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Introduction

In general, the behaviour of materials depends on properties of the material
structure. In contemporary material science and structural mechanics sig-
nificant attention is devoted to microstructured materials possessing internal
scales. For instance, metallic alloys, ceramic composites, polycrystalline solids,
functionally graded materials, granular and porous materials, etc., are used for
a wide variety of industrial applications since combining the mechanical proper-
ties of different constituents can yield optimal properties of solids and establish
a new qualitative level in material science.

In principle, every material has some small-scale structure, since material is
never distributed continuously. Speaking about microstructured material we
do not mean the molecular or atomic scale. Rather these microstructures are
assumed in the range of micrometers, so that they still can be considered as
continua. The overall material becomes highly nonhomogeneous due to the
embedded microstructures with their different behaviour.

Many theories of microstructured materials aim to smooth out this inho-
mogeneity while retaining its influence on the gross behaviour of the material.
This is done by giving the material more internal degrees of freedom describing
the behaviour of the embedded microstructures. So the ordinary but highly
inhomogeneous material is turned into a homogeneous material which, how-
ever, is equipped with more than just a displacement field. Corresponding
theories can be traced back to the meanwhile classical papers by Mindlin [1]
and Sun et al. [2]. The connection of these theories to Cosserat continua has
been established by Herrmann and Achenbach [3].

The problem from the physical side is how to describe the dispersive effects
due to microstructure, still using the concept of continuity. There are many
studies in this field, starting from the papers of Mindlin [1] and Eringen [4]
several decades ago. Now we have a solid theoretical background, see for
example [5, 6], but another problem has arisen: the governing equations tend
to be rather complicated and the number of material parameters needed to
describe the stress field is rather high. Therefore there is an urgent need to
find simplified governing equations, but the physical effects should still be
described with the needed accuracy.

The problem is not only in the mathematical complexity of governing equa-
tions but also in the number of waves. If in the linear theory, for example,
longitudinal and shear waves can be easily separated then in the nonlinear
theory the coupling can affect both waves considerably. In a general case of a
complicated system of equations the main question is to understand to which
wave which physical effects are related both qualitatively and quantitatively.

One of the possibilities to overcome such difficulties in contemporary mathe-
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matical physics is to introduce the notion of evolution equations governing just
one single wave. Physically it means the separation, if possible, of a multi-wave
process into separate waves. The waves are then governed by the so-called evo-
lution equations each of which describes the distortion of a single wave along
a properly chosen characteristic or ray.

The application of fast changing loading conditions, including impact,
means generation of deformation waves. The embedding of a microstructure
into an otherwise homogeneous matrix material is reflected in an inherent
length scale causing dispersion of propagating waves. Nonlinear effects, if taken
into account, will counteract dispersion. A suitable balance of nonlinearity and
dispersion may permit the propagation of solitary waves. The solitary waves
can be considered as the long-wave limit of periodic solutions which, in the
Korteweg–de Vries case, have the form of cnoidal waves.

The theory of solitary waves has originated from the study of surface waves
in fluids. Meanwhile, solitary wave propagation in solids as well as in optical
systems has gained widespread interest. If one takes shock waves and dispersive
waves as two extreme examples of wave motion, the solitary waves share some
properties of each of the two classes. They are localised like shock waves and
smooth like dispersive waves. Solitary waves may keep their shape over long
distances and are, therefore, applicable to signal transmission.

Apart from the possible technical applications, solitary waves are an attrac-
tive phenomenon from the mathematical point of view. Especially the solitons,
i.e., solitary waves preserving their identity after a collision and satisfying an
infinite set of conservation laws, have initiated an extended mathematical re-
search.

The underlying physical model equations giving rise to solitary waves must
combine two opposing effects, namely dispersivity and nonlinearity. Disper-
sion requires an inherent length scale, which might represent the scale of a
microstructure or simply the cross-sectional scale of a rod. Nonlinearity is al-
ways present, at least to a certain degree, since any strictly linear model is just
a first approximation of some more general nonlinear theory.

Mindlin [1] has formulated a linear theory of a three-dimensional, elastic
continuum sharing some properties of a crystal lattice by including the idea
of a unit cell into the theory. The unit cell may also be interpreted as a

molecule of a polymer, a crystallite of a polycrystal or a grain of a granular

material [1]. The mathematical model of the cell is a linear version of Ericksen
and Truesdell’s deformable directors [7]. If the cell is made rigid, the equations
reduce to those of a linear Cosserat continuum [8].

According to Mindlin’s model of a microstructured solid [1] any material
point of the solid represents itself a microcontinuum subject to some deforma-
tion. The overall deformation of the microstructured continuum is then de-
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scribed by the macroscopic displacements of its material points, i.e., the centres
of the microcontinua, and by the deformation of the microcontinua themselves.
The micro-deformations are assumed to be uniform at the microscopic level but
may depend on the macroscopic location of the microcontinuum element.

Engelbrecht and Pastrone [9] have specialised Mindlin’s model of a mi-
crostructured solid to one dimension and augmented it by including nonlinear
terms in both macro- and microlevel. To describe the motion of the one-
dimensional microstructured solid, they have complemented the macroscopic
displacement by the microstrain, both of which are considered as functions of
the space coordinate and time. The governing equations appear as a system
of coupled partial differential equations for the two field variables. Using the
so-called slaving principle, Engelbrecht and Pastrone [9] have distilled from
it a single partial differential equation, which governs mainly the macrodis-
placement while retaining, in a first approximation, the influence of the mi-
crostructure. On the basis of this equation the propagation of solitary waves
was studied by Janno and Engelbrecht [10]. They have shown that the wave
profile becomes asymmetric due to the influence of micro-nonlinearity.

This thesis will focus on wave propagation in microstructured solids. The
main aim of the investigation is analysing dynamical properties of 1D mi-
crostructured solids as described by a Mindlin-type model. The specific objec-
tives are

• to derive an evolution equation corresponding to the Mindlin–Engelbrecht–
Pastrone model;

• to look for solutions of the evolution equation representing undistorted
waves;

• to establish conditions under which solitary waves are possible solutions
of the evolution equation;

• to provide approximate and, if possible, exact solutions for the evolution
equation;

• to generalise the results to periodic waves;

• to provide numerical solutions of the evolution equation for localised and
harmonic initial conditions.

The thesis is organised as follows. Section 1 involves the general concept of
wave motion including definition of waves, relations between the common wave
parameters, one-dimensional wave equation with its well-known general solu-
tion, and important effects of wave propagation such as dispersion and nonlin-
earity. Section 2 is devoted to the equation named for Diederik Korteweg and
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Gustav de Vries, Korteweg–de Vries (KdV) equation, and its solitary and peri-
odic wave solutions. In Section 3 Mindlin’s model of a microstructured mate-
rial is described and the corresponding one-dimensional Mindlin–Engelbrecht–
Pastrone (MEP) model augmented by nonlinear terms in both macro- and
microlevel is introduced. The procedure to obtain the approximate equation
for the basic model, called the “slaving principle”, is presented, and the evolu-
tion equation to the Mindlin–Engelbrecht–Pastrone model is derived for both
the nonlinear (extended KdV equation) and the linear case. In Section 4 the
extended KdV equation is solved approximately and in a special case exactly.
It is shown that solitary waves as solutions of the extended KdV equation are
possible only up to a certain limit of the micro-nonlinearity parameter which
causes the asymmetry of the wave profile. Solutions of the extended KdV equa-
tion representing periodic waves are discussed in Section 5. It is demonstrated
that, due to the nonlinearity in microscale, the cnoidal waves stay periodic
but become inclined in the same manner as the solitary waves. Numerical so-
lutions of the evolution equation for localised and harmonic initial conditions
are presented in Section 6. Conclusions and further prospects are given at the
end of the thesis.
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1 General ideas of wave motion

1.1 Definition of waves

The existence of waves as a recognisable form of disturbance is one of the
most familiar features of the physical world providing a link between diverse
areas of physics, and establishing one of the broadest scientific subjects. The
manifestations of this phenomenon are well known to everyone in such forms
as the transmission of sound in the air, the transmission of radio waves, the
spreading of ripples on a pound of water, the seismic waves in earthquakes, or
even the waves of traffic as a propagation of different densities of motor vehicles.
These and a number of other examples could be accentuated to illustrate the
propagation of waves through gaseous, liquid, and solid media and free space.

The term “wave” is often understood intuitively as the transport of distur-
bances in space, not associated with motion of the medium occupying this
space as a whole. Thus, by a wave, no material is transported. According to
Hall [11], in a wave, the energy of a vibration is moving away from the source
in the form of a disturbance within the surrounding medium. However, this
notion is not satisfactory for a standing wave (for instance, a wave on a string),
where energy is moving in both directions equally, or for electromagnetic/light
waves in a vacuum, where the concept of medium does not apply. Neverthe-
less, most wave motions are essentially oscillations propagating in space. To
describe them the time t and at least one space coordinate x are required
as independent variables. Since the equations governing wave propagation in-
volve at least two independent variables, the equations generally involve partial
derivatives.

Some definitions of waves available in online dictionaries:

• propagation of disturbances from place to place in a regular and organised
way (Brittannica Online Encyclopedia);

• disturbance propagated in a medium in such a manner that at any point
in the medium the quantity serving as the measure of disturbance is a
function of the time, while at any instant the displacement at a point is
a function of the location of the point (Webster’s Online Dictionary);

• disturbance or variation that transfers energy progressively from point
to point in a medium and that may take the form of an elastic deforma-
tion or of a variation of pressure, electric or magnetic intensity, electric
potential, or temperature (Merriam–Webster Online Dictionary).

Notwithstanding a number of attempts to formulate the concept of a wave,
there appears to be no single precise definition of what exactly constitutes a
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wave. A famous American applied mathematician G. B. Whitham [12] admits
that various restrictive definitions can be given, but to cover the whole range of
wave phenomena it seems preferable to be guided by the intuitive view that a
wave is any recognisable signal that is transferred from one part of the medium
to another with a recognisable velocity of propagation. He writes:

The signal may be any feature of the disturbance, such as a maxi-

mum or an abrupt change in some quantity, provided that it can be

clearly recognised and its location at any time can be determined.

The signal may distort, change its magnitude, and change its ve-

locity provided it is still recognisable. This may seem a little vague,

but it turns out to be perfectly adequate and any attempt to be more

precise appears to be too restrictive; different features are important

in different types of wave.

Whitham has proposed to distinguish two main classes of waves from which the
first one is formulated mathematically in terms of hyperbolic partial differential
equations, and such waves will be referred to as hyperbolic. The second class
cannot be characterised as easily, but since it starts from the simplest cases
of dispersive waves in linear problems, the whole class can be referred to as
dispersive. It should be emphasised that these classes are not exclusive —
there is assumed to be some overlap in that certain wave motions exhibit both
types of behaviour, and there are certain exceptions that fit neither.

Another definition of waves, proposed in continuum mechanics by Truesdell
and Noll [13], says:

A wave is a state moving into another state with a finite velocity.

Apparently it is not easy to characterise wave motion, and the definitions
above are not satisfactory in every respect. Waves occur in quite different
forms. The water waves plunging periodically towards the shore are rather
different from a flood wave caused by the braking of a dam or the shock wave
carried along by a hypersonic aircraft or the blast wave of a detonation. The
definition offered by Truesdell and Noll covers only the latter type of waves,
where a disturbance enters a quiet area ahead of the front. It excludes the
usual, periodic waves and would also include other kinds of propagating fronts,
like moving phase transition surfaces in a material or a weather front in the
atmosphere, which are not necessarily understood as “wave”. The definition
in Webster’s online dictionary is rather poor, since it holds for any kind of
function of space and time whether it represents a wave or not. Diffusive
processes like heat conduction, for instance, are not understood as waves.

Waves can be characterised only in a rather vague manner to include all
possible aspects and appearances. In this sense, Whitham’s definition seems to
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be most satisfactory. It emphasises that a “recognisable” signal is transferred,
leaving open what kind of signal it is and how we can recognise it. It can
represent a wave crest of a periodic wave or the moving location of a sharp
shock front. Still there are processes which may or may not be called waves.
As an example, standing waves do not propagate and are, strictly speaking,
oscillations. But since they might occur as a limit of propagating waves whose
phase velocity tends to zero, it is reasonable not to exclude them.

1.2 Harmonic waves

Mathematically, the most basic wave is the harmonic wave (or sine wave or
sinusoid), see Figure 1, with a field variable u described by the equation

u (x, t) = a cos (kx − ωt + φ), (1.1)

where the amplitude of the wave a , the maximum distance from the highest
point of the disturbance in the medium (the crest) to the equilibrium point
during one wave cycle, the wave number (spatial frequency) k , and the angular
frequency ω are assumed to be constant; x and t are the space and time
coordinates, respectively, and φ is a phase offset.

Here the field variable u can express nearly everything, for instance, it can
be interpreted as a pressure, the height of the water surface above the mean
level, an electric field, a displacement, etc.

Relations between the common wave parameters are

• wave number
k =

2π

λ
, (1.2)

where λ is the wavelength of the wave, the distance between two sequen-
tial crests or troughs;

• frequency

f =
1

T
, (1.3)

where T is the time for one complete cycle of an oscillation of a wave,
the wave period;

• angular frequency, often called simply frequency,

ω = 2πf =
2π

T
; (1.4)

• wavelength λ of a sinusoidal waveform travelling at constant speed c

λ =
c

f
. (1.5)
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Figure 1: Harmonic wave

By adding two harmonic waves, identical in amplitude, but propagating
in opposite directions, a standing wave solution can be constructed [14]. For
instance,

u = a cos (kx − ωt) + a cos (kx + ωt) = 2a cos kx cos ωt. (1.6)

In such a standing wave, the solution has an envelope that is fixed in space,
here cos kx , which is modulated by a time dependent motion, here cos ωt .

1.3 1D wave equation

The one-dimensional wave equation

∂u2

∂t2
= c2 ∂u2

∂x2
(1.7)

is an important second-order linear partial differential equation of waves, such
as sound waves, light waves and water waves, describing the evolution of a
wave over time in a medium where the wave propagates at the same speed in-
dependent of wavelength (no dispersion), and independent of amplitude (linear
media) [15].

The general solution for the wave equation in one dimension was given by
d’Alembert and is known as d’Alembert’s solution

u (x, t) = f (x − ct) + g (x + ct) , (1.8)

where f and g are arbitrary functions that will be specifically determined
by the initial conditions or forcing function of a given problem, representing
propagating disturbances [16]. The function f (x − ct) attains a constant value
if its argument x−ct is constant. However, increasing time requires increasing
values of x to maintain the argument of the function constant, so the solution
u = f (x − ct) corresponds to a wave propagating in the positive x direction.
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Similarly, the solution u = g (x + ct) represents a disturbance propagating in
the negative x direction.

One should emphasise regarding the solution (1.8) that whatever the shapes
of the disturbances f (x − ct) , g (x + ct) initially are, these shapes are main-
tained during the propagation. Thus, the waves propagate without distor-
tion. According to Graff [16] appreciation of the undistorted nature of the
wave propagation is important for two reasons: (i) it represents a fundamental
characteristic of the one-dimensional wave equation, and (ii) it will serve as
a comparison against many physical systems where the opposite is true and
where pulse distortion occurs during propagation.

The wave equation arises in fields such as acoustics, electromagnetics, and
fluid dynamics. Amongst other things, the wave equation governs the propaga-
tion of small amplitude waves on a stretched string. Historically, the problem
of a vibrating string such as that of a musical instrument was studied by Jean
le Rond d’Alembert, Leonhard Euler, Daniel Bernoulli, and Joseph-Louis La-
grange.

1.4 Dispersion

There are two velocities that are associated with linear waves, the phase velocity

and the group velocity. Many physical systems that exhibit wave motion can
be modelled using linear equations which are different from the usual wave
equation. These may also have harmonic wave solutions of the form

u (x, t) = a cos [k (x − ct)], (1.9)

which is of the general form f (x − ct) and thus clearly represents a travelling
wave. The argument k (x − ct) is called the phase of the wave; points of
constant phase are propagated with the phase velocity c . At any position
the field variable u (x, t) is time-harmonic with time period T . Generally, for
mathematical convenience instead of (1.1), the expression

u = a exp {i (kx − ωt)}, (1.10)

is used, where i =
√
−1 . For the physical interpretation of the solution, the

real or imaginary part of the equation is to be taken [17].
Here the angular frequency is a known function of the wave number k , so

that
ω = ω (k) . (1.11)

For the one-dimensional wave equation ω = ck , and the wave crests move
at a constant speed c , independent of the wave number k or of the angular
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frequency ω . However, in most systems ω is not proportional to k , and the
wave crests move with velocity

cp (k) =
ω (k)

k
, (1.12)

which is known as the phase velocity, and is usually a function of the wave
number. In other words, the wave crests move at different velocities for different
wave numbers, and hence also wavelengths [14].

In solutions that are a combination of harmonic waves of different wave-
lengths, this eventually leads to a separation or dispersion of various com-
ponents. Such a system is said to be dispersive and (1.11) is the dispersion
relation. Dispersion is an important phenomenon since it governs the change
of shape of a pulse as it propagates through a dispersive medium [17]. If the
phase velocity does not depend on the wave number (or wavelength) the system
is called nondispersive.

The group velocity is defined as

cg =
∂ω

∂k
, (1.13)

having a fundamental significance in the theory of linear, dispersive waves. If
ω is directly proportional to k , then the group velocity is exactly equal to the
phase velocity. Otherwise, the envelope of the wave will become distorted as
it propagates. This “group velocity dispersion” is an important effect in the
propagation of signals through optical fibers and in the design of high-power,
short-pulse lasers.

However, as long as one considers a single harmonic wave the group velocity
cannot be realised. One needs a modulated wave, either amplitude or frequency
modulated, to see the meaning of group velocity. If there is dispersion, i.e., the
phase speed depends on the wave number, then the modulated signal will not
propagate with the phase speed but at a different velocity, the group velocity,
which might be bigger or smaller than the phase velocity. For nondispersive
waves both velocities are the same.

Packets of waves of nearly the same length propagate with the group veloc-
ity, individual components moving through the packet with their phase velocity.
In general, it can be shown that energy of a wave disturbance is propagated
at the group velocity, not the phase velocity [18].

There is a long list of examples of dispersive wave motions like wave propa-
gation along an elastic beam treated by Fung and Tong [19], and Bower [20], or
transverse waves along an elastically supported taut string [21], for instance.
Longitudinal waves in a thin elastic rod as an illustrative example of dispersive
wave motion is presented below.
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Example

Longitudinal waves in a thin elastic rod, including effects of lateral inertia, are
described by [21, 22]

utt − c2
buxx − i2ν2uxxtt = 0, (1.14)

where u is the longitudinal displacement, ν is Poisson’s ratio, i and cb are
defined as

i =

√

I

A
and cb =

√

E

ρ
, (1.15)

denoting the geometric radius of inertia and the so-called bar velocity, respec-
tively. Here the quantities I and A are the geometric moment of inertia and
the cross-sectional area, and E and ρ denote Young’s modulus and the mass
density, respectively. Equation (1.14) is known as the linear Boussinesq equa-
tion for shallow-water waves. The same equation was derived by Love [22, page
428], and therefore it is also known as Love’s equation for waves in rods.
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ν
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Figure 2: Dispersion diagram of waves in a thin elastic rod
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Figure 3: Phase and group velocities of waves in a thin elastic rod

It can be shown that the equation (1.14) admits solutions in form of har-
monic waves

u = a cos (kx − ωt) (1.16)

yielding the dispersion relation

ω =
cbk

(i2ν2k2 + 1)1/2
(1.17)

and the corresponding phase and group velocities

cp =
cb

(i2ν2k2 + 1)1/2
and cg =

cb

(i2ν2k2 + 1)3/2
. (1.18)

Figure 2 shows the graph of the dispersion relation (1.17) for different values
of Poisson’s ratio ν . The dependence of the phase and group velocities on the
wave number k for different values of ν is shown in Figure 3.

1.5 Nonlinearity

A major role in wave propagation is played by nonlinearity. Several effects
like shock formation and solitary waves can be understood only if nonlinearity
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is taken into account. Sources of nonlinearity can be found everywhere in
nature, since nonlinear behaviour is the normal case. It is, on the contrary, an
exception if strictly linear equations are encountered. In most cases linearity
appears just as an approximation, which allows to find explicit solutions, while
the real world is too complicated.

According to the Encyclopedia of Nonlinear Science [23] a system is said to
be linear if the system’s response to an applied force is directly proportional
to the magnitude of that force, otherwise the system is nonlinear.

Actually, linearity and nonlinearity should be attributed in the first place
to the mathematical formulation. A function ϕ is linear if it has the properties

ϕ(x1 + x2) = ϕ(x1) + ϕ(x2) and ϕ(λx) = λϕ(x), (1.19)

whatever these quantities are. Of course, addition and multiplication with a
scalar must be available in order to formulate these properties.

The above definition in the Encyclopedia of Nonlinear Science emphasises
only the second property, the homogeneity of the mapping. In order to satisfy
also the additivity property the system’s response to the combined application
of two forces must be the sum of the responses to each of the forces applied
alone. Also it should be noted that whether a system is linear or nonlinear may
depend on the selection of the input and output variables. In the definition the
input is assumed to be some force. But what is the output? It may happen
that taking one output variable, some displacement, for instance, shows a
linear behaviour while another, a pressure, say, reacts in a nonlinear manner.
So linearity and nonlinearity is mainly a property of a system with specified
input and output variables.

Engelbrecht [24, 25, 26] has studied different types of nonlinearities influenc-
ing wave motion like material (physical) nonlinearities, geometrical nonlinear-
ities, kinematical nonlinearities, structural nonlinearities, etc. In continuum
mechanics one distinguishes between geometrical and physical nonlinearity.
Physical or material nonlinearity comes from the constitutive equations de-
scribing the behaviour of material under deformation, while geometrical non-
linearity is due to a nonlinear relation between strain and displacement gradi-
ent.

There is some ambiguity in the classification of nonlinearity as physical or
geometric, since it depends on what kind of strain measure is used. According
to the general, nonlinear theory of elasticity, the strain tensor must be a func-
tion of the right Cauchy-Green tensor C [27], and, for small deformations,
it should reduce to the classical linear strain tensor. An overview of different
nonlinear strain tensors is given in [28, page 118–119]. Most frequently used is
the Green-Lagrange strain tensor 1

2
(C − I ) , since it is the only one that is a

linear function of the right Cauchy-Green tensor C .
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The present analysis is restricted to the one-dimensional case. Here the sim-
plest choice of a strain measure is the displacement derivative ux itself, while
the Green-Lagrange strain would be ux + 1

2
u2

x . The derivative ux coincides
with the classical definition of linear strain. Moreover, it can be interpreted as
the one-dimensional version of Biot’s strain tensor C

1/2 − I , which is also an
admissible nonlinear strain measure.

The main goal of this thesis is to study the combined effect of dispersion
and nonlinearity on the propagation of waves. In order to see the influence
of nonlinearity alone an example of nonlinear waves without dispersion is pre-
sented.

Example

Considering the one-dimensional motion of a linear elastic solid, the dynamics
of the displacement u(x, t) is governed by the equation

ρutt = (λ + 2µ)uxx , (1.20)

where ρ denotes the mass density and the elastic properties are specified by
the Lamé’s constants λ and µ . Thus the motion is governed by the simple
wave equation

utt = c2
0uxx , (1.21)

and the wave speed

c0 =

√

λ + 2µ

ρ
(1.22)

is the speed of longitudinal waves propagating in the unbounded elastic solid.
If nonlinearity is taken into account the wave equation (1.21) is modified

and assumes the form, see Engelbrecht [29],

utt = c2
0 (1 + mux)uxx , (1.23)

with some nonlinearity parameter m . There is no need to specify whether
the nonlinearity is physical or geometric. This depends on the choice of the
strain measure. If “strain” is understood in the sense of Biot as ux , then
the whole nonlinearity comes through the stress-strain law. If, however, the
Green-Lagrange strain ux + (1/2)u2

x is preferred, the nonlinearity is partially
geometric and partially physical in nature. Regardless of its classification as
physically or geometrically nonlinear, the governing equation (1.23) is a nonlin-
ear partial differential equation governing the longitudinal displacement u(x, t)
in an elastic solid.

Concentrating on a wave propagating to the right, i.e., in the direction
of the space coordinate x , it is reasonable to introduce a moving coordinate
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ξ = x−c0t . The solution of the nonlinear wave equation (1.23) can be assumed
in the form

u = εU(ξ, τ) = εU
(

x − c0t,
1

2
εt

)

, (1.24)

where the factor 1/2 has been introduced for convenience to make subsequent
equations simpler. The factor ε ≪ 1 in front of U provides for small displace-
ments while the same factor in the second argument is responsible for a slow
evolution of the wave profile. Inserting the ansatz (1.24) into the governing
nonlinear equation (1.23) and keeping only terms of the order ε yields

−c0Uξτ = c2
0mUξUξξ. (1.25)

To simplify this equation one can introduce the new variable

α = Uξ =
1

ε
ux, (1.26)

which represents a magnified strain. It has to satisfy the nonlinear equation

ατ + mc0ααξ = 0. (1.27)

This is a first example of a so-called evolution equation. It governs the slow
evolution of a wave profile during its propagation. One of the main goals of this
thesis is to derive an evolution equation for some more complicated nonlinear
wave equation.

Suppose that, at the initial time instant τ = 0 , the wave profile has a given
shape

α(ξ, 0) = ϕ(ξ). (1.28)

ξ

α

τ

Figure 4: Evolution of a nonlinear wave
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Then, at time τ , the function α(ξ, τ) satisfies the implicit equation

α = ϕ (ξ − mc0τα) . (1.29)

Although the solution of the evolution equation is available only in an implicit
form, it can be graphically displayed. To take a concrete example let us assume
the initial wave shape to be

ϕ(ξ) = a sin kξ, (1.30)

where k is wave number. According to (1.29) the solution α(ξ, τ) of the
evolution equation is provided by the implicit equation

α = a sin k (ξ − mc0τα) . (1.31)

This solution is plotted in Figure 4.
As can be seen from the graph the leading flank of the sine wave becomes

steeper while the trailing flank becomes more gentle as the slow time τ in-
creases. Actually the smooth solution (1.31) is valid only for

τ ≤ 1

mc0ak
. (1.32)

Afterwards a shock will form at the leading flank of the wave. This is outside
the scope of our analysis. It is, however, a typical effect of nonlinear wave
propagation that a discontinuous solution can develop, although the initial
data were smooth.

