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Abstract

EFFICIENCY IMPLICATIONS OF TRANSIENT FAULT MITIGATION

Electronic circuits, especially those deployed in harsh environments such as space, are
susceptible to transient faults caused by radiation.

In this thesis, two online fault mitigation methods—AWAIT1 and AWAIT2—are proposed
for mitigating transient faults on links between modules. Both methods are designed in
Register-Transfer Level (RTL) using VHDL.

While AWAIT1 only offers mitigation against faults that do not occur critically close to
the rising edge of the next clock, however, it is lightweight and can be used together with
other methods. In contrast, AWAIT2 does not have such limitations. AWAIT2 can handle
all Single Event Transient (SET) faults. The experimental results show that the AWAIT
methods continue to operate even under harsh condition such as 80 million faults per sec-
ond.

Even-though both AWAIT mechanisms are implemented using Hop-By-Hop (HBH) prin-
ciple, the area overhead was 18.1% for AWAIT2 and only 5.1% for AWAIT1 compared to
the baseline design. In case of AWAIT2 critical-path delay had a slight increase: 7.8%.
Meanwhile, power consumption overhead of AWAIT1 increased 2.83%, while AWAIT2
had only 1.88% increase.

This thesis is written in English and is 50 pages long, including 4 chapters, 32 figures,
and 7 tables.
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Annotatsioon

AJUTISTE RIKETE HALDUSE MÕJU EFEKTIIVSUSELE

Digitaalseadmetel, mida kasutatakse kosmoses, esineb ajutisi rikkeid, mille peamiseks
põhjuseks on kosmiline kiirgus. Kuivõrd missioonikriitiliste reaalajasüsteemide puhul ei
saa (ajutisi) rikkeid ignoreerida, siis käesolevas töös esitatakse kaks ajutiste rikete mõju
minimeerimise meetodit: AWAIT1 ja AWAIT2. Mõlemad meetodid on disainitud regis-
terülekande tasemel (Register-Transfer Level) kasutades VHDL’i.

Nii AWAIT1 kui ka AWAIT2 võimaldavad ajutisi rikkeid tuvastada ja elimineerida. Mõle-
mad AWAIT meetodid peatavad rikke tuvastamisel rikete eest kaitstava mooduli töö
ajutiselt. Kui rikke mõju kaob, siis mooduli töö jätkub. Rikke tuvastamiseks on kasutusel
paarsuskontroll. Seetõttu suudavad mõlemad AWAIT meetodid süsteemi kaitsta kõigi tu-
vastatud üksikrikete eest.

Paraku AWAIT1 toimib ainult teatud kindlate ajutiste rikete puhul. Kui rike tekib liiga
lähedal järgmise takti tõusvale servale, siis AWAIT1 ei jõua õigeaegselt tuvastada riket.
Selle probleemi lahenduseks on esitatud AWAIT2, mis hilistab rikke tuvastust ühe takti
võrra.

Eksperimentide tulemuste kohaselt toimivad mõlemad AWAIT meetodid isegi väga oht-
likes keskkondades. Mõlemad meetodid töötasid isegi siis, kui sekundis esines 80 miljonit
riket.

AWAIT1 meetod vajab ainult 5.1% ja AWAIT2 18.1% rohkem pindala, kui baasmudel.
Kuigi AWAIT2 on kulukam ja suurem kui AWAIT1, siis see lisa kulu tagab kõrgendatud
usaldusväärsuse. Samas elektri energia kasutuselt on AWAIT2 ökonoomsem. AWAIT1
vajab 2.83% rohkem energiat, kui baas mudel; AWAIT2 ainult 1.88%. Kriitilise tee hilis-
tumine oli AWAIT2 puhul 7.8%. AWAIT1 puhul hilistumist ei olnud.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 50 leheküljel, 4 peatükki,
32 joonist, 7 tabelit.
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List of abbreviations and terms

BF Bridging Fault

BIST Built-In Self-Test

CMOS Complementary Metal-Oxide-Semiconductor

CPU Central Processing Unit

E2E End-To-End

ECC Error Correction Code

EM Electromigration

FIR Fault Injection Rate

F-RET Flit-Based Retransmission

FIFO First In, First Out

HBH Hop-By-Hop

IP Intellectual property

LBDR Logic-Based Distributed Routing

MBU Multi-Bit Upset
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MET Multi-Event Transient

NBTI Negative Bias Temperature Instability

NoC Network-on-Chip

PIR Packet Injection Rate

P-RET Packet-Based Retransmission

P2P Point-to-Point

PE Processing Element

PMOS P-Type Metal-Oxide-Semiconductor

RMA Return Merchandise Authorization

RR Relaxed Retransmission

RTL Register-Transfer Level

S-A-F Store-and-Forward

SAF Stuck-At Fault

SE Soft Error

SEE Single Event Effect

SEL Single Event Latch-Up

SET Single Event Transient

SEU Single Event Upset

SoC System on Chip

TDDB Time-Dependent Dielectric Breakdown
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TID Total Ionizing Dose

TMR Triple Modular Redundancy

TSMC Taiwan Semiconductor Manufacturing Company
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1 Introduction

1.1 Motivation

Modern economy largely relies on electronics. Thus electronics have a significant mone-
tary impact on most industries [1]. Many traditional services and industries—from legal
services such as verifying signatures to entertainment content production such as motion
pictures—are moving from analog to digital domain. Moreover, many electronic circuits
are expected to operate in new untested and/or harsh environments such as in space, e.g.,
for asteroid exploration [2]. Therefore, research into reliability of electronics based sys-
tems continues to stay a relevant topic.

For a number of years, [3] relates, products that have been impacted by transient faults
have been often returned to suppliers as Return Merchandise Authorization (RMA) under
warranty, thus incurring costs to replace and diagnose the products. However, often even
after thorough analysis, these products are deemed to be not defective because some of
these returns are caused by Single Event Upsets (SEUs). Applying fault mitigation meth-
ods would diminish the effect of SEUs, thus increasing dependability through improved
reliability.

While dependability spans over a range of topics, this thesis focuses on reliability im-
provements by proposing two lightweight designs of fault mitigation methods addressing
non-destructive Single Event Transient (SET) faults on links between modules such as
Network-on-Chip (NoC) routers. These two designs—also referred to as “AWAIT1” and
“AWAIT2”—were published, respectively, in [4] and [5], to increase reliability of realtime
systems.

The fault mitigation mechanisms of AWAIT1 and AWAIT2 are designed to operate online
in harsh environments with high rate of transient faults. Thus these designs are suitable—
but not limited—to environments such as space, etc.

1.2 Contributions

The main contribution of both—AWAIT1 and AWAIT2—mechanisms is an improved yet
lightweight fault mitigation method to harden digital designs against SET faults. This in-
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creased reliability is achieved with relatively small (area, critical-path delay, and power
consumption) overhead when compared to the baseline design without any fault mitiga-
tion mechanisms. Despite of low overhead, the AWAIT1 and AWAIT2 fault mitigation
mechanisms are capable of handling SET faults while relying on a simple parity checker
for fault detection mechanism.

Both mechanisms are designed in Register-Transfer Level (RTL) VHDL and are open-
source [6].

The AWAIT mechanisms take advantage of the fact that SET faults are non-permanent.
Thus using so-called Relaxed Retransmission (RR), the affected modules are designed to
halt operation until the effect of the SET fault disappears. The proposed approaches cannot
mitigate the effect of permanent faults, however mitigation of permanent faults is out of
the scope of the current thesis, and it is assumed that the system has other mechanisms
such as Built-In Self-Test (BIST), reconfigurability, etc. to detect and mitigate the effects
of permanent faults.

The AWAIT1 mechanism has two limitations. Firstly, new input data cannot be processed
before previous data is cleared; and, secondly, there is a critical zone near the rising clock
edge. Both of these limitations are addressed in AWAIT2.

1.3 Structure

The rest of the thesis is structured as described below.

Section 2 describes the background and main concepts relevant to the fault mitigation of
SET faults. This includes Section 2.2 on fault types, Section 2.2.2 on fault mitigation
methods, and Section 2.1 on NoC architecture since the experimental results are obtained
using NoC with Bonfire routers [7]. In the following section, Section 3, related works are
discussed providing a literature review of closely related works. Next, in Section 4 the two
main contributions of this thesis—fault mitigation mechanisms AWAIT1 and AWAIT2 for
inter-component links of digital systems—are presented together with experimental re-
sults. In addition, possible future research possibilities to improve the proposed mecha-
nisms are discussed. Finally, Section 5 provides a summary and conclusions of the work.

The intermediary results were presented in conferences. The conference papers covering
the AWAIT1 and AWAIT2 methods are included in Appendices 1 and 2.
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2 Background

Technological advancement is a result of modernization in all domains—behavioral, struc-
tural and physical domain—and abstraction levels (see Table 1). For example, new archi-
tectures such as NoC has been introduced, and transistor size continues to shrink roughly
following Moore’s Law [8] (see [9] for evolving definition of Moore’s Law). While some
of these advancements provide new challenges, others provide new solutions as well.

Table 1. Design hierarchy [10].

DOMAINS
Level

Behavioral Structural Physical

System Communicating
Processes

Processors,
Memories,
Switches

Cabinets, Cables

Algorithm Input-Output
Memory, Ports,
Processors

Board Floorplan

Register-Transfer Register
Transfers

ALUs, Regs,
Muxes, Bus

ICs, Macro Cells

Logic Logic Equations Gates, Flip flops
Standard Cell
Layout

Circuit Network
Equations

Transistors,
Connections

Transistor
Layout

There is an increased focus on dependability related topics in order to mitigate faults asso-
ciated with new technologies (e.g., see [11], [12]), especially when applied in systems that
are required to be ultra-reliable, safety-critical, mission-critical, long-lived and/or highly-
available (e.g., see [1]), for example, artificial satellites.

Section 2.1 discusses NoC versus system bus. Having background knowledge about NoC
is necessary, since in this thesis the proposed fault mitigation mechanisms are applied on a
NoC to obtain experimental results. Section 2.2 provides background information on how
to improve dependability through mitigation of transient faults.
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2.1 Network-on-Chip

One of the key elements in traditional single core Central Processing Units (CPUs) is the
system bus. However, as many or multiple (reusable) Intellectual properties (IPs) [13]
(e.g., Processing Elements (PEs)) are increasingly used in Systems on Chip (SoCs), the
traditional system bus becomes a bottleneck for the system as a whole [14]. Thus, SoCs
need better alternatives for internal communications. One of such possible replacements
for the system bus is Network-on-Chip (NoC) [15]–[17].

2.1.1 Network-on-Chip architecture: overview

There are numerous variations of NoC architectures. For example, NoCs can have different
topologies [18] such as:

■ butterfly (see Figure 1a),
■ clos (see Figure 1b),
■ torus (see Figure 1c),
■ mesh (see Figure 1d) and
■ irregular topology.

The topologies presented in Figure 1 are 2D topologies. However, for example [19] dis-
cusses the use of 3D NoC topology.

There are three main types of routing algorithms: 1) deterministic, 2) oblivious and
3) adaptive [18]. These routing algorithms can be implemented using different routing
mechanisms, e.g., 1) table lookup or 2) logic based routing mechanisms [20] (such as
Logic-Based Distributed Routing (LBDR) mechanism [21]).

LBDR has advantages over lookup table based routing mechanisms:

“[LBDR] is scalable compared to table-based routing in NoCs. Further-
more, LBDR describes the topology and the routing algorithm in a 2D NoC
in terms of a fixed number of configuration bits, i.e., connectivity and rout-
ing bits. This makes it possible to use the connectivity bits for the indication
of links in the 4 main directions as healthy or faulty, by setting the corre-
sponding connectivity bit to zero (faulty) or one (healthy). Routing algorithm
re-configuration (if necessary) can be done by changing the routing bits.” [7]
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Figure 1. Popular interconnection network topologies (adapted from [18]).

Routing inside of a NoC router can be executed using different methods such as turn mod-
els. For example, [22] provides a comprehensive overview of turn models (see also [23]).

While there are several switching techniques, the two best known are Store-and-Forward
(S-A-F) and wormhole switching. The main difference between these two techniques is that
S-A-F uses packet transmission while wormhole switching uses flit based transmission.
This implies that S-A-F has to store the whole packet in the router before the packet can
be transmitted, while wormhole switching sets up a route when a head flit arrives, passes
subsequent flits using this route until a tail flit is transmitted. As a result the NoC routers
need less input buffers, thus reducing the area overhead.

