamic Ind => 0.17

The last expression g6 contains parts and measures like ColumnCount:
1 (T1.Feature_ld), FunctionCount: 2 (Case,WhenThen) and StringCount:
3 (null,Y,N). Using those values and the weight definition we calculate the
column pair operation o (T1.Feature Id,T2.Dynamic Ind, g6, 0.17)
weight in the expression g6 like this:

39

1 1
w = 1+ 2137050 5° 0.16667 = 0.17

3.7. Rule System and Dependency Calculation

The defined figures, operations and weights are used with the combinations
of declarative inference rules with formal reasoning to calculate possible relations
and dependencies between data structures and software components. Applying
the rule system to the extracted query graph, we calculate and produce the lineage
and impact graphs that are used for the data lineage or impact analysis.

First, we define the rule R: to map the column level primitive data
transformations to the data lineage graph edges with the aggregation of multiple
paths over pairs of nodes. Let E,,, = {e € Ey |e.X = x,e.Y = y} be the set
of edges connecting nodes x, y in the graph Go. The data lineage graph G, edges
are calculated by rule Ri: Vx,y E NE,, #® = 3e’ € E;, with a set of
properties:

e ' X=xNe.Y=y
o e¢''M =Ueek,,, &-M
o e W=max{e.W|e€E,,}

An inference of this rule should be understood as creating edges e’ into the set
E. until R1 is satisfied.

Ex,y EL

er (W=05)
ey
e; (W=08)

Figure 3.3 Visual representation of data lineage graph inference rule Ry .

The filter conditions are mapped to edges in the impact graph Gi. Let Fy;,, =

{x |Parent(x,p) Axisa filter in M } be the set of nodes that are the filter
conditions for the mapping M with parent p in database schema. Let Ty, =
{x|Parent(x,p") A x is target in M} be the set of nodes that represent the
target columns of mapping M. To assign filter weights to columns, we use the
function Wy: N — [0, 1]. The data impact graph G, edges are calculated by rule
Ra: Vp,p' € NFy, # @ ATyy # @ = 3e’ € E; with a set of properties:

o ¢ X=pAeY=p

e eM=M

o e W =avg{Wr(x)|x € Fyp}

40

Parent
X1 A

\d e P
Wr(x1)=0.5

X2 ®
Wi (x2)=0.9

Figure 3.4 Visual representation of data impact graph inference rule R, .

To propagate information through the database structure upwards, to view the
data flows on a more abstract level (such as table or schema level) or to calculate
the dependency closure to answer lineage queries, we treat the graphs G and G,
similarly. Let £,y = {e € E |Parent(e.X,p) A Parent(e.Y,p’)} be the set
of edges where the source nodes share a common parent p and the target nodes
share a common parent p’. The aggregation of the edges to the pair of common
parents in the lineage G, or impact graph G, are calculated by rule Rs: Vp,p’ €
N E,, # @ = 3e’ € E with a set of properties:

o ¢ X=pAeY=p
e'.M= Uee,,, e-M
ZeEEp’p, ew

|Ep,prl

€1
@®x, €2 Oyl
®x, ez "\,
— Ay

® X3 V3

e1.W=0.5
e2W=0.2
e3W=0.8

e W=

Figure 3.5 Visual representation of data lineage and impact graph inference rule R3,

Based on the derived dependency graph, we can solve different business tasks
by calculating selected component(s) lineage or impact over available layers and
chosen details. Business questions like: “What reports are using my data...?”,
“Which components should be changed or tested...?”” or “What is the time and
cost of change...?” will be turned to the directed sub-graph navigation and
calculation tasks. We calculate new quantitative measures to each component or

41

node by number of sources and targets in the graph and we use those results in
the Ul to sort and select the correct components for specific tasks:

e Local lineage and impact dependency scores are calculated as ratio over sum
of local source and target lineage or impact weights. Zero percent means that
there are no data sources detected for the object and 100% means that there
are no data consumers (targets) detected for the object. About 50% means
that there are equal numbers of weighted sources and consumers (targets)
detected for the object.

o Global lineage and impact dependency scores are calculated as sums of local
dependency scores over connected sources and target chains for each node.

The local dependency calculation algorithm for each connected node is as
follows:
(source(W))

Lb = Y(source(W)) + Z(target(W))

More details about data transformation weight, node score calculations and
rule systems are presented in articles B and C. Rule system improvements and
current formulations are presented in article D.

3.8. Semantic Layer Calculation

The semantic layer is an additional visualization and specific filter set used to
localize connected sub-graphs of the expected data flows for the selected node.
All connected nodes and edges in the semantic layer share the overlapping filter
predicate conditions or data production conditions that are extracted during the
edge construction to indicate not only possible data flows (based on connections
in the initial query graph), but only expected and probabilistic data flows.

The main idea of the semantic layer is to narrow down all possible and
expected data flows over all connected graph nodes by cutting down unlikely or
not-allowed connections in the graph, which is based on additional query filters
and semantic interpretation of filters and calculated transformation expression
weights. The semantic layer of the data lineage graph will hide irrelevant or
highlight relevant graph nodes and edges (depending on user choice and
interaction) that makes a distinction when underlying data structures are abstract
enough and independent data flows store and use independent “horizontal” slices
of data. The essence of semantic layers is to use available query and schema
information to estimate the row-level data flows without additional row-level
lineage information that is unavailable at the schema level, but is also expensive
or impossible to collect at the row level.

The visualization of the semantically connected subgraph corresponding to
the selected node is created by fetching the path nodes and the edges along those
paths from the appropriate dependency graph (impact or lineage). Any nodes not
included in the semantic layer are removed or visually muted (by changing their

42

color or opacity) and semantically connected subgraphs are returned or visualized
in the UI.

The semantic layer calculation is based on the selected node filter set and
calculated separately for back (predecessor) and forward (successors) direction
using a similar recursive algorithm with a search of overlapping filter conditions.

The illustration of different semantics of connected data flows (see Figure 3.6)
is based on previously presented example queries and lineage graphs (see Section
1.2). Tables ACCOUNT and LOAN data are integrated to one AGREEMENT
table by queries 1 and 3 (see Table 1.1), which is feeding two separate tables,
DEPOSIT_SUMMARY and LOAN_SUMMARY, with queries 2 and 4. This is
a typical scenario in DW or OLAP environments and data models where
dimension and fact tables are integrating data from different sources and various
queries, reports, applications or data marts using that data for different purposes.
Based only on database structures and query mappings, we can see how such hub
tables are integrating all dimension or fact sources to the one’s targets. In other
words, we can see and visualize all possible data flows based on query mappings.
To distinguish all possible data flows from actual flows based on query conditions
and restrictions, we have to go deeper into query conditions analysis to track
semantics of data flows.

- overlapping | BALANCE Bal

conditions rAGREEMENTEr
— j“i“ciAﬁE'E“;m"J - - DEPOSIT_SUMMARY
1 -

ACCOUNT

Account_Nbr

Period_Date
Type Agreement_Nbr
State_Code Agreement_State

Balance_Amt
Agreement_Nbr

Agreement_Type

Agreement_State

LOAN_SUMMARY

BALANCE Period_Date

LOAN

Loan_Id Balance_Date

Agreement_Nbr

Loan_Type Agreement_Nbr Agreement_State

Balance_Amt
State = Principal_Amt

|
__________ - L

T —>EGREEMENTAgveemem Type="1 1
overlapping ———=

conditions e e o

Figure 3.6 Semantic layer illustration for two independent data flows based on
overlapping query conditions.

When comparing queries 1-4’s mapping and filter predicate conditions, we
can see the two separate data flows going to the AGREEMENT table and two
separate flows moving out to the DEPOSIT_SUMMARY and
LOAN_SUMMARY tables. The data in the AGREEMENT table has the same
structure, but different sources and possibly different semantics. The intersection
or overlap in query conditions allows us to notice separate slices of filtered

43

subsets in integrated structures, and such semantic analysis and matching of
normalized query conditions allows us to make rule-based inferences about actual
data flows. Queries 1 and 2 are dealing with the same data slice and are
transforming it from the ACCOUNT to the DEPOSIT_SUMMARY table, and
queries 3 and 4 are dealing with the same data slice and are transforming it from
the LOAN to the LOAN_SUMMARY table. Those two different data flows in
Figure 2.3 are marked with different colors (blue and green).

We can conclude the example by stating that to answer the data lineage
questions more precisely we need to look into query semantics in addition to
structural mappings. The semantic analysis of query conditions and recursive
conditions overlapping search allows us to detect more likely data sources and
flows than all possible sources and flows. We can make probabilistic decisions
about row level (or set of rows) data flows using database and query metadata
without interfering with the work of the actual system.

The details and recursive graph traversal algorithm descriptions of the
semantic layer are published in paper D.

3.9. Summary

This system design chapter draws the high level methodological and technical
overview of designed and implemented system components, their functions and
the form. The system architecture follows the methodological pathway that is
defined on a conceptual level in section 3.1. The metadata database design
described in section 3.2 and different semantic models (metamodels) for
databases, data integration, business intelligence and generalized mappings
metadata were described in section 3.3. The metadata capture and scanners were
described in section 3.4. More details about the underlying foundation and
mapping design can be found in article A. A discussion of logical paths with
query parsing and resolving techniques continued in section 3.5, with data
transformations evaluation and weight calculation in section 3.6. The
implemented rule system for graph construction and calculations was discussed
in section 3.7 and the semantic layer on top of calculated graphs was discussed
in section 3.8.

44

4. IMPLEMENTATION AND APPLICATIONS

This chapter presents an overview of the actual implementation along with
real-life experiments and relevant statistics. The developed software components
and applications are introduced in the section 4.1. A system performance
evaluation based on six different real-life datasets and the performance overview
details is presented in the section 4.2. Special attention has been given to the
dataset visualization techniques presented in the section 4.3. Details of the
visualization methods are published in papers C and D. Possible additional
application areas are discussed in the section 4.4.

4.1. dLineage.com

The previously described architecture and algorithms have been used to
implement the dLineage®” toolset for data lineage and impact analysis in real
organizations. dLineage is packaged as web-based software as a service (SaaS)
or a local appliance, prepackaged and configured as a virtual machine (VM) with
all the vital components included, such as scanners, parsers and calculation
engine, metadata database and web-based user interface with multiple
applications. The web-based tools are divided into different applications for
different user groups:

e The technical application for metadata management, browsing and
navigation to keep track of the source systems content and interconnection
with all the available technical details.

e The analytical application for data lineage and impact analysis, data sources,
targets and data flow visualizations.

e The business applications for technical metadata management with the help
of a connected classification system, business glossary or ontology, and data
or business governance with the help of domains, role system and
responsibilities.

The scanners and web-based tools of dLineage have been extended and tested
in real-life projects and environments to support several popular DW database
platforms (e.g., Oracle, Greenplum, Teradata, Vertica, PostgreSQL, MsSQL,
Sybase), ETL tools (e.g., Informatica, Pentaho, Oracle Data Integrator, SSIS,
SQL scripts and different data loading utilities) and Bl tools (e.g., SAP Business
Obijects, Microstrategy, Microsoft SSRS etc.). The dLineage database is built on
PostgreSQL, using an open schema data modeling approach and predefined
metamodels, described in sections 3.2 and 3.3. The rule system and dependency
graph calculation is implemented in SQL queries and stored as a specialized
relation between the scanned node objects. The current implementation uses
recursive SQL for subgraph query tasks, which works reasonably well because
of a local single object context and a sparse nature of the dependency graph. The
number of objects in our test datasets (see section 4.2) were about 1.3 million and

37 http://dlineage.com

45

we have tested the recursive SQL approach with three times bigger datasets
without any remarkable drawbacks. We have also tested special storage and
indexing methods and in-memory database approaches as alternatives for
recursive SQL. The most promising approach would be the in-memory structures
and algorithms for graph querying, which can be easily adapted and added as
application components when needed. The algorithms for interactive transitive
calculations and semantic layer calculation (see sections 3.7 and 3.8) are
implemented in JavaScript and work in browsers for small and local subgraph
optimization and visualization. Visualization of data lineage and impact flows is
built using d3.js graphics libraries in combination with Sankey® diagram
techniques. Additional information can be found on our dLineage* online demo
site and more technical details are in article D.

The general idea of capturing and visualizing data flows in an organization
DW ecosystem are drawn in Figure 4.1. The idea of visualizations using a Sankey
diagram is to align all the data sources (e.qg., files, interfaces or tables in source
database) on the left side, all the final data consumers (ending targets, like reports,
export files, API interfaces, etc.) on the right side and all other structures and
components between them (depending on sources and targets). Figure 4.1.
illustrates a traditional DW environment with several data transformation layers
(e.g., source, staging, storage, access, and applications) using a small subset of
Human Resource Management System (HRMS) data structures. The data
structures and data are copied one-to-one from the source to DW and data
transformations are built on the access view layer in this simplified example.
Real-life DW environments are usually much more complex with different
modeling paradigms (e.g., ODS, dimensional, 3NF or hybrid), which means there
will be data restructuring and transformations almost in any layer or stage of data
flow.

Countries.

. " COUNTRIES I
COUNTRIES I COUNTRIES I e

LOCATIONS e

Branches
D Branch_Manager:
H Employees By Department
LOCATIONS I LOCATIONS I
DEFARTMENTS

DEPARTMENTS I DEFARTMENTS I Emgloyes_Details

D Mansges-Detsils
. H Employment History

D Employees By Manager
Yob_Histary
1085 I JoBs I soss h LNEAGE

l I Source HDW.JOBS [wist of dobs

REGIONS REGIONS REGIONS: I Regisna [0 Target VIEWS.Jobs I List of Regions

EMFLOYEES
EMPLOYEES I EMFLOYEES I

Emgloyess
JOB_HISTORY. o

JOB_HISTORY I JOE_HISTORY I

OO C— O/,

Weight 0.6
Ds 2146260 -» 2147068
Conditions Coalesce(Job_Id,0) > 0

" . 4 v 4 \ 2

Figure 4.1 Data lineage visualization example in DW environment using Sankey
diagram.

38 https://en.wikipedia.org/wiki/Sankey_diagram
39 http://www.dlineage.com/

The Analytics application in the dLineage toolset was designed for data
lineage and impact graph navigation and visualizations. In the Analytics
application, there are two built-in alternative data representation formats: table
and graph view; and two complementary content representations: data lineage
and impact view. The table view consists of two parts for each selected object:
dependent sources and dependent targets, which represent the list of objects that
are detected as a source or a target in-context of current focus. Figure 4.2 is an
illustration of one report object in a financial reporting hierarchy with more than
a hundred different sources (and no targets) that are connected to one report. The
table view shows the data lineage or impact graph with calculated metrics (e.g.,
distance, number of queries, number of sources and targets) and is sorted by the
most influential objects first.

The graph view in Figure 4.4 represents the same information about connected
sources and targets using a clickable and zoomable Sankey diagram, but in
contrast to the flattened table view, the graph view is stretched out from sources
to targets and rendered from left to right with all levels and distances clearly
visible.

TECHNICAL ANALYTICS BUSINESS

T FINREP

F01.01 - Balance Sheet Statement [Statement of
pro s s Financial Position]: Assets

Glob
DEPENDENT SOURCES (101) Count Count Distanc e Queries.

/ Field (59)

Figure 4.2 dLineage sub-graph table view, source and target objects with calculated
metrics.

At the same time, the content filters for lineage and impact graphs based on graph
calculation rules (see section 3.7) produces two different dependency relations:
lineage (based on data transformation rules Ry, Rz or Rs) and impact (based on data
impact rules R or R3). Based on the lineage or impact content filters, the user can see
and switch between a direct data lineage graph or a dependent component graph. The
latter contains also impact graph data that used for data filtering, joining or coding
and that do not contribute directly to target structures. In Figure 4.3 and Figure 4.4,
one can see the impact view with two or three colored dependency lines, where direct
data transformations are in gray and indirect impact dependencies are in red. Both

47

representations and content filters have their own aspect to emphasize and help in
combinations, and together they perform the lineage or impact analysis tasks.

TECHNICAL ANALYTICS BUSINESS

dLineage Q 1.

A CRD4 Reporting ~ DPM Mappings ~ DPM DW Mappings = MCY2038

Morzom oS gy

s category tequny mstruments) £ |

Impact
Source DPM DW Mappings / MCY2038 [957514]

Target CRD4 Finrep Definitions / Main category [Equity instruments] [250451]

Weight 1,000

Source queries
D<g MCY2038

Business Demo @

Impact 3

Figure 4.3 dLineage sub-graph graphical view, selected object with all connected

targets.

BUSINESS

A CROA Reporting | FINREP - F 0101 - Baance Sheet Statemert Statement o

Bastsos < - " =00
s o 2\ 1!=\ et
aessz o [- \‘Ems
wonssn < [- ““m
wonon <
Report:
R | FINREP / F 01.01 - Balance Sheet Statement
-2 [Statement of Financial Position]: Assets
Accounting porta Trading finsncal .. £ \ Root FINREP
Objecti0 250%08
e 0
mevaoss <5 [Weight 99
mevaos o3
mviszs 3 i

g v gl

arasss <
8 I
oo <]
s rsopawomenei |
s 2] 0 701,01 - Batance Sheet Statement [State.
[—
< B ik i
A & [T r——

ccounting portfoso onrading debt .. £) I

Akl potoso (Cossted asboit. ©) T N o

Emmmm@_‘

Figure 4.4 dLineage sub-graph graphical view, selected object with all connected

sources.

The other applications in the dLineage toolset are built to support related activities

to manage metadata scanners, browse and search collected data, manage systems

state and heath, analyze discovered dependencies, manage and govern corporate

information assets or collect and build business glossaries and definitions to give a
48

meaning to IT assets. In addition to technical, analytical and business applications,
we collect and calculate various measures to estimate system health, integrity, graph
connectivity, parse rate and errors, business coverage, errors, etc. Figure 4.5
illustrates the dashboard functionality of the dLineage toolset that visualizes
collected measures and data.

11795 1598 63680

w

Systems loaded

Object count (by type)

Database metrics Datalntegration metrics

Figure 4.5 dLineage dashboard has aggregated overview about collected metadata and
calculated results and metrics.

4.2, Performance Evaluation

We have tested our solution in several real-life case studies involving a
thorough analysis of large international companies in the financial, utilities,
governance, telecom and healthcare sectors. The case studies analyzed thousands
of database tables and views, tens of thousands of data loading scripts and Bl
reports. Those figures are far over the capacity limits of human analysts not
assisted by special tools and technologies.

The following six different datasets with varying sizes have been used for our
system performance evaluation. The datasets DS1 to DS6 represent data
warehouse and business intelligence data from different industry sectors and is
aligned according to dataset size (Table 4.1). The structure of the datasets are
diverse and complex, hence we have analyzed the results at a more abstract level
(e.g., the number of objects and processing time) to evaluate the system
performance under different conditions.

49

Table 4.1 Evaluation of processed datasets with different size and structure.

DS1 DS2 DS3 DS4 DS5 DS6
Number of scanned objects 1341863673071 (132588|120239| 26026 | 2369
DB objects 43773 [179365]132054 (120239 | 26 026 | 2324
ETL objects 1298090361438 534 0 45
Bl objects 0 132 268 0 0 0
Scan time (min) 114 41 17 33 6 0
Number of scripts to parse 6 541 8439 | 799 | 8977 1184 495
Number of parsed query mappings 48971 | 13946 | 11215 | 14070 | 1544 635
Query parse success rate (%) 96 98 96 92 88 100
Query parse/resolve perf. (gry/sec) 3.6 25 26.0 12.1 4.1 6.3
Query parse/resolve time (min) 30 57 5 12 5 1
Number of graph nodes 73350 |192404| 24878 | 17930 | 360 1930
Number of graph links 95418 |357798| 24823 | 15933 | 330 2629
Graph processing time (min) 36 62 14 15 6 2
Total processing time (min) 150 103 31 48 12 2

The biggest dataset, DS1, contained a big set of Informatica ETL package
files, a small set of connected DW database objects and no business intelligence
data. The next dataset, DS2, contained a data warehouse, SQL scripts for ETL
loadings and an SAP Business Object for reporting for business intelligence. The
DS3 dataset contained a smaller subset of the DW database (MsSql), SSIS ETL
loading packages and SSRS reporting for business intelligence. The DS4 dataset
had a subset of the DW (Oracle) and data transformations in the stored procedures
(Oracle). The DS5 dataset is similar but much smaller compared to DS4 and is
based on the Oracle database and stored procedures. The DS6 dataset had a small
subset of a data warehouse in Teradata and data loading scripts in the Teradata

TPT format.

200,000
600,000

400,000

Number of Scanned Objects in Data Set

200,000

D51

DB Objects

ETL Objects

132,588

1202339

Bl Objects

=——Tatal Prac

]
o
Scanand Processing time [min)

Figure 4.6 Datasets size and structure compared to overall processing time.
50

350,000
¥ 300,000
250,000
200,000

150,000

100,000

Number of Graph Objects in Data Set

0000

70

60

50

40

30

1 15 20
B
14878 17,930 2 10
. .
D51 Dsz Ds3 D54 D55 D55

N Humber of Graph Nodes I Humber of Graph Links =—8—Graph Processiing Time

Parsing and Graph Processing Time [min)

Figure 4.7 Calculated graph size and structure compared to graph data processing

time.

The dataset sizes, internal structure and processing time are visible in Figure
4.6, where a longer processing time of DS4 is related to very large Oracle stored
procedure texts and loading of those to the database. The initial dataset and the
processed data dependency graphs have different graph structures (see Figure
4.7) that do not correspond necessarily to the initial dataset size. DS2 has a more
integrated graph structure and a higher number of connected objects (Figure 4.7)
than the DS1. At the same time, the DS1 initial row data size is about two times
bigger than DS2.

lan

' '
=] o £a e
=] =} (=] (=]

Processing Time [min)

.
[=1]

0

D51 052 D53 D54 D55 D56

=== =5can Time === " Graph Processing Time =—%=Total Procesing Tirme

Figure 4.8 Dataset processing time with two main subcomponents.

51

&1 ekl T80 EE3
¥ D52

500,000

Scanning Graph L] Total

Linear {Scanning] Limear [Graph) —)icear (Total)

Figure 4.9 Dataset size and processing time correlation with linear regression (semi-
log scale).

We have analyzed the correlation of the processing time and the dataset size
(see Figure 4.8 and Figure 4.9) showing that the growth of the execution time
follows the same linear trend as the size and complexity growth. The data scan
time is related mostly to the initial dataset size. The query parsing, resolving and
graph processing time also depend mainly on the initial data size, and less so on
the calculated graph size (Figure 4.8). The linear correlation between the overall
system processing time (seconds) and the dataset size (object count) can be seen
in Figure 4.9.