26



2 Korteweg–de Vries equation

The equation named for Diederik Korteweg and Gustav de Vries, the Korte-
weg–de Vries equation (KdV equation), given here in canonical form [23]

ut + 6uux + uxxx = 0, (2.1)

is widely recognised as a paradigm for the description of weakly nonlinear
waves in many branches of physics and engineering. Here u(x, t) is a field
variable, t is the time, and x is the space coordinate in the relevant direction.
The equation describes how waves evolve under the competing but comparable
effects of nonlinearity and dispersion. As outlined in Subsections 1.5 and 1.4,
nonlinearity may lead to steepening of the wave profile while dispersion as a
contrary effect tries to flatten it out. A suitable balance between nonlinear and
dispersive effects may permit the propagation of solitary waves [18]. However,
besides the solitary waves the KdV equation admits a whole family of periodic
solutions, the so-called cnoidal waves [30], of which the solitary wave is just
the limit if the period tends to infinity. It should be stressed that both solitons
and cnoidal waves propagate without distortion, while in general, solutions of
the KdV equation represent waves changing their shape during propagation.

The KdV equation is particularly remarkable as the prototypical example
of an exactly solvable model, a nonlinear partial differential equation whose
solutions can be exactly and precisely specified. But the solutions in turn
include prototypical examples of solitons. KdV equation can be solved by
means of the inverse scattering transform. The mathematical theory behind
the KdV equation is rich and interesting, and, in the broad sense, is a topic of
active mathematical research.

The KdV equation has several connections to physical problems. In addition
to being the governing equation of the string in the Fermi–Pasta–Ulam problem
[31] in the continuum limit, it approximately describes the evolution of long,
one-dimensional waves in many physical settings, including

• shallow-water waves with weakly nonlinear restoring forces;

• long internal waves in a density-stratified ocean;

• ion-acoustic waves in a plasma;

• acoustic waves on a crystal lattice;

• and more.

Although the KdV equation owes its name to the famous paper of Diederik
Korteweg and Gustav de Vries [32], published in 1895, the history of the KdV
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equation started with experiments by John Scott Russell in 1834 who observed
a solitary wave in the Union Canal in Scotland and reproduced the phenomenon
in a wave tank naming it the “great wave of translation”. He demonstrated four
facts about solitary waves [23]:

• solitary waves have a hyperbolic secant shape;

• a sufficiently large initial mass of water produces two or more independent
solitary waves;

• solitary waves cross each other “without change of any kind”;

• a wave of height h and travelling in a channel of depth d has a velocity
given by the expression

√

g (d + h) (where g is the acceleration of grav-
ity), implying that a large amplitude solitary wave travels faster than
one of low amplitude.

These observations were followed by theoretical investigations by Lord Ray-
leigh and Joseph Boussinesq around 1870. After the ground-breaking work of
Korteweg and de Vries related to small-amplitude long water waves, interest
in solitary waves and the KdV equation declined until the dramatic discovery
of the soliton by Norman Zabusky and Martin Kruskal [33] in 1965.

2.1 Solitons

The KdV equation (2.1) is characterised by its family of solitary wave solutions

u = a sech2 [η (x − ct)] , (2.2)

where a = 2η2 and c = 4η2 . Equation (2.2) describes a family of steady
isolated wave pulses. Thus the amplitude a and the propagation speed c are
uniquely determined by the width parameter η , which in [23] is called wave
number, although it is different from its original meaning.

According to the Encyclopedia of Nonlinear Science [23], a soliton is a
localised nonlinear wave that maintains its shape and speed as it travels,
even through interaction with other waves. The term soliton was coined by
Zabusky and Kruskal [33] to reflect both the solitary-wave-like character and
the particle-like interaction properties. The surprising discovery has had an
enormous impact on the field of nonlinear mathematics and science.

The phenomenon of preservation of identity through interaction was known
already before, from describing solutions of linear nondispersive wave equa-
tions. A simple example is a linear wave equation (1.7) for which the general
solution is given by d’Alembert’s formula (1.8) expressing a right and a left
going waves at a speed c . Two such wave profiles interact when they meet
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head-on but they both come out of the interaction with the same shape and
speed.

However, until the discovery of solitons, it was not believed that such prop-
erty could hold for nonlinear equations. Common understanding in mathe-
matics and physics in the 1950s suggested that nonlinear wave solutions either
break, dissipate, or thermalise, that is, distribute initial energy between dif-
ferent solutions over time, and therefore, lose their identities with time. Thus,
in 1965, numerical studies of the Korteweg–de Vries equation published by
Zabusky and Kruskal changed the above described common beliefs about non-
linear waves forever [23]. Ten years before that, in 1955, Fermi, Pasta and
Ulam [31] were working on a numerical model of phonons in an anharmonic
lattice, a model which turned out to be closely related to discretisation of the
KdV equation. Taking this up in 1965, Zabusky and Kruskal considered the
initial value problem for the equation [34]

ut + uux + δ2uxxx = 0 (2.3)

with periodic boundary conditions. The equation (2.3) was solved with

u (x, 0) = cos πx, 0 ≤ x ≤ 2, (2.4)

and u , ux , uxxx periodic on [0, 2] for all t ; δ = 0.022 was chosen. A well-
known set of their results is expressed in Figure 5. It can be seen that after
a short time period the wave steepens and is about producing a shock, but
at the same time the dispersive term δuxxx becomes significant and balances

Figure 5: The solution of the periodic boundary value problem for the KdV equation
[18, 34]. Curve A corresponds to the time moment t = 0 , curve B corresponds to the
time moment t = 1/π and curve C corresponds to the time moment t = 3.6/π .
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the nonlinear effect. After some time the solution develops a train of eight
well-defined waves, each of them like a sech2 function, faster (taller) waves
catching up and overtaking the slower (smaller) ones. It was discovered that
these nonlinear waves can interact strongly and continue travelling as if there
had been no interaction at all, preserving the shape and the speed of them.

The shape of the soliton (2.2) is shown in Figure 6. The higher the ampli-
tude of the wave, the narrower it is and the faster it will move, the propagation
speed here is determined by 4η2 . More generally the Korteweg–de Vries equa-
tion,

ut + 6uux + δ2uxxx = 0, (2.5)

has a solitary wave solution of the form

u = 2δ2η2 sech2 η(x − 4δ2η2t), (2.6)

which vanishes for δ → 0 and η fixed.
For δ = 0 the Korteweg–de Vries equation (2.5) is reduced to the simple

first-order equation
ut + 6uux = 0. (2.7)

The solution u = u(x, t) satisfying an arbitrary initial condition u(x, 0) = f(x)
has to be computed from the implicit equation

u = f(x − 6ut). (2.8)

Alternatively, the profile u = u(x, t) at a fixed time instant t can be repre-
sented in the parametric form

x = λ + 6tf(λ), u = f(λ). (2.9)

x

u

η = 0.8

η = 1

η = 1.2

u = 2η2 sech2 ηx

Figure 6: Shape of soliton
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Figure 7: Distortion of single hump

The distortion of the wave profile according to equation (2.7) is shown in
Figure 7. Here the initial profile is chosen as a single symmetric hump of the
form f(x) = 2 sech2 x . During propagation the profile is inclined to the right
until it will overturn.

Equation (2.7) is the evolution equation of small-amplitude waves in non-
linear elastic materials, see Braun [37].

2.2 Cnoidal waves

A cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–
de Vries equation. These solutions are in terms of the Jacobi elliptic function
cn , therefore they are coined cnoidal waves [32].

The Korteweg–de Vries equation, in its standardised form

ut + 3
(

u2
)

x
+ uxxx = 0, (2.10)

admits solutions of the form

u(x, t) = q(θ), θ = x − ct (2.11)

which describe waves propagating without distortion at a velocity c . The KdV
equation (2.10) integrated twice yields a first-order differential equation of the
form

dq

dθ
= ±

√

f(q), (2.12)

where f is a third-order polynomial of the form

f(q) = 2B + 2Aq + cq2 − 2q3 (2.13)

with integration constants A and B . The further analysis depends on the
behaviour of this function, i.e., on the values of its coefficients. Neither the
integration constants A and B , nor the velocity c are known in advance.
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Figure 8: Function f(q) and corresponding phase curve

The analysis will be restricted to the case where the function f(q) has three
real zeros q1 ≤ q2 < q3 . Then the function can also be written in the form

f(q) = 2(q − q1)(q − q2)(q3 − q) =

= 2
[

q1q2q3 − (q1q2 + q1q3 + q2q3)q + (q1 + q2 + q3)q
2 − q3

]

. (2.14)

Instead of the unknown coefficients A , B , c the roots q1 , q2 , q3 are introduced
as parameters. Comparing (2.14) with (2.13) yields the propagation velocity

c = 2(q1 + q2 + q3). (2.15)

The corresponding expressions for A and B are irrelevant.
A typical curve progression of the function f(q) , together with the corre-

sponding phase curve q′(q) according to (2.12), is shown in Figure 8. Since the
function f(q) is negative for large values of q , real solutions are possible only
for q ≤ q3 where q3 is the largest zero of the polynomial f(q) . For q → −∞ ,
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q′ =
√

f(q)

q

q′

q1 q2 q3

2ϕ

1

2
(q2 + q3) q

Figure 9: Geometrical interpretation of the variable ϕ

the polynomial is positive but tends to infinity. Therefore the corresponding
branch for q < q1 is not of interest. Bounded solutions are possible only for
q2 ≤ q ≤ q3 . The closed phase curve between q2 and q3 is traversed in clock-
wise sense as always in a phase plane, since positive values of q′ means growing
values of q .

The differential equation (2.12) can be integrated by separation of variables.
Without loss of generality one may assume that q attains its maximum value
q3 at θ = 0 . Using this as initial condition for the definite integration, the
values of q will decrease as θ increases. Therefore the negative sign in (2.12)
is chosen. Thus the integration yields

θ =

∫ q

q3

−dq
√

f(q)
, (2.16)

where f(q) is the third-order polynomial (2.14). Integrals of this kind can
always be expressed in terms of elliptic integrals [35, Chapter 17].

In order to evaluate the integral explicitly the dependent variable q is trans-
formed by†

q = q2 + (q3 − q2) cos2 ϕ =
1

2
(q2 + q3) +

1

2
(q3 − q2) cos 2ϕ. (2.17)

Geometrically, 2ϕ represents the angle measured along a kind of Mohr’s circle
which is fit in the gap between the zeros q2 and q3 , see Figure 9. Using the
abbreviation

q3 − q2

q3 − q1

= k2 (2.18)

†Gröbner and Hofreiter [36, page 78] recommend a different substitution which, of course,
must lead to the same result. It seems, however, that the one given here is simpler.
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the factors of which the polynomial f(q) is composed are obtained as

q − q1 = q2 − q1 + (q3 − q2) cos2 ϕ = (q3 − q1)(1 − k2 sin2 ϕ),

q − q2 = (q3 − q2) cos2 ϕ, (2.19)

q3 − q = (q3 − q2) sin2 ϕ.

The differential dq is transformed as

dq = −2(q3 − q2) sin ϕ cos ϕ dϕ. (2.20)

Thus the integral (2.16) is converted to

θ =

∫ q

q3

−dq
√

f(q)
=

√

2

q3 − q1

∫ ϕ

0

dϕ
√

1 − k2 sin2 ϕ
. (2.21)

The incomplete elliptic integral of the first kind is defined as [35, Chapter 17]

F (ϕ; k) =

∫ ϕ

0

dϕ
√

1 − k2 sin2 ϕ
, (2.22)

where k , 0 ≤ k ≤ 1 , denotes the modulus of the integral. Using the abbrevia-
tion

η =

√

q3 − q1

2
(2.23)

the integral (2.21) can be written as

ηθ = F (ϕ; k), (2.24)

where the modulus k of the elliptic integral is defined by (2.18).
In the next step equation (2.24) has to be solved for ϕ . The inverse function

of the incomplete elliptic integral of the first kind is the function “amplitudo”
defined by

y = am(x; k) ⇔ x = F (y; k). (2.25)

Thus the auxiliary angle ϕ in (2.24) can be expressed by

ϕ = am(ηθ; k). (2.26)

In order to find back to the original variable q the transformation (2.17) has
to be reversed. The transformation formula contains the cosine of the angle ϕ
which in turn is the amplitudo function of ηθ . The composition of these two
functions, i.e., the cosine of the amplitudo or, in Latin, cosinus amplitudinis,

cnx = cos am x, (2.27)
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is one of the Jacobian elliptic functions, see [35, Chapter 16]. Thus inserting
the solution (2.26) into the transformation formula (2.17) yields the solution

q = q2 + 2η2k2 cn2(ηθ; k), (2.28)

where the modulus k and the width parameter η are defined by (2.18) and
(2.23), respectively.

The elliptic function cn is periodic, its full period being 4K(k) , where

K(k) = F
(π

2
; k

)

=

∫ π

2

0

dϕ
√

1 − k2 sin2 ϕ
(2.29)

denotes the complete elliptic integral of the first kind. For k → 1 this integral
tends to infinity. Thus (2.28) represents a periodic wave if k < 1 and the period
tends to infinity for k → 1 . In the limit case k = 1 the cosinus amplitudinis
function becomes [35, Formula 16.6.2]

cn(x; 1) = sech x (2.30)

which is not periodic anymore. So the solitary wave

q = q2 + 2η2 sech2 ηθ (2.31)

is just a limiting case of the more general cnoidal wave (2.28).
Figure 10 shows cnoidal waves with different moduli k .

2.3 Higher-order KdV equations

The solitary waves propagate keeping their shape and transferring their energy
over long distances due to the result of a balance between nonlinearity and
dispersion. However, the features of the solitary wave depend on the type of
nonlinear and dispersive terms in the governing equation. In addition to the
KdV equation itself, significant attention by many authors has been paid to the
KdV equations with additional higher-order dispersive or nonlinear terms in
order to describe the physical effects with the needed accuracy. Some examples
are presented below.

Hunter and Scheurle [38] have studied the existence of perturbed solitary
wave solutions to a model equation for water waves, proving the existence of
travelling wave solutions to a fifth-order partial differential equation,

ut + uux + du3x + u5x = 0, (2.32)

which is a formal asymptotic approximation for water waves with surface ten-
sion.
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Figure 10: Periodic and solitary wave solutions of the KdV equation

Karpman and Vanden-Broeck [39] have shown numerically that the higher-
order dispersion term, i.e., the fifth-order derivative in the equation

ut + αupux + βu3x + γu5x = 0, (2.33)

plays a crucial part in soliton stability. It has been demonstrated that in the
absence of higher-order dispersion, solitons with sufficiently high nonlinearities
in the equations are unstable with respect to collapse-type instabilities, which
agrees with the general theory of collapse. The instabilities have not been
detected in the presence of fifth-order dispersion, which shows that the latter
plays a stabilizing role.

Kakutani and Ono [40] have treated hydromagnetic waves with small but
finite amplitude in a cold collision-free plasma. In the lowest order of pertur-
bation, it can be shown that the system of equations for the magneto-acoustic
wave propagating along a “critical” direction is reduced to a simple dispersive
equation similar to the Korteweg–de Vries equation except that the third-order
derivative (the dispersion term) is replaced by the fifth-order one,

ut + uux + u5x = 0. (2.34)
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O. Ilison and Salupere [41, 42] and Salupere et al. [43] have studied the
equation

ut + [P (u)]x + du3x + bu5x = 0, (2.35)

describing the wave propagation in shape memory alloys where the higher-
order dispersion is caused by the crystal structure. Here d and b denote the
third- and the fifth-order dispersion parameters, respectively, and

P (u) =

(

−u2

2
+

u4

4

)

(2.36)

is the fourth-order elastic potential.
By Holloway, E. Pelinovsky and Talipova [44] the equation, aslo known as

Gardner equation,
ut + αuux + βu2ux + δuxxx = 0 (2.37)

has been used as a model of strongly nonlinear internal ocean waves. The
coefficient β of the cubic nonlinear term may have a different sign depending
on the fluid stratification. It is a popular model for the description of internal
solitary waves in shallow seas (see, for instance, the review article by Grimshaw
[45] and the article by Grimshaw et al. [46]).

Porubov et al. [47] have studied the influence of higher-order nonlinear
terms on the shape of solitary waves for mechanical systems governed by a
generalisation of the fifth-order Korteweg–de Vries equation

ut + 2buux + 3cu2ux + ruu3x + suxuxx + du3x + fu5x = 0, (2.38)

which appears, in particular, in the shallow water theory, see [48] and references
therein. The equation (2.38) may be used for a modelling of weak nonlocality
in solids [49] and it may account for a continuum limit of discrete models with
far neighbour interactions [50].

Kawamoto [51] has considered the Korteweg–de Vries equation with higher-
order nonlinearity

ut +
(

αu3 + βu2 + γu
)

ux + δu3x = 0 (2.39)

as a model for the wave propagation in a one-dimensional nonlinear lattice or
nonlinear LC network. Here α , β , γ and δ denote arbitrary constants.

Tan, Yang and D. Pelinovsky [52] have studied the evolution of perturbed
embedded solitons in the case of the general Hamiltonian fifth-order Korteweg–
de Vries equation

ut + u3x + u5x + [N(u)]x = 0, (2.40)

where the nonlinear term N(u) is of the form

N(u) = α0u
2 + α1uuxx + α2u

2
x + α3u

3. (2.41)
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It has been shown in [52] that, when an embedded soliton of the fifth-order
KdV equation is perturbed, it sheds some continuous-wave radiation in front
of the soliton.

Kudryashov and Sinelshchikov [53] have considered nonlinear waves in bub-
bly liquids with consideration for viscosity and heat transfer. They have pre-
sented the equation

ut + αuux + uxxx = (uuxx)x + βuxuxx (2.42)

describing the evolution of waves in a liquid with gas bubbles.
Giovine and Oliveri [54] have derived the equation

ut + uux + α1uxxx + β (ut + uux + α2uxxx)xx = 0 (2.43)

as a model for one-dimensional wave propagation in dilatant granular mate-
rials. The equation (2.43) consists of two Korteweg–de Vries operators, the
first of them describing the motion in macrostructure, and the second one (in
parenthesis) the motion in microstructure. Here u is the bulk density, x is
the space coordinate, t is the time coordinate, α1 and α2 are the macro- and
microlevel dispersion parameters, respectively, and β is a parameter involving
the ratio of the grain size to the wavelength.

All these equations are modifications and extensions of the classical KdV
equation describing certain deviations from the classical KdV-like behaviour
due to higher-order dispersion and modified nonlinearities. In this work the
evolution equation

ut + 3
(

u2
)

x
+ uxxx + 3ε

(

u2
x

)

xx
= 0 (2.44)

is derived. It describes the slow variations of longitudinal solitary waves prop-
agating in microstructured solids. The small parameter ε at the last term is
responsible for the influence of micro-nonlinearity. The detailed derivation and
analysis of the equation (2.44) will be presented later in this thesis.

In general, of course, in models of wave motion also damping should be
taken into account (see, for instance, Grimshaw et al. [57] and Demiray [58]),
but dissipative effects are out of the focus of this thesis.
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3 Material model

3.1 Microstructured materials

Materials with some microstructure, like sand, soil, concrete, or even alloys,
have always been used and their behaviour has been described by special theo-
ries. A more general point of view came up with the advent of a new generation
of microstructured materials like modern metallic alloys, ceramic composites,
polycrystalline solids, functionally graded materials, granular, porous mate-
rials, etc. They are used for a wide variety of industrial applications since
combining the mechanical properties of different constituents, as in compos-
ites, yields optimal properties of solids. An illustration of a microstructured
material is presented in Figure 11.

Figure 11: Ceramic matrix composites: scanning electron microscopic view on a
fracture surface of C/SiC. Source: http://www.fz-juelich.de

In principle, every material has some small-scale structure, since material
is never distributed continuously. Microstructure in our sense is not related
to the molecular or atomic scale. Rather these microstructures are assumed
in the range of micrometers, so that they still can be considered as continua.
The overall material becomes highly nonhomogeneous due to the embedded
microstructures with their different behaviour.

Many theories of microstructured materials aim to smooth out this inho-
mogeneity while retaining its influence on the gross behaviour of the material.
This is done by giving the material more internal degrees of freedom describing
the behaviour of the embedded microstructures. So the ordinary but highly in-
homogeneous material is turned into a homogeneous material which, however,
is equipped with more than just a displacement field. Corresponding theories
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can be traced back to the meanwhile classical papers by Mindlin [1] and Sun et
al. [2]. The connection to Cosserat continua has been established by Herrmann
and Achenbach [3].

The application of severe loading conditions, including impact, means gen-
eration of deformation waves. The embedding of a microstructure in an elastic
material is reflected in an inherent length scale causing dispersion of propagat-
ing waves. Nonlinear effects, if taken into account, will counteract dispersion.
It is well known that a suitable balance of nonlinearity and dispersion may
permit the propagation of solitary waves.

3.2 Mindlin’s model

In the usual continuum material points are points in a mathematical sense
which undergo some displacement u when the material is deformed, see Fig-
ure 12.

u(x , t)

bc

bc

x

material point x displacement u(x , t)

Figure 12: Standard continuum

The material points can be augmented by some ambient material. If this
is assumed to be rigid it still can undergo a microrotation, in addition to the
translation described by the displacement vector. This concept leads to the
Cosserat continuum, see Figure 13.

More generally the ambient material itself can undergo a homogeneous mi-
crodeformation which may depend on the material point x . The deformation
of the microstructured material is described by the displacement vector u of
the central point and the homogeneous microdeformation Φ of the ambient
material. This is the basic idea of a microstructured continuum in the sense
of Mindlin, see Figure 14.

According to Mindlin’s model of a microstructured solid [1] any material
point of the solid represents itself a microcontinuum subject to some deforma-
tion. The overall deformation of the microstructured continuum is then de-
scribed by the macroscopic displacements of its material points, i.e., the centres
of the microcontinua, and by the deformation of the microcontinua themselves.
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u(x , t)

R(x , t)
bc

bc

x

rigid body at x displacement u(x, t)

microrotation R(x, t)

Figure 13: Cosserat continuum

u(x , t)

bc

bc

u
′ = Φ(x , t)x′

x

microstructure at x displacement u(x, t)

microdeformation Φ(x, t)

Figure 14: Microstructured continuum (Mindlin)

The micro-deformations are assumed to be uniform at the microscopic level but
may depend on the macroscopic location of the microcontinuum element.

The macrodeformation of the material is described by the vectorial dis-
placement field u(x , t) describing the displacement at time t of a microele-
ment whose centre was located initially at x . In addition to this shift by the
macrodisplacement vector u , the element undergoes a microdeformation that
might be described by a microdisplacement field u

′ (x , x
′ , t) , where the origin

of the local position vector x
′ moves with the macrodisplacement u . In a

first approximation, Mindlin assumes a microdisplacement field

u
′ = Φ(x , t)x′ (3.1)

41



such that the microdeformation

∂ u
′

∂x
′

= Φ(x , t) (3.2)

is constant throughout the microelement but may depend on the initial posi-
tion x of its center.

Mindlin’s original formulation of the theory uses coordinates and compo-
nents [1], see also [59], but its essence is as described above. It represents a
linear theory of a three-dimensional, elastic continuum sharing some properties
of a crystal lattice by including the idea of a unit cell into the theory. Accord-
ing to Mindlin, the unit cell may be interpreted as a molecule of a polymer, a
crystallite of a polycrystal or a grain of a granular material. The mathemati-
cal model of the cell is a linear version of Ericksen and Truesdell’s deformable
directors [7]. If the cell is made rigid, the equations reduce to those of a linear
Cosserat continuum [8].

The equations yield wave-dispersion relations with acoustic and optical
branches of the same character as those found at long wavelengths in crystal
lattice theories and observed in neutron scattering experiments. The method
of derivation of the equations is analogous to one used in deducing two-dimen-
sional equations of high-frequency vibrations of plates from the three-dimen-
sional equations of classical linear elasticity. The equations have been shown
to reduce at low frequencies and very long wavelengths in isotropic materials
to those of an elastic continuum with potential energy density dependent on
strain and strain gradient and kinetic energy density dependent on velocity
and velocity gradient.

A linear form of Toupin’s [60] generalisation of couple-stress theory is ob-
tained by eliminating the difference between the deformation of the unit cell
and the surrounding medium, and linear couple-stress theory itself is obtained
by eliminating the symmetric part of the strain gradient. Both of these special
cases are also limited to low frequencies and very long wavelengths.

3.3 Mindlin–Engelbrecht–Pastrone model

The one-dimensional version of Mindlin’s model, as formulated by Engelbrecht
and Pastrone [9, 59, 61], is described by two scalar functions, the macro-
displacement u (x, t) and the micro-strain ϕ(x, t) , both depending on the ma-
terial coordinate x and the time t . Their relevance is sketched in Figure 15.
In the sequel, subscripts x and t will indicate partial derivatives with respect
to the material coordinate x and the time t , respectively. In order to clarify
the principal essence and the role of parameters of the model, we repeat here
the basic steps of modelling.
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x

x x + u

u(x, t)

x′ x′ + u′

u′ = ϕ(x, t)x′

Figure 15: 1D microstructured material

The kinetic energy density is composed of its macroscopic and microscopic
contributions,

K =
1

2
ρu2

t +
1

2
Iϕ2

t , (3.3)

where ρ and I denote the macroscopic density and the microinertia, respec-
tively. All densities, like ρ , I or the kinetic-energy density K itself, are under-
stood per unit length rather than per unit volume, due to the one-dimensional
model. The strain energy or potential energy density, again per unit length, is
assumed to depend on the macro-strain ux , the micro-strain ϕ and its gradient
ϕx ,

W = W (ux, ϕ, ϕx). (3.4)

By invoking the Euler-Lagrange equations for the Lagrangian density L =
K − W one obtains the equations of motion

ρutt = σx, Iϕtt = ηx − τ (3.5)

representing the balances of macro- and micromomentum. The stress quanti-
ties entering these balances are the derivatives of the strain energy (3.4) with
respect to its arguments, namely the macrostress, the microstress, and a quan-
tity called the interactive force,

σ =
∂W

∂ux

, η =
∂W

∂ϕx

, τ =
∂W

∂ϕ
, (3.6)

respectively. It should be noted that, in the one-dimensional setting, the
stresses σ and τ have the dimension of force while η has the dimension of
a moment.

Up to now the strain energy function has not yet been specified. Following
[9, 10, 62] we consider the strain energy function

W =
1

2

(

αu2
x + 2Auxϕ + Bϕ2 + Cϕ2

x

)

+
1

6

(

Nu3
x + Mϕ3

x

)

(3.7)

involving cubic terms, where α , A , B , C and N , M are material constants.
The stresses (3.6) are then

σ = αux + Aϕ +
1

2
Nu2

x, τ = Aux + Bϕ, η = Cϕ +
1

2
Mϕ2

x, (3.8)
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and the balance equations (3.5) assume the form

ρutt = αuxx + Aϕx +
1

2
N

(

u2
x

)

x
,

(3.9)
Iϕtt = Cϕxx − Aux − Bϕ +

1

2
M

(

ϕ2
x

)

x
.