The flow control between routers can be achieved, for example, by using acknowledgment-
based (handshake) or by credit-based flow control. In case of acknowledgment-based flow
control, the two routers first have to ‘negotiate’ if transmission can occur. This increases
latency. In contrast, in case of credit-based flow control the upstream router keeps count
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how many input buffers of the downstream router are currently available. Thus providing
latency improvement since the ‘negotiation’ process is eliminated.

2.1.2 System bus versus Network-on-Chip

To fully appreciate the importance of NoC in the modern SoC design, one first has to
understand the functioning of system bus and also the shortcomings of it. Using the BBC
microcomputer as an example, one can illustrate the essence of system bus. A definition
of system bus can be found in [24]:

“A bus is simply a number of electrical links connected in parallel to sev-
eral [modules].”

In other words, system bus is a communication tool or device that enables communication
of data between the CPU and/or other modules such as memory. Therefore the system bus
is an important part for the functioning of CPU, since the CPU needs data to process and
the data is provided to the CPU by the system bus. In order to better understand how this
data transfer is performed, the system bus should be examined more closely. While often
the system bus is considered as one single unit, in fact, it consists of three buses [24]:

“The communication protocols which enable this transfer of data to take
place are set up by the control, address and data buses.”

The functions of these three buses (see Figure 2) within the system bus are described
by [25] as:

“The data bus moves data from main memory to the CPU registers (and
vice versa). The address bus holds the address of the data that the data bus
is currently accessing. The control bus carries the necessary control signals
that specify how the information transfer is to take place.”

CPUMEM I/O

System Bus

Control Bus

Address Bus

Data Bus

Figure 2. Example of a single system bus [25].
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A more realistic graphical representation of system bus is provided, for example, by BBC
Microcomputer (see Figure 3) where the bus is marked with wide arrow.

Figure 3. Bus for BBC Microcomputer [24].

In contrast to system bus, NoCs are, according to [16], multi-hop interconnection networks
using packet switching that are integrated onto a SoC, where modules (e.g., PEs) access
the network by means of Point-to-Point (P2P) interfaces, and have their packets forwarded
to destinations through a number of hops (e.g., see Figure 4).
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Figure 4. Illustration of a 4×4 Network-on-Chip.
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The differences between bus and NoC are discussed in [26] (see Table 2). Neither of
the two designs (neither system bus nor NoC) have complete superiority over the other.
Therefore, both designs are still used depending on which design is more suitable for a
given task. However, in case of designs consisting of many and multiple IPs, there is an
increasing trend to migrate away from the bus to interconnected networks such as NoCs.

Table 2. Comparison of bus and Network-on-Chip [26].

Bus Pros & Cons NoC Pros & Cons

Every module attached adds parasitic ca-
pacitance, thus degrading electrical perfor-
mance.

7 3 Only one-way P2P links are used, thus local
performance is not degraded when modules
are added to the design.

Bus timing is difficult in a deep submicron
process.

7 3 P2P links can be pipelined.

The arbitration delay grows with the num-
ber of masters.

7 3 Routing decisions can be distributed.

The bus arbiter is instance-specific. 7 3 Same router for all network sizes.

Testability is problematic & slow. 7 3 Locally placed dedicated BIST is fast and
can offer good test coverage.

Bandwidth is limited and shared by all at-
tached modules.

7 3 Aggregated bandwidth scales with the net-
work size.

Bus latency is wire-speed once arbiter has
granted control.

3 7 Internal network contention may cause in-
crease in latency.

Any bus is almost directly compatible with
most available IPs, including software run-
ning on CPUs.

3 7 Bus-oriented IPs need smart wrappers.
Software needs clean synchronization in
multiprocessor systems.

The concepts are simple, standardized and
well understood.

3 7 System designers need reeducation for new
concepts, because it is a relatively new and
changing design.

One of the key reasons to favour NoC over system bus is to minimize links/buses that
connect IPs to each other. Equation 1 shows the relationship between the number of links
connecting IPs in full mesh topology and the number of IPs (n).

number of links

(for a bus in full mesh topology)

=

0 : {n ∈ N|n ≤ 1}
n× (n−1)

2
: {n ∈ N|n > 1}

(1)

Meanwhile, Equations 2 and 3 show the relationship between the number of links and
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the number of nodes in case of two different NoC configurations. Equation 2 applies for
nodes arranged in two rows but not necessarily always in even numbers. This configuration
requires less links than having IPs ordered in a square format (see Equation 3), however
average latency will grow faster than in case of a square NoC (see also Figure 5).

number of links

(for a two row NoC)

=



0 : {n ∈ N|n = 0}

n−1 : {n ∈ N|1 ≤ n ≤ 3}
(n−4)×3

2
+4 : {n ∈ N|n ≥ 4∧n = 2×N}

(n−5)×3
2

+5 : {n ∈ N|n ≥ 4∧n = 2×N+1}

(2)

number of links

(for a square NoC)

=

0 : {n ∈ N|n = 0}

(n−
√

n)×2 : {n ∈ N|n ≥ 1∧
√

n ∈ N}
(3)

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0

50

100

150

200

250

300

Number of nodes

Nu
m

be
ro

fl
in

ks

Traditional bus Two rows mesh NoC Square mesh NoC

Figure 5. Number of additional links/buses to connect as the number of nodes grows.

Figure 5 presents a graphical illustration of the effect of adding IPs to the system: links
grow exponentially if IPs are arranged as fully connected mesh using buses, while using
NoC based system, the growth is, roughly, linear.
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2.1.3 Bonfire: Network-on-Chip router

The fault mitigation methods discussed in the current thesis are implemented on the open-
source Bonfire NoC router [6], [7] (see Figure 6). The Bonfire router is a wormhole switch-
ing router for 2D (mesh) NoC networks. In order to demonstrate the operation of the fault
mitigation methods, a baseline version of Bonfire NoC router is used without implement-
ing any fault tolerance methanisms.
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Figure 6. Architecture of the Bonfire Network-on-Chip router [6].

The Bonfire router is a 32-bit flit router. It consists of input buffers, LBDR based routing
computation units, a switch allocator and crossbar switches. Each input buffer is imple-
mented as a 4-flit circular buffer First In, First Out (FIFO). In the Bonfire router, the switch
allocator prioritizes multiple requests to the same output port based on Round-Robin pol-
icy [27].

2.2 Faults and dependability

The occurrence of faults can have a negative impact on reliability and thus also on depend-
ability of systems. When a fault occurs, it can manifest as an error and lead to a failure [28],
thus reducing the dependability. In this context, failure is a system state where the per-
ceived operation of the system differs from the correct operation [1]. Dependability related
terms are arranged as an illustrative tree in Figure 7.

23



Dependability
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Fault forecasting

Fault masking
Fault detection
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Fault avoidance

Figure 7. Dependability related terms (adopted from [1]).

According to [29], the approaches to dependability can be divided into two main cate-
gories:

■ fault avoidance, and
■ fault tolerance (and/or fault mitigation).

Fault avoidance is the process of taking actions that assure that faults do not occur. Thus,
(partial) fault avoidance, according to [30], can be achieved by using more reliable parts,
using higher quality manufacturing procedures, etc. However, full fault avoidance is un-
likely to be possible, and/or it would be prohibitively expensive.

Fault tolerance is “the process of masking or detecting errors and taking corrective actions
to avoid failure” [30]. Hence, faults are assumed to take place (at least sometimes), but
the system prevents that those faults become failures. Thus, the system functions correctly
even in the presence of faults.

Both—fault avoidance and fault tolerance—can be combined to assure that the designed
system meets the required dependability level. However, as argued above, full fault avoid-
ance and/or full fault tolerance is either unlikely and/or prohibitively expensive. Therefore
this thesis focuses on the aspects of fault mitigation. Hence, the goal is to improve reliabil-
ity instead of designing an ideal fault free system. Thus, Section 2.2.1 discusses different
types of faults and Section 2.2.2 discusses fault detection and mitigation techniques.

2.2.1 Fault classification

“A fault is the adjudged or hypothesized cause of an error. An active fault
produces an error, while a dormant fault does not produce an error. The term
“fault” actually denotes an anomalous physical condition in the system, that
could be caused by various sources such as manufacturing problem, fatigue,
external disturbance, design flaw…” [1]
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According to [31], there are two main causes of faults in digital circuits that are deployed
in space (see also Figure 8):

■ Aging:

– Time-Dependent Dielectric Breakdown (TDDB)

– Electromigration (EM)

■ Radiation:

– Total Ionizing Dose (TID)

– Single Event Effect (SEE):

∗ Non-destructive

∗ Destructive

In this context, aging is a temporal degradation of circuits significantly affecting the life-
time and the performance of a device. One of the most important aging mechanisms,
according to [32], is Negative Bias Temperature Instability (NBTI), which increases the
threshold voltage of P-Type Metal-Oxide-Semiconductor (PMOS) and causes the degra-
dation of circuit performance. See [12] for more detailed discussion on TDDB and EM.

Radiation Aging

SEE TID TDDB EM

Non-destructive Destructive

Cause

Effect

ClassificationRecoverable Non-recoverable

Figure 8. Cause based classification of faults in space [31].

While, according to [3], [31], SEE is a measurable effect caused by an ionizing particle
(i.e., radiation) as it passes through the semiconductor material, the TID is “a cumulative
long term ionizing damage mostly due to protons and electrons” [31].

While aging is an important topic, it is outside of the scope of current thesis as the current
thesis focuses on 1) non-destructive (i.e., recoverable) SET faults caused by radiation and
on 2) mitigation of those faults. However, it should be noted that aging can increase the
rate of SEU [32].

Following the classification was proposed in [28], faults can be divided in three categories
based on the fault duration and on the location of fault:

■ permanent faults,
■ intermittent faults, and
■ transient faults.
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Both permanent and intermittent faults have a fixed location, however intermittent faults
occur intermittently. In contrast, transient faults are relatively short-lived faults that occur
randomly both in time and in location, thus making it difficult to predict when and where
a (transient) fault might occur because they are usually caused by environmental factors
such as radiation.

Detecting permanent faults, such as Stuck-at Faults (SAFs) and Bridging Faults (BFs),
is a non-trivial task, however, there is a large body of research done on this topic (e.g.,
see [33]–[35]). For example, BISTs can be used for detecting permanent faults offline,
thus it is not suitable for online fault detection. A review of diagnosis techniques for
intermittent faults in dynamic systems is provided in [36].

Transient faults could be considered to be faults that can lead to Soft Errors (SEs), i.e., an
error where a signal value or datum is not correct, however, the circuit is not permanently
damaged. Thus cold booting would typically make the system to recover from SEs. In the
literature, transient faults are often equated with SEUs:

“In space high-energy neutrons generated from the interaction of cosmic
rays with the atmosphere are the main source of incident radiation. Neutrons
cannot cause direct ionization, but the by-products of nuclear reactions with
the silicon generate ionizing particles that cause [SEUs]”…SEUs “are mostly
induced by alpha particles emitted from radioactive impurities in materials
such as packaging, solder bumps and by highly ionizing secondary particles
produced from the reaction of both thermal and high-energy neutrons with
component materials.” [3].

In general, SEEs can be divided into following categories [3]:

■ Single Event Upset (SEU),
■ Multi-Bit Upset (MBU),
■ Single Event Transient (SET),
■ Single Event Latch-Up (SEL).

SETs will become SEUs if they are latched. While SEUs and Multi-Bit Upsets (MBUs) are
considered non-destructive, Single Event Latch-Ups (SELs) can lead to permanent faults.

2.2.2 Fault mitigation methods

Since neither is it possible to avoid all faults in harsh environments, nor is it usually eco-
nomically feasible to build a fully fault tolerant system, a middle ground is often required
when deploying fault mitigation techniques. However, since those techniques and methods
have different costs and benefits, an analysis must be performed.
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On the topic of handling faults in the system, [1], [30] discusses the following approaches
to fault mitigation:

■ fault dismissal,
■ fault detection,
■ fault masking,
■ fault forecasting and
■ error correction.

Any fault mitigation approach will include, as discussed in [30], at least one or more ap-
proaches from the above mentioned list.

Insignificant faults can be ignored or dismissed in case of fault dismissal. Depending on
the usage of the data, in some cases faults can be ignored. For example, if a TV set used
for home entertainment occasionally and briefly displays some random pixel in a slightly
different shade of blue than intended, then this fault/error can probably be ignored.