43. Visualization

The Enterprise Dependency Graph examples (Figure 4.10 - Figure 4.12)
illustrate the complex structure of dependencies between the DW storage scheme,
access views and user reports. The examples were generated using data
warehouse and business intelligence lineage layers. The details are at the database
and reporting object level, not at the column level. At the column and the report
field levels, a full data lineage graph would be about ten times bigger and too
complex to visualize in a single picture. The following graph from the data
warehouse structures and user reports presents about 50,000 nodes (tables, views,
scripts, queries, reports) and about 200,000 links (data transformations in views
and queries) on a single image (Figure 4.10).

The real-life dependency graph examples illustrate the automated data
collection, parsing, resolving, graph calculation and visualization tasks
implemented in our system. The system requires only the setup and configuration
tasks to be performed manually. The rest will be done by the scanners, parsers
and the calculation engine.

The final result consists of data flows and system component dependencies
visualized in the navigable and drillable graph or table form. The results can be

52

viewed as a local sub-graph with a fixed focus and a suitable filter set to visualize
the data lineage path from any source to a single report with click and zoom
navigation features. The big picture of the dependency network gives a full-scale
overview of the organization’s data flows. It explicates potential architectural,
performance and security problems.

ey |

AR

A

Figure 4.10 Data flows (blue,red) and control flows (green,yellow) between DW tables,
views and reports.

<t

i i)

D e e s e

/

Figure 4.11 Data flows between DW tables, views (blue) and reports (red).
53

Figure 4.12 Control flows in scripts, queries (green) and reporting queries (yellow) are
connecting DW tables, views and reports.

In addition to the visualization of data flows, we have developed the
aggregated plot view of graph nodes that will help to analyze database tables, data
loading programs or reports in terms of connectedness, complexity and cost. The
main idea of the visualization is to draw a two-dimensional plot or bubble chart
with a number of connected sources and targets on an X and Y axis that allow us
to clearly distinguish more and less connected nodes and the balance between the
number of sources and targets or data producers and consumers. The size of the
bubble in the chart is a recursively calculated number of child objects that express
the complexity of the object and its structure. The color of the bubble is calculated
as a sum of all three components — the number of sources, targets and children —
expressing the cost of the object in terms of change, development or maintenance.

The more costly objects are located in the upper right corner (see Figure 4.13
and Figure 4.14), with a bigger diameter and colored in red. The less costly
objects are located in the lower left corner and colored in blue. The color layer is
the fourth dimension of the chart, giving a quick aggregated overview of the
selected object set. The bigger and more red an object is, the costlier and more
complex it is to change. The smaller and more blue an object is, the less costly
and less complex it is to change.

The data axis with its number of sources and targets and bubble size are
calculated and drawn in a logarithmic scale. The number of sources, targets and
child elements of each object in the same chart can vary with several orders of
magnitude, and therefore the logarithmic scale is more suitable for visualization
and reading of charts.

54

Data 5, DW Loadings
Producers
Number of
'source objects.
(og scale)

25-

20- pe
Weight (color) 8

3 ®
® e o
<] 'o‘
® ! ®
&

‘ 02 04 06 8 1.0 2 & ‘. . 20 22 24 26

Data Consumers
Number of target objects

Figure 4.13 Data Warehouse loading packages plot with number of data sources and
targets (axis), loading complexity (size) and relative cost (color).

Data DW Tables

Producers .
Numberof 20-
sourca objects
flog szal) .
’ (4 o
I . ' . ® Table
. ~ . . . DW.Table_29
. . . . ﬁ . :ua gw scurs z: ;;;;r;wm
atn Gonsumers
. . . ‘ . Child Objects (size) 29 "
) J Wieight (color)
' A SO P p o ©
o Oofens ® -3 bl
1 ® []
] !:o e o @ 'S Sodd ° °
s o esses seem ®e ® e [.

L] . e oe® o o0 o QoeDee
06w . L] . L] L]

T T v T J
05 10 0 2.5 3.0 35 40 a5 5.0 55 6.0

Data Consumers
Number of target objects

Figure 4.14 Data Warehouse tables plot with number of data sources and targets
(axis), loading complexity (size) and relative cost (color).

4.4. Proposed Novel Applications

The previously described architecture and dLineage toolset allows us to
address and solve different IT management tasks, based on evidence stored in the
dependency graph. In the following section, we describe some practical use cases
in addition to data lineage and impact analysis that can be seen as additional
applications or plugins for the dLineage toolset.

55

Planning and Budgeting

The ETL programming is often the most time-consuming, complex and hard-
to-predict task in enterprise DW projects, and depends on many variables:
analysis and quality of source data, complexity of data mappings and
transformations, design of target model, etc. Estimations and budgeting of such
tasks are usually based on available input figures and expert opinions, and cannot
be easily answered without previous analysis. Automation of these analysis tasks
via replacement of expert opinions with traceable calculation and decision
algorithms would save money and provide decision support for ETL planning and
budgeting projects. We have successfully implemented and used the Excel-based
calculation algorithm for ETL programming resources estimation (time and
money) in several financial, retail and telecom sector DW projects that were
based on available input figures (i.e., number of tables/columns to load, number
of tables/columns to design/create/change/drop, number of views/column to
design/create/change/drop, number of tasks and packages, etc.), customized
weights and constants and calculation models that allowed us to validate and
replace the human expert opinion and speed up planning tasks. Such a model,
with a manually adjusted weight system for each individual organization, has the
ability to imitate the average human expert decisions with accuracy over 90%.

When implementing a similar model on a real DW dependency graph and
bringing the existing components with their sources and target object counts,
weights and complexity measures, we can build a new evidence-based estimation
calculator. Such an approach allows us to automate and speed up the project
estimations and make it available via a web-based Ul or wizard to end users such
as project managers or business experts. The planning and budgeting app allows
faster decisions assisted by connected content and might even outperform the
average expert estimation because of additional knowledge captured into the
dependency graph.

Automatic System Documentation

Relevant systems documentation is an important topic in IT systems
development and is especially important in the context of DW development. A
crucial part of DW documentation describes actual data mappings,
transformations and loads with all the sources and targets. DW development and
management can quickly become expensive and error-prone when detailed
mappings and dependencies are not available. Design time mapping documents
are usually not detailed enough and are outdated by the end of ETL design and
programming. The lack of time, project setup and used tools often do not support
the online documentation availability all the way to the end of the development
phase. Automated documentation generation from actual data transformation
programming code or ETL metadata would be the solution.

The toolset with DW systems and programs metadata scanning, parsing,
resolving and storing in a unified metadata database is a good starting point for
automated documentation. Unified data mappings and constructed dependency
graphs consist of all the information required to generate detailed (column level)

56

ETL mapping documents. A web-based user interface allows for linked and living
documentation that is accurate and more usable than traditional design time
system documents.

Enterprise Search and IT Asset Management

The overview and management of corporate IT assets is a challenging topic
for many organizations. IT systems are physically separated by design or security
concerns. Integration of technical artefacts requires extra effort and tools.
Different counterparties require the same data, but with different details and
viewpoints highlighted, and there are not many tools to support them all from one
source. IT architecture, maintenance, support, development and data delivery
requirements are different and interested parties are rarely ready to find a
common solution. Enterprise asset management with connected dependencies,
business terminology, full text search, responsibilities and role systems would be
the common solution for different needs.

The core functionality described provides metadata for IT systems which is
organized in a suitable format to provide full-scale IT asset management
functions. Built in google-like full-text makes every scanned object fast and easy
to find. Business applications have functions to build up a full-scale business
glossary system in top-down or bottom-up manner and additional role, domain
and responsibility systems allows one to implement IT asset governance
applications suitable for different needs throughout an organization.

Auditing and Compliance Reporting

Compliance with different internal and external requirements can be critical
for many organizations and alignment of the requirements is time-consuming and
costly. Specific industry sectors have their own requirement standards or
mandatory governance regulation, and compliance with regulations will reduce
the risks and business costs or allow the company to operate in the market.
Compliance with regulations requires auditing or certification processes, and
automation of data capturing, consolidation, measurement and alignment tasks
allows for cost savings and quality improvements. The examples of such global
regulations would be the Sarbanes-Oxley Act* for public and private companies
in the US, which was designed to protect investors, competitors and companies
themselves; Basel 1114t and Solvency 11%? in financial and insurance industries in
the EU for capital requirements and risk regulations; the General Data Protection
Regulation (GDPD)® directive from EU/EC for personal data usage and
protection in online and internet businesses worldwide.

In order to fulfill regulations, we need to catalog the requirements in the form
of business ontology and connect IT assets manually or automatically with the

40 https://en.wikipedia.org/wiki/Sarbanes-Oxley_Act

4 https://en.wikipedia.org/wiki/Basel_Il1

42 https://en.wikipedia.org/wiki/Solvency_lI_Directive_2009

43 https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

57

requirements. Depending on the specific regulations, we can build a logic-based
rule system and connect it with an underlying dependency graph to derive data
for requirements, to check internal logic and consistency of requirements and to
provide solid, fact-based audit trail and proof of compliance.

4.5. Summary

This implementation chapter concludes the presentation of the designed and
implemented software system, performance evaluation and datasets visualization.
The developed software components and applications were introduced in section
4.1. System performance evaluation based on real-life datasets and the
performance overview details were introduced in section 4.2, and the dataset
visualization was presented in section 4.3. Finally, novel further application areas
were discussed in section 4.4.

58

CONCLUSIONS

This thesis presents novel methods, algorithms and experimental results for
practical data lineage and impact analysis. We are able to map, aid and automate
the solution of management and analysis problems in a corporate data warehouse
environment.

Automation of human intensive analysis tasks reduces time and costs,
improves quality and leads to better decisions with reduced risks. It may take a
week or two for a human analyst to solve moderately complex impact analysis
tasks. We show that this time can be reduced to hours or minutes, with the
interpretation of the results being feasible for users without the help of domain
experts.

The traditional data lineage and impact analysis problems can be compared to
the internet search problem before the invention of Google. The analyst of a new
system component, functionality or business requirement had to find and read all
the relevant documents and/or code bases to trace and model the data sources and
dependencies. Our chosen approach to DW impact analysis and data lineage in a
closed corporate environment can be compared to Google’s approach to web
scanning and indexing to build a sophisticated search engine. We scan, collect
and map an organization’s IT systems and data warehouse environment, data
structures, queries, reports and programs, without using the DW data or affecting
the normal work and behavior of those systems.

Processing and mapping the collected data to an RDF-style database schema
creates a unified physical base for data storage. The unified data representation
allows us to define and implement a set formalized rules to build weighted and
directed dependency graphs. Probabilistic weight calculation in query parsing and
weight propagation by the rule system brings the data transformation semantics
to the graph for further usage. The weights are used for node dependency and
transitivity calculations, for layer visualization, filtering and object sorting. The
weight system is also used in the semantic layer calculation to visualize only the
applicable data flow subgraphs for each selected node.

We have implemented all the algorithms described in the thesis and built a
web-based dLineage software toolkit for browsing, analyzing and visualizing
collected and calculated data. This toolset, algorithms and techniques have been
successfully employed in tens of case studies and projects.

The presented case studies and performance analysis with six different real-
life datasets demonstrates that our algorithms and implementations are linearly
scalable.

We will continue our research and system development in the field of business
semantics and governance automation to employ the underlying dependency
graph in combination with semantic techniques and ontology learning.
Combining different techniques to automate business definitions management
and IT asset governance will hopefully allow us to fill another gap in the
corporate knowledge and asset management landscape.

59

REFERENCES

[1]
[2]
3]
[4]

5]

(6]
[7]

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

K. C. Viktor Mayer-Schonberger, “Big Data: A Revolution That Will
Transform How We Live, Work, and Think.,” John Murray, 2013, p. 242.
S. B. Zdonik, “Provenance , Lineage , and Workflows,” Computer (Long.
Beach. Calif)., pp. 1-24, 2010.

S. Chaudhuri and U. Dayal, “An overview of data warehousing and OLAP
technology,” ACM SIGMOD Rec., vol. 26, no. 1, pp. 65-74, 1997.

P. Buneman, J. Cheney, W.-C. W. Tan, and S. Vansummeren, “Curated
Databases,” Pod. June 9-12, 2008, Vancouver, BC, Canada., pp. 1-12,
2008.

J. Cheney, L. Chiticariu, and W.-C. Tan, “Provenance in Databases: Why,
How, and Where,” Found. Trends Databases, vol. 1, no. 4, pp. 379-474,
2007.

W. Tan, “Provenance in Databases : Past , Current , and Future,” Sigmod
2007, pp. 1-10, 2007.

P. Buneman, S. Khanna, and W.-C. Tan, “Why and where: A
characterization of data provenance,” Int. Conf. Database Theory, vol.
1973, no. January, pp. 316-330, 2001.

Y. R. Wang and S. E. Madnick, “A Polygen Model for Heterogeneous
Database Systems: The Source Tagging Perspective,” Proc. 16th VLDB
Conf., no. January, pp. 519-538, 1990.

Y. Cui and J. Widom, “Lineage tracing for general data warechouse
transformations,” VLDB J., vol. 12, no. 1, pp. 41-58, 2003.

J. Widom, “Trio: A System for Integrated Management of Data,
Accuracy, and Lineage,” Proc. 2005 CIDR Conf., pp. 262-276, 2005.

A. Woodruff and M. Stonebraker, “Supporting fine-grained data lineage
in a database visualization environment,” Data Eng. 1997. Proceedings.
13th Int. Conf., no. January, pp. 91-102, 1997.

T. Priebe, A. Reisser, and D. T. Anh Hoang, “Reinventing the Wheel?!
Why Harmonization and Reuse Fail in Complex Data Warehouse
Environments and a Proposed Solution to the Problem,” Proc. 10th Int.
Conf. Wirtschaftsinformatik, pp. 766-775, 2011.

Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data Provenance
in e-Science,” SIGMOD Rec., vol. 34, no. 3. pp. 31-36, 2005.

S. B. Davidson and J. Freire, “Provenance and scientific workflows,”
Proc. 2008 ACM SIGMOD Int. Conf. Manag. data - SIGMOD 08, p.
1345, 2008.

R. Bose and J. Frew, “Lineage retrieval for scientific data processing: a
survey,” ACM Comput. Surv., vol. 37, no. 1, pp. 1-28, 2005.

P. Buneman and W. Tan, “Provenance in Databases,” Proc. 2007 ACM
SIGMOD Int. Conf. Manag. data, pp. 1171-1173, 2007.

Y. Cui, J. Widom, and J. L. Wiener, “Tracing the Lineage of View Data
in a Warehousing Environment,” ACM Trans. Database Syst., vol. 25, no.
2, pp. 179-227, 2000.

T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,”

61

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Proc. twenty-sixth ACM SIGMOD-SIGACT-SIGART Symp. Princ.
database Syst. - Pod. '07, vol. pages, no. June, p. 31, 2007.

P. Buneman, S. Khanna, and W.-C. Tan, “On propagation of deletions and
annotations through views,” Proc. twenty-first ACM SIGMOD-SIGACT-
SIGART Symp. Princ. database Syst. - Pod. 02, vol. 2002, no. June, p.
150, 2002.

P. Buneman, J. Cheney, and S. Vansummeren, “On the expressiveness of
implicit provenance in query and update languages,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2006, vol. 4353 LNCS,
pp. 209-223.

D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya, “An
annotation management system for relational databases,” in VLDB
Journal, 2005, vol. 14, no. 4, pp. 373-396.

T. Green and G. Karvounarakis, “Update exchange with mappings and
provenance,” in Proceedings of the 33rd international conference on Very
large data bases, 2007, pp. 675-686.

D. Deutch, Y. Moskovitch, and V. Tannen, “A Provenance Framework
for Data-Dependent Process Analysis,” Proc. VLDB Endow., vol. 7, no.
6, pp. 457468, 2014.

T. Heinis and G. Alonso, “Efficient lineage tracking for scientific
workflows,” Proc. 2008 ACM SIGMOD Int. Conf. Manag. data -
SIGMOD 08, no. Section 2, p. 1007, 2008.

P. Missier, K. Belhajjame, J. Zhao, M. Roos, and C. Goble, “Data Lineage
Model for Taverna Workflows with Lightweight Annotation
Requirements,” Proven. Annot. Data Process., pp. 17-30.

R. Ikeda, A. Das Sarma, and J. Widom, “Logical provenance in data-
oriented workflows?,” in Proceedings - International Conference on Data
Engineering, 2013, pp. 877-888.

B. Ramesh and M. Jarke, “Toward reference models for requirements
traceability,” IEEE Trans. Softw. Eng., vol. 27, no. 1, pp. 58-93, 2001.
O. Benjelloun, A. Das Sarma, C. Hayworth, and J. Widom, “An
introduction to ULDBs and the Trio system,” IEEE Data Eng. Bull., vol.
29, no. 1, pp. 5-16, 2006.

H. Fan and A. Poulovassilis, “Using AutoMed metadata in data
warehousing environments,” Proc. 6th ACM Int. Work. Data Warehous.
Ol. - Dol. *03, p. 86, 2003.

P. Giorgini, S. Rizzi, and M. Garzetti, “A goal-oriented approach to
requirement analysis in data warehouses,” Decis. Support Syst., vol. 45,
no. 1, pp. 4-21, 2008.

H. Fan and A. Poulovassilis, “Using schema transformation pathways for
data lineage tracing,” Knowl. Transform. Semant. Web, vol. 3567, pp. 64—
79, 2010.

U. Dayal, M. Castellanos, A. Simitsis, and K. Wilkinson, “Data
integration flows for business intelligence,” Proc. 12th Int. Conf.
Extending Database Technol. Adv. Database Technol. - EDBT ’09, p. 1,

62

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

2009.

A. Simitsis and P. Vassiliadis, “A Methodology for the Conceptual
Modeling of ETL Processes,” CAISE Work., pp. 305-316, 2003.

A. Kabiri and D. Chiadmi, “A method for modelling and organazing ETL
processes,” in 2nd International Conference on Innovative Computing
Technology, INTECH 2012, 2012, pp. 138-143.

D. Skoutas and A. Simitsis, “Ontology-Based Conceptual Design of ETL
Processes for Both Structured and Semi-Structured Data,” Int. J. Semant.
Web Inf. Syst., vol. 3, pp. 1-24, 2007.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita,
“Improving Data Cleaning Quality using a Data Lineage Facility,” in
DMDW, 2001.

A. S. DeSantana and A. M. de C. Moura, “Metadata to Support
Transformations and Data & Metadata Lineage in a Warehousing
Environment,” in Data Warehousing and Knowledge Discovery, 2004,
vol. 3181, no. 6th International Conference, DaWaK 2004, Zaragoza,
Spain, September 1-3, 2004. Proceedings, pp. 249-258.

M. Bala, O. Boussaid, and Z. Alimazighi, “Extracting-Transforming-
Loading Modeling Approach for Big Data Analytics,” Int. J. Decis.
Support Syst. Technol., vol. 8, no. 4, pp. 50-69, 2016.

S. K. Bansal, “Towards a Semantic Extract-Transform-Load (ETL)
framework for big data integration,” in Proceedings - 2014 IEEE
International Congress on Big Data, BigData Congress 2014, 2014, pp.
522-529.

J. Wang, D. Crawl, S. Purawat, M. Nguyen, and 1. Altintas, “Big data
provenance: Challenges, state of the art and opportunities,” in
Proceedings - 2015 IEEE International Conference on Big Data, IEEE
Big Data 2015, 2015, pp. 2509-2516.

C. H. Suen, R. K. L. Ko, Y. S. Tan, P. Jagadpramana, and B. S. Lee,
“S2Logger: End-to-end data tracking mechanism for cloud data
provenance,” in Proceedings - 12th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications,
TrustCom 2013, 2013.

B. Glavic and K. Dittrich, “Data provenance: A categorization of existing
approaches,” Btw, pp. 227-241, 2007.

S. Davidson and J. Freire, “Provenance and scientific workflows:
challenges and opportunities,” Proc. 2008 ACM SIGMOD, pp. 1-6, 2008.
R. Bose, “A conceptual framework for composing and managing
scientific data lineage,” in Proceedings of the International Conference
on Scientific and Statistical Database Management, SSDBM, 2002, vol.
2002-Janua, pp. 15-19.

Y. L. Simmhan, B. Plale, D. Gannon, and S. Marru, ‘“Performance
Evaluation of the Karma Provenance Framework for Scientific
Workflows,” in Proceedings of the 2006 International Conference on
Provenance and Annotation of Data, 2006, pp. 222—236.

I. Altintas, O. Barney, and E. Jaeger-frank, “Provenance Collection

63

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Support in the Kepler Scientific Workflow System,” Work, vol. 4145, pp.
118-132, 2006.

A. Chervenak, 1. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, “The
data grid: Towards an architecture for the distributed management and
analysis of large scientific datasets,” J. Netw. Comput. Appl., vol. 23, no.
3, pp. 187-200, 2001.

E. Wu, S. Madden, and M. Stonebraker, “SubZero: A fine-grained lineage
system for scientific databases,” in Proceedings - International
Conference on Data Engineering, 2013, pp. 865-876.

P. Missier, B. Ludéscher, S. Bowers, S. Dey, A. Sarkar, B. Shrestha, 1.
Altintas, M. K. Anand, and C. Goble, “Linking multiple workflow
provenance traces for interoperable collaborative science,” in 2010 5th
Workshop on Workflows in Support of Large-Scale Science, WORKS
2010, 2010.

I. Altintas, Collaborative Provenance for Workflow-Driven Science and
Engineering, vol. 129. 2011.

S. da Cruz, C. Paulino, and D. de Oliveira, “Capturing distributed
provenance metadata from cloud-based scientific workflows,” J. Inf. Data
Manag., vol. 2, no. 1, pp. 43-50, 2011.

A. Marinho, C. Werner, S. M. S. Da Cruz, M. Mattoso, V. Braganholo,
and L. Murta, “A strategy for provenance gathering in distributed
scientific workflows,” in SERVICES 2009 - 5th 2009 World Congress on
Services, 2009, no. PART 1, pp. 344-347.

L. Wang, S. Lu, X. Fei, A. Chebotko, H. Victoria Bryant, and J. L. Ram,
“Atomicity and provenance support for pipelined scientific workflows,”
Futur. Gener. Comput. Syst., vol. 25, no. 5, pp. 568-576, 2009.