The first of these equations governs the macro-displacement u(x, t) , which is
regarded as the main kinematic variable. The equation, however, is coupled to
the second equation which governs the micro-deformation ϕ(x, t) .

3.4 Slaving principle

To study the propagation of waves in the microstructured solid it would be
comfortable to have a single partial differential equation for the macroscopic
displacement which, however, retains the influence of the microstructure. In
principle, the system of equations (3.9) could be contracted to a single equation
without neglecting any terms. It would contain time derivatives of fourth order.

The objective of this thesis and related papers is, however, to study waves
corresponding to the acoustical branch and how they are influenced by the
presence of the microstructure. To this end, a single partial differential equa-
tion is extracted from the system (3.9) which describes a motion in which the
macro-displacement prevails while retaining the influence of the microstruc-
ture. The procedure to obtain the approximate equation, called the “slaving
principle”, is explained in detail in papers by Pastrone and Engelbrecht [9, 61].

Solving the second equation (3.9)2 for the micro-strain one obtains

ϕ = −A

B
ux − 1

B
(Iϕtt − Cϕxx ) +

M

2B

(

ϕ2
x

)

x
. (3.10)

From the original material constants one inherent length and several charac-
teristic velocities can be extracted. The inherent length represents the size of
the microstructure. In order to consider this to be small one first has to choose
a reference length scale ℓ . The inherent length is then introduced by

(δℓ)2 =
IA2

ρB2
, (3.11)

where the small number δ ≪ 1 specifies the size of the microstructure to be
small compared to the reference length ℓ . Further the characteristic velocities
c̄ , c1 , cN and cM are introduced by

c̄2 =
1

ρ

(

α − A2

B

)

, c2
1 =

C

I
, c2

N =
N

ρ
, c2

M =
MA

IBℓ
. (3.12)
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Thus one can write equation (3.10) in the form

ϕ = −A

B
ux − δ2ℓ2ρB

A2

[

ϕtt − c2
1ϕxx − c2

MℓB

2A

(

ϕ2
x

)

x

]

. (3.13)

The variable ϕ can be expanded in powers of δ2 as

ϕ = ϕ0 + δ2ϕ2 + δ4ϕ4 + . . . . (3.14)

This expansion is now inserted into equation (3.13). Collecting powers of the
same order leads to the equations

O(1) : ϕ0 = −A

B
ux, (3.15)

O(δ2) : ϕ2 = −ℓ2ρB

A2

(

ϕ0tt − c2
1ϕ0xx − c2

MℓB

A
ϕ0xϕ0xx

)

, (3.16)

...

Substituting (3.15) into (3.16) we obtain

ϕ2 =
ℓ2ρ

A

(

uxtt − c2
1uxxx + c2

Mℓuxxuxxx

)

. (3.17)

Thus the expansion (3.14) yields

ϕ = −A

B
ux +

δ2ℓ2ρ

A

(

uxtt − c2
1uxxx + c2

Mℓuxxuxxx

)

. (3.18)

Inserting this into the first equation (3.9)1 the governing equation assumes the
form

utt = c̄2uxx +
1

2
c2
N

(

u2
x

)

x
+ (δℓ)2

(

utt − c2
1uxx +

1

2
ℓc2

Mu2
xx

)

xx

. (3.19)

In a final step the dimensionless variables

X =
x

ℓ
, T =

c̄t

ℓ
, ǫU =

u

ℓ
(3.20)

are introduced. The normalization of the displacement includes another small
number ǫ ≪ 1 , which emphasises that the displacement u is small compared
to the reference length ℓ . The nondimensional form of the governing equation
(3.24) is now obtained as

UTT = UXX +
1

2
ǫγ2

N

(

U2
X

)

X
+ δ2

(

UTT − γ2
1UXX +

1

2
ǫγ2

MU2
XX

)

XX

, (3.21)
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where the velocity ratios

γ1 =
c1

c̄
, γN =

cN

c̄
, γM =

cM

c̄
(3.22)

have been introduced. The macro-nonlinearity is controlled by the small num-
ber ǫ , which measures the size of the amplitude, the dispersion is governed
by the small number δ2 emerging from the size of the microstructure, and the
micro-nonlinearity is influenced by both numbers.

It should be noted that the normalization of time (3.20)2 is based on the
velocity c̄ which seems to be the most natural inherent velocity. Therefore
the normalised equation (3.21) differs from the one presented in [9], where the
normalization is based on the velocity c0 =

√

α/ρ .
The approximation can be derived also in a heuristic way [55] (Publication

III) which leads to the same result as the rigorous treatment described above.
The first step is the same as above, leading to (3.10). This is still a partial dif-
ferential equation for the micro-strain ϕ(x, t) , whose partial derivatives appear
on the right-hand side.

In a first, rather crude approximation these derivatives are omitted such
that the micro-strain is expressed explicitly as ϕ ≈ −(A/B)ux in terms of
the macro-strain ux . This expression is reinserted into the right-hand side of
(3.10) to provide the better approximation

ϕ = −A

B
ux +

A

B2
(Iutt − Cuxx )x +

A2M

2B3

(

u2
xx

)

x
, (3.23)

by which the micro-strain is expressed explicitly in terms of the macro-strain
ux and its derivatives. This expression can be inserted into the first equation
(3.9)1 which becomes a nonlinear fourth-order differential equation for the
displacement u(x, t) ,

ρutt =

(

α − A2

B

)

uxx +
A2

B2
(Iutt − Cuxx )

xx
+

+
1

2

[

N
(

u2
x

)

x
+ M

A3

B3

(

u2
xx

)

xx

]

. (3.24)

This equation can still be condensed by introducing normalised variables and
corresponding parameters presented before, yielding finally the nondimensional
governing equation (3.21).

3.5 Evolution equation

If nonlinear and dispersive terms were absent in the governing equation (3.21)
a simple wave equation would remain, whose general solution would allow left
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and right going waves of arbitrary shape traveling undisturbed. Due to the
normalization their speed would be unity. To include the cumulative effects
of the additional nonlinear and dispersive terms in the governing equation we
allow the wave profile to change slowly in time.

Here we follow the reductive perturbation method described in [26, 63, 64].
It is possible to express the equation (3.21) in the matrix form

∂V

∂T
− Ã

∂V

∂X
− δ2 ∂2

∂X2

(

∂V

∂T
− B̃

∂V

∂X

)

(3.25)

− ǫγ2
N

∂U

∂X
C̃

∂V

∂X
− δ2ǫγ2

M

∂

∂X

(

∂2U

∂X2
C̃

∂2
V

∂X2

)

= 0,

where V is a state vector

V =

[

UT

UX

]

,

and Ã , B̃ , and C̃ are the following matrices

Ã =

[

0 1
1 0

]

, B̃ =

[

0 γ2
1

1 0

]

, C̃ =

[

0 1
0 0

]

.

Selecting a right going wave the solution is assumed in the form

U = f(ξ, τ), ξ = X − T, τ =
1

2
ǫT, (3.26)

as suggested in [65, page 6], with a small parameter ǫ . It is possible to develop
both the vector V and U into the power series in the small parameter ǫ

V = V0 + ǫV1 + ǫ2V2 + · · · ,

U = U0 + ǫU1 + ǫ2U2 + · · · .

Substituting the series expansions into the equation (3.25) the following se-
quence of equations of various powers in the small parameter ǫ is obtained,
assuming that δ2 and ǫ are small quantities of the same order:

O(1) :
∂V0

∂ξ
+ Ã

∂V0

∂ξ
= 0, (3.27)

O(ǫ) :
1

2

∂V0

∂τ
− ∂V1

∂ξ
− Ã

∂V1

∂ξ
+

∂3V0

∂ξ3
+ B̃

∂3V0

∂ξ3

− γ2
N C̃

∂U0

∂ξ

∂V0

∂ξ
− ǫγ2

M C̃

(

∂3U0

∂ξ3

∂2V0

∂ξ2
+

∂2U0

∂ξ2

∂3V0

∂ξ3

)

= 0, (3.28)

...
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We determine the left and right eigenvectors l
T and r , respectively, from the

equation
l
T(I + Ã) = (I + Ã)r = 0, (3.29)

where I is a unit matrix, with the normalizing condition

l
T · r = 1. (3.30)

The solution of the equation (3.27) is

V0 = αr, (3.31)

where α is an unknown amplitude factor. The left and right eigenvectors are
chosen according to the normalizing condition in the form

l
T =

[

−1

2
1

2

]

, r =

[

−1
1

]

.

The next steps of the procedure, namely premultiplying the equation (3.28)
by the left eigenvector l

T , inserting the solution V0 = αr into (3.28) and
substituting ∂U0/∂ξ = α yield the evolution equation

ατ +
1

2
γ2

N

(

α2
)

ξ
+

(

1 − γ2
1

)

αξξξ +
1

2
ǫγ2

M

(

α2
ξ

)

ξξ
= 0. (3.32)

A simpler but less rigorous derivation of the evolution equation (3.32) is
given by Randrüüt and Braun [55]. Namely, inserting the ansatz (3.26) directly
into the governing equation (3.21) and discarding higher-order terms we get
the equation

−fξτ =
1

2
γ2

N

(

f2
ξ

)

ξ
+

δ2

ǫ

(

fξξ − γ2
1fξξ +

1

2
ǫγ2

Mf2
ξξ

)

ξξ

. (3.33)

One can realise that the influences of dispersion and nonlinearity, measured by
the two small parameters δ and ǫ , are balanced only if the quotient δ2/ǫ is of
the order of unity. Without loss of generality we may assume that ǫ is equal
to δ2 .

Denoting fξ = α , the evolution equation assumes exactly the form (3.32)
given before. Keeping track of the transformations of variables (3.20) one finds

ux = ǫα, (3.34)

i.e., the new dependent variable α represents a magnified strain. The velocity
ratios γ1 , γN and γM defined by (3.22) appear as parameters in the evolu-
tion equation (3.32) and are responsible for dispersion, macro-nonlinearity and
micro-nonlinearity, respectively. If the latter is omitted the evolution equation
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reduces to the Korteweg–de Vries (KdV) equation studied in Section 2. The ad-
ditional term representing micro-nonlinearity includes higher derivatives, like
the dispersive term αξξξ , but in addition it is nonlinear.

By suitable transformations of the variables the coefficients of the equation
can be standardised. For the KdV equation, Newell [65] suggests the form

qt + 6qqx + qxxx = 0 (3.35)

which, in our case, has to be supplemented by an additional term representing
the micro-nonlinearity. This standardised form is achieved by the transforma-
tion

α =
6

γ2
N

(

1 − γ2
1

)1/3
q, ξ =

(

1 − γ2
1

)1/3
x, τ = t, (3.36)

where, for convenience, the original space and time variables, x and t , have
been reused.

By this transformation, the evolution equation (3.32) becomes

qt + 3
(

q2
)

x
+ qxxx + 3ε

(

q2
x

)

xx
= 0, (3.37)

in which only one parameter

ε =
ǫγ2

M

(1 − γ2
1
)γ2

N

(3.38)

remains. It is responsible for the influence of the micro-nonlinearity mea-
sured by γM as compared to the combined effects of dispersion and macro-
nonlinearity.

3.6 Linear case

In the linear case, i.e., M = N = 0 the governing system of two second-order
equations assumes the form [59, 61, 66]

ρutt = αuxx + Aϕx,
(3.39)

Iϕtt = Cϕxx − Aux − Bϕ,

which can also be represented in the form of one fourth-order equation

utt =
(

c2
0 − c2

A

)

uxx − p2
(

utt − c2
0uxx

)

tt
+ p2c2

1

(

utt − c2
0uxx

)

xx
, (3.40)

where material parameters

c2
0 =

a

ρ
, c2

1 =
C

I
, c2

A =
A2

ρB
, p2 =

I

B
(3.41)
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are introduced. The parameters c0, c1, cA are velocities while p is a time
constant. This is the basic linear equation governing 1D longitudinal waves in
microstructured solids.

Specializing the nonlinear equations derived in Subsections 3.4 and 3.5 to
the linear case, equation (3.24) becomes

ρutt =

(

α − A2

B

)

uxx +
A2

B2
(Iutt − Cuxx)xx , (3.42)

which can aslo be written as

utt =
(

c2
0 − c2

A

)

uxx + p2c2
A

(

utt − c2
1uxx

)

xx
. (3.43)

This approximate linear equation coincides with [66, Eq. (16)]. The corre-
sponding nondimensional versions of this equation have different coefficients
because the dimensionless time coordinates are based on different velocities.

The evolution equation (3.32), when reduced to the linear case, assumes the
form

ατ +
(

1 − γ2
1

)

αξξξ = 0, (3.44)

which corresponds to [66, Eq. (24)]. The variables α, ξ, τ , however, are defined
differently in [66] (Publication I). Therefore, the two different versions of the
linear evolution equation cannot be compared directly.

It has been shown that the approximate linear equation (3.43) and the full
linear equation (3.40) yield the evolution equations in the same form, see [66,
Eqs. (24) and (27)]. Consequently, using the idea of evolution equations there
is no difference whether one begins the derivation from the full equation (3.40)
with the addition term utttt or from the approximate equation (3.43) with
terms uxxtt and uxxxx . However, note that the coefficients of the uxxtt and
uxxxx terms in the equations (3.40) and (3.43) are different.

The character of dispersion in the case of microstructured materials is anal-
ysed in [59] on the basis of the approximate equation (3.43). It has been shown
that both of the effects — inertia of the microstructure, described by the term
uxxtt , and elasticity of the microstructure, described by the term uxxxx , have
influence on dispersive relations and corresponding dispersion curves. If only
inertia of the microstructure is taken into account then the dispersion curve is
convex, if only elasticity of the microstructure is taken into account then the
dispersion curve is concave. With both terms (double dispersion) the curve
tends from one asymptote to another.

In the case of the evolution equation (3.44) these two effects are described
by a single term αξξξ but the sign of this term (the sign of its coefficient)
depends on the ratio of the double dispersion effects. It is possible to conclude
that in case of γ2

1 > 1 the dispersion curve is concave and in case of γ2
1 < 1
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the dispersion curve is convex. In the case of 1−γ2
1 = 0 there is no dispersion.

Omitting the term uxxxx in the equation (3.43), i.e., taking into account only
microinertia, leads the evolution equation in the form

ατ + αξξξ = 0 (3.45)

with a convex dispersion curve (downward cubic parabola). Omitting the term
uxxtt , i.e., concentrating on microelasticity, the evolution equation assumes the
form

ατ − γ2
1αξξξ = 0 (3.46)

with a concave dispersion curve (upward cubic parabola).
The special case γ2

1 = 1 gives now the motivation to turn back from the
evolution equation (3.44) to the original equation (3.43) and study in detail all
three cases γ2

1 < 1 , γ2
1 = 1 and γ2

1 > 1 .
Using the definition of (3.12)1 the full and the reduced linear equations

(3.40) and (3.43) can be rewritten as

utt = c̄2uxx − p2
(

utt − c2
0uxx

)

tt
+ p2c2

1

(

utt − c2
0uxx

)

xx
(3.47)

and
utt = c̄2uxx + p2c2

A

(

utt − c2
1uxx

)

xx
, (3.48)

respectively. With the usual wave ansatz

u = û cos (kx − ωt) (3.49)

one obtains the dispersion relations

ω2 − c̄2k2 = p2
(

ω2 − c2
0k

2
) (

ω2 − c2
1k

2
)

(3.50)

and
ω2 − c̄2k2 = −p2c2

Ak2
(

ω2 − c2
1k

2
)

, (3.51)

respectively. These dispersion relations are graphically depicted in Figures 16–
17 for different ratios c1/c̄ . The full dispersion relation (3.50) when solved for
ω2 assumes the form

ω2 =
1

2p2

{

1 + (c2
0 + c2

1)p
2k2 ±

±
√

1 + 2
(

c2
0
+ c2

1
− 2c̄2

)

p2k2 +
(

c2
0
− c2

1

)2
p4k4

}

(3.52)

and provides, for any wave number k , two values of the frequency ω . The
upper one, starting at ω(0) = 1/p , represents the optical branch, and the
lower one, starting at the origin, represents the acoustical branch.
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Figure 16: Dispersion diagram in the special case c1 = c̄ (c1 = c̄ = 0.8 c0 )

The long-wave behaviour, which means small wave numbers, is obtained by
omitting the highest power of k and making use of the well-known approxima-
tion formula

√
1 + ǫ ≈ 1+ 1

2
ǫ . Thus from (3.52) one obtains the approximation

ω2 ≈ 1

2p2

{

1 + (c2
0 + c2

1)p
2k2 ±

[

1 +
(

c2
0 + c2

1 − 2c̄2
)

p2k2
]}

(3.53)

leading to

ω ≈











1

p
+

1

2

(

c2
0 + c2

1 − c̄2
)

pk2,

c̄k.

(3.54)

The optical branch starts like a parabola with its vertex at (0, 1/p) , while the
acoustical branch starts at the origin with the initial slope c̄ .

The short-wave behaviour, which means big wave numbers, is obtained by
keeping only the highest powers of k , namely k2 outside and k4 inside the
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Figure 17: Dispersion diagram in the case c1 > c̄ (c1 = 0.9 c0 , c̄ = 0.6 c0 )
full equation, reduced equation

square root. So one obtains

ω2 ≈ 1

2p2

{(

c2
0 + c2

1

)

p2k2 ±
(

c2
0 − c2

1

)

p2k2
}

(3.55)

or

ω ≈
{

c0k,

c1k.
(3.56)

Thus for short waves, the optical and acoustical branches approach asymptot-
ically the straight lines with slopes c0 and c1 , respectively.

The reduced dispersion relation (3.51) when solved for ω2 gives

ω2 =

(

c̄2 + c2
Ac2

1p
2k2

)

k2

1 + c2
Ap2k2

. (3.57)

For any value of the wave number k there is only one value of the frequency ω .
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Figure 18: Dispersion diagram in the case c1 < c̄ (c1 = 0.6 c0 , c̄ = 0.9 c0 )
full equation, reduced equation

Since ω(0) = 0 it is the acoustical branch that is approximated by the reduced
dispersion relation.

In the long-wave limit, i.e., for small wave numbers, one may omit the
highest powers of k in numerator and denominator, obtaining

ω ≈ c̄k. (3.58)

So the dispersion curve starts with the slope (3.54)2 , which is the correct initial
slope of the acoustical branch. Correspondingly for the short-wave limit, i.e.,
big wave numbers, one keeps only the highest powers of k in numerator and
denominator and obtains

ω ≈ c1k, (3.59)

which coincides with the correct asymptote of the acoustical branch (3.56)2 .
In general, one has either c1 < c̄ (Figure 18) or c1 > c̄ (Figure 17). Cor-

responding diagrams have been presented by Engelbrecht et al. [59]. In either
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case, the acoustical branch of the dispersion diagram starts at the origin with
the slope c̄ and, for k → ∞ , approaches the asymptote ω = c1k . Necessar-
ily there must be a point of inflection somewhere in between. The reduced
equation yields an approximation of the acoustical branch, starting with the
correct slope c̄ and also approaching the correct asymptote ω = c1k . Only in
between it deviates from the exact curve.

In the critical case γ2
1 = 1 , which, according to the definition (3.22)1 , means

that c̄2 = c2
1 , the full and the reduced dispersion relations can be written as

(

ω2 − c2
1k

2
) [

1 − p2
(

ω2 − c2
0k

2
)]

= 0 (3.60)

and
(

ω2 − c2
1k

2
) (

1 + p2c2
Ak2

)

= 0, (3.61)

respectively. Both the full and the reduced dispersion relations show that
there is a nondispersive wave propagating at the velocity c1 = c̄ . The full
equation additionally admits an optical branch which is clearly dispersive, see
Figure 16. Since the reduced equation singles out only the acoustical branch,
it does not give any dispersive effect. The dispersion “curve” according to
the reduced equation looks the same as if it were governed by the simple
wave equation utt = c̄2uxx , i.e., without any dispersion. The microstructure
manifests itself only through the additional optical branch not predicted by
the reduced equation. An optical branch of the dispersion relation is always
dispersive, since it starts at a finite frequency, here 1/p , in the long-wave limit
k = 0 . In the short-wave limit, k → ∞ , the waves of the optical branch
propagate at the velocity c0 .
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4 Solutions of the extended KdV equation represent-

ing solitary waves

It is well known that the usual KdV equation admits solutions in the form of
solitary waves, see Subsection 2.1. In this section it will be studied how these
solitary waves are influenced by the presence of the micro-nonlinearity term of
the extended KdV equation. This analysis is based on [55, 56] (Publications
III and VI).

4.1 Extended KdV equation

The evolution equation (3.37) can be treated as an extended KdV equation,
since if the influence of the micro-nonlinearity is omitted, it is reduced to the
Korteweg–de Vries equation which admits solutions in the form of the sech2

solitons.
Solutions of the KdV equation propagating without any distortion can be

found in the form
q = q(θ), θ = x − ct. (4.1)

For the extended KdV equation (3.37) the ansatz (4.1) can be used unaltered.
Inserting the ansatz into the extended KdV equation (3.37) yields the ordinary
differential equation

−cq′ + 3
(

q2
)′

+ q′′′ + 3ε
(

q′2
)′′

= 0, (4.2)

which can be integrated once resulting in

q′′ + 3ε
(

q′2
)′

= A + cq − 3q2, (4.3)

where A is a constant of integration.
Converting this second-order differential equation for the function q(θ) into

a first-order differential equation for the function q′(q) one obtains

q′
(

1 + 6εq′
) dq′

dq
= A + cq − 3q2. (4.4)

One further integration yields

1

2
q′2 + 2εq′3 = B + Aq +

c

2
q2 − q3. (4.5)

The analysis will be restricted here to the special case of solitary waves. It
is assumed that, as θ → ±∞ , the function q tends uniformly to zero, i. e.,
q → 0 , q′ → 0 , and q′′ → 0 . Therefore, in (4.5) the constants A and B have
to vanish. Thus equation (4.5) assumes the form

q′2 + 4εq′3 = q2(c − 2q). (4.6)

In principle, this equation has to be solved for q′ and then integrated.

56



4.2 Phase curves of solitary waves

Before turning to the last integration step, the cubic first-order differential
equation (4.6) will be analyzed. Introducing the amplitude a = c/2 the equa-
tion is written as

q′2 + 4εq′3 = 2q2(a − q). (4.7)

It represents a curve in the (q, q′) phase plane. A solitary wave q = q(θ)
emerges asymptotically from the negative θ -axis, raises with positive slope
until its peak q(0) = a , turns to negative slope and approaches asymptotically
the θ -axis for θ → +∞ . The corresponding phase curve starts in the origin
of the (q, q′) plane with finite positive slope, follows a loop crossing the q -axis
downward at (a, 0) , and bends back to the origin at finite slope.

To analyze the principal behaviour of the phase curve described by (4.7) let
us define the two functions

f(q) = 2q2(a − q) and g(q′) = 4εq′3 + q′2 − f(q). (4.8)

Their qualitative graphs are shown in Figures 19 and 20. If ε > 0 the function g
has a relative maximum

g(q′1) =
1

108 ε2
− f(q) at q′1 = − 1

6ε
. (4.9)

If this relative maximum is above the q′ -axis there are three zeros of the
function g (q′) , if it is below there is only one.

For any value q attained by the solitary wave there must be a positive and
a negative slope q′ , which means that the function g(q′) must have two zeros,

q′

g(q′)

−f(q)

ε = 0

ε < ε∗

ε > ε∗

ε = ε∗
bc

Figure 19: Graph of function g(q′)
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Figure 20: Graph of function f(q)

one positive and one negative, for any q in the range 0 < q < a . In order that
there are two zeros, or even three, the relative maximum (4.9)1 must not be
negative. Therefore the parameter ε is restricted by the inequality

ε ≤ ε∗ =
1

6
√

3f(q)
(4.10)

which has to hold for any q < a . The inequality must hold even in the worst
case, namely, if f(q) attains its biggest value. The function f(q) , according
to its definition (4.8)2 , has a relative maximum

f(q2) =

(

2

3
a

)3

at q2 =
2

3
a. (4.11)

Thus, for q ≥ 0 , we have

f(q) ≤
(

2

3
a

)3

. (4.12)

The inequality (4.10) can, therefore, be extended to

ε ≤ 1

6
√

3f(q2)
=

1

4a
√

2a
. (4.13)

To get rid of the square root one can express the peak value a in terms of the
new parameter

η =

√

a

2
=

√
c

2
, (4.14)
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which is motivated by the equation (2.2) for KdV solitons. Introducing this
parameter the inequality (4.13) assumes the form

ε ≤ 1

16η3
. (4.15)

The extended KdV equation admits solitary waves of amplitude a = 2η2 and
velocity c = 4η2 only up to this limit of the micro-nonlinearity parameter ε .

In order to plot the phase curve given by (4.7) without solving a cubic
equation one can introduce the parameter

p =
q′

q
(4.16)

which represents the slope of the position vector in the phase plane. Equation
(4.7) can then be written in the form

p2(1 + 4εpq) = 2(a − q). (4.17)

Solving this equation for q and recalling (4.16) one obtains a parametric rep-
resentation of the phase curve in the form

q(p) =
a − 1

2
p2

1 + 2εp3
, q′(p) = pq(p). (4.18)

The curve parameter p varies in the interval −
√

2a ≤ p ≤ +
√

2a . The ad-
vantage of this parametric representation is that one does not need to solve
the cubic equation (4.7) for q′ . Using the above parametric representation the
phase curves are drawn in Figure 21 for different values of ε . For the maximum
value

ε = εmax =
1

16η3
(4.19)

the parametric representation (4.18) becomes singular at p = −(2ε)−1/3 =
−2η . A detailed analysis shows that the phase curve, in this limiting case,
degenerates into a semi-ellipse and a straight line representing a diameter of
the ellipse. The final step of integration can be performed explicitly in this
case. This will be presented in Subsection 4.4.

4.3 Approximate solution of the extended KdV equation

In order to get the solution q = q(θ) the first-order differential equation (4.7)
has to be solved for q′ and integrated. Using the abbreviation (4.8)2 it is
written as

q′2 + 4εq′3 = f(q). (4.20)
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Figure 21: Phase curves of the extended KdV equation for different values of ε

Since it is unlikely that one finds an explicit solution after applying Cardano’s
formula on this cubic equation, an approximate solution by a series expansion
in the small parameter ε is used. The corresponding formula is briefly derived
in Subsubsection 4.3.1. This approach is justified by the fact that solitary
wave solutions exist only for small values of the parameter ε satisfying the
inequality (4.15).