However, if there is a danger that the fault can lead to failure(s), then other approaches are
required, such as fault masking, which require redundancy in the form of additional [28]:

■ hardware,
■ software,
■ information and/or
■ time.

For example, [30] uses error detection instead of fault detection. However error detection
can, in some cases, take place too late and/or too far from the origin of the fault. A fault
might manifest itself to the outside world as an error many clock cycles (and, in the worst
case, days or more) later. Thus detecting errors prevents applying timely remedies. More-
over, the error might manifest in a module different from the fault location. Thus making
it difficult to both localize the fault and to prevent the fault propagation to other modules
of the system. For example, parity checker could be used as a lightweight fault detection
mechanism for data path (e.g., see [4], [5]). However, much more complicated checker
designs have also been implemented [7], [37].

Some fault mitigation techniques rely on fault detection; on the other hand, for some tech-
niques fault detection is not required (e.g., fault mitigation techniques based on fault mask-
ing such as Triple Modular Redundancy (TMR)).

The goal of fault masking is described in [30]:

“Fault masking aims at blocking the progress of faults into errors. So, the
faults in the system are not fixed but their effects are masked so that no errors
are generated that can be observed by the outside world.”
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A well-known example of fault masking is TMR. In case of TMR, modules are triplicated
and the correct output value is assumed to be the value that at least two modules have. For
more detailed discussion on the merits of TMR, see Section 2.3.

Error correction can be implemented in many ways, however, Hamming codes and mod-
ifications of Hamming code are widely used. For example [30] divides error correction
methods into following methods:

■ off-line methods:

– module replacing (with new module)

– adding additional modules (that fix the faults of original module)

– soft module fixing (by reprogramming)

– hard module fixing (by offline diagnostics and fixing);

■ on-line methods:

– automatic repairing/adapting (self-test with automatic reconfiguration)

– automatic error fixing (e.g., by retransmission)

– using error correction codes (e.g., Hamming codes).

While Error Correction Codes (ECCs) such as Hamming codes are elegant as a concept,
these methods have a significant data and area overhead (see also section 3.1).

A generic fault forecasting can provide important insight, e.g., where are the single points
of failure, which modules are not shielded from interference, how many faults are expected
to occur, etc. However, forecasting the time and location of SET faults is, probably, waste
of resources because SET faults by definition are random.

2.3 Discussion on methods

Some faults can be dismissed, especially dormant faults that do not cause errors. For
example, particle can hit a transistor in a module that is not currently used or is already
scheduled for reboot. Active faults, however, which would lead to an error should be dealt
with if, for example, data integrity is crucial. Thus fault detection and mitigation is needed
for active faults. The focus of this thesis is on the active SET faults.

Fault detection could be performed either offline or online. For example, BIST could be
used for offline fault detection. However, BIST is more suitable for detecting permanent
faults and, moreover, it cannot be used for online fault detection.

TMR could be used for fault masking (see Figure 9). Conceptually the TMR is a simple
approach, however, the area overhead of TMR exceeds 200%, since in addition to tripli-
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cating the design also a majority voter is added. Moreover, the majority voter becomes a
single point of failure. In addition, also power consumption is approximately triplicated.

output

input_1

input_2

input_3

Figure 9. Simple Triple Modular Redundancy from NAND gates.

The TMR can be extended to n-modular redundancy (see Figure 10). While fault coverage
increases, also area overhead increases and, similar to TMR, the majority voter becomes
a single point of failure.

module_n

…

module_2

module_1

Majority
voter

output

input_1

input_2

input_n

Figure 10. n-modular redundancy.

Thus the aim of current thesis is to provide the same level of fault coverage as TMR, but
with substantially smaller area overhead.
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3 Literature review of related works

There are several works focusing on obtaining data integrity by applying fault mitigation
methods on the physical links in Networks-on-Chip (NoCs). Based on the location where
the fault mitigation method is implemented, the principles described in these works can
be broadly divided into two categories (e.g., see [4], [5]):

■ End-To-End (E2E), and
■ Hop-By-Hop (HBH) principle.

These two principles—End-To-End (E2E) and Hop-By-Hop (HBH)—have very different
effect on the latency and area overhead. Since methods based on the E2E principle only
need fault mitigation methods in the end-points, these methods require less area overhead
than methods based on the HBH principle where fault mitigation is implemented not only
in the endpoints but also in the intermittent points (i.e., NoC routers). However, since
methods based on the E2E principle rely on data retransmission that is triggered only at the
endpoint, the methods based on the HBH principle usually have lower latency overhead as
in case of the E2E since the entire packet needs to arrive at the destination first. Therefore,
when deciding which principle to use, this trade-off of area overhead for latency overhead
must be considered.

In case of NoC based SoCs, the methods utilizing the HBH principle have an additional
advantage over E2E. If a fault were to occur in the address part of the packet, then the packet
might never reach the endpoint and the data would be lost when using methods based on
the E2E principle or, in the worse case, lead to system-wide congestion. Therefore, in this
thesis only HBH based fault mitigation approaches are considered.

Within the two—E2E and HBH—principles the methods can be further divided into the
following categories:

■ error correction (see Section 3.1),
■ retransmission (see Section 3.2), and
■ Relaxed Retransmission (RR) [38] methods (see Section 3.3).

For an overview of related works, see Table 3. Cells marked with red color indicate sub-
optimal approach and/or result.
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Table 3. Comparison of related works [4].
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3.1 Error correction methods

Methods based on Error Correction Codes (ECCs) have low latency, because errors are
corrected online and interruptions or retransmissions are not required. Since data integrity
is important for NoC based systems, methods based on ECC could be used in NoCs. For
example, works such as [44]–[46] have provided solutions for correcting SET faults using
ECCs. Moreover, [47] has applied ECC techniques to cover Multi-Event Transient (MET)
faults.

ECC based methods can be implemented either as E2E [44]–[47] or HBH [39]. Regard-
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less of chosen principle (E2E or HBH), the ECC based methods have one disadvantage:
overhead, i.e., both area and data overhead. For example, implementing Hamming code
on NoC router links would require approximately 11 times more additional area compared
to parity checker; similarly the number of data bits that the basic version of Hamming code
would require is eight times more than that of parity checker [51]. Therefore ECC based
methods would have an increase in area overhead even for correcting SET faults and in
addition the number of bits used for data transmission is reduced by eight.

3.2 Data retransmission methods

Data retransmission methods resend data when fault is detected. Implementing retrans-
mission methods relies on assumption that incorrupt data is stored and can be retrieved or
regenerated. While data retransmission can also be divided according to E2E and HBH
principles, there is an additional element to consider: data can be retransmitted as full
packages (Packet-Based Retransmission (P-RET)) (see Section 3.2.1) or as flits (Flit-Based
Retransmission (F-RET)), i.e., chunks of data (see Section 3.2.2), instead of full packets.

3.2.1 Packet retransmission

Especially in case of S-A-F, packet transmission requires that the whole packet is stored
in a module before it is transmitted to the next module. This has several drawbacks:

■ increased number of router buffers,
■ all packets must have the same (maximum) size.

Several papers, including [7], [40]–[43] have proposed data retransmission methods based
on E2E principle. However, methods based on E2E principle have a high latency over-
head. The increased latency is due to the fact that fault/error detection is implemented
only in the endpoint. Since NoCs are inherently multi-hop systems, then initializing data
retransmission would require accessing data that was sent from the initial module several
clock cycles ago. Thus retransmission would make the data arrive several clock cycles
later. Moreover, if there are data dependencies, retransmitting or rolling back one packet
might require rolling other packets too, thus the latency penalty might apply on more
than one packet. Consider, for example, video transmission: if video frame framet has
to be retransmitted, then also frame framet+1 has to be retransmitted to assure, that the
sequence of frames (especially when using compressed video codecs) is unaltered. Thus
even non-faulty packets might have to be dropped and retransmitted.

Therefore, a packet retransmission method using E2E principle packet would require a
distributed packet dropping mechanism in order to prevent a network-wide failure. This
makes packet retransmission using E2E principle a less feasible option compared to flit
based methods.
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Consequently, methods based on E2E principle would also have area overhead penalty
because packets would have to be stored for several clock cycles because they might be
needed for data retransmission. Thus, each initial data sending module would require
additional input buffers (see Equation 4).

additional

buffers

in bits

= max


transmission

length in

clock cycles

×max


packet

size

in bits

 (4)

The issue with increased latency is addressed by [48] by proposing a HBH based P-RET
that uses S-A-F switching method. While S-A-F method alleviates the latency overhead
associated with E2E based systems, the S-A-F method has its own adverse impact on
latency and area overhead due to additional input buffers at each NoC router for storing
the entire packet before transmission compared to flit level switching, such as wormhole
switching.

These limitations of packet based retransmission are addressed when using Flit-Based
Retransmission (F-RET) (see Section 3.2.2).

3.2.2 Flit retransmission

The problems associated with packet transmission and S-A-F can be alleviated by using
wormhole switching method which is flit based. For example, [49], [50] propose HBH
based methods of F-RET. While HBH based F-RET methods have lower latency overhead
compared to based on E2E principle, and lower area overhead compared to HBH based
P-RET, nevertheless, those HBH based F-RET methods require additional input buffers
for storing the incoming flits.

3.3 Relaxed data retransmission methods

Relaxed Retransmission (RR) [38] intends to alleviate shortcomings of ECC (see Sec-
tion 3.1) and data retransmission (both packet and flit) based methods (see Section 3.2).
Instead of correcting the fault/error as in case of ECC based methods, the Relaxed Retrans-
mission (RR) takes advantage of the nature of transient faults: these faults are short-lived
and their effects vanish over time. Thus the RR method proposes waiting until the tran-
sient faults disappear and continuing transmission after this pause. This guarantees very
fast recovery in case of faults.
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While the RR method was proposed by [38], the approach in the paper had several draw-
backs, including predicting the occurrence of transient faults, which by definition are ran-
dom, thus not predictable.

The AWAIT methods (see Sections 4.2 and 4.3) propose an alternative RR method for SET
fault mitigation. While the methods proposed in this thesis and the method in [38] all rely
on the transient nature of SETs, these methods are unrelated and the term RR is used here
only to refer to the generic approach.
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4 Methodology and experimental results

4.1 Analysis of reliability of baseline design

Experiments were conducted to provide evidence that fault mitigation mechanism (such
as AWAIT1) is needed. These experiments were conducted on a 4×4 2D NoC using Bon-
fire routers (hereafter “baseline”) which, as explained in Section 2.1.3, utilize wormhole
switching using 4-flit FIFO buffers without any fault mitigation mechanisms. The dura-
tion of each experiment was 100 thousand clock cycles. These experiments were repeated
using multiple different Fault Injection Rate (FIR) and Packet Injection Rate (PIR) values
(see Figures 11, 12 and 13).
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Figure 11. Effect of faults with duration of 10% of clock period during 100,000 clock cycles [4].
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Figure 12. Effect of faults with duration of 100% of clock period during 100,000 clock cycles [4].

In these figures, each data point is ‘best out of five’ experiments. In other words, a data
point is considered as a ‘non-failure’ (depicted in blue color) if most of the five experi-
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Figure 13. Effect of faults with duration of 200% of clock period during 100,000 clock cycles [4].

ments were failure free, while it was considered to be a ‘failure’ (depicted in red color) if
most of the five experiments led to failure. Thus at least three 100 thousand clock cycle
experiments had to lead to failure for a data point to be considered as ‘failed’. Failure in
this context mean that not all transmitted packets arrived to destination.

Based on the results, the hypothesis that failures increase when PIR and FIR increase can-
not be rejected. At very low PIR values (see Figure 11), it appears that the system is not
starting to fail even when FIR increases (and vice versa). This sounds at first contradict-
ing the hypothesis, however, if either FIR or PIR is sufficiently low, then the probability
that the fault becomes a SEU approaches zero. Moreover, the blue data points denote
‘mostly failure free’ operations instead of ‘failure free’ operations, since most of the five
experiments did not encounter failures.

The results of these experiments failed to reject the hypothesis that increase in fault dura-
tion increases the probability of a fault becoming a failure (see Figures 11, 12 and 13).

Hence, if the system is expected to operate without failures, then the baseline model with-
out any fault mitigation mechanism cannot provide the required level of dependability
under harsh conditions (such as space, etc).

