
TALLINN UNIVERSITY OF TECHNOLOGY

DOCTORAL THESIS
15/2018

Semantic Data Lineage and Impact
Analysis of Data Warehouse Workflows

KALLE TOMINGAS

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Department of Software Science

This dissertation was accepted for the defence of the degree of Philosophy in

Computer Science on April 20, 2018

Supervisor: Professor Tanel Tammet

Department of Software Science

Tallinn University of Technology

Tallinn, Estonia

Opponents: Professor Alexandra Poulovassilis

Department of Computer Science and Information Systems

Birkbeck University of London

U.K.

Ph.D Peeter Laud

Research Director

Cybernetica AS

Estonia

Defence of the thesis: May 21, 2018, Tallinn

Declaration:

Hereby I declare that this doctoral thesis, my original investigation and

achievement, submitted for the doctoral degree at Tallinn University of

Technology has not been submitted for any academic degree.

Copyright: Kalle Tomingas, 2018

ISSN 2585-6898 (publication)

ISBN 978-9949-83-238-5 (publication)

ISSN 2585-6901 (PDF)

ISBN 978-9949-83-239-2 (PDF)

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ

15/2018

Semantiline andmevoogude‐ ja mõjuanalüüs
andmelao keskkonnas

KALLE TOMINGAS

5

Table of Contents

ABSTRACT .. 7

ACKNOWLEDGEMENTS ... 8

LIST OF PUBLICATIONS ... 9

OTHER RELATED PUBLICATIONS ... 9

AUTHOR’S CONTRIBUTION TO THE PUBLICATIONS 10

Abbreviations ... 11

Terms ... 12

List of Figures .. 14

INTRODUCTION ... 15

Motivation and the Problem Statement.. 16

Contribution of the Thesis ... 18

Organization of the Thesis ... 19

1. DATA LINEAGE .. 21

1.1. Overview of Data Lineage and Provenance 21

1.2. A Motivating Example ... 23

1.3. Summary .. 26

2. RELATED WORK .. 27

2.1. Summary .. 30

3. ALGORITHMS AND METHODS ... 31

3.1. Overall Architecture and Methodology .. 31

3.2. Metadata Database ... 32

3.3. Design of Metadata Models and Mappings 34

3.4. Data Capture, Store and Processing with Scanners 34

3.5. Query Parsing and Metadata Extraction ... 35

3.6. Data Transformation Weight Calculation .. 38

3.7. Rule System and Dependency Calculation 40

3.8. Semantic Layer Calculation ... 42

3.9. Summary .. 44

4. IMPLEMENTATION AND APPLICATIONS ... 45

4.1. dLineage.com ... 45

4.2. Performance Evaluation ... 49

6

4.3. Visualization ... 52

4.4. Proposed Novel Applications ... 55

4.5. Summary .. 58

CONCLUSIONS ... 59

REFERENCES .. 61

KOKKUVÕTE .. 67

Publication A ... 69

Publication B ... 83

Publication C ... 95

Publication D ... 113

CURRICULUM VITAE .. 125

ELULOOKIRJELDUS .. 126

7

ABSTRACT

The subject of the thesis is data flow in data warehouses. Data warehousing is

a complex process of collecting data, cleansing and transforming it into

information and knowledge to support strategic and tactical business decisions in

organizations Our goal is to develop a new way to automatically solve a

significant class of existing management and analysis problems in a corporate

data warehouse environment.

We will present and validate a method and an underlying set of languages,

data structures and algorithms to calculate, categorize and visualize component

dependencies, data lineage and business semantics from the database structure

and a large set of associated procedures and queries, independently of actual data

in the data warehouse.

Our approach taken is based on scanning, mapping, modelling and analysing

metadata of existing systems without accessing the contents of the database or

impacting the behaviour of the data processing system. This requires collecting

metadata from structures, queries, programs and reports from the existing

environments.

We have designed a domain-specific language XDTL for specifying data

transformations between different data formats, locations and storage

mechanisms. XDTL scripts guide the work of database schema and query

scanners.

We will present a flexible and dynamic database structure to store various

metadata sources and implement a web-based analytical application stack for the

delivery and visualization of analysis tools for various user groups with different

needs.

The core of the designed method relies on semantic techniques, probabilistic

weight calculation and estimation of the impact of data in queries. We develop a

method to estimate the impact factor of input variables in SQL statements. We

will present a rule system supporting the efficient calculation of the query

dependencies using these estimates.

We will show how to use the results of the conducted analysis to categorize,

aggregate and visualize the dependencies to address various planning and

decision support problems.

The methods and algorithms presented in the thesis have been implemented

and tested in different data warehouse analysis and visualization tasks for tens of

large international organizations. Some of these systems contain over a hundred

thousand database objects and over a million ETL objects, producing data lineage

graphs with more than a hundred thousand nodes. The analysis of the system

performance over real-life datasets of various sizes and structures presented in

the last chapter demonstrates linear performance scaling and the practical

capacity to handle very large datasets.

8

ACKNOWLEDGEMENTS

First, I would like to warmly thank my supervisor, Prof. Tanel Tammet, for

the motivation, encouragement and guidance through all these years, as well as

the patience and support during all stages of the scientific process and practical

works.

I would like to thank all those people who have contributed to the process

leading to the completion of the given work. I thank Margus Kliimask and other

colleagues from Mindworks Industries for a creative and productive environment,

for wonderful ideas and hard work. I would like to thank my colleagues from the

Eliko Competence Centre and my fellow doctoral students from Tallinn

University of Technology and Graz University of Technology.

Finally, I thank my family members and my friends who have been supportive

and have been with me during the long journey of my doctoral studies.

9

LIST OF PUBLICATIONS

The work of this thesis is based on the following publications:

A Tomingas, K.; Kliimask, M.; Tammet, T. Data Integration Patterns for

Data Warehouse Automation. In: New Trends in Database and

Information Systems II: 18th East European Conference on Advances in

Databases and Information Systems (ADBIS 2014). Springer, 2014.

B Tomingas, K.; Tammet, T.; Kliimask, M. Rule-Based Impact Analysis

for Enterprise Business Intelligence. In: Artificial Intelligence

Applications and Innovations (AIAI 2014), IFIP Advances in

Information and Communication Technology. Springer, 2014.

C Tomingas, K.; Tammet, T.; Kliimask, M.; Järv, P. Automating

Component Dependency Analysis for Enterprise Business Intelligence.

In: 2014 International Conference on Information Systems (ICIS 2014).

D Tomingas, K.; Järv, P; Tammet, T. Discovering Data Lineage from Data

Warehouse Procedures. In: 8th International Joint Conference on

Knowledge Discovery and Information Retrieval (KDIR 2016).

OTHER RELATED PUBLICATIONS

E Tomingas, Kalle; Järv, Priit; Tammet, Tanel (2017). Computing Data

Lineage and Business Semantics for Data Warehouse. Accepted for

publication in: Lecture Notes in Communications in Computer and

Information Science" (CCIS), Springer.

F Tomingas, Kalle; Kliimask, Margus; Tammet, Tanel (2014). Mappings,

Rules and Patterns in Template Based ETL Construction. In: TUT

Research Report Series: The 11th International Baltic Conference on DB

and IS, DB&IS2014, Tallinn, Estonia. Tallinn, Estonia.

G Tammet, T.; Tomingas, K.; Luts, M. (2010). Semantic Interoperability

Framework for Estonian Public Sector's eServices Integration. In:

Proceedings of the 11th European Conference on Knowledge

Management: Universidade Lusíada de Vila Nova de Famalicão

Portugal: 2-3 September 2010, 2: 11th European Conference on

Knowledge Management - ECKM 2010, Portugal, 2-3 September 2010.

Ed. Eduardo Tomé. Academic Publishing Limited, 988−995.

H Tomingas, Kalle; Luts, Martin (2010). Semantic Interoperability

Framework for Estonian Public Sector’s E-Services Integration. In:

Ontology Repositories and Editors for the Semantic Web: Proceedings

of the 1st Workshop on Ontology Repositories and Editors for the

Semantic Web, Hersonissos, Crete, Greece, May 31st, 2010. (CEUR

Workshop Proceedings; 596).

10

AUTHOR’S CONTRIBUTION TO THE

PUBLICATIONS

A Author contribution to the paper A started with a research problem and

methodology setup. It covers model and software development, testing

and experimenting, conducting analysis and writing most of the text.

B The author was one of the main contributors and writers of the paper B.

The most important part of the work was the development of the

methodology to solve data lineage and impact problems based on

technologies described in the previous paper A. Additional technical

work, like building models, development of software, testing, and

analysing the results, were part of feasibility studies and adjustment of

the methodology.

C The author was one of the main writers, continuing the development of

the methodology and the rule system started in the paper B. The main

content of paper B is re-published in the paper C with more additional

details, examples and visualizations. The new details, practical data

processing and visualizations were the main tasks and the focus of the

paper C that was published in the field of information systems rather than

computer science.

D The author was one of the main contributors of the paper D. The main

tasks and the results of the work were: new formalizations for the data

processing rule system, development of the new prototype, performance

measurements and new visualization techniques.

E The author was one of the main contributors of the paper E. Again, the

main tasks and the results of the work were new formalizations for the

data processing rule system, development of the new prototype,

performance measurements and new visualization techniques, plus a new

business semantics model development.

F The paper F was written as a short and initial version of the paper B that

was published at the DB&IS2014 conference in Tallinn and presented in

the poster session by the author.

G The author was a member of the semantic assets management

development project of the Estonian Information Systems Authority. The

paper G concludes the project and presents the ideas of the

interoperability framework development. The author was one of the main

writers of the paper.

H The paper H is a short initial version of the paper G that was presented at

the Workshop on Ontology Repositories in the Extended Semantic Web

Conference by the author.

11

Abbreviations

API Application Programming Interface

BI Business Intelligence

DBMS Database Management System

DDL Data Definition Language

DI Data Integration

DL Data Lineage

DML Data Manipulation Language

DSS Decision Support Systems

DW Data Warehouse

EBNF Extended Backus-Naur Form

EDW Enterprise Data Warehouse

EAV Entity Attribute Value

ETL Extract, Transform, Load

ELT Extract, Load, Transform

ER Entity–Relationship

IA Impact Analysis

IT Information Technology

ODS Operational Data Store

OLTP On-Line Transaction Processing

OLAP On-Line Analytical Processing

RDF Resource Description Framework

SQL Structured Query Language

XDTL eXtensible Data Transformation Language

XML eXtensible Markup Language

12

Terms1

Data Warehouse

A data warehouse (DW) is a collection of corporate information and data derived

from operational systems and external data sources. DW is designed to support

business decisions by allowing data consolidation, analysis and reporting at

different aggregate levels. Data is populated into the DW through the processes

of data integration or extraction, transformation and loading.

Data Lineage

Data lineage is generally defined as a kind of data life cycle that includes the

data's origins and where it moves over time. This term can also describe what

happens to data as it goes through diverse processes. Data lineage can help with

efforts to analyze how information is used and to track key bits of information

that serve a particular purpose (see also: Data Provenance).

Data Integration

Data integration (DI) is a process in which heterogeneous data is retrieved and

combined as an incorporated form and structure. Data integration allows different

data types (such as data sets, documents and tables) to be merged by users,

organizations and applications, for use as personal or business processes and/or

functions (see also: Extract-Transform-Load).

Data Provenance2

Data Provenance provides a historical record of the data and its origins. The

provenance of data which is generated by complex transformations such as

workflows is of considerable value to scientists. Provenance is also essential to

the business domain where it can be used to drill down to the source of data in a

data warehouse, track the creation of intellectual property, and provide an audit

trail for regulatory purposes (see also: Data Lineage).

Enterprise Data Warehouse

An enterprise data warehouse (EDW) is a unified database that holds all the

business information an organization and makes it accessible all across the

company.

Extract-Transform-Load

Extract transform load (ETL) is the process of extraction, transformation and

loading during database use, but particularly during data storage use.

Impact Analysis3

1
 https://www.techopedia.com/

2
 https://en.wikipedia.org/wiki/Data_lineage

3
 https://en.wikipedia.org/wiki/Change_impact_analysis

13

Change impact analysis (IA) is defined as "identifying the potential consequences

of a change, or estimating what needs to be modified to accomplish a change",

and they focus on IA in terms of scoping changes within the details of a design.

Dependency Graph4

Dependency graph is a directed graph representing dependencies of several

objects towards each other. It is possible to derive an evaluation order or the

absence of an evaluation order that respects the given dependencies from the

dependency graph.

4
 https://en.wikipedia.org/wiki/Dependency_graph

14

List of Figures

Figure 0.1 A general scheme of a Data Warehouse process and data flows. 16
Figure 0.2 Real life Data Warehouse data flows from tables and views (left and

middle with blue) to reports (right side with red). 18
Figure 1.1 DW data transformation flows in table, job and query levels. 25
Figure 1.2 DW data transformation flows in table, column and query component

levels. .. 25
Figure 3.1 Methodology and system architecture components. 32
Figure 3.2 Metadata database physical schema tables. 33
Figure 3.3 Visual representation of data lineage graph inference rule R1 40
Figure 3.4 Visual representation of data impact graph inference rule R2 41
Figure 3.5 Visual representation of data lineage and impact graph inference rule

R3. .. 41
Figure 3.6 Semantic layer illustration for two independent data flows based on

overlapping query conditions. ... 43
Figure 4.1 Data lineage visualization example in DW environment using Sankey

diagram. ... 46
Figure 4.2 dLineage sub-graph table view, source and target objects with

calculated metrics. ... 47
Figure 4.3 dLineage sub-graph graphical view, selected object with all connected

targets. ... 48
Figure 4.4 dLineage sub-graph graphical view, selected object with all connected

sources. .. 48
Figure 4.5 dLineage dashboard has aggregated overview about collected

metadata and calculated results and metrics. .. 49
Figure 4.6 Datasets size and structure compared to overall processing time. ... 50
Figure 4.7 Calculated graph size and structure compared to graph data processing

time.. 51
Figure 4.8 Dataset processing time with two main subcomponents. 51
Figure 4.9 Dataset size and processing time correlation with linear regression

(semi-log scale). .. 52
Figure 4.10 Data flows (blue,red) and control flows (green,yellow) between

DW tables, views and reports. .. 53
Figure 4.11 Data flows between DW tables, views (blue) and reports (red). ... 53
Figure 4.12 Control flows in scripts, queries (green) and reporting queries

(yellow) are connecting DW tables, views and reports. 54
Figure 4.13 Data Warehouse loading packages plot with number of data sources

and targets (axis), loading complexity (size) and relative cost (color). 55
Figure 4.14 Data Warehouse tables plot with number of data sources and targets

(axis), loading complexity (size) and relative cost (color). 55

15

INTRODUCTION

The amount of available data is growing rapidly in many domains and areas

of human activity. Traditional and Internet businesses, social media, healthcare

and science are a few examples of the fields where accumulated data and

processed information can change the scale and the state of those businesses. The

development of the internet, connected information systems, social media, new

scientific equipment and the rising Internet of Things (IoT) has brought us to the

big data era and scale where traditional data processing technologies and methods

do not function, do not perform or simply stop working [1].

There are many reasons why we may want to understand the internal structure

and functions of a complex data processing systems like data warehouses. Some

of the reasons are related to the need to improve system functions, performance

or quality and the ability to evaluate them. Others are related to controlling and

managing the system effectively and avoiding unwanted or unpredictable

behavior of the system. Data warehouse systems collect data from various

distributed and heterogeneous data sources, integrating details or summarized

information in local database for further processing and analysis for various

applications and purposes. Data warehouses are living, continuously developed,

enriched and updated systems with variable load, performance and growing data

volumes. Data transformation chains can be very long and the complexity of

structural changes can be high. Tracing long and complex data flows or

dependencies of data transformation components are serious research tasks

without special supporting metadata and tools. Tracing data items back from the

final reports or applications to the source items and structures is a data lineage

problem. Traceability of internal components dependencies is critical when

developing and changing system software or configuration and can be defined as

problem of impact analysis. Data lineage allows for tracing internal functional

relations of data processing systems and gives insight of data flows for better

understanding of what the system does. Impact analysis allows for tracing internal

component structures and formal relations of the system and gives an

understanding of how a system is built from interconnected components.
In this thesis, we address the data lineage and the impact analysis problems in

a generalized and multidisciplinary way to use the same methods and approaches
in data warehouse or other decision support, data processing, enterprise
integration or service-oriented systems. Our goal is to implement methodology,
algorithms, representations, architecture and applications that have a relatively
small set of functions for specialized tasks, designed to perform and automate
complex analytical tasks. The final system design has to be modular, flexible and
robust, but also scalable and efficient to easily adapt heterogeneous environments
of real life data processing systems.

The chosen approach combines techniques from multiple fields of information
technology and computer science, like metadata capture and loading, unified and
open-schema data storing, grammar-based program parsing and resolving,
probabilistic semantic interpretation of data transformations and rule-based
reasoning, graph-based dependency calculations, data and component flow graph
visualization, etc.

16

Motivation and the Problem Statement

Data warehousing (DW) is a complex process of collecting data, cleansing

and transforming it into information and knowledge to support strategic and

tactical business decisions in organizations. DW is designed as a rapidly growing,

subject-oriented, integrated, time-variant and non-volatile collection of data from

heterogeneous data sources, with various connected applications, query engines,

fixed or open reporting and analytical tools (see Figure 0.1). Data sources can be

volatile and data can be structured (e.g., databases, xml files), semi structured

(e.g., log files, emails) or non-structured (e.g., text documents). Data consumers

from different domains with various interests (e.g., management information,

accounting, customer relationship, sales and marketing, resource planning,

forecasting, regulatory reporting, etc.) may have a broad spectrum of

requirements and service level quality. The process of source data integration is

called Extract, Transform, Load (ETL), and has a specific set of specialized tools

for data capturing and processing tasks. The processed and stored data consuming

process is called Business Intelligence (BI) and has its own set of tools for

reporting, ad-hoc querying, data mining, dashboards and other types of analytics.