It is assumed that the maximum value a = c/2 is attained at θ = 0 , from
where the function q(θ) decreases as θ increases and vice versa. Applying the
formula (4.31)2 to the cubic equation (4.20) one obtains the approximation

q′ = ∓
√

f(q) − 2εf(q) ∓ 10ε2 [f(q)]3/2 − 64ε3 [f(q)]2 + O(ε4), (4.21)

where the upper and lower signs are valid for θ > 0 and θ < 0 , respectively. For
performing the integration also the reciprocal value is needed which, according
to (4.33), is obtained as

dθ

dq
=

1

q′
=

∓1
√

f(q)
+ 2ε ± 6ε2

√

f(q) + 32ε3f(q) + O(ε4). (4.22)
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Figure 22: Solitary wave governed by the extended KdV equation (ε = εmax ) in
different approximations

The definite integration starts with the maximum value q = a attained at
θ = 0 . Thus one obtains

θ =

∫ q

a

[

∓1
√

f(q)
+ 2ε ± 6ε2

√

f(q) + 32ε3f(q) + O(ε4)

]

dq. (4.23)

Inserting the function f(q) from (4.8)2 and performing the definite integration
yields

θ = ±
√

2

a
arcosh

√

a

q
− 2ε(a − q) ∓ 2

5
ε2(2a + 3q) [2(a − q)]3/2 −

− 16

3
ε3

(

a2 + 2aq + 3q2
)

(a − q)2 + O(ε4). (4.24)

In principle, this equation has to be solved for q to unveil the function q = q(θ) .
The inversion cannot be performed in closed form. The graph, however, can
also be drawn directly from (4.24).

Figure 22 shows subsequent approximations of a solitary wave governed
by the extended KdV equation with a fixed value of the micro-nonlinearity
parameter ε . Starting from the symmetric KdV soliton even the approximation
of order ε exhibits the asymmetric behaviour of the solitary wave. The O(ε2)
and O(ε3) approximations come out nearly identical.

The convergence behaviour is different on the left and on the right side.
For θ > 0 the limit is approached from one side while for θ < 0 there is
an alternating behaviour. A comparison of the approximation with the exact
solution is provided in Subsection 4.4 for the limiting value of the parameter ε .
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Figure 23: Approximate O(ε3) solutions for different values of the micro-nonlinearity
parameter

The influence of the micro-nonlinearity parameter ε is shown in Figure 23.
Starting from the symmetric KdV soliton (ε = 0) the solitary wave becomes
more asymmetric as ε is increased.

To emphasise the relation to the KdV soliton, the arcosh function in (4.24)
is inverted, leading to the implicit representation

q = a sech2 η

[

θ + 2ε(a − q) ± 2

5
ε2(2a + 3q) [2(a − q)]3/2 +

+
16

3
ε3

(

a2 + 2aq + 3q2
)

(a − q)2 + O(ε4)

]

. (4.25)

of the solitary wave. The dependent variable q appears in the argument of the
sech function, and the equation cannot be solved explicitly for q .

4.3.1 Approximate solution of a cubic equation

In the analysis of the extended KdV equation (3.37) one comes across a cubic
equation with a small coefficient at the cubic term. Instead of solving the
equation exactly, an approximate solution is used.

The solutions of the cubic equation

εx3 + x2 = a2, (4.26)

with a small coefficient ε , are assumed in the form

x = x0 + εx1 + ε2x2 + ε3x3 + O(ε4). (4.27)
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Restricting the expansion to the order ε3 the square of the series (4.27) is
obtained as

x2 = x2
0 + 2εx0x1 + ε2

(

2x0x2 + x2
1

)

+ 2ε3 (x0x3 + x1x2) + O(ε4). (4.28)

The third power is needed only up to the order ε2 , since it will be multiplied
by ε . Thus

x3 = x3
0 + 3εx2

0x1 + 3ε2
(

x2
0x2 + x0x

2
1

)

+ O(ε3). (4.29)

By inserting these series into the cubic equation (4.26) and equating coefficients
of like powers of ε one obtains a set of equations for the coefficients xk which
finally lead to

x0 = ±a, x1 = −1

2
a2, x2 = ±5

8
a3, x3 = −a4. (4.30)

Thus the roots of the cubic equation (4.26) are approximated by

x± = ±a − 1

2
εa2 ± 5

8
ε2a3 − ε3a4 + O(ε4) =

= ±a

[

1 ∓ 1

2
εa +

5

8
ε2a2 ∓ ε3a3 + O(ε4)

]

. (4.31)

The roots (4.31) are those emerging from the two roots of the quadratic equa-
tion to which (4.26) reduces for ε = 0 . For any ε 6= 0 there must be a third
root, which can be expanded into the series

x× = −1

ε
+ εa2 + 2ε3a4 + O(ε4). (4.32)

This third root, however, is of no relevance in our application.
Within the integration process of Subsection 4.3 also the reciprocal roots

1/x± are needed, which are obtained from (4.31) by the well-known geometric
series expansion as

1

x±
= ±1

a

[

1 ± 1

2
εa − 3

8
ε2a2 ± 1

2
ε3a3 + O(ε4)

]

=

= ±1

a
+

1

2
ε ∓ 3

8
ε2a +

1

2
ε3a2 + O(ε4). (4.33)

In principle, the expansions can be extended to higher orders in ε . The level
of O(ε3 ) seems to be sufficient for the application here.
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4.4 Analytical solution in the limiting case

It has been shown that bounded and closed phase curves q′(q) are possible only
if εη3 ≤ 1/16 . In addition to the case ε = 0 , where one gets the well-known
KdV soliton as an analytical representation, it can be shown that an analytical
solution in closed form is also possible in the limiting case εη3 = 1/16 .

After inserting the limiting value

ε =
1

16η3
(4.34)

the ordinary differential equation (4.7) can be written in the form

q′2 − 4η2q2 +
1

4η3

(

q′3 + 8η3q3
)

= 0. (4.35)

The quadratic and cubic parts of this equation allow the factorizations

q′2 − 4η2q2 = (q′ + 2ηq) (q′ − 2ηq) ,

q′3 + 8η3q3 = (q′ + 2ηq)
(

q′2 − 2ηqq′ + 4η2q2
)

.
(4.36)

Thus (4.35) may be written as

(

q′ + 2ηq
)

[

q′ − 2ηq +
1

4η3

(

q′2 − 2ηqq′ + 4η2q2
)

]

= 0. (4.37)

The phase curve consists of two branches, namely the straight line

q′ = −2ηq (4.38)

and the ellipse

q′2 + 2η(2η2 − q)q′ − 4η2q(2η2 − q) = 0, (4.39)

see Figure 24. Solving the last equation for q′ gives the solutions

q′1,2 = η
[

−(2η2 − q) ±
√

4η4 + 4η2q − 3q2

]

(4.40)

= η
[

−(a − q) ±
√

a2 + 2aq − 3q2

]

,

where, for convenience, the abbreviation a = 2η2 has been introduced accord-
ing to (4.14). Putting together these solutions in the proper order one has to
start at the origin which is attained asymptotically for θ → −∞ . Then the
wave profile will build up with positive slope (4.40), + sign, increasing up to
q′max = 4η3/3 at q = 2a/3 . The peak value of the wave profile a = 2η2 is
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Figure 24: Phase curve of the extended KdV equation in the limiting case

assumed to be attained at θ = 0 . For θ > 0 the wave profile will decrease, i.e.,
it assumes the negative slope (4.40), − sign. At q = 2a/3 the steepest decline
is reached with the slope q′ = −8η3/3 . At this point the phase curve switches
to the linear branch (4.38) until the origin is reached, again asymptotically for
θ → ∞ . Thus the phase curve, as shown in Figure 24, is represented by

q′

η
=















√

a2 + 2aq − 3q2 − (a − q) for θ ≤ 0 and 0 ≤ q ≤ a,

−
√

a2 + 2aq − 3q2 − (a − q) for θ ≥ 0 and a ≥ q ≥ 2

3
a,

−2q for θ ≥ 0 and 2

3
a ≥ q ≥ 0.

(4.41)
The phase curve is traversed in clockwise sense, as always, since in the upper
half-plane (q′ > 0) the values of q must increase while in the lower half-plane
(q′ < 0) the values of q must decrease. The q axis is intersected at a right
angle except in a point which is reached only asymptotically. Let the right-
hand side of (4.41) be abbreviated by f(q) . Then the wave profile q(θ) is the
solution of the initial-value problem

dq

dθ
= ηf(q), q(0) = a. (4.42)
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Figure 25: Profile of the solitary wave in the limiting case

By separation of variables and subsequent integration the solution is obtained
as

∫ q

a

dq

f(q)
= ηθ. (4.43)

The integral on the left-hand side has still to be evaluated.
For θ ≤ 0 , the function f is given by (4.41)1 . Using the corresponding

definite integral [55, Appendix B] with the upper sign, one obtains

ln
a(

√

a2 + 2aq − 3q2 + a + q)

2q2
+
√

3 arccos
3q − a

2a
= −4ηθ. (4.44)

The maximum slope

q′max =
4

3
η3 (4.45)

is attained, according to Figure 24, when the amplitude is q = 2a/3 , i.e., at a
value of

θ− = − 1

4η

(

ln 3 +
π√
3

)

(4.46)

of the independent variable θ . This branch of the curve ends with the peak
value q = a attained at θ = 0 , see Figure 25.

For θ ≥ 0 and a ≥ q ≥ 2a/3 the function f is given by (4.41)2 . The
definite integral [55, Appendix B] with the lower sign yields

ln

√

a2 + 2aq − 3q2 + a + q

2a
+
√

3 arccos
3q − a

2a
= 4ηθ. (4.47)

The branch ends at

θ+ =
1

4η

(

ln
4

3
+

π√
3

)

(4.48)
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with the minimum (or maximum negative) slope

q′min = −8

3
η3 (4.49)

at the height q = 2a/3 . The last branch starts at (4.48), and the function f
is given by (4.41)3 . Thus one has to perform the definite integration

∫ q

2a/3

dq

q
= −2η

∫ θ

θ+

dθ, (4.50)

which yields the solution

q =
2a

3
exp [−2η(θ − θ+)] . (4.51)

At θ = θ+ the branch starts with the slope

q′(θ+) = −4

3
aη = −8

3
η3. (4.52)

This means that the last branch is attached continuously differentiable to the
preceding one. The whole wave profile is shown in Figure 25, where also the
tangents at the inflectional points θ∓ are indicated.

A comparison of this exact solution with the approximate solution (4.24)
is depicted in Figure 26. In the left, flat part, the curves coincide excellently
while on the steeper flank the approximation is slightly above the exact curve.
It should be noted that this good coincidence pertains to the maximum value
of the parameter ε allowing a solitary wave solution. For smaller values it
should be even better.

4.5 Concluding remarks

From various studies it is known that in a microstructured material solitary
waves can propagate if dispersion and nonlinearity are balanced appropriately.
If the linear dispersion evoked by the microstructure is complemented only
by macro-nonlinearity the dynamical behaviour is described by the Korteweg–
de Vries equation, and the well-known symmetric solitary waves are possible
solutions.

If also some nonlinearity in the microscale is included the evolution equation
contains an additional nonlinear term which involves higher derivatives. This
makes the shape of the solitary waves asymmetric. In Subsection 4.3, a formula
has been provided, which describes the asymmetric solitary wave analytically,
although in some approximation.
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Figure 26: Exact and approximate solutions in the limiting case ε = 1/16η3

It has been shown that solitary waves are possible only up to a certain
limit of the micro-nonlinearity parameter. For this limit as a special case, the
extended KdV equation can be solved explicitly and used as a reference. The
approximate solution agrees quite well with the exact one in the limit case, and
the coincidence must be even better for smaller values of the micro-nonlinearity
parameter.

It is still an open question to what extent the presented solutions, which
pertain to the extended KdV equation (3.37), are consistent with the original
model (3.9). This should be analyzed by numerical studies of the full model
equations which, however, are outside of the scope of this work.
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5 Solutions of the extended KdV equation represent-

ing periodic waves

As in the KdV case also the extended KdV equation admits periodic solutions
in addition to the solitary waves discussed in Section 4. The analysis of these
periodic solutions is based on [67] (Publication IV).

5.1 Extended KdV equation

Again we are looking for solutions of the form

q = q(θ), θ = x − ct (5.1)

representing undistorted waves propagating at the velocity c within the moving
reference frame. The function q = q(θ) will then satisfy an ordinary differential
equation which can be integrated twice to result in a first-order differential
equation of the form

q′2 + 4εq′3 = f(q), (5.2)

where f(q) is a third-order polynomial of the form (2.13).
In principle, the equation (5.2) has to be solved for q′ and then integrated.

However, it is unlikely that this integration can be performed in closed form.
Therefore we confine ourselves to an approximate solution, assuming the pa-
rameter ε to be small. Expanding the roots of the cubic equation (5.2) in
powers of ε one obtains

q′ = ±
√

f(q)
{

1 ∓ 2ε
√

f(q) + 10ε2f(q) ∓ 64ε3 [f(q)]3/2
}

+ O(ε4), (5.3)

where f(q) is the cubic polynomial defined by (2.13). Although, at first glance,
this differential equation for q(θ) seems even more complicated than the orig-
inal one, it can be integrated in closed form.

5.2 Phase portrait

Before going on with the integration the behaviour of the phase curves q′(q)
will be analyzed in detail. The polynomial f(q) involves three parameters. In
order to get a one-parameter family of curves two constants should be fixed.
Let us suppose that the minimum and the maximum of the polynomial are
located at q = 0 and q = d , respectively, where d is an arbitrary but fixed
value. Then the cubic polynomial admits the representation

f(q) = b2 − (2q + d)(q − d)2, (5.4)
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Figure 27: Phase portrait of the KdV equation (ε = 0)
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Figure 28: Phase portrait of the extended KdV equation (ε = 0.5 εmax )
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Figure 29: Phase portrait of the extended KdV equation (ε = 0.8 εmax )
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Figure 30: Phase portrait of the extended KdV equation (ε = εmax )
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where b is considered as the only free parameter of the function. The phase

portrait depicts the family of phase curves q′(q) for different values of the
parameter b while d and ε are kept fixed.

For ε = 0 the symmetric phase portrait of the KdV equation is retained,
see Figure 27. Only the shaded part of the phase portrait is of relevance.
The trajectories outside this area extend to infinity and do not represent finite
solutions. The uppermost curve, for instance, represents a solution q = q(θ)
that starts at q = −∞ with infinite slope, gradually coming up to a maximum
value of q with slope q′ = 0 , then symmetrically going back to q = −∞
with infinite negative slope. The phase curves in the shaded region are closed
cycles representing periodic waves, which, in the case of the KdV equation,
are cnoidal waves. The limiting curve forms a homoclinic orbit starting and
ending at the origin, which means that q = q′ = 0 is attained asymptotically
for θ → ±∞ . This curve corresponds to the limiting solitary wave of height
a = 3d/2 .

With increasing values of the micro-nonlinearity parameter ε the phase
portrait becomes more and more asymmetric with respect to the q -axis. Ac-
cording to (4.13), solitary waves are possible solutions of the extended KdV
equation only if

ε ≤ εmax =
1

2
(2a)−

3

2 =
1

2
(3d)−

3

2 . (5.5)

The phase portraits for ε = 0.5 εmax , ε = 0.8 εmax , and ε = εmax are depicted
in Figures 28, 29, and 30, respectively. Also in these phase portraits only the
phase curves in the shaded area represent finite solutions q = q(θ) . Again
the closed cycles represent periodic waves, which, however, are not symmetric
anymore. At each level of q , one obtains a positive and a negative slope q′ ,
where the negative slope is steeper than the positive slope. The asymmetry is
also present in the solitary wave limit, which has been studied already in the
preceding section.

At the maximum value ε = εmax of the micro-nonlinearity parameter the
limiting trajectory representing the solitary wave degenerates into a half ellipse
and a straight line. This remarkable feature has opened the possibility to get an
analytic solution q = q(θ) in that special case, as described in Subsection 4.4.

The phase portraits have been studied in [67]. Due to page limitations only
the phase portrait for ε = 0.8 εmax has been included in this paper.

The final integration uses the series expansion (5.3) rather than the exact
phase curves q′(q) . In Figure 31 the exact solution of the cubic equation
(5.2) is contrasted with the approximations (5.3) allowing for different powers
of ε . The O(1) approximation neglects the influence of micro-nonlinearity and
gives the symmetric phase curves of the KdV case. Taking into account the
corrections (5.3) with increasing powers of ε leads to the asymmetric phase
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curves which are characteristic for the extended KdV equation.
The approximations converge to the exact solution. In the upper half-plane

the convergence is alternating, in the lower the curves approach the limit from
above. Even for ε = εmax the approximation is acceptable for the periodic
waves. It is still poor at the kink of the phase curve representing the solitary
wave. This, however, is the worst case.

ε = εmax

q

q′

d3/2

d
bc

bc

bc

O(1)

O(ε)

O(ε2)

O(ε3)

exact

q

q′

d3/2

d
bc

Figure 31: Approximate phase curves of the extended KdV equation with maximal
micro-nonlinearity parameter. Upper: periodic wave (with magnified areas). Lower:
limiting solitary wave.
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5.3 Asymmetric periodic waves

The final integration will be performed using the approximation of q′ by the
power series (5.3). Without loss of generality one may assume that q attains
its maximum value q3 at θ = 0 . Using this as initial condition for the def-
inite integration, the values of q will decrease as θ increases. Therefore the
lower signs in (5.3) are chosen. For performing the integration one needs the
reciprocal value 1/q′ which is obtained as

dθ

dq
=

1

q′
= − 1

√

f(q)

[

1 − 2ε
√

f(q)
]

+ O(ε2) = − 1
√

f(q)
+ 2ε + O(ε2). (5.6)

The analysis is restricted here to the O(ε) approximation but can easily be
extended to higher orders. Using the initial condition q(0) = q3 the integration
yields

θ =

∫ q

q3

[

−1
√

f(q)
+ 2ε

]

dq. (5.7)

Following the analysis of cnoidal waves in Subsection 2.2, the integral is eval-
uated explicitly by using the substitution (2.17)

q = q2 + (q3 − q2) cos2 ϕ, (5.8)

see Figure 9 about the geometrical interpretation of the new variable ϕ . Per-
forming the integration gives the result

θ =
1

η
F (ϕ; k) − 2ε(q3 − q), (5.9)

where F denotes the incomplete elliptic integral of the first kind and the
constants

η =

√

q3 − q1

2
and k =

√

q3 − q2

q3 − q1

(5.10)

have been introduced. Solving (5.9) for the auxiliary variable ϕ and resubsti-
tuting this into the transformation formula (5.8) yields

q = q2 + (q3 − q2) cn2 η [θ + 2ε(q3 − q)] . (5.11)

This is an implicit representation of the periodic wave solutions of the extended
KdV equation (3.32), though only in a first approximation. For ε = 0 it passes
into the cnoidal wave solution of the KdV equation studied in Subsection 2.2.
Figure 32 shows a family of periodic waves together with their limiting solitary
wave, as described by (5.11). The waves look very much like corresponding
cnoidal waves, but are inclined to the right.
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Figure 32: Periodic waves and solitary wave governed by the extended KdV equation

5.4 Concluding remarks

As shown in [55, 56, 68], the propagation of one-dimensional deformation waves
in a nonlinear microstructured solid leads to an evolution equation which has
the form of an extended Korteweg–de Vries equation. Janno and Engelbrecht
[10] have demonstrated that due to the nonlinearity of the microscale the soli-
tary wave profile becomes asymmetric. The same effect appears in the case
of the respective evolution equation which has been solved approximately by
Randrüüt and Braun [55]. Although solitary waves constitute the most in-
teresting type of solutions, the same procedure has been applied here to the
more general case. Solitary waves can be considered as the long-wave limit of
periodic solutions which, in the KdV case, have the form of cnoidal waves.

It is shown that, due to the nonlinearity in microscale, the cnoidal waves
stay periodic but become inclined in the same manner as the solitary waves.
Compared with the classical cnoidal waves (ε = 0), the periodic waves for
ε > 0 have steeper slope at the leading flank while the trailing flank falls off
gentler. Qualitatively the behaviour is like expected from the solitary-wave
limit.
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6 Numerical simulation

The main goals of the numerical analysis are (i) to find numerical solutions
for the evolution equation (3.32), (ii) to study the influence of the micro-
nonlinearity parameter, and (iii) to compare the results with those of the two-
wave equation. The numerical analysis presented here is based on [68, 69]
(Publications II and V).

The evolution equation (3.32) can be written in the form

ατ + sααξ + zαξξξ + w
(

αξαξξξ + α2
ξξ

)

= 0, (6.1)

where the parameters

s =
c2
N

c̄2
, z =

c̄2 − c2
1

c̄2
, w = ǫ

c2
M

c̄2
, (6.2)

characterise nonlinearity of the macroscale, dispersion, and nonlinearity of the
microscale, respectively. Equalizing the micro-nonlinearity parameter w to
zero yields the well-known Korteweg–de Vries (KdV) equation. Thus, com-
pared with the standard KdV equation, (6.1) includes an additional compli-
cated term which reflects the nonlinearity of the macroscale.

The evolution equation (6.1) is solved under localised and harmonic initial
conditions

α(ξ, 0) = A0 sech2 ξ − ξ0
√

12z/A0

and α(ξ, 0) = sin ξ, (6.3)

respectively, where A0 denotes the amplitude, ξ0 the initial phase-shift, and
√

12z/A0 the width of the initial pulse. For numerical integration the FFT-
based pseudospectral method is used and periodic boundary conditions are
applied [70].

The crucial question is the proper choice of parameters because not much
is known about the values of physical constants of Mindlin’s model [1]. We
choose here the values of parameters comparable with the standard KdV equa-
tion which has been studied in detail (see, for example [71, 72]). One of the
important features of the standard KdV equation is the emergence of a soliton
train. The number of solitons in a train depends on the values of s and z .
Widely used values are s = 1 and z = 10−2.5 [71, 72]. Then the soliton train
develops at τ ≈ 30 . Another important feature for the KdV equation is the
existence of a single stable soliton.

On the basis of the argumentation above, we take here s = 1 and vary the
other parameters in the following domains: 10−2,5 ≤ z ≤ 1 and 0 ≤ w ≤ 1 .
The localised initial wave (6.3)2 is the analytical solution for equation (6.1) in
the case of w = 0 , i.e., it represents the KdV soliton.
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6.1 Localised initial excitation

Janno and Engelbrecht [10] have shown that for the two-wave equation (3.21)
there exists an asymmetric travelling wave solution, i.e., the nonlinearity in
microscale leads to asymmetry of the wave profile. Numerical experiments by
Salupere et al. [73, 74] have demonstrated, that in the case of equation (3.21),
an initially symmetric localised wave is deformed to an asymmetric wave during
propagation. Here we demonstrate that the same effect takes place in the case
of the evolution equation (6.1).

The evolution of the initial symmetric sech2 pulse can be traced in Fig-
ure 33. It can be seen that the shape of the wave is altered during propagation
and an oscillating tail is formed. In Figure 34, the initial wave-profile and the
altered shape of the wave profile at the end of the integration interval are plot-
ted against ξ . In order to characterise the asymmetry of the last wave-profile
more explicitly, αξ is plotted against α in Figure 35.

Applying localised initial conditions the value of micro-nonlinearity param-
eter w = 10−2.5 is chosen quite big compared to the macro-nonlinearity pa-
rameter s and dispersion parameter z in order to demonstrate the effect of
asymmetry more pronouncedly.

ξ

τ

Figure 33: Time-slice plot for z = 10−2 , w = 10−2.5 .
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Figure 34: The initial (dashed line) and the deformed (solid line) wave profile from
Figure 33 (z = 10−2 , w = 10−2.5 ).
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Figure 35: Asymmetry of the wave profile at the end of integration interval: αξ

against α for z = 10−2 , w = 10−2.5 .
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6.2 Harmonic initial excitation

Solving the evolution equation (6.1) under harmonic initial conditions (6.3)2

the following results are obtained, which are concentrated on three cases of
different values of dispersion parameter z and micro-nonlinearity parameter w .
Also the comparison with the corresponding KdV cases is presented.

Figures 36 and 38 represent the time-slice plot and pseudocolour plot, re-
spectively, over two space periods in the KdV case for z = 10−0.5 , i.e., the
micro-nonlinearity is neglected. The corresponding plots for w = 10−0.9936 are
shown in Figures 37 and 39. The difference of these plotted patterns compared
to the KdV case can easily be observed. Similarly to the case of localised
initial conditions, the emerged solitons (Figure 40) are asymmetric as can be
seen from the phase plane, i.e., the (α, αξ)-plot, see Figure 41. This is a clear
sign of influence of the micro-nonlinearity.

For the next value of the dispersion parameter under consideration, z =
10−1.5 , it is again of interest to start with the case w = 0 which corresponds
to the standard KdV equation. Typically to the KdV case, from a harmonic
initial excitation a train of solitons will emerge (Figure 42). The interaction
picture is complicated but solitons preserve their shape and speed over long
time intervals. The soliton amplitudes fluctuate in the interval that is dictated
by the interaction rules [71, 72]. When the micro-nonlinearity (w = 10−2.6210 )
is taken into account the interaction pattern is altered, e.g., speeds of solitons
are higher compared with the KdV case (Figures 42, 43 and Figures 44, 45).
Again, like in the case of localised initial conditions, emerged solitons (Fig-
ure 46) are asymmetric, as shown in the phase plane (Figure 47) expressing
the influence of the micro-nonlinearity. The chosen time instant τ = 14.3
corresponds to the formation of the soliton train at given values of z and w .

Figures 48 and 50 represent the time-slice plot and pseudocolour plot, re-
spectively, over two space periods in the KdV case for z = 10−2.5 , i.e., the
micro-nonlinearity is neglected. The corresponding plots for w = 10−4.1775

are shown in Figures 49 and 51. When the micro-nonlinearity is taken into
account the interaction pattern is altered similarly to the case discussed just
above and the difference compared to the KdV case is clearly visible.

6.3 Comparison of analytical and numerical results

In order to compare the analytical results of Section 4 and the numerical results
of Section 6 one first needs to establish the relations between the different
sets of parameters used in the formulations of the extended KdV equation.
The extended Korteweg–de Vries equation has been presented in different, but
equivalent forms, see (3.32) and (6.1).
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τ

Figure 36: Time-slice plot over two space periods for KdV case, z = 10−0.5 , w = 0 .