Therefore, in order to improve the reliability of the baseline model, this thesis proposes
AWAIT1 (see Section 4.2). However, AWAIT1 has limitations. Thus, for systems with
more stringent reliability requirements, this thesis proposes a second alternative: AWAIT2
(see Section 4.3).

4.2 AWAIT1: a lightweight fault mitigation mechanism

A lightweight online fault mitigation mechanism—AWAIT1—is proposed in the current
thesis. It was also published in [4] (see Appendix 1). The goal of AWAIT1 mechanism
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is to address SET faults on links between modules such as NoC routers (hereafter mod-
ules) to increase reliability. In broad terms, the AWAIT1 fault mitigation mechanism is a
Relaxed Retransmission (RR) type fault mitigation mechanism. AWAIT1 is implemented
using parity for fault detection in order to achieve low area overhead (however other fault
detection mechanisms can be used instead or along the parity checker). Checker design
and optimization, however, is out of the scope of this thesis. AWAIT1 was implemented
on the baseline Bonfire NoC router (see Section 2.1.3 for description).

4.2.1 AWAIT1 mechanism

The AWAIT1 fault mitigation approach relies on the transient nature of SETs. However, in
comparison with [38], the AWAIT1 achieves lower latency. Moreover, compared to [50]
which uses HBH based F-RET, the AWAIT1 method does not require additional buffers.

When the downstream module detects a SET fault, a signal is sent to the upstream mod-
ule to ‘pause’ the current operation and hold the incorrupt value at the output. Once the
effect of a SET fault disappears on the module link, the downstream module receives the
incorrupt value (in red) and signals the upstream module to continue normal operations
(see Figure 14). Moreover, the ‘pause’ signal propagates to other modules along the route
of the packet.

clk
hold_out

Rx
valid_in

(a) Transient fault with duration of 10% of clock
period.

clk
hold_out

Rx
valid_in

(b) Transient fault with duration of 200% of clock
period.

Figure 14. Pausing the system in case of transient faults.

Thus, in order to use the RR method to mitigate SET faults, three steps are required for
AWAIT1:

1. The downstream module must detect the presence of fault(s).
2. The downstream module must stop sampling data.
3. The upstream module must keep the transmitted data on the link until it is certain

that the downstream module has received the correct, fault-free data.

The main idea behind AWAIT1 is that the upstream module holds values in outputs (and
in input buffers, if necessary) constant until the downstream module signals that the data
was received successfully. A simplified version of the AWAIT1 mechanism is illustrated
by Figure 15.
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Figure 15. AWAIT1 simplified design.

The middle module (marked as ‘Router_1’ in Figure 15) only updates the FIFO buffer
(‘FIFO_1’) if the downstream module (‘Router_2’) does not send ‘HOLD’ (‘HOLD_1’)
signal, the upstream module (‘Router_0’) sends a ‘VALID’ signal (‘VALID_1’) and
‘Checker_1’ does not detect a fault in data (‘DATA_0’), thus sending ‘OK’ signal to the
FIFO (see Equation 5).

OK= VALID
∧(

FAULT
∨

HOLD
)

(5)

Since fault did not occur, the middle module pulls the ‘HOLD’ signal low and the upstream
module can update its FIFO if and only if new uncorrupted input data is available.

However, in case ‘Checker_1’ detects a fault, the the middle module signals both
the upstream (‘Router_0’) and the downstream (‘Router_2’) modules. Firstly, the
‘VALID_2‘ is pulled to low, thus the downstream module does not update its FIFO. Sec-
ondly, the upstream module receives ‘HOLD_0’ signal and therefore keeps its output until
the middle module signals successful transmission by pulling ‘HOLD_0’ to low.

A more detailed schematic of the AWAIT1 is presented in Figure 16, where Bonfire routers
are used as examples. Changes to the baseline design are marked with red for modules
(‘Hold generator’ and ‘Parity checker’) and with blue for individual elements. It can be
seen that the required changes are minimal.
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Figure 16. AWAIT1 applied to Bonfire router [4].

The AWAIT1 method relies on a single parity bit for fault detection, however other fault
detection methods could be used instead or together with the parity checking. Using a
single parity bit enables detection and correction of all single bit faults on links between
modules. While, for example, Hamming code provides a single bit fault correction, it
would require eight times more data overhead [4] per flit and about ten times more area
overhead for 32-bit links compared to parity checker for single bit fault detection.

4.2.2 AWAIT1 experimental results

A set of experiments were conducted to demonstrate that a simple fault mitigation mech-
anism (such as AWAIT1) can provide significant dependability increase.

To validate the effectiveness of AWAIT1 mechanism, the design was simulated using Mod-
elSim [52] and uniformly distributed random faults were injected into the signals of a 4×4
2D NoC with Bonfire routers utilizing AWAIT1 mechanism by setting signal values to in-
correct values and freezing those values for a duration of a modeled transient fault. In
order to measure the latency overhead, 1500 experiments were conducted. The experi-
ments used three variables: fault duration, PIR and FIR. While in these experiments the
fault duration had only three levels: 10%, 100% and 200% of clock cycle; the FIR, for
example, ranged from 0 to 80 million faults per second (see Figures 17, 18 and 19). Every
data point is an average of five experiments. Each of the three figures also includes a fault
free baseline reference (marked as orange lines at FIR = 0).

Not only did the system operate without failures (see Sections 4.2.3, 4.3 and 4.4 for critique
of the AWAIT1 mechanism), AWAIT1 induced only marginal increase in latency (see,
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especially, Figure 17).
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Figure 17. AWAIT1: Average packet latency at fault duration of 10% of clock period under different Packet
Injection Rate and Fault Injection Rate values [4].
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Figure 18. AWAIT1: Average packet latency at fault duration of 100% of clock period under different Packet
Injection Rate and Fault Injection Rate values [4].
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Figure 19. AWAIT1: Average packet latency at fault duration of 200% of clock period under different Packet
Injection Rate and Fault Injection Rate values [4].

Both—the baseline NoC without fault mitigation and NoC with AWAIT1 mechanism—are
implemented in RTL in VHDL. When these two designs are synthesized in Synopsys De-
sign Compiler [53] using Taiwan Semiconductor Manufacturing Company (TSMC) 40 nm
Complementary Metal-Oxide-Semiconductor (CMOS) technology standard library, this
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Figure 20. AWAIT1: Power consumption (in mW ) of the proposed and baseline 4× 4 Network-on-Chip
under different Packet Injection Rate [4].

improved dependability is achieved with ≈ 5.1% area overhead (see Table 4). Moreover,
the critical-path delay was not increased (Table 4 shows, in fact, that critical-path delay
decreased which is contra-intuitive at first, however, the additional logic elements might
have made it possible for the synthesis tools to simplify the design. For example, two
‘inversion’ gates could be optimized out into a wire, thus reducing critical-path delay).

Table 4. AWAIT1: area and critical-path delay overhead [4].

Area Critical-Path Delay

Baseline design 8289.38 µm2 1.96 ns

AWAIT1 module 8719.56 µm2 1.94 ns

Overhead ≈ 5.1% ≈ 0.0%

Finally, power consumption overhead was obtained for both the baseline design and the
Bonfire NoC with integrated AWAIT1 at three different PIR values (see Figure 20). The
power consumption overhead of AWAIT1 mechanism is mostly due to dynamic power
consumption and averaging roughly 2.89% increase (see Table 5).
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Table 5. AWAIT1: Power consumption overhead.

PIR Category Dynamic Static Total

0.001

Baseline 6.772 mW 0.010 mW 6.782 mW

AWAIT1 6.832 mW 0.011 mW 6.843 mW

Change 0.87% 10.00% 0.90%

0.010

Baseline 6.837 mW 0.010 mW 6.847 mW

AWAIT1 7.020 mW 0.011 mW 7.031 mW

Change 2.68% 10.00% 2.69%

0.020

Baseline 6.971 mW 0.010 mW 6.981 mW

AWAIT1 7.312 mW 0.011 mW 7.323 mW

Change 4.90% 10.00% 2.83%

Average change 2.82% 10.00% 2.83%

4.2.3 AWAIT1: discussion

The AWAIT1 mechanism has two main drawbacks. One of the weaknesses of AWAIT1
is that the upstream module cannot process new input data, while the output has to stay
unchanged while waiting for acknowledgment from the downstream module. The other,
and the most severe limitation of AWAIT1, is that faults that occur very close to the ris-
ing clock edge (see Figure 21) cannot be detected before the faulty data is latched into
register(s).

clk
Rx

hold_out
valid_in

T f d

Figure 21. Fault detection delay.

In Equation 6, ∆t denotes time of occurrence of a fault measured starting from the previous
rising clock edge, Tclk denotes clock period and T f d is the time necessary for the checker
(in this case parity checker) to evaluate the input data. Thus, if the fault occurs too close to
the next rising clock edge, the checker will fail to detect the fault (before the rising edge).
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AWAIT1

mitigation

=

success i f Tclk −∆t > T f d

failure i f Tclk −∆t ≤ T f d

(6)

Nevertheless, since the AWAIT1 mechanism has only a small overhead, it can be used to
add reliability, especially, if the clock period is significantly longer than the critical path
of parity checker. However, additional fault tolerance mechanisms, e.g., packet dropping,
is needed to avoid network-wide congestion.

In order to address these drawbacks of AWAIT1, AWAIT2 was designed (see Section 4.3).

4.3 AWAIT2: optimized fault mitigation mechanism

As an improvement to the AWAIT1 mechanism, in this thesis an AWAIT2 method is in-
troduced. The main goal of AWAIT2 is to enable data rollback and retransmission without
requiring additional registers. Similar to AWAIT1, the AWAIT2 method was implemented
on a NoC with Bonfire NoC routers.

4.3.1 AWAIT2 mechanism

A simplified schematic for AWAIT2 is presented in Figure 22. The changes to the baseline
design are marked in blue and red color. The main changes include a multiplexer, two
additional buffers (REG_A and REG_B), and a checker (PARITY).
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ROUTER 2
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O

P
A
R
IT

Y

grant

clk

clk

D
A
T
A

overwrite valid

(A)

(B)

(C) (D)

Figure 22. AWAIT2: schematic [5].

While AWAIT1 mechanism is designed to prevent that SET faults become latched into a
register, the AWAIT2 method uses an input register (REG_B in Figure 22) to latch the fault
and implements fault detection on the values of this register. The rationale is that if the
transient fault is short-lived and not present at the rising clock edge, then the fault can be
dismissed. Such a fault is irrelevant since it does not become latched into the REG_B.
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However, if the transient fault is present at the rising clock edge, then the faulty value is
latched into REG_B. In contrast to AWAIT1, the transient fault can be mitigated always,
even if the fault occurred close to the rising clock edge, since AWAIT2 is designed to latch
the fault into an input register, thus getting rid of the limition of AWAIT1.

In case a fault is detected, the downstream module (Router_2) requests retransmission
by sending the overwrite signal (see Figure 22) to the upstream module (Router_1).
The upstream module stores the previous value in a register (REG_A). If the overwrite
signal is set then previous data is retransmitted, if it is not set then new data is transmitted.

While REG_B is in fact a normal input buffer already existing in the baseline design, the
REG_A appears, at first glance, to be an additional register. However, the AWAIT2 mech-
anism does not require an additional register because it reuses the unused register that is
part of the architecture of circular buffers (see Figure 23). Thus enabling data rollback
without adding additional registers (see Figure 24).

Rd_pointer

Wd_pointer

Pointer moving direction

(a) Empty FIFO.

Rd_pointer

Wd_pointer

Pointer moving direction

(b) Full FIFO.

Figure 23. AWAIT2: circular buffer [5].

When RTL designs are synthesizing using TSMC 40 nm CMOS technology standard cell
library in Synopsys Design Compiler, the optimized version of AWAIT2 requires approx-
imately half of the area overhead of the non-optimized version (see Figure 24) with two
additional buffers (REG_A and REG_B).

2-REG
AWAIT2

505.83
251.95

1,299.62
1,299.62

Baseline (µm2) Overhead (µm2)

Figure 24. Comparison of AWAIT2 with and without optimization.

In other words, the previous value is stored in the FIFO slot with index of current read
pointer minus one (Rd_pointer−1). If the FIFO is empty (Rd_pointer= Wr_pointer)
then the data at Rd_pointer− 1 is still stored there; and even when the FIFO is full
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(Rd_pointer− 1 = Wr_pointer) because writing is disabled until read pointer value is
increased. Therefore, REG_A is also already present in the baseline design!