M. K. Anand, S. Bowers, 1. Altintas, and B. Ludéscher, “Approaches for
exploring and querying scientific workflow provenance graphs,” in
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, vol.
6378 LNCS, pp. 17-26.

M. K. Anand, S. Bowers, and B. Ludischer, “A navigation model for
exploring scientific workflow provenance graphs,” in Proceedings of the
4th Workshop on Workflows in Support of Large-Scale Science, WORKS
'09, in Conjunction with SC 2009, 2009.

U. Acar, P. Buneman, J. Cheney, J. Van Den Bussche, N. Kwasnikowska,
and S. Vansummeren, “A graph model of data and workflow provenance,”
Procs. TAPP’10 Work. (Theory Pract. Provenance), p. 8, 2010.

O. Biton, S. Cohen-Boulakia, S. B. Davidson, and C. S. Hara, “Querying
and managing provenance through user views in scientific workflows,” in
Proceedings - International Conference on Data Engineering, 2008, pp.
1072-1081.

S. Bowers and B. Ludascher, “An ontology-driven framework for data
transformation in scientific workflows,” Data Integr. Life Sci. Proc., vol.
2994, pp. 1-16, 2004.

J. Kim, Y. Gil, and V. Ratnakar, “Semantic Metadata Generation for

64

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Large Scientific Workflows,” in Proceedings of the Fifth International
Semantic Web Conference, 2006, pp. 357-370.

L. Ding, J. Michaelis, J. McCusker, and D. L. McGuinness, “Linked
provenance data: A semantic Web-based approach to interoperable
workflow traces,” in Future Generation Computer Systems, 2011, vol. 27,
no. 6, pp. 797-805.

S. S. Sahoo, A. Sheth, and C. Henson, “Semantic provenance for
eScience: Managing the deluge of scientific data,” IEEE Internet
Comput., vol. 12, no. 4, pp. 46-54, 2008.

S. Bowers, T. Mcphillips, B. Ludascher, S. Cohen, S. B. Davidson, and
B. Ludischer, “A Model for User-Oriented Data Provenance in Pipelined
Scientific Workflows,” Lect. Notes Comput. Sci., vol. 4145, no. 4145, pp.
133-147, 2006.

L. Finlay, “‘Outing’ the researcher: the provenance, process, and practice
of reflexivity.,” Qual. Health Res., vol. 12, no. 4, pp. 531-545, 2002.

R. de Paula, M. Holanda, L. S. A. Gomes, S. Lifschitz, and M. E. M. T.
Walter, “Provenance in bioinformatics workflows.,” BMC
Bioinformatics, vol. 14 Suppl 1, no. Suppl 11, p. S6, 2013.

P. Buneman, A. Chapman, and J. Cheney, “Provenance management in
curated databases,” in Proceedings of the 2006 ACM SIGMOD
international conference on Management of data - SIGMOD ’06, 20086,
pp. 539-550.

R. De Paula, M. T. Holanda, M. E. M. T. Walter, and S. Lifschitz,
“Managing data provenance in genome project workflows,” in
Proceedings - 2012 IEEE International Conference on Bioinformatics
and Biomedicine Workshops, BIBMW 2012, 2012.

F. Chirigati and J. Freire, “Towards integrating workflow and database
provenance,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2012, vol. 7525 LNCS, pp. 11-23.

O. Hartig and J. Zhao, “Publishing and consuming provenance metadata
on the web of linked data,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 2010, vol. 6378 LNCS, pp. 78-90.

L. Moreau, “The Foundations for Provenance on the Web,” Found.
Trends Web Sci., vol. 2, no. 2-3, pp. 99-241, 2010.

L. Moreau, “Provenance-based reproducibility in the semantic web,” J.
Web Semant., vol. 9, no. 2, pp. 202-221, 2011.

L. Moreau, J. Freire, J. Futrelle, R. McGrath, J. Myers, and P. Paulson,
“The Open Provenance Model,” Futur. Gener. Comput. Syst., vol. 27, no.
6, pp. 743-756, 2011.

M. K. Anand, S. Bowers, and B. Ludischer, “Techniques for efficiently
querying scientific workflow provenance graphs,” pp. 287-298, 2010.

T. Stohr, R. Miiller, and E. Rahm, “An integrative and uniform model for
metadata management in data warehousing environments,” in
Proceedings of the International Workshop on Design and Management

65

[74]

[75]

[76]

of Data Warehouses DMDW99, 1999, vol. 1999, pp. 1-16.

P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis, and S.
Skiadopoulos, “A generic and customizable framework for the design of
ETL scenarios,” Inf. Syst., vol. 30, no. 7, pp. 492-525, Nov. 2005.

M. Jdger, T. N. Phan, C. Huber, and J. Kiing, “Incorporating Trust,
Certainty and Importance of Information into Knowledge Processing
Systems -- An Approach,” in Future Data and Security Engineering:
Third International Conference, FDSE 2016, Can Tho City, Vietnam,
November 23-25, 2016, Proceedings, T. K. Dang, R. Wagner, J. Kiing, N.
Thoai, M. Takizawa, and E. Neuhold, Eds. Cham: Springer International
Publishing, 2016, pp. 3-19.

A. Josang, S. Marsh, and S. Pope, “Exploring Different Types of Trust
Propagation,” in Trust Management, 2006, vol. 3986, no. May, pp. 179—
192.

66

KOKKUVOTE

Kéesoleva doktoritd6 teema on andmevoogude ja neid realiseerivate
komponentide analiiiis ning selle protsessi automatiseerimine ettevotte andmelao
keskkonnas. T60 eesmirgiks on luua universaalne metoodika, algoritmid ja
tarkvaraline lahendus, mida saab vihese vaevaga rakendada juba olemasoleva
keskkonna andmevoogude ja mdjuanaliilisi automatiseerimiseks. Metoodilise
lahenemise aluspohimoteteks on tootava andmelao keskkonna kaardistamine
selle t66d modjutamata ning andmelao siisteemides toddeldavaid andmeid
kasutamata. Selline l1dhenemisviis eeldab andmelao struktuuride, programmide ja
raportite metaandmete kogumist ja to6tlust ning voimaldab lahendust rakendada
vOimalikult vidikeste kulutustega juba tootavas keskkonnas, selle tood
mojutamata ja tundlikke andmeid vajamata.

Loodud stisteemi arhitektuur sisaldab diinaamilise ja paindliku struktuuriga
andmebaasi kasutamist erinevate metaandmete salvestamiseks, modulaarsetel ja
korduvakasutatavatel komponentidel baseeruvat metaandmete kogumis- ning
tootlusprogrammide loomist ning veebipShiseid rakendusi erinevatele
kasutajagruppidele, analiiiisi teostamiseks ja andmete visualiseerimiseks.
Kirjeldatud semantilised meetodid ning reeglipdhine ja tdendosuslik
jéareldussiisteem aitavad konstrueerida struktuuride ja programmide sisendite-
véljundite baasil suunatud graafi, mis vdimaldab andmestruktuuride ja -voogude
analiilisililesanded teisendada alamgraafide 1dbimise- ja arvutusiilesanneteks.

T66s kirjeldatud tarkvara on testitud kiimnete rahvusvaheliste ettevottete
andmeladude analiiiisiks ja visualiseerimiseks. Ulevaade andmekogudest ning
stisteemi joudlusest on toodud t66 viimases peatiikis. Kokkuvdttes nditame, et
valitud siisteemi arhitektuur, algoritmid ja meetodid on sobivad vdga erinevate
valdkondade, suuruse ja sisuga andmeladude analiiiisiks metaandmete baasil ning
kirjeldatud siisteemi komponentide joudlus skaleerub lineaarselt ldhteandmete
mahuga.

67

Publication A

Tomingas, K.; Kliimask, M.; Tammet, T. Data Integration Patterns for Data
Warehouse Automation. In: New Trends in Database and Information Systems
I1: 18th East European Conference on Advances in Databases and Information
Systems (ADBIS 2014). Springer, 2014.

69

Data Integration Patterns for Data
Warehouse Automation

Kalle Tomingas®, Margus Kliimask” and Tanel Tammet®

*Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086 Estonia
®Eliko Competence Center, Teaduspargi 6/2, Tallinn 12618 Estonia

Abstract. The paper presents a mapping-based and metadata-driven modular data
transformation framework designed to solve extract-transform-load (ETL)
automation, impact analysis, data quality and integration problems in data
warchouse environments. We introduce a declarative mapping formalization
technique, an abstract expression pattern concept and a related template engine
technology for flexible ETL code generation and execution. The feasibility and
efficiency of the approach is demonstrated on the pattern detection and data
lineage analysis case studies using large real life SQL corpuses.

Keywords. data warehouse, etl, data mappings, template based sql generation,
abstract syntax patterns, metadata management.

1. Introduction

The delivery of a successful Data Warehouse (DW) project in a heterogeneous
landscape of various data sources, limited resources, and lack of requirements, an
unstable focus and budgeting constraints is always challenging and risky. Many long-
term DW project failures are related to the requirements and reality mismatch between
available data, defined needs and information requirements for decision making [5].
Extract, transform and load (ETL) is a database usage process widely used in the data
warehouse field. ETL involves extracting data from outside sources, transforming it to
fit operational needs and loading it into the end target: a database or a Data Warehouse.

Mappings between source and target data structures or schemas are the basic
specifications of data transformations. Mappings can be viewed as metadata capturing
the relationships between information sources and targets. Mappings document the
decisions for information structuring and modeling [12]. They are used for several
different goals in DW processes: writing a specification for ETL programmers,
generating a transformation query or program that uses the semantics of the mapping
specification (e.g., a SQL query that populates target tables from source tables),
providing metadata about relationships between structures or schemas, providing
metadata about data flows and origin sources [4].

Programming mappings in the ETL environment involves writing special database
loading scripts (e.g. Oracle Sql*Loader, MSSQL Bulkload, Teradata Fastload,
Postgresql Copy etc.) and SQL queries (i.e. select, insert, update and delete statements)
which are incremental, iterative, time consuming and routine activities. The manual
programming of the data loadings is test-and-error based and not too efficient in case
there is no support from the environment and no methodology. Manual scripting and
coding of SQL gives high flexibility but backfires in terms of efficiency, complexity,
reusability and maintenance of data loadings [7]. The execution and optimization of
existing loading programs can be a very complex and challenging task without access
to the full dependencies and intelligent machinery to generate optimized workflows [3],
[1].

The processes of creation, integration, management, change, reuse, and discovery
of data integration programs are not especially efficient without the dependencies and

semantics of data structures, mappings and data flows. The creation and management
of human- and machine readable documentation, impact analysis (IA) and data lineage
(DL) capabilities has become critical for maintaining complex sequences of data
transformations. We can control the risks and reduce the costs of dynamic DW
processes by making the data flows and dependencies available to developers,
managers and end-users.

The paper describes a methodology for formalizing data transformations to an
extent that allows us to decouple unique mapping instances from reusable
transformation patterns. We demonstrate handling and storing declarative column
mappings join and filter predicates in a reusable expression pattern form. We use the
Apache Velocity template engine and predefined scenario templates to handle reusable
procedural parts of data transformations. We show how the combination of those
techniques allows us to effectively construct executable SQL queries and generate
utility loading scripts. We also take a look at what has been previously done in the ETL
and DW automation field.

In the third chapter we present our open-source architecture of knowledge and
metadata repository (MMX") with the related data transformation language and runtime
environment (XDTL?) which is used as the technology stack for our metadata-driven
Data Warehousing process. In the fourth chapter we describe the decoupling of
procedural and declarative parts of data mappings and the template-based SQL
construction technique. We introduce a case study of Abstract Syntax Pattern (ASP)
discovery from a real life DW environment in the fifth chapter and two data lincage
analysis case studies in the sixth chapter.

2. Related Work

The roles and functions of general programming and ETL tools as well as the
relations between manual scripting and script generation are discussed in [7]. The first
generation ETL tools were similar to procedural programming or scripting tools,
allowing a user to program specific data transformations. The concept of mapping was
used for initial specification purposes only.

Modern ETL tools - e.g. Informatica PowerCentre, IBM WebSphere DataStage or
Oracle Data Integrator - exploit the internal mapping structure for transformation
design and script or query generation purposes. In addition to specific ETL
technologies there exist the general purpose schema mapping tools that allow discovery
and support documenting the transformations or generating transformation scripts
(XSLT transformation between XML-schemas, XQuery or SQL DML statements etc.).
The meaning and purpose of mappings and general application areas, tools and
technologies is discussed by Roth et al. with the generic usage scenarios in different
enterprise architecture environments [12]. The declarative mappings designed for ETL
program generation and vice versa are discussed in [4] and [6].

In addition to mappings with program generation instructions and data
transformation semantics, there exist relations and dependencies between mappings
and source or target schema objects. The declarative representation of the dependencies
allows us to generate, optimize and execute data transformations workflows effectively.
We can find different optimization approaches described in papers [1],[2] and [3]. An
extensive study of common models for ETL and ETL job optimization is published by
Simitsis et al. [13], [14] and Patil et al. [9]. The dynamic changes of data structures,

! www.mmxframework.org
2 www.xdtl.org

connections between mapping and jobs and a rule-based ETL graph optimization
approach is discussed in [8].

An effective ETL job optimization is related to data mappings, dependencies
between mappings, dynamics and changes of source structures and the data quality
(DQ). All of those aspects can be formalized and taken into account by ETL job
automation where timing, the right order and data volumes are always important issues.
Estimation and evaluation of data structures, quality of data and discovery of rules can
be automated and integrated into ETL processes [11]. By adding rule-based DQ into
ETL process, we can automate the mapping generation and improve the success rate of
data loadings. Rodi¢ et al. demonstrated that most of the integration rules can be
generated automatically using the source and target schema descriptions [11].

3. System Architecture

The modern enterprise data transformation systems are built according to the
model-driven architecture principles, including internal metadata about the source and
target models, mappings, transformations and dependencies between models. We
introduce a new architectural concept, based on open source java and xml technologies
that can be used in lightweight scripting configuration, mixed configuration with partial
mapping formalization and full model- and metadata driven knowledge base
implementations. When the first lightweight configuration gives you a quick start, low-
cost and small technology track and metadata-driven approach gives a knowledge base
with different new possibilities (e.g. mapping generation and management, dynamic
dependency management and job automation, impact analysis, data quality integration
etc.), then both exploit the template-based code construction and automation principles.
Our design goals of the new ETL architecture were an open and flexible environment,
extensible and reusable programming techniques with moderate formalization and
decoupling of declarative knowledge from procedural parts of executable code.

=TS N

<mmx model>
Pl e Target |
3 Schema
; B | <mmxrule, xmi>
F Lorary | o e, sty Dependency |~ N
Package 1 package

pep———ry
K- Source " ©

Schema

< file> / T emiiies
G- Extension <javax \ | Transform. | ¢
Package Template \ Template

Engine

. i
<db, fle> <o, il

I source st low— XDTELR“””’"E [Target -1
Data (5) neine Data (T)

(XDTLRT)

H
Figure 1. System architecture components.

The general system architecture with main building blocks is drawn in Figure 1.
The main system components are ETL Package (A) that can be written in XDTL
language or represented as Tasks and Rules and Dependencies (N) in MMX repository.
The mapping (B) is a formalized representation of source schema objects (K), target
(L), column transformations and patterns, join and filter conditions that can be again be
a part of an XDTL package or stored in MMX repository. The transformation Template
(C) is a reusable and repeating part of SQL query patterns or some other scripting

executable language scenarios that are written in the Apache Velocity macro language
(or any other language of template engine). The template Engine (D) is a configurable
java code that is responsible for runtime code construction using Mappings (B) and
Templates (C). Examples of mappings and templates are discussed in more detail level
in Chapter 4. The tasks in Package (A) can be created using previously prepared
Library Packages (F) or managed modularly, reused and published as Extension (G)
modules. The XDTL Runtime Engine (H) is a preconfigured environment and java
package, able to interpret packages written in the XDTL language, execute those and
deliver actual data transformations from the source (I) to the target (J).

3.1. Data Transformation Language (XDTL)

The Extensible Data Transformation Language (XDTL) is an XML based
descriptive language designed for specifying data transformations between different
data formats, locations and storage mechanisms. XDTL is created as a Domain Specific
Language (DSL) for the ETL domain and is designed by focusing on the following
principles: modular and extensible, re-usable, decoupled declarative (unique) and
procedural (repeated) patterns. The XDTL syntax is defined in an XML Schema
document. The wildcard elements of an XML Schema enable extending the syntax of
core language with a new functionality implemented in other programming languages
or in XDTL itself. The XDTL scripts are built as reusable components with the clearly
defined interfaces via parameter sets. The components can be serialized and deserilized
between the XML and database representations, thus making XDTL scripts suitable for
storing and managing in a data repository. XDTL provides the functionality to use data
mappings stored independently of the scripts, being efficiently decoupled from the
scripts. Therefore the mappings stored in a repository can exist as objects independent
from the transformation process and be reused by several different processes. XDTL
acts as a container for a process that often has to use facilities not present in XDTL
itself (e.g. SQL, SAS language etc.).

3.2. Knowledge Repository Structure (MMX)

The MMX metadata framework is a general purpose integrative metadata
repository built on the relational database technology for different knowledge
management (KM) and rule-based analytical applications. The MMX repository is
designed according to the OMG Metadata Object Facility (MOF) idea with separate
abstraction and modeling layers (M0-M3). The MMX physical data model (schema) is
based on principles and guidelines of EAV (Entity-Attribute-Value) or EAV/CR
(Entity-Attribute-Value with Classes and Relationships) modeling technique suitable
for modeling highly heterogeneous data with very dynamic nature. The metadata model
and schema definition in EAV is separated from physical storage and therefore it is
easy to modifications to schema on 'data’ without changing the DB structures: by just
modifying the corresponding metadata. The approach chosen is suitable for open-
schema implementations (similar to key-value stores) where the model is dynamic and
semantics is applied in query time, as well as model-driven implementations with a
formal, well defined schema, structure and semantics.

The MMX physical schema (Figure 2) provides a storage mechanism for various
knowledge- or meta-models (M2) and corresponding data or metadata (M1). Three
physical tables - object, property and relation - follow the subject-predicate-object or
object-property-value representation schemes, where object type, property type and
relation_type tables are like advanced coding or dictionary tables for object, property
and value types. The separate dictionary tables give us an advanced schema
representation functionality using special attributes and relational database foreign keys

(FK) mechanism. The formalized schema description and relations between different

schemas make our metadata understandable and exchangeable between the other

system components or external agents. The URI reference mechanism used and the

resource storage schema makes an MMX repository a semantic data store, comparable

to Resource Description Framework (RDF), serializable in different semantic formats

or notations (e.g. RDF/XML , N3 , N-Triples , XMI etc.) using XML or RDF APIs.
property_type has property object_type o rontion relation_type

>

M2 —— [s ‘

s pivert T T nesphent . o

property object relation

ML— 1 T e ® [e

Figure 2. MMX physical schema design.

The MMX physical schema can be seen as a general-purpose, multi-level and
hierarchical storage mechanism for different knowledge models, but also as
communication medium or information integration and exchange platform for different
software agents or applications (e.g. metadata scanners, metadata consumers etc.). Built
in limited reasoning capability based on recursive SQL technique and it is captured to
data and metadata APIs to implement inheritance and model validation functions.
Semantic representation of data allows extend functionality with predicate calculus or
apply other external rule-based reasoners (e.g. Jena) for more complicated reasoning
tasks, like deduction of new knowledge.

Repository contains integrated object level security mechanism and different data
access APIs (e.g. data API, metadata API, XML API, RDF API etc.) that are
implemented as relational database procedures or functions. We have live
implementations on PostgeSql, Oracle and MsSql platforms and differences in database
SQL dialects and functionality are hidden and captured into API packages. Using
common and documented API-s or an Object Relational Mapper (ORM) technology
(e.g. Hibernate) we can choose and change repository DB technology without touching
related applications.

An arbitrary number of different data models can exist inside MMX Metadata
Model simultaneously with relationships between them. Each of these data models
constitutes a hierarchy of classes where the hierarchy might denote an instance
relationship, a whole-part relationship or some other form of generic relationship
between hierarchy members. We have several predefined metadata models in MMX
repository, ¢.g.

e terminology (ontology) and classification (based on ISO/IEC11179 [18]);

e relational database (based on Eclipse SQL Model [19]);

e abstract mappings and general ETL models;

e role-based access control model (based on NIST RBAC [20]).

In addition to existing models we can implement any other type of data mode for
specific needs, like business process management (business rules, mappings,
transformations, computational methods); data processing events (schedule, batch and
task); data demographics, statistics and quality measures, etc.

The purpose of MMX repository depends on system configuration and desired
functionality. In current paper we handle MMX repository as persistent storage
mechanism for ETL metadata and we discuss about relational database and abstracted
mapping knowledge models (KM) to store required data and relations. In addition to

repository storage and access technologies MMX Framework has web-based
navigation and administration tools, semantic-wiki like content management
application and different scanner agents written in XDTL (e.g. DB dictionary scanner)
to feel and detect surrounding environment and context. Due to space limitation we do
not discuss all those topics in this paper.

4. Template Based SQL Construction

SQL is and probably remains the main workforce behind any ETL (and especially
ELT flavor of ETL) tool. Automating SQL generation has arguably always been the
biggest obstacle in building an ideal ETL tool (i.e. completely metadata-driven), with
small foot-print, multiple platform support on single code base. While SQL stands for
Structured Query Language, ironically the language itself is not too well 'structured’,
and the abundance of vendor dialects and extensions does not help either. Attempts to
build an SQL generator supporting full feature list of SQL language have generally
fallen into one of the two camps: one of them trying to create a graphical click-and-
pick interface that would encompass the syntax of every single SQL construct, another
one designing an even more high-level language or model to describe SQL itself, a
kind of meta-SQL. The first approach would usually be limited to simple SQL
statements, be appropriate mostly for SELECT statements only and struggle with
UPDATESs and INSERTS, and be limited to a single vendor dialect.