 Spaceξ

τ

Figure 37: Time-slice plot over two space periods for z = 10−0.5 , w = 10−0.9936 .
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Figure 38: Pseudocolour plot over two space periods for KdV case, z = 10−0.5 , w = 0 .
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Figure 39: Pseudocolour plot over two space periods for z = 10−0.5 , w = 10−0.9936 .
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Figure 40: Initial harmonic wave (dashed line) and wave profile (solid line) at τ = 20.6
for z = 10−0.5, w = 10−0.9936 .
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Figure 41: Asymmetry of solitons: αξ against α at τ = 20.6 for z = 10−0.5, w =
10−0.9936 .
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τ

Figure 42: Time-slice plot over two space periods for KdV case, z = 10−1.5 , w = 0 .
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Figure 43: Time-slice plot over two space periods for z = 10−1.5 , w = 10−2.621 .
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Figure 44: Pseudocolour plot over two space periods for KdV case, z = 10−1.5 , w = 0 .
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Figure 45: Pseudocolour plot over two space periods for z = 10−1.5 , w = 10−2.6210 .

84



0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

1.5

2

 ξ
ξ

α

Figure 46: Initial harmonic wave (dashed line) and wave profile (solid line) at τ = 14.3
for z = 10−1.5, w = 10−2.621 .
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Figure 47: Asymmetry of solitons: αξ against α at τ = 14.3 for z = 10−1.5, w =
10−2.621 .
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Figure 48: Time-slice plot over two space periods for KdV case, z = 10−2.5 , w = 0 .

 Spaceξ

τ

Figure 49: Time-slice plot over two space periods for z = 10−2.5 , w = 10−4.1775 .
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Figure 50: Pseudocolour plot over two space periods for KdV case, z = 10−2.5 , w = 0 .
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Figure 51: Pseudocolour plot over two space periods for z = 10−2.5 , w = 10−4.1775 .
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Numerical calculations are performed on the basis of the equation (6.1),
which can also be written as

ατ +
s

2

(

α2
)

ξ
+ zαξξξ +

w

2

(

α2
ξ

)

ξξ
= 0. (6.4)

Apart from the coefficients this equation coincides with the version (3.32),
which forms the basis of the analytical treatment of the extended KdV equa-
tion. The two sets of coefficients are related by

s = γ2
N , z = 1 − γ2

1 , w = ǫγ2
M . (6.5)

The standardized form of the extended KdV equation (3.37) is obtained from
either (6.1) or (6.4) by the transformation formulas (3.36)

α =
6

γ2
N

(

1 − γ2
1

)1/3
q =

6

s
z1/3q, ξ =

(

1 − γ2
1

)1/3
x = z1/3x, τ = t. (6.6)

There is only one parameter left, namely the micro-nonlinearity parameter

ε =
ǫγ2

M

(1 − γ2
1
)γ2

N

=
w

sz
, (6.7)

cf. (3.38).
The standardized KdV equation, i.e., (3.37) with ε = 0 , admits solutions

that represent solitary waves, even solitons, of the form (2.2)

q = 2η2 sech2 η
(

x − 4η2t
)

. (6.8)

Both the amplitude 2η2 and the propagation speed 4η2 are related to the
width parameter η . Turning to the non-standardized KdV equation (6.4) with
w = 0 the soliton (6.8), by use of the transformation (6.6), is transformed to

α =
12

s
z1/3η2 sech2 ηz−1/3

(

ξ − 4η2z1/3τ
)

. (6.9)

Denoting the α-amplitude by A we have

A =
12

s
z1/3η2 or η = z−1/6

√

As

12
. (6.10)

Using the amplitude A rather than η as the primary parameter, the width
parameter and the propagation speed associated with the coordinate ξ are

ηz−1/3 =

√

As

12z
and 4η2z1/3 =

s

3
A, (6.11)
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respectively. Thus the standard KdV soliton satisfying (6.4) for w = 0 is

α(ξ, τ) = A sech2

√

As

12z

(

ξ − s

3
Aτ

)

, (6.12)

where A denotes the amplitude of the soliton. The profile α(ξ, 0) , with s = 1 ,
has been used in (6.3)1 as an initial condition for the extended KdV equa-
tion (6.4). At least qualitatively it seems that an asymmetric solitary wave
develops, followed by some small undulations.

The numerical results cannot be strictly compared with the approximate
or analytical solutions presented in Section 4. The latter are restricted to
the propagation of undistorted waves, while the numerics allows for arbitrary
time-dependent wave profiles. Nevertheless, one can try at least to match the
results.

It has been shown that the standardized extended KdV equation admits
solitary waves only if the micro-nonlinearity parameter ε and the wave num-
ber η satisfy the inequality (4.15). By inserting (6.7) and (6.10)2 one obtains

εη3 =
1

8
w
√

s

(

A

3z

)
3

2

≤ 1

16
(6.13)

or, finally,

w ≤ wmax =
1

2
√

s

(

3z

A

)
3

2

. (6.14)

The non-standardized extended KdV equation (6.4) admits solutions in the
form of asymmetric solitary waves only if its parameters s , z , w and the wave
amplitude A satisfy the inequality (6.14).

The numerical result depicted in Figure 35 is obtained from numerical in-
tegration using the parameters

s = 1, z = 0.01, w = 10−2.5 ≈ 0.00316. (6.15)

The simulation started with the amplitude A0 = 1 . When the asymmetric
solitary wave has fully developed the amplitude has dropped to A ≈ 0.95 .
According to (6.14), the maximum micro-nonlinearity parameter that permits
undistorted solitary waves would be

wmax ≈ 0.00281. (6.16)

The phase curve in Figure 35 suggests that the solitary wave corresponds to
a macro-nonlinearity close to the maximum value, because the trailing flank
is nearly a straight line. Actually the macro-nonlinearity parameter of the
numerical simulation is above the theoretical maximum. There can be several
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reasons for this effect. First it must be taken into account that the numerical
result does not represent an exact undistorted solitary wave. Rather there are
some undulations at its trailing flank. Secondly the numerical simulation is
performed on a finite ξ -interval using periodic boundary conditions. Periodic
waves, however, are still possible at values of the micro-nonlinearity above the
limit (6.14). Finally there is always some computational inaccuracy. The value
of w is at least not too far from the theoretical limit (6.16).

Also some other properties of the limiting solitary wave are reflected only
approximately by the numerical result. According to Figure 24, the maximum
and minimum values of αξ should be located at 2/3 of the amplitude, and the
downward slope should be twice the upward slope. Approximately this can
be realized in the numerical result Figure 35, although the maximum and the
minimum are not exactly at the same value of α . This might be again due to
the tail of the wave, which gives rise to the irregular behaviour of the phase
curve at the origin.

The second numerical example, see Subsection 6.2, starts from a harmonic
initial wave train and eventually develops a solitary wave extending below the
α-axis, see Figures 40 and 46. Therefore theory must be generalised to allow
for solitary waves with non-zero limits for ξ → ±∞ .

It can be proved that if α = α(ξ, τ) is some solution of the non-standardized
extended KdV equation (6.4), then the function

ᾱ(ξ, τ) = α0 + α(ξ − sα0τ, τ) (6.17)

is also a solution of (6.4) for any constant α0 . In the case of undistorted
waves, the wave profile is raised by the constant value α0 and the propagation
velocity is increased by sα0 . Correspondingly, for a negative value of α0 , the
wave profile is lowered and the propagation speed is reduced.

6.4 Concluding remarks

The evolution equation (6.1) that governs one-wave propagation in microstruc-
tured solids according to Mindlin’s model is derived and solved numerically
under localised and harmonic initial conditions. Analysis of numerical results
demonstrates that (i) for both the governing equation and the evolution equa-
tion nonlinearity in microscale leads to asymmetry of the wave profile [10, 68];
and (ii) the stronger the influence of micro-nonlinearity, the more the solutions
of the evolution equation (6.1) differ from those of the KdV model.

In conclusion, the derived evolution equation (6.1), notwithstanding that it
is a simplified model equation compared with the two-wave equation (3.21),
is able to grasp essential effects of microinertia and elasticity of a microstruc-
ture. The values of parameters used above, are chosen for the comparison
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with the standard KdV equation in order to demonstrate the influence of the
microstructure.

In general the solitary waves exhibit the qualitative and quantitative prop-
erties predicted by the analytical results.
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7 Conclusion

This thesis focuses on wave propagation in microstructured solids with the
main aim to analyse dynamical properties of 1D microstructured solids as
described by a Mindlin-type model.

Materials used nowadays in highly developed engineering applications are
often characterised by their complex structure satisfying many requirements
in practice. This concerns ceramic composites, alloys, polycrystalline solids,
functionally graded materials, etc. The continua (materials) we are focused
on, contain irregularities with one or more internal scales and therefore the
notion “microstructured materials” is used. The complex dynamic behaviour
of such materials cannot be explained by the classical theory of continua.

The embedding of a microstructure in an elastic material is reflected in an
inherent length scale causing dispersion of propagating waves. The scale de-
pendence involves dispersive effects as shown already in [2]. Nonlinear effects,
if taken into account, will counteract dispersion. A suitable balance of non-
linearity and dispersion may permit the propagation of solitary waves. The
Korteweg–de Vries equation describes how waves evolve under these two com-
peting but comparable effects. Examples of nonlinear and dispersive behaviour
of solid materials are provided by Samsonov [75] who has verified experimen-
tally and explained theoretically the existence of solitary waves in solids, see
also Porubov [76, 77] and the extensive literature cited therein. However, be-
sides the solitary waves the KdV equation admits a whole family of periodic
solutions, the so-called cnoidal waves [30], of which the solitary wave is just
the limit if the period tends to infinity. It should be stressed that both solitons
and cnoidal waves propagate without distortion, while in general, solutions of
the KdV equation represent waves changing their shape during propagation.

A linear theory of microstructured solids has been proposed by Mindlin [1]
in 1964. Mindlin’s model has recently been extensively studied [9, 59, 61],
mostly in the 1D setting which explicitly explains the main features of the
process. It has been shown that such modelling describes well the influence
of microstructure on dispersion and the existence of wave hierarchies. The
model permits, for example, to understand the emergence of solitary waves in
microstructured materials, both analytically [10] and numerically [73, 74]. In
addition, there is a wide area of possible applications in nondestructive testing
by solving the corresponding inverse problem for determining the material
properties [62, 78].

The model equation, in studies mentioned above, in the 1D case is a typical
hierarchical wave equation with the leading operator of the 2nd order and the
higher-order operators describing the influence of the microstructure [59, 61].
This is the two-wave equation, i.e., it describes waves propagating in two di-
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rections. The powerful analytic methods [63] show explicitly how in this case
evolution equations could be derived that govern the propagation of one wave
only. The best example of such an evolution equation is the celebrated KdV
equation. If we are interested in wave propagation along a certain coordinate
without reflection from boundaries then the concept of evolution equations is
preferable. However, the transformations from a two-wave model to an evolu-
tion equation should bring over all the essential features that could influence
the velocities or the distortions of the wave profile.

The main result of the thesis is derivation and analysis of the extended KdV
equation as the evolution equation of waves propagating in microstructured
solids. More specifically, the results are as follows:

Evolution equation

• For the nonlinear MEP model an evolution equation has been derived,
which describes the slow change of the profile of a wave propagating in
one direction with the basic propagation speed c̄ . In the special case of
the linear system it is shown that the same evolution equation is obtained
from both the full and the reduced equation.

• The evolution equation has the form of an extended KdV equation, in
which the additional term originates from the micro-nonlinearity of the
original system of equations. If this is neglected the evolution equation
is reduced to the standard KdV equation.

• The coefficients of the evolution equation can be traced back to the ma-
terial parameters of the model. Moreover, the evolution equation can be
standardised by rescaling the moving space and time coordinates such
that there is only a single dimensionless parameter ε left. It is a mea-
sure for the influence of the micro-nonlinearity compared to the combined
effects of dispersion and macro-nonlinearity.

Undistorted waves

• The evolution equation describes the slow change in time of an arbitrary
wave profile. There exist special wave profiles whose shape does not
change in time. This constant profile may still move slowly relative to
the frame travelling at the basic propagation speed c̄ . The undistorted
waves are solutions of a nonlinear ordinary differential equation derived
from the evolution equation by a wave ansatz.
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Existence of solitary waves

• Special emphasis has been put on solitary waves. In contrast to peri-
odic waves, solitary waves are localised, i.e., outside some moving space
interval they fade away rapidly.

• By discussing the properties of the phase curves it is shown that, in the
case of the extended KdV equation, solitary waves exist if the micro-
nonlinearity parameter ε does not exceed some maximum value εmax

which depends on the width parameter η . This confirms a result of
Janno and Engelbrecht.

Approximate and exact solutions representing solitary waves

• The nonlinear evolution equation as an extended KdV equation is solved
approximately by a series expansion in a small parameter representing
the micro-nonlinearity. Already the first approximation indicates the
asymmetry of the solitary waves.

• In the limiting case ε = εmax the phase curve degenerates into a semi-
ellipse and a straight line. This makes it possible to get an exact ana-
lytical solution representing the corresponding solitary wave. Since this
solution is available just for the “worst” case, the quality of the approxi-
mate solutions can be assessed.

Generalisation to periodic waves

• The classical sech2 soliton can be considered as the long-wave limit of the
cnoidal waves. In the same way the asymmetric solitary waves governed
by the extended KdV equation are the limits of periodic wave trains
when their wave length tends to infinity.

• Periodic waves emerging from the cnoidal waves of the KdV equation are
studied using the same perturbation procedure as for the solitary waves.
Compared with the cnoidal waves, these more general periodic waves are
asymmetric, i.e., inclined to the direction of propagation.

• The behaviour of the periodic waves is also studied in the phase plane.
They are represented by regular orbits, along which the representative
point circles once per wave length. As the wave length tends to infinity
the phase curve, now representing a solitary wave, develops a saddle
point.
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Numerical solutions of the evolution equation

• While all the analytical results mentioned above are related to undis-
torted waves some numerical calculations have been performed with the
evolution equation as a partial differential equation. The evolution equa-
tion is integrated numerically both under harmonic and localised initial
conditions making use of the pseudospectral method.

• From both initial conditions solitary waves develop, followed by some
disturbances. Analysis of numerical results demonstrates that (i) for
both the governing equation and the evolution equation nonlinearity in
microscale leads to asymmetry of the wave profile; and (ii) the stronger
the influence of micro-nonlinearity, the more the solutions of the evolution
equation differ from those of the KdV model.

• In general the solitary waves exhibit the qualitative and quantitative
properties predicted by the analytical results.

Further prospects

Wave propagation in microstructured materials is an attractive research topic
which opens a wide field of further studies. The results presented in this thesis
do not give a complete picture of the wave propagation in microstructured
materials. Even if the basic idea of the MEP model is kept there remains a lot
of open questions which could be studied in the future. Among them are the
following points, which might be of special interest:

• To compare solutions of the original system of partial differential equa-
tions with the solutions of the evolution equation at fixed values of the
material parameters to justify the application of the reductive perturba-
tion method.

• To find a physical interpretation of the model parameters A , B , C , etc.
in terms of the mechanical and geometrical properties of the microstruc-
tured material.

• Generalisation of the model to two (and three) dimensions. Representa-
tion of the corresponding constitutive equations for isotropic microstruc-
tured materials or materials with specified anisotropy. Also, to find pos-
sible applications in nondestructive testing.

• If applied to the linear model, the evolution equation is related to the
acoustical branch of the dispersion diagram. There should be also a
corresponding evolution equations related to the optical branch. Does
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its nonlinear version also allow solitary waves and, if so, what is their
relevance?

• Are there exact solutions of the original system representing solitary
waves? If so, how good is the coincidence with the approximate theory
using the evolution equation?

• For the KdV equation the interaction of two (and more) solitons can
be described analytically. Can one analyse the interaction of two asym-
metric solitary waves governed by the extended KdV equation at least
approximately?
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Abstract

The focus of the thesis is on wave propagation in microstructured solids. The
main aim of the investigation is to analyse dynamical properties of 1D mi-
crostructured solids as described by a Mindlin-type model. The embedding of
a microstructure in an elastic material is reflected in an inherent length scale
causing dispersion of propagating waves. Nonlinear effects, if taken into ac-
count, will counteract dispersion. A suitable balance between nonlinearity and
dispersion may permit the propagation of solitary waves.

Using the reductive perturbation method, for the nonlinear Mindlin–Engel-
brecht–Pastrone model an evolution equation is derived, which describes the
slow change of the profile of a wave propagating in one direction with the basic
propagation speed. This evolution equation enlarges the class of the KdV-type
equations by including two types of nonlinearities. In the special case of the
linear system it is shown that the same evolution equation is obtained from
both the full and the reduced equation.

The nonlinear evolution equation as an extended Korteweg–de Vries equa-
tion is solved approximately by a series expansion in a small parameter repre-
senting the micro-nonlinearity. Already the first approximation indicates the
asymmetry of the solitary waves. It is shown that solitary waves will propagate
only if the micro-nonlinearity does not exceed some upper bound. For the lim-
iting case, an analytical solution of the extended Korteweg– de Vries equation
can be provided and used as a reference for the approximate solutions.

The classical sech2 soliton can be considered as the long-wave limit of the
cnoidal waves. In the same way the asymmetric solitary waves governed by the
extended KdV equation are the limits of periodic wave trains when their wave
length tends to infinity. Periodic waves emerging from the cnoidal waves of the
KdV equation are studied using the same perturbation procedure as for the
solitary waves. Compared with the cnoidal waves, these more general periodic
waves are asymmetric, i.e., inclined to the direction of propagation.

The evolution equation is integrated numerically both under harmonic and
localised initial conditions making use of the pseudospectral method. It is
demonstrated that the derived evolution equation is able to grasp essential
effects of microinertia and elasticity of a microstructure. The influence of these
effects can result in the emergence of asymmetric solitary waves. In general
the solitary waves exhibit the qualitative and quantitative properties predicted
by analytical results.

Main results of the thesis have been summarised in seven presentations, five
of them at international conferences. Also the results have been published in
six academic papers, four of them in journals indexed by ISI Web of Science.
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Kokkuvõte

Doktoritöö käsitleb lainelevi mikrostruktuuriga tahkistes. Töö põhieesmärk
on analüüsida mikrostruktuuriga materjalide dünaamilisi omadusi ühedimen-
sioonilisel juhtumil, kasutades Mindlini tüüpi mudelit. Mikrostruktuur elast-
ses materjalis kui materjali sisemine skaala põhjustab selles materjalis levivate
lainete dispersiooni. Mittelineaarsete efektide mõju on aga seotud katkevuste
tekkega, st profiili järsenemisega. Dispersiooni- ja mittelineaarsete efektide
tasakaalu korral on võimalik üksiklainete levi.

Asümptootilise häiritusmeetodi abil on tuletatud mittelineaarsele Mindlini–
Engelbrechti–Pastrone mudelile vastav evolutsioonivõrrand, mis kirjeldab põ-
hikiirusega liikuva laineprofiili aeglast muutumist ajas. See evolutsioonivõr-
rand laiendab tuntud KdV-tüüpi võrrandite klassi, sisaldades kahte tüüpi mit-
telineaarseid liikmeid. Lineaarsel juhtumil on näidatud, et nii täisvõrrand kui
aproksimeeritud hierarhiline võrrand viivad identsete evolutsioonivõrranditeni.

Mittelineaarne evolutsioonivõrrand kui üldistatud Kortewegi–de Vriesi võr-
rand on lahendatud ligikaudselt, kasutades rittaarendust mikrotasandi mitte-
lineaarsust iseloomustava väikese parameetri järgi. Juba esimest järku lähen-
dus osutab üksiklaine profiili ebasümmeetriale. Ilmneb, et üksiklaineline la-
hend eksisteerib vaid siis, kui mikro-mittelineaarsus ei ületa teatavat ülemist
piiri. Nimetatud piirjuhtumil on saadud üldistatud KdV-võrrandile täpne la-
hend, mille põhjal on võimalik hinnata, kui head vastavad ligikaudsed lahendid
on.

Klassikalisi sech2 -solitone võib vaadelda kui lõpmatusele läheneva laine-
pikkusega knoidaalseid laineid. Samuti on ebasümmeetrilised üksiklained kui
üldistatud KdV-võrrandi lahendid vaadeldavad lõpmatusele läheneva laine-
pikkusega perioodiliste lainetena. Knoidaalsete lainetega võrreldes on üldis-
tatud KdV-võrrandi perioodilistel lahenditel vastavalt liikumise suunale pro-
fiili esikülg järsema kaldega kui tagumine. Selgub, et mittelineaarse lisaliikme
mõju perioodilistele lahenditele on samasugune kui üksiklainelisele lahendile,
põhjustades laineprofiili ebasümmeetria.

Evolutsioonivõrrand on lahendatud numbriliselt lokaliseeritud ja harmoo-
niliste algtingimuste korral, rakendades pseudospektraalmeetodit. Tulemuste
analüüs näitab, et evolutsioonivõrrand säilitab endas olulised mikrostruktuuri
efektid, nagu mikroinerts ja elastsus. Nende efektide koosmõjul saavad tekkida
ebasümmeetrilised üksiklained. Üldiselt langevad numbrilise analüüsi tule-
mused nii kvalitatiivselt kui kvantitatiivselt kokku analüütiliste tulemustega.

Töö põhitulemusi on esitletud seitsmes ettekandes, millest viis rahvusvahe-
listel konverentsidel, ja avaldatud kuues teadusartiklis, millest neli on ilmunud
rahvusvaheliselt tunnustatud erialaajakirjades (indekseeritud ISI Web of Sci-
ence’i poolt).
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Abstract

The Mindlin-type model is used for describing the longitudinal deformation waves in microstructured solids. A simpli-
fied hierarchical model is derived in one-dimensional setting which is a two-wave equation. In addition, the evolution
equations (one-wave equations) are derived for both the full and simplified models. It is shown that the simplified model
as well as evolution equations grasp main effects of dispersion in a wide range of physical parameters.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Dispersion; Microstructure; Hierarchy of waves

1. Introduction

In contemporary materials science and structural mechanics much attention is given to microstructured
materials possessing internal scales. Microstructured materials like alloys, crystallites, ceramics, functionally
graded materials, etc have gained wide application in modern technology because combining the mechanical
properties of different constituencies as in functionally graded materials or composites yields better (optimal)
properties of solids. Very often they are used in severe loading conditions including impact, which means gen-
eration of stress/deformation waves. The modelling of wave propagation in such materials should be able to
account for various scales of microstructure. The scale dependence involves dispersive effects and if in addition
the material behaves nonlinearly then dispersive and nonlinear effects may be balanced. As widely known, in
this case solitary waves may emerge as a result of such a balance.

Clearly the classical theory of continuous media is not able to describe the influence of microstructure
which is needed for explain dispersive and dissipative effects. There are many studies in this field, starting from
the papers of Mindlin [1] and Eringen [2] several decades ago. Now we have a solid theoretical background,
see for example [3,4], but another problem has arisen: the governing equations tend to be rather complicated
and the number of material parameters needed to describe the stress field, is rather high. Therefore there is an
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urgent need to find simplified governing equations but the physical effects should still be described with the
needed accuracy.

The problem is not only in the mathematical complexity of governing equations but also in the number of
waves. If in the linear theory, for example, longitudinal and shear waves can be easily separated then in the
nonlinear theory the coupling can affect both waves considerably. In a general case of a complicated system
of equations the main question is to understand to which wave which physical effects are related both quan-
titatively and qualitatively.

One of the possibilities to overcome such difficulties in contemporary mathematical physics is to introduce
the notion of evolution equations governing just one single wave. Physically it means the separation (if pos-
sible) of a multi-wave process into separate waves. The waves are then governed by the so-called evolution
equations every one of which describe the distortion of a single wave along a properly chosen characteristics
(ray).

In this paper the attention is focused to the analysis of dispersion described by Mindlin-type models [1].
Engelbrecht et al. [5,6] have derived the one-dimensional mathematical model for longitudinal waves in micro-
structured materials. Based on the separation of macro- and microstructure of a material, this model is char-
acterised by a clear physical structure of the governing equation. The analysis of the full-dispersion relation of
this model compared with others is briefly presented in [5] (see also references therein). Our question here is the
following: if we use asymptotic methods to simplify the model then can we describe still the physics with
acceptable accuracy? We shall use two asymptotic approaches: (i) the slaving principle [7] in order to get a
hierarchical asymptotic Whitham-type model from the basic one and (ii) the perturbative reduction method
[8,9] in order to get evolution equations. Although nonlinearity is an important factor, here we deal only with
dispersive effects and nonlinear waves will be analysed in our further publications.

The paper is organized as follows: the basic model following [5,6] is presented in Section 2. In Section 3, the
asymptotic models are derived following two approaches resulting in a hierarchical simplified equation and in
evolution equations. Section 4 is devoted to the dispersion analysis of the basic and the simplified models. In
Section 5, final remarks are presented. It has been shown that the simplified model as well as evolution equa-
tions grasp main effects of dispersion in a wide range of physical parameters.

2. Basic model

The basic model is that of Mindlin [1] and we follow the presentation of that in [5,6]. The main idea is to
distinguish between macro- and microdisplacements ui(xi,t) and u0jðx0i; tÞ, respectively. Assuming that microdis-
placement is defined in coordinates x0k moving with microvolume, we define

u0j ¼ x0kukjðxi; tÞ; ð1Þ

where ukj is an arbitrary function. It is clear that actually it is microdeformation while

ou0j=ox0i ¼ o
0
iu
0
j ¼ uij: ð2Þ

Further we consider the simplest 1D case and drop the indices i and j.
Now the fundamental balance laws can be formulated separately for macroscopic and microscopic scales.

Introducing the Lagrangian L = K �W, formed from the kinetic and potential energies

K ¼ 1
2
qu2

t þ 1
2
Iu2

t

W ¼ W ðux;u;uxÞ;

�
ð3Þ

where q and I denote the macroscopic density and the microinertia, respectively, we can derive the correspond-
ing Euler–Lagrange equations:

oL
out

� �
t
þ oL

oux

� �
x
� oL

ou

� �
¼ 0

oL
out

� �
t
þ oL

oux

� �
x
� oL

ou

� �
¼ 0:

8><
>: ð4Þ

Here and further, the indices x and t denote differentiation.
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The partial derivatives

r ¼ oW =oux; g ¼ oW =oux; F ¼ oW =ou ð5Þ

are recognized as the macrostress, the microstress and the interactive force, respectively.
The equations of motion are now

qutt ¼ rx; Iutt ¼ gx � F : ð6Þ

The simplest potential energy function describing the influence of a microstructure is a quadratic function

W ¼ 1

2
au2

x þ Auux þ
1

2
Bu2 þ 1

2
Cu2

x ; ð7Þ

where a, A, B, C denote material constants. Introducing Eq. (7) into Eq. (5) we get finally

qutt ¼ auxx þ Aux

Iutt ¼ Cuxx � Aux � Bu:

�
ð8Þ

This is the governing system of two second-order equations that can also be represented in the form of one
fourth-order equation

utt ¼ ðc2
0 � c2

AÞuxx � p2ðutt � c2
0uxxÞtt þ p2c2

1ðutt � c2
0uxxÞxx; ð9Þ

where material parameters

c2
0 ¼ a=q; c2

1 ¼ C=I ; c2
A ¼ A2=qB; p2 ¼ I=B ð10Þ

are introduced. The parameters c0, c1, cA are velocities while p is a time parameter. This is the basic linear
equation governing 1D longitudinal waves in microstructured solids.