ETL and BI are not independent components: ETL and data requirements are

driven by business needs and BI capabilities are limited by the collected and

integrated data.

Figure 0.1 A general scheme of a Data Warehouse process and data flows.

To make reasonable and informed business decisions, we need appropriate

data and metadata about context, structure, requirements, processing and timing.

Answering questions about used data sources, formulas, structures and freshness

of data in analytical systems or reports is challenging and not trivial. Components

of data warehouses are distributed over multiple physical locations and a diverse

set of software tools, and therefore tracing complex data processing metadata is

more complicated compared to using processed data. When the produced data

and information is the desired and emergent result of a DW system, then the

processing metadata is often hidden and captured into internal structures,

relations and programming code of separate components of the data processing

system. Emerging results, behavior and functions of such a complex system

depend on the subsystems and interconnections (formal and functional) of the

system’s components. To control, manage or predict the behavior of the system,

we must review the elements and the relationships between the components on a

detailed level. Large data warehouse systems can have hundreds of thousands of

tables/views and millions of columns with tens of millions of estimated

dependencies between those components.

17

We call networks of all dependencies over data warehouse system components

Enterprise Dependency Graphs (EDG) and we handle functional and structural

dependencies as directed graph edges between component nodes. The problem of

data lineage (DL) is seen as a data flow sub-graph construction, calculation and

navigation between static data structure components (e.g., tables, views, columns,

files, reports, fields, etc.). The problem of component impact analysis (IA) is seen

as a sub-graph calculation and navigation between active data transformation

components (e.g., ETL tasks and mappings, SQL scripts and queries, DB

procedures, reporting queries and components, etc.) and passive data structures.

Data warehouse owners and users are facing various data lineage and impact

analysis problems because the chains of data transformations are often very long

with complex changes of data structures. More than a dozens of staging steps in

a sequence is not a rare case when the transformation steps are generated by the

supporting ETL tools. The data models that are designed for OLTP systems are

not usually suitable for OLAP systems. Denormalization, aggregation, and new

fact inference are some of the practical techniques that require new or changed

data structures and new processes to perform the tasks. The management of such

a complex integration process is unpredictable, and the cost is uncontrollable due

to the lack of information about data flows and internal relations of system

components. The consequences can include unmanageable complexity,

fragmental knowledge, a large amount of technical work, unpredictable results,

wrong estimations, rigid administrative and development processes, high cost,

lack of flexibility, quality and trust. These risks are related to the ability to answer

the following questions about data lineage and impact analysis problems:

 How can the origins of a data elements, structures and transformation

formulas be traced?

 How are the data elements of a specific column, table, view or report used?

 When was the data loaded, updated or calculated in a specific column, table,

view or report?

 Which loadings, structures, components and reports are impacted when other

components are changed?

 Which data, structure or report is used by whom and when?

 What is the time and cost of making changes in programs or data structures?

 What will break when we change a program or data structure?

 Who is responsible for a data structure, program or formula?
The ability to support and automate answering such day-to-day questions

determines the benefits, cost, flexibility and manageability of the system. The

dynamics in business, the environment and the requirements ensure that regular

changes in data management are required for every living organization. Due to

its reflective nature, business intelligence is often the most fluid and unsteady

part of enterprise information systems. The most promising way to tackle the

challenges in such a rapidly growing, changing and complex field is automation.

Efficient automation in this particular field requires techniques from multiple

areas of computer science: computer language and semantic technologies, a

combination of rule systems and reasoning. Our goal is to aid users with

18

intelligent tools that can reduce the time required for several difficult tasks from

weeks to minutes, with higher quality results and smaller costs.

As an example, showcasing the complexity, a real-life data flow graph (Figure

0.2) is captured and visualized with the methods and tools we introduce in this

thesis. The underlying graph structure, rules and algorithms form the basis for

understanding and automation of complex analysis tasks.

Figure 0.2 Real life Data Warehouse data flows from tables and views (left and middle

with blue) to reports (right side with red).

Contribution of the Thesis

The thesis presents a full stack of methods, technologies and algorithms which

give analysts a novel way to efficiently solve several existing management and

analysis problems in a corporate data warehouse environment.

The work presented lies in the domain of software and knowledge engineering

and is based on experimentation with different real-life datasets. The feasibility

and usefulness of the results to analysts are validated by practical application on

data warehouses of actual large international companies in the financial, utilities,

governance, telecom and healthcare sectors. In particular, table 4.1 presents the

performance analysis on six large datasets.

The main components of the contribution are:

19

 A new formalized mapping representation for specifying data transformations

between different data formats, locations and storage mechanisms.

 An EAV-style open data model for storing meta-information, ontologies and

dependencies of the investigated information system, along with a

corresponding graph-based internal representation.

 Algorithms estimating the impact factor of input variables in SQL statements.

 A method for computing the transitive closure of probabilistic dependency

chains.

 Data lineage and component dependence visualization methodology.

 Experiments demonstrating the feasibility of the method on large information

systems of real companies.

 Analysis and proposals for new ways to apply the lineage analysis to practical

problems of finding critical software components, estimating development

time, generating documentation and compliance reports.

We describe the underlying technology and abstract mapping concept in our

paper A, which forms the foundation for dependency graph representation of data

flows and structures (sections 3.2 to 3.4). We draw the methodology framework,

system architecture (section 3.1) and define the formal rule system for weighted

graph calculation in paper B (sections 3.6 and 3.7). We then extend our rule

system with in-memory data structures, illustrate the algorithms with examples

and present real-life applications in paper C (section 3.8 and chapter 4). Finally,

we present formal definitions and algorithms for graph models and calculations

to support semantic data lineage and impact analysis applications (section 3.8),

and we present the performance analysis over different real-life datasets in paper

D (section 4.3).

The core technologies that are named and used in this thesis and the

underlying papers are referenced to their origins in the footnotes. Some of them

are closely related to the contribution of the thesis and therefore require additional

explanation. The XDTL5 language and runtime engine are technologies of

Mindworks Industries OÜ6, designed and built by several people inside and

outside of the company (including the author of this thesis). The dLineage7

technology is initially built by the author of the thesis together with my colleague

Margus Kliimask, and the XDLT is used as one of the core components of the

toolkit. The latter development of modern UI and new features are built with my

colleagues form Mindworks Industries.

Organization of the Thesis

The thesis starts with the general introduction and the summary of the

contribution.

5
 http://www.xdtl.org/

6
 http://www.mindworks.ee/

7
 http://www.dlineage.com/

20

The first chapter of the thesis presents an overview of the data lineage and

impact analysis fields in data warehousing systems. We will give a simplified

example of the problems to be solved. The methodology chapter illustrates our

approach to the problems. The first chapter gives a background to the problems

that are common for all published papers A to D.

The second chapter gives an overview of the related work in the fields of data

lineage, provenance and impact analysis. A focus of the related work chapter is

in field of data lineage and data provenance, also other applications in these fields,

and the chapter draws wider context to papers B, C and D.

The third chapter of the thesis focuses on the algorithms developed along with

the design and the details of our system architecture. We will give detailed

presentations and will describe the considerations, options and reasons behind

our choices. We will draw a picture of the data model and the basic building

blocks with key figures and components that are introduced and used in published

papers A to D.

The fourth chapter of the thesis focuses on the details and requirements of our

system implementation and the practical case studies in different industries. We

will also present new potential application areas. The chapter extends the case

studies and the visualizations topics that were introduced in the paper D.

The conclusions chapter summarizes the advantages of our data lineage

architecture and system, our contributions and gives suggestions for future work

on the topic.

The rest of thesis consists of the four selected publications from the full list of

eighth.

21

1. DATA LINEAGE

This chapter presents a detailed introduction to data lineage and provenance

problems, starting with an overview in section 1.1. We continue with an example

in section 1.2, with a query example and mapping representation that forms the

interconnected data flow graph. We use the same examples in subsequent

chapters to illustrate different data linage or impact problems, keeping a

connection with different parts in the current thesis.

1.1. Overview of Data Lineage and Provenance

The data lineage, data provenance or pedigree are the overlapping terms used

to describe tracing origin sources and derivation of data. The provenance term, in

the scientific community, is used synonymously with the lineage term in the

database community. Sometimes provenance is also referred to as source

attribution or source tagging. Data lineage is a common key component for many

different application domains and is also the subject of studies in the field of

Computer Science or Data Science. Many business and scientific domains, like

scientific data management, big data, machine learning, data warehousing or

business intelligence, need provenance or lineage metadata on the origin, rules,

transformation, derivation, history, timing, context and background of the used

and processed data. Authenticity, integrity, correctness and trustworthiness of

information are common requirements for different domains that can be

established with effective tracing of data lineage. From scientific and business

perspectives, data sets are not very useful without knowing the exact sources,

processing methods and rules of derived data sets [2].

Data warehouses [3] and curated databases [4] are typical examples where

lineage information is essential. In both databases, comprehensive and often

manual effort is usually expended in the construction of the resulting database —

in the former, in specifying the ETL process, and in the latter, in incrementally

adding and updating the database. Data lineage adds value to the data by

explaining how it was obtained. It is important to understand the lineage of data

in the resulting database to check the correctness of an ETL specification or assess

the quality and trustworthiness of the collected data [5].

There are two levels of granularity in lineage described in previous works:

workflow or coarse-grained provenance and data or fine-grained provenance [6].

The coarse-grained workflow lineage describes the data processing components,

tasks and programs as a sequence of steps to capture and present general

transformations between data sources and targets without specific details. The

number of steps and the level of detail can vary between hardware and software

platforms and components to transformation programs and sub-components.

Fine-grained data lineage describes detailed information and derivation of data

items, like data structures, columns, tuples or rows, and represents it as a sequence

of transformation steps to trace from sources to targets or vice versa.

Both detail and granularity levels can be seen in combination with up to three

types of lineages to answer different questions [7]:

22

 Why lineage refers to context of data transformations and provides

justification for input data elements appearing in the output. Why lineage

answers questions like how some parts of input data influenced the output

data.

 How lineage refers to the transformations of the source data elements and

answers questions like how inputs were manipulated to produce given output.

 Where lineage refers to the locations of the data sources and structures from

which the data was extracted and answers questions like where the data

comes from or which inputs were used for a given output.

These three notions of why, how and where provenance are used as

independent or combined approaches to the data lineage solutions in databases.

The previous works that follow and cover these categories are analyzed by

Cheney et al. [5] and Tan [6], but there are also works that do not fit neatly into

the why, where and how provenance framework. Such works include Wang et

al.’s Polygen model [8], Cui et al.’s lineage tracing [9], Widom’s Trio system

[10] or Woodruff and Stonebraker’s work on lineage [11] [5].

To illustrate different lineage types, consider the following simple data

loading SQL query from the source table Account (Nbr, Type, State) to the target

table Agreement (Agreement_Nbr, Agreement_Type, Agreement_State):

INSERT INTO AGREEMENT (Agreement_Nbr, Agreement_Type, Agreement_State)

SELECT Nbr, Type, Coalesce(State,0)

FROM ACCOUNT

WHERE Type = ’A’

AND End_Date is not null

The Where lineage for every target table column (Agreement_Nbr,

Agreement_Type, Agreement_State) describes where data comes from and

corresponds to select list columns (Account.Nbr, Account.Type, Account.State)

in the SQL query. The How lineage for each target column column

(Agreement_Nbr, Agreement_Type, Agreement_State) describes the column

data transformation logic and expressions of each source column (copyOf(Nbr),

copyOf(Type), Coalesce(State,0)) in the SQL query. The Why lineage for each

target column comes from the conditions part that is present in the where (or join)

of the SQL query and describes the context of data transformations like the two

predicates here: Account.Type = ’A’ and Account.End_Date is not null.

Generic data transformation can be defined as a set of functions Tr(tr1..trn)

over source datasets S1(s1.1..s1.m) to Sn(sn.1..sn.m) that produce target or output

dataset T(t1..tn) in context of C(S1..Sn): T = Tr(S1..Sn, C(S1..Sn)). General data

lineage of target dataset T is defined as a lineage function L: L(T) = (S1..Sn) and

specific where, how and why properties by functions: Lwhere(T) = (S1..Sn), Lhow(T)

= Tr(S1..Sn) and Lwhy(T) = C(S1..Sn). The previous example SQL query column

Agreement_State lineage properties can be described as follows:

 Lwhere(Agreement.Agreement_State) = Account.State

 Lhow(Agreement.Agreement_State) = Coalesce(Account.State,0))

23

 Lwhy(Agreement.Agreement_State) = Account.Type=’A’ and Account

.End_Date is not null

The previous research on data lineage and provenance has been based on one

of two computational approaches in general:

 The non-annotation approach, which assumes the execution of a set of

transformation functions against the source or input dataset to generate the

output dataset in order to compute the data or row level lineage of

transformation and target dataset; and

 The annotation approach, which carries additional information in

transformation to target dataset; this requires modifications of the initial

transformation functions and requires extra space for maintaining additional

data. The analysis of additional data allows for computation of the data or

row level lineage without access to the input dataset.

In this thesis, we focus mainly on the data lineage problem and practical

solutions in database environments and use the data lineage term instead of

provenance. We have chosen the non-annotation approach to the data lineage

problem to support fast start and no impact on the working systems. We also take

advantage of data structures and transformations metadata, capture query

semantics and make probabilistic score calculation and logic-based inferences

about the input or output data, without a need for and access to the real data (i.e.

only metadata is used).

1.2. A Motivating Example

As an example of a financial industry data warehouse data lineage and data

impact problems, we have constructed our data loading and transformation

scenario with four SQL queries and four source tables. The data form the

ACCOUNT and LOAN tables are consolidated to one unified AGREEMENT

table, then we join the BALANCE table and two new tables,

DEPOSIT_SUMMARY and LOAN_SUMMARY, populated with denormalized

data for further querying and reporting. The next table (Table 1.1) below presents

four SQL DML queries from two different but dependent data loading jobs. The

Job1 is responsible for data loading to the DW and the Job2 is responsible for

loaded data manipulations and denormalization.

Table 1.1 Data transformation SQL query examples used in DW loading jobs.

SQL Query 1 from Job 1
 INSERT INTO AGREEMENT (Agreement_Nbr, Agreement_Type, Agreement_State)

SELECT T1.Account_Nbr, T1.Type, T1.State_Code

FROM ACCOUNT T1

JOIN ACCOUNT_STATE T2 ON T2.Code = T1.State_Code

WHERE T2.State = ‘Active’

AND T1.Type = ’A’

SQL Query 2 from Job 2

24

INSERT INTO DEPOSIT_SUMMARY (Period_Date, Agreement_Nbr, Agreement_State,

Balance_Amt)

SELECT T3.Balance_Date, T4.Agreement_Nbr, T4.Agreement_State, T3.Balance_Amt

FROM AGREEMENT T4

JOIN BALANCE T3 ON T4.Agreement_Nbr = T3.Agreement_Nbr

WHERE T4.Agreement_Type = ‘A’

AND T4.Agreement_State = 2

AND T3.Balance_Date = DATE-1

SQL Query 3 from Job 1
INSERT INTO AGREEMENT (Agreement_Nbr, Agreement_Type, Agreement_State)

SELECT T6.Loan_Id, ‘L’, case when T6.State = ‘New’ then 1 when T6.State = ‘Active’

then 2 else 0 end

FROM LOAN T6

JOIN LOAN_TYPE T7 ON T6.Loan_Type = T7.Code

WHERE T7.Type in (‘Private’, ‘Business’)

AND T6.State in (‘New’, ‘Active’)

SQL Query 4 from Job 2
INSERT INTO LOAN_SUMMARY (Period_Date, Agreement_Nbr, Agreement_State,

Principal_Amt)

SELECT T3.Balance_Date, T4.Agreement_Nbr, T4.Agreement_State, T3.Balance_Amt

FROM AGREEMENT T4

JOIN BALANCE T3 ON T4.Agreement_Nbr = T3.Agreement_Nbr

WHERE T4.Agreement_Type = ‘L’

AND T4.Agreement_State = 2

AND T3.Balance_Date = DATE-1

The dependencies between the source and target tables, jobs and the queries

can be extracted from the queries and presented as a directed graph. The

structures and components are nodes of the graph and dependencies between

source and target tables are the directed edges of the graph. The direction of the

edge points the data flows from the source to the target structures. The Figure 1.1

has two coarse-grain data flow graphs with the detail level of tables and jobs or

tables and queries. We can use those graphs as illustrations for data lineage and

impact analysis problems, where data lineage questions can be answered as

querying sub-graphs in the target-to-source direction and data or component

impact questions can be answered by sub-graph queries in the source-to-target

direction. We can also notice that it is not possible to see which table data is

moving to the target tables and which is used only for filtering or lookups without

going to the fine-grain, column and query components level. For example, we

can see that ACCOUNT_STATE and LOAN_TYPE tables are used as sources

for the job and query levels, but we do not recognize that the data is not loaded

to the AGREEMENT table and is used only for filtering rows with certain types

or statuses.

ACCOUNT

JOB 1

ACCOUNT_STATE

LOAN

LOAN_TYPE

AGREEMENT

BALANCE

DEPOSIT_SUMMARY

LOAN_SUMMARY

JOB 2

25

Figure 1.1 DW data transformation flows in table, job and query levels.