4.1. Mappings, Patterns and Templates

Based on our experience we have extracted a set of SQL 'patterns' common to
practical ETL (ELT) tasks. The patterns are converted into templates for processing by
a template engine (e.g. Apache Velocity), each one realizing a separate SQL fragment,
a full SQL statement or a complete sequence of commands implementing a complex
process. Template engine merges patterns and mappings into executable SQL
statements so instead of going as deep as full decomposition we only separate and
extract mappings (structure) and template (process) parts of SQL. This limits us to only
a set of predefined templates, but anyone can add new or customize the existing ones.
Templates are generic and can be used with multiple different mappings/data structures.
The mappings are generic as well and can be used in multiple different
patterns/templates. Template engine instantiates mappings and templates to create
executable SQL code which brings us closer to OO mind-set. The number of tables
joined, the number of columns selected, the number of WHERE conditions etc. is
arbitrary and is affected by and driven by the contents of the mappings only, i.e. well-
designed templates are transparent to the level of complexity of the mappings. The
same template would produce quite different SQL statements driven by minor changes
in mappings. We have built a series of template libraries to capture the syntax of basic
SQL constructs that are used to build complex statements. XDTL Basic SQL Template
Library is a set of Apache Velocity templates that implements ‘atomic’ SQL constructs
(INSERT, SELECT, UPDATE, FROM, WHERE etc.) as a series of Velocity macros.
Each macro is built to expand into a single SQL construct utilizing the mappings in the
form of predefined collections (targets, sources, columns, conditions). On top of Basic
SQL library one or more higher-level layers can be built to realize more specific or
more complex concepts, e.g. loading patterns, scenarios or process flows, as well as
specifics of various SQL dialects.

It appears that, by use of Abstract Syntax Patterns, the same principle of reducing a
disparate and seemingly diffuse set of all possible transformations in SQL statements to
a limited set of patterns applies here as well. Abstract Syntax Pattern (ASP) is a

reappearing code fragment that, similarly to Abstract Syntax Tree, has all the
references to concrete data items removed. Thus, mappings between different data
domains can be reduced to ASPs to be later processed synchronously with the process
template by the same template engine turning them into executable code. Identifying
and building a library of common syntax patterns enables creation of a user interface to
generate a focused (limited) set of SQL statements without coding or even automatic
SQL generation, validation of existing SQL statements [10]. More detailed ASP
discovery case study can be found on chapter 5.

Various ETL metamodels discussed in previous works of [15],[16] and [17], but
we decided to use pragmatic approach with ASP idea instead of complex and
expressive modeling. We had modeling goals like: minimum footprint and complexity,
effective code generation for different languages (e.g. SQL, SAS, R etc.), efficient
storage and serialization, decomposition to the level where interesting parts would be
identified and exposed with clear semantics (i.e. database objects, vendor specific terms
and keywords, generic and reusable expressions etc.). In Figure 3 we have
implemented mappings knowledge model with four basic classes which are designed as
derivation type of rules in MMX repository. Mapping Group (B) is collection of
Mappings (C) which used on multiple mapping cascade definition that produces single
SQL statement with sub-queries or temporary table implementation. Each
Transformation class (D) instance represents one column transformation in SQL select,
insert-select or update statement with required source, target and pattern attribute
definitions. Condition class (E) represents join and filter predicate conditions that
required constructing data set from defined source variables (tables).

Mapping Group

L

Mapping

B

-name

-name
C —-target

-source [0..*]
-predicate [0..*]

y <
1 1
7 N

e N s
Lty g0
Transformation Condition
-name -name
D ~|-pattern -pattern — E
target -type = {join| filter | aggr}
-source [0..*] -argument [0..*]
-function [0..*]
-predicate [0.*]
-datatype

Figure 3. Knowledge model (schema) for mappings representation and storage.

Mapping model (Figure 3) implementation in MMX physical schema (Figure 2) is
straightforward transformation where each class implemented as one row in
object_type table, each class attribute implemented as one row in property type table,
and each association implemented as one row in relation_type table. Instances of
mapping model stored as corresponding rows in object, property and relation tables.

Described method and model for constructing SQL statements complies with the
following criteria:

e construction of all significant DML statements (INSERT, UPDATE, DELETE)
based on a single mapping;

e construction of SQL statements from a single mapping for several different SQL
dialects;

e construction of SQL statements covering different loading scenarios and
performance considerations;

e construction of SQL statements based on multiple mappings (mapping groups);

e minimum footprint and complexity of the processing environment.

The next chapter example gives the basic idea of one mapping implementation and
usage scenarios for SQL code generation in ETL process.

4.2. Mapping Example

Following simple and generic insert-select SQL statement represents one very
basic transformation code for everyday data transformation inside DW from multiple
staging tables to target table.

Example 1. Insert-select SQL DML statement:

INSERT INTO person tO

SELECT tl.cust_id,
tl.firstname ||
DECODE (tl.sex, ‘M’,
ssn_to_age(t2.ssn)

FROM customer tl

JOIN document t2 ON t2.cust_id

WHERE tl.cust_id IS NOT NULL;

(id, name, sex, age)

N

Il
1,

tl.lastname,
W, 2),

tl.cust_id

Same query contains declarative mapping part formalized
following objects and collections in MMX repository tables:

and represented by

Table 1. Mapping objects source and target properties.

Target isVirtual Source isQuery
t0:person f (false) t1:customer f (false)
t2:document f (false)

Table 2. Column Transformation object(s) properties and values.

Pattern Target Source Function Key Upd
%cl %c0:t0.id %cl:tl.cust_id null t f
Ycl||' | %c2 %c0:t0.name %cl:tl firstname; %c2:tl.lastname null f t
decode(%c1,'M',1,'F',2) %c0:t0.sex %cl:tl.sex null f f
%f1(%cl) %c0:t0.age %c1:t2.ssn %f1:ssn_to_age f t
Table 3. Condition objects properties(s) and their values.

Pattern Source Function Condition Type Join Type
%a2 = %al %a2:t2.cust_id; %al:tl.cust_id null join inner

%al IS NOT NULL %al:tl.cust_id null filter null

Simple insert-select template produces initial SQL statement from given mapping
(Table 4). When using the same mapping with the different template(s) we can generate
update statement or series of different statements.

Table 4. Insert-Select template and result query.

T

SQLS

L

#foreach ($tgt in $Targets)
#if ("$tgtmap" == "0")

#INSERT ($tgt $Columns)

#SELECT ($Columns)

#FROM ($Sources $Conditions)
#WHERE ($Conditions)

#GROUPBY ($Columns $Conditions)
#HAVING ($Conditions)

#end

#end;

INSERT INTO person (id, name, sex, age)
SELECT

tl.cust_id
, tl.firstname || N
, DECODE (tl.sex, 'M',
, ssn_to_age(t2.ssn)
FROM customer tl
INNER JOIN document t2
ON t2.cust_id tl.cust_id
WHERE tl.cust id IS NOT NULL;

Il
1,

tl.lastname
‘B, 2)

The described example gives very
mappings with reusable patterns and

basic idea and method how to formalize column
how to construct source and target data sets

applying join and filter conditions that described again with reusable expression

patterns. Using one single mapping together with limited number of scenario templates
(e.g. full load, initial load, incremental load, insert only, ‘upsert’ (with or without
deletion), versioned insert (history tables), slowly changing dimensions etc.) we can
generate long SQL statement batches, that are adapted for specific dialect (when
needed), validated, robust and working with expected performance. The main idea
here is to formulate and describe as less as possible and reuse and generate as much as
possible.

By using described set of methods we have effectively decomposed SQL statement
into mappings and patterns. The same method can be applied to any SQL data
manipulation statement (e.g. insert, update and delete) of reasonable complexity and we
have used same approach, same mappings and different templates to generate code for
different execution engines (e.g. SAS script). More expressive examples can be
presented when to take transformations with more than 5-10 source tables and targets
with 20-100 columns (common in analytical DW environment) then propositions of
generated, defined and reused code parts change dramatically.

To conclude the mapping example we can say that presented methodical approach
allows us to:

e migrate and translate vendor-specific (SQL) pattern dialects between different
platforms or use same mapping code with different transformation scenarios
or generate code for different execution engines;

e construct data transformation flows from sources to targets with column level
transformation semantics for Impact Analysis and Audit Trail applications;

e construct system component dependency graphs for better management and
automation of development and operation processes;

e automate change management and deployment of new functionality between
different environments (e.g. development, test, production).

5. Experimental Abstract Syntax Pattern Case Study

Abstract Syntax Pattern (ASP) is the practical idea to narrow down expressiveness
of SQL Data Manipulation Language (DML) to allow formalized descriptions of
reusable patterns, decoupled data structures and functions. Decomposition of patterns
and data structure instances are the central idea of the XDTL environment and the code
construction capability, which gives additional flexibility and ergonomics in data
transformation design and allows impact analysis capability for maintenance of
complex Data Warehouse environment (described in chapter 4). We used existing SQL
statements corpus (used for real life data transformations) containing about 26 thousand
SQL statements to find hard evidences for existing patterns and we narrowed down the
used corpus to 12 thousand DML statement to find specific column, join and where
expressions.

We used open source GoldParser® library and developed our own custom SQL
grammar in EBNF format for SQL text corpus parsing. We developed custom parser
program for ASP pattern extraction from SQL corpus, we imported all parsed patterns
to database and evaluated and analyzed SQL patterns and “life forms” writing new
SQL queries. Implemented parsing program is tuned to recognize column construction
patterns, join, where and having condition predicate patterns from SQL DML
statements, replacing specific database structure identifiers and constants with $a and
functions with % £ pattern.

* www.goldparser.org

Example 3. The parsing program detects pattern $f (%a, $a) from the original
column expression COALESCE (Tablel.Columnl,0) and assigns operator and
operand values to replaced variables: $f = {’/COALESCE’} and %a =
{’Tablel.Columnl’,” 0’}

Very general metrics about SQL parsing work can be described with total figures
of 8,380 input SQL DML statements (select, insert, update) and 92,347 parsed
expressions that group to 2,671 abstract patterns. It gives us 97/3 percentage division
between expressions and patterns. Those figures can be improved by hand tuning of
pattern detection technique and SQL grammar that is not currently covering all the
aspects of used SQL dialect.

Table 6. Insert-Select template and result query.

Statement Type Patterns Statements Expression Expressions in Top Pattern
Count Count Count Top Pattern Coverage %

Insert 1890 4965 61899 37924 61

Update 836 2240 25361 12997 51

Select 224 1175 5087 3175 62

All 2950 8380 92 347 54 096 59

Table 7. Discovered patterns by pattern types.

Pattern Type Pattern Statement Expression Expressions in Top Patten
Count Count Count Top Pattern Coverage %
Column 1897 10 631 78 264 55921 71
Join 526 4172 11684 2273 19
Filter 323 1505 2399 359 14

Based on current results we can conclude that top 10 patterns will cover 83% and
top 100 patterns will cover 93% of all expressions that used in SQL DML corpus.
Those metrics does not count the fact that most of the patterns that are not in top list are
constructed from patterns that are in patterns top list.

To conclude this case-study we can say that actual expressiveness of formalized
patterns and mappings will be comparable with expressiveness of real life usage of
SQL DML in data transformations. A small set of meaningful patterns (about 100
different patterns) with defined semantics and experimental impact weights will direct
us to automated and probabilistic impact analysis calculations that are one of the main
applications for SQL formalization technique. We also got the confirmation that SQL
parsing technique can be used for data transformation extraction, mapping
formalization and future analysis.

6. Case Studies for Automating Data Lineage Analysis

The previously described architecture and algorithms form a basis for an integrated
data lineage analysis toolset dLineage (http://dlineage.com). dLineage has been tested
in large real-life projects and environments supporting several popular DW database
platforms (e.g. Oracle, Greenplum, Teradata, Vertica, PostgreSQL, MsSQL, Sybase)
and BI tools (e.g. SAP Business Objects, Microstrategy).

We have conducted two main case studies involving a thorough analysis of large
international companies in the financial and the energy sectors. Both case studies
involved an automated analysis of thousands of database tables and views, tens of
thousands of data loading scripts and BI reports. Those figures are far over the capacity

limits of human analysts not assisted by the special tools and technologies. The
automation tools described in the paper enabled us to set up and conduct the analysis
project in a few days by just two developers.

The following example graph from the case study maps DW tables to views and
user reports: it is generated automatically from about 5 000 nodes (tables, views,
reports) and 20 000 links (data transformations mappings form views and queries).

e

[DW tables | | DW views | DW Reports

Figure 4. Data lineage graph with dependencies between DW tables, views and reports.

7. Conclusions and Future Work

We have presented a formalized mapping and abstract pattern methodology
supporting template-based program construction. The technique is a development upon
the ETL language runtime environment (XDTL) and metadata repository (MMX)
designed earlier by the authors. We have introduced the technology and presented
working samples motivated by real-life challenges and problems discussed in the first
chapter. The described architecture and mapping concept have been used to implement
an integrated toolset dLineage (http://dlineage.com) to solve data integration and
dataflow visualization problems.

We have used our metadata-based ETL technology in the Department of Statistics
of Estonian state to implement a system for automated, data-driven statistics production
for the whole country. We have also tested our mapping methods and technology for
data flow analysis and visualization in large international companies in the financial

and the energy sectors. Both case studies contained thousands of database tables and
views along with tens of thousands of data loading scripts and BI reports. The analysis
of the large SQL data transformation corpus (see chapter 5) gave us taxonomy of
reusable transformation patterns and demonstrated the two-way methodology approach
from code to mappings and patterns.

The future work involves refining current implementation details, adding
semantics to mappings and patterns, constructing dependency graphs of mappings, data
structures and data flows and developing aggregation algorithms for different
personalized user profiles and their interests (e.g. business user interest in data
structures, flows and availability is different from that of a developer or system
operator) as well as using those techniques for solving problems described in the first
chapter.

Acknowledgments

This research has been supported by European Union through European Regional
Development Fund.

References

[1] Behrend,A. and Jorg,T. (2010). Optimized Incremental ETL Jobs for Maintaining Data Warehouses.

[2] Boehm,M., Habich,D., Lehner,W. and Wloka,U. (2009). GCIP: Exploiting the Generation and
Optimization of Integration Processes.

[3] B6hm,M., Habich,D., Lehner,W. and Wloka,U. (2008). Model-driven generation and optimization of
complex integration processes. ICEIS.

[4] Dessloch,S., Hernandez,M.A., Wisnesky,R., Radwan,A., Zhou J. (2008). Orchid: Integrating Schema
Mapping and ETL, IEEE 24th International Conference on Data Engineering.

[5] Giorgini,P., Rizzi,S., Garzetti,M. (2008). GRAnD: A Goal-Oriented Approach to Requirement Analysis
in Data Warehouses. DSS 45(1), 4-21.

[6] Haas,L.M., Hernandez,M.A., Ho,H., Popa,L. and Roth M. (2005). Clio Grows Up: From Research
Prototype to Industrial Tool, in SIGMOD, p.805-810.

[7] Jun,T., Kai,C., Yu,F., Gang,T. (2009). The Research & Application of ETL Tool in Business Intelligence
Project, International Forum on Information Technology and Applications, FITA'09, p.620-623.

[8] Papastefanatos,G., Vassiliadis,P., Simitsis,A., Sellis,T. and Vassiliou,Y. (2010). Rule-based Management
of Schema Changes at ETL sources, Advances in Databases and Information Systems Associated
Workshops and Doctoral Consortium of the 13th East European Conference ADBIS.

[9] Patil, P.S., Rao, S. and Patil,S.B. (2011). Data Integration Problem of structural and semantic
heterogeneity: Data Warehousing Framework models for the optimization of the ETL processes.

[10] Reiss,S.P. (2007). Finding Unusual Code, 2007 IEEE International Conference on Software
Maintenance, p.34-43.

[11] Rodig,J. and Baranovig,M. (2009). Generating Data Quality Rules and Integration into ETL Process.

[12] Roth,M., Hernandez,M.A., Coulthard,P., Yan,L., Popa, L., Ho,H.C.T., Salter,C.C. (2006). XML
mapping technology: Making connections in an XML-centric world, IBM Systems Journal.

[13] Simitsis,A., Vassiliadis, P. and Sellis,T. K. (2005). Optimizing ETL Processes in Data Warehouses,

ICDE, p.564-575.

Simitsis,A., Wilkinson,K., Dayal,U., Castellanos,M. (2010). Optimizing ETL workflows for fault-

tolerance, International Conference on Data Engineering (ICDE), p.385-396.

[15] SongX., YanX., YangL. (2009). Design ETL Metamodel Based on UML Profile, Knowledge
Acquisition and Modeling, KAM '09. p.69-72.

[16] Stohr,T., Miiller,R., Rahm,E. (1999). An Integrative and Uniform Model for Metadata Management in
Data Warehousing Environment, Workshop on Design and Management of Data Warehouses
(DMDW).

[17] Vassiliadis,P., Simitsis,A., Georgantas,P., Terrovitis,M. (2003). A Framework for the Design of ETL
Scenarios, In Proc. of CAiSE’03.

[18] ISO/IEC 11179 Metadata Registry (MDR) standard, http://www.iso.org/iso/home/store/catalogue
_tc/catalogue_detail.htm?csnumber=35343.

[19] Eclipse DB Definition Model, http://www.eclipse.org/webtools/wst/components/rdb/WebPublished
DBDefinitionModel/DBDefinition.htm.

[20] NIST Role Based Access Control (RBAC) Standard, http://csrc.nist.gov/groups/SNS/rbac.

[14

Publication B

Tomingas, K.; Tammet, T.; Kliimask, M. Rule-Based Impact Analysis for
Enterprise Business Intelligence. In: Artificial Intelligence Applications and
Innovations (AIAI 2014), IFIP Advances in Information and Communication
Technology. Springer, 2014.

83

Rule-based Impact Analysis for Enterprise Business
Intelligence

Kalle Tomingas', Tanel Tammet', Margus Kliimask®

! Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086 Estonia
2Eliko Competence Center, Teaduspargi 6/2, Tallinn 12618 Estonia

Abstract. We address several common problems in the field of Business Intel-
ligence, Data Warehousing and Decision Support Systems: the complexity to
manage, track and understand data lineage and system component dependencies
in long series of data transformation chains. The paper presents practical meth-
ods to calculate meaningful data transformation and component dependency
paths, based on program parsing, heuristic impact analysis, probabilistic rules
and semantic technologies. Case studies are employed to explain further data
aggregation and visualization of the results to address different planning and
decision support problems for various user profiles like business users, manag-
ers, data stewards, system analysts, designers and developers.

Keywords: impact analysis, data lineage, data warehouse, rule-based reason-
ing, probabilistic reasoning, semantics

1 Introduction

Developers and managers are facing similar Data Lineage (DL) and Impact Analy-
sis (IA) problems in complex data integration (DI), business intelligence (BI) and
Data Warehouse (DW) environments where the chains of data transformations are
long and the complexity of structural changes is high. The management of data inte-
gration processes becomes unpredictable and the costs of changes can be very high
due to the lack of information about data flows and internal relations of system com-
ponents. The amount of different data flows and system component dependencies in a
traditional data warchouse environment is large. Important contextual relations are
coded into data transformation queries and programs (e.g. SQL queries, data loading
scripts, open or closed DI system components etc.). Data lineage dependencies are
spread between different systems and frequently exist only in program code or SQL
queries. This leads to unmanageable complexity, lack of knowledge and a large

amount of technical work with uncomfortable consequences like unpredictable re-

sults, wrong estimations, rigid administrative and development processes, high cost,

lack of flexibility and lack of trust. We point out some of the most important and

common questions for large DW environments (see Fig.1) which usually become a

topic of research for system analysts and administrators:

o Where does the data come or go to in a specific column, table, view or report?

e Which components (reports, queries, loadings and structures) are impacted when
other components are changed?

e Which data, structure or report is used by whom and when?

e What is the cost of making changes?

e What will break when we change something?

DI/ETL Queries

Source Databases DW Storage Reporting

Data Loading Metadata Reporting Metadata
(50L Queries, Loading (Reperting Mdels, Calculation,
Seripts & Frograms) Reports)

Fig. 1. General scheme of DW/BI data flows.

The ability to find ad-hoc answers to many day-to-day questions determines not
only the management capabilities and the cost of the system, but also the price and
flexibility of making changes. The dynamics in business, environment and require-
ments ensure that regular changes are a necessity for every living organization. Due to
its reflective nature, the business intelligence is often the most fluid and unsteady part
of enterprise information systems.

Obviously, the most promising way to tackle the challenges in such a rapidly grow-
ing, changing and labor-intensive field is automation. We claim that efficient automa-
tization in this particular field requires the use of semantic and probabilistic technolo-
gies. Our goal is to aid the analysts with tools which can reduce several hard tasks
from weeks to minutes, with better precision and smaller costs.

2 Related Work

Impact analysis, traceability and data lineage issues are not new. A good overview of
the research activities of the last decade is presented in an article by Priebe et al. [9].
We can find various research approaches and published papers from the early 1990s
with methodologies for software traceability [10]. The problem of data lineage tracing
in data warehousing environments has been formally founded by Cui and Widom [2]

and [3]. Our recent paper builds upon this theory by introducing the Abstract Map-
ping representation of data transformations [14].

Other theoretical works for data lineage tracing can be found in [5] and [6]. Fan
and Poulovassilis developed algorithms for deriving affected data items along the
transformation pathway [5]. These approaches formalize a way to trace tuples (resp.
attribute values) through rather complex transformations, given that the transfor-
mations are known on a schema level. This assumption does not often hold in prac-
tice. Transformations may be documented in source-to-target matrices (specification
lineage) and implemented in ETL tools (implementation lineage).

Other practical works that based on conceptual models, ontologies and graphs for
data quality and data lineage tracking can be found in [15] and [12]. De Santana pro-
poses the integrated metadatada and the CWM metamodel based data lineage docu-
mentation approach [4]. The workflows and the manual annotations based solution
proposed by Missier et al. [8].

Priebe et al. [9] concentrates on proper handling of specification lineage, a huge
problem in large-scale DWH projects, especially in case different sources have to be
consistently mapped to the same target. They propose a business information model
(or conceptual business glossary) as the solution and a central mapping point to over-
come those issues.

Our approach to Impact Analysis and Data Lineage differs from previous work in
several aspects. Our aim is to merge technical data lineage [3] with semantic integra-
tion approaches [9], [11], using grammar based methods for metadata extraction from
program texts and a probabilistic rule-based inference engine for weight calculations
and reasoning approaches [7]. We also use the novel and powerful web based data
flow and the graph visualization techniques with the multiple view approach [16] to
deliver the extraction and the calculation of the result to the end-users.

3 System Architecture

We present a working Impact Analysis solution which can be adopted and imple-
mented in an enterprise environment or provided as a service (SaaS) to manage organ-
ization information assets, analyze data flows and system component dependencies.
The solution is modular, scalable and extendable. The core functions of our system
architecture are built upon the following components presented in the Fig.2.

1. Scanners collect metadata from different systems that are part of DW data flows
(DI/ETL processes, data structures, queries, reports etc.). We build scanners using
our xml-based data transformation language and runtime engine XDTL [18].