3. Approximations

3.1. Slaving principle

This idea (see [7]) is used in [5,9] for deriving a hierarchical asymptotic model starting from Eq. (9). It is
supposed that the inherent length-scale l is small compared with the wavelength L of the excitation. The fol-
lowing dimensionless variables and parameters are introduced

U ¼ u=U 0; X ¼ x=L; T ¼ c0t=L; d ¼ ðl=LÞ2; e ¼ U 0=L; ð11Þ

where U0 is the amplitude of the excitation. In addition, it is assumed that I = ql2I* and C = l2C*, where I* is
dimensionless and C* has the dimension of stress.

Next, the system Eq. (8) is rewritten in its dimensionless form and the slaving principle [7] is applied. It is
supposed that

u ¼ u0 þ du1 þ d2u2 þ � � � : ð12Þ

The dimensionless form of Eq. (8b) yields

u ¼ �e
A
B

UX �
d
B
ðaI�uTT � C�uXX Þ ð13Þ

from which the successive terms

u0 ¼ �e
A
B

UX ; u1 ¼ e
A

B2
aI�U XTT � C�U XXXð Þ; . . . ð14Þ

of the expansion Eq. (12) are obtained. Inserting them into Eq. (8a) in its dimensionless form, we finally get

UTT ¼ 1� c2
A

c2
0

� �
U XX þ

c2
A

c2
B

U TT �
c2

1

c2
0

UXX

� �
XX

; ð15Þ
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where c2
B ¼ L2=p2 ¼ BL2=I . Note that cB involves the scales L and l and cA includes the interaction effects

through the parameter A. Eq. (15) is valid up to O(d) because higher order terms are neglected. In addition,
in general e� d2.

Now it is possible to restore the dimensions in order to compare the result with Eq. (9). Eq. (15) yields

utt ¼ ðc2
0 � c2

AÞuxx þ p2c2
Aðutt � c2

1uxxÞxx: ð16Þ

This is an example of the Whitham-type [10] hierarchical equation.
The dimensionless form of the basic linear Eq. (9) is

U TT ¼ 1� c2
A

c2
0

� �
UXX �

c2
0

c2
A

dbUTTTT þ
c2

0

c2
A

þ c2
1

c2
A

� �
dbUXXTT �

c2
1

c2
A

dbU XXXX ; ð17Þ

where db ¼ c2
A=c2

B.

3.2. Evolution equations

Another idea to simplify the model is to use instead of the two-wave equation (16) an evolution equation
that describes just one wave [8,9].

Here we follow [9] and apply the asymptotic (reductive perturbation) method. We can represent Eq. (15) in
the matrix form

I
oV

oT
þ eA oV

oX
þ eB o

3V

oToX 2
þ eC o

3V

oX 3
¼ 0; ð18Þ

where

V ¼
oU=oT

oU=oX

� �
ð19Þ

and I ; eA; eB and eC are following matrices

I ¼
1 0

0 1

� �
; eA ¼ 0 �ð1� n2Þ

�1 0

� �
;

eB ¼ �db 0

0 �1

� �
; eC ¼ 0 dbm2

1 0

� �
;

where

n2 ¼ c2
A=c2

0 6¼ 1; m2 ¼ c2
1=c2

0: ð20Þ

It is possible to develop vector V into the power series in a small parameter

V ¼ V0 þ eV1 þ e2V2 þ � � � ¼
X
i¼0

eiVi: ð21Þ

The space-space transformation is used:

n ¼ cT � X

s ¼ eX ;

�
ð22Þ

i.e.

fX ; Tg ! fn; sg; ð23Þ
where c ¼ 1� A2

aB

� �1=2

¼ 1� c2
A

c2
0

� �1=2

.

According to the asymptotic method [9] we get the sequence of equations of various powers in e. Assuming
that e and d are small parameters of the same order, we get finally the approximate linear evolution equation in
the form
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oa
os
þ dðc� bc2Þ

2ec2

o3a

on3
¼ 0; ð24Þ

where b ¼ A2I�

B2 ; c ¼ A2C�

aB2 and a ¼ oU
oT ¼ �c oU

oX is the unknown amplitude factor.
Similarly, applying the asymptotic method [9] for the basic linear Eq. (17) we first represent it in the matrix

form

I
oV

oT
þ eA oV

oX
þ eD o

3V

oT 3
þ eE o

3V

oToX 2
þ eF o

3V

oX 3
¼ 0; ð25Þ

where I ; eA; eD; eE and eF are following matrices

I ¼
1 0

0 1

� �
; eA ¼ 0 �ð1� n2Þ

�1 0

� �
;

eD ¼ 1
n2 db 0

0 0

� �
; eE ¼ � 1

n2 dbþ n2
1db

� �
0

0 �1

� �
;

eF ¼ 0 n2
1db

1 0

� �
;

where

n2
1 ¼ c2

1=c2
A; ð26Þ

and write the evolution equation in the form

oa
os
þ dðc� bc2Þ

2ec2

o
3a

on3
¼ 0: ð27Þ

This means, that the approximate Eq. (15) and the basic Eq. (17) yield the evolution equations in the same
form, see Eqs. (24) and (27). Consequently, using the idea of evolution equations there is no difference whether
we begin the derivation from the basic Eq. (17) with the addition term UTTTT or from the approximate Eq.
(15) with terms UXXTT and UXXXX. However, note that the parameters of Eqs. (15) and (16) are different.

The character of dispersion in the case of microstructured materials is analysed in [5] on the basis of the
approximate Eq. (15). It has been shown that both of the effects – inertia of the microstructure (described
by term UTTXX) and elasticity of the microstructure (described by term UXXXX) have influence on dispersive
relations and corresponding dispersion curves. If only inertia of the microstructure (term UTTXX) is taken into
account then the dispersion curve is concave, if only elasticity of the microstructure (term UXXXX) is taken into
account then the dispersion curve is convex. With both terms (double dispersion) the curve tends from one
asymptote to another.

In the case of the evolution equation these two effects are described by a single term (term annn) but the sign
of this term (the sign of its coefficient) depends on the ratio of the double dispersion effects.

It is possible to conclude that in case of c > bc2 (elastic effects prevailing) the dispersion curve is convex and
in case of c < bc2 (inertial effects prevailing) the dispersion curve is concave. So the evolution equation keeps
the main characteristics of the process. In case of c � bc2 = 0 there is no microstructure and the dispersion
curve is linear, as expected.

4. Dispersion analysis

4.1. Dispersion relations

Internal scales of microstructured solids lead to dispersive effects. This is also quite clear from the governing
equations derived in previous sections. The presence of higher-order derivatives in the governing equations
indicates dispersion.

In order to derive dispersion relations, we assume the solution in the form of a wave
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uðx; tÞ ¼ û exp ½iðkx� xtÞ�; ð28Þ

with wave number k, frequency x and amplitude û.
Introducing Eq. (28) into Eq. (9) the dispersion relation

x2 ¼ ðc2
0 � c2

AÞk2 þ p2ðx2 � c2
0k2Þðx2 � c2

1k2Þ ð29Þ

is obtained.The parameters involved are a time constant p and three characteristic velocities c0,c1,cA. Instead
of cA the velocity c2

R ¼ c2
0 � c2

A could be introduced as a parameter, since it has an obvious meaning for the
given wave process. Waves of very low frequencies (x� p�1) propagate at the velocity cR. The auxiliary veloc-
ity cA does not occur explicitly as a limit velocity. The phase speed of the wave is defined as cp = x/k and can
be obtained directly from the dispersion relation.

In order to reduce the number of independent variables we normalise the wave number, the frequency and
the relative propagation speeds defining

j ¼ pc0k; g ¼ px; n ¼ cA=c0; m ¼ c1=c0: ð30Þ

Using these new quantities the full-dispersion relation (29) assumes the form

g2 ¼ ð1� n2Þj2 þ ðg2 � j2Þðg2 � m2j2Þ: ð31Þ

The dimensionless phase speed is defined as cp = cp/c0 = g/j.
For convenience we also use the parameter c = cR/c0 = (1 � n2)1/2 (see Eq. (22)).
In the same way, the approximate differential equation (16) yields the dispersion relation

x2 ¼ ðc2
0 � c2

AÞ � p2c2
Aðx2 � c2

1k2Þk2: ð32Þ

Introducing Eq. (30) into Eq. (32) we obtain

g2 ¼ ð1� n2Þj2 � n2ðg2 � m2j2Þj2: ð33Þ

4.2. The range of parameters

The numerical simulation is done with the dimensionless Eqs. (31) and (33) and with the dimensionless
parameters n and m. Since c2 = 1 � n2 then n < 1, which makes physically sense because the velocity c0 is inter-
preted as the maximum possible velocity. Therefore also m < 1.

We also assume that n 5 m 5 0. If n = 0 then also A = 0 and then the governing Eq. (8) will have the form
where there is no interaction between the macro- and the microstructure.

Therefore we will consider the parameters in the following ranges

0 < n < 1; 0 < m < 1: ð34Þ

4.3. The results

The characteristic dispersion curves are shown in Fig. 1 from which the following can be concluded. The
full-dispersion relation (31), which is represented by the continuous lines, represents two branches which in
general are distinct. The upper, or ‘optical’ branch starts at g = 1 with zero slope and in the short wave limit
the branch asymptotically approaches to the line g = j. Lower, or ‘acoustical’, branch starts at the origin with
a slope g = cj and in the short wave limit the branch approaches to the asymptotic line g = mj. Here the dot-
ted lines show asymptotic values.

The approximate dispersion relation (33), which is represented by the dashed line, provides an approxima-
tion of the acoustical branch only.

It is clear that the dispersion relations (31) and (33) differ and our intention is to analyse the ranges of
parameters where the results coincide. This is dictated by the values of parameters n and m. Fig. 2 illustrates
the ranges of the parameters where the values obtained from the both relations agree within 5% error (the area
between the dashed lines) and within 10% error (the area between the continuous lines) at the point j = 1.5.
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The ranges for other values of j behave similarly , only for j > 1.5 the area of good agreement is narrower and
for j < 1.5 the area is wider.

Fig. 3 shows an example where the approximate dispersion relation (33) agrees very well with the full-dis-
persion relation (31). In Fig. 3a, cR < c1 and in Fig. 3b, cR > c1. The continuous lines correspond to the full and
the dashed lines to the approximate dispersion relation.

Figs. 4 and 5 are examples of the combination of the parameters where the approximate Eq. (33) and the
full-dispersion relation (31) do not coincide well. Fig. 4 is an example of m < 1, but not in a good approxima-
tion range (see Fig. 2). The continuous line corresponds again to the full and the dashed line to the approx-
imate dispersion relation.

This result can be understood by examining the approximate dispersion relation (33). The strength of the
second term in the approximate dispersion relation depends on the parameter n and if parameter n is close to 0
then the influence of the second term is diminished.

Fig. 5 is an example of the situation when c1 becomes larger than c0 (m > 1). Now the behaviour of the dis-
persion curves is changed. The full-dispersion relation (31) (represented by the continuous lines) still represents

Fig. 2. The ranges of parameters. See explanation in the text.

Fig. 1. The characteristic dispersion curves (n = 0.9, m = 0.7). See explanation in the text.
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two branches but now the upper branch approaches to the asymptotic line g = mj. Lower branch starts with a
slope g = cj and in the short wave limit it approaches to the asymptotic line g = j.

The approximate relation (33) (represented by the dashed line) also starts with a slope g = cj, but in the
short wave limit it approaches the asymptotic line g = mj and does not approach the acoustical branch.

5. Final remarks

Mindlin [1] has derived the dispersion relations for long wave-length (and very long wave-length) approx-
imation and shown a similarity of dispersive effects with those in plates. While Mindlin [1] has used a concept
of unit cells embedded in a surrounding medium, then many materials, especially composites, have clearly a
defined layered structure. Sun et al. [12,13] have shown that an effective stiffness theory can be derived for
describing waves in layered media. Actually, their result is a continuum [13] that bears clear resemblance to
Mindlin’s material, especially in a 1D case. It has also been shown that gradient elasticity theories [14] need
both elastic and inertial effects to be taken into account. This shows again validity of the Mindlin idea. In addi-

Fig. 3. The behaviour of the acoustic branches (a) n = 0.9, m = 0.8, (b) n = 0.5, m = 0.6. See explanation in the text.

Fig. 4. The behaviour of the dispersion curves (n = 0.2, m = 0.3). See explanation in the text.
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tion, the functionally graded materials (FGMs) which are widely used in contemporary technology [15], can be
described by the Mindlin theory and the corresponding models presented above. The straight-forward numer-
ical calculation of wave fields in FGMs [16] has shown explicitly the influence of microstructure for velocities
as predicted by Mindlin-type models.

Here, we have derived hierarchical Mindlin-type models (Eqs. (9) and (16)) which describe well dispersive
effects. In the wide range of parameters (see Fig. 2), the hierarchical asymptotic model is sufficient for grasping
the real behaviour. The hierarchical model itself is certainly simpler and well-grounded physically. In addition,
its similarity to discrete models [11] permits to bridge both types (continuous and discrete) models although
some deeper analysis is needed in order to clarify the relations of model parameters. The full model (Eq. (9))
and its approximation (Eq. (16)) yield the same type of the evolution equation (cf. Eqs. (24) and (27)). This is
not surprising because the proper scaling should lead to a result where the leading properties are accounted
for. Even more, the evolution equation obtained in such a way shows clearly that for a homogeneous material
(no microstructure) the dispersive effects disappear (here c = bc2, i.e. c1 = c). In addition the convexity or con-
cavity of the dispersion curve derived for cases c 5 bc2 depends clearly upon the influence of the material
parameters. When in the microstructure elastic effects are stronger then c > bc2 and the dispersion curve is
convex. When however the inertial effects in the microstructure are prevailing then c < bc2 and the dispersion
curve is concave. The same effect follows from the analysis of full models.

This result is important even qualitatively for Nondestructive Testing (NDT). The concavity/convexity of
the dispersion curve shows explicitly the influence of the basic material properties.

The main results of this paper shows that the asymptotic models, both hierarchical two-wave equation (15)
(or (17)) and evolution equation (24) (or (27)) are able to grasp dispersive effects in microstructured solids
within the wide range of parameters. As said in Section 1, the further studies should introduce nonlinearities
like Pastrone [17].
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Abstract. The Mindlin-type model is used for describing the longitudinal deformation waves in microstructured solids. The
evolution equation (one-wave equation) is derived for the hierarchical governing equation (two-wave equation) in the nonlinear
case using the asymptotic (reductive perturbation) method. The evolution equation is integrated numerically under harmonic as
well as localized initial conditions making use of the pseudospectral method. Analysis of the results demonstrates that the derived
evolution equation is able to grasp essential effects of microinertia and elasticity of a microstructure. The influence of these effects
can result in the emergence of asymmetric solitary waves.

Key words: nonlinear wave motion, microstructure, hierarchy of waves, evolution equations.

1. INTRODUCTION

In general terms, macrobehaviour of materials depends
on properties of the material structure. This is
extremely important in contemporary materials science
where functionally graded materials, alloys, ceramics,
composites, granular materials, etc. are widely used.
Proper modelling brings in the scales and hierarchies [6],
and the conventional theory of continuous homogeneous
media should be considerably enlarged [2,4,11]. The
scale dependence involves dispersive effects as shown
already in [19]. The hierarchical behaviour in the
Whitham sense means that, depending on the ratio
of wave characteristics (wavelength) to scales in the
material (characteristic scale of a microstructure), the
weight of wave operators will be shifted from one to
another [21].

One of the ideas to describe the effects of the
microstructure is based on Mindlin’s model [12]. This
model has recently been extensively studied [2,3],
mostly in the 1D setting which explicitly explains
the main features of the process. It has been shown
that such modelling describes well the influence of
the microstructure on dispersion and the existence of
hierarchies [2,3]. The model permits, for example,
understanding the emergence of solitary waves in

microstructured materials, both analytically [9] and
numerically [17,18]. In addition, there is a wide area of
possible applications in nondestructive testing by solving
the corresponding inverse problem for determining the
material properties [8,10].

Our final interest is to analyse 2D problems.
However, a common approach when solving multi-
dimensional hyperbolic problems is to apply dimensional
splitting, i.e., to iterate on 1D problems and to understand
the accuracy of possible approximations.

The model equation in the studies mentioned above
is in the 1D case a typical hierarchical wave equation
with the leading operator of the 2nd order and the
higher-order operators (4th, 6th orders) describing the
influence of the microstructure [2,3]. This is the two-
wave equation, i.e., it describes waves propagating in
two directions. The powerful analytic methods [20]
show explicitly how in this case evolution equations
that govern the propagation of one wave only could be
derived. The best example of such an evolution equation
is the celebrated Korteweg–de Vries (KdV) equation.
The evolution equations may also include hierarchies
like in granular materials [7]. If we are interested in
wave propagation along a certain coordinate without

∗ Corresponding author, merler@cens.ioc.ee
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reflection from boundaries, then the concept of evolution
equations is preferable. However, the transformations
from a two-wave model to an evolution equation should
bring over all the essential features that could influence
the velocities or the distortions of the wave profile. It is of
great interest to understand how the hierarchies in basic
Mindlin-type models are reflected in the corresponding
evolution equations and how the solutions describe the
dispersive effects. It must be stressed that once we use
nonlinear models, the balance between nonlinearity and
dispersion is of interest.

The main goals of the present paper are (i) to
derive the evolution equation that governs one-wave
propagation for Mindlin’s model; (ii) to find numerical
solutions to the evolution equation, and (iii) to compare
the results with those of the two-wave equation.

2. BASIC MODEL AND THE EVOLUTION
EQUATION

One-dimensional wave propagation in a microstructured
material has been studied by Engelbrecht et al. [1–3]
on the basis of Mindlin’s model [12], augmented by
nonlinear terms. The motion is described by two scalar
functions, the macrodisplacement u(x, t) and the micro-
deformation ϕ(x, t), both depending on the material
coordinate x and time t. The functions u and ϕ are
governed by two coupled partial differential equations of
the form

ρutt = auxx +Aϕx +
1
2

N
(
u2

x
)

x ,
(2.1)

Iϕtt = Cϕxx−Aux−Bϕ +
1
2

M
(
ϕ2

x
)

x ,

where ρ and I denote the macrodensity and the micro-
inertia, respectively, and the constants a, A, B, C, N,
and M are material parameters specifying the strain
energy function. The last two constants, N and M,
are responsible for nonlinear effects on the macro- and
microscale, respectively.

The main interest is focused on longitudinal waves
modified by the presence of the microstructure. For this
purpose a single partial differential equation is extracted
from the system (2.1), which describes a motion in which
the macrodisplacement prevails and the influence of the
microstructure is retained in a first approximation. The
so-called ‘slaving principle’ is explained in detail in
papers [1–3]. A modified version leading to the same
result is presented in [14]. By keeping the original
variables and parameters, the resulting equation has the
form

ρutt =
(

a− A2

B

)
uxx +

1
2

N
(
u2

x
)

x +
A2

B2 (Iutt −Cuxx)xx

+
1
2

M
A3

B3

(
u2

xx
)

xx . (2.2)

It is an approximate equation extracted from the original
system (2.1) by means of the slaving principle.

Equation (2.2) can still be condensed by introducing
normalized variables and parameters. First, a reference
length l is chosen. From the original material constants
an inherent length can be extracted, which represents the
size of the microstructure. It is considered to be small
compared to the reference length l and is introduced by

(δ l)2 =
IA2

ρB2 , (2.3)

where the small number δ ¿ 1 characterizes the small-
ness of the microstructure. In addition, the characteristic
velocities c, c1, cN , and cM are defined by

c2 =
1
ρ

(
a− A2

B

)
, c2

1 =
C
I
, c2

N =
N
ρ

, c2
M =

MA
IBl
(2.4)

in terms of the basic model parameters and, in the case
of c2

M , also of the standard length l.
The original variables x, t, u are finally replaced by

nondimensional variables

X =
x
l
, T =

ct
l

, εU =
u
l
. (2.5)

The normalization of the displacement uses another
small number ε ¿ 1, which emphasizes that the
displacement u is small compared to the reference
length l. Using the new dimensionless variables, the
governing equation (2.2) assumes the form

UT T = UXX +
1
2

ε
c2

N
c2

(
U2

X
)

X

+δ 2
(

UT T − c2
1

c2 UXX +
1
2

ε
c2

M
c2 U2

XX

)

XX
.

(2.6)

If omitting dispersive and nonlinear terms in the
governing equation (2.6), a simple wave equation would
remain, whose general solution would be a left- or right-
going wave of arbitrary shape travelling undisturbed.
Due to the normalization, their speed would be unity.
Let us concentrate on waves propagating to the right.
To include the influence of the additional terms of the
governing equation, we allow the wave profile to change
slowly in time.

In selecting a right-going wave, the solution of the
evolution equation is assumed in the form as suggested
in [13, p. 6]:

U = f (ξ ,τ), ξ = X −T, τ =
1
2

εT, (2.7)

where ξ and τ denote moving space and time
coordinates, respectively. Inserting this ansatz into the
recent form of the governing equation (2.6) and discard-
ing the higher-order terms, one obtains the equation

− fξ τ =
c2

N
2c2

(
f 2
ξ

)
ξ
+

δ 2

ε

(
fξ ξ −

c2
1

c2 fξ ξ +
1
2

ε
c2

M
c2 f 2

ξ ξ

)

ξ ξ
.

(2.8)
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Evidently, the influences of dispersion and macro-
nonlinearity, controlled by the two small parameters δ
and ε , are balanced only if the quotient δ 2/ε is of the
order of unity. Without loss of generality we may assume
that ε is equal to δ 2.

If we denote fξ = α , the evolution equation assumes
the form

ατ +q
(
α2)

ξ + zαξ ξ ξ +w
(

α2
ξ

)
ξ ξ

= 0, (2.9)

where the parameters

q =
c2

N
2c2 , z =

c2− c2
1

c2 , w = ε
c2

M
2c2 (2.10)

characterize the nonlinearity of macroscale, the dis-
persion, and the nonlinearity of microscale, respect-
ively. Equalizing the micro-nonlinearity parameter w
to zero yields the well-known KdV equation. Thus,
compared with the standard KdV equation, equation
(2.9) includes an additional complicated term which
reflects the nonlinearity on the macroscale.

3. NUMERICAL SIMULATION

The evolution equation (2.9) is solved under harmonic
and localized initial conditions

α(ξ ,0) = sinξ , α(ξ ,0) = A0 sech2 ξ −ξ0√
12z/A0

,

(3.1)
respectively, where A0 is the amplitude, ξ0 the initial
phase-shift, and

√
12z/A0 the width of the initial pulse.

For numerical integration the FFT-based pseudospectral
method is used and the periodic boundary conditions are
applied [5].

The crucial question is the proper choice of
parameters because not much is known about the values
of physical constants of Mindlin’s model [12]. We
choose here the values of parameters comparable with
the standard KdV equation which has been studied in
detail (see, for example [15,16]). One of the important
features of the standard KdV equation is the emergence
of a soliton train. The number of solitons in a train
depends on the values of q and z. Widely used values
are q = 1 and z = 10−2.5 [15,16]. Then the soliton train
develops at τ ≈ 30. Another important feature for the
KdV equation is the existence of a single stable soliton.

On the basis of the argumentation above, we take
here q = 1 and vary the other parameters in the following
domains: 10−2.5 ≤ z ≤ 1 and 0 ≤ w ≤ 1. The localized
initial wave (3.1)2 is the analytical solution for equation
(2.9) in the case of w = 0, i.e., it represents the KdV
soliton.

3.1. Localized initial excitation

Janno and Engelbrecht [9] have shown that for the two-
wave equation (2.6) there exists an asymmetric travelling
wave solution, i.e., the nonlinearity in microscale leads to
asymmetry of the wave profile. Numerical experiments
by Salupere et al. [17,18] have demonstrated that
in the case of equation (2.6), an initially symmetric
localized wave is deformed to an asymmetric wave
during propagation. Here we show that the same effect
takes place in the case of the evolution equation (2.9).

The evolution of the initial symmetric sech2 pulse
can be traced in Fig. 1. It is clear that the shape of the
wave is altered during propagation and an oscillating tail
is formed. In Fig. 2 the initial wave profile and the altered
shape of the wave profile at the end of the integration
interval are plotted against ξ . In order to characterize the
asymmetry of the last wave profile more explicitly, αξ is
plotted against α in Fig. 3.

Fig. 1. Time-slice plot for z = 10−2, w = 10−2.5.

Fig. 2. The initial (dashed line) and the deformed (solid line)
wave profile from Fig. 1 (z = 10−2, w = 10−2.5).
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Fig. 3. Asymmetry of the wave profile at the end of the integra-
tion interval: αξ against α for z = 10−2, w = 10−2.5.

In applying localized initial conditions the value of
the micro-nonlinearity parameter w = 10−2.5 is chosen
quite big compared to the macro-nonlinearity parameter
q and the dispersion parameter z in order to demonstrate
the effect of asymmetry more clearly.

3.2. Harmonic initial excitation

It is of interest to start with the case w = 0 which
corresponds to a standard KdV equation. This means that
micro-nonlinearity is neglected. As typical of the KdV
case, a train of solitons will emerge from a harmonic
initial excitation (Fig. 4.) The interaction picture is
complicated but solitons preserve their shape and speed
over long time intervals. The soliton amplitudes fluctuate
in the interval that is dictated by the interaction
rules [15,16]. When the micro-nonlinearity is taken into
account, the interaction pattern is altered – speeds of
solitons are higher than in the KdV case (cf. Figs 4
and 5). Like in the case of localized initial conditions,

Fig. 4. Time-slice plot over two space periods for the KdV case,
z = 10−1.5, w = 0.

the emerged solitons (Fig. 6) are asymmetric, as can
be observed from the phase plane, i.e., the (α,αξ )
plot (Fig. 7). This is a clear sign of the influence of

Fig. 5. Time-slice plot over two space periods for z = 10−1.5,
w = 10−2.621.

Fig. 6. Initial harmonic wave (dashed line) and wave profile
(solid line) at τ = 14.3 for z = 10−1.5,w = 10−2.621.

Fig. 7. Asymmetry of solitons: αξ against α at τ = 14.3 for
z = 10−1.5,w = 10−2.621.
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micro-nonlinearity. The chosen time instant τ = 14.3
corresponds to the formation of the soliton train at given
values of z and w.