The next Figure 1.2 illustrates the fine-grain level of detail, where the query

components allow us to construct more complex and detailed dependency graphs

to answer data lineage and impact questions at the column level. The

transformation queries (Q1…Q4) are parsed to abstract mappings (M1…M4)

with all the available source and target tables. Each mapping has data

transformation elements (t1.1…t4.3), joins (j1.1…j4.1) and filter conditions

(f1.1…f4.1) according to the query structure and expressions. All source and

target tables have connected columns according the usage in the query

expressions. Additional transformation expressions, key-value constraints and

conditions are extracted from the query text and are connected to mappings for

further semantic calculations and instance-level data lineage tracing.

Figure 1.2 DW data transformation flows in table, column and query component levels.

The result of the parse and query processing is a detail-level dependency graph

that allows for more precise data lineage and impact analysis in the table and

column levels. The graph is a representation of the discrete source and target

dependencies between the input and output components without additional

knowledge to describe how the data is transformed or filtered in the

transformation query. Analysis of the queries Q1…Q4 and predicates from the

where clauses shows that different and independent sets of rows produced by

Q3

ACCOUNT

Q1

ACCOUNT_STATE

LOAN

LOAN_TYPE

AGREEMENT

BALANCE

Q2

Q4

DEPOSIT_SUMMARY

LOAN_SUMMARY

M3

ACCOUNT

Account_Nbr M1

t1.2

t1.3

j1.1

f1.1

t1.1

t3.2

j3.1

f3.1

t3.1

Type

State_Code

ACCOUNT_STATE

Code

State

LOAN

Loan_Id

Loan_Type

LOAN_TYPE

Code

Type

AGREEMENT

Agreement_Nbr

Agreement_Type

Agreement_State

BALANCE

Balance_Date

Agreement_Nbr

Balance_Amt

DEPOSIT_SUMMARY

Period_Date

Balance_Amt

Agreement_State

Agreement_Nbr

LOAN_SUMMARY

Period_Date

Principal_Amt

Agreement_State

Agreement_Nbr

t3.3

State

M2

t2.2

t2.3

j2.1

f2.1

t2.1

t2.4

M4

t4.2

t4.3

j4.1

f4.1

t4.1

t4.4

26

queries Q1 and Q3 from the ACCOUNT and LOAN tables are loaded to the same

AGREEMENT table. We also notice that queries Q2 and Q4 are using the same

independent sub-sets of rows from the same AGREEMENT table using filtering

predicates Agreement_Type = ‘A’ and Agreement_Type = ‘L’.

We can conclude the example by saying that, based on the data structures

information and understanding the query semantics in terms of transformation

functions and filter predicates, we can make logical inferences about data rows

or tuples that are involved or excluded in data lineage workflows.

1.3. Summary

This chapter presented an introduction to data lineage, provenance and impact

analysis problems, starting with the overview in section 1.1, followed by the

example section 1.2, with queries and mapping representation forms for the

interconnected data flow graph that will be used in subsequent chapters to

illustrate different data linage or impact problems. These connect with different

parts of the current thesis.

27

2. RELATED WORK

Impact analysis, traceability and data lineage issues are not new. An overview

of the data lineage and data provenance tracing studies were collected by Cheney

et al. [5], historical and future perspectives were discussed by Tan [6] and the last

decade of research activities were presented by Pribe et al. [12]. Lineage and

provenance has been studied in scientific data processing areas [7], [8], [9] and

in the context of database management systems [2], [6], [16]. Multiple notions of

lineage and provenance in database systems have been used to describe

relationships between data in the source and in the target: where output records

came from [7], why an output records were produced by inputs [7], [17] and a

how output record was produced [18]. The query behavior lineage tracking has

been used in classical database problems like view update [19] or the

expressiveness of update languages [20], and the study of annotation propagation

[20], [21] or updates across peer-to-peer systems [22]. The data-driven and data

dependent processes and provenance theoretical and practical models described

by Deutch et al. [23].

The distinction is made between coarse-grained, or schema-level, provenance

tracking [24] and fine-grained-, or data instance-, level tracking [25]. The

methods of extracting the lineage are divided into physical (annotation of data by

Missier et al.) and logical, where the lineage is derived from the graph of data

transformations [26].

We can also find various research approaches and published papers from the

early 1990’s and later with methodologies for software traceability [27]. The

problem of data lineage tracing in data warehousing environments has been

formally founded by Cui and Widom [9], [17]. Data lineage or provenance details

levels (e.g., coarse-grained vs fine-grained), question types (e.g., why-

provenance, how-provenance and where-provenance) and two different

calculation approaches (e.g., eager approach vs. lazy approach) have been

discussed in multiple papers [6], [28], and formal definitions of the why-

provenance have been given by Buneman et al. [7]. Other theoretical works for

data lineage tracing can be found in [29] and [30]. Fan and Poulovassilis

developed algorithms for deriving affected data items along the transformation

pathway [31]. These approaches formalized a way to trace tuples (resp. attribute

values) through rather complex transformations, given that the transformations

are known on a schema level. This assumption does not often hold in practice.

Transformations may be documented in source-to-target matrices (specification

lineage) and implemented in ETL tools (implementation lineage). Woodruff and

Stonebraker created a solid base for the data-level and operator processing based

the fine-grained lineage, in contrast to the metadata-based lineage calculation in

their research paper [11].

Priebe et al. concentrated on proper handling of specification lineage, a

significant problem in large-scale DW projects, especially when different sources

have to be consistently mapped to the same target [12]. They proposed a business

information model (or conceptual business model) as the solution and a central

mapping point to overcome those issues. The requirement and design level

28

lineage and traceability solutions for next generation DW and BI architecture

described by Dayal et al. [32].

Other ETL-related practical works that are based on conceptual models can

be found in [33] and [34]. Ontologies and graphs-based practical works related to

data quality and data lineage tracking can be found in [35], [36] and [10]. De

Santana proposed the integrated metadata and the CWM metamodel-based data

lineage documentation approach [37]. The conceptual modeling approach of ETL

workflows described by Bala et al. [38] in the Big Data landscape and Basal [39]

presented a semantic approach to combine the traditional ETL approach with the

Big Data challenges. Another related work from the field of data lineage and

scientific data provenance by Wang et al. [40] brings together challenges and

opportunities of Big Data, including volume, variety, velocity and veracity, with

the problems of scientific workflow tracking and reproducibility. The cloud-

based or distributed systems have their own limitations for data lineage tracing

and the data-centric event logging introduced and discussed by Suen et al. [41].

In addition to data lineage and provenance in databases, closely related

workflow provenance tracking is an active research topic in the scientific

community. The overview of scientific workflow provenance was captured in

surveys by Bose and Frew [15] and Glavic and Dittrich [42], and tutorials with

research issues, challenges and opportunities were described by Davidson and

Freire in [43]. General design and principles of scientific workflow lineage and

provenance systems were introduced and discussed by Bose [44], Simmhan et al.

[45], Altintas et al.[46], Chervenak et al. [47] and Wu et al. [48], and there are

many different flavors and accents, like the collaborative approach from Missier

et al. [49] and Altintas [50]; the cloud-based or distributed systems by Cruz et al.

[51], Marinho et al. [52] and Wang et al. [53]; the Big Data-oriented approach by

Wang et al. [40]; the graph-oriented approach by Anand et al. [54], [55], Acar et

al. [56] and Biton et al. [57]; the ontology-driven approach by Bowers et al. [58];

the semantic web and semantic technologies based approaches by Kim et al. [59],

Ding et al. [60] and Sahoo et al. [61]; the user- or scientist-oriented systems from

Bowers et al. [62]; and the user- or subjective scientist eliminative-based

approach by Finlay [63]. The scientific workflow lineage and provenance

research does not end here, but continues in different scientific domains, like

bioinformatics by de Paula et al. [64] and Buneman et al. [65] or genomics by de

Paula et al. [66].

The lineage and provenance problems are not limited with databases, -flows

and scientific workflows, but having common challenges in field of curated

databases, semantic web, open linked data, e-Sciences and the growing social

networking landscape. Some interesting works can be found on the borders of the

different domains and disciplines by Chirigati and Freire [67], Hartig and Zhao

[68], Moreau [69], [70] and Moreau et al. [71].

In the context of our work, efficiently querying the lineage information after

the provenance graph has been captured is of specific interest. Heinis and Alonso

presented an encoding method that allows space-efficient storage of transitive

closure graphs and enables fast lineage queries over that data [24]. Anand et al.

proposed a high-level language QLP, together with the evaluation techniques that

29

allow storing provenance graphs in a relational database [72]. These techniques

are supported by a pointer-based encoding of the dependency closure that

supports reducing storage requirements by eliminating redundancy.

Several commercial ETL products are addressing the impact analysis and data

lineage problems to some extent (e.g., Oracle Data Integrator, Informatica

PowerCenter, IBM DataStage, Teradata Metadata Services or Microsoft SQL

Server Integration Services), but those tools and the dependency analysis

performed is often limited to the basic functions of a particular system. Another

group of commercial tools is formed by the specialized metadata integration

products not related to a particular ETL tool, offering a more sophisticated suite

of dependency analysis functionality. The examples are ASG Rochade8,

InfoSphere Information Governance Catalog from IBM9, Data Governance and

Catalog from Collibra10, Informatica Metadata Manager11, SAP Information

Steward12, Metacenter from Data Advantege Group13, Adaptive Metadata

Manager14, Troux Enterprise Architecture Solution15, Metadata Management

from Cambridge Semantics16, Metdata System from AB Initio17 or

MetaIntegration Metadata Management18, most of which have their own

limitations in terms of available functionality and adapters to other products [12].

In addition to full scale metadata management or data governance products,

there are several new generation technology companies, who fit into the picture

one or another way: Automated SQL query parsing and lineage extraction from

SqlDep19 and Manta20; Metadex data lineage solution from CompactBI21;

Accurity business glossary and data governance solutions from Simplity22;

Machine Learning based metadata and data lineage discovery solutions from

RokittAstra23; Data lineage and governance solutions from Synergy24; SQL

parsing, analyzing, documenting and data lineage discovery tools from General

SQL Parser25; Data mapping and documenting oriented Mapping Manager

8
 https://www.asg.com/

9
 http://www-03.ibm.com/software/products/en/infosphere-information-governance-catalog

10
 https://www.collibra.com/

11
 https://www.informatica.com/products/informatica-platform/metadata-management.html

12
 http://www.sap.com/community/topic/information-steward.html

13
 http://www.dag.com/

14
 http://www.adaptive.com/metadata-manager

15
 http://www.troux.com/

16
 https://www.cambridgesemantics.com/solutions/metadata-management

17
 https://www.abinitio.com/en/system/enterprise-meta-environment

18
 http://www.metaintegration.com/Solutions/#MetadataManagement

19
 https://www.sqldep.com/

20
 https://getmanta.com

21
 http://www.compactbi.com/

22
 http://www.accurity.eu/

23
 https://www.rokittastra.com/

24
 http://www.meta-analysis.fr/en/la-solution/

25
 http://sqlparser.com/

30

solution from AnalytixDS26; Automated metadata capture, analysis and

collaboration tools by AlexSolutions27; Data lineage and graph data analysis and

visualization tools from Linkurious28; Synapse data mapping, analysis, tagging

and visualization tools from Sapient29; Axon governance, lineage and

collaboration tool from Diaku30; and finally fully automated, semantic metadata

capture, data lineage, impact analysis, business governance and visualization in

toolset dLineage31, that is based on the methodology, algorithms and ideas, that

are described in this thesis.

2.1. Summary

This chapter gave an overview of previous works and scientific studies in the

field, along with the industry landscape.

26

 http://analytixds.com/products/mapping-manager/
27

 http://alexsolutions.com.au/
28

 https://linkurio.us
29

 https://synapse.sapientconsulting.com/
30

 https://www.diaku.com
31

 http://www.dlineage.com

31

3. ALGORITHMS AND METHODS

This chapter presents the algorithms and methods we have designed and

implemented. The overall architecture follows the methodological pathway

presented on a conceptual level in section 3.1. We describe the metadata database

design in section 3.2 and different metadata models (metamodels) for databases

and data integration in section 3.3. More details about the underlying foundation

and mapping design can be found in article A. The logical path with query parsing

and resolving techniques continues in section 3.5, with data transformation

evaluations and weight calculations. The rule system implemented for graph

construction and calculations is discussed in section 3.7, the semantic layers on

calculated graphs are discussed in section 3.8. The rule system and graph

calculations are discussed at a detailed level in papers B, C and D.

3.1. Overall Architecture and Methodology

The overall architecture is based on an independent metadata collection and

storage framework with dynamic schema and unified metamodels, grammar-

based query parsing and resolving, probabilistic data transformation weight

calculation, rule-based graph calculation and web-based user interface

components. The architecture follows the methodology steps (from 1 to 8)

presented in Figure 3.1:

1. Scanners collect metadata from different systems that are part of the DW’s

data flow (DI/ETL processes, data structures, queries, reports, etc.) to the

open-schema metadata database (PostgreSQL or Oracle).

2. The SQL parser is based on a customized grammar, the GoldParser parsing

engine and the Java-based XDTL engine.

3. The rule-based parse tree mapper extracts and collects meaningful

expressions from the parsed text, using declared combinations of grammar

rules and parsed text tokens.

4. The query resolver applies additional rules to expand and resolve all the

variables, aliases, sub-query expressions and other SQL syntax structures that

encode crucial information for data flow construction.

5. The expression weight calculator applies rules to calculate the meaning of

data transformation, join and filter expressions for impact analysis and data

flow construction.

6. The rule-based reasoning engine propagates and aggregates weighted

dependencies.

7. The dependency graph is stored along with the collected metadata in a

relational database as binary and directed relations between node objects.

8. The directed and weighted sub-graph calculations, visualization and web-

based UI is used for data lineage and impact analysis applications.

32

Figure 3.1 Methodology and system architecture components.

The color codes differentiate the data capture components (blue), active data

processing components (red) and passive supporting components (white). The

double lines in the comb-cell figure express the data flow bonds between the

active or passive components.

The base components of the system architecture were introduced in paper A.

Our general methodological and architecture scheme is presented in papers B and

C and developed further in paper D.

3.2. Metadata Database

Our metadata database is built on a relational database technology for different

knowledge management and rule-based analytical applications. The repository is

designed according to the OMG Metadata Object Facility (MOF)32
idea with

separate abstraction and modeling layers (M0-M3). The physical data model

(schema) is based on principles and guidelines of the EAV (Entity-Attribute-

Value)33
modeling technique suitable for modeling highly heterogeneous data

with a very dynamic nature. Metadata models and schema definitions in EAV are

separated from physical storage, and therefore modifications to schema on the

“data” level can easily be done without changing DB structures, just modifying

corresponding metadata. The chosen approach is suitable for open-schema

implementations (similar to key-value stores) where the model is dynamic and

semantics are applied in query time, but also model-driven implementations with

formal and well-defined schema, structure and semantics. The used URI

reference mechanism and resource storage scheme makes our metadata

repository a semantic data store that is comparable to the Resource Description

Framework (RDF) and can be serialized in different semantic formats or

notations (e.g., RDF/XML, N3, N-Triples, XMI, etc.) using XML or RDF APIs.

32

 https://en.wikipedia.org/wiki/Meta-Object_Facility
33

 https://en.wikipedia.org/wiki/Entity-attribute-value_model

33

The physical schema (Figure 3.2) can be seen as a general-purpose storage

mechanism for different metadata and knowledge models, and also as a

communication medium or information integration and exchange platform for

different software agents or applications (e.g., metadata scanners, metadata

consumers, etc.). Built-in limited reasoning capability is based on the recursive

SQL capability and is captured through data and metadata APIs to implement

inheritance and model validation functions. Semantic representation of data

allows for extended functionality with predicate calculus reasoners or applying

other external rule-based reasoners (e.g., Jena) for more complicated reasoning

tasks, like deduction of new knowledge.

Figure 3.2 Metadata database physical schema tables.

The repository contains integrated object-level security mechanisms and

different data access APIs (e.g., data, metadata, XML/XMI, RDF API, etc.) that

are implemented as relational database procedures or functions.

An unlimited number of different data models can exist inside our metadata

model simultaneously, with relationships between them. Each of these data

models constitutes a hierarchy of classes where the hierarchy might denote an

instance relationship, a whole-part relationship or some other form of generic

relationship between hierarchy members. We designed several predefined

metadata models for data lineage and impact analysis data:

34

 terminology and classification (business meaning and governance);

 relational database (DB and SQL);

 data integration model (ETL);  

 reporting model (OLAP, BI, Reporting); and 

 mappings model (formalized abstract mappings).

3.3. Design of Metadata Models and Mappings

The relational database metamodel is used to store detailed information about

the sources and targets of data transformations. The RDB metamodel focuses on

the main database objects, e.g. Schema, Table, View, Column, Datatype,

Procedure, etc. The ETL metamodel is based on the OMG CWM34 reference

architecture with base concepts like Folder, Package, Step and Task. The ETL

model is focused on the organization and structure of data processing packages,

sequences and dependencies of events, relations between elements controlling

data processing workflow, etc. The reporting metamodel focuses on Report,

Model, Dimension, Hierarchy and Measure elements, taking advantage of the

mapping metamodel to store query mappings and related classes, and is used to

store information describing the presentation layer. The mappings metamodel

used to manage decomposed relationships and expressions in a unified manner.

Various metadata and data integration and ETL models are discussed and used

in previous works [73],[74]. We decided to implement our own “soft” models

that do not require a database physical schema change when changing the

metamodel. The details about the abstract mappings model design, storage and

usage is presented in article A.