2. The SQL parser is based on customized grammars, GoldParser parsing engine [1]
and the Java-based XDTL engine.

3. The rule-based parse tree mapper extracts and collects meaningful expressions
from the parsed text, using declared combinations of grammar rules and parsed text
tokens.

4. The query resolver applies additional rules to expand and resolve all the variables,
aliases, sub-query expressions and other SQL syntax structures which encode cru-
cial information for data flow construction.

5. The expression weight calculator applies rules to calculate the meaning of data
transformation, join and filter expressions for impact analysis and data flow con-
struction.

6. The probabilistic rule-based reasoning engine propagates and aggregates weighted
dependencies.

7. The directed and weighted sub-graph calculations, visualization and web based Ul
for data lineage and impact analysis applications.

8. The MMX open-schema relational database using PostgreSQL or Oracle for stor-
ing and sharing scanned, calculated and derived metadata [17].

Administration &
Management

User profiles &
interfaces

SaL Mepping Impact &
Rules p > Lineage Rules
% 4
- : < % 8
DB P\ Reporting \ /
Metadata Metadata
Data
A A :

Integration
Metadata

1

DB Metadata Data Loading Metadata Reporting Metadata Metadata Repository
(schemas, Tables, Views, (SQL Queries, Loading (Reporting Models, (MMX Schema)
Classifiers data) Scripts & Programs) Reports)

Fig. 2. Impact Analysis system architecture components.

4 Query Parsing and Metadata Extraction

Scanners (Nol in Fig.2) collect metadata from external systems: database data dic-
tionary structures, ETL system scripts and queries, reporting system query models and
reports. All the structural information extracted is stored to the metadata database.
The scanned objects and their properties are extracted and stored according to the
meta-models we have designed: relational database, data integration, reporting and

business terminology models. Meta-models contain ontological knowledge about the

metadata and relations collected across different domains and models. The scanner

technology (XDTL) and the open-schema metadata database (MMX) design have

been described at a more detailed level in our previous work [13],[14].

In order to construct the data flows from the very beginning of the data sources
(e.g. the accounting system) to the end points (e.g. the reporting system) we have to
be able to find and connect both the identical and the related objects in different sys-
tems. In order to connect the objects we have to understand and extract the relations
from the SQL queries (e.g. ETL tasks, database views, database procedures), scripts
(e.g. loader utility scripts) and expressions (e.g. report structure) collected and stored
by scanners. In order to understand the data transformation semantics encoded in the
query language statements (e.g. insert, update, select and delete queries) and expres-
sions, we have to involve external knowledge about the syntax and grammatical struc-
ture of the query language. Grammar-based parsing functionality is built into the
scanner technology. A configurable “parse” command brings semi-structured text
parsing and information extraction into the XDTL data integration environment. As
the result of SQL parsing step (No2 in Fig.2) we get a large parse tree with every SQL
query token assigned a special disambiguated meaning by the grammar.

In order to convert different texts into the tree structure, to reduce tokens and to
convert the tree back to the meaningful expressions (depending on search goals), we
use a declarative rule set presented in the Json format, combining token and grammar
rules. A configurable grammar and a synchronized reduction rule set makes the
XDTL parse command suitable for general purpose information extraction and cap-
tures the resource hungry computation steps into one single parse-and-map step with
the flat table outcome. The Parse Tree Mapper (No3 in Fig.2) uses three different rule
sets with more than eighty rules to map the parse tree to data transformation expres-
sions.

After extraction and mapping of each SQL query statement into a series of expres-
sions we execute the SQL Query Resolver (No4 in Fig.2) which contains a series of
functions to resolve the SQL query structure:

e Solve source and target object aliases to full qualified object names;

e Solve sub-query aliases to context specific source and target object names;

e Solve sub-query expressions and identifiers to expand all the query level expres-
sions and identifiers with fully qualified and functional ones;

e Solve syntactic dissymmetry in different data transformation expressions (e.g.
insert statement column lists, select statement column lists and update statement
assign list etc.);

e Extract quantitative metrics from data transformation, filter and join expressions
to calculate expression weights (e.g. number of columns in expression, functions,
predicates, string constants, number constants etc.).

5 Data Transformation Weight Calculation

Data structure transformations are parsed, extracted from queries and stored as for-
malized, declarative mappings in the system. To add additional quantitative measures
to each column transformation or column usage in the join and filter conditions we
evaluate each expression and calculate transformation and filter weights for those.

Expression Weight Calculation (No5 in Fig.2) is based on the idea that we can
evaluate column data “transformation rate” and column data “filtering rate” using data
structure and structure transformation information captured from SQL queries. Such a
heuristic evaluation enables us to distinguish columns and structures used in the trans-
formation expressions or in filtering conditions or both, and gives probabilistic
weights to expressions without the need to understand the full semantics of each ex-
pression. We have defined two measures that we further use in our probabilistic rule
system for deriving new facts:

Definition 1. A primitive data transformation operation O(X,Y,M1,F1,W,) is a da-
ta transformation between a source column X and a target column Y in a transfor-
mation set M (mapping or query) having expression similarity weight W, and having
conditions set F1.

Definition 2. Column transformation weight W, is based on the similarity of each
source column and column transformation expression: the calculated weight expresses
the source column transfer rate or strength. The weight is calculated on scale [0,1]
where 0 means that the source data are not transformed to target (e.g. constant as-
signment in a query) and 1 means that the source is directly copied to the target (no
additional column transformations).

Definition 3. Column filter weight W¢ is based on the similarity of each filter col-
umn in the filter expression and the calculated weight expresses the column filtering
rate or strength. The weight is calculated on scale [0,1] where 0 means that the col-
umn is not used in the filter and 1 means that the column is directly used in the filter
predicate (no additional expressions).

The general column weight W algorithm in each expression for W, and W¢ compo-
nents is calculated as a column count ratio over all the expression component counts
(e.g. column count, constant count, function count, predicate count):

W=IdCount/IdCount+FncCount+StrCount+NbrCount+PrdCount.

5.1 Rule System

The defined figures, operations and weights are used in combination with the declara-
tive probabilistic inference rules to calculate the possible relations and dependencies
between data structures and software components. Applying the rule system to the
extracted query graphs we calculate and produce a full dependency graph that is used
for data lineage and impact analysis.

The basic operations used in the rules for the dependency graph calculations are
the following:

e The primitive data transformation is the elementary operation between the source
column X and the target column Y in the query mapping id set M1 with the filter
condition set F1 and the transformation weight W, (see Definition 1). This is repre-
sented by the predicate O (X,Y,M1,F1,Wt);

e The predicate member (X,F1,Wt) is used in the filter impact calculation rule
to detect that the column X is a member of the filter id set F1 with the filter weight
Wit;

e The predicate disjoint (M1,M2)is used in the impact aggregation rule to de-
tect that two query mapping id sets M1 and M2 are disjoint. The disjointness con-
dition is necessary for aggregating the data transformation relations and weights in
case more than one path from different queries connects the same column pairs;

e The predicate parent (X0,X1) is used in the parent aggregation rule to detect
that the table X0 is the owner or parent object of the column X1. This condition is
necessary for aggregating all the column level relations and the weights between
two tables for the table level impact relation;

e The function union (M1,M2) is used to calculate the impact relations over two
disjoint query id sets M1 and M2: it returns the distinct id lists of two sets M1 and
M2;

e The function sum (W1,W2) is used to calculate the aggregated impact relation
weight in case the basic operations are disjoint, i.e. stem from independent queries.
The weight calculation is based on non-mutually-exclusive event probabilities (two
independent queries means there could be an overlap between two events) and is
calculated as the sum of probabilities of W1 and W2: sum (W1, W2)= (W1+W2) -
(W1*W2);

e The function avg (W1l,W2) is used to calculate the parent impact weight when
the basic operations have the same parent structures. The weight is calculated as
the arithmetic mean of W1 and W2: avg (W1, W2) = (W1+W2) /2;

The inference rules with the basic operations and the weighs for the dependency
graph calculations are the following:

® The basic impact calculation rule for the operation O with no additional filters
produces the impact predicate I:
O(X,Y,M1,F1l,Wt) => I(X,Y,M1,Fl,Wt);
® The basic impact calculation rule for the operation O with a related filter condition
produces the impact predicate I with multiplied weights:
O0(X,Y,M1,F1,Wt)& member (X,F1l,Wf) => I(X,Y,M1,F1l,Wt*Wf);
o The transitivity rule is used to calculate the sequences of the consecutive impact
relations:

I(X,Y,M1,F1,Wl) & I(Y,Z,M2,F2,W2) & disjoint(M1,M2) =>
I(X,Z,union (M1,M2),union (F1,F2),Wl*W2) ;

® The column aggregation rule is used when multiple different paths from the differ-
ent queries connect the same columns: calculate the impact relations with aggre-
gated query id-s and the aggregated weights:

I(X,z,Ml,F1,Wl) & I(X,Z,M2,F2,W2) & disjoint (M1,M2) =>
I(X,Z,union (M1,M2),union(F1,F2),sum(Wl,W2));

e The parent aggregation rule is used when multiple different impact relations con-
nect the column pairs of the same tables: calculate the table level impact relations
with aggregated query id-s and aggregated weights:

I(x1,Y1,M1,F1,Wl) & I(X2,Y2,M2,F2,W2) & parent (X0,X1)& par-
ent (X0,X2) & parent(Y0,Y1l) & parent(YO0,Y2) =>
I(X0,Y0,union(M1,M2),union(F1,F2),avg(Wl,W2)) .

5.2 Dependency Score Calculation

We can use the derived dependency graph to solve different business tasks by calcu-
lating the selected component(s) lineage or impact over available layers and chosen
details. Business questions like: “What reports are using my data?”, “Which compo-
nents should be changed or tested?” or “What is the time and cost of change?” are
converted to directed sub-graph navigation and calculation tasks. The following defi-
nitions add new quantitative measures to each component or node (e.g. table, view,
column, etl task, report etc.) in the calculation. We use those measures in the Ul to
sort and select the right components for specific tasks.

Definition 4. Local Lineage Dependency % (LLD) is calculated as the ratio over
the sum of the local source and target Lineage weights W,:

LLD = SUM(source (W.) /source (W) +target (W)).

Local Lineage Dependency 0 % means that there are no data sources detected for
the object. Local Lineage Dependency 100 % means that there are no data consumers
(targets) detected for the object. Local Lineage Dependency about 50 % means that
there are equal numbers of weighted sources and consumers (targets) detected for the
object.

Definition 5. Local Impact Dependency % (LID) is calculated as the ratio over the
sum of local source and target impact weights W(W,Wy):

LID=SUM (source (W) /source (W)+target (W)).

Local Impact Dependency 0 % means that there are no dependent data sources de-
tected for the object. Local Dependency 100 % means that there are no dependent
data consumers (targets) detected for the object. Local Impact Dependency about 50
% means that there are equal numbers of weighted dependent sources and consumers
(targets) detected for the object.

Definition 6. Global Dependency Count (GDC) is the sum of all source and target
Lineage and Impact relations counts: GDC=GSC+GTC.

The Global Dependency Count is a good differential metric that allows us to see
clear distinctions in the dependencies of each object. We can take the GDC metric as
a sort of “gravity” of the object that can be used to develop new rules, to infer the
time and cost of changes of object(s) (e.g. database table, view, data loading programs
or report).

6 Conclusions and Future Work

The previously described architecture and algorithms have been used to implement an
integrated toolset dLineage (http://dlinecage.com). Both the scanners and web-based
tools of dLineage have been enhanced and tested in real-life projects and environ-
ments to support several popular DW database platforms (e.g. Oracle, Greenplum,
Teradata, Vertica, PostgreSQL, MsSQL, Sybase), ETL tools (e.g. Pentaho, Oracle
Data Integrator, SQL scripts and different data loading utilities) and BI tools (e.g.
SAP Business Objects, Microstrategy). The dLineage dynamic visualization and
graph navigation tools are implemented in Javascript using the d3.js graphics librar-
ies.

We have tested our solution during two main case studies involving a thorough
analysis of large international companies in the financial and the energy sectors. Both
case studies analyzed thousands of database tables and views, tens of thousands of
data loading scripts and BI reports. Those figures are far over the capacity limits of
human analysts not assisted by the special tools and technologies.

We have presented several algorithms and techniques for quantitative impact anal-
ysis, data lineage and change management. The focus of these methods is on automat-
ed analysis of the semantics of data conversion systems followed by employing prob-
abilistic rules for calculating chains and sums of impact estimations. The algorithms
and techniques have been successfully employed in two large case studies, leading to
practical data lineage and component dependency visualizations.

We are planning to continue this research by considering a more abstract, concep-
tual/business level in addition to the current physical/technical level of data represen-
tation.

Acknowledgments

This research has been supported by European Union through European Regional
Development Fund.

References

Ju—

17.
18.

. Cook,D. (2010). Gold parsing system. URL: http://www.goldparser.org.
. Cui, Y., Widom, J., & Wiener, J. L. (2000). Tracing the lineage of view data in a ware-

housing environment. ACM Transactions on Database Systems (TODS), 25(2), 179-227.

. Cui, Y., & Widom, J. (2003). Lineage tracing for general data warehouse transformations.

The VLDB Journal—The International Journal on Very Large Data Bases, 12(1), 41-58.

. de Santana, A. S., & de Carvalho Moura, A. M. (2004). Metadata to support transfor-

mations and data & metadata lineage in a warehousing environment. In Data Warechousing
and Knowledge Discovery (pp. 249-258). Springer Berlin Heidelberg.

. Fan, H., & Poulovassilis, A. (2003, November). Using AutoMed metadata in data ware-

housing environments. In Proceedings of the 6th ACM international workshop on Data
warehousing and OLAP (pp. 86-93). ACM.

. Giorgini, P., Rizzi, S., & Garzetti, M. (2008). GRAnD: A goal-oriented approach to re-

quirement analysis in data warehouses. Decision Support Systems, 45(1), 4-21.

. Luberg, A., Tammet, T., & Jarv, P. (2011). Smart City: A Rule-based Tourist Recommen-

dation System. In Information and Communication Technologies in Tourism 2011 (pp. 51-
62). Springer Vienna.

. Missier, P., Belhajjame, K., Zhao, J., Roos, M., & Goble, C. (2008). Data lineage model

for Taverna workflows with lightweight annotation requirements. In Provenance and An-
notation of Data and Processes (pp. 17-30). Springer Berlin Heidelberg.

. Priebe, T., Reisser, A., & Hoang, D. T. A. (2011). Reinventing the Wheel?! Why Harmo-

nization and Reuse Fail in Complex Data Warehouse Environments and a Proposed Solu-
tion to the Problem.

. Ramesh, B., & Jarke, M. (2001). Toward reference models for requirements traceability.

Software Engineering, IEEE Transactions on, 27(1), 58-93.

. Reisser, A., & Priebe, T. (2009, August). Utilizing Semantic Web Technologies for Effi-

cient Data Lineage and Impact Analyses in Data Warehouse Environments. In Database
and Expert Systems Application, 2009. DEXA'09, pp. 59-63.

. Skoutas, D., & Simitsis, A. (2007). Ontology-based conceptual design of ETL processes

for both structured and semi-structured data. International Journal on Semantic Web and
Information Systems (IJSWIS), 3(4), 1-24.

. Tomingas K., Kliimask,M., Tammet,T. (2014). Mappings, Rules and Patterns in Template

Based ETL Construction. The 11th International Baltic DB&IS2014 Conference.

. Tomingas,K., Kliimask,M., Tammet,T. (2014). Data Integration Patterns for Data Ware-

house Automation. The 18th East-European ADBIS2014 Conference.

. Vassiliadis, P., Simitsis, A., & Skiadopoulos, S. (2002, November). Conceptual modeling

for ETL processes. In Proceedings of the 5th ACM international workshop on Data Ware-
housing and OLAP (pp. 14-21). ACM.

. Wang Baldonado, M. Q., Woodruff, A., & Kuchinsky, A. (2000, May). Guidelines for us-

ing multiple views in information visualization. In Proceedings of the working conference
on Advanced visual interfaces (pp. 110-119). ACM.

MMX Metadata Framework, URL: http://mmxframework.org

XDTL Data Transformation Language, URL: http://xdtl.org

Publication C

Tomingas, K.; Tammet, T.; Kliimask, M.; Jarv, P. Automating Component
Dependency Analysis for Enterprise Business Intelligence. In: 2014 International
Conference on Information Systems (ICIS 2014).

95

Automating Component Dependency
Analysis for Enterprise Business Intelligence
Completed Research Paper

Kalle Tomingas Tanel Tammet
Tallinn Uni of Technology Tallinn Uni of Technology
Ehitajate tee 5 Ehitajate tee 5
Tallinn, Estonia Tallinn, Estonia
kalle.tomingas@gmail.com tanel.tammet@ttu.ee
Margus Kliimask Priit Jarv
Eliko Competence Center Eliko Competence Center
Teaduspargi 6/2 Teaduspargi 6/2
Tallinn, Estonia Tallinn, Estonia
margus.kliimask@gmail.com priit.jarv@gmail.com
Abstract

We address common problems in the field of Business Intelligence, Data Warehousing and
Decision Support Systems: the complexity to manage, track and understand data lineage and
system component dependencies in long series of data transformation chains. The paper
presents practical methods to calculate meaningful data transformation and component
dependency paths, based on program parsing, heuristic impact analysis, probabilistic rules and
semantic technologies. Case studies are employed to explain further data aggregation and
visualization of the results to address different planning and decision support problems for
various groups of technical and business users.

Keywords: Component dependency analysis, impact analysis, data lineage, data warehouse,
rule-based reasoning.

Introduction

Developers and managers are facing similar Data Lineage (DL) and Impact Analysis (IA) problems in
complex data integration (DI), business intelligence (BI) and Data Warehouse (DW) environments where
the chains of data transformations are long and the complexity of structural changes is high. The
management of data integration processes becomes unpredictable and the costs of changes can be very
high due to the lack of information about data flows and internal relations of system components. The
amount of different data flows and system component dependencies in a traditional data warehouse
environment is large. Important contextual relations are coded into data transformation queries and
programs (e.g. SQL queries, data loading scripts, open or closed DI system components etc.). Data lineage
dependencies are spread between different systems and frequently exist only in program code or SQL
queries. This leads to unmanageable complexity, lack of knowledge and a large amount of technical work
with uncomfortable consequences like unpredictable results, wrong estimations, rigid administrative and
development processes, high cost, lack of flexibility and lack of trust.

Thirty Fifth International Conference on Information Systems, Auckland 2014 1

Decision Analytics, Big Data, and Visualization

We point out some of the most important and common questions for large DW environments (see Figure
1) which usually become a topic of research for system analysts and administrators:

o Where does the data come or go to in/from a specific column, table, view or report?

o When was the data loaded, updated or calculated in a specific column, table, view or report?

e Which components (reports, queries, loadings and structures) are impacted when other components
are changed?

o Which data, structure or report is used by whom and when?

o What is the cost of making changes?

o What will break when we change something?

DI/ETL Queries

Source Databases DW Storage Reporting

Data Loading Metadata Reporting Metadata
(sQL Queries, Loading (Reperting Medels, Caleulation,
Scripts & Frograms) Reports)

Figure 1. General scheme of DW/BI data flows.

The ability to find ad-hoc answers to many day-to-day questions determines not only the management
capabilities and the cost of the system, but also the price and flexibility of making changes. The dynamics
in business, environment and requirements ensure that regular changes are a necessity for every living
organization. Due to its reflective nature, the business intelligence is often the most fluid and unsteady
part of enterprise information systems.

Obviously, the most promising way to tackle the challenges in such a rapidly growing, changing and labor-
intensive field is automation. We claim that efficient automatization in this particular field requires the
use of semantic and probabilistic technologies. Our goal is to aid the analysts with tools which can reduce
several hard tasks from weeks to minutes, with better precision and smaller costs.

We will draw a short overview of the previous body of research and related problems in the next chapter.
We will continue by describing the components of the presented system in the chapter 3. Chapter 4 will
describe query parsing, analysis, resolving and semantics extraction techniques. These and the
probabilistic rule-based reasoning techniques described in the chapters 5 and 6 forms the backbone of the
presented automated solution. We will present illustrative examples in the chapter 7 and chapter 8
presents real life case studies with a functional analytical application. Chapter 9 concludes by presenting
the current status of the work and describing further research.

Related Work

Impact analysis, traceability and data lineage issues are not new. A good overview of the research
activities of the last decade is presented in an article by (Priebe et al. 2011). We can find various research
approaches and published papers from the early 1990’s with methodologies for software traceability
(Ramesh and Jarke 2001). The problem of data lineage tracing in data warehousing environments has
been formally founded by Cui and Widom (2000, 2003). Our recent papers build background to the
theory by introducing the Abstract Mapping representation of data transformations and rule-based
impact analysis (Tomingas et.al. 1014, 2015).

Other theoretical works for data lineage tracing can be found in (Fan and Poulovassilis 2003) and
(Giorgini et al. 2005). Fan and Poulovassilis developed algorithms for deriving affected data items along
the transformation pathway (Fan and Poulovassilis 2003). These approaches formalize a way to trace
tuples (resp. attribute values) through rather complex transformations, given that the transformations are
known on a schema level. This assumption does not often hold in practice. Transformations may be
documented in source-to-target matrices (specification lineage) and implemented in ETL tools
(implementation lineage). Woodruff and Stonebraker create solid base for the data-level and the
operators processing based the fine-grained lineage in contrast to the metadata based lineage calculation
in their research paper (Woodruff and Stonebraker 1997).

2 Thirty Fifth International Conference on Information Systems, Auckland 2014

Rule-based Impact Analysis for Enterprise Business Intelligence

Other practical works that based on conceptual models, ontologies and graphs for data quality and data
lineage tracking can be found in (Vassiliadis et.al. 2002), (Skoutas and Simitsis 2007) and (Widom 2004).
De Santana proposes the integrated metadatada and the CWM metamodel based data lineage
documentation approach (de Santana and de Carvalho Moura 2004). The workflows and the manual
annotations based solution proposed by Missier et al. (2008).

Priebe et al. (2011) concentrates on proper handling of specification lineage, a huge problem in large-scale
DWH projects, especially in case different sources have to be consistently mapped to the same target.
They propose a business information model (or conceptual business glossary) as the solution and a
central mapping point to overcome those issues.