4. CONCLUDING REMARKS

The evolution equation (2.9) that governs one-wave
propagation in microstructured solids according to
Mindlin’s model is derived and solved numerically
under harmonic and localized initial conditions. Analysis
of numerical results demonstrates that (i) for both
the governing equation and the evolution equation
nonlinearity in microscale leads to asymmetry of the
wave profile; and (ii) the stronger the influence of micro-
nonlinearity, the more the solutions of the evolution
equation differ from those of the KdV model. In
conclusion, the derived evolution equation (2.9) –
notwithstanding that it is a simplified model equation
compared to the two-wave equation (2.6) – is able to
grasp essential effects of microinertia and elasticity of
a microstructure. However, we stress that the values of
parameters used above are chosen for the comparison
with the standard KdV equation in order to demonstrate
the influence of the microstructure. Studies with other
parameters are in progress. A real challenge is to find an
analytical solution to equation (2.9).
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Lainelevi modelleerimisest mikrostruktuuriga materjalides

Merle Randrüüt, Andrus Salupere ja Jüri Engelbrecht

On tuletatud mikrostruktuuriga materjali (näiteks komposiidid, metallisulamid, granuleeritud materjalid jne) hierar-
hilise põhivõrrandi jaoks evolutsioonivõrrand ehk nn ühe laine võrrand, mis kirjeldab mittelineaarsust nii makro- kui
mikrotasandil, kusjuures dispersiooniefekt on taandatud Kortewegi-de Vriesi tüüpi dispersioonile. See võimaldab
kirjeldada laineleviprotsessi piisava füüsikalise täpsusega, jättes kõrvale algse liikumisvõrrandi. Klassikaline KdV-
mudel teist järku mittelineaarsuse ja kuupdispersiooniga viib sümmeetrilise üksiklaine tekkeni makrostruktuuri
mittelineaarsuse ja dispersiooni tasakaalu korral. Mikrostruktuuri mittelineaarsus aga häirib seda tasakaalu. Nii
põhivõrrandit [8–10] kui sellele vastavat evolutsioonivõrrandit on analüüsitud numbriliselt ja näidatud, et mikro-
struktuuri mittelineaarsuse tõttu on üksiklaine ebasümmeetriline.
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a b s t r a c t

For describing the longitudinal deformation waves in microstructured solids a Mindlin-
type model is used. The embedding of a microstructure in an elastic material is reflected
in an inherent length scale causing dispersion of propagating waves. Nonlinear effects, if
taken into account, will counteract dispersion. A suitable balance between nonlinearity
and dispersion may permit the propagation of solitary waves.

Following previous work by Engelbrecht and others the nonlinear hierarchical model is
derived in a one-dimensional setting which corresponds to a two-wave equation. The evo-
lution equation as a simplified model, representing a one-wave equation, is able to grasp
the essential effects of microinertia and elasticity of the microstructure. It is shown that
the nonlinearity in microscale leads to an asymmetry of the wave profile.

The nonlinear evolution equation as an extended Korteweg–de Vries equation is solved
approximately by a series expansion in a small parameter representing the micro-nonlin-
earity. Already the first approximation indicates the asymmetry of the solitary waves. It is
shown that solitary waves will propagate only if the micro-nonlinearity does not exceed
some upper bound. For the limiting case, an analytical solution of the extended Kor-
teweg–de Vries equation can be provided and used as a reference for the approximate
solutions.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

In general, macrobehavior of materials depends on properties of the material structure. In contemporary material science
and structural mechanics significant attention is devoted to microstructured materials possessing internal scales. This sort of
materials like metallic alloys, ceramic composites, polycrystalline solids, functionally graded materials, granular, porous
materials, etc., are used for a wide variety of industrial applications since combining the mechanical properties of different
constituents, as in composites, yields optimal properties of solids.

In principle, every material has some small-scale structure, since material is never distributed continuously. If we speak of
microstructured material we do not mean the molecular or atomic scale. Rather these microstructures are assumed in the
range of micrometers, so that they still can be considered as continua. The overall material becomes highly nonhomogeneous
due to the embedded microstructures with their different behavior.

Any theory of microstructured material aims to smooth out this inhomogeneity while retaining its influence on the gross
behavior of the material. This is done by giving the material more internal degrees of freedom describing the behavior of the
embedded microstructures. So the ordinary but highly inhomogeneous material is turned into a homogeneous material
which, however, is equipped with more than just a displacement field. Corresponding theories can be traced back to the
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meanwhile classical papers by Mindlin [1] and Sun et al. [2]. The connection to Cosserat continua has been established by
Herrmann and Achenbach [3].

The application of severe loading conditions, including impact, means generation of deformation waves. The embedding
of a microstructure in an elastic material is reflected in an inherent length scale causing dispersion of propagating waves.
Nonlinear effects, if taken into account, will counteract dispersion. A suitable balance of nonlinearity and dispersion may
permit the propagation of solitary waves.

The theory of solitary waves has originated from the study of surface waves in fluids. Meanwhile, solitary wave propa-
gation in solids as well as in optical systems has gained widespread interest. If one takes shock waves and dispersive waves
as two extreme examples of wave motion, the solitary waves share some properties of each of the two classes. They are local-
ized like shock waves and smooth like dispersive waves. Solitary waves may keep their shape over long distances and are,
therefore, applicable to signal transmission.

Apart from the possible technical applications, solitary waves are an attractive phenomenon from the mathematical point
of view. Especially the solitons, i.e., solitary waves preserving their identity after a collision and satisfying an infinite set of
conservation laws, have initiated an extended mathematical research [4].

The underlying physical model equations giving rise to solitary waves must combine two opposing effects, namely dis-
persivity and nonlinearity. Dispersion requires an inherent length scale, which might represent the scale of a microstructure
or simply the cross-sectional scale of a rod. Nonlinearity is always present, at least to a certain degree, since any strictly lin-
ear model is just a first approximation of some more general nonlinear theory. Examples of nonlinear and dispersive behav-
ior of solid materials are provided by Samsonov [5] who has verified experimentally and explained theoretically the
existence of solitary waves in solids, see also [6,7] and the extensive literature cited therein.

In the absence of both dispersion and nonlinearity the considered model reduces to a simple wave equation with a fixed
nonzero propagation velocity. A rather different nonlinear behavior is investigated by Nesterenko [8] and suggested as a
model of porous materials. The material is assumed to be composed of micro-bodies which can exchange only compressive
contact forces. Due to the typical behavior of Hertz contact the linear response is lost in the natural stress-free state of the
material, thus prohibiting the propagation of small-amplitude waves. Despite this ‘‘sonic vacuum” there exist solitary waves
which, however, ‘‘are qualitatively different from the well known weakly nonlinear solitary waves of the Korteweg–de Vries
equation” [9]. It should be emphasized that this kind of genuine nonlinearity is not covered by the theory presented here.

Engelbrecht and Pastrone [10] have specialized Mindlin’s model of a microstructured solid to one dimension and aug-
mented it by including nonlinear terms in both macro- and microscale. This model has been studied further in [11–14].

If nonlinearity is restricted to the macroscale the propagation of waves is governed by an equation of Korteweg–de Vries
type with the well-known classical solitary waves as possible solution. Taking into account nonlinearity also on the micro-
scale leads to an extended KdV equation with an additional nonlinear term. Closed-form solutions of this extended KdV
equation are not available.

The paper is devoted to the case of a one-dimensional microstructured solid with some nonlinearity at the microscale
level which is small compared with the combined effect of primary nonlinearity and dispersion. The propagation of waves
is governed by the extended KdV equation with a small coefficient at the additional nonlinear term. The cubic equation
occurring in the course of the integration process is solved approximately by a series expansion in the small parameter.
The integration can then be performed explicitly and eventually yields a solution in form of a series expansion starting with
the classical KdV soliton. The first approximation already shows that the solitary waves become asymmetric, as predicted in
[11], while the relation between amplitude and propagation speed remains unaffected.

The paper is organized as follows. The basic model following [13,11] is presented in Section 2. In Section 3, the nonlinear
evolution equation as an extended KdV equation is derived. Sections 4 and 5 are devoted to the classical KdV soliton and the
extended KdV equation, respectively. In Section 6, the cubic first-order differential equation is analyzed, the limiting value of
the micro-nonlinearity parameter e and the phase curves of solitary waves are provided. In Section 7, the approximate solu-
tion of the extended KdV equation, and, in Section 8, the analytical solution in the limiting case are presented. A conclusion
and final remarks are given in Section 9. The Appendix contains some mathematical details, namely the approximate solu-
tion of a cubic equation and the evaluation of an integral needed for the analytical solution.

2. Nonlinear hierarchical model

According to Mindlin’s model of a microstructured solid [1] any material point of the solid represents itself a microcon-
tinuum subject to some deformation. The overall deformation of the microstructured continuum is then described by the
macroscopic displacements of its material points, i.e., the centers of the microcontinua, and by the deformation of the micro-
continua themselves. The micro-deformations are assumed to be uniform at the microscopic level but may depend on the
macroscopic location of the microcontinuum element.

The one-dimensional version of Mindlin’s model, as formulated by Engelbrecht and Pastrone [10,13], is described by two
scalar functions, the macro-displacement uðx; tÞ and the micro-strain uðx; tÞ, both depending on the material coordinate x
and the time t. Their relevance is sketched in Fig. 1. In the sequel, subscripts x and t will indicate partial derivatives with
respect to the material coordinate x and the time t, respectively.

The kinetic-energy density is composed of its macroscopic and microscopic contributions,
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K ¼ 1
2
qu2

t þ
1
2

Iu2
t ; ð2:1Þ

where q and I denote the macroscopic density and the microinertia, respectively. All densities, like q; I or the kinetic-energy
density K itself, are understood per unit length rather than per unit volume, due to the one-dimensional model. The strain
energy or potential energy density, again per unit length, is assumed to depend on the macro-strain ux, the micro-strain u
and its gradient ux,

W ¼Wðux;u;uxÞ: ð2:2Þ

By invoking the Euler–Lagrange equations for the Lagrangian density L ¼ K �W one obtains the equations of motion

qutt ¼ rx; Iutt ¼ gx � s ð2:3Þ

representing the balances of macro- and micromomentum. The stress quantities entering these balances are the derivatives
of the strain energy (2.2) with respect to its arguments, namely the macrostress, the microstress, and a quantity called the
interactive force,

r ¼ @W
@ux

; g ¼ @W
@ux

; s ¼ @W
@u

; ð2:4Þ

respectively. It should be noted that, in the one-dimensional setting, the stresses r and s have the dimension of force while g
has the dimension of a moment.

Up to now the strain energy function has not yet been specified. Following [10–12] we consider the strain energy function

W ¼ 1
2
ðau2

x þ 2Auxuþ Bu2 þ Cu2
x Þ þ

1
6
ðNu3

x þMu3
x Þ ð2:5Þ

involving cubic terms, where a; A; B; C and N, M are material constants. The stresses (2.4) are then

r ¼ aux þ Auþ 1
2

Nu2
x ; s ¼ Aux þ Bu; g ¼ Cux þ

1
2

Mu2
x ; ð2:6Þ

and the balance Eqs. (2.3) assume the form

qutt ¼ auxx þ Aux þ
1
2

Nðu2
x Þx;

Iutt ¼ Cuxx � Aux � Buþ 1
2

Mðu2
x Þx:

ð2:7Þ

The first of these equations governs the macro-displacement uðx; tÞ, which is regarded as the main kinematic variable. The
equation, however, is coupled to the second equation which governs the micro-deformation uðx; tÞ.

To study the propagation of waves in the microstructured solid it would be comfortable to have a single partial differen-
tial equation for the macroscopic displacement which, however, retains the influence of the microstructure. In principle, the
system of Eqs. (2.7) could be contracted to a single equation without neglecting any terms. It would contain time derivatives
of fourth-order. The objective of this and related papers is, however, to study waves corresponding to the acoustical branch
and how they are influenced by the presence of the microstructure.

To this end, a single partial differential equation is extracted from the system (2.7) which describes a motion in which the
macro-displacement prevails while retaining the influence of the microstructure. The procedure to obtain this approximate
equation, called the ‘‘slaving principle”, is explained in detail in papers by Pastrone and Engelbrecht [10,13]. Here we derive
the approximation in a heuristic way which leads to the same result as the rigorous treatment.

Solving the second Eq. (2.7)2 for the micro-strain one obtains

u ¼ �A
B

ux �
1
B
ðIutt � CuxxÞ þ

M
2B
ðu2

x Þx: ð2:8Þ

This is still a partial differential equation for the micro-strain uðx; tÞ, whose partial derivatives appear on the right-hand side.
In a first, rather crude approximation these derivatives are omitted such that the micro-strain is expressed explicitly as
u � �ðA=BÞux in terms of the macro-strain ux. This expression is reinserted into the right-hand side of (2.8) to provide
the better approximation

Fig. 1. 1D microstructured material.
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u ¼ �A
B

ux þ
A

B2 ðIutt � CuxxÞx þ
A2M

2B3 u2
xx

� �
x; ð2:9Þ

by which the micro-strain is expressed explicitly in terms of the macro-strain ux and its derivatives. This expression can be
inserted into the first Eq. (2.7)1 which becomes a nonlinear fourth-order differential equation for the displacement uðx; tÞ,

qutt ¼ a� A2

B

 !
uxx þ

A2

B2 Iutt � Cuxxð Þxx þ
1
2

N u2
x

� �
x þM

A3

B3 u2
xx

� �
xx

" #
: ð2:10Þ

This equation can still be condensed by introducing normalized variables and corresponding parameters.
From the original material constants one inherent length and several characteristic velocities can be extracted. The inher-

ent length represents the size of the microstructure. In order to consider this to be small one first has to choose a reference
length scale ‘. The inherent length is then introduced by

ðd‘Þ2 ¼ IA2

qB2 ; ð2:11Þ

where the small number d� 1 specifies the size of the microstructure to be small compared to the reference length ‘. Fur-
ther the characteristic velocities �c; c1; cN and cM are introduced by

�c2 ¼ 1
q

a� A2

B

 !
; c2

1 ¼
C
I
; c2

N ¼
N
q
; c2

M ¼
MA
IB‘

: ð2:12Þ

Using these parameters the governing Eq. (2.10) attains the form

utt ¼ �c2uxx þ
1
2

c2
Nðu2

x Þx þ ðd‘Þ
2 utt � c2

1uxx þ
1
2
‘c2

Mu2
xx

� �
xx

: ð2:13Þ

In a final step the dimensionless variables

X ¼ x
‘
; T ¼

�ct
‘
; �U ¼ u

‘
ð2:14Þ

are introduced. The normalization of the displacement includes another small number �� 1, which emphasizes that the dis-
placement u is small compared to the reference length ‘. The nondimensional form of the governing Eq. (2.10) is now ob-
tained as

UTT ¼ UXX þ
1
2
�c2

N U2
X

� �
X
þ d2 UTT � c2

1UXX þ
1
2
�c2

MU2
XX

� �
XX

; ð2:15Þ

where the velocity ratios

c1 ¼
c1

�c
; cN ¼

cN

�c
; cM ¼

cM

�c
ð2:16Þ

have been introduced. The macro-nonlinearity is controlled by the small number �, which measures the size of the ampli-
tude, the dispersion is governed by the small number d2 emerging from the size of the microstructure, and the micro-non-
linearity is influenced by both numbers.

It should be noted that the normalization of time (2.14)2 is based on the velocity �c which seems to be the most natural
inherent velocity. Therefore the normalized Eq. (2.15) differs from the one presented in [10], where the normalization is
based on the velocity c0 ¼

ffiffiffiffiffiffiffiffiffi
a=q

p
.

3. Evolution equation

If nonlinear and dispersive terms were absent in the governing Eq. (2.15) a simple wave equation would remain, whose
general solution would allow left and right going waves of arbitrary shape traveling undisturbed. Due to the normalization
their speed would be unity. To include the cumulative effects of the additional nonlinear and dispersive terms in the gov-
erning equation we allow the wave profile to change slowly in time.

Selecting a right going wave the solution is assumed in the form

U ¼ f ðn; sÞ; n ¼ X � T; s ¼ 1
2
�T; ð3:1Þ

as suggested in [4, p. 6]. Inserting this ansatz into the recent form of the governing Eq. (2.15) and discarding higher-order
terms we get the equation

�fns ¼
1
2
c2

Nðf 2
n Þn þ

d2

�
fnn � c2

1fnn þ
1
2
�c2

Mf 2
nn

� �
nn

: ð3:2Þ
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One can realize that the influences of dispersion and nonlinearity, measured by the two small parameters d and �, are bal-
anced only if the quotient d2=� is of the order of unity. Without loss of generality we may assume that � is equal to d2.

Denoting fn ¼ a, the evolution equation assumes the form

as þ
1
2
c2

Nða2Þn þ ð1� c2
1Þannn þ

1
2
�c2

Mða2
nÞnn ¼ 0: ð3:3Þ

The same result is obtained via the reductive perturbation method as presented in [15,16].
Keeping track of the transformations of variables (2.14) one finds

ux ¼ �a; ð3:4Þ

i.e., the new dependent variable a represents a magnified strain. The velocity ratios c1; cN and cM defined by (2.16) appear as
parameters in the evolution Eq. (3.3) and are responsible for dispersion, macro-nonlinearity and micro-nonlinearity, respec-
tively. If the latter is omitted the evolution equation reduces to the Korteweg–de Vries (KdV) equation.

By suitable transformations of the variables the coefficients of the equation can be standardized. Newell [4] suggests the
form

qt þ 6qqx þ qxxx ¼ 0 ð3:5Þ

which, in our case, has to be supplemented by an additional term representing the micro-nonlinearity. This standardized
form is achieved by the transformation

a ¼ 6
c2

N

ð1� c2
1Þ

1=3q; n ¼ ð1� c2
1Þ

1=3x; s ¼ t; ð3:6Þ

where, for convenience, the original space and time variables, x and t, have been reused.
By this transformation, the evolution Eq. (3.3) becomes

qt þ 3ðq2Þx þ qxxx þ 3eðq2
x Þxx ¼ 0; ð3:7Þ

in which only one parameter

e ¼ �c2
M

ð1� c2
1Þc2

N

ð3:8Þ

remains. It is responsible for the influence of the micro-nonlinearity measured by cM as compared to the combined effects of
dispersion and macro-nonlinearity.

4. The classical KdV soliton

If the influence of the micro-nonlinearity is omitted the evolution equation is reduced to the Korteweg–de Vries equation
which admits solutions in the form of the sech2 solitons. Although this is well known the integration is briefly reviewed,
since it serves as a guideline for treating subsequently the extended Korteweg–de Vries equation.

Solutions of the KdV Eq. (3.5) propagating without any distortion can be found in the form

q ¼ qðhÞ; h ¼ x� ct: ð4:1Þ

This ansatz reduces the KdV Eq. (3.5) to the ordinary differential equation

�cq0 þ 3ðq2Þ0 þ q000 ¼ 0 ð4:2Þ

for the function qðhÞ, where primes denote derivatives with respect to the argument h. Integrating once, the second-order
differential equation

q00 ¼ Aþ cq� 3q2 ð4:3Þ

is obtained, where A is a constant of integration.
Using the identity q00 ¼ q0dq0=dq one can write (4.3) in the form of the differential equation of the first-order,

q0
dq0

dq
¼ Aþ cq� 3q2; ð4:4Þ

which, by integration, yields

1
2

q02 ¼ Bþ Aqþ c
2

q2 � q3 ð4:5Þ

with an additional constant of integration, B. The final step of integration will lead to an elliptic integral, in general.
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The analysis will be restricted here to the special case of solitary waves. It is assumed that, as h! �1, the function q
tends uniformly to zero, i.e., q! 0, q0 ! 0, and q00 ! 0. Therefore, in (4.5) the constants A and B have to vanish. The differ-
ential Eq. (4.5) thus attains the simpler form

q0 ¼ �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c � 2q

p
; ð4:6Þ

from which one can see that q 6 c=2.
Without loss of generality it may be assumed that q attains its maximum value a ¼ c=2 at h ¼ 0. Then, for growing values

of h, the function qðhÞ must decrease, i.e., q0 < 0. Separation of variables and definite integration of the differential Eq. (4.6)
yields Z q

a

�dq

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða� qÞ

p ¼ h: ð4:7Þ

Carrying out the integration one obtainsffiffiffi
2
a

r
arcosh

ffiffiffi
a
q

r
¼ h: ð4:8Þ

This equation has to be solved for q. Introducing the parameter

g ¼
ffiffiffi
a
2

r
¼

ffiffiffi
c
p

2
; ð4:9Þ

the solution of Eq. (3.5) assumes the form

q ¼ asech2gh: ð4:10Þ

Thus, the well-known solitary wave solution is obtained as

q ¼ asech2gðx� ctÞ: ð4:11Þ

It should be noted that the amplitude a, the wave number g, and the phase speed c are not independent but coupled by (4.9).
So the solution contains only one essential parameter.

5. Extended KdV equation

The analysis of the KdV equation as provided in Section 4 is now applied to the extended KdV Eq. (3.7) as far as possible.
The ansatz (4.1) can be used unaltered. Inserting it into the extended KdV Eq. (3.7) yields the ordinary differential equation

�cq0 þ 3ðq2Þ0 þ q000 þ 3eðq02Þ00 ¼ 0; ð5:1Þ

which can be integrated once resulting in

q00 þ 3eðq02Þ0 ¼ Aþ cq� 3q2; ð5:2Þ

where A is a constant of integration.
Converting this second-order differential equation for the function qðhÞ into a first-order differential equation for the

function q0ðqÞ one obtains

q0ð1þ 6eq0Þdq0

dq
¼ Aþ cq� 3q2: ð5:3Þ

One further integration yields

1
2

q02 þ 2eq03 ¼ Bþ Aqþ c
2

q2 � q3: ð5:4Þ

As in the KdV case it is assumed that, for h! �1, the solution q uniformly tends to zero. Therefore, in (5.4) the constants A
and B have to vanish. Thus Eq. (5.4) assumes the form

q02 þ 4eq03 ¼ q2ðc � 2qÞ: ð5:5Þ

In principle, this equation has to be solved for q0 and then integrated.

6. Phase curves of solitary waves

Before turning to the last integration step, the cubic first-order differential Eq. (5.5) will be analyzed. Introducing the
amplitude a ¼ c=2, as in the KdV case, the equation is written as
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q02 þ 4eq03 ¼ 2q2ða� qÞ: ð6:1Þ

It represents a curve in the ðq; q0Þ phase plane. A solitary wave q ¼ qðhÞ emerges asymptotically from the negative h-axis,
raises with positive slope until its peak qð0Þ ¼ a, turns to negative slope and approaches asymptotically the h-axis for
h! þ1. The corresponding phase curve starts in the origin of the ðq; q0Þ plane with finite positive slope, follows a loop cross-
ing the q-axis downward at ða;0Þ, and bends back to the origin at finite slope.

To analyze the principal behavior of the phase curve (6.1) let us define the two functions

f ðq0Þ ¼ 4eq03 þ q02 � gðqÞ and gðqÞ ¼ 2q2ða� qÞ: ð6:2Þ

Their qualitative graphs are shown in Figs. 2 and 3. If e > 0 the function f has a relative maximum

f ðq01Þ ¼
1

108 e2 � gðqÞ at q01 ¼ �
1
6e
: ð6:3Þ

If this relative maximum is above the q
0
-axis there are three zeros, if it is below there is only one.

For any value q attained by the solitary wave there must be a positive and a negative slope q0, which means that the func-
tion f ðq0Þ must have two zeros, one positive and one negative, for any q in the range 0 < q < a. In order that there are two
zeros, or even three, the relative maximum (6.3)1 must not be negative. Therefore the parameter e is restricted by the
inequality

e 6 e� ¼ 1
6

ffiffiffiffiffiffiffiffiffiffiffiffi
3gðqÞ

p ð6:4Þ

which has to hold for any q < a. The inequality must hold even in the worst case, namely, if gðqÞ attains its biggest value. The
function gðqÞ, according to its definition (6.2)2, has a relative maximum

gðq2Þ ¼
2
3

a
� �3

at q2 ¼
2
3

a: ð6:5Þ

Thus, for q P 0, we have

gðqÞ 6 2
3

a
� �3

: ð6:6Þ

The inequality (6.4) can, therefore, be extended to

e 6
1

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3gðq2Þ

p ¼ 1
4a

ffiffiffiffiffiffi
2a
p : ð6:7Þ

To get rid of the square root one can express the peak value a in terms of the parameter g by (4.9). Introducing this parameter
the inequality (6.7) assumes the form

e 6
1

16g3 : ð6:8Þ

The extended KdV equation admits solitary waves only up to this limit of the micro-nonlinearity parameter e.

Fig. 2. Graph of the function f ðq0Þ.
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In order to plot the phase curve given by (6.1) without solving a cubic equation one can introduce the parameter

p ¼ q0

q
ð6:9Þ

which represents the slope of the position vector in the phase plane. Eq. (6.1) can then be written in the form

p2ð1þ 4epqÞ ¼ 2ða� qÞ: ð6:10Þ

Solving this equation for q and recalling (6.9) one obtains a parametric representation of the phase curve in the form

qðpÞ ¼
a� 1

2 p2

1þ 2ep3 ; q0ðpÞ ¼ pqðpÞ: ð6:11Þ

Fig. 3. Graph of the function gðqÞ.

Fig. 4. Phase Curves of the extended KdV equation for different values of e.
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The curve parameter p varies in the interval �
ffiffiffiffiffiffi
2a
p

6 p 6 þ
ffiffiffiffiffiffi
2a
p

. The advantage of this parametric representation is that one
does not need to solve the cubic Eq. (6.1) for q0. Using the above parametric representation the phase curves are drawn in
Fig. 4 for different values of e.

For the maximum value

e ¼ emax ¼
1

16g3 ð6:12Þ

the parametric representation (6.11) becomes singular at p ¼ �ð2eÞ�1=3 ¼ �2g. A detailed analysis shows that the phase
curve, in this limiting case, degenerates into a semi-ellipse and a straight line representing a diameter of the ellipse. The final
step of integration can be performed explicitly in this case. This will be presented in Section 8.

7. Approximate solution of the extended KdV equation

In order to get the solution q ¼ qðhÞ the first-order differential Eq. (6.1) has to be solved for q0 and integrated. Using the
abbreviation (6.2)2 it is written as

q02 þ 4eq03 ¼ gðqÞ: ð7:1Þ

Since it is unlikely that one finds an explicit solution after applying Cardano’s formula on this cubic equation, an approximate
solution by a series expansion in the small parameter e is used. The corresponding formula is briefly derived in Appendix A.
This approach is justified by the fact that solitary wave solutions exist only for small values of the parameter e satisfying the
inequality (6.8).