3.4. Data Capture, Store and Processing with Scanners

The Extensible Data Transformation Language (XDTL) is an XML-based

descriptive language designed for specifying data transformations between

different data formats, locations and storage mechanisms. XDTL was created by

Mindworks Industries as a Domain Specific Language (DSL) for the ETL domain

and was designed to keep in mind principles like modularity, extensibility,

reusability, decoupled declarative (unique) and procedural (repeated) patterns.

XDTL syntax is defined in an XML Schema document. Wildcard elements of

XML Schema enables extending the syntax of the core language with new

functionality implemented in other programming languages or in XDTL itself.

XDTL scripts are built as reusable components that have clearly defined

interfaces via parameter sets. Components can be serialized and de-serialized

between XML and database representations, thus making XDTL scripts suitable

for storing and managing in a data repository. XDTL provides functionality to

use externally stored data mappings for the scripts and decoupled from the scripts.

Therefore, mappings stored in a repository can exist as objects independent from

34

 https://en.wikipedia.org/wiki/Common_Warehouse_Metamodel

35

the transformation process and can be reused by several different processes.

XDTL acts as a container for a process that often must use facilities not present

in XDTL itself (e.g., SQL, SAS language, etc.).

The purpose of a scanner is to extract and capture all relevant metadata about

a certain class of data elements and store it in a predefined, structured manner.

Scanners components (No1 in Figure 3.1) are collecting external systems

metadata, like database data dictionary structures, ETL system scripts and queries

or reporting system query models and reports, and all structural information is

extracted and stored to the metadata database. The scanned objects and their

properties are extracted and stored according to defined meta-models, like

relational databases, data integration, reporting and business terminology models.

Metamodels contain ontological knowledge about collected metadata and

relations across different domains and models. The scanners technology and

open-schema metadata database design are described in more detail in our article

A.

The database scanner is a program implemented as an XDTL package or script

that transforms metadata from a database dictionary into an RDB metamodel.

Database scanners are based on ANSI SQL Information Schema35 specification

and are currently being implemented for MsSQL, PostgreSQL, Greenplum,

Oracle, Teradata, IBM DB2, Netezza, Vertica and other database platforms. All

database scanners are implemented as two-phase processes that materialize (scan)

scanned data in a format conforming to Information Schema definition. A

separate process (store) stores this temporary information in a permanent storage

media (database). Decoupling those processes allows for reusing components

created for different database products in multiple combinations.

Application scanning is a procedure implemented as an XDTL package that

transforms metadata from application repository or internal representation into an

application metamodel. Several application scanners have been implemented for

various ETL, OLAP and Reporting tools.

Oracle Data Integrator (ODI) is an ETL tool quite common in DW

environments, especially in relation to Oracle databases. The ODI scanner

extracts information relevant for impact analysis, i.e., all data sources and targets,

column mappings, transformations, JOIN and WHERE conditions, variables,

references to external processes, etc.

Business Objects (BO) is a widely used reporting tool used in DW. The BO

scanner extracts metadata from a BO application repository and File Store,

transforming it into a reporting metamodel. The granularity of the extracted

information is relevant to impact analysis requirements.

3.5. Query Parsing and Metadata Extraction

To construct data flows from the very beginning data sources (e.g., the

accounting system) to the end points (e.g., reporting system) we should be able

to connect the same and related objects in different systems. To connect objects,

35

 https://en.wikipedia.org/wiki/Information_schema

36

we have to understand and extract relations from SQL queries (e.g., ETL tasks,

DB views and procedures) and scripts (e.g., loader utility scripts) and expressions

(e.g., report structure) that are collected and stored by scanners. To understand

the data transformation semantics that are captured within the query language

statements (e.g., insert, update, select and delete queries) and expressions, we

have to involve external knowledge about query language syntax and

grammatical structure. We used a general-purpose Java-based parser engine36 and

developed a custom SQL grammar that was written in Extended Backus-Naur

Form (EBNF)
8
. Our grammar is based on ANSI/SQL syntax, but it contains a

large set of dialect specific notations, syntax elements and functions that were

developed and trained using large real-life SQL query sets from the DW field.

The current grammar edition is based on the Teradata, Oracle, Greenplum,

Vertica, Postgres, IBM DB2, Netezza and MsSql dialects.

Example 1. SQL select statement grammar sample in EBNF format:

<Select Stm> ::= <Select> UNION <Select Stm> 

| <Select> UNION ALL <Select Stm>

| <Select>

<Select>::= SELECT <Columns><Into Clause><From><Where><Group Clause><Qualify Clause>

 <Having Clause> <Order Clause> 

<SubqueryStm> ::='('<SelectStm>')‘  <Columns> ::=<Restriction>'*'

| <Restriction> <Column List> <ColumnList> ::=<ColumnItem>','<ColumnList>

| <Column Item>

<Column Item> ::= <Column Source>

| <Column Source> <Alias>

| <Column Source> ' AS ' <Alias> <Column Source> ::= <Column Source Item>

<Column Source Item> ::= '('<Column Source Item>')' | <Add Exp>

<From> ::= FROM <Id List> <Join Chain> |

<Join Chain> := <Join> <Join Chain> |

Grammar-based parsing functionality is built into the scanners technology and

a configurable “parse” command brings semi-structured text parsing and

information extraction into the XDTL data integration environment. As the result

of the SQL parsing step (No2 in Figure 3.1), we have a large parse tree where

every SQL query token has a special disambiguated meaning based on the

grammar syntax.

Example 2. Parse tree fragment with grammar rules and parsed text tokens:

| +<SelectStm>::=<Select>

|

+<Select>::=SELECT<Columns><IntoClause><From><Where><GroupClause><QualifyClause><Ha

ving Clause> <Order Clause> 

| | | +SELECT 

| | | +<Columns>::=<Restriction><ColumnList>

| | | | +<Restriction>::= 

| | | | +<ColumnList>::=<ColumnItem>','<ColumnList>

| | | | | +<ColumnItem>::=<ColumnSource><Alias>

| | | | | | +<ColumnSource>::=<ColumnSourceItem>

36

 http://www.goldparser.org/

37

| | | | | | | +<ColumnSourceItem>::=<AddExp> 

| | | | | | | | +<AddExp>::=<Exp><Operator><AddExp> 

| | | | | | | | | +<Exp>::=<Value> 

| | | | | | | | | | +<Value>::=Id 

| | | | | | | | | | | +MK.Kood 

| | | | | | | | | +<Operator>::='||' 

| | | | | | | | | | +|| 

| | | | | | | | | +<AddExp>::=<Exp><Operator><AddExp>

| | | | | | | | | | +<Exp> ::= <Value> 

| | | | | | | | | | | +<Value>::=StringLiteral 

| | | | | | | | | | | | +'/' 

| | | | | | | | | | +<Operator> ::= '||' 

| | | | | | | | | | | +||

To parse different texts into the tree structure and to be able reduce tokens and

parse the tree back to meaningful expressions (depending on search goals), we

use a declarative rule set (in JSON format) based on token and grammar rule

combinations. Configurable grammar and a synchronized reduction rule set

makes the XDTL parse command more suitable for general-purpose information

extraction and it captures the resource-hungry computation steps into one single

parse-and-map step with a flat table outcome. Parse Tree Mapper (No3 in Figure

3.1) uses 3 different rule sets with more than 100 rules to map the parse tree into

data transformation expressions. The defined rules are declared in the following

sets and are illustrated in Example 3:

 Stopword list and grammar rules are used to indicate the mapper to flush the

buffer and start token collection to construct a new expression;  

 Mapword list and grammar rules are used to map collected expressions to

meaningful items (e.g., sources, targets, data transformations, joins and

filters); and

 Tagword list and grammar rules are used to tag special meaningful tokens in

expressions to identify all db objects references (e.g., tables, views, and

columns, functions, constants etc.).

Example 3. Mapper rule set sample with sql query tokens and grammar rules:  

{"parsemap":

 {"stopwords": [ 

{"token":"SELECT", "rule": "<Select>"},

{"token":"FROM", "rule": "<From>"},

{"token":"WHERE", "rule": "<Where>"},

{"token":"JOIN", "rule": "<Join>"},

 ... ],

 "mapwords":[ 

{"map":"FilterCondition","token":"WHERE", "rule": "<Where>", "group": "0"},

{"map":"JoinCondition","token":"ON", "rule": "<Join>", "group": "0"},

{"map":"Source","token":"FROM", "rule": "<From>", "group": "0"},

{"map":"Target","token":"INTO", "rule": "<Ins Prefix>", "group": "0"},

{"map":"Transformation","token":",", "rule": "<Column List>", "group": "0"},

38

... ],

 "tagwords":[

{"token":"Id"},

{"token":"IntegerLiteral"},

{"token":"StringLiteral"},

{"token":"Alias"},

... ]

 }}

After extraction and mapping of each SQL query statement into a series of

expressions, we execute the SQL Query Resolver (No4 in Figure 3.1) that

contains a series of functions to resolve SQL query structure-specific tasks:

 Resolve source and target object aliases to full qualified (schema name +

object name) object names;

 Resolve sub-query aliases to context-specific source and target object names;

 Resolve sub-query expressions and identify them to expand all query-level

expressions and identifies to fully qualified and functional ones;

 Resolve syntactic dissymmetry in different data transformation expressions

(e.g., insert  statement column lists, select ‘*’ statements, select statement

column lists, and update statement assign lists, etc.); and

 Extract quantitative metrics from data transformation, filter and join

expressions to calculate expression weights (e.g., number of columns in

expression, functions, predicates, string constants, number constants etc.). 

3.6. Data Transformation Weight Calculation

The problem of origin of data is often related with context, confidence and

trustworthiness. We can find papers from literature that focused on mathematical

models or algorithms to measure importance, certainty and trust in data

processing systems [75] or beliefs, opinions and trust transitivity, propagation

and reasoning in agents communication [76]. We notice some similarities in data

source confidence, trust calculation and propagation, but our data lineage and

impact weight calculation have different purpose. Our data transformation weight

calculation is based on probabilistic estimation of data sources usage in data

transformations and filtering, and the purpose is to make metadata-based

inferences about the data flows and the data usage.

Data structure transformations are parsed and extracted from queries, and are

stored as formalized, declarative mappings in the system (articles B and C). To

add additional quantitative measures to each column transformation or column

usage in join and filter conditions, we evaluate each expression and calculate

transformation and filter weights for them.

The Expression Weight Calculation (No5 in Figure 3.1) was based on the idea

that we can evaluate column data “transformation rate” and column data “filtering

rate” using data structure and structure transformation information captured from

the SQL queries. Such a heuristic evaluation allows for distinguishing columns

and structures used in transformation expressions or in filtering conditions or

39

both, and gives probabilistic weights to expressions without the need to

understand the full semantics of each expression. We defined two measures that

we further used in our rule system for new facts calculation:

 The column transformation weight Sw is based on expression complexity

estimation in column transformation and calculated weight expresses the

source column transfer rate or strength. Weights are calculated in scale [0,1]

where 0 means that data is not transformed from the source (e.g., constant

assignment in query) and 1 means that the source is directly copied to the

target (no additional column transformations).

 The column filter weight Fp is based on expression complexity estimation for

each filter column in the filter expression and the calculated weight expresses

the column filtering rate or strength. Weight is calculated in scale [0,1], where

0 means that the column is not used in the filter and 1 means that the column

is directly used in the filter predicate (no additional expressions).

The general column weight W algorithm in each expression for Sw and Fp

components are calculated as the column count ratio over all expression

components counts (e.g., column count, constant count, function count, predicate

count):

𝑊 =
𝐶𝑜𝑙𝑢𝑚𝑛𝐶𝑜𝑢𝑛𝑡

𝐶𝑜𝑙𝑢𝑚𝑛𝐶𝑜𝑢𝑛𝑡 + 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡 + 𝑆𝑡𝑟𝑖𝑛𝑔𝐶𝑜𝑢𝑛𝑡 + 𝑁𝑢𝑚𝑏𝑒𝑟𝐶𝑜𝑢𝑛𝑡 + 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐶𝑜𝑢𝑛𝑡

All counts are normalized using the expression function list evaluation over

the positive function list (e.g., CAST, ROUND, COALESCE, TRIM etc.). If the

function in the expression is in the positive function list, then the normalization

function reduces according to the component count by 1 to “pay a smaller price”

when the used function does not a have significant impact on the column data.

When the column data is mapped from the source column to the target column

in the SQL DML statement column expression, then the data transformation

weight depends on the complexity of the expression and is between 0 and 1. The

following expression samples and the calculated weights for each source-target

column pair illustrate the variation of the data transformations:

q1: CAST(T1.LogDate AS DATE) as Request_Date => 0.91

q2: T1.First_Name||' '||T1.Last_Name as Full_Name => 0.67

q3: MIN(T1.Balance_Amt) as Min_Balance_Amt => 0.5

q4: SUM(ZEROIFNULL(T1.Payment_Amt)) as Sales_Amt => 0.33

q5: SUM(CASE T1.Acc_Type IN (2,42) THEN T1.Acc_Amt ELSE 0 END) as Credit_Amt => 0.2

q6: CASE WHEN T1.Feature_Id is not null THEN 'Y' ELSE 'N' END as Dynamic_Ind => 0.17

The last expression q6 contains parts and measures like ColumnCount:

1 (T1.Feature_Id), FunctionCount: 2 (Case,WhenThen) and StringCount:

3 (null,Y,N). Using those values and the weight definition we calculate the

column pair operation O(T1.Feature_Id,T2.Dynamic_Ind, q6, 0.17)

weight in the expression q6 like this:

40

𝑊 =
1

1 + 2 + 3 + 0 + 0
 =

1

6
= 0.16667 ≅ 0.17

3.7. Rule System and Dependency Calculation

The defined figures, operations and weights are used with the combinations

of declarative inference rules with formal reasoning to calculate possible relations

and dependencies between data structures and software components. Applying

the rule system to the extracted query graph, we calculate and produce the lineage

and impact graphs that are used for the data lineage or impact analysis.

First, we define the rule R1 to map the column level primitive data

transformations to the data lineage graph edges with the aggregation of multiple

paths over pairs of nodes. Let 𝐸𝑥,𝑦 = {𝑒 ∈ 𝐸𝑂 | 𝑒. 𝑋 = 𝑥, 𝑒. 𝑌 = 𝑦} be the set

of edges connecting nodes x, y in the graph GO. The data lineage graph GL edges

are calculated by rule R1: ∀𝑥, 𝑦 ∈ 𝑁 𝐸𝑥,𝑦 ≠ ∅ ⟹ ∃𝑒′ ∈ 𝐸𝐿 with a set of

properties:

 𝑒′. 𝑋 = 𝑥 ⋀ 𝑒′. 𝑌 = 𝑦

 𝑒′. 𝑀 =∪𝑒∈𝐸𝑥,𝑦
𝑒. 𝑀

 𝑒′. 𝑊 = 𝑚𝑎𝑥 {𝑒. 𝑊| 𝑒 ∈ 𝐸𝑥,𝑦}

An inference of this rule should be understood as creating edges e’ into the set

EL until R1 is satisfied.

Figure 3.3 Visual representation of data lineage graph inference rule R1 .

The filter conditions are mapped to edges in the impact graph GI. Let 𝐹𝑀,𝑝 =

 {𝑥 |𝑃𝑎𝑟𝑒𝑛𝑡(𝑥, 𝑝) ⋀ 𝑥 𝑖𝑠 𝑎 𝑓𝑖𝑙𝑡𝑒𝑟 𝑖𝑛 𝑀 } be the set of nodes that are the filter

conditions for the mapping M with parent p in database schema. Let 𝑇𝑀,𝑝′ =

{𝑥|𝑃𝑎𝑟𝑒𝑛𝑡(𝑥, 𝑝′) ∧ 𝑥 𝑖𝑠 𝑡𝑎𝑟𝑔𝑒𝑡 𝑖𝑛 𝑀} be the set of nodes that represent the

target columns of mapping M. To assign filter weights to columns, we use the

function 𝑊𝑓: 𝑁 → [0, 1]. The data impact graph GI edges are calculated by rule

R2: ∀𝑝, 𝑝′ ∈ 𝑁 𝐹𝑀,𝑝 ≠ ∅ ⋀ 𝑇𝑀,𝑝′ ≠ ∅ ⟹ ∃𝑒′ ∈ 𝐸𝐼 with a set of properties:

 𝑒′. 𝑋 = 𝑝 ⋀ 𝑒′. 𝑌 = 𝑝′
 𝑒′. 𝑀 = 𝑀

 𝑒′. 𝑊 = 𝑎𝑣𝑔{𝑊𝑓(𝑥) | 𝑥 ∈ 𝐹𝑀,𝑝}

41

Figure 3.4 Visual representation of data impact graph inference rule R2 .

To propagate information through the database structure upwards, to view the

data flows on a more abstract level (such as table or schema level) or to calculate

the dependency closure to answer lineage queries, we treat the graphs GL and GI

similarly. Let 𝐸𝑝,𝑝′ = {𝑒 ∈ 𝐸 |𝑃𝑎𝑟𝑒𝑛𝑡(𝑒. 𝑋, 𝑝) ⋀ 𝑃𝑎𝑟𝑒𝑛𝑡(𝑒. 𝑌, 𝑝’)} be the set

of edges where the source nodes share a common parent p and the target nodes

share a common parent p’. The aggregation of the edges to the pair of common

parents in the lineage GL or impact graph GI are calculated by rule R3: ∀𝑝, 𝑝′ ∈
𝑁 𝐸𝑝,𝑝′ ≠ ∅ ⟹ ∃𝑒′ ∈ 𝐸 with a set of properties:

 𝑒′. 𝑋 = 𝑝 ⋀ 𝑒′. 𝑌 = 𝑝′
 𝑒′. 𝑀 = ∪𝑒∈𝐸𝑝,𝑝′

 𝑒. 𝑀

 𝑒′. 𝑊 =
∑

𝑒∈𝐸𝑝,𝑝′
𝑒.𝑊

|𝐸𝑝,𝑝′|

Figure 3.5 Visual representation of data lineage and impact graph inference rule R3.