Several commercial ETL products are addressing the impact analysis and data lineage problems to some
extent (e.g. Oracle Data Integrator, Informatica PowerCenter, IBM DataStage or Microsoft SQL Server
Integration Services), but those tools and the dependency analysis performed is often limited to the basic
functions of the particular system. Another group of commercial tools is formed by the specialized
metadata integration products not related to a particular ETL tool, offering a more sophisticated suite of
dependency analysis functionality. The examples are ASG Rochade, Adaptive Metadata Manager, Troux
Enterprise Architecture Solution or Teradata Metadata Services (MDS): all of those have their own
limitations in terms of available functionality and adapters to other products (Priebe et al. 2011).

Our approach to Impact Analysis and Data Lineage differs from previous work in several aspects. Our aim
is to merge technical data lineage (Cui and Widom 2003) with semantic integration approaches (Priebe et
al. 2011, Reisser and Priebe 2009), using grammar based methods for metadata extraction from program
texts and a probabilistic rule-based inference engine for weight calculations and reasoning approaches
(Tammet et al. 2010). We also use the novel and powerful web based data flow and the graph visualization
techniques with the multiple view approach (Wang Baldonado et.al. 2000) to deliver the extraction and
the calculation of the result to the end-users.

System Architecture

We present a working Impact Analysis solution which can be adopted and implemented in an enterprise
environment or provided as a service (SaaS) to manage organization information assets, analyse data
flows and system component dependencies. The solution is modular, scalable and extendable. The core
functions of our system architecture are built upon the following components presented in the Figure 2:

1) Scanners collect metadata from different systems that are part of DW data flows (DI/ETL processes,
data structures, queries, reports etc.). We build scanners using our xml-based data transformation
language and runtime engine XDTL! written in Java.

2) The SQL parser is based on customized grammars, GoldParser2 parsing engine and the Java-based
XDTL engine.

3) The rule-based parse tree mapper extracts and collects meaningful expressions from the parsed text,
using declared combinations of grammar rules and parsed text tokens.

4) The query resolver applies additional rules to expand and resolve all the variables, aliases, sub-query
expressions and other SQL syntax structures which encode crucial information for data flow
construction.

5) The expression weight calculator applies rules to calculate the meaning of data transformation, join
and filter expressions for impact analysis and data flow construction.

6) The probabilistic rule-based reasoning engine propagates and aggregates weighted dependencies.

7) The directed and weighted sub-graph calculations, visualization and web based UI for data lineage and
impact analysis applications.

8) The MMX3 open-schema relational database using PostgreSQL or Oracle for storing and sharing
scanned, calculated and derived metadata.

*http://xdtl.org
2 http://goldparser.org

Thirty Fifth International Conference on Information Systems, Auckland 2014 3

Decision Analytics, Big Data, and Visualization

Administration &
Management

SQL Mapping
Rules

Impact &
3 Lineage Rules
\‘4

v l6)
Vq nce =

Dependency
Graph
A

. (8)

User Profiles &
Interfaces

Reporting
Metadata

Data
Integration
Metadata

) : :
by : i iV
DB Metadata Data Loading Metadata Reporting Metadata Metadata Repository
(Schemas, Tables, Views, (SQL Queries, Loading (Reporting Models, (MMX Schema)
Classifiers data) Scripts & Programs) Reports)

Figure 2. Impact Analysis system architecture components.

Query Parsing and Metadata Extraction

In order to construct the data flows from the very beginning of the data sources (e.g. the accounting
system) to the end points (e.g. the reporting system) we have to be able to find and connect both the
identical and the related objects in different systems. In order to connect the objects we have to
understand and extract the relations from the SQL queries (e.g. ETL tasks, database views, database
procedures), scripts (e.g. loader utility scripts) and expressions (e.g. report structure) collected and stored
by scanners. In order to understand the data transformation semantics encoded in the query language
statements (e.g. insert, update, select and delete queries) and expressions, we have to involve external
knowledge about the syntax and grammatical structure of the query language. We use a general purpose
Java-based GoldParser engine (Cook 2010) and we have developed a custom SQL grammar written in the
Extended Backus-Naur Form (EBNF). Our grammar is based on the ANSI/SQL syntax, but it also
contains a large set of dialect-specific notations, syntactical constructions and functions that are
developed and trained using large real life SQL query corpuses from the field of data warehousing. The
current version of our grammar supports also Teradata, Oracle, Greenplum, Vertica, Postgres and MsSQL
dialects.

Grammar-based parsing functionality is built into the scanner technology. A configurable “parse”
command brings semi-structured text parsing and information extraction into the XDTL data integration
environment. As the result of SQL parsing step (No2 in Figure 2) we get a large parse tree with every SQL
query token assigned a special disambiguated meaning by the grammar.

In order to convert different texts into the tree structure, to reduce tokens and to convert the tree back to
the meaningful expressions (depending on search goals), we use a declarative rule set presented in the
Json format, combining token and grammar rules. A configurable grammar and a synchronized reduction

3 http://mmxframework.org

4 Thirty Fifth International Conference on Information Systems, Auckland 2014

Rule-based Impact Analysis for Enterprise Business Intelligence

rule set makes the XDTL parse command suitable for general purpose information extraction and
captures the resource hungry computation steps into one single parse-and-map step with the flat table
outcome. The Parse Tree Mapper (No3 in Figure 2) uses three different rule sets with more than eighty
rules to map the parse tree to data transformation expressions:

e Stopword list and grammar rules are used to flush the buffer and start the token collection to construct
a new expression;

e Mapword list and grammar rules are used to map the collected expressions to meaningful items (e.g.
sources, targets, data transformations, joins and filters);

o Tagword list and grammar rules are used to tag special meaningful tokens in expressions to identify all
the database object references (e.g. tables, views, columns, functions and constants).

After extraction and mapping of each SQL query statement into a series of expressions we execute the
SQL Query Resolver (Nog4 in Figure 2) which contains a series of functions to resolve the SQL query
structure:

e Solve source and target object aliases to full qualified (schema name + object name) object names;

e Solve sub-query aliases to context specific source and target object names;

e Solve sub-query expressions and identifiers to expand all the query level expressions and identifiers
with fully qualified and functional ones;

e Solve syntactic dissymmetry in different data transformation expressions (e.g. insert statement column
lists, select statement column lists and update statement assign list etc.);

The following list describes the fields and measures of the parse results, which are sources for the
following calculation steps. We also use the defined field names in rules and metrics definitions in the
next chapters:

StrList - String constant list used in each expression;
NbrList - Number constant list used in each expression;
FncList - Function list used in each expression;

IdCount - Column identifiers count in each expression;
StrCount - String constant count in each expression;
NbrCount - Number constant count in each expression;
FncCount - Functions count in each expression;
PrdCount- Predicate operators count in each expression.

Data Transformation Weight Calculation

Data structure transformations are parsed, extracted from queries and stored as formalized, declarative
mappings in the system. To add additional quantitative measures to each column transformation or
column usage in the join and filter conditions we evaluate each expression and calculate transformation
and filter weights for those.

Expression Weight Calculation (No5 in Figure 2) is based on the idea that we can evaluate column data
“transformation rate” and column data “filtering rate” using data structure and structure transformation
information captured from SQL queries. Such a heuristic evaluation enables us to distinguish columns
and structures used in the transformation expressions or in filtering conditions or both, and gives
probabilistic weights to expressions without the need to understand the full semantics of each expression.
We have defined two measures that we further use in our probabilistic rule system for deriving new facts:

Definition 1. A primitive data transformation operation O(X,Y,M1,F1,Wt) is a data transformation
between a source column X and a target column Y in a transformation set M (mapping or query) having
expression similarity weight Wt and having conditions set F1.

Definition 2. Column transformation weight Wt is based on the similarity of each source column and
column transformation expression: the calculated weight expresses the source column transfer rate or
strength. The weight is calculated on scale [0,1] where 0 means that the data is not transformed form

Thirty Fifth International Conference on Information Systems, Auckland 2014 5

Decision Analytics, Big Data, and Visualization

source (e.g. constant assignment in a query) and 1 means that the source is directly copied to the target
(no additional column transformations).

Definition 3. Column filter weight Wf is based on the similarity of each filter column in the filter
expression and the calculated weight expresses the column filtering rate or strength. The weight is
calculated on scale [0,1] where 0 means that the column is not used in the filter and 1 means that the
column is directly used in the filter predicate (no additional expressions).

The general column weight W algorithm in each expression for Wt and Wf components is calculated as a
column count ratio over all the expression component counts (e.g. column count, constant count, function
count, predicate count).
W= IdCount
" IdCount + FncCount + StrCount + NbrCount + PrdCount

All the used expression column weight calculation figures are listed and defined in the previous chapter.
The counts are normalized using the FncList evaluation over a positive function list (e.g. CAST, ROUND,
COALESCE, TRIM etc.). If FncList member is in a positive function list then the normalization function
reduces the according component count by 1 to “pay a smaller price” in case the function used does not
have a significant impact to column data.

Example 1. Column transformation weight calculation using expression measures:

e When a column data is copied directly from the source column to the target column in the SQL DML
statement (e.g. insert-select, update) then the data transformation weight is 1. The following simple
query q1: “INSERT INTO T2 (cl) SELECT cl FROM T1” interpreted as the data transformation
operation O with the weight 1: O(T1.c1,T2.c1,q1,null,1).

e When a source column is not defined and a data (e.g. constant or function) is assigned to the target
column in the SQL DML statement then the data transformation weight is 0 and the direct relation
between the source and the target columns does not exist. The following simple query q2: “INSERT
INTO T2 (cl) SELECT ‘10’” interpreted as the data transformation operation O with the weight
o: O(null,T2.c1,q2,null,0).

e When a column data is mapped from the source column to the target column in the SQL DML
statement column expression then the data transformation weight depends on complexity of
expression and the weight is between 0 and 1.

o The following expression samples and the calculated weights for each source-target column pair
illustrates the variation of the data transformations:

g3: CAST(Tl.LogDate AS DATE) as Request Date => 1.0
g4: Tl.First Name||' '||Tl.Last Name as Full Name => 0.67
g5: MIN(T1l.Balance Amt) as Min Balance Amt => 0.5

g6: SUM(ZEROIFNULL (T1.Payment Amt)) as Sales Amt => 0.33
q7: CASE WHEN T1.Feature_ Id is not null THEN 'Y' ELSE 'N' END as Dynamic_ Ind
=> 0.17

o The previous expression q7 contains parts and measures like IdCount: 1 (T1.Feature_Id), FncCount: 2
(Case,WhenThen) and StrCount: 3 (null,Y,N). When using those values and the weight W definition
then we can calculate the column pair operation O(T1.Feature_Id,T2. Dynamic_Ind,q7,null,0.17)
weight in the expression 8 like this:

1 1
—=0.16667 = 0.17

W=y 7+3+040 6

6 Thirty Fifth International Conference on Information Systems, Auckland 2014

Rule-based Impact Analysis for Enterprise Business Intelligence

Rule System and Dependency Calculation

Rule System

The defined figures, operations and weights are used with combinations of declarative inference rules
with probabilistic reasoning to calculate the possible relations and dependencies between data structures
and software components. Applying the rule system to extracted query graphs we calculate and produce a
full dependency graph that is used for data lineage or impact analysis.

The basic operations used in the rules for the dependency graph calculations are following:

The primitive data transformation is the elementary operation between the source column X and the
target column Y in the query mapping id set M1 with the filter condition set F1 and the transformation
weight Wi (see Definition 1) - 0 (X, Y,M1,F1,Wt);

The function member (X, F1,Wt) used in the filter impact calculation rule to detect that if column X
is the member of the filter id set F1 with the filter weight Wt;

The function disjoint (M1,M2) used in the impact aggregation rule to detect that two query
mapping id sets M1 and M2 are the disjoint sets. The disjoint function is needed to aggregate the
data transformation relations and the weights when more than one path from the different queries
connects the same column pairs;

The function parent (X0,X1) used in the parent aggregation rule to detect that table Xo is the
owner or parent object for column X1. The parent function is needed to aggregate all the column level
relations and the weights between two tables to the table level impact relation and the weight;

The function union (M1,M2) used to calculate the impact relations over two disjoint query mapping
id sets M1 and M2, and the function returns the distinct id lists of two sets (M1 and M2);

The function sum(W1,wW2) used to calculate the aggregated impact relations weight when the basic
operations are the disjoint sets and the part of the independent queries. The weight calculation based
on non-mutually exclusive event probabilities (two independent queries means possible overlap
between two events) and calculated as probability sum of W1 and W2: sum (W1, W2)=(W1+W2) -
(W1*W2);

The function avg (Wl,wW2) used to calculate the parent impact weight when the basic operations
having the same parent structures. The weight calculation based on the average sum and calculated as
the arithmetic mean of W1 and W2: avg (W1, W2) = (W1+W2) /2;

The main inference rules with the basic operations and the weighs for the dependency graph calculations
are following:

e The basic impact calculation rule for the operation O with no additional filters produces the impact

predicate I (R1):

0(X,Y,M1,F1,Wt) => I(X,Y,M1,F1,Wt);

The basic impact calculation rule for the operation O with a related filter condition produces the

impact predicate I with multiplied weights (R2):

0(X,Y,M1,F1,Wt)& member (X,F1,Wf) => I(X,Y,Ml,Fl,Wt*Wf);

The transitivity rule is used to calculate the sequences of the consecutive impact relations (R3):

I(X,Y,M1,F1,Wl) & I(Y,%,M2,F2,W2) & disjoint (M1,M2) =>
I(X,Z,union(M1,M2),union(F1,F2),W1l*W2);

The column aggregation rule is used when multiple different paths from the different queries connect
the same columns: calculate the impact relations with aggregated query id-s and the aggregated
weights (R4):

I(X,2,M1,F1,Wl) & I(X,Z,M2,F2,W2) & disjoint (M1,M2) =>
I(X,Z,union (M1,M2),union (F1,F2),sum(Wl,W2));

Thirty Fifth International Conference on Information Systems, Auckland 2014 7

Decision Analytics, Big Data, and Visualization

o The parent aggregation rule is used when multiple different impact relations connect the column pairs
of the same tables: calculate the table level impact relations with aggregated query id-s and aggregated
weights (R5):

I(x1,Y1,M1,F1,Wl) & I(X2,Y2,M2,F2,W2) & parent (X0,X1)& parent(X0,X2) & parent(Y0,Y1l)
& parent (YO, Y2) =>
I(X0,Y0,union (M1,M2),union(F1,F2),avg(Wl,W2)) .

Fact Inference

Building the knowledge base of object relations is done by applying the inference rules to the existing
relations iteratively. Rules R1 and R2 apply to the facts that are prior knowledge and remain unchanged
during the inference step, therefore R1 and R2 need to be evaluated only once to perform a conversion
from ‘O()’ facts to ‘I()’ facts. Rules R3, R4 and R5 apply to the predicates created during the inference
process and therefore need to be iterated over, until no new predicates are created.

We build an in-memory data structure for efficient application of iterative inference from the ‘I()’-facts.
Each fact is kept in a record, with several tree indexes for record lookup by object identifier. The relations
contain sets of data flow mappings that the fact is based on, which are stored in variable length arrays
(‘M-set’ records). We also store the set of siblings for the objects in the relation to efficiently evaluate
expressions like parent(Xo, X1) & parent(Xo, X2) (‘C-set’ records).

An ‘M-set’ record is a variable sized array containing all the mapping identifiers originating from ‘O()’
facts. The inference procedure is as follows:

derive I() facts using rules Rl and R2 (generation 0)
i:=0
repeat
infer I() facts using R3, R4 and R5 (generation i+1)
i :=1+1

until no more new facts were generated

Each iteration step takes the set {x|x.generation = i} x {y.generation < i}as input and produces the
set {z|z.generation = i+ 1}, where x,y, z denote ‘I()’ facts.

As an example that makes use of most of the features of the in-memory knowledge base representation,
consider the algorithm for the parent aggregation rule (R5):

i := current generation
Seen := @
for each I() predicate where I.generation = i and I €Seen
M :=I.M
W :=I.W
c :=1
for each I’ () predicate where I’.X is a sibling of I.X
if I'X # I.X and I’.Y is a sibling of I.Y
M:=MUI'.M
W :=W+ I.W
Seen := Seen U I’
c:=c+ 1
if ¢ > 1
create the aggregate I (X.parent, Y.parent, M, W/c)
I,.generation := i+1
Seen := Seen U I’

Note that the algorithm skips pairwise examination of predicates and immediately groups all facts where
the source and target objects respectively have common parents to produce the aggregate fact. The tree
index is used to retrieve predicates with given object identifiers, while the sibling sets are directly linked
to the predicate records. The amortized time complexity of this algorithm is in O(n?)if we consider set
membership tests to be in O(1)and union operation in O(n); here n = |{x|x. generation < i}|

8 Thirty Fifth International Conference on Information Systems, Auckland 2014

Rule-based Impact Analysis for Enterprise Business Intelligence

The prototype implementation inferred 32900 ‘I()’-predicates from 24671 data flow mappings and 7484
filter mappings in 96 seconds on a desktop-class computer. This problem size corresponds to a real-life
data-warehouse setting, making the chosen approach applicable in practice.

Dependency Score Calculation

We can use the derived dependency graph to solve different business tasks by calculating the selected
component(s) lineage or impact over available layers and chosen details. Business questions like: “What
reports are using my data?”, “Which components should be changed or tested?” or “What is the time and
cost of change?” are converted to directed sub-graph navigation and calculation tasks. The following
definitions add new quantitative measures to each component or node in the calculation. We use those
measures in the Ul to sort and select the right components for specific tasks.

Definition 4. Local Lineage Dependency % (LLD) is calculated as the ratio over the sum of the local source
and target Lineage weights W.

LLD = Z source(W;)
- source(W;) + target(W;)

Local Lineage Dependency 0 % means that there are no data sources detected for the object. Local
Lineage Dependency 100 % means that there are no data consumers (targets) detected for the object.
Local Lineage Dependency about 50 % means that there are equal numbers of weighted sources and
consumers (targets) detected for the object.

Definition 5. Local Impact Dependency % (LID) is calculated as the ratio over the sum of local source and
target impact weights W(W,Wys).

LID = Z source(W)
= Lisource(W) + target(W)

Local Impact Dependency 0 % means that there are no dependent data sources detected for the object.
Local Dependency 100 % means that there are no dependent data consumers (targets) detected for the
object. Local Impact Dependency about 50 % means that there are equal numbers of weighted dependent
sources and consumers (targets) detected for the object.

Definition 6. Global Dependency Count (GDC) is the sum of all source and target Lineage and Impact
relations counts (GDC=GSC+GTC).

The Global Dependency Count is a good differential metric that allows us to see clear distinctions in the
dependencies of each object. We can take the GDC metric as a sort of “gravity” of the object that can be
used to develop new rules, to infer the time and cost of changes of object(s) (e.g. database table, view, data
loading programs or report).

A Motivating Example

The table 1 below presents four SQL DML queries as an example. The queries are parsed to abstract
mappings (M1..M4) with all the available source and target tables (T1..T9). Each mapping has data
transformation elements (m1,1.. m4.2), joins (j1.1..j4.1) and filter conditions (f1.1..f4.1) according to the
query structure and expressions. All the source and target tables have columns (t1.1..t9.2) according the
usage in query expressions. Additional transformation key-value constraints and conditions (c1, c2. c3)
are extracted from the query expressions when possible. The result of the parsed and processed query text
is the directed query graph.

Thirty Fifth International Conference on Information Systems, Auckland 2014 9

Decision Analytics, Big Data, and Visualization

SQL query parsed to mapping M1 SQL query parsed to mapping M2

INSERT INTO T4 (t4.1, t4.2, t4.3) INSERT INTO T5 (t5.1, t5.2)

SELECT T1.tl.1, coalesce(Tl.tl.2, ‘10’), SELECT T4.t4.1,

T1.t1l.3 coalesce(T1.t4.2, ‘10")

FROM T1 FROM T4

JOIN T2 ON T2.t2.1 = T1.tl.2 JOIN T3 ON T4.t4.1 = T3.t3.1

WHERE T2.t2.2 = ‘10’ WHERE T3.t3.2 = ‘10’

AND T1.tl1.2 = "A’ AND (T1.t4.2 = ‘10’ OR T1.t4.2 is null)

SQL query parsed to mapping M3 SQL query parsed to mapping M4

INSERT INTO T4(t4.1, t4.2, t4.3) INSERT INTO T9 (t9.1, t9.2)

SELECT T6.t6.1, ‘20', SELECT T4.t4.2,

case when T6.t6.2 = ‘B’ coalesce (T4.t4.3*%100, 100)
then 20 else 0 end FROM T4

FROM T6 JOIN T8 ON T8.t8.1 = T4.t4.1

JOIN T7 ON T6.t6.3 = T7.t7.1 WHERE T4.t4.2 = ‘20’

WHERE T6.t6.2 = ‘B’

AND T7.t7.2 = ‘B’

Table 1. SQL query examples that parsed to mapping M1..M4.

The following Figure 3 presents the query transformation graph with all the source and target data
structures at column and table level, obtained by parsing and resolving the queries above:

Figure. 3. Parsed query graph.

The expression weight calculation step (No 5 in Figure 2) produces probabilistic weights on scale of [0,1]
to all the graph relations that can be derived from the formalized mapping structures.

From the result of rule-based reasoning (No 6 in Figure 2) we calculate the full dependency graph with all
the possible inferred relations and their weights. The following component impact analysis and data
lineage tasks will be handled as sub-graph navigation and calculation problems. Finally the constructed
dependency graph is stored in an open schema metadata database MMX (No 8 in Figure 2) for different
applications.

The component impact graph (Figure 4) solves several kinds of component and data structure
dependency problems like ,What happens when changed?* or ,How many reports will be broken when
changed?“. The Data Lineage Graph (Figure 5) solves other types of data lineage and data flow
management problems like ,Where does the data come from? “, ,What reports are using the data?“ or
»~How are the report column values combined and calculated?“.

10 Thirty Fifth International Conference on Information Systems, Auckland 2014

Rule-based Impact Analysis for Enterprise Business Intelligence

Figure 4. Components impact graph.

The component impact graph (Figure 4) illustrates the impact dependencies, directions and weights
calculated by our formulas and rules for the example queries in the Table 1. The solid lines stem from the
O relations, i.e. those derived directly from the query expressions. The dashed lines are based on the
parent aggregation rules with the weights calculated as averages over the column level weights. In order to
maintain the readability of the diagram we do not show the results of the transitivity rule applications.

c1t2=A

c2:14.2=10

Figure 5. Data lineage graph.