However, some changes are required (see Figure 25). These changes are marked in red
color in the figure. Among these changes are changes necessary to add a parity checker.
Also the read and write pointer logic is updated: the pointer is not incremented if a fault
is detected. Moreover, one additional register is needed for both read and write pointers,
i.e., the previous value.

32
-b

it
FF

32
-b

it
FF

32
-b

it
FF

32
-b

it
FF

FI
FO

combinatorial combinatorial

Wr_pointer Rr_pointer

Wr_pointer - 1

Wr_pointer

fault_in

Rd_pointer

Rd_pointer -1

parity
fault_out

data_out

data_in

Figure 25. AWAIT2: ReUSE input buffer.

4.3.2 AWAIT2 experimental results

The experimental results were obtained by applying AWAIT2 on data links of a 4×4 2D
Bonfire NoC (see Section 2.1.3). The system was tested by inserting SET faults at random
time with varying settings such as duration.

The fault injection was performed in Modelsim simulation by forcing signals to take faulty
values randomly using uniform distribution. Figures 26, 27 and 28 show how the fault free
baseline experiments (marked with orange color lines in the figures at FIR = 0) compares
to experiments of AWAIT2 with fault injection.

The three figures illustrate how latency of the system changes when parameters such as
length of the SET faults, FIR and PIR are changed. Even under harsh conditions (80
million faults per second), the system continues to operate without failures. Only in case
of long SET faults—100% and 200% of clock period—and high PIR when the network is
already saturated is there noticeable increase in latency compared to the fault free baseline
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Figure 26. AWAIT2: Average packet latency at fault duration of 10% of clock period under different Packet
Injection Rate and Fault Injection Rate values [5].
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Figure 27. AWAIT2: Average packet latency at fault duration of 100% of clock period under different Packet
Injection Rate and Fault Injection Rate values [5].
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Figure 28. AWAIT2: Average packet latency at fault duration of 200% of clock period under different Packet
Injection Rate and Fault Injection Rate values [5].

model. Thus the AWAIT2 shows promise to be applicable for deployment in, for example,
space.

By implementing both the baseline and AWAIT2 version of 4× 4 2D NoC with Bonfire
routers for 400 MHz clock frequency in RTL in VHDL and synthesizing using TSMC
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Figure 29. AWAIT2: Power consumption (in mW ) of the proposed and baseline 4× 4 Network-on-Chip
under different Packet Injection Rate [5].

40 nm CMOS technology standard cell library in Synopsys Design Compiler, the results
in Table 6 were obtained. AWAIT2 increases both area (18.1%) and critical-path delay
(7.8%) overhead. Thus, when only comparing overhead measures, AWAIT1 is superior
to AWAIT2. However, this increased overhead is used to overcome the drawbacks in
AWAIT1. Morever, 18.1% area overhead is insignificant compared to 200% area over-
head of TMR.

Figure 29 provides a comparison of power usage for AWAIT2 and baseline model. Both
dynamic and static power usage of AWAIT2 is roughly equal to that of the baseline model.
Thus the increase in power usage is minimal (see Table 7), while securing the system from
SET faults.

Table 6. AWAIT2: area and critical-path delay overhead [5].

Area Critical-Path Delay

Baseline design 8276.45 µm2 2.28 ns

AWAIT2 module 9777.26 µm2 2.46 ns

Overhead ≈ 18.1% ≈ 7.8%
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Table 7. AWAIT2: Power consumption overhead.

PIR Category Dynamic Static Total

0.001

Baseline 6.772 mW 0.010 mW 6.782 mW

AWAIT2 6.868 mW 0.013 mW 6.881 mW

Change 1.42% 30.00% 1.46%

0.010

Baseline 6.837 mW 0.010 mW 6.847 mW

AWAIT2 6.955 mW 0.013 mW 6.968 mW

Change 1.73% 30.00% 1.77%

0.020

Baseline 6.970 mW 0.010 mW 6.980 mW

AWAIT2 7.135 mW 0.013 mW 7.148 mW

Change 2.37% 30.00% 2.41%

Average change 1.84% 30.00% 1.88%

4.3.3 AWAIT2: discussion

In contrast to AWAIT1, the AWAIT2 method can detect all significant SET faults, i.e., SET
faults that become SEU.

However, neither AWAIT1 nor AWAIT2 can handle permanent faults. Permanent faults
were outside of the scope of current thesis. Nevertheless, it must be noted that in case of
permanent faults AWAIT mechanisms would cause parts or, in the worse case scenario,
whole system to stop operating. Thus additional fault tolerance mechanisms (e.g., packet
dropping, reconfiguration of turn models) are needed.

4.4 Additional tests on AWAIT1 and AWAIT2

It was theorized in [4] that the AWAIT1 mechanism would fail to mitigate faults if SET (or
MET) faults happen close to the rising clock edge (see Equation 6). Therefore, additional
experimental results were generated. These results are obtained using a modified version
of AWAIT1 mechanism (see Figure 30). The line number four was altered by adding
“after PAR_DELAY” to model critical-path delay of the parity checker.
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1 err_check : process(RX, valid_in)
2 begin
3 if valid_in='1' and XOR_REDUCE(RX) /= '0' then
4 faulty <= '1' after PAR_DELAY; -- critical path delay;
5 else
6 faulty <= '0';
7 end if;
8 end process; -- err_check

Figure 30. AWAIT1: Simulating critical-path of parity checker.

For example, simulating the modified AWAIT1 with a critical-path delay equal to 80%
of clock cycle, the system failed even when using AWAIT1 fault mitigation mechanism
(see Figure 31). Signal faulty_E becomes latched to 1 even though the faults are tran-
sient, thus the signal that fault was detected should become 0 when the effect of the fault
disappears.

Figure 31. Example of AWAIT1 mechanism failure.

Modifying the design of FIFO buffer in AWAIT2 (see lines 6 and 7 in Figure 32), the
AWAIT2 mechanism continues to operate without failures.

1 process (written_data, write_pointer, write_pointer_prev)
2 begin
3 fault <= '0';
4 write_pointer_effective <= write_pointer;
5 if XOR_REDUCE(written_data) /= '0' then
6 fault <= '1' after PAR_DELAY; -- critical path delay;
7 write_pointer_effective <= write_pointer_prev after

PAR_DELAY;
8 end if;
9 end process;

Figure 32. AWAIT2: Simulating critical-path of parity checker.
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4.5 Discussion on AWAIT mechanisms and future research

AWAIT1 has a limitation since it is sensitive to the time when a fault occurs (see Sec-
tion 4.3.1). If the fault occurs very close to the next rising clock edge, then AWAIT1 is
unable to detect the fault on time and the faulty value will be latched into register and,
thus, propagates to the next module. This problem manifests itself more severely when
using higher clock rates.

In contrast, AWAIT2 delays fault detection and performs fault detection on latched value,
thus using the fault/error latching as a feature. Therefore, the AWAIT2 mechanism ad-
dresses this short-falling of AWAIT1.

However, AWAIT2 requires that the module has an input buffer—namely circular input
buffer. If the design implementing AWAIT2 does not have circular input buffer, then addi-
tional area overhead would be introduced by adding a buffer. Moreover, if the design uses
“Mealy machine” [54] type of architecture, adding input buffers would increase latency.
Thus more generic fault mitigation technique is needed.

The AWAIT methods have one serious limitation: these methods only mitigate transient
faults. Occurrence of permanent faults would, in the worse case scenario, bring the whole
system to a stop. Because the AWAIT mechanisms are designed to pause the route until
the fault disappears, a permanent fault would make the whole route stop data transmission.
Therefore, additional fault tolerance mechanisms are needed to drop packets or to reset the
network, and to exclude the faulty node or link by updating turn models in routers.

The current methods are only used on securing links between modules. In some systems,
such as CPU pipelines, the output data is a function of the input, thus the combinatorial
logic of the module needs to be secured too. While this was outside of the scope of current
thesis, future work ought to focus on protecting combinatorial logic from transient faults
in, for example, a pipelined CPU.
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5 Summary

Designing dependable system for harsh conditions (such as space) poses challenges, since
the system cannot be economically serviced after deployment. This means that the systems
have to be designed with special attention on reliability. This includes hardening the design
against SET faults using fault mitigation methods.

A simple solution to do this would be using TMR as it requires relatively small changes
to the design. However, TMR increases area overhead over 200%. Thus, other methods
must be considered.

This thesis proposes using two online fault mitigation methods: AWAIT1 and AWAIT2.
Both of these are Relaxed Retransmission (RR) type of fault mitigation methods and op-
erate on Hop-By-Hop (HBH) basis. Thus data is verified at each module not just at the
endpoints.

Firstly, AWAIT1 was introduced as an ultra-lightweight fault mitigation method. AWAIT1
can mitigate all SET faults (that do not occur in a critically close to the next rising clock
edge) by utilizing simple parity checker for fault detection. The area, critical-path delay
and power consumption overheads of AWAIT1 are, respectively, 5.1%, 0% and 2.83%.

However, AWAIT1 has two shortcomings: 1) new data is processed only after current data
has been validated by next module, and 2) there is a critical time-frame before the next
rising clock edge when fault mitigation cannot detect the fault. Even though, the AWAIT1
method cannot detect 100% of faults, it can be useful method to increase reliability, espe-
cially if combined with other existing fault tolerance methods, such as packet dropping.

To address the shortcomings of AWAIT1, an upgraded version—AWAIT2—was intro-
duced. AWAIT2 mitigates all SET faults. Because AWAIT2 uses latched values for fault
detection, it can detect all faults regardless of the time when the fault occurred. However,
this increase in reliability comes at a cost: the area, critical-path delay and power consump-
tion overheads of AWAIT2 compared to the baseline design are, respectively, 18.1%, 7.8%
and 1.88%. While the area and critical-path delay measures are significantly higher than
AWAIT1, the power consumption overhead has, in fact, decreased.

The experimental results show that AWAIT mechanisms mitigate faults even in severe
conditions (80 million faults per second).
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Abstract—Networks-on-Chip have become a widely accepted
communication paradigm for many-core Systems-on-Chip. How-
ever, with the ever-shrinking transistor size, the network’s sensi-
tivity to transient faults on the physical links cannot be ignored
since even a single transient fault can lead to a network-wide
congestion and a system failure. This paper proposes the AWAIT
mechanism, an ultra-lightweight transient fault mitigation mech-
anism for Network-on-Chip links. The proposed mechanism
covers all single event transients. The experimental results show
that the AWAIT mechanism prevents network-wide failure even
in harsh environments (up to 80 million random faults on links
per second). The AWAIT mechanism is also scalable and imposes
only 5.1% area overhead with very negligible critical path delay
overhead.

Index Terms—Network-on-Chip, Fault tolerance, Transient
fault mitigation

I. INTRODUCTION

The ever-decreasing transistor feature size has enabled the
integration of large number of cores on a single die. However,
the traditional bus-based interconnection infrastructure is not
scalable enough and becomes the bottleneck in inter-core
communication. Network-on-Chip (NoC) has emerged as a
solution to this problem. However, the decreasing feature
size also makes the system much more susceptible to both
environmental faults (e.g., faults caused by radiation) and also
introduces new problems, such as Negative-Bias Temperature
Instability (NBTI) and Hot Carrier Injection (HCI) [1]. The
aforementioned problems add the need for integrated reliabil-
ity mechanisms. In this paper we concentrate on improving
the reliability of the inter-router links.

This paper proposes AWAIT, a scalable mechanism which
is able to handle an extensive amount of transient faults
(see Section VI) by relying on a single parity bit for fault
detection, together with only a few additional gates per link for
transient fault mitigation. This approach enables the detection
and correction of all single bit link faults while requiring eight
times less data overhead per flit and 10 times less area for 32-
bit links than Hamming code, which only provides single bit
correction [2].

The AWAIT mechanism pauses system operation in the
affected part of the system until the faults disappear and
does not require retransmission of data. Applying this method
would result in only a slight increase in latency in the presence
of faults and in case of transient faults will always guarantee
correct arrival of the data.

This paper focuses only on Single Event Transient (SET)
faults in NoC links (due to the use of a parity checker for
fault detection). Moreover, it is important to note that the
AWAIT mechanism is not limited to the usage of the parity
checker but can be also combined with other fault detection
(or correction) mechanisms, if needed. The behavior in the
presence of permanent faults is out of the scope of this paper.