Based on the derived dependency graph, we can solve different business tasks

by calculating selected component(s) lineage or impact over available layers and

chosen details. Business questions like: “What reports are using my data...?”,

“Which components should be changed or tested...?” or “What is the time and

cost of change...?” will be turned to the directed sub-graph navigation and

calculation tasks. We calculate new quantitative measures to each component or

42

node by number of sources and targets in the graph and we use those results in

the UI to sort and select the correct components for specific tasks:

 Local lineage and impact dependency scores are calculated as ratio over sum

of local source and target lineage or impact weights. Zero percent means that

there are no data sources detected for the object and 100% means that there

are no data consumers (targets) detected for the object. About 50% means

that there are equal numbers of weighted sources and consumers (targets)

detected for the object.

 Global lineage and impact dependency scores are calculated as sums of local

dependency scores over connected sources and target chains for each node.

The local dependency calculation algorithm for each connected node is as

follows:

 𝐿𝐷 =
Σ(𝑠𝑜𝑢𝑟𝑐𝑒(𝑊))

Σ(𝑠𝑜𝑢𝑟𝑐𝑒(𝑊)) + Σ(𝑡𝑎𝑟𝑔𝑒𝑡(𝑊))

More details about data transformation weight, node score calculations and

rule systems are presented in articles B and C. Rule system improvements and

current formulations are presented in article D.

3.8. Semantic Layer Calculation

The semantic layer is an additional visualization and specific filter set used to

localize connected sub-graphs of the expected data flows for the selected node.

All connected nodes and edges in the semantic layer share the overlapping filter

predicate conditions or data production conditions that are extracted during the

edge construction to indicate not only possible data flows (based on connections

in the initial query graph), but only expected and probabilistic data flows.

The main idea of the semantic layer is to narrow down all possible and

expected data flows over all connected graph nodes by cutting down unlikely or

not-allowed connections in the graph, which is based on additional query filters

and semantic interpretation of filters and calculated transformation expression

weights. The semantic layer of the data lineage graph will hide irrelevant or

highlight relevant graph nodes and edges (depending on user choice and

interaction) that makes a distinction when underlying data structures are abstract

enough and independent data flows store and use independent “horizontal” slices

of data. The essence of semantic layers is to use available query and schema

information to estimate the row-level data flows without additional row-level

lineage information that is unavailable at the schema level, but is also expensive

or impossible to collect at the row level.

The visualization of the semantically connected subgraph corresponding to

the selected node is created by fetching the path nodes and the edges along those

paths from the appropriate dependency graph (impact or lineage). Any nodes not

included in the semantic layer are removed or visually muted (by changing their

43

color or opacity) and semantically connected subgraphs are returned or visualized

in the UI.

The semantic layer calculation is based on the selected node filter set and

calculated separately for back (predecessor) and forward (successors) direction

using a similar recursive algorithm with a search of overlapping filter conditions.

The illustration of different semantics of connected data flows (see Figure 3.6)

is based on previously presented example queries and lineage graphs (see Section

1.2). Tables ACCOUNT and LOAN data are integrated to one AGREEMENT

table by queries 1 and 3 (see Table 1.1), which is feeding two separate tables,

DEPOSIT_SUMMARY and LOAN_SUMMARY, with queries 2 and 4. This is

a typical scenario in DW or OLAP environments and data models where

dimension and fact tables are integrating data from different sources and various

queries, reports, applications or data marts using that data for different purposes.

Based only on database structures and query mappings, we can see how such hub

tables are integrating all dimension or fact sources to the one’s targets. In other

words, we can see and visualize all possible data flows based on query mappings.

To distinguish all possible data flows from actual flows based on query conditions

and restrictions, we have to go deeper into query conditions analysis to track

semantics of data flows.

Figure 3.6 Semantic layer illustration for two independent data flows based on

overlapping query conditions.

When comparing queries 1-4’s mapping and filter predicate conditions, we

can see the two separate data flows going to the AGREEMENT table and two

separate flows moving out to the DEPOSIT_SUMMARY and

LOAN_SUMMARY tables. The data in the AGREEMENT table has the same

structure, but different sources and possibly different semantics. The intersection

or overlap in query conditions allows us to notice separate slices of filtered

ACCOUNT

Account_Nbr

Type

State_Code

LOAN

Loan_Id

Loan_Type

AGREEMENT

Agreement_Nbr

Agreement_Type

Agreement_State

BALANCE

Balance_Date

Agreement_Nbr

Balance_Amt

DEPOSIT_SUMMARY

Period_Date

Balance_Amt

Agreement_State

Agreement_Nbr

LOAN_SUMMARY

Period_Date

Principal_Amt

Agreement_State

Agreement_Nbr

State

ACCOUNT_STATE.State = ‘Active’

ACCOUNT.Type = ’A’ AGREEMENT.Agreement_State = 2

AGREEMENT.Agreement_Type = ‘A’

LOAN.State in (‘New ’, ‘Active’)

LOAN_TYPE.Type in (‘Private’, ‘Business ’)
AGREEMENT.Agreement_State = 2

AGREEMENT.Agreement_Type = ‘L’

AGREEMENT.Agreement_Type = ‘L’

AGREEMENT.Agreement_Type =

ACCOUNT.Type

BALANCE.Balance_Date = DATE-1

BALANCE.Balance_Date = DATE-1

overlapping
conditions AGREEMENT.Agreement_Nbr =

BALANCE.Agreement_Nbr

overlapping
conditions

AGREEMENT.Agreement_Nbr =

BALANCE.Agreement_Nbr

44

subsets in integrated structures, and such semantic analysis and matching of

normalized query conditions allows us to make rule-based inferences about actual

data flows. Queries 1 and 2 are dealing with the same data slice and are

transforming it from the ACCOUNT to the DEPOSIT_SUMMARY table, and

queries 3 and 4 are dealing with the same data slice and are transforming it from

the LOAN to the LOAN_SUMMARY table. Those two different data flows in

Figure 2.3 are marked with different colors (blue and green).

We can conclude the example by stating that to answer the data lineage

questions more precisely we need to look into query semantics in addition to

structural mappings. The semantic analysis of query conditions and recursive

conditions overlapping search allows us to detect more likely data sources and

flows than all possible sources and flows. We can make probabilistic decisions

about row level (or set of rows) data flows using database and query metadata

without interfering with the work of the actual system.

The details and recursive graph traversal algorithm descriptions of the

semantic layer are published in paper D.

3.9. Summary

This system design chapter draws the high level methodological and technical

overview of designed and implemented system components, their functions and

the form. The system architecture follows the methodological pathway that is

defined on a conceptual level in section 3.1. The metadata database design

described in section 3.2 and different semantic models (metamodels) for

databases, data integration, business intelligence and generalized mappings

metadata were described in section 3.3. The metadata capture and scanners were

described in section 3.4. More details about the underlying foundation and

mapping design can be found in article A. A discussion of logical paths with

query parsing and resolving techniques continued in section 3.5, with data

transformations evaluation and weight calculation in section 3.6. The

implemented rule system for graph construction and calculations was discussed

in section 3.7 and the semantic layer on top of calculated graphs was discussed

in section 3.8.

45

4. IMPLEMENTATION AND APPLICATIONS

This chapter presents an overview of the actual implementation along with

real-life experiments and relevant statistics. The developed software components

and applications are introduced in the section 4.1. A system performance

evaluation based on six different real-life datasets and the performance overview

details is presented in the section 4.2. Special attention has been given to the

dataset visualization techniques presented in the section 4.3. Details of the

visualization methods are published in papers C and D. Possible additional

application areas are discussed in the section 4.4.

4.1. dLineage.com

The previously described architecture and algorithms have been used to

implement the dLineage37 toolset for data lineage and impact analysis in real

organizations. dLineage is packaged as web-based software as a service (SaaS)

or a local appliance, prepackaged and configured as a virtual machine (VM) with

all the vital components included, such as scanners, parsers and calculation

engine, metadata database and web-based user interface with multiple

applications. The web-based tools are divided into different applications for

different user groups:

 The technical application for metadata management, browsing and

navigation to keep track of the source systems content and interconnection

with all the available technical details.

 The analytical application for data lineage and impact analysis, data sources,

targets and data flow visualizations.

 The business applications for technical metadata management with the help

of a connected classification system, business glossary or ontology, and data

or business governance with the help of domains, role system and

responsibilities.

The scanners and web-based tools of dLineage have been extended and tested

in real-life projects and environments to support several popular DW database

platforms (e.g., Oracle, Greenplum, Teradata, Vertica, PostgreSQL, MsSQL,

Sybase), ETL tools (e.g., Informatica, Pentaho, Oracle Data Integrator, SSIS,

SQL scripts and different data loading utilities) and BI tools (e.g., SAP Business

Objects, Microstrategy, Microsoft SSRS etc.). The dLineage database is built on

PostgreSQL, using an open schema data modeling approach and predefined

metamodels, described in sections 3.2 and 3.3. The rule system and dependency

graph calculation is implemented in SQL queries and stored as a specialized

relation between the scanned node objects. The current implementation uses

recursive SQL for subgraph query tasks, which works reasonably well because

of a local single object context and a sparse nature of the dependency graph. The

number of objects in our test datasets (see section 4.2) were about 1.3 million and

37

 http://dlineage.com

46

we have tested the recursive SQL approach with three times bigger datasets

without any remarkable drawbacks. We have also tested special storage and

indexing methods and in-memory database approaches as alternatives for

recursive SQL. The most promising approach would be the in-memory structures

and algorithms for graph querying, which can be easily adapted and added as

application components when needed. The algorithms for interactive transitive

calculations and semantic layer calculation (see sections 3.7 and 3.8) are

implemented in JavaScript and work in browsers for small and local subgraph

optimization and visualization. Visualization of data lineage and impact flows is

built using d3.js graphics libraries in combination with Sankey38 diagram

techniques. Additional information can be found on our dLineage39 online demo

site and more technical details are in article D.

The general idea of capturing and visualizing data flows in an organization

DW ecosystem are drawn in Figure 4.1. The idea of visualizations using a Sankey

diagram is to align all the data sources (e.g., files, interfaces or tables in source

database) on the left side, all the final data consumers (ending targets, like reports,

export files, API interfaces, etc.) on the right side and all other structures and

components between them (depending on sources and targets). Figure 4.1.

illustrates a traditional DW environment with several data transformation layers

(e.g., source, staging, storage, access, and applications) using a small subset of

Human Resource Management System (HRMS) data structures. The data

structures and data are copied one-to-one from the source to DW and data

transformations are built on the access view layer in this simplified example.

Real-life DW environments are usually much more complex with different

modeling paradigms (e.g., ODS, dimensional, 3NF or hybrid), which means there

will be data restructuring and transformations almost in any layer or stage of data

flow.

Figure 4.1 Data lineage visualization example in DW environment using Sankey

diagram.

38

 https://en.wikipedia.org/wiki/Sankey_diagram
39

 http://www.dlineage.com/

47

The Analytics application in the dLineage toolset was designed for data

lineage and impact graph navigation and visualizations. In the Analytics

application, there are two built-in alternative data representation formats: table

and graph view; and two complementary content representations: data lineage

and impact view. The table view consists of two parts for each selected object:

dependent sources and dependent targets, which represent the list of objects that

are detected as a source or a target in-context of current focus. Figure 4.2 is an

illustration of one report object in a financial reporting hierarchy with more than

a hundred different sources (and no targets) that are connected to one report. The

table view shows the data lineage or impact graph with calculated metrics (e.g.,

distance, number of queries, number of sources and targets) and is sorted by the

most influential objects first.

The graph view in Figure 4.4 represents the same information about connected

sources and targets using a clickable and zoomable Sankey diagram, but in

contrast to the flattened table view, the graph view is stretched out from sources

to targets and rendered from left to right with all levels and distances clearly

visible.

Figure 4.2 dLineage sub-graph table view, source and target objects with calculated

metrics.

At the same time, the content filters for lineage and impact graphs based on graph
calculation rules (see section 3.7) produces two different dependency relations:
lineage (based on data transformation rules R1, R3 or R3) and impact (based on data
impact rules R2 or R3). Based on the lineage or impact content filters, the user can see
and switch between a direct data lineage graph or a dependent component graph. The
latter contains also impact graph data that used for data filtering, joining or coding
and that do not contribute directly to target structures. In Figure 4.3 and Figure 4.4,
one can see the impact view with two or three colored dependency lines, where direct
data transformations are in gray and indirect impact dependencies are in red. Both

48

representations and content filters have their own aspect to emphasize and help in
combinations, and together they perform the lineage or impact analysis tasks.

Figure 4.3 dLineage sub-graph graphical view, selected object with all connected

targets.

Figure 4.4 dLineage sub-graph graphical view, selected object with all connected

sources.

The other applications in the dLineage toolset are built to support related activities
to manage metadata scanners, browse and search collected data, manage systems
state and heath, analyze discovered dependencies, manage and govern corporate
information assets or collect and build business glossaries and definitions to give a

49

meaning to IT assets. In addition to technical, analytical and business applications,
we collect and calculate various measures to estimate system health, integrity, graph
connectivity, parse rate and errors, business coverage, errors, etc. Figure 4.5
illustrates the dashboard functionality of the dLineage toolset that visualizes
collected measures and data.

Figure 4.5 dLineage dashboard has aggregated overview about collected metadata and

calculated results and metrics.

4.2. Performance Evaluation

We have tested our solution in several real-life case studies involving a

thorough analysis of large international companies in the financial, utilities,

governance, telecom and healthcare sectors. The case studies analyzed thousands

of database tables and views, tens of thousands of data loading scripts and BI

reports. Those figures are far over the capacity limits of human analysts not

assisted by special tools and technologies.

The following six different datasets with varying sizes have been used for our

system performance evaluation. The datasets DS1 to DS6 represent data

warehouse and business intelligence data from different industry sectors and is

aligned according to dataset size (Table 4.1). The structure of the datasets are

diverse and complex, hence we have analyzed the results at a more abstract level

(e.g., the number of objects and processing time) to evaluate the system

performance under different conditions.

50

Table 4.1 Evaluation of processed datasets with different size and structure.

DS1 DS2 DS3 DS4 DS5 DS6

Number of scanned objects 1 341 863 673 071 132 588 120 239 26 026 2 369

DB objects 43 773 179 365 132 054 120 239 26 026 2 324

ETL objects 1 298 090 361 438 534 0 0 45

BI objects 0 132 268 0 0 0 0

Scan time (min) 114 41 17 33 6 0

Number of scripts to parse 6 541 8 439 7 996 8 977 1184 495

Number of parsed query mappings 48 971 13 946 11 215 14 070 1544 635

Query parse success rate (%) 96 98 96 92 88 100

Query parse/resolve perf. (qry/sec) 3.6 2.5 26.0 12.1 4.1 6.3

Query parse/resolve time (min) 30 57 5 12 5 1

Number of graph nodes 73 350 192 404 24 878 17 930 360 1 930

Number of graph links 95 418 357 798 24 823 15 933 330 2 629

Graph processing time (min) 36 62 14 15 6 2

Total processing time (min) 150 103 31 48 12 2

The biggest dataset, DS1, contained a big set of Informatica ETL package

files, a small set of connected DW database objects and no business intelligence

data. The next dataset, DS2, contained a data warehouse, SQL scripts for ETL

loadings and an SAP Business Object for reporting for business intelligence. The

DS3 dataset contained a smaller subset of the DW database (MsSql), SSIS ETL

loading packages and SSRS reporting for business intelligence. The DS4 dataset

had a subset of the DW (Oracle) and data transformations in the stored procedures

(Oracle). The DS5 dataset is similar but much smaller compared to DS4 and is

based on the Oracle database and stored procedures. The DS6 dataset had a small

subset of a data warehouse in Teradata and data loading scripts in the Teradata

TPT format.

Figure 4.6 Datasets size and structure compared to overall processing time.

51

Figure 4.7 Calculated graph size and structure compared to graph data processing

time.

The dataset sizes, internal structure and processing time are visible in Figure

4.6, where a longer processing time of DS4 is related to very large Oracle stored

procedure texts and loading of those to the database. The initial dataset and the

processed data dependency graphs have different graph structures (see Figure

4.7) that do not correspond necessarily to the initial dataset size. DS2 has a more

integrated graph structure and a higher number of connected objects (Figure 4.7)

than the DS1. At the same time, the DS1 initial row data size is about two times

bigger than DS2.

Figure 4.8 Dataset processing time with two main subcomponents.

52

Figure 4.9 Dataset size and processing time correlation with linear regression (semi-

log scale).

We have analyzed the correlation of the processing time and the dataset size

(see Figure 4.8 and Figure 4.9) showing that the growth of the execution time

follows the same linear trend as the size and complexity growth. The data scan

time is related mostly to the initial dataset size. The query parsing, resolving and

graph processing time also depend mainly on the initial data size, and less so on

the calculated graph size (Figure 4.8). The linear correlation between the overall

system processing time (seconds) and the dataset size (object count) can be seen

in Figure 4.9.

4.3. Visualization

The Enterprise Dependency Graph examples (Figure 4.10 - Figure 4.12)

illustrate the complex structure of dependencies between the DW storage scheme,

access views and user reports. The examples were generated using data

warehouse and business intelligence lineage layers. The details are at the database

and reporting object level, not at the column level. At the column and the report

field levels, a full data lineage graph would be about ten times bigger and too

complex to visualize in a single picture. The following graph from the data

warehouse structures and user reports presents about 50,000 nodes (tables, views,

scripts, queries, reports) and about 200,000 links (data transformations in views

and queries) on a single image (Figure 4.10).