The data lineage graph (Figure 5) illustrates the data lineage and flow dependencies, directions and
weights calculated by the previously defined formulas and rules. The solid lines stem from the data
transformation operations and weights calculated from the query expressions. The dashed lines represent
transitive and aggregate relations on the column and the table level. The weights are calculated as an
average (parent aggregation rule) or multiplication (transitivity) over the query expression weights. The
condition notes on the figure (c1..c3) are derived from the query filters or the constant assignment list in
order to add additional semantics to the transitive dependency calculation. When we connect the
condition pairs from different queries that share the same meaning (e.g. c2:t.4.2="10" and c3:t.4.2="10")
then we can calculate the conditional transitivity relations (from T1 to T5 and T6 to T9) that reflect the
real data flows more precisely.

Thirty Fifth International Conference on Information Systems, Auckland 2014 11

Decision Analytics, Big Data, and Visualization

Real Life Case Studies

The previously described architecture and algorithms have been used to implement an integrated toolset
dLineage (http://dlineage.com). Both the scanners and web-based tools of dLineage have been enhanced
and tested in real-life projects and environments to support several popular DW database platforms (e.g.
Oracle, Greenplum, Teradata, Vertica, PostgreSQL, MsSQL, Sybase), ETL tools (e.g. Pentaho, Oracle Data
Integrator, SQL scripts and different data loading utilities) and BI tools (e.g. SAP Business Objects,
Microstrategy). The dLineage dynamic visualization and graph navigation tools are implemented in
Javascript using the d3.js graphics libraries.

We have tested our solution during two main case studies involving a thorough analysis of large
international companies in the financial and the energy sectors. Both case studies analyzed thousands of
database tables and views, tens of thousands of data loading scripts and BI reports. Those figures are far
over the capacity limits of human analysts not assisted by the special tools and technologies.

A DW / DW (159 487 ST ST S
[Source tables \ Dw tablesli (DW‘ views and tables D F.leports:;'
— \/_ _\’/, : —_————————— . il

BRRRRpRnnnny vyl n -
e e T e T
i
—

A ™

(1

\\IIl.lIllIIIIIIIIIIIIIIIISlIIIllIIIIl!IIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIII E!III

L}

L

Figure 6. Data lineage graph with dependencies between DW tables, views and reports.

The real-life dependency graph examples (Figure 6 and Figure 7) illustrate automated data collection,
parsing and visualization tasks implemented by one-two persons in a few days during the pilot projects.
The toolkit requires only the setup and configuration tasks to be performed manually. The rest will be
done by the scanners, parsers and the calculation engine. The end result consists of data flows and system
component dependencies visualized in the navigable and drillable graph or table form. The result can be

12 Thirty Fifth International Conference on Information Systems, Auckland 2014

Rule-based Impact Analysis for Enterprise Business Intelligence

viewed as a single column, table or report dependency network or the full scale overview graph with all
the system dependencies - tens of thousands nodes — visible on one screen.

The Enterprise Dependency Graph example (Figure 7) is an illustration of the complex structure of
dependencies between the DW storage scheme, access views and user reports. The example is generated
using only 3-4 data lineage layers (sources and ETL layers are not present here) and has details at object
level (not at column level). At the column and report level the full data lineage graph would be about ten
times bigger and too complex to visualize in a single picture. The following graph from DW tables to views
and user reports presents about 5 000 nodes (tables, views, reports) and 20 000 links (data
transformations in views and queries) on a single image:

Figure 7. Data lineage graph with dependencies between DW tables, views and reports.

Thirty Fifth International Conference on Information Systems, Auckland 2014 13

Decision Analytics, Big Data, and Visualization

Conclusions and Future Work

We have presented several algorithms and techniques for quantitative impact analysis, data lineage and
change management. The focus of these methods is on automated analysis of the semantics of data
conversion systems followed by employing probabilistic rules for calculating chains and sums of impact
estimations. The algorithms and techniques have been successfully employed in several large case studies,
leading to practical data lineage and component dependency visualizations.

We are planning to continue this research by considering a more abstract, conceptual/business level in
addition to the current physical/technical level of data representation.

References

Cook,D. (2010). Gold parsing system-a free, multi-programming language, parser. URL:
http://www.goldparser.org.

Cui, Y., Widom, J., & Wiener, J. L. (2000). Tracing the lineage of view data in a warehousing
environment. ACM Transactions on Database Systems (TODS), 25(2), 179-227.

Cui, Y., & Widom, J. (2003). Lineage tracing for general data warehouse transformations. The VLDB
Journal—The International Journal on Very Large Data Bases, 12(1), 41-58.

de Santana, A. S., & de Carvalho Moura, A. M. (2004). Metadata to support transformations and data &
metadata lineage in a warehousing environment. In Data Warehousing and Knowledge Discovery (pp.
249-258). Springer Berlin Heidelberg.

Fan, H., & Poulovassilis, A. (2003, November). Using AutoMed metadata in data warehousing
environments. In Proceedings of the 6th ACM international workshop on Data warehousing and OLAP
(pp- 86-93). ACM.

Giorgini, P., Rizzi, S., & Garzetti, M. (2008). GRAnD: A goal-oriented approach to requirement analysis in
data warehouses. Decision Support Systems, 45(1), 4-21.

Luberg, A., Tammet, T., & Jérv, P. (2011). Smart City: A Rule-based Tourist Recommendation System. In
Information and Communication Technologies in Tourism 2011 (pp. 51-62).

Missier, P., Belhajjame, K., Zhao, J., Roos, M., & Goble, C. (2008). Data lineage model for Taverna
workflows with lightweight annotation requirements. In Provenance and Annotation of Data and
Processes (pp. 17-30). Springer Berlin Heidelberg.

Priebe, T., Reisser, A., & Hoang, D. T. A. (2011). Reinventing the Wheel?! Why Harmonization and Reuse
Fail in Complex Data Warehouse Environments and a Proposed Solution to the Problem.

Ramesh, B., & Jarke, M. (2001). Toward reference models for requirements traceability. Software
Engineering, IEEE Transactions on, 27(1), 58-93.

Reisser, A., & Priebe, T. (2009, August). Utilizing Semantic Web Technologies for Efficient Data Lineage
and Impact Analyses in Data Warehouse Environments. In Database and Expert Systems Application,
2009. DEXA'09. 20th International Workshop on (pp. 59-63). IEEE.

Skoutas, D., & Simitsis, A. (2007). Ontology-based conceptual design of ETL processes for both structured
and semi-structured data. International Journal on Semantic Web and Information Systems (IJSWIS),

3(4), 1-24.

Tomingas, K., Tammet, T., & Kliimask, M. (2014), Rule-Based Impact Analysis for Enterprise Business
Intelligence. In Proceedings of the Artificial Intelligence Applications and Innovations (AIAI2014)
conference workshop (MT4BD). Series: IFIP Advances in Information and Communication Technology,
Vol. 437.

14 Thirty Fifth International Conference on Information Systems, Auckland 2014

Rule-based Impact Analysis for Enterprise Business Intelligence

Tomingas, K., Kliimask, M., & Tammet, T. (2015). Data Integration Patterns for Data Warehouse
Automation. In New Trends in Database and Information Systems II (pp. 41-55). Springer International
Publishing.

Vassiliadis, P., Simitsis, A., & Skiadopoulos, S. (2002, November). Conceptual modeling for ETL
processes. In Proceedings of the 5th ACM international workshop on Data Warehousing and OLAP (pp.
14-21). ACM.

Wang Baldonado, M. Q., Woodruff, A., & Kuchinsky, A. (2000, May). Guidelines for using multiple views
in information visualization. In Proceedings of the working conference on Advanced visual interfaces (pp.
110-119). ACM.

Widom, J. (2004). Trio: A system for integrated management of data, accuracy, and lineage. Technical
Report.

Woodruff, A., & Stonebraker, M. (1997, April). Supporting fine-grained data lineage in a database
visualization environment. In Data Engineering, 1997. Proceedings. 13th International Conference on (pp.
91-102). IEEE.

Thirty Fifth International Conference on Information Systems, Auckland 2014 15

Publication D

Tomingas, K.; Jarv, P; Tammet, T. Discovering Data Lineage from Data
Warehouse Procedures. In: 8th International Joint Conference on Knowledge
Discovery and Information Retrieval (KDIR 2016).

113

Discovering Data Lineage from Data Warehouse Procedures

Kalle Tomingas', Priit Jarv' and Tanel Tammet'
! Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086 Estonia
{kalle.tomingas, priitjarv, tanel.tammet}@gmail.com

Keywords:

Abstract:

Data Warehouse, Data Lineage, Dependency Analysis, Data Flow Visualization.

We present a method to calculate component dependencies and data lineage from the database structure and

a large set of associated procedures and queries, independently of actual data in the data warehouse. The
method relies on the probabilistic estimation of the impact of data in queries. We present a rule system
supporting the efficient calculation of the transitive closure. The dependencies are categorized, aggregated
and visualized to address various planning and decision support problems. System performance is evaluated

and analysed over several real-life datasets.

1 INTRODUCTION

System developers and managers are facing similar
data lineage and impact analysis problems in complex
data integration, business intelligence and data
warchouse environments where the chains of data
transformations are long and the complexity of
structural changes is high. The management of data
integration processes becomes unpredictable and the
costs of changes can be very high due to the lack of
information about data flows and the internal
relations of system components. Important contextual
relations are encoded into data transformation queries
and programs (SQL queries, data loading scripts,
etc.). Data lineage dependencies are spread between
different systems and frequently exist only in
program code or SQL queries. This leads to
unmanageable complexity, lack of knowledge and a
large amount of technical work with uncomfortable
consequences like unpredictable results, wrong
estimations, rigid administrative and development
processes, high cost, lack of flexibility and lack of
trust.

We point out some of the most important and
common questions for large DW which usually
become a topic of research for system analysts and
administrators:

e Where does the data come or go to in/from a
specific column, table, view or report?

e When was the data loaded, updated or calculated
in a specific column, table, view or report?

¢ Which components (reports, queries, loadings and
structures) are impacted when other components
are changed?

¢ Which data, structure or report is used by whom
and when?

¢ What is the cost of making changes?

¢ What will break when we change something?

The ability to find ad-hoc answers to many day to
day questions determines not only the management
capabilities and the cost of the system, but also the
price and flexibility of making changes.

The goal of our research is to develop reliable and
efficient methods for automatic discovery of
component dependencies and data lineage from the
database schemas, queries and data transformation
components by automated analysis of actual program
code. This requires probabilistic estimation of the
measure of dependencies and the aggregation and
visualization of the estimations.

2 RELATED WORK

Impact analysis, traceability and data lineage issues
are not new. A good overview of the research
activities of the last decade is presented in an article
by (Priebe, 2011). We can find various research
approaches and published papers from the early
1990’s with methodologies for software traceability
(Ramesh, 2001). The problem of data lineage tracing
in data warehousing environments has been formally

founded by Cui and Widom (Cui, 2000; Cui 2003).
Overview of data lineage and data provenance tracing
studies can be found in book by Cheney et al.
(Cheney, 2009). Data lineage or provenance detail
levels (e.g. coarse-grained vs fine-grained), question
types (e.g why-provenance, how-provenance and
where-provenance) and two different calculation
approaches (e.g. eager approach vs lazy approach)
discussed in multiple papers (Tan, 2007; Benjelloun,
2006) and formal definitions of why-provenance
given by Buneman et al. (Buneman, 2001). Other
theoretical works for data lineage tracing can be
found in (Fan, 2003; Giorgini, 2008). Fan and
Poulovassilis developed algorithms for deriving
affected data items along the transformation pathway
[6]. These approaches formalize a way to trace tuples
(resp. attribute values) through rather complex
transformations, given that the transformations are
known on a schema level. This assumption does not
often hold in practice. Transformations may be
documented in source-to-target matrices
(specification lineage) and implemented in ETL tools
(implementation lineage). Woodruff and Stonebraker
create solid base for the data-level and the operators
processing based the fine-grained lineage in contrast
to the metadata based lineage calculation in their
research paper (Woodruff, 1997).

Other practical works that are based on conceptual
models, ontologies and graphs for data quality and
data lineage tracking can be found in (Skoutas, 2007,
Tomingas, 2014; Vassiliadis, 2002; Widom, 2004).
De Santana proposes the integrated metadata and the
CWM metamodel based data lineage documentation
approach (de Santana, 2004). Tomingas et al. employ
the Abstract Mapping representation of data
transformations and rule-based impact analysis
(Tomingas, 2014).

Priebe et al. concentrates on proper handling of
specification lineage, a huge problem in large-scale
DWH projects, especially in case different sources
have to be consistently mapped to the same target
(Priebe, 2011). They propose a business information
model (or conceptual business glossary) as the
solution and a central mapping point to overcome
those issues.

Scientific workflow provenance tracking is
closely related to data lineage in databases. The
distinction is made between coarse-grained, or
schema-level, provenance tracking (Heinis, 2008)
and fine-grained or data instance level tracking
(Missier, 2008). The methods of extracting the
lineage are divided to physical (annotation of data by
Missier et al.) and logical, where the lineage is
derived from the graph of data transformations
(Ikeda, 2013).

" http://www.goldparser.org/

In the context of our work, efficiently querying of
the lineage information after the provenance graph
has been captured, is of specific interest. Heinis and
Alonso present an encoding method that allows
space-efficient storage of transitive closure graphs
and enables fast lineage queries over that data
(Heinis, 2008). Anand et al. propose a high level
language QLP, together with the evaluation
techniques that allow storing provenance graphs in a
relational database (Anand, 2010).

3 WEIGHT ESTIMATION

The inference method of the data flow and the impact
dependencies that presented in this paper is part of a
larger framework of a full impact analysis solution.
The core functions of the system architecture are built
upon the following components presented in the
Figure 1 and described in detail in our previous works
(Tomingas, 2014; Tomingas, 2015).

saL \ / Lineage.

impact

Mapping

saL

/ \L}mn‘u ar

Q
J /~
24
DB,ETL,BI
\mmoaam

[—]

Figure 1: Impact analysis system architecture components.

The core functions of the system architecture are
built upon the following components in the Figure 1:
1. Scanners collect metadata from different systems
that are part of DW data flows (DI/ETL processes,
data structures, queries, reports etc.).

2. The SQL parser is based on customized
grammars, GoldParser' parsing engine and the Java-
based XDTL engine.

3. The rule-based parse tree mapper extracts and
collects meaningful expressions from the parsed text,
using declared combinations of grammar rules and
parsed text tokens.

4. The query resolver applies additional rules to
expand and resolve all the variables, aliases, sub-
query expressions and other SQL syntax structures
which encode crucial information for data flow
construction.

5. The expression weight calculator applies rules to
calculate the meaning of data transformation, join and
filter expressions for impact analysis and data flow
construction.

6. The probabilistic rule-based reasoning engine
propagates and aggregates weighted dependencies.

7. The open-schema relational database using
PostgreSQL for storing and sharing scanned,
calculated and derived metadata.

8. The directed and weighted sub-graph
calculations, and visualization web based UI for data
lineage and impact analysis applications.

In the stages preceding the impact estimation,
inference and aggregation the data structure
transformations are parsed and extracted from queries
and stored as formalized, declarative mappings in the
system.

To add additional quantitative measures to each
column transformation or column usage in the join
and filter conditions we evaluate each expression and
calculate the transformation and filter weights for
those.

Definition 1. The column transformation weight
Wt is based on the similarity of each source column
and column transformation expression: the calculated
weight expresses the source column transfer rate or
strength. The weight is calculated on scale [0,1]
where 0 means that the data is not transformed from
source (e.g. constant assignment in a query) and 1
means that the source is copied to the target directly,
ie. no additional column transformations are detected.

Definition 2. The column filter weight Wf'is based
on the similarity of each filter column in the filter
expression where the calculated weight expresses the
column filtering strength. The weight is calculated on
the scale [0,1] where 0 means that the column is not
used in the filter and 1 means that the column is
directly used in the filter predicate, ie. no additional
expressions are involved.

The general column weight W algorithm in each
expression for Wt and Wf components is calculated
as a column count ratio over all the expression
component counts (¢.g. column count, constant count,
function count, predicate count).

W= IdCount
" IdCount + FncCount + StrCount + NbrCount + PrdCount

The counts are normalized using the FncList
evaluation over a positive function list (e.g. CAST,
ROUND, COALESCE, TRIM etc.). If the FncList
member is in a positive function list, then the
normalization function reduces the according
component count by 1 to pay a smaller price in case
the function used does not have a significant impact
to column data.

Definition 3. A primitive data transformation
operation is a data transformation between a source
column X and a target column Y in a transformation
set M (mapping or query) having the expression
similarity weight Wt.

Definition 4. The column X is a filter condition in
a transformation set M with the filter weight Wfif the
column is part of a JOIN clause or WHERE clause in
the queries corresponding to M.

4 RULE SYSTEM AND
DEPENDENCY CALCULATION

The primitive transformations captured from the
source databases form a graph G, with nodes N
representing database objects and edges Ep
representing primitive transformations (see
Definition 3). We define relations X: E;, - N and
Y:E, —» N connecting edges to source nodes and
target nodes, respectively. We define label relations
M:E, >

{{m} | m is a transformation identifier} and
W:E, - [0,1]. Formally, this graph is an edge-
labeled directed multigraph.

In the remainder of the article, we will use the
following intuitive notation: e.X and e.Y to denote
source and target objects of a transformation
(formally, X(e) and Y(e)). e.M is the set of source
transformations (M (e)). e. W is the weight assigned to
the edge (W (e)).

The knowledge inferred from the primitive
transformations forms a graph G, = (N, E;) where
E; is the set of edges e that represent data flow
(lineage). We define relations X, Y, M and ¥ the same
way as with the graph Gy and use the e.R notation
where R is one of the relations {X, Y, M, W}.

Additionally, we designate the graph G; =
(N,E; U E;) to represent the impact relations
between database components. It is a superset of G,
where E| is the set of additional edges inferred from
column usage in filter expressions.

4.1 The Propagation Rule System

First, we define the rule to map the primitive data
transformations to our knowledge base. This rule
includes aggregation of multiple edges between pairs
of nodes.

LetE,, = {e€Ey|e.X = x,e.Y = y}be
the set of edges connecting nodes x, y in the graph
Go.

Vx,yENE,, +0 = 3’ €k, (R1),
such that

e X=xNeY=y (R1.1)
€.M=U.g, e.M (R1.2)

e\ W =max {e.W]|e € Ey,} (R1.3)
An inference using this rule should be understood
as ensuring that our knowledge base satisfies the rule.
From an algorithmic perspective, we create edges e’
into the set E; until R1 is satisfied.
Definition 5. The predicate Parent(x, p) is true if
node p is the parent of node x in the database schema.
Filter conditions are mapped to edges in the
impact graph G;.
Let Fyp = {x |Parent(x,p) A
x is a filter in M } be the set of nodes that are
filter conditions for the mapping M with parent p. Let
Ty = {x|Parent(x,p") A x is target in M} be
the set of nodes that represent the target columns of
mapping M. To assign filter weights to columns, we
define the function Wy: N - [0, 1].
Vp,p' ENFyp #ONANTyp #@ = 3e'€E (R2),
such that

e X=phe'Y=p (R2.1)
eM=M (R2.2)
e W = max{Wpz(x) | xE€Fy p}+max{Ws(x) | xETp p1} (R2.3)

2

The primitive transformations mostly represent
column-level (or equivalent) objects that are adjacent
in the graph (meaning, they appear in the same
transformation or query and we have captured the
data flow from one to another). The same applies to
impact information inferred from filter conditions.
From this knowledge, the goal is to additionally:

e propagate information through the database
structure upwards, to view data flows on a more
abstract level (such as, table or schema level)

e calculate the dependency closure to answer
lineage queries

Unless otherwise stated, we treat the graphs G,
and G; similarly from this point. It is implied that the
described computations are performed on both of
them. The set E refers to the edges of either of those
graphs.

LetE,, = {e € E |Parent(e.X,p) A

Parent(e.Y,p’)} be the set of edges where the
source nodes share a common parent p and the target
nodes share a common parent p .

Vp,p' €ENEp, #0 = 3’ €E (R3),

such that

e X=phe'Y=p (R3.1)

e'.M=Uey eM (R3.2)

o'W = Tecrpy oW (R3.3)
|Ep,prl

4.2 The Dependency Closure

Online queries from the dataset require finding the
data lineage of a database item without long

computation times. For displaying both the lineage
and impact information, we require that all paths
through the directed graph that include a selected
component are found. These paths form a connected
subgraph. Further manipulation (see Section 4.3) and
data display is then performed on this subgraph.
There are two principal techniques for retrieving

paths through a node (Heinis, 2008):

e connect the edges recursively, forming the paths
at query time. This has no additional storage
requirements, but is computationally expensive

e store the paths in materialized form. The paths can
then be retrieved without recursion, which speeds
up the queries, but the materialized transitive
closure may be expensive to store.

Several compromise solutions that seek to both
efficiently store and query the data have been
published (Heinis, 2008; Anand, 2010). In general,
the transitive closure is stored in a space efficient
encoding that can be expanded quickly at the query
time.

We have incorporated elements from the pointer

based technique introduced in (Anand, 2010). The
paths are stored in three relations:
Node (N1, P_dep, P_depc),
Dep (P_dep,N2)and DepC (P depc,P dep).
Immediate dependen-cies of a node are stored in the
Dep relation, with the pointer P_dep in the Node
relation referring to the dependency set. The full
transitive dependency closure is stored in the DepC
relation by storing the union of the pointers to all of
the immediate dependency sets of nodes along the
paths leading to a selected node.

We can define the dependency closure recursively
as follows. Let D*; be the dependency closure of node
k. Let Dy be the set of immediate dependencies such
thatD, = {j|e € E,e.X = j,e.Y = k}.

IfD, =@thenD*, =0 .

Else if Dy, # @ then D* = Dy U (Ujep, D).

The successors S; (including non-immediate) of a
node j are found as follows: S; = {k | j € D™}

The materialized storage of the dependency
closure allows building the successor set cheaply, so
it does not need to be stored in advance. Together
with the dependency closure they form the connected
maximal subgraph that includes the selected node.

We put the emphasis on the fast computation of
the dependency closure with the requirement that the
lineage graph is sparse (|I| ~ |[N|). We have omitted
the more time-consuming redundant subset and
subsequence detection techniques of Anand et al.
(Anand, 2009). The subset reduction has O(|D|®)
time complexity which is prohibitively expensive if
the number of initial unique dependency sets |D| is

on the order of 10° as is the case in our real world

dataset.