The rest of this paper is organized as follows. Section II
provides a literature review. Sections III and IV provide details
of the baseline router and an analysis of the NoC’s behavior
in different operation environments. Section V will provide
details on the proposed AWAIT mechanism and Section VI
will provide experimental results which illustrate the efficiency
of the proposed mechanism. Finally, section VII will conclude
the paper.

II. LITERATURE REVIEW

Many works have investigated the problem of transient
fault mitigation for physical links in NoCs. However, most
of the mechanisms proposed in the literature are very costly
in terms of latency, area or data overhead. In general, all fault
tolerance mechanisms used for NoC links can be categorized
as End-to-End (E2E) or Hop-by-Hop (HBH) mechanisms,
based on the fault detection and mitigation granularity. In
HBH mechanisms, the packet/flit is examined every time the
data is transferred from one router to another. However, in
E2E mechanisms, a fault is detected only once the packet
is ejected from the network. HBH mechanisms have usually
lower latency than the E2E based mechanisms, since in E2E
mechanisms the entire packet needs to be retransmitted in case
a fault, which cannot be corrected in the endpoint, is detected.

In order to mitigate transient faults in physical links in a
NoC, three main approaches exist in the literature:

A. Data Retransmission

1) Packet Retransmission (P-RET): Works such as [2],
[6], [3], [4] and [5] have proposed methods based on End-
to-End (E2E) packet retransmission. This approach suffers
from high latency caused by the retransmission; once a faulty
packet is detected, often by an Error Detecting Code (EDC),
a NACK packet should be sent to the sender of the faulty
packet for requesting a retransmission. During this process,
the receiving node might need to also discard the non-faulty
packets in order to preserve the packet order. It is important to
note that such E2E packet retransmission mechanisms require978-1-5386-3344-1/17/$31.00 c©2018 IEEE
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TABLE I: Comparison of related works

Approach Used Method HBH/E2E No Extra Buffers Targeted Fault Model Correction Latency
[2] P-RET E2E 3 SETs + 50% of METs � 1 clk
[3] P-RET E2E 3 SETs � 1 clk
[4] P-RET E2E 3 SETs + METs � 1 clk
[5] P-RET E2E 7 SETs + METs � 1 clk
[6] P-RET E2E 7 SETs � 1 clk
[7] ECC E2E 3 SETs N.A.
[8] ECC HBH 7 SETs N.A.
[9] ECC HBH 7 SETs N.A.

[10] F-RET HBH 3 SETs N.A.
[11] F-RET HBH 7 SETs + METs 3 clks
[12] RT + ECC + EDC HBH 7 SETs + METs (Prediction) 2 clks
[13] P-RET HBH 7 SETs + Some DET N.A.
[14] ECC HBH 7 SETs + METs N.A.
[15] ECC HBH 7 SETs � 1 clk

Proposed RT HBH 3 SETs + 50% of METs 0-1 clk

distributed packet dropping mechanisms in order to prevent a
network-wide failure.

On the other hand, [13] has proposed HBH packet retrans-
mission using store-and-forward switching. However, store-
and-forward requires large input buffers since each router has
to buffer the entire packet before forwarding it, which is very
inefficient use of network buffers and chip area.

2) Flit retransmission (F-RET): In contrast to packet re-
transmission, works such as [11] and [10] have proposed
HBH flit retransmission in case of receiving a faulty flit.
These works provide much lower latency compared to E2E
approaches but suffer from the need for additional retransmis-
sion buffers in the router.

B. Error Correction Code (ECC)

Another class of fault tolerance mechanisms for NoC links
is Error Correction Codes (ECCs). Works such as [8], [9] and
[15] have provided solutions for correcting single transient
upsets, while [14] has used more sophisticated error correc-
tion techniques to cover multiple event transients. Similar to
retransmission mechanisms, ECCs are also implemented either
as HBH [8], [9], [14] and [15] or as E2E [7]. However,
the main problem with those approaches is the large area
overhead of such mechanisms while providing only limited
fault coverage.

C. Relaxed Transmission (RT)

In contrast to above mentioned approaches which try to
correct the fault, Relaxed Transmission (RT) uses the transient
nature of the SETs and METs in order to mitigate them.
The main idea of this approach is to inform one party in
the transmission to wait until the faults disappear. A relaxed
transmission mechanism has been proposed in [12], where the
upstream router predicts the faults and informs the downstream
router to delay data sampling. Even though the RT method is
very efficient in mitigating faults, prediction of transient faults
which have a random nature, will not be effective. Hence, in
[12] also other methods have been used alongside RT.

This paper proposes an ultra-lightweight, HBH, relaxed
transmission based transient fault mitigation approach called
AWAIT which does not require any additional buffers. The

Fig. 1: Block diagram of the baseline Bonfire router

proposed mechanism can handle transient faults immediately
by pausing the operation of the faulty components without data
loss and guarantees returning to normal, fault free operation
in zero to one clock cycle after the fault disappears. This is
achieved by utilizing a parity checker as the fault detection
mechanism which allows to detect and mitigate all SETs.
However, the proposed AWAIT mechanism is not limited to
using parity checker but can be used together with any other
fault detection mechanism. Since packet retransmission is not
required, the AWAIT mechanism is also power efficient.

A side-by-side comparison of different fault tolerance mech-
anisms for physical links in NoCs proposed in the literature
can be seen in Table I.

III. BONFIRE ROUTER

In order to prove the applicability of the AWAIT mechanism
in a real design, it was implemented for inter-router links in
a 4×4 NoC utilizing the Bonfire router [2]. An overview of
the baseline Bonfire NoC router (without any fault tolerance
mechanisms) can be seen in Fig. 1. The Bonfire router utilizes
wormhole switching and 32-bit flit size.

The Bonfire router uses a credit-based flow control mecha-
nism, where the transmitter includes a credit counter to keep
track of the free slots in the receiver’s input buffer. When

58



0.
00
10

0.
00
12

0.
00
14

0.
00
18

0.
00
22

0.
00
28

0.
00
40

0.
00
50

0.
00
66

0.
01
00

0.
02
00

0.
03
30

10

100

200

300

400

500

600

700

800

900

1,000

PIR (packet/clk)

FI
R

(K
-F

au
lt/

se
c)

(a) Fault duration: 10% of clock period

0.
00
10

0.
00
12

0.
00
14

0.
00
18

0.
00
22

0.
00
28

0.
00
40

0.
00
50

0.
00
66

0.
01
00

0.
02
00

0.
03
30

10

100

200

300

400

500

600

700

800

900

1,000

PIR (packet/clk)

FI
R

(K
-F

au
lt/

se
c)

(b) Fault duration: 100% of clock period

0.
00
10

0.
00
12

0.
00
14

0.
00
18

0.
00
22

0.
00
28

0.
00
40

0.
00
50

0.
00
66

0.
01
00

0.
02
00

0.
03
30

10

100

200

300

400

500

600

700

800

900

1,000

PIR (packet/clk)

FI
R

(K
-F

au
lt/

se
c)

(c) Fault duration: 200% of clock period

Fig. 2: Effect of faults on a 4×4 2D-mesh baseline network during 100,000 clock cycles

initialized, the credit counter is set to equal to the number
of slots in the receiver’s input buffers. The value in the
credit counter is decremented each time a flit is sent (and
an additional slot in the receiver’s input buffer gets occupied).
When a slot frees up in the receiver’s input buffer, the receiver
will issue a credit signal to the transmitter, which causes
the credit counter in the transmitter to increase. When credit
counter reaches zero, the receiver’s input buffer is full, and
the transmitter will stop transmitting. If the value in the credit
counter is larger than zero, data can be transmitted one flit per
clock cycle.

Each input port of the Bonfire router consists of an input
buffer, implemented as a First-In-First-Out (FIFO) and a
routing computation unit which is implemented as Logic-
Based Distributed Routing (LBDR) [16]. The main advantage
of using LBDR compared to routing tables is its scalability.
Additionally, since LBDR describes the network topology and
routing algorithm using a fixed number of connectivity and
routing bits, it is possible to easily mark the links as healthy
or faulty, by disabling routing to faulty links. It is also easy
to change the routing algorithm using the routing bits.

The output ports of the router are allocated by the allocator
unit based on the routing decisions from LBDR. The allocator
unit uses the Round-Robin policy for prioritizing multiple
requests to the same output port. Finally, data is transferred
from the input port to the output port using a crossbar switch.

IV. NETWORK FAILURE ANALYSIS

On-chip networks are very sensitive to faults on the net-
work’s physical links. A single faulty value stored in a register
may lead to a network wide failure. We define a network
failure as the situation were the entire network or part(s) of
the network is congested (and the system cannot recover from
it) due to inability to route a packet. Such a faulty value stored
in a register can be one of the following:

• Fault in the flit type: might lead to a network-wide
congestion

• Fault in the destination address: might lead to a
network-wide congestion

• Fault in other header information: a fault in source
address, packet length, etc. may cause problem at the
application layer but has no effect on the network behav-
ior, thus the effect of these faults can be ignored for the
network.

• Fault in the payload: has no-effect on the network
behavior. It might cause a problem at the application
layer. The effect of these faults can be ignored for the
network.

In this work, we have performed fault injection experiments
to evaluate the effects of these faults on the network’s behavior.
The faults were randomly injected into the network links by
temporarily forcing signals in the simulation to faulty values
at fault rates ranging from ten thousand to one million faults
per second. In order to see the effects of SETs with different
lengths in the network, three different fault length scenarios
were investigated where the fault length varied from 10% of
the clock period to 100% and 200% of clock period (the fault
effectively stayed on the link for two clock cycles). For this
investigation, in total 1500 experiments were performed using
random traffic pattern with different Packet Injection Rates
(PIR) and Fault Injection Rates (FIR).

Fig. 2 depicts behavior of a 4×4, 2D-mesh network with
wormhole switching using 4-flit FIFO buffers, without any
fault tolerance mechanisms under different packet and fault
injection rates (during a period of 100 thousand clock cycles).
The fault injection rate is between ten thousand to one million
faults per second. The red dots mark a network failure while
blue dots depict the cases where the network successfully
transmitted all of the injected packets. Each data point in
this plot is based on 5 experiments with the same fault rate
and packet injection rate but with different seeds for the
random traffic generators. A network failure is declared only
if at least 3 out of 5 experiments for that data point failed.
As expected, with increasing packet injection rate and fault
injection rate, the probability of a fault hitting a sensitive part
of the packet increases. The experiments also show that the
duration of fault’s presence in the network has a great effect
on the network behavior. This is due to the fact that faults
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Fig. 4: Schematic of the AWAIT mechanism

with longer presence have higher chance of being registered
in the FIFO buffers.

These experiments highlight the network’s sensitivity to
transient faults and the need for a scalable mitigation mecha-
nism.

V. AWAIT MECHANISM

In this paper AWAIT, a new light-weight fault mitigation
mechanism is proposed to address transient faults on net-
work links. The AWAIT mechanism operates on hop-by-hop
(HBH) basis which enables fault correction with considerably
lower latency when compared to end-to-end (E2E) packet re-
transmission. Also, unlike approaches like HBH flit/packet
re-transmission, the proposed mechanism does not require
additional buffers.

The AWAIT fault mitigation approach for network links
is based on the transient nature of the SETs. The upstream
router holds correct data when a transient fault occurs on the
router link. Once the transient fault disappears, the data on the
link comes back to its normal value and can be read by the
downstream router’s FIFO. In order to wait out the transient
fault, three steps are required:

1) The downstream router should detect the presence of
fault(s).

2) The downstream router should stop sampling data in
case of a fault.

3) The upstream router must keep the transmitted data on
the link until it is certain that the downstream router has
received the correct, fault-free data.

In order to provide step one, a simple fault detection system
– a parity checker – is used. Parity checker is especially useful
since it can detect all single faults.

In order to support step two, the process of storing the data
into downstream router’s FIFO is stopped if a fault is detected.
This is achieved by replacing the valid in signal of the FIFO
module with a new signal: valid = (valid in

∧
fault).