The real-life dependency graph examples illustrate the automated data

collection, parsing, resolving, graph calculation and visualization tasks

implemented in our system. The system requires only the setup and configuration

tasks to be performed manually. The rest will be done by the scanners, parsers

and the calculation engine.

The final result consists of data flows and system component dependencies

visualized in the navigable and drillable graph or table form. The results can be

53

viewed as a local sub-graph with a fixed focus and a suitable filter set to visualize

the data lineage path from any source to a single report with click and zoom

navigation features. The big picture of the dependency network gives a full-scale

overview of the organization’s data flows. It explicates potential architectural,

performance and security problems.

Figure 4.10 Data flows (blue,red) and control flows (green,yellow) between DW tables,
views and reports.

Figure 4.11 Data flows between DW tables, views (blue) and reports (red).

54

Figure 4.12 Control flows in scripts, queries (green) and reporting queries (yellow) are

connecting DW tables, views and reports.

In addition to the visualization of data flows, we have developed the

aggregated plot view of graph nodes that will help to analyze database tables, data

loading programs or reports in terms of connectedness, complexity and cost. The

main idea of the visualization is to draw a two-dimensional plot or bubble chart

with a number of connected sources and targets on an X and Y axis that allow us

to clearly distinguish more and less connected nodes and the balance between the

number of sources and targets or data producers and consumers. The size of the

bubble in the chart is a recursively calculated number of child objects that express

the complexity of the object and its structure. The color of the bubble is calculated

as a sum of all three components – the number of sources, targets and children –

expressing the cost of the object in terms of change, development or maintenance.

The more costly objects are located in the upper right corner (see Figure 4.13

and Figure 4.14), with a bigger diameter and colored in red. The less costly

objects are located in the lower left corner and colored in blue. The color layer is

the fourth dimension of the chart, giving a quick aggregated overview of the

selected object set. The bigger and more red an object is, the costlier and more

complex it is to change. The smaller and more blue an object is, the less costly

and less complex it is to change.

The data axis with its number of sources and targets and bubble size are

calculated and drawn in a logarithmic scale. The number of sources, targets and

child elements of each object in the same chart can vary with several orders of

magnitude, and therefore the logarithmic scale is more suitable for visualization

and reading of charts.

55

Figure 4.13 Data Warehouse loading packages plot with number of data sources and

targets (axis), loading complexity (size) and relative cost (color).

Figure 4.14 Data Warehouse tables plot with number of data sources and targets

(axis), loading complexity (size) and relative cost (color).

4.4. Proposed Novel Applications

The previously described architecture and dLineage toolset allows us to

address and solve different IT management tasks, based on evidence stored in the

dependency graph. In the following section, we describe some practical use cases

in addition to data lineage and impact analysis that can be seen as additional

applications or plugins for the dLineage toolset.

56

Planning and Budgeting

The ETL programming is often the most time-consuming, complex and hard-

to-predict task in enterprise DW projects, and depends on many variables:

analysis and quality of source data, complexity of data mappings and

transformations, design of target model, etc. Estimations and budgeting of such

tasks are usually based on available input figures and expert opinions, and cannot

be easily answered without previous analysis. Automation of these analysis tasks

via replacement of expert opinions with traceable calculation and decision

algorithms would save money and provide decision support for ETL planning and

budgeting projects. We have successfully implemented and used the Excel-based

calculation algorithm for ETL programming resources estimation (time and

money) in several financial, retail and telecom sector DW projects that were

based on available input figures (i.e., number of tables/columns to load, number

of tables/columns to design/create/change/drop, number of views/column to

design/create/change/drop, number of tasks and packages, etc.), customized

weights and constants and calculation models that allowed us to validate and

replace the human expert opinion and speed up planning tasks. Such a model,

with a manually adjusted weight system for each individual organization, has the

ability to imitate the average human expert decisions with accuracy over 90%.

When implementing a similar model on a real DW dependency graph and

bringing the existing components with their sources and target object counts,

weights and complexity measures, we can build a new evidence-based estimation

calculator. Such an approach allows us to automate and speed up the project

estimations and make it available via a web-based UI or wizard to end users such

as project managers or business experts. The planning and budgeting app allows

faster decisions assisted by connected content and might even outperform the

average expert estimation because of additional knowledge captured into the

dependency graph.

Automatic System Documentation

Relevant systems documentation is an important topic in IT systems

development and is especially important in the context of DW development. A

crucial part of DW documentation describes actual data mappings,

transformations and loads with all the sources and targets. DW development and

management can quickly become expensive and error-prone when detailed

mappings and dependencies are not available. Design time mapping documents

are usually not detailed enough and are outdated by the end of ETL design and

programming. The lack of time, project setup and used tools often do not support

the online documentation availability all the way to the end of the development

phase. Automated documentation generation from actual data transformation

programming code or ETL metadata would be the solution.

The toolset with DW systems and programs metadata scanning, parsing,

resolving and storing in a unified metadata database is a good starting point for

automated documentation. Unified data mappings and constructed dependency

graphs consist of all the information required to generate detailed (column level)

57

ETL mapping documents. A web-based user interface allows for linked and living

documentation that is accurate and more usable than traditional design time

system documents.

Enterprise Search and IT Asset Management

The overview and management of corporate IT assets is a challenging topic

for many organizations. IT systems are physically separated by design or security

concerns. Integration of technical artefacts requires extra effort and tools.

Different counterparties require the same data, but with different details and

viewpoints highlighted, and there are not many tools to support them all from one

source. IT architecture, maintenance, support, development and data delivery

requirements are different and interested parties are rarely ready to find a

common solution. Enterprise asset management with connected dependencies,

business terminology, full text search, responsibilities and role systems would be

the common solution for different needs.

The core functionality described provides metadata for IT systems which is

organized in a suitable format to provide full-scale IT asset management

functions. Built in google-like full-text makes every scanned object fast and easy

to find. Business applications have functions to build up a full-scale business

glossary system in top-down or bottom-up manner and additional role, domain

and responsibility systems allows one to implement IT asset governance

applications suitable for different needs throughout an organization.

Auditing and Compliance Reporting

Compliance with different internal and external requirements can be critical

for many organizations and alignment of the requirements is time-consuming and

costly. Specific industry sectors have their own requirement standards or

mandatory governance regulation, and compliance with regulations will reduce

the risks and business costs or allow the company to operate in the market.

Compliance with regulations requires auditing or certification processes, and

automation of data capturing, consolidation, measurement and alignment tasks

allows for cost savings and quality improvements. The examples of such global

regulations would be the Sarbanes-Oxley Act40 for public and private companies

in the US, which was designed to protect investors, competitors and companies

themselves; Basel III41 and Solvency II42 in financial and insurance industries in

the EU for capital requirements and risk regulations; the General Data Protection

Regulation (GDPD)43 directive from EU/EC for personal data usage and

protection in online and internet businesses worldwide.

 In order to fulfill regulations, we need to catalog the requirements in the form

of business ontology and connect IT assets manually or automatically with the

40

 https://en.wikipedia.org/wiki/Sarbanes-Oxley_Act
41

 https://en.wikipedia.org/wiki/Basel_III
42

 https://en.wikipedia.org/wiki/Solvency_II_Directive_2009
43

 https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

58

requirements. Depending on the specific regulations, we can build a logic-based

rule system and connect it with an underlying dependency graph to derive data

for requirements, to check internal logic and consistency of requirements and to

provide solid, fact-based audit trail and proof of compliance.

4.5. Summary

This implementation chapter concludes the presentation of the designed and

implemented software system, performance evaluation and datasets visualization.

The developed software components and applications were introduced in section

4.1. System performance evaluation based on real-life datasets and the

performance overview details were introduced in section 4.2, and the dataset

visualization was presented in section 4.3. Finally, novel further application areas

were discussed in section 4.4.

59

CONCLUSIONS

This thesis presents novel methods, algorithms and experimental results for

practical data lineage and impact analysis. We are able to map, aid and automate

the solution of management and analysis problems in a corporate data warehouse

environment.

Automation of human intensive analysis tasks reduces time and costs,

improves quality and leads to better decisions with reduced risks. It may take a

week or two for a human analyst to solve moderately complex impact analysis

tasks. We show that this time can be reduced to hours or minutes, with the

interpretation of the results being feasible for users without the help of domain

experts.

The traditional data lineage and impact analysis problems can be compared to

the internet search problem before the invention of Google. The analyst of a new

system component, functionality or business requirement had to find and read all

the relevant documents and/or code bases to trace and model the data sources and

dependencies. Our chosen approach to DW impact analysis and data lineage in a

closed corporate environment can be compared to Google’s approach to web

scanning and indexing to build a sophisticated search engine. We scan, collect

and map an organization’s IT systems and data warehouse environment, data

structures, queries, reports and programs, without using the DW data or affecting

the normal work and behavior of those systems.

Processing and mapping the collected data to an RDF-style database schema

creates a unified physical base for data storage. The unified data representation

allows us to define and implement a set formalized rules to build weighted and

directed dependency graphs. Probabilistic weight calculation in query parsing and

weight propagation by the rule system brings the data transformation semantics

to the graph for further usage. The weights are used for node dependency and

transitivity calculations, for layer visualization, filtering and object sorting. The

weight system is also used in the semantic layer calculation to visualize only the

applicable data flow subgraphs for each selected node.

We have implemented all the algorithms described in the thesis and built a

web-based dLineage software toolkit for browsing, analyzing and visualizing

collected and calculated data. This toolset, algorithms and techniques have been

successfully employed in tens of case studies and projects.

The presented case studies and performance analysis with six different real-

life datasets demonstrates that our algorithms and implementations are linearly

scalable.

We will continue our research and system development in the field of business

semantics and governance automation to employ the underlying dependency

graph in combination with semantic techniques and ontology learning.

Combining different techniques to automate business definitions management

and IT asset governance will hopefully allow us to fill another gap in the

corporate knowledge and asset management landscape.

61

REFERENCES

[1] K. C. Viktor Mayer-Schönberger, “Big Data: A Revolution That Will

Transform How We Live, Work, and Think.,” John Murray, 2013, p. 242.

[2] S. B. Zdonik, “Provenance , Lineage , and Workflows,” Computer (Long.

Beach. Calif)., pp. 1–24, 2010.

[3] S. Chaudhuri and U. Dayal, “An overview of data warehousing and OLAP

technology,” ACM SIGMOD Rec., vol. 26, no. 1, pp. 65–74, 1997.

[4] P. Buneman, J. Cheney, W.-C. W. Tan, and S. Vansummeren, “Curated

Databases,” Pod. June 9–12, 2008, Vancouver, BC, Canada., pp. 1–12,

2008.

[5] J. Cheney, L. Chiticariu, and W.-C. Tan, “Provenance in Databases: Why,

How, and Where,” Found. Trends Databases, vol. 1, no. 4, pp. 379–474,

2007.

[6] W. Tan, “Provenance in Databases : Past , Current , and Future,” Sigmod

2007, pp. 1–10, 2007.

[7] P. Buneman, S. Khanna, and W.-C. Tan, “Why and where: A

characterization of data provenance,” Int. Conf. Database Theory, vol.

1973, no. January, pp. 316–330, 2001.

[8] Y. R. Wang and S. E. Madnick, “A Polygen Model for Heterogeneous

Database Systems: The Source Tagging Perspective,” Proc. 16th VLDB

Conf., no. January, pp. 519–538, 1990.

[9] Y. Cui and J. Widom, “Lineage tracing for general data warehouse

transformations,” VLDB J., vol. 12, no. 1, pp. 41–58, 2003.

[10] J. Widom, “Trio: A System for Integrated Management of Data,

Accuracy, and Lineage,” Proc. 2005 CIDR Conf., pp. 262–276, 2005.

[11] A. Woodruff and M. Stonebraker, “Supporting fine-grained data lineage

in a database visualization environment,” Data Eng. 1997. Proceedings.

13th Int. Conf., no. January, pp. 91–102, 1997.

[12] T. Priebe, A. Reisser, and D. T. Anh Hoang, “Reinventing the Wheel?!

Why Harmonization and Reuse Fail in Complex Data Warehouse

Environments and a Proposed Solution to the Problem,” Proc. 10th Int.

Conf. Wirtschaftsinformatik, pp. 766–775, 2011.

[13] Y. L. Simmhan, B. Plale, and D. Gannon, “A Survey of Data Provenance

in e-Science,” SIGMOD Rec., vol. 34, no. 3. pp. 31–36, 2005.

[14] S. B. Davidson and J. Freire, “Provenance and scientific workflows,”

Proc. 2008 ACM SIGMOD Int. Conf. Manag. data - SIGMOD ’08, p.

1345, 2008.

[15] R. Bose and J. Frew, “Lineage retrieval for scientific data processing: a

survey,” ACM Comput. Surv., vol. 37, no. 1, pp. 1–28, 2005.

[16] P. Buneman and W. Tan, “Provenance in Databases,” Proc. 2007 ACM

SIGMOD Int. Conf. Manag. data, pp. 1171–1173, 2007.

[17] Y. Cui, J. Widom, and J. L. Wiener, “Tracing the Lineage of View Data

in a Warehousing Environment,” ACM Trans. Database Syst., vol. 25, no.

2, pp. 179–227, 2000.

[18] T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,”

62

Proc. twenty-sixth ACM SIGMOD-SIGACT-SIGART Symp. Princ.

database Syst. - Pod. ’07, vol. pages, no. June, p. 31, 2007.

[19] P. Buneman, S. Khanna, and W.-C. Tan, “On propagation of deletions and

annotations through views,” Proc. twenty-first ACM SIGMOD-SIGACT-

SIGART Symp. Princ. database Syst. - Pod. ’02, vol. 2002, no. June, p.

150, 2002.

[20] P. Buneman, J. Cheney, and S. Vansummeren, “On the expressiveness of

implicit provenance in query and update languages,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2006, vol. 4353 LNCS,

pp. 209–223.

[21] D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya, “An

annotation management system for relational databases,” in VLDB

Journal, 2005, vol. 14, no. 4, pp. 373–396.

[22] T. Green and G. Karvounarakis, “Update exchange with mappings and

provenance,” in Proceedings of the 33rd international conference on Very

large data bases, 2007, pp. 675–686.

[23] D. Deutch, Y. Moskovitch, and V. Tannen, “A Provenance Framework

for Data-Dependent Process Analysis,” Proc. VLDB Endow., vol. 7, no.

6, pp. 457–468, 2014.

[24] T. Heinis and G. Alonso, “Efficient lineage tracking for scientific

workflows,” Proc. 2008 ACM SIGMOD Int. Conf. Manag. data -

SIGMOD ’08, no. Section 2, p. 1007, 2008.

[25] P. Missier, K. Belhajjame, J. Zhao, M. Roos, and C. Goble, “Data Lineage

Model for Taverna Workflows with Lightweight Annotation

Requirements,” Proven. Annot. Data Process., pp. 17–30.

[26] R. Ikeda, A. Das Sarma, and J. Widom, “Logical provenance in data-

oriented workflows?,” in Proceedings - International Conference on Data

Engineering, 2013, pp. 877–888.

[27] B. Ramesh and M. Jarke, “Toward reference models for requirements

traceability,” IEEE Trans. Softw. Eng., vol. 27, no. 1, pp. 58–93, 2001.

[28] O. Benjelloun, A. Das Sarma, C. Hayworth, and J. Widom, “An

introduction to ULDBs and the Trio system,” IEEE Data Eng. Bull., vol.

29, no. 1, pp. 5–16, 2006.

[29] H. Fan and A. Poulovassilis, “Using AutoMed metadata in data

warehousing environments,” Proc. 6th ACM Int. Work. Data Warehous.

Ol. - Dol. ’03, p. 86, 2003.

[30] P. Giorgini, S. Rizzi, and M. Garzetti, “A goal-oriented approach to

requirement analysis in data warehouses,” Decis. Support Syst., vol. 45,

no. 1, pp. 4–21, 2008.

[31] H. Fan and A. Poulovassilis, “Using schema transformation pathways for

data lineage tracing,” Knowl. Transform. Semant. Web, vol. 3567, pp. 64–

79, 2010.

[32] U. Dayal, M. Castellanos, A. Simitsis, and K. Wilkinson, “Data

integration flows for business intelligence,” Proc. 12th Int. Conf.

Extending Database Technol. Adv. Database Technol. - EDBT ’09, p. 1,

63

2009.

[33] A. Simitsis and P. Vassiliadis, “A Methodology for the Conceptual

Modeling of ETL Processes,” CAiSE Work., pp. 305–316, 2003.

[34] A. Kabiri and D. Chiadmi, “A method for modelling and organazing ETL

processes,” in 2nd International Conference on Innovative Computing

Technology, INTECH 2012, 2012, pp. 138–143.

[35] D. Skoutas and A. Simitsis, “Ontology-Based Conceptual Design of ETL

Processes for Both Structured and Semi-Structured Data,” Int. J. Semant.

Web Inf. Syst., vol. 3, pp. 1–24, 2007.

[36] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita,

“Improving Data Cleaning Quality using a Data Lineage Facility,” in

DMDW, 2001.

[37] A. S. DeSantana and A. M. de C. Moura, “Metadata to Support

Transformations and Data & Metadata Lineage in a Warehousing

Environment,” in Data Warehousing and Knowledge Discovery, 2004,

vol. 3181, no. 6th International Conference, DaWaK 2004, Zaragoza,

Spain, September 1-3, 2004. Proceedings, pp. 249–258.

[38] M. Bala, O. Boussaid, and Z. Alimazighi, “Extracting-Transforming-

Loading Modeling Approach for Big Data Analytics,” Int. J. Decis.