The dependency closure is computed by:

1. Creating a partial order L of the nodes in the
directed graph G,. If the graph is cyclic then we
need to transform it to a DAG by deleting an edge
from each cycle. This approach is viable, if the
graph contains relatively few cycles. The
information lost by deleting the edges can be
restored at a later stage, but this process is more
expensive than computing the closure on a DAG.

2. Creating the immediate dependency sets for each
node using the duplicate-set reduction algorithm
(Anand, 2009).

3. Building the dependency closures for each node
using the partial order L, ensuring that the
dependency sets are available when they are
needed for inclusion in the dependency closures
of successor nodes (Algorithm 1).

4. If needed, restoring deleted cyclic edges and
incrementally adding dependencies that are
carried by those edges using breadth-first search
in the direction of the edges.

Algorithm 1. Building the
dependency closure:

pointer-encoded

Input: L - partial order on Gi;
{Dx| k EN} - immediate dependency sets
Output: D*y; - dependency closures

for each node k€N
for node k in L:
D*, = {Dy}
for j in Dy:
D*, = D*, UD*,

This algorithm has linear time complexity
O(|N| + |E|) if we disregard the duplicate set
reduction. To reduce the required storage, if D*; =
D* forany j # k then we may replace one of them
with a pointer to the other. The set comparison
increases the worst case time complexity to O(|N|?).

To extract the nodes along the paths that go
through a selected node N, one would use the
following queries:

select Dep.N2 --predecessor nodes
from Node, DepC, Dep

where Dep.P _dep = DepC.P_dep

and DepC.P depc = Node.P_depc

and Node.N1 = N

select Node.N1l --successor nodes
from Node, DepC, Dep

where Node.P_depc = DepC.P_depc
and DepC.P dep = Dep.P dep

and Dep.N2 = N

4.3 Visualization of the Lineage and
Impact Graphs

The visualization of the connected subgraph
corresponding to a node j is created by fetching the
path nodes P; = D*; U S; and the edges along those
paths E; ={e €E|e.X € P;\e.Y € P;} from the
appropriate dependency graph (impact or lineage).
The graphical representation allows filtering a subset
of nodes in the application, by node type, although the
filtering technique discussed here is generic and
permits arbitrary criteria. Any nodes not included in
graphical display are replaced by transitive edges
bypassing these nodes to maintain the connectivity of
the dependencies in the displayed graph.

Let G; = (P}, E)) be the connected sub graph for
the selected node j. We find the partial transitive
graph G;’ that excludes the filtered nodes P, as
follows (Algorithm 2):

Algorithm 2. Building the filtered subgraph with
transitive edges.

Input: Gy, Peire

Output: Gy’ = (Ps', Ey")
Eyf = Ey
P,/ =2

for node n in Pjy:
if n € Pgige:
for e in {e € E;'| e.Y = n}:
for e’ in {e’ € Ey'| e’.X = n}:
create new edge e’/ (e'’.X = e.X,
e’ Y =e'. Y, e W =¢eW* e W
B’ = By’ U {e'’}
E;y’= Ey' \ (e}
for e’ in {e’ € Ej'| e’.X = n}:
E;’ = E;' \ {e’}
else:
Py’ = Py’ U {n}
This algorithm has the time complexity of O(|Pj| +
|[Ej|) and can be performed on demand when the user
changes the filter settings. This extends to large
dependency graphs with the assumption that |GJ| <<
|G].

4.4 The Semantic Layer Calculation

The semantic layer is a set of visualizations and
associated filters to localize the connected subgraph
of the expected data flows for the current selected
node. All the connected nodes and edges in the
semantic layer share the overlapping filter predicate
conditions or data production conditions that are
extracted during the edge construction to indicate not
only possible data flows (based on connections in
initial query graph), but only expected and

probabilistic data flows. The main idea of the
semantic layer is to narrow down all the possible and
expected data flows over all the connected graph
nodes by cutting down unlikely or disallowed
connections in graph, which is based on the additional
query filters and the semantic interpretation of filters
and calculated transformation expression weights.
The semantic layer of the data lineage graph will hide
irrelevant and/or highlight the relevant graph nodes
and edges, depending on the user choice and
interaction.

This has a significant impact when the underlying
data structures are abstract enough and the
independent data flows store and use independent
horizontal slices of data. The essence of the semantic
layer is to use the available query and schema
information to estimate the row level data flows
without any additional row level lineage information
which would be unavailable on schema level and
expensive or impossible to collect on the row level.

The visualization of the semantically connected
subgraph corresponding to node j is created by
fetching the path nodes P; = D*; U S; and the edges
along those paths £; = {e € E| e.X € P; A e.Y € P;}
from the appropriate dependency graph (impact or
lineage). Any nodes not included in the semantic
layer are removed or visually muted (by changing the
color or opacity) and the semantically connected
subgraph is returned or visualized by the user
interface.

Let G; = (P;, Ej) be the connected subgraph for
the selected node j where GD; = (Dj, ED;) is the
predecessor subgraph and GS; = (S, ES;) is the
successor subgraph according to the selected node ;.
We calculate the data flow graph G;’ that is the union
of the semantically connected predecessors GD;" =
(Dj, ED;) and successor subgraphs GS;' = (Sj, ES}).
The semantic layer calculation is based on the
selected node filter set F; and calculated separately for
back (predecessor) and forward (successors)
directions by the recursive algorithm (Algorithm 3):
Algorithm 3. Building the semantic layer subgraph
using predecessor and successor functions
recursively.

Function: Predecessors
Input: ny, Fy, GDy, GD’j Wpin
Output: GD;’ = (Ds’, EDy')
F, =@
if Dy’ = @ then:
Dy’ = Dy’ U ny
for edge e in {e € ED; | e.Y = ny
F, = @
if Fy 1= 9
for filter f in e.{F}:
for filter fy in Fjy:
if f.Key = fy.Key & f.val n f5.val:

new filter £, (f,.Key=f.Key,
f,.Val=£f.val, f,.Wgt=f.Wgt*f;.wWgt)
F, = F, U £,

else:
F, = F, U e.(F}
if Fp =92 & e W >= Wpip

Dy’ = Dy’ U e.X

EDy’ = EDy’ U e

GD3' =Predecessors
(e.X, Fn,GDy, GD’ 5, Wniyn)
return GDj'

Function: Successors
Input: ny, Fy, GSj, GS', Wgin
Output: GS;’ = (S3', ESy")

F, =@

if 557 = 9:

Sy = 837 U ny

for edge e in {e € ES; | e.X = ny}:
F, =2

if Fy != 9 then:

for filter £ in e.{F}:
for filter fy in Fy:
if f.Key = fy.Key & f.vVal n f;.Val:
new filter £, (f,.Key=f.Key,
fr.val=f.val, f,.Wgt=f.Wgt*f;.wWgt)
F, = F, U £,

else:
F, = F, U e.{F}
if Fp = 2 & e W >= Wpip ¢

S;7 =857 Ue.Y
ES;” = ES;' Ue
GS;'=Predecessors (e.Y, F,
,GS3,GS3” , Winin)
return GS;'

The final semantic layer subgraph is an union of
the recursively constructed predecessor GD;' and
successor GS;' graphs: G,” = GD,” U GS.’

4.5 Dependency Score Calculation

We use the derived dependency graph to solve
different business tasks by calculating the selected
component(s) lineage or impact over available layers
and chosen details. Business questions like: “What
reports are using my data?”, “Which components
should be changed or tested?” or “What is the time
and cost of change?” are converted to directed
subgraph navigation and calculation tasks. The
following definitions add new quantitative measures
to each component or node in the calculation. We use
those measures in the user interface to sort and select
the right components for specific tasks.

Definition 6. Local Lineage Dependency %
(LLD) is calculated as the ratio over the sum of the
local source and target lineage weights W,.

_ Y. source(W,)
~ Y source(W,) + Y, target(W,)

LLD

Local Lineage Dependency 0 % means that there
are no data sources detected for the object. Local
Lineage Dependency 100 % means that there are no
data consumers (targets) detected for the object.
Local Lineage Dependency about 50 % means that
there are equal numbers of weighted sources and
consumers (targets) detected for the object.

Definition 7. Local Impact Dependency % (LID)
is calculated as the ratio over the sum of local source
and target impact weights W(W,,Wy).

Y, source(W)

LLD = Y. source(W) + X, target(W)

5 CASE STUDIES

The previously described algorithms have been used
to implement an integrated toolset. Both the scanners
and the visualization tools have been enhanced and
tested in real-life projects and environments to
support several popular data warchouse platforms
(e.g. Oracle, Greenplum, Teradata, Vertica,
PostgreSQL, MsSQL, Sybase), ETL tools (e.g.
Informatica, Pentaho, Oracle Data Integrator, SSIS,
SQL scripts and different data loading utilities) and
business intelligence tools (e.g. SAP Business
Objects, Microstrategy, SSRS). The dynamic
visualization and graph navigation tools are
implemented in Javascript using the d3.js graphics
libraries.

Current implementation has rule system which is
implemented in PostgreSQL database using SQL
queries for graph calculation (rules 1-3 in section 4.1)
and specialized tables for graph storage. The DB and
Ul interaction tested with the specialized pre-
calculated model (see section 4.2) but also with the
recursive queries without special storage and pre
calculations. The algorithms for interactive transitive
calculations (see sections 4.3) and semantic layer
calculation (see section 4.4) are implemented in
Javascript and works in browser for small and local
subgraph optimization or visualization. Due to space
limitations we do not stop here for discussion and the
details of case studies. Technical details and more
information can be found on our dLineage® online
demo site. We present different datasets processing

? http://www.dlineage.com/

and performance analysis in the next section and
illustrate the application and algorithms with the
graph visualizations technique (section 5.2).

5.1 Performance Evaluation

We have tested our solution in several real-life case
studies involving a thorough analysis of large
international companies in the financial, utilities,
governance, telecom and healthcare sectors. The case
studies analyzed thousands of database tables and
views, tens of thousands of data loading scripts and
BI reports. Those figures are far over the capacity
limits of human analysts not assisted by the special
tools and technologies.

The following six different datasets with varying
sizes have been used for our system performance
evaluation. The datasets DS1 to DS6 represent data
warehouse and business intelligence data from
different industry sectors and is aligned according to
the dataset size (Table 1). The structure and integrity
of the datasets is diverse and complex, hence we have
analyzed the results at a more abstract level (e.g. the
number of objects and processing time) to evaluate
the system performance under different conditions.

Table 1: Evaluation of processed datasets with different
size, structure and integrity levels.

DS1 DS2 DS3 DS4 DS5 DS6

Scanned objects 1,341,863 673,071 132,588 120,239 26,026 2,369

DB objects 43,773 179.365 132,054 120239 | 26026 | 2324

ETL objects 1,298,090 | 361,438 534 0 0 45

BI objects 0 132,268 0 0 0 0

Scan time (min) 114 41 17 33 6 0

Parsed scripts 6,541 8.439 7,996 8,977 1184 495

Parsed queries 48,971 13,946 11,215 14,070 1544 635

Parse success rate

) 96 98 96 92 88 100

Parse/resolve

36 25 26.0 121 41 63
perform..(queries/sec)

Parse/resolve time

(min) 30 57 5 12 5 1

Graph nodes 73,350 192,404 24,878 17,930 360 1,930

Graph links 95,418 357,798 24,823 15,933 330 2,629

Graph processing

36 62 14 15 6 2
time (min)

Total processing
time (min)

150 103 31 48 12 2

The biggest dataset DS1 contained a big set of
Informatica ETL package files, a small set of
connected DW database objects and no business
intelligence data. The next dataset DS2 contained a
data warehouse, SQL scripts for ETL loadings and a
SAP Business Object for reporting for business
intelligence. The DS3 dataset contained a smaller
subset of the DW database (MsSql), SSIS ETL
loading packages and SSRS reporting for business
intelligence. The DS4 dataset had a subset of the data
warehouse (Oracle) and data transformations in
stored procedures (Oracle). The DSS dataset is a

similar but much smaller to DS4 and is based on the
Oracle database and stored procedures. The DS6
dataset had a small subset of a data warehouse in
Teradata and data loading scripts in the Teradata TPT
format.

The datasets size, internal structure and
processing time are visible in Figure 2 where longer
processing time of DS4 is related to very big Oracle
stored procedure texts and loading of those to
database.

1,341,863
150

800,000

600,000

400,000

Number of Scanned Objects in Data Set

200,000 152588 120239

DB Objects ETL Objects BIObjects == Total Proces:

Figure 2: Datasets size and structure compared to overall
processing time.

100,000

50000

Number of Graph Obje

— Number of Graph Nodes Number of Graph Links =&=Graph Processing Time
Figure 3: Calculated graph size and structure compared to
the graph data processing time.

The initial dataset and the processed data
dependency graphs have different graph structures
(see Figure 3) that do not correspond necessarily to
the initial dataset size. The DS2 has a more integrated
graph structure and a higher number of connected
objects (Figure 4) than the DS1. At the same time the
DS1 has about two times bigger initial row data size
than the DS2.

We have additionally analyzed the correlation of
the processing time and the dataset size (see Figure 4
and Figure 5) and showed that the growth of the
execution time follows the same linear trend as the

size and complexity growth. The data scan time is
related mostly to the initial dataset size. The query
parsing, resolving and graph processing time also
depends mainly on the initial data size, but also on the
calculated graph size (Figure 4). The linear
correlation between the overall system processing
time (seconds) and the dataset size (object count) can
be seen in Figure 5.

Processing Time

===-ScanTime =<4="Graph ProcessingTime ==®==Total Processing Time
Figure 4: Dataset processing time with two main sub-
components.
0831863

500,000

20 130 40 150 1

A Graph * Total

----- Linear (Scanning]* *** * Linear (Graph) w=ms Linear (Tota]

Figure 5: Dataset size and processing time correlation with
linear regression (semi-log scale).

5.2 Dataset Visualization

The Enterprise Dependency Graph examples (Figures
6-8) are an illustration of the complex structure of
dependencies between the DW storage scheme,
access views and user reports. The example is
generated using data warehouse and business
intelligence lineage layers. The details are at the
database and reporting object level, not at column
level. At the column and report level the full data
lineage graph would be about ten times bigger and too
complex to visualize in a single picture. The

following graph from the data warehouse structures
and user reports presents about 50,000 nodes (tables,
views, scripts, queries, reports) and about 200,000
links (data transformations in views and queries) on a
single image (see Figure 6).

The real-life dependency graph examples
illustrate the automated data collection, parsing,
resolving, graph calculation and visualization tasks
implemented in our system. The system requires only
the setup and configuration tasks to be performed
manually. The rest will be done by the scanners,
parsers and the calculation engine.

Figure 6: Data flows (blue,red) and control flows
(green,yellow) between tables, views and reports.

Figure 7: Data flows between tables, views (blue) and
reports (red).

Figure 8: Control flows in scripts, queries (green) and
reporting queries (yellow) are connecting tables, views and
reports.

The end result consists of data flows and system
component dependencies visualized in the navigable
and drillable graph or table form. The result can be
viewed as a local subgraph with fixed focus and
suitable filter set to visualize data lineage path from
any sources to single report with click and zoom
navigation features. The big picture of the
dependency network gives the full scale overview
graph of the organization’s data flows. It allows to see
us possible architectural, performance or security
problems.

6 CONCLUSIONS

We have presented several algorithms and techniques
for quantitative impact analysis, data lineage and
change management. The focus of these methods is
on automated analysis of the semantics of data
conversion systems followed by employing
probabilistic rules for calculating chains and sums of
impact estimations. The algorithms and techniques
have been successfully employed in several large case
studies, leading to practical data lineage and
component dependency visualizations. We continue
this research by performance measurement with the
number of different big datasets, to present practical
examples and draw conclusion of our approach.

We also considering a more abstract, conceptual
and business level approach in addition to the current
physical/technical level of data lineage representation
and automation.

ACKNOWLEDGEMENTS

The research has been supported by EU through
European Regional Development Fund.

REFERENCES

Anand, M. K., Bowers, S., McPhillips, T., & Ludéscher, B. (2009,
March). Efficient provenance storage over nested data
collections. In Proceedings of the 12th International
Conference on Extending Database Technology: Advances in
Database Technology (pp. 958-969). ACM.

Anand, M. K., Bowers, S., & Ludischer, B. (2010, March).
Techniques for efficiently querying scientific workflow
provenance graphs. In EDBT (Vol. 10, pp. 287-298).

Benjelloun, O., Sarma, A. D., Hayworth, C., & Widom, J. (2006).
An introduction to ULDBs and the Trio system. IEEE Data
Engineering Bulletin, March 2006.

Buneman, P., Khanna, S., & Wang-Chiew, T. (2001). Why and
where: A characterization of data provenance. In Database
Theory—ICDT 2001 (pp. 316-330). Springer Berlin
Heidelberg.

Cheney, J., Chiticariu, L., & Tan, W. C. (2009). Provenance in

databases: Why, how, and where. Now Publishers Inc.

Cui, Y., Widom, J., & Wiener, J. L. (2000). Tracing the lineage of
view data in a warehousing environment. ACM Transactions
on Database Systems (TODS), 25(2), 179-227.

Cui, Y., & Widom, J. (2003). Lineage tracing for general data
warehouse transformations. The VLDB Journal—The
International Journal on Very Large Data Bases, 12(1), 41-58.

de Santana, A. S., & de Carvalho Moura, A. M. (2004). Metadata
to support transformations and data & metadata lineage in a
warehousing environment. In Data Warehousing and
Knowledge Discovery (pp. 249-258). Springer Berlin
Heidelberg.

Fan, H., & Poulovassilis, A. (2003, November). Using AutoMed
metadata in data warehousing environments. In Proceedings of
the 6th ACM international workshop on Data warehousing and
OLAP (pp. 86-93). ACM.

Giorgini, P., Rizzi, S., & Garzetti, M. (2008). GRAnD: A goal-
oriented approach to requirement analysis in data warehouses.
Decision Support Systems, 45(1), 4-21.

Heinis, T., & Alonso, G. (2008, June). Efficient lineage tracking
for scientific workflows. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data
(pp- 1007-1018). ACM.

Ikeda, R., Das Sarma, A., & Widom, J. (2013, April). Logical
provenance in data-oriented workflows?. In Data Engineering
(ICDE), 2013 IEEE 29th International Conference on (pp.
877-888). IEEE.

Missier, P., Belhajjame, K., Zhao, J., Roos, M., & Goble, C.
(2008). Data lineage model for Taverna workflows with
lightweight annotation requirements. In Provenance and
Annotation of Data and Processes (pp. 17-30). Springer Berlin
Heidelberg.

Priebe, T., Reisser, A., & Hoang, D. T. A. (2011). Reinventing the
Wheel?! Why Harmonization and Reuse Fail in Complex Data
Warehouse Environments and a Proposed Solution to the
Problem.

Ramesh, B., & Jarke, M. (2001). Toward reference models for
requirements traceability. Software Engineering, IEEE
Transactions on, 27(1), 58-93.

Reisser, A., & Priebe, T. (2009, August). Utilizing Semantic Web
Technologies for Efficient Data Lineage and Impact Analyses
in Data Warehouse Environments. In Database and Expert
Systems Application, 2009. DEXA'09. 20th International
Workshop on (pp. 59-63). IEEE.

Skoutas, D., & Simitsis, A. (2007). Ontology-based conceptual
design of ETL processes for both structured and semi-
structured data. International Journal on Semantic Web and
Information Systems (IISWIS), 3(4), 1-24.

Tan, W. C. (2007). Provenance in Databases: Past, Current, and
Future. IEEE Data Eng. Bull., 30(4), 3-12.

Tomingas, K., Tammet, T., & Kliimask, M. (2014), Rule-Based
Impact Analysis for Enterprise Business Intelligence. In
Proceedings of the Artificial Intelligence Applications and
Innovations (AIAI2014) conference workshop
(MT4BD). Series: IFIP Advances in Information and
Communication Technology, Vol. 437.

Tomingas, K., Kliimask, M., & Tammet, T. (2015). Data
Integration Patterns for Data Warehouse Automation. In New
Trends in Database and Information Systems II (pp. 41-55).
Springer International Publishing.

Vassiliadis, P., Simitsis, A., & Skiadopoulos, S. (2002).
Conceptual modeling for ETL processes. In Proceedings of the
Sth ACM international workshop on Data Warehousing and
OLAP (pp. 14-21). ACM.

Widom, J. (2004). Trio: A system for integrated management of
data, accuracy, and lineage. Technical Report.

Woodruff, A., & Stonebraker, M. (1997). Supporting fine-grained
data lineage in a database visualization environment. In Data
Engineering, 1997. Proceedings. 13th International
Conference on (pp. 91-102). IEEE.

CURRICULUM VITAE

Personal data
Name: Kalle Tomingas
Date of birth: 22.08.1973
Place of birth;: Parnu, Estonia
Citizenship: Estonia

Contact data
Phone: +372 5040568
E-mail: kalle.tomingas@gmail.com

Education
2008 — 2018 Tallinn University of Technology, PhD
1991 — 2000 Tallinn University of Technology, MSC
1989 — 1991 Pirnu Ulejde Gymnasium, Highschool

Language competence
English Fluent
Russian Communication
Estonian ~ Native language

Professional employment
2017— ... Orion Information Governance, Chief Data Scientist
2005-2017 Mindworks Industries, Consultant
2011-2015 ELIKO Technology and Competence Center, Researcher
2012-2012 Marie Curie Research Fellow in Technical University Graz
1999-2005 Swedbank (Hansabank), Architect
1993-1998 Forexbank (Raebank), Manager, Architect

125

ELULOOKIRJELDUS

Isikuandmed
Nimi: Kalle Tomingas
Stinniaeg: 22.08.1973
Siinnikoht: Parnu linn, Eesti
Kodakondsus: Eesti

Kontaktandmed
Telefon: +372 5040568
E-mail: kalle.tomingas@gmail.com

Hariduskaik
2008 — 2018 Tallinna Tehnikaiilikool, PhD
1991 — 2000 Tallinna Tehnikaiilikool, MSC
1989 — 1991 Pirnu Ulejde Giimnaasium, keskharidus

Keelteoskus
Inglise keel kdrgtase
Vene keel suhtlustase
Eesti keel emakeel

Teenistuskiik
2017— ... Orion Information Governance, teadus- ja arendusjuht
2005-2017 Mindworks Industries, konsultant
2011-2015 ELIKO Tehnoloogia Arenduskeskus, teadur
2012-2012 Marie Curie Research Fellow in Technical University Graz
1999-2005 Swedbank (Hansapank), arhitekt
1993-1998 Forexpank (Raepank), IT juht, arhitekt

126

	Blank Page