Finally, to support step three, a hold signal is propagated
from the downstream router to the upstream router, informing
it about the presence of a fault on the link. Upon receiving this
signal, the upstream router’s allocator unit halts transmission

and maintains the value on the link. The AWAIT mechanism
does not require any additional buffers in the system and is
entirely governed via controlling of the grant signals. The hold
signal can only be cleared once the fault has disappeared.
It will be done on the next falling clock edge after the
disappearance of the fault, enabling the system to register the
correct data on the next rising clock edge.

Fig. 3 depicts the behavior of the mechanism for a short
(10% of the clock period) and a long (200% of the clock
period) transient fault, respectively. Rx signal in the figure
represents the data receiving line of the router. The duration
while the Rx signal had a faulty value is colored red. The
valid in signal describes the valid signal received from the
upstream router (showing upstream router maintaining the
value on the link). It is important to note that if the fault
disappears before the falling edge of the system clock, the
effects of the fault will be mitigated in the same clock cycle.
However, if the fault disappears after the falling edge of the
clock, the correct data will be latched one clock cycle later
during the next falling clock edge.

Fig. 4 shows the block diagram of the output port of an
upstream router, the communication link, and the input port
of a downstream router along with the added circuitry. For
simplicity, Fig. 4 shows only the East output of the upstream
router, connected to the West input of the downstream router.
Packets are being transmitted from the upstream router to the
downstream router.

The parity checker in the downstream router’s input checks
the parity of the received data. The output of the parity checker
is used to trigger the hold signal in the downstream router.
When a fault is detected, the hold out signal is instantly set
to “1”. Using a flip-flop ensures that the hold out signal stays
at the “1” value, using asynchronous reset of the D flip-flop,
until the fault has disappeared. Once the fault has disappeared,
at the next falling edge of the system’s clock, the value of
hold out signal is set to “0”.

Additional components are added to the mechanism in order
to control the credit counters and the grant generation in
the allocator unit. Upon receiving the hold signal, allocator
unit suppresses the grants issued to the FIFO unit which is
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Fig. 5: Average packet latency of 4×4 2D-mesh network under different PIR and FIR on the links

accessing the output channel. This means that FIFO will not
perform any read operations and the latest data will be kept on
its output. Allocator unit will also keep the select signal of the
Xbar intact, ensuring that the data is kept unchanged on the
link and it will not update the value of the credit counter as
long as the hold signal is present. The additional hardware for
supporting these mechanisms is minimal and does not exceed
a few gates. Next section will provide experimental results for
illustrating the AWAIT mechanism’s efficacy under different
fault injection campaigns.

VI. EXPERIMENTAL RESULTS

This section details the experiments for validating the ef-
fectiveness of the proposed AWAIT mechanism and providing
support for its efficacy in mitigating SETs. Later in this section
the overheads of the AWAIT mechanism are investigated in
terms of area, power and critical path delay.

The experiments were carried out on a 4×4, 2D-mesh NoC
with wormhole switching using 4 flit deep FIFO buffers. Each
router in the network is a Bonfire credit-based router equipped
with the AWAIT mechanism for handling transient faults.
For measuring the latency of the AWAIT mechanism, 1500
experiments were performed using random uniform traffic
pattern with different Packet Injection Rates (PIRs) and Fault
Injection Rates (FIRs) – up to 80 Million random faults per
second over the network’s physical links. The experiments
shows no failing scenario and validates the effectiveness of
the AWAIT approach. In other words, despite of the existence
of transient faults on the router’s link at run-time, the number
of received packets over the network match the number of
sent packets. Fig. 5 depicts the behavior of the fault-tolerant
NoC equipped with the AWAIT mechanism under different
fault campaigns on network links. Similar to experiment on
the baseline router (see Fig. 2), three different fault duration
scenarios were used. Each data point in this plot is the average
latency of 5 experiments, all of which use the same FIR
and PIR, but have different seeds for the random packet
generators. The experiments illustrate that the network is still
operational under extreme fault conditions (fault injection
rate from 5-Million to 80-Million faults per second) with
acceptable latency overhead. The experiments show that while

TABLE II: Area overhead of the AWAIT mechanism

Area (µm2) Area Overhead
Baseline router 8289.38 –
AWAIT router 8719.56 5.1 %

the network is not saturated, the length of the faults does not
have much effect on the additional network latency from fault
handling. However, once the network exceeds saturation point,
the additional latency becomes more visible. The orange line
in Fig. 5 marks the reference, fault-free experiment.

Table II shows the area overhead imposed to the baseline
router by the AWAIT mechanism. Both designs are imple-
mented in Register Transfer Level (RTL) in VHDL and are
synthesized using TSMC 40 nm CMOS technology standard
cell library in Synopsys Design Compiler. It is important to
note that the fault detection mechanism (parity checker) im-
poses the majority of the reported combinational area overhead
(3.82%) due to the additional XOR gates required to perform
the fault detection. It should be noted, however, that this area
overhead is still very small when compared to the overhead
implied by an error correction code such as Hamming [2]. The
rest of the mechanism, including the additional gates imposed
by the proposed mechanism, incurs only 1.3% overhead to the
router’s area, which makes the solution scalable.

Fig. 6 shows the comparison of the dynamic and static
power consumption of a 4 × 4 network augmented with the
AWAIT mechanism against the baseline router under different
PIRs. In order to obtain the power results for each PIR, the
design architecture was simulated in ModelSim. Then, the
simulation traces were collected and the switching activity
of the components and signals were stored. Further, the
annotated switching activities are fed into the synthesis tool to
calculate the power results. The AWAIT mechanism has only
a negligible total power consumption overhead (around 2.89%
on average), compared to the baseline router. This is mostly
caused by increase in the dynamic power consumption.

Table III shows the critical path delay overhead of the
AWAIT mechanism compared to the baseline router. The
proposed mechanism does not impose overhead to the router’s
critical path delay. Due to the critical path delay of the AWAIT
mechanism the faults that occur very close to the clock edge
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TABLE III: Critical path delay overhead of the AWAIT
mechanism

Critical-Path Delay (ns) Overhead
Baseline router 1.96 –
AWAIT router 1.94 ≈ 0%

will be latched into the FIFO buffers. However, in systems
with frequency of 250 MHz and below these effects are
negligible. Additionally, it should be noted that since the area
and timing overhead of the AWAIT mechanism is very small, it
can be coupled with other fault mitigation mechanisms which
can handle faults already latched into the buffer (such as a
packet dropping mechanism [2]) to solve the issue. The source
code for both the baseline and the AWAIT router design along
with all the experimental result scripts are maintained as an
open-source project [17].

VII. CONCLUSION

Network-on-Chip has become a widely accepted commu-
nication paradigm, replacing the bus-based communication
mediums in modern multi/many-core System-on-Chips. How-
ever, the shrinking transistor’s feature size and increase in the
number of components integrated on a single chip, makes the
systems growingly more susceptible to transient faults. On-
chip networks are particularly sensitive to transient faults on
the physical links between the nodes. This paper presented
the ultra-lightweight AWAIT mechanism which can tolerate all
single event transients on network links. The proposed AWAIT
mechanism adds only 5.1% overhead to the area and only a
negligible overhead to the critical path delay of the routers,
which makes it a scalable solution, as it adds transient fault
tolerating capability to the design by augmenting it with only
a few gates. Experimental results show the effectiveness of the
AWAIT mechanism even in extreme environments. As future
work, the authors plan to extend this work to cover permanent
faults on the router links as well. Moreover, the mechanism
would be extended to cover faults occurring in the control part
of the router.

ACKNOWLEDGMENT

The work has been supported by EU’s Twinning Action
TUTORIAL, Estonian Institutional research grant IUT 19-1,
Estonian center of excellence in IT EXCITE, and Estonian IT
Academy programme.

REFERENCES

[1] D. Lorenz, G. Georgakos, and U. Schlichtmann, “Aging analysis of cir-
cuit timing considering NBTI and HCI,” in 2009 15th IEEE International
On-Line Testing Symposium, June 2009, pp. 3–8.

[2] S. P. Azad, B. Niazmand, K. Janson, N. George, A. S. Oyeniran,
T. Putkaradze, A. Kaur, J. Raik, G. Jervan, R. Ubar, and T. Hollstein,
“From online fault detection to fault management in Network-on-Chips:
A ground-up approach,” in 2017 IEEE 20th International Symposium on
Design and Diagnostics of Electronic Circuits Systems (DDECS), April
2017, pp. 48–53.

[3] G. Schley, N. Batzolis, and M. Radetzki, “Fault localizing End-to-End
flow control protocol for Networks-on-Chip,” in 2013 21st Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, Feb 2013, pp. 454–461.

Dynamic Static Dynamic Static Dynamic Static

6.0

7.0 6.772 6.837
6.971

6.832
7.020

7.312

Po
w

er
C

on
su

m
pt

io
n

(m
W

)

Baseline Proposed

Dynamic Static Dynamic Static Dynamic Static

1.0

2.0

0.010 0.010 0.0100.011 0.011 0.011

PIR= 0.001 PIR= 0.01 PIR= 0.03

Fig. 6: Comparison of dynamic and static power consumption
(in mW) of the proposed and baseline 4 × 4 network under
different packet injection rates

[4] E. A. Rambo, C. Seitz, S. Saidi, and R. Ernst, “Designing Networks-on-
Chip for high assurance real-time systems,” in 2017 IEEE 22nd Pacific
Rim International Symposium on Dependable Computing (PRDC), Jan
2017, pp. 185–194.

[5] E. Wachter, V. Fochi, F. Barreto, A. Amory, and F. Moraes, “A hierar-
chical and distributed fault tolerant proposal for NoC-based MPSoCs,”
IEEE Transactions on Emerging Topics in Computing, pp. 1–1, 2017.

[6] M. Ali, M. Welzl, S. Hessler, S. Hellebrand, and S. And, “An efficient
fault tolerant mechanism to deal with permanent and transient failures in
a network on chip,” International Journal of High Performance Systems
Architecture, vol. 1, 01 2007.

[7] S. Shamshiri, A. Ghofrani, and K. T. Cheng, “End-to-end error cor-
rection and online diagnosis for on-chip networks,” in 2011 IEEE
International Test Conference, Sept 2011, pp. 1–10.

[8] S. Ogg, B. Al-Hashimi, and A. Yakovlev, “Asynchronous transient
resilient links for NoC,” in Proceedings of the 6th IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis. New York, NY, USA: ACM, 2008, pp. 209–214.

[9] A. P. Frantz, F. L. Kastensmidt, L. Carro, and E. Cota, “Dependable
Network-on-Chip router able to simultaneously tolerate soft errors and
crosstalk,” in 2006 IEEE International Test Conference, 2006, pp. 1–9.

[10] S. R. Naqvi, V. S. Veeravalli, and A. Steininger, “Protecting an asyn-
chronous NoC against transient channel faults,” in 2012 15th Euromicro
Conference on Digital System Design, Sept 2012, pp. 264–271.

[11] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. R. Das, “Ex-
ploring fault-tolerant Network-on-Chip architectures,” in International
Conference on Dependable Systems and Networks (DSN’06), June 2006,
pp. 93–104.

[12] D. DiTomaso, T. Boraten, A. Kodi, and A. Louri, “Dynamic error
mitigation in NoCs using intelligent prediction techniques,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Oct 2016, pp. 1–12.

[13] A. Dutta and N. A. Touba, “Reliable network-on-chip using a low cost
unequal error protection code,” in 22nd IEEE International Symposium
on Defect and Fault-Tolerance in VLSI Systems (DFT 2007), Sept 2007,
pp. 3–11.

[14] X. Chen, Z. Lu, Y. Lei, Y. Wang, and S. Chen, “Multi-bit transient fault
control for NoC links using 2D fault coding method,” in 2016 Tenth
IEEE/ACM International Symposium on Networks-on-Chip (NOCS),
Aug 2016, pp. 1–8.

[15] A. P. Frantz, M. Cassel, F. L. Kastensmidt, É. Cota, and L. Carro,
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Abstract—The miniaturization of nanometer technologies be-
yond the sub-micron domain has jeopardized the reliability
of on-chip network links, making them more susceptible to
Single Event Transients (SETs) during system’s run-time. Using
retransmission approaches has been proposed in the literature
for handling SETs on Network-on-Chip (NoC) links. However,
those approaches either suffer from significant latency overhead
or impose additional retransmission buffers, which consume
more area. This paper proposes the ReUSE mechanism as a
transient fault mitigation mechanism for Network-on-Chip links.
The mechanism takes advantage of the inherent redundancy
in the input buffers of NoC routers and reuses these for SET
mitigation on the NoC links. By using a parity checker for fault
detection, the approach can cover all SETs during run-time and
return to normal operation in maximum one clock cycle after the
disappearance of the fault. The experimental results show that
the proposed mechanism prevents network-wide failure even in
harsh environments with up to 80 million random faults on links
per second. The ReUSE mechanism imposes 18% area overhead
and 7.8% critical path delay overhead to the baseline NoC router.