Support Syst. Technol., vol. 8, no. 4, pp. 50–69, 2016.

[39] S. K. Bansal, “Towards a Semantic Extract-Transform-Load (ETL)

framework for big data integration,” in Proceedings - 2014 IEEE

International Congress on Big Data, BigData Congress 2014, 2014, pp.

522–529.

[40] J. Wang, D. Crawl, S. Purawat, M. Nguyen, and I. Altintas, “Big data

provenance: Challenges, state of the art and opportunities,” in

Proceedings - 2015 IEEE International Conference on Big Data, IEEE

Big Data 2015, 2015, pp. 2509–2516.

[41] C. H. Suen, R. K. L. Ko, Y. S. Tan, P. Jagadpramana, and B. S. Lee,

“S2Logger: End-to-end data tracking mechanism for cloud data

provenance,” in Proceedings - 12th IEEE International Conference on

Trust, Security and Privacy in Computing and Communications,

TrustCom 2013, 2013.

[42] B. Glavic and K. Dittrich, “Data provenance: A categorization of existing

approaches,” Btw, pp. 227–241, 2007.

[43] S. Davidson and J. Freire, “Provenance and scientific workflows:

challenges and opportunities,” Proc. 2008 ACM SIGMOD, pp. 1–6, 2008.

[44] R. Bose, “A conceptual framework for composing and managing

scientific data lineage,” in Proceedings of the International Conference

on Scientific and Statistical Database Management, SSDBM, 2002, vol.

2002–Janua, pp. 15–19.

[45] Y. L. Simmhan, B. Plale, D. Gannon, and S. Marru, “Performance

Evaluation of the Karma Provenance Framework for Scientific

Workflows,” in Proceedings of the 2006 International Conference on

Provenance and Annotation of Data, 2006, pp. 222–236.

[46] I. Altintas, O. Barney, and E. Jaeger-frank, “Provenance Collection

64

Support in the Kepler Scientific Workflow System,” Work, vol. 4145, pp.

118–132, 2006.

[47] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, “The

data grid: Towards an architecture for the distributed management and

analysis of large scientific datasets,” J. Netw. Comput. Appl., vol. 23, no.

3, pp. 187–200, 2001.

[48] E. Wu, S. Madden, and M. Stonebraker, “SubZero: A fine-grained lineage

system for scientific databases,” in Proceedings - International

Conference on Data Engineering, 2013, pp. 865–876.

[49] P. Missier, B. Ludäscher, S. Bowers, S. Dey, A. Sarkar, B. Shrestha, I.

Altintas, M. K. Anand, and C. Goble, “Linking multiple workflow

provenance traces for interoperable collaborative science,” in 2010 5th

Workshop on Workflows in Support of Large-Scale Science, WORKS

2010, 2010.

[50] I. Altintas, Collaborative Provenance for Workflow-Driven Science and

Engineering, vol. 129. 2011.

[51] S. da Cruz, C. Paulino, and D. de Oliveira, “Capturing distributed

provenance metadata from cloud-based scientific workflows,” J. Inf. Data

Manag., vol. 2, no. 1, pp. 43–50, 2011.

[52] A. Marinho, C. Werner, S. M. S. Da Cruz, M. Mattoso, V. Braganholo,

and L. Murta, “A strategy for provenance gathering in distributed

scientific workflows,” in SERVICES 2009 - 5th 2009 World Congress on

Services, 2009, no. PART 1, pp. 344–347.

[53] L. Wang, S. Lu, X. Fei, A. Chebotko, H. Victoria Bryant, and J. L. Ram,

“Atomicity and provenance support for pipelined scientific workflows,”

Futur. Gener. Comput. Syst., vol. 25, no. 5, pp. 568–576, 2009.

[54] M. K. Anand, S. Bowers, I. Altintas, and B. Ludäscher, “Approaches for

exploring and querying scientific workflow provenance graphs,” in

Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, vol.

6378 LNCS, pp. 17–26.

[55] M. K. Anand, S. Bowers, and B. Ludäscher, “A navigation model for

exploring scientific workflow provenance graphs,” in Proceedings of the

4th Workshop on Workflows in Support of Large-Scale Science, WORKS

’09, in Conjunction with SC 2009, 2009.

[56] U. Acar, P. Buneman, J. Cheney, J. Van Den Bussche, N. Kwasnikowska,

and S. Vansummeren, “A graph model of data and workflow provenance,”

Procs. TAPP’10 Work. (Theory Pract. Provenance), p. 8, 2010.

[57] O. Biton, S. Cohen-Boulakia, S. B. Davidson, and C. S. Hara, “Querying

and managing provenance through user views in scientific workflows,” in

Proceedings - International Conference on Data Engineering, 2008, pp.

1072–1081.

[58] S. Bowers and B. Ludascher, “An ontology-driven framework for data

transformation in scientific workflows,” Data Integr. Life Sci. Proc., vol.

2994, pp. 1–16, 2004.

[59] J. Kim, Y. Gil, and V. Ratnakar, “Semantic Metadata Generation for

65

Large Scientific Workflows,” in Proceedings of the Fifth International

Semantic Web Conference, 2006, pp. 357–370.

[60] L. Ding, J. Michaelis, J. McCusker, and D. L. McGuinness, “Linked

provenance data: A semantic Web-based approach to interoperable

workflow traces,” in Future Generation Computer Systems, 2011, vol. 27,

no. 6, pp. 797–805.

[61] S. S. Sahoo, A. Sheth, and C. Henson, “Semantic provenance for

eScience: Managing the deluge of scientific data,” IEEE Internet

Comput., vol. 12, no. 4, pp. 46–54, 2008.

[62] S. Bowers, T. Mcphillips, B. Ludascher, S. Cohen, S. B. Davidson, and

B. Ludäscher, “A Model for User-Oriented Data Provenance in Pipelined

Scientific Workflows,” Lect. Notes Comput. Sci., vol. 4145, no. 4145, pp.

133–147, 2006.

[63] L. Finlay, “‘Outing’ the researcher: the provenance, process, and practice

of reflexivity.,” Qual. Health Res., vol. 12, no. 4, pp. 531–545, 2002.

[64] R. de Paula, M. Holanda, L. S. A. Gomes, S. Lifschitz, and M. E. M. T.

Walter, “Provenance in bioinformatics workflows.,” BMC

Bioinformatics, vol. 14 Suppl 1, no. Suppl 11, p. S6, 2013.

[65] P. Buneman, A. Chapman, and J. Cheney, “Provenance management in

curated databases,” in Proceedings of the 2006 ACM SIGMOD

international conference on Management of data - SIGMOD ’06, 2006,

pp. 539–550.

[66] R. De Paula, M. T. Holanda, M. E. M. T. Walter, and S. Lifschitz,

“Managing data provenance in genome project workflows,” in

Proceedings - 2012 IEEE International Conference on Bioinformatics

and Biomedicine Workshops, BIBMW 2012, 2012.

[67] F. Chirigati and J. Freire, “Towards integrating workflow and database

provenance,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2012, vol. 7525 LNCS, pp. 11–23.

[68] O. Hartig and J. Zhao, “Publishing and consuming provenance metadata

on the web of linked data,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2010, vol. 6378 LNCS, pp. 78–90.

[69] L. Moreau, “The Foundations for Provenance on the Web,” Found.

Trends Web Sci., vol. 2, no. 2–3, pp. 99–241, 2010.

[70] L. Moreau, “Provenance-based reproducibility in the semantic web,” J.

Web Semant., vol. 9, no. 2, pp. 202–221, 2011.

[71] L. Moreau, J. Freire, J. Futrelle, R. McGrath, J. Myers, and P. Paulson,

“The Open Provenance Model,” Futur. Gener. Comput. Syst., vol. 27, no.

6, pp. 743–756, 2011.

[72] M. K. Anand, S. Bowers, and B. Ludäscher, “Techniques for efficiently

querying scientific workflow provenance graphs,” pp. 287–298, 2010.

[73] T. Stöhr, R. Müller, and E. Rahm, “An integrative and uniform model for

metadata management in data warehousing environments,” in

Proceedings of the International Workshop on Design and Management

66

of Data Warehouses DMDW99, 1999, vol. 1999, pp. 1–16.

[74] P. Vassiliadis, A. Simitsis, P. Georgantas, M. Terrovitis, and S.

Skiadopoulos, “A generic and customizable framework for the design of

ETL scenarios,” Inf. Syst., vol. 30, no. 7, pp. 492–525, Nov. 2005.

[75] M. Jäger, T. N. Phan, C. Huber, and J. Küng, “Incorporating Trust,

Certainty and Importance of Information into Knowledge Processing

Systems -- An Approach,” in Future Data and Security Engineering:

Third International Conference, FDSE 2016, Can Tho City, Vietnam,

November 23-25, 2016, Proceedings, T. K. Dang, R. Wagner, J. Küng, N.

Thoai, M. Takizawa, and E. Neuhold, Eds. Cham: Springer International

Publishing, 2016, pp. 3–19.

[76] A. Jøsang, S. Marsh, and S. Pope, “Exploring Different Types of Trust

Propagation,” in Trust Management, 2006, vol. 3986, no. May, pp. 179–

192.

67

KOKKUVÕTE

Käesoleva doktoritöö teema on andmevoogude ja neid realiseerivate

komponentide analüüs ning selle protsessi automatiseerimine ettevõtte andmelao

keskkonnas. Töö eesmärgiks on luua universaalne metoodika, algoritmid ja

tarkvaraline lahendus, mida saab vähese vaevaga rakendada juba olemasoleva

keskkonna andmevoogude ja mõjuanalüüsi automatiseerimiseks. Metoodilise

lähenemise aluspõhimõteteks on töötava andmelao keskkonna kaardistamine

selle tööd mõjutamata ning andmelao süsteemides töödeldavaid andmeid

kasutamata. Selline lähenemisviis eeldab andmelao struktuuride, programmide ja

raportite metaandmete kogumist ja töötlust ning võimaldab lahendust rakendada

võimalikult väikeste kulutustega juba töötavas keskkonnas, selle tööd

mõjutamata ja tundlikke andmeid vajamata.

Loodud süsteemi arhitektuur sisaldab dünaamilise ja paindliku struktuuriga

andmebaasi kasutamist erinevate metaandmete salvestamiseks, modulaarsetel ja

korduvakasutatavatel komponentidel baseeruvat metaandmete kogumis- ning

töötlusprogrammide loomist ning veebipõhiseid rakendusi erinevatele

kasutajagruppidele, analüüsi teostamiseks ja andmete visualiseerimiseks.

Kirjeldatud semantilised meetodid ning reeglipõhine ja tõenäosuslik

järeldussüsteem aitavad konstrueerida struktuuride ja programmide sisendite-

väljundite baasil suunatud graafi, mis võimaldab andmestruktuuride ja -voogude

analüüsiülesanded teisendada alamgraafide läbimise- ja arvutusülesanneteks.

Töös kirjeldatud tarkvara on testitud kümnete rahvusvaheliste ettevõttete

andmeladude analüüsiks ja visualiseerimiseks. Ülevaade andmekogudest ning

süsteemi jõudlusest on toodud töö viimases peatükis. Kokkuvõttes näitame, et

valitud süsteemi arhitektuur, algoritmid ja meetodid on sobivad väga erinevate

valdkondade, suuruse ja sisuga andmeladude analüüsiks metaandmete baasil ning

kirjeldatud süsteemi komponentide jõudlus skaleerub lineaarselt lähteandmete

mahuga.

69

Publication A

Tomingas, K.; Kliimask, M.; Tammet, T. Data Integration Patterns for Data

Warehouse Automation. In: New Trends in Database and Information Systems

II: 18th East European Conference on Advances in Databases and Information

Systems (ADBIS 2014). Springer, 2014.

����������	��
��������	����	��������	�������������
�������������������� �!�"���������#$���%������������&�����'())*++�,+*-./0*12�34�'.56+3)3728�96*1(:(1.�1..�;8�'())*++�<=>?@�9013+*(�A�9)*B3�C3DE.1.+5.�C.+1./8�'.(FG0E(/7*�@HI8�'())*++�<I@<?�9013+*(�JKLMNOPMQ��R��S�S�!�S!����&������SS���TA���%���%���&�%�&�T%!�U�����%"��!�%�&��&!���V�!��&����V!���W�!#�%������%�&�����U���X&!�Y&T&!���V�!�T���%�Z[�\]��"&���&�������S�Y&�����̂�����%�&��_"���&̂���%���&��!�&����S!�A��������%�&��W�!�R�"�����U�!�����&�̀�a����&!�%"Y����%�Y��!�&�U����SS����V�!����b�&����&�YR��_"�������A�&!�Y&��XS!�������S�&&�!��Y��Y�S&���%���!���&�%�&��S��&���������&�YR�����̂�V�!�V��X�A���[�\�Y�%������!�&������%��X�Y"&���̀��R��V����A���&̂���%��VV�Y���Ŷ��V�&R���SS!��YR����%�����&!�&�%����&R��S�&&�!��%�&�Y&������%�%�&��������������̂����Y�����&"%����"�������!���!������V��cd\�Y�!S"���̀�efghiNjLQ�%�&��W�!�R�"�����&���%�&����SS������&��S��&��A���%��_������!�&������A�&!�Y&��̂�&�X�S�&&�!������&�%�&�����������&̀�kQ�lmMNijnPMoim��R��%���U�!̂��V����"YY���V"��p�&��a�!�R�"���Zpa]�S!�q�Y&������R�&�!������"�����%�Y�S���V�U�!��"��%�&����"!Y��������&�%�!���"!Y������%���Y#��V�!�_"�!����&������"��&�A���V�Y"����%�A"%��&����Y���&!���&�������W�̂��YR������������%�!��#̂ �̀ ��̂�����T&�!��pa�S!�q�Y&�V���"!����!��!���&�%�&��&R��!�_"�!����&����%�!����&̂������&YR�A�&W�����U����A���%�&���%�V���%����%����%���V�!��&����!�_"�!����&��V�!�%�Y��������#����rst̀�[X&!�Y&��&!���V�!����%����%�Z[�\]������%�&�A����"�����S!�Y����W�%��̂�"��%����&R��%�&��W�!�R�"���V���%̀�[�\���U��U����X&!�Y&����%�&��V!����"&��%����"!Y����&!���V�!������&�&��V�&��S�!�&���������%����%����%�����&���&��&R����%�&�!��&u����%�&�A�����!���p�&��a�!�R�"��̀� �SS�����A�&W������"!Y����%�&�!��&�%�&���&!"Y&"!����!��YR������!��&R��A���Y��S�Y�V�Y�&������V�%�&��&!���V�!��&����̀� �SS�����Y���A��U��W�%������&�%�&��Y�S&"!����&R��!���&����R�S��A�&W������V�!��&������"!Y�����%�&�!��&�̀� �SS�����%�Y"���&�&R��%�Y�������V�!���V�!��&�����&!"Y&"!������%���%������rvwt̀��R�̂��!��"��%�V�!���U�!���%�VV�!��&����������pa�S!�Y�����u�W!�&�������S�Y�V�Y�&����V�!�[�\�S!��!����!�������!�&������&!���V�!��&����_"�!̂��!�S!��!���&R�&�"����&R�������&�Y���V�&R����SS�����S�Y�V�Y�&����Z�̀�̀����cd\�_"�!̂�&R�&�S�S"��&���&�!��&�&�A����V!�����"!Y��&�A���]��S!�U�%������&�%�&���A�"&�!���&����R�S��A�&W�����&!"Y&"!����!��YR������S!�U�%������&�%�&���A�"&�%�&��V��W����%��!�������"!Y���rxt̀�y!��!���������SS��������&R��[�\���U�!�����&���U��U���W!�&�����S�Y����%�&�A�������%�����Y!�S&��Z�̀�̀�z!�Y���c_�{\��%�!�� ccd\�|"�#���%����!�%�&��}��&���%��y��&�!��_��~�Ŝ��&Ỳ]���%�cd\�_"�!����Z�̀�̀�����Y&������!&��"S%�&����%�%���&���&�&����&�]�WR�YR��!����Y!����&�����&�!�&�U���&����Y���"�������%�!�"&�����Y&�U�&���̀��R�����"���S!��!��������V�&R��%�&�����%��������&��&T��%T�!!�!�A���%���%���&�&����VV�Y���&����Y����&R�!���������"SS�!&�V!���&R����U�!�����&���%������&R�%����̂ �̀ ��"����Y!�S&������%�Y�%�����V�cd\���U���R��R�V��X�A���&̂�A"&�A�Y#V�!������&�!����V��VV�Y���Ŷ��Y��S��X�&̂��!�"��A���&̂���%�����&����Y���V�%�&�����%�����r�t̀��R���X�Y"&������%��S&���b�&�����V��X��&�������%����S!��!����Y���A����U�!̂�Y��S��X���%�YR����������&��#�W�&R�"&��YY����&��&R��V"���%�S��%��Y������%���&�������&���YR���!̂�&������!�&���S&���b�%�W�!#V��W��r�t��rvt̀��R��S!�Y�������V�Y!��&�������&��!�&��������������&��YR������!�"������%�%��Y�U�!̂��V�%�&����&��!�&����S!��!�����!����&���S�Y����̂��VV�Y���&�W�&R�"&�&R��%�S��%��Y������%�

83

Publication B

Tomingas, K.; Tammet, T.; Kliimask, M. Rule-Based Impact Analysis for

Enterprise Business Intelligence. In: Artificial Intelligence Applications and

Innovations (AIAI 2014), IFIP Advances in Information and Communication

Technology. Springer, 2014.