As in the KdV case it is assumed that the maximum value a ¼ c=2 is attained at h ¼ 0, from where the function qðhÞ de-
creases as h increases and vice versa. Applying the formula (A.6)2 to the cubic Eq. (7.1) one obtains the approximation

q0 ¼ �
ffiffiffiffiffiffiffiffiffi
gðqÞ

p
� 2egðqÞ � 10e2½gðqÞ�3=2 � 64e3½gðqÞ�2 þ Oðe4Þ; ð7:2Þ

where the upper and lower signs are valid for h > 0 and h < 0, respectively. For performing the integration also the reciprocal
value is needed which, according to (A.8), is obtained as

dh
dq
¼ 1

q0
¼ �1ffiffiffiffiffiffiffiffiffi

gðqÞ
p þ 2e� 6e2

ffiffiffiffiffiffiffiffiffi
gðqÞ

p
þ 32e3gðqÞ þ Oðe4Þ: ð7:3Þ

The definite integration starts with the maximum value q ¼ a attained at h ¼ 0. Thus one obtains

h ¼
Z q

a

�1ffiffiffiffiffiffiffiffiffi
gðqÞ

p þ 2e� 6e2
ffiffiffiffiffiffiffiffiffi
gðqÞ

p
þ 32e3gðqÞ þ Oðe4Þ

" #
dq: ð7:4Þ

Inserting the function gðqÞ from (6.2)2 and performing the definite integration yields

h ¼ �
ffiffiffi
2
a

r
arcosh

ffiffiffi
a
q

r
� 2eða� qÞ � 2

5
e2ð2aþ 3qÞ½2ða� qÞ�3=2 � 16

3
e3ða2 þ 2aqþ 3q2Þða� qÞ2 þ Oðe4Þ: ð7:5Þ

In principle, this equation has to be solved for q to unveil the function q ¼ qðhÞ. The inversion cannot be performed in closed
form. The graph, however, can also be drawn directly from (7.5).

Fig. 5. Solitary wave governed by the extended KdV equation (e ¼ emax) in different approximations.
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Fig. 5 shows subsequent approximations of a solitary wave governed by the extended KdV equation with a fixed value of
the micro-nonlinearity parameter e. Starting from the symmetric KdV soliton even the approximation of order e exhibits the
asymmetric behavior of the solitary wave. The Oðe2Þ and Oðe3Þ approximations come out nearly identical. The convergence
behavior is different on the left and on the right side. For h > 0 the limit is approached from one side while for h < 0 there is
an alternating behavior. A comparison of the approximation with the exact solution is provided in Section 8 for the limiting
value of the parameter e.

The influence of the micro-nonlinearity parameter e is shown in Fig. 6. Starting from the symmetric KdV soliton ðe ¼ 0Þ
the solitary wave becomes more asymmetric as e is increased.

To emphasize the relation to the KdV soliton, the arcosh function in (7.5) is inverted, leading to the implicit representation

q ¼ a sech2g hþ 2eða� qÞ � 2
5
e2ð2aþ 3qÞ½2ða� qÞ�3=2 þ 16

3
e3 a2 þ 2aqþ 3q2� �

ða� qÞ2 þ Oðe4Þ
	 


ð7:6Þ

of the solitary wave. The dependent variable q appears in the argument of the sech function, and the equation cannot be
solved explicitly for q.

8. Analytical solution in the limiting case

It has been shown that bounded and closed phase curves q0ðqÞ are possible only if eg3
6 1=16. In addition to the case e ¼ 0,

where one gets the well-known KdV soliton as an analytical representation, it can be shown that an analytical solution in
closed form is also possible in the limiting case eg3 ¼ 1=16.

After inserting the limiting value

e ¼ 1
16g3 ð8:1Þ

the ordinary differential Eq. (6.1) can be written in the form

q02 � 4g2q2 þ 1
4g3 ðq

03 þ 8g3q3Þ ¼ 0: ð8:2Þ

The quadratic and cubic parts of this equation allow the factorizations

q02 � 4g2q2 ¼ ðq0 þ 2gqÞðq0 � 2gqÞ;
q03 þ 8g3q3 ¼ ðq0 þ 2gqÞðq02 � 2gqq0 þ 4g2q2Þ:

ð8:3Þ

Thus (8.2) may be written as

ðq0 þ 2gqÞ q0 � 2gqþ 1
4g3 ðq

02 � 2gqq0 þ 4g2q2Þ
	 


¼ 0: ð8:4Þ

The phase curve consists of two branches, namely the straight line

q0 ¼ �2gq ð8:5Þ

Fig. 6. Approximate Oðe3Þ solutions for different values of the micro-nonlinearity parameter.
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and the ellipse

q02 þ 2gð2g2 � qÞq0 � 4g2qð2g2 � qÞ ¼ 0; ð8:6Þ

see Fig. 7. Solving the last equation for q0 gives the solutions

q01;2 ¼ g½�ð2g2 � qÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g4 þ 4g2q� 3q2

q
� ¼ g½�ða� qÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2aq� 3q2

p
�; ð8:7Þ

where, for convenience, the abbreviation a ¼ 2g2 has been introduced according to (4.9). Putting together these solutions in
the proper order one has to start at the origin which is attained asymptotically for h! �1. Then the wave profile will build
up with positive slope (8.7), + sign, increasing up to q0max ¼ 4g3=3 at q ¼ 2a=3. The peak value of the wave profile a ¼ 2g2 is
assumed to be attained at h ¼ 0. For h > 0 the wave profile will decrease, i.e., it assumes the negative slope (8.7), � sign. At
q ¼ 2a=3 the steepest decline is reached with the slope q0 ¼ �8g3=3. At this point the phase curve switches to the linear
branch (8.5) until the origin is reached, again asymptotically for h!1. Thus the phase curve, as shown in Fig. 7, is repre-
sented by

q0

g
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2aq� 3q2

p
� ða� qÞ for h 6 0 and 0 6 q 6 a;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2aq� 3q2

p
� ða� qÞ for h P 0 and a P q P 2

3 a;

�2q for h P 0 and 2
3 a P q P 0:

8><
>: ð8:8Þ

The phase curve is traversed in clockwise sense, as always, since in the upper half-plane ðq0 > 0Þ the values of q must increase
while in the lower half-plane ðq0 < 0Þ the values of q must decrease. The q-axis is intersected at a right angle except in a point
which is reached only asymptotically. Let the right-hand side of (8.8) be abbreviated by f ðqÞ. Then the wave profile qðhÞ is the
solution of the initial-value problem

dq
dh
¼ gf ðqÞ; qð0Þ ¼ a: ð8:9Þ

By separation of variables and subsequent integration the solution is obtained asZ q

a

dq
f ðqÞ ¼ gh: ð8:10Þ

The integral on the left-hand side has still to be evaluated.
For h 6 0, the function f is given by (8.8)1. Using the corresponding definite integral (B.6) with the upper sign, one obtains

ln
að

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2aq� 3q2

p
þ aþ qÞ

2q2 þ
ffiffiffi
3
p

arccos
3q� a

2a
¼ �4gh: ð8:11Þ

The maximum slope

q0max ¼
4
3
g3 ð8:12Þ

Fig. 7. Phase curve of the extended KdV equation in the limiting case.
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is attained, according to Fig. 7, when the amplitude is q ¼ 2a=3, i.e., at a value of

h� ¼ �
1

4g
ln 3þ pffiffiffi

3
p

� �
ð8:13Þ

of the independent variable h. This branch of the curve ends with the peak value q ¼ a attained at h ¼ 0, see Fig. 8.
For h P 0 and a P q P 2a=3 the function f is given by (8.8)2. The definite integral (B.6) with the lower sign yields

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2aq� 3q2

p
þ aþ q

2a
þ

ffiffiffi
3
p

arccos
3q� a

2a
¼ 4gh: ð8:14Þ

The branch ends at

hþ ¼
1

4g
ln

4
3
þ pffiffiffi

3
p

� �
ð8:15Þ

with the minimum (or maximum negative) slope

q0min ¼ �
8
3
g3 ð8:16Þ

at the height q ¼ 2a=3. The last branch starts at (8.15), and the function f is given by (8.8)3. Thus one has to perform the def-
inite integrationZ q

2a=3

dq
q
¼ �2g

Z h

hþ

dh; ð8:17Þ

which yields the solution

q ¼ 2a
3

exp½�2gðh� hþÞ�: ð8:18Þ

At h ¼ hþ the branch starts with the slope

q0ðhþÞ ¼ �
4
3

ag ¼ �8
3
g3: ð8:19Þ

This means that the last branch is attached continuously differentiable to the preceding one. The whole wave profile is
shown in Fig. 8, where also the tangents at the inflectional points h� are indicated.

A comparison of this exact solution with the approximate solution (7.5) is depicted in Fig. 9. In the left, flat part, the
curves coincide excellently while on the steeper flank the approximation is slightly above the exact curve. It should be noted
that this good coincidence pertains to the maximum value of the parameter e allowing a solitary wave solution. For smaller
values it should be even better.

Fig. 9. Exact and approximate solutions in the limiting case e ¼ 1=ð16g3Þ.

Fig. 8. Profile of the solitary wave in the limiting case.
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9. Conclusion

From various studies it is known that in a microstructured material solitary waves can propagate if dispersion and non-
linearity are balanced appropriately. If the linear dispersion evoked by the microstructure is complemented only by macro-
nonlinearity the dynamical behavior is described by the Korteweg–de Vries equation, and the well-known symmetric soli-
tary waves are possible solutions.

If also some nonlinearity in the microscale is included the evolution equation contains an additional nonlinear term
which involves higher derivatives. This makes the shape of the solitary waves asymmetric. While this effect has been ana-
lyzed before numerically [14], the present paper provides a formula which describes the asymmetric solitary wave analyt-
ically, although in some approximation.

It is shown that solitary waves are possible only up to a certain limit of the micro-nonlinearity parameter. For this limit as
a special case, the extended KdV equation can be solved explicitly and used as a reference. The approximate solution agrees
quite well with the exact one in the limit case, and the coincidence must be even better for smaller values of the micro-non-
linearity parameter.

The results presented in this paper represent, strictly speaking, approximate and—in the special case treated in Section 8—
analytical solutions of the extended Korteweg–de Vries equation. This evolution equation describes the slow variations of
propagating waves governed by the nondimensional partial differential Eq. (2.15) which, in turn, is obtained using the slav-
ing principle from the original Eq. (2.7) describing the physical model. It is still an open question to what extent the pre-
sented solutions, which pertain to the extended KdV Eq. (3.7), are consistent with the original model (2.7). This should be
analyzed by numerical studies which, however, are outside of the scope of the present paper.

Appendix A. Approximate solution of a cubic equation

In the analysis of the extended KdV Eq. (3.7) one comes across a cubic equation with a small coefficient at the cubic term.
Instead of solving the equation exactly, an approximate solution is used.

The solutions of the cubic equation

ex3 þ x2 ¼ a2; ðA:1Þ

with a small coefficient e, are assumed in the form

x ¼ x0 þ ex1 þ e2x2 þ e3x3 þ Oðe4Þ: ðA:2Þ

Restricting the expansion to the order e3 the square of the series (A.2) is obtained as

x2 ¼ x2
0 þ 2ex0x1 þ e2ð2x0x2 þ x2

1Þ þ 2e3ðx0x3 þ x1x2Þ þ Oðe4Þ: ðA:3Þ

The third power is needed only up to the order e2, since it will be multiplied by e. Thus

x3 ¼ x3
0 þ 3ex2

0x1 þ 3e2ðx2
0x2 þ x0x2

1Þ þ Oðe3Þ: ðA:4Þ

By inserting these series into the cubic Eq. (A.1) and equating coefficients of like powers of e one obtains a set of equations for
the coefficients xk which finally lead to

x0 ¼ �a; x1 ¼ �
1
2

a2; x2 ¼ �
5
8

a3; x3 ¼ �a4: ðA:5Þ

Thus the roots of the cubic Eq. (A.1) are approximated by

x� ¼ �a� 1
2
ea2 � 5

8
e2a3 � e3a4 þ Oðe4Þ ¼ �a 1� 1

2
eaþ 5

8
e2a2 � e3a3 þ Oðe4Þ

	 

: ðA:6Þ

The roots (A.6) are those emerging from the two roots of the quadratic equation to which (A.1) reduces for e ¼ 0. For any
e – 0 there must be a third root, which can be expanded into the series

x	 ¼ �
1
e
þ ea2 þ 2e3a4 þ Oðe4Þ: ðA:7Þ

This third root, however, is of no relevance in our application.
Within the integration process of Section 7 also the reciprocal roots 1=x� are needed, which are obtained from (A.6) by the

well-known geometric series expansion as

1
x�
¼ �1

a
1� 1

2
ea� 3

8
e2a2 � 1

2
e3a3 þ Oðe4Þ

	 

¼ �1

a
þ 1

2
e� 3

8
e2aþ 1

2
e3a2 þ Oðe4Þ: ðA:8Þ

In principle, the expansions can be extended to higher orders in e. The level of Oðe3) seems to be sufficient for the application
here.
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Appendix B. Evaluation of some integrals

The integrals needed in Section 8 are not readily available from integral tables but need some transformations. This is
indicated here in brief. To evaluate the indefinite integrals

I� ¼
Z

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2ax� 3x2
p

� ða� xÞ
ðB:1Þ

the integrand is rewritten as

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2ax� 3x2
p

� ða� xÞ
¼ 1ffiffiffiffiffiffiffiffiffiffiffi

a� x
p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 3x
p

�
ffiffiffiffiffiffiffiffiffiffiffi
a� x
p

Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 3x
p

�
ffiffiffiffiffiffiffiffiffiffiffi
a� x
p

4x
ffiffiffiffiffiffiffiffiffiffiffi
a� x
p ¼ 1

4
aþ 3x

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2ax� 3x2
p � 1

x

� �

¼ 1
4

a

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2ax� 3x2
p þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 2ax� 3x2
p � 1

x

� �
: ðB:2Þ

Thus the integration is reduced to the knowledge of the integralsZ
adx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2ax� 3x2
p ¼ � ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2ax� 3x2
p

þ aþ x
x

ðB:3Þ

and Z
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 2ax� 3x2
p ¼ � 1ffiffiffi

3
p arcsin

a� 3x
2a

ðB:4Þ

which are found in [17, pp. 759 and 758], for instance. The result is

4I� ¼ � ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2ax� 3x2
p

þ aþ x
x

þ
ffiffiffi
3
p

arcsin
3x� a

2a
� ln

x
a
: ðB:5Þ

Mathematically, the last term could also be written simply as ln x, which differs only by a constant. If x and a have some
physical dimension as length, for instance, the logarithm should still be applied to a real number. Therefore the version
(B.5) is preferred.

Actually needed in (8.14) are the definite integrals

4
Z x

a

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2ax� 3x2
p

� ða� xÞ
¼ � ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2ax� 3x2
p

þ aþ x
2x

� ln
x
a
�

ffiffiffi
3
p

arccos
3x� a

2a
ðB:6Þ

which are obtained from (B.5) by inserting the bounds.
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Abstract. The evolution equation describing the propagation of one-dimensional waves in a microstructured material has the
form of an extended Korteweg–de Vries equation, where the additional term reflects the influence of micrononlinearity. As shown
by Janno and Engelbrecht (J. Phys. A: Math. Gen., 2005, 38, 5159–5172), solitary waves in a microstructured material become
asymmetric if nonlinearities are taken into account in both macro- and microscale. The present paper generalizes previous results
to periodic waves which, in the KdV case, have the form of cnoidal waves. It is shown that, due to the nonlinearity in microscale,
these waves become inclined in the same manner as solitary waves, while the relations between the period, amplitude, and velocity
are not affected.

Key words: materials with microstructure, cnoidal waves, solitary waves, KdV equation.

1. INTRODUCTION

A linear theory of microstructured solids was proposed by Mindlin [1] in 1964. Engelbrecht and Pastrone [2]
specialized this theory to one dimension and, at the same time, generalized it by including nonlinear terms
at both macro- and microlevel. To describe the motion of the one-dimensional microstructured solid, they
complemented the macroscopic displacement by the microstrain, both of which are considered as functions
of the space coordinate and time. The governing equations appear as a system of coupled partial differential
equations for the two field variables. Using the so-called slaving principle, Engelbrecht and Pastrone [2]
distilled from it a single partial differential equation, which governs mainly the macrodisplacement while
retaining, in a first approximation, the influence of the microstructure.

On the basis of this equation the propagation of solitary waves was studied by Janno and Engelbrecht [3].
They showed that the wave profile becomes asymmetric. The evolution equation of these waves assumes the
form of an extended Korteweg–de Vries (KdV) equation, where the additional, higher-order term reflects
the influence of micrononlinearity. An approximate solution of this equation in analytical form has been
provided by Randrüüt and Braun [4].

Besides solitary waves, the KdV equation admits a whole family of periodic solutions, the so-called
cnoidal waves, of which the solitary wave is just the limit if the period tends to infinity. The aim of the
present paper is to study how these periodic waves are affected if micrononlinearity is taken into account.
As can be expected, the waves stay periodic but become inclined in the same manner as solitary waves.

∗ Corresponding author, merler@cens.ioc.ee
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2. EXTENDED KdV EQUATION

As mentioned before, the basic governing equations are not treated directly. Rather, by using the slaving
principle, a single partial differential equation is extracted. This, in turn, is analysed via the reductive
perturbation method which finally provides an evolution equation describing the perturbation of the wave
profile. For the sake of brevity, this whole procedure is not duplicated here. The application of the slaving
principle is explained in detail in [2–4], and the evolution equation is derived in [4,5]. It has the form of an
extended KdV equation. By scaling the variables appropriately, the evolution equation can be reduced to
the standardized form

yt +3
(
y2)

x + yxxx +3ε
(
y2

x
)

xx = 0. (1)

The variable y represents a scaled macrostrain. The independent variables are a dimensionless moving space
coordinate x and the dimensionless slow time t. The evolution equation describes the slow variation of the
wave profile as observed in a frame which is travelling along with the wave at its basic propagation speed.
The evolution equation (1) is the starting point of our analysis.

We look for solutions of the form

y(x, t) = q(θ), θ = x− ct, (2)

representing undistorted waves propagating at the velocity c within the moving reference frame. The
function q = q(θ) will then satisfy an ordinary differential equation, which can be integrated twice to result
in a first-order differential equation of the form

q′2 +4εq′3 = f (q), f (q) = 2B+2Aq+ cq2−2q3. (3)

The cubic polynomial f (q) on the right-hand side contains three parameters: the velocity c of the wave
profile relative to the moving frame and two constants of integration, A and B. Instead of these parameters
one can also introduce the three roots of the cubic polynomial and write the polynomial in the form

f (q) = 2(q−q1)(q−q2)(q3−q). (4)

We assume the roots q1 ≤ q2 ≤ q3 to be real. It can be easily shown that, if two roots become conjugate
complex, there will be no finite solutions of the differential equation (3).

In principle, equation (3) has to be solved for q′ and then integrated. However, it is unlikely that this
integration can be performed in closed form. Therefore we confine ourselves to an approximate solution,
assuming the parameter ε to be small. Expanding the roots of the cubic equation (3) in powers of ε, one
obtains

q′ =±
√

f (q)
{

1∓2ε
√

f (q)+10ε2 f (q)∓64ε3 [ f (q)]3/2
}

+O(ε4), (5)

where f (q) is the cubic polynomial defined by (3)2. Although, at first glance, this differential equation for
q(θ) seems even more complicated than the original one, it can be integrated in closed form.

3. PHASE PORTRAIT

Before going on with the integration the behaviour of the phase curves q′(q) will be analysed in detail. The
polynomial f (q) involves three parameters. In order to get a one-parameter family of curves, two constants
should be fixed. Let us suppose that the minimum and the maximum of the polynomial are located at q = 0
and q = a, respectively, where a is an arbitrary but fixed value. Then the cubic polynomial admits the
representation

f (q) = b2− (2q+a)(q−a)2, (6)
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where b is considered as the only free parameter of the function. The phase portrait depicts the family of
phase curves q′(q) for different values of the parameter b, while a and ε are kept fixed.

As has been shown in [4], solitary waves are possible solutions of the extended KdV equation only if

ε ≤ εmax =
1
2
(3a)−3/2. (7)

Figure 1 shows the phase portrait for ε = 0.8εmax. There is a pronounced asymmetry which increases with
growing values of ε , while for ε = 0 the symmetric phase portrait of the standard KdV equation would be
retained. In principle, the whole (q,q′)-plane is filled by phase curves. Only those, however, which do not
extend to infinity correspond to finite solutions q = q(θ) of the evolution equation. As can be seen from the
figure, it is only the shaded part of the phase plane which contains closed phase curves representing finite
waves. Those curves which intersect the q-axis twice at right angles correspond to periodic waves. The
limiting curve forms a homoclinic orbit starting and ending at the origin, which means that q = q′ = 0 is
attained asymptotically for θ →±∞. This curve corresponds to the limiting solitary wave.

The final integration uses the series expansion (5) rather than the exact phase curves q′(q). In Fig. 2
the exact solution of the cubic equation (3) is contrasted with the approximations (5) allowing for different
powers of ε . The O(1) approximation neglects the influence of micrononlinearity and gives the symmetric
phase curves of the KdV case. Taking into account the corrections (5) with increasing powers of ε leads to
the asymmetric phase curves which are characteristic of the extended KdV equation. The approximations
converge to the exact solution. In the upper half-plane the convergence is alternating, in the lower the curves
approach the limit from above. Even for ε = εmax the approximation is acceptable for periodic waves. It is
still poor at the kink of the phase curve representing the solitary wave. This, however, is the worst case.

q

q′

a

−
1
6ε

a3/2

Fig. 1. Phase portrait of the extended KdV equation for ε = 0.8εmax.
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ε = εmax
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O(ε2)
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Fig. 2. Approximate phase curves of the extended KdV equation with the maximal micrononlinearity parameter. Left: periodic
wave (with magnified areas). Right: limiting solitary wave.

4. ASYMMETRIC PERIODIC WAVES

The final integration will be performed using the approximation of q′ by the power series (5). Without loss
of generality one may assume that q attains its maximum value q3 at θ = 0. Using this as the initial condition
for the definite integration, the values of q will decrease as θ increases. Therefore the lower signs in (5) are
chosen. For performing the integration one needs the reciprocal value 1/q′ which is obtained as

dθ
dq

=
1
q′

=− 1√
f (q)

[
1−2ε

√
f (q)

]
+O(ε2) =− 1√

f (q)
+2ε +O(ε2). (8)

The analysis is restricted here to the O(ε) approximation but can easily be extended to higher orders. With
the use of the initial condition q(0) = q3, the integration yields

θ =
∫ q

q3

[
−1√
f (q)

+2ε

]
dq. (9)

The integral can be evaluated explicitly by using the substitution

q = q2 +(q3−q2)cos2 ϕ (10)

of the integration variable. Performing the integration gives the result

θ =
1
η

F(ϕ;k)−2ε(q3−q), (11)

where F denotes the incomplete elliptic integral of the first kind and the constants

η =

√
q3−q1

2
, k =

√
q3−q2

q3−q1
(12)



M. Braun and M. Randrüüt: Periodic waves governed by the extended KdV equation 137

ηθ

q

a

3
2a

−2π −π 0 π 2π
Fig. 3. Periodic waves and solitary wave governed by the extended KdV equation (ε = εmax).

have been introduced. Solving (11) for the auxiliary variable ϕ and resubstituting this into the transformation
formula (10) yields

q = q2 +(q3−q2)cn2 η [θ +2ε(q3−q)] . (13)

This is an implicit representation of the periodic wave solutions of the extended KdV equation (1), though
only in a first approximation. For ε = 0 it passes into the cnoidal wave solution of the KdV equation.
Figure 3 shows a family of periodic waves together with their limiting solitary wave, as described by (13).
The waves look very much like the corresponding cnoidal waves, but are inclined to the right.

5. CONCLUDING REMARKS

As known from previous studies [4,5], the propagation of one-dimensional deformation waves in a nonlinear
microstructured solid leads to an evolution equation which has the form of an extended Korteweg–de Vries
equation. Janno and Engelbrecht [3] have demonstrated that, due to the nonlinearity of the microscale,
the solitary wave profile becomes asymmetric. The same effect appears in the case of the respective
evolution equation which has been solved approximately by Randrüüt and Braun [4]. Although solitary
waves constitute the most interesting type of solutions, the same procedure is applied here to a more general
case. Solitary waves can be considered as the long-wave limit of periodic solutions which, in the KdV case,
have the form of cnoidal waves.

It is shown that, due to the nonlinearity in microscale, cnoidal waves stay periodic but become inclined
in the same manner as solitary waves. Compared with the classical cnoidal waves (ε = 0), the periodic waves
for ε > 0 have a steeper slope at the leading flank, while the trailing flank falls off gentler. Qualitatively the
behaviour is as expected from the solitary-wave limit.
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Üldistatud Kortewegi-de Vriesi võrrandi perioodilistest lahenditest

Manfred Braun ja Merle Randrüüt

Üksiklainete levi mikrostruktuursetes tahkistes on leidnud põhjalikku käsitlemist Janno ja Engelbrechti [3]
poolt. Selle artikli autorid on näidanud, et niisuguste lainete evolutsioonivõrrand on kõrgemat järku lisa-
liikmega Kortewegi-de Vriesi võrrand (üldistatud KdV-võrrand), kusjuures lisaliige kirjeldab mikrostruk-
tuuri mittelineaarsust. On teada, et mikrostruktuuri mittelineaarsuse tõttu on üksiklaine ebasümmeetriline.

Üksiklaineid võib vaadelda kui lõpmatusele läheneva lainepikkusega perioodilisi laineid, mida KdV
juhtumil nimetatakse knoidaalseteks laineteks. Selles artiklis on uuritud üldistatud KdV-võrrandi perioo-
dilisi lahendeid. Vastavaid faasidiagramme kirjeldab kuupvõrrand, mille lahendite analüütiline integreeri-
mine osutub tõenäoliselt võimatuks. Seetõttu lahendatakse see kuupvõrrand ligikaudselt mikrostruktuuri
mittelineaarsuse parameetri väikeste väärtuste korral, mis võimaldab saada perioodilisi lahendeid ilmu-
tamata kujul.

Knoidaalsete lainetega võrreldes on üldistatud KdV-võrrandi perioodilistel lahenditel vastavalt liikumise
suunale esikülg järsema kaldega kui tagumine. Mittelineaarne lisaliige ei mõjuta laine amplituudi, perioodi
ja levimiskiiruse vahelisi seoseid. Selgub, et lisaliikme mõju perioodilistele lahenditele on samasugune kui
üksiklainelisele lahendile, põhjustades laineprofiili ebasümmeetria.
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