Index Terms—Network-on-Chip, Fault tolerance, Transient
fault mitigation

I. INTRODUCTION

The ongoing trend of miniaturization of the semiconductor
technology beyond the sub-micron domain has made digital
circuits more susceptible to faults, including Single Event
Transients (SETs) [1]. As SETs are also caused by eviro-
nental factors, such as radiation, systems operating in harsh
environments with high radiation levels, such as space appli-
cations, are especially at risk of SETs. Such faults occurring
during run-time can affect the performance of embedded
systems, including Network-on-Chip (NoC)-based System-on-
Chips (SoCs). A faulty link in a NoC can corrupt the data
transmitted between processing elements over the network.
Thus, it is important to handle such SETs on inter-router links
at run-time.

This paper focuses on management of SETs on NoC links.
This is done by implementing a very low latency hop-by-
hop (HBH) retransmission mechanism. The proposed ReUSE
mechanism does not use additional registers and can cover
100% of SETs on inter-router links by using the inherent
redundancy provided by the unusable memory slot found in the
circular buffers [2] used in the NoC router input ports. The
detection of SETs at each router input is performed online
via a single bit parity checker. Experimental results show the
effectiveness of the proposed mechanism in terms of area
overhead, critical path delay overhead and power consumption.

The rest of this paper is organized as follows: Section II
provides information about related works, Section III provides
details on the proposed ReUSE mechanism and Section IV
will provide results of the experiments which help to illustrate
the proposed mechanism’s efficiency. Finally, section V will
conclude the paper.

II. RELATED WORK

The issue of Single Event Transients (SETs) on the NoC
links has been addressed in several papers. Depending where
and when SET detection and/or correction takes place, the
approaches can be divided into End-to-End (E2E) and Hop-
by-Hop (HBH) mechanisms.

In case of E2E approaches, such as [3], [4] and [5], fault
detection and/or correction takes place at the final destination,
while HBH approaches such as [6], [7] and [8] tend to mitigate
faults in each router by avoiding their propagation. The E2E
approaches, however, are unable to handle errors in the packet
header before the packet has reached the destination, meaning,
they cannot guarantee the arrival of the packet to the final
destination where fault detection/correction takes place and,
moreover, can cause network congestions due to mis-routing.
Therefore, the proposed approach deploys an HBH approach.

In addition to that, the SET fault tolerance mechanisms
can be further divided into three groups based on the type of
mechanism used: 1) Error correction codes (ECC); 2) Relaxed
transmission (RT); 3) Packet/flit retransmission (R/F-RET).

Error correction code based approaches such as [9], [6] and
[10] usually imply a large area and data overhead.

Relaxed transmission based approaches such as AWAIT
proposed in [11] detect a fault on the link by using a fault
detection mechanism, such as a parity checker. When a fault
is detected the system is paused until the SET disappears.
However this approach cannot handle faults which happen
near the raising clock edge, since fault detectors (such as
parity) will not provide the result instantaneously due to signal
propagation delays in the gates. If the time between the SET
and the next rising clock edge is shorter than the fault detection
latency, the faulty value will be latched into the router’s input
buffer. With the use of high clock rates in modern systems
the probability of a fault being latched into the buffer raises
noticeably, thus limiting the maximum safe speed of systems
using the RT approach.

Retransmission-based approaches use fault detection mech-
anisms and trigger retransmission of the data in case a fault
is detected.978-1-5386-7312-6/18/$31.00 c©2018 IEEE
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Retransmission approaches can be categorized as packet
retransmission (P-RET) or flit retransmission (F-RET). HBH
P-RET approaches, such as [12] suffer from large area and
slow speed, since routers need large buffers to store the entire
packet. Additionally, in case of a fault, the entire packet needs
to be retransmitted. In case of F-RET approaches, like [13] and
[14], only one flit is retransmitted in case of the fault, thus
requiring much smaller buffer and completing retransmission
much faster. However, usually those approaches still have a
relatively large overhead, since they require additional registers
for retransmission.

In addition, the approach proposed in [15] has some simi-
larities with the proposed mechanism. It uses Razor flip-flops
[16], both, to perform online error detection and to restore
the correct value of a signal after detection. The goal of
the approach is to tolerate SETs on NoC inter-router links.
However, a delayed clock is used in order to obtain the delayed
sample of the signal.

The ReUSE approach proposed in this paper is able to
detect 100% of SETs by utilizing a parity checker. However,
as it is based on HBH flit retransmission, it can, unlike
[11], handle all detected faults while guaranteeing returning
of normal, fault free, system operation in at most one clock
cycle after disappearance of the fault. Moreover, the ReUSE
mechanism does not use any additional registers, but relies on
inherent redundancy already found in FIFO input buffers of
NoC routers, thus not requiring an increase in the area.

III. REUSE MECHANISM

A. General Concept

ReUSE is a HBH flit retransmission mechanism for han-
dling SETs on the NoC links. A simplified concept of the
ReUSE mechanism can be seen in Fig. 3 (data is transmitted
from Router 1 to Router 2). For simplification, signals used for
flow control, and also router components such as the routing
and arbitration modules are not shown in the figure.

On the transmitter’s (Router 1) side, at each clock cycle, a
flit is transmitted to Router 2 (receiver) (A) and also stored into
register REG A. Thus, the value on the DATA line depends on
the multiplexor’s (MUX) select line. If (A) input is selected,
DATA will have the current flit read from the FIFO on it,
however, if the (B) input is selected, DATA will be set equal
to the flit which was read from the FIFO during the previous
clock cycle and stored into REG A. By combining this with a
mechanism for pausing the operation of the transmitting router,
it is possible to keep the already sent flit on the DATA line
until a fault disappears. While the pausing mechanism is not
specified in this paper, an example of such a mechanism can
be seen in [11].

On the receiver side (Router 2) every time a flit is received
over link (C), it is stored into a register REG B. The value
in the register is checked by a parity checker. If the parity
checker detects a fault, it will cause the sending router to be
paused and the MUX to be switched to input (B) using the
“overwrite” line, thus holding the current flit on the DATA line.
The DATA line is sampled to REG B every clock cycle and re-
checked by the parity checker. Once the fault has disappeared,
the operation of Router 1 will be resumed and the MUX will
be switched back to input (A), and writing to receiving router’s
FIFO is enabled by a signal from the parity checker. Since
the data in register REG B is updated each clock cycle, the
mechanism is guaranteed to return to normal operation on the
next rising edge of the clock after the fault has disappeared.

B. ReUSE Concept

Since REG B in Fig. 3 can be thought of as an extension
to Router 2’s FIFO, the design can be optimized by using
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Fig. 4: Average packet latency of a 4×4 2D-mesh network under different PIR and FIR on the links

data written to the FIFO one clock cycle earlier as input to
the parity checker, thus removing the need for REG B as a
separate register. This can be easily implemented, assuming
a circular buffer implementation of the FIFO, as shown in
Fig. 1. The buffer is accessed in such a FIFO implementation
by using two pointers; one for reading (Rd pointer), other
for writing (Wr pointer). If the buffer is empty, the read and
write pointers will both point at the same memory slot, as seen
in Fig. 1 (a). After each writing operation, the write pointer is
shifted by one slot to the left. It can be seen that REG B can
be implemented in such a way that parity checker is connected
to the FIFO slot referred to by Wr pointer − 1.

The data is read from the memory slot referred by the
read pointer. However, as it can be seen in Fig. 1 (b),
the condition for the FIFO being full is when the read
buffer is ahead of the write buffer by one memory slot
(Wr pointer = Rd pointer−1). Since writing would cause
the write pointer to move to the same memory slot where
the read pointer is (creating the “empty” configuration), the
memory slot Rd pointer−1 can never be overwritten in such
an implementation. This definition helps to further optimize
the mechanism, since REG A, as mentioned in Subsection
III-A, stores the flit read from the FIFO during the previous
clock cycle. This means that the flit in REG A is the same as
the one stored in FIFO memory slot Rd pointer − 1.

The ReUSE mechanism takes advantage of the aforemen-
tioned optimizations in order to provide fault tolerance for
NoC links. The implementation of the FIFO in ReUSE can
be seen in Fig. 2, data is normally read from the FIFO slot
referred by Rd pointer and written into the slot referred by
Wr pointer. However, REG B has been implemented by
connecting the parity checker to an additional MUX, which
uses the previous write pointer as select line. If a fault is
detected by the parity checker, the fault output is activated.
This will cause the sending router’s operation to be paused
until the fault has disappeared, as discussed earlier, and reading
of the memory slot referred by Rd pointer − 1, thus also
removing the need for REG A.

IV. EXPERIMENTAL RESULTS

This sections presents results of the experiments used to
validate the proposed ReUSE mechanism. The experimental

TABLE I: Area overhead of the ReUSE mechanism

Area (µm2) Overhead
Baseline router 8276.45 –
ReUSE router 9777.26 18%

TABLE II: Critical path delay overhead of the ReUSE mech-
anism

Critical path Delay (ns) Overhead
Baseline router 2.28 –
ReUSE router 2.46 7.8%

results will also demonstrate the SET mitigation efficiency
of the proposed mechanism. Additionally, in this section
the overhead of the proposed ReUSE mechanism will be
investigated in terms chip area, power and critical path delay.

For carrying out the experiments, the ReUSE mechanism
was implemented for the links of a 4×4, 2D-mesh NoC
utilizing the open source Bonfire NoC router [3]. The Bonfire
router uses wormhole switching with 32-bit flit width. In order
to reduce the area overhead, it uses Logic Based Distributed
Routing (LBDR) [17] and credit-based flow control, which has
the capability of transferring up to one flit per clock cycle,
assuming there are free slots in the receiver’s input buffer.
The version of the Bonfire router used in this work does
not use virtual channels. For calculating the overhead of the
proposed mechanism, all experimental results were compared
to a baseline Bonfire router which does not include any fault
tolerance mechanisms. The source code for both the baseline
router and for the proposed ReUSE router design along with
all the scripts used for calculating the experimental results are
maintained as an open-source project available at [18].

In order to measure the applicability of the ReUSE mech-
anism in harsh environments (like space), a set of random
uniform fault injection experiments were run for SETs lasting
10%, 100% and 200% of the clock period. The experiments
were run with different network loads and for fault rates
up to 80 million faults per second. The faults were injected
by forcing the signals in Modelsim simulation to take faulty
values. The results of the experiments in Fig. 4 show that when
compared to the fault-free run (shown with an orange line in
the figure), the latency did not change much when faults were
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(in mW) of the proposed and baseline 4 × 4 network under
different packet injection rates

injected, even under extreme fault injection rates.
The area overhead the ReUSE mechanism imposes on the

baseline Bonfire router can be seen in Table I. Table II shows
the critical path delay overhead. In order to obtain those
results, both designs were implemented in Register Transfer
Level (RTL) in VHDL and synthesized using TSMC 40 nm
CMOS technology standard cell library in Synopsys Design
Compiler, for 400 MHz clock frequency.

Finally, Fig. 5 shows the power usage of dynamic and
static power of the ReUSE mechanism, when compared to
the baseline. As it can be seen in the figure, the increase in
power usage implied by the ReUSE mechanism is minimal.

V. CONCLUSION

Due to the trend of shrinking transistors’ feature size,
Network-on-Chip links have become more susceptible to
run-time Single Event Transients (SETs), thus, affecting the
operation of the entire system. This paper presented the
ReUSE mechanism for handling SETs on inter-router links.
To this end, the inherent redundancy in the input buffers is
utilized, avoiding the usage of any additional re-transmission
buffers when mitigating SETs at run-time. The proposed
mechanism only adds 18% area overhead and 7.8% critical
path delay overhead to the baseline router (router without any
fault tolerance mechanisms). Experimental results show the
effectiveness of the ReUSE mechanism even in extreme fault
environments. As future work, the authors plan to extend this
work to cover permanent faults on the router links as well.
Moreover, the mechanism would be extended to cover faults
occurring in the control part of NoC routers.
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