�������

���� � ��

�������	�
������������	�	������������	����	���		���������������������� !"#�$%&���"����� �'%&�(�)#*$���!! �$+,�%�����!""�-"!.�)$!'/��0���12"���#/&�32!'�4�'��'���5&�����!""�%6789�3$'�"!��,�3�!+��:� ;�'�"1��:�"'�)&����<*$;�)#!�9=,&�����!""�%,9%8�3$'�"!����	�����>�?���<<)�$$�$�.�)���1� �"�;)�@�� $�!"�'2��0!��<��0�A*$!"�$$�B"'��C�!#�"1�&�D�'��?�)�2�*$!"#��"<�D�1!$!�"�E*;;�)'�E/$'� $F��'2��1� ;��G!'/�'�� �"�#�&�')�1+��"<�*"<�)$'�"<�<�'���!"��#���"<�$/$'� �1� ;�"�"'�<�;�"<�"1!�$�!"���"#�$�)!�$��0�<�'��')�"$0�) �'!�"�12�!"$H��2��;�;�)�;)�$�"'$�;)�1'!1��� �'2C�<$�'��1��1*��'�� ��"!"#0*��<�'��')�"$0�) �'!�"��"<�1� ;�"�"'�<�;�"<�"1/�;�'2$&�@�$�<��"�;)�#)� �;�)$!"#&�2�*)!$'!1�! ;�1'��"��/$!$&�;)�@�@!�!$'!1�)*��$��"<�$� �"'!1�'�12"���#!�$H�:�$��$'*<!�$��)��� ;��/�<�'���G;��!"�0*)'2�)�<�'���##)�#�'!�"��"<�.!$*��!I�'!�"��0�'2��)�$*�'$�'���<<)�$$�<!00�)�"'�;��""!"#��"<�<�1!$!�"�$*;;�)'�;)�@�� $�0�)�.�)!�*$�*$�)�;)�0!��$��!+��@*$!"�$$�*$�)$&� �"�#C�)$&�<�'��$'�J�)<$&�$/$'� ��"��/$'$&�<�$!#"�)$��"<�<�.���;�)$H�K��L��
	M�! ;�1'��"��/$!$&�<�'���!"��#�&�<�'��J�)�2�*$�&�)*��C@�$�<�)��$�"C!"#&�;)�@�@!�!$'!1�)��$�"!"#&�$� �"'!1$�N� �����
�������D�.���;�)$��"<� �"�#�)$��)��0�1!"#�$! !��)�D�'��O!"��#��PDOQ��"<�B ;�1'�R"��/C$!$�PBRQ�;)�@�� $�!"�1� ;��G�<�'��!"'�#)�'!�"�PDBQ&�@*$!"�$$�!"'���!#�"1��PABQ��"<�D�'��?�)�2�*$��PD?Q��".!)�" �"'$�J2�)��'2��12�!"$��0�<�'��')�"$0�) �'!�"$��)����"#��"<�'2��1� ;��G!'/��0�$')*1'*)���12�"#�$�!$�2!#2H��2�� �"�#� �"'��0�<�'��!"'�C#)�'!�"�;)�1�$$�$�@�1� �$�*";)�<!1'�@����"<�'2��1�$'$��0�12�"#�$�1�"�@��.�)/�2!#2�<*��'��'2����1+��0�!"0�) �'!�"��@�*'�<�'��0��J$��"<�!"'�)"���)���'!�"$��0�$/$'� �1� C;�"�"'$H��2��� �*"'��0�<!00�)�"'�<�'��0��J$��"<�$/$'� �1� ;�"�"'�<�;�"<�"1!�$�!"���')�<!'!�"���<�'��J�)�2�*$���".!)�" �"'�!$���)#�H�B ;�)'�"'�1�"'�G'*���)���'!�"$��)��1�<�<�!"'��<�'��')�"$0�) �'!�"�S*�)!�$��"<�;)�#)� $�P�H#H�ETO�S*�)!�$&�<�'�����<!"#�$1)!;'$&��;�"��)�1��$�<�DB�$/$'� �1� ;�"�"'$��'1HQH�D�'���!"��#��<�;�"<�"1!�$��)��$;)��<�@�'J��"�<!00�)�"'�$/$'� $��"<�0)�S*�"'�/��G!$'��"�/�!"�;)�#)� �1�<���)�ETO�S*�)!�$H��2!$����<$�'��*" �"�#��@���1� ;��G!'/&���1+��0�+"�J��<#���"<�����)#��

95

Publication C

Tomingas, K.; Tammet, T.; Kliimask, M.; Järv, P. Automating Component

Dependency Analysis for Enterprise Business Intelligence. In: 2014 International

Conference on Information Systems (ICIS 2014).

� ���������	���
��������������	����������
�	������������������������������ ��

�� !"#$!%&'�("#)"&*&!�+*)*&,*&-.��&$/.0%0�1"2�3&!*2)2%0*�4 0%&*00�5&!*//%'*&-*����6������7�������86���� 9:;;<�=>?@AB:C�DEFFGHH�IHG�JK�DLMNHJFJOP�QNGRESERL�RLL�T�DEFFGHHU�QVRJHGE�WEFFLXRJYGHOEVZOYEGFXMJY�� =:A<;�=:??<[�DEFFGHH�IHG�JK�DLMNHJFJOP�QNGRESERL�RLL�T�DEFFGHHU�QVRJHGE�REHLFXREYYLRZRR\XLL�]:̂B_C�9;@@?:C̀�QFGWJ�aJYbLRLHML�aLHRLc�DLEd\VbEcOG�efg�DEFFGHHU�QVRJHGE�YEcO\VXWFGGYEVWZOYEGFXMJY� h2%%!�ij2k�QFGWJ�aJYbLRLHML�aLHRLc�DLEd\VbEcOG�efg�DEFFGHHU�QVRJHGE�bcGGRXSEclZOYEGFXMJY��mnC[̂:o[�p����������������6��q������������	������	�r��������
������s������t��p��������s����t����������66�����������u��������6��v���������s����������������������������s���������������6��������6����������������s���������	��������	�������������w�����66���6��������6�������������������������������s	����������	��������������6��������6��������6�����q�������6��s���6����s��������������6�����������6��qq���������������������������������s���w������������������6����������v6����	����������ss��s��������x�����y������	�������������������������		������6�����s���������������66����6��q�����	���x������s���6���	�������������q�������������w�9<z{>̂|C}��aJYbJHLHR�dLbLHdLHMP�EHEFPVGVU�GYbEMR�EHEFPVGVU�dERE�FGHLEOLU�dERE�~EcLNJ\VLU�c\FL��EVLd�cLEVJHGHOX���A[̂>|_o[@>A��LlLFJbLcV�EHd�YEHEOLcV�EcL�KEMGHO�VGYGFEc��ERE��GHLEOL������EHd��YbEMR��HEFPVGV������bcJ�FLYV�GH�MJYbFL��dERE�GHRLOcERGJH�����U��\VGHLVV�GHRLFFGOLHML������EHd��ERE��EcLNJ\VL������LHlGcJHYLHRV�~NLcL�RNL�MNEGHV�JK�dERE�RcEHVKJcYERGJHV�EcL�FJHO�EHd�RNL�MJYbFL�GRP�JK�VRc\MR\cEF�MNEHOLV�GV�NGONX�DNL�YEHEOLYLHR�JK�dERE�GHRLOcERGJH�bcJMLVVLV��LMJYLV�\HbcLdGMRE�FL�EHd�RNL�MJVRV�JK�MNEHOLV�MEH��L�lLcP�NGON�d\L�RJ�RNL�FEMW�JK�GHKJcYERGJH�E�J\R�dERE�KFJ~V�EHd�GHRLcHEF�cLFERGJHV�JK�VPVRLY�MJYbJHLHRVX�DNL�EYJ\HR�JK�dGKKLcLHR�dERE�KFJ~V�EHd�VPVRLY�MJYbJHLHR�dLbLHdLHMGLV�GH�E�RcEdGRGJHEF�dERE�~EcLNJ\VL�LHlGcJHYLHR�GV�FEcOLX��YbJcREHR�MJHRL�R\EF�cLFERGJHV�EcL�MJdLd�GHRJ�dERE�RcEHVKJcYERGJH��\LcGLV�EHd�bcJOcEYV��LXOX������\LcGLVU�dERE�FJEdGHO�VMcGbRVU�JbLH�Jc�MFJVLd����VPVRLY�MJYbJHLHRV�LRMX�X��ERE�FGHLEOL�dLbLHdLHMGLV�EcL�VbcLEd��LR~LLH�dGKKLcLHR�VPVRLYV�EHd�KcL�\LHRFP�L�GVR�JHFP�GH�bcJOcEY�MJdL�Jc������\LcGLVX�DNGV�FLEdV�RJ�\HYEHEOLE�FL�MJYbFL�GRPU�FEMW�JK�WHJ~FLdOL�EHd�E�FEcOL�EYJ\HR�JK�RLMNHGMEF�~JcW�~GRN�\HMJYKJcRE�FL�MJHVL�\LHMLV�FGWL�\HbcLdGMRE�FL�cLV\FRVU�~cJHO�LVRGYERGJHVU�cGOGd�EdYGHGVRcERGlL�EHd�dLlLFJbYLHR�bcJMLVVLVU�NGON�MJVRU�FEMW�JK�KFL�G�GFGRP�EHd�FEMW�JK�Rc\VRX�

113

Publication D

Tomingas, K.; Järv, P; Tammet, T. Discovering Data Lineage from Data

Warehouse Procedures. In: 8th International Joint Conference on Knowledge

Discovery and Information Retrieval (KDIR 2016).

���������	
�������	��
��������������������������������� ������������� !"�#$��%�&'$(!���)������������%!�*�+,--.//�0/.1234.56�78�+29:/7-7;6<�=:.5,>,52�522�?<�+,--.//�*@ABC�=457/.,�DE,--2F57G./;,4<�H3..5F>,31<�5,/2-F5,GG25IJ;G,.-F97G���KL�$) M� N�%��O�$�P�Q �"�N�%��R������"�N�S��)��TK�U���K � "�N�%��V��L�W� Q���X�%���Y�UZ %$�T%M� O��S$� ��%�����%P�)�%��T��TQ��%��T��S����%�)�S��)��T�� ���)�)�%����������[$���%P��)�%�Z� �� %$QT%Q$����)�����$��� �%��[�� �T��%�)�S$�T�)Q$� ���)�\Q�$�� "���)�S��)��%�K��[��T%Q���)�%�����%P��)�%��L�$�P�Q �Y��P����%P�)�$���� ����%P��S$�Z�Z��� %�T�� %���%�����[�%P����S�T%��[�)�%�����\Q�$�� Y�O��S$� ��%���$Q��� K %��� QSS�$%����%P���[[�T���%�T��TQ��%�����[�%P��%$�� �%�(��T�� Q$�Y��P��)�S��)��T�� ��$��T�%���$�X�)"����$���%�)���)�(� Q���X�)�%���))$� �(�$��Q �S����������)�)�T� ���� QSS�$%�S$�Z��� Y�]K %���S�$[�$���T��� ��(��Q�%�)���)�����K �)��(�$� �(�$���$���̂��[��)�%� �% Y�_� àbcd�efb̀da�]K %���)�(���S�$ ���)�������$ ��$��[�T���� �����$�)�%������������)���S�T%�����K � �S$�Z��� ����T��S��g�)�%����%��$�%���"�ZQ ��� ���%�������T����)�)�%��L�$�P�Q ����(�$�����% �LP�$��%P��TP��� ��[�)�%��%$�� [�$��%��� ��$���������)�%P��T��S��g�%K��[� %$QT%Q$���TP���� �� �P��PY��P�����������%��[�)�%����%��$�%����S$�T� � �Z�T��� �Q�S$�)�T%�Z�����)�%P��T� % ��[�TP���� �T���Z��(�$K�P��P�)Q��%��%P����Th��[���[�$��%�����Z�Q%�)�%��[��L ���)�%P����%�$����$���%��� ��[� K %���T��S����% Y�i�S�$%��%�T��%�g%Q���$���%��� ��$����T�)�)���%��)�%��%$�� [�$��%����\Q�$�� ���)�S$��$�� �j]kR�\Q�$�� "�)�%�����)���� T$�S% "��%TYlY�N�%����������)�S��)��T�� ��$�� S$��)�Z�%L����)�[[�$��%� K %�� ���)�[$�\Q��%�K��g� %����K����S$��$���T�)���$�]kR�\Q�$�� Y��P� ����) �%��Q��������Z���T��S��g�%K"���Th��[�h��L��)�����)�����$������Q�%��[�%�TP��T���L�$h�L�%P�Q�T��[�$%�Z���T�� �\Q��T� ���h��Q�S$�)�T%�Z���$� Q�% "�L$����� %���%��� "�$���)��)���� %$�%�(����)�)�(���S���%�S$�T� � "�P��P�T� %"���Th��[�[��g�Z���%K���)���Th��[�%$Q %Y�O��S���%��Q%� �����[�%P���� %���S�$%��%���)�T������\Q� %��� �[�$���$���NO�LP�TP�Q Q���K�Z�T������%�S�T��[�$� ��$TP�[�$� K %�������K % ���)��)���� %$�%�$ M��m�OP�$��)�� �%P��)�%��T�����$����%����n[$����� S�T�[�T�T��Q��"�%�Z��"�(��L��$�$�S�$%o�m�OP���L� �%P��)�%�����)�)"�QS)�%�)��$�T��TQ��%�)������ S�T�[�T�T��Q��"�%�Z��"�(��L��$�$�S�$%o�

m�OP�TP�T��S����% �j$�S�$% "�\Q�$�� "����)��� ���)� %$QT%Q$� l��$����S�T%�)�LP����%P�$�T��S����% ��$��TP����)o�m�OP�TP�)�%�"� %$QT%Q$���$�$�S�$%�� �Q �)�ZK�LP�����)�LP��o�m�OP�%�� �%P��T� %��[���h����TP���� o�m�OP�%�L����Z$��h�LP���L��TP����� ���%P���o�� �P���Z���%K�%��[��)��)̂P�T��� L�$ �%�����K�)�K�%��)�K�\Q� %��� �)�%�$���� ���%����K�%P�����������%�T�S�Z���%�� ���)�%P��T� %��[�%P�� K %��"�ZQ%��� ��%P��S$�T����)�[��g�Z���%K��[���h����TP���� Y���P��������[��Q$�$� ��$TP�� �%��)�(���S�$����Z�����)��[[�T���%���%P�) �[�$��Q%���%�T�)� T�(�$K��[�T��S����%�)�S��)��T�� ���)�)�%����������[$���%P��)�%�Z� �� TP��� "�\Q�$�� ���)�)�%��%$�� [�$��%����T��S����% �ZK��Q%���%�)�����K � ��[��T%Q���S$��$���T�)�Y��P� �$�\Q�$� �S$�Z�Z��� %�T�� %���%�����[�%P����� Q$���[�)�S��)��T�� ���)�%P�����$���%������)�(� Q���X�%�����[�%P��� %���%��� Y�p�cq�rbq���dcs�i�S�T%�����K � "�%$�T��Z���%K���)�)�%����������� Q� ��$����%���LY�U����)��(�$(��L��[�%P��$� ��$TP��T%�(�%�� ��[�%P���� %�)�T�)��� �S$� ��%�)��������$%�T���ZK�j#$��Z�"�tu!!lY�O��T���[��)�(�$��Q �$� ��$TP��SS$��TP� ���)�SQZ�� P�)�S�S�$ �[$���%P����$�K�!vvuw �L�%P���%P�)������ �[�$� �[%L�$��%$�T��Z���%K�jx��� P"�tuu!lY��P��S$�Z�����[�)�%����������%$�T�������)�%��L�$�P�Q ������(�$�����% �P� �Z����[�$����K�

125

CURRICULUM VITAE

Personal data

Name: Kalle Tomingas

Date of birth: 22.08.1973

Place of birth: Pärnu, Estonia

Citizenship: Estonia

Contact data

Phone: +372 5040568

E-mail: kalle.tomingas@gmail.com

Education

2008 – 2018 Tallinn University of Technology, PhD

1991 – 2000 Tallinn University of Technology, MSC

1989 – 1991 Pärnu Ülejõe Gymnasium, Highschool

Language competence

English Fluent

Russian Communication

Estonian Native language

Professional employment

2017– … Orion Information Governance, Chief Data Scientist

2005–2017 Mindworks Industries, Consultant

2011–2015 ELIKO Technology and Competence Center, Researcher

2012–2012 Marie Curie Research Fellow in Technical University Graz

1999–2005 Swedbank (Hansabank), Architect

1993–1998 Forexbank (Raebank), Manager, Architect

126

ELULOOKIRJELDUS

Isikuandmed

Nimi: Kalle Tomingas

Sünniaeg: 22.08.1973

Sünnikoht: Pärnu linn, Eesti

Kodakondsus: Eesti

Kontaktandmed

Telefon: +372 5040568

E-mail: kalle.tomingas@gmail.com

Hariduskäik

2008 – 2018 Tallinna Tehnikaülikool, PhD

1991 – 2000 Tallinna Tehnikaülikool, MSC

1989 – 1991 Pärnu Ülejõe Gümnaasium, keskharidus

Keelteoskus

Inglise keel kõrgtase

Vene keel suhtlustase

Eesti keel emakeel

Teenistuskäik

2017– … Orion Information Governance, teadus- ja arendusjuht

2005–2017 Mindworks Industries, konsultant

2011–2015 ELIKO Tehnoloogia Arenduskeskus, teadur

2012–2012 Marie Curie Research Fellow in Technical University Graz

1999–2005 Swedbank (Hansapank), arhitekt

1993–1998 Forexpank (Raepank), IT juht, arhitekt

	Blank Page

